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PREFACE 

This is a text in calculus, written for students in mathematics and 
applied areas such as engineering, physics, chemistry, computer science, 
economics, biology, and psychology. The style is unlike that of the usual text 
that the student encounters when enrolling in a standard calculus sequence. 
We'll try to explain the reasoning behind our approach, which is based on 
more than 20 years of teaching experience. 

Mathematicians and consumers of mathematics (such as engineers) 
seem to disagree as to what mathematics actually is. To a mathematician, it 
is important to distinguish between rigor and intuition. To an engineer, 
intuitive thinking, geometric reasoning, and physical deductions are all 
valid if they illuminate a problem, and a formal proof is often unnecessary 
or_ counterproductive. 

Most calculus texts claim to be intuitive, informal, and even friendly, 
and in fact one can find many worked-out examples, as well as some geo­
metric and physical reasoning. However, the dominant feature of these 
books is formalism. Definitions and theorems are stated precisely, and many 
results are proved at a level of rigor that is acceptable to a working mathe­
matician. We admit to a twinge of embarrassment in arguing that this is bad. 
However, our calculus students have ranged from close to the best to be 
found anywhere, to far from the worst, and it seems entirely clear to us that 
most students are not ready for an abstract presentation, and they simply 
will not learn the formalism. The better students will succeed in reading 
around the abstractions, so that the textbook at least becomes useful as a 
source of examples. 

Our approach uses informal language and emphasizes geometric and 
physical reasoning. The style is similar to that used in applied courses and, 
for this reason, students find the presentation very congenial. They do not 
regard calculus as a strange subject outside their normal experience. In­
variably, a number of students are motivated toward further study of 
mathematics, and there is no better preparation than to learn to think 
intuitively, geometrically, and physically. 

We expect that this text will be used for independent study, or as a 
supplement or reference for those who are having difficulty in a standard 
calculus course; for maximum benefit to the student, detailed solutions to 
all problems are supplied. (We have used the book as a classroom text, and 
have found the inclusion of detailed solutions to be a useful feature here as 
well.) The problems are limited in number so that it is feasible to work 
through all of them. They have been carefully chosen so that a student who 
does most of them will be well prepared for applications of calculus in later 
courses. The text and problems concentrate on basic material rather than 
fringe topics; as a result the book is of manageable size. 

We believe that for a student encountering calculus for the first time, 
our approach is most appropriate. We hope that faculty who teach 

ix 
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courses in which calculus is applied will, after seeing how well the approach 
works, try to influence departments of mathematics to change their style 
of teaching. 

The close cooperation and teamwork of the staff at IEEE PRESS were 
invaluable. In particular, we would like to express our gratitude to David 
Boulanger, Associate Editor; W. Reed Crone, Managing Editor; and 
David L. Staiger, Staff Director. 

We wanted the diagrams in the book to be freehand line drawings, 
similar to those sketched by an instructor at a blackboard or a student 
working at home. We thank our artist, Evan Polenghi, for carrying out our 
conception with skill and grace. 

Above all, we thank Professor M. E. Van Valkenburg, Dean of the 
School of Engineering at the University of Illinois at Urbana-Champaign 
and Editor in Chief of IEEE PRESS, for making the publication of this 
text possible. 

CAROL ASH 

ROBERT ASH 



1/FUNCTIONS 

We begin calculus with a chapter on functions because virtually all 
problems in calculus involve functions. We discuss functions in general, and 
then concentrate on the special functions which will be used repeatedly 
throughout the course. 

1.1 Introduction 

A function may be thought of as an input-output machine. Given a 
particular input, there \s a corresponding output. This process may be 
represented by various schemes, such as a table or a mapping diagram 
listing inputs and outputs (Fig. 1). Functions will usually be denoted by 
single letters, the most common being / and g. If the function g produces 
the output 3 when the input is 2, we write g(2) = 3. 

11.JPVf O\lfPllf 
� 
4 
4-

10 -1 

FIG. I 

1..- )- -3 

!:=>tr 
IO .._,,.....,.,. _ I 

Often functions are described with formulas. If /(x) = x2 + x then 
/(3) = 9 + 3 = 12, /(a) = a 2 + a, /(a + b) = (a + b)2 + (a + b) = 
a2 + 2ab + b2 + a + b. We might refer to "the function x2 + x" without 
using a special name such as/. 

For example, if /(x) = 2x - 9 then 

/(3) = 6 - 9 = -3 
/(0) = -9 
[(a)= 2a - 9 

[(a + 6) = 2(a + 6) - 9 = 2a + 26 - 9 
/(a) + /(6) = 2a - 9 + 26 - 9 = 2a + 26 - 18 

/(3a) = 2(3a) - 9 = 6a - 9 
3/(a) = 3(2a - 9) = 6a - 27 
[(a 2) = 2a 2 

- 9 
(/(a))2 = (2a - 9)2 = 4a 2 

- 36a + 81 
[(-a)= 2(-a) - 9 = -2a - 9 
-/(a)= -(2a - 9) = -2a + 9 .  1 



2 · 1 /Functions 

�or A FUNe,nON 
F/b. Jl 

The input of a function f is called the independent variable, while the output is the dependent variable. We say that the function f maps x to f (x), and call /(x) the value of the function at x. The set of inputs is called the domain off, and the set of outputs is the range. A function f(x) is not allowed to send one input to more than one output. Figure 2 illustrates a correspondence that is not a function. For example, it is illegal to write g(x) = ±Y2x2 + 3, since each value of x produces two outputs. It certainly is legal to write and use the expression ±Y2x2 
+ 3, but it cannot be named g(x) and called a 'function. Functions often arise when a problem is translated into mathematical terms. The solution to the problem may then involve operating on the functions with calculus. Before continuing with functions in more detail we'll give an example of a function emerging in practice. Suppose a pigeon is flying from point A over water to point B on the beach (Fig. 3), and the energy required to fly is 60 calories per mile over water but only 40 calories per mile over land. (The effect of cold air dropping makes flying over water more taxing.) The problem is to find the path that requires minimum energy. The direct path from A to B is shortest, but it has the disadvantage of being entirely over water. The path ACB is longer, but it has the advan­tage of being mostly over land. In general, suppose the bird first flies from 

A to a point Pon the beach x miles from C, and then travels the remaining 10 - x miles to B. The value x = 0 corresponds to the path ACB, and x = lO corresponds to the path AB. The total energy E used in flight can be calculated as follows: 

( l) 

E = energy expended over water + energy expended over land = calories per water mile x water miles 
+ calories per land mile x land miles = 60AP + 40 PB 

= 60\!36 + x2 + 40(10 - x), 0sx sIO. Thus the energy is a function of x. Calculus will be used in Section 4.2 to finish the problem and find the value of x that minimizes E. In deriving (l), we restricted x so that 0 :5 x :5 10 since we assumed that to minimize energy the bird should fly to a point P between C and B as indicated in Fig. 3. Since problems often restrict the independent variable in a similar fashion, certain notation and terminology has become standard. 

p B 
, ----'7�� ➔ - 7 10-x. 

-;? 
,o 
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The set of all x such that a s x s b is denoted by [a, b] and called a closed 
interval (Fig. 4) .  With this notation, the variable x in ( l )  lies in the interval [0, IO]. The set of all x such that a < x < b is denoted by (a, b) and called an open interval. Similarly we use [a, b) for the set of x where a s x < b, (a, b] for a <  x s b, [a, 00) for x � a, (a, 00) for x > a, (-00, a] for x s a, and (-00 , a) for x < a. In general, the square bracket, and the solid dot in Fig. 4 , means that the endpoint belongs to the set; a parenthesis, and the small circle in Fig. 4 , means that the endpoint does not belong to the set. The notation (-00, oo) refers to the set of all real numbers. As another example of a function, consider the greatest integer function: Int x is defined as the largest integer that is less than or equal to x. Equiva­lently, Int x is the first integer at or to the left of x on the number line. For example, Int 5 .3 = 5, Int 5 .4 = 5 , Int 7 = 7, lnt(-6.3) = -7 .  Note that for positive inputs, Int simply chops away the decimal part. The domain of Int is the set of all (real) numbers. (Elementary calculus uses only the real number system and excludes nonreal complex numbers such as 3i and 4 + 2i.) The range of Int is the set of integers. Frequently, Int x is denoted by [x] . Many computers have an internal Int operation available. To illus­trate one of its uses, suppose that a computer obtains a numerical result, such as x = 2. 1679843 ,  and is instructed to keep only the first 4 digits. The computer multiplies by 1000 to obtain 2167 .9843 ,  applies Int to get 2167 , and then divides by 1000 to obtain the desired result 2 .167 or, in our functional notation, wk Int( lO00 x) . Most work in calculus involves a few basic functions, which (amazingly) have proved sufficient to describe a large number of physical phenomena. As a preview, and for reference, we list these functions now, but it will take most of the chapter to discuss them carefully. The material is im­portant preparation for the rest of the course, since the basic functions dominate calculus. 
Table of Basic Functions Type Examples Constant functions /(x) = 2 for all x, g(x) = - 1r  for all x Power functions x 2 , x 3 , x, x 1 12 , x · 1 , x ·9915, x 2·7 

Trigonometric functions sine, cosine, tangent, secant, cosecant, cotangent Inverse trigonometric functions sin- 1x, cos· 1x, tan· 1x Exponential functions 2', 3', (i)', 10' and especially e', where e = 2 .71828 . .  , Logarithm functions log�. log�. log 1�, log 10x and especially log,x, denoted ln x 
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Problems for Section I . I  

1 .  Let [(x) = 2 - x 2 and g(x) = (x - 3)2
. Find 

(a) [(0) (d) g(O) (g) (g(b))' 
(b) [( I )  (e) g ( l )  (h) [(2a + b) 
(c) [(b �) (f) g (b 3) (i) the range off and of g, if the domain is ( -00, ::ic) 

2. Let f(x) = lxl/x. 

(a) Find f(- 7) and f(3) .  
(b) For what values of x i s  the function defined? 
(c) With the domain from part (b), find the range off. 
(d) Does [(2 + 3) equal [(2) + [(3)? 
(e) Does [(- 2 + 6) equal f( -2) + [(6)?  
(f )  Does [(a + b)  ever equal [(a) + [(b)?  

3. The number xo is called a fixed point of the function f if f(xo) = xo ; i .e . ,  a 
fixed point is a number that maps to itself. Find the fixed points of the following 
functions: (a) lxl/x (b) Int x (c) x 2 (d) x 2 + 4. 

4. Let [(x) = 2x + I .  Does [(a 2) ever equal ([(a))2? 
5. l ff(x) = 2x + 3 then f([(x)) = f(2x + 3) = 2(2x + 3) + 3 = 4x + 9. 

(a) Find [([(x)) i f  [(x) = x 3

• 

(b) Find lnt(lnt x). 
(c) If /(x) = -x + 1, find/(f(x)),/(/([(x))) ,  and so on, until you see the pattern. 

6. A charter aircraft has 350 seats and will not fly unless at least 200 of those 
seats are filled . When there are 200 passengers, a ticket costs $300, but each ticket 
is reduced by S 1 for every passenger over 200. Express the total amount A collected 
by the charter company as a function of the number p of passengers. 

1 .2 The Graph of a Function 

Information can usually be perceived more easily from a diagram than 
from a set of statistics or a formula. Similarly, the behavior of a function can 
often be better understood from its graph, which is drawn in a rectangular 
coordinate system by using the inputs as x-coordinates and the outputs as 
y-coordinates ; i .e . ,  the graph of/ is the graph of the equation y = f(x). In  
sketching a graph it may be useful to  make a table of values of the input x 
and the corresponding output y. 

The graph of the function /(x) = -2x + 3 is the line with equation 
y = - 2x + 3 (Fig. I ) .  I t  has slope -2 and passes through the point (0, 3) .  

The graph of Int x is shown in Fig. 2 along with a partial table of values 
used to help plot the graph. The graph shows for instance that as x in­
creases from 2 toward 3 ,  Int x, the y-coordinate in the picture, remains 2 ;  
when x reaches 3 ,  Int x suddenly jumps to 3 .  

Example I The graph of  a function g is given in  Fig. 3 .  Various values of  
g can be  read from the picture : since the point (0 ,  6) i s  on the graph, we 
have g (O) = 6; similarly, g (4) = 1 1 ,  g ( I O) = 4. Since P is lower than Q, we 
can tell that g (2) < g(3) .  I f  g (x) represents the final height of a tree when 
it is planted with x units of fertilizer, then using no fertilizer results in a 
6-foot tree, using I O  units of fertilizer overdoses the tree and it grows to 
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only 4 feet, while 4 units of fertilizer produces an 11-foot tree, the maxi­mum possible height according to the data. 
The vertical line test Not every curve can be the graph of a function. The curve in Fig. 4 is disqualified because one x is paired with several y 's, and a function cannot map one input to more than one output. In general, a curoe is the graph of a function if and only if no vertical line ever intersects the curoe 
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F10 .  4-
more than once. In other words, if a vertical line intersects the curve at all, it does so only once. 
Equations versus functions The hyperbola in Fig. 5 is the graph of the equation xy = l . It is also (solve for y) the graph of the function /(x) = 1 /x. The hyperbola in Fig. 6 is the graph of the equation y 2 - 2x2 = 6. It is not the graph of a function because it fails the vertical line test. However, the upper branch of the hyperbola is the graph of the function Y2x2 + 6 (solve for y and choose the positive square root since y > 0 on the upper branch) , and the lower branch is the graph of the function - V2x2 + 6. 

y:fi,t J.x 2. 

- ✓6  

flb. 6 

Continuity If the graph off breaks at x = x0, so that you must lift the pencil off the paper before continuing, then f is said to be discontinuous at 
x = x0• If the graph doesn't break at x = x0 , then f is continuous at x0• The function - 2x + 3 (Fig. l) is continuous (everywhere) . On the other hand, Int x (Fig. 2) is discontinuous when x is an integer, and l /x (Fig. 5) is discontinuous at x = 0. Many physical quantities are continuous functions. If h (t ) is your height at time t , then h is continuous since your height cannot jump. 
One-to-one functions, non-one-to-one functions and nonfunctions A function is not allowed to map one input to more than one output (Fig. 7 ) .  
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1 .2 The Graph of a Function · 7 

But a function can map more than one input to the same output (Fig. 8), 
in which case the function is said to be non-one-to-one. A one-to-one function 
maps different inputs to different outputs (Fig. 9). 

The function x2 is not one-to-one because, for instance, inputs 2 and 
-2 both produce the output 4. The function x 3 is one-to-one since two 
different numbers always produce two different cubes. 

A curve that passes the vertical line test, and thus is the graph of a function, will 
further be the graph of a one-to-one function if and only if no horizontal line 
intersects the curve more than once (horizontal line test). The function in Fig. 10 
fails the horizontal line test and is not one-to-one because x 1 and x2 produce 
the same value of y. 

F/6, /0 

Constant functions If, for example, f(x) = 3 for all x, then f is  called a 
constant function. The graph of a constant function is a horizontal line 
(Fig. 1 1 ) .  The constant functions are among the basic functions of calculus, 
listed in the table in Section 1 .  1 .  

Power functions Another group of basic functions consists of the power 
functions x', such as 

X 2 = X • X 

(the positive square root of x) 
1 

x - 113 = :Jr Vx 
x"4 = v? = (V'x )1 

x 2.6 = x 26110 = � . 

To sketch the graph of x', we make a table of values and plot a few 
points. When the pattern seems clear, we connect the points to obtain the 
final graph (Fig. 12).  The connecting process assumes that x3 is continuous, 
something that seems reasonable and can be proved formally. ln general, 
x' is continuous wherever it is defined. If  r is negative then x '  is not defined 
at x = 0 and is discontinuous there; the graph of 1 /x, that is, the graph of 
x - 1 , is shown in Fig. 5 with a discontinuity at the origin. Figure 13 gives the 
graph of x 2 (a parabola) and of x 4 . For - l < x < l ,  the graph of x 4 lies 
below the graph of x 2 since the fourth power of a number between - I and 
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1 is smaller than its square ; otherwise x 4 lies above x 2 • Figure 14 gives the graph of y = Vx, the upper half of the parabola x = y 2 . 
Increasing and decreasing functions Suppose that whenever a > b, we have f(a) > f(b) ; that is, as x increases, /(x) increases also. In this case, f is said to be increasing. The graph of an increasing function rises to the right ( Figs. 1 2  and 14). Suppose that whenever a > b, we have [(a) < f(b) ; that is, as x in­creases,/(x) decreases. In this case ,/ is decreasing. The graph of a decreasing function falls to the right ( Fig. 1 ) .  The functions x 2 and x 4 ( Fig. 13) decrease on the interval (-:x:, OJ and increase on [O, :x:) ; overal l ,  on ( -:x:, :x:), they are neither increasing nor de­creasing. The function 1 /x ( Fig. 5) decreases on the intervals ( - 00 , 0) and (0, :x:) but is neither decreasing nor increasing on the interval ( -oc, oc) . 
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Motion along a line Suppose that at time t, the position x of a particle (such as a car) moving on a number line is given by the function x = 1 2 • Then at time t = -3,  the particle is at position x = 9; at time t = - l ,  it is at position x = l ;  at time t = 0, it is at position x = 0; at time t = 4, it is at position x = 16, and so on. Note that there is nothing mysterious about negative time. If time is measured in minutes, then t = 0 is a fixed time, such as 12 :30 p.m. on Jan. 20, 1947,  and negative values of t correspond to times before that moment. For example, t = -3  is 3 minutes earlier, that is, 12 :27 p.m. Instead of drawing the graph of x = t 2 (a parabola in a t, x coordinate system), we might sketch the motion as in Fig. 15 .  Until time 0 ,  the particle moves from right to left on the x-line and decelerates (look at the decrease in distance between consecutive times to see the deceleration) .  After time 0, the particle moves from left to right and accelerates. (For clarity, the right-to-left part of the motion is drawn above the left-to-right motion in Fig. 15, but, in reality, the particle is assumed to travel back and forth on the same road, not on a double-decker road.) 
t;: - 1  t-o-J. t; r - 3  

c ·  ( 

( 
time. t-:.O t : ,  t= J :: I )' 

) 
b 4  

FI G. 1 5 
One of the applications of calculus (Section 3 .2) will be the com­putation of the speed and acceleration at any instant of time, given the position function. 

Problems for Section 1.2 1. Sketch the graph. ls the function increasing? decreasing? one-to-one? continuous? (a) 2x (b) x + lxl (c) lxl/x (d) /(x) is the larger of x and 3 
z. Let/(x) be O if x is an even integer, 1 if x is an odd integer, and undefined otherwise. Sketch the graph off. S. Figure 16 shows the graph of a function f 

Fl b .  [ 6  
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(a) Find /( - 1 ), f (0) and /(6).  
(b) Estimate x such that /(x) = 4. 
(c) Find x such that f(x) < 0. 

4. Suppose f is an increasing function. If x decreases, what does /(x) do? 
5. Are the following functions continuous? 

(a) the cost c (w) of mailing a package weighing w grams 
(b) your weight w (t )  at time I 

6. What can you concl ude about the graph of f under the following 
conditions. 

(a) f (x) > 0 for all x 
(b) /(x) > x for all x (for example, /(5) is a number that must be larger 

than 5) 

7. (a) Sketch the power functions x -3_ x -2, x - 112 on the same set of axes. 
(b) Sketch the power functions x, x 5 , x 7 , x 8 on the same set of axes. 

8. A function f is said to be even if f( -x) = f(x) for all x;  for example, /(7) = 3 
and /( - 7) = 3, /( - 4) = - 2 and /(4) = - 2 ,  and so on . A function is odd if  
/( -x) = -J(x) for al l  x; for example, /(3) = - 12 and /( -3)  = 12 ,  /( - 6) = -2 and 
/(6) = 2, and so on. The functions cos x and x 2 are even, sin x and x 3 are odd, 
2x + 3 and x 2 + x are neither. 

(a) Figure 17 shows the graph of a function /(x) for x � 0. If f is even, com­
plete the graph for x :s; 0. 

(b) Complete the graph in Fig. 17 if  f is odd . 

9. Find f(x) if the graph off is the line AB where A = ( l ,  2) and B = (2, 5) .  
I O. Let /(t ) be the position of a particle on a number l ine at t ime I. Describe the 

motion if 

(a) f is a constant function (c) f is a decreasing function 
(b) [(I ) = t - 2 (d ) /(t ) > 0 for all I 

1 .3 The Trigonometric Functions 

We continue with the development of the basic functions listed in 
Section I .  I by considering the six trigonometric functions. The functions 
are entitled to be called basic because of their many applications, two of 
which (vibrations and electron flow) are described later in the section. We 
assume that you have studied trigonometry before starting calculus and 
therefore this section contains only a summary of the main results. A list of 
trigonometric identities and formulas is included at the end of the section 
for reference. 

Definition of sine, cosine and tangent Using Fig. I ,  we define 

( I )  sin 8 = 1.. ,  r 
X cos (J = - ' 
r 

v sin fJ 
tan fJ = L = -- . 

X COS fJ 

Figure I shows a positive fJ corresponding to a counterclockwise rotation 
away from the positive x-axis. A negative fJ corresponds to a clockwise 
rotation. 

The distance r is always positive, but the signs of x and y depend on 
the quadrant. If 90° < fJ < 180° , so that fJ is a second quadrant angle, then 



Table 1 

Degrees Radians sm 
oo 0 0 

90° 1r/2 1 
1 80° 

11' 0 
270° 31r/2 - 1 
360° 211' 0 

Fib. 3 
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x is negative and y is positive; thus sin 8 is positive, while cos 8 and tan 8 
are negative. In general, Fig. 2 indicates the sign of sin 8, cos 8 and tan 8 
for 8 in the various quadrants. 

* * * 
516.N OF ':Iii\ e $/t>N OF ccj 9 '71<,N OF -tw-, 9 

FIG.:2.. 

Degrees versus radians An angle of 180° i s  called 11' radians. More gener­
ally, to convert back and forth use 

(2) 
number of radians 1r 
number of degrees 

= 
180 · 

Equivalently 

(3) 

(4) 

number of degrees = 
180 x number of radians 

11' 

number of radians = 1;0 
x number of degrees . 

One radian is a bit more than 57° . Tables 1 and 2 list some important angles 
in both radians and degrees, and the corresponding functional values. 

Table 2 

cos tan Degrees Radians sin cos tan 
1 0 
0 none 

- 1 0 

30° 1r/6 I !v'3 1 /\1'3 2 
45° 1r/4 ½Y2 ½Y2 1 
60° 1r/3 ½v'3 I v'3 2 

0 none 
1 0 

In most situations not involving calculus, it makes no difference 
whether we use radians or degrees, but it turns out (Section 3.3) that for 
the calculus of the trigonometric functions, it will be better to use radian 
measure. 

One geometric instance where radians are preferable involves arc length 
on a circle. Suppose a central angle 8 cuts off arc length s on a circle of 
radius r (Fig. 3). The entire circumference of the circle is 211'T; the indicated 
arc length s is just a fraction of the entire circumference, namely, the 
fraction 8/360 if 8 is measured in degrees, and 8/21r if 8 is measured in 
radians. Therefore, with 8 in radian measure, 

(5) 
8 s = 211' 

· 21rr = r8 . 
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I f  deg�ees are used, the formula is s = 
3
!
0 

· 21rr = 
1;
0 

r8, which is not as 
attractive as (5). 

Reference angles Trig tables list sin 8, cos 8 and tan 8 for 0 < 8 < 90° . 
To find the functions for other angles, we use knowledge of the appropriate 
signs given in Fig. 2 plus reference angles, as illustrated in the following 
examples. 

If 8 is a second quadrant angle, its reference angle is 180° - 8, so 150° 

has reference angle 30° (Fig. 4) , and 

, so· 

!= t b . 4  

sin 1 50° = sin 30° = ½ , cos 1 50° = - cos 30° = -½V3 , 
tan 1 50° = - tan 30° = - 1 /V3 . 

If  8 is . in the third quadrant, its reference angle is 8 - 180° , so 2 10° has 
reference angle 30° (Fig. 5) , and 

;z. 1 0 ·  
Fl 6 . 5 

sin 2 10° = - sin 30° = -½ , cos 2 10° = - cos 30° = -½\13 , 

tan 2 10° = tan 30° = l /V3 . 

I f  8 is in quadrant IV, its reference angle is 360° - 8, so 330° has 
reference angle 30° (Fig. 6), and 

sin 330° = -sin 30° = -½ , cos 330° = cos 30° = ½\13 , 

tan 330° = - tan 30° = - l /V3 . 

Right triangle trigonometry In the right triangle in Fig. 7, 

(6) 

. opposite leg 8 adjacent leg 
sm 8 = �_ .... _,..__ _ __.. ,  cos = __.. __ __. ,  

hypotenuse hypotenuse 
_ opposite leg 

tan 8 - d' 1 . a �acent eg 
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Graphs of sin x,  cos x and tan x Figures 8-10 give the graphs of the 
functions, with x measured in radians. The graphs show that sin x and cos x 
have period 21r (that is, they repeat every 21r units), while tan x has 
period 1r. Furthermore, - 1 :S sin x :S 1 and - 1 :S cos x :s l ,  so that each 
function has amplitude l .  On the other hand, the tangent function assumes 
all values, that is, has range (-00, 00). Note that sin x and cos x are defined 
for all x, but tan x is not defined at x = ± 1r/2, ±31r/2, · · · .  

Fl b . S  

Fl& . '1 

Plb . l O 

The graph of a sin(bx + c) The function sin x has period 21r and ampli­
tude 1 .  The function 3 sin 2x has period 1r and amplitude 3 (Fig. 1 1). In 
general, a sin bx, for positive a and b, has amplitude a and period 21r/b. For 
example, 5 sin ½x has period 41r and amplitude 5. 
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Fie, . I I 
The graph of a sin(bx + c )  not only involves the same change of period and amplitude as a sin bx but is also shifted. As an example, consider sin(2x - ½'IT). To sketch the graph, first plot a few points to get your bearings. For this purpose, the most convenient values of x are those which make the angle 2x - i'IT a multiple of 'IT/2 ;  the table in Fig. 1 2  chooses angles 0 and 'IT/4 to produce points (0, - 1) ,  ('IT/4, 0) on the graph. Then continue on to make the amplitude 1 and the period 'IT as shown in Fig. 12. 

0 ?it\ (- t1T) = - I 

f •in O = O Fl& . l 1..  
Application to simple harmonic motion If a cork is pushed down in a bucket of water and then released (or, similarly, a spring is stretched and released), it bobs up and down. Experiments show that if a particular cork oscillates between 3 units above and 3 units below the water level with the timing indicated in Fig. 13, its height h at time t is given by h (t ) = 3 sin ½t. 

F lb. / 3 
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(Note that there is  nothing strange about time 1r .  It is  approximately 3 . 14 minutes after time 0.) More generally, the amplitude, frequency and shift depend on the cork, the medium and the size and timing of the initial push down, but the oscillation, called simple harmonic motion, always has the form a sin(bt + c), or equivalently a cos(bt + c) . Another instance of simple harmonic motion involves the flow of the alternating current (a.c.) in a wire. Electrons flow back and forth, and if i (t )  i s  the current, that is, the amount of  charge per second flowing in  a given direction at time t, then i (t )  is of the form a sin(bt + c) or a cos(bt + c) . If  i (t )  = IO cos t then at time t = 0,  10 units of charge per second flow in the given direction; at time t = 1r/2, the flow momentarily stops; at time t = 1r, IO units of charge per second flow opposite to the given direction. 
The graph of /(x) sin " First consider two special cases. The graph of y = 2 sin x has amplitude 2 and lies between the pair of lines y = ±2 (Fig. 14), although usually we do not actually sketch the lines. The lines, which are reflections of one another in the x-axis, are called the envelope of 2 sin x. The graph of y = - 2  sin x also lies between those lines; in addition, the effect of the negative factor -2 is to change the signs of y-coordinates, so the graph is the reflection in the x-axis of the graph of 2 sin x (Fig. 14). 

FI G . 1 4 

y= -t,i n,;x 
-y= -1., 

Similarly, the graph of x' sin x i s  sandwiched between the curves y = ±x' which we sketch as guides (Fig. 15). The curves, called the en­velope of x'  sin x, are reflections of one another in the x-axis. Furthermore, 

/ 

.... ..... ' 
' ' '  y= ��\V\,'J-

Y::�) 
F/0 . 1 5 
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whenever x 3 is negative (as it is to the left of the y-axis) we not only change 
the amplitude but also reflect sine in the x-axis to obtain x 3 sin x. The result 
in Fig. 15  shows unbounded oscillations. 

In general, to sketch the graph of f(x) sin x,first draw the curoe y = f(x) and 
the curoe y = -f(x) , its reflection in the x-axis, to seroe as the envelope. Then change 
the height of the sine curoe so that it fits within the envelope, and in addition 
reflect the sine curoe in the x-axis whenever f(x) is negative. 

Secant, cosecant and cotangent By definition, 

(7) 
I 

sec x = -- , 
COS X 

I 
csc x = -.- ,  

sm x 
COS X 

cot x = -- = --
sm x tan x 

In  each case , the function is defined for all values of  x such that 
the denominator is nonzero. For example, csc x is not defined for 
x = 0, ± 1r, ±21r, · · · . The graphs are given in Figs. 16- 18. 

(8) 

I 

U! 
-?.,,.-1r 1 -11'  0 11 
� I J. J: n 

Fl G . 1 6  

-3,r I -it t\ 
-,: I I 

0 :n: I I 

; I 
. ' 

In a right triangle (Fig. 7) ,  

- I  

Fl6 . l 7  

\l I 

l ,r  11" I 311" l:rf 1 -:;:  
I i 

:n: I I 
I 

_ hypotenuse 
sec 8 -

d
' 

1 
, 

hypotenuse 
csc 8 = . , 

opposite leg a �acent eg 

adjacent leg 
cot 8 = . . 

opposite leg 
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Notation It i s  standard practice to write sin2x for  (sin x)2 , and sin x 2 to 
mean sin(x2) .  Similar notation holds for the other trigonometric functions. 

Standard trigonometric identities 

Ntgativt angle formulas 
(9) sin(-x) = - sin x ,  

csc(-x) = -csc x ,  
Addition formulas 

cos(-x) = cos x ,  
sec(-x) = sec x ,  

sin(x + y) = sin x cos y + cos x sin y 
( 10) sin(x - y) = sin x cos y - cos x sin y 

cos(x + y) = cos x cos y - sin x sin y 
cos(x - y) = cos x cos y + sin x sin y 

Double angle formulas 
sin 2.x = 2 sin x cos x 

tan(-x) = - tan x ,  
cot(-x) = -cot x 

( 1 1 )  cos 2x = cos2x - sin2x = l - 2 sin2x = 2 cos2x - l 

( 12) 

2 tan x tan 2.x = 1 2 - tan x 
Pythagorean idtntitits 

sin2x + cos2x = l 

l + tan2x = sec2x 

l + cot2x = csc2x 

Half-angle formulas 

( l !I ) . 2l l - cos X 
;;, SID JX = 

2 

2! l + cos X 
cos 2x = 

2 
Product f ormu.las 

. sin(x + y) + sin(x - y) 
sm x cos y = 

2 
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( 14 )  . s in(x + y)  - sin(x - y) 
cos x sm y = 2 

cos(x + y) + cos(x - y) 
COS X COS J = 

2 

. . cos(x - y) - cos(x + y) sm x sm y = 
2 

Factoring formulas 

. . 2 � . � sm x + sm y = cos 
2 

sm 
2 

. .  2 
x + y .

� ( 1 5) sm x - sm y = cos -
2
- sm 

2 

x + y � 
COS X + COS ) = 2 COS -

2
- COS 

2 

X + \I \I - X 
cos x - cos y = 2 sin � sin � 

2 2 

Reduction formulas 

cos(½1r - 9) = sin 9 

( 16) s in(½1r - 9) = cos 9 

( 1 7) 

( 18) 

COS(1T - 9) = - cos 9 

s in( 1T - 8) = s in 9 

law of Sines (Fig. 19) 
s in A sin B sin C -- = -- = --

a b c 
Law of Cosines ( Fig. 19)  

c 2 = a 2b 2 - 2ab cos C 

Area formula (Fig. 19) 
( l9) area of triangle ABC = ½ab s in C 

f3 

A 
F/6 . 1 '1  

Problems for Section 1 .3 

1. Convert from radians to degrees. 
(a) 1r/5 (b) 51r/6 (c) - 1r/3 

2. Convert from degrees to radians. 
(a) 12° (b) -90° (c) 100° 

C 
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3. Evaluate without using a calculator. 
(a) sin 2 100 (b) cos 3.,,. (c) tan 511'/4 

4. Sketch the graph. 

(a) sin ¼.x (d) 5 sin(½.x + 11') 
(b) tan 4x (e) 2 cos(3x - ½11') 
(c) 3 cos m: 

5. Let sin .x = a, cos y = b and evaluate the expression in terms of a and b, 
if possible. 

(a) sin(-.x) 
(b) cos(-y) 
(c) -sin .x 

(d) -cos y 
(e) sin2.x 
(f) sin .x 2 

6. In each of (a) and (b), use right triangle trigonometry to find an exact 
answer, rather than tables or a calculator which will give only approximations. 

(a) Find cos 6 if (J is an acute angle and sin (J = 2/3. 
(b) Find sin 6 if 6 is acute and tan 6 = 7 /4.  

7. Sketch the graph. 
(a) .x sin .x (b) .x2 sin .x 

1 .4 Inverse Functions and the Inverse 
Trigonometric Functions 

If a function maps a to b we may wish to switch the point of view and 
consider the inverse function which sends b to a. For example, the function 
defined by F = fC + 32 gives the fahrenheit temperature F as a function 
of the centigrade reading C. If we solve the equation for C to obtain 
C = i(F - 32) we have the inverse function which produces C, given F. If  
the original function i s  useful, the inverse i s  probably also useful. In  this 
section, we discuss inverses in general, and three inverse trigonometric 
functions in panicular. 

The invene function Let f be a one-to-one function. The inverse of /, 
denoted by r • ,  is defined as follows: if /(a) = b then r ' (b) = a. In other 
words, the inverse maps "backwards" (Fig. 1 ) .  Only one-to-one functions 
have inverses because reversing a non-one-to-one funcfion creates a pairing 
that is not a function (Fig. 2) . 

Given a table of values for/, a table of values for 1 - • can be constructed 
by interchanging columns. A partial table for f (x) = 3x and the correspond­
ing partial table for its inverse are given below. 

X f(x) 

2 6 
5 1 5  
7 2 1  

6 2 
1 5  5 
2 1  7 

Clearly, F ' (x) = ix. Note that we may also think of ix as the "original" 
function with inverse 3x. In general, f and r' are inverses of each other. 

Figure l shows that if I and 1- •  are applied successively (first f and then 
1- • ,  or vice versa) the result is a "circular" trip which returns to the starting 
point. In other words, 
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( l ) r 1 (J(x) ) = X and J(r 1 (x) ) = X . For example, multiplying a number by 3 and then multiplying that result by 1/3 produces the original number. 
Example I In  functional notation ,  the centigrade/fahrenheit equations show that if/(x) = tx + 32 then r 1 (x) = �(x - 32) . 
The graph of /- 1 (x) One of the advantages of an inverse function is that its properties , such as its graph, often follow easily from the properties of the original function. Comparing the graphs of J and 1- 1 amounts to com­paring points such as (2 ,  7) and (7 ,  2) (Fig. 3) . The points are reflections of one another in the line y = x. In general, the graph of f - 1 is the reflection of 
the graph of J in the line y = x, so that the pair of graphs is symmetric with respect to the line. If /(x) = x2 , and x � 0 so that J is one-to-one, then r 1 (x) = Vx. The symmetry of the two graphs is displayed in Fig. 4. 

/ 
/ 

FIG . �  
The inverse sine function Unfortunately, the sine function as a whole doesn't have an inverse because it isn't one-to-one. But various pieces of the sine graph are one-to-one, in particular, any section between a low and a high point passes the horizontal line test and can be inverted. By con­vention , we use the part between - rr/2 and rr/2 and let sin- 1x be the inverse of this abbreviated sine function ; that is , sin- 1x is the angle between - rr/2 and rr/2 whose sine is x. Equivalently, (2) sin- 1a = b if and only if sin b = a and - rr/2 :s b :s rr/2 . The graph of sin - 1x is found by reflecting sin x, - rr/2 :s x :s rr/2 ,  in the line y = x (Fig. 5 ). The domain of sin - 1x is [ - 1 , I ]  and the range is [ - rr/2, rr/2) . The sin- 1 function is also denoted by Sin- 1 and arcsin. In computer programming, the abbreviation ASN of arcsin is often used. 
Example 2 Find sin - 1 ½, 

Solution: Let x = sin- 1 ½; then sin x = ½. We know that sin 30° = ½, sin(- 330°) = ½, sin 150° = ½, · · · . We must choose the angle between -90° and 90° ; therefore sin- 1 ½ = 30° , or, in radians, sin- 1 ½ = rr/6. 
Example 3 Find sin - 1 (- 1 ) . Of all the angles whose sine is - 1 ,  the one in the interval [ - rr/2 ,  rr/2) is - rr/2.  Therefore, sin- 1 (- 1 )  = - rr/2 .  
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Warning l .  The angles - 1r/2 and 31r/2 are coterminal angles; that is, as 
rotations from the positive x-axis, they terminate in the same place. How­
ever - 1r/2 and 31r/2 are not the same angle or the same number, and 
arcsin(- 1 ) is - 1r/2, not 31r/2. 

2 .  Although ( 1 )  states that r V(x)) = x, sin- 1 (sin 200°) is not 200° . 
This is because sin- 1 is not the inverse of sine unless the angle is between 
-90° and 90°. The sine function maps 200°, along with many other angles, 
such as 560°, - 160°, 340° , -20°, all to the same output. The sin - 1 function 
maps in reverse to the particular angle between -90° and 90°. Therefore, 
sin- 1 (sin 200°) = -20° . 

The inverse cosine function The cosine function, like the sine function, 
has no inverse, because it is not one-to-one. By convention, we consider the 
one-to-one piece between 0 and 1r, and let cos- 1x be the inverse of this 
abbreviated cosine function (Fig. 6) . Thus, cos- 1x is the angle between 0 and 
1r whose cosine is x. Equivalently, 
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(3) cos- 1a = b if and only if cos b = a and 0 :s b :s 1r .  fhe domain of cos- 1x is [ - 1 ,  I ]  and the range is [0, 1r] . The cos- 1 function is also denoted by Cos- 1 , arccos and ACN. 
Example 4 Find cos- 1 (-½ ). Solution: The angle between 0° and 180° whose cosine is -½ is 1 20° . Therefore, cos- 1 (-½) = 120° , or in radians, cos- 1 ( -½) = 2 1r/3.  
Warning The graphs of sin x and cos x wind forever along the x-axis, but the graphs of sin - ix and cos- 1x (reflections of portions of sin x and cos x )  do not continue forever up and down the y-axis. They are shown in entirety in Figs. 5 and 6. ( I f  either curve did continue winding, the result would be a nonfunction. )  
The inverse tangent function The tan- 1 function is the inverse of the branch of the tangent function through the origin (Fig. 7) .  I n  other words, tan- 1x is the angle between - 1r/2 and 1r/2 whose tangent is x. Equivalently, 

/ 
/ 

/ 

)'( '  

/ 

F IG . 7 
(4) tan - 1a = b if and only if tan b = a and - 1r/2 < b < 1r/2 . The tan- 1 function is also denoted Tan- 1

, arctan and ATN.  For example, tan- 1 ( - l ) = - 1r/4 because - 1r/4 i s  between - 1r/2 and 1r/2 and tan( - 1r/4) = - l .  
Example 5 The equation y = 2 tan 3x does not have a unique solution for x. Restrict x suitably so that there is a unique solution and then solve for 
x. Equivalently, restrict x so that the function 2 tan 3x is one-to-one, and then find the inverse function. Solution: To use tan - 1 as the inverse of tangent, the angle, which is 3x in this problem, must be restricted to the interval ( - ½1r, ½1r) , that is , -½1r < 3x < ½1r. Consequently, we choose - 1r/6 < x < 1T/6. With this restriction ,  

b = tan 3x  (divide both sides of the original equation by  2 )  tan- 1 h = 3x (take tan- 1 on both sides) (divide by 3) . Equivalent ly, if f(x) = 2 tan 3x and - 1r/6 < x < 1r/6,  then F ' (x) = 
! tan-' 1 ½x. 
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Problems for Section 1 .4 

1. Suppose f is one-to-one so that it has an inverse. If /(3) = 4 and /(5) = 2 ,  find, if possible ,r 1 (3), r 1 (4), r 1 (5) , r 1 (2). 2, Find the inverse by inspection, if it exists. (a) x - 3 (c) 1 /x (b) Int x (d) -x 3. I f  /(x) = 2x - 9 find a formula for r 1 (x) . 4, Find r 1 </( 17)) . 5, Show that an increasing function always has an inverse and then decide if the inverse is decreasing. 6, True or False? If/ is continuous and invertible then/ - •  is also continuous. 7, Are the following pairs of functions inverses of one another? (a) x2 and Yx (b) x' and ¾' 8, Find the function value. (a) cos- •o (b) sin- •o (c) sin- 12 ????  (d) cos- 1 (-½V'3) 
(e) sin - 1 (-½V'3) (f) tan- 1 1 (g) tan- 1 (- 1 ) 

9, Estimate tan - 1 1000000. 10. True or False? (a) If sin a =  b then sin- 1b = a (b) If sin- •c = d then sin d = c. 1 1 . Place restrictions on 8 so that the equation has a unique solution for 8, and then solve. (a) z = 3 + ½ sin 1r8 (b) x = 5 cos(28 - ½1r) 12. Odd and even functions were defined in Problem 8 , Section l .2 .  Do odd (resp. even) functions have inverses? If inverses exist, must they also be odd (resp. even)? 
1.5 Exponential and Logarithm Functions 

This section completes the discussion of the basic functions listed in Section 1 .  I by considering the exponential functions and their inverses, the logarithm functions. As with the other basic functions, they have important physical applications, such as exponential growth, discussed in Section 4.9 . 
Exponential functions Functions such as 2', (¼Y and 7• are called 
exponential functions, as opposed to power functions x2 , x 114 and x 7 • In gen­eral, an exponential function has the form b", and is said to have base b. Negative bases create a problem. If f(x) = ( -4)' then/(½) = v'=:t and /(¼) = �. which are not real. Similarly, there is no ( real)/(i) ,J(i) ,/(i) , · · · ;  the domain of (-4)' is too riddled with gaps to be useful in calculus. (The power function x 112 also has a restricted domain, namely (0, ex:) ,  but at least the domain is an entire interval.) Because of this difficulty, we do not consider 
exponential functions with negative bases. To sketch the graph of 2•, we first make a table of values. (Remember that r7 , for example, is defined as 1/27 . and 2° is l .) 

X I -7 I -3 I - 1 I O 1 1 I 4
1 10 I 2" Th ½ ½ 1 2 16 1024 For convenience, we used integer values of x in the table, but 2• is also defined when x is not an integer. For example, 
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2213 = w = ¼ ,  23. 1  = 231 / 10 = � '  

and the graph of 2' also contains the points (2/3, V4 )  and (3.1 , � ).  We plot the points from the table, and when the pattern seems clear, connect them to obtain the final graph ( Fig. 1 ). The connecting process assumes that 2' is continuous. t Figure l also contains the graphs of (½ )' and 3' for comparison. 

{- 1, A) 
t (-7,-/r,) 

J ... �---� 

FIG . I 
The exponential function e• In algebra, the most popular base is 10, while computer science often favors base 2. However, for reasons to be given in Section 3.3, calculus uses base e, a particular irrational number (that is, an infinite non repeating decimal) between 2. 7 I and 2. 72 ;  the official defini­tion will be given in that section. Because calculus concentrates on base e, the function e• is often referred to as the exponential function. It is some­times written as expx; programming languages use EXP(X ). Figure 2 shows the graph of e•, along with 2• and 3' for comparison. Note that 2 < e < 3, and correspondingly, the graph of e' lies between the graphs of 2" and 3'. We continue to assume that exponential functions are continuous. In practice, a value of e', such as e 2, may be approximated with tables or a calculator. Section 8.9 will indicate one method for evaluating e• di­rectly. A rough estimate of e 2 can be obtained by noting that since e is slightly less than 3, e 2 is somewhat less than 9. 

tThe connecting process also provides a definition of 2' for irrational "• that is, when " 
is an infinite nonrepeating decimal, such as Tr. For example, ,r = 3. 14 159 . . .  , and by con­
necting the points to make a continuous curve, we are defining 2• by the following sequence 
of inequalities: 2'·" < 2· < 2'·" '  2'· 1 " < 2· < 2'·'"' 2' · '"' < 2· < 2'· 1" .. 
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F/0 .  J... 
The graph of e' provides much information at a glance: 

( 1 ) e• is defined for all x . 

(2) e• > 0 ;  in fact, the range of e• is (0, 00) .  

(3) e• is increasing . 

The function In x Since e• passes the horizontal line test and is one-to-one, 
it has an inverse, called the natural logarithm function and denoted by In x. 
It is also written log,x and called the logarithm with base e. In other words, 

(4) In a = b if and only if e• = a . 
For example, if e2p-, = z then In z = 2p - q. As an important consequence 
of (4), since 

(5) 

we have 

(6) 

e0 = I and e 1 = e ,  

In I = 0 and In e = 1 . 
The graph of In x is the reflection of e• in the line y = x (Fig. 3). The 

graph reveals the following properties (7)-(10). 

/ 

FIG . 3  
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(7) In x is defined for x > 0 ;  we cannot take the logarithm of a negative number or of O . 
(8) The range of In x is ( -oo, oo ) . (9 ) In x is negative if O < x < l , and positive if x > l . ( 10 )  In x is increasing . Since In x and e' are inverses, 
( 1 1 ) In e' = x and e 1" '  = x;  that i s ,  when exp and In are applied successively to x, they "cancel each other out." For example, In e 7 = 7, e 1" 8 = 8, In e••b = a + b, e 1" 6x  = 6x. 
Warning I t  is impossible to take In of a negative number, but it is perfectly possible for In x to come out negative. In fact, by (9 ), In x is negative whenever O < x < l .  For example, ln( - 3) is impossible, but In x = - 3  is possible. 
Laws of exponents and logarithms The familiar rules of exponents hold for e". ( 1 2 )  e'e' = e'+-' ( 13) e"/e' = e•-y ( 14) e -• = l /e" ( 1 5 ) (e' )·' = e"Y. We will derive the property of logarithms analogous to ( 1 2 ). Let a = e"  and b = e-' so that, by (4 ), x = In a and y = In b .  Then (12) becomes 
ab = e 1""+ 1" 6, which, by (4) , may be rewritten as 
( 16) In ab = In a + In b . Similarly, the other rules of exponents lead to the following laws of logarithms :  
( 1 7 ) a In b = In a - In b 

( 1 8 ) l In - =  - In a a ( this is a special case of ( 17 )  since In ¾ = In l - In a = 0 - In a = - In a) ( 1 9 )  I n  a b = b In a .  We assume throughout that identities and equations involving the loga­rithm function never involve the logarithm of a negative number or 0. For example, we might use ( 19 ) to write In x2 = 2 In x. It is understood that x· must not be O or negative, so that In x2 and In x are both defined. Note that In x2 means ln(x2) , not ( In x)2 • 

Example I (a ) In 4 + In 3 = In 1 2  (b ) I n  8 1  = I n  34 = 4 I n  3 (by ( 16)) (by ( 19 ) )  
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(c) ½ In 9 = In 9 112 = In V9 = In 3 (by ( 19)) (d) In e'  = 3 In e = 3 (by ( 19) and (6)) (e) In 1 /e = -In e = - l (by ( 1 8) and (6)) 
Warning 1. In 3x is not 3 In x; instead, In 3x = In 3 + In x. 2 ,  2 In 3x is neither ln 6x nor 6 ln x, nor ln 3x2 ; instead, 2 In 3x = ln(3x)2 = In 9x2• 3. In 2x + In 3x is not In 5x; instead, In 2x + In 3x = In 6x2 • 

Example 2 (a) In 3e4lr = In 3 + In e4lr = In 3 + 4x (by ( 16) and ( l  l )) (b) e2 1n s..  = e lnlS..l2 = e tn !l,r! = 9.x 2 (by ( 19) and ( 1 1 )) (c) 2 In x + In x = In x2 + ln .x = ln x' (by ( 19) and ( 16) )  
Logarithms with other bases There are logarithm functions with bases other than e, corresponding to exponential functions with bases other than e: log2.x is the inverse of 2•, log,.x is the inverse of 3', log 112.x is the inverse of (½f, and so on. Since calculus uses the exponential function with base e, in this book we will consider only the logarithm function with base e, that is, In .x. The elementary functions We have now introduced all the basic functions listed in Section l . l .  However, applications often involve not only the basic functions, but combinations of them, such as the sum .x 2 + .x or the product x2 sin x. Still another way of combining two functions f and g is to form the functions f(g(.x)) and g(f(.xll, called compositions. If f(.x) = sin .x and g(.x) = ¼ then/(g(.x)) = sin Vx and g(f(.x)) = Ymix. The basic functions 
plus all combinations farmed by addition, subtraction, multiplication, division and 
composition, a finite number of times, are ref erred to as the elementary functions. For example, sin x, 2x' + 4, sin .x2 , 1 /x and x cos 2x are elementary functions. All the basic functions are continuous wherever they are defined, and it can be shown that the elementary functions also are continuous except where they are not defined, usually because of a zero in a denominator. For example, e lfx is continuous except at x = 0 where it is not defined, (x' + sin x)/(x - I )  is continuous except at x = l where it is not defined, sin x2 is continuous everywhere. Solving equations involving e• and In x To solve the equation e• = 7, take In on both sides and use ln e• = x to get x = In 7. To solve the equation In x = -6, take exp on both sides and use e ln• = x to get x = e -6• 

Example 3 Solve 4 ln(2x + 5) = 8. 
Solution: ln(2x + 5) = 2 (divide by 4) 2x + 5 = e 2 (take exp) x = ½(e 2 - 5) (algebra) 

Example 4 Solve In 1 2x + In 3x = 4. 
First solution: In 36x2 = 4 (ln a + In b = In ab) 
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36x 2 = e 4 (take exp) 

It looks as if the solution should be x = ±te 2, but if x is negative, then l2x 
and 3x are also negative, and there is no In l2x or In 3x. Thus the only 
solution is x = ie 2• 

Second solution: 
e ln 12x + ln 3x = e 4 (take exp) 

( 12x) (3x) = e 4 (e 1" 0 = a) 

36x 2 = e� 

(as in the first solution) 

Warning If In l 2x + In 3x = 4, it is not correct to take exp of each term to 
get 12x + 3x = e 4 ; if exp is used at all, it must be applied to each entire side 
of the equation, to obtain e 1" i2x

+
in 3• = e 4 • In general, if p + q = 4 then 

applying exp to both sides produces eP• 9 = e 4, not eP + e 9 = e 4 ; and ap­
plying In to both sides produces ln(p + q) = In 4, not In p + In q = In 4. 

Example 5 Solve ln(-x) = 3. Note that writing ln(-x) does not violate the 
principle that it is impossible to take In of a negative number. The function 
ln(-x) is defined for -x > 0, that is, for x < 0. 

Solution: Take exp on both sides to obtain -x = e 3 , x = -e 3 • 

Solving inequalities involving e• and In x Consider the inequalities 
(a) e• < 5 and (b) In x > -½. To solve (a), take In on both sides to get the 
solution x < In 5. For (b), take exp on both sides to get x > e - 1 12 • 

Note that, in general, we can't "do the same thing" to both sides of an 
inequality and expect another similar inequality to result. I f  a > b, we 
cannot conclude that sin a > sin b (for example, 21r  > 0, but sin 21r = 
sin 0). If a > b, we cannot square both sides to conclude that a 2 > b 2 (for 
example, 2 > - 3 ,  but 4 < 9). However, if we operate on both sides of an 
inequality with an increasing function, the sense of the inequality is main­
tained. Since exp and In are increasing functions (as opposed to the squar­
ing function and the sine function which are not) it is true that if a > b then 
e• > e b and In a > In b, justifying the method for solving (a) and (b). 

Problems for Section 1.5 

I. Arrange each set of numbers from smallest to largest without using tables or 
a calculator. 

(a) , - w, _, w, e w 

(b) e - 112, e 1 13 , e -3, e -5, e 6 

(c) -e 6, -e 7 

2. Simplify each expression. 

(a) e 1" 7 

(b) In e 4 

(c) e 6 ln 2 

(d) In Ve 

(e) e - ln l /2 

(f) t l + ln 4 

(g) exp(ln x + In y) 
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3. Let In 2 = a, In 3 = b and write each expression in terms of a and b. 

(a) In 6 
(b) In 8 
(c) In V3 
(d) In 8 1  
(e) In ½ 
(f) In t 

(g) In 2 + In 3 
(h) (In 2) (In 3) 
(i) (In 2)/(ln 3) 
(j) (In 2)' 
(k.) In 2' 

4. For which values of x is the function defined. 

(a) ln(2x + 3) (d) In In x 
(b) In sin me (e) In In In x 
(c) t!b-4 (f) In In In In x 

5. Show that - ln(Y2 - l) simplifies to ln(V2 + l) .  
6. True or False? 

(a) If In a = In b, then a = b. 
(b) If  e" = e'. then a = b. 
(c) If sin a = sin b, then a = b. 

(4 - 2 In 3 - In 2
) . . 

v'dIB 7. Show that exp 
3 

s1mphfies to t e/ 18  

8. Show that 2"  = e" 1" 2• ( In fact, some computers evaluate 25 . not by finding 
2 • 2 • 2 ,  but by converting 2' to t 5 1" 2 and evaluating that expression.) 

9. Suppose a car travels on the number line so that its position at time t is e '. 
Describe the car's motion during the time interval (-00,  00). 

10. Solve 

(a) 2e -• - 3 = 0 (k.) 4 In x + In 2x = 3 
(b) In(2x + 7) = - 1  (I) ln(5x - 3) = In 2x 
(c) t" = -5  (m) In(5x + 3) = In 2x 
(d) -2 < In x < 8 (n) ln(x + 1 ) + In x = 2 
(e) e2-•7 > 5 (o) e• = e -• 
(f) - In x = 4 (p) x In x = 0 
(g) ln( -x) = 4 (q) xe• + 2e" = 0 
(h) e !b+ ! = e 2o (r) e• In x = 0 
(i) In In x = - 2  

( ) 
25 _ 5 (j) arcsin e• = 'ff'/6 • s 

2 + In 3x -

1 1 .  Show that In ½v'2 simplifies to -½ In 2 . 
12.  A scientist observes the temperature T and the volume V in an experi­

ment and finds that In T always equals -i In V. Show that TV21' must therefore 
be constant. 

13. The equation 4 In x + 2(1n x)2 = 0 can be considered as a quadratic equa­
tion in the variable In x. Solve for In x, and then solve for x itself. 

14 .  True or False? (a)  I f  a = b ,  then e• = e • .  (b) I f  a + b = c ,  then 
e• + e6 = e'. 

15. Find the mistak.e in the following "proof' that 2 < l .  We know that (½)2 < ½, 
so ln(½)2 < In ½. Thus 2 In ½ < In ½. Cancel In ½ to get 2 < I .  

1 .6 Solving Inequalities Involving Elementary Functions 
This section contains algebra needed in Chapters 3 and 4. A simple 

inequality such as 2x + 3 > 1 1  is solved with the same maneuvers as the 
equation 2x + 3 = 1 1  (the solution is x > 4) ,  but, in general, inequal-
. . . 

k' h . F l l x 2 - 2x + l 0 1ues are tnc 1er t an equations. or examp e, to so ve 
5 

> , we x -
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want to multiply on both sides by x - 5 to eliminate fractions. But if 
x < 5, then x - 5 is negative and multiplication by x - 5 reverses the inequality; if x > 5, then x - 5 is positive, and the inequality is not re­versed. (For equations, this type of difficulty doesn't arise. ) This section offers a straightforward method for solving inequalities of the form 
f(x) > O, f (x) < 0, or equivalently for deciding where a function is positive and where it is negative. In order for a function f to change from positive to negative, or vice versa, its graph must either cross or jump over the x-axis. Therefore, a nonzero continuous f cannot change signs; its graph must lie entirely on one side of the x-axis. Suppose f is 0 only at x = - 3 and x = 2 ,  and is discontinuous only at x = 5, so that within the open intervals (-oo,  -3) ,  (-3 , 2 ), ( 2 ,  5 )  and (5 ,  oo) ,/  is nonzero and continuous. Then in each interval 
f cannot change signs and is either entirely positive or entirely negative . One possibility is shown in Fig. 1 . In general, we have the following method for determining the sign of a function J, that is , for solving the inequalities 
J(x) > 0, f(x) < 0. 

F I G . I 

Step J Find values of x where J is discontinuous. For an elementary function J. these occur where J is not defined, in practice because of a zero in a denominator. 
Step 2 Find values of x where f is zero; that is , solve the equation 

f(x) = 0. 
Step 3 Look at the open intervals in between. On each of the intervals, 

f maintains only one sign. To find the sign that f takes on each interval, test one number from each interval. 
Example 1 

( I )  

Solve the inequalities x 2 - 2x + I 0 ----- > 
X - 5 

x2 - 2x + I ----- < 0 .  
X - 5 x 2 - 2x + I "d h f . . . d h / Equivalently, if f (x ) = ---- , deC1 e w ere 1s pos1uve an w ere 

• • X - 5 1s negauve. 
Solution: Step I The elementary function f is discontinuous only at x = 5, where it is not defined because of a zero in the denominator. 

Step 2 Solve the equation f(x) = 0. 
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x2 - 2x + 1 ----- = 0 
X - 5 

x2 - 2x + 1 = 0 
(x - 1 )2 = 0 
X = 1 

(multiply by x - 5 ;  equivalently, a fraction is O if and only if its numerator is 0) 

Step 3 Consider the intervals (-00, 1 ) ,  ( 1 , 5) and (5, 00) . Test one value of x from each interval. 
interval a value of x in the interval f (x) sign off in the interval 
(-00, 1) 0 -l negative ( l ,  5) 2 -½ negative (5, 00) 6 25 positive 

Therefore, /(x) is positive for x > 5, and negative for x < 1 and for 1 < x < 5. Equivalently, the solution to the first inequality in ( 1 )  is x > 5, and the solution to the second inequality is x < 1 or 1 < x < 5 . Note that Steps I and 2 locate points where the function either jumps or touches the x-axis. These are places where f might (but doesn't have to) change sign by crossing or jumping over the x-axis. Indeed, in this example, f changes sign at x = 5 but not at x = 1 . The graph in Fig. 2 shows what is happening. At x = 1 , /  touches the x-axis but does not cross, so there is no sign change. At x = 5, f happens to jump over the axis, so there is a sign change. 

fl G . l 
Problems for Section 1.6 

!\ 
I !i I 

I 

1. Decide where the function / is positive and where it is negative. 10 - 10x2 e• 
(a) 9(x - 3)2 

(d) -; 

(b) x + 1 
X - 1 (c) x2 - x + 2 

2, Solve 

(e) x 2 + x - 6 

16 54 l 9 1 
(a) x 2 + 

xs > 0 (b) 2x + 6x + 4 < 3 (c) 
x 2 - 4 > 0 
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X 

2 
5 

1 .  7 Graphs of Translations, Reflections, Expansions 
and Sums 

Considerable time is spent in mathematics finding graphs of functions 
because graphs can be extremely useful. It is possible to see from a graph 
where a function is positive, negative, increasing, decreasing, large, small, 
one-to-one, discontinuous, and so on, when it may be very hard to do this 
from a formula. 

Suppose that the graph of y = J(:x) is known. We will develop efficient 
techniques for finding the graphs of certain variations of/. For example, in 
trigonometry it is shown that the graph of sin 2:x can be obtained easily 
from the graph of sin x by changing the period to 'ff', Similarly, the graph 
of 2 sin x can be derived from the graph of sin :x by changing the amplitude 
to 2. We will generalize these ideas to arbitrary graphs. In each case, the 
problem will be to find the graph of a variation of J, assuming that we have 
the graph off We are not concerned here with how the original graph was 
obtained. Perhaps it was found by plotting many points, possibly it was 
generated by a computer, it may be a standard curve such as y = e• or it may 
have been drawn using techniques of calculus, coming later. 

We will first consider three variations in which an operation is per­
formed on the variable x in the equation y = f(x) , resulting in horizontal 
changes in the graph. Then we examine three variations obtained by oper­
ating on the entire right-hand side of the equation y = f(x), resulting in 
vertical changes in the graph. Results are summarized in Table 1 .  Finally we 
consider the graph of a sum of functions, given the individual graphs. 

Horizontal translation The graph of y = :x' + 3:x 2 - I is given in Fig. 1 .  
The  problem i s  to  draw · the graph of  the variation y = ( x  - 7 ) 5 + 
3(x - 7)2 - I .  First, look for a connection between the two tables of values. 

OLD 
y = x 5 + 3x 2 - I 
25 + 3(22) - l = 1 9  
55 + 3(52) - I = l 99 

FIG . I 

X 

9 
1 2  

NEW 
y = (x - 7)' + 3(:x - 7)2 - l 

25 + 3(22) - I = 1 9  
55 + 3(52) - l = 1 99 

Substituting :x = 9 into the new equation involves the same arithmetic 
(because 7 is immediately subtracted away) as substituting x = 2 in the 
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original equation. Similarly, x = 12 in the new equation produces the same calculation as x = 5 in the old equation. In general, if (a, b) is in the old table then (a + 7 ,  b) is in the new table. Now that we have a connection between the tables, how are the graphs related? The new point (9, 19) is 7 units to the right of the old point (2, 19). In general, given the (old) graph of y = J(x), the (new) graph of y = f(x - 7) is obtained by translating (i.e. , shifting) the old graph to the right by 7 units (Fig. 2) . This agrees with the familiar result that x2 + y 2 = r2 is a circle with center at the origin, while 
(x - 7)2 + y 2 = r2 is a circle centered at the point (7 ,  0), that is, translated to the right by 7 .  

J l. 
y =- (x-7) +- ;("'f,..-7) - I  TRAN-51-Aft R/(:,/-Jf 

Similarly, the graph of y = J(x + 3) is found by translating y = f(x) to the left by 3 units. 
Horizontal expansion/contraction Consider the following two equations with their respective tables of values. 

OLD NEW 
X y = x3 + 3x2 - l X y = (5x)3 + 3(5x)2 - 1 2 23 + 3(22) - l = 1 9  2/5 23 + 3(22) - 1 = 19 5 53 + 3(52) - l = 199 I 55 + 3(52) - I = 1 99 

Substituting x = 2/5 in the new equation produces the same calcu­lation as x = 2 in the old equation (because each occurrence of 2/5 in the new equation is immediately multiplied by 5) . If (a, b) is in the old table then 
(a/5, b) is in the new table. In general, given the graph of y = f(x) (Fig. 3a), the graph of y = f(5x) is obtained by dividing x-coordinates by 5 so as to contract the graph horizontally (Fig. 3b) . Similarly, the graph of y = J(ix) is found by tripling x-coordinates so as to expand the graph off horizontally (Fig. 3c) . Note that in the expansion (resp. contraction), points on the y-axis do not move, but all other points move away from (resp. toward) the y-axis so as to triple widths (resp. divide widths by 5) .  The expansion/contraction rule says that the graph of y = sin 2x is drawn by halving x-coordinates and contracting the graph of y = sin x horizontally. This agrees with the standard result from trigonometry that y = sin 2x is drawn by changing the period on the sine curve from 217" to 
'IT, a horizontal contraction. 
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Horizontal reflection Consider the following two equations and their respective tables of values. 
OLD NEW 

X y = x3 + 3x2 - X y = {-x)3 + 3{-x)2 - l 2 23 + 3(22) - I = 19 - 2  23 + 3(2 2) - 1 = 1 9  5 53 + 3(52) - I = 199 - 5  53 + 3(52) - 1 = 1 19 
Substituting x = - 2  into the new equation results in the same calcu­lation as x = 2 in the original. If (a, b) is in the old table then (-a, b) is in the new table. In general, given the graph of y = [(x) (Fig. 3a), the graph of 

y = /(-x) is obtained by reflecting the old graph in the y-axis {Fig. 3d) so as to change the sign of each x-coordinate. 
Vertical translation Consider the equations y = x3 + 3x 2 - l and y = (x 3 + 3x 2 - 1) + 10 . For any fixed x, the y value for the second equation is 10 more than the first y. In general ,  given the graph of y = f(x), the graph of y = [(x) + 10 is obtained by translating the original graph up by 10.t Similarly, the graph of y = [(x) - 4 is found by translating the graph of y = f(x) down by 4. 
Vertical expansion/contraction Consider the equations y = x3 + 3x2 - I and y = 2 {x3 + 3x2 - l ) . For any fixed x, the y value for the second equation is twice the first y. In general, given the graph of y = f(x), the graph of y = 2/(x) is obtained by doubling the y-coordinates so as to expand the original graph vertically. Similarly, the graph of y = J[(x) is found by multiplying heights by 2/3, so as to contract the graph of /(x) vertically. 

tThe conclusion that y = /(,c) + IO is obtained by translating up by 10 may be compared 
with a corresponding result for circles, provided that we rewrite the equation as (y - IO) a 

f(,c). The circle ,, ,  + y 2 = ,• has center at the origin, while ,,•  + (y - IO)' = r2 is centered at 
the point (0, IO), that is, translated up by IO. Similarly, the graph of (y - IO) = /(,c) is obtained 
by translating y = f (,c) up by IO. 
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The familiar method for graphing y = 2 sin x (change the amplitude 
from l to 2) is a special case of the general method for y = 2/(x) (double 
all heights). 

Vertical reflection Consider y = f(x) versus y = -f(x). The second y is 
always the negative of the first y. Thus, the graph of y = -/(x) is obtained 
from the graph of y = f (x) by reflecting in the x-axis. A special case ap­
peared in Fig. 14 of Section 1 .3 which showed the graphs of y = 2 sin x 
and y = -2  sin x as reflections of one another. 

Table 1 Summary 

Variation of y = f (x) 

An operation is performed on 
the variable x 

y = f(-x) 

y = f(2x) 

'J = /(ix) 

y = f(x + 2) 

y = /(x - 3) 

An operation is performed on 
f(x), i.e., on the entire right­
hand side 

'J = -/(x) 

y = 2/(x) 

'J = i/(x) 

y = f(x) + 2 

y = f(x) - 3 

How to obtain the graph from 
the original y = f (x) 

Reflect the graph of y = /(x) in the 
y-axis 

Halve the x-coordinates of the graph 
of y = f (x) so as to contract 
horizontally 

Multiply the x-coordinates of the 
graph of y = /(x) by 3 so as to 
expand horizontally 

Translate the graph of y = f (x) to the 
left by 2 

Translate the graph of y = /(x) to the 
right by 3 

Reflec� the graph of y = f (x) in the 
x-axis 

Double the y-coordinates of the 
graph of y = /(x) so as to expand 
vertically 

Multiply the y-coordinates of the 
graph of y = f (x) by ! so as to 
contract vertically 

Translate the graph of y = /(x) up 
by 2 

Translate the graph of y = /(x) down 
by 3 

Example 1 The graph of cos- •x is shown in Fig. 4. Six variations are given 
in Figs. 5-10. 

Warning The graph of /(x - 1) (note the minus sign) is obtained by trans­
lating/(x) to the right (in the positive direction). The graph of /(x) - l (note 
the minus sign) is found by translating/(x) down (in the negative direction). 
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1 .7 Graphs of Translations, Reflections, Expansions and Sums · 57 

The graph of /(x) + g(x) Given the graphs of f(x) and g(x), to sketch y = /(x) + g(x), add the heights from the separate graphs off and g, as shown in Fig. l 1 .  For example, the new point D is found by adding height AB to height AC to obtain the new height AD. On the other hand, since point P has a negative y-coordinate, the new _Eint R is found by subtracting length PQ from QS to get the new height QR. 

rf(�) +�l�) 

/y -: ft•-) 
/ I  ' y =ffa) 

I 
I 

I 
� I 

I 
A ' / 

' .... � .. p 

FI G .  I I 

To sketchy = cos x + sin x, draw y = cos x and y = sin x on the same set of axes, and then add heights (Fig. 12). For example, add height AB to height AC to obtain the new height AD; at x = 11', when the sine height is 0, the corresponding point on the sum graph is point E, lying on the cosine curve. 
c.o� ..,_ ... 5 1 1,. :x: 

' 7t  
A 

Fl (:, . 1 2.  
Problems for Section I. 7 

1. Sketch the graph and, in each case, include the graph ofln x for comparison 

(a) ln( -x) (d) In 2x 
(b) - In x (e) ln(x + 2) 
(c) 2 In x (f) 2 + In x 

2. Figure 13 shows the graph of a function, which we denote by star x. Sketch 
the following variations given on the next page. 
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- 4-

(a) star ½x (d) star x - 2 
(b) ½ star x (e) star( -x) 
(c) star(x - 2) (f) - star x 

g 

f/ G . 1 3  

3. Find the new equation of the curve y = 2x 7 + (2x + 3)6 if the curve is 
(a) translated left by 2 (b) translated down by 5 .  

4. Sketch the graph. 

(a) y "' lsin xi (d) y = e lxl 

(b) y = l ln xi (e) y = ln lxl 
(c) y "' le'I 
5. Sketch each trio of functions on the same set of axes. 

(a) x, ln x, x + In x 
(b) x, ln x, x - In x 
(c) x, sin x, x + sin x 

6. The variations sin2x, sin'x and � were not discussed in the section .  
Sketch their graphs b y  graphically squaring heights, cubing heights and cube­
rooting heights on the sine graph. 

REVIEW PROBLEMS FOR CHAPTER l 

I .  Let /(x) = �-
(a) Find /(-4). 
(b) For which values of x is f defined? With these values as the domain, find 

the range off 
(c) Find f(a2) and (J(a))2 . 
(d) Sketch the graph off by plotting points. Then sketch the graph of r ' .  if 

it exists. 

2.  For this problem, we need the idea of the remainder in a division problem. 
If 8 is divided by 3 ,  we say that the quotient is 2 and the remainder is 2 .  If 26.8 is 
divided by 3 ,  the quotient is 8 and the remainder is 2 .8. If  27 is divided by 3 ,  the 
quotient is 9 and the remainder is 0. 

If x 2:: 0, let f (x) be the remainder when x is divided by 3 .  

(a) Sketch the graph off 
(b) Find the range off. 
(c) Find r ' (x) if it exists . 
(d) Find f([(x)) .  
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3. Describe the graph off under each of the following conditions. 

(a) /(a) = a for all a 
(b) f(a) * f(b) if a "I' b 
(c) f(a + 7) = f(a) for all a 

4. If Jog2x is the inverse of 2•, sketch the graphs of log2x and In x on the same 
set of axes. 

5. Find sin- 1 (-½V2 ). 
6. Solve for x. 

(a) y = 2 ln(3x + 4) (b) y = 4 + e 3
' 

7. Sketch the graph.  

(a) e -• s in x 
(b) sin- 1 (x + 2) 
(c) sin- 1x + ½11' 
(d) ½ sin- 1x 

(e) sin- • � 
(f) sin 31Tx 
(g) 2 cos{ 4x - 11') 

8. The functions sinh x = ½(e• - e -•) and cosh x = ½(e' + e -•) are called the 
hyperbolic sine and hyperbolic cosine, respectively. 

(a) Sketch their graphs by first drawing ½e• and ½e -• 
(b) Show that cosh2x - sinh2x = l for all x. 

9. Solve the equation or inequality. 

(a) In x - ln(2x - 3) "' 4 (c) 2e' + 8 < 0 
l l 

(b) In x < - 8  (d) 
x _ 3 

> 4x 

10. Simplify 5e 2 1" 3 • 

1 1 .  Show that In x - In 5x simplifies to -In 5. 
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2.1 Introduction 

We begin the discussion of limits with some examples. As you read them, you will become accustomed to the new language and, in particular, see how limit statements about a function correlate with the graph of the function. The examples will show how limits are used to describe discon­tinuities, the "ends" of the graph where x -+ oc or x -+ -oc, and asymptotes. (An asymptote is a line, or, more generally, a curve, that is approached by the graph off.) Limits will further be used in Sections 3 .2 and 5 .2 where they are fundamental for the definitions of the derivative and the integral, the two major concepts of calculus. 
A limit definition The graph of a function/ is given in Fig. l .  Note that as x gets closer to 2, but not equal to 2, /(x) gets closer to 5. We write lim,.2 /(x) = 5 and say that as x approaches 2 , /(x) approaches 5. Equiva­lently, if x --+ 2 then /(x) --+ 5. This contrasts with /(2) itself which is 3. If point A in Fig. l is moved vertically or removed entirely, the limit of /(x) as x -+ 2 remains 5. In other words, if the value off at x = 2 is changed from 3 to anything else, including 5, or if no value is assigned at all to /(2) ,  we still have lim,.2 /(x) = 5. In general, we write lim f(x) = L . .. if, for all x sufficiently close, but not equal, to a,f(x) is forced to stay as close as we like, and possibly equal, to L. 
One-sided limits In Fig. 2, there is no /(3) ,  but we write (1 ) lim f(x) = 4 , 

x•!l-meaning that if x approaches 3 from the l.eft, that is, through values less than 3 such as 2.9, 2.99, · · · ,  then /(x) approaches 4 ; and (2) lim f(x) = 5 ,  
x•!I+ meaning that if x approaches 3 from the right, that is, through values greater than 3 such as 3.1, 3.0 I ,  · · · , then /(x) approaches 5 .  We call (1 )  a left-hand limit and (2)  a right-hand limit. The symbols 3- and 3+  are not new numbers; they are symbols that are used only in the context of a limit statement to indicate from which direction 3 is approached. In this example, if we are asked simply to find lim,.s [(x), we have to conclude that the limit does not exist. Since the left-hand and right-hand limits disagree, there is no single limit to settle on. 

41  
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Infinite limits Let 

I f(x) = 
X - 3 . 

A table of values and the graph are given in Fig. 3 . There is no [(3) , but 

!\ 

3 1  

\ 
we write 

FI G . 3 

-,,,_ t(x) 
i:a -f 
i .1 - , o 
'J... 1f - z_o 
1- . 1r - 100 

l im f(x) = x 
,l" .. 3 +  

-,_ f{-;r: ) 

7. J.. � 
3. I 10 
; . o, to 
f of /00 

meaning that as x approaches 3 from the right, f(x) becomes unboundedly 
large ; and we write 

lim f(x) = - x 
x•3-

tO convey that as x approaches 3 from the left,.f(x) gets unboundedly large 
and negative. 

There is no value for lim,.3 /(x) , since the left-hand and right-hand 
limits do not agree. We do not write lim_, .3 f(x) = ±x. 

In  general, Jim • •• /(x) = :io means that for all x sufficiently close, but not 
equal, to a, f(x) can be forced to stay as large as we like. Similarly, a limit of 
-oc means that /(x) can be made to stay arbitrarily large and negative. 

Limits as x -+ oo, x -+ - 00 For the function in Fig. 4, we write 

it - - - - - - -

Fl b . 4--
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(3) lim f(x) = 4 

.l ♦'lt to indicate that as x becomes unboundedly large, far out to the right on the graph, the values of y get closer to 4. More precisely, (3 ' )  lim f(x) = 4-
.'( •'lt because the values of y are always less than 4 as they approach 4. Both (3) and (3') are correct, but (3') supplies more information since it indicates that the graph off(x) approaches its asymptote, the line y = 4, from below. For the same function, lim,.-" f(x) = oc because the graph rises un­boundedly to the left. If a functionf(t ) represents height, voltage, speed, etc . ,  at time t, then lim,.,.f(t ) is called the steady state height, voltage, speed, and is sometimes denoted by /(oo). It is often interpreted as the eventual height, voltage, speed reached after some transient disturbances have died out. 

Example 1 There is no limit of sin x as x -+ oc because as x increases without bound, sin x just bounces up and down between -1 and 1 .  
Example 2 The graph of e' (Section 1 .5 , Fig. 2) rises unboundedly to the right, so 
(4) lim e' = :x: . • ·" Alternatively, consider the values e '041, e 1000, e to000 , · · ·  to see that the limit is oo. We sometimes abbreviate (4) by writing e" = oc. The left side of the graph of e• approaches the x-axis asymptotically (from above), so 
(5) lim e' = 0 .  Alternatively, consider e - 11"1 = 1/e 11111 , e - llHIO = l /e 11""1 , • • • to see ihat the limit is 0 (more precisely, 0+) .  The result in (5) may be abbreviated by e ·" = 0. 
Warning The limit of a function may be L even though f never reaches L .  The limit must be approached, but not necessarily attained. We have lim,.-" e• = 0 although e' never reaches 0; for the function f in Fig. l ,  lim,.2 f(x) = 5 although f(x) never attains 5 . 
Example 3 The graph of In x (Section 1 .5 ,  Fig. 3) rises unboundedly to the right, so (6) lim In x = :ic .  • ·" The graph of In x drops asymptotically toward the y-axis, so 
(7) lim In x = - oc . 

x •O+ Limits of continuous functions If f is continuous at x = a so that its graph 
does not break, then l im, •• /(x) is simply /(a ) .  For example, in Fig. 2 ,  lim,._ ,  /(x) = /(-1) = 2 .  I f  there i s  a dis continuity at x = a ,  then either lim, •• /(x) and /(a) disagree, or one or both will not exist. 
Example 4 The function x 3 - 2x is continuous (the elementary functions are continuous except where they are not defined) so to find 
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the l imit  as x approaches 2 ,  we can merely substitute x = 2 to get 
lim,.2(x 3 - 2x) = 8 - 4 = 4. 

Some types of discontinuities Figure l shows a point discontinuity at 
x = 2 ,  Fig. 2 shows a jump discontinuity at x = 3 and Fig. 3 shows an infinite 
discontinuity at x = 3 . In general, a function f has a point discontinuity at 
x = a if lim,.,, /(x) is finite but not equal to /(a), either because the two 
values are different or because/(a) is not defined. The function has ajump 
discontinuity at x = a if the left-hand and right-hand limits are finite but 
unequal. Finally,[ has an infinite discontinuity at x = a if at least one of the 
left-hand and right-hand limits is co or -co, A function with an infinite 
discontinuity at x = a is said to blow up at x = a. 

Problems for Section 2. 1 

1 . Find the limit 

(a) lim., .,. x 2 

(b) l im,-x Vx 
(c) lim., -11 cos x 
(d) lim., . -x tan - 'x 

(e) l im,-x(½r 
(f) lim,.,.r, tan x 
(g) lim, .2(x 2 + 3x - I )  

2 .  Find lim I n t  x a s  (a) x - 3 - (b) x - 3 +  
3. Find lim lxl/x a s  (a) x --+ 0- (b) x --+ O+ 
4.  Find l im tan x as (a )  x - ½1T- (b) x - -½1T 
5. (a) Draw the graph of a function / such that/ is increasing, but lim,.x /(x) 

is not oo. (b) Draw the graph of a function f such that lim, .x /(x) = 00, but f is not an 
increasing function. 

6. Identify the type of discontinuity and sketch a picture. 

(a) lim,., f(x) = 2 and /(3) = 6 
(b) l im,., f(x) = oo 
(c) lim., .2+ f(x) = 4 and lim, -2- f(x) = 7 
(d) lim., .,♦ f(x) = -oo and lim., .,- f(x) = 5 

7. Does l im ••  o f (2 + a) necessarily equal f (2)? 
8. Use limits to describe the asymptotic behavior of the function in Fig. 5 . 

FIG .S  

I 
I 
I 
I 
I 
I 

9. Let /(x) = 0 if x is a power of 10,  and let /(x) = I otherwise. For example, 
f( 100) = 0, /( 1000) = 0, [(983) = I . Find 
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(a) lim,.s5 /(x) 
(b) lim •• uJO /(x) 
(c) lim . ... /(x) 10. Use the graph of/(x) to find lim . ... /(x) if 

. sin x (a) /(x) = x sm x (b) /(x) = -
X 

2.2 Finding Limits of Combinations of Functions 

The preceding section considered problems involving individual basic functions, such as e•, sin x and In x. We now examine limits of combinations of basic functions, that is, limits of elementary functio·ns in general, and continue to apply limits to curve sketching. 
Limits of combinations To find the limit of a combination of functions we find all the "sublimits" and put the results together sensibly, as illustrated by the following example. Consider 

r x2 + 5 + In X . �� 2e' We can't conveniently find the limit simply by looking at the graph of the function because we don't have the graph on hand. In fact, finding the limit will help get the graph. The graph exists only for x > 0 because of the term In x, and finding the limit as x - O+ will give information about how the graph "begins." We find the limit by combining sublimits. If x - O+ then x2 - 0, 5 remains 5 and In x - -oc. The sum of three numbers, the first near 0, the second 5 and the third large and negative, is itself large and negative. Therefore, the numerator approaches -oc. In the denominator, e• - 1 so 2e' - 2. A quotient with a large negative numerator and a de­nominator near 2 is still large and negative. Thus, the final answer is -oc. We abbreviate all this by writing . x2 + 5 + In x O + 5 + (-00) -00 bm ----- = -------- = - = - 00 • 4 2� 2 2 (Fig. I )  . 
In each limit problem involving combinations of functions, find the individual limits and then put them together. The last section emphasized the former so now we concentrate on the latter, especially for the more interesting and challenging cases where the individual limits to be com­bined involve the number O and/or the symbol 00, Consider 00/0-,  an abbreviation for a limit problem where the numer­ator grows unboundedly large and the denominator approaches O from the left. To put the pieces together, examine say 100 

- 1 /2 = -200, 
1000 = - 7000 -1/7 which leads to the answer - 00. In abbreviated notation, oc/0- = -00.  Consider 2/oc, an abbreviation for a limit problem in which the nu­merator approaches 2 and the denominator grows unboundedly large. Compute fractions like 
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- - - - - - - - � 

F'l6 . A. 

l . 9 
l 00 

= .0 19 ,  2 .00 1 
I OOO = .00200 I ,  

to see that the limit is 0. In abbreviated notation, 2/oo = 0 or, more pre­
cisely, 2/oo = 0+ .  

To provide further practice, we list more limit results in  abbreviated 
form. If you understood the preceding examples you will be able to do the 
following similar problems when they occur (without resorting to memo­
rizing the list). 
O x O = O  

O + O = O  

0 
- = 0 3 

40 = l 
5 - = :x: 0+  

5 - = -oo  0 -

3" = 00 

( !r = 0 

2 
- = O -oo 

:x: - 4 = :X: 

00 - = :x: 

- 2  X :x: = - :x:  

:x:3 = :x: 
:x: + :x: = :x: 
:x: X :x: = :x: 

:x: X - oo = -oo 

(6- ) X :x: = oo 

0 - =  0 
00 

0 - = 0  - oo 

:x: - = oo  O +  
00 

- = - :x: 
0-

l "  = l 

(O+ )" = 0 
:x: • = 00 

:x: 1 12 = :x: 

(0+ ) 1 = 0 

Example I lim •• ,,. e• In x = oo X oo = oo, lim,.0+ e·' ln x = l x - 00 = - :x:. 

The graph of a + be" Consider the function /(x) = 2 - e �• . From 
Section 1 . 7  we know that the graph can be obtained from the graph of e' 
by reflection , contraction and translation . The result is a curve fairly simi­
lar to the graph of e-', but in a different location. The fastest way to deter­
mine the new location is to take limits as x - oo and x - -oo, and perhaps 
plot one convenient additional point as a check : 

f(oo) = 2 - e" = 2 - oo = -oo  

f(-oo) = 2 - e -" = 2 - 0 = 2 

and, as a check, 

f(0) = 2 - l = 1 . 

The three computations lead to the graph in Fig. 2. 

Example 2 Let 
2 

f(x) = 5 - X . 

Then f is not defined at x = 5. Find lim.,.5 /(x) and sketch the graph off in 
the vicinity of x = 5. 
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l . h 1· 2 2 0 I . . ' f  So  ution: We ave 1m,.s -- = -0 . n c oser exammauon, 1 x re-5 - x mains larger than 5 as it approaches 5, then 5 - x remains less than 0 as it approaches 0. Thus 
I. 2 2 d ( . · 1 I ) 1 · 2 2 1m -- = - = -oc an s1m1 ar y 1m -- = - = ::io . ••5+ 5 - X 0- ••5- 5 - X 0+  Since the left-hand and right-hand limits disagree, lim, • . f(x) does not exist. However, the one-sided limits are valuable for revealing that / has an infinite discontinuity at x = 5 with the asymptotic behavior indicated in Fig. 3. 

Warning A limit problem of the form 2/0 does not necessarily have the answer oc. Rather, 2/0+ = oc while 2/0- = -oc. In general, in a problem which is of the form (non 0)/0, it is important to examine the denominator carefully. 
Example 3 Let/(x) = e - 1 1•1 • Determine the type of discontinuity at x = 0 where f is not defined. 

Solution: lim e - 1 1•2 = e - 1 10 + = e -" = 0+  (Fig. 4) .  Therefore f has a point discontinuity at x = 0. If we choose the natural definition /(0) = 0, we can remove the discontinuity and make f con­tinuous. In other words, for all practical purposes, e - 1 1•2 is 0 when x = 0. In general, if a function g has a point discontinuity at x = a, the discontinuity is called removable in the sense that we can define or redefine g(a) to make the function continuous. On the other hand, jump discon­tinuities and infinite discontinuities are not removable. There is no way to define /(5) in Example 2 (Fig. 3) so as to remove the infinite discontinuity and make/ continuous. 
Problems for Section 2,2 

I .  Find 
-3  

(a)
-;-

oc 
(b) --4 
(c) 00 - 4 
(d) - 1 9 

0-
I 

(e) --00 
2. Find 

(a) lim (In x)2 

.,· •U+ 

(b) lim -1
1 

., .. x n X 

(f) e 1/X 

(g) 1 /e x 

(h) 3x 

(i) (¼r 
(j) ( -00)" 

(d) lim e' - �  
.... .... 

(e) lim ln(3x - 5) 
x •:l 

(c) lim (x - In x) (11 r x + 5 
, �� X + 4 ·'" •O+ 
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(g) Jim x (x + 4)  
x • 2  . 1 ·  I (J) Im X COS -; e' (k )  lim -_, . .. .. In x 3, Find the limit and sketch the corresponding portion of the graph of the function : 

) I. I b 1· I 1· 2 (a 1m 2 ( )  1m -.- (c) im --3 K•O X x•O  Sin X x • I  X 
-

X 4. Use limits to sketch the graph: (a) e - ,, - 2 (b) 3 + 2e 5
' 5. The function /(x) = e 1 /x has a discontinuity at x = 0 where it is not defined. Decide if the discontinuity is removable and, if so, remove it with an appropriate definition of /(0). 6. Let /(x) = sin I /x. (a) Try to find the limit as x -+  0+ .  In this case, / has a discontinuity which is neither point nor jump nor infinite. The discontinuity is called oscillatory. (b) Find the limit as x -+ oo. (c) Use (a) and (b) to help sketch the graph off for x > 0. 

2.3 Indeterminate Limits 

The preceding section considered many limit problems, but deliber­ately avoided the forms 0/0, 0 x oo, oo - x and a few others. This section discusses these forms and explains why they must be evaluated with caution . Consider 0/0, an abbreviation for r function f(x) which approaches O as x - a ;� function g (x) which approaches 0 as x - a ·  Unlike problems say of the form 0/3 , which all have the answer 0, 0/0 problems can produce a variety of answers. Suppose that as x - a, we have the following table of values: numerator . l .0 1 .00 1 I .000 1 denominator . l .0 1 .00 1 .000 1 Then the quotient approaches I .  But consider a second possible table of values : numerator 2/3 2/4 2/5 2/6 denominator 1 /3 1 /4 1 /5 l/6 In  this case the quotient approaches 2 .  Or consider still another possible table of values : numerator I denominator 1 /2 I 1 /3 
. l .0 1 I 1 /4 1 /5 .00 1 .000 1 Then the quotient approaches x. Because of this unpredictability, the limit form 0/0 is called indeterminate. In general, a limit form is indeterminate when 
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2.3 Indeterminate Limits · 49 
different problems of that form can have different answers. The characteristic of an indeterminate form is a conflict between one function pulling one way and a second function pulling another way. In a 0/0 problem, the small numerator is pulling the quotient toward 0, while the small denominator is trying to make the quotient oc or -00• The result depends on how "fast" the numerator and denominator each ap­proach 0. In a problem of the form 00/00, the large numerator is pulling the quotient toward 00 , while the large denominator is pulling the quotient toward 0. The limit depends on how fast the numerator and denominator each approach oo. In a problem of the form (O+ )0, the base, which is positive and nearing 0, is pulling the answer toward 0, while the exponent, which is nearing 0, is pulling the answer toward 1. The final answer depends on the particular base and exponent, and on how "hard" they pull. In a problem of the form O x oc, the factor approaching O is trying to make the product small, while the factor growing unboundedly large is trying to make the product unbounded. In an 00° problem, the base tugs the answer toward oc while the exponent, which is nearing 0, pulls toward l. In a l " problem, the base, which is nearing l ,  pulls the answer toward l ,  while the exponent wants the answer to be oc if the base is larger than l ,  or O if the base is less than l. In a problem of the form oc - oc, the first term pulls toward oc while the second term pulls toward -oc.  Thus, 0 x oc, oc0

, l "  and oc - oc are also indeterminate. Here is a list of indeterminate forms: 
O oc - oc  -oc  oc - - - - - 0 X oc 0 X -oc oc - oc (-oc) - (-oc) (0+ )11 l " oc11 0 t ::x) t 0C t -QC t -::X: I I I I I I I • 

Every indeterminate limit problem can be done; we do not accept "indeterminate" as a final answer. For example, if a problem is of the form 0/0, there is an answer (perhaps 0, or 1 ,  or -2 ,  or oc, or -oc,  or "no limit") ,  but it usually requires a special method. We discuss one method in this section, but most indeterminate problems require techniques from differ­ential calculus. Further discussion appears in Section 4.3. 
Highest power rule The problem lim,.x(2x:1 - x2) is of the indeterminate form oc - oc, but by factoring out the highest power we have 

lim 2x'( l - __!_) = oc x ( l - ..!..) = oo x ( I  - 0) = oc x I = oc . ,.,. 2x oc The final limit depends entirely on 2x:1 since the second factor approaches I .  This illustrates the proof of the following general principle: 
(2 ) As x --+ oc or x --+ -oc, a polynomial has the same limit as its term of highest degree. 
For example, lim, •. x(X 4 + 2x2 + 3x - 2) = lim, •. x x4 = oc, 
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. x :1 - x 2 - l Similarly the problem hm,.-x  Sx :i + 7x + 2 is of the indeterminate 

form 'Jf)/'Jf) ,  but by factoring out the highest power in the numerator and 
denominator we have 

. x :1 - x 2 - I x :1 x x :1 
hm .1 = lim � -----
_,.-x 5x· + 7x + 2 , •-•  :>x · 7 2 . } + -,, + -.l 5x· 5x· 

I - 0 - 0 The second factor is of the form ----, and approaches I . Therefore, I + 0 + 0 
x 3 - x2 - l x 3 l I J im ----- = Jim - = lim - (by canceling) = -;- . 

. , • - X  5x 3 + 7x + 2 , . -x 5x:1 x •-x 5 !) 

In  general, we have the following principle: 

(3) As x -+ 'Jf) or x -+ -x, a quotient of polynomials has the 
same limit as the quotient 

term of highest degree in numerator 
term of highest degree in denominator 

which cancels to an expression whose limit is easy to evaluate. 

x '' + x 3 + 1 Example I Describe the left end of the graph of 6 3 7 ., 4 . x· - x· + x + Solution: By the highest power rule, 
x"  + x 3 + I x " x 2 

J im 3 2 = Jim -3 = Jim - = oo .  
x • - X  6x - 7x + x + 4 x • - x  6x· x • - X  6 

Therefore at the left end, the curve rises unboundedly. 

Warning The highest power rule for polynomials and quotients of poly­
nomials is designed only for problems in which x -+ oo or x -+ - oo. The 
highest powers do not dominate if x -+  6 or x -+ - 10 or x -+ 0. In fact if x -+ 0 then the lowest powers dominate because the higher powers of a small 
x are much smaller than the lower powers. 

Summary To find the limit of a combination of functions, find all the 
sublimits . 

If you are fortunate, the result wil l be in a form that can be evaluated 
immediately; for example, 8/4, which is 2, or 3 X :x:, which is oc. 

If the sublimits produce a result of the form 6/0, then the denominator 
must be examined more carefully. If it is O+,  then the answer is :x:; if it is 
0-,  then the answer is -:x:; and if the denominator is neither (perhaps it 
is sometimes O+ and sometimes 0-)  then no limit exists. 

If the sublimits produce an indeterminate form, perhaps the highest 
power rule will help ;  if  not, wait for methods coming later. 
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Problems for Section 2.3 

I .  lim, .x(x 3 - x 4) 
2x m• + x 1111 - 7 

2. lim 
xM + 2 

as (a) x -+  :x: (b) x -+  0 (c) x -+  I 

5. lim _
x

_ as (a) x -+  :x: (b) x -+  I +  (c) x -+  I - (d) x -+  -:x: 
I - X 

. 3x 4 - 2x + 4 
4, hm 4 as (a) x -+ :x: (b) x -+ I -

x - X 

5 I . (x + 3) (2 - x) 
• 1m -'---------"--

•·" (2x + 3) (x - 5) 
2 4 

6. lim � 
• •2 X - 2 

2x - 5 
7, lim 

3 2 4 • •" X + X 

REVIEW PROBLEMS FOR CHAPTER 2 

I. Find 

(a) lim x cos x (c) lim e -• cos x 
x •O .1· •z 

(b) Iim(x + cos x) 
1 . 

2x + 4 • ·" (d) , !'!1" 3x + 5 

2 F. d 1 · 2x • + 3x 
b 2 • m 1m 2 5 

as (a) x -+ -:x: ( ) x -+ 
X + 

3. Find lim � as (a) x -+ :x: (b) x -+ 0 (c) x -+ l 
x· - X 

4. Find lim(2x - 4x 3
) as (a) x -+  ao (b) x -+ 2 

5. (a) Show that In sin x is not defined at x = 0 or x = 1r, or as x -+ 0 - or 
x -+  1r + . (h) Find lim,.o+ In sin x. (c) Find lim . ... - ln sin x. 

6, Use limits to help sketch the graph of l - t 2x . 
7. Suppose f is not defined at x = 3. Identify the type of discontinuity and 

decide if it is removable if 

(a) lim . .-s /(x) = 5 
(b) lim,.s - /(x) = 6 and lim • • 3+ /(x) = 00 
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3. 1 Preview 

This section considers two problems which introduce one of the funda­mental ideas of calculus. Subsequent sections continue the development systematically. 
Velocity Suppose that the position of a car on a road at time t is f(t ) = 12t - t s . Assume time is in hours and distance is in miles. Then /(0) = 0, /(1) = 11, /(2) = 16, so the car is at position O at time 0, at position 11 at time 1, and so on (Fig. I ) .  The problem is to find the speedometer reading at any instant of time. 

t" O t �  I > I )o jt•� t ,: 3  • < 

po,1noN 
0 � , ,  / 6  

F I G . I 
It is easy to find average speeds. For example, in the two hours between times t = 0 and t = 2, 16 miles are covered so the average speed is 8 mph. An average speed over a period of time is not the same as the instantaneous speedometer readings at each moment in time, but we can use averages to find the instantaneous speed for an arbitrary time t. First consider the period between times t and t + flt. (The symbol flt is considered a single letter, like h or k, and is commonly used in calculus to represent a small change in t.) The quotient 

( 1 ) 
change in position _ later position - earlier position change in time - flt  

- f(t + flt )  - [(t )  
flt  i s  called the average velocity. It will be positive if  the car i s  moving to the right, and negative if the car is moving to the left (when the later position is a smaller number than the earlier position). The average speed is the absolute value of the average velocity. To find the instantaneous velocity at time t consider average velocities, but for smaller and smaller time periods, that is, for smaller and smaller 

53 
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values of t:!.l. I n  particular, we take the instantaneous velocity at time t to be 

(2 ) I ' f(t + A t ) - f(t ) 
;,� !J.t . 

Therefore, for our specific function f(t )  = 12t - t 3 , 

instantaneous velocity at time t 

= Jim 1 2(t + A t )  - (t + At )3 - ( 1 2t - t 3) 
.1,.0 At 

= Jim 1 2t + 1 2 At - t 3 - 3t 2 At - 3t(At )2 - (A t )' - 1 2t + 1 '  
.1,.0 A t  

= Jim ( 1 2  - 3t 2 - 3 t  A t  - (At )2) 
'11•0 

= 12 - 31 2• 

We began withf(t ) = 1 21 - 1 3 representing position. The function 1 2  - 31 2 

just obtained is called the derivative off and is denoted by f '  (t ). It rep re• 
sents the car's instantaneous velocity. If the derivative is positive then the 
car is traveling to the right, and if the derivative is negative the car is 
traveling to the left; the absolute value of the derivative is the speedometer 
reading. t Velocity is even more useful than speed because the sign of the 
velocity provides extra information about the direction of travel. For ex• 
ample, f ' (O) = 1 2, indicating that at time t = 0, the car is traveling to the 
right at speed 1 2  mph. Similarly,[ ' (2) = 0, so at time 2 the car has tempo­
rarily stopped ; [ ' (3 )  = - 15 ,  so at time 3 the car is traveling to the left 
at 1 5  mph. 

Slope The slope of a l ine is used to describe how a line slants and, as a 
corollary, to identify parallel and perpendicular lines. The problem is to 
assign slopes to curves in general. 

A curve that is not a line will not have a unique slope; instead the slope 
will change along the curve. It will be positive and large when the curve is 
rising steeply, positive and small when the curve is rising slowly, and nega­
tive when the curve is falling (Fig. 2 ) .  

To compute the slope at a particular point A on a curve, we draw a line 
tangent to the curve at the point (Fig. 2) and take the slope of the tangent 
line to be the slope of the curve. If the curve is the graph of a function f(x), 
then the problem is to find the slope of the tangent line at a typical point A 
with coordinates (x, /(x)). We can't determine the slope immediately because 
we have only one point on the tangent, and we need two points to find the 
slope of a line. However, we can get the slope of the tangent by a limiting 
process. Consider a point B on the curve near A with coordinates 
(x + Ax, f(x + Ax)). (Figure 2 shows Ax positive since B is to the right of A ;  
A x  can also be negative, i n  which case B is to the left of A .) The line AB is 
called a secant and has slope 

( l ' )  
change i n  y -coordinate = Ay = f(x + Ax) - f(x) 
change in x -coordinate Ax Ax 

t Initially, in ( I ), we assumed that At > 0 so that / + Al is a later time than I. However, the 
limit in (2) allows Al to be negative as well. In that case, a similar argument will show that the 
derivative obtained still represents an instantaneous velocity with these properties. 
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flG . ;t 
which is equivalent to ( l ) ,  but with the independent variable named x instead of t. If we slide point B along the curve toward point A, the secant begins to resemble the tangent at point A. Figure 2 shows some of the in-between positions as the original secant AB approaches the tangent line. This sliding is done mathematically by allowing Ax to approach O in ( l ' ) .  Therefore we choose 
( 2 ' )  I' f(x + Ax) - f(x) ;.� Ax as the slope of the tangent, and hence as the slope of the curve at point A. From the calculations in the velocity problem we know that if /(x) = 12x - x' then the limit in (2 ' ) is 12 - 3x2 , denoted J ' (x) . Since /( l )  = l l  and f '( l )  = 9, the point ( l ,  1 1 )  is on the graph of /, and at that point the slope is 9. Similarly, /(2)  = 16 and f ' (2) = 0, so the slope on the graph at the point (2 ,  16) is O; /(3) = 9 and / '(3) = - 15 so the slope at the point (3, 9) is - 15 .  Figure 3 shows a partial graph of f. In the first problem, ( l) appeared as an average velocity ; in the second problem, the same quotient, eq. ( l ' ) ,  represented the slope of a secant line. 

FI G. , 

z, 3 
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In  the first problem, the limit in (2) was an instantaneous velocity f ' (t ) ; in the second problem, the limit appeared again in ( 2 ' )  as the slope f '  (x) of a curve. It is time to examine f '  systematically. In  the next section we will define the derivative and look at a few applications to help make the concept clear. 
3.2 Definition and Some Applications of the Derivative 
Definition of the derivative The derivative of a function f is another function, called f ' ,  defined by 
( 1 )  f ' (x) = Jim J(x + �x) - J(x) . 

� ••  o �x 

(We will assume for the present that the limit exists. Section 3.3 discusses instances when it does not exist.) Equivalently, if y is a function of x, the derivative y '  is defined by 
(2) , = lim change '.n y = lim � . y �-o change m x �-o �x 
The process of finding the derivative is called differentiation. The branch of calculus dealing with the derivative is called differential calculus. 
Speed and velocity Section 3. 1 showed that if f (t ) is the position of a particl,e on a number line at time t then f '  (t ) is the velocity of the particle. If the velocity is positive, the particle is traveling to the right; if the velocity is negative, the particle is traveling to the left. The speed of the particle is the absolute value of the velocity, that is, the speed is lf '(t ) I .  If /(3) = 12 and / '(3) = -4  then at time 3 the particle is at position 12 with velocity -4,  so it is traveling to the left at speed 4. 
Slope Section 3. 1 showed that f ' (x) is the slope of the tangent line at the point (x, f(x)) on the graph off. Thus J ' (x) is taken to be the slope of the graph of f at the point (x, /(x)). If the slope is positive , then the curve is rising to the right; if the slope is negative , the curve is falling to the right. I f/(3) = 12 andf '(3) = -4 then the point (3, 12) is on the graph off, and at that point the slope is -4. 
Example I Figure I gives the graph of a function f. Values off ' may be 
estimated from the slopes on the graph off. It looks as if[ '( - 3) is a large positive number since the curve is rising steeply at x = - 3. The curve levels off and has a horizontal tangent line at x = - 2 ,  so [ '(-2 )  = 0. Similarly, 
f '  ( - 1 )  is large and negative , while f ' ( 100) is a small negative number. We can plot a rough graph of the function f '  (Fig. 2) by plotting points such as 
A = ( - 3, large positive) , B = ( - 2 , 0 ), C = ( - 1 , large negative ), D = ( 100, small negative). Note that on the graph of f '  we treat values of f ' as y-coordinates , just as we do for any function ,  although the values off ' were obtained originally as slopes on the graph of f 
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f!G . l 
Notation If y = f(x) there are many symbols for the derivative off. Some of them are 

f ' '  f '(x) ,  dx ' D,f,  Df, y ' , 
dy 
dx · The notation dy/dx looks like a fraction but is intended to be a single inviolate symbol. 

More general physical interpretation of the derivative So far, the deriva­tive is a velocity if/ represents position, and is a slope on the grap� of/. More abstractly, the quotient change in f = f(x + Ax) - f(x) change in x Ax is the average rate of change off with respect to x on the interval between 
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x and x + 4'lx. Thus f '  (x) is the instantaneous rate of change off with respect to 
x. Suppose f(3) = 1 3  and [ ' (3) = -4. If x increases, y (that is,f(x)) changes 
also, and when x reaches 3, y is 1 3. At that moment y is decreasing instan­
taneously by 4 units for each unit increase in x. 

In general, we have the following connection between the sign of the 
derivative and the behavior off 

(3) 

(4) 

(5) 

If f ' (x) is positive on an interval then f increases on that interval. In 
particular, a graph with positive slope is rising to the right. 
If f' (x) is negative on an interval then f decreases on that interval. 
In particular, a graph with negative slope is falling to the right. 
If f ' (x) is zero on an interval then f is constant on that interval. In 
particular, a graph with zero slope is a horizontal line. 

Example 2 Let /(t ) be the temperature at time t (measured in hours). 
Then j ' (t ) is the rate at which the temperature is changing per hour. If 
/(2) = 40 and [ ' (2) = -5 then at time 2 the temperature is 40° and is 
dropping at that moment by 5° per hour. 

Example 3 Consider the steering wheel of your car with the front wheels 
initially pointing straight ahead. Let 8 be the angle through which you turn 
the steering wheel, and letf(8) be the corresponding angle through which 
the front wheels turn (Fig. 3). As in trigonometry, positive angles mean 
counterclockwise turning. 

If[ ' is negative, take the car back to the dealer, driving very cautiously 
along the way, since wires are crossed somewhere. When 8 increases, /(8) 
decreases, so when you turn the steering wheel counterclockwise, the 
wheels turn clockwise. 

If f '  is constantly 0, again take the car back to the dealer, but you'll need 
a tow truck, because no matter how the steering wheel is turned there is no 
turning in the wheels. 

If f '  is 1 0, the steering is overly sensitive, since for each degree of 
turning of the steering wheel there is 10 times as much turning of the 
wheels (in the same direction at least, since 10 is positive). Even f '  = I is 
probably too large; f '  = ¾ is more reasonable. In this case, as you turn the 
steering wheel in a particular direction, the wheels also turn in that direc­
tion (because ¾ is positive) , but each degree of turning in the steering wheel 
produces only f of turning in the front wheels. 

FIG • .3 
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Higher derivatives The function f ' is the derivative off. The derivative off ' is yet another function, called the second derivative off and denoted by f". A second derivative may sound twice as complicated as a first derivative, but if f" is regarded as the first derivative off ' it isn't a new idea at all : f" 
is the instantaneous rate of change off ' with respect to x. If /"(6) = 7 then, when x = 6, f '  is in the process of increasing by 7 units for every unit increase in x. There are many notations for the second derivative, such as d2y d2r d2 f" , [

12>
, y ", dx2 ' � ' dxd(x) . 

Similarly, f'", the derivative of f", is called the third derivative of f, and so on. 
Example 4 Let C be the cost (in dollars) of a standard shopping cart of groceries at time t (measured in days). Suppose that at a certain time, dC/dt = 2 and d2C/dt 2 = - .03. Then at this instant, C is going up by $2 per day (inflation), but the $2/day figure is in the process of going down by 3¢/day per day (the rate of inflation is tapering off slightly). If the second derivative remains - .03 for a while then in another day, the first derivative will decrease to 1 .97,  and C will be rising by only $ 1 .97 per day. If the second derivative remains - .03 long enough, the first derivative will even­tually become zero and then negative, and C will start to fall. 
Acceleration Let f (t ) be the position of a particle on a number line a• cime 
t (use miles and hours) so that f ' (t ) is the velocity of the particle. The problem is to interpret f"(t ) from this point of view. Suppose / ' (3) = -7 and ["(3) = 2. Then, at time 3, the particle is moving to the left at 7 mph. Since f" is the rate of change off ' ,  the velocity, which is -7 at this instant, is in the process of increasing by 2 mph per hour, changing from -7  toward -6 and upwards. The absolute value of the velocity is getting smaller so the speed is decreasing. Thus the car is slowing down (decelerating) by 2 mph at this instant. Unfortunately, the word acceleration has two meanings. Physicists and mathematicians call f" the acceleration; their acceleration is the rate of change of VELOCITY. But drivers use acceleration to mean the rate of change of SPEED, that is, an indication that the car is speeding up or slowing down. The (mathematician's) acceleration f"(x) does not, by itself, determine whether a driver is accelerating or decelerating; both f" and f' must be considered. If / ' (3) = 7 and f"(3) = 2 then, at time 3, the particle is traveling to the right at 7 mph, and the velocity, which is 7 at this instant, is in the process of increasing by 2 mph per hour. Its absolute value is increasing and the car is speeding up by 2 mph per hour. Further examination of the four possible combinations of signs gives the following general result: If the velocity f ' and the acceleration f" have the same sign then the particle is speeding up (accelerating) . If they have opposite signs then the particle is (6) slowingdown (decelerating). For example, supposef"(4) = - 5 . If/ ' (4) is also negative, then at time 4 the particle is accelerating by 5 mph per hour. If/ ' (4) is positive, then at time 4 the particle is decelerating by 5 mph per hour. 
Warning If the acceleration f" is positive, it is not necessarily true that the particle is speeding up. If the acceleration f" is negative, it is not necessarily 
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true that the particle is slowing down. The conclusions are true if the 
particle is traveling to the right, but the conclusions are false if the particle 
is traveling to the left. 

Units If f(t ) is the temperature at time t (measured in hours) then the 
units off ' are degrees/hour, and the units off" are degrees/hour per hour, 
that is, degrees/hour2• If f (t )  is position at time t (miles and hours) then the 
units of the velocity f' are miles/hour, and the units of the acceleration f" 
are miles/hour per hour, or miles/hour2

• In general, if f is a function of 
x then the units off '  are (units of /)/(unit of x) , and the units off" are 
(units of /)/(unit of x)2 . 

Concavity The derivative f ' (x) is the slope of the graph of /(x) at the point 
(x,f(x)) .  The problem is to interpret the second derivative ["(x) from a 
geometric point of view. 

If f '  is positive then the graph off is rising to the right, but this still 
allows some leeway. The graph can "bend" in two possible ways as it goes 
up. The two types of bending are called concave up and concave down 
(Fig. 4). Similarly, when f '  is negative, the graph off has negative slope but 
the graph can be either concave up or concave down (Fig. 5) . 

We can use the second derivative to detect the concavity. If f" is positive 
on an interval then f' is increasing, so the graph off has increasing slope, 
as in Figs. 4 (a) and S(a) . If f" is negative on an interval then f '  is decreasing, 
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so the graph off has decreasing slope, as in Figs. 4(b) and 5(b) .  Hf" is zero on an interval then the slope f '  is constant, and the graph off is a line. We summarize as follows. 
(7) 

f" on an interval positive negative zero 
graph off in that interval concave up concave down a line A point on the graph off at which the concavity changes is called a point 

of inflection. 

Example 6 Suppose f ' (x) > 0 for 2 s x s 7, f"(x) < 0 for 2 s x < 5 ,  f"(5) = 0, and f"(x) > 0 for 5 < x s 7 .  Sketch a graph consistent with the data. 
Solution: The graph off rises on [2, 7] , is concave down until x = 5 and then switches to concave up. The point (5,f(5)) is a point of inflection (Fig. 6). The sketch deliberately omits the axes (but assumes, as usual, that they are horizontal and vertical) .  Since we have no information about the values of f, we don't know any specific heights on the graph. The curve can intersect the x-axis, or lie entirely above or below it. 

Problems for Section 3.2 
1. If the curve in Fig. 7 is the graph off, estimate f' (0), f' (- 100) and f' ( 100). Sketch the graph of f ' (x). 

'3 

-.t 

FlG .7 
2. Let p be the price of a camera and S the number of sales. Find the probable sign of dS/dp. !I. Let y be the distance (in feet) from a submerged water bucket up to the top of the well at time t (in seconds). Suppose dy/dt = -2 at a particular instant. Which way is the bucket moving, and how fast is it going? 4. If dy/dx is positive, how does y change if x decreases7 5. Let/(x) be your height in inches at age x, and letf ' ( l3 .7) = 2 .  (a) By about how much will you grow between age 13 .7 and age 14? (b) Why is your answer to (a) only approximate? 



62 · 3/The Derivative Part I 

6. A street (number line) is lined with houses. Let [(x) be the number of people 
living in the interval [0, x] . For example, if/(8) = 100 then 100 people live in the 
interval (0, 8] .  

(a) What does f (x + .\x) - /(x) represent in this context? 
. f (x + .\x) - f (x) 

(b) What does the quotient �---�- represent? 
.\x 

(c) What does J '(x) represent? 
(d) What values of f ' (x) are impossible? 

7. Suppose Smith's salary is x dollars and Brown's salary is y dollars. If Smith 's 
salary increases, how will Brown fare in comparison if dy/dx is (a) 2 (b) l /2 
(c) - I (d) 0? 

8. Let x be the odometer reading of a vehicle and /(x) the number of gallons 
of gasoline it has consumed since purchase. Describe f ' (x) for a van and for a 
motorcycle (what units? positive? negative? which is larger?) .  

9. True or False? 

(a) If /(2) = g(2),  then / ' (2) = g ' (2) . 
(b) I f  f is increasing, then f '  is increasing. 
(c) If f is a periodic function, that is, f repeats every b units, then f' is also 

periodic. 
(d) I f/ is even, then f ' is even (even functions were defined and their graphs 

discussed in Problem 8 of Section l .2) .  

10. The posted speed l imit at position. x on a straight road is L (x) , and a car 
travels so that at time I its position on the road is /(1 ) .  For example, if /(2) = 3 and 
L (3) = 50 then, at time 2, the car is at position 3 on the road and the posted speed 
limit is 50 mph. Suppose that at time 6 the car breaks the law and exceeds the speed 
limit. Express this fact mathematically using a derivative and an inequality. 

I I . Let /(x) = x for all x. Find f ' (x) (a) using the definition in ( I ) (b) using 
slope (c) using velocity. 

1 2. If the curve in Fig. 7 is the graph of g ' ,  sketch a possible graph of g. 
13. Let f(t ) be the temperature in your city at time I .  I f  it is uncomfortably hot 

at time I = 2, are you pleased or displeased with the indicated data?  

(a) [ ' (2) = 6,["(2) = -4  (b) [ ' (2) = - 6,["(2) = - 4 (c) / ' (2) = 0 

14. Let s (t ) be the position of a particle on a line at time I (miles and hours). Find 
the direction of motion and the speed at time 3 .  l s  the particle speeding up or 
slowing down, and at what rate? 

(a) s ' (3) = - 4, s "(3) = - I (c) s ' (3) = 0, s "(3) = 2 
(b) s ' (3) = 5, s "(3) = - 2 (d) s ' (3) = 2, s "(3) = 0 

15. Suppose /(2) = 3, /( IO) = 4 ; f ' (x) is positive on (2 , 8) ,  zero at x = 8, and 
negative on (8, IO] ; f " is positive on (2, 6) , zero at x = 6, and negative on (6, IO]. 
Sketch a rough graph off on (2, I O] .  

16. What kind of second derivative (positive? negative? large? small?) would the 
car owner prefer in Example 3 ?  

1 7. I f  J ' (x) decreases from 5 to  l a s  x increases from 3 to  4 ,  what can you 
conclude about f(x) and f"(x) for 3 :s x :s 4 ? 

18. Let /(x) be the cost to a refinery of starting up production and turning out 
x barrels of oil. 

(a) What does it mean if /(60) = 400? 
(b) f ' (x) is called the marginal cost. What does it represent to the refinery? In 

particular, what does it mean if f ' (60) = 21 and f ' ( 100) = IO? 
(c)  Suppose /( 10) = 200 and f'(  10) = 3 .  Interpret physically. 
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3.3 Derivatives of the Basic Functions 

We now begin computing derivatives. In this section we find the deriva­tives of (almost) all the basic functions; a summary appears at the end of the section. Sections 3.5 and 3.6 will develop rules for differentiating combina­tions (sums, products, quotients, compositions) of the basic functions. Then you will be able to differentiate any elementary function. (If the derivatives of the basic functions x2 and sin x are known, along with the rules for differentiating compositions and products, then such elementary functions as sin x2 and x2 sin x can be differentiated.) 
Derivative of a constant function If [(x) is a constant function then the graph of f is a horizontal line and has slope 0. Thus J ' (x) = 0. In other words, D,c = 0 for any constant c. 
Derivative of the function x The graph off (x) = x is the line y = x. The line has slope I so f ' (x) = I. In other words Dxx = I . (See also Problem 1 1 in the preceding section.) 
Derivative of the function x9 It is easy to find D,c and D,x using slopes. However, the graph of x9 (Fig. I )  has varying slope, so D,x9 is not easy to predict. To get the precise formula for J ' (x) , we use the definition of the derivative : 

f ' (  ) 1 . f(x + Ax) - f(x) 1 . (x + Ax)9 
- x9 

x = 1m = 1m 
Ax •O Ax Ax •O Ax Now, expand (x + Ax)9 by the binomial theorem (Appendix A4) to get 

f ' (x) = lim x9 + 9x 8 Ax + a2x 7(Ax)2 + · · · + asX (Ax)8 + (Ax)9 - x9 

Ax•O Ax (The values of the coefficients a2 , • • · ,  a8 will turn out to be unimportant, so we don't bother computing them.) Then 
f ' (x) = l im[9x8 + a2x 7 Ax + · · · + a8x (Ax) 7 + (Ax)8] = 9x 8 • 

Ax •O Thus D,x9 = 9x 8. Note that the slope 9x 8 is a large positive number when 
x = ±4 for example, corresponding to the steep rise in the graph of x 9 at x = ±4, and 9x 8 is a small positive number when x is ±½, corresponding to the gentle rise in the graph at x = ±½. 
Derivative of x' The formula D,x9 = 9x 8 is a special case of the more general pattern D,x' = rx'- 1 • This pattern, called the power rule, also works for every other power function: to differentiate x', lower the exponent by I and drop the old exponent down to become a multiplier. For example, 
D,x2 = 2x, Dxx3 = 3x 2 , and similarly 
d( l /x3) d (x - 3) 3 
� 

= 
� 

= -3x -4 = - x4 (the exponent - 3 goes down to - 4) , 
d (Yx ) d (x 1 12) I _ , I --- = -- = -x 1 2 = --

dx dx 2 2Yx
. 
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F/ G .1 

The proof of the power rule for x 2, x 3 , x 4 , · · · is similar to the proof for x 9
• The rule holds for r = l since the desired formula D,x 1 = lx0 amounts to the formula D,x = 1 ,  already proved . Section 3.5 will prove the power rule for r a negative integer and Section 3. 7 will give the proof for fractional r. 

Warning There are many ways to indicate that the derivative of x 3 is 3x 2
• For example, you may write D,x 3 = 3x 2, d (x 3)/dx = 3x 2 , if /(x) = x 3 then f ' (x) = 3x 2 • But do not write J ' (x 3) = 3x 2 and do not write x 3 = 3x 2 • Letters other than x and y may be used . I f  z = t 2 then dz /dt = 2t ;  if /(u) = u 4 then f' (u) = 4u 3• 

Example I Find the slope at the point (2 ,  8) on the graph of y = x 3 and find the equation of the tangent line at the point. Solution: I ff(x) = x 3 then f '(x) = 3x 2 and f ' (2) = 12. So the slope at (2 , 8) is 12 . The tangent line has slope 12 and contains the point (2, 8) so its equation is y - 8 = 12(x - 2) .  
Derivative of sin x We can make an educated guess for the derivative of sin x, based on slopes on the sine curve (Fig. 8 of Section 1 .3) .  It looks as if the slope of sin x at x = 0 is about I, the slope at x = 1r/2 is 0,  the slope at x = 1r is - 1 , the slope at x = 31r/2 is 0, and so on. Thus, the derivative of sin x is a function with the following table of values : 

X 0 1r/2 
1/" 31r/2 21r 

derivative of s in x l 0 - 1  0 
A well-known function tha t  has these values is cos x; and we guess that D, sin x = cos x. We will continue with the proof to confirm the guess, but must admit that students who find it too lengthy to read can grow up to lead rich full happy lives anyway. For the proof we use the definition of the derivative .  

( l )  

D . - r sin(x + .:lx) - sin X , sm x - A�� .:lx 
1 . 2 cos ½(2x + .:lx) s in ½ .:lx 

= 1m 
Ax •O dX 

(by the identity in ( 15) of Section 1 . 3) . sin ½ Ax 
= hm cos !(2x + Ax) -1 -A- (rearrange) . 

Ax •O 2 ax As Ax -+ 0, the first factor in ( l )  approaches cos x. I f  we let fJ = ½ Ax for convenience, the second factor is (sin 8)/8 where 8 -+  0. Therefore, to complete the proof we must show that 
(2 ) I . sin fJ 1 1m -- = 

8•0 fJ First consider the special case where fJ -+  0+  so that we may use a picture with a positive angle 8. Consider a circle of radius 1 and a sector with angle fJ (Fig. 2 ) .  Then 
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(3) area of triangle OAB = ½bh = ½OA · AB = ½AB and (4) area of triangle OAC = ½bh = ½OA · DC = tDC . By trigonometry, 
(5) 

AB - DC -tan 9 = OA 
= AB and sin 9 = OC = DC . 

Therefore, by (3), (4) and (5), area of triangle OAB = ½ tan 9 and area of triangle OAC = ½ sin 9 . 
(6) The area of the entire circle with radius l is 1T, and the sector OAC is a fraction of the circle, namely, the fraction 9/21r if 9 is measured in radians. Therefore 
(7) 

9 area of sector OAC = 2 7T • 1T = ½9 .  
Now we are ready to put the ingredients together to prove (2). Since area of triangle OAC < area of sector OAC < area of triangle OAB, we have, by (6) and (7), ½ sin 9 < ½9 < ½ tan 9. Divide each term by ½ sin 9 (which is positive since 9 -+ O+ ) to get 8 1 I < -- < -­sin 9 cos 8 ' and take reciprocals to obtain sin 8 cos 8 < -8- < l . 
We know that lim,.0+ cos 8 = 1 ,  so as 9 -+  O+ , (sin 8 )/8  is squeezed be­tween l and a quantity approaching I .  Therefore limM+ si; 9 = l . For the case where 8 -+  0- , note that (sin 9)/8 takes on the same values when 8 approaches O from the left as from the right; that is, (sin 0)/8 is the same whether 8 equals b or -b since sin(- b) - sin b sin b 

-::;;-
=

-=,;-
=

-b- . 

Therefore, more generally, we have the two-sided limit in (2). This in turn concludes the proof that D, sin x = cos x. 

Derivative of cos x To find D, cos x note that the cosine and sine graphs (Figs. 8 and 9 of Section l .3) are translations of one another. The slope at x on the cosine graph is the same as the slope at x + ½1r on the sine graph. In other words, cos'x = sin' (x + ½1r). But sin' is cos, so D, cos x = cos(x + ½1r). Furthermore, cos(x + ½1r) = - sin x. To see this, either use the trig identity for cos(x + y) or note that the cosine curve translated to the left by ½1r is the same as a reflected sine curve (Fig. 3). Therefore we have the final result D. cos x = -sin x. (Equivalently, D, cos 8 = -sin 8, D, cos y = -sin y, D. cos u = -sin u, and so on.) 
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Derivatives of the other trigonometric functions The functions tan x, cot x, sec x and csc x are various quotients of sin x and cos x. We will find their derivatives in Section 3.5 using a quotient rule, but for completeness we include them in the table of basic derivatives in this section. 
Notation I f  f (x) = sin x then f ' ( 11') means the value of the derivative when x = 11'. Thus, f ' ( 11') = cos 1T = - l .  We might also let y = sin x and use the notation y ' I, =,, = cos x i, = ,,  = cos 1T = - l .  
Radians versus degrees Radian measure i s  used i n  calculus rather than degrees because the derivative formula for sin x (and hence all the other trigonometric functions) is simpler in radians. We will explain why in this paragraph but if you find it difficult, as many students do, consider it optional. The rate of change of sin x is different when x is measured in radians than when x is measured in degrees. In particular, sin x changes more rapidly with respect to x when x represents radians. A change of 1 radian has more effect on sin x than a change of 1 degree. In fact, I radian has the same effect as approximately 57°. Equivalently, if the rate of change of sin x per radian is q then the rate of change of sin x per degree is approximately 
-f-i q, actually 1;0 q. Therefore the formula D, sin x = cos x, which holds when radian measure is used, becomes D, sin x = 1;0 cos x when degree measure is used . Both the guess and the proof of the derivative formula D, sin x = cos x were based on radian measure. In the proof, formula (7) assumed radian measure. Similarly, the guess was based on a graph of sin x using radian measure on the x-axis. If degrees are used (Fig. 4) then the graph of sin x has a different appearance. The slopes are smaller, ranging between - 1 /57 and 1 /57 approximately (actually between - 1T/ ! 80 and 11'/ 1 80) rather than between - 1  and l. Slopes read from Fig. 4 lead to D, sin x = Tio cos x, x in degrees. 
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The formula D. sin x = cos x, x in radians, is simpler than D, sin x = m cos x, X in degrees. Therefore radian measure is used in calculus. 
Derivative of e• and a definition of the number e Finding D.e• is a sub­stantial and difficult problem, especially since it is at this stage that we must define the number e. We'll start by assuming that we have not yet singled out a favorite base, and try to find the derivative of b', where b is a fixed positive number. We have 
(8) 

D b l . b•+h - b' (d f' . . f h d . . ) • • = 1m A e m1uon o t e envauve 
h •O .u.X 

[bb - l ]  = lim b• -A- (factor) . 
h•O .u.X Now look at sublimits. The factor b' does not change since it does not contain ax. Thus we concentrate on finding the limit of the second factor, bh - 1 

(9) flx which is of the indeterminate form 0/0. The quotient in (9) happens to be the slope of the line through the points (0, 1) and (flx, bh), a secant line on the graph of b' (Fig. 5) .  If flx - 0, then the point (flx, bh) slides along the graph toward the point (0, 1 )  and the secant approaches the tangent line. Therefore, the limit of (9) is the slope of the tangent line, or equivalently, the slope on the graph of b• at (0, 1) .  Consequently (8) becomes (8 ' )  D,b• = mb• where m is the slope at (0, 1) on the graph of b' . 

_,.- I 

i 
I 

FlG. 5 
The value of m depends on the value of b. The slope m at the point (0, 1 )  on the graph of 100" (Fig. 6 )  i s  a large positive number; thus D, 100" = m 100" where m is a specific large positive number. On the other hand, the slope m at (0, 1) on the graph of 1 .01' (Fig. 7) is a very small positive number. We have the most convenient version of (8 ' ) when the slope at (0, 1) on the graph of b' is I .  Somewhere between the extremes of 100" and 1.01', there is such a b• (Fig. 8). That particular b is named e. Thus we arrive 
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{O, J) 

f/G. 7 

F/G . 8  

at the following definition of e :  e is the base such that the graph of b '  has slope l at the point (0, 1 ). This definition of e is not yet of computational value; in fact we cannot tell immediately from the definition that e is between 2 .  7 1  and 2. 72. (One of the ways of computing e will be demonstrated later in Section 8.9. ) However, with the definition of e we do immediately have the derivative of e•. Set m = 1 ,  b = e in (8 ' ) to get D,e• = e•. 

The derivative of the inverse function If we find the general connection between the derivatives of inverse functions, we can use it to easily find the derivatives of In x, sin- 1x and cos- 1x, now that we have derivatives for e', sin x and cos x. Suppose y is an invertible function of x. Then x is a function of y, and we want the connection between the original derivative dy/dx and the in­verse derivative dx/dy. Suppose dy/dx = 3, meaning that ifa increases, then y increases 3 times as much. If the perspective is changed, and y is viewed as the independent variable, then if y increases, x also increases, but only 1 /3 as much; that is, dx/dy = ¼. In  general, 
( 10)  

The inverse formula is easy to remember, because if we pretend that dy/dx and dx/dy are fractions, the formula looks like standard algebra . 
Derivative of In x Let y = In x. Then x = e·', and 

d (ln x) = !!1_ = _l = _!_ 
dx dx dx e-' • 

dy We don't stop here because when y is a function of x we expect the deriva­tive to be a function ofx also. Thus we must express 1 /e-' in terms of x, which is easy because e-' = x. Therefore, dy/dx = 1 /x, that is, D. In x = 1 /x. 
Derivatives of the inverse trigonometric functions We continue to take advantage of ( IO ). To find the derivative of sin- 1x, let y = sin- 1x, so that 
x = sin y where - ½11' s y s ½11'. Then 
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(11) d (sin- 1x) = � = _!_ = _l _ 
dx dx dx cos y 

dy We want to express the answer in terms of x since y is a function of x. We know that sin y = x, and c':/' = ! - sin2� trig identity, so cos2y = l - x2
• Thus cos y is either l - x or -�. In this case, y is V angle between -½'IT and ½'IT, so its cosine is positive. Therefore cos y = l - x 2 and D. sin- •x = 1/v'f'='"? . Derivatives of cos- •x and tan- •x may be obtained similarly and are listed in the table of basic derivatives. 

Table of basic derivatives 
D,c = 0 
D,x = l 
D,x' = rx•- • 

D. sin x = cos x . 1 l D. sm- x = --=== 
(power rule) 1 D In x = -• 

X 

D,e• = e• 

D, cos ,,-. = - sin x D, tan x = sec2 x D. cot x = -csc2x 
D, sec x = sec x tan x 

D. csc x = -csc x cot x 

Problems for Section 3.3 

I. Find (a) D.x6 (b) D. l /x6 (c) D,x817 (d) D.� (e) !!._(_I ) dx Vx 

d(x2") (f) ­dx (g) D.O (h) d (e ') dt (i) D.4 2. I f  /(z) = In z, find f' (z). S. If y = x, find y ' . 4. lf/(x) = 7 for all x, find f ' (x). 
5. I f  u = tan t, find du/dt. 

Vl-7 

l D tan- 1x = --• l + x 2 

6. Find y '  and y" if (a) y = In x (b) y = sin x (c) y = e'. 7. If /(x) = 1 /Vx find f ' (  17 ) .  8. lf/(x) = s in x find /(11) and f '(1r). 9. Differentiate the function. (a) x -5 (b) x 14 (c) v? (d) 1 /x � (e) X 

(f) In x 

(g) X - 1/S 

(h) x 4 (i) l /x 4 

(j) .!. X 

(k) _!_ 
x 2 

10. Examine the graph of In x and convince yourself that the slopes do look like 1 /x. 
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1 1 . Use ( 10) together with the derivative formula for tan x to prove the deriva­tive formula for tan - 1x. 12. The s in- 1 function is the inverse of sin x when x is restricted to [ - 41T, ½1TJ . Consider a second sin- 1 function, called I I  sin - 1 , defined as the inverse of sin x when x is restricted to [ 17'/2, 317'/2). (a) Sketch the graph of y = I I  sin - 1 x. (b) Does the derivative of II sin - ix equal 1 /� ? If not, find its derivative. 
13. I f  a = b -• ,  find da/db and db/da directly and verify that : = db)da . 14. A block bounces up and down on a spring so that at time I, its height is sin t (use meters and seconds) . (a) Find the speed of the block at time I = 2 17'/3 . (b) Is the block speeding up or slowing down at time I = 2 17'/3 ,  and by how much? (c) When is the speed of the block maximum? minimum? 15. Find the slope at (-2 ,  16) on the graph of y = x•  and find the equations of the lines tangent and perpendicular to the graph at the point. 

3.4 Nondifferentiable Functions 

It  is possible for a function not to have a derivative for some value of 
x. We mention this possibility not because it will happen frequently and hinder you in later work, but because you will understand the derivative better if you see examples where one doesn't exist. A function that doesn't have a derivative at x = x0 must correspondingly have a graph with no slope at the point (x0 ,f(x0) ) .  We will illustrate a few (but not all) of the ways in which this can happen. 
Discontinuities Imagine traveling from left to right along the graph off in Fig. I .  I t  is a vertical step up to point A and then a vertical step back down again, so we say that the left-hand slope at A is oc and the right-hand slope is -oc. But even if we are willing to accept infinite derivatives, the left-hand and right-hand slopes don't agree. Thus/ is not differentiable at x = 2; that is, there is no f '(2) .  Continuing from left to right in Fig. l ,  it is a vertical step up to the point B and then a slope of approximately l leaving point B. Thus, the 
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left-hand slope is :r,, and the right-hand slope is about l .  The disagreement means that there is no [ ' (3) . Similarly, / is not differentiable at x = 4, and in general, if f is discon­
tinuous at x = x0 , then f is not differentiable at x = Xo. (Equivalently, if f is 
differentiable then f is continuous.) 

Cusps Continuing from left to right in Fig. l ,  the slope coming into point D, the left-hand slope, is about l ,  while the slope leaving the point, the right-hand slope, is about -2 .  Since the two values disagree, there is no slope assigned to D and there is no [ ' (5) . We call point D a cusp. In general, 
a cusp arises when the graph is continuous but suddenly changes direction (so that the curve is not "smooth"), and in this case f is not differentiable. Note that differentiability is a more exclusive property than continuity : a differentiable function must be continuous, but a continuous function need not be differentiable (at the cusp in Fig. 1, f is continuous bm not differentiable) . In other words, the collection of differentiable functions is a subset of the collection of continuous functions. 
Example 1 Let f(x) = lxl . The graph off (Fig. 2) has a cusp at x = 0, so there is no f ' (0) . In particular, the figure shows that the left-hand slope is -1 and the right-hand slope is l .  Let's try to find f ' (0) using the definition of the derivative to see what happens : 

f ' (0) = lim f(O + Ax) - f(O) = lim IO + Axl - IO I = lim IAxl . 
A.< •O Ax Ar•O Ax Ar•O Ax The limit doesn't exist because the left-hand limit is -1 and the right-hand limit is I (see Problem 3, Section 2.1) .  Again we conclude that the left-hand slope is - I ,  the right-hand slope is I ,  and there is no [ ' (O) .  

3.5 Derivatives of Constant Multiples, Sums, Products 
and Quotients 

Now that we have derivatives for the basic functions, we'll continue by looking at combinations of functions. All our combination rules assume that we are working with differentiable functions. 
The constant multiple rule for the derivative of c/(x) The graph of 2f (x) is a vertical expansion of the graph of f(x), which makes it twice as steep (for example, see Figs. 4 and 7 in Section 1 .7) .  Thus D.2f(x) = 2D.f(x) and, in general, for any constant c, 
( l ) I D,cf(x) = cD.f(x) . I 
The constant factor c can be "pulled out" of the differentiation problem. In other words, slide past the constant and then start differentiating. I f  
f(x) = 3 sin x then f ' (x) = 3 cos x. If  /(x) = -tan x then f ' (x) = -sec2x. Combining the power rule with (1) ,  we have D.4x 3 = 4 · 3x 2 = 12x 2 • Similarly, D.Bx 2 = l6x, and D.(-½x8) = -4x 7 • Combining the formula D.x = I with (1), we have D.8x = 8 · I = 8.  Similarly, D.½x = ½ ,  D.7x = 7 ,  D.(-x) = -1 and so on. 
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Note that ( I ) includes the case of a constant divisor. For example, In I I I l I D - = D - In t = - · - = -' 7 ' 7 7 t 7t  
and 

.!!_ (-1-) = .!!_ (½x-◄) = - 2x-5 = - 2_ . dx 2x4 dx x' 
The sum rule for the derivative of /(x) + g (x) By definition of the 
derivative, 

D.(J(x) + g(x) )  = J im J(x + Ax) + g(x +
A 

Ax) - (f(x) + g(x)) . 
,l,., •O X 

To evaluate this limit, first rearrange to separate the J and g parts. 

D.(f(x) + g(x)) = lim (f(x + �x) - f(x) + g(x + A
;

) - g(x)) . 
,1,., �  X X 

Further separation is possible since the limit of a combination of functions 
is computed by finding the individual limits; in this case, the limit of the sum 
is the sum of the limits. Therefore 

D (!( ) ( )) I . J(x + Ax) - f(x) 1 . g(x + Ax) - g(x) • x + g x  = 1m �---�- + 1m ----�- . 
.!.x•O Ax .!.x •O Ax 

But the first limit on the right•hand side is J '(x) , by definition of the 
derivative, and the second limit is g'(x). Thus the sum rule is 

(2 ) I D.(J + g) = D.f + D.g .  , 
The derivative of the sum is the sum of the derivatives .  I n  other 
words , differentiate f and g separately, and then add. For exam ple , 
D,(2x 3 + 7x 2 - 3x + 4) = 6x 2 + l4x - 3. 

The product rule for the derivative of/(x)g(x) Again we'll use the defini­
tion of the derivative: 

D f( ) ( ) = r f(x + Ax)g(x + Ax) - f(x)g(x) 
• x g x "'�� Ax . 

Now add and subtract/(x + Ax)g(x) in the numerator, which is strange but 
legal, to get Dxf(x)g(x) = 

I . f(x + Ax)g(x + Ax) - f(x + Ax)g(x) + f(x + Ax)g(x) - f(x)g(x) 1m 
.!.x•O Ax 

Then factor and rearrange : 

D.f(x)g(x) = lim (f(x + Ax) g(x + �x) - g(x) -+ J(x + 
�

x) - J(x) g(x)) . 
.!.x•O X X 

Now there are four sublimits to examine. To find lim,i, .0 /(x + Ax) , we 
simply substitute Ax = 0 because f is assumed differentiable, hence con-
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tinuous. Thus the limit is / (x). For the next two sublimits, we have, by definition of the derivative, 
I . g(x + �x) - g(x) _ ' ( ) d 1 . f(x + 6x) - f(x) _ f '( ) 1m A - g x an 1m A - x . �• �x �• �x Finally, lim� •• 0 g(x) = g(x) because 6x does not appear in the expression 

g(x) . Thus the final limit is /(x)g ' (x) + J ' (x)g(x) ; that is , the product rule is 
(3) I (Jg) ' = Jg ' + f 'g . 1 
The derivative of a product is the first /actor times the derivative of the second 
plus the second times the derivative of the first. I f  /(x) = x '  sin x then J ' (x) = x' cos x + 3x 2 sin x. 
Warning The derivative of x 3 sin x is not 3x 2 cos x. The derivative of a product / g is not found by differentiating / and g separately and multiplying. 
Example l d (x'  In x) 1 --- = x 3 • - + 3x2 In x = x2 + 3x2 In x .  dx x 
The product rule for more than two factors If y = f g then y '  = 
Jg '  + f 'g. Suppose y = fgh, a product of three functions. By grouping, we can rewrite y as f(gh) which represents y as a product of two factors, al­though one of the two factors is itself a product. Then y ' = f(gh) ' + f ' (gh) (product rule for two factors) 

= f(gh ' + g 'h) + f '(gh) (product rule for two factors again) 
= fgh ' + fg 'h + f 'gh .  Therefore the product rule for three factors is 

(4) (fgh) ' = fgh '  + fg 'h + f 'gh . If /(x) = x2 sin x cos x then f ' (x) = (x2 sin x) (- sin x) + x 2 cos x cos x + 2x sin x cos x 
= -x2 sin2x + x 2 cos2x + 2x sin x cos x .  Similar results hold for products of four or more factors. 

Warning Certain possibly ambiguous notations have standard inter­pretations in mathematics. The notation tan xe• is assumed to mean tan(xe') . 
If you intend (tan x) (e') then you must insert the appropriate parentheses, or better still write e• tan x which is unambiguous. Similarly, sin x cos x means (sin x) (cos x), sin x 2 means sin(x2) and sin2x means (sin x)2 . Be careful to have your notation match your intention. 
The quotient rule for the derivative of/(x)/g(x) By the definition of the derivative, 
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f(x + Ax) _ f(x) 

D f(x) = lim g(x + Ax) g(x) 
• g(x) A• •O Ax 

Simplify the fraction on the right-hand side by multiplying numerator and 
denominator by g(x)g(x + Ax) to get 

D f(x) _ r g(x)f(x + Ax) - f(x)g(x + Ax) 
• g (x) - i.� Axg(x)g (x + Ax) · 

Add and subtract f(x)g (x) in the numerator to obtain 

D f(x) 
= 

g(x)f(x + Ax) - f(x)g(x) - f(x)g(x + Ax) + f(x)g(x) 
• g(x) Axg(x)g(x + Ax) 

Factor and rearrange to get 

g(x) (f(x + Ax) - f(x)) _ f(x) (g(x + Ax) - g(x)) 
D f(x) _ I" Ax Ax 

• g(x) - � g(x)g(x + Ax) 

Finally, find the separate sublimits as in the proof of the product rule, to 
produce the quotient rule 

(5 )  

The derivative of a quotient is the denominator times the derivative of the numerator, minus the numerator times the derivative of the denominator, all divided l,y the square of the denominator. 
Example 2 By the quotient rule, 

4x (3x + 5)  · 4 - 4x · 3 20 
D, 3x + 5 = (3x + 5)2 = (3x + 5)2 • 

Warning It is correct but silly to use the quotient rule to write 

x2 + 3x 6(2x + 3) - (x 2 + 3x) • 0 2x + 3 
D,-6- = 36 = -6- . 

Instead, write the function as !(x 2 + 3x) and use the constant multiple rule 
to get the derivative ¾(2x + 3) immediately. 

Delayed proof of the tangent derivative formula The formula D., tan x = 
sec2x, stated in Section 3 .3 , can now be justified by the quotient rule 

sin x 
D, tan x = n.� 

COS X 

cos x cos x - sin x (-sin x) 
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= cos2x 

= sec2x . 

(by a trigonometric identity) 

The derivatives of cot x, sec x and csc x can be found in a similar manner. 

Delayed proof of the power rule D.x' = rx'- 1 when r is a negative 
integer Consider D.x -9 for example. By the quotient rule and the pre­
viously proved case of the power rule for r a positive integer (Section 3 .3) 
we have 

1 x9 • 0 - 1 · 9x8 - 9x8 

D X -9 - D - ------ - - - 9x- 10 
X - X 9 -

( 9)2 - -18- -
x ·  X X 

The proof in the general case is handled in the same way, with -9 replaced 
by an arbitrary negative integer r. 

The derivative of a function "with two formulas" Suppose /(x) = Jin xj . 
Then f(x) = In x when In x ?: 0 but /(x) = -In x when In x < 0. Thus 

{ -In x 
f(x) = 

In x 
if O < x < 1 { - 1 /x 

so f ' (x) = 
if X ?: 1 1 /.Y. 

if O < x < 1 
if X > 1 . 

(The graph off (see Problem 4b of Section 1 . 7) has a cusp at x = 1 and f 
is not differentiable there. In fact, set x = 1 in the formula - 1/x to obtain 
the left-hand slope - 1  at the cusp, and set x = 1 in the formula 1 /x to 
obtain the right-hand slope 1 ,  a different value. )  

In  general, i f  f(x) i s  defined by different formulas on various intervals 
then f' (x) is found by differentiating each formula separately. 

Example 3 We discussed velocity and acceleration in Section 3 .2 but did 
not actually compute them in that section since efficient techniques of 
differentiation had not yet been developed. I f/(t ) = t' - 3t 2 - 45t is the 
position of a particle at time t, we are now prepared to describe its motion 
using derivatives. 

The velocity is f ' (t ) = 3t 2 - 6t - 45 . To determine when the particle 
travels left and when it travels right, we will determine the sign of/(t ) using 
the method of Section 1 .6 .  The function f ' (t ) has no discontinuities, and is 
0 when 

3t 2 - 6t - 45 = 0 
t 2 - 2t - 15  = 0 
(t + 3) (t - 5) = 0 
t = - 3 , 5 . 

To find the sign of f' (t )  in the intervals ( -oo, - 3) ,  (-3 ,  5) and (5, oc) , test a 
value of /(t ) for I in each interval. For example, f '  ( - 100) is positive so f '  (t ) 
is positive in (-oo, - 3) .  The results are shown in Table 1 .  
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Table 1 

Time interval ( -00, - 3) ( -3, 5) (5 ,  00) 
Sign off ' positive negative positive 

Particle moves right moves left moves right 
We continue further to determine the sign of the acceleration J"(t )  = 6t - 6. The functionf"( t )  is continuous, and is 0 when 6t - 6 = 0, 

t = l. Table 2 shows the sign of J"(t ). 

Table 2 

Time interval ( - 00, I )  ( I , 00) 
Sign off" negative positive 

By (6) of Section 3.2, the particle accelerates when f ' and f" have the same sign, and decelerates when f ' and f" have opposite signs. Table 3 combines Tables I and 2 to display the sign pattern. 
Table 3 

Time interval ( -00 ,-3) ( -3, 1 )  ( I ,  5) (5, 00) 

Sign of f ' positive negative negative positive 

Sign of f" negative negative positive positive 

Particle moves right, slows down moves left, speeds up moves left, slows down moves right, speeds up 
It is helpful to locate a few positions precisely before plotting the motion. Some key values of/( t )  are /( -00) = -00,/( - 3) = 8 1 , /( l ) = -47, /(5) = - 175, /(00) = 00. Figure I shows the final result. 

_ _.:.P_£�C_fLE-_RA_r_�_b _ _,t��-'--�A_cc_��L£_tA_r�,N�6--------� t= :} 
t:.::5 

-��--------+--------------+--rofrTioN 
- 1 1,; S I  

FI G .  I 
Example 4 Section 3. 2 discussed slopes, and now we are ready to actually compute some. Use the derivative to find the vertex of the parabola 
y = 2x2 + 8x + 9, and sketch its graph. 

Solution: At the vertex of a parabola the slope is 0. We have y ' = 
4x + 8, which is 0 when x = - 2. If x = - 2  then y = I ,  so the vertex is ( - 2 , I ). 
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We know that the parabola opens upward since the coefficient of x 2 is 
positive. Alternatively, y "  = 4, and a positive second derivative implies that 
the curve is concave up. Figure 2 gives the graph. 

Problems for Section 3.5 

I .  Find f ' (x) if (a) f(x) = 3x6 + cos x (b) [(x) = 2x 5 - 6x 3 
- 4x + 5 .  

2, Find y '4', the fourth derivative of y. 

(a) y = 1 /x (b) y = sin x (c) y = x 

3. Differentiate 

x3 

(a) -
2 

(h) sec x tan x 

(b) 2x 3 (i) 2e' ln x + 5x 2 

2 
(j) 2e' + In x (c) -x s 

1 
(d) 

2x 3 (k) 4x2 tan- 1x 

x 3 + 2x 
(I) x 3 sin x tan x (e) --

3 
3 

( f) 2x 3 COS X (m) -
X 

(g) Vx In x I 
(n) -

3x 

4. Find j <5 1 ( r ) ,  the fifth-order derivative, if (a )  [(r) = r 5 (b) [(r) = r •  
(c) [(r) = r4 I n  r. 

5. lff(x) = 3x 4 
- 2x, find f( -2), f ' ( - 2) and ["( - 2) . 

6. Find 

) 
d (xe') 

(a 
� 
d 2 (xe') 

(b) � 

d 3(xe') 
(c) � 

d "(xe') 
(d) � 

7 D'f' . h f . I + 3x 
(b) 

sin .x xe' 
• 1 ,erenuate t e uncuon (a) 6x + x2 x (c) 

1 + 3e. · 
8. Prove that the derivative of sec x really is sec x tan x. 

9. Find f ' (x) if (a) /(x) = !sin xi (b) [(x) = { 2x ' - 4 
'.
f x s 2 

9 If X > 2 
I O. Find the slope on the graph of y = 2x ' + 6x at the point ( 1 , 8) .  Then find 

the equation of the tangent line at the point. 
I I. Find the equation of the line perpendicular to the graph of y = 5 - x 4 at the 

point (2, - 1 1 ) . 
1 2. Use the second derivative to find the concavity of (a) y = sin x and 

(b) y = x 3 and verify the accuracy of the graphs drawn in Sections 1 .2 and 1 .3 .  
1 3. Suppose the position of a particle at  time I is 12 - 31 3 • Find its  speed at time 

t = 2. Is the car speeding up or slowing down at time I = 2,  and by how much? 
14. I f  /(x) = x 2 + ax + b, and the line y = 2x - 2 is tangent to the graph off 

at the point (3,  4) ,  find a and b. 
15. Find the vertex of the parabola y = - 3x 2 - 4x + 2 and sketch its graph. 

{
x 2 if X S 4 

16. Let /(x) = . . Find a and b so that the graph of f has 
ax + b 1f x > 4  

neither a discontinuity nor a cusp at x = 4. 



78 · 3/The Derivative Part I 

1 7. If y = x sin x, show that y "  + y = 2 cos x. 18. Suppose the temperature T at hour I is 1 3 
- 151. Use T, T '  and T" to describe the weather at time 3 . 19. Use calculus to help sketch the graph of the function if for X :S 4 !-x 2 + Bx J = 16  for 4 < X < 6 

x 2 - 20x + JOO for x 2: 6 20. If the position of a particle at time I is 121 - 1 3 , sketch its motion, showing the direction of travel and when it speeds up  and slows down. 
3.6 The Derivative of a Composition 

In this section we continue to find derivatives of combinations of func­tions so that you may differentiate all the elementary functions. 
The chain rule for the derivative of a composition Compositions of the basic functions, such as e 2,c and sin x 2 , occur frequently, and the chain rule we are about to derive is very important. The composition y = sin x2 can be written as y = sin u where u = x2 • In general, a composition can be denoted by y = y(u) where u = u (x), meaning that y is a function of u, and u in turn is a function of x. We want to express the composition derivative dy/dx in terms of the individual de­rivatives dy/du and du/dx. Suppose dy/du = 3 and du/dx = 2. Then, if x increases, u increases twice as fast, and in turn, y increases 3 times as fast as u. Overall, y is increasing 6 times as fast as x; that is, dy/dx = 3 · 2 = 6. 
( l ) 

In general, we have the following chain rule: 
� _ !!J.. du 
dx - du dx · 

This form of the chain rule is easy to remember because if we pretend that 
dy/ dx is a fraction with numerator dy and denominator dx, and similarly that 
dy/du and du/dx are fractions, then the right side "cancels" to the left side. For example, let y = sin x 2 • Then y = sin u where u = x2 and, by the chain rule, 

d'II d'II du 
f;; = du dx = cos u · 2x = cos x 2 • 2x = 2x cos x2

• 

Before continuing with more examples, we will restate the chain rule in a form that is more useful for rapid computation. The last example shows that the basic derivative formula D, sin x = cos x leads to the result 
D, sin x2 = cos x2 • 2x (insert the extra factor 2x) .  More generally, from any known derivative formula D,f(x) = J ' (x), we get 

(2) D.f(u (x)) = f ' (u)u ' (x) (insert the extra factor u '(x)) . 

The result in (2 ) is a restatement of the chain rule from ( I ). It says that if 
D,f(x) is known, probably from the list of basic derivatives, and x is replaced by something else so that a composition is created, then 
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I D,/(thing) = / ' (thing) · D. thing . 1  
In other words, differentiate "as usual," and then multiply by D, thing. The 
table of basic derivatives can be rewritten to incorporate the chain rule. 

D,u ' = ,-u •- 1u ' (x) D., sec u = sec u tan u • u ' (x) 
D. csc u = - csc u cot u • u ' (x) I 

D. In u = - u. ' (x) 
. - I -

I 
' (  ) D,e • = e "u ' (x) D. SID u - • ,;-----,;- u X 

v I - u ·  
D. sin u = cos u • u ' (x) 
D, cos u = - sin u • u ' (x) 
D, tan u = sec2u • u ' (x) 
D. cot u = -csc2u • u ' (x) 

D. cos- 1 u = - � u ' (x) 
I - u ·  

D., tan- 1 u = -
1 

1 ., u ' (x) 
+ u ·  

Example I I f  /(x) = In 3x then / is of the form In u ,  so by the chain rule 
for D, In u, 

f ' (x) = ..!.. · D,3x = _!_ • 3 = _!_ . 3x 3x x 

Example 2 If y = (3x 2 - 4x)25 then y is of the form u 25 so, by the chain 
rule for D,u ', 

_v ' = 25(3x 2 - 4x)2�D. (3x 2 - 4x) = 25(3x 2 - 4x)2�(6x - 4) .  

Warning The most common mistake made in computing deri\'atives is the 
omission of the extra step demanded by the chain rule. For example, 
D. sin x = cos x but D, sin x2 is not cos x 2 ; rather, D, sin x 2 = 2x cos x 2 • 
Similarly, D,e' = e• but D.e" is not e 3';  rather, D.,e1' = 3e :1x . 

Example 3 If y = sec 2x, find y '  and y" .  
Solution: By the chain rule, 

)'
1 = sec 2x tan 2x · D,2x = 2 sec 2x tan 2x . 

Then 

y" = 2D,(sec 2x tan 2x) (rule for D,cf) 

= 2(sec 2x · D. tan 2x + tan 2x · D. sec 2x) (product rule) . 

Now use the chain rule to differentiate tan 2x and sec 2x and obtain 

y" = 2(sec 2x · sec22x · 2 + tan 2x · sec 2x tan 2x · 2 )  

= 4 sec'2x + 4 sec 2x tan2 2x . 

Example 4 Let z = cos'59. The notation means (cos 59 )3 so z is of the 
form u ' . Then 

z ' ( 9 )  = 3(cos 59)2D, cos 59 (by the chain rule) 

= 3(cos 59)2 · - sin 59 • 5 (by the chain rule again) 

= - 15 cos259 sin 59 . 
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Note that (cos 58)3 is a composition of three functions, and the chain rule is 
used twice to find its derivative. 

Example 5 Find dy/dx if y = l /(3x 2 + 4). First solution: Write y as (3x2 + 4r 1 and use the chain rule to obtain 

d'IJ 6x 
-L = - (3x 2 + 4r2 ' 6x = - --,---...,. 
dx (3x 2 + 4)2 • 

Second solution: By the quotient rule, 

!!i_ _ (3x 2 + 4) · 0 - l • 6x _ _ 6x 
dx -

(3x2 + 4)2 
-

(3x 2 + 4)2 • 

Problems for Section 3.6 

In  Problems 1-56, find the derivative of the function. 

l. ee.x 

2. sin 2x 
3. e -• 

4. -e• 
5. sin- 1 (3 - x) 
6. 2 cos 5x 
7. x 2 sin 5x 
8. 5xe 2

' 

1 9. 2 + sm x 
10. sin e• 
I I . e -• cos 4x 
1%. x '(2x + 5)6 

U. 2 cos 5x 
14. ln(5 - x) 
15. In cos x 
16. eH2x 

17. V3+7 
18. tan- 1 ½x 

4 19. -
5x cos 

20. sin '1TX 

2 1 .  cos'x 

22, sin _!_ 

25. t ,r. 

24. e 1 1
• 

25. (tan- 1x)' 
26, (x 2 + 4)' 
27. sin x 4 

28. cos4x 
1 29 . • r.-:-;­

vx- + 4x 

30. In x '  
3 1 .  (In x)' 

I 32. -I -n x  
53. sin2x 
54, X COS 2x 
55. cos(3 - x) 
56. cot e• 
37. x 'e•  sin 4x 
38. x ln(2x + l )  
3!l. (3x + 4)6 

40. sec53x •  
41 .  (4 - x)6 

42 2 + 7x 
• 2 

43. 3 sin- 1 ½x 
44. In sin e• 
45. cos'4x 
46. e• In x 

I 47. -.-
1 e + 

48. csc 4x 
49. 5 + 4 ln ln x  
50. V1nx 
51 .  In Vx 
52. x 2 In 3 
53. lnlxl 

4x 54. • t'i.'7n v 2x + 3 
x 2 + 2 55. sin --1 X + 

56. � 
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57. The kinetic energy o f  an  object with mass m and speed v i s  ½mv 2
• More 

specifically, if m and v are functions of time I then the kinetic energy is ½m (l )v 2(t ) .  
Suppose at  a certain time, the mass is 5 grams, the speed is 3 meters per second, the 
mass is increasing by 2 grams per second and the speed is decreasing by 1 meter 
per second. ls the kinetic energy increasing or decreasing at this moment and by 
how much? 

58. Find D. In In In In · · · In In In 2x, where there are 639 logarithm functions 
in the composition. 

59. Let /(x) be an arbitrary differentiable function. Differentiate the indicated 
combinations 

(a) cot /(x) (d) In [(x) 
(b) xf(x) (e) ef<•> 
(c) ([(x))5 

60. Suppose star x is a function whose derivative is e'(x 3 + 3) . Find D, star 3x. 
6 1 .  Let w = 3e"'< 28• Find w"(O). 
62. Find the equations of the lines tangent and perpendicular to the graph of 

y = (2 - x)4 at the point (3, I ) .  
63. Find the 99th and 100th derivative of 1 /(2 + 3x). 
64. A IO-foot ladder leans up against a wall. Let x be the distance from the foot 

of the ladder to the base of the wall, and let y be the distance from the top of the 
ladder to the ground below. I f  the ladder slides down the wall then x increases while 
y decreases. Find the rate of change of y with respect to x in general. Then find the 
rate of change in particular when x = I and again when x = 9. 

3. 7 Implicit Differentiation and 
Logarithmic Differentiation 

Implicit differentiation Suppose we want the slope on the graph of 

( 1 )  y 3 - 6x 2 = 3 

at the point ( - 2 ,  3) .  The equation defines y implicitly as a function of x. 
When the equation is solved for y to obtain 

(2) y = (6x 2 + 3) 113 , 

then y is expressed explicitly as a function of x. From the explicit description 
in (2) ,  

, _ l ( 2 -213 _ 4x y - 3 6x + 3) · 1 2x - (6x2 + 3)213 , 

so y ' l,= -2 = -!. Therefore the slope at the point (-2 ,  3) is - �. 
It is possible to find the derivative y '  without having the explicit expres­

sion for y. This is particularly useful for equations that are too difficult to 
solve for y. To find y '  from the implicit description in ( l ), differentiate with 
respect to x on both sides. In this procedure y is treated as a function of x,  so 
that the derivative of y '  with respect to x is 3y2y ' by the chain rule. Then 

3y 2y '  - l 2x = 0 

y ' I,= -2 . ,=3  = 
8 
g · 

Therefore, the slope at the point (- 2 , 3) is - 8/9, as before. 
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The process of finding y '  without first solving for y is called implicit 
differentiation. 

Note that the derivative of x 4 with respect to x is 4x 3, but if y is a 
function of x then the derivative of y 4 with respect to x is 4y 3y ', by the chain 
rule. Similarly, if the differentiation is with respect to x, then the derivative of 
e' is e' but the derivative of e' is e) ' ;  the derivative of sin x is cos x but the 
derivative of sin y is y '  cos y. 

The derivative of a term such as x'y'' with respect to x requires the 
product rule and the chain rule: 

D,x 3y "  = x 3D,y 5 + y 5D,x 3 = x 3 • 5y 4y ' + y " · 3x2 = 5x 3y 4y ' + 3x 2y 5 . 

Warning Don't omit the extra occurrences of y '  demanded by the chain 
rule. 

Example I The equation y 3 + x 2
y + x 2 - 3y 2 = 0 is not easy to solve for 

y, and as a matter of fact it does not have a unique solution for y since a 
cubic equation has three solutions. The equation implicitly defines three 
functions, corresponding to the indicated three sections of the graph in 
Fig. l .  By a single implicit differentiation we can find the derivative of 
each function. 

✓/ 
FIG . I 

Differentiate on both sides of the equation with respect to x (use the 
product rule on x 2

y) to obtain 
3y 2y '  + x 2y '  + 2xy + 2x - 6yy '  = 0 . 

Although it is difficult to solve the original equation for y, it is easy to solve 
the differentiated equation for y ' :  

(3y 2 + x 2 - 6y)y ' = - 2xy - 2x , 

, _ - 2xy - 2x y - 3y 2 + x 2 - 6y · 

The derivative formula holds for each of the implicitly defined functions. 
To find the slope at the point B, substitute x = l ,  y = l to get y '  = 2. 
Similarly, substitute x = l ,  y = l + v'2 to find that the slope at point A is 
- 1 - ½Y2 (appropriately negative, since the curve is falling at A). 
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Delayed proof of the power rule D,x' = rx•- 1 for fractional r Consider y = x4tS for example. Assuming that the function is differentiable, we are now ready to use implicit differentiation to show that y '  really is ix 113 as claimed in Section 3.3. Cube both sides of y = x413 to obtain y 3 = x4 , an implicit description of y. This appears to be a step backwards when we began with the explicit function y = x413 but the implicit version has the advantage of involving only integer exponents. Then, by the previously 
proved cases of the power rule for r an integer (Sections 3.�-3.5) ,  we have 3y 2y '  = 4x3 , so 4x3 4x3 4x3 4 Y ,  _ _ _ _ X l/3 - 3y 2 - 3(x413)2 - 3x813 - 3 as desired. The proof in the general case is handled in the same way, but with 4/3 replaced by p/q where p and q are arbitrary integers. 
Logarithmic differentiation There are three kinds of functions involving exponents. I . The base contains the variable x and the exponent is a constant, such as (3x + 4)5 and sin3x. 2. The base is e and the exponent contains the variable x, such as e• and eJx. 3 . The base is not e and the exponent contains the variable x, such as 2', (x2 + 2xt and (sin x)'. (As usual, for this type we consider only positive bases. The domain of the function (sin x)' is taken to be the set of x for which sin x is positive.) Derivatives of the first two types have already been discussed. To dif­ferentiate the first type, use D,u' = ru'- 1D,u. For example, D,(3x + 4)5 = 5(3x + 4)4 • 3 = 15(3x + 4)4. To differentiate the second type, use D,e" = 
euD,u. For example, D,e 3x = 3e 3' .  Consider y = (sin x)', a function of the third type. To find its deriva­tive, first take logarithms on both sides and use In a 6 = b In a to obtain (3 )  ln y = x In  sin x . This redescribes y implicitly (a step backwards) but it has the advantage of avoiding exponents. Differentiate implicitly in (3) and use the product rule on x ln sin x to get 

..!.y '  = xD,(ln sin x) + In sin x • D.x = x -.-1- · cos x + In sin x. 
J Sin X Therefore 

(4) y '  = y (x cot x + In sin x) .  When y '  is obtained by implicit differentiation, it is expressed in terms of 
x and y, as in (4). However, in this case we may replace y by the explicit expression (sin x)' to obtain the final answer y '  = (sin x)'(x cot x + In sin x). The process of taking logarithms on both sides of y = f(x) and then finding y '  by implicit differentiation is called logarithmic differentiation. It is used to differentiate functions of the third kind and, in general, may be used in any problem in which In [(x) is easier to differentiate than f(x). 
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\ 

F I G . I 

Warning D, (sin x)' is not x (sin xy- 1
• 

Example 2 Find D,B•. Solution: I f  y = s• then In y = x In 8, which we may write more sug­gestively as In y = (In 8)x. Note that In 8 is a constant. Just as the derivative of 5x is 5, so the derivative of (In 8)x is simply the number In 8. Thus by implicit differentiation we have 
_!_y ' = In 8 
y 
y '  = y In 8 .  Replace y by the explicit expression 8• to get the final answer D,SX = 8x In 8 .  

Warning D,8• is not x s•- 1
• 

Problems for Section 3. 7 
I .  Find dy/dx if (a) y = x sin y (b) x + y = y tan y + x tan x .  2. Find dy/dx and dx/dy if y = cos(x 2 + /). 3, Find the l ine tangent to the graph of the equation at the indicated point , first by solving for )', and then again by implicit differentiation. (a) x 2 + l = I ,  point (½, -½\/3 ) (b) Vx + Vy = 3 ,  point ( 1 , 4 )  4. I f  In )' = I - xy defines y = f(x) ,  find [ '(O) . 5. Show that the ellipse 4x 2 + 9y 2 = 72 and the hyperbola x 2 - y 2 = 5 inter­sect perpendicularly, that is , at the point of intersection, the product of the slopes is - 1 . 6. I f  y (x) is defined implicitly by e"" = )', show that )' satisfies the equation ( I  - X)')y ' = y 2 . 

x 1 sin x 7. Let \' = -2 -- . Find y '  with (a) the product rule for three factors and • X + 4 (b) logarithmic differentiation . 8. Differentiate the function : 
(a) 2' 
(b) x' 
(c)  x ''"' 
(d) x '  

(e) (2x + 3}' 
(f) 42x + 3  

(g) e ' (h) (2x + 3)'' 
3.8 Antidifferentiation 

So far we have concentrated on finding[ ' ,  given f. We now turn to the problem of finding f, given f '. This process is called antidifferentiation. One important application occurs at the end of the section and more applica­tions will appear later. 
The set of antiderivatives of a function We say that ¾x 4 is an antiderivative of x 3 because D,¾x • = x\ Also, Dx (¾x 4 + 7) = x :i, D. (¾x • - 2) = x :1 and, in general, D, (¾x • + C )  = x 3 where C is an arbitrary constant. Therefore all functions of the form ¾x 4 + C are antiderivatives of x 3 • All of the anti­derivatives of x 3 have "parallel" graphs (Fig. I )  in the sense that they all 
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have slope x3 • There are no antiderivatives of x 5 except the functions ¼x4 + C since the only way to produce the slope x3 is to translate ¾x 4 up or down. The notation J f (x) dx stands for the entire collection of antiderivatives of /(x), and we write 
f x4 x 3 dx = 4 + C .  

Some antiderivative formulas Antiderivatives for some of the basic functions can be obtained by reversing derivative formulas. We have D. sin x = cos x, so J cos xdx = sin x + C. Similarly, D. cos x = -sin x, so f(-sin x) dx = cos x + C. However, it is more useful to have a formula for 
J sin x dx, since it is sin x and not - sin x that is considered the basic function. Therefore, we use D,(-cos x) = sin x to obtain J sin x dx  = -cos x + C. Proceeding in this way, we assemble the following list. 
( 1 )  I k dx  = la + C (where It stands for a constant) 
(2) J sin x dx  = -cos x + C 

(3) f cos x dx  = sin x + C 
(4) f e' dx = e• + C 
(5) I x '+ I  x' dx = -- + C r + l r i= - 1 
(6) f ! dx = ln x + C , x > 0  

In (6) , the function 1 /x is defined for x i= 0 but the antiderivative ln x is defined only for x > 0. We can do better if we observe that by Problem 53 in Section 3 .6, D, lnlxl = 1 /x. Therefore we can extend (6) to 
(6' ) 

Both In x and lnlxl differentiate to 1 /x, but lnlxl has the advantage of being defined for all x i= 0, while In x is defined only for x > 0. If we reverse the formula D. tan x = sec2x, we have 
(7) f sec2x dx = tan x + C . 
This is not as "basic" as ( 1 )-(6), but we'll take what we can get. Similarly, 
(8) f csc2x dx  = -cot x + C 
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(9) 

( I O) 

( 1 1 )  

( 1 2) 

f sec x tan x dx = sec x + C 

f csc x cot x dx = -csc x + C 

f h dx = sin- 1x + C 
1 - X 

f-1-. dx = tan- 1x + C 
1 + x 2 

We do not yet have antiderivatives for In x, the basic trigonometric 
functions other than cos x and sin x, or the inverse trig functions, because 
there is no well-known derivative formula whose answer is any of these 
functions. 

Example I 

Example 2 

f x6 

x 5 dx = 
6 

+ C. 

f I f _ , -
4 1 -:- dt = t -' dt = - + C = - - + C. 

t "  -4  41 4 

Selecting a particular antiderivative Consider the function f such that 
f ' (x) = x 3 and /(2) = 3 . To find / we must select from all parallel curves 
with slope x 3

, the particular one through the point (2 , 3) . ( Just as a l ine is 
determined by a point and a slope number, a curve, more generally, is 
determined by a point and a slope function. )  

I f  y '  = x 3 then y = ¾x 4 + C. To find C, set x = 2 ,  y = 3 to  obtain 
3 = 4 + C, C = - I .  Therefore f(x) = ¼x 4 

- I .  

Antiderivatives of the elementary functions We would like to follow the 
same strategy for antidifferentiation that we used for differentiation, that 
is , find antiderivatives for all the basic functions and then use combination 
rules to find antiderivatives for all the elementary functions. 

I t's easy to find rules for constant multiples and sums. For example, 
J 6 cos x dx = 6 s i n  x + C because D, 6 s i n  x = 6 cos  x .  S i m i l a r l y ,  
J (x 3 + cos x) dx = ¼x 4 + s in  x + C because D,(¼x 4 + s in  x + C ) = x 3 + 
cos x. In  general, 

( 13 ) f cf(x) dx = c f f(x) dx 

and 

( 14) I [f(x) + g (x)] dx = f J(x) dx + f g (x) dx . 

For example, J (2x 4 + 3x - 4) dx = }x5 + ix2 - 4x + C. 
But there are no other easy rules. We are collecting information about 

antidifferentiation by reversing differentiation formulas, and a reversed 
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formula is often not of the same character as the original. The reverse of the basic derivative formula D, tan x = sec2x becomes an antiderivative formula for the nonbasic function sec2x. Similarly, the reverse of the prod­uct rule (/g) ' = f g ' + f '  g is J (Jg ' + f '  g) dx = f g, which is no longer a product rule. Since we are missing some of the basic antiderivative formulas and combination rules, we are thwarted, at least temporarily, in the effort to antidifferentiate all the elementary functions. It will turn out that there simply are no product, quotient, or composition rules and, in fact, the antiderivatives of some elementary functions don't have nice formulas at all. All of Chapter 7 will be devoted to overcoming these difficulties. In the meantime, the scope of (1)-(12) can be widened sufficiently so that even before Chapter 7, some significant applications can be discussed. 
Extending known antiderivative formulas If we know an anti­derivative for /(x), we can also find an antiderivative for /(ax + b). For example, consider J cos( 1rx + 7) dx. We might guess that the answer is sin(1rx + 7) + C, but differentiate back to see that this is not quite right, since, by the chain rule, D. sin(1rx + 7) = cos(1rx + 7) · 'ff'. We don't want the extra factor 'ff', so we refine our guess to 

f (cos 1rx + 7) dx = � sin(m + 7) + C .  

This is correct because 
D • .!. sin( 1rx + 7) = .!. cos( 1rx + 7) · 'ff' = cos( 1rx + 7) . 

'ff' 'ff' In general, 

( 15 )  

if F (x) is an  antiderivative of f(x) then 

f f(ax + b) dx = ! F (ax + b) + C . 

In other words, if x is replaced by ax + b in ( 1)-(12), anti­
differentiate "as usual" but insert the extra factor 1 /a. 

Example 3 J e :i. dx = ! e :i. + C. 

Example 4 f e.n dx = 2e'12 + C. 

Example 5 
Example 6 

I l I -- dx = - lnj5x - SI + C. 5x - 8 5 
I l dx = f (4 - xt' dx = - l · (4 - xt

2
+ C 

(4 - x)' -2 
I = 2(4 - x)2 + C. 
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Warning l . The answer to Example 6 is not ln(4 - x)3 because the deriva-tive of ln(4 - x)3 is 1 

3 times 3(4 - x)2 • - 1  by the chain rule. (4 - x) 2. Any antidifferentiation problem can be checked by differentiating the answer. (The catch is that you must be able to differentiate correctly to catch mistakes in the antidifferentiation.) 3. Within the context of this section, the only functions f (x) which you are prepared to antidifferentiate are those in ( 1 )-(12), along with their constant multiples, sums and variations of the form /(ax + b) where a and b are constants. Example 7 Assume x > 0 so that (6) can be used instead of (6 ' ), and 
find f 1x dx. 

F . l . I l 
dx 

l I l l irst so utlon: - = - - dx = - In x + C. 4x 4 X 4 

Second solution: f ..!.. = ..!.. In 4x + C (by ( 15)). 
4x 4 We seem to have two different answers, ¾ In x + C and ¾ In 4x + C. But 1 

4 In 4x + C 1 1 1 l = 4 (In 4 + In x) + C = 4 In x + 4 In 4 + C = 4 In x + D .  

The arbitrary constant C plus the particular constant ¾ In 4 is another arbitrary constant D. Therefore the two solutions do agree. An application of antidifferentiation and an introduction to panmetric equations Suppose that a gun has a muzzle velocity of 60 feet per second, and is fired from a 40 foot hill at an angle of 30° with the horizontal. What is the path of the bullet? Where does it land? For how long is it in flight? How high does it get? Establish a coordinate system so that the gun is at the point (0, 40) ( Fig. 2). Physicists do the problem in two parts, worrying separately about the x-coordinate x(t ) and the y-coordinate y (t ) of the bullet at time t. They separate the muzzle velocity into a horizontal speed and a vertical speed as follows. The muzzle velocity 60 together with the 30° angle is represented by an arrow 60 units long at angle 30° with the horizontal. By trigonometry, the horizontal arrow in Fig. 2 has length 30V3, and the vertical arrow 

FI G .  A.. 
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has length 30. Physicists conclude that the bullet can be considered to 
have horizontal speed 30V3 feet per second and vertical speed 30 feet 
per second. 

Let's continue with the vertical part of the problem. Let t = 0 be the 
time at which the bullet is initially fired (any other choice would be all right, 
too). Since the bullet is fired at time O from the point (0, 40), we have 
y (O) = 40. Also, the bullet is initially moving upward with vertical speed 30, 
so y ' (O) = 30. Furthermore, from basic physics, the gravitational field of 
the earth causes any vertical velocity to decrease by 32 feet/second per 
second, so 

y "(t ) = - 32 for all t .  

Now, work backwards to find y '(t ) and then y (t ) . We have y ' (t ) = - 32t + C. 
To determine C, use y ' (O) = 30, and set t = 0, y '  = 30 to get ·30 = 
-32 • 0 + C, C = 30. Therefore, 

(16) y ' (t )  = - 32t + 30 . 

Antidifferentiate again to get y (t ) = - 16t2 + 30t + K. To determine K, 
use y (O) = 40, and set t = 0, y = 40 to get 40 = - 16 · 0 + 30 • 0 + K, 
K = 40. Thus, 

(17) y (t )  = - l6t 2 + 30t + 40 . 

Consider the horizontal part of the problem. By Newton's laws of 
motion, an object will maintain its initial horizontal velocity (until the ver­
tical component of velocity causes a crash), so 

x ' (t )  = 30V3 for all t . 

Therefore x (t ) = 30V3 t + Q. Since x (O) = 0 we have O = 30V3 · 0 + Q, 
Q = 0. Thus 

( 18) x(t ) = 30V3 t . 
Now we can answer all of the questions about the bullet. It lands when 

0 . 7 d 1 C 15 ± V865 y = , so set y = 0 m ( 1  ) an so ve ,or t to get t = 
16 

, t = - .9  

or 2 .  775 approximately. Ignore the negative solution, since the experiment 
starts at time t = 0. Thus the bullet lands about 2 .775 seconds after being 
fired. From ( 18), if t = 2.775 then x = 144 approximately. Therefore the 
bullet travels about 144 feet horizontally before landing (Fig. 3) .  

5'11-

'fO t=O 

t- 'J.. .775 ---t------------...-
/11-'f 

F/G . 3  
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To find its maximum height, note that the bullet has positive velocity 
as it rises, negative velocity as it falls, and reaches a peak at the instant its 
velocity is 0. From ( 16) ,  y '  = 0 when t = 15/ 16 ,  and, from ( 1 7 ) ,  at this 
moment y = 54 approximately. So the bullet rises to a maximum height of 
about 54 feet. 

In general, a curve in the plane may be described with one equation in 
x and y, or by a pair of equations, such as ( 1 7) and ( 18),  which give x and 
y in terms of a third variable, t in this case. The two equations x = x (t ) , 
y = y (t )  are called parametric equations, and t is called a parameter. I f  ( 18 )  is 
solved for t and substituted into ( 1 7 ) ,  we have 

( 1 9) 
, = - 16

C0V3r + 30( 30V3) + 4 0
. 

a nonparametric description of the bullet's path. Equation ( 19) is of the 
form y = ax 2 + bx + c, and therefore the path is a parabola. 

Problems for Section 3.8 

I .  Find 

(a) J 3 sin x dx  

(b) f sin 3x dx 

(c) f u 4 du 

(d) f sec � tan � dx 
1'f 1'f 

(e) J _!, dt 
t ' 

(g) I � dx 

(h) I Vx dx 

(i) f-1- dx  
Vx 

(j) I x 8 dx 

(k) I 2!2 dx 

( I) f � dx 

2. Find /(x) ifJ '(x) = sin x + x 2 and /(0) = 10. 
5. Find all functions /(x) such that f'"(x) = 5 .  
4. A particle traveling on a number l ine has velocity 7 - t 2 at t ime t. I f  it is at 

position 4 at time 3, where is it at time 6? 
5. Find y if y '  = 2x + 3 and y = -2  when x = I . 

6. We know that J .!. dx = In x + C. Does J -.-1 - dx equal In sin x + C? 
x "n x 

7. We know that f cos x dx  = sin x + C. (a) Does f cos2x dx  equal sin2x + C? 
(b) Does f cos 2x dx equal sin 2x + C? (c) Does f 3 cos xdx equal 3 sin x + C? 
(d) Does f cos x 2 dx equal sin x 2 + C? 

8. A stone is thrown up from a point 24 feet above the ground with an initial 
velocity of 40 feet per second.  Assume that the only force acting on the stone is the 
force due to gravity which gives the stone a constant acceleration of - 32 feet/ 
second per second. How high will the stone rise and when will it hit the ground? 

I n  Problems 9-35, find an antiderivative for the function, if possible within the 
context of this section. 

3 
9.

-3 -- x 
l 

IO. 
2x + 5 

1 1 . \/7+5 
12 . ! 

X 



l Ill. 5x 
l 

14. -2
-
+ x  

1 
15. 2x ' + ll 
16. 7 cos m: 
17. cos x5 

18. 
x' 

� 
6.x 

19. sec x 
5 

20. (3x + 6)2 

21 .  ✓2 + ¼x 

2 
2Z, -

1
--2 + x  

2 
23. -

1
--2 - x  

Z4. sin i 
2'1TX 

Z5. COS
T 

x6 

26. 6 
Z7. 3e -• 
ZS. e •in• 
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2 l 1 l 
Z9. x + x + - + --. + • 

ll0. tax 

31 .  'IT 
3Z. (3x + 4)4 

2 
33. -; 

X 
x '  

34. 2 

l 
35. 2x' 

x x• x'  

In Problems 36-59, perform the indicated antidifferentiation, i f  possible within 
the context of this section. 

56. I �, dx 48. J , -2x dx 

57. J � dt 49. f In xdx 

58. J 3x ' dx 50. J � dx 

39. I �, dx 51 .  f
l � v dv 

40. J � dx sz. I 3 ; 4x dx 

41.  J 2 _
1 
3x' dx 55. f -. 

1- dx sm x 

42. J (2 - 3x ') dx  54. J 4t 5x dx 

43. j (2 _
1 
3x)' 

dx 55. J v's='x dx 

44. J <x• + 5) dx 56. J 5t
;

3 dt 

45. J dx 57. J 5x'/ 3 
dx 

46. f sin 3udu 58• I 5x'\ 3 

47. J sin5x dx 59. f (2x + 3)5 dx 
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REVIEW PROBLEMS FOR CHAPTER 3 

I. Let f (t ) be the number of gallons of water that has spurted through a hole 
in the dike during the I hours since the leak. started. For example if /(3) = 100 then 
100 gallons flowed in during the first 3 hours of the leak.. 

(a) What does the derivative f ' (t )  represent? If [ ' (3) = 20 and ["(3) = - 1 , are 
the residents of the flood plain happy or unhappy? 

(b) What value(s) of f '(t ) is the flood plain rooting for? 

In Problems 2-36, differentiate the function. 

2. sin(2x + 311-) 
3. x sin x 
4. tan- 1x2 

l 5. -
2

-
- x  

6. ln(2 - x) 

7 • .!. 
X 

l 
8. 4x 2 

9, e -b 
10. -e• 
1 1 .  tan 3x 

1 2. � 

13. x 2(2 - 3x)7 

14. x sin- •x 

15. 2 + �n 4x 

16. 3xe• sec x 

1 7  � 
• 6 

18. 4• 
19. x4 

20. t 8
-• 

2 1 . (8 - x)3 

22, (8 - x)' 

23. (
2x 

5
+ 3) 4 

24. Y2x+5 
2 

25. 
3 + 2x 

26. tv. 

27. 
4 

� 2x 

X 
28. 

2x + 3 

29. x sin .!. 

30. � 
X 

5 1 
(x + 2) 

• 4 
2 

32. 3x 
53. cos32x 
34. 3 sin e2x 

55. 
I 

7x 3 + 2x - 5 

36
_ 2x + 3 

5x - 4 

37. A car particle's positions on a number line at time I is 1 2 - 21 ' + I .  Find 
the particle's position, speed, velocity and direction of motion at time t = 2. ls it 
speeding up or slowing down at time I = 2, and by how much? 

38. Sketch a possible graph off if f' (x) is positive in the intervals ( - 00, 3) and 
(5 ,  00), negative in the interval (3, 5) and zero at x = 3, 5 ; and f"(x) is negative for x 
in ( -00, 4), zero at x = 4 and positive for x in (4,  :io). 

39. If f '(x) = x�  - 2x and the graph contains the point (2, -2) , find /(x). 
40. If f(t ) = t 3 + 31 2 + I is the position of a particle at time t, sketch a picture 

of its motion, indicating its direction, when it speeds up, and when it slows down. 
4 1 .  Find D. sin sin sin sin sin · · ·  sin sin 2x, where the composition contains 

825 sine functions. 
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42. Let y = ½x' + ½x. (a) Show that y is an increasing function of x. (b) Sup­
pose x increases and has just reached ½. At this instant is y increasing faster or slower 
than x? 

43. Use derivatives to see if the graph of e• really has the concavity indicated in 
Fig. 2 of Section 1 .5 .  

44. Find dy/dx (a) xy + 3xy
2 = 62 - x (b) sin x + sin y = 6. 

45. Find 

5x + 2 (a) D,-2-3-x + X 

(b) 
d (x�n x) 

(c) D, (ln t )2' 

(d) 
d j3x - 61 

dx 

(e) D,(x + e') 

(f) d(te ')/dt 
2x 

(g) D. v'3x+4 

(h) D.elxl 

46. Find y '  and y•. 

(a) y = 3x sin x (c) y = x4 cos x2 

(b) y = I I  - In xi (d) y = 5• 

47. Find the 19th and 20th derivatives of 1 /v'f+"sx .  
48. Show that the lines tangent to the graph of xy = l in the first quadrant form 

triangles all of which have the same area (Fig. I shows two such triangles). 

A 

B C. 

F I G .  I 
49. The product rule states that (Jg)' = Jg ' + f 'g. Differentiate again to get a 

product rule for (Jg)", and again for (Jg)'" and again for (Jg)"". Look. at the pattern 
and invent a product rule for (Jg)<->, the nth derivative of Jg. 

50. Suppose that a one-dimensional object placed on a slide (number line) is 
projected onto a screen (another number line) so that the point x on the slide 
projects to the point x 2 on the screen. If a 2-foot object AB is placed with A at 
x = -2 and B at x = -4 (Fig. 2) then its image is magnified (to 12 feet), distorted 
(the magnification is "uneven" - for example, the right half of the object has a 
5-foot image while the left half has a 7-foot image), and reversed (A is to the right 
of B but the image of A is to the left of the image of B ). 

Consider a projector which sends x to J(x), where J is an arbitrary function 
instead of x 2 in particular. What type of derivative (positive? negative? large? small? 
etc.) is to be expected when the image is (a) reversed (a') unreversed (b) magnified 
(b' )  reduced (c) distorted (c' )  undistorted. 
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I 
/MA<,� 8¥{N 

F/G, 2 
Do Problems 5 1 -62 if possible within the context of this section. 

5 1 . J ;x dx 57. f sin3f 1rx dx 

52. J 7!2 dx 

53. J (4x � 2)3 dx 

54. I (4x + 2) dx 

55. f e 5,t dx 

56. f sin ½ m dx 

5s. J -2-1 - dx 
X + X 

59. J 3 � t 
dt 

60. J . � dt 
v 3 - t 

61 .  f v'T+"2x dx 

62. J vf'+"'2? dx 

63. Find (a) D,.x 5 (b) f x 5 dx (c) D. x\ (d) J :4 dx. 
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4. 1 Relative Maxima and Minima 

It is useful to be able to locate the peaks and valleys, called relative extrema, on the graph of a function /. They help in making an accurate sketch, and can also be used to find the overall highest and lowest values of /, called absolute extrema, for such purposes as maximizing profit and minimizing cost. This section shows how to find relative extrema and later sections continue the applications to graphs and absolute extrema. 
Defmition of relative extrema A function/ has a relative maximum at x0 if 
/(x0) � /(x) for all x near x0• Similarly, / has a relative minimum at x0 if /(x0) s /(x) for all x near x0• Figure 1 shows relative maxima at x2 and x4 , and relative minima at x, and x5 • 

FIG . I 

Ru. MIN NO �IJ)f'€. 

Critical numbers Consider the graph of the function in Fig. 1 .  At the relative extrema where a slope exists (at x2 , x, and x4) , that slope is 0. For example, the relative maximum at x = x2 occurs when the function in­creases and then decreases. The slope changes from positive to negative, and is O at the maximum point. In general, if f is differentiable and f has a rela­tive extreme value at x0 then J'(x0) = 0. Equivalently, if J'(x0) is a nonzero number then f cannot have a relative extreme value at x0• On the other hand, if J'(x0) = 0 then a relative extreme value may (see x2, Xs, X4) but need not (see x 1) occur. Similarly, if f is not differentiable at a point then a relative extreme value may (see the cusp at x5) but need not (see the cusp at x6 and the jump at x7) exist. If J'(xo) = 0 or f'(xo) does not exist then x0 is called a critical number. The preceding discussion shows that the list of critical numbers includes all the 95 
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relative maxima, all the relative minima, and possible nonextrema as  well. 
In other words, critical numbers do not necessarily produce maxima or minima, but they are the only candidates. In Fig. 1, x 1 through x7 are critical numbers, but 
the function does not have a relative extreme value at x i , x6 or x7 • 

There are two standard methods for classifying critical numbers. 

First derivative test Let/ be continuous. To identify a critical number x0 

as a relative maximum, relative minimum or neither, examine the sign of 
the first derivative to the left and right of x0• If the derivative changes from 
positive to negative, so that/ increases and then decreases, / has a relative 
maximum at xo (see x4 in Fig. l ). If the derivative changes from negative to 
positive then / has a relative minimum at x0 (see x3 in Fig. l). Otherwise, / 
has neither. 

Example 1 Let /(x) = 4x 5 - 5x 4 - 40x 3 • Find the relative extrema of / 
and sketch the graph. Solution: Solve f ' (x )  = 0 to find some critical numbers. 

20x 4 - 20x 3 - l 20x 2 = 0 

20x 2(x 2 - x - 6) = 0 

x 2(x - 3) (x + 2) = 0 

x = 0, 3, - 2.  

The function is  differentiable everywhere, so there are no critical 
numbers other than 0, 3 and -2. 

Determine the sign of j ' (x) in the intervals between the critical num­
bers by testing one value from each interval, as described in Section 1 .6. 

Interval Sign of/ ' Behavior off Relative Extrema 
(-oo, -2)  positive increases } rel max at x = -2 (-2, 0) negative decreases 

l 
no extremum at x = 0 (but the 

graph is instantaneously hori-
zontal as it falls through x = 0) 

(0, 3) negative decreases } rel min at x = 3 (3, oo) positive increases 

Finally, we find the y-coordinates corresponding to the critical num­
bers, namely, /(-2) = l l2 ,  /(0) = 0 and /(3) = - 5 13, and use them to 
plot the graph in Fig. 2. 

Second derivative test This test is applicable to the type of critical point 
at whichf ' (x0) = 0. In this case, ifj"(x0) < 0 then in addition to zero slope 
we visualize downward concavity at x = x0 (see x4 in Fig. 1) and expect a 
relative maximum. If j"(x0) > 0 then in addition to zero slope we picture 
upward concavity at x = x0 (see x3 in Fig. l )  and expect a relative minimum. 
In general we have the following conclusions. 
( I ) I f  f '  (x0) = 0 and f"(x0) < 0 then / has a relative maximum at x0• 

(2) I f  f ' (x0) = 0 and f"(x0) > 0 then / has a relative minimum at x0 • 
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F 1 6 .  Z. 

(3) If [ '(x0) = 0 and f"(x0) = 0 then no conclusion can be drawn. As problems will demonstrate, it is possible for there to be a relative maxi­mum, or a relative minimum, or neither at x0 • Another method must be used in this case, such as the first derivative test. With the second derivative test, a decision about a critical number x0 is made by examining f" only at x0; with the first derivative test, the deci­sion is made by examining[ '  to the left and right of xo, The second derivative test is perhaps more elegant; on the other hand, the first derivative test never fails to produce a conclusion, whereas the second derivative test is inconclusive in case (3). 
Example 2 Find the relative extrema in Example l, using the second derivative test this time. 

Solution: Again find the critical numbers x = 0, 3, -2 .  We have f"(x) = 80x 5 - 60x2 - 240x, sof"(-2) = - 400,f"(O) = 0 andf"(3) = 900. There­fore f has a relative maximum at x = -2 and a relative minimum at x = 3. The second derivative test is inconclusive for x = 0. We must resort to the first derivative test for the intervals (-2,  0) and (0, 3) as in Example 1 to show that/ does not have a relative extremum at x = 0. 
Problems for Section 4.1 

1. Use (i) the first derivative test and (ii) the second derivative test to locate relative maxima and minima. 
(a) /(x) = x3 - 3x 2 

- 24x (d) � " (b) x 4 
- x 2 (e) x ln x 

(c) "
& + x 2. Locate relative maxima and minima, if possible, with the given information. (a) / '(2) = 0, f ' (x) < 0 for 1 .9 < x < 2, j ' (x) > 0 for 2 < x < 2.00 1 

(b) / ' (2) = 0 
(c) ["(2) = 0 
(d) / '(2) = 3 

(e) f' (2) = 0, ["(2) = 6 (f) /' (2) = 0, ["(2) = 0 (g) j ' (6) < 0, f '(7) = 0, 
f ' (S) > 0 
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F/0. 'J.. 

3. Suppose f has a relative minimum at Xo and a relative maximum at x 1 • Is it 
necessarily true that /(xo) < /(x , )? 

4. Use the functions x ', x 4 and -x 4 to show that whenf' (x0) = 0 andf"(xo) = 0, 
there may be a relative maximum, a relative minimum or neither at x0, thus veri­
fying part (3) of the second derivative test. 

5. Sketch the graph of a function f so that f ' (3) = / '(4) = 0 and f ' (x) > O 
otherwise. 

4.2 Absolute Maxima and Minima 

If /(x) is the profit when a factory hires x workers then, instead of puny 
relative maximum values, we want to find the maximum, often referred to 
as the absolute maximum. This section shows how to find the (absolute) 
extrema for a function /(x) .  Furthermore, the extrema are usually to be 
found for x restricted to a particular interval ; in the factory example we 
must have x � 0 since the number of workers can't be negative, and (say) 
x :s 500 by Fire Department safety regulations. 

MIN 

-., 
FI G . I 

To see extrema graphically, consider Fig. 1 ,  showing a function de­
fined on the interval [-3 ,  5]. Its highest value is 8 ,  when x = 5, and its 
lowest value is 2, when x = 4. The function has a relative maximum at 
x = 3,  but the maximum is at x = 5. The function has a relative minimum 
at x = 4, and the minimum also occurs here. As another example, the 
function in Fig. 2 ,  defined on (0, oo) , has no maximum value because /(x) can 
be made as large as we like by letting x approach 0 from the right. In this 
case, we will adopt the convention that the maximum is oo when x = 0 + .  
Similarly, the function has no minimum because /(x) gets closer and closer 
to 6 without reaching it. As a convenient shorthand in this case (albeit an 
abuse of terminology) we will say that the minimum is 6 when x = oo.t 

Finding maxima and minima The extrema of a function occur either at 
the end of the graph (see the maximum at x = 5 in Fig. 1 ) ,  or at one of the 
relative extrema (see the minimum at x = 4 in Fig. 1 ) ,  or at an infinite 

tMore precisely, 6 is called the infimum off rather than the minimum because f never 
reaches 6. Similarly, a "maximum that is not attained," such as 1r/2 for the arctangent function, 
is called a supremum. 
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discontinuity (see the maximum at x = 0+ in Fig. 2) .  To locate the maxi­mum and the minimum, first find the following candidates. 
(A) Critical values of f Find critical numbers by solving f ' (x) = 0, and by finding places where the derivative does not exist, a less likely source. For each critical number x0 , find /(x0) ,  called a critical value off. This list contains all the relative maxima and relative minima, and possibly some values off with no particular max/min significance. It is not necessary to decide which critical value off serves which purpose. Include them all in the candidate list without classifying them. (B) End values of f If a function f is defined for a s x s b then the end values off are /(a) and f(b) . If f is defined on [a, oo) then the end values are /(a) and /(oo), that is , lim •• ,. /(x). 
(C) Infinite values of f In practice, f may become infinite at the ends where x -+  oo or x -+  - 00 (overlapping with candidates from (B)), or at a place where a denominator is 0. The largest of the candidates from (A)-(C) is the maximum value off and the smallest is the minimum value. (Candidates from (C) are immediate winners.) Example 1 Find the maximum value of /(x) = x4 + 4x 3 - 6x 2 - 8 for o s x s l . 
Solution: We have J ' (x) = 4x 3 + 12x 2 - 12x. Find the critical num-

-3 + V2l hers by solving J ' (x) = 0 to get 4x (x2 + 3x - 3) = 0, x = 0, -2 But ½(-3  - Y21 )  is negative, and hence not in [0, l ] ,  so ignore it. Count ½(-3  + Y21 )  since it is about .79 and is in [0, I ] . The candidates are /(0) = -8 which is both a critical value off and an end value, the critical valuef(½[-3 + Y21 ]) which is approximately /( .79) , or -9.4, and the end value f( l )  = -9. The largest of these, -8 ,  is the maximum. Warning The preceding example asked for the maximum value of f, so the answer is -8 ,  not x = 0. If the problem had asked where f has its maximum, then the answer would be x = 0. Make your answer fit the question. 
Example 2 We don't always have to rely on calculus to produce maxima and minima. Consider f(x) = -1 4 

2 • By inspection, the largest value off + x  is 4 ,  when x = 0 ;  any other value of x would increase the denominator and therefore decrease f(x). The smallest value of f is 0 when x = ±oc, since this maximizes the denominator and therefore minimizes f. 

Example 3 Let f (x) = -4 x . Find the maximum and minimum values - x  of [(x) on (a) (-oc, oc) and (b) [6, oc). 
Solution: (a) The function has an infinite discontinuity at x = 4 since 

[(4- )  = lim _x _ = _!.. = oc and /(4+ ) = lim _x _ = _!.. = -oo . ••4- 4 - X 0+ ••4+ 4 - X 0-
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There is no need to search for other candidates. We say that the maximum is oo and the minimum is -oc. (b) Since 4 is not in [6, oc), we ignore the infinite discontinuity now. There are no critical numbers since, by the quotient rule, 
f ' (x) = 

(4 - x) - x ( - I )  
= 

4 (4 - x)2 (4 - x)2 which is never 0. The only candidates are the end values f(6) = -3 and f(00). By the highest power rule (Section 2 .3), 
f(oo) = Jim _x_ = lim � = lim(-1) = -1 .  

x .. ::ic 4 - X x •:x: -x x •xi Therefore, the minimum value off is -3 (when x = 6) and its maximum is - 1  (when x = oc). 
Example 4 In ( l ) of Section 1 . 1  we found that the energy E used by a pigeon flying on the route APB (Fig. 3 of Section 1 .1) is 

E (x) = 60\!36 + x2 + 40(10 - x) for 0 s x s 10 . We are now ready to finish the problem and find the value of x that minimizes E. Solve E ' (x) = 0 to find critical numbers. 
60x - 40 = 0 Y36 + x 2 

60x = 40 \!36 + x2 

3x = 2\!36 + x2 

9x 2 = 4(36 + x 2) 

5x 2 = 4 • 36 4 · 36 x 2 = --
5 

(square both sides) 

2 · 6 1 2  
X = V5 = V5 = 5.4 (approximately) . 

Therefore, the only critical value of E is E ( 12/VS ) which is approximately E (5 .4) ,  or 670. The end values are E (0) = 760 and E ( 10) = 700 (approxi­mately) . The smallest of the three candidates is 670. Therefore, in Fig. 3 of Section 1 .1 ,  the best the pigeon can do is to fly across the water to a point 
P about 5.4 miles from C and then fly the remaining 4.6 miles to town along the beach. 
Example 5 Find the point on the graph of y = Vx which is nearest the point (2 ,0) . 

Solution: A typical point on the curve is (x, Vx) (Fig. 3 on next page). By the distance formula, the distance from this point to (2, 0), that is, the func­tion to be minimized, is d (x) = Y(x -2)2 + x for x � 0. As a shortcut, to find 
a value of x that minimizes (maximizes) an entire square root, it is sufficient to find 
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a value of x that minimizes (maximizes) the expression under the square root sign; 
that is, YR(x) is smallest (largest) when R (x) is smallest (largest) . Therefore 
we can work with R (x) = (x - 2)2 + x, a slight advantage, since R (x) is 
simpler than d (x). We have R ' (x) = 2(x - 2) + l , which is 0 when x = 3/2. 
Therefore, the candidates are the critical number x = i and the ends where 
x = 0, x = 00. The closest point must be chosen from (0, 0), (}, vi> and 
points far out to the right on the curve. Clearly, points far out to the right 
make the distance approach 00 so we will not find a minimum from that 
source. The distance from (0, 0) to (2, 0) is 2. The distance from (}, vi> to 
(2, 0) is vf+l = V¾, which is less than 2. Consequently the closest point is 
<I, Vi>-
Example 6 A tin can is to be manufactured with volume V (V is a fixed 
constant throughout the problem). To save money, the manufacturer wants 
to minimize the amount of material, that is, minimize the surface area A . 
What dimensions should the can have? 

Solution: The relevant geometry formulas for a circular cylinder with 
radius r and height h are 

( 1 ) V = '1rr2h 

(2) lateral surface area = 2'1TTh 

(3) top circular surface area = bottom circular surface area = '1J'T2
• 

From (2) and (3), the function A to be minimized is given by 
(4) A = 2'1rrh + 2'1J'T2 • 

Before using any calculus, we can see that if r is very large and h very small 
(Fig. 4), but still satisfying ( 1 )  as required, then A will be huge because of 
the top and bottom pieces. On the other hand, if r is very small and h very 
large (Fig. 5) ,  then A will be huge because of the lateral surface area, since 

V 2V lateral surface area = 21Trh = 2'1J'T · -2 = - , 1Tr r 
which blows up as r --+ 0 + .  Thus, extreme shapes require large A ,  and a tin 
can in between will use the least material. In other words, if A is considered 
as a function of r for r .?: 0, then A has a maximum value of 00 at the ends 
where r = 0, 00 and the minimum will occur at a critical number within the 
interval (0, 00). 
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Although A depends on both r and h, we can el iminate h by solving ( l )  
for h and substituting in (4) to obtain 

Then 

V 2V A = 211r • - + 211r2 = - + 211r 2• 11r2 T 

2 V  A ' (r) = - 2 + 4m . r 

Solve A ' (r) = 0 to obtain 

(5 )  
V r3 = -
211 ' r

=
ff .  

The corresponding value of h can be found by using h = V / 1Tr2
• Better sti l l ,  

for a more attractive answer, go back to r5 = V/2 11  in (5) and replace V by 
1Tr2h to obtain h = 2r. Therefore, if the volume is fixed, the tin can with 
minimum surface area has a height which is twice its radius. 

As another method , leave A in terms of r and h, and consider that h is 
a function of r defined implicitly by ( 1 )  (alternatively, r may be considered 
a function of h). Differentiate with respect to r in (4) to obtain A '  = 
211h + 211rh ' + 41Tr, and set A ' = 0 to get 

(6) h + rh ' + 2r = 0 .  

Differentiate implicitly with respect to r in ( 1 )  to obtain O = 1Tr2h '  + 211rli, 
h '  = - 2h/r. Substituting this into (6) gives h + r • ( - �) + 2r = 0, or 
h = 2r as in the first method. 

Example 7 Points A and B are a and b feet from a wall ,  respectively 
(Fig. 6). How can we leave A and bounce off the wall to B so as to minimize 
the total distance from A to the wall to B?  Solution: The total distance is very large if the ricochet point P i s  either 
far above A or far below B. We expect that somewhere on the wall between 
A and B is a point at which the distance is a minimum. 

Let c be the fixed distance and x the variable distance indicated in 
Fig. 6, and let [(x) be the distance APB to be minimized. Then 

FIG , 6 
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f(x) = AP + PB = \t'?"+a2 + \i(c - x)2 + b2 

Hence for O S  X $ C .  

X C - X f ' (x) = � - \i(c _ x)2 + b2 = cos 6 1 - cos 62 •  

We switch from the variable x to the angles 6 1 and 82 to simplify the algebra. The derivative is 0 if cos 6 1 = cos 82 which, for acute angles, means 6 1 = 82• Thus the only candidate is the point at which 6 1 = 82 , and hence the condition for minimum distance is simply that 8 1 = 82• By a law of physics (Fermat's principle), if light is reflected off a surface from A to B, the total time, hence distance, is minimized. Therefore light travels so that the angle of incidence equals the angle of reflection. 
Example 8 Two corridors of widths 8 and 27 meet at right angles. What is the longest steel girder that can slide around the corner without getting stuck? 

Solution: Consider all line segments of the type shown in Fig. 7. As the girder is maneuvered most efficiently around the corner, at each instant it hugs the corner as these segments do. I f  the girder is longer than any of the segments, it will not fit (we assume the thickness of the girder is negligible). Equivalently, if the girder is longer than the smallest segment, it will get stuck; we have therefore turned the problem into a minimization. The longest girder 
that will suroive has the same length as the shortest segment. Let 8 be the angle in Fig. 8 and let L be the length of the indicated segment AC. Then - - 8 27  
L (8 )  = AB + BC = -=--e + -- = 8 csc 8 + 2 7  sec 6 ,  sm cos 8 where 0° s 8 s 90°. Figure 7 shows that values of 6 near 0° and 90° correspond to very long segments, so the minimum length will occur at a critical angle in between. We have L ' (O) = - 8  csc 8 cot 8 + 27 sec 8 tan 8 . 

f'! G. S 
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Solve l' (8 )  = 0 to find the critical angles: 27 sec 8 tan 8 = 8 csc 8 cot 8 8 tan38 = -27 
2 tan 8 = 3 . 

An approximate value of 8 can be found from tables or a calculator, but the problem asks for the minimum L, and not the value of 8 that produces it. To compute L efficiently, use the right triangle of Fig. 9 with legs labeled so that tan 8 = 2/3. Then the hypotenuse is v'l3 and 
minimum L = 8 csc 8 + 27 sec 8 = 8 · � + 27 · ";3 = 13\/13 . 

Thus the longest girder that can be carried through has length 13V'l3 . 
Problems for Section 4.2 

( If  you have difficulty setting up verbal problems, you are not unique. Many 
students find the computational aspects of extremal problems fairly routine but 
(understandably) don't know how to begin problems such as Example 8.) 

I. Find the maximum and minimum values of f(x) on the indicated intervals. 

(a) /(x) = x 3 + x 2 - Sx - 5 (i) ( -oo, oo) (ii) (0,  2] (iii) ( - 1 , OJ 
e• 

(b) /(x) = - (i) ( - 2 , 2] (ii) (0, 2] (iii) ( -oo, OJ 
X 

X - 2 (c) f(x) = -­x• - 3 (i) (0, 5] (ii) (2, 5] 

(d) f(x) = x '  + x •  - x + 3,  (0, 4] 

2. Suppose f ' (x) is always negative. Find the largest and smallest values of 
f on (3 ,  4] .  

3 .  Without using any calculus at  al l ,  find the largest and smallest values of 
v'2+7 for x in ( -00 , 00) . 

4. A charter aircraft has 350 seats and will not fly unless at least 200 of those 
seats are filled. When there are 200 passengers, a ticket costs $300, but each ticket 
is reduced by S I  for every passenger over 200. What number of passengers yields 
the largest total revenue? smallest total revenue? 

5. A builder with 200 feet of wire wants to fence off a rectangular garden using 
an existing 100-foot stone wall as part of the boundary (Fig. 10) . How should it be 
done to get maximum area? minimum area? 

WALL D E ,--------- C 

AL..-______ _,B 
Fl G . 1 0  
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6. A rectangular house is built on the corner of a right triangular lot with 
legs 100 and 150 (Fig. 1 1 ) .  What dimensions for the house will produce maximum 
floor space? 

1 00 
---�---__,._A 

➔ 

FIG . I I  
7. A farmer has calves which weight 100 pounds each and are gaining weight 

at the rate of 1 .2 pounds per day. If she sells them now she can realize a profit of 
12 cents per pound. But since the price of cattle feed is rising, her profit per pound 
is falling by 1 /40 of a cent per day. If she sells right now she gets the higher profit 
per pound but is selling skinny cows. If she waits to sell fat cows she makes less per 
pound. When should she sell? 

8. Let /(x) = -x' - 5x 2 - 13x + 4 ;  find the maximum and minimum slope 
on the graph of/ for O s  x s I .  

9. At midnight, car B is 100 miles due south of car A .  Then A moves east at 
1 5  mph and B moves north at 20 mph. At what time are they closest together? 

10. Given the ellipse 4x 2 + 9y 2 = 36 and the point Q = ( l, 0), find the points on 
the ellipse nearest and furthest from Q. 

1 1 . Of all the rectangles inscribed in a semicircle with fixed radius r, which one 
has maximum area? minimum area? 

12. A truck is to travel at constant speed s for 600 miles down a highway where 
the maximum speed allowed is 80 mph and the minimum speed is 3� mph. When 
the speed is s, the gas and oil cost (5 + ¾,s) cents per mile, so the slower the truck 
the less the transport company pays for gas and oil. The truck driver's salary is $3.60 
per hour (use 360 cents per hour so that all money is measured in cents) .  Thus, the 
faster the truck the less time it takes and the less the company must pay the driver. 
Find the most economical speed and least economical speed for the trip. 

IS.  A wire 16 feet long is cut into two pieces, one of which is bent to form a 
square and the other to form a circle. How should the wire be cut so as to maximize 
the total area of square plus circle? 

14. Suppose you wish to use the least amount of fencing to fence off a rectan• 
gular garden with fixed area A. What is the best you can do? 

15. A motel with 100 rooms sells out each night at a price of $50 per room. For 
each $2 increase in price it is anticipated that an additional room will be vacant. 
What price should be charged in order to maximize income? 

4.3 L'Hopital's Rule and Orders of Magnitude 

Section 2 .3 identified a group of indeterminate limit forms, and we are 
now prepared to evaluate indeterminate limits, beginning in this section 
with quotients. 

Consider 

( 1 )  x 3 - 3x - 1 8  
l im 2 9 x•3 X -
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which is of the indeterminate form 0/0. We wil l  find the l imit by working 
with the graphs of the numerator and denominator separately, and then 
extract a method for problems of this form in general. Each graph crosses 
the x-axis at x = 3 (which is why the problem is of the form 0/0) . The graph 
of the numerator has slope 24 as it crosses, because the derivative of the 
numerator is 3x 2 - 3, which is 24 when x = 3. The graph of the denomi­
nator has slope 6 when it crosses, because the derivative of the denominator 
is 2x, which is 6 when x = 3 (Fig. I on next page) . The limit in ( I ) depends 
on the ratio of the heights near x = 3 (at x = 3 we have the meaningless 
ratio 0/0) . The two functions start "even" on the x-axis, the "starting line," 
at position x = 3 ,  but the graph of the numerator is rising above the x-axis 
4 times as steeply as the graph of the denominator. Thus, near x = 3 ,  the 
graph of the numerator is about 4 times as high above the x-axis as the 
graph of the denominator. It  follows that the ratio of their heights near 
x = 3 is near 4, and the limit in ( I )  is 4. The number 4 came from the 
computation 24/6 which in turn came from examining the quotient 

numerator derivative 3x 2 - 3 
denominator derivative 2x 

at x = 3. This suggests that if Jim, • ., /(x) 
is of the indeterminate form 0/0, 

g(x) 

it can be found by switching to lim, • ., f :
(
(
x)

. This result holds not only for g x) 0/0, but can be shown (with a different argument) to hold for the other 
indeterminate quotients as well. The following rule contains the details. 

L'Hopital's rule Suppose lim f
(
(
x)
) 

is one of the indeterminate forms 
.'C .. " g X 

0 
O '  

oc 
X: 

- oc 
X: 

:x: -:x: 
- x: - ::c  

S . h 1 ·  rn WltC to 1m ' ( ) . . 'C •r, g X 

I f  the new limit is L, x or -oc then the original l imit is L, x or - :x:, 
respectively. 

I f  the new limit does not exist because f ' (x)/ g ' (x) oscillates badly 
then we have no information about the original quotient (which does not 
necessarily oscillate also) ; L'Hopital's rule does not help in this situation. 

I f  the new limit is st i l l  an indeterminate quotient, L'Hopital's rule 
may be used again. 

The rule is also val id for l imit problems in which x -+ a + ,  x -+ a - , 
x -+ oc and x -+ -x. 

Example 1 
form x/:x:. 

3x 3 + 6x 2 - 5 
Find lim,.x 2 3 • 

0 3 
, which is of the indeterminate 

X + :JX " - X 

Solution: In this particular problem two methods are available, the 
highest power rule from Section 2.3 and L'Hopital's rule. With the first 
method 

. 3x 3 + 6x 2 - 5 
1
. 3x 3 

1 . 3 3 hm , 3 _ 0 = 1m -.1 = 1m - = - . ,.x 2x + :JX " - 3x ,.x 2x ·  ,.x 2 2 
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With the second method, 

. 3x3 + 6x 2 - 5 00 • 9x2 + l2x 00 • 18x + 12  (2 )  hm 3 = - = hm -,---- = - = hm ----
•- 2x + 5x 2 - 3x 00 •• ,. 6x 2 + lOx 00 ,.,. 12x + 10  

00 • 1 8  3 
= - = hm - = - .t 

00 .... 1 2  2 

As L'H6pital's rule is applied repeatedly in this example, the lower powers 
differentiate away first, showing that the highest powers dominate as 
x -+  00, in agreement with the highest power rule. 

Example 2 

(3) l . 
sin x O 1 . cos x (L HA . 1, 1 ) 1 + 1m -- = - = 1m -- ' vplta s ru e = . -1-

• •0 X O r•O 1 

The result in (3) shows that if an angle 9 is small, and is measured in radians 
(so that the derivative of sin 8 is cos 8 ) then sin 8 and 8 are about the same 
size since their ratio is near l .  This is important in physics and engineering 
where many calculations may be simplified by replacing sin 9 by 8 for 
small 9. 

Warning L'H l>pital's rule applies only to indeterminate quotients . 
It should not be used (nor is it necessary) for limits of the form 2/00 
(the answer is immediately 0) or 3/0- (the anwer is -00) or 6/2 (the answer 
is 3) and so on. 

Example 3 By L'Hf>pital's rule, 

. x 2 00 . 2x 00 • 2 2 hm -; = - = hm --; = - = hm -;  = - = 0 . 
.t •Z e 00 X •S e 0C X•S t (X) 

The result indicates that while both x2 and e• grow unboundedly large as 
x -+ 00, e• grows faster. 

tWc should not equate the original limit with the new limit at line (2) until after we have 
determined that the latter limit is either a number L, or "" or -oo. However, it is customary to 
anticipate the situation and write the solution in the more compact form indicated. 

*A• pan of the proof in Section !l.!l that D sin x ., cos x, we used geometry to show that 
lim ... (sin x)/x = 1 .  Since L'H6pital's method is so much simpler than the geometric proof, you 
may wonder why we used geometry in the first place. We needed the limit in order to derive 
D sin x '"' cos x. But btfort the derivative formula is available we cannot do the differentiation 
necessary to apply L'Hapital's rule. Thus we resoncd to the geometric argument. The use of 
L'H6pital's rule in Example 2 must be regarded as a check on previous work, rather than as 
an independent derivation. 
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Example 4 

Jim -1 x = _::. = Jim -111 (L'Hopital 's rule ) = Jim x(algebra ) = co . 
:r •Xl fl X 00 :r •Xl X x •:r.i Therefore, while both x and In x grow unboundedly large as x -+ oo, x grows faster. 

Order of magnitude Suppose f(x) and g (x) both approach oo as x -+ oo so that Jim,.,, {i:; is of the form x/00 • If the limit is oo then f(x) is said to be of a higher order of magnitude than g(x) ; that is ,f grows faster than g. If the limit is O then f(x) has a lower order of magnitude than g(x). If the limit is a positive number L then f(x) and g(x) have the same order of magnitude. Examples 3 and 4 show that e• is of a higher order of magnitude than x2, and x is of a higher order of magnitude than In x. Similarly it can be shown that for any positive r, e' grows faster than the power function x', and x '  grows faster than In x. (When r is negative, x '  doesn't grow at all as x -+ oo. )  The pecking order below in (4 ) contains some well-known functions which approach oo as x -+ x, and lists them in increasing order of mag­nitude, from slower to faster. 
(4 )  I n  x, ( In x)2 , (In x)3 , · · · , Vx, x, x312 , x 2 , x 3 , • • · , e'. Examples 3 and 4 illustrate how the order of the functions in (4 ) is justified . Functions which remain bounded as x -+  oo, such as sin x, tan · 1x or constant functions, may be considered to have a lower order of magnitude than any of the functions in (4) . Many indeterminate limit problems of the form 
00/00 can be handled by inspection of the ordering in (4 ). For example, lim,.,, e'/x 4 is of the indeterminate form 00/00; the function e• is of a higher order of magnitude than x4 and the answer is :ic. Note that the list in (4) is not intended to be, and indeed can never be made, com_plete. There are functions slower than In x, faster than e', in between Vx and x, and so on. The concept of order of magnitude is useful in many applications. Suppose f(x) is the running time of a computer program which solves a problem of "size" x. Programs involving a "graph with x vertices" might require a running time of x3 seconds, or x4 seconds (worse), or e•  seconds (much worse, for large x) , depending on the type of problem. If f(x) is a power function, then the problem is said to run in polynomial time and is called tractable; if f (x) = e', the problem is said to require exponential time and is called intractable. Tractability depends on the order of magnitude of f(x) , and computer scientists draw the line between power functions and e'. A major branch of computer science is devoted to determining whether a program runs in polynomial or exponential time. If it takes exponential time to find the "best" solution (such as the sales route with a minimum amount of driving time) then we often must settle for a less than optimal solution (a sales route with slightly more than the minimum driving time) that can be found in polynomial time. Order of magnitude of a constant multiple Consider 4x2 versus x2

• We have Jim,.,, 4x2/x2 = lim, .,, 4 = 4. Since the limit is a positive number, not 0 or oo, 4x2 and x2 have the same order of magnitude, even though one is 
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4 times the other. In general, f (x} and cf (x) have the same order of magnitude 
for any positive constant c. 

Highest order of magnitude rule We can extend the highest power rule from Section 2 .3 :  the proofs involve similar factoring arguments which we omit. As x - 00, a sum of functions on the list in (4) has the same limit as the term with the highest order of magnitude and, in fact, the sum has the same order of magnitude as that term. For example, e2x - x 4 has the same order of magnitude as e2x and lim(e21 - x 4) = 00 - 00 = lim e21 = 00 • .... . ... As x - 00, a quotient involving functions on the list in (4) has the same limit as term with highest order of magnitude in the numerator term with highest order of magnitude in the denominator and the final answer depends on which of the remaining terms has higher order of magnitude. For example, 
3 - e• - 00  -e• e• lim -,--2- = - = lim -, = -lim 7 = - 00 .r•• X + X 00 J" •OO X x •x X since e• has a higher order of magnitude than x 5• 

Warning The highest power rule is only valid for problems where 
x - ±00• The highest order of magnitude rule is even more restrictive. It applies only when x - 00 since the increasing orders of magnitude in (4) hold only in that case. 
Problems for Section 4.3 

I F. d 1 . x 5 
- 5x + 4 b • m 1m 2 .,_ 2 as (a) x ➔ I ( ) x ➔ 0 (c) x ➔ 00. 

X - ....- + 2. Find 
x 2 (a) lim -1 -•·• n x  (b) lim ln(x - 1 ) 

x•I X - 2 ( ) I. In x C Im -
x •O+ X 

(e) lim sin x - x ••O cos " - I 

(f) lim 1 e -• -• ....... + e I. ln x (g) 1m --r,; 
JC: •0+ t (h) lim In 2x 
x •O+ 3X 

(i) I' In 2x !� "Tx" 
5. Use L'H6pital's rule to verify that (ln x)27 has a lower order of magnitude than x. . sin 3x . sin2x 4. Both (a) hm •• o � and (b) hm •• o -x- are of the form 0/0 and can be done using L'H6pital's rule. But they can also be cleverly done using the fact . sin x (Example 2) that hm •• o -- = 1 .  Do them both ways. 

X 
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5. Wha t  i s  wrong with t he  following double application of  L'Hopital's rule? 
4x ' - 2x - 2 8x - 2 8 4 l im . = l im -- = l im - = -

x • I  3x ' - 4x + I .v - 1  6x - 4 , . ,  6 3 
6. For each pair of functions, decide which has a higher order of magnitude. 

(a) 3e ' , 4t '  (b) , "' • " ·,, (c) I n  3x, ln 4x 
7. The graph of (sin x)/x ran be drawn using the procedure of Section 1.3 for 

/(x) sin x where/(x) = 1 /x. The tricky part is handling the graph near x = 0 when 
sin x approaches O and the envelope 1 /x hlows up.  Sketch the ent ire graph. 

4.4 Indeterminate Products, Differences and 
Exponential Forms 

The preced ing senion discussed indeterminate quotients. We conclude 
the discussion of indeterminate l im its in this section with methods for the 
remaining forms. 

The forms O x 00 and O x - 00 L' H opital 's ru le appl ies  only to in •  
determinate quotirnts. To do an indeterminate product, use algebra or  a 
substitution to transform the product in to a quotient to which L' Hopital's 
ru le does apply. For exam ple, consider l im,.0 ,  x In x which is of the form 
0 x -oo. Use algebra to change the numerator x to a denominator of 1 /x 
to get 

In x - x 
( I ) l im x ln x = 0 x - x  = J im - = -

., .. o +  . .: •O +  I /x x 

(2 ) = l im  ___!_l:_ 
., •IH - J /x' 

(use L' H opital 's rule on the quotient)  

(3 ) = \ im( -x) (by algebra) = 0 . 
x •O +  

I n  general ,  for indeterminate products, t ry  .flipping one factor (preferably the simpler 011e) and putting it in the dnwminator to obtain an indeterminate quotient. 
Thnt continue with l 'H1,pital's rule. 

As a second method in this exam ple, let u = 1 /x. Then x = 1 /u and 
as x - 0+ we have u - x, so 

I. 1 1 . 
I n  1 /u 

1 . 
- I n  u 

1 111 x n x = 1 111 -- = 1m --
_\ •o + 11 • x  U u •x U 

( law of logarithms) 

which is of the form - x/x.  Since u has a higher order of magnitude than 
In u,  the answer is 0 .  In general ,  as a .second method for indetenninate products, try· letting u be the reciprocal of one of the factors, preferably the simpler one. 

The function x In  x is defined only for x > 0,  but this l imit problem 
shows that for al l  practical pruposes x In x is O when x = 0, and the graph 
can be considered to begin at the origin .  In applied areas where the l imit  
occurs frequently, the result is abbreviated by writing O In  O = 0. 

Warning I .  Don't use L'H C>pital 's rule indiscriminately. It applies only to 
indeterminate quotients and not to other indeterminate forms, and not to 
nonindeterminate problems, which can always be done directly. 

2 .  Simplify algebraical ly whenever possible. If (2) is left unsimplified it 
is of the indeterminate form x/ - oc, but canceling produces (3) which is not 
indeterminate and gives the immediate answer 0.  
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The forms 00 - 00 and (-00)  - (-00)  L'Hopital's rule applies only to in­
determinate quotients, so other methods must be used for indeterminate 
differences. We will describe two possibilities. 

If x -+  oo, a limit involving functions from the pecking order in (4) of 
Section 4.3 may be found using the highest order of magnitude rule. For 
example, lim,.,.(x - In x) is of the form :x: - :x:; the answer is 00 since x has 
a higher order of magnitude than In x. 

If a problem involves the difference of two fractions, they· can be 
combined algebraically into a single quotient, to which L'Hopital's rule may 

be applied, if necessary. For example, consider lim,.o( ! - x\) . If x -+  0 - ,  

the limit is of the form (-oc) - oc ,  so the left-hand limit is -00• But the 
right-hand limit is of the indeterminate form 00 - :x:. In either case, we can 
use algebra to combine the fractions and obtain 

lim(_!_ - -;) = Jim x � l = .::..!_ = - oc . 
••O X X x •O x ·  O+ 

The forms (0+)0, l "  and 00° We will illustrate with an example how to 
use logarithms to change exponential problems into products. Consider 
lim, • .,( l + �)• which is of the indeterminate form l" .  Let y = ( l + �)'. 
Take In on both sides, and use In a 6 = b In a, to obtain In y = x ln( l + ·';6) .  
Then 

lim In y = lim x In( l + ·06) = :x: x In l = oc x O. 
�• •- X 

To turn the indeterminate product into a quotient, one method is to let 
u = 1 /x. Then x = 1 /u, and as x -+  :x: we have u -+  O+ , so 

I . l 1 . 
ln( l + .06u) 0 1m n y = 1m = -

X •X ., U .. 0+ U 0 

l 
I + . 06u

. ·06 
= lim -----

u •o+ I 
= .06 . 

(apply L'Hopital's rule to the quotient) 

If In y approaches .06 then y itself approaches e ·06 • So as a final answer, 

(4) ( 06) ·' lim l + -· - = e ·06 • 

x -n: X 

In general, if lim /(x) is an indeterminate exponential form, let y = f (x) and compute ln y, which will no longer involve exponents. Find lim In y, and if that answer is L, then the answer to the original problem is eL . 
Warning In the preceding problem, the answer is e -06, not .06. Don't 
forget this last step. 

An application to compound interest Suppose an amount A (dollars) is 
deposited in a bank which pays 6% annual interest compounded three times 
a year. The bank divides the 6% figure into three 2% increments, and after 
four months pays 2% on amount A .  Thus the four month balance is 
A + .02A = A ( l + .02) = 1 .02A .  In other words, the balance has been 
multiplied by 1 .02 .  After eight months, the depositor receives 2% interest 
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on amount l .02A , so the money i s  again multiplied by 1 .02. Similarly, after 
twelve months, the bank pays a final 2% which again multiplies the balance 
by 1 .02. Therefore after one year, amount A, compounded at 6% three 
times a year, accumulates to ( l .02) 3A, that is, to ( I  + f)3A .  More generally, 
if the bank pays r% interest compounded x times a year, then A grows 
to A ( l  + ;)' at the end of the year. If the bank generously compounds 
your money not just x times a year but "continually" then A grows to 
lim,.,, A ( I + ;)'. As a generalization of (4) we have 

(5 )  lim( I + ..!:.)' = e ', 
x .. :ic X 

so A grows to Ae'. For example, $ 1  compounded continually at 6% will grow 
to e 06 dollars in a year, or approximately $ l .062, compared with $ 1 .06 
obtained with simple interest. 

A formula for the number e We defined e in Section 3 .3, but otherwise 
have given no indication of how to compute e to any desired number of 
decimal places. If r is set equal to I in (5), we have 

e = lim( l + ..!..)' x •� X 

(In banking circles, this means that $ 1  compounded continually at 100% 
interest grows to $e after a year.) The accompanying computer program 
prints out values of ( I + ¾ )' for larger and larger x, and therefore the values 
are approaching e. But if we pick out a value far down on the list and call 
it "approximately e", we have no way of knowing how close this is to e. (For 
example, is the approximation accurate in the first three decimal places, or 
would even these places change as we continue computing?) An approxi­
mation with an error estimate would be much more useful, and we'll have 
such an estimate for e in Section 8 .9 

0020 PRINT "X", "( l + 1 /X)'""'X" 
0030 FOR N= 2000 TO 8000 STEP 1 000 
0040 PRINT N, ( l + l /N)'""'N 
0050 NEXT N 
*RUN 
X 

2000 
3000 
4000 
5000 
6000 
7000 
8000 

END AT 0050 

Problems for Section 4.4 

( l  + 1 /X)'""'X 
2. 7 1 76026 
2.7 1 78289 
2.7 1 7942 1 
2 .7 1 80 1 0 1  
2.7 1 80553 
2.7 1 80877 
2. 7 1 8 1 1 2  

1 . Find lim xe -• as (a) x --+ oo (b) x -+ 0 (c) x --+ -oo. 
2. Find lim(x 2 - In x) as (a) x --+ I (b) x -+ O+ (c) x -+ 00• 
3. Find lim(x - e') as (a) x --+ oo (b) x --+ -oo. 
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4. Sketch the graph of xe 1 1• near x = 0 after finding limits as x --+ 0+ and 
X --+  0 - .  

5 .  Find 

(a) lim (tan x) (ln x) (f) lim ( l + x) 11' 
x •O+ x •O+ 

(b) lim e' In x 
:ic •O+ 

I . 2 • l 
(c) 1m x sm -

x •s X 

(d) lim x 11' 

(e) lim X llx 

x•O+ 

(g) lim x• 
.-•a 

(h) lim x (e llx - l) 
• • x 

(i) lim (x - 2)' 
x •2+ 

(j) lim (e·' + 4x)2
'• 

x •O+ 

4.5 Drawing Graphs of Functions 

In this section we'll list some of the aids already discussed for sketching 
graphs, and add new ones involving the derivative. For any particular 
function you may find some, but not necessarily all, items on the list useful 
in producing a graph. 

1 .  Ends If f is defined on (-oo, oo), find lim,.,. f(x) and lim,._., /(x) to 
determine the ends of the graph. If f is defined only on (a, b] for instance, 
find f(b) and lim, •• + /(x) to determine the ends. 

2. Gaps If f is defined around but not at x = x0 (in practice, because 
of a zero in a denominator), find lim,.,0 f(x), or if necessary find the right­
hand and left-hand limits separately, to discover the nature of the gap. 

3. Relative extrema Find the critical numbers and classify them as rela­
tive maxima, relative minima or neither, using the first or second derivative 
test. This identifies the rise and fall of the graph. Furthermore, find the 
values of y corresponding to the critical numbers so that a few significant 
points can be plotted accurately. 

4. Concavity Determine the sign off", with the method of Section 1 .6, 
and use it to decide where f is concave up ([" positive) and concave down 
(/" negative) . Often, approximately correct concavity is created auto­
matically as you employ other graphing aids, so you may decide that using 

f" to determine precise concavity is not worth it. 
5. Familiar graphs If the new graph is related to a familiar graph then 

you have a head start, as the following examples illustrate. 
The graph of y = 2 + (x - 3)2 is the parabola y = x2 translated to the 

right by 3 and up by 2 (Section 1 .  7) .  
The graphs of y = a sin(bx + c) and y = a sin b (x + c) are sinusoidal. 

Each has amplitude a and period 21r/b, and the translation is best identified 
by plotting a few points (Section 1 .3) .  

The graph of y = f (x) sin x is drawn by changing the heights on the 
sine curve so that it fits within the envelope y = -zf(x) (Section 1 .3) .  

The graph of y = a + becx has the shape of an exponential curve. It is 
located on the axes by plotting a point and finding limits as x -+ ±oc 
(Section 2.2) .  

6 9 
Example I Sketch the graph of /(x) = I - - + 2 . 

X X 
Solution : Find l im, •• J(x ) = 1 - 0 + 0 = l and l im, . _ ,.  f(x) = 

l - 0 + 0 = l ,  which indicates that the line y = I is an asymptote at each 
end of the graph. 
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The function i s  not defined at x = 0,  so consider the l imit  as x --+  0. I t  i s  an advantage to let u = 1/x so that the problem becomes Jim( I - 6u + 9u 2 ) as u --+ oc (if x --+ 0+ ) or u --+ -00 (if x --+ 0- ). By the highest power rule, 9u 2 dominates in each case and the limit is 00. Therefore lim,.0 /(x) = 00, and the graph approaches the positive y-axis asymptotically from each side. (Intuitively, the term 9/x2 is so large as x --+ 0 that it dominates /(x).) To find relative extrema, first find f ' (x) = 
6
2 -

1� .  The derivative is 0 
X X when 6x5 = l 8x2, x = 3 .  The derivative doesn't exist when x = 0, but neither does f; we have already found that / blows up at x = 0. The following table displays the pertinent information about the sign of the derivative and the behavior off 

Interval Sign off '  Graph of / 
( - 00, 0) positive rises 
(0, 3) negative falls 
(3 , 00) positive rises 

Therefore, f has a relative minimum at x = 3. (Alternatively, f" (x) = - 1; + 5! so /"(3 ) is positive. Therefore, by the second derivative test, f 
X X has a relative minimum at x = 3 . ) When x = 3, we have y = 0 so the relative minimum occurs at the point (3, 0 ). 

- - - - - - - - ·- - - - -y- 1 

F/G. I So far we have the curve in Fig. I ,  with the concavity tentatively sug­gested by the rise, fall, and asymptotic behavior of/. In this example, we'll check the concavity with the second derivative which has already been computed above. It is d iscontinuous at x = 0, and is 0 when - l 2x + 54 = 0, x = 4½. We collect the relevant information about the sign off" and the behavior of /. 
Interval Sign off" Graph of / (-00, 0 )  positive concave up (0, 4½ ) positive concave up (4½, oo ) negative concave down 
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This confirms the concavity in Fig. 1 . Since /(4½) = t the point of inflection 
at A is (4!, �) . 

Example 2 Sketch the graph of y = ln(x 3 + 8) .  
Solution: It i s  not always necessary to use all of the five aids described . 

If f is a variation of a familiar function g (the logarithm in this case),  it may 
be possible to sketch the graph off quickly by plotting a few points and 
using known properties of g. 

The function f is defined only if x3 + 8 > 0, x > - 2 .  Tht:n, as x in­
creases, x 3 + 8 increases, and in turn, so does ln(x 3 + 8) . Thus the graph 
always rises. For the right end, Jim,.,, ln(x 3 + 8) = In x = x. For the left 
end, lim,.(-2, +  ln(x 3 + 8) = In O +  = -oc.  Therefore, the usual asymptotic 
behavior of the logarithm function at x = 0 now takes place at x = - 2 .  
Also, the graph crosses the x-axis, not a t  x = l ,  but when x 3 + 8 = 1 ,  
x = � -

For large x, the highest power rule suggests that /(x) behaves like In x 3 , 
which is 3 In x. Therefore, far out to the right, the graph off is approxi­
mately 3 times the height of the graph of In x. A rough sketch is given 
in Fig. 2 .  

FI G . �  

Problems for Section 4.5 

In  Problems 1 -22, sketch the graph of the function f(x). 

1. -x2 + 4x + 5 
2. x 4 + 2x' 
3. x 312 

4. x 2,, 

5. x4 + x 3 + 5x 2 

6. 2e -3" 

7. sin( 2x - ; ) 

8. x �  

9. � 

10. e - 1/x 

1 1 .  xe' 
12. x 2e -• 
13. x In x 
14. x - In x 

X - I 
15. --1 X + 
16. e -• sin x 
17 .  -e -2

' - 4 
18. 3 cos(½1rx + ½1r) 
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FIG . I 

19.  e'/x 5 4 22. -1 --2 + x  20. e -•• 
I 2 1 .  X + -
X 

In x 
23. (a) Sketch the graph of - . (b) Use part (a) to help sketch the graph 
In !xi x 

of -- . 
X 

4.6 Related Rates 

Suppose two (or more) quantities are related to one another. If one 
quantity is changing instantaneously with time, we can use differential 
calculus to determine how the other changes. 

Example 1 Two cars travel west and north on perpendicular highways as 
indicated in Fig. I .  The problem is to decide if the cars are separating or 
getting closer. (Picture an elastic string between the two cars. Is the string 
getting shorter or longer?) 

We do not have enough information to solve the problem at this stage. 
The westbound car is trying to close the gap while the northbound car 
is trying to increase it. What actually happens will be determined by 
the speeds of the cars, and also (although this is less obvious) by their 
distances from the intersection of the roads. Thus we continue stating the 
problem by asking if the cars are separating or getting closer at the particu'uir 
instant when the westbound car is traveling at 25 mph, the northbound car 
is traveling at 10 mph, and they are respectively 5 miles and 12 miles from 
the intersection. 

Now let's set up the problem so that we can use derivatives. 
Step 1 Identify the functions involved. 
In our problem, with t standing for time, one of the functions is the 

distance n (t )  from the northbound car to the intersection (Fig. I ). (The 
10 mph is a specific value of dn/ dt and the 12 miles is a value of n.) Similarly, 
the other functions needed are w (t ), the distance from the westbound car 
to the intersection, and s (t ), the distance between the two cars . 

Step 2 Find a general connection among the functions. 
In  our problem, s 2 = n 2 + w 2 by the Pythagorean theorem. More pre­

cisely, s 2(t ) = n 2(t ) + w 2(t ) since s, n and w are functions of t. 
Step 3 Differentiate with respect to t on both sides of the equation 

from Step 2 to get a general connection among the derivatives of the func­
tions involved. 

In our problem 

( l ) 
ds dn dw 

2s- = 2n- + 2w- . dt dt dt 
Note that the derivative of s 2 with respect to s is 2s, but the derivative 

of s 2(t ) with respect to t is 2s · ds /dt by the chain rule. Don't forget the factor 
ds/dt, and similarly the factors dn/dt and dw/dt, in ( I ). 

Step 4 Substitute the specific data for the particular instant of interest. 
In our problem, the instant occurs when w = 5 and n = 12, so s  = 13 

by the Pythagorean theorem. Also dn/dt = 10 ( positive because when the 
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car moves north at lO mph the distance n is increasing) and dw/dt = -25 (negative because when the car moves west at 25 mph, the distance w is decreasing). Substitute these values into (1) and solve for ds/dt to obtain 
(2 ) 

dn dw n - + w-ds dt dt (12) (10) + (5) (-25) 5 - = dt s 13 = - 13 . 
Therefore, at this moment, the distance s is decreasing, so the cars are getting closer by 5/13 miles per hour. Note from (2) that the change in the gap between the cars depends not only, as expected, on their speeds and directions (because the formula for ds/dt involves the velocities dn/dt and dw/dt ) but also on their distances to the intersection (because the formula contains n and w). For example, suppose the westbound and northbound cars travel at 25 mph and lO mph again, but this time are respectivelr.J miles and 6 miles from the inter­section, so that w = 2, n = 6, s = y,ffi .  Then ds/dt in (2) is positive, namely l0/V40 , and the cars are moving further apart at this instant. 
Warning Be careful about signs when assigning values to derivatives. Sup­pose a bucket is being hauled up a well at 2 ft/sec. If x(t )  is the distance from the bucket to the top of the well, and y (t ) is the distance from the bucket to the bottom of the well, then x is decreasing by 2 ft/sec, while y is increasing by 2 ft/sec. Thus dx/dt = -2  and dy/dt = 2 .  
Example 2 A TV camera IO meters across from the finish line i s  turning to stay trained on a runner heading toward the line (Fig. 2). When the runner is 9 meters from the finish line, the camera is turning at . l radians per second. How fast is the runner going at this moment? 

Solution: 

r/N1sH s 

10 

FIG .1. 

Step 1 Let t stand for time. Let 8( t )  be the angle indicated in Fig. 2 and let s (t )  be the distance from the runner to the finish line. Step 2 The general connection between the functions is s = lO tan 8, or more precisely s (t )  = IO tan 8(t ) .  Step ] Differentiate with respect to I to obtain ds /dt = lO sec28(d8 /dt). 
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Step 4 At the moment of interest, dfJ/ d t  = - . I (negative because fJ is 
decreasing) and s = 9. Therefore the hypotenuse of the triangle is v'isT and sec fJ = ViSI/ to. Thus 

ds - = dt 
( 1 8 1 ) 1 0  1 00 (- . 1 ) = - 1 . 8 1 . 

The negative sign is well deserved as an indication that s is decreasing. Since the problem asked only for the speed of the runner, the answer is 1 .8 1  meters per second. 
Problems for Section 4.6 

(As with the section on maximum/minimum problems, this section contains verbal 
problems that students sometimes find difficul t  to set up . )  

1 .  A snowball is melting at the rate of IO cubic feet per minute. At what rate 
is the rad ius changing when the snowball is 2 feet in radius? 

2. At a fixed instant of t ime, the base of a rectangle is 6 , its height is 8, the base 
is growing by 4 ft/sec, and the height is shrinking by 3 ft/sec. How fast is the area 
of the rectangle changing at this instant? 

3. A baseball diamond is 90 feet square. A runner runs from first base to 
second base at 25 ft/sec. How fast is he moving away from home plate when he is 
30 feet from first base? 

4. Water flows at 8 cubic feet per minute into a cylinder with radius 4. How fast 
is the water level rising? 

5. An equi lateral triangle is inscribed in a circle .  Suppose the rad ius of the 
circle increases at 3 ft/sec. How fast is the area of the triangle increasing when the 
radius is 4 ?  

6 .  A light 5 miles offshore revolves a t  1 revolution per minute, that is, a t  27T  
radians per minute (Fig. 3 ) .  When the light i s  directed toward the beach ,  the spot 
of light moves up the beach as the source revolves. How fast is the spot moving when 
it is 1 2  miles from the foot A of the source? 

FIG . 3  
7. A cone with height 20 and radius 5 is filled with a hose which pumps in water 

at the rate of 3 cubic meters per minute .  When the water level is 2 meters, how fast 
is the level rising? 

8. As you walk away from a light source at a constant speed of 3 ft/sec, your 
shadow gets longer (Fig. 4 ) . The shadow's feet move at  3 ft/sec and it follows 
that the head of the shadow must move faster than 3 ft/sec to account for the 
lengthening. How fast does the head move if  you are 6 feet tall and the sou rce is 
15 feet high ? 
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Fl G . 1t 
9. Consider a cone with radius 6 and height 12 (centimeters). 

(a) If water is leaking out at the rate of IO cubic centimeters per minute, 
how fast is the water level dropping at the moment when the level is 
3 centimeters? 

(b) Suppose water leaks from the cone. When the water level is 6 centimeters, 
it is observed to be dropping at the rate of 2 centimeters per minute. How 
fast is the leak at this instant? 

(c) Suppose the cone is not leaking, but the water is evaporating at a rate equal 
to the square root of the exposed circular area of the cone of water. How 
fast is the water level dropping when the level is 2 centimeters? 

10. A stone is dropped into a lake, causing circular ripples whose radii increase 
by 2 m/sec. How fast is the disturbed area growing when the outer ripple has 
radius 5? 

1 1 . Consider the region between two concentric circles, a washer, where the 
inner radius increases by 4 m/sec and the outer radius increases at 2 m/sec. ls the 
area of the region increasing or decreasing, and by how much, at the moment the 
two radii are 5 meters and 9 meters? 

12. Let triangle ABC have a right angle at C. Point A moves away from C at 
6 m/sec while point B moves toward C at 4 m/sec. At the instant when iR: = 12, 
BC = 10,  is the area increasing or decreasing, and by how much? 

Ill. A sphere is coated with a thick layer of ice. The ice is melting at a rate 
proportional to its surface area. Show that the thickness of the ice is decreasing at 
a constant rate. 

14. A fish is being reeled in at a rate of 2 m/sec (that is, the fishing line is being 
shortened by 2 m/sec) by a person sitting 30 meters above the water (Fig. 5) .  How 
fast is the fish moving through the water when the line is 50 meters? when the line 
is only 31 meters? 

30 

FI G , ; 
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15 .  I f  resistors R ,  and R2 are connected in parallel, then the total resistance R 
of the network is given by 1 /R = 1 /R ,  + I /R2• If R ,  is increasing by 2 ohms/min, 
and R2 decreases by 3 ohms/min , is R increasing or decreasing when R, = 10, 
R2 = 20 and by how much? 

4.7 Newton's Method 

Newton's method uses calculus to try to solve equations of the form /(x) = 0. (Note that any equation can be written in this form by transferring all terms to one side of the equation. ) First we'll demonstrate the geometric idea behind the method. Solving/(x) = 0 is equivalent to finding where the graph of the func­tion/ crosses the x-axis. Begin by guessing the root, and call the first guess x1 (Fig. 1 ). Draw the tangent line to the graph of/ at the point (x1 ,/(x1 ) ) .  Let x2 be the x-coordinate of the point where the tangent line crosses the x-axis. Now start again with x2 • Draw the line tangent to the graph of/ at the point (x2,/(x2)) and let x3 be the x-coordinate of the point where the tangent line crosses the x-axis. In Fig. I ,  the numbers xi , x2, x3 , · · · approach the root; in Fig. 2, xi , x2, x3 , · · · do not approach the root (a change in concavity near the root is dangerous ). However, more often than not, the situation in Fig. I prevails and Newton's method does work. It is certainly worth a try, espe­cially if a computer or calculator is available to do most of the work. 
y= F(7-..) 

FI G . I 

Fl 6 .  2 
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Now let's translate the geometry into a computational procedure. The line through the point (x i ,/(x 1 )) and tangent to the graph off must have slope J ' (x 1 ) .  By the point-slope formula, the equation of the tangent line is y - /(x 1 ) = J ' (x 1) (x - x 1 ) .  Set y = 0 and solve for x to find that the line crosses the x-axis when x = x 1 - f,�:�) . This value of x is taken to be x2 • In general, each new value of x is generated from the preceding one as follows: _ _ J(last x) . _ _ .1J5l. (1) new x - last x J ' {last x) or, equivalently, x.+ 1 - x. f ' (x. ) . 
To see the method in operation, consider the computer program in (2) for solving /(x) = x3 - l0x 2 + 22x + 6 = 0. When the program is run, it requests (with a question mark) a first guess at a root. After receiving the guess, it calculates successive values of x from ( I ) ,  along with the corre­sponding values of /(x). When two successive values of x differ by less than .00005,  line 60 instructs the program to stop. If the values of /(x) approach 0, then the values of x are approaching a root, and the last value of x can be taken to approximate the root. To choose a first guess, note that f(-1) < 0 , f(2) > 0. Since f is con­tinuous, the graph off must cross the x-axis between x = -1 and x = 2 . Therefore, we began by running the program with the guess x = 2 .  0010 INPUT X 0020 DEF FNF(X) =X•X•X- I O•X•X+22•X+6 0030 DEF FND(X)= 3•X•X-20•X+ 22 0040 PRINT "X", "F(X)" 0050 LET Y=X- FNF(X)/FND(X) 0055 PRINT Y, FNF(Y) 0060 IF ABS(X-Y)<.00005 THEN GO TO 0080 0065 LET X=Y 0070 GO TO 0050 

(2) 0080 END •RUN ? 2 
X 

5 
2 
5 
2 
5 
2 STOP AT 0055 

F(X) 
-9 18 
-9 18 
-9 18 

The printout shows values off which do not approach 0, so the values of x do not approach a root. The first tangent line at x = 2 leads to x = 5, but the second tangent line leads back to x = 2, the third tangent line is the same as the first and leads back to x = 5 , and so on. We had to hit the escape button and stop the program manually, or it would have run forever, producing useless and repetitive results. We ran the program again, this time with first guess x = l .  The print­out shows values of /(x) approaching 0. (The computer notation E -15 
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indicates a factor of 10- 15

• Thus the last value of /, - 2.6645353E- l5 ,  is 
- 2 .6645353 · 10- 15 , a very small number.) 

*RUN 
? l 

X 
-2.8  
- l .2638298 
- .49953532 
- .26709965 
- . 2450 1 1 1 9 
- .2448 1698 
- .2448 1 697 
END AT 0080 

F(X) 
- 1 55.952 
- 39.795585 
- 7.6097842 
- .60866996 
- 5 .259 1 762E- 03 
-4 .0487743[-07 
- 2 .6645353E- 15 

Therefore x = - . 2448 1697 is an approximate root, but we do not know 
how many accurate decimal places we have. (One way to determine ac­
curacy is to increase x until /(x) changes from negative to positive. For 
example, /(- . 2448 1690) = . 000002, so there must be a root between 
- . 2448 1697 and - . 2448 1690, and the decimal places - . 2448169 are 
correct. )  Since the last two entries in the x column agree through 7 digits 
it is common practice to use the first 6 rounded digits, namely - .2448 17 .  
This does not guarantee six place accuracy but merely provides a con­
venient stopping place for the procedure. 

Problems for Section 4. 7 Use Newton's method and continue until two successive approximations agree to the indicated number of decimal places. Then check the accuracy by searching for a sign change in /(x) as above. I, Find � by solving x 2 = 39 for the positive value of x. Use x = 6 as the initial guess and stop after agreement in two decimal places. 2. Find the cube root of 1 73 ;  at least 3 decimal places. 3. Solve e• = 3 - x 2
; 3 decimal places. Begin by sketching the graphs of e • and 3 - x 2 on the same set of axes. Examine their intersections to determine the number and approximate values of solutions. 4. Find a solution of tan x = x (if possible) in interval (0, 1r/2) and then again in ( 1r/2, 31r/2) ;  3 decimal places. 

4.8 Differentials 

As a by-product of the derivative of /(x}, which measures the rate of 
change of /(x) with respect to x, we wil l develop the differential off (x) to 
describe the effect on f (x) of a small change in x. The immediate results may 
not seem exciting, but in Section 5 .3 the result in ( I ' ) below will be used to 
explain the Fundamental Theorem of Calculus, in Section 6. 1 the shell 
volume formulas developed here will be used to find moments of inertia of 
spheres and cylinders, and in Chapter 7, the new differential notation of 
this section will be used throughout. 

Approximating a change in y Suppose y = /(x), and we start with a 
particular value of x and change it slightly by ,:1x so that there is a corre­
sponding change ,:1y in y . The precise connection between i:1x, i:1y and f '  is 
given by 
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f ' (x) = lim Ay .  
�x •O Ax If the limit is removed so that we are no longer entitled to claim equality, we have Ay approximately equal tof ' (x) Ax ; i.e. , Ay ~ f' (x) Ax. The symbols 

dx and dy, called differentials, are defined as follows: dx = Ax, dy = f' (x) dx. With this notation we have 
( 1 )  

dx change Ay in y ~ f' (x)'t;.  
dy In other words, dx is simply Ax, a change in x. The corresponding change Ay in 

y is approximated by f' (x) dx, denoted by dy. To see the geometric interpretation of approximating the change in y by f ' (x) dx, consider the graph of y = f(x). If the value of x is changed by 
dx, then the corresponding change in y is the change in the height on the graph off (Fig. I ) . On the other hand, consider the tangent line at the point 
(x,f(x)) ;  its slope isf ' (x). As x changes by dx, 

so 
change in y on the tangent line I f h 1 -h dx . = s ope o t e tangent me , c ange m x 

change in y on the tangent line = f '  (x) dx . 

' > 
di'C F/6 . / 

Therefore, f '(x) dx is the change in the height of the tangent line (Fig. I ). We call/ '  (x) dx the linear approximation to the change in y; it approximates the rise or fall of the graph off by the rise or fall of the tangent line. The error in the approximation is the difference between the height of the tangent line and the height of the graph of f, and approaches O as dx approaches 0. In fact, it can be shown that the error approaches O faster than dx. The symbols Ax and dx both represent a change in x. t Mathematicians use the notation Ay for the change in y, and use dy for .f' (x) dx which 
tThe symbol dx in the antiderivative notation f f(x) dx is another story. It is not a small 

change in x; rather, it indicates that the antidifferentiation is to be done with respect to the 
variable x. 
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approximates the change in y (see ( I ) ) .  In  applied fields, and in this text, the 
distinction between f '  (x) dx and the change in y is often blurred,  and both 
are referred to as dy; i .e . ,  we often take the liberty of claiming that 

( I ' ) I dy = f ' (x) dx = change in y when x changes by dx . , 

Example I Let y = x 3 • As usual, we write � = 3x 2 to mean that the deriv­

ative of y is 3x2 • The differential version is dy = 3x 2 dx, interpreted to 
mean that if x changes by dx there is a corresponding change in y given 
approximately by 3x 2 dx. 

Example 2 We have d (sin x) = cos x dx; that is, the differential of sin x is 
cos x dx. If x changes by dx then sin x changes by approximately cos x dx. 

Warning Don't omit the dx and write d (sin x) = cos x when you really 
mean either d (sin x) = cos x dx, D sin x = cos x or d (sin.x)/dx = cos x. 

Example 3 Find the linear approximation to the change in x 5 when x 
changes from 2 to 1 .999. 

Solution: We have /(x) = x\ so f ' (x) = 5x 4 . When x changes from the 
value 2 by dx = - .00 I ,  the linear approximation to the change in x 5 is 
/ ' (2) dx, which is (80) ( - .00 1 )  or - .08. 

Sum, product and quotient rules for differentials Let u and v be func­
tions of x. Analogous to the rules for derivatives, we have 

(2)  sum rule d (u + v) = d(u) + d (v) 

(3) product rule d(uv) = u d (v) + v d(u) 

. ( u ) v d (u) - u d (v) 
(4) quotient rule d -;;- = 

v 2 

(5)  constant multiple rule d (cu) = c d (u) , where c is a constant . 

Example 4 Find d(2x 
x
: 3) 

. 

First solution (directly): As in Examples I and 2 ,  we simply find f ' (x) dx. 
Thus 

d -- = -'---..;._ __ dx ( 
x2 ) 2x (2x + 3) - x 2 • 2 

2x + 3 (2x + 3)2 (derivative quotient rule) 

2x 2 + 6x 
= 

(2x + 3)2 dx . 

Second solution (differential quotient rule): By (5) ,  

d(-x_2 
-) = 

(2x + 3) d (x 2) - x 2 d (2x + 3) 
2x + 3 (2x + 3)2 

(2x + 3) • 2x dx - x 2 • 2dx 
(2x + 3)2 

2x 2 dx + 6x dx 
(2x + 3)2 
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Volume of a spherical shell Consider a hollow rubber ball with inner 
radius r and thickness dr (Fig. 2). The problem is to find a formula for the 
volume of this spherical shell, in other words, the volume of the rubber in 
the ball and not the volume of the air it holds. We can get an exact but ugly 
formula, and then an approximate but simpler one. 

F{G. 2 

To find a precise formula, think of the volume of the rubber material 
as the difference between the overall sphere of radius r + dr and the 
inner sphere of air with radius r. The volume of a sphere of radius r is 
V = 11TTs, so 

shell volume = outer sphere - inner sphere 

(6) 4 4 = - 11'(r + dr)5 - - 1TT3 

3 3 
4 

= 411'r2 dr + 41TT(dr)2 + 3 11'(dr)3 . 

To find an approximate formula, think of the volume of the rubber 
material as the change in the volume V of the inner sphere when its 
radius r is increased by dr. If the change is referred to as dV and we use 
dV = V ' (r) dr then we have the (approximate) shell volume formula 
(7) dV = 411'r2 dr . 
Note that the difference between (6) and (7) is 41TT(dr)2 + 111'(dr)3 which is 
very small if dr is small. When the shell formulas of this section are used in 
Section 6.1, it will be in situations where dr -+ 0, which justifies the use of 
(7) as the volume formula of the spherical shell. 

Area of a circular shell The circular shell (washer) of Fig. 3 has inner 
radius r and thickness dr. We want a formula for its area, comparable to (7) . 
The inner circle has area A = 11'r2 and the area of the shell is the change in 
A when r increases by dr. If the change in A is called dA, and we use 
dA = A'(r) dr, we have the shell area formula 

(8) dA = 211'r dr .  
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I 
I 
I 
I 

�r�Jr h 
I 
I 
I 

F/6 . 't 

F/ 6. 3 
Volume of a cylindrical shell Consider a piece of glass tubing with inner radius r, thickness dr, and height h (Fig. 4 ). We want a nice formula for the volume of the cylindrical shell, that is, the volume of the glass material alone, and not the air inside. The inner cylinder has volume V = 1rr2h, and the shell volume is the change in V when r changes by dr and h stays fixed. If the change in V is called dV, and we use dV = V ' (r )  dr, where h is regarded as a constant in the differentiation process, then we have the shell volume formula 
(9) dV = 21rTh dr .  
The notation dy/dx When dx and dy are used to represent small changes in x and y in the notation of ( I ' ) ,  the symbol dy/dx has two meanings. It can represent the actual fraction 
( 10) 

small change in y small change in x or it can mean the derivative of y with respect to x, that is, / '(x) .  More precisely, the fraction approaches the derivative as dx -+ 0. Until now, it has been illegal to consider the derivative symbol dy/dx as a fraction, except as a mnemonic device. Now it is acceptable to think of dy/dx as the fraction in ( 10 ). Many practitioners take the convenient liberty of sliding back and forth between the fraction and derivative interpretations of dy/dx (under the baleful glare of the mathematician) .  We will give an illustration. Suppose a researcher is interested in the connection between stimulus (what is actually done to a person ) and sensation (what the person feels ). I f  salt i s  put in food, i s  the salt actually tasted7 Suppose x i s  the number of milligrams of salt injected into a doughnut, and T i s  the salty taste reported by the doughnut eater on a taste scale where O indicates no salt taste and higher values indicate a very salty taste. How does x affect T? In particular, if x is increased by a small amount dx = . l ,  does T go up by a correspond­ingly small amount dT = . 1 ?  Experimenters have found that the answer is no; a change in x does not necessarily produce a change in T of similar, or even proportional, size ; that is, dT is not k dx. Rather, if the doughnut is not very salty to begin with then a small change in the amount x of salt produces a large change in the perception T. If the doughnut is very salty, then the 
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same small change in x goes virtually unnoticed so that T is practically unchanged. A similar phenomenon occurs in weightlifting. If you are lift­ing 10 pounds, you will notice an extra half pound, but if you are lifting 1000 pounds, you will barely feel an extra half pound. The experimenter's hypothesis for the connection between dx and dT is dT = k dx  where k is a 
X fixed constant depending on the particular stimulus; this hypothesizes that the larger the value of x (that is, the saltier the doughnut ) , the less the effect of dx on T. The hypothesis may be written as dT /dx = k /x, and switching from the fraction interpretation of dT / dx to the derivative interpretation we have T ' (x) = k/x. Antidifferentiate to get T = k In x + C. Therefore, one hypothesis proposes a logarithmic connection between stimulus x and sensation T. 

Problems for Section 4.8 

1 . Find the differential. 
(a) d (Vx ) (b) d (cos x) (e) d (sin x 5) (c) d (x 5 sin x) (f) d(5) 2. Find dy if y = 2x 5 + 3. 3. Find df if f (x) = x + 3. 4. Use linear approximations to make the following estimates. (a) Estimate the change in x5 + x 2 as x changes from 3 to 2.9999. (b) Estimate the change in � when x changes from l6 to 16. l. 5. Use the methods which produced the shell formulas in (7)-(9) to find (a) the area dA of the equilateral triangular shell (Fig. 5) with "radius" r and thickness dr, and (b) the volume dV of the conical shell (Fig. 6) with height h, radius r and "thickness" dr (that is, the volume of the sugar wafer and not of the ice cream inside). 

F/0 . �  

\ 
\ 

Fl b . 6 

h 

l 
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4.9 Separable Differential Equations 

Differential equations constitute a vast topic, an entire branch of mathematics, and this section is only a bare introduction. We will use simple calculus to solve one type of differential equation. To see how differential equations arise, consider a IO-liter punch bowl, initially filled with cider, being drunk at the rate of 2 liters per minute. As the punch is drunk, the bowl is simultaneously refilled, but with whiskey, not cider. Initially, there is no whiskey in the bowl, but gradually the whis­key content increases, until at "time oo", the bowl is entirely filled with whiskey. The problem is to find a function w (t )  to give the number of liters of whiskey in the bowl at time t. So far, the only known value of w is w (O) = 0. But we have information about the rate of change of w, that is, about w '(t ), the net liters of whiskey coming into the bowl per minute: 
w ' (t ) = IN - OUT = whiskey poured in per minute - whiskey drunk per minute. The whiskey is poured in at the constant rate of 2 liters/min, so IN = 2, but the OUT rate is harder. The punch is drunk at the rate of 2 liters/min, but since the whiskey content of the punch varies from minute to minute, the OUT rate for whiskey is not 2 liters/minute; instead it is 2 times the fraction of the bowl which is whiskey at the moment under consideration. That fraction is liters of whiskey in bowl at time t IO  that is, i\iw(t ) where w(t )  i s  the unknown function. Therefore w ' (t )  = 2 - 2 · niw (t ) .  So instead of finding w (t ) immediately, we have 

l 
( l) w ' ( t )  = 2 - 5 w (t ) , 
called a differential equation. In an algebraic equation, such as x 5 - x 2 = 2x + 3, the unknown is a 
number, frequently named x, although any letter can be used. In a differential 
equation, such as y n + 2xy = xy ', the unknown is a function, usually named 
y (x) and abbreviated y. In (1), the unknown is the function w (t ) .  An alge­braic equation involves powers of x, while a differential equation involves derivatives of the function y. Some differential equations can be easily solved. A solution to y '  = 3x 2 is y = x', and the complete solution is the set ofall functions of the form y = x 5 + C. This is an easy differential equation because y '  is given explicitly. The differential equation y ' = 2 - !y (a re­statement of ( I )  with w (t )  replaced by y) is harder. It may look as if y '  is given, but since the right side involves y, the equation only reveals a con­nection between y and y ', and the solution is not obtained by anti­differentiating the right-hand side with respect to x. We will develop a procedure for "separating the variables" ( if possible) before anti­differentiating, and then return to ( 1) .  
(2) 

To illustrate the method, we will consider the differential equation 
X Y , = -
2

. y 



Rewrite the equation as 

(3) 
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y 2(x)y ' (x) = x ,  

and antidifferentiate on both sides with respect to x to obtain 

(4) f y 2(x)y ' (x) dx = f x dx .  

To compute the left-hand side, note that the derivative of iy' with respect to 
x is y2y ' ,  so we have 

(5) 

An arbitrary constant is inserted on one side only, as explained below. The 
procedure in (2)-(5) is usually written in a second notation,  which might be 
considered an abuse of language, but which is easier to use and produces 
the same result. In this second notation, we have 

(2 ' ) 

(3 ' )  

(4 ' )  

(5 ' )  

!!}_ _ � 
dx 

- y2 

y 2 dy = x dx  (multiply by y2 dx on both sides) 

f y 2 dy = f x dx 

I I 
3,3 = 2 x2 + C .  

In future examples, we'll follow standard procedure and use the second 
notation. 

So far, the function y has been found implicitly in (5') .  The explicit 
solution is 

(6) y = 1 : x2 + 3C or, equivalently, y = 1 : x2 + D .  

More generally, if it is possible to separate the variables so that the differential 
equation has the form 

(expression in x) dx = (expression in y) dy , 

(as in (3' )  for example) , then the equation is called separable, and is solved by 
antidiff erentiating on both sides. (Only first order equations, that is, equations 
involving y '  but not y" ,y '", · · · , may be separated. )  The process usually leads 
to an implicit description of y. If it is feasible to solve for y explicitly, we do 
so, but otherwise we settle for an implicit version. 

The algebra of arbitrary constants The algebraic rules for combining 
arbitrary constants are quite enjoyable. If A and B are arbitrary constants 
then so are A + B, 3A, A - B, AB, etc. , and may be named renamed C i , C2 , 

C,, C4, etc. In (6) , 3C became D because 3C and D are equally arbitrary. 
Similarly, in (5 ' ) ,  we did not writdy 3 + K = ½x2 + C, because C - K would 
combine to one constant anyway. 

Warning I .  Don't turn C + x or Cx into D. A constant cannot swallow a 
variable. The curves of the form y = Ax 2 form a family of parabolas, con-
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taining y = 3x 2, y = - 5x2 and so on, but if Ax2 is incorrectly combined to 
K, then the family becomes y = K, which is a set of horizontal lines. 2. Don't wait until the end of the problem to insert an arbitrary con­stant. At line ( 5 ' ), don't write h' = ½x2, y = � and then add the ne­glected constant to get the wrong answer y = "Vfx2 + C. The constant must be inserted at the antidifferentiation step, not l.ater. 

Nonseparable example If y '  = x + y so that dy = (x + y )  dx, there is no way to continue and separate the variables. If both sides are divided by 
x + y, .then x turns up on the same side as dy. The method of this section simply doesn't apply. 
Antiderivatives for 1/x The usual rule is J ( 1/x) dx = In x + C, but it is also true that 
(7) 

f ! dx = l n Kx, 

since In Kx = In K + In x = C + In x. The version in (7 ) is often more useful. It will also be convenient to ignore absolute value signs and use In x and In Kx instead of lnlxl and lnlKxl. In physical applications of differential equations, it is likely that variables and arbitrary constants will be positive, and even if they are not, it is fortunately the case that omitting the absolute values in intermediate steps usually leads to the same final solution as including them. In general, it is often easier to relax our standards in solving a differential equation (such as omitting absolute values in (7 ) )  and, if in doubt, substitute the proposed solution into the equation. If the equa­tion is satisfied then the proposed solution must be correct. 
Example 1 We will continue the punch bowl problem by solving ( I ). 

dw l - = 2 - - w dt 5 
dw 

= dt 1 2 - - w  5 

(multiply by dt and divide by 2 - !w to separate the variables) 
- 5 In K( 2 - ! w) = t (antidifferentiate ) 
In K( 2 - ! w) = - ! t (divide by - 5) 
K( 2 - ! w) = e ·115 (take exp on both sides ) 
2 - .!. w  = Ae"115 (Let l /K be named A ) 5 (8 ) w = IO - Be "115 (Let 5A be named B ) . Equation (8 ) describes many solutions and is called the general solution. In this problem we want the particular solution satisfying the condition w (0 ) = 0 (the punch bowl contains no whiskey at time 0 ). Substitute t = 0, 
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w = 0 to  get 0 = 10 - Be0, B = 10 .  Therefore, the final solution i s  w = 
10 - lOe -115

• Note that, as expected, the steady state solution is w (oo) = 10; 
after a long time, the punch is essentially all whiskey. 

Exponential growth and decay If you have ever waited for a cup of hot 
coff ec to cool down, you have probably noticed that liquids do not cool at 
a constant rate. If the net temperature of a particular liquid (that is, degrees 
above room temperature) is 150° at time t = 0, and the liquid is cooling at 
that instant by 50° per minute, then it does not continue to cool at 50° per 
minute. Rather, by experimentation and physical law, when its temperature 
has decreased to 99°, it will be cooling at only 33° per minute; for this 
particular liquid, the cooling rate is 1 /3 of the net temperature. The prob­
lem is to find a formula for y (t ), the net temperature of the liquid at time t. 

Since the cooling rate for this liquid is 1 /3 its net temperature, 
y '  = -!,. The negative sign is designed to make y '  negative since the liquid's 
temperature is decreasing. Then 

(9) 

(10) 

� = _.!., dt 3 

� = _ _!_ dt 
'J 3 

1 ln Ky = - - t  
3 

Ky = e-115 

1 
y = - e-"' 

K 

y = ce -113
• 

(Instead of line (9) we could just as well have used �dy = -dt, or -}dy = dt, 
etc. All ultimately lead to y = ce -113.) 

To determine the particular solution satisfying the initial condition 
y = 150 when t = 0, substitute in ( 10) to get 150 = Ce0, C = 150. There­
fore the final solution is y = 150e -"'. The graph of the solution is an 
exponential curve with y (0) = 150 and y (oo) = 0 (Fig. 1 ) .  Theoretically, the 
liquid never reaches room temperature (that is, zero net temperature) ,  but 
approaches room temperature as t - oo. For example, to find how long it 

J 

1 1 ,7 

F l 0 . I 
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takes for the liquid to cool from 1 50° to  3° (net temperature), set y = 3 and solve for t to get r<i = e -t13, - ft = In fci = -In 50, t = 3 In 50, or approxi­mately l l .  7 minutes. Net temperature is not the only quantity that changes in such a way that the rate of change is proportional to "how much is there." If a particular cell has a mass of 99 milligrams and is growing at 33 milligrams per minute, then it does not continue to grow at 33 mg/min. Instead, when the cell grows to 150 mg, it will be growing faster, namely, at the rate of 50 mg/min. In general, the rate of growth of a cell is proportional to its mass (until the cell reaches a certain size and the rate of growth satisfies a different law, since cells do not grow arbitrarily large). Radioactive decay is another ex­ample; the rate of decay of material is proportional to the amount of material. Similarly, population growth is proportional to the size of the population. In general, the net temperature, population size, cell mass and amount of a radioactive substance at time t all satisfy a differential equation of the form y '  = by. The value of the constant b (which was - 1  /3 in the liquid cooling example above) depends on the particular liquid, population, cell or substance; it is positive if the quantity is growing and negative if it is decaying. The solution is of the form y = Ce 61. This type of growth or decay is called exponential. 
Orthogonal trajectories An orthogonal trajectory for a family (collection) of curves is a curve which intersects each member of the family at right angles. The equation x 2 + y 2 = K, K � 0, describes a family of circles (for ex­ample, K = 9 corresponds to the circle with radius 3 and center at the origin). The orthogonal trajectories for the family are lines through the origin (Fig. 2) . The lines and circles constitute a pair of orthogonal families . The physical significance of the orthogonal trajectories depends on the 

FIG ,  1. 
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F IG . 3 
purpose of the original family. If the given curves are isotherms, that is, 
curves of constant temperature, then the orthogonal trajectories are heat 
flow lines (Section 1 1 .6). 

Consider the family of ellipses 

( 1 1 ) x2 + 4y2 = K ,  K ;2:: 0 (Fig. 3) . 

The orthogonal trajectories are not geometrically obvious, but they can be 
found using differential equations. 

Step 1 Find a differential equation for the given family. In ( 1 1 ), treat 
y as a function of x and differentiate implicitly to get 2x + Syy ' = 0. There­
fore the family has the differential equation 

( 12) , X y = - - .  
4y 

At every point (x, y) on an ellipse in the family, the slope is -x/4y. For 
example, at point P in Fig. 3, x is negative and large, y is positive and small, 
-x/4y is a large positive number, and correspondingly the slope on the 
ellipse at P is a large positive number. 

Step I goes backwards from the family of curves in (1 1 ), usually con­
sidered to be the "solution", to the differential equation in ( 12), usually 
regarded as the "problem." 

Step 2 Find a differential equation for the orthogonal family. Perpen­
dicular curves have slopes which are negative reciprocals, so the orthogonal 
family has the differential equation y ' = 4y/x. In other words, at every 
point (x,y) on an orthogonal trajectory, the slope is 4y/x. 

Step 3 Solve the differential equation from Step 2 to obtain the or-
thogonal family. 

!!]_ - � 
dx -

X 

!!l_ = i_ dx 
J X 

In Ky = 4 ln x = In x 4 

Ky = x4 

y = Ax4 • 

Thus the orthogonal trajectories are the curves of the form y = Ax4 (Fig. 3). 
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Alternatively, differential notation may be used. In Step 1 ,  take differ­
entials on both sides of ( 1 1 ) to obtain 2x dx + 8y dy = 0, the differential 
equation for the family of ellipses. In Step 2, switch to 2x dy - 8y dx = 0 for 
the orthogonal family. The solution then continues as before in Step 3. 

Problems for Section 4.9 

1 .  Solve 

(a) y ' = -x sec y 

(b) dx + x 'y dy = 0 

(c) x 2 + y 4 � = 0 
dx 

(d) y '  = _y _ 
2x + 3 

(e) x 2 dy = e' dx 
5x + 3 

(f) y ' = -­y 
2. Find the particular solution satisfying the given condition. 

(a) y ' = xy, y ( l )  = 3 (c) y 'e'/x = 3, y (0) = 2 
(b) yy ' + 5x = 3, y (2) = 4 (d) y ' = y 4 cos x, y (0) = 2 

3. (a) Solve xy '  = 2y and sketch the family of solutions . (b) Find the particu­
lar solution in the family through the point (2, 3). 

4. Find the orthogonal trajectories for the given family and sketch both families 
(a) x 2 + 2y 2 = C (b) y = ce -S• (c) 2x 2 - y 2 = K. 

5. Suppose a substance decays at a rate equal to I / IO the amount of the 
substance. (a) Find a general solution for the amount y (t ) at time I. (b) Find y (t )  
i f  the initial amount i s  7 5  grams. (c) Find the half-life o f  the substance, that is, the 
length of time it takes for the substance to decay to half its original amount, and 
verify that the answer is independent of the initial amount. 

6. Suppose the rate of growth of a cell is equal to ½ its mass. Find the mass of 
the cell at time 3 if its initial mass is 2 . 

7. The velocity v( t )  of a falling object with mass m satisfies the differential 
equation mv ' = mg - cv, where g and c in addition to m  are constants. (The equa­
tion is derived from physical principles. The object experiences a downward force 
mg, due to gravity, and a retarding force cv proportional to its velocity, due to air 
resistance. Their sum, that is, the total force, is mv ' since force equals mass times 
acceleration.)  Find v (t )  if the initial velocity is 0, and then find the steady state 
velocity v (c.o). 

REVIEW PROBLEMS FOR CHAPTER 4 

1. If P is the pressure of a gas, V its volume and T its temperature, then 
PV = kT where k is a positive constant depending on the particular gas. Suppose 
at a fixed instant of time, T = 20, V = 10, P is decreasing by 2 pressure units per 
second and T is increasing by 3 temperature units per second. Is V increasing or 
decreasing at this moment, and by how much? 

. In In x 
2. Fmd lim -1

-- as (a) x ->  x, (b) x ->  I + . 
n x  

3. Sketch the graph of xe -• . 
4. Of all pairs of numbers whose sum is IO, which pair has the maximum 

product? 
5. Find d (xe'"). 
6. Which of each pair has a higher order of magnitude? (a) In x, In x 2 

(b) e', e••. 
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7. At one instant, the edge of a cube is 3 meters and is growing by 2 m/sec. 
How fast is the volume growing at this moment? 

8. Sketch the graph. (a) 3 sin 2(x - 'lr/3) (b) 2 + Se _,,,_ 
9. Find (a) lim • • o+ e• In x (b) lim. •O+ x '"nx. 

10. Show that of all rectangles with a given diagonal, the square has the 
largest area. 

2x 
1 1 .  Sketch the graph of y = -2--

1 
. 

X + 
IZ .  Find the relative extrema of each function three ways: with the first 

derivative test, with the second derivative test and with no derivatives at all. 
(a) sin4x (b) (x + 2)1 + 1 .  

13. Let y be a function of t. Solve t 2y '  = y with the condition that the steady state 
solution is y = 2, i .e . ,  if t = 00 then y = 2 .  

14,  A gardener with 100 feet of wire wants to fence in a rectangular plot and 
further fence it into four smaller rectangles (not necessarily of equal width), as 
indicated in Fig. 1 .  How should it be done so as to maximize the total area. 

1 I 1 1  I

G 

A B 
r/ G .  I 

15. Find the maximum and minimum values of x In x + ( 1  - x) ln( l - x). 
16. Let /(x) = x '  - 2x2 + 3x - 4. (a) Show that / is an increasing function. 

(b) Use part (a) to show that the equation /(x) = 0 has exactly one root. (c) Choose 
a reasonable initial value of x for Newton's method. (d) Continue with Newton's 
method until successive approximations agree in 3 decimal places and check the 
accuracy of those places. 
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5. 1 Preview 

This section considers two problems to introduce the idea behind integral calculus. 
Averages If your grades are 70%,  80% and 95% then your average grade is 70 + 83° + 95 or 8 1.7%. Carrying this a step further, suppose the 70% was earned in an exam which covered three weeks of work, the 80% exam grade covered four weeks of work, and the 95% covered six weeks of material (Fig. 1 ). For an appropriate average, each grade is weighted by the corresponding number of weeks: . h d _ ( 70) (3) + (80) (4) + (95) (6) _ 84 6% we1g te average - 13 - . . 
Note that we divide by 13, the sum of the weights, that is, the length of the school term, rather than by 3, the number of grades. 

FIG . I 
For the most general situation, let/ be a function defined on an interval 

[a, b]. The problem is to compute an average value for f. To simulate the situation in Fig. l ,  begin by dividing (a, b] into many subintervals, say 100 of them (Fig. 2) .  The subintervals do not have to be of the same length, but they should all be small. Let dx 1 denote the length of the first subinterval, let dx2 be the length of the second subinterval, and so on. Pick a number in 

a. J- ,  
( X ) 

Fib. :Z 
137 
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each subinterval; let x1 be the number chosen from the first subinterval, x2 the number chosen from the second subinterval, and so on. Pretend that J is constant in each subinterval, and in particular has the value /(x1 ) through­out the first subinterval, the value /(x2) throughout the second subinterval, and so on. With this pretense we may find an average value in Fig. 2 as we did in Fig. I :  
1 ff f(x1 ) dx1 + f(x2) dx2 + · · · + J(xwo) dxwo average va ue o = dx1 + dx2 + · · · + dxwo (approximately) . The length of each subinterval is used as a weight, and the sum of the weights dx 1 + · · · + dx wo in the denominator is the length b - a of the interval itself. We use some abbreviations to avoid writing subscripts and long sums. First of all, the sum J(x, ) dx, + J(x2) dx2 + · · · + J(xwo) dxwo is abbreviated 

100 2,f(x; ) dx, .  
i= I The letter L is called a summation symbol. If we take the liberty of allowing an unsubscripted dx to stand for the length of a typical subinterval, and an unsubscripted x to stand for the number chosen in that subinterval ( Fig. 3), we can further abbreviate the sum by "'2:.f(x) dx. Thus we write "'2:.J(x) dx average J = b - a  

(approximately) .  
This isn't the precise average value of J because it pretends that f is constant in each subinterval. If the subintervals are very small, which forces them to become more numerous, then (a continuous) J doesn't have much oppor­tunity to change within a subinterval, and the pretense is not far from the truth . Therefore to get closer to the precise average, use 100 small sub­intervals, then repeat with 200 even smaller subintervals, and continue in this fashion. In general, 
( 1 )  . "'2:.J(x) dx average value of J = hm ,; dx •

O - a We don't intend to find any averages yet because computing Lf(x) dx is too tedious to do directly. Much of this chapter is designed to bypass direct computation and obtain numerical answers easily. 
b 

dx 

F)b . 3 
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f(1-) 

Flb. q 
Area under a curve Areas of rectangles are familiar, but consider th region under the graph of the function/ between x = a and x = b (Fig. 4 The problem is to find its area. Begin by dividing the interval [a, b] int many small pieces. Let dx be the length of a typical subinterval, and let x b a number in this subinterval. Build a thin rectangle with a base dx an height /(x). (Figure 5 shows [a, b] divided into four subintervals with fou corresponding rectangles.) The area of the typical rectangle is /(x) dx. Th entire region can be filled with such rectangles, and therefore the are under the graph is approximately the sum of rectangular areas, or I /(x) d; The area is not necessarily I /(x) dx precisely because the rectangles underla and overlap the original region. However, there will be less underlap an overlap if the values of dx are small, so it appears sensible to claim th, 
(2) area under the graph off = lim 2,/(x) dx .  

dx •O Although averages and areas seem to be very different concepts, th new idea of limu.o I/(x) dx appears in both (1) and (2) .  Beginning in th next section we will give the limit an official name, find ways to compute i and present many more applications. 
5.2 Definition and Some Applications of the Integral 
Definition of the integral Let f be a function defined on the interval [ a, b Begin by dividing the interval into (say) 100 subintervals of length dxi, dx2, • • • , dx1oo, and choosing numbers xi, x2, · · · , x 100 in the subinterval (Fig. 1 ) .  Find 

100 2,/(x; ) dx; = /(x 1 ) dx 1 + f(x2) dx2 + · · · + /(x 100) dx 100 , 
i• l which we abbreviate by "'if(x) dx. Figure 2 shows the correspondingly at breviated picture. The sum is a weighted sum of 100 "representative" value 

x ,  
11 2,  ">\"' "ll ,oo 

0. I:, 
� � ) � ) (  ) 

d)( , dx.1. 
d-x'l'i d1,.100 

F I G .  l 
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Q. 

< d 'X. 

fl G . :Z  

off, each value weighted by the length of the subinterval it represents. Different people performing the computation might choose different sub­intervals and different values within the subintervals, and their sums will not necessarily agree. However, suppose the process is repeated again and again with smaller and smaller values of dx, which requires more and more subintervals. It is likely that the resulting sums will be close to one particular number eventually, that is, the sums will approach a limit. The limit is called the integral of f on [a, b] and is denoted by J!f(x) dx. 
That is, the integral is defined by 

o> rf<x> dx = lim If<x> dx .  J,/ lllx •O For a simplistic but useful viewpoint, we can ignore the limit and consider f!f(x) dx as merely If(x) dx, found using many subintervals of [a, b]. In other words, think of the integral as adding many representative values off, each value weighted by the length of the subinterval it represents. 
The process of computing an integral is called integration. The integral symbol J is an elongated S for "sum" (the same symbol was used in a different context for antidifferentiation) and the symbols a and b attached to it indicate the interval of integration. The numbers a and b are called the 

limits of integration, and / is called the integrand. The sums of the form I/(x) dx are called Riemann sums. 
Example I To illustrate the definition we will try to find J 2 

� dx. The 
I X computer program in (2)  finds some Riemann sums using n subintervals, for n = 100, 300, 500, 700, 900 and 1 100. For convenience in writing the program we chose subintervals of equal length, and numbers x., · · · , x. at the left ends of the subintervals. For example, in its third run, with 

n = 500, the computer divides [ 1, 2] into 500 subintervals of length b - a  2 - 1  dx = -n- = 500 = .002 (Fig. 3) 
and chooses x1 = l , x2 = 1 .002, x, = l .004, .. · , x500 = 1 .998. Then the computer evaluates the Riemann sum 

I � c/-x.: .OOJ.. 
,. 

FIG . 3 
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1 1 1 
L x2 tJx = ( 1 )2 c .002) + 

c 1 .oo2)2 c .002) 

1 l + ( 1 .004)2 (.002) + . . .  + ( 1 .998)'
( .002) 

to get .50075 1 .  

(2) 

1 0  DEF FNF (X)= 1/(X•X) 
20 A= l 
30 B=2  
35  PRINT "N", "RIEMANN SUM" 
40 FOR N = 100 TO 1200 STEP 200 
50 D = (B-A)/N 
60 L= FNF(A) 
70 FOR I = l TO N - 1 
80 L = L + FNF(A + l•D) 
90 NEXT I 
100 L = L•D 
1 30 PRINT N,L 
140 NEXT N 
150 END 
READY. 
RNH 
N 

100 
300 
500 
700 
900 
l l00 

RIEMANN SUM 
.503765 
.50 1 252 
.50075 1 
.500536 
.5004 1 7  
.50034 1 

This printout suggests that the Riemann sums approach a limit. It can be 
shown that for still larger values of n and smaller values of dx, the Riemann 
sums continue to approach a limit, even if the subintervals are not of the 
same length, and no matter how x . ,  • · · , x. are chosen in the subintervals. 
Although the computer program alone is not sufficient to determine 

the limit (that is, the integral), it suggests that J 2-\ dx might be .5. In , x  
Section 5.3 we will bypass this attempt at direct computation and find the 
integral easily. 

lntegnls and average values As one of the applications of the integral, ( l )  
of  the preceding section showed that 

(3) 

[t<x) dx 
average value of/ in [a, b] = •

b - a  

Think of the numerator as a weighted sum of "grades" and the denomi­
nator as the sum of the weights. 
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Integrals and area The preceding section indicated a relation between the 
area under the graph of a function f and J! f (x) dx. We'll examine this more 
carefully now. It will seem as if there are several different connections 
between integrals and areas, but they will be summarized into one general 
conclusion in (8). 

Case 1 The graph off lies above the x-axis. 

Figure 4 shows the area under the graph, and a typical rectangle with 
area f (x) dx. The integral adds the terms /(x) dx and takes a limit as dx 
approaches 0, so f! J(x) dx adds an increasing number of thinning rect­
angles. The limit process is considered to alleviate the underlap and overlap 
and, therefore, 

(4) area between the graph off and the interval [a, b] on the x-axis 

= fi<x) dx .  
a 

Fl b . 4-

Case 2 The graph of/ lies below the x-axis. 

b 

Figure 5 shows the region between the x-axis and the graph of/. The 
area is positive (all areas are positive) , but the terms f (x) dx are negative 
because /(x) is negative. Hence the area of the indicated rectangle is 
-J(x) dx, notf(x) dx. The integral adds the terms/(x) dx so the integral is a 
negative number, and 

Q. b 
-,.. 

Gf\'1PH or f 

F / 0 . S 
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(5) area between the graph of/ and the interval [a, b] on the x-axis 

= - [f(x) dx 

or, equivalently, 

(6) Ji<x) dx • 
= - (area between the graph off and the interval [a, b ]  on the x-axis) . 

Case J The graph off crosses the x-axis. 

Figure 6 shows the area between the graph and the x-axis, while Fig. 7 
shows six subintervals of [a, b] with corresponding rectangles. Then 

A ,  

a. -x., 
"' dx1 

2,f(x) dx = f(x 1 ) dx 1  + /(x2) dx2 + f(xs) dxs + /(x4) dx4 

1'� 

>< ,. 
d-x.,_ 

+ f (x5) dx5 + /(x&) dx& 

= A 1 + A2 - As - A4 + A5 + A& 
(because /(xs) and f(x4) are negative) 

= I - II + I I I  (approximately) . 

F/0 . 6  

?' q  

"" 
dY.3 ( > �  

11-t.,,. d�, 

F/ 6 . 7 

A, 

-x, b 

< 4-x.t, 
➔ 

> 
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On passing to the limit, we have 

(7) {J(x) dx = area I - area I I  + area I I I  • (exactly) . 

In  all cases, remember that areas are positive but integrals can be 
negative if more area is captured below the x-axis than above the x-axis. The 
single rule covering all cases is 

(8) f i<x) dx = area above the x-axis - area below the x-axis . • 

Example 2 Suppose the problem is to compute the area of the shaded 
region in Fig. 6.  The answer is not f: f(x) dx since the integral is 
I - II + I I I  and we want I + II + I I I .  Instead, find the points c and d 
where the graph of/ crosses the x-axis. Then 

I + II + I I I  = fJ(x) dx - {t(x) dx + Ji(x) dx .  
• C d 

Warning Area I I  in Fig. 6 is not negative (areas are never negative) . It is 
the integral f: J(x) dx that is negative, not the area. 

Example 3 The graph of sin x on the interval [O ,  2 11'] ( Fig. 8 of  
Section l .3) determines a s  much area above the x-axis a s  below, so  by  (8), 
fo" sin xdx = 0. 

Some properties of the integral The graph of/ + g is found by building 
the graph of g on top of the graph off (Section 1 .  7), so the area deter­
mined by the graph of/ + g is the sum of the areas determined by the 
graphs off and g. Therefore 

(9) 
b 

b 

f

b f [/(x) + g(x)] dx = f f(x) dx + g (x) dx .  . . . 
The graph of 6/(x) is 6 times as tall as the graph of/. Therefore the area 
captured is 6 times as large, and /! 6/(x) dx = 6 fU(x) dx. In general, 

( 10) fb 
b 

kf(x) dx = k f f(x) dx • • where k is a constant . 

Finally, if a < b < c, then the area between a and b plus the area 
between b and c equals the area between a and c, so 

( 1 1 )  J.i(x) dx + ft(x) dx = [t(x) dx .  

Dummy variables Although we don't have the techniques to compute its 
value yet, fix ' dx is a number, without the variable x appearing anywhere in 
the answer. We can just as well write fo t 5 dt, f3 z ' dz or Jg a 5 da. The letter x 
(or t, or z or a) is called a dummy variable because it is entirely arbitrary. I f  
Jgx ' dx were 4 ,  then Jg b ' db would also be  4 .  In general , f! /(x) dx = f! f(t ) dt = J! f(u) du, and so on. (Equivalently, the horizontal axis may be 
named an x-axis or a t-axis or a u-axis.)  
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Mathematical models How do we know that J! /(x ) dx computes the area in Fig. 4 exactl:,1 We don't! There is a philosophical point involved here. Most non-mathematicians agree that area is a measure of how spacious a region is, but do not give a precise definition of area. They believe that the integral can be used to compute area because they visualize adding many rectangular areas, with the limit process wiping out overlap and underlap. Most mathematicians on the other hand define the area in Fig. 4 to be 
J! /(x )  dx. In a sense, this just begs the question because it is still up to the non-mathematician to decide whether the definition really captures physi­cal spaciousness. In general, mathematics is used to make models. The integral J! /(x )  dx is the mathematical model for the area in Fig. 4, just as 1/ 'Cx>I is the model for the speed of a car traveling to position /(x) at time x. It can never be proved that the mathematical model completely mirrors the physical idea, and neither can the connection be defined into existence. It is ultimately the responsibility of those who work with physical concepts to decide whether they approve of the mathematical models offered them. The models in this text (for area, volume, slope, speed, average value, tangent line and so on ) have endured for centuries. Their "exactness" cannot be proved. The best we can do is demonstrate their reasonableness and cite their wide acceptance. 
Problems for Section 5.2 

I. Use areas to compute the integral. 

(a) f
1 
6 dx  (b) f. xdx (c) [ x 3 dx 

2. Use integrals to express the area between the graph of y = In x and the 
x-axis for 

1 1 
(a) 1 s x s 5 (b) 2 s x s I (c) 3 s x s 7 

S. Decide which is the larger of each pair of integrals. 

(a) fx2 dx, f
.
x2 dx (b) fx 3 dx, f/ dx (c) f

.
x 3 dx, [x 3 dx 

4. Decide if the integral is positive, negative or zero. 

(a) f
"" 

cos x dx  (b) f" cos2x dx  

5. True o r  false? 

(a) l f/(x) < 0 for all x in [a, b] then J! /(x) dx < 0. 
(b) If J! /(x) dx < 0 then /(x) < 0 for all x in [a, b]. 
(c) lf/(x) s g(x) for x in [a , b] then J! /(x) dx s J! g(x) dx. 

6. (a) Use area to show that fo" sin2x dx  = J�• cos2x dx. (b) Use part (a) and 
the identity sin2x + cos2x == 1 to show that fo" sin2x dx  = 1r. 

7. Let A 1 = J! /(x) dx. 

(a) Consider area and translation to decide which of the following is equal 
to A 1 : A2 = J!:� /(x) dx, As = J!'!V(x + 3) dx, A, = J!:i /(x - 3) dx. 

(b) Let A5 = J� /(2x) dx. Use area and expansion/contraction to find the con­
nection between A I and A5 • 
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FIG . I 

8, If f! 4x ' dx  = 10, find (a) f! 4t ' dt (b) f! x ' dx. 
9. Express with an integral the area of a circle of radious R (begin with a 

semicircle and then double). 

5.3 The Fundamental Theorem of Calculus 

So far, we have no general method for evaluating an arbitrary integral 
J! f(x) dx. The Fundamental Theorem will provide a nice way to compute 
the integral, provided that f can be antidifferentiated. The theorem says 
that to find J! f(x) dx, first find an antiderivative F off. Then evaluate F at 
x = b and at x = a, and subtract F(a) from F(b) . The result is the value of 
the integral. We will first state the theorem formally, do some examples, and 
then discuss informally why the method works. 

Fundamental Theorem If f is continuous on [a, b] and F is an antiderivative 
off then 

( I ) ff(x) dx = F(b) - F(a). 
0 

For example, the function In x is an antiderivative of l /x, so 

f 2 

_!_ dx = In 2 - In I = In 2 - 0 = In 2 . 
I X 

The computation F(b) - F (a) is often denoted by F (x) I!; the symbol I� 
declares the intention of substituting b and a, and subtracting. 

Example I We expect f8 x dx to be the area in Fig. 1 , namely ½ ·  3 · 3 = 
9/2 ; indeed , 

f'x dx  = _!_x 2 I ' = � - o = � -0 2 0 2 2 

Using a different antiderivative Suppose we use ½x 2 + 7 as an anti­
derivative of x in Example I ,  instead of ½x 2 • Then we find that 

f x dx  = ( � x2 + 7) 1 : = (: + 7) - (0 + 7) = : . 

Notice that the 7 eventually canceled out. Any antiderivative of x is accept­
able, and all produce the same final value for the integral. Thus, we might 
as well use the simplest possible antiderivative, ½x 2 • 

Example 2 Example I of the preceding section used Riemann sums for 
fl l /x2 dx to estimate that the integral is near .5. An antiderivative of l /x 2 

is - l /x, so by the Fundamental Theorem, 

f2 � dx = _ _!_ 1 2 
= - _!_ - ( - I ) = _!_ .  

I X  X I 2 2 
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Example 3 Find r 2 ..!_ dx. -s X 

Solution: J-2 ..!.. dx = lnlxl 1:1 = ln 2 - ln 3 = ln i .  Note that while 
-S X In x is an antiderivative for 1/x if x > 0, it is useless in a situation in which 

x < 0. To integrate 1/x on [-3, - 2], use the antiderivative lnlxl . The integral of a constant function Consider J! 6 dx. The integral com­putes the area of a rectangle with base b - a and height 6 (Fig. 2 ) so the integral is 6(b - a). As another approach, J! 6 dx  = 6x l! = 6b - 6a = 
6(b - a). In general, if /c is a constant then 
(2) 

a 
<. 

I f.,.i. = i (b -
•> - I 

b 

b - a. 
F I G .  1 

The integral of the zero function If /(x) = 0, then the area between the graph off and the x-axis is 0, since the graph off is the x-axis. Thus 
(3) 

As another approach, every Riemann sum J f (x) dx is O because each value off is 0, so the integral must be 0. As still another approach, any constant function C is an antiderivative of the zero function, so J! 0 dx = C I!. Since the constant function C remains C no matter what value, a or b, is substi­tuted for the absent x, the integral is C - C, or 0. 
Informal proof of the Fundamental Theorem Since F is an antiderivative of/, we may rewrite ( I )  as 
( I ' ) r F' (x) dx = F(b) - F (a) . • We wish to show why ( I ' )  holds. To evaluate the integral, divide [a, b] into many subintervals. Figure 3 shows a typical subinterval with length dx, containing point x, where we assume dx ...,. 0. Then, by definition, 
(4) [F'(x) dx = L F'(x) dx . • From ( I ') of Section 4.8, each F' (x) dx is the change dF in the function F as 
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rorAL c.HANC,G- ,� F(b )- r(C1.) 

(l b 

Fl 6 . 3  
x changes by dx. Therefore 
(5 ) 2,F' (x) dx = 2, dF . 
But the sum, 2 dF, of all the changes in F as x changes little by little from a to b is the total change F (b) - F(a) (Fig. 3 again) ;  that is, 
(6) 2, dF = F (b) - F (a) . 
Therefore, by (4)-(6) , J: F ' (x) dx = F(b) - F (a) ,  as desired. 
Example 4 Find the average value of x 3 on the interval [O, 3]. Solution: 

f3 x3 dx x• 1 3  
0 4 0 27 average x 3 = -- = - = -3 - 0 3 4 

Example 5 Find the area indicated in Fig. 4. 

-3 

F I G . Lt-
First solution: The curve crosses the x-axis at v'3. The region is below the x-axis, so 

area = - r'3(x2 - 3) dx = - (� - 3x) C = - (v'3 - 3v'3 ) = 2V3 . 
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-3 

Flb. S 
Second solution: Turn Fig. 4 sideways to get Fig. 5, and consider the vertical axis to be the x-axis and the horizontal axis to be the y-axis. From this point of view, the region is above the horizontal axis, between y = -3 and y = 0, and under the graph of the function x = Vy+3. (The lower, irrelevant, portion of the parabola is x = -v,+3 .) Thus 
Jo 2 l o 2 2 area = v,+3 dy = - ( y + 3)312 = - (3)312 - 0 = - 3Y3 = 2Y3. 

-5 3 -5 3 3 
The interval of integration is still named ( - 3, OJ even though the y-axis is drawn so that y increases from right to left, and we use J!5 as usual, not J05• (In fact if you view Fig. 5 from behind the page, the horiwntal axis is still the y-axis, but now y increases in the usual manner from left to right.) 
The integral of a function with several formulas Suppose lx 2 

/(x) = 2x + 3 17 - X 
if X :S 3 if 3 < x < 7 if X 2: 7 .  

To find say JA0 /(x) dx, use ( 1 1 )  of the preceding section: 
Jw 

I
s 1 w f(x) dx = x2 dx + J. (2x + 3) dx + ( ( 17 - x) dx 

0 0 5 J, 
= �5

, :  + (x2 + 3x> I : + ( 11x - �2) 1 :0 
= 9 + 52 + 25.5 
= 86.5 . 

Example 6 Find J�2 elxl dx. 
Solution: Since for X 2: 0 for X < 0 ,  
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we have 

f
3 0 f3 

elx1 dx = f e -• dx  + e' dx 
- 2  -2  0 

= - e -• l
o 

+ e• l
3 

-2 0 

= - 1  + e 2 + e 3 
-

= - 2  + e 2 + e 3 . 

Definite versus indefinite integrals So far the symbol f has been used in 
two ways. First, J! f(x) dx is an integral, defined as the limit of the Riemann 
sums "i,f(x) dx. In this context, dx stands for the length of a typical sub­
interval of [a, b]. Second, f f(x) dx is the collection of all antiderivatives 
of /(x) . In this context, the symbol dx is an instruction to antidifferentiate 
with respect to the variable x. The symbol f is used in J! f (x) dx because it 
signifies summation. The same symbol is used for antidifferentiation be­
cause one of the methods of computing an integral (using the Fundamental 
Theorem) begins with antidifferentiation. 

Frequently, both J! f (x) dx and ff (x) dx are referred to as integrals; in 
particular, f! f (x) dx is called a definite integral and ff (x) dx an indefinite integral. We will usually continue to call the former an integral and the latter 
an antiderivative. No matter which terminology you encounter, it will 
always be true, for example, that f 3x 2 dx = x' + C while n 3x 2 dx = 19 .  

Problems for Section 5.3 

In Problems 1-2 1 , evaluate the integral. 

I .  f. (6x 2 - 3x + 2) dx 12.  t 4 dx 

2. r (3 - t ) dt 13. Jw" sec2x dx 
I 0 

3. f (3x 5 
- 2x 2) dx 

r/2 4. sin 2x dx 
w/3 

r I 5. --2 dx 
(J I + X 

rl 
6. 

0 
sin 1rx dx 

7. r .I. dx , x  

f l  8' 2 6x 3 dx 

9. f 3Vx dx 

10. f � dx 

f l I I . 3 2x + l dx 

14. f dx 

r 15. - I  (x
3 + 2)2 dx 

f (½x + 
7
)
' 16. 2 4 dx 

r (X + 3
) '  17. -- dx 

- I  5 

r• l 18. 3 dx 
_, X 

r I 19. _3
5 cos 2 1rx dx 

r I 20. 2 (2x - 9)3 dx
 

21 . r e 3
' dx 

0 
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22. Find the area of the triangle with vertices A = (0 ,  0), B 
(a) using a geometric formula and (b) using an integral. 

%3. Find the average value of sin x on [O, 11'] . 

%4. Find (a) f x' dx and (b) f x' dx. 

25. Find f J(x) dx where f (x) = 1� 
2 

x' 

26. Find r 14 - xi dx. 

if 2 S x S 3 
if 3 < X S 4 .  
if X > 4 

27. Find the areas indicated in (a) Fig. 6 (b) Fig. 7 .  

F/6 .  6 

F 1 0 . 7 

5.4 Numerical Integration 

= (4, 2), C = (6, 0) 

y:= x.(x.-J.)(x-4) 

The evaluation of f! J(x) dx using F (�) - F(a) seems very simple, but it is often very difficult, and sometimes impossible, to find an (elementary) antiderivative F. In such a case, it may be possible to approximate the integral, a procedure called numerical integration. A variety of numerical integration routines exist, each involving much arithmetic, preferably to be done on a calculator or a computer. In fact, some calculators have a button labeled "numerical integration." In order to program the calculator in the first place, a background in numerical analysis is required. This section is a brief introduction. 
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One way to estimate J! /(x) dx is to use a specific Riemann sum l: /(x) dx, instead of the limit of the Riemann sums. In other words, we can estimate the area under a curve using a sum of areas of rectangles such as those in Fig. l .  (This was actually done by the computer program in (2 ) of Section 5 .2 . )  The error in the approximation arises from the underlap and overlap created when a horizontal line is used as a substitute "top" instead of the graph off itself. Frequently, a large number of very thin rectangles is required to force the error down to a reasonable size. There are other numerical methods which require fewer subintervals and are said to converge more rapidly. Figure 2 shows chords serving as tops, creating trapezoids. The sum of the areas of the trapezoids is an approximation to J! f (x) dx; it is expected to converge faster than a sum of rectangles because the trapezoids seem to fit with less underlap and overlap than the rectangles. 

flC, . I 

1-o= 0- 7l ,  
(. ➔ 

h-o. -
� 

FI G. s 
There is yet another top that usually fits even better than a chord. Figure 3 shows 8 subdivisions of [a, b], of the same width. The parabola determined by the points P0 , P. , P2 on the graph off can serve as a top for the first two subintervals, creating area I. Similarly, we use the parabola 
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determined by P2, P3 , P4 on the graph off as a top for the next two sub­intervals, forming area II, and so on. The sum of the areas I, II, I l l  and IV approximates the area under the graph of /(x), and thus is an approxi­mation to J! /(x) dx. The approximation using parabolas is viewed by many as the best numerical method within the context of elementary calculus, so we will continue with Fig. 3 and develop the formula for the sum of the areas I, II, I l l  and IV. As a first step we will derive the formula 
1 ( 1 )  area = 3h (Yo + Y2 + 4Y1 ) 

for the area of the parabola-topped region with the three "heights" Y0, Y. , Y2 , and two "bases" of length h shown in Fig. 4. The second step will apply the formula to the regions I, II, III and IV in Fig. 3. To derive ( 1 ) ,  insert axes in Fig. 4 in a convenient manner; one possibility is shown in Fig. 5. The parabola has an equation of the form y = Ax 2 + Bx + C, so the area in Fig. 5 is 

(2 ) 

I. 1 1 , .  (Ax2 + Bx  + C ) dx = -Ax' + -Bx2 + Cx 
-• 3 2 -• 

= .!_Ah' + 2Ch 3 

= ! h (2Ah 2 + 6C ) . 

p Q_ 
Ya Y. 

- J...,  
FIG . 4- F 1 0 . 5  

\ 
h. 

The points P = (-h, Yo) ,  Q = (0,  Y1 ) ,  R = (h, Y2) lie on the parabola, and substituting these coordinates into the equation of the parabola gives (3) Ah2 - Bh + C = Yo , C = Y1 , Ah 2 + Bh + C = Y2 • From (3), Yo + Y2 = 2Ah2 + 2C and Y1 = C, so the factor 2Ah 2 + 6C in (2) is Yo + Y2 + 4Y. ,  and ( 1 )  follows. Now apply ( 1 )  to I, II, III and IV in Fig. 3. Since the interval [a, b] is divided into 8 equal subdivisions, h = (b - a)/8 and · 



154 · 5/The Integral Part I 

I I I + I I  + I I I  + I V = 3 h (yo + Y2 + 4y1 ) + 3 h (y2 + J4 + 4y, ) 
I I 

+ 3 h (y. + J6 + 4y; ) + 3 h ( y6 + Ys + 4y1 ) 
I = 3 h (yo + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 

+ 2y6 + 4y1 + Js ) . 
More generally, using n subintervals where n is even, 
(4) 

where 

(5 )  

fb I /Cx) dx = 3 h (yo + 4y1 + 2y2 + 4y, + 2y4 

+ • ' '  + 2Jn-2 + 4Jn- l + Jn ) 
b - a h = -­n ' Yo = f(xo ) = [(a ) Yi = f(x1 ) = [(a + h ) Y2 = f(x2 ) = f(a + 2h) y, = f(x, ) = f(a + 3h ) 

and so on. The approximation in (4) is known as Simpson's rule. 
As an example , we will use Simpson's rule with 6 subintervals to ap­

proximate Jli e•2 dx. We have 

Then, 

and 

b - a I f(x) = e•2, a = 0 ,  b = 1 ,  h = -n- = 6 . 
Xo = 0 Yo = f(xo ) = I I Y i = f(x1 ) = l .028 1 672 X 1  = 6 

2 Y2 = f(x2 ) = 1 . 1 1 75 1 9 1 X2 = 6 
3 y3 = f(x, ) = 1 .2840254 X3 

= 6 
4 

J4 = f(x4 ) = 1 . 5596235 
X4 = 6 

5 y5 = f(xs )  = 2 .0025962 X5 = 6 
X5 = l Y6 = f(xG ) = 2 .7 1 828 1 8  

I 3 h (yo + 4y1 + 2y2 + 4y, + 2y4 + 4y5 + y6 ) = 1 .4628735 . 

Therefore, fli e•2 dx is approximately 1 .4628735. 
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It  is not easy to find an error estimate for Simpson's rule, that is, to 
decide how many accurate decimal places the approximation contains. The 
following procedure is often used instead. To find an approximation to 
four decimal places, use Simpson's method repeatedly, doubling the value 
of n each time, obtaining successive approximations S2 , S4 , S8 , S 16, S,2 , • • • 
When two successive approximations agree to five decimal places, choose 
the first four rounded places as the approximation. The accuracy of the 
four decimal places is not guaranteed, but experience shows that if approxi­
mations converge rapidly, then when two successive approximations are 
near each other, they are also near the limit. Therefore, computer users 
who adopt this rule of thumb have reason to hope for four place accuracy. 

Problems for Section 5.4 

1. Approximate the integral using Simpson's rule with the given number of 
subintervals. 

(a) f v'f"'+'7 dx, n = 4 

(b) f ln ( l  + x1) dx, n = 6 

J2 1 (c) -1 --9 dx, n = 8 
I + X  

(d) f t _ _. dx, n = 6 

2. Approximate f-; dx using Simpson's rule with n = 4, and compare with 
the exact answer. 1 x 

5.5 Nonintegrable Functions 

So far we have ignored the possibility that a function might not have 
an integral, and concentrated on the methods that will compute the integral 
if it exists. This section will display two nonintegrable functions to give 
more insight into the definition of the integral. 

Example 1 To understand our first nonintegrable function you must 
know the difference between rational and irrational numbers, and how 
they are distributed on a line. The rational numbers are the decimals 
that either stop or eventually repeat, such as 2 .5 ,  0 .33333 . . .  , 3 . 14 ,  
4 .78626767676767 . . . .  All other decimals are called irrational. For ex­
ample, 2 . 123456789 10 1 1 12 13 14 1 5 16 17 18 19202 1222324 . . .  (which has a 
pattern but doesn't repeat) is irrational ; so are 1r, V2 and e. On the number 
line, the rationals and irrationals are so thoroughly interspersed that there 
are no solid intervals of rationals and no solid intervals of irrationals ;  in any 
interval there are both rationals and irrationals. We can demonstrate this 
with the interval (4.2,  4.3) .  The rational number 4.25 is in the interval , and 
so is the irrational number 4 .256789 10 1 1 12 13 14 1 5 16 17 18 19 . . . .  Thus the 
interval is neither entirely rational nor entirely irrational. 

Now we are ready to define a nonintegrable function. Let 

( 1 ) f(x) = {� 
if x i s  rational 
if x is irrational . 

Consider two people trying to compute H /(x) dx. Each divides [2, 5] 
into many small subintervals (as in Fig. I of Section 5.2) .  Each picks values 
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of x in the subintervals, but she chooses rationals and he chooses irrationals. Her f(x1 ),f(x2) , • • • are all 0, so her Riemann sum "2: f(x) dx is 0. His [(xi ) ,  /(x2) , • • • are all l , so  his Riemann sum is  I dx,  which i s  3, the length of the interval. They repeat the process with smaller subintervals, but if she keeps picking rationals and he keeps picking irrationals , they again get "2: f(x) dx = 0 and "2: f(x) dx = 3, respectively. Since their Riemann sums continue to disagree drastically, lim,t, .0 }: f(x) dx does not exist, and the function is not integrable on [2 ,  5] ,  or on any other interval for that matter. It is the extreme discontinuity of the function in ( l ) that causes it to be nonintegrable. In fact, the function is discontinuous everywhere. I f  we try to draw the graph off, you will see this. We can plot many points on the graph, for instance, ( 2 ,  0), ( 2 .6, 0), (4 . 1 ,  0), (e, l ) ,  ( 1r, 1 ) ,  and so on. All points of the graph are either at height O or height l . But no part of the graph is a solid line at height l or at height O because no interval on the x-axis is solidly rational or solidly irrational. So no portion of the graph can be drawn without lifting the pencil from the paper (and the complete graph is humanly impossible to draw) .  
Example 2 Letf(x) = 1 /Vx. Consider two people trying to find }A J(x) dx by computing }: /(x) dx. Suppose they begin by dividing [O, I ]  into 100 subintervals of equal length, so that each dx is 1/ 100 ( Fig. 1 ) .  Then they must choose values of x in the subintervals. If their Riemann sums disagree, and continue to disagree as more and more subintervals of smaller size are used, then f is not integrable on [O, I ] . The greatest opportunity for dis­agreement comes from the first subinterval, where / varies enormously. The product f (x) dx corresponding to the first subinterval is of the form "large x small" and its value depends on "how large" and "how small ." Suppose he picks x = 1 /  100 at the right end of the first subinterval and she picks x = 1 / 1004 near the left end. Then 
while 

. ( l ) l l l h1s f(x1 ) dx 1 = f 100 100 = 10 • 100 = 10 
( I ) l 2 I her f(x1 ) dx1 = f 1004 lOO = 100 · JOO = 100 . 
I 

"0f 

' I 
ioo'i Too 

-1--1--+-----+--- • • •  
�6J;: -, HI.S

)(.. " I  I 

F IG .  I 
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If they use 10 ,000 subintervals and he picks x = 1/ 10,000 at the right end of the first subinterval while she picks x = 1/ 10,0004 near the left end, then 

while 
. ) 1 )  l l l his /(x .) dx i = l \ 10 ,000 10 ,000 = lOO • 10 ,000 = 100 

j l ) l I her f(x,) dx, = l \ 10 ,0004 10 ,000 = 10 ,0002 . 10 ,000 = 10,000 . 
Their values of/(x 1 ) dx 1 grow more unlike (hers becomes large, his becomes small) as dx -+ 0 . This predicts that their entire Riemann sums will also grow more unlike (in fact it can be shown that hers will approach 00 and his will approach 2), indicating that/ is not integrable on (0, 1 ] . It is the infinite discontinuity of the function 1 /Vx at x = 0 that causes it to be nonintegrable. The next section will define a new integral to handle unbounded functions. 
5.6 Improper Integrals 

The definition of J!/(x) dx involves dividing [a, b] into many small subintervals, and finding Riemann sums I /(x) dx. The definition does not apply to intervals of the form [a, 00), (-00, bJ and (-00, 00) because it isn't possible to divide infinite intervals into a finite number of small subintervals. Furthermore, with this definition of J!/(x) dx, it can be shown that func­tions with infinite discontinuities are not integrable; one of the difficulties that can arise is illustrated in Example 2 of the preceding section. New integrals, called improper integrals, will be defined to cover the cases of infinite intervals and infinite functions. 
Integrating on intervals of the form [a, 00) and (-00 , b] As an illustration, we define 

[ l J' I - dx = lim - dx .  
I JC 6 •" I JC In other words, to integrate on [ l , 00) ,  integrate from JC = 1 to JC = b and then let b approach 00, Therefore 

J .. ..!. dx = lim{ln JC I ' ) = lim(ln b - In 1 ) = 00 - O = 00 .  
I X 6 •m: I 6•a 

We interpret this geometrically to mean that the area of the unbounded region in Fig. 1 is infinite. As a convenient shorthand, we write 
( 1 ) f"..!. dx = ln JC I " = In 00 - In I = 00 - O = 00 .  

I JC I In general, 
[f(JC) dx = lim r/(JC) dx 

• 6 •» J. 
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-z. 

Fl 0 . 2. 

and 

F IG . I  

b 

f

b f_J(x) dx = !!� _J(x) dx .  

I n  abbreviated notation, if F is an antiderivative for f then 

(2) {t(x) dx = F (x) [ and f
./(x) dx = F (x) [

,. . 

Convergence versus divergence Evaluating an improper integral will 
always involve computing an ordinary integral and a limit. If the limit is 
finite, then the improper integral is said to be convergent. If the limit is oc or 
-00, or if no value at all, either finite or infinite, can be assigned to the limit, 
the integral diverges. For example, the integral in ( I )  is divergent; in particu­
lar, it diverges to oc. 

f- 2 I I 1 -2 I I I I Example I - dx = - - = - + - = - + 0 = - . _., x 2 x _,. 2 -oc 2 2 
The integral converges to ½ and the unbounded region in Fig. 2 is consid­
ered to have area ½. 

The unbounded regions in Figs. 1 and 2 look similar, but the former 
has finite area and the latter has infinite area. The function x 2 has a h igher 
order of magnitude than x, the graph of l /x 2 approaches the x-axis faster 
than the graph of 1 /x, and the region in Fig. 2 narrows down fast enough 
to have a finite area. 

Integrating on the interval ( -00 ,  00)  The usual definition is 

(3 ) f.
J

(x) dx = l!� f J(x) dx . .... 
This is the first appearance of a limit involving two independent variables, 
a and b in this case. When we say that the limit in (3) is L we mean that we 
can force J! /(x) dx to be as close as we like to L for all b sufficiently high and 
all a sufficiently low. 

(4) 

In abbreviated notation, if F is an antiderivative for f, then 

(/<x) dx = F (x) [ ,, 
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provided that the right-hand side is not of the form oo - 00 • If it is of the 
form co - oo we assign no value at all (an instance of divergence). 

For example, 

f"' -1-
2 dx = tan- 1x I "' = .!!.. - (-.!!..) = 1T .  

_,,, I + x _,, 2 2 

As an example of (4) which results in the form oo - oo, consider 

f,. x 3 th = x
4
4 [

,. = oo - oo 

No specific value can be assigned since as a .....+ -oo and b .....+ 00, the value of 
¼x4 I !  = ¼b 4 - ¼a 4 depends on how fast a and b move. Therefore the integral 
is simply called divergent. 

Integrating functions which blow up at the end of the interval of 
integration The function l /x2 blows up at x = 0. To integrate on an 
interval such as [0 , 1 )  we define 

fl 1 fl l 
2 dx = lim 2 dx . 

o X a --o+ a X 

Then 

(5) 

I 
1

-; dx = _ _!_ I ' = - 1  + 
0

1
+ = - 1 + 00 = 00 . 

o X X o+ 

In general, let F be an antiderivative off 

If/ blows up at x = a then fJ(x) dx = F (x) 1 : + . 

If/ blows up at x = b then f.J(x) th = F (x) C 
Example 2 The function 1 /Vx has an infinite discontinuity at 

x 
= 0 ;  

Example 2 in the preceding section showed that it i s  not integrable on [0 ,  l ]  
using the definition of the integral from Section 5 .2 .  But reconsidered as  an 
improper integral, 

J I l I '  • , dx = 2Yx = 2 . 
0 V X O+ 

f
3 

l 
Example 3 Find 

2 
(
3 

_ 
x)2 dx. 

Solution: The integral is improper because the integrand blows up at 
x = 3 . Then 

f s I 
dx -- -· 1 , 3- -- - -

2 (3 - x)2 3 - x 2 O +  
l = oo - l = oo . 

Note that when the blowup is located at 3, and 3 is the upper limit of 
integration, it is treated as 3 - in the calculation. If 3 were the lower limit of 
integration, it would be treated as 3 +  in the calculation . 
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Warning Whenever a limit of the form l /0 arises in the computation, look closely to see if it is l /0+ or 1/0 - .  
Integrating functions which blow up within the interval of integration Suppose f blows up at c between a and b. If F is an antiderivative off, we define J! f (x) dx by 
(6) J.i(x) dx = r-f(x) dx + (t(x) dx = F(x) i :- + F(x) 1 :+ . 
As before, if (6 ) results in the form oc - oc, no finite or infinite value is assigned (an instance of divergence ). For example, the function l /x4 blows up at x = 0, inside the interval (- 1 , 3] ,  so 

I3 I - l 1 o
- - 1

1
3 

- dx = - + -
- 1  x4 3x' - 1  3x3 o+ 

- I 1 1 - I  I I = - - - - - - - = oc - - - - + oc = oo 0- 3 8 1  0+ 3 8 1  The improper integral diverges to oc. 
Warning It is not correct to write f 3 � dx = - 3\ 1 3 , and, in general, if 

- I X X - I f blows up inside [a, b], it is not correct to write f! f(x) dx = F(x) I!. You must use (6 ) instead. 
J1 I Example 4 Find 

4 (x _ 5 )3 dx. 

Solution: The integrand blows up at x = 5, inside the interval [ 4, 7 ] .  So 
I 1 l - 1  1 5- - 1  1 7 - l 1 - 1 - 1 

4 (x - 5 )3 dx = 2(x - 5 )2 
4 

+ 2(x - 5 )2 
5 + 

= O+ + 2 + 8 - O+ · This results in the form -oc + oo so the integral diverges. Problems for Section 5.6 
f. l l .  -; dx 

3 X 

fx I 2. 
2 � 

dx 
J-2 I 

3. -; dx  
-� X 

f5 I 
9 -- dx 

· 2 � 

10. f3 � dx 
-2 X 

f· 1 1 1 . - dx  
o X 12. r sin xdx 

1 3 .  r. e -1,I dx 

14. J:12 tan xdx given F (x) = -In cos x 
I• l . I ( x _ 1 ) 

1 5. 2 2 dx given F(x) = -2 -2--1 + tan x 
-• (x + I ) x + 

1 6. { In xdx given F(x) = x In x - x 
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REVIEW PROBLEMS FOR CHAPTER 5 

1 .  

(a) ( ,:6 th 

(b) J1 
.; dx 

- 1 .x 

J. 1 (c) 6 dx 
1 .X  

(d) f (.x 1 + 3) dx 

(e) f'v3.x + 4 dx 

(0 I: t -'" dx 

f.. 1 (g) 
0 

cos 2.x dx  

(h) f 3 dx  

(i) J' , -i.t dx  
- I Jo (2.x + 5)5 

(j) - 1  4 dx 

(k) J,
1

-2 
4 

dx 
0 - .x 

J l7 

(l) dx 

2. Let /(.x) be the function in Fig. 1 .  Find fg /(.x) dx (a) using areas and 
(b) using the Fundamental Theorem. 

C 

Fl6 . I 
5. Use Simpson's rule to approximate Ji � dx using 6 subintervals. 
4. Let I = J! l/(.x)l dx  and ll == IJ! /(.x) dxl , Which is larger, I or l l?  
5. Find the average value of 1 /.x on the interval [ 1 . e]. 
6. Find the area in Fig. 2 .  

\ 
FIG . A 

7. Odd and even functions were defined in Problem 8 of Section 1 .2 .  (a) If/ 
is odd, find J�, /(.x) dx. (b) If/ is even, compare J!., f(.x) dx and J� /(.x) dx. 
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6. 1 Further Applications of the Integral 

Section 5.2 included applications to area and average values. This sec­tion continues with integral models for many more physical concepts, and the problems will ask you to construct your own models in new situations. It is time-consuming material because the examples and problems are quite varied. On the other hand, it is precisely the wide scope of the applications that makes the material so important. After a while, you will get a feeling for the type of problem that leads to an integral, namely, one that is solved with a sum of the form I/(x) dx. 
Example 1 The volume formula "base x height" applies to a cylinder and a box, but not to a cone, pyramid or sphere. To understand why not, consider the full implications of the "base" in the formula. l t  does not mean the bottom of the solid; instead it refers to the constant cross-sectional area (Fig. 1 ) .  The formula really says ( l )  volume = cross-sectional area x height , provided that the solid has constant cross-sectional area. 

FIG . \ Consider a cone with radius R and height h. Geometry books declare its volume to be i'ITR 2h, and the problem is to derive this volume formula using calculus. Formula ( 1) does not apply directly because the cone does not have constant cross sections. To get around this difficulty, divide the cone into thin slabs. With the number line in Fig. 2, a typical slab is located around position x and has thickness dx. The significance of the slab is that its cross-sectional area is almost constant. The lower part has smaller radius than the upper part, but the slab is so thin that we take its radius throughout 
163 
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Fr0 . 2. 
to be the radius at position x. By similar triangles, slab radius R = -X h 

slab radius = �x . 

t
o 

Thus the slab has cross-sectional area 1r(�xy and height dx, so, by ( l ) , 
volume dV of the slab = 1r(�x) 2 dx .  This is only the approximate volume of the slab, but the approximation improves as dx _. 0. We want to add the volumes dV to find the total volume of the cone, and use thinner slabs (i.e. , let dx _. 0) to remove the error in the approximation. The integral will do both of these things. We integrate from O to h because the slabs begin at x = 0 and end at x = h. Thus 
f,, (R )2 1rR 2 fh 1rR 2 x 3 \ h } cone volume = 

0 
1r hx dx = -- x2 dx = -- - = - 1rR 2h h 2 o h 2 3 o 3 ' the desired formula. 

Example 2 A flag pole painting company charges customers by the formula cost in dollars = h 21 (Fig. 3) where h is the height (in meters) of the flagpole above the street and l is the length of the pole. If the pole in Fig. 3 is 4 meters above the ground and 2 meters long, then the paint job costs $32.t 
tThe units on  h 2/ are (meters)', so  to  make the  units on each side of  the  formula agree, 

it is understood that the right-hand side contains the factor I dollar/(meter)'. I t  is common 
in physics for formulas to contain constants in this manner for the purpose of making the 
units match. 
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Now consider the cost of painting the pole in Fig. 4 . Its length is 
10 meters, but the formula h 2l can't be used directly because the pole is not 
at one fixed height above the ground. To get around this, divide the pole 
into pieces. With the number line in Fig. 4(a) , a typical piece has length dx 
and is small enough to be considered (almost) all at height x. Use the 
formula h 2l to find that the cost of painting the small piece, called dcost to 
emphasize its smallness, is x2 dx. Then use the integral to add the dcosts 
and obtain 

(2 )  
3 0  

J

30 

total cost = f dcost = x 2 dx. 
20 20 

(The integration process includes not only a summation but also a limit as 
dx approaches 0, which removes the error caused by the "almost ." ) The 
interval of integration is [20, 30] because that's where the flagpole is located. 
If  you incorrectly integrate from 0 to 30, then you are paying to have a 
white stripe painted down the front of the house. 

If we compute the integral we get the final answer � [ = 19•�00 

However, (2) is considered to be final enough in this section since the 
emphasis here is on setting up the integral that solves the problem, that is, 
on finding the model. 
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The number line does not have to be labeled as in Fig. 4(a) .  Another 
labeling is shown in Fig. 4(b) .  In this case, the small piece of flagpole has 
height x + 20 and length dx, so dcost = (x + 20)2 dx and the total cost is 
fJ0 (x + 20)2 dx. The integral looks different from (2), but its value is the 
same, namely 19,000/3 .  

Example 3 If a plane region has constant density, then its total mass is 
given by 
(3)  mass = density x area . 

For example, if a region has area 6 square meters and density i kilograms 
per square meter then its total mass is 42 kilograms. 

Consider a rectangular plate with dimensions 2 by 3. Suppose that 
instead of being constant, the density at a point in the plate is equal to the 
distance from the point to the shorter side. The problem is to find the total 
mass of the plate. 

Divide the rectangular region into strips parallel to the shorter side. 
Figure 5 shows a typical strip located around position x on the indicated 
number line, with thickness dx. The significance of the strip is that all its 
points are approximately distance x from the shorter side, so the density 
in the strip may be considered constant, at the value x. The area dA of the 
strip is 2 dx and, by (3), its mass dm is 2x dx. Therefore, total mass = n dm = 
f6 2x dx. 

3 

ll 
0 X. 3 -

dx_ 

Fl& . 5 
The general pattern for applying integrals After three applications in 
this section, perhaps you already sense the pattern. There will be a formula 
(base x height from geometry, h 2[ from our imagination, density x area 
from physics) that applies in a simple situation (constant cross sections, 
heights, densities) to compute a total "thing" (volume, cost, mass). In a more 
complicated situtation (nonconstant cross sections, heights, densities) the 
formula cannot be used directly. However, if a physical entity (the cone, the 
flagpole, the rectangular plate) is divided into pieces, it may be possible to 
apply the formula to the pieces and compute "dthing" (dV, dcost, dmass) . 
The integral is then used to add the dthings and find a total. 

The comment on mathematical models in Section 5.2 still applies. We 
are not proving that the integral actually computes the total ;  the integral is 
just the best mathematical model presently available. 



6. 1 Further Applications of the Integral · 167 

Warning By the physical nature of the particular problems in this section, the simple factor dx should be contained in the expression for d thing; it should not be missing, nor should it appear in a form such as (dx)2 or l /dx. For example, d thing may be x j dx, but should not be x\ or x 3(dx)2. or x 3/dx. The integral is defined to add only terms of the form .f (x) dx. A sum of terms of the form x 3 or x :1(dx)2 or x 3 /dx is not an integral ,  and in particular cannot be computed with f (b) - f (a) .  
Example 4 The charges of a moving company depend on the weight of your household goods and on the distance they must be shipped. Suppose (4) cost = weight x distance , where cost is measured in dollars, weight in pounds and distance in feet. I f  an object weighing 6 pounds i s  moved 5 feet, the company charges $30 (and physicists say that 30 foot pounds of work has been done) .  Suppose a cylindrical tank with radius 5 and height 20 is  half filled with a liquid weighing 2 pounds per cubic foot. Find the cost of pumping the liquid out, that is, of hiring movers to lift the liquid up lo the top of the tank, at which point it spills out. 

Solution: Formula (4) doesn't apply directly because different layers of liquid must move different distances; the top layer moves IO feet but the bottom layer must move 20 feet. Divide the liquid into slabs; a typical slab is shown in Fig. 6, with thickness dx and located around position x on the number line. The significance of the slab is that all of it must be moved up 20 - x feet. The slab has radius 5 and height dx, so its volume dV is 251rd.,.·. Then dweight = 2 pounds/cubic foot x 251rdx cubic feet = 501rdx pounds , and, by (4) , d cost = 501r dx x (20 - x) = 501r(20 - x) dx . Integrate on the interval [0, IO] ,  since that is the extent of the liquid, 
5 
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to obtain 
total cost == f 0dcost == f \o7T(20 - x) dx == 501T( 20x - � x2) I:° 

== 75007T . If a different number line is used, say with O at the top of the cylinder and 20 at the bottom, the integral may look different, but the final answer must be 75007T. 
Example 5 Merry-go-round riders all pay the same price and can sit any­where they like. This is a comparatively unusual policy because most events have different prices for different seats ; seats on the 50-yard line at a football game cost more than seats on the IO-yard line . Obviously, some merry-go-round seats are better than others. Seats right next to the center pole give a terrible ride; the best horses, the most sweeping rides, and the gold ring are all on the outside. The price of a ticket should reflect this and depend on the distance to the pole. Furthermore, the price of a ticket should depend on the mass of the rider (airlines don't measure passengers but they do take the amount of luggage into consideration). Suppose the price charged for a seat on the merry-go-round is given by 
(5 )  price == md 2 

where m is the mass of the customer and d is the distance from the seat to the center pole. ( In physics, md 2 is the moment of inertia of a rotating object.) Consider a solid cylinder with radius R, height h and density 8 mass units per unit volume, revolving around its axis as a center pole (Fig. 7) .  Find the price of the ride. 
Solution: Formula (5) doesn't apply directly because different parts of the cylinder are at different distances from the center pole. Dividing the 
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cylinder into slabs, one of which is shown in Fig. 7, doesn't help because the same difficulty persists-different parts of the slab are at different dis­tances from the center pole. Instead, divide the solid cylinder into cylindri­cal shells. Each shell is like a tin can ,  and the solid cylinder is composed of nested tin cans ;  Fig. 8 shows one of the shells with thickness dx, located around position x on the number line. The advantage of the shell is that all its points may be considered at distance x from the pole. The formula dV = 21rrh dr for the volume of a cylindrical shell with radius r, height h and thickness dr was derived in (9) of Section 4.8. The shell in Fig. 8 has radius x , height h and thickness dx, so dV = 21rxh dx  and d mass = density x volume = 21rxh li dx .  By (5) ,  when the shell is revolved, dprice = 21rxh li dx · x2 = 21rx 3h li dx. Therefore 
JR 

J
R 4 IR } total price = dprice = 21rh li  x 3 dx = 21rh li x4 = -2 1rh liR 4

• 
0 I I  0 Note that the shell area and volume formulas from Section 4.8 are only approximations. But we anticipated that they would be used in integral problems, such as this one, where the thickness dr (or in this case, dx) approaches O as the integral adds. Section 4.8 claimed that under those circumstances, the error in the approximation is squeezed out. 
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FIG . 1  

Example 6 Let's try a reverse example for practice. Usually we conclude 
that ft f(x) dx is a total . Suppose we begin with the "answer": let n f(x) dx be 
the total number of gallons of oil that has flowed out of the spigot at the end 
of the Alaska pipeline between hour 3 and 7. Go backwards and decide 
what was divided into pieces, what dx stands for, and what a term of 
the form /(x) dx represents physically. In general, what does the function 
/(x) represent? Solution: The time interval [3 , 7] was partitioned. A typical dx stands 
for a small amount of time, such as I /  IO of an hour. Since the integral adds 
terms of the form /(x) dx to produce total gallons, one such term represents 
gallons; in particular, one term of the form /(x) dx is the (small) number of 
gallons, more appropriately called dgallons, that has flowed out during the 
dx hours around time x. Since the units of /(x) dx are gallons, and those of 
dx are hours, /(x) itself must stand for gallons/hour, the rate of flow. I f  
/(4 .5 )  = 6 ,  then at time 4 .5 ,  the oil i s  flowing instantaneously at the rate of 
6 gallons per hour. 

Note that in general, the integral of a "rate" (e.g. , gallons per hour) produces a "total." 
Warning In the preceding example, a term of the form /(x) dx represents 
the dgallons of oil flowing out during a time interval of duration dx hours 
around time x, not oil flowing out at time x. It is impossible for a positive 
amount of oil to pour out at an instant. Furthermore, if /(4 .5) = 6 then it 
is not the case that 6 gallons flow out at time 4.5; rather, at this instant, the 
flow is 6 gallons per hour. 
Problems for Section 6. 1 (The aim of the section was to demonstrate how to produce integral models for physical situations. In the solutions we usually set up the integrals and then scop without computing their values. ) I . I f  an 8-centimeter wire has a constant density of 9 grams per centimeter then its total mass is 72 grams. Suppose that instead of being constant , the density at a point along the wire is the cube of its distance to the left end. For example, at the middle of the wire the density is 64 grams/cm, and at the right end the density is 5 12 grams/cm. Find the total mass of the wire. 2. If travelers go at R miles per hour for T hours, then the total distance traveled is RT miles. Suppose the speed on a trip is not constant, but is 1 2 miles per hour at time I. For example, the speed at time 3 is 9 miles per hour, the speed at time 3 . 1 is 9.6 1 miles per hour, and so on. Find the total distance traveled between times 3 and 5 .  3. Suppose that the cost of painting a ceiling of height h and area A is .0 l h  2A .  For example, the cost of painting the ceiling in Fig. 9 i s  .0 1 (36) (35) or $ 12 .60.  Find the cost of painting the wall in Fig .  9 (which is not at a constant height h above the floor). 4. Use slabs to derive the formula i1rR "  for the volume of a sphere of radius R. 5. The price of land depends on its area (the more area, the more expensive) and on its distance from the railroad tracks (the closer co the tracks, the less ex­pensive) . Suppose the cost of a plot of land is area x distance to tracks. Find the cost of the plot of land in Fig. 10 . 6. Suppose a conical tank with radius 5 and height 20 is filled with a liquid weighing 2 pounds per cubic foot . Continue from Example 4 to find the cost of pumping the liquid out. 
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7. Suppose the right triangular region in Fig. 1 1  with density S mass units per 
unit area revolves around the indicated pole. Continue from Example 5 to find its 
moment of inertia. 

8. If the specific heat of an object of unit mass is constant, then the heat needed 
to raise its temperature is given by 

heat = (specific heat) x (desired increase in temperature) . 

For example, if the object has specific heat 2 and its temperature is to be raised from 
72° to 78° then 12 calories of heat are needed. Suppose that the specific heat of the 
object is not constant, but is the cube of the object's temperature. Thus, the object 
becomes harder and harder to heat as its temperature increases. Find the heat 
needed to raise its temperature from 54° to 6 1  ° . 

9. Suppose H• f (x) dx is the total number of words typed by a secretary between 
minute 2 and minute 14.  

(a) What does dx stand for in the physical situation? 
(b) What does a term of the form f(x) dx represent? 
(c) What does the function f represent? If  /(3 .2) = 25, what is the secretarial 

interpretation? 

10. Find the volume of the solid of revolution formed as follows. (First find the 
volume of the slab obtained by revolving a strip, and then add the slab volumes.) 

(a) Revolve the region bounded by y = x 2 and the x-axis, 0 :s x s 2 .  around 
the x-axis (Fig. 12) .  

(b) Revolve the region bounded by y = x 2 and the y-axis, 0 s y s 4,  around 
the y-axis. 

( i ) 
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l l ,  Suppose a pyramid has a square base with side a, and the top vertex of the 
pyramid is height h above the center of the square. Find its volume. 

1 2. Let P be a fixed point on an infinitely long wire. Suppose that the charge 
density at any point on the wire is e -• charge units per foot, where d is the distance 
from the point to P. Find the total charge on the wire with an integral ,  and compute 
the integral to obtain a numerical answer. 

1 3. Find the total mass of a circular region of radius 6 if the density (mass units 
per unit area) at a point in the region is the square of the d istance from the point 
to the center of the circle. (Divide the region into circular shells, i .e. ,  washers . )  

14. Suppose a solid sphere of radius R and density a mass units per unit volume 
revolves around a diameter as a pole. Continue from Example 5 to find its moment 
of inertia. 

15. Suppose ng(x) dx is the cost in dollars of building the Alaska pipeline be-
tween milemarker 3 and milemarker 7. 

(a) What does dx represent in the physical situation? 
(b) What does a term of the form g(x) dx stand for? 
(c) What does the function g represent? If g(4) "' 1 7,000, what is the physical 

interpretation? 
16. The kinetic energy of an object with mass m grams and speed v centimeters 

per second is ½mv 2
• Suppose a rod with length 10 centimeters and density 3 grams 

per centimeter rotates around one fixed end (like the hand of a clock) at one 
revolution per second. The formula ½mv2 does not apply directly because different 
portions of the rod are moving at different speeds (the fixed end isn't moving at 
all and the outer tip is moving fastest) .  Find the kinetic energy of the rod by using 
an integral. 

1 7. The area of a circle with radius R is 1rR 2
• If  a sector has angle 9 (measured 

in radians) then its area is a fraction of the circle's area, namely the fraction 
9/271', so 

9 2 I 2 area of sector "' 
271' • 1rR "' 2 9R . 

Suppose that we start at point C to draw a sector with angle 1r/4 and center at 
Q (Fig. 13) but the "radius" R varies with the angle 9 so that R "' cos 9. Find the 
area of the "sector" CQB. 

18, Find the total mass of a solid cylinder with radius R and height h if its density 
(mass per unit volume) at a point is equal to (a) the distance from the point to the 
axis of the cyl inder (b) the distance from the point to the base of the cylinder. 

19. A machine earns 225 - t 2 dollars per year when it is I years old. (a) Find the 
useful lifetime of the machine. (b) Find the total amount of money it earns during 
its lifetime. 

20. The weight w of an object depends on its mass m and on its height h above 

the (flat) earth . Suppose w "' 2 : h 2
• (The further away from the earth , the lighter 

the object.) If the mass density of the solid box in Fig. 14 is a mass units per unit of 
volume, find its total weight. 

2 1 . I f  a plot of land of area A is at distance d from an irrigation pump, then the 
cost of irrigating the plot is Ad ' dollars. Find the cost of irrigating a circular field 
of radius R if the pump is located at the center of the field . 

22. The flat roof of a one-story house acts as a solar collector which radiates heat 
down to the rooms below. Suppose that the heat collected in a region of volume V 
at distance d below a collector is V /(d + I ) .  Find the total heat collected in a room 
whose ceiling has height 12 and whose floor has dimensions 9 by 10. 

23. When water with volume V lands after falling distance d, then a splash of size 
Vd occurs. For example, if water of volume 6 is poured onto the floor from a height 
of 7 then the total splash is 42. 
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Suppose a cylindrical glass with radius 3 and height 5 is set under a faucet so 

that the distance from the top of the glass to the faucet is 4 . Water drips into the glass 
until it is full. The falling water creates a splash, but the formula Vd can't be used 
directly since different slabs of water in the full glass fell through different heights 
(the lowest slab fell through distance 9 while the top slab fell through distance 4) . 
Express the total splash with an integral. 

24. Consider a unit positive charge fixed at point A .  Like charges repel so if a 
second unit positive charge moves toward A, effort is required, and the effort 
increases as it nears A. Suppose that when the moving charge is d feet from A, the 
effort required to advance a foot toward A is l /d 2 ; i .e . , it takes l /d 2 effort units pe1· 
foot. Find the total effort required for the charge to advance (a) from distance 5 to 
distance 2 from A (b) from distance 5 to point A itself. 

25. Snow starts falling at time t = 0, and then falls at the rate of R (t ) flakes/ 
hour at time t. (a) How much snow will accumulate by time 10? (b) Some of the 
flakes melt after they land, and don't live to see time 10. Suppose that only 1 /4 of 
newly landed flakes still exist 3 hours later, only 1 /5 still exist 4 hours later and, in 
general, of F newly fallen flakes, only F /(x + I ) flakes will last x more hours. How 
much snow accumulates by time I = 10? 

26. If current flows for distance L through a wire with cross-sectional area A ,  
then the resistance R that i t  encounters i s  L/  A .  Suppose a sphere with radius 10 has 
a hole of radius I at its center, and current flows radially out of the hole through 
the solid sphere. The formula LIA doesn't apply directly because the current 
encounters spherical "'cross sections" (Fig. 15) with increasing area rather than 
constant area A; e.g. , visualize the current flowing away from the center of an onion 
through layers of onion shells. Use spherical shells to find an integral formula 
for R .  

6.2 The Centroid of a Solid Hemisphere 

This section consists of just one substantial application of integration, primarily of interest to those who will take physics courses. If an object has constant density, then its balance point is called its 
centroid. For example, to picture the centroid of a wire (Fig. l) imagine the 
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wire lying in a plane which is weightless except for the wire. The point at 
which the plane balances is the centroid of the wire. Note that the centroid 
does not necessarily lie on the wire itself. One application of centroids is 
in the analysis of the behavior of an object in a gravitational force field, 
where the solid may be replaced by a point mass at its centroid . For some 
objects, the centroid is obvious. The centroid of a solid sphere is its center; 
the centroid of a rectangular region is the point of intersection of its 
diagonals. In this section we will find the centroid of a solid hemisphere of 
radius R, illustrating a method that may be used for other (symmetric) 
objects as well. 

x., ;;: Xz. 
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We need some balancing principles first. Experiments have shown that 
if masses m 1 and m2 dangle from a rod at positions x 1 and x2 (Fig. 2) then the 
rod will balance at the point x where m 1 (x - x 1 ) = m2(x2 - x ) . This is the 
well-known seesaw principle, which says that the heavier child should move 
forward on the seesaw to balance with a lighter partner. Solve the equation 
to obtain 

- -
m1x - m1x 1 = m2X2 - m2x 

m 1x 1 + m2x2 X = 
m 1 + m2 

The terms m 1x 1 and m2x2 are called the moments (with respect to the origin) of the 
masses m 1 and m2 respectively. In other words, moment = mass x coordinate. 
More generally, if n masses m 1 , • • · ,  m. hang from positions x . ,  · · · , x. then 

m 1x 1 + · · · + m.,x. total moment 
X = ------- = total mass ( 1 )  

m1 + · ·  · + m. 

Now consider a solid hemisphere with radius R and constant density ii 
mass units per unit volume. By geometric considerations, the centroid must 
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lie on the axis of symmetry (Fig. 3). To decide where on the axis, divide the 
hemisphere into slabs. Figure 3 shows a typical slab with thickness dx lo­
cated around position x on the number line AB. By the Pythagorean the­
orem, the slab radius is VR 2 - x2• The (cylindrical) slab has height dx, so 

volume dV = base x height = w(VR 2 - x2 )2 dx = w(R 2 - x2) dx  

and 

d mass = 8 dV = 8 w(R 2 - x2) dx. 

To simulate the situation in Fig. 2, picture each slab as a mass hanging from 
the axis of symmetry. Figure 4 shows the mass corresponding to the slab in 
Fig. 3. For this slab, 

d moment = x d mass = 8 w(R 2x - x 3) dx .  

To find the total moment of all the slabs for the numerator of the formula 
in ( l ) ,  add dmoments and let dx approach O to improve the simula­
tion. Thus 

0 
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total moment = f0
Rdmoment = 8 1r LR(R 2x - x3 ) dx 

= 8 1r(R 2x2 - x4
) I R = J_ 8 1rR4 .  2 4 11 4 One way to find the total mass is to compute Jg d mass = Jg 8 1r(R 2 - x 2) dx. Better still, since a sphere with radius R has volume i1rR 3 , the hemisphere has volume } 1rR 3 and its total mass is J 8 1rR 3• Therefore _ total moment 3 x = ----- = - R .  total mass 8 The centroid lies on axis AB, three-eighths of the way from A to B. Note that the density 8 does not appear in the answer. As long as the density is constant, its actual value is irrelevant for the location of the centroid. 

6.3 Area and Arc Length 

Section 6. l constructed integral models for a variety of (sometimes fictional ) physical concepts. This section is concerned with the standard models for the area between two curves, and arc length on a curve. We will continue the policy of not evaluating integrals if antiderivatives are not readily available for the integrands. In such cases, numerical inte­gration can be used, if desired, or you can return to the integrals later, after learning more antidifferentiation techniques in Chapter 7. 
Area between two curves So far, integrals have been used to find the area of a region bounded by the x-axis, vertical lines and the graph of a function /(x) (see Figs. 4, 5 and 6 in Section 5.2) . Integration can also be used to find the area bounded by vertical lines and two curves, an upper function u (x) and a lower function l (x) (Fig. I ). To find the area, divide the region into vertical strips. Figure I shows a typical strip located around position x on the x-axis, with thickness dx. The strip has a curved top anct bottom, but it is almost a rectangle with base dx and height u (x) - l (x) . In Figs. 2 and 3, one or both of u (x )  and l (x) is negative, but u (x )  - l (x) is positive and in each 
case is the height of the strip. Therefore the area dA of the strip is (u (x) - l (x)) dx. Thus. for the region between x = a and x = b, bounded by an 

FIG .  2 F 16 . � 



F\ 6 . 4 

6.3 Area and Arc Length · 177 

upper curoe u (x) and a lower curoe l (x), 
( l ) 

b 

area = J (u (x) - l (x) ) dx. 
a 

The formula holds whether the region is above (Fig. 1 ), below (Fig. 2) or 
straddling (Fig. 3) the x-axis. 

Example 1 Find the area of the region bounded by the parabola 
y = 5 - x 2 and the line through the points ( l , 4) and ( - 3 , - 4) on the 
parabola. Solution: The line has slope 2, so by the point-slope formula its equa­
tion is y - 4 = 2(x - 1 ) ,  or y = 2x + 2.  Figure 4 shows that the region has 
the parabola as its upper boundary, the line as its lower boundary, and lies 
between x = -3 and x = I .  Therefore u (x) = 5 - x2 , l (x) = 2x + 2,  and 

area = f
3

[5 - x 2 - (2x + 2)] dx  = f
3 

(-x 2 - 2x + 3) dx 

= ( - �  - x2 + 3x) I �3 
= 

3
3
2

. 

Arc length To find the arc length s on a curve between points P and Q 
(Fig. 5) ,  divide the curve into pieces. A typical piece with length ds is ap­
proximately the hypotenuse of a right triangle whose legs we label dx and dy. Then ds 2 = dx2 + dy 2 and 

(2 ) ds = v'dx 2 + dy 2
• 

The total length of the curve is the sum of the small lengths ds, so, 
symbolically, 

(3) Jpo;n, Q 
s = ds . 

puim P 

The details will depend on the algebraic description of the curve, as the 
next two examples will show. 

Fl 6 . 5 
Example 2 Consider the arc length on the curve y = x 3 between the 
points ( - 1 ,  - 1 ) and (2 ,  8) .  Before using the integral in (3) we will express 
ds in terms of one variable. Hy = x3 and dy is a change in y then dy = 3x 2 dx 
(Section 4.8,  ( l ' ) ) . Therefore ds = v' dx2 + dy2 = v' dx2 + (3x2 dx)2 = v'l + 9x4 dx. 
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so 
[-2 

s = \I I + 9x4 dx .  
x• - 1 

Example 3 Suppose a circle of radius a, with a spot of paint on it, rolls 
along a line. The spot traces out a periodic curve called a cycloid (Fig. 6), and 
the problem is to find the arc length of one arch. 

Q::f) () 
c. 'fc.1..0,t, 

F/6 . 6 
We'll begin by finding an algebraic description of the cycloid. Insert 

axes so that the circle rolls down the x-axis and the spot of paint begins at 
the origin. The x and y coordinates of a point on the cycloid are more easily 
describ�d in terms of the angle of revolution 8 (Fig. 7) than in terms of each 
other, so we will derive parametric equations for the cycloid instead of a 
single equation in x and y. 

A C, 

F/6 . 7  
Figure 7 shows a typica.!_,eoint P = (x,y) on the cycloid with corre­

sponding angle 8. Then x = AC - PQ. Furthermore, the length of segment 
AC is equal to the length of arc PC (visualize the arc PC matching segment 
AC point for point as the circle rolls). So 

X = PC - PQ 
= a8 - PQ (by the arc length formula s = r8 in (5) of Section 1 .3) 

= a8 - a sin 8 (br trigonometry in right triangle PDQ) .  

Also, y = DC - DQ = a - a cos 8. Therefore the cycloid has parametric 
equations 

(4) x = a8 - a sin 8 ,  y = a - a cos 8 ,  
where a is the radius of the rolling circle and 8 is the parameter. The cycloid 
is periodic, and the first period begins with 8 = 0, x = 0 and concludes with 
8 = 211', x = 2w (the circumference of the circle). 
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To find the length of the first arch using the integral in (3) ,  first express ds in terms of one variable, (J in this case. We have 
dx = x ' (O ) dO = (a - a cos O) dO and dy = y ' (O ) dO = a sin O dO .  Then (2) becomes 

and 

ds = \!(a - a cos 0)2 d02 + a 2 sin20 d02 

= \ia 2 - 2a 2 cos (J + a 2 cos20 + a 2 sin20 d(J 
= Y2a 2 - 2a 2 cos (J dO (since cos20 + sin20 = 1 )  

s = f" Y2a 2 - 2a 2 cos (J dO 
9= 0 

-- 2a f
2
" ✓ I - cos O dO (b 1 b y a ge ra) 

II 2 

( I ) 1 ••,, = 2a - 2 cos 2 8 
0 

= Sa . 

(b h 'd . . ,, 1 O I - ;os 0) t y t e 1 enuty sm-2 = 

The cycloid has some surprising physical properties (too hard to proYe in .this course) . If a frictionless slide is to be built so that children can slide down under the force of gravity from an arbitrary point A to an arbitrarv point B, then one built in the shape of a half an arch of a reflected cycloid will produce the least time for the trip (Fig. 8) .  Furthermore, if several children slide down the reflected arch from different points, they all arrive at the lowest point at the same time. 
Credibility of the integral models As this chapter has shown, to compute a total size (volume, area, arc length) we divide the object into pieces and find dsize (dV, dA, ds) of a piece. The formulas we use for dV, dA and ds are not exact. In Figs. 1-3, dA is only approximately [u (x) - l (x)] dx since each su;t is only approximately rectangular. In Fig. 5 ,  ds is only approximately V 2 + dy 2 and furthermore in Example 2 ,  the length dJ is only approxi­mately 3x 2 dx. However, when the integral adds dV 's ,  dA 's or ds 's, we believe (not prove, but merely believe) that the value of the integral deserves to be called the exact value of the total volume V, total area A and total arc length s. The integral not only adds, but also takes a limit as dx approaches 0, and we count on the limit process to wipe out the approximation error. 

tlt is not true in general that taking square roots on both sides of the identity produces 

. I / t - cos 8 
(•) sm 2 11 = \,/ --

2
- , 

because the right-hand side of (•) is positi\'e while the left-hand side ma,· be negative. But it is true when 8 is in the interval (0, 211'] ,  the inten·al of integration. since in that case. sin 111  is positi\'e. 
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(As further reassurance, whenever a previous formula for size exists , it 
agrees with the integral. Problem 4 will show that the integral formula for 
arc length does produce the standard formula for the distance between 
two points . )  

Not  every approximation for dsize can be integrated to  achieve a rea­
sonable total. In the next section we will have to be careful  to avoid a bad 
model for surface area. 

Problems for Section 6.3 

1. Find the area of the region with the indicated boundaries. 

(a) y = x 2
, y = 3x 

(b) y = x 2
, x = y 2 

(c) xy = 8, line AB where A = ( -2 , -4) and B = ( - 1 ,  - 8) 
(d) _v = x 2 - 4x + 3, the x-axis 

2. Find the area of the region in (a) Fig. 9 (b) Fig. 10. 

FI G . I O  

/ 

3. Express with an integral the arc length along the indicated curve . 

(a) y = e '  between (0, I )  and ( l , e) (c) xy = I between ( I , I )  and (2, ½) 
(b) x = y '1  between (0, 0) and (64 ,  4) (d) x = 21 + I , y = / 2 between the 

points (3, I) and (9, 16) 

4. Use an integral to find the distance between the points A = (x , ,y , ) and 
B = (X2 , y2) .  
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6.4 The Surface Area of a Cone and a Sphere 

This section will continue the geometric applications of the integral by deriving the surface area formulas for a cone and a sphere. ( Its omission will not affect your understanding of any other section of the book.) A cylinder with height h and radius r may be cut open and unrolled to form a rectangle with one dimension Ii and the other dimension equal to the perimeter 2 1rr of the circular end of the cylinder. Therefore the (lat­eral) surface area (not including top and bottom) of the cylinder is 2 1rrh. To find the surface area of noncylinders, we need a formula dS for the (lateral) surface area of an almost-cylindrical slab. Figure l(a) shows a typical slab with height dx and "radius" r. It is not precisely cylindrical since the radius varies; in fact Fig. l(a) deliberately exaggerates the variation in radius to show an accordion-like ridge of length ds. In Example l of Section 6. 1 we ignored the varying radius and selected the volume formula dV = 2 1rr2 dx (Fig. l(b)). If we were to continue to ignore the varying radius, we would choose dS to be 2 1rrdx. But with this dS , J! dS produces values which do not match results from geometry. ( If a surface is cut open and unit squares drawn on it, the number of squares does not agree with the integral.) The variation of the radius which we successfully ignored in finding dV cannot be ignored in finding dS. (A wrinkled elephant has about the same volume as, but 
much more surface area than, an unwrinkled elephant.) To find an appropriate formula for dS, imagine the accordion (Fig. l(a)) pulled open to form a genuine cylinder with height ds, not dx (Fig. l(c)). Then, by the standard formula for the surface area of a cylinder, the newly created cylinder, hence the original almost-cylinder, has surface area ( l ) dS = 2 1rr ds . We are now ready to use ( I ) on cones and spheres. 
Surface area of a cone Consider a cone with radius R, height h and slant height s. To find its ( lateral) surface area, begin by dividing the cone into slabs. Figure 2 shows a typical slab with thickness dx around position x on the indicated number line. To use ( l ) ,  we need the slab radius and ds. By 

F/6 . / d�(ttotdx.) 
(c ) 
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R 

,.,..--------

f [G . -2. 
similar triangles , 
so 

d . R slab ra ms = h ' X 

Rx slab rad ius = h . 
Again by s1m1 . ·1ar triangles, 

so 
Then, by ( l ) , 
and 

s ds = - dx .  h 
211-Rs d (Rx) !._ dx = -2 x x , dS = 21T h h h 

2 1 h 

[ = I, 21TRS � = 1TRS .  - 21TRs x dx = -h- 2 o S - h2 x = O 

h. 

r, .... 
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Surface area of a sphere Consider a sphere with radius R. To find its surface area, divide the sphere into slabs. It will be convenient to locate slabs (shown in cross section in Figs. 3 and 4) using a central angle 8 rather than position along a horizontal line. For the typical slab in Fig. 3, ds = R d8 by (5) of Section 1 .3, and the slab radius is R sin 8 by trigonometry. There­fore, by ( l), 
dS = 2'1TR sin 8 • R d8 = 2 '1TR 2 sin 8d8 .  The sphere i s  packed with slabs whose corresponding values of 8 range from O to 11' (Fig. 4) so 

S = f dS = 2 '1TR 2 r sin 8d8 = 2'1TR 2(-cos 8) 1 :  = 411'R 2 • 

8:0 

F I G . 4  

6.5 Integrals with a Variable Upper Limit 

This section describes a new way of creating functions, and discusses applications, computation and derivatives of the new functions. 
Introductory example Suppose a particle starts at time 4 and travels with speed 2x feet per second at time x. The problem is to find the distance traveled by time 7, and then more generally, the cumulative distance traveled 
by time x, denoted by s (x) . Divide the time interval [4, 7] into subintervals, with a typical sub­interval containing time x and of duration dx seconds. The distance ds traveled during the dx seconds is 2x dx (since distance = speed x time), and the total distance traveled by time 7 is n 2x dx = x2 IJ = 33. More generally, ( 1 )  cumulative distance s (x) traveled up to time x 

= f 2x dx = x2 I : = x2 - 16 . 

In order to distinguish the independent variable x of the function s (x) from the dummy variable of integration, we usually choose a letter other than x for the dummy variable and rewrite ( l )  as 
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( l ' )  s (x) = f2t dt = t 2 1 •  = x 2 - 16 . 
4 4 

Integrals with a variable upper limit The function s (x) in ( l ') is given by 
an integral with an upper limit of integration x. More generally, for a given 
function/ and fixed number a, J: [(t ) dt is a function of the upper limit of 
integration, and we may define a new function / (x) by 

(2 )  / (x) = [t(t ) dt . 
a 

For example, / (4) is the number f! [(t ) dt. The integral in (2) can also be 
written as J: /(u) du, J:[(r) dr and so on. However, most books avoid writing 
I (x) = J: /(x) dx so that the independent variable of the function / (x) is not 
confused with the dummy variable in the integral, and the student is not 
tempted to write / (4) = f! /(4) d4, which is meaningless. 

The introductory example illustrates one application of the functions 
in (2). They are used to represent a cumulative total such as the distance 
traveled until time x, the mass of a rod up to position x, or your income up 
to age x. The particular lower limit used depends on the time, position or 
age at which you choose to begin the accumulation. 

Some functions of the form (2) are especially useful in mathematics 
and science: 

(3 ) 

2 [ 2 Erf x = v; /-, dt (the error function) 

Ei X = re-, dt 
I l 

S. [ sin t d I X = -- t 
O l 

(the exponential-integral function) 

(the sine-integral function) . 

The integral in ( l ') is defined only for x > 4 since an integral is defined 
only on an interval of the form [a, b] where b > a. On the other hand, the 
function s (x) is O when x = 4 since no distance has yet accumulated. This 
suggests the definition 

(4) {t(t ) dt = 0 .  • 
With this definition, the function in (2) is defined for x � a, and / (a) = 0. 

Computing l (x) If /(t )  has a readily available antiderivative, then an 
explicit formula for / (x) may be found using the Fundamental Theorem. 
For example, 

(5) if / (x) = [3t 2 dt then / (x) = t 3 I : = x 3 - l ;  

(6) ifj (x) = [3t 2 dt then j (x) = t 3 I : = x 3 - 8 .  

Note that / (x) and J (x) differ by only a constant since they begin the same 
accumulation process but from different starting places, that is, with differ­
ent lower limits. In particular they differ by the constant n 3t 2 dt = t ' lf = 7. 
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f 6AAf'� Of f{t) E. 
I > 
I 
I 
I 
I 
I 
1 1)  

A .2 X 

FIG . I 
If the graph off is simple, it may be possible to find a formula for I (x) using cumulative area. Suppose /(t } is the function shown in Fig. 1 ,  and / (x) = f� f(t } dt. Consider a value of x between 0. and 2 (see point B ). Since 

AB = x, we have GB = 2x by similar triangles. So 
I (x) = area of triangle ABG = ! x • 2x = x2

• 

For a value of x larger than 2 (see point D}, / (x) = area of triangle ACF + area of rectangle CDEF 1 = 2 · 2 • 4 + 4(x - 2) 
= 4x - 4 .  Therefore 

I (x) = {x 2 4x - 4 if 0 :s x :s 2 if x > 2 .  On the other hand, it is more difficult to evaluate the functions in (3). I t  can be shown in advanced courses that it is not possible to find anti-
• • 2 e -, sin t . . . . . denvauves for e -, , - and -- usmg the basic funcuons hsted m t t Section 1 . 1 ;  so Erf, Ei and Si cannot be simplified as in (5) and (6). However, tables of values for Erf, Ei and Si can be produced by numerical integration. For example, Si 1r = J� sin t 

dt, and its value may be approximated with a t numerical integration routine such as Simpson's rule. As still another method of evaluating an integral with a variable upper limit, given a fixed number a, an electric network can be designed so that if voltage/(t ) is fed in at time t, the network will produce, on an oscilloscope, the graph of the function I (x) = J: f (t ) dt. 

The derivative of f (x) When functions of the form / (x) arise, we want to be able to find their derivatives. Consider the functions / (x) and] (x) defined in (5) and (6) . From their explicit formulas we can see that / ' (x) andj ' (x) are both 3x2, the integrand 
used in the original fonnul,ation of I (x) and J (x). This is not a coincidence. It can be shown in general that if I (x) = J: f(t ) dt then I '  (x) = f (x) at all points where 
f is continuous. In other words, if a continuous function f is integrated with a 
variable upper limit x, and then the integral is differentiated with respect to x, the 
original function f is obtained. This result is called the Second Fundamental 
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Theorem of Calculus. For example, 
(7) D S. sin x t , I X = -- .  

X 

(N  h h d . . f s· . sin x sin t . ote t at t e envauve o I x 1s -- , not -- smce the mdependent X t variable of the function Si x is named x, not t. ) To see why the Second Fundamental Theorem holds, first consider the introductory example . If f(x) is the speed of a particle at time x and / (x) = f: f(t ) dt, then / (x) is the cumulative mileage traveled by time x ( the odometer reading) . Therefore / '(x) is the rate of change of mileage with respect to time , which is the speed of the particle. To understand the Second Fundamental Theorem from a geometric point of view, let x increase by dx and consider the corresponding change di in / (x). Since I (x) is the cumulative area under the graph off, Fig. 2 shows that / increases by approximately a rectangular area with base dx and height f(x) , so di = f(x) dx (approximately). Equivalently 
(8) 

or, I '  (x) = f (x) . 

a. 

change di = f(x) , change dx 

FIG. ;.. 
Backward limits of integration So far it makes no sense to write "backward" limits such as J¥ f (x) dx, where the upper limit of integration is smaller than the lower limit. The solution of a physical problem (averages, area, arc length and so on) never involves backward limits. However, there is a situation in which backward limits do arise in a natural way. The function / (x) = J� f (t )  dt is defined only for x ;::: a. If / (x) is the cumulative distance traveled by an object starting at time a, then the integral continues to have physical meaning only for x ;::: a. But in more theoretical circum­stances, it may be useful to define /(x) for x < a, for example to have Erf x and Si x defined for x < 0 and Ei x defined for x < I . In one sense , the definition of Jg f(x) dx, where a < b, can be anything we like . But it is desirable that the integral with backward limits retain the same properties as the original integral. It can be shown that, for a < b, if we define 

tAs already mentioned, it can be shown that (sin x)/x does not have an elementary 
antiderivative, that is, an antiderivative expressed in terms of the basic functions. But (7) shows 
that Si x is an antiderivative for (sin x)/x. Therefore Si x is a non elementary function. Similarly, 
Ei x and Erf 1' are nonelementary. 
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fJ(x) dx = - f J(x) dx , 
b a 

then properties (9)-( 1 1) of Section 5 .2 still hold ,  and so do both funda­
mental theorems. For example,  with the definition in (9), 

f 3x2 dx = -f 3x 2 dx = -x 3 1 : = - 8 + 1 = - 7 . 

But more directly, we can use the Fundamental Theorem with the back­
ward limits and get the same answer : 

f3x 2 dx = x3 I : = l - 8 = - 7 . 

Unfortunately, the relationship between integrals and area is different 
with backward limits of integration. If  a < b then 

so 

f J(x) dx = area above the x-axis - area below the x-axis , 
u 

fJ(x) dx = - f J(x) dx = area below - area above.  
b a 

If / (x) = fU(t ) dt where the graph of f is given in Fig. 1 , then / (0) = 
fU(t ) dt which is - (area of triangle ACF) ,  or - 4 .  

Problems for Section 6.5 

1 .  Find an explicit formula for J (x) if J (x) = f (t + 5) dt. 
2 

2. A wire beginning at A and extending infinitely in one direction has charge 
density e -• charge units per foot at a point x feet from A. (a) Find the total charge 
in the wire. (b) Find a formula for the cumulative charge in the first x feet of 
the wire. 

3. Suppose it begins raining at 3 P.M . ,  and x hours later it is raining at the rate 
of x ' inches per hour. For example, at 3 :30 P.M .  it is raining at the rate of 1/8 inch 
per hour. (a) Find the total rainfall by 5 P.M .  (b) Find the cumulative rainfall after 
x hours. 

4. Figure 3 gives the graph of f(x) . If J (x) = Jo /(I ) dt, find an explicit formula 
for J (x) for x � 0. 

5. Let J (x) = Ji f(t ) dt where the graph off is shown in Fig. 4. Sketch a rough 
graph of J (x) .  

&. L<•fM - {; 

(a) Find I (½). 
(b) Find I (2). 

if 0 s x s l  

if X > I 

(c) Find I (x), in general, for x � 0. 

and let J (x) = f'o f(t ) dt. 

7. Let / (x) = /i In t dt  andj(x) = fi12 In t dt. (a) Which is the larger of / (7) and 
] (7)? (b) How do the graphs of / (x) and j (x) compare with one another? 
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- ,  3 

FIG .  3 

3 

FIG .'+ 

8 F" d ( ) 
d (Erf x) 

(b) 
d (Ei x) d 2(Ei x) 

• m a 
dx dx (c) dx' . 

9. I f  / (x) = f; sin 1 2 dt, find / ' (x) and /"(x) . 
10. Where does Si x have relative maxima and minima? 

1 1 . (harder) Let /(1 ) = f' sin I 
dt. (Note that the upper limit is x s , not x.)  

Find J ' (x). 2 1 

12 F. d , . 
Si X 

• m 1m, .• o - .  
X 

13. Evaluate the integral (which has backward limits). 

(a) f (x - 5) dx 

(b) f 2x � 5 
dx 

REVIEW PROBLEMS FOR CHAPTER 6 

1. A colony of bacteria grows at the rate uf [(/ ) cubic centimeters per day at 
day I. By how much will it grow between days 3 and 7? 
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2. Refer to Example 5 in Section 6. 1 and find the moment of inertia of a solid 
cone with radius R, height h and density 6 mass units per unit volume, which 
revolves around its axis of symmetry. 

5. An empty scale submerged in water will register a weight due to the water 
pressing on it. The larger the scale and the greater the depth, the higher the scale 
reading. Suppose that the empty scale reading is depth x scale area (Fig. I), so that 
a scale of area 6 submerged at depth 4 reads 24 pounds. If a scale lies on its side 
(Fig. 2) there is still a reading since water presses as hard sideways as downward, but 
the simple formula no longer applies since the depth is not constant. Find the scale 
reading in Fig. 2 .  

6 

FIG . l 
4. Find the area of the region bounded by the graph of y = sin m and the 

segment AB where A = (¾, - 1) and B = (2 ,  0). 
5. Consider the region bounded by the lines x + y = 12 ,  y = 2x and the x-axis. 

Find its area using (a) plane geometry (b) calculus. 
6. A farmer purchases a 2-year-old sheep which produces 100 - t pounds of 

wool per year at age t. (a) Find the total amount of wool it produces for the farmer 
by age 4. (b) Find the cumulative amount of wool produced for the farmer by 
age t. 

7. Let / (x) = fz /(t) dt. Find an explicit formula for / (x) if (a) /(x) = 2x + 3 

{
!lx 1 for X S 7 

(b) /(x) = (c) /(x) has the graph in Fig. 3 .  
5 for x > 7  

Fl&. 3 
8. If / (x) = Ji t,t dt, find I '  (x) and J#(x). 



7/ANTID I FFERENTIATION 

7 . 1  Introduction 

Antidifferentiation has many applications, such as finding the path 
of a bullet (Section 3.8), evaluating integrals (Section 5.3) and solving 
differential equations (Section 4.9). We began finding antiderivatives in 
Section 3.8 but were limited to a few standard types of problems. This 
chapter covers some techniques of antidifferentiation, also called in­
definite integration, or simply integration, so that additional functions can 
be handled. 

Let's compare antidifferentiation with differentiauon to see what we 
are up against. Each operation begins with a function, probably arising 
from a physical problem. If the function is elementary, then differentiation 
is easy and mechanical. Using the derivatives of the basic functions and the 
rules for combinations (sums, products, quotients, compositions), we can 
differentiate any elementary function, no matter how complicated. Fur­
thermore, the derivative is another elementary function. The situation for 
antidifferentiation is very different. First of all, an elementary function 
might not have an elementary antiderivative. Even if there is an elementary 
antiderivative, there is no mechanical rule for finding it. There are no 
product, quotient and chain rules for antiderivatives. The best we can offer 
so far are the sum and constant-multiple rules (Section 3.8) : 

( 1 )  f [f(x) + g (x)] dx = f f(x) dx + f g (x) dx 

(2 ) f cf(x) dx = c f f(x) dx where c is a fixed constant . 

In the absence of sufficient combination rules, it is common practice to 
consult tables of antiderivatives. However, tables can't contain every func­
tion because there are infinitely many functions. If a function is no't in the 
tables we try to "reduce" it to one that is in the tables. (This is not a first 
encounter with incomplete tables. Trigonometry tables only go up to 90°. 
To find sin 9 1°, the reduction rule sin 9 1° = sin 89° is used.) If we learn 
from the tables that our function has no elementary antiderivative, we quit, 
with the justification that this course concentrates on elementary functions. 
If we cannot find our function (reduced or unreduced) in the tables, we are 
forced to quit again, although it is possible that a larger set of tables or 
extended reduction techniques would help. (An entire book of tables is 
usually available in the library.) 

191 



192 · 7 / Antidifferentiation 

Our tables do not contain the following very simple antiderivative 
formulas which should be in your mental tables : 

(3 ) 

(4) 

(5) 

(6) 

(7 )  

f x,+ 1 
x '" dx  = -- + C r + 1 

f ! dx = In lxl + C 

f e' dx = e' + C 

f sin x dx  = -cos x + C 

f cos x dx  = sin x + C . 

for r '#:- - I 

Much of this chapter is concerned with procedures for reducing func­
tions not l isted in the tables to listed functions. (One of the difficulties here 
is that there is no precise rule for deciding how to reduce or even if a 
reduction is possible.) We will also show how some of the formulas in the 
tables were derived. (In retrospect, each antidifferentiation formula in the 
table can be checked by differentiating the answer.) 

7 .2 Substitution 

Substitution is a very effective method for reducing a function not 
listed in the tables to one that is listed. The method involves reversing the 
chain rule. As with all antidifferentiation methods, you will have to practice 
to become accustomed to it. 

By the chain rule, D, sin x 2 = 2x cos x 2, so f 2x cos x 2 dx = sin x 2 + C. 
But how can we obtain the antiderivative formula without seeing the deriva­
tive problem first? To go backwards and find J 2x cos x 2 dx, use the device 
of letting u = x 2, du = 2x dx. Substitute this into the integral to get 

f 2x cos x 2 dx = f cos u du = sin u + C 

= sin x 2 + C (replace u by x 2
) • 

We'll continue to illustrate the technique with some more examples. 

Example I To find f /3 
7 2 dx (which is not in the tables) , let u = (2x + ) 

2x 4 + 7, du = 8x 3 dx. Replace (2x 4 + 7)2 by u 2 and replace x 3 dx by ½ du 
to obtain 

I x 3 I I du I u - i 1 
(2x 4 + 7)2 dx = 8 u 2 = 8 -=-i° + C = - 8(2x 4 + 7) 

+ C . 

Example 2 To find J cos2x sin x dx, let u = cos x, du = -sin x dx. Then 
replace cos2x by u 2 and replace sin x dx  by -du to get 
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f cos2x sin x dx  = - f u 2 du = --:- ! u 3 + C = - ! cos3x + C .  

Choosing a good substitution Unfortunately there is no set rule for de­ciding when or what to substitute. One useful tactic is to search the inte­grand for an expression whose derivative is a factor in the integrand, and let u be that expression. In Example I ,  the expression is 2x4 + 7 ;  its deriva­tive x 5 (give or take an 8) is a factor. In Example 2, the expression is cos x; its derivative sin x (give or take a negative sign) is a factor. It is also possible for more than one substitution to work or for no substitution to help. 
Example 3 From Section 3.8 , we have J e3x dx = ½e1- + C, by inspection. The extra factor ½ is inserted to counteract _the factor 3 produced by the chain rule when we differentiate back. The problem can also be done by substitution. Let u = 3x, du = 3 dx. Then f e 3' dx  = ½ f  e " du = ½e " + 
C = ½es. + C. The extra factor ! is automatically inserted by the substitu­tion process. 
Warning Don't for�et to substitute for dx. In the preceding example, dx must be replaced by 1du. The substitution process will give wrong answers if dx is ignored, lost or incorrectly replaced by just du. 
Example 4 Find f x 5 cos x3 dx. 

Solution: Try the tables first, but without success. Then try substituting u = x 5 , du = 3x 2 dx to get 
f x 5 cos x 3 dx = f x 5 cos u ;:2 (replace x 5 by u, dx by du/3x2) 

= ! f x 3 cos u du (cancel x2) 

= ! f u cos u du (replace x 5 by u) 
= � (cos u + u sin u) + C (formula 49) 
= ! (cos x 3 + x3 sin x 5) + C. 

Remember that every antidifferentiation problem can be checked by differ­entiating the answer. In this case, you can check to see that the derivative of ½(cos x 3 + x 5 sin x 3) is x5 cos x 3
• 

Warning Don't forget to substitute at the end of a problem to get a final answer in terms of the original variable. 
Example 5 Formula 13 in the tables is 

I x dx 2(bx - 2a) � ,-;-;-\/a'+b; dx = 362 v a + bx + C . 
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The formula can be derived in the first place with the substitution u = 
a + bx and also with u = �- In the latter case, it is algebraically easier to write x in terms of u and find dx in terms of du rather than du in u 2 - a 2 terms of dx. We have u 2 = a + bx, so x = -b- ,  dx = b u  du. Therefore 

u 2 - a 

f � = f --:- ! u du 

= 
:2 f (u 2 - a) du 

2 (u 3 ) = b 2 3 - au + C 

2 
= - u (u 2 - 3a) + C 3b 2 

(algebra ) 

2 
= 3b 2 � (a + bx - 3a) + C 

2 
= 3b 2 ( bx - 2a ) � + C .  

Warning The tables list the formula 
(1 ) f u sin u du = sin u - u cos u + C . 
Therefore it is also true that f x sin x dx = sin x - x cos x + C since all we did was change every occurrence of the dummy variable u to x. Similarly, it is also true that J t sin t dt = sin t - t cos t + C and so on. However 
(2 )  I X • X d . NOT . X X X C - sm - x is sm - - - cos - + 2 2 2 2 2 because not all occurrences of u in ( I )  have been changed to x/2 ;  in particu­lar the occurrence of u in the symbol du did not become x/2.  Instead, to do the integral in (2) ,  let u = x/2 .  Then du = ½dx and 

f i sin i dx = 2 J u sin u du = 2(sin u - u cos u) + C 

= 2(sin i - i cos i) + C .  

Furthermore, despite ( ) ) , 
(3 ) f x2 sin x2 dx is NOT sin x2 - x2 cos x2 + C ,  
because not every occurrence of u in ( I )  has been replaced by x 2• In an attempt to apply ( 1 )  to the integral in (3), let u = x2

• But then du = 2xdx, 

J 2 • 2 J . du I . du l J . , . d x sm x dx = u sm u 2x = u sm u 2Vu = 2 v u  sm u u 

and it turns out that ( 1 )  doesn't apply at all . 



Problems for Section 7 .2 

1 .  f xe•• dx 

2. f x v3?+1 dx  

3 .  f v'3+5x dx 

4 f I 
dx . V3+7x 

5. f tan 14x sec2x dx 

6. f 
(
: : ,\5 dx 

?
. f sec 6 tan 6 

d(J 
VI + 2 sec 6 

8. f -11 - dx  
X n X 

9. J x' sin x 2 dx 

10. f ( I  + 3x)7 dx 

l l . f 
2 � 3x 

dx 
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12. f 
(2 � x)' 

dx 

13.  J cos(½ (J - I ) d(J 

14. f xe -• dx 

15. f cos'x sin x dx  

16. f e -• dx  

1 7. f x sin 3x dx 

18.  f sin211'x dx 

19. f 3x sin x dx  

20. f x2 cos 3x dx 

2 1 .  f ln(2x + 3) dx 

22, f _!!:_ 
COS X 

23. We know that f 1 
: 2 dx = arctan x. ls the following antidifferentiation 

correct :  x 

J-1 1
3 2 dx = f � 2 dx = arctan V3 x + C ? + x l + ( 3 x) 

24. Find if possible at this stage (a) f tan - ' 3x dx  (b) f tan - 1x 2 dx. 

25, Derive formula 3 1  for f tan x dx  using substitution on 
f sin x 

dx. 
COS X 

26. Derive formula 33 for f sec x dx by multiplying numerator and denominator 
by sec x + tan x and using substitution. 

27. Derive form u l a  39 for f s in2x dx using the trigonometric ident i ty  
sin2x = ½o - cos 2x) . 

7.3 Pre-Table Algebra I 

If the function to be antidifferentiated is not listed in the tables,  some­
times it may be reduced to a listed function by algebra. This section and the 
next off er algebraic suggestions. 

Example 1 Consider f � ! dx . Formula 23  in the tables lists 
6x· + 3 

f V 2 
1 

2 du which matches the given problem, except for the 6. Thus 
a + u 

we try to eliminate the 6. One possibility is to factor it out to obtain 
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I l dx = f l dx = -l f I dx V6x2 + 3 Y6(x2 + ½) V6 Yx2 + ½ · 
Then use formula 23 with a 2 = ½ to get 
( 1 )  f V6) + 3 dx = � ln(x + ✓ x2 + � ) + C . 

Another possibility is to write 6x 2 as (V6x)2 and then let u = V6x, du = V6 dx. With this substitution, 

(2) 

J 1 dx - f l dx - f I ±±_ V6x2 + 3 - Y(v'6x)2 + 3 - Vu2+3 V6 I 
= V6 ln(u + Vu2+3 ) + C (formula 23) 
= � ln(V6x + V6x2 + 3 )  + C .t 

Warning Don't forget to substitute for dx in carrying out the substitution. 
Example 2 J Y3x2 + 4x - 8 dx isn't in a small set of tables which con­centrates on forms involving u 2 - a 2 and a 2 ± u 2 rather than on forms involving Ax2 + Bx + C. In this case, use the algebraic process called 
completing the square. First factor out the leading coefficient to get 

3x2 + 4x - 8 = 3( x2 + : x - : ) . 
Then take half the coefficient of x, square it to obtain a, and add and subtract that value within the parentheses: 

( 4 4 4 8 ) [ ( 2 ) 2 28] 3x2 + 4x - 8 = 3 x 2 + -x + - - - - - = 3 x + - - -3 9 9 3 3 9 ·  Thus 
f V3x2 + 4x - 8 dx = V3 f ✓ (x + � ) 2 - 298 dx . 

Now let u = x + i, du = dx to get 
tNote that at first glance the two methods do not seem to produce the same answers in 

( I )  and (2). But (2) may be rewritten as 

� In [ vii(x + ✓x2 + f) ] + C (by factoring) 

= � In v'6 + � In ( x + ✓x• + f) + C (since In ab = In a + In b) 

= � ln(x + ✓x• + f) + K ( call � In v'6 + C a new constant K) 

which matches ( I ). 
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f v'3x2 + 4x - 8 = v'3 f ✓ u 2 - � du 

v'3 u � 14 I '928\ = -2- 'J u 2 - 9 - 9 v'3 ln u + 'J u 2 - 9 + C 

(formula 28) 
� )· :¾) ✓(< + f)' - �  

- 14 � In I x + : + ✓ ( x + : r - � I + C · X ;  3x5 Example 3 Improper fractions, such as 2 2 and �7 , are those 
X + X + X -where the degree of the numerator is greater than or equal to the degree of the denominator. Proper fractions, such as 2 

3x 1 , are those where the 
X + degree of the numerator is less than the degree of the denominator. The improper kind are rarely listed in antiderivative tables. To find an anti­derivative for an improper fraction that is not listed, begin with long division. Consider f 2 

x; dx 2 . We have X + X + 

So 
(3 ) 

x3 - x2 - x + 3 x2 + x + 2 }x5 x5 + x4 + 2x3 - x4 - 2x3 - x4 - x3 - 2x2 - x3 + 2x2 - x3 - x2 - 2x 3x 2 + 2x 3x2 + 3x + 6 -x - 6 .  
X ;  -x - 6 ---- = x 3 - x2 - x + 3 + ---- • x2 + x + 2 x2 + x + 2 � �l . l '---r---' improper po ynom1a proper fraction fraction This illustrates that an improper fraction can be written as the sum of a polynomial and a proper fraction, each of which is easier to anti­differentiate than the original improper fraction. For the polynomial in (3) we have 

I l l l (4) (x3 - x2 - x + 3) dx = 4x4 - 3x3 - 2x2 + 3x + C .  
To antidifferentiate the proper fraction in (3) ,  first separate it into the sum 
(5 )  

X 6 x2 + x + 2 x2 + x + 2 · 
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Then, for the first term in (5) ,  we have 

f x l - ---- dx = - - lnlx 2 + x x 2 + X + 2 2 + 2 j + _!_ f dx 
2 x 2 + X + 2 

(formula 2) 
I ? 1 2x + 1 = -

2 
ln lx · + x + 21 + 

V7 
tan - 1 

V7 + C 

(formula l b) . 
For the second term in (5) ,  use formula l b  to get 

f dx _ - 1 2 _ 1 2x + I (7) -6  ,, 2 - • r.; tan ----::-r;; + C x ·  + x + v 7 v 7 
Finally, combine (4), (6) and (7) for the final answer 

f x 5 x• x 3 x 2 1 1  2x + l 
x 2 + x + 2 dx = 4 - 3 - 2 + 3x -

V7 
tan- 1 

V7 

- ! ln jx 2 + x + 2 1  + C .  

Problems for Section 7 .3 

l f dx • 
v'2 + 6x - x2 

2 J I dx " ½+2?  

3. f � dx  

f x • + 2x dx 4· x 2 + 4 

5. f x v'2x+?  dx 

f x three ways (long division, tables, 6• 2x + 6
dx 

substitution) 

f 2 7. x/+ I dx 

7.4 Pre-Table Algebra II :  Partial Fraction Decomposition 

The preceding section advised dividing out improper fractions because 
they are rarely listed in tables. But tables often omit proper fractions as well, 
when the degree of the denominator is greater than 2. Partial fraction decomposition is an algebraic technique that helps in this case. 

The addition of fractions is a familiar idea from algebra. By finding a 
least common denominator we have 

( l ) 

2x 7 2x (2x - 9) + 7(x 2 + 6) -- + --- = ---------
x 2 + 6 2x - 9 (x 2 + 6) (2x - 9) 

l lx 2 - 1 8x + 42 
= -,--------

2x3 - 9x 2 + l 2x - 54 · 

However, if the aim is to antidifferentiate the expression on the left in ( 1 ), 
it is silly to change to the rightmost fraction .  The pieces on the left are 
easier to handle than the single fraction on the right. I n  fact, the point is to 

l lx 2 - 1 8x + 42 2x 7 learn how to decompose 3 9 ,, 1 2  54 back to -:;--6 + -2 9 • In
 

2x · - x ·  + ' x - x · + x -
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general, we want to decompose a proper fraction which is not in the tables into a sum of "partial fractions" which are either in the tables (formulas 1-4) or which may be antidifferentiated by substitution or inspection. The decomposition is accomplished in several steps, and it works only for proper fractions. We will describe the general steps, and cover the details in the examples. (The proof of the method is beyond the scope of the course.) 
Step 1 Factor the denominator as far as possible , which means into linear factors and nonfactorable (also called irreducible) quadratics. A quadratic is taken to be nonfactorable only if its two linear factors involve nonreal numbers. For example x2 - 3 does factor, namely into (x - Y3) (x + Y3), but x2 + 4, which equals (x - 2i) (x + 2i), is considered nonfactorable. Quadratics can sometimes be factored by trial and error, but the following general rule is available: If b 2 - 4ac < 0 then ax2 + bx + c doesn't factor. 
(2) If b2 - 4ac 2: 0 then 

( -b + Yb 2 - 4ac ) ( _ -b - Yb 2 - 4ac ) ax 2 + bx + c = a x - 2a x 2a . 
There is no easy rule for factoring polynomials of higher degree but they can all be factored into linear and nonfactorable quadratics. 
Step 2 The nature of the decomposition depends on the factors in the denominator. If a linear factor such as 2x + 3 appears in the denominator then a fraction of the form A /(2x + 3) appears as one of the partial fractions in the decomposition. If a repeated linear factor such as (2x + 3)3 appears in the denominator then 

A B C --- + ---- + ----
2x + 3 (2x + 3)2 (2x + 3)3 

appears in the decomposition. If a nonfactorable quadratic such as x2 + x + 10 appears in the denomi-h Ax + B  ' h d . . nator t en x2 + x + 10 appears m t  e ecomposltlon. If a repeated nonfactorable quadratic such as (x2 + x + 10)4 appears in the denominator then 
Ax + B Cx + D Ex + F Gx + H 

2 + 2 ,, + -------, + -,------x + X + 10 (x + X + 10)· (x2 + X + 10)1 (x2 + X + 10)4 
appears in the decomposition. 
Step 3 Determine A , B , C, · · · in the decomposition by the methods to be shown in the examples. Decomposition is a useful algebraic tool which has applications in addi­tion to antidifferentiation. It will be used in Section 8. 7 to find a power series for a quotient of polynomials, and it occurs in the theory of Laplace Transforms, encountered in advanced engineering mathematics . In each 
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instance it is easier to work separately with the partial fractions than with 
their sum. 

E I I D 2x 2 + 3x - l 
d h "d "ffi . xamp e ecompose 

(x + 3) (x + 2) (x _ 1 )  
an t e n  anu 1 erenttate. Solution: The decomposition has the form 

2x 2 + 3x - l A B C 
-------- = -- + -- + --(x + 3) (x + 2) (x - l ) x + 3 x + 2  x - 1 · 

Before trying to determine A, B and C, simplify by multiplying both sides 
by (x + 3) (x + 2) (x - I ) to obtain 

(3) 2x 2 + 3x - I = A (x + 2) (x - l )  + B (x + 3) (x - I )  
+ C (x + 3) (x + 2) . 

Equation (3) is supposed to be true for all x, so we are allowed to substitute 
an arbitrary value of x. Use the "good" values -3 ,  -2 ,  1 to facilitate the 
algebra. 

l f x == - 3 then 8 = 4A, A = 2 .  

l 
l f x  = - 2  then I =  - 3B ,  B = -

3
. 

I If x = l then 4 = 1 2C, C = 
3

. 

Using good values of x in this manner produces A, B, C immediately. (They 
are good because they make two of the factors on the right-hand side of (3) 
become 0. ) Using other values of x will produce three equations in the three 
unknowns A , B , C. The equations can be solved for A , B , C, but this proce­
dure is unnecessarily complicated . Stay with the good values of x as long as 
they last. 

The result is 

2x 2 + 3x - l 2 1 /3 1 /3 -------- = -- - -- + -- . 
(x + 3) (x + 2) (x - I )  x + 3 x + 2 x - 1 

Finally, each term in the decomposition may be antidifferentiated by in­
spection to obtain 

I 2x 2 + 3x - I l 
(x + 3) (x + 2) (x _ 1 )  

dx = 2 ln lx + 31 - 3 
ln lx + 2 1 

l + 
3 

lnlx - I I  + K . 

I x 2 + 2x + 6 
Example 2 Find 

(2x + 3) (x _ 2)2 
dx. Solution: The fraction is proper, but not in the tables. The decom­

position has the form 

x 2 + 2x + 6 A B C ------ == --- + -- + ---
(2x + 3) (x - 2)2 2x + 3 x - 2 (x - 2)2 • 

Multiply both sides by (2x + 3) (x - 2)2 to simplify:  
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(4) x2 + 2x + 6 = A (x - 2)2 + B (x - 2) (2x + 3)  + C (2x + 3 ) . I f  x = 2 then 14 = 7C, C = 2 .  3 2 1  49 If  x = - 2 then 4 = 4A, A = 3/7 . 
Although the good values of x are exhausted, there are still several ways to find B easily. One possibility is to use any other value of x. For examr,le, if x = 0 then 6 = 4A - 6B + 3C. Since we already have A and C, B = i;(4A + 3C - 6) = ; . Another possibility is to equate coefficients. Each side of (4) is a polynomial, and since they agree for all values of x, it can be shown that they must be the same polynomial. The polynomial on the left leads with an x 2 term whose coefficient is 1 .  When the right-hand side is multiplied out and rearranged, its x 2 term is (A + 2B )x 2• Equate the two coefficients of x 2 to obtain I = A + 2B , B = ½ ( I - A )  = ; , I nstead of using the coefficients of x 2 we can also use the coefficients of x. On the left side the coefficient is 2 and on the right-hand side, after simplifica­tion, the coefficient is -4A - B + 2C. Thus 2 = -4A - B + 2C, B = 

-4A + 2C - 2 = , -Therefore x 2 + 2x + 6 3/7 2/7 2 -------,. = --- + -- + ---,, 
(2x + 3) (x - 2)2 2x + 3 x - 2 (x - 2)2 • 

Each term on the right can be antidifferentiated by inspection or with a simple substitution to give 
I x 2 + 2x + 6 3 2 2 

(2x + 3) (x _ 2)2 dx = 14 ln l2x + 31 + 7 ln lx - 2 1 -
x _ 2 + K . 

. J 3x 2 + 2x - 2 Example 3 Fmd (x _ I ) (x 2 + x + I ) 
dx. Solution: First see if the denominator factors further. Since x 2 + x + l is nonfactorable (b 2 - 4ac < 0), we can proceed to the decomposition which is of the form 

Then 
3x 2 + 2x - 2 A Bx + C ----=---- = -- + -=----

(x - l ) (x 2 + x + 1 ) x - l x 2 + x + l · 
(5 )  3x 2 + 2x - 2 = A (x 2 + x + l ) + (Bx + C ) (x - l ) . I f  x = I (the only good x) then 3 = 3A , A = 1 .  The preceding example illustrated two ways to find the remaining letters if there are not enough good values of x. We prefer not to solve a system of equations to find B and C, and from this point of view, equating coefficients is usually better than using other values of x. The constant term on the left side of (5) is -2 . When the right side is multiplied out and simplified, its constant term is A - C. Therefore -2 = A - C, C = A + 2 = 3. The coefficient  of x 2 on the left side is 3 .  The coefficient of x2 on the right side is A + B. Therefore 3 = A + B, B = 3 - A = 2. Thus the decomposition is 3x 2 + 2x - 2 l 2x + 3 

(x - l ) (x 2 + x + l ) = ;-=-. + 
x 2 + x + l 
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and 

I 3x 2 + 2x - 2 (x - 1 ) (x2 + x + 1 ) dx I dx 2 J x 
= 

X - 1 + x 2 + X 

I dx + 3 2 X + X + 1 
+ l dx 

The first integral on the right may be done by inspection or with the 
substitution u = x - 1 .  Use formula 2 and then l b on the second integral, 
and use l b  for the third integral. Thus 

I 3x 2 + 2x - 2 d (x - 1 )  (x 2 + x + 1 ) x 
o 2 2x + 1 

= In lx - 1 1  + In lx ·  + x + I I  - \/3 tan - 1 
\/3 

6 2x + 1 + - tan - I  --- + K 
\/3 \/3 

o 4 2x + I 
= Inlx - 1 1  + In lx · + x + I I  + \/3 tan- 1 

\/3 + K . 

Warning I .  The factor x 2 - 5 in a denominator is Jactorable and 

h d . . d . Ax + B d f . t e ecompos 1 t 1on oes not conta in -2 -5
- . I n stea , actor i nto 

X -(x - VS )  (x + VS ) and put A
VS 

+ B 
VS in the decomposition . x - 5 x +  5 

2. A numerator of the form Bx + C goes on top of a non factorable 
quadratic only. A factor such as (x - 3)2 in the denominator is a repeated 
linear factor, not a nonfactorable quadratic, and the decomposition con-

. A B O A Bx + C s· . 1 I h f 2 • tams --3 + 0 , N T -- + 3 ,, . 1m1 ar y, t e actor x m x - (x - 3 )" x - 3 (x - )· 
a denominator is a repeated linear factor, and the decomposition contains 
A B 
- + ---;; . 
X x ·  

3 .  The decomposition technique in this section does not work for improper fractions. Use long division on improper fractions first, and then 
decompose further, if necessary. 

Problems for Section 7 .4 

1. Describe the form of the decomposition without actually computing the 
values of A, B, C, . .  · 

2x '  + 3 4x
3 

(a) 
x '(x + 1 ) (2x + 3) 

(b) 
(x 2 + 2x - 2) (x 2 - 2x + 2) 

2. Decompose into partial fractions 
12 I 5x 2x + 3 

(a) x 2 - 3 (b) 2x 2 - 5x - 1 2  
(c) (x 2 + l ) (x - 2) 

(d) 
(x - 2)2 

3. Find f 3 
dx (a) by decomposing and (b) directly from the 

(2 - x) (x + I )  
tables. Confirm that the two answers agree. 
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. f 2x + 3 f Bx f dx 4. Fmd (a) x 2 - 4x + 4 dx (b) x 4 - I dx (c) x 2(2x - 3) . 5. Derive formula I I .  f x 2 6. Find 2 5 4 dx 

X + X + 
and a im for the answer x + \ !n ix + I I -

-'I !nix + 41 , 

7 .5 Integration by Parts 

The substitution method in Section 7 .2  is a reversal of the chain rule for derivatives. The idea behind integration by parts is to reverse the de­rivative product rule. Since D,uv = uv ' + vu ' we have the integration for­mula J (uv ' + vu ' )  dx = uv. But problems don't usually originate in the form J (uv ' + vu ' )  dx, so we continue on to a more useful version of the integration formula. Write it as J uv ' dx = uv - f vu '  dx, and then to make it easier to apply, use the notation dv = v '  dx, du = u '  dx to get 
( l ) 
This formula can be used to trade one problem (namely, J u dv) for another (namely, J v du), which may or may not help depending on how good a trader you are. To apply ( l ), a factor in the integrand must be called u. The rest of the integrand including the "factor" dx is labeled dv. Success of the method, called integration by parts, then depends on being able to find v from dv (this in itself is antidifferentiation) and on being able to find J v du. Example 1 We'l l show how the tables arrived at the formula for 
f x sin x dx. We must think of x sin x dx as u dv. One possibility is to let u = x, 
dv = sin x dx. Then du = dx and v = -cos x. (Finding v after choosing 
dv is a small antidifferentiation problem buried in the overall anti­differentiation problem.) Then, by ( I ) , 

f x sin x dx  = -x cos x + f cos x dx = -x cos x + sin x + K .  

The trade was a good one since the new integral, J cos x dx, was easy to do. Another possibility (which proves to be a false start) is to let u = sin x, 
dv = x dx. Then du = cos xdx, v = ½x2 and, by ( l ) , 

f x sin x dx = ½ x2 sin x - ½ J x2 cos x dx . 
This is correct but not useful since the new integral looks harder than the original. Example 2 Derive the formula in the tables for J e• cos x dx. 

Solution: Let u = e', dv = cos x dx (it would do just as well to begin with u = cos x and dv = e·' dx ). Then du = e·' dx, ti = sin x and 
f e·' cos x dx  = e' sin x - f e·' sin x dx .  

The new integral is just as bad as the original, but surprisingly if we work on the new one we'll succeed. Let u = e', dv = sin x dx. (Using u = sin x, 
dv = e·' dx at this stage leads nowhere. )  Then du = e·' dx, ti  = -cos x and 
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f 
e' cos x dx = e' sin x - ( - e• cos x + f e' cos x dx) . 

On the right-hand side is the original integral which seems circular. But collect the terms involving f e ·' cos x dx to get 2 J  e '  cos x dx = 
e' sin x + e• cos x. Thus the final answer is 

f e' cos x dx = ! (e' sin x + e' cos x) + C . 
Problems for Section 7 .5 

I .  Derive the formulas given in the tables for 

(a) f xe' dx  (b) f tan- 'x dx (c) f sin - •x cu  (d) f In x dx  

2. Find (a) f cos(ln x) dx (b) f x2e 'dx (c) J x tan · 'x dx. 

3. Problem 26 in Section 7.2 derived the formula for f sec x dx. Use it to find 
the formula for f sec'x dx. 

4. Suppose Q(x) is an antiderivative for e -••. Find J x 2e -'2 dx in terms of Q(x). 

7.6 Recursion Formulas 

Some antiderivative formulas, said to be recursive, can be applied re­peatedly within a problem to help get a final answer. We will illustrate how they are used and how they are derived. 
Example of a recursion formula Suppose we want to find J x ;  sin x dx. The tables in this book do not help, and even larger tables will probably not contain this specific integral. However many tables will list the following pertinent formula: 
( 1 ) f x• sin x dx  = -x •  cos x + nx•- • sin x - n (n - 1 ) f x •-2 sin x dx .  

Use ( 1 ) with n = 7 to obtain 
f x7 sin x dx = -x 7 cos x + 7x6 sin x - 42 J x 5 sin x dx .  

Then use ( I ) again with n = 5 to get 
f x 7 sin x dx  = -x 7 cos x + 1x6 sin x 

- 42(-x 5 cos x + 5x 4 sin x - 20 f x 3 sin x dx) . 

And again with n = 3 to get 
f x 7 sin x dx = -x 7 cos x + 7x6 sin x + 42x5 cos x - 2 10x 4 sin x 

+ 84o(-x 3 cos X + 3x 2 sin X - 6 I X sin x dx) . 
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Finally use formula 48 in the tables to finish the job and compute 
f x sin x dx. The final answer is 

f x1 sin x dx  = (-x 1 + 42x 5 - 840x 3 + 5040x) cos x 
+ ( 7x6 - 2 l 0x4 + 2520x2 - 5040) sin x + C .  

Many of the formulas collected in tables are recursion formulas like ( 1 ) ,  
and are usually found by integration by parts. To derive ( 1 ) ,  let u = x•, 
dv = sin x dx. Then du = nx•- 1 dx, v = -cos x and 

(2) f x• sin x dx  = -x• cos x + n f x•- •  cos x dx .  

We don't stop here because (2) is not recursive; that is, it can't be used over 
and over again. If it is used on f x 1 sin xdx, we obtain the new integral 
f x6 cos x dx  to which (2) no longer applies. So we integrate by parts again. 
Let u = x•- 1 , dv = cos x dx. Then du = (n - l )x•-2 dx, v = sin x and 

f x" sin x dx  = -x• cos x + n[x•- 1 sin x - (n - 1 ) f x•-2 sin xdx] , 

which simplifies to the recursion formula in ( 1 ). Typically, a recursion 
formula lowers an exponent in the integrand. The formula in ( 1 )  happens 
to bring an exponent down by 2. Look at formula 3 in the tables to see an 
instance where an exponent (called r) is lowered by 1 .  

The recursion formulas for f sin•x cos"x dx Products of powers of sines 
and cosines occur frequently, and the tables contain four recursion formu­
las for them. Formula 52a brings the sine exponent down by 2 and leaves 
the cosine exponent alone. Formula 52b brings the cosine exponent down 
by 2 and leaves the sine exponent alone. Similarly, formulas 52c and 52d 
leave one exponent unchanged and raise the other exponent by 2; they are 
used if an exponent is negative to begin with. For example, 

I . sin3x cos5x 3 J . sm4x cos4x dx  = - 8 + 8 sm2x cos4x dx  

(by formula 52a with m = 4 ,  n = 4) 
sin5.x cos5x 3 [ sin .x cos5.x 1 J 4 d ] = - ---- + - - ---- + - COS .X X 8 8 6 6 

(by formula 52a with m = 2 ,  n = 4) 
sin3.x cos5.x I . 5 = - 8 - 1 6  sm .x cos .x 

I [sin .x cos5.x 3 f 2 dx] + - ---- + - cos .x 1 6  4 4 
(by formula 52b with m = 0, n = 4) 

sin5.x cos5x I . . I . = - ---- - - sm .x cos'x + - sm .x cos3.x 8 1 6  64 

+ 1!s [x + sin x cos x] + C 

(by formula 52b or 40). 
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The special case of f sin'"x cos"x dx where m and/or n is a positive odd 
integer One way to find f sin 11Jox cos x dx is to use formula 52a fifty times 
to bring the sine exponent down to 0, and finish by doing f cos xdx. But it 
is much easier to substitute u = sin x, du = cos xdx to obtain 

(3) 

I I u I ll !  sin l ll 1x sin l0°x cos x dx = u "x> du = WI + C = � + C .  

As another example, consider 

f cos98x sin3x dx .  

One possibility is to use formula 52b forty-nine times to bring the cosine 
exponent down to 0, use formula 52a once to bring the sine exponent down 
to l ,  and finish by finding f sin x dx. But it is easier to use formula 52a once 
to obtain 

I sin2x cos99x 2 J cos98x sin3x dx = - ----- + - cos98x sin x dx l01 101 

and then substitute u = cos x, du = -sin xdx to get 

(4) 

f sin2x cos!19x 2 f cos98x sin3x dx = -
I O I  - WI u 98 du 

lO l 
2 

( IO I )  (99) 
cos99x + C . 

Another approach to (3) is to use the identity cos2x + sin2x = l and write 
sin3x = sin2x sin x = ( I - cos2x) sin x .  

Then f cos98x sin3x dx = f cos98x ( l - cos2x) sin x dx 

= f (cos98x - cos HM>x) sin x dx 

and the problem may be completed with the substitution u = cos x, 
du = -sin xdx to obtain 

(5) f cos99x cos l0 1x 
cos98x sin3x dx = - 99 + 101 + K . 

In general, suppose at least one of the exponents, say n, is a positive 
odd integer. Instead of using the recursion formulas to lower both m and 
n, it is faster to use 52b or the identity sin2x + cos2x = l to reduce the 
problem to f sin"'x cos xdx, and then finish with the substitution u = sin x, 
du = cos x dx. 
Problems for Section 7 .6 

I. Derive a recursion formula for J x "e '  dx. 
2. Derive recursion formula 53 by writing tan"x as tan2x tan"-2x and using the 

identity tan2x = sec2x - I . 
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S. Derive a recursion formula for f (In x)" dx and then use it to find f (In x)" dx. 
4. Use formula 52 to derive a recursion formula for f sinmx cos"x dx which 

brings m and n each down by 2. 
5. Explain why formula 4 is not recursive . 
6. Find 

(a) J sin x cos x dx  

(d) J tan4xdx 

(b) J sin x cos 1 2x dx  

I COS X (e) -.-2- dx  sm x 

(g) J sin4x cos�xdx (try it without tables for practice) 

7. Show that the answers in (4) and (5) agree. 

(c) J sec'x dx 

I sin2x (f) -.-, dx cos· x 

(h) J sin43x dx 

7. 7 Trigonometric Substitution 

A collection of integrals in the tables (and similar integrals not listed) 
can be found using a substitution of a special type called trigonometric substitution. We will illustrate the method by deriving formula 26 for I � dx. The expression V' a 2 + x 2 can be labeled as the hypote­

x a + X 

nuse of the right triangle in Fig. l .  The triangle will be the basis for the 
substitution. Let u be one of the acute angles in the triangle (it doesn't 
matter which angle you choose. )  All the relations between x and u that are 
needed for the substitution will be read directly from the triangle. There 
are many relations available : 

X tan u = - ,  
a 

a 
cos u = R+? '  sin u X = -=== 

R+? "  
The second relation can be used to replace Va 2 + x2 by an expression 
involving u alone, namely by a/cos u. But we also have to replace dx and x 
and for this purpose, the first relation, which is simplest, is most useful. It 
yields x = a tan u, dx = a sec2u du. (So far, our substitutions have usually 
expressed u in terms of x, and du in terms of dx. In trigonometric substi­
tutions it is more convenient to express x in terms of u, and dx in terms 
of du. ) Then 

( l ) 

I � dx = f ------a sec2u du = _ _!_ f csc u du 
x a - + x a a 

a tan u · --
cos u l = - - lnlcsc u + cot ul + C a 

(formula 34) . 

To express the integral in terms of x, read directly from the triangle that 
hypotenuse W+x2 d adjacent a csc u = . = ---- an cot u = . = - . opposite x opposite x 

Substitute these expressions into ( I )  to obtain the final answer 

f l dx = _ _!_ ln l va 2 + x2 
+ !±..I + C .  

x� a x x 
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In general, trigonometric substitution applies to integrands containing the expres­
sions a 2 + x2 (use Fig. 1), a 2 - x2 (use Fig. 2) and x2 - a 2 (use Fig. 3). ln each 
case, u can be either of the acute angles in the triangle. If the antidifferentiation is part of an overall physical problem, it is very likely that the triangle will already be part of the setup, as the following example illustrates. 
Example I A destroyer detects an enemy battleship 8 km due west (Fig. 4 ). The destroyer's orders are to follow the battleship, always move toward it, but maintain the 8 km distance between them. The problem is to find the path of the destroyer if the battleship mo\'es north. 

fNJriA 1.­
&11mESH I P  rosmor-1 

;(, 

F IG . Lr  
For convenience draw axes so that initially the battleship is at the origin and the destroyer is at the point (8, 0). Let the unknown path be named y = f(x) . Since the destroyer always moves towards the battleship, it is characteristic of the destroyer's path that at any point, the line from the destroyer D to the battleship B is tangent to the destroyer's path. Figure 4 shows a typical point (x,/(x)) on the unknown path. To find the unknown function /(x), read from the picture that f '(x) , the slope of line BD, is negative, and in particular is - V64 - x2/x. Therefore, to find/(x) we need 

f V64 - x2 - --- dx . 
X 

The integral can be found with formula 2 1 , but we'll practice with tri­gonometric substitution (which was used to derive formula 2 1  in the first place ). The problem already contains a suggestive right triangle; let u be one of its acute angles. From the triangle, tan u = V64 - x2 /x so the entire integrand becomes tan u. We also have cos u = x/8,  so x = 8 cos u ,  
dx = -8  sin u du. Therefore, 

f V64 - x2 f . f sin2u - ---- dx = - tan u • - 8  sm u du = 8 -- du . 
X COS U 

We can continue with formula 52c in the tables, or with the identity sin2u + cos2u = l as follows: 
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I V64 - x2 f I - cos2u 
- --- dx = 8 --- du 

X COS U 

8 J ( I cos2u) d = � - � u 

= 8 f (sec u - cos u) du 

(by algebra) 

= 8 ln(sec u + tan u) - 8 sin u + C 
(by formula 33) . 

(The absolute values in formula 33 may be omitted because sec u and tan u 
are positive in this problem.) To finish the substitution and express the 
answer in terms of x, read sec u, tan u and sin u from the triangle to get 

(2) ( 8 V64 - x2
) 8 In -; + 

x 
- \f 64 - x2 + C .  

The function/(x) must have the form of (2). To determine C, note that the 
point (8, 0) is on the graph, that is,/(8) = 0. Thus if x is set equal to 8 in (2), 
the result must be 0.  So 0 = 8 In 1 - 0 + C. Therefore C = 0 and the path 

(8 + V64 - x2
) is y = 8 In x - V64 - x2 (an example of a curve called 

a tractrix) . 

Problems for Section 7. 7 

I . Derive lhe formulas in lhe lables for 

7 .8 Choosing a Method 

So far, the chapter has dealt with one method at a time. A list of 
miscellaneous problems is more forbidding, especially since there is no 
definite set of rules for deciding which method to use. If  you have access 
to a large set of tables, they will be a great comfort. If a function is not listed 
in the tables, we have a few suggestions. 

Incomplete list of imperfect strategies (a) Complete the sqt1are if the 
problem involves a:x2 + bx + c but the only similar formula in the tables 
does not contain the term x. 
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(b) Substitute if there is an expression in the integrand whose deriva­
tive is also a factor in the integrand. Substitutions might (unpredictably) 
work in other situations too. 

(c) Use long division on improper fractions. 
(d) Decompose proper fractions if they aren't in the tables. 
(e) Use integration by parts to get recursion formulas. Integration by 

parts may also work when other methods don't seem to apply. 
(f) I f  a problem involving a 2 :!: x 2 or x 2 - a 2 is not in the tables, try 

trigonometric substitution. 

The perfect strategy The reason that we, the authors, can find anti­
derivatives is that we have already done so many. Almost any reasonable 
problem, suitable for a calculus course, is either one we have seen before or 
similar to one we have seen before. We don't have a secret weapon or inborn 
ability or a strict set of rules. Our real strategy is second sight, and it comes 
from practice. 

Problems for Section 7.8 

Outline a method for finding each antiderivative. 

I sinYx dx I. 
Yx 

2• f ( I  .:. x 'f 
dx 

3. f 3 : x 2 dx 

4 f I dx . v'2x"TI 
5. f x (x - 1 )20 dx 

6. f � dx e· 

7. 
I x2 + 2x + 3 dx 

X + I 

8. f � dx 4 - x 

9. f (2x + 9) dx 

10. f � dx 4 - x  

1 I .  I x (x � I )  dx 

12. f 2 tan 3xdx 

13. I x (x � 1 )2 dx 

14. f � dx 

15' f (x + 3) �x + 1 )2 dx 

16. J � : : dx 

1 7  J
cos•x dx • sin 2x 

18. f sin 11x dx 

19. J (3x � 1 )9 dx 

20. J -9 x 2 
, dx + 4x · 

21. f tan x sin2xdx 

f dx 22. . rn--'1 X V  3 - x -

23, f (9 + 4xf dx 

24. f --;- dx 
COS X 

I V2T=4 25. x 2 dx 

26. f sin;x dx cos•x 

f x2 - 4 
27. -.,- dx 

x ·  

28. f sec'x dx 



29' f 2x � I 
dx 

30. f x sin x 2 dx 

31 .  f sec4x dx  

32. f x 2 sin x dx  

33. f � dx 
2 + 3x 

34. f e 3' dx 

35. f 
2x 

x
+ 3 

dx 

36. f sin 5x dx 

37. f r\/2='7' dr 

38. f C�S�X 
dx 

sm2x 

39. f sin'x dx 

40. f 2 dx  

41.  f 5 sec 2x dx 

42. f 2x : 
3 

dx 

43. f sin 3x cos 2x dx 

44. f sin ! dx 

45. f cos 2x sin 2x dx 

46' f 5x � 2 
dx 

7 f (x + 3) (x - 2) 
dx 4 . 

l X -

48. f X 3'\!'7+1 dx 

49. f sin x dx 
cos2x 

50. f x sin- 1x dx  

51 .  f xe'" dx 

7.8 Choosing a Method · 2 1 1  

52. f 
x ' � 2 

dx 

53. f xe' dx 

54. f sin2x 
dx 

COS X 

55. J � dx 
2x - 5 

56. f 8 tan(3 - 2x) dx 

57. f � dx 

58. ! (2 - ¾xr dx  

59. f � dx  
e + e 

60. f tan x cos4xdx 

61 .  f � dx  

62. f Yx2 - x + 3 dx 

63. f 2 

3 
I 

dx 
X + X + 

64. f 7 ln(4x + 5) dx 

65. f e 812 d6 

f l +  2x 
66. 

l + x2 dx 

67. f x2v'3?"'=l dx 

68. f sin4x dx  

69. f cos'x sin2x dx  

70• f sin 2x 
dx 

cos 2x 

71 .  f ( 1  + e')2 dx 

72. I sin5x dx 

73. J � dx 
6x - X 

74. f sin 2� dx 
9 - cos22x 
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15. f . _x 
dx 

(x 2 
- :>) ( I  - x) 76. f x (2 + 3x)1 dx 

11. f e 2
' sin 3x dx 

f X + 4 78. 
2 

., dx 
x · + x - I 

19. f ( In x) ' dx 

80. f tan23xdx 

8 1 .  J x '' sin x dx 

82. J sin x . dx (2 + cos x)2 

83. J cos2xdx 
84. f cos'x dx 

85. f cos2x sin x dx 

7 .9 Combining Techniques of Antidifferentiation with the 
Fundamental Theorem 

By the Fundamental Theorem of Section 5.3, to find the (definite) integral J! f (x) dx, we first try to find the antiderivative (indefinite integral) 
F (x) = J f(x) dx, and then compute F(b) - F(a) .  This can be done in two separate steps, or to save time and paper, the two steps can be combined as shown in this section . 
Combining substitution and the Fundamental Theorem Consider 
nx2 cos x :1 dx. We'll begin by finding an antiderivative for the integrand as a first step, apply the Fundamental Theorem in a second step, and then see how to merge the two. To antidifferentiate, substitute ( I )  Then du = 3x 2 dx . 

f x 2 cos x 3 dx = ! f cos u du = ! sin u + C = ! sin x :1 + C.  
Any antiderivative may be used in applying the Fundamental Theorem; with the antiderivative +i sin x\ we have 

f :1 2 '\ d I . l I :I I ( ' 2 7 . 8) 
2 
x cos x· x = 3 sm x· 

2 
= 3 sm - sm . 

To accomplish this in one step, use the substitution in ( I )  to express the integrand in terms of u, and write the limits of integration in terms of u. If x = 2 then u = 8; if x == 3 then u == 2 7. Thus 
f 

3 I f 2; I 1 21 I (2 ) x 2 cos x 3 dx = - cos u du = -3 sin u = -3 (sin 27 - sin 8) . 
2 3 8 8 Switching to u limits produces the same answer as before, but in less space. Note the difference between a substitution in J f (x) dx versus ft f (x) dx. For the former, we must eventually change back from u to x so that the final antiderivative is expressed as a function of x. But in (2), the new integral Jr cos u du computes to be a 11 umber, and there is no "changing back" to be done. 
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Example I Find r 5 � 2x dx. Solution: Let u = 5 - 2x, du = -2 dx. If x = 7 then u = -9; ifx -+ x then u -+ -oc. Therefore 
(3 )  Ix l {· f-x I l , -,. -_ -- dx = - - - du = - - ln lu l 

1 ::> - 2x 2 -Y u 2 -Y  

l l = - 2 ln oc + 2 ln 9 = -x . 
Note that after the substitution, the lower limit u = -9 is larger than the upper limit u = -:x:, that is, the limits are backwards. This causes no difficulty. Simply continue with F(b) - F(a) ,  which still holds even for back­ward limits. 
Warning When substituting in a (definite) integral ,  the limits of integra­tion must be changed to new u limits . In (3) ,  it is not correct to write 
f" -1-2- dx = -½ f" l. du or f"' -1-2- dx = -½ f l. du. The original x 

7 5 - x 7 u 7 5 - x u limits cannot be retained, nor can they be dropped in the middle of a problem (even if you intend to restore them later). 
Example 2 Without evaluating either integral, show that 

f e• sin(3 - x) dx = f e 3-x sin x dx .  
Solution: Let u = 3 - x, du = -dx. I f  x = 0 then u = 3 ;  if x = 3 then u = 0. Since u = 3 - x, we have x = 3 - u . Therefore 

re• sin(3 - x) dx = -r e 3
-•  sin u du 

0 3 

i3 
= e 3-• sin u du 

II 

= f e 3
-x sin X dx 

(substitution) 
( use ft(x) dx = - {t(x) dx) 

(change the dummy variable from u to x) . The last step often bothers students. Remember that J& e 3-•  sin u du is a number; the letter u is a dummy variable. We can write the integral as f3 e s-, sin t dt or Jg e 3-• sin a da or (as we did) ne 3 -• sin x dx. All of these stand for the same number. 
Combining integration by parts with the Fundamental Theorem To find J:4 x sec2x dx, let u = x, dv = sec2xdx. Then du = dx, v = tan x and 

J,r/4 1 "'4 I"'� x sec2x dx = x tan x -
0 0 O 

1T l . rn  = - + ln - v 2z 
4 2 . 

1T 

, ,,,� 
tan x dx = - + lnjcos xi 

4 0 
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��"- '+ 
Fl6. I 

The limits of integration do not change in the process. More generally, the 
integration by parts rule for (definite) integrals, as opposed to anti­
derivatives (indefinite integrals) is 

fu dv = uv 1: - fv du .

Problems for Section 7 .9 

l . For each integral ,  perform the indicated substitution, and then stop after
reaching an integral involving only u. 

(a) I: sin5x dx, u = 3x 

(b) r sin(ln x) dx, u = ln x

f
4 v'?"74  

(c) 2 dx, 
2 X 

11 is the angle indicated in Fig. l 

2. Evaluate the integral .

(a) fx (3x 2 
- l ) '" dx  (b) re-• cos x dx  J' (ln x)"

(c) -- dx 
I X 

(d) J: sin2x cos2x dx  
(e) f s 

x 2e'·' dx (f) f\�dx
II 

3. Show that the integrals are equal without evaluating them.

(a) {x '"( l  - x)" dx = {x" ( I  - x)'" dx I. IO 

f30 
(b) (x + 20)2 dx = x 2 dx 

0 2U 

f

2b

F-F f' 
(c) sin -

2 
x dx = 2 � dx 

� . 
f3 

X f' 4. Given that -
1 -dx = k, find x In In xdx in terms of k.

2 n X 2 

REVIEW PROBLEMS FOR CHAPTER 7 

1. Find f x 2 I 
dx 

(a) directly from the tables
(c) with a trigonometric substitution

2. Find f I dx 
(x + 2) (x - 4) 

(a) using substitution and formula 9

(b) bv ordinarv substitution
(d) b)· integration by parts

(b) by completing the square and using formula 18
tc) directh· from the tables
(d) by partial fractions

X
+



3. I ndicate a method. 

(a) J e •• sin x dx  (h) I X 
dx 

x + 3 

(b) J 
3x 

� 4 dx (i) f
x

:
3

dx 

(c) J vb dx 
2 - x 

(j) f 2x + l
dx 

X + 6 

(d) J 
( l +

x
�'

)
' (k) f 

X 
dx Y3x+4 

(e) J tan23x dx (I) J l dx V2?"+x 
(f) J e -ti.x dx  (m) f x 2( l  \ x) 

dx 

(g) J J- dx 
::,x 

(n) J • l 
2 

dx 
X + X + 

4. Find J sin 3x sin 5x dx 

(a) directly from the tables 
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(b) with the identity sin x sin y = ½[cos(x - _v) - cos(x + y)] 
(c) with integration by parts 

5. If J"'' e'  sec2x dx = Q, find f "'3 e·' tan x dx in terms of Q. 
0 0 

6. Find f 1x (2 + x 2)° 
dx . 

0 

7. Find 

(a) J sin x dx (f) J sin"x cos2x dx  

(b) J sin2x dx  (g) J :. dx 

(c) J sin'x dx (h) J ; dx 

(d) J sin x cos x dx  (i) J � 
(e) J sin2x cos x dx  
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8.1 Introduction 

In precalculus mathematics, addition can only be done with finitely many numbers. Addition of this type is very concrete: 3 + 4 = 7 becausea pile of 3 apples merged with a pile of 4 apples becomes a pile of 7 apples. Addition of infinitely many numbers is physically impossible in the apple sense, but this chapter presents a sensible mathematical definition and its consequences. The first application is in the next section, and the main applications are in Sections 8.6 and 8.7. 
Series and their sums The symbol a 1 + a2 + a3 + · · · is called a series with
terms a . ,  a2 , a3 , · · · . The series is also written as I;. 1 a •. Frequently we will use I a. as an abbreviation. The partial sums of the series are 

( l )

(2 ) 

S1 = a 1 S2 = a 1 + a2 

If the partial sums approach a number S, that is, if lim s. = S ,. .. we call S the sum of the series, and write I a. = S. In this case the series is called convergent; in particular, it converges to S. The definition of the sum of
a series says to start adding and see where the subtotals are heading. If the partial sums do not approach a number, the series is divergent.There are three types of divergence. If the partial sums approach cc, we say that the series diverges to 00, and write I a. = 00. Similarly, if the partial sums approach - 00, the series diverges to - 00, and I a. = - 00. If the partial sums oscillate so vigorously that they approach neither a limit, nor 00, nor - 00, we simply say that the series diverges. 

Example 1 The series 1 - 2 + l - 3 + 1 - 4 + l - 5 + · • · diverges to
- 00, since the partial sums are l ,  -1 ,  0, -3, -2 ,  -6, -5 ,  -10, · · · which ap­proach - 00. In other words, 1 - 2 + 1 - 3 + 1 - 4 + l - 5 + • · · = - 00. 

"' ( 1 ) " 1 1 1 l Example 2 Consider L - = - + - + - + - + · · · . The partial· · •  2 2 4 8 1 6  sums are 
2 17 
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l 2 I I 3 
S2 = - + - = -2 4 4 l I l 7 S3 = - + - + - = -

2 4 8 8 I I I I 1 5  S4 = 2 + 4 + 8 + 16 = 16 

Since Jim • • � S. = 1 ,  the series has sum 1 ,  that is, the series converges to 1 ,  and we write L:= 1 (!)" = 1. ( If you eat half a pie, then half of the remaining half-portion, then half of the still remaining quarter-portion, and so on, you are on your way to eating the entire pie. ) 
Warning If the sum of a series is S, it is not necessarily true that S is ever 
reached as term after term is added in. In the preceding example, if we start adding ½ , ¾ , ¼ , · · ·  we will never reach l. But the subtotals are getting closer and closer to 1, so the definition calls I the sum. 
Example 3 Consider the series 
(3)  2 - 2 + 2 - 2 + 2 - 2 +  . . . . The partial sums are S 1 = 2, S2 = O, S3 = 2 , S4 = 0, . . . . They do not have a limit as n -+ oo, so the series does not have a sum; it diverges. This example often disturbs students. Some would like the answer to be either 2 or - 2  depending on whether the "last" term is odd or even numbered. But there is no last term; they just keep coming. Some would like the answer to be O because they visualize the series grouped into pairs and turned into (4) ( 2 - 2 ) + ( 2 - 2) + ( 2 - 2 ) + · · · = 0 + 0 + 0 + 0 + · · · . Some would like the answer to be 2 because they group the terms into ( 5 ) 2 + ( - 2  + 2 ) + ( - 2 + 2 ) + . .  · = 2 + 0 + 0 + 0 + . . · .  I t  is true that the series in (4) converges to O because the partial sums are all 0, and the series in (5 ) converges to 2 because the partial sums are all 2. But they are not the same as the original divergent series in (3), whose partial sums oscillate between O and 2.  Grouping a string of 10 numbers has no effect on their sum. But this example illustrates that grouping the terms of a series may produce a new series with a different sum. 
Factoring a series For a sum of two numbers we have the factoring prin­ciple ex + cy = c (x + y). Similarly, it can easily be shown that (6 ) ca 1 + ca2 + ca3 + ca4 + · · · = c (a , + a2 + a3 + a4 + · · · ) ,  or equivalently, L ca. = c L a. (we assume c "#:- 0 ). The equation m (6 ) 
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is intended to mean that either the series ca 1 + ca2 + ca3 + · · · and a 1 + a2 + a, + · · · both converge, in which case the first sum is c times the second, or both diverge. For example, l l l l ( l l l l ) - T  + - T + - T + - T  + · · ·  = T - + - + - + - + · · ·  2 4 8 16  2 4 8 1 6  

= T • l = T . 

Term by term addition of two convergent series It is not hard to show that if I a. converges to A and I b. converges to B ,  then I (a. + b.) con­verges to A + B. In abbreviated form, I (a. + b.) = I a. + I b •. We offer a numerical illustration although the principle is more useful for theory than for computation. Since Example 2 showed that I l I I 2 + 4 + 8 + 1 6  + . . .  = l ' and the next section (Problem 2) will show that I I I l l 
4 - 1 6  + 64 - 256 + . . . = 5 '  we may add termwise to obtain 3 3 9 1 5  6 4 + 16 + 64 + 2 56 + . . . = 5 ·  

Droei,ing initial terms It can easily be shown that if the first three terms of In= I a. are dropped, then the new series I:=4 a. and the original series will both converge or both diverge. In other words, chopping off the begin­ning of a series doesn't change convergence or divergence. Of course, dropping terms will change the sum of a convergent series. Dropping terms is useful if a series doesn't begin to exhibit a pattern until say the 100th term. In that case, it is convenient to drop the first 99 terms when the series is tested for divergence versus convergence. For example, the series 6 + 100 + 2 + 3 + ½ + ¼ + ½ + ¼ + · · · con­verges because if the first four terms are dropped, the remainder is the convergent series in Example 2. In particular, the sum of the remaining terms is l ,  so the sum of the original series is 6 + 100 + 2 + 3 + 1, or 1 12. 
Problems for Section 8.1 1 .  Write the first three terms of the series. • I • 

(a) L (- l )" -
2 -1 

(h) L n 2a. 
n•S n + ,.. 1 2. Decide if the series converges or diverges. l l l l l (a) l - 2 + 3 - 4 + 5 - 6 + · · · (b) 2 + 2 + 2 + 2 + 2 + · · · S. Find the terms and the sum of the series given the following partial sums. (a) S. = n (b) S. = l for all n 
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4. Find the sum of the series f (..!. - -1-) by slowly writing out some • • I  n n + I partial sums until you see the pattern . 
5. There is no term-by-term addition principle for two divergent series ; that is, 

their term-by-term sum is unpredictable. Prove this by finding two divergent series 
whose term-by-term sum also diverges , and two other d ivergent series whose term­
by-term sum converges. 

6. If I a. has partial sums s. then S 100 - S99 = awha, ? 

8.2 Geometric Series 

One particular type of series, called geometric, occurs often in applica­
tions, and is easy to sum. 

Definition of a geometric series A series of the form a + ar + ar2 + ar3 + ar4 + · · · , a #: 0 ,  

is called a geometric series with ratio r. The series is also denoted by �=a0 ar" . 
Each term of a geometric series is obtained from the preceding term by 
multiplying by r. 

For example, 5 + 15 + 45 + 135 + · · · is geometric with a = 5, r = 3 .  

Geometric series test Not only is there a simple criterion for convergence, 
but if the series converges, the sum can easily be found. We will show: 

(A) 

(B)  

I f  r 2: l or r s - 1  then L ar"  diverges. 
n =O 

I f  - 1  < r < l then I ar• converges to -1 
a 

n=O - T 

To illustrate why (A) holds, we'll look at some series with r 2: l or 
r s - 1 .  For example, the series 2 + 2 + 2 + 2 + · · · has T = l and di­
verges to co; the series l + 2 + 4 + 8 + · · · has r = 2 and diverges to 00• 

The series 1 - 2 + 4 - 8 + · · · has r = -2  and diverges because the 
partial sums oscillate wildly. 

To prove (B) we will find a formula for the partial sums s. and examine 
the limit as n - oo. We have 

( l ) S. = a + ar + ar2 + ar3 + · · · + ar•- 1 • 

Multiply by r to obtain 

(2 )  rS. = ar + ar 2 + ar 3 + · · · + ar•- 1 + ar". 
Subtract (2) from ( l )  to get 

( I - r)S. = a - ar" . 
Finally, divide by l - r, assuming r #: 1 ,  to get a - ar" 

s. = l - r 
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If n - co and - 1  < r < l ,  then r" - 0. Therefore 

1. S 1. a - ar" 
lffi • = lffi I ,... ,..oo - T 

= --I - r for - 1  < r < I ,  
and the series converges to a/( l - r) .  For example, the series 3 - \ + h - ih + · · · converges since r = - 1/5 ,  which is strictly between - 1  and I. The sum S is given by 

a 3 1 5  5 
S = T=""; = I - (- ! ) = 6 = 2 ·  

In other words, I;.0 3(-!)" = i-
Application Consider a game in which players A and B take turns tossing one die, with A going first. The winner of the game is the first player to throw a 4. We want to find the probability that A wins. Player A wins if A throws a 4 immediately or the results are 
(3) non-4 for A ,  non-4 for B ,  4 for A 
OT (4) non-4 for A, non-4 for B, non-4 for A, non-4 for B, 4 for A and so on. 

Note that the probability of a non-4 on any toss is i and the probability of a 4 is j. Therefore the probability that A throws a 4 immediately is j. To find the probability of (3) ,  consider that in five-sixths of the games, A begins by throwing a non-4 ; then in five-sixths of those games, B continues by tossing a non-4; and in one-sixth of those games A follows with a 4. Therefore the probability of (3) is the product i x i x !, that is (i)2 ¾. Simi­larly, the probability of (4) is <¾>4 !. Therefore the probability that A wins is i + i (i)2 + i (i)4 + rn>6 + · · · . The series is geometric with a = j and r = (i)2 and its sum is a/( 1 - r) , or f.. So the probability that A wins is ft,. 
Problems for Section 8,2 

Decide if the series converges or diverges. If a series converges, find its sum. 1 1 1 1 - 1 + - - - + - - · · ·  ' 6 36 2 16 & ..!_ + ..!..(!)
2 + ..!..(!). + ..!.. (!)

6 + . .. ' 4  4 3 4 3 4 3 1 1 1 1 2. 4 - 1 6  + 64 - 256 + · · · 7 . . I  + .0 1  + .00 1 + .000 1 + · · · 3 9 27 8 1  3 - + - + - + - + · · · ' 4 8 1 6  32 4. 3 + 9 + 27 + 8 1  + · · · 
a 1 s. L 4 • .. , 

8. L (sin 8)2• for a fixed 8 
•• I 
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8.3 Convergence Tests for Positive Series I 

It is important to be able to decide if a given series converges or diverges, and if it converges, we want the sum. We were extraordinarily successful with geometric series, but we will not be so lucky otherwise. This section begins to collect tests for convergence versus divergence. No test supplies an abs'.>lute criterion, a condition that is both necessary and suf­ficient for convergence, and consequently more than one test may have to be tried. Furthermore, even if a series is identified as convergent, it is usually too difficult to find the sum. We often settle for an approximation to the sum, obtained by adding some of the terms of the series. The series that arise most frequently in applications either have all positive terms or else terms that alternate in sign, so we concentrate on these types in the next three sections. 
Positive series A series with all positive terms is called a positive series. As a by-product of studying positive series, we will be able to test series with all negative terms as well, since in that case a factor of - l can be pulled out, leaving a positive series. A series which has some negative terms, but be­comes positive after say a 1000 , counts as a positive series, since the first 1000 terms can be dropped in testing for convergence versus divergence. Since the partial sums of a positive series are increasing, a positive series will either converge or else diverge to oo. The size of the terms of a positive series I a. determines whether the series converges or diverges. If the series is to converge, the terms a. must approach O and furthermore, must approach 0 rapidly enough. Otherwise, the subtotals will be dragged to 00 and the series will diverge to oo. For example, if a. approaches 3, rather than 0, then eventually the series is adding terms near 3, such as 
( 1 )  2 . 9  + 2 .99 + 3.002 + · · · and will diverge to oo. As another example, consider the series 
(2) 

l l l I I l - + - + - + - + - + -
2 2 4 4 4 4 

two terms four terms 
I l I I I l I I I l + - + - + - + - + - + - + - + - + - + . . . + - + · · · .  8 8 8 8 8 8 8 8 16  16  

eight terms sixteen terms 
The series diverges because S2 = 1 ,  · · · ,  S6 = 2, · · · ,  S 1 4  = 3, · · · ,  and s. -+ oc. The terms of the series do approach 0, but not rapidly enough. On the other hand, 
(3 )  

I I I I - + - + - + - + · · ·  2 4 8 16  
i s  geometric (r = 1/2 )  and converges. I ts terms approach 0 rapidly enough . Our general conclusions may be rephrased in the following four statements. 
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nth term test Let I a. be a positive series. 
(A) If a. doesn't approach O then I a. diverges to 00 (e.g., ( I )). (B) If I a. converges then a. - 0. 

(Part (B) follows from (A) : Suppose I a. converges. If a. does not approach 0 then, by (A), I an diverges, contradicting the hypothesis. Thus an must approach 0. In fact, (A) and (B) are logically equivalent, since (A) similarly follows from (B).) 
(C) If a. - 0 then I a. may converge (see (3)) or may diverge (see (2)). Convergence of the series depends on whether an approaches 0 rapidly enough. More testing will be necessary to decide. (D) If I a. diverges then a. may or may not approach 0. Either a. does not approach O at all (see ( I )), or a. approaches O too slowly (see (2)). 

2 Example I Consider 2 3n: + 2 . By the highest power rule (Section 2.3), 
2 lim 3 : 2 = 1 /3, which is nonzero. Therefore the series diverges by the •- n + nth term test. In particular, it diverges to 00. 

Warning Don't confuse the limit 1 /3 with the sum of the series. The terms approach 1 /3, but the sum of the terms is 00. 

n 2 + n Example 2 Test L 4ns + 6 for convergence versus divergence. 
Solution: By the highest power rule, lim : \ + n5 = 0. But until we can .... n + decide if the terms approach O rapidly enough, the series can't be categorized. Additional procedures will be necessary before we can finish this example (Section 8.4 ). 

Warning The n th term test is only a test for divergence. When a. does not approach 0, the test concludes that the series diverges, but the test can never be used to conclude that a series converges. The n th term test is a crude weapon. It identifies the grossly divergent series, where a. does not approach 0. But if a series passes the nth term test, that is, a. - 0, then the only conclusion is that the series has a chance to converge ((3) does but (2) doesn't), and more refined tests must be applied. 
Comparison test Suppose a positive series has terms that approach 0. One of the ways to decide if the terms approach O rapidly enough is to compare them as follows with the terms of a series already categorized. 

Suppose I a. and I b,. are positive series, and a. =s;; b. for all n. If I b. converges, then I a. converges. If I a. diverges to 00, then I b. diverges to 00• Thus, if the series with larger terms converges, then the series with smaller terms converges also. If the series with smaller terms diverges to 00, then the series with larger terms also diverges to 00. 
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The comparison test isn't useful unless the terms of a given series can be compared with those of a series already known to be convergent or known to be divergent. Therefore our next task is to produce a collection of known standard series, important in their own right and useful for com­parison purposes. 
Standard series Section 4.3 listed some functions in increasing order of magnitude. The following expanded version of that list, with x replaced by 
n (representing a nonnegative integer ) will be helpful. 
(4) In n, (In n )2 , ( In n )3 . · · · , Yn, n, n 312 , n 2 , · · · , ( ! )" . 2" ,  100" , · · · , n !  
The new entry in (4) i s  the function n !. Remember that n !  is defined as  the product n (n - l ) (n - 2 ) · · ·  l ,  so that, for example, 5! = 5 x 4 x 3 x 2 x I = 120. As a special case, I !  and O !  are both defined to be 1. To see that n! is indeed of a higher order of magnitude than 100", consider the quotient 100"/n! say for n = 200:  I 00200 = ( 100 · 100 · · · · · 100) ( 100 · 100 · 100 · · · · · 100) . 200 ! 1 · 2 · · · · · 100 10 1 · 102 · 103 · ·· · · · 200 We have written the result as the product of two factors; note that the second factor is very small. As n --+ oo, we may continue to write 100" /n! as the product of two factors, one remaining fixed and the other approaching 0. Therefore 100"/n ! approaches 0, showing that n! grows faster than 100". Similarly, it may be shown that n! has a higher order of magnitude than any exponential function b " . Next, consider the reciprocals of the functions in (4) :  

( 5 )  ln n ' ( ln n)2 ' ( 1n n)3 ' ' Vn ' n ' n 312 ' n 2 ' n 3 ' ' ( l . 5)" ' 2" ' 100" ' ' n ! ' The entries in (5) approach O as n --+ oo, as opposed to (4) where the entries approach oo. Section 4.3 discussed orders of magnitude for functions which approach oo. Similar ideas hold for functions approaching 0. If a,, and b. both approach O as n --+ oo, their quotient takes on the indeterminate form 0/0, and its value depends on the particular a,. and b • . If a./b. --+ 00, or equivalently b./ a. --+ 0, we say that a. approaches O more slowly than b. and has a higher order of magnitude than b • . If a./b. --+ L, where L is a positive number, (not O or oo )  then a. and b. are said to have the same order of magnitude. The orders of magnitude in (5)  decrease reading from left to right. Equivalently, the entries in (5) approach O more rapidly reading from left to right. Finally, consider the series in Table 1 , corresponding to the terms in (5 ). Some, such as � 1/2", are geometric series. The series of the form � I /nP are called p-series. For example, :E 1/n 2 = I + ¾ + i + � + · · · is a p-series with p = 2 .  The p-series with p = I ,  
is called the harmonic series. All the series in the table are given a chance to converge by the n th term test, since their terms do approach O as n --+ 00• When the terms approach O slowly, the series will diverge; when the terms 
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Table 1 Standard Series 

Diverge Converge I I I 1 1 1 1 1 I L -1 , L -(1 )2 , - - · , L . ,  . I - , · · · , L  7ri ,L  2 , · · · , L  ( I 5) • •  I 2 • • · · · , L , n n n n v n n n n . n. 

I L ""p , O < p :s; I  
n 

p-series 

I L P ' p > 1 n 
p-series 

L r", 0 < r < I 

geometric series 

approach O rapidly, the series will converge. We will show at the end of the section that a p-series converges if p > 1 and diverges if p s 1 ;  in particular, the 
harmonic series diverges. Thus the dividing line in Table I comes after 2 1/n. The series in the table to the left of the series 2 l /n have terms which are respectively larger than 1/n so they too diverge, by comparison. Similarly, the series to the right of the convergent p-series where p > l converge by comparison with their neighbors on the left, since they have correspond­ingly smaller terms. (Table 1 does not contain all series. In particular, there are divergent series between 2 1/n and the dividing line, albeit not p-series, and there are convergent series between the dividing line and the p-series with p > l .  There is no "last" series before the line and no first series after the line.) 1 '° I 1 1 1 . . ' h For examp e, � •• , = 1 + •• rn + •• 1n + •• r. + · · · 1s a p-senes wit 

❖ n  ❖ 2 ❖ 3 ❖ 4 
p = ¾, and diverges. 
Warning Don't confuse a p-series such as 1 1 I I I I n'  = 1 + s + 2 1 + 64 + 1 2 5  + . . .  

with a geometric series such as 
( p = 3, series converges) 

(r = ! , series converges) . 
1 I I 1 Example 3 Test }: n" = I + 4 + 27 + 256 + · · · for convergence versus divergence. 

Solution: The series is not a p-series because the exponent n is not fixed, and is not a-geometric series because the base n is not fixed. However, it can be successfully compared to either type. If n > 2 ,  the terms of 2 1 /n " are respectively less than those of the convergent p-series 2 1 /n 2 = 1 + ¼ + � + -k + · · · , that is 1/n"  < 1 /n 2 for n > 2. Therefore 2 1/n "  converges by  the comparison test. 
Subseries of a positive convergent series If 2 a. is a positive convergent series, then every subseries also converges. In other words, if the original 
terms produce a finite sum then any subcollection will also produce a finite sum. For example, I + ¼ + -k + ½, + t. + · · · converges since it consists of every other term of the convergent p-series 2 l /n 2 • 
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I 
'{=- -'). X. 

FI G . I 
Proof of the p-series principle We conclude the section with a proof that a p-series converges for p > I and diverges for p s I . We'll begin with the case of p = 2, that is, with I l/n 2• The trick is to assign geometric significance to the terms of the series using the graph of l /x2 and the rectangles in Fig. I. The first rectangle has base 1 and height ¼, so area A 1 is ¼. Similarly, A2 = ¼. A, = -ra, and so on. Therefore, 
(6) 

1 l l l L - = l + - + - + - + ' ' ' = } + A 1  + A2 + A, + ' ' ' .  
n 2 

4 
9 16 But the sum of the rectangular areas in Fig. l i s  less than the area under the graph of l /x2 for x 2:: 1 ,  so 

(7 ) fz 1 l I " A I + A2 + Ag + . . .  < 2 dx = - - = 1 . 
I X X I Therefore, by (6) and (7) ,  k 1 /n 2 converges ( to a sum which is less than 2 ). The general proof for k 1 /nP, p > I ,  is similar, but with the exponent 2 replaced by p. Next, consider the case where p = I .  As a first attempt, see the graph of 1 /x in Fig. 2 which shows that 

F IG . Z  
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F I G . 3 
1 1 1 1 L -;;-

= 1 + 2 + 3 + 4 + . . .  = 1 + B 1  + B2 + B, + . . . . 

The area B 1 + B2 + B, + · · · is less than the total area under the graph of l /x, x � l. The latter area is fi ( l /x) dx = In x ii = 00• But this is useless since it does not reveal if the smaller area B 1 + B2 + B, + · · · is finite or infinite. As a second attempt, consult Fig. 3 to see that 
L _!_ = 1 + -.!. + -.!. + -.!. + · · ·  n 2 3 4 

J., 1 
, .,  

= C 1 + C2 + C,  + · · · � - dx = In  x = oo . 
I X I Therefore, the second attempt shows that I 1/n diverges to oo. Finally, the p-series with p < l (which are to the left of I 1/n in Table 1) diverge by comparison with l 1/n, since their terms are re­spectively larger. 

Problems for Section 8.3 
1. Suppose l: a. is a positive series. Decide if the statement is true or false. (a) If a. -+ 0 then I a. converges. (c) If I a. diverges then a. does not (b) If a. does not approach O then approach 0. l: a. diverges. (d) If l: a. converges then a. -+ 0. 2. What conclusion can you draw from the n th term test about the convergence or divergence of the series? 

n! n 2 

(a) }: 4" (b) }: 4• 
3. In Problems (a)-(q), decide if the series converges or diverges. 

1 I 1 1 
(a) 1 + - + - + - + - + • • • 3 9 27 8 1 

I 1 1 1 
(b) l + - + - + - + - + · · · 4 9 16 25 

1 l l 
(c) - V3 - V4 - V5 - . . . 

(d) V3 + V4 + V5 + V6 + . . . 
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3 3 3 (e) - + - + - + . . .  5 !  6! 7! 
1 1 1 I (f) - + - + - + - + . . .  
8 27 64 1 25 

1 1 I (g) -- + -- + -- + . . . 3\/3 5\/5 7v'7 

I I I (I) - + � + - + . . .  75 8° 95 

I I I 
(m) s7 + s8 + s9 + . . .  

I I I 
(n) - + - + - + . . .  

2e 3 3e 4 4e 5 I I 1 I (sl ) 2 + (gl ) 2 + ( 110) 2 
(h) 5 + 6 + - + - + - + - + · · · (o) 6 7 8 9 . 3 4 5 6 7 ( I ) 2 (i> 4 + s + 6 + 1 + s + . . . + TT + . . .  

I (j) I 2"11 ! 
1 

(k) L n 2" 

1 1 1 
(p) - + - + - + . . .  8 88 888 

1 I I (q) - + - + - + . . .  4 !  6 ! 8 !  
4. Suppose I a. i s  a positive convergent series. Decide, if possible, if each of  the 

following series converges or diverges. 

� -I (a) L., 
a,. 

(b) L � n .  
(c) L n!a. (d) L cos a. 

8.4 Convergence Tests for Positive Series II 

This section continues with two more tests for positive series. Limit comparison test We'll begin with a preliminary example to intro­duce the idea behind the test. You may prefer to skip directly to the test itself (next page) which most students find plausible without proof. Con­sider the series I l /(2n + 3) .  Since I l /n diverges, it might appear that we can test the given series by comparison. But 2n + 3 > n. so 
( I ) I I --- < -

2n + 3 n which is not a useful inequality; if the terms of a series are respectively 
smaller than the terms of a divergent series, no conclusion can be drawn. However, we can find another comparison by first finding a limit. We have 

. l /(2n + 3) . n l . (2 ) hm / = hm -- (by algebra) = -2 (highest power rule) . • •  ,. l n • •% 2n + 3 Numbers which approach l /2 must eventually go above and remain l/(2n + 3) above .4, so eventually l/n > .4. Thus, eventually, 
(3 ) 

l .4  --- > - . 2n + 3 n But the series I .4/n is .4 I 1 /n, which diverges (harmonic series). There­fore, L l /(2n + 3) diverges by comparison with L .4/n. Let's summarize the results. Although the original comparison in ( l ) did not help, the impulse to compare the given series with I l /n was sound, 
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and in (3) , we found a useful comparison with a multiple of I 1/n. The 
procedure worked because the limit in (2) was a positive number rather 
than O or co. In essence, I l /(2n + 3) diverges because l /(2n + 3) and 1/n 
have the same order of magnitude and I 1/n diverges. In general, we have 
the following limit comparison test. 

Suppose that a. and b., both positive, have the same order of magnitude. 
Then I" a. and I b. act ali/ce in the sense that either both converge or both diverge. 

Intuitively, the test claims that for positive series, if a. and b. have the 
same order of magnitude, they are similar enough in size so that I a. and 
I b. behave alike. The preliminary example showed why this is the case for 
I I /2n + 3 and I 1/n. We omit the more general proof. 

To apply the limit comparison test to a positive series I a., try to find a standard 
series I b. such that b. has the same order of magnitude as a,. . One way to do this is 
to use the fact (whose uninteresting proof we omit) that if a. is a fraction then 
a. has the same order of magnitude as the new fraction 

term of highest order of magnitude in the numerator 
term of highest order of magnitude in the denominator · 

For example, (n 2 + n)/(4n 5 + 6) has the same order of magnitude as 
n2/4n' ,  or l /4n. Therefore 

� n 2 + n . � l 1 � I 
� 4n 5 + 6 acts hke 

� 4n = 4 � -; . 
Since the latter is the divergent harmonic series, the first series diverges 
also. 

Ratio test Series such as 

(4 ) 
n' 

L 2• ' 
are not standard series, nor can they be compared to standard series via the 
limit comparison test. The ratio test is a general method for testing positive 
series and is particularly useful for the series in (4). We'll state the test first, 
give examples, and then prove it. 

L "' be . . . C id.er 1· a.+ i  et .&.. a .  a positive senes. ons 1m - . 
ff •OII a,. 

(A) If the limit is less than l then I a. converges. 
(B) If the limit is either greater than I or is oo then I a. diverges. 
(C) If the limit is l then no conclusion can be drawn. Try another test. 

For example, consider I 2"/n !. Then a. = 2"/n! ,  a.+ i = 2•+ 1/(n + I ) ! 
and 

a.+ 1 2•+ 1/(n + l ) !  2•+ 1 n !  2 
-a-. 

= 
2•1n l  = (n + l ) !  · 2• (by algebra) = n + 1 

(cancel} . 

Therefore, 

l. 
a.+ 1 1 ·  2 

0 1m - = 1m -- = .... a. • ... n + 1 

Since the limit is less than 1, the series I 2"/n! converges by the ratio test. 



230 · 8/Series 

As another example , we'll test "i. n 3/2" .  We have 

I . a .,+ 1 1 . 
(n + 1 )� 2" 1 . I (n + I

)
� I 1m -- = Im n + I  • 3 = 1m - -- = - . 

n •" a . n •X 2 n ,i • X  2 1! 2 

Since the limit is less than 1 ,  the given series converges by the ratio test. 

Proof of the ratio test 
(A) We assume that lim • • x a,, + 1/a ,, is less than l .  Suppose the limit is .9i. 

I f  the ratios approach .9i, eventually they must go below and remain below 
.98. We'll discard initial terms until we reach this eventuality, so that we may 
consider that all the ratios a ., + 1 /a. under consideration are less than .98 . 
Then a.+ 1 < .98a., and if we imagine multiplying our way from one term 
of the series to the next, we have to multiply by something less than .98 
each time :  

( 5 )  + + + --- --- -
multiply by less multiply by less multiply by less 
than .98 than .98 than .98 

a4 + · · · . 

The multiples in (5) may all be different, but each is less than .98. I f  we 
multiply by precisely .98 each time we have 

(6) a 1 + .98a 1 + ( .98)2a 1 + ( .98)3a 1 --­
multiply by .98 

--­
multiply by .98 

---­
multiply by .98 

+ · · · . 
The series in (6) is a convergent geometric series (r = .98), and the terms 
in (5) are respectively smaller than the terms in (6). Therefore, (5) con­
verges by comparison. 

The proof, in general , is handled in the same way with .9i replaced 
by an arbitrary positive number r, r < l, and .98 by a number between 
r and I .  

(B) If a .+ 1/a. approaches oc, or any number greater than I ,  then even­
tually a.+ 1 must be larger than a • .  Therefore the terms of "i. a,, increase and 
cannot approach 0, and the series diverges by the n th term test. In fact, 
any series in case (B) can more easily be identified as divergent by the n th 
term test. 

(C) We will produce both convergent and divergent series with 
lim • • ,, a.+ 1/a. = I .  Consider the harmonic series I 1 /n, which we know 
diverges. We have 

· I 

I . a ,, + 1 1 . n + I 1 . n 1 1m - = 1m --- = 1m -- = 
,, .. x a,, ,, .. x: I ,, .. x n + I 

1l 

On the other hand, consider "i, l /n 2 , which we know converges. In this case, 

a n 2 

Jim � = lim )° = I . 
n • 'r- a ll 11 •:lt. (n + I .. 

Since both convergent and divergent series can have ratio limits of I ,  such 
a limit does not help categorize a series. 
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Choosing a test There is no decisive rule for selecting a convergence test. The more problems you do, the more expert you will become, because being an "expert" usually means that you have seen the problem, or a similar problem, before. We have the following recommendations. 1 )  See if the series is standard or acts like a standard series. 2) Apply the nth term test. Examine a. to see if it approaches O (incon­clusive ) or does not approach O (series diverges ). These methods are accomplished by a quick inspection of the series. If the inspection produces no immediate results, keep going. 3 )  Try the ratio test, especially if a.+ 1 /a. looks like it will cancel nicely so that its limit is easy to find. The ratio test is usually more suc­cessful with ingredients such as n! or 5" than with sin n or In n. In particular, it can be used to show that series such as those in (4) converge. 4 )  Perhaps the comparison test can be used with your series and a standard series. 5 ) As a last resort, you might try using integrals as in the proofs in Section 8.3 that I 1 /n diverges and I l/n 2 converges. Or you may be able to find a formula for the partial sums as we did for a geometric series. There are other tests for convergence that are not included in the book, but more tests still give no guarantee of success. On the other hand, you now have enough methods to test many, although not all, series. In fact, it is quite possible for more than one method to work in a particular problem. So far, this chapter has been mainly concerned with distinguishing convergent from divergent series. The results will be used in the important applications beginning in Section 8.6. 
Problems for Section 8.4 

In  Problems 1 -35,  decide if the series converges or diverges. 

l. I -1-2n 2 + II 

2. I (2n) ! 
(3n) !  

1 3. I � 
1 4- I � 

n !  
5 .  I 10" 

1 I 1 6. - + - + - + . . .  
V2 'v"2 � 

7 I -1
-• (n - 2)" 8. _ _.!,_ _ _! _ l_  _ _!, _ , , , 4 9 1 6  25 

JO" 
1 0. I -, n .  

l l . L In 11 
vii 

u. I � 2 13. r --7 n + 
2 

14 • .., !:_ LI 5" 15 • . 3 + .03 + .003 + .0003 + . . · 
1 1 · 3 1 · 3 · 5 16. - + - + --- + . . · 3 3 · 6 3 · 6 · 9 
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1 1. I -A 
;) 

2 !  3 ! 4 !  1 8. -- + --- + ----1 · 3 1 · 3 · 5 1 · 3 · 5 · 7 
+ . . .  

1 9. I ( ½)" 
20. I (½)" 

I I I 
2 1 .  - + - + - + . . .  

9 25 49 
I I I 

22. -- + -- + -- + . .  · 1 · 2 2 · 3 3 · 4 

23. L � n ½  

24. I -11 -
fl - I 

2s. I (n !f 
(211 ) !  

26. "'
½ 

L.. 3" 

2 · 4  2 · 4 · 6  2 · 4 · 6 · 8 
27. -_-1- + --,- + I + " ·  

;) ,  7 . 9 .  

28. I v;; n + In n 

29. "' !: 
L., 4 11 

3 4 5 6 
30. - + - + - + - + · · · 4 9 1 6  25 

I I I I 
3 1 .  - + - + - + - + . . . 

2 6 I O  1 4  

32. I -1 
11 4" 
In 11 

33. I -,. 
Il -

l 
34. I -.. -1 -n - n 11 

35. ± -1
- (use integrals) 

,1 - 2 11 In " 

36. The harmonic series I + ½ + ! + ¾ + · · · diverges to "'· (a) Show that the 
two subseries created by using every other term of the harmonic series also 
diverge. (b) Find a subseries that converges. 

37. (a) Show that if I a. converges then I na. may converge or may diverge. 
(b) Show that if I a. converges by the ratio test then I na.  also converges . 

8.5 Alternating Series 

Let a. be positive. A series of the form 

( I ) L (- I ) "+ 'a., = a ,  - a2 + a3 - a� + · · ·  
n= I 

is called an alternating series. The partial sums of a positive series are in­
creasing, so a positive series either converges or else diverges to oo. But the 
partial sums of an alternating series rise and fall since terms are alternately 
added and subtracted; therefore an alternating series either converges, 
diverges to oo, diverges to -oo,  or diverges but not to oo or -oo. For example, 
the series 

(2 ) 3 - 3 + 3 - 3 + 3 - 3 + · · · 
diverges (but not to oo or -oo) since the partial sums oscillate from 3 to O; 
the series 
(3 )  3 - 4 + 3 - 5 + 3 - 6 + 3 - 7 + 3 - 8 + · · ·  
diverges to -oo  since the partial sums are 3 ,  - 1 , 2 ,  - 3, 0, -6 ,  -3 ,  - IO, · · ·  
which approach -oo. 

There are two major tests for alternating series. We have an nth tenn test 
for divergence which is very similar to the n th term test for positive series. 
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(In fact, an n th term test holds for arbitrary series, not necessarily positive 
or alternating.) Also there is an alternating series test for convergence. 

n th term test Consider the alternating series in ( l ) . 

(A) If a. doesn't approach O then the series diverges. (The partial sums 
oscillate but are not damped, and hence do not approach a 
limit- see (2) and (3).) 

(B) I f  the series converges then a. - 0. 
(C) If a. does approach O then the alternating series may converge or 

may diverge. More testing will be necessary to make a decision. 
(D) If the series diverges then a. may or may not approach 0. 

As before, the n th term test is only a test for divergence. When a. does not 
approach 0,  the test concludes that the series diverges, but the test can never 
be used to conclude that a series converges. Again, it identifies the grossly 
divergent series. 

Alternating series test The alternating harmonic series 
l l 1 1 - - + - - - + · · ·  
2 3 4 

passes the n th term test, and as an introduction to the next test we 
will show that the series converges. Furthermore, although we can't find the 
sum, we can do the next best thing by producing a bound on the error when 
a partial sum is used to approximate the sum of the series. Then we will 
state the alternating series test in general. 

Consider the partial sums, plotted on a number line in Fig. 1 . Begin 
with S 1 = 1 .  Move down ½ to plot S2 ; move up ½ to get S3 ; move down ¾ 
to locate S4 ; and so on. As successive terms are added and subtracted, the 
swing of oscillation of the partial sums is (consistently) decreasing because each new term added or subtracted is less than the one before. Figure 1 suggests 
that the part ial  sums osci l late their  way to a l imi t  S between 0 
and I . (Surprisingly, the formal proof requires quite sophisticated mathe­
matics.) In other words, the series converges to a sum S between O and the 
first term a 1 • Furthermore, note that s� is above the sum S, but the gap 
between S5 and S is less than i because subtracting i sends us below S. I n  
other words, i f  S5 i s  used to approximate S then the approximation i s  an 
overestimate and the error is less than !. Similarly S6 is an underestimate 
and the approximation error is less than ½. 

The key to the argument above is that the terms l ,  ½, ½, ¾, . .  · being 
alternately added and subtracted do not merely approach O casually but decrease (steadily) toward 0. If this is not the case, then the alternating series 

-t- . • • 
0 

f/0 . I 
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may be (but is not necessarily) divergent. As an example of the latter possibility, consider I I I I I l l l - - + - - - + - - -- + - - -- + . . .  10 2 100 3 1 ,000 4 10 ,000 (4)  

The numbers l ,  i\i ,  ½ ,  1«\o, · · · do approach 0 but do not  decrease (steadily) .  They go up and down and up and down as they wend their way toward 0. The partial sums of the series in (4) do not oscillate with decreasing swing as in Fig. 1 ,  and the argument used to show that the alternating harmonic series converges simply does not apply to (4) . As a matter of fact, the positive terms alone in (4) amount to a harmonic series which diverges to oo; the negative terms alone are a geometric series which converges to - l /9 ;  and it can be shown that the partial sums are dragged to 00 by the positive terms. Hence the series in (4) diverges to :.c. I f  a. not only approaches 0 but decreases (that is, decreases "steadily"), meaning that each term is smaller than the preceding one, then we write a. ! 0. As an example, for the alternating harmonic series we do have a. ! 0 but for the series in (4) we have a. -+ 0 but not a. ! 0 .  With this terminology we are ready for the following general conclusions, called the alternating series test. 
Consider the alternating series L ( - l )" + 1a • . Suppose a. ! 0. Then the series converges to a su1n S between O and a 1 • Furthermore, if the last term of a subtotal involves addition, then the subtotal is greater than S; if the last term of a subtotal involves subtraction then the subtotal is less than S. In either case if only the first n terms are used, then the error, the difference between the subtotal S. and the series sum S, is less than the first term not considered. In other words, JS - S. I < a •• 1 • 

The n th term test and the alternating series test are adequate to test most alternating series as follows. If a. does not approach O then the alternating series diverges by the nth term test. If a. ! 0 then the alternating series converges by the alternating series test. For most alternating series, one of these two cases occurs. It is unusual to have a. -+ 0 and not also have a. ! 0 so that neither test applies . For all practical purposes, if a. -+ 0 and there aren't separate formulas for aodd n and a,ven • as in (4), then it will also be true that a. ! 0. For example, if a. = n 3 /2 "  then not only does a. -+ 0 but also a. ! 0 eventually and L (- l r+ 1n 3 /2" converges by the alternating series test. 
Example l Show that the series L (- l )" • 1/n 2 = I - ¼ + � - ii; + · · · converges. Bound the error in using the sum of the first three terms to approximate the sum of the series . ls the approximation an overestimate or an underestimate? Solution: Since 1/n 2 ! 0, the series converges by the alternating series test . The partial sum I - ¼ + � = ii\ is above the sum S since the last term, 4, was added . The error is less than the next term, ii;. In other words, H is within ti of the series sum. 
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Warning 1. The alternating series test is just a test for convergence. When 
a. ! 0, the test concludes that I (- 1 )"+ 1a. converges. But if we do not have 
a. ! 0, the test does not conclude that the series diverges. 

2. If a,. and b. , both positive, have the same order of magnitude then 
the limit comparison test states that the two positive series I a. and I b. act 
alike. But the two alternating series I ( - 1 )"+ 1a. and I (- 1 r 1b. do not nec­
essarily act alike. It is possible for an alternating series to converge so 
gingerly, because of a delicate balance of positive and negative terms, that 
another alternating series with terms of the same order of magnitude may 
behave differently. In other words, the limit comparison test does not apply 
to alternating series. 

Absolute convergence Another way to test the alternating series 

(5) a 1 - a2 + a3 - a4 + a; - a6 + · · · ,  where a,. > 0 ,  

is to remove the alternating signs and test the positive series 

(6) 

We will prove that if (6) converges th.en (5) also converges. For the proof, 
consider the two new series 

(7) 

and 

(8) 

a 1 + 0 + a5 + 0 + a; + 0 + a1 + 0 + · · · 

0 + a2 + 0 + a4 + 0 + a6 + 0 + as + · · · . 
The terms in (7) and (8) are positive (and zero), and in each case are 
respectively less than or equal to the terms of (6). Since (6) converges by 
hypothesis, the series in (7) and (8) converge by the comparison test. If (8) 
is multiplied by - 1 ,  it still converges, by the factoring rule in Section 8 . 1 ,  
and the sum of (7 )  and -(8) converges by the term by term addition rule 
in that section. But (7) - (8) is (5), so (5) converges. 

More generally, a similar proof can show that for any series (with any 
pattern of signs), 

(9) if L la. I converges then L a. converges. 
If I la. I converges then the original series I a. is called absolutely convergent, 
so (9) shows that absolute converfence implies convergence. 

F 1 I I I _l I I . ' h I . or examp e, - ! - 4 + - "Ii - n + 114 - • • • 1s neit er a ternaung 
nor positive. It converges by (9) since the series of its absolute values is a 
convergent geometric series. As another example, consider I (- 1 )"+ 1/n 2 • It 
converges by the alternating series test since I/ n 2 ! 0 .  Alternatively, its 
series of absolute values is a convergent p-series, p = 2, so the original series 
converges by (9). 

Conditional convergence If I la. I diverges it is still possible for I a. to 
converge. In this case, I a. is called conditionally convergent. The alternating 
harmonic series is conditionally convergent, since it converges but the series 
of its absolute values, i .e . ,  the harmonic series, diverges. 

So far we have been concerned with distinguishing convergent from 
divergent series. Now we have three categories since every convergent series 
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I a. can be further categorized as either absolutely convergent (I la. I con­
verges) or conditionally convergent (I la. I diverges) . Divergent series can­
not be subcategorized in this manner; if  I a. diverges then, by (9), I la. I 
cannot converge .  Figure 2 shows the three possibilities for a serie s :  
divergent, conditionally convergent, absolutely convergent. 

Conditionally convergent and absolutely convergent series both 
do converge, but absolute convergence is more desirable for several rea­
sons, one of which we will mention here. It can be shown that if the terms 
of an absolutely convergent series are rearranged , that is , added in a differ­
ent order, then the new series still converges to the same sum as before. On 
the other hand , if I a. is conditionally convergent then, given any number, 
the series can be rearranged to converge to that number. Furthermore, the 
series can be rearranged to diverge to 00, and rearranged to diverge to -oc.  t 

tWe wil l  i l lustrate with the conditionally convergent alternating harmonic series 
I - ½ + j - ¾ + · · · , which converges 10 a sum between O and I .  We will rearrange the series 
to converge to 37. First note that the subseries of positive terms I + j + ¾ + · · · diverges to 00 

and the subseries of negative terms - ½  - ¾ - ¼ - · • · diverges to - oo  (Problem 36a,  
Section 8 .4) .  Then begin the rearrangement of the alternating harmonic series by adding 
positive terms until the subtotal goes over 37. (How do we know that the subtotal will n•er get 
that large? The positive subseries diverges to 00, so surely if enough positive terms are added, 
the subtotal passes 37.) Then add negative terms until the subtotal goes below 37.  (How do we 
know that the subtotal can be brought down below 37? Because the negative terms add to -00.) 
Then add positive terms to bring the subtotal back over 37, add negative terms to bring the 
subtotal back below 37, and so on. The partial sums oscillate around 37 and the overall swing 
of oscillation is approaching 0 because a ,  -+ 0. It can be shown in fact that the rearrangement 
converges to 37. The alternating harmonic series can also be rearranged to diverge lO "'· First 
add positive terms until the subtotal is larger than I ,  possible because the positive terms 
themselves add to "'· Then feed in one negative term to avoid being accused of leaving out the 
negatives. Then add positive terms until the subtotal is larger than 2, followed by one more 
negative term, and so on. This produces a rearrangement, since all terms are eventually used, 
although each partial sum contains many more positive than negative terms. Furthermore, the 
partial sums approach oc, so the rearrangement diverges to oo. Similarly, the series can be 
rearran�ed to diver1e to -oo. On the other hand, the absolutely convergent geometric series l::.0 (-v)" has sum 'J and every rearrangement converges to J; if a rearrangement has 1 ,000 
positive terms followed by one negative term, followed by 1 ,000,000 p«?Sitive terms followed 
by one negative term, and so on, the rearrangement still converges to i-
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Problems for Section 8.5 

I I I 
d . h 1. Show that I - V2 + V3 - V4 + · · · converges, an estimate t e error 

if the sum is approximated by s2•• ls the approximation an overestimate or an 
underestimate? 

2, Show that the series converges and approximate the sum so that the error 
is at most .00 1 .  ls your estimate over or under? 

� I l l I 
(a} L (- l r+ 1

- (b} -4• 
- -55 

+ -66 - • . .  
n• l n! 

3. True or false? 

(a} If we do not have a. ! 0 then I (- 1 r+ 1a. diverges. 
(b} If we do not have a. - 0 then I (- l r+ 1a. diverges. 

4. Test the series for divergence versus convergence. 

n 2 n 1 

(a) L ( - 1 }"+ 1 - (b) L (- l r♦ 1 � 
n! n 2 <c> r < - 1 }"+ 1 _

1
_ 

n In n 

(d} L ( - l }"- 1 � (e} . 1  - .0 1  + .00 1 - · · ·  
n 2 + 4 

3 4 5 6 V2 V3 V4 
(f} - - - + - - - + . . . (g} - - - + - - . . .  

2 3 4  5 3 4 � 

5. True or False? 

(a} If I b. is a convergent positive series then I b! converges also. 
(b) If I ( - Ir♦ 1b. is a convergent alternating series then I b! converges also. 

6. Table I in Section 8.3 lists some standard positive series, some convergent 
and some divergent. Consider all the corresponding alternating series, namely, 

r <- 0"+ 1
_

1
_ • . . . • r <- 0•+ 1 ..!.. . 

In n n !  

(a) Test them for convergence versus divergence. (b) Of the convergent series in  
part (a}, test for conditional versus absolute convergence. 

7. Test for conditional convergence versus absolute convergence versus 
divergence. 

(a) L ( - 1 )" -n- (b) L (- 1 )"+ 1 � 
l + n 2 n '  + 3 

8. What conclusions can be drawn about I a. if 

(a} I la.I diverges (b} I la.I converges 

9. What conclusions can be drawn about I la.I if 

(a} I a. diverges (b) I a,. converges? 

10. Test the series for convergence versus divergence using the alternating 
series test, and then again using the series of absolute values. 

(a) L (- l r♦ 1 ..!.. (b) L (- l r♦ 1 -1-
n! Vn 

1 1 . Decide, if possible, whether the series converges absolutely or conditionally. 
(a) a convergent geometric series (b} a convergent p-series 
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8.6 Power Series Functions 

Polynomials such as a.x 2 + bx + c are familiar elementary functions. 
The generalization of a polynomial is a series of the form 
( I ) 

called a power series. For example, 5 + 6x + 7x 2 + 8x 3 + 9x 4 + · · · is a 
power series. A power series is a function of x, often nonelementary. The 
rest of the chapter discusses power series and their applications. 

Application Power series may be used to create new functions when the 
elementary functions are inadequate. It can be shown that the differen­
tial equation 

(2) xy " + y = 0 

cannot be satisfied by an elementary function. Thus it is necessary to invent 
a new function to solve the equation. Consider the power series 

y = ao + a 1x + a2x 2 + asX 3 + · · · . 
We will determine the coefficients so that y satisfies (2). We have 
(3) y '  = a 1 + 2aiX + 3asX 2 + 4a.x' + 5asX 4 + · · · 

y "  = 2a2 + 3 · 2a3x + 4 · 3a4x 2 + 5 · 4asX 3 + · · · . 
Substitute y and y"  into (2) to obtain 
x (2a2 + 3 · 2asX + 4 · 3a.x 2 + 5 • 4asX' + · · ·) + ao + a 1x + a2x 2 

+ a3X 3 + ' ' '  = 0. 

Collect terms to get 
(4) ao + (2a2 + a 1)x + (3 · 2a3 + a2)x 2 + (4 · 3a4 + a3)x ' + · · · = 0. 
(We write 4 · 3 instead of 1 2, and 3 · 2 instead of 6, because we want to 
discover patterns, and the combined form conceals patterns.) Now choose 
a0, a 1 , a2 , • • • so that (2) holds. We can do this by forcing all coefficients on the 
left side of (4) to be 0. Therefore, let ao = 0. Then let 2a2 + a1 = 0, which 
doesn't determine either a 1 or a2 but can be written as a2 = -½a 1. Then 
choose 3 • 2a3 + a2 = 0 so that 

--a 
a2 2 1 

a 1 a, = - -- = - --- = 3 · 2  3 · 2 3 · 2 · 2 

Continue with 4 · 3a4 + a3 = 0 so that 

a3 3 · 2 · 2 a4 = - 4 · 3 = - 4 • 3 = - ------
4 · 3 · 3 · 2 · 2 ' 

The pattern is now established. We have a; = 5 . 4 • 4 • �
1

• 3 . 2 . 2 and, 

in general, 

I a 1 a = (- I r+ ----• n ! (n - I ) ! · 
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Coefficient a 1 isn't determined, so we conclude that for every value of a 1 , 

� a 1  y = 4, (- 1 >-+ 1 -___;--x• 
•• 1 n ! (n - l ) !  

is a solution to (2). The factor a 1 serves as an arbitrary constant. Equiva­
lently, the power series function 

1 1 1 
(S) Y = x - 2x2 + 3 • 2 · 2 x 5 -

4 · 3 · 3 · 2 · 2 x4 + · · · ' 

and all multiples of it, are solutions to the differential equation in (2). 

Interval of convergence The domain of a power series function is the set 
of all x for which the series converges. For example, if g(x) = 7 + x + 
2x 2 + 3x 5 + 4x4 + · · · then g(0) = 7 + 0 + 0 + 0 + · · · = 7 but there is 
no g( 1 )  because the series 7 + 1 + 2 + 3 + 4 + · · · diverges. If we're going 
to work with power series functions we must be able to decide when the 
power series converges. The preceding sections were designed in part to 
provide that capability. 

In general, a power series I a.x• converges absolutely (hence con­
verges) for x in an interval (-r, r) centered about 0, and diverges for x > r 
and x < -r. (Anything may happen for x = ±r.) The series is said to have 
radius of convergence r and interval of convergence (-r, r) (see Fig. 1 ). This 
includes the possibility that a power series may converge only for x = 0, 
in which case it has radius of convergence 0, or may converge absolutely for 
all x, in which case it has radius of convergence oo and interval of con­
vergence (-oo, 00). The value of r depends on the particular power series. 

To illustrate the validity of these claims, and to actually find the interval 
of convergence of any given power series, we will use a version of the ratio 
test extended to include series that are not necessarily positive. 

- r  

FIG .  I 

L-J 
E:'A !> il/S  DF 
c,o�N�RC:,E NC- E. 

Ratio test Given a series I b., not necessarily positive, consider 

l . lb.+ i l 
�!!.1 lb.f 

(a) If the limit is less than 1 ,  then I b. converges absolutely (and there-
fore converges). 

(b) If the limit is greater than 1, or is oo, then I b. diverges. 
(c) If the limit is 1 ,  we have no conclusion. 

To prove (a), note that if the limit is less than l then I lb. I  converges by 
the ratio test for positive series (Section 8.4). Therefore the original series is 
absolutely convergent. 

To prove (b), note that if lb.+ 1 1/ lb. l  approaches a number larger than l 
then eventually lb.+ 1 1  > lb. I. Therefore the terms lb. I  are increasing and 
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hence do not approach 0. Therefore b. does not approach O either, and so 
L b. diverges by the n th term test. 

Finding the interval of convergence Consider l: ( - ! ) "n 
� 

1 x •. To find 

the interval of convergence, compute 

( l ) "• 1 _ _  X n + l  

Jim j
x •• lterml = lim 

2 n + l 
= lim _!_ . � )xi . 

n • ., )x "term I • .,. n + 2 ( _ ! ) \ • n •" 2 n + 2 

Since n -+ 00 while x is fixed, the limit is ½ lxl. By the ratio test, the series 
converges absolutely if ½ Ix )  < 1 ,  Ix! < 2, - 2  < x < 2 ;  and diverges if 
½lxl > 1 ,  that is, x > 2 or x < -2 .  Therefore there is an interval of con-

vergence, namely (- 2, 2). (If x = 2 then the series is I (- I )" -1- , which 
n + l 

converges by the alternating series test. If x = - 2  then the series is the 
divergent harmonic series. Thus the series converges at the right end of the 
interval of convergence and diverges at the left end.) 

As another example, consider 

L (- 1 )•• 1 1 • 
n! (n - l ) !

x ' 

the power series in (5) that solved the differential equation xy"  + y = 0.  
We have 

(6) 
jx •• 1term) )xj•• 1 n ! (n - I ) ! 
)x"term) - (n + l ) !n !  )x)" 

Note that 
(n - 1 ) (n - 2) (n - 3) · . .  I = ---(n - I ) ! 

(n + I ) !  (n + l )n(n - I )  (n - 2) · · · I (n + l )n 
so (6) cancels to 

)xi 
(n + l )n · 

For any fixed x, the limit is Oas n -+ co. Therefore the limit is less than I for 
any x, and the series converges for all x. The interval of convergence is 
( -00, co) and the radius of convergence is co. 

In practice, the interval of convergence of a power series is the set of x for which 
. lx •• 1terml . hm I • I rs less than I . 
• • ,. x term 

Problems for Section 8.6 For each power series, find the interval of convergence. 
l . L ( - l )"(n + l )x "  

x "  2 .  L 3.n 2 3. L n!x "  

5. X - x 3 + x 5 - x 7 + . . . 

x "  
4. L , n.  
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8. 7 Power Series Representations for Elementary 
Functions I 

The solution to the differential equation in (2) of Section 8.6 illustrated why it is useful to invent new functions using power series. But it is useful to have power series expansions for old functions as well. Polynomials are pleasant functions, and representing an old function as an "infinite polynomial'' can make that function easier to handle. In this section and the next we will find power series expansions for some elementary functions. 
A power series for 1/(1  - s) The power series 1 + x + x 2 + x 5 + x4 + · · · is a geometric series with a = l and r = x. Therefore it converges for -1  < x < l, that is, its interval of convergence is (-1 ,  1) ,  and the sum is 1/( l - x) . Thus 
( l ) 1 -1- = l + x + x2 + x5 + x4 + · · · l - X lor - l < x < l , I 

and we have a power series expansion for 1/( l - x). The function 1/( l - x) exists for all x 'I= l but its expansion is valid only for -1 < x < l .  The series has a smaller domain than the function 1/ ( 1  - x), but when the series and the function are both defined, they agree. 
Binomial series There is an entire class of familiar elementary functions whose power series expansions we can guess . .  Recall (Appendix A4) that 

(2) 

(1 + x)• = ( l  + x) ( l  + x) ( l  + x) ( l  + x) ( l  + x) 
= 1 + 5x + 5 · 4 x2 + 5 · 4 • 3 x' + 5 · 4 • 3 • 2 x4 

2 ! 3 ! 4 !  5 · 4 · 3 · 2 · l + ----- xs 
5 !  = I + 5x + l0x2 + l0x 5 + 5x 4 + x 5

• Functions such as ( l  + x)-5 and (1 + x) 1 12 cannot be similarly written as polynomials because the exponents -5 and l /2 are not positive integers. However, we might suspect that these functions can be written as infinite polynomials, in the same pattern exhibited by the polynomial expansion for (1 + x)5 • In other words, we guess that the function (1 + x)' has the power series expansion 
(3 ) I + + q (q - I ) 2 + q (q - l ) (q - 2) ' + . . . qx 2 ! X 3 1  X 

for x in the interval of convergence of the series. We omit the proof that confirms the guess. 
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For example, 

� = ( I + X) l/2 

= l + _!_x + (t) (-t) 
x 2 + ( t) (-t) (-t) x' + . . .  

2 2 1 3 1 

l 1 1 · 3 1 · 3 · 5 = l + -x - -x 2 + --x' - --- x4 + • • • 
2 222 1 2 '3 1 244 1 

We still must find the interval of convergence in (3) .  If q is a posi­
tive integer then (3) collapses to a polynomial (as in (2) where q = 5) 
and "converges" for all x. I f  q i s  not a positive integer, the inter­
val of convergence can be found with the ratio test. We have 

and 

So 

q(q - l )  · · · (q - [n - l])} nth term = -- -------'--�---'--- x" 
nl 

(n + l )st term = q(q - l ) · · · (q - [n - l]) (q - n) n+ I 

(n + 1 ) 1  x · 

l (n + l )st term! 
= � !xi !nth term! n + l · 

The limit as n --.  00 is lx l ;  solve !x i  < l to get the interval of convergence 
(- 1 ,  1). Thus 

(4) 
( I + x)f = 1 + qx + q(q - l) x2 1 q(q - l) (q - 2) 

x ' + • . .  
2 1  3 1  

fo r  - 1 < x < l .  

The series in (4) is called the binomial series. 
Application We will show why it may be useful to approximate a function 
by the first few terms of its series expansion. 

An inverse square law states that if two unit positive charges are dis­
tance r apart, then each is repelled by a force F = l /r 2 ; if a unit positive 
charge and a unit negative charge are distance r apart, then they are 
attracted by a force F = I /r 2

• Now suppose that one negative charge and 
two positive charges are situated as shown in Fig. l, where d is much smaller 
than r. The problem is to find the total force on charge C. 

d r 
r-"----\ r------�A.---------

F IG . I 



(5 )  
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Since C is repelled by B and attracted by A, we have l l total force on C = r2 - (r + d )2 • 

This is an accurate description of the force on C, but it is difficult to tell from (5) just how the force varies with d and r. So we continue by rewriting the second fraction in (5) . Factor to get l -,-:-� l 1 ( d )- 2 (r + d )2 = (r[ l + � ]r = r2( l + �r = � l + -;  

Since d is less than r, d /r is in the interval ( -1 ,  1) , so we may expand [l + (d/r)J-2 in a binomial series by setting q = -2, x = d /r to obtain 
l = .!. ( 1  + (-2) (.!!..) + ( -2) (- 3) (.!!..)2 (r + d )2 r2 r 2 !  r 

+ (-2) (
��

) (-
4

)
( � Y  

+ · · l  If d is much less than r, as intended in Fig. l ,  then (d/r)2, (d /r)3, • • • are so small that 
(r : d )2 = � ( l - 2 � + negligible terms) 

= :2 - 2 � (approximately) . 
Thus, back in (5), we have (approximately) 

total force on C = _!_ - (.!. - 2 .!!..) = 2 .!!.. . r2 r2 r3 r3 

Therefore, the force on C may be succinctly (albeit approximately) de­scribed as directly proportional to d and inversely proportional to r3• 

Making replacements in an old series to find a new series So far we have expansions for 1/(1 - x) and (1 + x)'. We continue the problem of finding expansions for functions by showing how new series may be obtained from existing series. Suppose we want an expansion for the function 1/(1 + 2x). Rewrite the function as 1 _ ;_2x/o that it resembles the left-hand side of ( l ) . Then replace x by -2x in ( I )  to obtain I -1 -_-(---2x-) = I + (-2x) + ( -2x)2 + (-2x)3 + ( -2x)4 + · · · 
for - l < -2x < l . To solve the inequality, divide each member by -2 to get ½ > x > -½ (multiplying or  dividing bf a negative number reverses an  inequality) ,  which may be written as  -2 < x < ½ .  Thus we have an expansion for the function 1/(1 + 2x) and its interval of convergence, namely, 
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(6) 
I --- = I - 2x + 4x 2 - 8x 3 + 16x 4 - • • • 

1 + 2x 
I I tor - - < x < -
2 2 · 

As you can see, the replacement method involves solving an inequality 
to obtain the new interval of convergence. Table 1 lists some inequalities 
and their solutions, typical of those that occur most frequently. 

Table 1 
Inequality 

2 -r  < -x < r 
3 
3 -r  < -x •  < r 
4 ' 

2 -r  < - -x < T 3 

-r  < _ ix• < r 4 

Solution 

3 3 - - r  < x < - r 2 2 
.{4 .{4 - y 3 r < x < y 3 r 

As another example of replacement, we will find an expansion for 
1 /(3 - x2) .  First do some factoring: 

Then replace x by ½x 2 in ( 1 )  to obtain 

(7 )  
l • for - I < 3 x· < I . 

Some students are bothered by the inequality in (7) because the left-hand 
part, - 1  < !x 2, is vacuous (it is always true that !x 2 is greater than - 1 ) .  
Nevertheless i t  i s  not wrong. The inequality may be rewritten simply as 
½x 2 < I, and its solution, as indicated by the second line in the table, is 
- V3  < x < V3. Therefore the final answer is l l 1 I 1 6 I -- = - + - x 2 + - x4 + - x  + - x 8 + · · · 3 - x 2 3 32 33 3 4 35 

for - V3  < X < V3 .  

Adding and multiplying old series to find new series Suppose f (x) has a 
power series expansion with interval of convergence (- r. ,  ri), and g(x) has 
an expansion with interval of convergence (- r2, r2) .  It can be shown that if 
the two series are multiplied like polynomials, then the product series is 
an expansion for f (x)g(x). Similarly, if the two series are added like poly­
nomials, the sum series is an expansion for /(x) + g(x) . Furthermore, the 
intervals of convergence of the product and sum series are at least the 
smaller of the two intervals (-ri , r1 ) and (-r2 , r2) , and, for all practical 
purposes, are the smaller of ( -r. ,  Ti ) and ( - r2, r2) . 

• C l 
As an example, suppose we want an expansion 1or ( 1 _ x) ( I  + 2x) 
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From ( I )  and (6 ) we have expansions for -1 -1 - and -1 1 2 on ( - 1 , 1) and 

- X + X ( -½ , ½ ), respectively. The smaller of the intervals is ( -½ , ½ ) . Therefore, 
------ = -- ---
(1 - x) (1 + 2x) 1 - x 1 + 2x = (1 + x + x2 + x5 + x4 + · · · ) ( 1 - 2x + 4x2 - 8x5 + 16x4 - • • · ) 

for x in ( - ! , ! ) . 
As with polynomials ,  multiply each term in the first parentheses by each term in the second parentheses, and collect terms to get 

1 ------ = 1 - 2x + x + 4x2 - 2x2 + x2 - 8x3 + 4x3 - 2x3 

(1 - x) ( l + 2x) 
+ x3 + 16x4 - 8x4 + 4x4 - 2x4 + x4 + · · · = 1 - x + 3x2 - 5x3 + l lx4 - 2 lx5 + · · · 

for x in ( - ! , ! ) . For another approach to the same problem, use partial fraction decom­position (Section 7.4 ) to get 
(8) 

1 2 
1 3 3 ------ = -- + --

(1 - x) ( 1 + 2x) 1 - x 1 + 2x · 1 
To find a series for -1 3 , multiply on both sides of ( 1) by 1/3, and keep the 

- x  2 
interval of convergence ( - 1 , 1) .  Similarly, to find a series for 1 : 2x, mul­tiply on both sides of (6) by 2/3, and keep the interval of convergence ( - 1/2 ,  1/2 ). The smaller of the two intervals is ( - 1/2 ,  1/2 ) ,  so (8)  becomes 1 l 
(1 - x) ( l  + 2x) = 3 ( 1 + x + x2 + x' + . . · ) 

2 + - (1 - 2x + 4x2 - 8x3 + · · · ) 3 1 l for - - < x < -
2 2 = 1 - x + 3x2 - 5x3 + l lx4 - 2 lx5 + · · · 1 l for - 2 < x  < 2 . 

In this example, the second method is better. No pattern seems to be revealed by the first method, whereas the second method easily predicts any term in the series; e.g. ,  the coefficient of x1911 is ½ + i( - 2 ) 199
• 
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Differentiating and antidifferentiating old series to find new series Suppose [(x) has a power series expansion with interval of convergence (- r, r) . It can be shown that if the series is differentiated like a polynomial ,  the new series is an expansion for [' (x) (we already anticipated this in (3) of Section 8.6) ;  and if the series is antidifferentiated like a polynomial, and the arbitrary constant of integration appropriately evaluated, the new series represents any desired antiderivative off(x). Furthermore, it can be shown that both the differentiated and antidifferentiated series have the same interval of convergence as the original. As an illustration, suppose we want an expansion for 1/ ( 1  - x)2. We can get it by squaring the series for 1 /( 1  - x) , and also by using the binomial series with q = - 2  and x replaced by -x. For a third method, use the fact that 1 /( 1  - x)2 is the derivative of 1/ ( 1 - x) . Differentiate on both sides of ( 1 ) ,  and keep the interval of convergence, to get 
(9) 

1 --- = 1 + 2x + 3x2 + 4x3 + 5x 4 + • • • ( 1 - x)2 for x in ( - 1 , 1 ) . 
As another example, suppose we want to expand ln( l  + x) . First find an expansion for 1 /( 1  + x) by replacing x by -x in ( I )  to get I + x I + ( -x) + (-x)2 + (-x)3 + ( -x)4 + · · · for - 1  < -x < I 

= 1 - x + x 2 - x 3 + x 4 - • • , for - I  < x < 1 .  Then antidifferentiate to get 
x 2 x 3 x 4 x;  ln( I + x) = C + x - 2 + 3 - 4 + 5 - · · · for - I < x < 1 .  

To determine C, substitute a value of x for which both sides can be computed . The best value to use is x = 0, in which case we have ln( l + 0) = C + 0 + 0 + 0 + · . . , 0 = C. Therefore, 
I 

x 2 x 3 x4 x 3 ( I O) ln( I + x) = x - 2 + 3 - 4 + 5 - · · · fo, - I < X < l .  I 
Summary of procedures for finding the new interval of convergence I f  a new series is obtained from a known series by differentiation, anti­differentiation, multiplication by a constant, or, more generally, multi­plication by a polynomial, keep the original interval of convergence. If a new series is obtained from two known series by addition or multi­plication, keep the smaller of the two original intervals . I f  a new series is obtained from a known series by replacement, make the same replacement in the inequality describing the original interval, and solve for x to find the new interval. ( I f  the known series converges for all 
x, then after any replacement, the new series also converges for all x.) 

1 /4 

Application We can use the binomial series to estimate L ( l  /x2)312 dx so that the error is less than .0001 .  First, use (4) with q = - 3/2 and x replaced by x2 to get 
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1 = 1 _ � 2 + (-¾) ( - t) ( 2)2 
( 1 + x 2)312 2 X 2 ! X 

+ 
( - t) ( - t) ( -f) 

(x2)s + . . .  
3 !  

fo r  - 1 < x2 < 1 

3 3 · 5  3 · 5 • 7 3 · 5 · 7 · 9  = 1 - 2 x2 + 
22 • 2 ! x• - 2' . 3 ! x6 + 

2 • • 4 !  
x a 

- . . .  

for - 1 < 
X 

< 1 .  

Since the interval of integration [0, 1 /4] is inside the interval of convergence 
(- 1 ,  1 ) ,  it can be shown that we may integrate term by term to obtain 

f 114 1 = I 114 - � x' 1 114 � x� I "4 
o ( 1 + x 2)512 dx X o 2 3 o 

+ 
22 " 2! 5 o 

- 3 .  5 .  7 x 7 1 114 + . . .  ( l l )  
25 • 3 !  7 0 

• 

The series in ( 1 1) is not a power series and does not have an interval of 
convergence. It is a convergent series of numbers whose sum is the integral 
on the left-hand side. Continuing, we have 

J l/4 l 

0 ( 1 + x2)512 dx = .25 - .0078125 + .0003662 - . 0000 1 9 1  + • • • .  

By the alternating series test, if we stop adding after two terms, the error 
is less than .0003662, not enough of a guarantee. But we use the sum of the 
first three terms, .2425537, as the approximation (an overestimate), then 
the error is less than .0000191 ,  which is less than .000 1 ,  as desired. 

Problems for Section 8. 7 
1. Find a power series for each function, and find the interval of convergence 

of the series. 

(a) � X l I 
(b) 

I - x 
(c) 

(I + x)' 
(d) 

2 - 3x 
I 

(f) 
X 

(I - x) ( l - 3x) 
(g) -- (h) ln(2 + x) 

x - 2 

I 
(e) 

(3 + x)& 

2. Find an ex
t3

nsion for v'f'=3? and the interval of convergence. Find the 
term containing x 4 to illustrate the pattern, and then express the series in sum• 
mation notation. 

5. Find an expansion and its interval of convergence for 1 / ( l  - x 2) by 

(a) using the binomial series (b) using the series for 1 / ( l  - x) 
(c) multiplying series (d) adding series (e) using long division 

4. Rederive (9) by (a) using the binomial series (b) multiplying series. 
5. (a)  Find a series for tan - •x and find the interval of convergence . 

(b) Approximate ff2 tan- 1x 2 dx so that the error is less thar1 .0001 .  Do you have an 
underestimate or an overestimate? 

6. What function has the expansion x + 2x 2 + 3x 5 + 4x 4 + . .  • ?  (Consider 
how the series is related to the series in ( 1) . )  
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x'  x 5 x 4 
7. Let /(x) = x + - + -- + -- + , . . .  2 • 2 3 • 22 4 • 23 

(a) Write the series in summation notation. 
(b) Find an expansion for f '(x). 
(c) Identify f ' (x) and /(x) (they are familiar elementary functions). 
8. (a) Write v'i9 as viif+"3 = 4Yl + ¼ and use the binomial series with 

q = ½, x = ¼ to approximate v'i9 so that the error is less than .01 .  (b) What is 
wrong with writing v'i9 as vT+is and using the binomial series with q = ½ ,  
x = 18? 

8.8 Power Series Representations for Elementary 
Functions II (Maclaurin Series) 

We continue with the task of finding series expansions for functions. 
The preceding section showed that if a connection can be found between 
/(x) and a function (or functions) with a known expansion, then the con­
nection can be exploited to find an expansion, along with its interval of 
convergence, for /(x) . But sometimes too much cleverness is required to 
find such a connection, and sometimes there simply is no connection. It isn't 
possible to use the preceding section to find an expansion for sin x, since 
sin x is not related to 1 /( l  - x) or (1 + x)9, our functions with known 
expansions. This section considers a second method for finding an expan­
sion for a function, based on an explicit formula for the coefficients. 

The Maclaurin series for a function Suppose 

/(x} = ao + a1 x + a1 x2 + a5 x 5 + a4 x4 + · · · . 
Set x = 0 to obtain a0 = /(0), a formula for the coefficient ao, Differentiate 
to get 

f' (x) = a 1 + 2a2x + 3a5 x2 + 4a4 x 5 + · · · 
and substitute x = 0 to obtain a 1 = f'(0) , a formula for a 1 ,  Differentiate 
again to get 

f"(x) = 2a2 + 3 · 2a3 x + 4 · 3a4 x2 + 5 · 4a5x 5 + · . .  , 

and substitute x = 0 to obtain /"(0) = 20!, or Of = r�o) . We'll continue 

until we are sure of the pattern. Differentiating again, we have 

/'"( x) = 3 · 2a5 + 4 · 3 · 2a4 x + 5 • 4 · 3a5x2 + · · · . 
f'"(O) p•> (0) 

Let x = 0 to get J"'(0) = 3 · 2a5, or a5 = 
3 . 2 

. Similarly, a4 = 
4 . 3 . 2 

, 

and, in general, 

(1) - t<•> (o) a. - ' . 
n .  

(Remember that 0 !  = I , I I = I and J<•> means the nth derivative of/.) 
We have shown that given a function /(x), there are two possibilities. 

Either /  has no power series expansion of the form I a..x", or 
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(2) 

Certain functions fall into the "no series" category because they and/or their 
derivatives blow up at x = 0. In that case, the coefficients in (2) can't even 
be computed, so the series doesn't exist. Some functions of this type are ln x, 
Vx and 1/x. Otherwise, every function occurring in practice (provided it does not 
blow up or have derivatives which blow up at x = 0) has the expansion in (2), called 
the Maclaurin series for f. In this case, the expansion holds on the interval of 
convergence of the series, which can be found by the ratio test. (There are 
functions f(x), rarely encountered, whose Maclaurin coefficients exist but 
whose Maclaurin series regrettably converge to something other than f(x). 
However, such functions will play no role in this book.) 

If a series is found for f using a method from the preceding section, or 
using several methods from that section, the answer(s) will inevitably be the 
Maclaurin series for f; no other series is possible. Regardless of how it is 
obtained, the coefficient a. is given by (1). All series found in the preceding 
section are Maclaurin series although they were not computed directly 
from (2). 

We'll use (2) to find a power series for sin x. We have 

f(x) = sin x f(0) = 0 
f ' (x) = cos x f ' (0) = l 
f"(x) = -sin x f"(0) = 0 
f'"(x) = -cos x f"'(0) = -1 
f <4>(x) = sin x J <4>(0) =-- 0 
f (5>(x) = cos X [ !''>(o) = l 

Thus the Maclaurin series in (2) is 

x 3 x 5 x
7 

x - - + - - - + · · ·  3 ! 5 !  7 !  
To find the interval of convergence, consider 

lx2•+ 1 terml _ l x 2•+ 1 I (2n - l) !  
= 

l x l2 

l x2n- • terml - (2n + l ) !  l x 2•- • J  (2n + 1)2n · 

For any fixed x, the limit as n - oo is 0. So the series converges for all x, and 

(3) 
. x3 x5 x7 

sm x = x - - + - - - + · · · 
3! 5 ! 7 !  fo r  all x .  

As a corollary, we can differentiate (3) to find a series for cos x. Note that 
the derivative of a term such as x5/5 ! is 5x 4/5 !, or x 4/4! . Thus 

(4) 
x 2 x ◄ x6 

cos X = l - - + - - - + . . .  2! 4! 6 !  
for all x .  
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We can also use (2) to find a series for e•. I f/ (x) = e• then any derivative 
/ <"1 (x) is e• again, and /'"1 (0) = 1. Therefore the Maclaurin series for e•  is 
I +  x + x 2/2 ! + x'/3 ! + x4/4 ! + . . . . The ratio test will show that the 
series has interval of convergence ( - oo, oo) , so 

(5) 
x 2 x' x 4 

e• = l + x + - + - + - + · · · 2 !  3 ! 4 !  
fo r  all x .  

Using (2) to find a series for /(x) works well if the nth derivatives off 
are easy to co

�
ute, �s with sin x and e•. I t  would not be easy with func­

tions such as l + x and x/( l - x) ( l  - 3x), whose derivatives become 
increasingly messy; the methods of the preceding section are preferable 
in such cases. Note that when (2) is used (as for sin x), the interval of 
convergence must be found with the ratio test. When a series is found 
using a known series for a related function (as for cos x, related to sin x), 
the interval of convergence is found easily from the interval for the 
known series. 

Maclaurin polynomials The discussion in Example 2 of Section 4 .3 
showed that for x near 0, sin x is approximately the same size as x. The 
power series for sin x goes many steps further and shows that we can get 
a better approximation using the polynomial x - x 3/3 ! ,  a still better ap­
proximation using x - x'/3 ! + x 5/5 ! ,  and so on. In general, the partial 
sums of the Maclaurin series in (2) are called Maclaurin polynomials. We will 
show graphically how f is approximated by its Maclaurin polynomials. Con­
sider the graph of f versus the graph of its Maclaurin polynomial of 
degree l, that is, f versus 

(6) 
_ /(0) + f'(O) 

y - 0 1  l !  
x .  

Equation (6) is a line, and a line does not usually approximate a curve very 
well. But (6) is special ; it is the line tangent to the graph of/ at the point 
(0,/(0)) (Fig. l ) . To confirm this, note that the tangent line has slope f' (0),  
and so, using the point-slope form y = mx + b, the tangent line has equa­
tion y = J' (0)x + /(0), which is (6) . 

0 

FI G .  I 
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Consider 

(7) 
_ J(0) f'(0) f"(0) 2 

] - 0( + } ! X + 2 ! X ' 

the Maclaurin polynomial of degree 2 . Its graph is a parabola (Fig. 2) which 
passes through the point (0,/ (0) ) ,  and hugs the graph off more closely than 

I 

FIG . �  
the tangent line in Fig. 1 .  Similarly, the graph of 

r(m f'(0) f"(0) f'"(0) 
(8) y = D::.!.. + x + x 2 + x 3 

0 !  l !  2 !  3 !  

passes through the point (0,/(0)) and does still a better job of  staying close 
to the graph off (Fig. 3) . 

/ 
y=ffx) 

Fl 0. 3 

In general, graphs of successive Maclaurin polynomials provide better 
and better approximations to the graph off. At first (that is, after adding 
only a few terms of the Maclaurin series for /), the polynomials approxi­
mate the graph of/ nicely only if x is near 0. After a while (that is, after 
adding many terms) , the polynomials approximate f nicely even if x is far 
from 0, near the end of the interval of convergence. 

If the sum of just a few terms of a series produces a good approxi­
mation to the sum of the series, the convergence is said to be fast; if many 
terms must be added before the approximation error becomes small, the 
convergence is slow. The graphs of the Maclaurin polynomials in Figs. 1-3 
illustrate that the power series expansion for /(x) converges more rapidly 
if x is near O and more slowly if x is far from 0. 
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Application Suppose we want to approximate sin 1° so that the error is less than 10-7, Switching to radian measure so that we may use (3) ,  we have . l O 
• 1r 1r 1 ( 1r )' 1 ( 1r )5 sm - sm 180 - 180 - 3! 180 + 5! 180 Since the series alternates, and the third term is the first one less than 10-7 

we take 1;0 - ;! ( 1;0) 5 as the approximation. Only two terms were needed for the approximation; the series in (3) converges rapidly to sin x when x = 1r/ l80 since 1r/ l80 is very close to 0. 
Problems for Section 8.8 I . We found the series expansion for (l + x)' in the preceding section by guessing. Find it again by using the Maclaurin series. 2. We found series for 1 /( 1  - x) and ln( l + x) in the preceding section ( ( 1 )  and ( 10)) .  Find them again using the Maclaurin series formula. 3. Find a series expansion for the function, and the interval of convergence of the series, by using the Maclaurin series and then again by using established series. 1 1 (a) 2 (e• - e -•) (b) 3 - 2x 4. Write the series for sin x and cos x using the notation I:.0 a.x " .  5 .  Find a series expansion and the interval of convergence. (a) cos 3x (b) x' sin x (c) e•• 6. Find a series expansion for sin2x using sin2x = ½( l - cos 2x). 7. Suppose /(0) = 1, g(0) = 0, f' (x) = g(x) and g ' (x) = f(x). Find a series for f(x) and find its interval of convergence. 8. Use the series for sin x to confirm that sin(-x) = -sin x. 9. Differentiate the series for e• to see what happens. ( In  a sense, nothing should happen since the derivative of e• is e• again . )  10. Use the series for s in x to estimate s in 1 (radian) so that the error is less than .000 1 .  Do you have an overestimate or an underestimate? 1 1 . Estimate the integral using the given error bound. Do you have an over­estimate or an underestimate? (a) f e -•' dx, error < . 1  (b) f" ( 1  } x2)4 dx, error < .0 1 12 ,  Use series to find the limit, which is of the indeterminate form 0/0. (a) lim ln( l + x 2) (b) Jim sin x 

••O } - COS X • •O X 13. Use the power series for e• to find the sum of the standard convergent series I:.o 1 /n ! .  
8.9 The Taylor Remainder Formula and an Estimate for 

the Number e 

If we set x = 1 in the power series for e• (see (5)  of the preceding section), we have 
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(1) 
1 1 1 

e = l + l + - + - + - + · · ·  
2 !  3 !  4 !  

We can approximate e by partial sums of the series, but since the series does 
not alternate we do not have an error bound. The aim of this section is to 
introduce an error bound for the Maclaurin series for f(x) in general, and 
then use it in the special case of e•. 

Suppose x is fixed and f (x) is approximated by the beginning of its 
Maclaurin series, that is, by a Maclaurin polynomial, say of degree 8 : 

/(0) f'(0) r(o) J<8> (0) 
8 

01 
+ 

1 ! X + 
2 !  X 2 + • • . + 8 1 X • 

If the series alternates, then the first term omitted supplies an error bound. 
But whether or not the series alternates, the error in the approximation 

I� , may be bounded as follows. Consider all possible values of 
9 1  

x9 for 

m between 0 and x, and find the maximum of the values. Taylor's remainder 
formula states that the error, in absolute value, is less than or equal to that 
maximum. 

In general, the error (in absolute value) in approximatingf(x) by its Maclau.-in 
polynomial of degree n is less than or equal to the maximum value of 

lp•+ •>
(
m

) x
•+ • I (2) 

(n + l ) !  

for m between 0 and x .  We omit the proof. 
Returning to the problem of approximating e, we will obtain a first 

estimate using areas, and then use it, along with power series, to find a 
sharper estimate. 

In Fig. 1, the shaded region has area ff ( 1 /x) dx = In 2 - In 1 = In 2 .  
The rectangular region ABCD within the shaded region has area 1/2 ,  
so In 2 > 1 /2 .  Therefore In 4 = In 2 2 = 2 In 2 > 1 .  But In e = 1 ,  so 
In 4 > In e. Since In x is an increasing function, we have 4 > e. Similarly, 
since In e = 1 and In l = 0, we have e > 1. Thus, a first estimate of e is 
l < e < 4. 

Now let's return to (1) .  Suppose the first five terms are added to obtain 
the approximation 

(3) 
l l l 

e = l + l + 2 1  
+ 3 1  

+ 4 1  = 2 .708 . 

To estimate the error, consider (2) with f(x) = e•, x = l ,  n = 4 (since we 
added through the x4 term in the series for e") , and 0 :S m :S l . Then 
f<5> (x) = e• and 

l t<5

> (m) 5

1 
= 

e
• 5! 

l 
5 !

. 

Since l < e < 4, the maximum occurs when m = l, and that maxi­
mum is less than 4/5! or 1 /30. Therefore the error in the approximation 
in (3) is less than 1 /30. Furthermore, when the expansion in ( 1 )  stops 
somewhere, all the terms omitted are positive, so the approximation in (3) 
is an underestimate. Thus, 
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l 2. 708 < e < 2. 708 + 30 < 2. 742 . 
In  a similar fashion, by adding more terms, it can be shown that 2.7 18281  < e < 2.7 18282. 
8. 10  Power Series in Powers of x - b (Taylor Series) 

Certain basic functions such as In x, Vx and l /x cannot be expressed in the form 2 a.x• because they and/or their derivatives blow up at x = 0 (Section 8.8 ). Also, other functions have power series which converge too slowly if x is far from 0. We attempt to overcome these difficulties by considering power series of the form 
(1) L a.(x - b)" = ao + a 1 (x - b) + a2(x - b)2 + a3(x - W + " · . 

•=O We call ( l ) a power series about b. The power series we have considered so far are the special case where b = 0. In this section we will show how a function /(x) can be expanded about b with a generalization of the Maclaurin series formula, or, better still, using known series about 0. In Section 8.8 we showed that if/ has an expansion of the form 2 a.x•, then a. = J<•l (0 )/n !. A similar argument shows that if/ has an expansion of the form 2 a.(x - b )", then a. = [!•l (b )/n!. This leads to the following gen­eralization of Maclaurin series. Every function /(x) encountered in practice, .which does not blow up or have derivatives which blow up at x = b, has the expansion 
f(b ) f' (b ) f"(b ) f"'(b ) (2 ) f(x) = - + - (x - b) + - (x - b )2 + (x - b )3 + · · · 
O !  l !  2 !  3 !  ' 

called the Taylor series for f about b. The expansion holds on an interval of convergence centered about b and found with the ratio test. The partial sums of the Taylor series are called Taylor polynomials. Graphs of successive Taylor polynomials are a line, a parabola, a cubic, and so on, tangent to the graph off(x) at the point (b,f(b)) ;  they supply better and better approximations to the graph. The Taylor series converges more rapidly if x is near b, and more slowly if x is far from b. The Maclaurin series, with interval of convergence centered about 0 ,  and the Maclaurin polynomials, tangent to the graph off (x) at the point (0,/(0 ) ) , are the special case of Taylor polynomials when b = 0. One method for expanding a given /(x) in powers of x - b is to use (2 ) directly, along with the ratio test to determine the interval of convergence. Another method is to write f(x) as [([x - b] + b) and maneuver alge­braically, as illustrated in examples, until it is ultimately possible to make use of a known series in powers of x, but with x replaced by x - b. With this approach, the interval of convergence can be obtained from the interval for the known series. No matter which method is used, the answer will agree with (2 ); no other series in powers of x - b is possible. 
Example I Find an expansion for cos x in powers of x - ½ 'IT, and find the interval of convergence. 
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Solution: For a first approach, use (2 ) with /(x) = cos x, b = ½'11'. Then f'(x) = - sin x, f"(x) = - cos x, f'"(x) = sin x, / <4 > (x) = cos x, · · · ;  and /(i'11') = 0 ,  f '(i'11' )  = - 1 , ["(½'11' )  = 0, /'"(½'11' )  = l , p�> (½'11' )  = 0 ,  and so on. Therefore f(-l ... ) f'{1'11') f"{' '11' ) cos x = � + ! (x - 111' ) + 2 (x - ½'11' )2 + • • • 0! l ! 2 2 !  
= - (x - ½'11' ) + ;! (x - ½'11' )5 - ;! (x - ½'11' )" + · . . . 

To find the interval of convergence, use the ratio test. We have 
l(x - ½1T )2•+ 1terml = l (x - ½1T )2•+ 1 1 1  ( 2 n  - I ) ! I l(x - ½'11' )2"- 1terml ( 2 n  + I ) !  (x - j1T )2•- .1 

- Ix - ½'11'12 - ( 2 n  + 1 ) 2n  · 
The limit as n --+ co is 0 so the series converges for all x. As a second approach, write cos x = cos([x - j'IT] + j'11') , and, for con­venience, let u = x - ½'11'. Then 

cos x = cos[u + ½'11'] 
= cos u cos ½'11' - sin u sin j'IT (by a trig identity, Section 1 .3) = -sm u ( since cos j'IT = 0, sin ½'11' = l )  
= - (  u - ;; + ;: - . . ·) 

for al l  u (using the series for s in u, Section 8.8 ) . 
Now replace u by x - ½'11' to obtain the final answer 

t [x - ½'11']s [x - j'11']• ( 3 ) COS X = - [x - J'11'] + =---------=- - =---------=- + " '  3 ! 5 !  for all x - j'IT ,  that is , for all x . 
Warning Consider an incorrect approach to the preceding example. Begin with 
(4 ) x 2 x 4 COS X = I - - + - - . . . 2 !  4 !  
and replace x by x - ½ '11'  to obtain 

cos(x - 111' ) = I - (x - i'11')2 
+ (x - ½'11' )4 - • • • 2 2 !  4 !  . 

This is a series expansion in powers of x - ½'11' for the function cos(x - ½'11' ), but it is not an expansion for cos x, as requested. 
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Application Suppose we want to estimate cos 80°, that is, cos(801r / 180), so that the error is less than .0001 . We can set x = 801r / 180 in any series for cos x, say the series about 0 in (4) or the series about ½1r in (3) . Since 80° is nearer to 90° than to 0°, the convergence will be faster if we use the series about ½1r. So using (3), we have 
cos 800 = cos 807T = - (807T - �) + J_ (807T - �)3 - J_ (807T - �)5 180 180 2 3 !  180 2 5 !  180 2 

+ J.. (801r - �) 7 
-

. . .  7 !  1 80 2 
= 

� - ;, c�r + ;J 1�r - ;, c�r + . . . = . 1745329 - .000886 1 + .0000013 - · . . . The series alternates, and the first term less than .0001 is the third term of the series. Therefore we use two terms as the approximation and have cos 80° = .1736468 (an underestimate) with error less than .0000013. 
Example 2 Expand 1/ (2 - x) in powers of x + 4; that is, expand about -4. 

Solution: Write the function as 2 _ ([x : 4) _ 4) and simplify by letting u = x + 4. Then 
-2 ---x = 2 - (u - 4) = 6 - u = 6 l _ u . 

6 
Now use the expansion for 1 /( 1  - x) (Section 8 .7, ( 1 )) with x replaced by 
u /6 to get 

for - I  < � < I 6 
J [ X + 4 (X + 4) 2 (X + 4)3 

] = 6 I + -6- + -6- + -6- + . . .  
X + 4 for - 1  < -- < I 6 

1 1 1 I 
= - + - (x + 4) + - (x + 4)2 + - (x + 4)3 + · . .  

6 � 63 & for - IO < x < 2 . Note that the interval of convergence is centered about -4.  
Example 3 Expand In x in powers of x - 2, that is, about 2 .  Solution: Write In x as ln ([x - 2) + 2) ,  and for convenience, let 
u = x - 2.  Then In x = ln(u + 2) = In 2( 1 + ½u) (factor) = In 2 + In( I + ½u) (using In ab = In a + In b) . 
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Now use the established series for ln(l + x) (Section 8.7, Eq. (10)) with x replaced by ½u to get (½u)2 (½u)' ln x = ln 2 + ½u - -- + -- - . .  · 2 3 for -1  < ½u < 1 

X - 2 1 (X - 2)2 1 (X - 2)' = ln 2 + -2- - 2 -2 - + 3 -2 - - . . . 
x - 2 for -1  < -- < 1 2 

1 1 1 = ln 2 + - (x - 2) - -- tx - 2)2 + -- (x - 2)5 - . .  • 2 22 • 2 2' · 3 for O < X < 4 . The term ln 2 is the constant term in the series. Note that the interval of convergence is centered about 2 .  
Warning Don't combine numbers if  by doing so you conceal the pattern. In Example 3, the coefficients should be left as 221. 2 , 2, 1• 3 , 2, 1• 4 , · · · to indicate the pattern, rather than written as j, f4, ti, · · ·  which obscures the pattern. 
Problems for Section 8.10 

1, Find the interval of convergence of L (x n�!>" . 2. Consider expanding each function in powen of x - b. For which value(s) of b is it impossible? 1 
(a) (x + 8)5 (b) ln x 
S. Find the series expansion and its interval of convergence. For parts (a) and (g), try both methods. Otherwise, use known series. (a) ln x in powers of x - 1 (f) vi in powers of x - 9, and find the coefficient of (x - 9)50 

(b) sin x in powen of x - 1r (g) (x : 8)5 in powen of x - 1, and find the coefficient of (x - 1 ) 19 (c) e• in powers of x - 1 (h) cos 2x in powers of x + ½w (d) _6 1_ x in powers of x + l (i) In Sx in powers of x - 2 
(e) .!. in powers of x + 2 

X 
(j) 1 : 2" in powers of x + 4 

REVIEW PROBLEMS FOR CHAPTER 8 
1, Test the series for convergence versus divergence. 
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I (a) I 7• 

(b) I-; n (cl I<fr I 
(d) L n 1 12 

I I I (e) - - - - - - - . . .  
7 8 9 

(0 I (- I )" � n2 + n 
3n (gl I �+ n n 

6" (h) L (n _ ! ) ! 
3 4 5 6 

(i) - - - + - - - + . . .  
4 5 6 7 
I I I I I 

(j) - + - + - + -- + --
7 78 789 7890 7890 1 I 
+ --- + . . .  

7890 12 
1 · 3 · 5 1 · 3 · 5 · 7 (k) --- + ---- + . . . 2 · 4 · 8 2 · 4 · 8 · 16 

n 2 

Ol I 5• 

(m) I - 3 + I - 3 + I - 3 + · · · 2. Find the sum of the series (4)5 + (4)7 + (4)9 + · · · . 3. Estimate the sum on:;.0 ( - 1 )"(2"/n!) so that the error is less than .0 1 .  Do you have an overestimate or an underestimate? 4 .  Decide if  the series converges absolutely, converges conditional ly, or diverges . 
• I I 

(a) L(- 1 ) (In n)2 
(b) L 3• 5. Suppose i: a. is a positive convergent series. Decide ,  if possible, if the given series converges or diverges . 

6. Suppose e " '  + e •• + e" '  + · · · converges. Decide ,  if poss ible, whether a ,  + a2 + a, + · · · also converges, 7. (a) Show that if � a. and � b. converge, then � a.b. does not necessarily converge. (b) Show that if r a. and � b. are positive convergent series, then i: a.b. also converges. 8. Find the interval of convergence of x' /4 4 + x 6/4 ' + x 7 /46 + . .  • .  9. Expand the function in powers of x, and find the interval of convergence. I (a) --3 - x 
(b) 

I 
(x - 1 ) ( 1 - 2x) 

I 
(c) 

( I + x)6 I 
(d) I + x6 10. Find the first three terms of the power series for x 2e', first using the Mac­laurin series formula and then again using an established series. 1 1 .  Use power series to find lim • • 0( 1  - cos x)/x 2, which is of the indeterminate form 0/0. 1 2. Find an expansion and its interval of convergence for (a) cos x in powers of x - ¼'IT (b) � in powers of x - 8. 13. Approximate n x 'e -•' so that the error is less than .00 1 .  ls your estimate over or under? 1 4. Find a series in powers of x for sin- 1 x by antidifferentiating ! /�-
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9. 1 Introduction 

Certain quantities in physical applications of mathematics are repre­sented by arrows; we refer to the arrows as vectors. For example, a force is represented by a vector (Fig. l ) ;  the direction of the vector describes the direction in which the force is applied, and the length (magnitude) of the vector indicates its strength (in units such as pounds). The velocity of a car is represented by a vector which points in the direction of motion, and whose length indicates the speed of the car (Fig. 2) .  If an object moves from point A to point B (Fig. 3) ,  its displacement is depicted by a vector drawn from A to B. In the context of vector mathematics, numbers are usually referred to as scalars. We say that velocity, force, displacement and so on, which are represented by arrows, are vector quantities, while speed, weight, time, temperature, distance and so on, which are described by numbers, are 
scalar quantities. We will use letters with overhead arrows, such as u and ii, to denote vectors. For a vector whose tail is point A and head is point B, as in Fig. 3, we often use the notation AB.  

F l 6. 7-.  

fl G .  s 
Rectangular coordinate systems in 3-space We will draw vectors in space, as well as in a plane, so we begin by establishing a 3-dimensional coordinate system for reference. You are familiar with the use of a rectangular coordi­nate system to assign coordinates to a point in a plane. A similar coordinate 259 
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system may be used in space; see Fig. 4 where the point (2, 3, -5) is plotted 
as an illustration. The plane determined by the x-axis and y-axis is called the 
x, y plane; Fig. 4 also shows the y, z plane and the x, z plane. 

For a 2-dimensional coordinate system it is traditional to draw a hori­
zontal x-axis and a vertical y-axis, but several different sets of axes are 
commonly used in 3-space. Figures 5-7 show three more coordinate sys­
tems. Each coordinate system in 3-space is called either right-handed or 
left-handed according to the following criterion. Hold your right hand so 
that your fingers curl from the positive x-axis toward the positive y-axis. If 
your thumb points in the direction of the positive z-axis then the system is 
right-handed (Figs. 4-6). Otherwise, the system is left-handed (Fig. 7). For 
certain purposes (Section 9.4) right-handed systems are necessary, so we 
use right-handed systems throughout the book. 

In 2-space, the distance between the points (x i , y 1 ) and (x2, y2) is 

(*) / Y(x2 - x, )2 + (y2 - y , )2 . , 

It may similarly be shown that the distance in 3-space between the points 
(x 1 , y 1 , z 1 ) and (x2, y2, z2) is 

I Y(x2 - x, )2 + (y2 - y 1 )2 + (z2 - z 1 )2 . j 

For  examp l e ,  if D = ( 3 , 4 ,  7 ) and £ = ( - 5 , - 2 , 5 )  t h e n  DE = 
\!64 + 36 + 4 = \!104. 

Components of a vector A vector in 2-space has two components, indicat­
ing the changes in x and y from tail to head. The vector u in Fig. 8a has 
x-component - 2  and y-component 3, and we write u = ( - 2, 3). In 2-space, 
the coordinates of a point and the components of a vector both measure 
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"over" and "up." However, the coordinates of  a point measure over and up from the origin to the point, while the components of a vector measure over and up from the tail to the head. Note that if the vector (x0 , y0) is drawn with its tail at the origin then the coordinates of the head are the same as the components of the vector (Fig. 8(b)) .  A vector in 3-space has three come2nents, indicating the changes in x, y and z from tail to head. For vector AD in Fig. 9, to move from tail A to head D we must go 4 in the negative x direction, 5 in the positive y direction and 3 in the positive z direction. Thus AD = ( - 4, 5, 3) . 

X. 
Any vectors u and ii with the same length and direction will have the same com�nents, and in that case we write u = ii. In Fig. 9, GB = Fe = co, 5, - 3), Afi = Ee = CF =  lD = ( -4, 0, o). The vectors (0, 0) and (0, 0, 0) are thought of as arrows with zero length and arbitrary direction, and called zero vectors. Both are denoted by 0. Suppose the tail of a vector is the point (6, - 1) and its head is the point (2, 4) ( Fig. IO) .  Examine the changes in x and y from tail to head to see that the vector has components (-4, 5) .  In general 

F i b .  ! O  
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( 1 )  vector components = head coordinates - ta i l  coordinates , 

which we abbreviate by writing 

(2)  vector AB = point B - point A . 

For example, the vector with tail at (3 ,  5, l )  and head at (2 ,  l ,  5) has 
components (2 - 3, I - 5,  5 - 1) ,  or ( - 1 ,  -4 ,  4). 

oi"o---:-L""'-,i
1 

\le 
- - - - - - - -

F I G . I I  
Suppose a vector u in 2-space has length r and angle of inclination (J 

(Fig. 1 1 ) .  To find the components (.x, y) of ii, note that if the vector is drawn 
starting at the origin then the head of the arrow has rectangular coordinates 
.x,y and polar coordinates r, (J (Appendix A6).  Since the two sets of coordi­
nates are related by .x = r cos 8, y = r sin (J, we have 

(3) I u = (r cos 8, r sin 8) . 1  
If  a 2-dimensional vector has length 6 and angle of inclination 127°, then its 
components are (6 cos 1 27°, 6 sin 1 27°) . 

n-dimensional vectors An arrow in space with a triple of components (u i , u2, u3) is called a 3-dimensional vector. More generally, a )-dimensional vector is any phenomenon described with an ordered triple of numbers, such as 
position in space, or a weather report which lists, in order, temperature , 
humidity and windspeed . Similarly, an ordered string of seven numbers, 
such as (4, 8,  6, 2 ,  0, - 1 , 6) is said to be a 7-dimensional vector (or point) .  For 
example, (0, 0, 0 ,  0, 0, 0, 0) is the 7-dimensional zero vector, or, alternatively, 
the origin in 7-space. I f  an experiment involves reading five strategically 
placed thermometers each day then a result  can be recorded as a 
5-dimensional vector (T1 , T2, T3 , T4 , T5) .  I f  a system of equations with four 
unknowns has the solution .x 1 = 2, .x2 = - 4 ,  .x3 = 0,  .x4 = 2 then the 
solution may be written as the 4-dimensional vector (2,  -4, 0,  2 ) .  I f  n > 3 
then the n-dimensional vector ( u 1 , • • • , u.) cannot be pictured geometrically as 
an arrow or a point, but (with the exception of the cross product in 
Section 9.4) vector algebra will be the same whether the vector has 2, 3 or 
1 00 components. 

Problems for Section 9.1 

I .  Let P = (2 ,  3 ,  - 7) . Find the following distances. 

(a) P to point Q = ( I ,  5 ,  2) (c) P to the x,y plane 
(b) P to the origin (d) P to the y, z plane 
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(e) P to the z-axis 
( f) P to the y-axis 

(g) point (x, y, z) to the x-axis 
(h) point (x,y, z) to the z-axis 

2. In Fig. 9, find the components of AF, HB, HE. 
3. Find the components of u i f  u points like the positive y-axis and has length 

2 in 2-space. 
4. Find several vectors para.!!£1 to the line 2x + 3y + 4 = 0. 
5, Find the components of AB if A = (2 ,  7) and B = ( - 1 ,  4) . 
6. I f  the vector (3, I, 6) has tail ( I ,  0, 4) ,  find the coordinates of its head . 
7. Find the components of the 2-dimensional vector u with length 3 and angle 

of inclination 120°. 

9.2 Vector Addition, Subtraction, Scalar Multiplication 
and Norms 

In this section we will develop some vector algebra along with the 
corresponding vector geometry. 

/ 

/ 
/ 

/ 

FI G . I 

r,, vzzt..� __,.. 
VE LOC. try 1.,1,, 

Vector addition Let the vector ii in Fig. l be the muzzle velocity of a bullet 
fired toward a target. Suppose further that the gun is fired from a car 
moving with velocity v. Experiments show that the bullet does not head 
toward the intended target; instead, the car velocity and muzzle velocity 
combine (physicists call it "addition") to produce the final bullet velocity 
shown in Fig. l. In general, the sum of two vectors is defined by the paral­
lelogram law of Fig. 2, or equivalently, the triangle law in Fig. 3 (the tri­
angle is half the parallelogram). Figure 4 shows addition of parallel vectors, 
and Fig. 5 shows a sum of three vectors. 

To find the algebraic counterpart of the parallelogram law, we want the 
components of ii + ii given the components of ii and ii. Suppose ii = (2 ,  3 ) 
and ii = (5 ,  l ) .  Figure 6 shows ii, ii and ii + ii; we can read the changes in x 
and y from tail to head of ii + ii to see that ii + ii = (7, 4) .  Each component 

F I G . 4  
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of u + ii is the sum of the corresponding components of ii and v. I n  general, if ii = (u 1 , . .  · , u.) and ii = (v i , · · · , v., ) then ( I )  u + ii =  ( u 1 + v . ,  .. · , u., + v,,) . I f  u and ii are vectors in 2-space or 3-space, then ( I )  accompanies the geometric parallelogram rule. I f  ii and ii are higher dimensional, then ( I ) serves as an abstract definition of vector addition. 
The vector -u If ii = (u i ,  · · · , u.) we define 
(2) -u  = ( - u 1 , · · · , - u.,) . For example, if u = (4, 2, - 1 , 3) then -u  = ( -4, - 2, I ,  - 3). I f  ii is a vector in 2-space or 3-space then -u has the same length as u but points in the opposite direction (Fig. 7) .  
Vector subtraction If ii = (u i , · · · ,  u., ) and ii = (v . , · · · , v.) ,  we define (3 )  u - ii =  (u 1 - v 1 , · · · , u., - v.,) . For example, if u = (2 ,  - 1) and ii = ( I ,  7) then u - ii = ( I ,  - 8) . I f it and ii are drawn as vectors with a common tail (Fig. 8a) then the vector u - ii can be drawn by reversing ii and adding, that is, by finding u + -ii (Fig. 8b) .  The final result, the triangle law for vector subtraction, is shown in Fig. 9:  the head of ii - ii is the head of ii,  and the tail of u - ii is the head of ii. Note that to add two vectors geometrically, they can either be placed with a common tail and added with the parallelogram law in Fig. 2 ,  or can be drawn head to tail and added with the triangle law in Fig . 3 .  But to subtract two vectors geometrically, they should be placed with a common tail so that the triangle rule of Fig. 9 can be applied . The parallelo-
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gram in Fig. 10 neatly displays the vectors u, ii, u + ii and u - ii all in the 
same diagram. 

Properties of vector addition and subtraction As expected, the vector 
operations behave like addition and subtraction of numbers. 

(4) u + ii = ii + u 
(5) (u + ii) + w = ii + (ii + w> 

(6) u + 0 = 0 + ii = u 
(7) u + -ii = o 
Scalar multiplication If ii = (u 1 , • • · ,  u.) and c is a scalar, we define 

(8 ) cu = (cu . , · · · ,  cu.) 

and call the operation scalar multiplication. For example, if u = (2, -3) then 
5ii = (10, - 15). If  ii is a vector in 2-space or 3-space then 2u and ii have the 
same direction, but 2u is twice as long. A car with velocity 2u is traveling in 
the same direction as a car with velocity ii,  but with twice the speed. The 
vectors ii and -½ii have opposite directions, and -½ii is half as long as u. In 
general, two vectors are parallel if one is a multiple of the other; they are parallel 
with the same direction if the multiple is positive, and parallel with opposite 
directions if the multiple is negative (Fig. 1 1 ) .  

Parallel lines In  3-space, two lines are either parallel, intersecting or skew. 
The pyramid in Fig. 12 illustrates parallel lines BE and CD, intersecting 
lines AB and AD, and skew lines AE and CD. We will consider coincident 
lines as a special case of parallel lines ; the lines BF and BA are parallel, and 
furthermore are coincident. 

Vectors may be used to detect parallel lines : the lines PQ and RS are 
parallel if and only if the vectors PQ and ifs are multiples of one another. For 
examp� let A =  ( l , 2 , 3) ,  B = (4, 8 , -_!1 P = (6, 1 , 3 )  and Q = (-4 , 0 , 2) .  
Then AB = B - A = (3 ,  6 ,  - 4) and PQ = Q - P = ( - 10, - 1 , - 1) .  The 
vectors are not multiples of one another, so the lines are not parallel. 
(Section 10.3 will give a method for distinguishing between the two remain­
ing possibilities, skew versus intersecting, and show how to find the point of 
intersection if it exists.) 

In 2-space, both slopes and vectors may be used to detect parallel lines. 
In  fact we will show that the two techniques have much in common. Let's 
decide if the lines AB and CD are parallel, where A = ( 1 ,  2) ,  B = (3 ,  5 ) ,  

C = (2 1 ,  - 3) and D = (25,  3 ) .  The slope of the line AB is � = � or J ,  while 
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the slope of the line CD is !s -_ �� or t .  Since ½ and ! are equal, the 

lines are parallel. Alternatively, we have AB = (3 - I, 5 - 2) = (2, 3) and 
CD = (25 - 21 ,  3 - - 3) = (4 , 6). Since (2, 3) and (4, 6) are multiples of one 
another, the lines are parallel. Both methods involve subtraction to find the 
key numbers 3 ,  2 and 6, 4. But one method uses them to form quotients, 
called slopes, and the other approach uses them to form ordered pairs, the 
components of vectors. Deciding if the two quotients are equal is equivalent 
to deciding if the two vectors are multiples of one another; the two methods 
accomplish the same purpose, but in different notation. The slope of a line AB is a convenient way of combining the two components of the vector AB 
into one number, without losing information about the direction of the line. 
Since there is no useful way of combining the three components of a 
3-dimensional vector into one number, slopes are not defined in space. 
Questions about parallelism, perpendicularity, angles and direction will be 
answered in 3-space using vectors. I n  2-space we may choose between 
vectors and slopes. 

Properties of scalar multiplication 
(9) c(u + ii) = cu + cii (For example, 2(u + ii) = 2u + 2ii .) 

( 1 0) au + bu = (a + b)u 
( I I )  a(bu) = (ab)u ( For example, 2u + 3ii = Su .) 

(For example, 2 (3u) = 6u .) 

Properties (9)-(1 1 )  are similar to familiar algebraic identities for scalars. We 
omit the straightforward proofs. 

Example I Precalculus algebra courses show that if A = (x , , y i )  and 
. . (Xi + X2 �) B = (x2 , y2) then the midpoint of the segment AB ts --2

- , 2 • . I n  

. h 'd . . A + B W fi d h vector notatton, t e m1 pomt 1s -2- .  e can use vectors to m t e two 

trisection points , C and D, of segment AB (Fig. 1 3). We have AC = ¾,4B , so 
2A + B . . C - A = ½(B - A) ,  and C = 3 . The midpoint formula computes an 

average of the endpoints. The formula for the trisection point C takes 
a weighted average of the endpoints, with A weighted twic�s mu� as B, 
since C is the trisection point nearer to A . Similarly, AD = }AB and A +  2B D = 3 . If A = ( 2 ,  3) and B = (- 1 ,  6) then the trisection point 

. 2A + B nearest A 1s 3 = ( 1 ,  4) . 

The norm of a vector If u = (u i , u2 ) then the x component of u changes 
by u 1 and the y component changes by u2 from tail to head. Thus by the 
Pythagorean theorem, the length of the vector is V uf + u�. In general, if 
u = (u i , · · · , u.) we define the norm or magnitude of u by 

( 1 2) I ! lul l = Vu� + . .  · + u� . I 
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I f  the vector u is 2-dimensional or 3-dimensional then !lull is the length of u. If a point has coordinates (u i , · . . , u.) then the square root in (12) is the distance from the point to the origin. For example, if u = (2, 3 , -5) then llull = V4 + 9 + 25 = V38. The length of the vector u is V38 and the distance from the point (2, 3, -5) to the origin is V38. 
Properties of the norm It follows from the interpretation of l lull as the length of a vector that (13) and (14) 

l lul l � o 
l lull = 0 if and only if u = 0 . We have already observed that the vectors 3u and -3u are each 3 times as long as u. In the language of norms, IIMII = l l - 3ull = 3llul l , and in general, < 15) l lcull = l e i l lul l -Geometrically, (15) says that the length of the vector cu is the absolute value of c times the length ofu. Algebraically, (15) claims that the scalar c can be extracted from inside the norm signs in the expression llcull , provided that its absolute value is taken. 

Example 2 Suppose a force / acts at point A due to a nearby disturbance. Let r be the vector from the disturbance to A (Fig. 14) .  Describe the direc-tion and magnitude of / if / = 
1 1:i1, . 

Solution: The denominator ll rl l3 is a positive scalar, so / has the same direction as r. Thus the disturbance creates a repelling force at A. To find the magnitude of /, use (15) :  since l l:ll3 is a positive scalar, the length of ll:iP is 
l l:ll3 times the length of r. Therefore, 

I I / II = 1 1:l ls l lrl l = 1 1:1 12 = (distance from A t� the disturbance)2 
• Thus the magnitude of the repelling force is inversely proportional to the square of the distance to the disturbance. (The electrical force felt by a positive charge at point A due to a nearby positive charge is an example of a repelling, inverse square force.) 

Normalized vectors By (15) ,  the norm of t is ¼ times the norm of u. 
Similarly, the norm of ll:II is ll�II times the norm of u. Thus ll:II is a 
unit vector, that is, has norm I .  Furthermore it has the same direction as i1 since the scalar multiple ll!II is positive. The process of dividing u by l lul l is called normalizing the vector u. We will use the notation Unormatiz<d so that 
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( 1 6) • u 
( 

u 1 u. ) Unorm•hzed - l lull 
-

!lull ' ' l lul l 
. 

For example, if u = ( 4, 5) then !lul l  = V4l and Unorm•lized = ( � , � )  

(Fig. 15) .  
The normalized u will be a useful geometric tool because of its unit 

length. 

Warning A norm is a scalar, but as the name implies, a normaliud vector is 
a vector. In other words, ! lul l  is a scalar but Unormalized is a vector. 

Finding a vector with a given direction and norm Suppose u has length 
3 and the same direction as a given vector v. Then u = 3vnormalized since 
tripling the unit vector v00,malized produces a vector with length 3, still point­
ing like v. In general, if l lul l = l and u has the same direction as a given vector 
v, then 

( 1 7) • 1 ·  l ii U = V normalized = � · 

for example, if u has length 4 and the same direction as w = ( l ,  3, 2) then 

• • ( l 3 2 
) ( 4 1 2  8 

) U = 4Wnormalized = 4 v'J4 , 
v'J4 

, v'J4 = v'J4 , v'J4 , v'J4 · 

Example 3 If you start at point A = ( l ,  6) and walk 2 units toward point 
B = (4 ,  IO),  at what point do you stop? _ 

Solution: Let the final destination � named C (Fig;_ 16) .  "D!_en AC has 
length 2 and the same direction as AB = (3, 4), so AC = 2AB normalized = 
(t f) . Therefore C - A = (t f) and C = A + (tf) = (.If//) . 

- B 

The vectors i, J, k In 2-space , the special vectors I and J are defined by 
i = ( 1 ,  0) and J = (0, 1) . Both are unit vectors, and if attached to the origin 
they point along the coordinate ax!s (FiS,; 17) .  Every 2-dimensional vector 
can be easily written in terms of i and j .  For example, (2 , 3) = 2 ( 1 , 0) + 
3(0, 1) = 2 1  + 3] (Fig. 17) .  The notation u = u1 1 + u2] is often used in 
place of u = (u i , u2) .  From now on, we will use both representations. 

Similarly, in 3-space, 1 = ( 1 ,  0, O) , ]  = (q_, 1, 0) �nd k � (0, 0, l) (Fig. 18) .  
The vector (u 1 , u2 , u3) can be written as u 1 i + u2j + u3 k. For example, if u = 21 - 7] + 3k and v = 1 + J + 2k then u + v = 31 - 6] + 5k, 3u = 
61 - 2 1] + 9k, l lull = V4 + 49 + 9 = v'62. 
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Warning If u has components 2 and 8 ,  you may write u = (2 , 8) or 
• 2" 8" b • . (2" 8")  u = I + '},  ut u lS  not , ,  '} . 

Problems for Section 9.2 

I .  Use the parallelogram in Fig. 19 to find 

(a) DC + DA (d) AB - CB 
Cb> Ai - Ai> <e> Ai + a; 
<c> Ai +  cs 
2. Let A = (2 , 4, 6) ,  B = ( l ,  2, 3) ,  C = (5, 5, 5). Find point D so that ABCD is a 

parallelogram. 
5. Let A = ( l ,  4, 5), B = (2, 8, l), C = (8, 8, 8) ,  D = (6, 0, 16) . Are the lines AB 

and CD parallel? 
4. Let A = ( l , 2, 3) , B = (4, 8, - 1), P = (6,y, z), Q = (-4, 0, 2). Find y and z so 

that the lines PQ and AB are parallel. 
5. Are the points A = (3, 6, - 1), B = (2, 0, 3) ,  C = ( - 1 ,  3, -4) collinear? 
6. Of the nine points that divide the segment PQ into ten equal parts, find the 

three nearest to P. 
7. Figure 20 shows vectors u, ii, w lying in the plane of the page. Find scalars a 

and b so that w "' au + bv. 

- - - - - - - - - - - - - / - -
/ I 

I ;;t / I w- I 
, 1  I I - - - - - - -1 - - _ _ _ _  ,_ 

I 
I 

I I 
I I 

I I 

- - - -1- -- - - -----
, 

1 I 
, '  I 

I I 
I 

I 

FIG . 'J...O 
8. A median vector of a triangle is a vector from a vertex to the mid point of the 

opposite side. Show that the sum of the three median vectors is O (Fig. 21 ) .  

Suggestions: For one method note that E "' B ; C since E is  the midpoint of 

segment BC. For another method note that AE "' AB  + BE. 
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9. Find !lull if (a) u = (3,  - 1 , 5) (b) u = ('TT, 71', 71', 71', 71') . 

10. Find the unit vector in the direction of (2, -6, 8). 
1 I .  I f  ii and u have opposite directions and l liil l  = 5,  express ii as a multiple of u. 
12. Suppose that you walk on a line for 12 meters from point B = (I ,  2 ,  6) to 

point C, passing through the point A = ( l ,  1 ,  2) along the way. Find the coordinates 
of C. 

13. If u = (2, 3 ,  5), find the norm of 217u. 
14. I f  u makes angle (J with the positive x-axis in 2-space, find a unit vector in the 

direction of u. 
15. Suppose u has tail at point (4, 5, 6), is directed perpendicularly toward the 

y-axis in 3-space, and has norm 3. Find its components. 
16. Suppose the tail of u is at the point A = (5, 6, 7), ii points toward the origin, 

and the length of u is ! /(distance from A to the origin)2. Find the components of u. 
17. If u = 2i  + 3] - k and ii = i - ] + k, find u - 2ii, ! lull and Unormahzed• 
18. If  l l rl l  = r, find the norm of r'r. 
19. Let (J be the angle determined by u and ii drawn with a common tai l .  Use 

plane geometry to explain why u + ii does not necessarily bisect angle 8, but 
u ii 

l lul l 
+ 

l lii l l  
does bisect the angle. 

9.3 The Dot Product 
We'll begin by finding a formula for the angle between two vectors. 

This leads to a new vector product and further applications. 
I f  two vectors u and i, are drawn with the same tail, they determine an 

angle 8 (Fig. I). If  the vectors are parallel with the same direction, the angle 
is 0° ; if the vectors are parallel with opposite directions, the angle is 180°. 
Otherwise, the angle is taken to be between 0° and 180°. We want to find the 
angle 8 in terms of the components of u and v. In Fig. l, the vector u - v 
completes a triangle with sides l lul l , l lvl l and l lu - vii- By the law of cosines 
(Section 1 .3 ) ,  

( l)  l lu - vl l2 = l lul l2 + l liil l2 - 2llull l liil l cos o .  
I f  u = (u 1 , u2 , u3) and ii = (v i , v2 , v3) then ( I )  becomes 

(u 1 - v 1 )2 + (u2 - v2)2 + (u, - v,)2 = u� + ul + u} + v� + vi + v} 

- 2llul l l liil l cos o . 
This simplifies to u 1 v 1 + u2v2 + U3V3 = l lul l l liill cos 8, so 

We single out the numerator of the cosine formula for special attention. 
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The dot product If  u = (u. , · · · , u,.) and v = (vi , · · · ,  v.) then the dot product 
or inner product of u and v is defined by 

(2) 

For example, if u = 2i  + 3j - 4k and v = 5 i  - 3j + 21 then u · v = 
(2) (5) + (3) (-3) + (-4) (2) = 10 - 9 - 8 = - 7. 

With this definition, if 6 is the angle determined by the nonzero vectors 
u and v drawn with the same tail, then 

(3) 
u · v 

cos 6 = � 

or, equivalently, 

(4) u · v = llull llvll cos 6 .  

• • • • • • 7 1 - 39 h' h . If u = 2 i  + 5k and v = - 2 i  + 2j - R. then cos 6 = y'2°g v'57 ' w 1c 1s 

approximately - . 959. Since the angle is always taken to be between 0° and 
180°, an approximation for 6 is cos- 1 (- .959), or about 164°. 

The sign of cos 6 determines whether 6 is acute or obtuse. This sign in 
turn is determined by the sign of u · v since the denominator in (3) is always 
positive. In particular, 

( 5)  if u · v i s  positive then 0° :s 6 < 90° 

if u • v = 0 then 6 = 90° 

if u · v is negative then 90° < 6 :s 180° . 

As a corollary of (5), for nonzero vectors u and v, 
u · v = 0 if and only if u and v are perpendicular . 

More generally, u · v = 0 ifand only ifu = 0 or v = 0 oru and ti are nonzero 
perpendicular vectors. 

Example 1 Let A = ( 1 ,  2, 3) ,  B = (3, 5, - 1), C = (5, - 1 , 0), D = ( 1 1 ,  - 1 , 3). 
Are the lines AB and CD perpendicular? 

Solution: We have AB = (2, 3, -4) and CD = (6, 0, 3). Then AB · CD = 
12 + 0 - 12 = 0, so the vectors are perpendicular. Therefore the lines are 
considered perpendicular although we cannot tell from the dot product 
alone whether they are perpendicular and intersecting (such as a telephone 
pole and the taut telephone wire) or perpendicular and skew (such as a 
telephone pole and a railroad track). 

Warning Note that for AB · CD is not ( 12 ,  0, - 12) ;  it is 12 plus O plus - 12 .  
The dot product i s  a scalar. 

Free vectors versus fixed points and lines Supp9se A = ( 1 ,  2) and 
B = (5, 0). Then the points A and B are fixed in the plane, line AB is fixed 
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in the plane, but the vector AB = (4, - 2) is said to be free in the sense that 
an arrow with components 4 and -2 can be drawn starting at any point in 
the plane. 

Similarly, two vectors u and ii can be drawn with a common tail to 
display the angle they determine (Fig. 1), but the same vectors can also be 
drawn apart. It makes sense to ask if two vectors are parallel or nonparallel, 
perpendicular or nonperpendicular, but it makes no sense to refer to vec­
tors as skew or as intersecting. 

Properties of the dot product Several dot product rules are similar to 
familiar algebraic identities for the multiplication of numbers : 

(6) 11 · ii = ii • u 

(7 > u . (ii + w> = 11 . ii + u . w, 
(u + ii) • (p + q) = 11 . p + ii • p + u • 9 + ii • 9 

(8) 11 • o = o · 11 = o . 
We omit the proofs, which are straifhtforward. 

If 11 = ( u 1 , • • • , u.) then u · u = u 1 + · · · + u!. But this sum of squares is 
also 1111112, so 

(9) 1 11 • 11 = 1111112 
• 1 

Still another property is 

( 10) (cu) • v = u · (cv) = c(u • ii) 

which states that a scalar multiplying one factor in a dot product may be 
switched to the other factor or taken to multiply the dot product itself. For 
the proof of (IO) , let u = (u i , · · • ,  u.) and ii = (vi , · · · ,  v.) . Then 

c(11 ' ii) = C(U1 V1 + · · · + U.V.) = CU1V 1  + • • • + cu.v. 
(cu) ' ii = (cu1) V1 + • • • + (cu.)v. = CUt V1 + • • • + CU• Vn 

11 · (cii) = u1 (cv1 ) + · · · + u.(cv.) = cu1 v1 + · · · + cu.v • •  
Therefore, ( IO) holds. Note that three kinds of multiplication appear in 
(10),  dot multiplication, scalar multiplication (in the products cu and cti) and 
multiplication of two numbers (in the product c(u • v) since both c and u · v 
are scalars) .  

Example 2 By (9), (7) and (6), 

1111 + iill2 = (u + v) • (u + v) = u · u + 211 • ii + v • v 
= l lul l2 + 211 • v + llvll2 • 

Example ll Show that u is perpendicular to ii - fi�II� u . 
(Note that fi�1 1! is the quotient of two scalars, so it too is a scalar, 

multiplying the vector u.) 
Solution: For the vectors to be perpendicular, their dot product must 

be 0. We have 



I 
1-/ 

F l6 . 7... 

� 

FJ6 . 3 

9.3 The Dot Product · 273 
u · ( v - ��,; u) = u · v - u · (��,; u) (by (7 ) )  

• •  v · u < • •  > = u . v - llull2 u . u ( 
v · u) by ( 10 ) with c taken to be llull2 

= u · v - v · u  
= 0 (by (6 ) ) .  

(cancel the scalars l lull2 and u · u, by (9 ) )  
Warning Don't write meaningless combinations. For example, (u • v )  + w is the sum of a scalar and a vector, which is impossible. Similarly, expressions such as u2, uv and u/v make no sense. 
The (scalar) component of ii in a direction We'll begin with an example to introduce a new and important application of the dot product. Suppose a boxer is vulnerable to the knockout force KO = ( 1 ,  2 ,  3). If a fist has the direction of the vector KO as it lands on his chin, and has vii units of force behind it, he will be knocked out. More units of force will also knock him out, but not less. Suppose he is hit by the blow u = (1, 4, 2 ). There is suf­ficient strength, namely !lull = Y21, in the blow but it isn't in the KO direc­tion. The problem is to decide whether he is knocked out. Think of u as the sum of two vectors, a, parallel to KO, and £, perpendicular to KO (Fig. 2 ). Physical experiments show that applying the force u is equivalent to simul­taneously applying a and &. Furthermore, the vector £ is harmlessly tangent to his chin and can be ignored. In other words, the blow that has effectively been struck is a, and the �ssibility of a knockout depends on whether the magnitude ofci is at least VM. This is a geometry problem. We want to find the length of the projection of u onto the KO direction. (Figure 2 is drawn with llcill > v'f.i, that is, with a longer than KO. The problem is to decide if this is indeed the case.) In the right triangle in Fig. 3, the length of the projection is labeled p. Then cos 8 = i£TI so 

( 1 1 )  

p = Hul l  cos 8 = l lul l l l�lll�I (by (3 ) )  
u · KO 15 15 . r.-7 = 7jKojj" (cancel ) = v'i4 = 14 v 14 . 

Since p > v'i4 (barely ), the force ii does knock him out. Let's extract some general results from the example. By ( 1 1 ), if the angle 8 between ii and v is acute (as in Fig. 3) then the length p of the projection of u onto the v direction is given by p = �l�lf . In the case where 
8 is obtuse (Fig. 4 )  then, instead of ( 1 1 ), 
p = lliil l cos(.,,. - 8 ) = - lliil l  cos 8 [since cos('11' - 8 ) = -cos 8] = - �l�lf (This is positive, as expected, since ii ·  v is negative in this case.) We sum­marize as follows. 
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( 12) 

The scalar �l�t is called the component of u in the direction 

of ii. If u and ii are drawn with a common tail then this component may be thought of as the "signed projection" of 
u onto a line through ii. It is positive if the angle between u and ii is acute, negative if the angle is obtuse, and in either case, its absolute value is the length of the projection. 

Example 4 Let u = i - 3] and ii = -5i  + 2]. Find the component of u in the direction of ii and show its geometric significance in a sketch. 
S l · W h u . ii - l l  Th . . . d' h • o ution: e ave l liill = v'29 . e negative sign m 1cates t at u 

makes an obtuse angle with ii, and the absolute value, � , is the length of the projection in Fig. 5 . 
Example 5 Figure 6 shows a rectangular box with edges 10, 7 and 2. Find the length of the projection of segment GF on the line CA . (One way to visualize the projection is to imagine the foot of the perpendicular from F to line AC, and the foot of the perpendicular from G to AC,  which happens to be C ;  the p_!2jection is the distance between the two feet. _!E Fig. 6 the projection of GF may also be visualized as the projection of CB. ) 

Solution: If ray DA is taken as the positive x-axis, ray DC as the positive y-axis and ray DH as the positive z-axis then GF = (2 ,  0, 0 ), CA = ( 2, - 10, 0 )  and 
Gft · CA 4 
l lciill = v'i04 · Therefore the length of the projection is 4/Vl04. 

The vector component of ii in a direction We have already identified �l�t as the (scalar) component of u in the direction of ii. We now examine the 
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vector obtained by projecting ii onto ii (Figs. 7 and 8) ;  it is called the vector 
component or projection of u in the direction of ii. The vector component in Fig. 7 has the same direction as ii and its length is the scalar component �l�I� . Therefore, by ( 17 )  in Section 9 .2 ,  the 
vector component is 
( 13) 
Let's see if ( 13) applies to Fig. 8 as well, where the angle between ii and ii is obtuse. In this case, the scalar component �l�I� is negative. When it multi-
plies ll�II in ( 13) ,  it has the effect of reversing direction as desired for Fig. 8 where the vector component has a direction opposite to ii. Thus (13) is the vector component in both Figs. 7 and 8. Simplifying ( 13) produces the following conclusion. 

(14) 

The vector component of ii in the direction of ii may be . ii · ii . . 1 1 ii · ii . l h d written as l lvl l2 v or, eqmva ent y, as ii • v v. n ot er wor s, the vector component is a multiple of v, and the multiple is ii · ii the scalar -:;--;- .  v · v 

For example, if ii = 1 - 3 J and ii = -5 1  + 2 J then the vector compo­nent of u in the direction of v is u · ii • - 1 1 .. .. 55 .. 2 2  .. - v  = - ( - 5 i  + 2J ) = - l - - J v · ii 29 29 29 

Problems for Section 9.3 

\/EC,iOR. C.OMfOl'Jt"Nf 
r,� � :n. -r 
-=£q }. - 7-q J 

Fl (, .  9 

(Fig. 9) . 

1. Decide if the angle between u = i + 2] - 3k and ii = 5i + 6] + 5k is acute, 
right or obtuse. 

2, Find u • v if Hull = 5,  l lvl l = 6 and u and ii have opposite directions. 
S. Find angle A in the triangle with venices A = ( 1 , 4 , -3), B = (2, 1 , 6) and 

C = (4, 3, 2). 
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4. Let ti = (u . ,  u2 , U3) and let 111 , fJ.J, 11, be the angles between u and the positive 
x-axis, y-axis and z-axis, respectively. 

(a) Find cos 8. , cos fJ.J, cos /13 (called the direction cosines of ti )  
(b) Show that (cos 11. , cos /1.i , cos 11,) i s  the unit vector in  the direction of  ti . 
5. Let A = (2, 3) ,  B = (5, 8) ,  C = ( - 1 , 4) , D = (4 , I ) . Show that lines AB and 

CD are perpendicular using (a) slopes (b) dot products. 
6. Suppose that you walk from point A = (2, 4) to point B = (8, 9) and then 

make a left turn and walk 7 feet to point C. Use vectors to find the coordinates of 
C. 

7. Find the acute angle determined by two lines with slopes - 7 /2 and 4 . 
8. Show that (u · u)ii - (ii · u)u is perpendicular to ti. 
9. If !lul l = 3,  l liil l = 2 and u · ii = 5 ,  find l l -6ul l , u · 3u and l lu - iil l . 

1 0. Let ii = (5 ,  2, 3, -4) and ii = ( -4 ,  3, - 1 , 4 ) .  Compute whichever of the fol­
lowing are meaningful 

(al lu · iii 

(b) l l ii . iill 
(cl lliil lu 

2 (d) -:-u 

2 (el 
!lu ll 

(f) ( ii . ii)ii 
(gl (u • ii) •  ii 

1 1 . Give ( i )  a geometric argument and then (ii) an algebraic argument for the 
following. 

(a) If ii · ii = 0 then l lu + iii ! = llii - iii! . 
(b) I f  ! lull = lliill then ii + ii is perpendicular to ii - ii. 

12. I f ii  = 4i + 2] + 3k and ii = -i - 3] + k find (a) the component ofu in the 
direction of ii and (b) the component of ii in the direction of ii. 

1 3. In Fig. 6, find the length of the projection of segment FH on the line AG .  
14 .  Suppose the component of  ii in the direction of  ii i s  6 .  
(a) Find the component of  u in the direction of  4ii. 
(b) Find the component of ii in the direction of -ii. 
(c) Find the component of 4u in the direction of ii. 

15.  I f ll ii l l  = 6, l liill = 4 and the angle between ii and ii is 120°, find the com ponent 
of u in the d irection of ii. 

1 6. The I OO meter dash is run on a track in the direction of the vector 
t = i + 2]. The wind velocity w is 2i + 2]; that is, the wind is blowing from the 
southwest with windspeed Y8. The rules say that a legal wind speed , measured in 
the direction of the dash, must not exceed 2.  I f  the dash results in a world record , 
will it be disqualified because of an il legal wind? 

1 7. A spike being hammered into a mountain is represented by the vector 
(2, 3 ,  -4) .  One more blow with magnitude at least 10 (in the direction of the spike) 
will finish the job. I s  the force (9, 8 ,  - 1 ) enough? 

1 8. Find the direction in which the component of ti is maximum, and find that 
maximum value. 

1 9. If ii =  2i + 3] and q = 5i - 2], find the vector component of ii in the 
direction of q. 

20. In  Fig. 10. which of p and ij has the larger component in the direction of u? 

9.4 The Cross Product 

We will begin with a result from physics that introduces the cross 
product, a new vector multiplication. Consider a unit positive electric 
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charge in a magnetic field, which we simplistically view as a charged marble 
near a bar magnet lying on a table. If the charge is stationary then it is not 
affected by the magnet, but suppose the charge rolls along the table. 
Figure 1 shows the velocity ii of the charge; the magnet is represented by 
a vector in directed from the south pole to the north pole; the length of m 
indicates the strength of the magnet. Experiments show that the moving 
charge feels a force / which points like the thumb of your right hand when 
your fingers curl from ii toward m. Furthermore, the strength of the force 
depends on the speed of the charge, the strength of the magnet, and the 
angle 8 between ii and in. In particular, II /II = lliill llmll sin 8. The force / is 
denoted by ii x m and suggests the following definition. 

FI G .  I 
The cross product Given 3-dimensional vectors ii and ii, the cross product 
ii x ii is a vector characterized geometrically by two properties. 

( 1 )  (direction ofu x ii) The cross product ii x ii is perpen­
dicular to both ii and ii. In particular (Fig. 2) it points in the 
direction of your thumb if the fingers of your right-hand curl 
from ii to ii (right-hand rule) . Equivalently, the cross products 
points in the direction in which a screw advances if it is turned 
from ii to ii. 

(2) (length of ii x ii) If 8 is the angle between ii and ii then 
l lii x iill = l liill l liil l  sin 8. 

t l)IRElTION O F  ifx "J Fl 0 . J... 
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The formula in ( 2 )  has a nice corollary. From trigonometry, the area of a triangle is half the product of any two sides with the sine of the included angle (Section 1 .3, Eq. ( 19)), so the area of the triangle determined by u and ii in Fig. 3 is !!lull l liil l  sin 8. Therefore !lu ll l lvl l  sin 8 is twice the area of the triangle. Thus 
(3) l lti x vii is the area of the parallelogram determined by ti and ii (Fig. 3) . 

The result in (3) shows that for nonzero ti and ii, llti x vii = 0 (equiva­lently ti x ii = 0) if and only if the parallelogram degenerates to zero area. Therefore, for nonzero u and ii, 
I ti X v = 0 if and only if u and v are parallel . 

As a special case, 
the cross product of a vector with itself is O . 

More generally, ti x ii = 0 if and only if u = 0 or v = 0 or ti and ii are nonzero parallel vectors. 
Warning If you intend to write u x ii = 0, make sure you write 0, not 0. I f  you write llti x vi i = lltill l lvll sin 8 = parallelogram area, don't omit the norm signs around the vectors. Otherwise you will be writing meaning­less equations. 
Properties of the cross product By (3), u x ii and v x u must have the same length, namely the area of the parallelogram determined by u and v. But by the right-hand rule they have opposite directions. Therefore 
(4 ) 

(5 ) 

(6) 

I ii x ii = -(ii x u) - I 
By ( 2 ), or (3), l lti x Oil and l!O x til l are both 0. Therefore, u x o = o x ti = o .  We state another property without proof: ii x (ii + w) = ii x v + ti x w (ti + ii) X w = ii X w + v X w (ii + v) X (p + q) = ii X p + u X q + v X p + t X q . This property is the familiar distributive law, but note that on the right side of the vector identities in (6) ,  the vectors in the cross product must appear in the same order as they did on the left side. It is not correct to expand ti X (v + w) to v X ti + w X u. To discover another law, note that u x v and ti x 2v have the same direction by the right-hand rule; but u x 2ii is twice as long because the parallelogram determined by ti and 2v has twice the area of the paral­lelogram determined by ii and ii. Therefore ti x 2v  = 2(ti x v). In general, 
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(7 )  U X (cii) = (cu) X ii = c(u X ii) . 

As an example, consider (u + ii) x (u - ii). By (6) and (7) ,  its expan­
sion is u x ii - ii x ii + ii x ii - ii x ii. The cross product of a vector with 
itself is 0, so ii x ii and ii x ii are 0. Then, by (4) , the remaining terms 
combine rather than cancel, so (ii + ii) x (ii - ii) is 2(ii x u) or, equiva­
lently, - 2(ii X ii).  

The components of the cross product We would like to derive a formula 
for the components of ii x ii in terms of the components of ii and ii. But first 
we must deal with an unusual situation involving the type of rectangular 
coordinate system used. Consider l x J in the right-handed systell! in Fjg. 4 
and in the left-handed system in Fig . 5 .  I n  each case,  11 i X j II = 
li lll llJII sin 90° = 1, but by the right-hand rule, i x J points up in Fig. 4 and 
down in Fig. 5 .  So ( 1 ,  0, 0) x (0 ,  1 ,  0) is either (0,  0, 1) or (0 ,  0, - 1) depending 
on whether the vectors are plotted in a right-handed or left-handed system. 
This illustrates that the components of u x ii depend on the type of coordi­
nate system. By convention, only right-handed systems are used, and in this 
case we will derive a unique formula for the components of u x ii. 

2- AXl5 

➔ -
;. X j 

F I G. Lt  
Let ii = U 1 i + u2] + u3k and ii = v 1 i + vd + v3 k. By (6) and (7) ,  

ii X ii = (u 1 i + ud + U3 k) X (v 1 i + v2] + V3 k) 

(8) = u 1 v 1 (l X i) + u2v2(] x ]) + u3v3(k x k) 
+ U1 V2(i  X ]) + U2V1 (] X i) 
+ U 1 V3( i  X k) + U3V1 (k X i) 
+ U2V3(] X k) + U3Vik X ]) . 

The cross product of a vector with itself is 0, so "i x i = J x J = k x 
k = 0. We have already seen that in a right-handed system, i x J = k. 
Similarly,] x i =  -k, k x i = J, 1 x k = -J,J x k = i, k x J = - i. There­
fore (8) simplifies to 

(9) ii X ii = (u2v3 - u3v2)i + (u3v1 - u 1 v3)j + (u 1 v2 - ½V 1 )k . 

The formula in (9) looks formidable to memorize, but we will give some 
simple routines for finding cross products easily. It is convenient to use the 
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determinant notation 

/ ; ! I = ad - be 

to write (9) as 

( 10) 

To apply ( 10), line up the components of u and ii so that the components of 
the first factor u appear in the first row as follows: 

( 1 1 )  

Ignoring the first column in ( 1 1 )  leaves the configuration 
' U2 U5 

' V2 V5 

whose determinant is the first component of u x ii. Ignoring the second 
column of ( 1 1 )  leaves 

whose negated determinant produces the second component of ii X ii. 
Finally, disregarding the third column in ( I I) leaves 

whose determinant is the third component of ii X ii. The procedure just 
described can also be carried out by writing 

( 1 2) 
.,. .,. 
I J k 

U X ii = U 1 U2 U5 

Vi V2 V5 

and expanding the determinant across the first row. This immediately 
produces ( 10). (Appendix A5 contains a review of determinants.) 

For example, if u = 2 ;  + J - 4k and ii =  3 i - 2] + 5k then 

u X ii = II - � -: 1 1 - 1 : -I -: 1 1 + I ! -� -11 k 
Alternatively, 

ii X ii =  

= -3 ;  - 22] - 7k . 
I ) 2 I 3 -2  -4 

5 
= - 3 i  - 22] - 7k . 
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Warning When the second column i n  ( 1 1 )  i s  ignored to compute the 
second component of the cross product, a minus sign must also be inserted 

to obtain - 1u• u, I · Vi Vs 

Example 1 Find a vector perpendicular to the plane determined by the 
points A = ( l ,  2, 3) ,  B = (4, 5, 6), C = ( - 2,  0, 3) .  

Solution: By (1 ) ,  the vector AB x AC is perpendicular to both AB 
and AC, and hence is perpendicular to the plane (Fig. 6). Therefore an 
answer is 

AB X AC = (3 , 3 , 3) x (- 3 , - 2 , 0) = (6 , - 9 , 3) = 6i - 9] + 3k . 

Another answer, with simpler com�nents, is !(6i - 9] + 3k) or 21 -
3j + k. (In fact we could have used !AB in the original cross product instead 
of AB.)  Still another answer is -21  + 3] - k. There are many vectors per­
pendicular to the plane but, by geometry, all are multiples of one another. 

The cross product of 2-dimensional vectors The vector operations in 
earlier sections originated from geometric considerations, and were ex­
tended algebraically to n-dimensional vectors in general . For example, ! lul l  
was inspired by the length of an arrow, and the 2-dimensional formula 
V uf + ul generalized easily to V ut + · · · + u!, independent of geometry. 
Similarly, u + ii, cu and u · ii are defined for n-dimensional vectors and used 
extensively in mathematics and applications (such as the theory of systems 
of equations with n variables) .  The cross product was defined geometrically 
in ( l )  and (2) for three-dimensional vectors, and this is the first operation we 
do not find profitable to extend to n-space. It  remains a tool in 3-space only. 
However, for the purpose of taking a cross product, a two-dimensional 
vector such as (2, 3), lying in the x,y plane, can be regarded as the three­
dimensional vector (2 ,  3, 0) lying in (or parallel to) the x,y plane in 3-space . 

Example 2 Find the area of the triangle determined by the points 
A = (2, 3), B = (4, 6) ,  C = ( - 1 , 2). 
_ Solution: The triangle is determined by the vectors AB = (2, 3) and 
AC = ( - 3,  - 1) .  Then 

AB x AC = (2 , 3 , 0) x ( - 3 , - 1 , 0) = (0 , 0, 7) , 

and l!AB x ACII = 7. Thus, the area of the triangle, half a parallelogram, 
is J .  

Problems for Section 9.4 

1 . The vectors in Fig. 7 lie in the plane of the page. The vector p, not show'!, 
points perpendicularly into the page. Find the directions of u x ii, p x q and s x t .  

flG .  7 
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2. What can you conclude about u and ii if u x ii = 6 and ii · ii = 0? 
3. If U = 3 i + 987 J + 38k,  find U X U normalizcd • 

4. I f  ii · b * 0, show that the equation ii x x = b has no solution for x. 
5. An expression of the form u · ii x w must mean u · {ii x w) rather than 

(u • ii)  X W. 

(a) Explain why. (b) Find u · ii x u. (c) Find u · ii x ii. 

6. Find (u + ii) x (u + ii). 
7. If  the vectors u and ii lie on the floor in Room 321 and the vectors p and ij 

lie on the floor in Room 432, find (ii x ii) x (p x ij) . 
8. Simplify 3ii x (4u + 5ii) .  
9. If  al l vectors are drawn with a common tai l ,  show that u x (ii x w) l ies in the 

plane determined by ii and w. 
10. Find u x ii if 

(a)  u = (6, - 1 , 2) , ii  = (3 , 4 , 3)  (c)  u = (6, 1 ) , ii  = (3 , 4) 
(b) u = -2 i  - 3] + 5k, ii =  i + J + 4k (d) u = 5 i  - J - 2k, ii =  i + 2] 

l l . Find w x ii  and ii x w if ii = ( - 1 , -2 , -3 )  and w = (3 , 3 , - 2) .  
12 .  Let u = 3 i  + 2] - k and ii =  -i + 5] + 2k. I f  fJ is the angle determined 

by u and ii, find cos fJ and sin fJ independently and then check to see that 
cos2fJ + sin2fJ = I. 

13. Let u = 2i  - J + 3k and ii =  5i + 3] - 6k. 
(a) Find four nonparallel vectors perpendicular to u. 
(b) Find a vector perpendicular to both ii and ii. 

14. Find the area of the triangle determined by the points A = (0 ,  2 , - 1 ) ,  
B = (4 , -4 , 2) , C = ( - 1 , -4 , 6) . 

9.5 The Scalar Triple Product 

We have already seen that the area of the parallelogram determined by 
ii and ii is l lii x vii- Let's go one dimension further and find the volume of 
the parallelepiped determined by ii, v and w (Fig . 1 ) . The base indicated in 
Fig. I is a parallelogram whose area is l lii x wll - The height is the length of 
the projection of ii onto a line perpendicular to the base. The vector ii x w 
has this perpendicular direction, so by ( 12 )  of Section 9.3 ,  the height is the 
absolute value of the component of ii in the direction of ii x w, that is, the 

height is I ii ,j}: :�) , _ Note that both the numerator and denominator are 

F I G . I 
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numbers, and since the denominator is positive we may write the height as 
lu • (ii x w>I 

l lii X wl l 
. Then 

( ) (  · > 11 · · 11 1u · (ii x w>I 1 · c· · > 1 ( 1 )  volume = base height = v x w 
llii x wll 

= u · v x w . 

If u, ii, ii, are 3-dimensional vectors then 

u • (ii X ii,) 

is called a scalar triple product. Without ambiguity we may omit the paren­
theses and write the scalar triple product as u · ii x w. (It  cannot be misin­
terpreted as (u • ii) x ii, since the latter expression is the proposed cross 
product of a scalar and a vector, which is meaningless.) As its name implies, 
u · ii x ii, is a scalar. For example,  if u = ( 1 ,  2, 1 ) ,  ii = (2 ,  4 ,  6)  and 
w = ( 1 , 3, - 1) then u · ii x w = ( 1 , 2 ,  1 )  · ( - 22 , 8 , 2) = -4. 

If u = (u i , u2 , u5) , ii = (v i , v2 , v5) and ii, = (w i , �. w5) , the configuration 

U 1 U2 U3 

(2) V1 V2 V3 

W1 W2 W5 

will help keep track of the arithmetic involved in computing u · ii x w. We 
use the last two rows of (2) to find 

and then dot with the first row to get 

(3) 

But (3) may also be viewed as the expansion (along the first row) of the 
determinant of (2) .  Therefore, 

(3) 
U1 � Us 

U • V X W = V i l '2 Vs 

W1 W2 W3 

The determinant formula is a compact expression for the scalar triple 
product. 

By ( 1 ) ,  the absolute value of the scalar triple product is a volume; in 
particular, 

(4) 
lu · ii x wl is the volume of the parallelepif>ed determined 
by u, ii and w . 

For example, if p = 2 i  - 3] + 5k, q = -6i + J - k and r = 2 i  + k then 

2 - 3  5 
p • q  X r � - 6  

2 
1 - 1  = - 20 , 
0 1 

so the volume of the parallelepiped determined by p, q and r is 20. 
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The result in (4) shows that for nonzero u, ii, w, i u  · ii x wl = 0 (equiva­
lently u · ii x w = 0) if and only if the parallelepiped degenerates to zero 
volume. Therefore, for nonzero u, ii, w, 

ii · ii X w = 0 if and only if ii, ii, w are coplanar when drawn with a common tail . 
More generally, u · ii x w = 0 if and only if ii = 0 or ii = 0 or w = 0 or ii, ii, w 
are nonzero coplanar vectors. 

To conclude this section we investigate the effect of a switch in 
the order of the factors in a scalar triple product. There are six possible 
arrangements : 

(5) 

u . ii X W,  

ii • ii  X W,  

W • u X ii, 

W • ii X u, 

ii • w x u  

ii • w x ii . 

All six have the same absolute value, namely, the volume of the paral­
lelepiped determined by u, ii and w. We will prove that the three in the first row are equal, the three in the second row are equal, and the value from the first row is the negative of the value from the second row. Before offering the proof we will 
give a device for remembering which rearrangements have the same value 
and which have opposite values. Picture the letters u, ii, w as beads on a 
bracelet. If a new order is produced by sliding the beads on the bracelet, the 
new arrangement is called a cyclic permutation of the original. Figure 2 shows 
that w · u x ii is a cyclic permutation of u · ii x w since it can be obtained by 
sliding w around to the front. If a new arrangement is obtained by a cyclic permutation of the letters, the value of the scalar triple product is unchanged. Otherwise the value is negated. For example, if u · p x ii = - 7  then p · ii x u 
is also - 7 since it can be obtained by cyclic permutation, while ii ·  p x u is 
7 since it cannot be obtained from the original by cyclic permutation. 

One proof of the rearrangement principle uses the fact that if two rows 
of a determinant are interchanged, then the sign of the determinant 
changes (Appendix A5). Compare the determinants for u · ii x w and its 
cyclic permutation w • u x ii: 

U1 U2 U3 

U • ii X W = V1 V2 V3 , 

W 1 W2 W3 

W1 W2 W3 

W • U X ii = U 1 U2 U3 

Vi V2 V3 

I f  rows 1 and 3 are interchanged in the first determinant, and then rows 2 
and 3 interchanged, the result is the second determinant. Each interchange 
of rows changes the sign, so two interchanges restore the original value. 
Therefore the cyclic permutation has the same value as the original. On the 
other hand, only one interchange of rows is required to go from the deter­
minant for u · ii x w to the determinant of any noncyclic permutation. Thus 
permuting noncyclically negates the scalar triple product. 

Problems for Section 9.5 

1. Find ii · ii x w if u = ( l ,  2, 3) , ii = (- 1 , I ,  I ) ,  w = (0, 3 ,  4). 
2. Find the volume of the parallelepiped determined by u = I + k ,  ii = 

2; + 3k, w = 3i - 5ii. 
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3. Are the points A =  ( 1 , 1 , 2) , B = (2 , 3 , 5) ,  C = (2 , 0 , 4) ,  D = (2 , -3 , - 1 ) 
coplanar? 

4. Figure 3 shows u, ii, w. Is ti • ii x w positive, negative or zero? 
5. Suppose u lies on the floor in Room 223, ii lies on the floor in Room 224 and 

w lies on a desk top in Room 347. Find ti ·  ii x w. 
6. If q · p x r = -5 find 

(a) p · :; x q (d) 3q · 4p x 5r 
(b) r • p X q (e) q · p X q 
(c) q • r x p (f) q • ;: x ;: 

9.6 The Velocity Vector 

(Appendix A6 is a prerequisite for this section.) 
In Section 3 .5 we found the velocity and acceleration of a particle 

moving on a number line. In this section and the next we extend the topic 
to motion in a plane and space. For convenience we measure distance in 
meters and time in seconds throughout. 

Equations of motion; the position vector An equation such as x = t 2 + 2t  
describes the position x, at time t, of a particular particle on a number line. 
Similarly, a pair of equations such as x = t 2 + 2t, y = 3t  - t l describes the 
position (x, y) ,  at time t, of a particular particle moving in a plane. More 
generally, position in 2-space at time t is described by a pair of parametric 
equations of the form x = x(t), y = y(t) , and position in 3-space at time I is 
given by x = x(t) , y = y(t) , z = z(t) .  

For example, consider 

( 1 )  X = t, y = , 2 - 3 . 

The table in (2) lists some values of t with corresponding points. (Remem­
ber that a negative time such as t = -3 simply means 3 seconds before the 
fixed time designated as t = 0.) 

time t position (x,y) 

- 3  (-3 , 6) 
- 2  (-2 , 1 )  
- 1  (- 1 , -2)  

(2) 0 (0, -3 )  
l ( 1 ,  - 2) 
2 (2, l )  
3 (3 ,  6) 

If the points are plotted, and connected in a reasonable fashion, we have the 
path in Fig. l . Each point is labeled with its associated value of t ;  the timing 
indicates that the particle travels from left to right along the path. Soon we 
will use calculus to identify its speed and acceleration at any instant. 

In  addition to plotting points to produce the anonymous path in 
Fig. 1 , we can find a direct connection between x and y, a process called eliminating the parameter. Since x = t, we can substitute x for t in the second 
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equation in (1 )  to obtain y = x2 - 3. Therefore the curve in Fig. l is the 
parabola y = x2 - 3. 

The vector drawn from the origin to the curve is called the p_osition vector r(t). For the path x = x(t ), y = y(t ), we have r(t) = x(t )i + y(t )]. The 
position vector for the path in (1 )  is r(t) = t i  + (t 2 - 3)] ; if t = 3 then 
r = 3i + 6] and the particle is at the p�int (3, 6) (Fig. 1 ). 

As another example, let r (t) = t 2 i + ( t 4 - 3)j, that is, let x = t 2, 

y = t 4 - 3. We can eliminate the parameter to obtain y = x2 - 3 ,  so again 
the particle travels on the parabola y = x 2 

- 3. However, if we plot a few 
points we see that it does not travel along the entire parabola (Fig. 2). It  
moves from right to left during negative time until it reaches the point 
(0, -3) and then turns around and goes back the way it came. (Even before 
we plot individual points we can tell that the particle can't travel on the 
entire parabola since the first coordinate, t 2, is never negative.) 

This latter example illustrates that if the parameter is eliminated from the equations x = x(t), y = y(t) to obtain a single equation in x and y, then the particle must travel along the graph of the single equation, but does not necessarily traverse the entire graph. It is necessary to plot a few points to capture the timing, 
direction and extent of the motion. Similarly, suppose the parameter is elimi­nated from the equations x = x(t), y = y(t ), z = z(t) to obtain a single equation in x, y and z. The graph of the single equation is a surface in 3-space (Chapter 10 will 
discuss this further), and the path of the particle is a curve lying on the suiface. 
There is no single method for eliminating the parameter. One possibility is 
to try to solve one equation for t and substitute in the other. On the other 
hand, in some instances it may not be desirable or practical to eliminate 
the parameter. 

Circular motion at constant speed Let 

(3 ) X = 6 COS t ,  y = 6 sin t ,  

or, equivalently, r(t) = (6 cos t, 6 sin t). A method for eliminating the pa­
rameter is not obvious here. But we can take advantage of the identity 



9.6 The Velocity Vector · 287 

cos2t + sin2t = 1 to get (4 )  x2 + y 2 = 36 cos2t + 36 sin2t = 36(cos2t + sin2t) = 36 . Therefore the path lies along the circle x2 + y 2 = 36, with center at the origin and radius 6. Another (better ) way to identify the path is to compare (3) with the equations x = r cos (J, y = r sin (J which relate polar coordi­nates r, (J with rectangular coordinates x,y (Appendix A6 ). The comparison shows that any point (x,y ) satisfying (3) has polar coordinate r = 6 and consequently lies on a circle centered at the origin with radius 6. Further­more, the parameter t representing time is the polar coordinate angle 8. At time t = 0 the particle is on the circle with (J = O; at time t = 1T /2 the particle has moved to the point on the circle with (J = 1T /2 (Fig . 3). In general, the equations x = r0 cos t, y = r0 sin t describe counterclockwise motion 
around the origin with radius r0 , making one revolution every 21r seconds. 

-r 
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t=- 0 t:. A. 1t 

Similarly, the path x = 2 cos 3t, y = 2 sin 3t is circular motion with radius 2 but this time the angle (J is 3t, not t. The particle still moves counterclockwise but makes one revolution in 2 1r  /3 seconds or, equiva­lently, makes three revolutions in 21T seconds. 
Velocity and speed Suppose the equations of motion are x = x(t), y = y(t) or, equivalently, the position vector is r(t) = x(t) i + y(t)]. Then x(t) may be regarded as the horizontal position of the particle at time t, so x'(t) is its horizontal velocity; similarly y ' (t) is the vertical velocity. If a particle travels horizontally at x'(t) meters per second and simultaneously travels vertically at y '(t ) meters per second (Fig. 4 )  then it is really traveling in the direction of the vector x' (t) i + y ' (t)] at the rate of (5 )  V[x' (t )]2 + [ y ' (t )]2 meters per second . 
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I f  r ( t ) = x(t )i + y (t )j we define the velocity vector ii by ii(t) = x '( t) z  + y ' (t)] and refer to ii as the derivative, r ', of r. If ii is drawn with its tail on the curve, it points in the instantaneous direction of motion (hence is tangent to the path ). Furthermore , by (5 ), the instantaneous speed of the particle at time t is llii(t )II meters per second. 
We will illustrate the velocity vector and its norm, the speed, by re­turning to the equations of motion in ( l ) and the path in Fig. l. Since x = t, y = t 2 - 3, we have ii(t) = x ' (t) , + y ' (t)] = , + 2 t] .  Equivalently, r(t> = t l + (t 2 - 3)], ii(t> = r ' (t> = ; + 2t] .  Let's examine a few specific instances. A t  time t = 2 we have r = 2 i  + J so the particle is at the point (2, l ). The velocity vector is ii = i + 4], which we draw with its tail at the point (2, l )  (Fig. 5 ). As predicted, ii is tangent to the path, and of the two tangent directions, ii points in the instantaneous direc-

F I G . 5  
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tion of motion. Furthermore, at time 2, the particle's s�ed is llvll = v'i7 meters per second. Similarly, if t = - l then r = - i  - 2 J and ii = z - 2 J. The particle is at the point ( - 1, - 2 ). The vector ii attached to this point on the curve is tangent to the curve and points in the instantaneous direction of motion. At this instant, the speed is llvll = V5. Note that the position vector r is drawn with its tail at the origin, while the velocity vector v is pictured with its tail on the curve, at the head of r. 
Problems for Section 9.6 

1. Skelch lhe palh and indicate the direction of motion. Eliminate the parame-
ter if feasible to identify the path more thoroughly. 

(a) x = 1 2 + 5, y = 1 (d) r = (2 + 1 2) i  + (4 - 21 2)] 
(b) X = 1 2 + 5 ,  y = -t (e) r = e 'i + 2e'] 
(C) X = 2 + I, y = 4 - 21 

2. Sketch the path and indicate the direction of motion (without trying to 
eliminate the parameter). 

(a) x = 4 cos I I , y = 4 sin I' 
b

• cos t ,  sin t ,  
0 ( ) r = -1

- 1  + -
1
- J ,  I .2:: 

(c) r = cos I i  + sin t] + th 
3. Find equations of motion for the circular path. 

(a) radius 3, around the origin, cloc/cwise, one revolution per 211' seconds 
(b) radius 3, around point (2, 7 ) ,  counterclockwise, one revolution per 211' 

seconds 
(c) radius 3, around the origin, counterclockwise, one revolution per second 

4, If r(I) = (2 - l)i + (3 + 1 2)] + 61], does the particle pass through the fol­
lowing points, and if so, at what times? 

(a) (-3 , 28, 4 ) (b) (3, 4 , - 6) 

5. Find the connection between the paths with respective position vectors 
r 1 (1) = t ' i  + 1 2) and r2(I) = (I - 5)3i + (I - 5)2]. 

6. Suppose the position vector is r(I) where llr(t)II = 7 for all I. Describe the path 
if (al the motion is in 2-space (b) the motion is in 3-space. 

7. Find ii(t) if r ::= t ' i  + 21] + cos th. 
8. I f  r = t cos t i  + t sin tj , sketch the path, find ii at time I = 'IT and attach 

v to the appropriate point on the path. 
9. Consider the circular motion with position vector r = 6 cos I i  + 6 sin 1J. 
(a) Find the speed lli•II to see that it agrees with one revolution per 211' seconds. 
(b) Find i• at time I = 11'/2 to see that it agrees with counterclockwise motion. 

1 0. Let x = I, )' = 1 2 - 3.(Fig. l ) . Examine lliill to see that the particle decelerates 
until time I = 0 and then accelerates. 

1 1 . Show that :r = cos t2, !I = sin t2, describes circular motion with decreasing 
speed until time t = 0 and increasing speed after t = 0. 

12.  Let r(t) = (- 1  + 31)1 + ( 1 - 21)] + 4th. 

(a) t:se the \'elocity vector to show that the path is a line. 
(b) Find the speed. 
(c) Change r so that the particle mo\'es on the same line but with speed 2 .  
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13. Describe the path with position vector r if (a) r(I) = 0 for all I (b) r ' (t) = 0 for all I. 14. Suppose ii(t) = 2t i + 5t 2] + 6k and the particle passes through the point ( I , 4, 6) at time I = 3. (a) Find r(t). (b) Find a unit tangent to the path at the point where I = 2. 15. Let x = 3 cos I, y = 2 sin t. (a) Use a variation of the technique in (4) to show that the path is an ellipse. (b) Show that the speed is not constant, and find the maximum and minimum speeds. 
9.7 The Acceleration Vector 

So far we have ignored one important aspect of motion. What is it that 
makes particles move around on curves? Newton postulated in his first law of motion that particles do not voluntarily move on circles or parabolas: A particle initially at rest remains at rest, and a particle initially in motion will continue to move in a line with its direction and speed unchanged, unless acted on f,y an external force. Therefore an external force is required except for straight line motion at constant speed, and another of Newton's laws singles out the precise force for any prescribed path, as follows. 
The acceleration vector Let r(t) = x(t) i + y(t)]. 

The second derivative r"(t) = x"(t) i + y"( t)] is called the acceleration vector and is denoted by ii(t) . Newton's second law postulates that if a particle with mass m has position vector r (t) at time t, then the propelling force J is given f,y J = mii. The acceler­ation vector ii(t) itself is therefore the force per unit of mass. It is pictured as a vector attached to the path; the particle must be pushed in the direction of ii(t) with m ll ii(t )II units of force if it is to traverse the path. 
If the force is suddenly removed at time t0 then, by Newton's first law, the particle will fly off along a line in the direction of the vector ii(t0) with constant speed l lii(to)II instead of continuing on the original path. For example, consider the position vector r(t) = t i  + ( t2 - 3)] from ( 1 )  of the preceding section. Then ii(t) = i + 2 t] and ii(t) = 2]. At time 
t = - 1 ,  r = - 1  - 2], ii =  i - 2], ii =  2] (Fig. l ) . The particle is at the point ( - 1 ,  - 2 ) and moving instantaneously in the direction of the vector i - 2]. It is acted on by the force mii = 2m] where m is the mass of the particle; in other words, it is pushed north by 2m units of force. The direction of the force is such that the particle is pulled back toward the path and away from its natural inclination to leave the path in the direction of ii. Furthermore, the force is at an obtuse angle with ii so it acts as a drag and decelerates the particle (decreases its speed ). At time t = 2 ,  r = 2 1  + J , ii = i + 4],  ii =  2] (Fig. l ) . 
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The particle i s  at  the point (2, 1) and moving instantaneously in the direc­
tion of the vector i + 4]. The force mii = 2m] is acting on the particle, 
pulling it toward the parabola and preventing it from flying off on a tan­
gent. The force accelerates the particle since it pulls at an acute angle with 
ii. (In this particular example, the acceleration vector is the same for all 
times t, but usually a varies with t.) 

The tangential component of the acceleration vector The word accelera­
tion has more than one meaning. The acceleration vector is the force per 
unit mass. However, a driver considers acceleration to be the rate of change of speed. With this second meaning, the acceleration of a particle is a scalar. 
It is positive if the particle is speeding up and negative if it is slowing down. 
In the preceding example we observed that the size of the angle between ii 
and ii determines whether the particle/car accelerates or decelerates. Now 
we wish to go further and compute the car's precise acceleration. 

The acceleration of the particle/car is the rate of change of its speed, 
that is , the derivative of llii(t)II - If the position vector is r = x(t)i + y(t)] 
then ii = x ' (t) 1 + y '(t)] and 

car's acceleration = D,llii(t)II = D,V[x ' (t)]2 + [ y ' (t)]2 

= ! ([x '(t)]2 + [ y '(t)]2t 1 12 D,([x '(t)]2 + [ y '(t)]2) 

(chain rule) 

_ 2x ' (t)x"(t) + 2y '(t)y"(t) 
- 2V[x '(t}]2 + [y ' (t)]2 

After the 2's are cancelled, the denominator is llii(t)II and the numerator is 

the dot product ii • ii. Therefore the particle/car's acceleration is 
�1;1f ,  a 

formula given geometric significance in (12) of Section 9.3: 

The car's acceleration is the component of ii in the direction of -ii. It is called 
the tangential component of acceleration, or the tangential acceleration, and 
often denoted by aian • In other words 

( l ) 
a · ii  

a1.1n = 
l liill 

= rate of change of speed . 

As predicted, if the angle between ii and -ii is acute (so that the force is an 
impetus) then a .. n is positive and the car is accelerating; if the angle is obtuse (so 
that the force is a drag) then a .. 0 is negative and the car is decelerating. Figure 2 
shows a..0 = 4 if t = l, and a"'" = -3 if t = 7. The particle is accelerating 
at time t = 1 by 4 meters per second per second, and decelerating at time 
t = 7 by 3 meters per second per second. 

Warning If a .. 0 = -3 then either write that the particle is decelerating by 
3 meters/second per second (this is the clearest report) or write that it is 
accelerating by -3 meters/second per second, but don't use a double nega­
tive and say that it is decelerating by -3 meters/second per second. 
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Example 1 Suppose the position vector is r(t) = t 2i + (t 4 - 12 t)J. Then 
ii(t) = 2t l + (4t 3 - 12)J and a(t) = 2i + l2 t 2J. At time t = 1 we have 

r = i - I IJ, 

l liill = \/68, 

ii = 2 i  - BJ, 

l l<i l l = Vl48, 

a =  21  + 1 2J, 

a •  V 92 
a,an = 

l liil l 
= - \/68 

. 

The particle is at the point ( 1 ,  - 1 1) ,  moving instantaneously in the direc­
tion of the vector 2i - BJ with speed \/68 meters per second. A force acts 
on the particle in the direction of the vector 2 1  + 1 2J ;  the magnitude of 
the force is mv'f48, where m is the mass of the particle. The particle is 
decelerating at the moment by 92/\/68 meters/second per second. 

Warning It is a.,.0 and not J la lJ which indicates whether the particle is speed­
ing up or slowing down. 

The normal (radial) component of acceleration In 2-space there are two 
directions perpendicular to a velocity vector ii; the inward perpendicular is 
called the normal or radial direction (Fig. 3) . It  is more difficult to describe 
the radial direction in 3-space where there are infinitely many directions 
perpendicular to a velocity vector ii. In fact, the radial direction in 3-space 

RAD I A L Oll<rC-T/ON 
\�RO�IMATIN6 C IRCLE: 

\ \ WITH RAD IU$ r;i. 

I 

�A D IA L DIR£<.noN F l G. 3  
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is usually not defined geometrically, but in an algebraic manner which we 
will not pursue. 

In addition to selecting a radial direction we also assign (but omit the 
details) an instantaneous radius of curvature r at each point by approxi­
mating the curve with a circle through the point. Figure 3 shows r = r 1 at 
A, r = r2 at B. For the extreme case of a line, r = 00.t 

The component of a in the radial direction is called the radial or normal 
component of acceleration, and is often denoted by arad • Figure 4 shows 
arad = 2 and a1a0 = -3. The tangential component may be positive or nega­
tive, but the radial component is never negative ; the angle between i.i and 
the inward normal is never obtuse. 

The radial component is taken as that aspect of a which changes the direction 
of the particle; arad = 0 if and only if the particle moves on a line. (We have already 
shown that the tangential component is that aspect which changes speed; a..0 = 0 
if and only if the particle moves at constant speed. ) It can be shown that, at any 
point, 

(2) 
(speed)2 l liill2 ar..i = = -

r r 

where r is the instantaneous radius of curvature. I f  the radial force (per 
unit mass) supplied by friction between tires and road, and by the bank of 
the road, is not enough to satisfy (2), then the car plunges off the road. At 
a sharp curve, r is small, and the small denominator tends to increase the 
required arac1• Thus drivers are warned to compensate by slowing down to 
decrease the numerator l liill2, so that the available radial force (per unit 
mass) will be sufficient to match (2) . 

Problems for Section 9. 7 

1. Let r = t i  + ( 1 /t)J. Sketch the path. Then draw ii and a at time t = - l .  ls 
the particle accelerating or decelerating at this moment, and by how much? How 
many pounds of force act on the particle at time t "' - 1 ? 

2. Let x = e ', y = e·•. Sketch the path. For t = - 1 , draw ii and a. ls the particle 
speeding up or slowing down at this moment? 

!I, Suppose the position vector is r(t) and the force on the particle is directed 
toward the origin for all t. Show that r = ;• = 0 for all I. 

4. A particle with mass m is launched in 2-space at time t "' 0 from the point 
( l ,  2) with initial velocity 4i + 2] (Fig. 5). Newton's law of gravity states that a force 
acts down at every instant of time, with magnitude mg where g is a constant (whose 
value depends on the system of units used to measure distance and mass). Find the 
position vector r(t). 

5. Suppose s(I) is the distance traveled by a particle from time O to time t. 

(a) Find the physical significance of � and !2! and express them in terms of 
ii and a. t 

(b) We know that : is the velocity vector. Use the chain rule to show that : 

is a unit tangent vector. 
tlf the instantaneous radius of curvature is r then I /r is called the instantaneous curva­

ture K. For example, a line has r "' oc and K = 0. At the other extreme, at a tight turn. the 
approximating circle is small. so r is small and K is large. 
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6. Consider the circu lar motion x = 5 cos I, _\' = 5 sin I. 

(a) Find l lii(t)I I to verify that the speed is constant . 
(b) Confirm that a"'" = 0, as appropriate for a particle whose speed is not 

changing. 
(c) Find a,.d and confirm that (2) holds. 

7. Newton's first law states that a particle moves on a ( frictionless) l ine with 
constant speed if and only if  no force acts, that is , a = 0. Describe a i f  the particle 
moves (a) on a line but at nonconstant speed (b) at constant speed but not on 
a l ine. 

8. Let x = 4 - 1 3
, y = ¾t • + I be the position of a particle at time I . Con­

sider time I = I. Where is the particle? What is its instantaneous direction and 
speed?  I s  it speeding up or slowing down and by how much? How many pounds of 
force are acting on it and in what direction? 

REVIEW PROBLEMS FOR CHAPTER 9 

I .  l f ii = 2 i  + 3] + k and ii =  -4 /  + 5] - 2k find 

(a) ii ·  ii 
(b) I ii.il l 
(c) ii X ii  
(d) the cosine of the angle determined 

by ii and ii 
(e) the component of ii in the 

direction of ii 

(f) the vector component of ii in the 
direction of ii 

(g) the unit vector in the direction 
of ii 

(h) a vector with length 6 in the 
direction of ii 

2. Let A = (2 , I ,  6) , B = (4 , - 2 , 7) .  Is point  C = (6, -5 , 9) on l ine AB ? 
3. (a) l f ii  x ii =  -J + 5k, find ii x ii. (b) l f l lii x iill = 6 find llii x ii i! .  
4. The associative law for multiplication of numbers states that (xy)z = x ( yz) 

for all x,y, z. Decide if the following are true or false and explain .  

(a )  (ii · ii) · w = ii ·  (ii · w) for a l l  3-dimensional vectors ii ,  ii, w. 
(b) (ii x ii) x w = ii x (ii x w) for all 3-dimensional vectors ii, ii, w. 
5. Let P = ( I , 3 ,  0) , Q = (3 ,  7, z ) ,  A = ( IO, 1, 3), B = ( 16 ,  - l , 5) .  Find z so that 

the l ines AB and PQ are perpendicular. 
6. Show that the area of the parallelogram determined by the vectors 

ii = u, i + u2] and ii = v ,  i + v2] is the absolute value of the determinant I u , u2 1 .  
V 1  V2 
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7.  Show (a) geometrically and (b) algebraical ly  that if il · ii = 0 then llull2 + lliill2 = l lu + iill2 • 8. Show that if il and ii are perpendicular unit vectors then ii x ii is a unit vector perpendicular to both ii and ii. 9. Draw pictures to show why l\il + iill s llii\\ + \ \iii \ . Under what conditions does equality hold? 1 0. (a) Show that I I« + vll2 + II« - v ii� = 2llu ll� + 2 IJv lJ�. (b) Find the geo­metric significance of part (a) for a parallelogram. 1 1 . Supp<?Se the wind velocity is u = 2 i + 3 J - k and a plane flies in the direc­tion of ii = 4 i - 5 J + k. Does the plane experience a head wind or a tail wind? By how much is the plane's speed increased or decreased because of the wind ? 12 .  When is it true that Jiu x iii! = !lull lliill? 13. Let r = t cos ti + sin t}. It is not feasible to eliminate the parameter; never­theless sketch the path for I 2: 0 and include r(1r), ii(1r) and ii(1r) in the picture. Find the speed at time 1r. ls the particle speeding up or slowing down at time I = 1r, and by how much? 14. Describe the motion if, for all I, (a) r • r '  = 0 (c) r ' X r" = 0 (h) r x r ' = o (d) r • r" = o 
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In 2-space, a curve can be described with an equation in x and y or with 
a pair of parametric equations giving x and y in terms of the parameter t 
(Sections 3.8 and 9.6). For all practical purposes, in J -space, the graph of an equation in x, y and z is a surface, while a curve is described with parametric equations giving x, _v and z in terms of a parameter t (Fig. 1) .  This chapter 
discusses some special surfaces along with the most important type of curve, 
the line. The preceding chapter on vectors provides the basis for much of 
the geometry of this chapter, and both will be needed when we continue 
with calculus in the next chapter. 

IO. I  Spheres 

The circle in 2-space with center (x0, y0} and radius r has equation 
(x - x0)2 + (y - y0}2 = r2• Similarly, an equation of the sphere with center 
(xo, Yo, .zo) and radius r is 

( l )  I (x - xo)2 + ( y  - yo)2 + (z - Zo)2 = r2 - 1 

In particular, an equation of the sphere with center at the origin and radius r is 

(2) I x 2 + y 2 + z 2 = r2 . 1  
�xample I An equation of the sphere with center (3 ,  -4 ,  6) and radius 7 
IS 

(x - 3)2 + ( y + 4)2 + (:z: - 6)2 = 49 . 

Example 2 The graph of x2 + _v2 + z 2 = 4 is a sphere with center at the 
origin and radius 2. The upper hemisphere in Fig. I , where z � 0, has 
equation z = V 4 - x2 - y2. Similarly, the lower hemisphere where z � 0 
has equation z = -V4 - x2 - y2 • The interior of the sphere is described 
by x 2 + y 2 + z 2 < 4, and the exterior by x2 + y 2 + z 2 > 4 .  

Problems for  Section IO.I 

1 . Find an equation of the sphere with center (4 , -3 ,  5) and passing through 
the origin. 

297 
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2. Complete the square co identify the graph of x 2 + y 2 + z 2 + z = O. 
3. Is the origin on, inside, or outside the sphere (x + 2)2 + (y - 3 )2 + 

(z - 2)2 = 2 ?  
4. Find an  equation of  the sphere with center (3 , 5, 6) and tangent to  the 

x.y plane. 

1 0.2 Planes 

Just as lines are fundamental curves in 2-space, planes are fundamental 
surfaces in 3-space. 

An equation of a plane parallel to a coordinate plane The graph of an 
equation of the form x = c (where c is a fixed constant) is a plane parallel 
to the y, z plane (Fig. 1 ) .  Similarly, y = c is a plane parallel to the x, z plane, 
and z = c is a plane parallel to the x,y plane. 

i!. 

1 

FI G .  I 
The point-normal equation of a plane A vector perpendicular to a plane 
is said to be normal to the plane and is called a normal vector, or simply a normal. (Warning: Don't confuse a normal vector (a perpendicular) with the norm 
of a vector (its length) or with a normalized vector (a unit vector) .) 

Figure 2 shows the plane through the point (x0 , yo, Zti) and with normal 
vector (a, b, c) . To find its equation, note that the point (x, y, z) is on the plane 

V�ffoR  (o.., b, c.) 

F l (:, .  7... 
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if and only if the vectors (a, b, c) and (x - Xo, y - 'Jo, z - z:o) are perpendicu­
lar or, equivalently, if and only if (a, b, c) • (x - x0, y  - y0, z - z:o) = 0. 
Therefore, we have the following conclusion. 

An equation of the plane that contains the point (Xo, 'Jo, Zo) and 
(1) has normal vector (a, b, c) is 

a(x - x0) + b(y - yo) + c(z - z:o) = 0 . 

Examples will illustrate that no matter how a plane is determined, it is 
almost always feasible to extract a point and a normal vector from the given 
data and use (1), the point-normal form, to find its equation. 

Example 1 Find an equation of the plane determined by the points 
A = (1, 2, 3), B = (4, 5, 6), and C = (-2, 0, 3). 

➔ -­t,10 R "1 AL AC. l\ AB  

F I G . 3 
Solution: The vector AC x AB = (-3, -2, 0) x (3, 3, 3) = (-6, 9, -3) 

is a normal to the plane (Fig. 3) .  To simplify the components, divide by 3 
to get the normal (-2, 3, - 1). Any of the points A, B, or C can be used in 
the point-normal equation. With point A, (l) becomes 
(2) - 2(x - 1) + 3(y - 2) - (z - 3) = 0 .  
With point B ,  we have - 2(x - 4) + 3(y - 5) - (z - 6) = O; with C the 
equation is -2(x + 2) + 3y - (z - 3) = 0. Each equation simplifies to 

(3) - 2x + 3y - z - 1 = 0 .  
If we use the original normal (-6, 9, - 3) along with point A we have 
-6(x - 1) + 9(y - 2) - 3(z - 3) = 0, which is a multiple of (2) and also 
simplifies to (3). 

The general equation of a plane When the point-normal equation in (2) 
is rewritten as (3), the point (l, 2, 3) is no longer prominently displayed, 
but the components of the normal -2 1  + 3] - k still appear in the equa­
tion as the coefficients of x, y and z. In general, the graph of the equation 
az + by + cz + d = 0 is a plane with normal vector a i + b J + ck. It 
is called the general equation of the plane. 

For examele, the graph of 2x + 3y + 4z - 24 = 0 is a plane with 
normal 21 + 3j + d. Figure 4 shows (a portion of) the plane, obtained by 
plotting the three convenient points (0, 0, 6), (0, 8, 0) and (12, 0, 0). 
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Example 2 Find an equation of the plane through the point ( l ,  4, 5) and 
parallel to the plane 2x + 3y - 4z = 7. Solution: The given plane has normal 2 7 + 3 J - 4k, and the parallel 
plane has the same normal . Therefore an equation for the parallel plane is 2 (x - I ) + 3( y - 4) - 4(z - 5) = 0, or 2x + 3y - 4z = - 6 . 

As a second method, note that since parallel planes have a common 
normal, the desired plane has an equation of the form 2x + 3y - 4z = d. 
Substitute x = l , y = 4, z = 5 to obtain d = -6 .  Therefore the plane is 
2x + 3y - 4z = -6, as before. 

The distance from a point to a plane Consider the plane ax + by + cz + 
d = 0 and the point P = (x0 , y0 , Zo), To find the distance between the point 

and the plane, pick any point in the plane, say Q = ( 0, 0 ,  - 1) - Then 

(Fig. 5) ,  the desired distance is the length of the projection of the vector QP = (x0, y0 , z0 +!!..) in the direction of the normal vector n = (a, b, c) .  By 
C QP ◄ 

( 12 )  of Section 9.3, this is the absolute value of 
l lnli 

n . We have the follow-

ing result. 

The distance from point (x0 , y0 , Zo) to the plane ax + by + cz + d = 0 is 

l axo + byo + czo + d i Va 2 + b2 + c 2 

➔ 
NORMAL "-

F/0 . S  



(4) 

(5) 

(6) 

(7) 
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For example, to find the distance from the point (5, 2, 9) to the plane 
z = x + 3y - 4, rewrite the equation of the plane in the general form 
x + 3y - z - 4 = 0 (equivalently, -x - 3y + z + 4 = 0). Then the dis-

. 15 + 6 - 9 - 41 2 
tance 1s • � , or • � . 

v l l v l l 

Lines in 2-space versus planes in 3-space The equations and formulas 
involving planes in three-space have abridged versions applying to lines in 
two-space. Similarly, we may generalize from lines in 2-space to planes in 
3-space except when slope is involved, since slope remains a 2-dimensional 
concept. The following summary lists results from this chapter and 
Appendix A2, and in (4), (6) and (7 ' )  produces new results by analogy. 

Lines in 2-space 
The line through the point 
(x2, Yo) �ith normal vector 
a i  + bj is 
a(x - Xo) + b(y - Yo) = 0 .  
The general equation of a 
line is ax + by + c = 0. 

The distance between the 
point (x0, y0) and the line 
ax + by + c = 0 is 
laxo + byo + cl 

� 

The line with x-intercept 
a and y-intercept b is 

� + 1.. = l  a b 

Problems for Section 10.2 

(4') 

(5 ') 

(6') 

(7 ' )  

Planes in 3-space 
The plane through th! poi�t (xo,.]o, Zo) 
with normal vector a i  + bj + ck is 

a(x - xo) + b(y - Yo) + c(z - Zo) = 0. 

The general equation of a plane is 
ax + by + cz + d = 0. 

The distance between the point 
(xo, Yo, Zo) and the plane 
ax + by + cz + d = 0 is 

laxo + byo + CZo + d i 
\ia2 + b2 + c2 

The plane with x-intercept a, 
y-intercept b and z-intercept c is 

� + 1.. + ...:. = 1. a b c 

1. Find an equation of the plane 
(a) containing point (5, 5, 4 ) and perpendicular to the line AB , where 

A = (4, 5, 6) and B = (9, 8, 7) 
(b) determined by points A = (2, 0, 0), B = (0, 5, 0), C = (0, 0, 7) 
(c) containing point (3, 4, 5) and perpendicular to the x-axis 
(d) containing point (3, 4, 5) and parallel to the x,y plane 
(e) containing point (3, '11', 7) and parallel to the plane 2x + 9y - 6z + 4 = 0 
2. Let A = ( l, 3, -2), B = (2, - 1, 0), C = (4, 4, 3) and D = ( l, 2, 3) . Use an 

equation of plane ABC to decide if the four points are coplanar. 
3. Find the distance from the point (2, 3, -4) to the plane 3x - 4y + 2z = 6. 
4. Find the distance from the origin to the line y = 3x + 4 in 2-space. 
5. Find an equation of the sphere with center ( l, 3, - 1) and tangent to the plane 

2x + y - z = 4. 
6. Show that the planes 2x - y + 3z = 6 and 2x - y + 3z = 8 are parallel, 

and then find the distance between them. 
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7. If a plane has intercepts a, b, c, and its distance to the origin is D, show that I I I I - = - + - + -D2 a 2 b2 c 2 · 8. Let A = ( - 1 , 2, 4) , B = (0, 3, 3), C = ( I ,  -8, 2) and D = (4, 5, 5) .  Find an equation of the plane containing line AB and parallel to line CD (Fig. 6). 
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10.3 Lines 

A line in two-space is determined by a point and a parallel direction; the direction is usually conveyed by a slope m. Similarly, a line in three­space is determined by a point (x0 , y0 , Zo )  and a parallel direction, but the direction is conveyed by a parallel vector (a, b, c )  rather than a slope, since a line in 3-space does not have a slope. To find an equation for the line (Fig. l ) note that the point (x, y, z) is on the line if and only if the vector 
(x - xo, y - y0,  z - z0) is parallel to the vector (a, b, c) , that is, if and only if there is some scalar t such that (x - x0 , y - y0 , z - .to) = t(a, b,  c) . Equate respective components to obtain x - x0 = ta, y - y0 = tb, z - z0 = tc . Therefore, we have the following result. 

( 1 )  

The line determined by the point (x0 , y0, Zo) and parallel to  the vector a i + b J + ck has parametric equations 
x = x0 + at 

y = Yo + bt z = Zo + ct . S�milarry the line in 2-space through point (x0 , y0) and parallel to 
a i + b j has equations x = xo + at 

y = yo + bt . 

For example, the equations x = 2 + 4t, y = 5 - 3t, z = 6 + 7t describe a line containing the point (2 , 5, 6) and parallel to the vector 4i - 3] - 7k.. In particular, the point (2, 5, 6) corresponds to the parameter value t = 0. Every value of t produces a point on the line; if t = 2 then the correspond­ing point is ( IO, - 1, 20). To decide if a point is on the line, search for a value 
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of t that produces it. The point (3, 4, -6) is not on the line since x = 3 
requires that t be ¼  (from the first of the parametric equations), but t = ¼ 
does not produce y = 4 and z = -6. 

Example 1 Consider the line determined--2}' the (>?int� A = (3, 5 ,  6) and 
B = ( 1 , 6 , 8). The line has parallel vector AB = - 2 i  + j + 2k and passes 
through point A, so it has parametric equations 

(2) x = 3 - 2 t ,  y == 5 + t , z = 6 + 2t .  

With the same parallel vector, but using point B this time, we have 

(3) x = l - 2t , y = 6 + t ,  z = 8 + 2 t , 

another parametrization of the same line. The same points are produced by 
the two sets of parametric equations, but for different values of t. Point A 
corresponds to t = 0 in (2), and to t = - 1  in (3). We can also use the new 
point C = (- 1 , 7, 10) obtained by setting t = l in (3) (or t = 2 in (2)) along 
with the parallel vector 4 i - 2 J - 4k to get the third parametrization 

x = - I + 4t , y = 7 - 2 t , z = IO - 4 t . 

There are infinitely many ways to parametrize the line. (From the point 
of view of Section 9.6 where (x, y, z) is the position of a particle at time t, 
the different parametrizations represent motions with different timing 
and velocities.) 

p10,tft1At. Example 2 Find equations for the line containing the point A = (4, - 3, 6) 
ro PI-ArJf: and perpendicular to the plane 3x - 7y + 2z  + 9 = 0. 

F l6 .  7... 

Solution: The plane's normal, 3 i - 7 J + 2k, is parallel to the line 
(Fig. 2 ) .  Therefore a parametrization of the line is x = 4 + 3t, y = 
- 3  - 7t, z = 6 + 2t. 

The intersection of two lines in 3-space In 2-space, two lines are either 
parallel and different, parallel and actually the same line (that is, coin­
cident) or intersecting. In 3-space, the lines may also be skew. A good way 
to decide among the four possibilities is to test for parallelism first. If they 
are parallel , decide if the lines are the same or different. If they are not 
parallel, decide if they are intersecting or skew. We will illustrate the proce­
dure and show how to find the point of intersection, if it exists . 
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Consider the lines 

(4) 
X = 2 + 3t 
y = 4 - t 
z = 8 + 3 t  

X = 9 - 2t  
and y = - 1  + 2t  

z = 5 + 3t . 

The lines have respective parallel vectors u = (3 ,  - 1 , 3) and v = (-2 ,  2 ,  3 ) .  
Since u is not a multiple of v , the lines are not parallel . Now we decide 
between skew and intersecting. To find a common point, it is tempting but 
incorrect to equate the expressions for x, y and z in (4) to obtain 

2 + 3 t  = 9 - 2t �C,� 
4 - t = - l + 2 t  e,O�� 
8 + 3t  = 5 + 3 t . \� 

This is not correct because it unnecessarily demands that a common point 
be produced by the same value of t, whereas it is possible for a common 
point to appear with the label t = 6 on one line, and t = 1 1 7 on the other 
line. To allow for this possibility we switch to the letter s as the parameter 
for one of the lines, and rewrite (4) as 

(5 )  
X = 2 + 3t 
y = 4 - t 
z = 8 + 3 t  

X = 9 - 2s  
and y = - l + 2s  

z = 5 + 3s . 

Then equate expressions for x, y and z to get 

2 + 3t = 9 - 2s 
(6) 4 - t = - 1  + 2s 

8 + 3t = 5 + 3s . 

To solve this system of three equations in two variables, write the first two 
equations in the standard form 

2s + 3t = 7 
- 2s - t = - 5  

and solve to get s = 2 ,  t = l .  These values satisfy the third equation i n  (6) 
so there is a point of intersection .  Substitute t = l in (5), and as a check set 
s = 2 ,  to obtain x = 5,  y = 3, z = 1 1 , the point of intersection . If i t  had 
turned out that s = 2,  t = 1 did not satisfy the third equation in (6) then we 
would have concluded that there was no point of intersection and that the 
lines were skew. 

Warning Two parameter letters, s and t, must be used when trying to find 
a point of intersection of two lines. 

The intersection of a line and a plane For a line and a plane in 3-space , 
there are three possibilities : the l ine lies in the plane (Fig. 3a) the line is 
parallel to but not contained in the plane (Fig. 3b) the line intersects the 
plane at one point (Fig . 3c) . We will illustrate methods for choosing among 
them, and for finding the point of intersection in the last case. 

Consider the line x = l + 2t, y = 3 - t , z = 2 + 2t  and the plane 
2x + 6y + 3z = 6. Substitute to obtain 
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(7) 2(1 + 2t) + 6(3 - t) + 3(2 + 2t) = 6 and solve to get t = -5 .  Since there is a unique solution for t, the line and plane intersect in one point. Substitute t = -5 in the equation of the line to find the point of intersection (-9, 8, - 8) .  If it had turned out that the t's canceled in (7) leaving O = 0, then every value of t would be a solution; in that case the line would be contained in the plane. If the t's had canceled out leaving say O = 27, then there would be no solution for t ;  in that case the line would be parallel to but not contained in the plane. 
The intersection of two planes Two planes are either the same, parallel but not coincident, or intersect in a line (Fig. 4) .  We will illustrate how to decide which situation holds and give a method for finding the line of intersection in the third case. The planes 2x + 3y + 4z + 5 = 0 and 4x + 6y + 8z + 10 = 0 are the same because the second equation is simply a multiple of the first. The planes 2x + 3y + 4z + 5 = 0 and 4x + 6y + 8z + 1 1  = 0 are parallel (since their normals, 2i + 3] + 4k and 4i + 6] + 8ii, are multiples of one another) but not coincident (since the equations are not multiples of one another). The planes 
(8) 

2x + y + z = 2 
X + J + 3z = -6  are neither identical nor parallel since their normals, u = 2 i + J + ii and v = 1 + J + 3ii, are not parallel. Therefore the planes intersect in a line. In fact, the pair of equations in (8) can be regarded as a set of equations for the line. We want to find a standard set of parametric equations for the line, using (1). For a vector parallel to the line (Fig. 4) ,  use u x v = 21 - 5] + ii. To find a point on the line, set one of the variables in (8) equal to any specific value and then solve to find the corresponding values of the other two variables. With the convenient choice of z = 0, we have 2x + y = 2 

X + J = -6  
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whose solution is x = 8, y = - 14 .  Therefore (8 ,  - 14 ,  0) lies on both planes and hence is on the line of intersection. Therefore the line has parametric equations x = 8 + 21, y = - 14 - 5t, z = t. When we chose to set z = 0 in (8), we found the particular point where the line of intersection crosses the x,y plane. If the line happens to be parallel to the x,y plane, then setting z = 0 in (8) will result in a system of two equations in x and y with no solution . In this case set x = 0 or y = 0. 
Problems for Section 10.3 I . Find equations for the line (a) containing the point ( I ,  2, 3) and parallel to the line x = 3 + I, y = 4 - 21, 

z = I +  51 (b) containing the point ( l ,  4 ,  5) and perpendicular to the plane 3x - 4y + 6z = l (c) through the point (2, 3, 4) and parallel to the x-axis (d) through the point (2, 3 ,  4) and perpendicular to the x, z plane (e) through the origin and the point (7, - 1 , 16) ( f) through the point ( I ,  5 ,  7) and parallel to the planes 2x - y + z = 0 and 3x + y + 4z = 2 2. Let A = (- 1 ,  3) and B = ( 1 3 ,  -2) .  Find parametric equations for line AB. 3. Find equations for (a) the x, z plane (b) the z-axis. 4. Find an equation of the plane containing the point A = (3, - 1 , 2) and the line x = 6 + 41, y = 2 - /, z = 7 + 81. 5. Consider the line x = 2 + I, y = 3 - 41, z = 6 + 5 1  and the line x = 6 + 21, y = -6  - I, z = JO - 61. (a) Verify that the lines intersect at the point (4, -5 ,  16) but are not the same line. (b) Find the equation of the plane determined by the intersecting lines. (c) Find the equations of the line perpendicular to both given lines through their point of intersection. 6. Where does the l ine x = 2 - I, y = 3 + 41 , z = - 5 + 21 intersect the y, z plane? 7. Confirm that the lines x = 2 - 31, y = 5 + t, z = 4 + 2 1 and x = -7 - 31, 
y = 6 + t, z = 21 are parallel but different, and find the equation of the plane they determine. 8. Let A = ( 1 , 3 , - 2), B = (4, 5 , 0), C = (3 , 3 , 5) .  Find equations of line AB and use them to decide if the points A, B and C are collinear. 9. Consider the line x = xo + at , y = yo + bt ,  z = zo + ct and the plane 
Ax + By + Cz + D = 0 where a, b, c, A,  B,  C, D, xo, yo , Zo are fixed constants. Ident ify the geometric connection between the l ine and the plane if both (*) aA + bB + cC = 0 and (**) Ax0 + Byo + CZo + D "' 0 hold. 1 0. Are the lines coincident, parallel, skew or intersecting? (a) x "' I - 61, y "' 2 + I, z = 4 + 31 ; 

X = - 5  + J2/, y = 3 - 21, Z = 1 3  - 61 (b) x "' 2 - I, y = 3 + 21, z "' 5 - 31 ; 
x = I, y = 5 - 41, z = - I + 61 (c) X = 2 - I, y = 3 + /, Z = 5 + 21 ; 
x = 3 - I, y = 4 + 21, z = I + I (d) x = 2 + 31, y = 5 - /, z = 3 + I ;  
x = - 4  - 3/, y = 7 + I, z = I - I 
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1 1 . Find the intersection of the line x = l + 2t, y = 3 - t, z = 2 + 2t and the 
plane (a) 2x + 6y + z = 8 (b) 2x + 6y + z = 22. 

12. Find the line of intersection of the planes 2x + y + 3z = 5 and x - y + 
z = 4 . 

IS. Show that the line of intersection of the planes x + 2y + Sz = 20 and 
x - y + 2z = 8 is parallel to but not contained in the plane 3x - 2y + Sz = 5. 

14. Find the projection P of the point (- I, I, 1) on the plane 2x - 3y + z + 
1 = 0, that is, the foot of the perpendicular from the point to the plane. (First find 
the line through the point and perpendicular to the plane.) 

15. Consider the line L with equations x = l + I , y = 2 - I, z = 3 + 41 and 
the point Q = (4, - 1 , 4) . Find the projection P of Q on L (the foot of the perpen­
dicular from Q to L) and the distance from Q to L. (First find the equation of the 
plane through Q and perpendicular to l.) 

16 .  Show that the lines x = 2 - I ,  t = 3 + I , z = 5 + 2 t  and x = 3 - / ,  
y = 4 + 21, z = l + 71 are skew and find the distance between them. (First find 
the plane containing the second line and parallel to the first.) 

17. Let A = (3 , 0, 2) , B = (2 , 4 , 0) , C = (4 , 5 , 6) , D = (7 . - 7, 1 2) . 
(a) Find the equations of lines AB and CD and show that the lines are parallel 

but not the same line. 
(b) Find the distance between the lines. (First find the plane through A and 

perpendicular to both lines.) 

10.4 Cylindrical and Quadric Surfaces 

The graph in 3-space of an equation in x, y and z is (with rare, contrived 
exceptions) a surface. Often the graph is too difficult to draw, but in this 
section we single out a few special types of equations which occur frequently 
and whose graphs are easy to sketch. 

Cylindrical surfaces The graph in 3-space of an equation containing only 
one or two of the three variables x,y, z is called a cylindrical surface. As an 
illustration consider the equation y = x2 whose graph in an x,y plane, that 
is, in two-space, is a parabola. We wish to draw its graph in three-space. If we 
extend 2-space to 3-space by adding a z-axis (Fig. 1 ), a point such as (2, 4) 
on the parabola is now (2, 4, 0) and still satisfies the equation y = x2• In fact, 
the z-coordinate of a point is irrelevant in deciding if the point satisfies the 
equation. Thus if we move any point on the parabola up or down so that 
its x and y coordinates remain unchanged, we obtain more points which 
satisfy y = x2• Figure 1 shows a ponion of the final graph, a parabolic 
cylinder, obtained by sliding the original parabola up and down. 

To draw the surface z = y 2 in 3-space first sketch the curve z = y 2 in 
the y, z plane. Then slide the curve in the x direction (draw several replicas 
of it) to create the cylindrical surface in Fig. 2 .  

The graph of x2 + z 2 = 5 in the x, z plane i s  a circle. Slide the circle in 
the y direction to obtain the graph of the equation in three-space, a circular 
cylinder (Fig. 3) .  

Quadric surfaces The graph in two-space of a second-degree equation in 
x and y i s  an ellipse, parabola or hyperbola (or a degenerate form thereof) .  
I n  three-space, the graph of a second degree equation in x, y and z is one of 
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six quadric surfaces (barring degeneracies). We will illustrate the six with examples and give a method for matching each type of quadratic equation with the appropriate surface. Table I summarizes the results . Consider the surface ( 1 ) 6x 2 + y 2 - 2z 2 = 4 . To sketch a graph in two-space, we usually plot some points and connect them in a reasonable fashion to form a curve. But the graph of ( l )  is a surface, and plotting a few points is not enough to suggest the shape of the surface. Instead we will sketch cross sections. The cross section in the x,y plane where z = 0 is the ellipse 6x2 + y 2 = 4 (Fig. 4). To find the cross section at height 2, set z = 2 in ( l )  to obtain the larger, but similar, ellipse 6x 2 + y 2 = 1 2. The cross section at z = - 2  is the same as at z = 2, while those at z = ±3 are the still larger ellipses 6x2 + y 2 = 22. Figure 4 shows the cross sections, piled up like poker chips . The overall shape of the surface is emerging from the stack of elliptical slices, but we need "sides" to complete the picture. For this purpose, set x = 0 in ( I )  to obtain the cross section in the y, z plane, the hyperbola y 2 - 2z 2 = 4. Similarly, the cross section in the x, z  plane is the hyperbola 6x2 - 2 z 2 = 4. Figure 5 shows a final graph of ( I) , called an elliptic hyperboloid of one sheet. Consider the surface 
(2 ) 6x 2 - y 2 - 2z 2 = 4 . To find its cross section in the y, z plane, set x = 0 to obtain y 2 + 2 z 2 = -4, a null ellipse. In other words, the surface does not intersect the y, z plane . 
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The cross sections at x = ± v1  are the point ellipse y 2 + 2z 2 = 0. At 
x = ± 1 the cross sections are the ellipse y 2 + 2z 2 = 2 ,  and similarly at 
x = ±2 the cross sections are the larger ellipse y 2 + 2z. 2 = 20. Figure 6 shows the elliptical cross sections. To determine the sides, set z = 0 in (2) to get the cross section in the x,y plane, the hyperbola 6x2 - y 2 = 4 ;  and set 
y = 0 for the cross section in the x, z plane, the hyperbola 6x 2 - 2z 2 = 4 .  The surface (Fig. 6 )  i s  an elliptic hyperboloid of two sheets. Note that to graph (1) we began by setting z. constant and found cross sections parallel to the x, y plane. However for (2) we first set x constant and found cross sections parallel to the y, z plane. Why the switch? The purpose of the initial cross sectioning is to produce a stack of curves which suggests the shape of the surface. For both ( l ) and (2) ,  two sets of cross sections are hyperbolas and one set are ellipses. A stack of ellipses is easier to draw and more indicative of an overall shape than a stack of hyperbolas (or parabo­las) .  We choose to begin each example by looking for elliptical cross sections if they exist. The variable that is set constant to accomplish this depends on the particular equation. Look for two square terms with the same sign on one side of the equation and substitute constants for the remaining variable. Consider the equation 6x2 + y 2 - 2z 2 = 0 ,  or 
(3 ) z 2 = 3x2 + ½y 2 . 

Setting z = Zo leaves x2 and y 2 terms with the same sign, hence produces elliptical slices. If z = 0, we have the point ellipse 3x2 + b 2 = 0. If z. = ± 1 ,  the cross sections are the ellipse 3x2 + ½y 2 = I .  I f  z = ± 3, the cross sections are the larger ellipse 3x2 + ½y 2 = 9. Figure 7 shows the elliptical cross sec­tions. To complete the picture we need another cross section. Setting y = 0 
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in (3) gives z 2 = 3x2, or z = ±Y3x, a pair of intersecting lines in the x, z 
plane. Similarly, if x = 0, the cross section is the pair of lines z = ± \If  y in 
the y, z plane. The surface in Fig. 7 is an elliptic cone. 

Table 1 displays the six quadric surfaces and corresponding equations. 
The table is incomplete in the sense that the surfaces may appear in differ-

x2 y 2 z 2 
ent alignments. The graph of - 2 + b2 + 2 = 1 is the elliptic hyperboloid a C 
of one sheet as in Fig. 8 but aligned along the x-axis rather than the z-axis. 
To identify the graph of a quadratic equation keep the six possibilities in 
mind and sketch a few cross sections (preferably ellipses) to single out the 
particular surface and its alignment) rather than memorize the table. 

Warning I .  The cylindrical and quadric surfaces are surfaces, not solids. 
For example, the graph of 6x 2 + y 2 + 2z 2 = 4 is an ellipsoidal surface. The 
points inside the ellipsoid do not satisfy the equation (they satisfy the in­
equality 6x 2 + y 2 + 2z 2 < 4) .  Furthermore, the graphs do not include cir­
cular "lids." For example, the cylinder in Fig. 3 is an unbounded tube with 
no "ends"; only a portion of it is shown in the diagram. 

2. The graph of an equation such as 5x 2 - y 2 = 0 in the x,y plane is 
not a hyperbola. It is the pair of intersecting lines y = ±V5x. 

3. The graph of a second degree equation never looks like Fig. 14; 
i .e. , it never is a surface with curved "sides" and coming to a point in 
the "middle." 

Problems for Section 10.4 

In Problems l-16, sketch the graph in 3-space. 
l. y2 + z 2 = 4 
2. z = sin x 

3. 3x + 1y = 2 1 
4. x 2 + 2 = z 
5. y 2 + z 2 s 6 
6. 4x 2 

- 25y 2 + z 2 = JOO 
7. 4x 2 - 25/ + z 2 = 0 
8. y 2 + 4z 2 = 2x 

9. 9x 2 - y 2 - z 2 = -4 
10. x 2 + y 2 + 2z 2 = l 
1 1 .  x 2 = y 2 + 4z 2 

12. -9x 2 + 4y 2 
- z 2 = 5 

13. z = 2x 2 + y 2 + 7 
14. z  = -� 
15. xy = l 
16. z = 2x 2 - y 2 

1 7. Choose a and b so that x 2/a 2 + y 2/b2 = z 2 is a circular cone with radius 3 
at height 6. 

10.5 Cylindrical and Spherical Coordinates 

The cylindrical coordinate system Polar coordinates in the x,y plane 
(Appendix A6) together with the rectangular coordinate z, are called cylin­
drical coordinates (Fig. 1 ) . The angle 8, considered as a polar coordinate in the 
x, y plane, is a counterclockwise rotation from the positive x-axis. The cylin­
drical coordinate 8 measures rotation from the x, z plane. In each case, 8 
can be positive, negative or zero. The polar coordinate r in the x, y plane is 
the distance to the origin. The cylindrical coordinate r is the distance to the z-axis. 
In each case, we take r ::2:: 0. Thus, in polar coordinates, the graph of r = 0 
is the origin, while in cylindrical coordinates, r = 0 describes the z-axis. 
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F i b . I Cylindrical coordinates are often used when the distance to a fixed line in 3-space is a determining factor. If an electric field is created by a line of charge, then the strength of the field at a point depends on the distance from the point to the line. In this situation, the natural system in which to solve problems is a cylindrical coordinate system with the line of charge on the z-axis, so that the all-important distance to the line is the coordinate r. If 60 is a constant then the graph of 6 = 60 in polar coordinates is a ray; its graph in cylindrical coordinates is a half-plane (Fig. 2 ). The graph of z = Zo is a plane in both rectangular and cylindrical coordinates ( Fig. 3). The graph of r = r0 in polar coordinates is a circle; its graph in cylindrical coordinates is a cylinder (Fig. 4). The equation of a cylinder is much simpler in cylindrical than in rectangular coordinates ( r  = r0 versus x 2 + y 2 = r3) ; in Chapter 12 we take advantage of this by switching to cylindrical coordi­nates when it becomes necessary to compute triple integrals over cylindri­cal regions. The cylindrical coordinates r, 6 and the rectangular coordinates x,y continue to be related as they were in the polar coordinate system. Thus 

( 1 ) I x = r cos 6 ,  y = r sin 8 , 
l: 

= z .  I where the last equation simply expresses the fact that the cylindrical coordi­nate z is identical to the rectangular coordinate z. Furthermore, as with polar coordinates, 
(2 ) tan 6 = 1.. .  

X 

The spherical coordinate system A point P in 3-space has spherical coordi­
nates p, 4>, 6 determined as follows. ( Figure 5 includes rectangular, cylindri­cal and spherical for comparison.) The coordinate p is the distance from P to the origin. Thus p 2! 0, and p = 0 only at the origin. If the origin is 
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denoted by A then the coordinate cf, is the angle determined by AP and the 
positive z-axis. Thus O $ cf, $ 180°. The spherical coordinate 8 is the same 
as the cylindrical coordinate 8; it measures rotation from the x, z plane. 

Spherical coordinates are often used when the distance to a fixed point 
in 3-space is of particular importance. If an electric field is created by a 
point charge, then the strength of the field depends on the distance to the 
point charge. In this situation, the natural system in which to solve problems 
is a spherical coordinate system with the point charge at the origin,  so that 
the distance to the charge is the spherical coordinate p. 

Figure 6 may be used to picture spherical coordinates geographically. 
I f  p = p0 then the point lies on a sphere centered at the origin, an "earth." 
On the earth, c/> measures "down" from the north pole N. The great circle NASBN illustrates various <I> coordinates. At N, </> = 0° ; at A, </> = go0

; at S, 
<I> = 180° ; at B, <f, = go0

• A parallel of latitude (including the equator) is a 
circle on which <I> is fixed . On the earth, (} measures "around" from the 
prime meridian in the x, z plane. Each meridian of longitude is a great 
semicircle on which (} is fixed . (Cartographers refer to the parallel where 
<f, = 30° as 60° north latitude, to the equator where cf, = goo as 0° latitude, 
and to the parallel where ef, = 160° as 70° south latitude. Further, they refer 
to (} = - 20° as 20° west longitude and to (} = 25° as 25° east longitude. ) 

The graph of (} = 90 is a half-plane, as in cylindrical coordinates 
(Fig. 2 ) .  The graph of ef, = <f,0 is the positive z-axis if <f,0 is 0° ; a cone if 
0 < ef,0 < go0 (Fig. 7 ) ;  the x,y plane if ef,0 is go0

; a cone if goo < c/>0 < 180° 

(Fig. 8) ; and the negative z-axis if <f,0 is 180°. The coordinate cf, is often called 
the cone angle. As we have already seen, the equation of a sphere in spherical 
coordinates is p = p0 , much simpler than the corresponding equation 
x 2 + y 2 + z 2 = p5 in rectangular coordinates; in Chapter 12 we take advan­
tage of this by switching to spherical coordinates to compute triple integrals 
over spherical regions. 
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We will demonstrate the following connections between rectangular 
and spherical coordinates 

(3) 

and 

x = p sin <J, cos 8, y = p sin </> sin 8 ,  z = p cos </>, 

p = Yx2 + y2 + z2 

,1,. _  - i  z 
tan 8 = 1.. . 'I' - cos V 2 2 2 , X X + J + Z 

From the right triangle ABP in Fig. 5, z = p cos </>, verifying the third 
equation in (3). The same triangle shows that r = p sin <f, ;  substitute for r 
in ( 1 )  to get the first and second equations in (3) . The fourth formula ex­
presses the fact that p is the distance from (x,y, z) to the origin. Substituting 

for p in z = p cos <I> gives cos <I> = V 2 
z 

2 • ; since O s  <I> s 180°, 
X + J + z •  



3 16 · 1 0/Topics in Three-Dimensional Analytic Geometry 

4> == cos- 1 
V 2 

z 
2 2 . Finally, tan O == 1. as in cylindrical coordinates 

X + y  + z  X 

since O is a cylindrical as well as a spherical coordinate. 

Warning I . p ;?: 0, and we always take r ;?: 0 
2. q, is never negative and is never larger than 180°. 

Example I To find a spherical coordinate equation of the plane z = 4 ,  
substitute z == p cos q, from (3) in the  equation of the  plane to  get 
p cos q, == 4, or p == 4 sec q,. 

Example 2 Find an equation in spherical coordinates of the sphere 
x 2 + y 2 + (z - 5)2 == 25. Solution: One method is to substitute for x, y and z using (3) . However, 
the algebra is easier if we first write the equation as x 2 + y 2 + z 2 - l Oz = 0, 
and then replace the entire expression x 2 + y 2 + z 2 by p 2 to obtain 
p2 - lOp cos q, == 0 or p == 10  cos q,. 

To see this geometrically note that the sphere has radius 5 and center 
(0 ,  0, 5) (Fig. 9). A point P is on the sphere if and only if angle APB is 
inscribed in a hemisphere and thus is 90°. Therefore P is on the sphere if 
and only if cos q, = p/ 10, or p = 10 cos q,. 

/0 

F ib . l O  
FI G . 1 

Equation of a cone Consider the (half) cone in Fig. IO with radius R and 
height H. Let P be a typical point on the cone, with rectangular coordinates 
x, y, z;  cylindrical coordinates r, 0, z ; and spherical coordinates p, q,, 8. By 
similar triangles, r/R = z/H so the cone has equation 

(4) 
H 

z = R r 

in cylindrical coordinates. Since r = Vx 2 + y 2 , the cone's equation in rectan­gular coordinates is 



Chapter 10 Review Problems • 3 17 

(5) 
H 

z = - \/?"+? 

R 

(the double cone is z2 = ;: (x2 + , 2)). In spherical coordinates, the cone is 

(6) 

Problems for Section 10.5 

1. Find by inspection (a) cylindrical coordinates if x = 0,  y = 2 ,  z = 3 
(b) spherical coordinates if x = 0, y = 5, z = 0. 

2 .  Find cylindrical coordinates given rectangular coordinates (a) (3,  2 ,  5) 
(b) (-3 ,  -2 , 5). 

S.  Find rectangular coordinates given (a) cylindrical coordinates r = 2 ,  
() = 150°, z = 7 (b) spherical coordinates p = 2, 1/, = 30° , () = 120°. 

4. Sketch in cylindrical coordinates. 

(a) 1 s r s 2 (b) r = 3, z = 2 (c) () = 1r/3, z = 7 (d) () = 1r/3 ,  r = 3 

5. Find the equation in cylindrical and in spherical coordinates (and identify 
the graph). 

(a) x 2 + y 2 = 4z 2 (b) x2 + y2 + z 2 = IO 

6. Find the equation of the x,y plane and the z-axis in (a) cylindrical and 
(b) spherical coordinates. 

7. (a) Find the distance to the origin in rectangular, spherical and cylindrical 
coordinates. (b) Find the distance to the z-axis in cylindrical, rectangular and 
spherical coordinates. 

REVIEW PROBLEMS FOR CHAPTER 10 

I .  Let A = (2 ,  3, - 3) ,  let l ine L 1 have equations x = 2 - I, y = 2 + I ,  
z = -4  + 3t, and let line L2 be x = 7 + 2t, y = -t, z = 4 + I .  Find equations for 

(a) the line through A parallel to L 1 
(b) the line through A perpendicular to both L1 and L2 

(c) the plane through A perpendicular to L 1 

(d) the plane through A parallel to L 1 and L2 

2, Find the intersection, if it exists. 

(a) line x = I, y = 3 + 21, z = 2 - I and plane x + 5y - z = I 
(b)  l ines x = 2 + I ,  y = I - 2 1 ,  z = 3 + 3 1  and x = 2 - I ,  y = 3 + I ,  

z = 1 - 2t  
(c) planes 3x - y + z = 5 and x + y - 6z = 3 

S. Find equations of line AB if A = (9, 8, 7) and B = (6, 4, 3). 
4. Find the distance from the origin to the plane 5x + 2y - 6z = 8. 
5. Sketch the graph in 3-space. 

(a) y = In x (c) x = y + 2z 
(b) x = y 2 + 2z 2 (d) x 2 = y2 + 2z 2 

6. Show that the point ( - 1, 1, Y3) lies on the sphere x 2 + y 2 + z2 = 5 and find 
an equation of the plane tangent to the sphere at the point. 
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7. Suppose a poin t  has cylindrical coordinates r = 2, Ii = 90°, z = 5. Draw a 
diagram and find the rectangular and spherical coordinates by inspection .  

8 .  Consider a cylinder with radius 2 and the z-axis a s  its axis of  symmetry. Find 
its equation in (a) rectangular, (b) cylindrical and (c) spherical coordinates. 

9. Let line L have equations x = 2 + 41, y = 3 - 21, z = 1 + I, and let plane 
P• have the equation x + y - 2z = 3. Show that L lies in P• and find the equation 
of the plane p, containing L and perpendicular to P • .  



So far you have studied one-dimensional calculus, which is concerned with functions such as /(x) = x2 + x where the input x and the output /(x) are numbers. In this chapter, we begin multidimensional calculus by con­sidering functions such as 
f(x, y) = 2xy + 7 ,  g(x, y, z) = e '  + 2yz ,  

For example, /(2, 4) = 23 ,  g(2, 4, 5) = e 2 + 40, h( l ,  2, 3 ,  7) = 18/7. The in­put may be viewed as an n-dimensional point or as a collection of n indepen­dent variables; the output is a number, a single dependent variable. The function/ might represent the temperature at the point (x,y) .  The function g could be the air pressure at the point (x, y, z). The function h might be the blood pressure of a patient taking x 1 , x2, x3 , x4 units respectively of four particular medicines. We call/ a function of two variables, g a function of three variables and h a function of four variables. This chapter discusses the differ­ential calculus of such functions, and the next chapter considers integrals. The details in this chapter will be new but the overall outline should be familiar. Many of the topics from one-dimensional calculus (graphs, rates of change, maximization) are repeated, but with added dimensions. 
1 1.1 Graphs and Level Sets 

The purpose of a picture is to convey information easily. This section shows two ways to visualize a function of n variables. 
Graphs As you know, the graph of f(x) = x 2 is defined as the graph of the equation y = x2, a parabola in 2-space. Similarly, if g(x,y) = 3 - x2 - 2y 2, the graph of g is defined as the graph of the equation z = 3 - x 2 - 2y 2 in 3-space. The methods of Section 10.4 may be used to produce a sketch. The cross section in the x,y plane (where z = 0) is the ellipse x2 + 2y 2 = 3 .  The cross section in the plane z = 3 is  the point ellipse x 2 + 2y 2 = 0, and the cross section in the plane z = -3 is the ellipse x 2 + 2y 2 = 6. Some cross sections are shown in Fig. l along with the final graph of g, an elliptic paraboloid. If h(x, y, z) = x + 2y - 3z, then the graph of h is (theoretically) the graph of the equation w = x + 2y - 3z in /our-space. We can list points (x, y, z, w) which belong to the graph, such as ( I , 2, 3, -4), but we can't draw the graph because the world doesn't have room for a geometric 4-dimensional space. 

319 
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In general, the graph of a function f(x) of one variable is the graph of the equation y = f(x) , a curoe in 2-space. The graph of a function f(x,y) of two variables is the graph of the equation z = f(x,y), a surface in 3-space. The graph of a function f(x,y, z) is a set of points in 4-space, and we make no attempt to construct it. 

Level sets The graph of a function of two variables might be difficult to draw, and the graph of a function of three or more variables can't be drawn at all, so another way of picturing functions will be helpful. Consider g(x, y) = 3 - x 2 - 2y 2• ihe points where the value of g is (say)- 6  satisfy 3 - x 2 
- 2y 2 = -6; that is, the points constitute the ellipse x 2 + 2y 2 = 9. I f  g(x, y) is the temperature at the point (x,y) , then the ellipse is called an isotherm. It contains precisely those points at which the tem­perature is -6. If g represents air pressure at (x, y) ,  then the ellipse is called an isobar. I f  g is the potential energy at (x, y) ,  then the ellipse is an equi­potential curve; if g is utility, then economists call the ellipse an indifference curve. No matter what g represents, the ellipse is a level set, in particular, the -6 level. Similarly, the 2 level set is the set of points where 3 - x2 - 2y 2 = 2, that is, the ellipse x2 + 2y 2 = I. The 3 level set is 3 - x 2 - 2y 2 = 3, the point ellipse x 2 + 2y 2 = 0. The 4 level set is 4 = 3 - x2 - 2y 2, a null ellipse. Figure 2 shows some of the level sets of g. (If all the level sets were drawn, instead of only a few, they would merge into an uninformative solid blob of black print. ) 

In general, the level sets of a function f(x,y) are drawn in two-space by considering equations of the form f(x, y) = C for all possible numbers C; they are usually, but not necessarily, curves. The level sets of a function f (x, y, z) are drawn in three-space by considering equations of the formf(x,y, z) = C for all C; they are usually, but not necessarily, surfaces. 
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FIG . 1  

For example, let f(x,y, z) = 2x + 3y + 6z - 10 .  The 14 level set has 
equation 2x + 3y + 6z - 10 = 14, i .e . ,  the plane 2x + 3y + 6z = 24 (see 
plane ABC in Fig. 3). The 15 level set is 2x + 3y + 6z - 10 = 15 ,  the 
plane 2x + 3y + 6z = 25, parallel to the 14 level set. In general, the level 
sets are parallel planes (Fig. 3) .  

The connection between the graph and the level sets of a function of two 
variables A function /(x,y) has a collection of level sets in two-space with 
equations of the form f (x, y) = C. The function also has a unique graph in 
three-space with equation z = f(x, y) . The cross section at height z = 5 on the 
graph in 3-space is identical with the 5 level set in 2-space (Fig. 4) . In  
general, the cross sections on the graph in  3-space in  the various planes z = C are 
the same as the level sets drawn in 2-space. Figure l shows the graph of 
g(x,y) = 3 - x 2 - 2y 2• The level sets in Fig. 2 and the cross sections in 
Fig. l are the same. 

One of the best ways to visualize the relation between the graph and the 
level sets is to think of the x,y plane as the earth's sea level, and let f(x, y) be 
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the altitude (in meters) of the earth above the point (x, y).  For example, if 
/(2, 3) = 4,000 then the earth rises to an altitude of 4,000 meters above the 
point (2, 3) in the x,y plane. The graph off is a plaster model of the earth� surface while the level sets are the contour curves on a topographic map. The contour 
curves, that is, the level sets of altitude, in Fig. 5 show a mountain peak at 
point A and a valley at point B .  

j 
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Graphs of equations versus graphs of functions vefsus level sets of func­
tions The plane in Fig. 6 is the graph of the equation x + 2y + z = 4. It 
is also (solve for z) the graph of the function/(x, y) = 4 - x - 2y. It is also 
the 4-level set of the function g(x, y, z) = x + 2y + z. It is also the 0-level set 
of the function h (x , y , z )  = x + 2y + z - 4, and the 5 - level set o f  
k(x,y, z) = x + 2y + z + 1. (In fact, i t  can be described in infinitely many 
ways as a level set of a function of three variables.) 
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The sphere with radius 2 in Fig. 7 is the graph of the equation x2 + y 2 + z 2 = 4. It is not the graph of a function/(x,y) because the point (x0, y0) in the x, y plane is paired with two values of z, and a function cannot produce more than one output for a given input. Equivalently, it is not the graph of a function /(x, y) since its equation cannot be uniquely solved for z. However, the upper hemisphere is the graph of the function /(x,y.) = V4 - x2 - y2 and the lower hemisphere is the graph of g(x, y) = - V4 - x2 - y2 . The entire sphere is the 4-level set of h(x,y, z) = x2 + y 2 + z 2, and also the 0-level set of k(x,y, z) = x2 + y 2 + z 2 - 4, and so on. 

F 1 0 . 7  

Warning The level sets of a function of two variables are drawn in two-space, while its graph is a surface in three-space. The level sets of a function of three variables are drawn in three-space, and its graph exists only as an abstraction in /our-space. 
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Problems for Section l l.l  I .  Sketch the graph and enough level sets to suggest the pattern. (a) f(x, y) = x 2 + / (b) f(x, y) = x 2 - / (c) f(x, y) = x + y 2. Sketch enough level sets to indicate the pattern . I (c) f(x, )') = --- X + J (a) J(x, y, z) = x 2 + y 2 + z 2 

(b) f(x, y, z) = x 2 + y 2 - z 2 (d) f(x,y) = {! if )' 2: X if )' < X 3. Is the point (2, 6) on a level set of f(x. y) = xy? I f  so, identify and sketch the level set. 4, Consider each curve or surface. ls it the graph of a function /(x) or f(x, y)? I s  it a level set of a function? If so, identify the function(s) . (a) line 2x + 3y = 6 (c) the paraboloid x = z ' + 2/ (b) the paraboloid z = x 2 + 2/ (d) the circular cylinder with radius 2 and the z-axis as its axis. 5. Let /(x,y) be the distance from (x, y) to the x-axis. Sketch some level sets of 
f without attempting to find a formula for f 6. Suppose f is a constant function such that f(x, y) = 6 for all (x, y) . Sketch the graph and level sets off 7. Sketch the level sets. (a) f(x, y, z) = / - x (b) f(x,y) = y (c) f(x, y, z) = y 8, I f  the potential energy at the point (x, y, z) is 2 Y(x + 2)2 + ( y  - 1 )2 + (z - 3)2 ' identify the equipotential surfaces, that is, the level sets. 9. Suppose the surface in Fig. 8 is the graph of f(x,y) .  (a) Decide which is the largest of/(2, 2 ) , /(2 ,  3) and /(3,  2). (b) Sketch some level sets off 
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10 .  Figure 9 shows some level sets off Sketch the graph off I I. Can two level sets of J in tersect ? I n  other words, can a point Q be on more than one level set of/? 
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1 1.2 Partial Derivatives 

This section defines and computes the partial derivatives of a function of several variables, and concludes with some applications. 
First-order partial derivatives A function f (x) of one variable has a first­order derivative denoted by f' (x) or d f / dx. A function /(x, y) of two variables has two first-order partial derivatives. The partial derivative a f I ax is defined 
as the derivative off with respect to x, with y treated as a constant. The partial 
derivative a f / ay is the derivative off with respect to y, with x treated as a constant. Similarly a function/(x,y, z) has three first-order partial derivatives, af /ax, 
af/ay and a//az, and so on. For example, to find the partial of x2

y
3 with respect to x, think of y 3 as a constant coefficient of x2 so that the problem resembles cx 2

• Since a(x2 3) a(x2 3) 
D,cx 2 = 2cx2, we have � = 2xy 3. Similarly, � = 3x2y 2• 

As another example, if f(x ,y ,  z) = ze 2
• +

3_, H ,  then � = 2 ze 2> + 3, H,, 

lj_ = 3ze 2•+:ly
+ 4z and by the product rule lj_ = 4ze 2• + :lyH, + e 2•+3y H ,_ 

ay ' ' az 
Higher order partial derivatives If  f i s  a function of several variables, among them x and y, then � is the derivative off twice with respect to x, 

ax _fl_ is the derivative off first with respect to y and then with respect to x, 
ax ay � is the derivative off twice with respect to y and then with respect to 
ax ay 
x, and so on. For example, if f(x,y) = x3y 5 + x3 + y 4 + 7 then 

also 
(1) 

ij_ = 3x2y 5 + 3x2 ij_ = 5x3y 4 + 4y 3 
ax ' ay 

;i2f ;i2f 
.:;..L. = 6xy 5 + 6x ::..L = 20x3y 3 + 12y 2 • ax2 ' ay 2 

::i2r a 
2 • • 2 4 ....:::..L.. = - (3x y ' + 3x·) = 1 5x y , 

ay ax ay 
::i2 r a ....:::..L.. = - (5x3y 4 + 4y 3) = 1 5x2y 4 • ax ay ax The two partials in ( 1 )  are called mixed partials and it is not a coincidence that they came out equal. For all functions f(x, y) encountered in practice, the mixed 

partials are equal. (We omit a precise statement and proof of this result.) Similarly, if f is a function of x1 , x2 , x3, x4 then 
and so on. All that counts is how often the differentiation is done with respect to each variable; the order in which it is done is immaterial. 
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Notation Some other commonly used partial derivative symbols are f, for 
ti ti fl_ 03/ 03/ _fl_ , J. for , [xx for 2 , J., for -2 , /n for -- and J., for . The 
ax · oy ax · ay · ay ax · ox ay 
notation f., means ([,) , , so the partial is found by differentiating first with 
respect to x and then with respect to y ;  the order of differentiation is found 

by reading the subscripts from left to right. The notation _fl_ means 
i)x oy 

:
x ( ¾), so the partial is found by differentiating first with respect to y and 

then with respect to x; the order of differentiation is found by reading the 
"denominator" from right to left. It is true that the same final answer results 
regardless of the order of differentiation since mixed partials are equal; 
nevertheless, every notation does ind icate a particular order. 

The partial derivative 
Of evaluated at the point x = 2, y = l is often ox 

denoted by 
of I . For example, if f(x ,y )  = x

2 

then iJf = 
OX x = 2. , = I  J OJ 

ti /  = - _!_ . 

x 2 

- 2 and 
y 

iJy r = l .,r = 3 9 ° 

Warning l .  Don't write f' (x, y) because it is not clear whether the deriva­
tive is intended to be with respect to x or y. In engineering and physics , if 

y is a function of the two variables x (for position) and t (for time) then 
iJ
y 

iJx 

is often denoted by y ' , and ay by y. However we will not use this notation. 
i)t  

iJ2u i)u iJ2u iJ2u 2 .  The partial -- should not be written as -- or - or -0 - • The 
iJx oy iJx ay iJxy a-xy 

i) 2u i fu iJ u 2 

partial -
2 

should not be written as -,-, or as -
0 

o ·  
ax a� x ·  

Application to rates of change Partial derivatives are used in much the 
same manner as the derivative of a function of one variable. The partial of 
[(x, y) with respect to x is the rate of change off with respect to x as y stays 

fixed . Suppose ti l = -4 ; at the moment when x = 2 , y = 3 , ify stays 
OX x= 2. , = 3 

fixed at 3 and x increases, f will decrease by 4 units for every unit increase 

in x. Similarly, ti is the rate of change off with respect to y as x stays fixed . 
iJy 

For example, let f(x,y) be the resting pulse of a person smoking x 
cigarettes andjoggingy minutes per day. lf/(30, 40) = 75, then smoking 30 
cigarettes and wheezing through a 40 minute run daily will result in a 

resting pulse of 75 beats per minute .  Suppose ?i. j = 2 and 
O X  r = 30,, = 40 

iJf I = - 1 /2. Then with 40 minutes of jogging and 30 cigarettes 
ay .,=30, , = 40 

daily, an increase in cigarette consumption will increase the pulse by 2 beats 
per minute for each additional cigarette . On the other hand , if smoking is 
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fixed and the run lengthened, each additional minute of running lowers the pulse by ½ beat per minute. As another example, suppose a rope is wiggled so as to make each point move up and down in the following way: at time t, the shape of the rope is y = sin(x - 2 t) ,  time in seconds and distance in meters. Thus, at time t = 1r /2 ,  its shape is y = sin(x - 1r) (Fig. 1 ). We will find the partials of y at x = 1r, t = ½1r and interpret the results physically. We have 
� = cos(x - 2 t )  and � = - 2  cos(x - 2 t) ,  so � I = l and ax at ox x • ,r, t • ( l /2 ) ,r  

� I = - 2. Since x and y are the usual rectangular coordinates, ¥ 
u t  •• w, t• ( l /2),r uX is a slope; in particular, the slope at point A in Fig. l is l. Since y is vertical position at time t, the partial i, is a vertical velocity; point A in Fig. l is in the process of moving down instantaneously at the rate of 2 meters per second. 

TIME: t ::  o/1.. 
)'=.sin (-x.- 1r) 

Fl6 . I As a third example, let /(x,y) be the temperature at the point (x, y) (distance in meters, temperature in degrees). Suppose 
lj_ l = - 3  and lj_ l = 4 .  ax x= 7 ... = 2 ay .<• 7  ... = 2 If a particle at point (7, 2) moves east (so that y is fixed and x increases) the temperature drops momentarily by 3 degrees per meter. Similarly, if a particle moves north through ( 7, 2) ,  the temperature rises momentarily by 4 degrees per meter. From this point of view, the partial derivatives are called directional derivatives. In particular, iJ f / ax is the rate of change off per meter )n direction , and a f / ay is the rate of change off per meter in direction j .  In Section 1 1.6, we will develop directional derivatives more generally, so that we can find the rate of change of temperature in direc­tions such as southwest, northeast, and so on. 

Connection between the partials and the graph of /(x,y) Consider the graph of f(x, y) , the surface z = f(x,y) in 3-space. To interpret the par­tial derivative 
(2) 1/; I ... o,,•,o ' we must first fix y at y0, which geometrically restricts us to the curve of 
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intersection of the surface with the plane y = y0 (Fig. 2 ). Then (2 ) is the rate of change of height z with respect to x, so (2 ) is the slope on the curoe of intersection of the graph off and the plane y = Yo at the point (Xo, yo ,/(Xo, y0)) . Similarly, 1; l ,=xo, ,=.,o is the slope of the curoe of intersection of the graph off and 
the plane x = x0 at the point (x0 , y0 ,f(x0 , y0) ) .  We still do not admit slopes for arbitrary curves in 3-space. The partial in (2 )  gives the slope of a curve in an x, z coordinate system in the plane )' = y,. , that is, in a two-dimensional setting within 3-space . 
Connection between the partials and the level sets of/(x, y) orf(x,y, z) We will illustrate how to determine the sign of the partial derivatives from a 

60
° 

F/6 . 3 
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picture of the level sets. Figure 3 shows level sets of a function f (x, y), which we will think of as the temperature at the point (x, y). A particle moving east through point A will cross from lower to higher levels, and thus experiences rising temperatures. In other words, as x increases and y stays fixed , f(x.,v) increases. Therefore iJf /iJx is positive at point A. On the other hand, a particle moving north through point A will move from higher to lower levels and feel the temperature decreasing. That is, as x stays fixed and y increases, f(x, y) decreases. Therefore iJ f /iJy is negative at point A .  

Problems for Section 11.2 

I. Find oz /ox and oz/ay if 
(a) z = x 2 + 2x 3y 2 (d) z = x(2x + 5y)' 3v (b) z = xe-• (e) z = ....:.. 

X 

X (c) z = --x + y 

2. Find a2[/ay2 and a2[/ax ay if 
)' X + J (a) f(x, y) = ln(2x + 3y) (b) f(x, y) = tan- '  - (c) f(x, y) = --x X - )' 

3. The partial a f I ax can also be written as f,. Rewrite the following partials in a similar fashion. 
iJ

3
g 

a"u (a) aa ab ac (b) ax � at 
4. lff(x, _v, z) = z sin x/)- find 
(a) iJf ax (c) ar iJz 
(b) iJf 

ay (d) a3/ ax az 
5. Find 

a3(e' cos y) (a) ' ay 
b iJ3(e '  cos v) ( ) ax" . 

(c) a'(x sin )") 
ax " 

d a"(x sin v) 
( ) 'I • ay il3(x sin y) (e) __ ..,,,_ ax ay i 

a2x a2x 6. I f  x = p sin <I> cos o find (a) ap2 (b) a<1> a o  
7 .  Let x be the price o f  a camera, _v the price o f  a roll o f  film, and f(x,y) the number of cameras sold daily. For example, if /(30, l) = 100 then 100 cameras will be sold if a camera cost $30 and film is SI a roll .  Find the sign of a f I ax and of af I ay. 8. Let a and b be the prices of a round-trip ticket between New York and Los Angeles charged by airlines A and B , respectively. If /(a , b) is the number of passengers who fly airline A each week, find the signs of a f I aa and a f I ab. 
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9. Let/(x, y) be the day's profit in a company whose employees jog x miles and 
bicycle y miles during their lunch hour. For example, if /( l, 2) = 1 ,000 then the 
company makes a profit of $1 ,000 when its employees healthfully run a mile and 
cycle two miles that day. Interpret the following experimental observation : 

ar l > ar l > 0 . 
ax .,.,.. 1 12 . _, =- I ay x- 112, _,·• I 

1 0. Suppose the temperature at the point (x, y) is (2x - 3y )4. What is the rate 
of change of temperature if a particle moves north through the point (4, 3) ?  
east? south? 

I 1 .  Use the level sets off in Fig. 4 to find the signs of the partial derivatives of 
f at A .  

1 2. Figure 5 shows the graph of  f(x ,y) .  Find the signs of  (a) af  /ax and (b) af  /ay 
at (2, 5). 

X 

Fl6 . 6 
1 3. Figure 6 shows level sets off (x, y, z) . (Each is an unbounded circular cylinder, 

with no lids.) Find the signs of af /ax, af /ay and af /az at the point P = (-2 ,  3, 4 ) .  

F I G . 6  
14. Figure 3 shows level sets off Suppose the level sets of g are the same curves 

but for different levels as indicated in Fig. 7. Which is larger at point A, a f / ax or 
ag/ax? 
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11.3 Chain Rules for First-Order Partial Derivatives 

The one-dimensional chain rule is familiar: if y is a function of u, 
denoted y = y(u) , and u is a function of x, denoted u = u (x) ,  then 
(Section 3.6) 

( 1 )  
d-;  dv  du -.:.. = � -
dx du dx · 

For a two-dimensional version, suppose z is a function of u and v, denoted 
z = z(u, v), and u and v are functions of x and y, denoted u = u(x,y) , 
v = v(x,y). For example, we might have z = uv3 with u = xy, v = 2x + 3y, 
so that z = xy(2x + 3y)5• Figure l shows a dependence diagram picturing the 
hierarchy of variables. A chain typically arises with a switch to a new coor­
dinate system; if z is a function of x and y and we change to polar coordi­
nates r and 8, then z = z(x,y) where x = r cos 8, y = r sin 8. This section 
will give chain rules which express the ultimate derivatives, such as iJz /iJx 
and iJz./ay in Fig. 1, in terms of intermediate derivatives, such as oz/au, 
oz/av, au/ax, au/ay, av /ax and av /iJy. An application will be discussed after 
the technique has been described. 

The pattern of a chain rule Each dependence diagram in multi­
dimensional calculus has its own chain rule. We will illustrate the pattern so 
that you can write them in any situation. 

As a device for writing the chain rule for az/ox in Fig. 1 ,  consider all 
(two) paths in the diagram from z to x, and label each branch with a 
corresponding derivative (Fig. 2). Then multiply down each path and add 
the results to obtain 

oz oz au az av  - = - - + - - . 
ax au ax av ax (2) 

The chain rule contains a term for each path from z to x, and the factors 
in each term are the derivatives written along the path. Figure 3 shows the 
two paths from z. to y that are used to write the chain rule 

(3) 
i)z. i)z. au az av  - = - - + - -
iJy au ay av ay ' 

As a check, note that each term on the right side of (2) and of (3) "cancels" 
to the left side. 
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The familiar chain rule in ( l )  is a special case of the general pattern, 
with only one path from y to x ( Fig. 4). 

We omit the proof of the chain rules. 

Example I If 

z = z(u, v, w), V = t 2 - 2 t ,  w = e2' {Fig. 5) , 
then z is ultimately a function of t, but in a special way. Only the combina­
tions t 3, t 2 - 2t and e 2' occur in the formula for z, not "loose" t 's . For 
example, if  z = uv 4 + w then z = t 3(t 2 - 2t)4 + e 2' . All paths in Fig. 5 lead 
from z to t , and 

(4) dz = !!_  du + � dv + i:_ dw = 3t 2!!_ + (2t  _ 2) � + 2e 2,i:_ _ dt au dt av dt aw dt au av  aw 
Warning l .  Use the partial derivative symbol a and the ordinary deriva­
tive symbol d appropriately by thinking about the existence or nonexistence 
of other variables. In Fig. 5 the top branches are labeled with partial deriva­
tives because at that level, z is a function of the three variables u, v, w. The 
lower branches are labeled with ordinary derivatives because at that level , u, v and w are each functions of the single variable t. The derivative dz /dt in 
(4) is written with d rather than a because when z is considered as a function 
of the variable t , it is a function of I alone. 

2 .  We never mix tiers in a dependence diagram. In Fig. 5 , z is a func­
tion of u, v, w and from another point of view, z is a function of I. However 
z is never considered as a function of u, v, w and t simultaneously. 
A NON-application of the chain rule Suppose 

(5) u = sin x and v = x 2 (Fig. 6) . 
Then z = x 4 sin x and without any multidimensional chain rule we have 
(by the product rule) 

(6) : = x 4 cos x + 4x 3 sin x .  

With the chain rule, using the formulas in (5) and the two paths from z to 
x in Fig. 6, 

dz az du az dv - = - - + - - = v 2 • cos x + 2uv · 2x 
(7) d.x au d.x av d.x 

= (x 2)2 cos x + 2(sin x) (x 2)2x = x 4 cos x + 4x 3 sin x .  
The direct method in (6) and the chain rule in (7) produce the same answer, 
which verifies the chain rule for this particular example. It also illustrates 
an important aspect of the multidimensional chain rule. If z is given as a particular, rather than an arbitrary, function of u and v, say z = uv 2 as 
opposed to z = z(u, v), and, in turn, u and t' are given as particular functions 
of x, then z may be written directly in terms of x, and a derivative found without the chain rule. 

It is not the primary purpose of the multidimensional chain rule to 
produce derivatives of a particular function .  The applications you will en­
counter in later courses will involve arbitrary functions, and will typically 
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produce a general result. Compare this with a similar situation in algebra. 
You learned that 

(8) (x + y)2 = x 2 + 2xy + y 2 

but the main purpose of (8) is not to compute (3 + 4)2 by writing it as 
32 + 2 • 3 • 4 + 42. For computational purposes, (3 + 4)2 is called 7 2 and 
found directly. However (8) is often used in postalgebra courses in applica­
tions involving an arbitrary x and y. 

An application to differential equations Section 4.9 introduced (ordi­
nary) differential equations, in which the unknown is a function y(x) , a 
function of one variable. The equation 

(9) 
OU = 3 au _ 3 au 
az ax ay 

is a (partial) differential equation in which the unknown is a function 
u(x, y, z) ,  a function of three variables. We will show how the chain rule is 
used to confirm that a certain type of function is a solution to the particular 
equation in (9). 

We claim that the functions 

( 10) 
u = (x + 3z)2 + 5( y  - 3z) ,  

u = ( y  - 3z)e-2(x+ 3z) 

sin(x + 3z) u = 
5( y  - 3z) ' 

are solutions and, in general, any function of x, y and z in which the variables 
occur only in the combinations x + 3z and y - 3z is a solution. (We will not 
conjecture how this was discovered originally.) Let's check the first function 
in ( IO).  I ts three partials are 

au 
ax = 2(x + 3z) ,  

au = 5 ay 
au 
oz 

= 2(x + 3z) • 3 - 1 5 = 6(x + 3z) - 1 5 , 

and it can be seen that they do satisfy (9). But to confirm our general claim, 
we cannot test functions one at a time, but must perform a general test. An 
arbitrary function of x, y and z containing only the combinations x + 3z 
and y - 3z is referred to as a function of x + 3z and y - 3z and denoted 
by u(x + 3z, y  - 3z) . Equivalently, and particularly useful for the chain 
rule, 

( 1 1 )  u = u(p, q) , p = X + 3z , q = y - 3z (Fig. 7) . 

For example , the first function in ( IO)  is of the form p2 + 5q where 
p = x + 3z, and q = y - 3z. We can test all the functions in ( l l) at once 
with the chain rule. Figure 7 shows one path from u to x (not two, because 
q is not a function of x), one path from u to y (not two, because p is not a 
function of y) and two paths from u to z. Therefore 

(12) 

au - au � - au - - - - - , ay aq ay aq 
au = 

au � + au � = 3 
au _ 3 

au 
. az ap az aq az ap aq 
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The partials in ( 1 2 )  do satisfy (9) . This verifies that all the functions in ( 1 1 ) ,  including the specific ones in ( 10) , are solutions to the differential equation . 
Problems for Section 1 1.3 

I .  Write a chain rule for a w /as if w = w(x ,y, z) ,  x = x(r, s , t ) ,  y = y(r, s , t ) ,  
z = z(r, s , I). 2. Write a chain rule for du /dt if u = u(x, y, z) , x = x(a , b) , y = y(a, b) , z = z(a , b) , 
a = a(t), b = b(t). 3. Let p = p(t) , t = t(x, y, z) . Write a chain rule for ap lay. 4. Find the following derivatives directly and then, for practice, find them again using the multid imensional chain rule. (a) dw /dt if w = sin xy, x = In I , y = t" (b) aw /ax if w = l /11 , u = x sin y 5. Let w = w(x, y) be the temperature at the point (x, y) and let x = x(t), y = y(t) be the position of a particle at time I . (a) Find dw /dt. (b) Suppose dw /dt is - 2  at time 3. What is the physical significance for the particle? 6. Find az/au if z = z(x, y), x = sin t, y = 21 '', t = t(u, v). 7. I f  u is a function of Yx2 + v2 + z 2 , that is, u = u(p) where ,....,,..--.-----. (du)·2 (a 11) 2 (iiu)" (iiu) 2 p = Vx 2 + y 2 + z 2 , show that dp = 

ax + ay + az . 8. I f  u = u(
y - X , z - x) show that x2 u., + v 'u, + z2 u, = 0. 

xy xz 9. Show all at once that the three functions z = (x 2 + /)\ z = �-·•+ 2 . 2 2 ilz ilz z = e •- • sm(3 + x + y ) satisfy v- = x- . . ax ilv 1 0. Let u = x 2w(� , ;) , that is , u is �he product of x 2 with the arbitrary function w of x,y, z which contains only the combinations y /x and z /x. Show that xu,, + yu, + zu, = 2u. (Treat u as a product, and use the chain rule when it becomes necessary to find derivatives of w.) 
1 1.4 Chain Rules for Second-Order Partial Derivatives 

Most of the applications of the multidimensional chain rules involve second-order partials . For example, if v is a function of x and y then the 
. ilv ,Pv . . _ . . express10n -2 + -2 1s called the Laplac1an of v and 1s used extensively ax ay in mathematics and mathematical physics . ( I f  v is the temperature at the point (x ,y) then the Laplacian of -v is the heat flux density, which measures the flow of calories in or out of a region . )  If v is defined in a circular region , it is preferable to switch to polar coordinates and express the Laplacian in terms of r and fJ using a chain rule for the second-order 

2 2 partials a ': and a � .  This section will show that the same techniques that ax ay worked for first-order partials can still be used, but more care and patience (and often product rules) are needed as well . 
Example I Let 

z = z(u ,  v) ,  V = 3x  + 2y (Fig . I ) .  
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We will find il2� .  From Fig. 1 ,  iJy 
( 1 )  iJ z  = � iJu + � iJv = x2 � + 2 � . iJy iJu ay av ay au  dtl Now differentiate again with respect to y to obtain a2z - i. (x2 �) + i. (2 �) (sum rule) ay 2 - ay iJu ay iJv 
(2) = x2 !... (�) + 2 !...  (az ) (constant-multiple rule) . iJy au ay  av Before continuing, note that z is initially a function of u and v, and ulti­mately a function of x and y (Fig . 1). The partial deritiatives !.: and :z 

are au atl 
also initially functions of u and v and eventually functions of x and y. In other words, � and 

az 
are variables with the same dependence diagrams as the original au av 

variable z (Figs. 2 and 3) .  In those dependence diagrams, the branches are labeled with partial derivatives in the usual way. For example, the branches . . iJz  a ( az ) a { az ) m Fig. 2 from au to u and v correspond to au au  and av au  or, . l tl a2z d a2z . d' d eqmva en y, au 2 an av au as  m 1cate . Back in (2 ) , to find the derivative of az/au with respect to y, consider the two paths in Fig. 2 from az / au to y and use the chain rule. Similarly, the derivative of az /av with respect to y requires a chain rule using the two paths in Fig . 3 from iJz /av to y. Therefore a2z ( iJ2z au a2z av) ( iJ2z au a2z a t') ay 2 = x2 au 2 ay + iJv  au  ay + 2 au av  ay + av 2 ay = x2(x2� + 2 a2z ) + 2 (x2 a2z + 2 a2z ) au 2 iJv  iJu iJu  iJv  at, 2 , The mixed partials are equal, so the answer simplifies to a2z iJ2z a2z a2z - = x4 - + 4x2 -- + 4- .  ay 2 iJu 2 a u  iJti av 2 

Warning The indicated partial :y 
(!:) in (2 )  is never left in the form, or 

even temporarily denoted by � ,  because z is never considered as a ay au function of y and u simultaneously. 
Example 2 Let's continue from ( 1) to find � by differentiating with ax ay respect to x. By the sum rule, 
(3) iJ2z = i. (x2 �) + i. (2 �) iJx iJy ax au ax iJti . 
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The second term on the right side of (3) is the derivative of a constant multiple of az /av, but the first term requires the product rule since both x 2 and az/au are functions of x. Therefore a2z " a ( az ) az a ( az ) ax ay = x ·  ax au + 2x au + 2 ax av  . 
To find the partials of az /au and az/av with respect to x, consider paths to x in Figs. 2 and 3 and use the chain rule to obtain a2z = x2 (

� au + � av) + 2xi:._ + 2 (� au + a2z av) ax ay a u 2 ax av au ax au au av  ax av 2 ax 
( a2z a2z ) az ( a2z a2z ) = x 2 2xy - + 3 -- + 2x- + 2 2xv-- + 3 -. au 2 av  au au . au av av ·  
. a2z O a2z a z  a2z = 2x 3v -,, + (3x · + 4xy) -- + 2x- + 6 -, . . a u- au av au av 2 

. a2w Example 3 Let w = w(t) , t = t(x , y). Fmd -2 • ax 
Solution: From Fig. 4 ,  

Now differentiate again with respect to  x. Since t is a function of x and y, at /ax is also a function of x and y. The function dw/dt has the same dependence diagram as w (Fig. 5) so it, too, is a function (eventually) of x and y. Therefore, use the product rule to obtain a2w dw a2t at a (dw) ax 2 = df ax 2 + ax ax df The derivative of dw / dt with respect to x is found using the path from dw / dt to x in Fig. 5. Thus 
(4) 

a2w _ dw a2t + a t  d2w a t  _ dw a21 + ( at) 2 d 2w . ax 2 dt ax 2 ax dt 2 ax dt ax 2 ax dt 2 

Warning l . The expression ( ::) 2 in (4) is the square of the first-order . at d . h h d d . 1 iJ2t partial - an 1s not t e same as t e secon -or er parlla -2 • ax ax 2. Don't forget to use the product rule when necessary. 
3 3 2 . d a2w . h h . 1 . (4) Example 4 Let w = t ,  t = x · y . Fm -. usmg t e c am ru e m ax ·  and then verify by  finding the partial directly. 

Solution: We have at - = 3x 2y 2 ax Substituting in (4) gives 
a21 - = 6X)' 2 ax 2 ' 

dw - 3 2 - - t dt ' 
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o2w - = 3t 2 • 6xv 2 + (3x2y 2)2 • 6t 
ox2 

(5 ) = 3(x3y 2)2 • 6xy 2 + 9x�y 4 • 6x3y 2 = 72x7y6
• 

Directly, w = (x3y 2 )3 = x9y 6, so :: = 9x8y6 and �:� = 72x7y6
, which agrees with (5 ). As noted in the preceding section, it is not the purpose of the chain rule to produce derivatives of particular functions, as in this example, since the direct approach is usually faster. It is meant for more general problems such as computing the Laplacian of an arbitrary function v in polar coordi­nates (see Problem 5 and its solution). 

Problems for Section I 1.4 
a2 1 . Let p = p(a, b), a = 3u + 4v, b = 5u + 6v. Find � .  
au 

J2 2. If z = z(x,y) where x = 31, y = 41, find dt: . 
a2 3. Let u = u(x,y) , x = 2a + 3b, y = a 2b. Find -b u . a aa 

- - , • 
-

2 • d 2w 4. Let w - w(x, y) ,  x - I , y - I . Fmd dt 2 • 5. Let v = v(r, 8) where r = Vx2 + y2 and 8 = tan- • y/x. 

(a) Show that ar = � and atJ  = - L .  
ax r ax r2 

a2r y 2 a28 2xy (b) Show that - = - and - = - . 
ax • r5 ax 2 r 4 

(c) Find a\ and simplify using parts (a) and (b). 
ax 6. Let v = v(x,y) ,  x = x(t), y = y(t). Find v11 • 7. Show that if w is a function of x and I but contains them only in the forms 

p = x - ct, q = x + ct where c is a constant, then c 'w .. - w,, = 4c 2w"'. 
1 1.5 Maxima and Minima 

The process of maximizing and minimizing functions of two variables is similar to the one-dimensional case. We will begin with relative maxima and minima, and then concentrate on absolute extrema. 
Relative extrema The function /(x, y )  has a relative maximum at (x0, y11) if /(xu,Ju )  ;;,; /(x, y )  for all points (x,y) near (xo ,]11) . Similarly, f has a relative 
minimum at (xu, Ju ) if /(xo, Yo) s /(x, y) for all points (x, y) near (x0,yo) . Suppose the function/(x,y) has a relative maximum value at the point (x0, y0) .  Then the graph of / has a peak there (Fig. 1). I f/(x,y ) is the tem­perature at the point (x, y) ,  then the point (x11 , y0) is a hot spot surrounded by lower levels of temperature (Fig. 2) .  
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As in the one-dimensional case, there is a connection between relative extrema and zero derivative.t Consider Fig. 2 which shows a relative maxi­mum of f at (xu,yu), If a particle moves east through (x0, y0) so that the temperature is a function of x alone, it experiences a relative maximum temperature at x = x0• Therefore, by the theory of relative extrema for functions of one variable, 
( 1 )  

Similarly, if the particle moves north through the point (x0, y0) ,  s o  that the temperature is a function of y, it feels a relative maximum when y = y0• Thus, 
(2 ) a1 1 = 0 .  ay x =xu, r = ro  Alternatively, ( I )  and (2) hold because the partials of f are the slopes on the curves of intersection of the graph off (Fig. I) with the planes x = x0 and y = y0, respectively, and each curve of intersection has a peak with a zero slope when x = xo, y = Yo• In general, if f (x, y) has a relative extreme value at (xo, )'o) then both a f / ax and a f / ay are zero at (x0, y0) ;  that is, both ( 1 )  and (2) holrl. Equivalently, if either of the partials is nonzero at (x0 , y0) ,  then f cannot have a relative extreme value at 
(x0, y0) .  On the other hand, if both partials are zero at (Xo,Yo ), then a relative extreme value may (Figs. 1 and 2), but need not, occur. As an example of the latter, let f be the function with the level sets in Fig. 3 and the graph in Fig. 4. If a particle moves east through (x0, y0) in Fig. 3, it experiences a relative minimum value off at the point, so ( l ) holds. Alternatively ( I )  holds because the curve of intersection of the graph off with the plane y = Jo, namely, the curve BAC, has a valley at the point A = (x0, y0, 6 ), with slope 0. On the other hand, ( 2 ) holds for the opposite reason. A particle moving north through the point (x0, y0) in Fig. 3 feels a relative maximum value of J at the point, and the curve of intersection of the graph off with the plane x = xo, namely, the curve DAE, has a peak at the point A .  Therefore (2 )  holds in addition to ( 1 ), but f does not have a relative extreme value at (xo,Jo) , If both a f /ax and a f / ay are zero at (xo, Ju ) then (xu, Yo) is called a critical point, and /(x0 , y0) a critical value, off The preceding discussion shows that 

tin one sense, we take a narrower approach in the two-dimensional case. We assume that 
f(x,y) is finite at every point in the plane and that the partial derivatives always exist, assump­
tions we did not make for f (x). 
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the list of critical points includes all the relative maxima, all the relative minima, and possibly nonextrema as well. In other words, the critical points are the only possible candidates for relative extrema. There is a second derivative test, involving[." ff) and f.., for determining whether a critical point is a relative maximum, a relative minimum, or neither. We omit the test since our intention is to use relative extrema to help locate absolute extrema, and for that purpose , as in the one-dimensional case, it is not necessary to classify the critical points. 
Absolute extrema The standard one-dimensional extremum problem is to find the largest and smallest values of f(x) in an interval [a, b]. The standard two-dimensional problem is to find the largest and smallest values, that is, the absolute extrema, off(x, y )  in a region in the plane. We will refer to absolute extrema simply as extrema. In physical problems, a region arises from restrictions on the indepen­dent variables. If f(x, y )  is the profit when a factory hires x women and y men, then x 2!: 0, y 2!: 0, and perhaps x + y :s 500 by Fire Department safety regulations. In that case, Fig. 5 shows the region of interest. 

F/6 . £ 
The procedure for finding extrema of f(x, y) in a region in the plane is analogous to the method used for f(x ) in [a, b]. An extremum occurs either on the boundary of the region (Fig. 5 )  or at one of the relative extrema. Thus, to locate the extrema, choose from the following candidates. 
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(A)  Critical mlues of f: Find the critical points by solving :� = 0, 
aJ O 1· . . k / . .  l . ay = , a system o two equations m two un nowns . gnore crillca points 
not in the region . The corresponding list of critical values contains all the relative maxima and relative minima, and possibly some values off of no particular max/min significance. It is not necessary to decide which critical value serves wh ich purpose. Include them all in the candidate list without classifying them. 

(B)  Boundary values of f: For a function f(x) defined on an interval 
[a , b] , the end valuesf(a) and.f(b) are among the candidates. The analogous candidates for a function .f(x, y) defined in a 2-dimensional region are the boundary values off. A difficulty arises here that did not occur for a function of one variable. A region in the plane has infinitely many boundary points , while an interval [a , b] has only two endpoints. I nstead of putting all the boundary points on the candidate list, we will use a select few, as demonstrated in the examples . 
Example I Let ( 3 )  f(x ,y )  = x�_v - 80x . We will find the maximum and minimum values off in the region bounded by the curve y = x :1 and the line through the points ( I ,  l) and (3, 27 ) ( Fig. 6) . l ff(x, y) is the temperature at the point (x,y) ,  we are finding the highest and lowest temperatures in the region. We are also finding the highest and lowest points on the graph off over the region. In this example, both the function / and the region in Fig. 6 were chosen arbitrarily. In Example 3, we will begin with a physical situation which gives rise to a function and a region. I n  any event, the region is not the graph of the function (the graph is a surface in 3-space over and/or under the region) , nor in any way related to it . You may think of the region as a city whose residents wish to find the hottest and coldest points within the city limits. There are two types of candidates , critical points and boundary points. 

Critical points The partial derivatives are a f = 2xy - 80 and a f = x 2• ax ay The critical points are the solutions of the system of equations 2xy - 80 = 0, x 2 = 0. The second equation is satisfied only when x = 0, but substituting 
x = 0 in the first equation produces - 80 = 0. Therefore the system has no solution and there are no candidates from this source. 

The boundary y = x 1 To avoid having infinitely many boundary points on the candidate list, we will choose only the best, and use as candidates the hottest and coldest of the boundary points. To find them, proceed as follows. Solve the equation of the boundary for x or y and substitute into (3 ) ,  so that the temperature on the boundary is exf,ressed in terms of only one variable. Choose whichever variable makes the algebra easier. In this case, if y is replaced by x 3 (rather than x replaced by y 1 13 ) we have (4 )  f = x ·• - 80x . 
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The function in (4) gives the temperature at the point (x, y) on the curve y = x 3• To find the extreme temperature on the curve between the points ( 1 ,  1) and (3 ,  27) ,  maximize and minimize the function of one variable in (4) , for 1 s x s 3. In general, each boundary curoe gives rise to a standard one­dimensional subproblem for a function of one va1iable on an interval. The candidates for the extrema are the critical numbers and the ends of the inten,al. To find the critical numbers here, differentiate (4) to get f' (x) = 5x 4 - 80 and solve 5x4 - 80 = 0. The solutions are x = ±2 ,  but -2 is outside the interval [ l ,  3] so it is discarded. Therefore the candidates in the subproblem are the critical number x = 2, and the endpoints x = 1, 3. Each candidate detennines a point on the boundary; the other coordinate of the point may be found by substituting in the equation of the boundary, y = x 3 in this instance. If x = 1 then y = 1; if x = 2 then y = 8; if x = 3 then y = 27. Therefore the candidates for the hottest and coldest points on the boundary y = x 3 are ( 1 ,  1), (2 , 8) and (3, 27). Put them on the list of candidates in the original problem. 
The straight line boundary The line has s lope 13 and equation y - I = 13(x - 1), or (5) y = l3x - 12 .  Substituting 13x - 12 for y in (3) produces (6) f = x 2( l 3x - 12) - 80x = 13x 3 - 12x 2 - 80x . Since the boundary is only that portion of the line between the points ( 1, l )  and (3 ,  27) ,  the subproblem involves (6 )  restricted to the interval l s x s 3 .  ( If we had solved (5) for x and switched to f as a function of y alone, the interval would be l s y :S 27.)  Then f' (x) = 39x 2 - 24x - 80, and the critical numbers are the solutions of 39x 2 - 24x - 80 = 0. By the qua-d · r, I . 24 ± Vl3056 rauc ormu a, the solut10ns are x = 78 . The value of x corre-sponding to the minus sign is negative, hence outside the interval [ I ,  3] and irrelevant. The other solution is approximately 1 .77. Therefore the candidates in the subproblem are the critical number I. 77 and the end­points x = l, 3. The corresponding values of y are found by substituting in (5) , the equation of the boundary. If x = l then y = I ;  if x = 1.77 then y = l 1.04 approximately ; if x = 3 then y = 27. Therefore the candidates for the hottest and coldest points on the straight line boundary are ( 1 ,  1) , ( 1. 77, I 1.04) and (3 ,  27). 
The list of candidates There are no critical points so the list contains only the boundary candidates ( Fig. 6). For each candidate, the correspond­ing value off is found from (3). 

point ( 1, l) ( 2 , 8) (3, 27) ( l.77 ,  1 1 :04) 

value off - 79 - 128  
3 - l 07. 1 1  approximately 

The value of f at a boundary point may also be found from the one­dimensional version off on the boundary. For example, instead of substi-
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tuting x = 2, y = 8 into (3 ) to find f = - 128 ,  it is also possible to merely substitute x = 2 into (4) . The table shows that the maximum value off in the region is 3 and the minimum value is - 128 .  
Warning I . A standard two-dimensional extremum problem involves a function f(x, y) and a region with one or more boundaries, each with an equation in x and y. The boundary equations are never differentiated. A bound­ary equation is used to express f as a function of one variable, and it is the function f that is differentiated. 2. Each boundary subproblem involves a function of one variable on an interval ,  and the ends of the interval are automatically candidates in  tha t  one-dimensional problem .  Don't forget them.  As a consequence, the vertices of a region (points at which the boundary changes equation) are always candidates . 3. Check to see that each candidate is in the region. It is sil ly to locate the region's hottest spot at a point outside the region .  
Example 2 Suppose we want  to find the maximum and m in imum values of 
( 7 )  f(x ,y )  = x 2 + 3_v 2 - 2x  in the x,y plane, an  unbounded region. I n  one-dimensional calculus, to find the extreme values off(x) on the unbounded interval [a, 00) ,  we con­sider the ord inary end value /(a) , critical values, and the "end" value /(x) . Similarly, to find extreme values off(x,y) on an unbounded region, we consider ordinary boundaries ( if there are any) , critical points ,  and a hypo­thetical boundary at infinity, represented in Fig. 7 by the jagged curve "very far" from the origin .  I L  is frequently the case that a function blows up somewhere on the boundary at infinity, and this possibility should be ex­amined first. 

Consider a north path to the boundary at in finity along the y-axis. Set 
x = 0 in (7) and let _): -> x to see that the limiting value off is lim, .1 3/ = x. 
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In fact, / -+  :x: on any path toward the boundary at infinity because x2 and y 2 are always positive, and x2 has a higher order of magnitude than 2x. Therefore, we have identified the maximum value of/, namely :x:, but we still need the minimum. The only place it can occur is at a critical point. The partial derivatives are a f 

= 2x - 2 ,  :/ 
= 6y. The system of equations ax ay 2x - 2 = 0, 6y = 0 has the solution x = 1, y = 0. Therefore/ has its mini­mum at the point ( I ,  0). Since /( l , 0) = - 1, the minimum value is - 1. The maximum and minimum can also be found without calculus. Com­plete the square to obtain /(x,y) = (x - 1)2 + 3y 2 - I .  By inspection, the maximum is :x: when x or y approach :too; and the minimum occurs when the square terms are 0, that is, the minimum is - 1  when x = 1 and y = 0.  The graph of z = (x - 1)2 + 3y 2 - l is a paraboloid (Fig. 8) with vertex ( I ,  0, - 1) .  

Example 3 A company making clocks and radios earns a profit of $40 per clock and $60 per radio. Three machines, A ,  B and C, are involved in the manufacturing process. In its construction, a clock requires 2 hours of time from machine A ,  1 hour from machine B and l hour from machine C. A radio requires 1 hour from A ,  1 hour from B and 3 hours from C. Machine A is available for at most 70 hours a week, B for at most 40 hours a week and C for at most 90 hours. Table 1 summarizes the data. 
Table 1 

clock radio $40 profit $60 profit machine A 2 hours 1 hour available 70 hours machine B 1 hour 1 hour available 40 hours machine C l hour 3 hours available 90 hours 
The problem is to decide how many clocks and radios to manufacture each week so as to maximize the company profits. To begin, let x be the number of clocks to be made and y the number of radios. Then the profit p is given by the function 
(8) p = 40x + 60y . With no restrictions on x and y, p can be made unboundedly large. However x and y are restricted by the limited availability of the machines. If each of the x clocks requires 2 hours from A , and each of the y radios requires 1 hour from A, but A �annot be used for more than 70 hours, then (9) 2x + y s 70 . Similarly, ( 10) x + y s 40 and x + 3y s 90 . 
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Furthermore, 

( l l )  x � 0 and y � 0 .  

The inequalities in (9)-( l  l )  determine a region in the plane. To sketch the 
region, first draw the lines 2x + y = 70, x + y = 40 and x + 3y = 90 
(Fig. 9) . The line 2x + y = 70 determines two half planes, one of which is 
2x + y < 70 and the other 2x + y > 70. The origin, which lies in the lower 
half plane, happens to satisfy the inequality 2x + y < 70, so we conclude 
that (9) is the l ine together with the lower half plane. Similarly the in­
equalities in ( IO) are lines plus lower half planes. Points are further re­
stricted to quadrant I by (l l ) .  Figure 9 shows the points (x, y) satisfying all 
the inequalities, namely, the polygon ABCDE which lies under each line, 
and within quadrant I .  The coordinates of the vertices are obtained by 
finding the intersections of pairs of lines. 

7o 

40 

C: .... 40 '/0 

F I G . 9  
We have finally reached the stage where Examples l and 2 began; we 

want to maximize the function p(x, y) where (x, y) is restricted to the region 
ABCDE. 

The partial derivative ap / ax is 40, never 0, so even without considering 
ap/ay, there are no critical points. It remains to examine the boundaries. 

Consider the line AB with equation x + 3y = 90. Solve the equation 
for x and substitute in (8) to obtain 

p = 40(90 - 3y) + 60y = - 60y + 3600 . 

The boundary AB is that part of the line between the points (0, 30) and 
( 1 5, 25) , so y is restricted to the interval [25, 30]. Since p ' ( y) = -60, the 
derivative is never 0, and there are no critical numbers in this subproblem. 
The only candidates are the endpoints y = 25 and y = 30 ,  which produce 
the candidates ( 15 ,  25) and (0, 30) in the original problem. Similarly, the 
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other boundary subproblems produce no critical numbers and the only candidates that emerge are the vertices A, B, C, D and E .  For the final decision, compute p(0, 30) = 1800, p( l5, 25) = 2 100, p(30, I O) = 1800, p(35, 0) = 1400, p(0, 0) = 0. The list shows that the maxi­mum profit ($2 100) is obtained when the company manufactures 15 clocks and 25 radios each week. The maximum can also be located using the level sets of p, a collection of parallel lines. For example, the 0 level set is the line 40x + 60y == 0; the 1000 level set is the line 40x + 60y = 1000 (Fig. 10) .  To superimpose the level lines on top of the polygon, note that the level lines have slope - 2/3 , line AB has slope - 1/3, and line BC has slope - I .  Therefore the level lines are not as steep as BC, but steeper than AB. The higher levels do not intersect the polygonal region at all, indicating that the factory cannot make a million dollar profit. From the inclinations of the various lines, we see that the first level line to hit the region from above does so at point B. Therefore, of all points in the region, B has the largest value of p, and the company should manufacture 15 clocks and 25 radios. 

FI G . 1 0 
Maximizing and minimizing a linear function with linear inequalities restricting the variables is called linear programming. Such problems occur frequently in economics and operations research. In the two-dimensional case, the inequalities determine a polygonal region, and the example shows that the maximum value occurs at a vertex of the region. In most applica­tions, the number of variables is much larger than 2, and entire courses are devoted to techniques of solution. 

Warning Example 3 asks for the location of the maximum, so the answer is x = 15, y = 25 .  If the example had asked for the maximum value then the answer would be 2 100. Make your answer fit the question. 
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Problems for Section 1 1.5 
I. Find the maximum and minimum values of /(x,y) in the indicated region . 

(a) 3xy - 2x 2 + 2y + 8, region in quadrant I bounded by the axes and 
y = 3 - x 2 

(b) 3xy - 2x 2 + 2y + 8, region in Fig. 1 1  
(c) 2x - 3y, region bounded by y = x2 and y = 4 
(d) x 2 + x 2y - y, region where x 2 + 2y 2 !i 4 

2. At what points does the function have maximum and minimum values in 
the region . 

(a) x 2 + y 2 + 3xy + IOx in the triangular region with vertices (0, 3) ,  (5 ,  3) ,  
( - 1 ,  - 3)  

(b)  x 2 + 2y 2 + x in the region bounded by circle x 2 + y 2 = I 

3. Find the maximum and minimum values of the function in the x,y plane. 

(a) 6y - 2x - x 2 - y 2 (c) x2 - xy + y 2 + 2x + 2y - 4 
(b) x 2 + xy + 3x + 2y + 5 (d) x 2 

- 2xy - y 2 + y 

4. Find the point in the plane 3x + 2y + z = 14 which is nearest the origin .  
5. Find the distance from the point ( I ,  3,  0) to the plane 2x - 2y + z + IO  = 0 

(a) using formula (6 ' ) in Section 10 .2 (b) by solving a minimization problem. 

6. Consider the skew lines x = 2 + 21, y = 3 - 21 ,  z = 4 + 41 and x = I + I, 
y = 2 + I, z = 7 + 31.  Find the points of closest contact on the lines. I n  other words, 
of all points A on the first line and all points B on the second line, find the two such 
that distance AB is minimum. 

7. A rectangular tank with an open top is to be built to hold 256 cubic feet. The 
builder is anxious to conserve materials, so the worst option maximizes surface area 
and the best option minimizes surface area. (a) Find the worst option. (b) Find the 
dimensions of the tank with minimum surface area. (c) Suppose the tank must 
stand on a 4-by-20 plot of land so that the dimensions x and y of the base are now 
restricted to O :s X" :s 4 and O :s y s 20. Find the dimensions that minimize surface 
area under these conditions. 

1 1.6 The Gradient 
In this section we wil l  frequently think of /(x, y) as the temperature at 

the point (x,y) so that we can express results more concretely. Assume that 
distance is measured in meters. 

In Section 1 1 .2 we saw that a f / ax at a point is the rate of change off 
(degrees per meter) along an east path through the point; similarly, a f /ay 
is degrees/meter along a north path. In this section we will find rates of 
change in an arbitrary direction. 

Directional derivatives Let f be a function of two or three (or more) 
variables. The instantaneous rate of change off (degrees per meter) in the 
direction of a vector u is called the directional derivative off in the direction 

of u and is denoted by Du[ (or ¾f, or ¥s where s represents distance). I f/ 

is a function of two variables then the partial derivatives a f / ax and a f I ay 
are the special directional derivatives D;f and Dif 
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We will develop a formula for D.f by considering a specific example 
first. Let/ be a function of two variables, with a f I ax = 7 and a f I ay = S at 
point A in the plane. Then, on an east path through A, the temperature is 
instantaneously increasing by 7° per meter, and on a north path, the tem­
perature is instantaneously increasing by S0 per meter. Suppose we want the 
rate of change in the direction of u = 2 i + 3 J. Figure l shows a step of 
Vl3 meters in the direction of u, visualized as the superposition of a 2 meter 
east step and a 3 meter north step. If the temperature rises by 7° per meter 
on the east leg and by S0 per meter on the north leg, then, on the original 
step of V13 meters, the temperature rises by 7 x 2 + S x 3 degrees, at the 
rate of 

( l) 7 X 2 + S X 3  
Vl3 

degrees per meter . 

The analysis is incomplete since we want the instantaneous rate of change at 
A in the direction of u, and a step of Vl3 meters is too large. In fact, the 
7° /meter and S0 /meter rates are themselves instantaneous rates at A and do 
not necessarily persist for the entire 2 meter east leg and 3 meter north leg. 
So consider the situation in Fig. 2 with steps a tenth as large as before. Then 
the rate of change of temperature along the hypotenuse, in the direction of u, is 

2 3 7 x - + S x -
10  10  

Vl3 
10 

degrees per meter 

which simplifies to ( l )  again. As the computation is repeated for smaller and 
smaller steps, ( 1)  is obtained each time, so we may take it to be the instanta­
neous rate. As a generalization of ( 1 ) ,  if ii = u 1 i + u2j then 

(2 ) 
� U 1 + � U2 _ ax oy n.f - !lull 

We will digress briefly so that we may rewrite (2) in a more useful form and 
give it geometric significance. 

A---� 
1 joM�"TtRS 
7• r i  R M£TER. 

F IG . 7--.. 
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I f  f is a function of x and y, the vector Vf, called the 1vadient off, is defined by 
(3 ) 

Similarly, if f is a function of x, y and z, then 
(4) 

. . x� . 2x � x� � . To illustrate the idea, suppose f (x, v) = - . Then V'j = - 1 - � , .  There ,.s . 
y y _v--

a gradient vector at every point, which we picture as an arrow attached !u the eoint. At the point A = (3, I )  for example the gradient vector Vf is 6 i  - 9 j ;  we use the notation V fl ,= :1 .,= 1 = 6 J - 9 J and draw the gradient as an arrow with its tail at the point (3 ,  I )  (Fig. 3). We may now write the numerator in (2) as the dot product Vf · u, and use ( 12) of Section 9 .3: 
(5 ) 

Vf D.f = l luil u = component of VJ in the di rection of ii .  
D d  may be visualized as the signed projection of Vf unto ii. It is 
positive if Vf makes an acute angle with ii, and negatii,f if Vf makes 
an obtuse angle with ii; its absolute i1alue is the length uf the pnjfftiun 
of V / on a line in the direction u{ ii. 

E�ampJe l Let's cont inue wi th f(x , y )  = x i /y , A = ( 3 ,  I )  and V/ 1 1 = 6 i - 9 j. We will find several directional derivatives off at the point A . (a) (Fig. 3) Consider a northeast path through the point ,  that is, a path in the direction of the vector ii = ; + ]. The directional derivative is 
VJ · ii 3 D,..,,.,h,ast[ = imr = - \12 , 

3 so the temperature is dropping instantaneously by V2 degrees per meter as a particle moves northeast through point A .  Figure 3 shows that Vf forms an obtuse angle with the northeast direction ,  corresponding to the negative value of D 11. ,11 1,e.,,,_r The projection of VJ onto the northeast direction has 
I 3 d h . d . . . -3 ength V2 , an t e szg,u pn>Jectton 1s V2 . (b) (Fig. 4) Suppose a particle moves through point A at an angle of 70° with the positive x-axis. A unit vector in the direction of the path is v = cos 70° i + sin 70° J and, since llvl l  = l, we have DJ = VJ · v = 6 cos 70° - 9 sin 70° . (c) (Fig. 5) Consider the path from A toward the point ( l ,  - 7) ,  that is, a path in the direction of the vector u = -2i - 8]. Then 
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-
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so a particle moving through point A and heading toward the point ( l , - 7) 
feels the temperature rising instantaneously by 60/V68 degrees per meter. 

Warning l .  The rate of change in (6) is an instantaneous rate at A .  Once 
a particle takes a small step past A ,  it is at a new point with a new gradient, 
and a new rate of change prevails. The temperature does not continue to 
rise by 60/V68 degrees per meter as the particle moves along. 

2. Note that in (6), it is (-2 ,  - 8) ,  not ( l , - 7) .  In the formula for D.f, it 
must be a direction, that is, a vector, not a point toward which the particle 
moves. 

Zero directional derivatives and maximum directional derivatives The 
projection of a vector in a direction perpendicular to that vector is 0. Since 
D.f is a signed projection of V/, D,f is O in a direction perpendicular to Vf In 
other words: 

If a particle moves through a point in a direction perpendicular to V fat that point, 
it instantaneously feels no change in the temperature. 

In 2-space there are only two directions perpendicular to Vf; in 3-space, 
there are infinitely many such directions (Figs. 6 and 7) . 
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The projection of a vector is maximum in the direction of the vector 
itself; the maximum value is the vector's own length. Since the directional 
derivative is a signed projection of Vf, we have the following results. 

D.f at a point is maximum in the direction of Vf itself. The value of the maximum 
directional derivative at a point is ffV/11- In other words, if a particle moves in 
the direction of Vf, the temperature rises IYy IIV/11 degrees per meter, the maximum 
possible rate. The gradient is said to point in the direction of steepest ascent off. 
In the direction of it = - Vf, D.f is minimum; the temperature drops IYy 
IIVfll degrees per meter, the steepest possible drop (Figs. 6 and 7). 
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Consider Example l again where VJ = 6i - 9 J at the point A = (3 ,  l )  
(Fig. 8) .  O n  a path through A i n  the direction o f  6 i  - 9 J, the temperature 
rises by I IV/11 = \Im degrees per meter, and this is the maximum rate 
available at A. In the direction of -61  + 9], the temperature falls by v'IT7 
degrees per meter, the maximum drop. In the two directions which are 
perpendicular to VJ, namely, 3 i  + 2] and - 3i  - 2], the directional deriva­
tive is 0 .  

q mn ,rr 
/ 

MAX 0-tf 
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Warning In  Example l ,  to attain the maximum rate of change of tem­
perature at A, a particle should move from A in the direction of the vector 
61 - 9], not toward the point (6, -9) . 

The gradient of/ and the level sets of/ In Example l ,f(3 , l) = 9 so point 
2 

A lies on the 9-level set, :_ = 9, or v = bx 2, a parabola (Fig. 8) .  I f  a particle 
y 

moves along the level set ,  the temperature f does not change. On the other 
hand, if  it moves from A in the direction of VJ, the temperature changes 
maximally. This suggests that VJ points "directly away" from the level set, 
that is, in a perpendicular direction. To see this from another point of view, 
note that in directions perpendicular to VJ, D.f is 0, so these directions 
coincide with tangents to the level set ;  therefore VJ itsel f is perpendicular 
to the level set. 

In general, if f is a function of two (Fig. 8) or three (Fig. 9) variables , 
V f at a point is perpendicular to the level set off through the point. Of the two 
perpendicular directions in each case, f points toward higher levels. 

(At any point, heat flows in the direction opposite to Vf at that point, since 
heat flows down temperature hills from hot to cold ; in particular, it flows 
in the direction in which temperature drops most rapidly. Therefore heat 
flows on paths perpendicular to level sets of temperature . In 2-space, the 
heat flow lines are the orthogonal trajectories (Section 4.9) of the tempera­
ture level curves. )  

Normal vectors to a surface As a by-product of the directional derivative, 
given a surface in space, we can find a normal vector (that is, a perpendic­
ular) at any point. To illustrate, we will find a normal to the paraboloid 
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x = y 2 + z 2 + 4 at the point P = (6, I ,  I ) ,  and then find the tangent plane 
at the point. Rewrite the equation as 

( 7 )  y 2 + z 2 + 4 - X = 0 
so that we can think of the paraboloid as the O level set of the function 
h(x, y, z ) = y 2 + z 2 + 4 - x (Fig . 9) .  Then Vh = - 1  + 2y ] + 2 z k  and 
V hi P = - 1 + 2 J + 2k. Since the gradient of a function at a eoint �s per: 
pendicular to the level set through the point, the vector - i + 2 j + 2k 
is perpendicular to the paraboloid at P. (There are two directions normal 
to the paraboloid , "in" versus "out." From Fig. 9. in which the vector is 
plotted fairly accurately, we see that - 1 + 2 J + 2k happens to be an outer 
normal, a distinction that is irrelevant in the problem) .  Besides (7 ) ,  we can 
write the equation of the paraboloid in other ways, say 

(8) y 2 + z 2 
- x = -4 , x - y 2 - z 2 = 4 , x - y 2 - z 2 + 1 7  = 2 1 . 

h i(x, y, z) h2(x, y, z) h3(x, y, z) 

Therefore the paraboloid can also be viewed as the -4 level set of h 1 , 

the 4 level set of h2 , the 2 1  level set of h�, and so on. Since V h 1 is the 
same as Vh while Vh2 and Vh� equal -Vh these methods produce either 
the same outward normal as before, or its negative, an equally acceptable 
inward normal. The tangent plane at P has - 1  + 2] + 2k as a normal 
vector, so an equation for the plane is - (x - 6) + 2(y - I) + 2(z - l )  = 0 
(Section 10 .2 ,  ( 1 ) ) ,  or -x + 2y + 2z + 2 = 0. 

In general , given a surface in 3-space containing point P, to find a 
normal vector to the surface at P, write the equation of the surface so that 
all the variables appear on one side (so that the surface is a level set) . The 
normal is the gradient of that side, evaluated at the given point. 

D;, z as a slope. Let : = f(x, y )  = 9 - x 2 - 2y 2, P = ( - 2� - 1 ) . • Then 
VJ = Vz = -2x i - 4yj ,  and at P we have z = 3 ,  Vz = 4 i  + 4 j .  The 
graph of/ is a mountain surface containing the point Q = ( - 2, - I ,  3); the 
level sets in Fig. 10 are the contour curves of the mountain. Climbers at Q 
can move in many directions on the mountain, such as north ,  southeast, 
WSW and so on. Note that these are two-dimensional directions (vectors) 
although the climbers are in three-space. The altitude z rises maximally on 
the path in the direction of Vz, that is, on a northeast path through Q, at the 
rate of IIVz l l = 4V'2 meters up per northeast meter. In other words, of all 
paths through Q on the mountain, the northeast path ascends most steeply, 
and its slope is 4V'2. (Note that we still do not admit slopes in 3-space in 
general. The slope of the northeast path is taken with respect to the indi­
cated plane in Fig. 10 . )  

Figure 1 1  shows the path through Q in the direction of u = - 5 I + J, 
mostly west and slightly north. The altitude z on the path is changing at 

h f D  Vz · u 16  . h • . . t e rate o • z == � == - \/26 meters up per meter m t e u d1recuon. 

The climber in Fig. 1 1  is descending; the path has slope - • � at Q. 
v 26 
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I n  general, suppose a surface (i .e . , mountain) in 3-space contains 
the point Q = (x0 , y0 , �) . Let u be a 2-dimensional vector. Consider the 
path on the mountain through Q in direction u ( Fig. 1 1 ) .  To find 
the slope on the path at Q, solve the equation of the surface for z ;  the 

. Vz • u slope 1s D. z = Tuf evaluated at x = x0,  y = y0•  Furthermore, the 2-

dimensional vector Vz l ,=,.,._,a_, 11 is the direction of steepest ascent up the 
mountain at Q and IIVz l l  itself is the slope of that steepest path. 

Warning Vz is not a 3-dimensional vector and does not point "up the 
mountain" or perpendicular to the mountain .  It is a 2-dimensional vector 
lying in the x, y  plane determining (above it) the path on the mountain of 
steepest ascent. 

Summary of normal vectors, slopes, direction of steepest ascent Con­
sider a surface in 3-space; as a special case we have the graph of f(x,y) with 
equation z = f(x, y) .  

To find a normal to the surface, write the equation of the surface with 
al l  variables on one side and take the (3-dimensional) gradient of that side. 

Given a 2-dimensional vector u, to find the slope at a point on the 
ti-directed path on the surface (Fig. 1 1 ) solve the equation for z and find 
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D. z = 

V ;ii.I I u . The (2-dimensional) vector V z itself points in the direction of steepest ascent on the surface. 
Example 2 Let f(x,y) = x2 + y 2 and let P = ( 1 , 2 , 5). Then P lies on the graph of f since f( l ,  2) = 5. (a) Find a normal vector to the graph of f at P. (b) Find the direction of steepest ascent at P on the graph of f (c) Find the slope at P on the northwest path on the graph of f 

Solution: (a) The equation of the graph of f is (9) z = x2 + y 2 • Rewrite the equation as z - x2 - y 2 = 0. Then V(z - x2 - y 2) = - 2xi -2yj + k, and V(z - x2 - y 2) j ,. = -2i - 4j + k, a normal to the graph off at P. (b) From (9), Vz = 2xi + 2yj, and Vz j ,. 1 .y.2 = 2i  + 4j, the direction of steepest ascent t1n t�e graph of f at P. (c) Let u = - i  + j, a vector pointing northwest. With the vector Vz f b h d . d l . Vz • u 2 rom part ( ), t e esire s ope 1s D;. z = � = V2 . 
Warning Consider a function/(x, y) and its graph z = /(x, y) ,  a mountain surface. The vector VJ is two-dimensional .  It is not perpendicular to the moun­tain. Rather, perpendiculars are three-dimensional and are found, as in (a) above, by rewriting z = f(x,y) as z - /(x,y) = 0 or as f(x, y) - z = 0 and taking the gradient of the lefthand side. The vector VJ (i.e., Vz) lies in the x, y plane, perpendicular to a level set of f It is called the direction of steepest ascent up the mountain but does not point up the mountain. It is a direction on the 2-dimensional map on the floor of the expedition tent (as illustrated in Fig. 10) . 
Problems for Section 11.6 1. Suppose the temperature at the point (x, y) is xy 2 + 6x + 3. Find the rate of change of temperature per meter experienced by a particle at point P = ( l ,  2) if it moves through P (a) southwest (b) toward the point Q = (3, - 4) (c) toward the x-axis (d) in the direction of V temp (e) WNW, i .e . ,  halfway between W and NW. 2. Let the temperature at a point (x,y) be x 2)'· A relay runner going northeast passes the baton at the point (2, 3) to a teammate who continues northeast down the track. What rate of change of temperature does each runner experience at the handoff? 3. Let /(x, y, z) = xy - y 2 + z and let A = (5, 2 ,  l ) .  (a) I f  a particle moves through A away from the z-axis, what rate of change of / is experienced? (b) I n  what direction(s) from A is / instantaneously not changing? (c) Suppose a particle at A and a second particle at B = (6, 4, 2) start moving toward one another. What rate of change of/ does each feel initially? If they move until they meet midway, what rate of change of f wil l  each experience as they pass one another? 
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(d) If f(x, y, z) is the air pressure at (x,y, z) then a cloud at point  A will move in 
the direction in which air pressure is decreasing most rapidly. Which way 
does it move initially, and what rate of change of air pressure does it 
experience? 

4. If a particle moves on the path in Fig. 12, does it feel the temperature 
increasing or decreasing as it passes through P ?  

PATH OF PARTICLE 

F / 6 . / )..  
5. Suppose that at the point P, D.J is maximum in the direction of 3 i  + 2], and 

the maximum value is 2 .  Find D,;f in the north direction at P. 
6. Let A = ( I ,  2) . I f  a particle moves through A toward the point ( I ,  I), the 

temperature is rising initially by 2° per meter; if it moves through A toward the point 
(7, 10) ,  the temperature is initially dropping by 4° per meter. In  what direction from 
A is the temperature rising most rapidly? Find the maximum rate of change of 
temperature at A .  

7. Find 'ii/ a t  the point P and sketch the gradient  vector and  the level set 
of/ through P if (a) f(x, y) = x 2y, P = (- 1 ,  2) (b) f(x, y, z) = x 2 + 2/ - z 2 + 4 ,  
P = ( 1 , 2 , I ) . 

8. Figure 13 shows some level sets of/ and g. Find the direction of 'ii f at A and 
of 'ilg at 8, and decide which gradient is longer. 

,o I 
✓ 

L[VfL s.:-r, oi= t 
F l6  . ) 3  

9. Suppose f(x,y) has a relative maximum value at P. Find 'ilf at P. 
1 0. Let f(x, y, z) be the distance from (x, y, z) to a fixed line L. Without finding 

a formula for f, sketch enough level sets and gradient vectors of f to indicate 
the pattern . 

I I . Consider the surface xyz = 12 and the point P = ( I ,  2, 6) . 

(a) Verify that P lies on the surface. 
(b) If mountain climbers at P want to climb on the steepest route possible, in 

what direction should they begin, and what slope do they encounter? 
(c) I f  the climbers move southeast from P, are they ascending or descending 

the surface? What is the slope at P on their path?  
(d )  Find a vector normal to  the surface at P, an equation for the tangent plane 

at P, and equations for the normal line through P. 
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1 2. Repeat problem II with the graph of/(x, y) "' 3x 2 - 2y 2 as the surface , and 
P = ( 1 ,  - 1 , 1 ) . 

IS. Let /(x,y) = 2x 2 + y 2. 

(a) Find Vf when x = 1, y = 3. 
(b) Find V(z - 2x 2 - y 2) when x "' 1 ,  y "' S . 
(c) The gradients in (a) and (b) are perpendicular to what curves or surfaces? 

14. Suppose the earth's surface is the ellipsoid x 2 + 2y 2 + 3z 2 "' 15, and the 
temperature in space at the point (x, y, z) is 2xz + y 2 + 6. You are in a space ship at 
the point P "' ( 1 ,  l, 2) on the earth's surface, about to be launched perpendicularly 
into space away from the earth (Fig. 14) . 

2: 

\ 

I 
I 

X. F I G . 1 4  

TAKf OFF 
MOTHE:R / DlltEc.nON 
N (e) IN  (a.) 

'j 

(a) Find this outward perpendicular direction. 
(b) What rate of change of temperature do you feel just as the ship begins to 

take off? 
(c) Your mother worries about you, and she wants the ship to take off from P 

not perpendicularly away from the earth, but in a direction in which tem­
perature is ,JtOt initially changing (she thinks that changes in temperature 
cause colds) . Find three specific directions (of the infinitely many available) 
which NASA can use to get no temperature change initially, if they care as 
much about your health as your mother does. 

(d) You may not have thought of this in part (c) , but you want the three specific 
directions to take you out into space and not burrowing into the earth 
(your mother would rather see you catch cold than crash). Check that your 
answers to (c) do not burrow, and change them if necessary. 

(e) Your mother has just proudly watched you take off and now walks north­
east off the field from point P. Find the slope at P of her path on the 
earth's surface . 

1 1. 7 Differentials and Exact Differential Equations 
Section 4.9 discussed separable differential equations. This section will solve another type of differential equation, called exact. 

Approximating a change in /(x,y) If y = f(x) and x changes by dx then Section 4.8 defined the differential of/ by dy = f' (x) dx, and showed that 
dy approximates the corresponding change in y. Now suppose that z = 
/(x, y) and x and y change slightly by dx and dy. We want to approximate the corresponding change in z. If /(x,y) is the temperature at the point (x, y) 
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dy 
F I G .  I then the change in z is the change in temperature as a particle moves from the point A = (x, y) to the point B = (x + dx,y + dy) (Fig. I ) .  On the east leg of the trip, f is a function of x alone, so z changes by approximately 

a f dx. Similarly, on the north leg, z changts by approximately a f dy. There-ax ay fore on a trip from A to B,  the superposition of the east leg and the north leg, z changes by approximately a f dx + a f dv.  We define the differential of ' ax ay · 
z = f(x,y) by 

( 1 ) dz = lj_ dx + a f dy ; ax ay thus, if x changes by dx and y changes by dy then the corresponding change in z is 
approximated by dz. Section 4.8 showed that if y = f(x) , then approximating the change in 
y by f' (x) dx amounts to approximating a change in the height of the graph off by the change in the tangent l ine. Similarly, it can be shown that if z = f(x,y) then approximating the change in z by ( I )  corresponds to ap­proximating a change in the height of the graph off by the change in the tangent plane. Mathematicians use the notation \7z for the change in z and use dz for the differential in (1) which approximates the change in  z. In applied fields, and in this text, the distinction between a f dx + a f dy and the change in z ax ay is often blurred , and both are referred to as dz ; i .e . ,  we often take the liberty of claiming that 
( l ' ) 

dz = lj_ dx + lj_ dy ax ay 
= change in z when x changes by dx and y changes by dy . 

Example I Let z = x 2
y

3. Then we write az az 
dz = - dx + - dy = 2xy 3 dx + 3x 2/ dy ,  ax ay meaning that if x and y change by dx and dy, respectively, there is a cor­responding change in z given approximately by 2xy 3 dx + 3x 2y 2 dy. 

Example 2 To find d (3q 2) ,  use the one-dimensional differential formula 
dy = f' (x) dx, since only one varible is involved, to get d (3q 2) = 6q dq. 
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Sum, product, quotient and chain rules for differentials Let u and v be 
functions of one or more variables. Then 

(2 ) 

(3 )  

(4) 

(5) 

d (u + v) = d (u) + d (v) 

d (uv) = u d (v) + v d (u) 

d(�) = v d (u) � u d (v) 
u u ·  

d [f(u)] = f' (u) d (u) . 

For example, d (ln u) = ..!.. d (u), d(sin u) = cos u d (u ) .  u 
A differential can always be found directly, using ( 1 ), but sometimes (2) - (5) 
are more convenient. For example to find d ln(2x + 3y) by ( 1 ) , we have 

But also 

d ln(2x + 3y) = o ln(2x + 3y) dx + o ln(2x + 3y) dy ox oy 
2 dx +  3 d . 2x + 3y 2x + 3y 

y 

d ln(2x + 3y) I = 
2 3 d (2x + 3y) 
X + ) 

(by (5 )) 

1 = 
2 3 (2 dx + 3 dv) 

X + ) 
(by (2 ) )  

= 2 dx + 3 dy 
2x + 3y 

Exact differentials Example 1 began with a function f(x,y) = x 2l and 
found its differential, df = 2xy 3 dx + 3x 2y 2 dy. To identify and solve exact 
differential equations we will be concerned with the opposite problem :  
given the differential expression 2xy 3 dx + 3x 2y 2 dy, find a function f(x ,y) 
with that differential . In  general ,  an expression of the form 

(6) p(x , y) dx + q(x , y )  dy 
is called a differential form. It is possible (indeed likely) that (6) simply is not 
d f for any f If there does exist a function f (x, y) such that 

(7 ) df = p(x ,y) dx + q(x, y) dy 
then the differential is called exact. I n  other words, (6) is exact 1f there is an f(x, y) such that 
(8 ) of = p(x , 'V) and af = q(x, y) .  ax - oy -
For example, consider the differential 

(3x 2y 2 + 2y 3 + x) dx + (2x 3
y + 6xy 2 + cos y + 7 ) dy 

p q (9) 
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The problem is to find /(x, y) ,  if possible, so that (7)  and (8) hold . Begin by 
antid i fferentiating p with respect to x to obtain the terms 

( 1 0) 

The derivative with respect to _\' of this tentative answer is 

(I I) 2x :1
)' 

+ 6xl. 

Compare th is  result wi th q in (9) . Since ( 1 1 ) lacks cos _l' + 7, expand ( 1 0) by 
adding sin y + 7y to obtain x :y + 2x/ + ½x 2 + sin J + iy. Note that  ex­
panding the answer does not change its partial derivative with respect to x, 
since the additional terms do not contain the variable x. Thus, the final answer, 
including the standard arbitrary constant, is f(x, y) = <v 2 + 2xi1 + ½x 2 + 
sin y + 7y + C. Check the answer by finding its partials to see that p and 
q are obtained . 

Example 3 Let 

( 1 2 )  p = 3x 2
y

2 + 2l and q = 2x :1y + 6xy 2 + 8x/. 

Try, but  find it impossible, to  obtain an f such that df = pdx + q dy. In  
other words, show that  p dx + q dy is not exact. Solution: Antidifferentiate p to obtain the terms 

( 1 3 )  

Differentiate this tentative answer with respect to  J to  obta in 

( 1 4 ) 

and compare with q. The term 8x_v 3 is missing from ( 14) and can be pro­
duced only if ( 1 3) is expanded to x 3

y
2 + 2xy :1 + 2xl, However, 2x_v 4 contains the variable x, so the expanded "answer" no longer has the desired partial p 

with respect to x. We conclude that it is not possible to find / with partials 
p and q; the d ifferential jJdx + q dy is not exact. 

A criteria for exactness Given p dx + q dy, one way to decide if there exists 
an f such that (7) holds, is to simply try to find it as in the preceding 
examples . I t  is also possible to develop a test for determining in advance if 
f exists . Then the antidifferentiation process for finding/ need be used only 
when the criterion guarantees the existence of/. We wil l  find the criterion 
and then use it in examples . 

af af a a ·'f oh ay 
I f (7 )  holds then - = p and - = q, so ..!J.. = --- and ::.L = --- ; ax ay ax ax oJ ay ay ax 

hence !!.!J. = !!P_ . I n more advanced courses the converse can be proved : if ax ay 
!!!J. = � then (7) holds .  We restate these results as our criterion : ax ay 

( 1 5) If !!!J. * � then p dx + q dy is not exact. ax ay 
( 16) If !!!J. = � then pdx + q dy is exact. ax ay 
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For example, let p(x , y) = xy and q(x,y) = x 5 + 2xy 3• Then � = 5x� + 2y :1 

and � = x . The two are not identical , so p dx  + q dy is not exact. If you 
iJy 

choose to not use the criterion and simply try to find/ so that p dx + q dy = 
df, you will find it impossible (as in Example 3 ) ;  thus you will, in a more 
roundabout fashion, conclude that p dx  + q dy is not exact. 

A table of exact differentials You have already seen that integral tables 
are available to help in antidifferentiation problems. Similarly, there are 
tables of exact differentials to facilitate finding/ such that d f = p dx + q dy. 
In ( 1 7 )-(22) , we select some items from the tables for reference: 

0 7) 
v dx - x dy = d(=-) y 2 

)' 

( 1 8) 

( }9) 

(20) 

(2 1 )  

(22)  

x dy - y dx = d(1..) x 2 X 

- 2x dx - 2y dy = (-I-) (x2 + y2)2 d x 2 + y 2 

x dx ; y d): = d ( ± \lx 2 + y 2) 
± Vxi + Yi 

2x dx + 2y dy = d ln(x 2 + 2) 

x2 + y 2 Y 

-y dx + x dy ( _ v )  �---.......... = d tan • .... .  x2 + J "  X 

2x - y 3 
Exact differential equations Consider the equation y ' = 3 2 . Then 

xy 
d\• 2x - y 3 
::L = • so 3xy 2 d\' = (2x - v 3 ) dx ; the equation is not separable 
dx 3xv 2 • -

(Section 4:9) .  Now we try a second approach . Write the equation as 

(23)  ( y 3 - 2x} dx + � dy = 0 . 
p q 

Since � = � (=  3y 2) ,  the left side of (23) is an exact differential df. To ux iJy 
find/, antidifferentiate p with respect to x to obtain the terms xy 3 - x 2• The 
derivative of this tentative f with respect to y is 3xy 2, precisely q, so the 
tentative f is final . Therefore the differential equation may be written as 
d (xy 3 - x 2) = 0. Since the differential is 0, if x changes by dx and y changes 
by dy, the function xy 3 - x 2 itself does not change. Therefore it is a constant 
function. (In general/(x,y) is constant if and only if df = 0, analogous to the 
one-dimensional result that f' (x) is constant if and only if f' = 0. )  Thus 
xy 3 - x 2 = K where K is an arbitrary constant, and this describes an implicit 
solution :v to the original differential e uation. The explicit solution is found 

x2 + K by solving for y to obtain y = 3 
-­x 
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In general, consider the differential equation p(x, y) dx + q(x, y) dy = 0 
a !!.P. where a! = 

ay . The left side of the equation is an exact differential, the equation 

is called exact, and there is a function f(x, y) such that the equation can be written 
as df = 0. The solution y(x) to the differential equation is given implicitly by 
f(x,y) = K. An explicit solution is found by solving the implicit solution for y if 
possible. 

If a differential equation can be written as df = dg (rather than simply as df = 0) then its solution is given implicitly by f(x,y) = g(x, y) + K. 

Example 4 (a) Solve v '  = 
x 2 

- y . (b) Find the particular solution satis--
X fying the condition y(3) = 1 . 

dv x2 - y 
Solution: (a) Write the equation as dx = -x- ,  or 

(x 2 - 1) dx - x dy = 0 . 
---._;,; ._,.., 

p q 

Since aq and !!J!. both equal - 1 , the equation is exact. In  particular, it may 
ax ay be written as d (fx3 - xy) = 0, so the solution is given implicitly by 

(24) 
I 3 - x  - xy = K ,  3 and explicitly by 

l O K y = 3x ·  - 7 , (25)  
(b)  To determine K, substitute x = 3, y = I in either (24) or (25) . Using (24) which is more convenient, we have 9 - 3 = K, K = 6, so the solution is y = ¼x 2 - 6/x . 

Warning The solution to (a) is not f(x,y) = fx3 - xy and is not ½x3 - xy. The solution is the function y (x)  defined implicitly by the equation 
¼x 3 - xy = K. 

Integrating factors Consider the e�uation y dx - x dy = y 3 dy. The right side is an exact differential, namely d (4 y 4) , but the left side is not exact since 
p(x, y) = y, q(x, y) = -x and � -/= !!J!.. However, compare the left side with 

ax iJy ( 1 7 ) to see that it can be made exact by multiplying by l /y 2
• Therefore, we multiply on both sides to obtain y dx � xdy 

= y dy. The left side is now an 
y exact differential, and fortunately, the right side remains exact. The equa-tion may be written as d(;-) = d(½y 2) ;  the implicit solution is 7 = ½y 2 + K. I t  is not convenient to solve for y and obtain the explicit solution, so we settle for the implicit version . 
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A factor, l /y 2 in this case, which changes a differential equation from nonexact to exact is called an integrating /actor. There is no precise rule for finding integrating factors, or for determining if one exists at all, but the exact differentials in ( 17)-(22) often serve as goals. 
Problems for Section 1 1. 7 

I . Check formulas ( 18)-(22)  by finding the differential indicated on the right­
hand side. 

z. Suppose a point has polar coordinates r, 8 and rectangular coordinates x,y. 
If r changes by dr and 8 changes by d8, find dx and dy. 

S. Decide if the expression is an exact differential d f, and if so, find f 
(a) 2xy dx + y dy (b) (x ' + 3x 2y) dx + (x 5 + y

9) dy (c) :2 dx + (5 - ;) dy 

4. Find q so that xy 9 dx + q dy is exact. 
5. Solve the differential equation if it is exact. Find the explicit solution when­

ever possible. 

(a) (6x 2 + y 2) dx  + (2xy + 3y 2) dy = 0 (e) (2r cos 8 - l) dr = r2 sin 8d8 
(b) (3x 2 + y) dx  + x dy = 0 (f) (x + y) dx  + (x 2 + y

2) dy = 0 

) , x - y cos x 
(c y = -----­

J + sin x 
(d) y ' = e'' 

(g) cos x cos y dx - sin x sin y dy 
= x ' dx  

( h )  ( y, -• - sin x) dx = (, -• + 2y) dy 

6. Find the particular solution satisfying the given condition. 

(a) 2xy dx + (x 2 + y) dy = 0, y( l) = 4 
(b) 2 sin(2x + 3y) dx + 3 sin(2x + 3y) dy = O, y(O) = 1r /2 

I I (c) -- dx + -- dy = dx, y = l when x = 0 x + y x + y 

7. The equation (x 2 + 2) dx + 3y dy = 0 is both exact and separable. Solve 
it twice. 

8. Find an integrating factor which makes the equation exact, and then solve. 

(a) (x 2 + y 2) dx  = x dy - y dx (c) v?'+7 dy = x dx + y dy 
(b) y dx - x dy = y 2 dx (d) x dx + y dy = (x 2 + y 2) dy 

REVIEW PROBLEMS FOR CHAPTER 1 1  

(a) 

(b) 

I. Sketch the graph and some level sets if 

/(x,y) = 2x + 3y 

/(x,y) = v?'+7. 
z. Sketch enough level sets off to indicate the pattern if 

(a) /(x,y, z) = y 2 + z 2 

(b) /(x, y, z) = 5 - x2 - 2, 2 - 3z2 • 

;i2 r a' r S. lf/(x,y, z) = xyz find (a) ..::_J.__ (b) -=-f-. ax az ax az 
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4. Show that if z = z(x, y) where x = r cos (J and _\' = r sin (J then 

( ilz)" I ( ilz ) 2 ( ilz)2 ( ilz) 2 
- + - - = - + -ilr r2 iJ(J ilx il_v · 

il2u 
5. If u = u(x, y, z) , x = 2a + 3b, \' = 3b + 4c, z = ac, find -- . • ila ilc 

6. Find the maximum and minimum ,·a lues of xv + 2\' 2 
- 12v in the indicated 

triangular region (Fig. I ) .  
· · · 

7. Let/(x, y) = 3x 2 + 4l. Of all the directional deri\'atives of J at all points on 
the unit circle x 2 + y 2 = 1 ,  find the maximum. In what direction and at what point 
does the maximum occur? 

8. Let f(x, y, z) = x 2
yz, P = ( 1 , 2 , 3) ,  Q = (0, - 1 , I ) . R = (2 , - 3, 5) .  If a particle 

arrives at P from Q and then leaves for R, find the directional derivative of J upon 
arrival and upon departure at P. 

9. Suppose the temperature T at the point (x, y) is x 2 
- _1·. 

(a) Find the level set of T which passes through the point ( - 2, 2) and find a 
vector perpendicular to the level set at that point . 

(b) Let Q = ( -2, 2, 2) .  

( i )  Verify that Q lies on the graph of T. 
(ii) Find a vector perpendicular to the graph at Q. 
(iii) Find the slope at Q on the northwest path on the graph. 
(iv) Find the path on the graph through Q which rises most steeply. 

1 0. The surface area S of a cylinder with radius r and height h is 21Trh + 21Tr". 
Find dS if r changes by dr and h changes by dh . 

1 1 . Find the explicit solution to y '  = 2 x  
x
- _v satisfying the condition _v( I )  = 2 .  
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12.1 Definition and Some Applications of the 
Double Integral 

In this section we will review the definition of the integral of a function of one variable, f� f(x) dx, and then define a new integral involving a func­tion of two variables. A comparison of the two integrals will reveal similar constructions and common applications. In the next section we will begin computing the new integral. 
Definition of the integral of /(x) on the interval [a, b] Given a function /(x) and an interval [a, b] on a line, divide the interval into many subin­tervals, not necessarily of the same length. Let dx be the length of a typical subinterval, and let x be a number in the subinterval (Fig. 1). For each subinterval, compute the value off at x and multiply by dx. Add the results from all the subintervals to obtain I /(x) dx. Repeat the process with smaller and smaller values of dx, which requires more and more subintervals. The integral of /(x) on [a, b] is defined by 
( 1) f6f(x) dx = lim "'i,/(x) dx . 

• dz -0  We think of the integral as adding many representative values off from the interval, each weighted by the length of the subinterval it represents. W ith a new integral about to be defined we will refer to ( 1 ) ,  which involves a function of one variable on a one-dimensional interval, as the single integral. 
Defmition of the integral of /(x,y) on a region in the plane (the double integral) Given a function /(x, y) and a region in the plane, divide the region into many small subregions, not necessarily of the same area. Let a typical subregion contain the point (x,y) and have area dA (Fig. 2 ). For each subregion, find the value of/ at (x,y), and multiply by dA. Add the results from all the subregions to obtain I /(x,y) dA. Repeat the process with smaller and smaller values of dA, which requires more and more sub­regions. It is likely that the resulting sums will be close to one particular number eventually, that is, the sums will approach a limit. The limit is called the double integral off(x,y) on the region and is denoted by freg:.on /(x,y) dA. 

0. ;c... 
<. > 
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(2) 

F I G . :Z 

In summary, 

f f(x, y) dA = lim L [(x, y) dA .  
r�gion d,1. ...0 

We think of the double integral as adding many representa­
tive values off from the region, each weighted by the area of 
the subregion it represents. 

The function [(x,y) is called the integrand and the region is called the 
region of integration. 

Common application of the two integrals to average value Suppose a city 
is divided into three boroughs, I, II, and III, with temperatures 68°, 72°, 
and 69°, respectively. Then the average temperature in the city is the 
weighted average of the three borough temperatures. Weigh each tem­
perature by the area of the borough , add, and divide by the sum of the 
weights, that is, by the total area of the city, to obtain 

68° x area I + 72° x area II + 69° x area I I I  average temperature = area of the city 
Now suppose that the temperature in the city (a region in the plane) is 
f(x, y) at the point (x, y), not necessarily constant over each borough. The 
problem is to find the average temperature in the city in this more general 
situation. Divide the city into many subregions (Fig. 2). Let a typical sub­
region contain the point (x, y) and have area dA .  Let the temperature f at 
the point (x,y) represent the entire subregion. To find the average tem­
perature, weight each subregion's representative temperature by the area 
of the region, add, and divide by the sum of the weights, that is, the total 
city area. Therefore the average temperature in the city is approximately 
L j(x, y) dA Th' . 1 . . b h . 

1 . 1s 1s on y an approx1mauon ecause t e representative tem-tota area 
perature chosen from each subregion does not necessarily prevail over the 
entire subregion. However, if the subregions are very small, then f doesn't 
have much opportunity to change within a subregion and remains more 
nearly constant. We expect the approximation to improve as dA - 0, and 
therefore choose 
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. ��� L f(x,y) dA LJ(x,y) dA average city temperature = total area = area of city . In general, we have the following two-dimensional model for average value: 
(3) 

f . f(x, y) dA average value of f(x,y) in a region in 2-space = "S'°" f . . area o region 
This extends the result in (3) of Section 5 . 2 :  
(4) 

r f(x) dx average value of f(x) on the interval [a, b] = •b - a  

Common application to computing a total amount given a variable den­sity We will illustrate the idea with total charge and charge density. Similar results hold for mass and mass density, population and population density, and so on. If the area of a region in 2-space is 10 square centimeters and it has a constant charge density of 4 coulombs per square centimeter, then its total charge Q is 40 coulombs (total charge is density x area ). Now suppose that a region has variable charge density f(x,y). To find the total charge, divide the region into many subregions and let a typical subregion contain the point (x,y) and have area dA (Fig. 2 ). Let the density of the subregion be represented by the value of f at the point (x,y) . Then, by the formula density x area, the charge dQ of the subregion is given approximately by 
dQ = f(x,y) dA. This is only an approximation to dQ because the represen­tative density f(x,y) chosen from the subregion does not necessarily prevail over the entire subregion. To find the precise total charge Q, add dQ's, and let dA -+ 0 to squeeze out the approximation error. Integration accom­plishes both tasks, so 
(5) total charge of a region = f . charge density f(x, y) dA . 

reg10n 

Similarly, if the charge density of a rod along the interval [a, b] is /(x) coulombs per centimeter at the point x, then 
b (6 ) total charge of the rod = f charge density f(x) dx .  

a 

Common application to the size of the region of integration If we let /(x) = 1 in (2 ) then the double integral adds dA's and produces the total area of the region of integration. In other words, 
(7) J . dA = area of the region . 

region 
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Analogous to (7 ) ,  
(8) r dx = b - a = length of the interval [a, b] . 

a 

Common application involving the graphs of/(x) and/(x,y) Assume that /(x ) 2: 0 for x in [a, b] and extend Fig. 1 to include the graph of /(x ) above the x-axis (Fig. 3). The rectangle in Fig. 3 has base dx, height /(x ) and area 
J(x) dx. The sum of the areas of such rectangles approximates the area under the curve. The approximation improves as dx -+ 0, so 
(9) 

if J(x) 2: 0 then 
b f !( ) dx = area under the graph of f(x) and over the 

a 
x interval [a, b] on the x-axis . Similarly, assume that f(x,y) 2: 0 for (x,y) in a Region R in 2-space, and extend Fig. 2 to include the graph off(x, y) above the x,y  plane (Fig. 4 ). The tube in Fig. 4 has base dA, height f(x, y) and volume f(x, y) dA. The sum of the volumes of such tubes approximates the volume under the graph off The approximation improves as dA -+ 0 so we have the following result. 

(10) 
If f(x, y) 2: 0 then 

f !( ) dA = volume under the graph of J(x,y) and over 
R 

x
,
y the region R in the x, y plane . 

Once you learn to compute double integrals, you can use ( 7 ) to find areas and ( 10 ) to find volumes. 

( I I )  

More generally, i f  the restriction f (x) 2: 0 i s  removed, then 
f b 

[area above the x-axis ] f(x) dx = between the graph off • and the interval [ a, b] 

[area below the x-axis ] - between the graQh of J and the interval [a, b] 

-< d-x. > 

f l G . 3  
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GRAPH or f("t.,y) 

VOLLIM1'::: f(-x,1,J)J A 
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Similarly, if the restriction f(x,y) 2:: 0 is removed, then 
{ t(x,y) dA 

(12) 

[volume above the x,y plane] = between the graph off and the region R 

[volume below the x,y plane] - between the graph off and the region R 

Example 1 Express with a double integral the volume of the solid in Fig. 5, a box topped by a portion of the sphere centered at the origin with radius 6. 
Solution: The sphere has equation x 2 + y 2 + z 2 - 36, and the top of the sphere, where z is positive, has equation z - V36 - x2 - y2 • There­fore, the box lies under the graph of /(x,y) = V36 - x2 - y 2 , over the square region R in the x ,y plane (Fig. 5) ,  and, by (10) ,  its volume is fR V36 - x2 - y 2 dA. 

The nonconnection between /(x,y) and the region of integration When we compute double integrals in the next section, the function and the region will be chosen arbitrarily, to provide practice. In applications, the function and the region are chosen to achieve a desired result. To find total charge, the integrandf(x,y) is the charge density in the x, y plane and the region of integration is the region whose total charge is desired. To find the volume of a solid, the integrand is the function/(x, y) whose graph is the roof of the solid, and the region of integration is the floor of the solid in the x,y plane. To find an area in the x,y plane, the integrand is l and the re­gion of integration is the region whose area is desired. In any case, the region of integration is not the graph of the integrand f(x,y) ; rather, the graph off(x,y) is a surface in 3-space lying above and/or below the region in the x,y plane. 
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Example 2 To reinforce the definition of the double integral as a 
weighted sum, we will show how it may be possible to estimate the sign of 
a double integral without actually computing its value. Let R be the region 
in Fig. 6, and consider fR xy 2 dA. Suppose the region is divided into small 
subregions (Fig. 7) . Each subregion has a positive area dA and a represen­
tative value of xy 2, which is negative if the region is to the left of the y-axis 
and positive if the subregion is to the right of the y-axis . From the location 
of the region R we see that � xy 2 dA is positive, since the positive terms 
outweigh the negative terms. Therefore f R xy 2 dA is positive. 

Alternatively, consider the graph of z = xy 2 in 3-space. Since it is 
neither a cylindrical nor a quadratic surface, the graph is not easy to draw, 
but by considering the sign of z we can see that the graph lies below that 
portion of R to the left of the y-axis and lies above that portion of R to the 
right of the y-axis. There is more volume above than below so, by ( 12) ,  
fR xy 2 dA is positive. 

Example 3 Continue with the Region R in Fig. 6 and find the sign of 
fR x 2

y dA .  
Solution: Figure 8 shows a revealing subdivision o f  R .  For each sub­

region above the x-axis, such as I where the value of x 2
y dA is positive, there 

is a corresponding subregion II below the x-axis where x 2
y dA takes on the 

negative of that value . Therefore � x 2
y dA = 0, and hence f R x 2y dA = 0. 

Alternatively, the integral is 0 because the surface z = x 2y determines as 
much volume above as below the region R.  

Some properties of the double integral As with the single integral, a 
constant factor may be pulled out of an integral sign. In other words, 
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L cf(x,y) dA  = c L f(x, y) dA .  A single integral on the interval [2, 7] may be computed , if desired, by integrating separately on say [2 , 4] and [ 4, 7] and then adding the results. Similarly if a region is divided into two parts, R 1 and R2 , like a city divided into two precincts, then 
(14) f . f(x, y) dA = f f(x,y) dA + f f(x,y) dA . 

region R 1 R 2 

Problems for Section 12.1 1 .  Let R be a circular region with radius 2 .  Find f R 5 dA. 2, Express with a double integral the volume of (a) a hemisphere with ra­dius 3 (b) a cylinder with radius 2 and height 5 .  3. Let R I and R2 be the square and circular regions in Fig. 9. Describe the solid whose volume is (a) fR , 5 dA (b) JR , (x2 + y 2) dA  . 

• 
FI G .9 4. Refer to Fig. 10 and decide if the integral is positive , negative or zero. 

(a) J xy dA  (d) J xy 2 dA 
I l l  I l l  (b) 

Lnd I I  xy dA  (e) L dA 

(c) f xy 2 dA 
I and I I  5. Suppose f R f(x,y) dA = 7. lf the region R is enlarged (Fig. 1 1) ,  wi l l  the value of the _integral increase? 6. Find JR 0 dA. 7. True or False? (a) l f/(x, y) > g(x, y) for all (x,y) in R, then JR [(x,y) dA > f R g(x, y) dA.  (b) I f  the region R ,  i s  larger i n  area then the region R 2 ,  then JR , f(x,y) dA > 

f R . J(x,y) dA.  (c) I f  the region R lies in quadrant I ,  then f R f(x,y) dA > 0 .  (d) l fthe region R ,  is larger in area than the region R2 then fR , dA  > fR 2 dA. (e) I f  f(x, y) > 0 for all (x, y) in R then f Rf  (x, y )  dA > 0. 8. The average value of x in a circular region is clearly the x-coordinate of its center. Use this, together with (3), to find J R x dA  over the circular region R with center (4 , 6) and radius 3. 9. Refer to Fig. 10 and decide if J xdA on the entire circular region can be computed by finding J x dA  on region I (one-quarter of the circle) and then multi­plying by 4 .  
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12.2 Computing Double Integrals 

We'll begin by evaluating a specific integral. The methods we develop 
will then be summarized and used in general. 

Example I Consider JR xy 2 dA where R is the semicircular region of ra­
dius 2 in Fig. I .  Divide the region into rectangular subregions using hori­
zontal and vertical lines. A typical subregion contains the point (x, y) and has 
dimensions dx by dy, so that xy 2 dA = xy 2 dx dy. To find the integral, we will 
first add xy 2 dA's across a typical horizontal strip and then add the strip sums 
from bottom to toe. On the typical horizontal strip at height y in Fig. 2, the 
left end is x = -Y4=-? (choose the negative square root since x is negative 
on the left half of the circle) and the right end is x = 0. Adding xy2 dx dy's 
across this strip is a one-dimensional integral problem involving the interval 
[ - v'4"='y2, OJ on an x-line, so 

FI G .  I 

-i. 1------1 

-:i. 

FI G . t 
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I••O  
typical horizontal strip sum = xy 2 dx dy . 

•= -VH The horizontal strips stretch from y = -2 to y = 2 ,  so  adding the strip sums to get a final total is a one-dimensional integral problem involving the interval [-2 ,  2) on a y-line. Therefore, 
(2 ) f fy•2 (f••O ) xy 2 dA = xy 2 dx dy . R _,= -2 ,� -� The right side of (2) is called an iterated integral and consists of two consecutive 
single integrals; the parentheses are usually omitted. Note that in the inner integral, the upper limit of integration is x = 0 because the right end of every horizontal strip is x = 0. However, the lower limit of integration is 
x = -\/4=7, not x = -2 ,  because a typical horizontal strip does not begin at x = - 2 ;  the value at the left end of the strip depends on the height 
y. On the other hand, in the outer integral, the limits are the extreme values y = - 2  and y = 2 because the outer integral must add all the horizontal strip sums, from bottom to top. To compute (2 ), first find the inner integral in which the integration is performed with respect to x, with y held constant. We have 

[-o inner integral = xy 2 dx ·--� 
(antidifferentiate with respect to x) 

This result is the integrand of the outer integral, so 
J,- 2 ( I ) ( l 2 ) 1 2 64 outer integral = - y 4 - 2y 2 dy = - y 5 - - y 3 = - - . ·• -2 2 10  3 -2 1 5  Therefore JR xy 2 dA = -64/ 15. We can also evaluate the double integral by first adding xy 2 dA's across a typical vertical strip (Fig. 3) and then adding the strip sums from left to right. On a vertical strip located at horiz�ttal Position x, the lower end is y = - � and the upper end is y = 4 - x 2 . Adding xy 2 dx dy's along thVstrip � a one-dimensional integral problem involving the interval [ - 4 - x , �] on a y-line. Adding the resulting strip sums from left to right is a one-dimensional integral problem involving the interval [-2 ,  OJ on an x-line. Therefore, as a second method, 

(3) f fx • O  (fy•vT-;f � 2 dA = � 2 � dx . 
R x• -2  1=-� ) Again, the right-hand side contains consecutive single integrals. We write 

dy dx in that order to indicate that the inner integration is with respect to y and the outer integration is with respect to x. Note that the inner limits of integration are not the extreme values y = -2 and y = 2 because a typical vertical strip does not begin at y = -2 and end at y = 2 ;  the lower and upper ends depend on its horizontal position x. However the outer limits are 
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F/ 0 .  3 
the extreme values x = - 2 and x = 0 because the vertical strip sums must be added from extreme left to extreme right to catch all of them. One computation per double integral is sufficient, but we will evaluate (3) for practice. First , f vs y':j":;2 inner integral = xy 2 dy 

_v: - \� 

Then 

l , . v.::;;  l = - xy 3 3 , = - V� 
(antidi fferentiate with respect to y) 

2 f••U outer integral = -3 x( 4 - x 2) 312 dx . 
xa -2 Substitute u = 4 - x 2 , du = - 2x dx  to obtain I J4 l 2 1 4 64 outer integral = - - u 312 du = - - - u :;12 = - -15 , 3 0 3 5 0 as before. Of what use is the result? If xy 2 is the charge density in the plane, then the total charge in the semicircular region R is - �: . If the graph of xy 2 is sketched in 3-space, it lies entirely below the region R (since xy 2 is negative at all points in R ) and the volume between the graph and the region is 64/ 15. If xy 2 is the temperature in the plane then - 64/ 15 - 64/ 15 32  average temperature in R = area of R = 2 1T 

= - 15 7T .  
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This section is concerned primarily with computing integrals, but we will return to these and other applications in the next sections. 
Warning The double integral in Example I does not compute the area of the semicircular region. The integrand must be I ,  that is, the double inte­gral must be f R d.A,  to compute area. 
Computing a double integral The methods established in Example I may be applied in general. A double integral over a region R can be evaluated with two single integrals in two ways. 

(4) 

For one method, identify the left and right boundaries of R by imagining a horizontal walk from left to right through the region (Fig. 4). Solve the boundary equations for x to find x on the left and on the right boundary. Further, find the lowest y and the highest y in R.  Then 
I f(x, y) d.A = righes, y in R [ on right boundary of Rf(x,y) dx dy . 

R lowest J in R x on left boundary of R 

We write d.A as dx dy in that order to indicate that the inner integration is with respect to x, and the outer integration is with respect to y. (The integral in ( 2 )  is of this form.) 

(5) 

For a second method, identify the lower and upper boundaries of R by imagining a vertical walk through the region (Fig. 5). Solve the boundary equations for y to obtain y on the lower and on the upper boundary. Further, find the leftmost x and the rightmost x in R. Then 
I f(x, y) d.A = rghtmoSI X in R f on upper boundarvf(x, y) dy dx. 

R leftmost r in R _, on lower boundilry 

We write dA as dy dx in that order to indicate that the inner integration is with respect to y and the outer integration is with respect to x. (The integral in (3) is of this form.) A double integral can be evaluated with either order of integration, but sometimes one is easier to compute than the other. In Example I, the antidifferentiation in the outer integral was easier when the integration was done first with respect to x. We will frequently set up double integrals twice, using both orders of integration for practice. Note that in both ( 4 )  and (5) ,  the inner and outer limits of integration follow different patterns. The limits on the inner integral are found by solving boundary equations for one of the variables; the inner limits will contain the other variable, unless the boundary in question is a vertical or horizontal line with an equation as simple as x = 3 or y = 2 .  On the other hand, the limits on the outer integral are always constants, the extreme values of the other variable. 
Example 2 Find f R (4x - y )  dA where R is the triangular region bounded by the y-axis, the line y = 2 ,  and the line 2x + y = 8. 



374 · 1 2/Multiple Integrals 
Y -AX I S  

FIG . 6 

--+-----�---"t-

FI G . 7 

-f-------"'f-

FI G .  8 

First solution: Set up the double integral so that y goes first , that is, so that the inner integration is with respect to y. The lower boundary of the region is the line y = 2 (Fig. 6) . The upper boundary is the line 2x + y = 8 ;  solve for y to obtain y = 8 - 2x. The leftmost x in the region is x = 0 and the rightmost x is the x-coordinate of point C, x = 3 (obtained by substituting y = 2 in 2x + y = 8) .  Therefore 
Then 

and 

f (4x - y) dA = f

x = 3

f

y

• H

x (4x - y) dy dx. 
R x=O .,= 2 

inner integral = r= s- 2

x (4x - y) dy = (4xy - J..y2) 1 ,=s- 2
x 

y=2 2 ,-2 

I 
= 4x(8 - 2x) - - (8 - 2x)2 - Bx + 2 2 
= - l0x2 + 40x - 30 , 

outer integral = r�,3 

( - l0x2 + 40x - 30) dx 
( IO ) 1 1 = - 3x3 + 20x2 - 30x 1 11 = 0 .  

Therefore JR (4x - y) dA = 0. Second solution: Let the inner integration be with respect to x .  The left boundary of the region is the y-axis where x = 0 (Fig. 7). The right bound­ary is the line 2x + y = 8 ;  solve for x to obtain x = 4 - b- The lowest y in the region is y = 2 and the highest y is the y-coordinate of point A, y = 8 (obtained by setting x = 0 in 2x + y = 8). Thus 
L (4x - y) dA = r=

2
8I.��:-

,t\4x - y) dx dy . 

Then 
inner integral = (�4

-,

12 

(4x - y) dx = (2x2 - xy) [:-•12 

= 2( 4 - ! yr - ( 4 - ! y) y = y 2 - l2y + 32 , 
and 
outer integral = f �\y 2 

- l 2y + 32) dy = ( ! y 3 
- 6y 2 + 32y) i : = 0 .  

Warning The inner limits are boundary values while the outer limits are extreme values. I. If you mistakenly use extremes for both sets of limits in Example 2, 
and write r:: r:: or r:: r:: . then, instead of integrating over the trian­gular region R in Figs. 6 and 7, you are integrating over the rectangular region in Fig. 8. 
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2. Suppose you mistakenly use boundary values for both sets of limits 
f x=4 -y1

2 f ;• 8- h f y • 8 -2x f x• 4 -y12 in Example 2 ,  and write or . Since the 
r=O  y = 2 ,• 2 r==O  outer limits in the first instance contain y, the first setup produces a result containing y. Similarly, the second setup leads to a result containing the variable x. But a double integral is a number, so neither setup calculates a double integral over the region in Figs. 6 and 7. In fact they do not corre­spond to a double integral over any region whatsoever. The outer limits of the 

iterated integral must be constants. 

Warning The region R in Example 2 (Figs. 6 and 7) is not the graph of the integrand 4x - y. It is the region over which the function is being integrated.just as J! /(x) dx integrates/ (x) over the interval [a, b]. The graph of 4x - y is the plane z = 4x - y in 3-space, lying partly above and partly below R .  To evaluate fR /(x,y) dA it is not necessary to sketch the graph of /(x,y), but it is important to sketch R so that the boundary values and extreme values may be identified for the limits of integration. 
Integrating on a region with a two-curve boundary Consider JR f(x,y) dA where R is the region bounded by the line x + y = 6 and the parabola x = y 2. We will express the double integral in terms of single integrals in two ways, to practice setting up the limits of integration . 

.B=(9,- 3) 
�IG .  9 

Figure 9 shows that the left boundary of the region is the parabola 
x = y 2. The right boundary is the line x + y = 6; solve the eq\lation for x to get x = 6 - y. To find the extreme values of y we need points A and B. Substitute x = y 2 into x + y = 6, obtaining y 2 + y = 6, (y + 3) (y - 2) = O, y = -3 , 2 . Therefore A = (4 , 2) , B = (9, -3) , the lowest y is -3 at B , and the highest y is 2, at A. Thus 
(6) { f(x,y) dA = r-_2, r�:-, J(x,y) dx dy .  

Consider the other order of integration. The lower boundary is the parabola x =y2 (Fig. 10) ; solve the equation for y to obtain y = -Vx (choose the negative square root because y is negative on the lower portion of the parabola). However, the upper boundary consists of two curves, the parabola and the line. It is not possible to find one expression for y on the upper bound-
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B: (q,-3) 

FI G . 1 0  
ary. To continue with this order of integration, divide the region into the 
two indicated parts, I and I I .  For region I, the lower boundary is that 
portion of the parabola where y = - Vx ,  and the upper boundary is y = Vx ;  
the extreme values of x are O and 4 .  For region I I ,  the lower boundary is 
y = - Vx again and the upper boundary is the line y = 6-x ; the extreme 
values of x are 4 and 9. Therefore 

(7) f f(x, y) dA = f f(x, y) dA + f f(x, y) dA 
R I t t  

= L�◄r_·_: f(x, y) dy dx  + I.:9f_-_6:[(x ,y) dy dx . 

In this particular example, the two-curve boundary can be avoided by 
using (6) instead of (7) .  However, in some problems, dividing the region 
into parts may be unavoidable (see Problem 2c, for example). Furthermore, 
although (6) appears preferable to (7) ,  it may be that the antidifferentiation 
in (7) will turn out to be easier. We can't state a preference for (6) without 
knowing the particu lar function f 

Warning Examine boundaries carefully to catch the ones consisting of 
more than one curve. If you mistakenly consider the upper boundary in 

Fig. 10 to be only the line, and write r:: r::�: f(x, y) dy dx, then you are 

integrating over the region in Fig. 1 1 ,  not Fig. 10 .  

Problems for Section 12.2 I .  Evaluate (a) JR x ' dA  where R is the region bounded by the lines y = 2x, y = 3 and the y-axis (b) f R 3 dA where R is the region in quadrant I enclosed by y = x '  and y = x (c) JR 2xydA where R is the region between the parabola y = x 2 and the line 
y = IO 2. Express f R /(x, y) dA in terms of single integrals for the given region R.  Set up each integral twice, using the two orders of integration. (a) R is bounded by the parabolas y = ½x 2 and x = y 2 (b) R is bounded by y = e•, the line _y = 2 and the y-axis 
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(c) R is the triangular region with vertices A = (0, 0), B = (2,  4) and C = (3 ,  I) 
(d) R is the set of points (x, y) such that 2 :S x :S 7 and 0 :S y s 5 
(e) R is bounded by the parabola 4y = x2 and the line x - 2y + 4 = 0 
(f) R is bounded by the x-axis, lines x = 2, x = 3, and the hyperbola xy = I 
(g) R is the (unbounded) region inside the parabola y = x2 

(h) R is the (unbounded) region between the two branches of the hyperbola 
xy = I 

(i) R is the region in Fig. 12  
( j )  R i s  the interior of  the ellipse 2x 2 + y

2 = 4 

!I. Let R be the region in Fig. 13 . (a) Set up fR f(x, y) dA using the order of 
integration dy dx. (b) Can fR J(x, y) dA be computed by integrating on only the 
quarter of the region in quadrant I and then multiplying that answer by 4?  

4. Each of the following represents a double integrals already expressed in 
terms of single integrals. Sketch the region of integration R and then set up the 
double integral using the reverse order of integration 

(a) r� [,'.12>-' f(x, y) dx dy (d) f0 (2• 
f(x,y) dy dx  

(b) f r f(x,y) dy dx  (e) f (_ J(x, y) dy dx 

(c) { f �J(x,y) dy dx  (f) r r•'f(x,y) dx dy 
y=O x•O 

5. Let R be the triangular region with vertices A = (0, 0), B = (0, I) ,  C = (2 ,  I ) .  
Set up J R  e1� dA in both orders of integration. Then choose the order in which the 
calculation will be easier and evaluate the integral. 

12.3 Double Integration in Polar Coordinates 

We'll begin by evaluating a specific integral using polar coordinates 
to see how it is done and why it may have an advantage over rectangular 
coordinates. The method we develop will then be summarized and used 
in general. 

Example 1 Consider f R x2 dA, where R is the region in quadrant I be­
tween two circles with radii I and 5 as indicated in Fig. 1 . The region poses 

F l 6 . I 
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two difficulties. First, the lower boundary consists of two curves , the x-axis 
and the smaller circle ;  similarly, the left boundary consists of two curves , the 
y-axis and the smaller circle. Therefore, no matter which order of integra­
tion is tried, the region must be divided into two parts. Second, the circles 
have equations of the form x 2 + y 2 = rl. When inner l imits of integration 
are obtained by solving for x or y, unpleasant square roots will result . Polar 
coordinates will alleviate both difficulties. 

The integration method of the preceding section was obtained by using 
vertical and horizontal lines to divide a region into many small rectangles, 
with typical area dA = dx dy. The procedure evaluates a double integral 
with two single integrals, which add f(x,y) dA's on (say) a horizontal strip, 
and then add strip sums from bottom to top. To integrate in polar coordi­
nates we use circles and rays as shown in Fig. l to divide the region into many 
small subregions. The plan is to express x2 dA in  polar coordinates, add on 
the typical radial strip in Fig. l ,  and then add the strip sums counter­
clockwise. The typical subregion with area dA, configuration ABCD in 
Fig. l ,  is not a rectangle but it may be considered almost a rectangle since 
a radial line intersects a circle perpendicularly. The subregion was created 
by drawing two circles separated by dr, and two rays separated by angle dO. 
Therefore side DC has length dr, but dO is an angular dimension, not a side 
of the box, so dA is not dr dO. By (5) of Section l .3 ,  the arc length AD is r dO 
Then the (almost) box has dimensions r dO by dr, so dA = rdOdr = rdr d8. 
Furthermore, x = r cos 8 (Appendix A6) so x 2 dA = (r cos 0)2 r dr d0 = r 3 cos20 drd0 .  
The single integral J;:� r 3 cos20dr d0 adds x2 dA's on the typical radial strip 
in Fig. l. The many radial strips fan out counterclockwise from 8 = 0 to 
0 = rr/2, so we add the strip sums with another integral to obtain 

( I )  

Then 

f , = 5 l I r-5 
inner integral = r 3 cos20 dr = - r4 cos20 

r= I 4 r= I 

F / 6 . 1  

156 cos20 ,  
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and (with formula (40) from the integral tables) 
J

t= w/2  outer integral = 156 cos28d8 
,-o 

= 156 · 21 (8 + sin 8 cos 8) 1 •=rr12 = 39'1T . 
t=O 

Computing a double integral in polar coordinates The method estab­lished in Example 1 may be applied in general. 

(2) 

(3) 

A double integral over a region R can be evaluated with two single integrals. Change x, y, and dA to polar coordinates using 
X = T COS 8 ,  y = r sin 8 ,  x2 + y 2 = r2 , 

dA = r dr d8 . 

To find the limits of integration, identify the inner and outer boundaries of the region by imagining a radial walk from the origin (Fig. 2). Solve the polar coordinate equation of each boundary for r. Further, swing a ray counterclock­wise through the region and find the first 8 and last 8 en­countered, that is, the smallest and largest values of 8. Then 
f f.larllfft 9 f.' on outer boundary 

f(x, y) dA = f(r cos 8 , r sin 8) r dr d8. 
R smallest 9 , on inner boundar)· 

Note that, in general, the inner and outer limits of integration follow different patterns. The limits on the inner integral are found by solving boundary equations for r, so the inner limits will contain 8, unless a boundary is a circle centered at the origin with an equation as simple as r = r0 (as in (1)) .  On the other hand, the outer limits are always constants, the extreme values of 8. It is possible to use the reverse order of integration, but equations in polar coordinates are usually easier to solve for r than for 8 and experience shows that the one version is sufficient. 
Integration in polar coordinates is used primarily to handle regions of integra­

tion which involve circles, such as the region in Fig. 1. Polar coordinates should also be considered if the integrand involves expressions such as x2 + y 2, v'x""'+'y', (x2 + y 2)5, since these forms become simpler (namely, r2, r, r6) in polar coordinates. 
Eumple 2 Let R I be the circular region with radius 4 in Fig. 3 and let R2 be the lower semicircular portion. Then 

and 
f I,-2 .. 1·-• 

f(x, y) dA = f(r cos 8 ,  r sin 8) r dr d8 
R 1  l

•
O ,-o 

f I 
t=b• f.r-4 

R J(x, y) dA = •=• ,=o f(r cos 8 , r sin 8) r dr d8 . 
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9=0 19=4,r 

Warning In the latter integral , it is also correct to use f and f but 
9=0 fl::: - " 9 ... ,'.hr 

it is not correct to write f 
8
= ,; The values of 6 must be measured in a con­

tinuous increasing fashion. 

Example 3 A six mile square housing development, ABCD, contains only 
one bus stop, at point D. The mana_gement does not want to reveal that 
some residents may have to walk 6v'2 miles (from B ) to catch a bus, while 

others (at D )  are so close that their homes will reek of bus fumes. To gloss 
over the unpleasant extremes, the management wants to advertise the aver­
age distance to the bus stop. The problem is to find this average value. 

Insert a coordinate system as in Fig. 4. Then, at the point (x, y), the 

distance to the bus stop is W+7. Therefore we want to find the average 

value of \l?+y2 over the square region. By (3) of Section 1 2. l ,  

(4) 
I \1?+7 dA 

l de"elopme:m average va ue = area of development · 

If we try to compute the integral in rectangular coordinates, the limits of 
integration are simple but the antidifferentiation is difficult. If we switch to 
polar coordinates, the limits of integration require care, but the integrand 
is simpler since 

\l?+y2 dA = r r dr d6 = r 2 dr d6 . 

On balance, polar coordinates will prove somewhat more efficient. 
The inner boundary of the development is the point circle where 

r = 0, but the outer boundary consists of the two segments AB and BC. To 
set up the integral in (4) we must divide the region into the two parts 
indicated in Fig. 4. However, in this particular problem we can backtrack 
and avoid the extra work. By the symmetry of the situation, the average 
distance from the entire development to the bus stop is the same as the 

average distance from region I (or I I )  to the bus stop. So the answer can be 
found with 

(5 )  
r W+y2 dA 

area of I 
For region I, the outer boundary is the line x = 6, which in polar coordi­
nates is r cos 6 = 6, or r = 6 sec 6 ;  the extreme values of 6 are O and 
rr/4. So 

f W+y2 dA = 18=,,/4 f,
=

6s,c 8 r 2 dr d6 = 1
8= ,,/4 _!_ r3

1
•=6 scc 8 dfJ 

I 8=0 r= 0 8=0 3 r= 0 

f8
=,,/4 = 

8
=

0 
72 sec36d6 

[ l ] , ,,14 

= 72 ; sec 6 tan fJ + 2 l n isec fJ + tan fJ j 
0 

(Tables, (43) )  

= 36\/2 + 36 ln(\/2 + I )  . 
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The area of region I is 18,  so the value of (5) ,  the final answer, is 2Y2 + 
2 ln(Y2 + 1) .  

Warning Remember to use r dr d8 for dA. Don't forget the extra r. 

Problems for Section 12.3 

1 .  Consider the circular region in Fig. 3 with radius 4 .  Evaluate 

(a) f x dA  over the right semicircular portion. 

(b) f xy dA over the first quadrant portion. 

(c) J 1 ! 2 dA over the entire region. + " + y 

2. Find I e -<x•+,'> dA over quadrant I .  

S. Find r·' f. .yy::;iz In(  I + x 2 + y 2) dy dx by switching to polar coordinates . 
.s• -3 .,-o 

4. Find the limits of integration in polar coordinates for the following regions. 

( o. )  

(c ) 

(e) 

- RAD IUS ].. -
// ' 

I I \ \ 
(b) 

(d) 

(f) 
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FIG . I 

12.4 Area and Volume 

We will summarize the methods for using integrals to compute area and volume, and then illustrate with examples. 
Area (A) If a region lies under the graph of /(x) and above an interval 
[a, b] on the x-axis ( Fig. 1 )  then its area is J! /(x) dx  (Section 5 . 2 ) .  (B) Suppose a region lies between an upper curve u(x) and a lower curve l(x) and stretches from x = a to x = b; that is , the projection of the region on the x-axis is [a, b] ( Fig. 2 ) .  Then, whether the region lies above, below, or straddles the x-axis, its area is J! (u(x) - l (x)) dx ( Section 6 .3) .  (C)  For any region R, no matter what its boundaries , and whether i t  lies above, below or straddles the x-axis, the area of R is fR dA (Section 12 . 1) .  

F I G .  :l 
Example I Find the area of the region R bounded by the parabola 
y = x2 - 9 and the line y = 2x - 6 (Fig. 3) .  

•- r=-kx. - 6 

F l 6 .  3 
Solution: First find the coordinates of the points of intersection, P and 

Q. Solve 2x - 6 = x2 - 9 to get x2 - 2x - 3 = 0 ,  (x - 3) (x + 1) = 0, 
x = - 1 , 3. Therefore P = ( - 1, -8 )  and Q = (3 , 0) .  
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We may use (B) with u(x) = 2x - 6 and l (x) = x2 - 9 to get 
( 1 )  area = f. (2x - 6 - [x2 - 9]) dx 

I, ( 1 ) I ' 32 = (2x + 3 - x2) dx = x2 + 3x - -x' = - . 
- I 3 - I 3 

We may also use (C) . The lower boundary of the region is y = x2 
- 9,  the upper boundary is  y = 2x - 6 ;  the extreme values of x are - 1 and 3. Therefore 

I f .. , 11

•

2•-6 
area = dA = dy dx. 

R x• - 1  .r=r2-9 

Since J� dx = b - a, the inner integral is 2x - 6 - [x2 - 9]. Thus the outer ,-, integral is J •• - I  (2x - 6 - [x2 - 9]) dx, the same as (1 ) .  Methods (B) and (C) merge, leading to the same final computation and answer. 
Volume (A' ) If a solid lies under the graph of f(x, y) and above a region R in the x,y plane (Fig. 4) then its volume is fR [(x, y) dA (Section 1 2 . 1 ) .  (B' )  Suppose a solid lies between an upper surface u(x,y) and a lower surface l (x, y), and its projection in the x, y plane is a region R (Fig. 5 ). Then, whether the solid lies above, below, or crosses the x,y plane, its volume is JR (u(x, y) - l (x,y)) dA.  Section 1 2 . 6  will give (C ' )  to complete the analogy between area in 2-space and volume in 3-space. (Note that in addition to the double integrals in (A') and (B') ,  and the forthcoming triple integral in (C' ) ,  certain volumes were computed in Section 6. 1 with a single integral. )  We may restate (A') and (B' )  as  follows. 

(A' ) If the "floor" of a solid lies in the x,y plane then 
volume = f roof dA 

Door (B ') If a solid lies between a roof and floor which is not necessarily in the x,y plane (and not necessarily flat) then 
volume = f (roof - floor) dA .  

plqection in the x,_v pl.me 

The formula in (A' ) is the special case of (B' )  when the floor has equation z = 0 and roof - floor simplifies to roof. 
Example 2 Consider the solid bounded by the cylinder y = x2, the plane y + z = 5 and the x, y plane (Fig. 6) .  The solid lies under the plane y + z = 5, that is, under the graph of/(x,y) = 5 - y, and above the region R in the x,y plane shown in Fig. 7. (The line y = 5 in Fig. 7 is the inter-
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section of the plane y + z = 5 with the x,y plane where z = 0.) Therefore, 
by (A'), 

f J.-� 1••5 
volume of solid = (5 - y) dA = (5 - y) dy dx 

R x • - V5  y=x2 

J•

=

� ( I ) 1 '•5 = 5y - -y 2 dx 
x = - V5  2 y•x• 

J•
=
� ( 25 I ) = - - 5x 2 + - x 4 dx 

x• - V5  2 2 

(25 5 I 
) 
1 •=� 40 

= -x - -x 3 + - x 5 = - V5 .  
2 3 I O  x= - vs 3 

Example 3 The elliptic paraboloid 

(2) z = 2x 2 + y 2 (Fig. 8) 

and the parabolic cylinder 

(3 )  z = 4 - y 2 ( Fig. 9) 

determine the solid in Fig. 10. By (B'), 

(4) volume of solid = J (4 - y 2 - [2x 2 + y 2]) dA 
R 

= J (4 - 2x 2 - 2y 2) dA  
R 

where R is the projection of the solid in the x,y plane. Often a projection 



X 

A 

F I G .  q 

FI G .  I o\� 

1 2.4 Area and Volume · 385 

C 

PRO.Jl;C,TlON R /1,j T!lg 
-x. ,  y PL.A�f 

is easy to visualize, but in this example the projection is not geometrically 
obvious and we will give an algebraic method for identifying it. Consider 
the curve ABCD of intersection of the two surfaces. Equate the expressions 
for z in (2)  and (3) to obtain 2x2 + y 2 = 4 - y 2 or 

(5 )  x 2 + y 2 = 2 . 

The equation in (5) is satisfied by the x and y coordinates of any point on 
the curve ABCD. Since the x and y coordinates do not change as a point is 
projected onto the x,y plane, the projection of ABCD continues to satisfy 
(5) .  Therefore the projection of ABCD in the x,y plane is a circle with radius 
\/2, and the projection R of the solid itself is the circle plus its interior. 

Now that R has been identified as circular, we choose to evaluate (4) 
using polar coordinates. Since x 2 + y 2 = r2, the integrand 4 - 2x 2 - 2y 2 

becomes 4 - 2r2• Then 

volume of solid = r=
o

2

" L�v'! 
(4 - 2r2) r dr d(J 

= J
B= 2

" f,-v'! (4r - 2r3) dr d(J 9•0 r•O 
= f 2" 

(2r2 - ..!. r4) 1 ,·"'2 d(J 
8=0 2 ,=O 

= f
9=2u 2 d6 = 2(21r - 0) = 41r . 9•0 
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Problems for Section 12.4 

I .  Find the indicated area and, for practice, use as many of (A), (8) and (C) as 
are appropriate. 

(a) bounded by y 2 = x + I and x + y = I 
(b) bounded by xy = 4 and x + y = 5 
(c) inside the parabola y = x 2 and under the line y = 4 
(d) swept out in one turn of the spiral whose equation in polar coordinates is 

r = 9 (Fig. I I ) 

2. Use a double integral to find the volume. 

(a) the solid bounded by the cylinder x 2 + y 2 = 4, the x,y plane and the plane 
X + 6y + 2z = 12 

(b) a sphere with radius R 
(c) the apple core of radius 3 in an apple of radius 6 (Fig. 12) 
(d) a circular cone with radius R and height h 
(e) a circular cylinder with radius R and height h 

F l 6 .  l 2-

3. Express the volume with a double integral and then go one step further to 
write the double integral as two single integrals. 

(a) the solid inside z = 2x 2 + 2y 2 and under the plane z = 12 
(b) the solid bounded by the paraboloids z = x 2 + y 2 and z = 8 - 3x 2 - 3y 2 

(c) the polar cap of radius 2 in a sphere of radius 5 (Fig. 13)  

4. Two cylindrical pipes of radius 3 intersect so that their axes cross perpen­
dicularly. Find the volume of the solid determined by the intersecting cylinders. 
(Figure 14 shows half the solid .) 

5. Consider f R v'?+y1 dA where R is the circular region in the x ,y  plane 
with radius 5 and center at the origin. I s  it computing an area? a volume? If so, 
sketch the figure. 
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12.5 Further Applications of the Double Integral 

The preceding section discussed area and volume; this section will 
illustrate some nongeometric applications. As with area and volume, we will 
show that some problems can be done with both single and double integrals. 

Example I The cost of clearing jungle land is directly proportional to 
both the area of the land and its distance from the supply road. (As the area 
increases, naturally the cost goes up. As the distance to the supply road 
increases, the equipment must be hauled further on jungle trails and the 
cost increases.) In particular, suppose that 

( 1 )  cost = area x distance t o  the supply road . 

Consider a right triangular region with legs 6 and 3, with the supply road 
running along its longer leg (Fig. 1 ) .  The problem is to find the cost of 
clearing the land . 

We can't use ( 1 )  directly because different parts of the region are at 
different distances from the road. One approach is to establish a number 
line along the shorter leg as in Fig. 1. Consider a typical strip at position x 
with thickness dx. The distance from the strip to the longer leg may be 
considered to be constant, with value x ;  this is the reason for choosing strips 
parallel to the road. By similar triangles, 

strip height _ � 
3 - x  - 3 ' 
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so the strip height is 2(3 - x), or 6 - 2x. Therefore, the strip area is (6 - 2x ) dx and d cost = strip area x distance to road = (6 - 2x) dx x x 
= (6x - 2x 2 ) dx . Therefore 

(2 ) total cost = f (6x - 2x 2) dx = ( 3x 2 - ! x 3) i : = 9 .  
As a second approach , establ ish the 2-dimensional coordinate system in Fig. 2 and divide the region into many small subregions. Consider a sub­region containing the point (x, y) and with area dA. The distance from (x, y) to the road is x, so the entire subregion is taken to be at distance x Crom the road. Then 

tAX IS 

6 A 

8 ')(:AX/) 
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d cost = dA x distance to road = x dA , and the total cost is J,mniu1ar ,ogion xdA. The lower boundary of the region is the x-axis where y = 0, and the upper boundary is line AB, with slope -2, y-intercept 6 and equation y = -2x + 6. The extreme values of x are O and 3, so 
[• 5 iy• -2x+6 total cost = x dy dx .  

x•O _t=O 
l y • - 2• + 6  The inner integral is xy = 6x - 2x2• Thus the outer integral is 

PS �o J (6 - 2x2) dx, the same as (2), so the two approaches merge to produce 
x•O the same final answer. 

Example 2 Continue with the triangular plot of land in Example 1. Sup­pose that the cost of clearing the land is not only proportional to the area of the land and its distance to the supply road but also inversely propor­tional to its distance from the creek, running parallel to the shorter leg 2 miles away. (Land far from the creek is less mosquito-ridden and clearing costs are lower.) In particular, suppose that 
(3) 

area x distance to supply road cost = . distance to creek The problem is to express, with an integral, the cost of clearing the trian­gular plot. The strip in Fig. I is no longer useful since the points in the strip are at varying distances from the creek. On the other hand, the small subregion in Fig. 2 may be considered to have constant distance x from the supply road and constant distance y + 2 from the creek. Therefore, by (3), 
and 

xdA d cost = -­y + 2 
total cost = J x dA

2 triangular region Y + 
[•5 iy• - 2x+6 

X 
= -- dy dx . 

x=O y= O J + 2 The aim of the section is to demonstrate how to produce integral models for physical situations. In this example, and in many of the solutions to the problems, we set up the integral and then stop without computing its value. 
A general pattern for applying integrals Suppose a formula (such as ( I )  or (3)) applies to a plane region in a simple situation (constant distances to road and creek). In a more complicated situation (nonconstant distances), the formula cannot be used directly. However, if the region is divided into thin rectangular or circular strips or into small subregions, we may be able to apply the formula to the pieces and compute "dthing" (dcost) . An inte-
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gral, single if strips are used , double if small subregions are used , wi ll add the dthings and find a total thing (total cost) . 
Warning By the physical nature of the particular problems in this section , if a region is divided into many small subregions, the simple factor dA should be contained in the expression for d thing; it should not be missing nor should it appear in a form such as (dA)2 or 1 /dA. For example, d thing may be xy 2 dA, but should not be xy 3 or xy 3(dA)2 or xy 3/dA. The double integral is designed to add terms of the form f(x, y) dA. A sum of terms of the form xy 3 or xy 3(dA)2 or xy 3/dA is not found with an integral. 
Problems for Section 12.5 I .  Consider a right triangle with legs 5 and 10. (a) Find the average distance from points in the triangular region to the longer leg. (b) Find the total mass of the region if the mass density (grams per square centimeter) at any point in the region is the product of its distances to the legs . 2. A sandstorm blows in from a desert (Fig. 3) so that the number of particles of sand per square meter deposited at a point in town is I /  d, where d is the distance from the point to the edge of the desert. Find the total amount of sand in the town. 3. A revolving sprinkler deposits water in a semicircular region of radius 6 centered at the sprinkler, so that by the end of the watering period, the water density (liters per square meter) at a point is the cube of the distance from the point to the sprinkler. Find the total amount of water delivered to the region. 4. The price of land in the city depends on the acreage and on the distance to the town dump (real estate prices are lower near the dump). Suppose that the cost of land is the product of its area and its distance to the dump. Express with an integral the cost of (a) a circular region of radius 2, centered at the dump (b) the land in Fig. 4 .  5. Suppose JR f (x, y) dA computes the total number of people living in the region R. (a) What does one term of the form f(x ,y) dA represent physically? (b) What does the function f(x,y) signify physically? For example, what can you conclude if /(2 , 3) = 8?  6 .  I f  a group of persons i s  d feet from a smokestack then the amount of induced disease among the group i s  (number of people)/d. (The more people exposed , the more disease, and the further they are from the smokestack, the less the amount of disease.) Suppose the region in Fig. 5 has a population density of 
f(x ,y) people per square mile and a smokestack is at point C. Express the total amount of induced disease in the region with an integral . 7. The heat concentration of a region which is distance d from a hot wire is area/d. Find the heat concentration in the triangular region of Fig. 6. 
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8. The price of land in a town depends on its area, on its distance to the railroad 
tracks (land closer to the tracks is cheaper) and on its distance to prestigious Tree 
Drive (the closer to TD, the more expensive). In particular, the cost of a plot of land 
is (area x distance to tracks)/distance to TD. Express the cost of the triangular plot 
in Fig. 7 with an integral. 

FI C:> .  7 
9. The energy collected in a plane region depends on its area and its distance 

to the energy source. Suppose that energy is area/d where d is the distance to the 
source. Find the total energy in a circular region of radius 3 if the energy source is 
(a) at the center of the region (b) distance 5 above the center of the region. 

1 0. The cost of painting a section of a billboard depends on the section's height 
h above the ground, its area A, and its distance d to the ladder. Suppose the cost is 
Ah2 d. Find the cost of painting the entire billboard in Fig. 8 .  

12.6 Triple Integrals 

The definition, applications and computation of triple integrals are 
similar to those for single and double integrals . 

Definition of the integral of/(x,y, z) over a solid region R in 3-space (the 
triple integral) Given a function /(x,y, z) and a solid region R in 3-space , 
divide R into many small subregions, not necessarily of the same volume. 
Let a typical subregion contain the point (x, y, z) and have volume dV 
(Fig. 1) .  For each subregion,  find the value off at (x ,y, z) and multiply by 

'} 

FI G . I 
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dV. Add the results from all the subregions to obtain 2, J(x, y, z.) dV. Repeat 
the process with smaller and smaller values of dV, which requires more and 
more subregions. It is likely that the resulting sums will be close to one 
particular number eventually, that is, the sums will approach a l imit . The 
limit is called the triple integral of f(x, y, z.) over the region and is denoted by 
f rrKion /(x,y, z) dV. 

( I ) 

I n  summary, 

f . f(x, y, z) dV = lim 2,f(x, y, z.) dV . 
r�gmn dV•O 

We think of the integral as adding many representative 
values of J from the region, each weighted by the volume of 
the subregion it represents. 

Applications By analogy with (3) and (4) of Section 1 2 . 1 ,  

(2 ) 

average value off(x ,y, z.) in a region in 3-space 

_ 
L

gioJ(x ,y, z) dV 
- volume of region · 

As in (5) and (6) of Section 12 . l ,  if/(x, y, z) is the charge density (cou­
lombs per cubic centimeter) at the point (x, y, z) then 

(3 ) total charge in a region = f . f(x, y, 1.) dV . 
regmn 

We already know that if R is a region in 2-space, its area is J R dA 
(Section 12 .4 ,  (C) ) .  Similarly, if R is a solid region in 3-space, whether above, 
below, or crossing the x, y plane, then 

(C ' )  { dV = volume of the solid region R ;  

the triple integral in (C') adds dV's to produce the total volume. The result 
in (C') ,  together with (A' ) and (B ' )  in Section 1 2 .4, completes the list of 
methods for finding volumes using multiple integrals. 

Nonapplication We noted in (9) and ( 1 0) of Section 12 . l that if g(x) � 0 
and h(x , y ) � 0 then ft g(x) dx is the area under the graph of g and 
f R h(x,y) dA is the volume under the graph of h .  For the first time, a view­
point common to single and double integrals has no counterpart for triple 
integrals. There is no analogous geometric interpretation of f R f (x, y, z) dV 
since we cannot draw the graph of a function of three variables within the 
confines of the real world . The triple integral f H f(x, y, z) dV has many appli­
cations, but none involving the "graph" off(x,y, z.) .  
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FfG . �  
Computing triple integrals To devise a method for finding fR [(x, y, z) dV, divide the solid region R into many small boxes. Let a typical box containing the point (x, y, z) have dimensions dx, dy and dz, so that its volume dV is dx dy dz. To evaluate the integral , add /(x, y, z) dV's along a typical vertical strip (Fig. 2) , then add the strip sums from left to right, and finally add the subtotals from back to front; or add the vertical strip sums from back to front and then add the subtotals from left to right. This manner of addition corresponds to using three single integrals, in the order of integration dz dy dx or dz dx dy, with limits of integration obtained as follows. 

(4) 

Identify the lower and upper boundary surfaces of R (Fig. 2) . Solve the equation of each boundary for z to obtain the inner limits of integration. Use the projection of the solid in the x, y plane to insert x and y limits on the middle and outer integrals as if you were doing a double integral over the projection. In other words, 
L f(x, y, z) dV = J J f, on upper boundary dz dy dx f(x, y, z) or 

, on lower boundary dz dx dy 

Similarly, the integration may be performed first with respect to x. In this case, identify the rear and forward boundary surfaces of the solid R. Solve the equation of each boundary for x to obtain the inner limits of integration. Use the projection of the solid in the y, z plane to insert y and z limits on the two outer integrals. In other words, 
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(5 )  
J I I f • o

n for,.-.rd boundary dx dy dz 

R
f(x, y, z) dV = 

x on rear boundar1· 
f(x, y, z)

dx
o
d
r

d double intt:grale Z J 
�?�R t� ,t:oj�: ion 

plane 

Similarly, 

(6) 
L f(x,y, z) dV = f f 

f y on righ1 boundary dy dx dz 
f(x, y, z) or 

-' on left boundary dy dz dx 

Thus there are six ways to triple integrate in rectangular coordinates. Note 
that after one variable is chosen to "go first" and provide the inner limits of 
integration, the solid is projected into the plane of the other two variables. 
(Projections are often geometrically clear. If not, the method of Example 3 
in Section 1 2 .4 for identifying a projection in the x, y plane may be adapted 
to find a projection in any coordinate plane.) 

Example 1 Consider JR z(x 2 + y
2) dV where R is the solid polar cap in 

Fig. 3 bounded by a sphere of radius 2 and the plane z = I. We will set up 
the triple integral in several ways. 

The lower boundary of the region is the plane z = I and the upper 
boundary is that portion of the sphere on which z = Y4 - x2 - y2 ; these 
may serve as inner limits of integration. For the corresponding middle and 
outer l imits we need the pr�jection of R in the x, y plane. When the plane 
z = l intersects the sphere x 2 + y 2 + z 2 = 4, we have x 2 + y 2 + I = 4, 
x 2 + y 2 = 3. Therefore the projection of R is a circular region with radius 
V3. Using the order of integration dz dy dx we have 

>fHERt Or RADJ U � 1 
,.?-+ � 'l. +- 2 ?."' 4-

F / 6 .  3 

fLANn : I  
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For the version in which the inner integration is done with respect to x, note that the rear boundary of R is the portion of the sphere where x = -v'4 - y2 - z2 and the front boundary is the portion where x = v' 4 - y2 - z2 • The projection of R in the y, z plane (Fig. 4 )  is bounded by the line z = l and the circle y 2 + z 2 = 4. Therefore, 
f z(x 2 + y 2) dV = J

J
= v'! f,=YT-;!fx= V1-yL,2 z(x 2 + y 2) dx dz dy , R .1= -v1 ,= I x=-V4-y2-,2 and also 

f z(x2 + y 2) dV = f
,=2 f

vT-;2 f.-V1-,L,2 
z(x2 + y 2) dx dy dz . 

R •• I y• -� ·• -Y4-y2-,2 The version with inner y limits of integration is so similar to the setup with inner x limits that we omit it, to avoid repetition . 

.i!= I 

ff 

Fl G . ½-
Warning The integral f R z(x2 + y2) dV may be interpreted as the total charge in R if the charge density is z(x 2 + y 2 ), or the total mass if the mass density is z(x 2 + y 2) , but it is not the volume of R (the volume is fR dV ). 
Triple integration in cylindrical coordinates Consider Example l again. Since the projection of R in the x, y plane is a circular region, it is convenient to use polar coordinates for the middle and outer limits, along with inner z limits. Then, instead of z (x 2 + y 2 ) dz dy dx we write 

zr2 dz r dr d9 = r3z dz dr d9 ,  and the upper surface z = v'4 - x2 - y 2 becomes z = v'4'=7. There­fore, 
f f2

" fv'! f
,=y'.i':";2 

R z(x2 + y 2 ) dV = 
6•0 r=O ,= I r 3z dz. dr d9 .  
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(7) 

Evaluating a triple integral using r, 8 and z is called inte­
gration in cylindrical coordinates. In general, the inner limits are 
z 's on the lower and upper boundaries, and the middle and 
outer limits are found with polar coordinates over the 
projection in the x,y  plane; the integrand, the inner z limits 
and dV (Fig. 5) are switched to the new variables using 

x = r cos (J ,  y = r sin O ,  r2 = x 2 + y 2, 
dV = r dz dr d8 . 

X d V=rcfadn.'8 

Fl 6 . 5  
Warning 1 .  When using polar coordinates for the middle and outer lim­
its, don't forget to express the inner limits in terms of r and 8 also. 

2. Suppose the order of integration ,  in rectangular or cylindrical coor­
dinates, is 

f hird ,·ariable I.econd variable Jlir11 variable 

The inner limits of integration may contain the second and third variables. 
The middle limits of integration may contain the third variable but not the 
first. The outer limits must always be constants. 

Example 2 The formula hrR 2h for the volume of a cone with radius R 
and height h was derived in Example 1 of Section 6. 1 with a single integral, 
and in Problem 2d of Section 12.4 with a double integral. Derive it again 
with a triple integral. 

Solution: By (C' ) ,  the volume is f solid cone dV. The lower boundary of the 
solid cone in Fig. 6 is the conical surface itself, whose equation in cylindrical 
coordinates, z = rh/R , was derived in (4) of Section 10. 5 ;  the upper 
boundary is the plane z = h. The projection of the solid in the x, y  plane 
is a circular region of radius R, so 

f 8= 2 "  I r•R I ,�h  

volume = r dz dr d8 . 
9-=0 r�o z•rh/R 
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Then 
I•

=
• 1 •

=
• ( h) inner integral = r dz = rz = r h - r

R , 
z•rli/R z= rli/R 

Jr•R ( 2 h) ( I 'h) 1 ••R I middle integral = r=
O 

rh - r
R dr = 2 r2h - �R ,=o = 6R 2h ,  

and 
I Jt=h I I outer integral = - R 2h d8 = - R 2h · 2 1r  = - 1rR 2h .  6 � 6 3 

Warning The lower z limit in Example 2 is not the extreme value z = O ; rather, it is found by solving the equation of the lower boundary surface, the 
e-2 ,r  r = R  z= A cone, for z. The limits f f f , which are incorrect for the solid cone, 
B=O r•O z•O correspond to the solid cylinder in Fig. 7 whose lower boundary surface is the plane z = 0. 

Final warning (This is your last chance to get it straight. ) Consider f R [(x,y ) dA  over a plane region R. It is not the area of the region R unless f(x,y) is identically l. If f(x,y) z: 0, it is the volume of the solid with floor R and roof z = f(x,y ). ( More generally, if f(x,y) is not z: 0, the integral is the volume above minus the volume below; see ( 12 ) of Section 12. l . ) Consider fR [(x,y, z ) dV over a solid region R. If f(x,y, z) is identically I ,  the integral is the volume of R. Otherwise, it is not the volume (or area ) of anything. In any case, an integral has many uses other than area and volume. In fact the same integral may be used by one person to compute volume, by another to compute a total mass, by another to find a total cost, by another to find a moment of inertia, etc. 
Problems for Section 12.6 

1 .  Set up the triple integral three ways, using the three projections of R. Then 
evaluate the integral (once) . 

(a) JR x 2 dV where R is the solid prism bounded by the coordinate planes and 
the planes x + y = 1 and z = 2 

(b) JR x2z dV where R is the solid cylinder x 2 + y 2 = 4 between the planes 
z = 0 and z = 5 2. Set up JR /(x,y, z) dV over the region R using as many projections as feasible 

and interesting. 

(a) the tetrahedron ABCD in Fig. 8 
(b) the solid sphere with center at the origin and radius R 
(c) the solid cone with radius R and height h in Fig. 6 
(d) the quaner-cylinder in Fig. 9 with radius R and height h 
(e) the solid in Fig. IO in the first octant, formed by the intersection of two 

cylinders of radius 3 
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(f) the cylindrical solid in Fig. 1 1  
(g) the region bounded by z = 2x 2 + y 2 and z = 4 - y 2 

(h)  the region bounded by z = x2 and planes z = 5, y = -2, y = 3 
(i) the region bounded by the ellipsoid x 2 + 2y 2 + 3z 2 = 12 
(j) the region bounded by the planes x = I, y = 0, y = 2, z = 0, and x = z 
(k) the region inside the cylinder x 2 + y 2 = I and between the planes z = 0 

and y + z = 5 
(I) the first octant region inside the cylinder x 2 + y 2 = 1 and under the plane 

Z = X 

(m) the solid frustrum in Fig. 12 

3. Each problem has already been solved with a single or double integral. 
Express the solution again with a triple integral . 

(a) (Section 6. 1 , problem 18) Find the total mass of a cylinder of radius R, and 
height h if its density (mass per unit volume) at a point is 

(i) the distance from the point to the axis of the cylinder 
(ii) the distance from the point to the base of the cylinder. 

(b) (Review problem 2, Chapter 6) If a solid of mass m is revolved around a 
line, its moment of inertia is md 2 where d is its distance to the line. Find the 
moment of inertia of a solid cone of radius R and height h which revolves 
around its axis, if its mass density is constant at /5 grams/cm'. 

(c) (Section 6 . 1 ,  Example 4) The work done when an object of weight w moves 
distance d is wd. Suppose a cylindrical tank of radius 5 and height 20 is half 
filled with liquid of density 2 pounds per cubic foot. Find the work done in 
pumping the liquid out, that is , of moving the liquid up to the top of the 
tank at which point it spills over. 

(d)  (Section 12 .4 ,  problem 3 (a)) Find the volume inside the paraboloid 
z = 2x2 + 2y 2 and under the plane z = 12. 

4. Express with an integral the volume of the solid bounded by x 2 + 2y 2 -
3z 2 = 6 and the planes z = 0, z = 2. 

5. Is it correct to find f solid sphere f (x, y, z) dV by integrating over a hemi­
sphere and doubling the result? 

12. 7 Triple Integration in Spherical Coordinates 
We will begin by evaluating a specific integral using spherical co­

ordinates. The method we develop will then be summarized and used in 
general . 
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Example 1 Consider JR z 2 dV where R is the upper hemispherical region 
with radius 4, centered at the origin (Fig. I ) .  The integration can be done 
with the methods of the preceding section, but just as double integrals over 
circular regions are usually easier in polar coordinates, triple integrals over 
spherical and conical regions are often easier in spherical coordinates. 

¢: 0 

The integration method of the preceding section was derived by di­
viding the solid region into many small boxes using planes parallel to the 
coordinate planes (Section 1 2.6, Fig. 2). The procedure evaluates a triple 
integral with three single integrals which add [(x ,y, z) dV's on (say) a vertical 
strip, add strip sums from back to front, and finally add subtotals from left 
to right. To integrate in spherical coordinates we divide the region into 
many small subregions using spheres, cones and half-planes. Figure 2 
shows a typical subregion, called a spherical coordinate box. The face ABFE 
lies on a cone with cone angle t/, ;  the opposite face DCGH lies on a cone with 

F 

Fl 6 . 2-
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angle cf> + def>. The face ADCB lies on a sphere of radius p; the opposite face 
EHGF lies on a sphere with radius p + dp. The face ADHE lies on a 
half-plane, hinged along the z-axis at angle 8; the opposite face BCGF lies 
on a half-plane with angle 8 + dfi. Not all the walls of the spherical coordi­
nate box are plane, but its faces do intersect perpendicularly so we will take 
the liberty of findi� the volume dV by taking the product of the three 
edges , AE, AB and AD. It is immediate from the construction of the box that 

(1) AE = dp , 

but def> and dO are angular dimensions, not edges of the box, so dV is not 
dpd<f,dO. Figure 3 shows the edge AD, an arc on the great circle of inter­
section of a sphere and a half-plane. The circle has radius p and the arc has 
central angle def> ; by the formula arc length = radius x angle in radians 
(Section 1 .3 ,  (5 )) , 

FI G . 3  
(2)  AD = p d<f> .  
Figure 4 shows edge AB, an arc on the circle of intersection of the sphere 
and a cone. The circle has radius� and the arc has central angle dO. From 
the right triangle QAP we have QA = p sin cf>; by the arc length formula, 

(3)  AB = QAdO = p sin <f, dO . 

Therefore, from ( 1 )-(3) ,  

dV = dp x p d<f, x p sin <f, dO = p2 sin <f, dp d<f> d8 . 

Then, since z = p cos <f, (Section 10.5 ,  (3)) , 

z 2 dV = (p cos <f,)2p2 sin <f, dp d<f, dO = p4 cos2<f, sin <f, dp d<f, dO . 

The plan is to add z 2 dV's on the typical radial strip in Fig. 1 ,  add the strip 
sums down the great circle from <f, = 0 to <f, = 1r /2, and finally add those 
subtotals around from 8 = 0 to 8 = 2 1r. The addition is accomplished by 
three single integrals, namely, 

I z 2 dV = r
=2

,r r·•1
p
•

4 

p4 cos2<f, sin <f, dp d<f> dO . 
R l=O �=O p•O 
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F I G .  4' 
A routine calculation of the inner, middle and finally outer integral pro­duces the answer 2 '71'(2/3) (45/5 ), or 46'71'/ 15 .  
Computing a triple integral in spherical coordinates The method estab­lished in Example 1 may be applied more generally. A triple integral over a solid region R can be evaluated with three single integrals in the following manner. Change x,y, z and dV to spherical coordinates using 
(4 )  

x = p sin cf, cos (J ,  p2 = ,c 2 + y 2 + z 2 , y = p sin cf, sin 9 ,  z = p cos cf, ,  d V  = p2 sin cf, dp dtf, dfJ .  
To find the limits for the inner integral, identify the inner and outer boundaries of R by imagining a radial walk from the origin;  the entrance surface is the inner boundary and the exit surface is the outer boundary. Solve the spherical coordinate equation of each boundary for p to obtain the inner limits of integration. For the limits on the middle integral , imag­ine the positive z-axis, hinged at the origin, falling until it enters the region, and continuing to fall until it exits the region. For all practical purposes, spherical coordinates are used for a limited number of (important) conical and spherical regions, and in these cases, the falling z-axis will enter at a constant angle tf, 1 whether it falls forward, backwards or sideways, and similarly exit at another constant angle </>2 • These extreme values of <I> are the middle limits. Finally, the outer limits of integration are the extreme values of (J in the region. In other words, for the limited number of regions in which spherical coordinates are advisable, the pattern for the limits is 
(5) 

f l•rgest 8 f "''K"" • f p 0 1 1  n u t  er hound•" 

,m.Jlest B smallest ,b p on inner buundar� 

Other orders of integration are possible, but the version in (5 ) will be sufficient. The limits on the inner integral will contain (J and/or cf, unless a 
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boundary is a sphere centered at the origin with an equation as simple as 
p = Po- Theoretically, the middle limits may contain 8, but in practice they 
will be constants, as indicated in (5). The outer limits are always constants. 
Figures 5-1 1  show some common regions (with spherical boundaries) and 
give the corresponding limits. 
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Warning l .  The 8 limits in Fig. 6 may also be written as J�,, or J;: 
but not in the discontinuous form f.,. 

2. The spherical coordinate tf, is always between O and 1r. Therefore, 
tf, limits in any integral problem are never negative and never larger 
than 1r. 

Example 2 Consider the solid polar cap bounded by a sphere with radius 
4 and center at A and a plane whose distance to A is 3. If the energy density 
at any point in the cap is 1 /d where d is the distance from the point to A, 
find the total energy in the cap. 

Solution: Establish the coordinate system in Fig. 12 .  The distance to the 
origin in spherical coordinates is p, so the total energy, the integral of the 
energy density, is J cap l / p dV. The inner boundary is the plane z = 3 which 
in spherical coordinates is p cos tf, = 3,  or p = 3 sec tf,; the outer boundary 
is the sphere p = 4.  The smallest value of tf, is O and the largest is tf,0 , shown 
in Fig. 12 .  The extreme values of 8 are O and 2 1r. Therefore 

Then 

f 1•
2,r f •••o 

J

p=4 

total energy = ..!_ p2sin tf, dp dtf, d9 . 
t=O ♦=0 S sec •  p 

inner integral = ..!_ p2sin tf, 1
p=• 

= 8 sin tf, - ! sin/ . 
2 p•S o,c •  2 COS (/, 

A 'd · · f 
sin tf, · l . b b . d . h n anti envauve o � 1s --:;:; 1t may e o tame usmg t e 
cos "' cos "' 
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substitution u = cos <f>. Then 

( 
g I ) 1 •=•0 middle integral = - 8  cos <I> - - --2 cos <I> ♦E O  (6) = - 8 cos </>0 + 8 - � (-1- - 1 ) . 2 cos </>0 To continue, it is not necessary to find the angle </>0 itself. All we need is cos </> 0 which, according to the right triangle ABC, is 3/4. Therefore 

and middle integral = - 8(i) + 8 - � (-1- - 1) = ..!_ 4 2 3/4 2 
I f21r l outer integral = 2 9

=
0 

d8 = 2 (2 11") = 11" .  

Problems for Section 12. 7 Use spherical coordinates in each problem. I .  Confirm that the volume of a sphere of radius R is ¾ 1rR 3• 2. Confirm that the volume of a cone with radius R and height h is ¾ 1rR 2h. 3. Find the total mass of a spherical region of radius R if the mass density at a point is l /d 2 where d is the distance from the point to the center. 4. Find the l imi ts corresponding to the (unbounded) half-space , where 
(a) x ;z, 0 (b) z ;z, 0 (c) y ;z, 0. 5. Find the volume of the sol id in Fig. 1 1  i f  the rad ius of the sphere is 3 and the rad ius of the circle of in tersection of sphere and cone is 2. 6. Set up problem 3(b) in Section 12 .6 using spherical coordinates. 7. Find the mass of the frustrum in Fig. 13 if  the mass density at a point is 1 /d where d is the distance from the point  to A. 
12.8 Center of Mass In ( l ) of Section 6.2 we found that if n masses m 1 , • • · ,  m. hang from positions x , , · · · , x., on a line (Fig. l) then the balance point x is given by 



-,c. ,  X. :a.  

;f; I [m,. 

• • •  

(1) 
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i = 
m1x1 + · · · + m.x. 

= 
total moment with respect to the origin m 1 + · · · + m. total mass We used ( 1) to find the balance point of a solid hemisphere, a symmetric object with constant density. In this section we extend (1 )  to find balance points of plane and solid objects in general, including nonsymmetric objects with variable density. 

� ?C- n  r/y.. I\ 

;s 
f:! � ➔ 

0. b 

FI G .  I t- lG . 7-. d mA;s 
f(-y:)d� 

Center of mass We'll begin with a one-dimensional situation. Suppose the density in a rod along the interval [a, b] is /(x) mass units per unit of distance. Divide the rod into many small pieces and let a typical piece containing point x have length dx (Fig. 2 ) . The density of the small piece may be considered constant at value /(x) , so dmass = f(x) dx. To simulate the situation in Fig. 1, picture the entire mass of each small piece concen­trated at position x, as indicated in Fig. 2 .  Then 

and 
(2)  

d moment = coordinate x d mass = x f(x) dx , 

b b total moment = f d moment = f x f(x) dx , • • 
b b total mass = f dmass = f f(x) dx 

• u 

b I xf(x) dx f d . h h . . i = • = moment o ro wit respect to t e ongm 
Ib 

mass of the rod 
f(x) dx • The balance point i is called the center of mass of the rod. Similarly, if the density at (x, y) in a plane region R is [(x, y) mass units per unit area then the center of mass (i,y )  is given by 

(3) 

(4) 

I xf(x, y) dA i_noment of the region_ i = R = with respect to the y-axis 
L f(x, y) dA mass of the region 
I f (x ) dA moment of the region _ R y , y with respect to the x-axis y = = 

( t(x, y) dA mass of the region 
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I f  the entire plane is weightless except for the region R then the plane 
balances at the point (x, y) (which is not necessarily contained in R ) .  The 
numerator in (3)  is called the moment with respect to the y-axis because the 
factor x in the integrand is the signed distance to the y-axis ;  the numerator 
in (4) is called the moment with respect to the x-axis because the factor y in the 
integrand is the signed distance to the x-axis .  

In the same manner, if the density at (x, y, z) in a solid region R is 
f(x ,y, z) mass units per unit volume, then the center of mass (x, y, z) is 
given by 

(5 )  

(6) 

(7 )  

-
I

R 
x f(x, y ,  z) dV moment of R with respect 

to the y, z plane x = ----- = -----�----I mass of R 
R

f(x ,y, z) dV 

_ L yf(x ,y, z) dV 
y = = 

f R 
f(x, y, z) dV 

moment of R with respect 
to the x, z plane 

mass of R 

-
I

R 
zf(x, y, z) dV moment of R with respect 

to the x ,y  plane z = = -----_._.._ __ _ 
I mass of R 

R
f(x, y, z) dV 

One application of the center of mass is to the analysis of the behavior 
of solids in a gravitational force field, where the solid may be replaced by 
a point mass located at its center of mass. 

Example 1 Find the center of mass of a hemispherical solid with radius R 
if the density is the square of the distance from the point to the center. 

2 

g 

A 

ri s . 3 
Solution: I nsert a coordinate system as in Fig. 3 so that the density at 

a point is p2. By symmetry, the center of mass lies on the z-axis so x = y = 0 .  
I t  remains to find z. For the numerator of (7)  we have 

r

= 2.-

r

=

'1'2 r

= R 

p cos <I> . p2 · p2 s in <f, dp d<f, d8 . 
6= 0 ,/,= O p=I I  
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inner integral = ! p6 cos ¢ sin ¢ [: = �
6 cos ¢ sin ¢ ,  

. . R 6 . . , 1
•=1112 R 6 middle integral = 12 sin·¢ •=o = 12 , 

. R 6 
f

8=2'r R 6 1rR 6 outer integral = - d(J = - · 2 1r = -- . 1 2  8=0 12 6 For the denominator of (7) we have 
Then 

Finally, 

f 2" f 4>= Trl2 f p=R 

8=0 •=o p=o p2 • p2 sin q, dpdcp d(J . 

. . l . . 1 p
=

R R "  . mner integral = 5 p' sm ¢ p=u = 5 sm ¢ ,  
R " 1 •

=.,,12 R " middle integral = - -:- cos .¢ = -5 , 
!) 4,=0 

. R "  18=2,, R " 21rR " outer integral = -:- = - · 2 1r = -.- . 
!) 8=0 5 !) 

The center of mass lies on the axis AB, five-twelfths of the way from A to B. 

Centroids If the density of a plane region R is constant, the center of mass is called a centroid. In that case, the constant f may be pulled out of each integral in (3) and (4) and cancels out, producing the centroid formula 
(8) _ ( xdA _ ( y dA 

x = ----area of R ' y = -ar_e_a_o_f_R_ · 
Compare (8) with (3) of Section 12. l  to see that the coordinates of the centroid are the average x and y coordinates in R. Similarly, the coordinates of the centroid of a solid region R are given by 
(9) 

_ 
t x dV x = volume of R ' 

I y dV 
- R y = volume of R ' 

the average x, y and z coordinates in R. 
_ t z dV 
z = volume of R ' 
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The centroid is a "geometric center" and in certain instances can be 
identified by inspection. For example, the centroid of a solid sphere is its 
center; the centroid of a rectangle is the intersection of its diagonals. On the 
other hand, the centroid of a solid hemisphere or a triangle is not obvious, 
but can be found with integrals. Problems for Section 12.8 I. In  Section 6.2 we found the centroid of a hemispherical solid of radius R using a single integral. Do it again using a triple integral . 2. Find the centroid of (a) a solid cone of radius R and height h (b) a semi­circular region with radius R. 3. Express with integrals the centroid of (a) the solid polar cap of radius 2 in a sphere of radius 6 (b) a right triangle with sides 3 ,  4, 5. 4. Express with integrals the center of mass of (a) a semicircular region of radius 2 if the density at a point is proportional to the square of the distance to the center; (b) a solid cylinder of radius R and height h if the density at a point is propor­tional to (i) the distance to the top of the cylinder (ii) the distance to the axis of the cylinder. 
REVIEW PROBLEMS FOR CHAPTER 12 I . Consider f x 3y dA over the region inside the circle x 2 + y 2 = 2 and under the line y = 1 .  (a) Set i t  up in rectangular coordinates using both orders of  integration. (b) Set it up in polar coordinates. (c) Without doing any calculating, decide whether the integral is positive, negative or zero. 2. I f  the regions R ,  and R 2 are congruent  (same s ize and shape) wi l l  JR , f(x,y) dA and fR, f(x,y) dA be equal ? 3. Express with a double integral the area of the region bounded by y = x 2 and 
y = X + 2. 4. Find f e-••-.,• dA over the exterior of a circle with center at the origin and radius 3 .  5. The cost per square foot of land in a community i s  proportional to its distances to the (noisy) airport runways and, in particular, is the product of the two distances. Find the cost of the wedge of land in Fig. I with radius 2, bordering on the two runways. 6. Let R be the solid bounded by z = 16 - y 2 and the planes z = O, x = 0, x = 3. Set up f R [(x,y, z) dV three ways, using the three projections of R. 7. Set up fR [(x, y, z) dV over the solid bounded by z = 4 - x 2 

- y 2 and 
z = 4 - 2y. 8. Find J 3 dA (easily) over the circular region with center at ( 1T, \/7) and ra­dius 9. 9. Express with (a) a double integral and (b) a triple integral the volume above the x, y plane inside the cylinder x 2 + y 2 = 4 and under the paraboloid 
z = IO - 3x 2 - 3y 2. 1 0. If a particle with mass m is at distance d from a line then its moment of inertia as it revolves about the line is md2• Find the moment of inertia of a solid sphere of radius R and mass density o if it revolves about a diameter. 
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1 /FUNCTIONS 

Section 1.1 (page 4) 

1. (a) /(0) = 2 - 01 = 2 
(b) /(1) = 2 - 1 1 = 2 - 1 = 1 
(c) 2 - (b 3)2 = 2 ·- b6 

(d) 9 
(e) 4 
(f) (b 3 - 3)1 

(g) g (b) = (b - 3)2 so [g(b)]5 = [(b - 3)2)
5 = (b - 3)6 

(h) 2 - (24 + b)2 

(i) Range of / contains all numbers less than or 
equal to 2, i .e., range is the interval (-ao, 2). 
Range of g is [O ,  ao) since g produces all, and 
only, non-neg numbers. 

z. (a) /(- 7) = 1- 71/(-7) = 7/(- 7) = - 1 , /(3) = 1 
(b) x 'I= 0 
(c) Range contains only 1 and - 1 . 
(d) /(2 + 3) = /(5) = 1 ,  /(2) = 1 ,  /( 3) = l , 

/(2) + /(3) == 2. No! 
(e) /(- 2  + 6) = /(4) = 1, /( - 2) = - 1 , /(6) = 1 ,  

/(-2) + /(6) = 0. No! 
(f) No! Parts (d) and (e) illustrate what happens 

when a and b are both positive, and when one is 
positive and the other negative. If both a and b 
are negative then /(a + b ) = /(neg) = - 1 , 
/(a) + /(b) = - 1  + - 1  = -2 ;  still not equal. 

3. (a) 1, - 1  (b) All integers (c) 0, 1 
(d) To get fixed points ,  need x such that x 2 + 4 = x, 

x 1 - x + 4 = 0. But equation has no real solu­
tions so there are no fixed points. 

4. /(a 1
) = 2a 1 + 1, (/(a))1 = (2a + 1)2• To see if they 

are ever equal solve 2a 1 + 1 = (2a + 1)2
, 

2a1 + 4a = 0, 2a(a + 2) = 0, a = 0, -2 .  So 
/(a 2

) = (/(a))1 iff (if and only if) a = 0, -2 .  
5. (a) /(/(x)) = /(x 3

) = (x 3
)

3 = x 9 

(b) lnt(lnt x) simplifies to plain Int x because after 
the first Int is taken, the result is an integer and 
that integer is unchanged by the second Int. 

(c) /(/(x)) = /(-x + l) = - (-x + l) + l = x, 
/(/(/(x))) = /(last answer) = /(x) = -x + l ,  
/(/(/(/(x)))) = /(last answer) = /( -x + l ) 
= -(-x + l) + 1 = x 

In general, if there are an even number offs used suc­
cessively then the result is x. If there are an odd number 
of f's then the result is -x + I .  
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6. The number of passengers over 200 is p - 200, 
price per ticket is 300 - (P - 200), so A = 
p[300 - (p - 200)] = 500p - p 2 for 200 :s p :s 350. 

Section 1.2 (page 9) 

1 .  (See figs.) (a) Line through the origin with slope 2; 
increasing, one-to-one, continuous. 

z. 

(b) x + lxl is 2x if x � 0, and is 0 if x < 0, con­
tinuous. 

(c) lx l/x is I if x > 0, and is - 1  if x < 0, disc at 
x = 0, continuous otherwise. 

(d) For example /(7) = 7, /(2) = 3. In general, f(x) 
is x if x � 3, and is 3 if x < 3, continuous. 

+ +  
PROBL�r.'\ I (o.) PROBLEM I (b) 

=t= 1 

3 

f'ROBLE:M I (c) P�081H1 I (d) 

• • I • • 
-3 -]. - I  1 3 't 
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3. (a) /(- 1 )  = 0 since ( - 1 , 0) is on the graph ,/(0) = 2, 
/(6) = 2. 

(b) y is 4 when x is a little larger than 1 ,  and again 
when x is about 4 . 

(c) x < - I (since the graph lies below the x-axis 
when x < - 1) 

4. Decreases 
5, (a) Probably not, since the rate usually jumps at 

certain weights. 
(b) Yes 

6. (a) Graph lies above the x-axis. 

7. 

(b) Graph lies above the line y = x .  (See fig. )  

I I 
-,_ I 
7,; I , 
/ 

I 
I 
I 

/ 

PROBLEM 6 (b) 

f'R08U:M 7 (t>.) 

PPlJSLEM 7 (b) 

8. (See figs.)  
(a) Symmetric w.r.t . (with respect to) y-axis 

PRDBLH1 B(a.) 

(b) Symmetric w.r.t . the origin . 

PROSLEM 8(b) 

9. Line has slope 3, equ y - 2 = 3(x - 1) ,  y = 3x - l . 
So /(x) = 3x - 1 . 
10. (a) Doesn't move. Remains at one point forever. 

(b) Moves to the right at l mph. (See fig.) 

.3 ·l •I O 2 3 

Pl!DBLH'I JO (b) 

(c) Moves to the left; as time increases, position 
decreases. 

(d) Stays to the right of the 0 position on the line. 
(See fig.) 

0 

f'ROBt..EM IO(J) 

Section 1.3 (page 18) 

1 ,  (a) fr/5 X 180/ fr = 36° (b) i x 180 = 150° 

(c) -60° 

2. (a) 12 x 1� fr  = ftfr (b) - fr/2 (c) ::1r = & 1r  
3. (a) sin 2 10° = - sin 30° = - ½  

(b) cos 3 fr  = cos fr = - 1  
(c) tan fr/4 = l 



4. 

i'R08L£M 4- (b) 

-3 

PROSI..EM 4 (,) 

flOBLEM 4- (e) 
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5. (a) - sin x == -a (b) cos y = b (c) -a (d) -b 
(e) a 2 (f) Can't do. 

6. 

7 

CO£ 9 ,,  Jr si11. e =- ..]_ 
3 

PROBLtM 6 (0.) PROBLEM 6 (b) 

7. 

fR.08LEM J (o.) 

I 
I 
\ 

; 
f 

I 

I 
I 

I 
I 

I 

I 
\ 

PROBLEM 7 (b) 

Section 1.4 (page 23) 

1. r 1 <4> = 3,r 1<2> = s 
2, (a) x + 3 (b) Not 1 - 1 ,  no inverse (c) 1 /x,  i .e . ,  

function is its own inverse since the reverse of taking 
reciprocal is to take reciprocal again. (d) -x (reverse of 
negating is to negate again) 
S. If y = 2x - 9 then x = ½('J + 9) so 

r' (x) = ½(x + 9) . 
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4. 17 
5. An increasing function must be 1 - 1  so has an inverse. 

Inverse is increasing: since / increases, as x goes up, y 
goes up also. So in reverse, if y goes up, x goes up. 
Alternatively, if a curve rises to the right then its reflec­
tion in line y = x also rises to the right. 
6. True. I f  the/ graph is unbroken, its reflection is also 

unbroken. 
7. (a) Not unless x 2 is restricted to x ;;:: 0. (b) Yes 
8. (a) ½11'  since cos ½11'  = 0 and ½11' is between -½11' and 

I 211', 
(b) 0 
(c) Not possible since there is no 8 such that 

sin 8 = 2 ;  sines are between - I and I .  
(d) 150° since cos 150° = -½v'3 and 150° is between 

0° and 180°. 
(e) -60° 

(0 45° 

(g) -45° 

9. Just under 11'/2, where tangents are very large. 
10. (a) False. As a counterexample, sin 211' = 0 but 

sin- 10 is not 211'. 
(b) True. 

1 1 . (a) Choose - ½ 11'  s 1T8 s ½ 11', -½ s 8 s ½ .  Then 
2(z - 3) = sin 11'8, 11'9 = sin- 1 2(z - 3), 
8 = ( l /11') sin- 12(z - 3) 

(b) Choose O s 28 - ¼'IT s 'IT, ¾11' s 8 s f 11'. Then 
cos- 1 ¾x = 28 - ¼'IT, 8 = ½(cos- 1 ¼x + ¼11'). 

12 .  An even function can't have an inverse since it is not 
l - 1 ;/(3) = /( -3)  for instance. An odd function may have 
an inverse (sine does not, x' does). If an odd function / 
does have an inverse then F '  is also odd : the graph of 
an odd function is characterized by symmetry w.r.t. the 
origin. After reflection in the line y = x the curve still is 
symmetric w.r.t. the origin. 

Section 1.5 (page 28) 

1 .  (a) e 10 is very large, -e III is negatively large, e - lo = 
l /e 10 is near 0. So in order, -e 10, e - 10, e 10  

(b) The larger the exponent on e, the larger the 
result. So in order, e -5, e -s, e - 1 12, e 1 ,,, e 6 

(c) e 7 > e6 so -e 7 < -e6 

2. (a) 7 
(b) 4 
(c) e 1" 26 = 64 
(d) In e 112 = ½ 
(e) e ln( l /2) - 1  = e ln 2 = 2 
(f) e 1 e 1" •  = 4e 
(g) t ln •+ lny = e '" " e ln, = 

3. (a) In 2 + In 3 = a + b 
(b) In 23 = 3 In 2 = 3a 
(c) ½ In 3 = ½b 
(d) In 34 = 4 In 3 = 4b 
(e) -In 2 = -a 
(0 In 3 - In 2 = b - a 
(g) a +  b 
(h) ab 
(i) a /b 
(j) a '  
(k) 3 I n  2 = 3 a  

4 .  (a) 2 x  + 3 > 0, x > - 3/2 
(b) sin = > 0, - 2  < x < - 1 , 0 < x < l ,  

2 < x < 3, etc. 
(c) All x 
(d) In x > 0, x > l 
(e) In In x > 0, In x > l ,  x > e 
(f) In In In x > 0, In In x > i, In x > e (now take 

exp on both sides again), x > e'  
5.  - ln(V2 - I) 

I 
= In ---= 

- 1  + v'2 

- In( l • - 1  - V2\ 
-

- 1  + V2 - 1  - °V2/ 
(rationalize denominator) 

= ln( l + V2) 
6. (a) True, because In is 1 - l .  

(b) True, because exp i s  1 - 1 .  
(c) False; sin O = sin 211' but O * 211'. 

7. (e 4-2 1n 5- ln 2) t/S = (e• 1 -2 1n s e - ln 2) 1/S 
= (e 4 t ln 3-l t ln 1/2) 1 /S = (e • ,  3 -1 , ½) '" = V'e•/ 18 
= , {0'is  
8. 1.11 1n 2  = t in ts = 2.x  
9 .  Car "starts" a l  the origin and moves right, slowly at 

first and then faster. (See fig.) 

- 1  0 l. 3 

PROSL.£"1 � 
' /0 

10. (a) , -• = i, -x = In i, x = - In f = In f 
(b) 2x + 7 = , - 1 , x = ½(e - • - 7) 
(c) No solution. ,• is never neg. Can't say solution is 

x = In(- 5) since there is no In of a neg number. 
(d) ,

-2 < x < , a 

(e) 2x + 7 > In 5, x > ½(In 5 - 7) 
(f) In x = -4,  x = e -• 
(g) -x = e 4, x = -e • 
(h) 5x + 3 = 2x, x = - l 
(i) In x = e -2, x = ,•-• 
(j) e• = sin 11'/6 = ½ , x = In ½ 



(k) In x• + In 2x = 3, In 2x 5 = 3, 2x; = e', 
x = "¼? 

(I) 5x - 3 = 2x, x = l 
(m) 5x + 3 = 2x, x = - l .  Impossible since In 2x 

doesn't exist if x = - l. No solutions. 
(n) In x(x + l) = 2

:.J

(x + ll = e 2, x 2 + 2x - e 2 = 
0, X = ½(-2 ± 4 + 4t ) = - 1  ± v'f+7. 
But x and x + l must be positive. So only solu­
tion is - 1  + vT+7. 

(0) X = -x, X = 0 
(p) x = 0 (impossible) or In x = O, solution is x = l 
(q) e•(x + 2) = 0, e • is never 0, so solution is 

X = -2. 
(r) e• is never O so must have In x = 0, x = l .  
(s) 25 = 1 0  + 5 In 3x, I n  3x = 3, 3 x  = e ', x = ½ e '  

11 .  I n  ½v'2 = In ½ + I n  V2 = - In  2 + In 2 1 12 = 
-In 2 + ½ In 2 = -½ In 2 
IZ. If In T = -f In V then In T = In y -21', T = y -213, 
TV2r.1 = l .  So TV215 is constant (namely, always l). 
IS. (In x) (4 + 2 In x) = 0, In x = 0 or 4 + 2 In x = 0, 
x = l or In x = -2,  solutions arc l ,  e -2 • 
14. (a) True (h) False (What is true is that e•+b = e' .) 
15. In ½ is a neg number since ½ < l .  Dividing by In ½ 
reverses the inequality and produces 2 > l .  

Section 1.6 (page 31) 

l .  (a) / is discontinuous at x = 3 (where f isn't de­
fined) and / is O when 10 - 10x 2 = 0, x = + l .  
Loo k  a t  intervals (-oo, - 1), (- 1 ,  1) ,  ( 1 , 3), (3, 00) ;  
/(-2) i s  neg so f is  neg on (-00, - 1) ;  /(0) i s  pos 
sof is pos on (- 1 ,  l ) ; /(2) is neg so/ is neg on 
( 1 , 3) ; /(10) is neg so/ is neg on (3, oo) .  

(h) f is discontinuous ifx = l (where f isn't defined) 
and f is O when x = - 1 .  Consider intervals 
(-00, - 1) ,  (- 1 ,  1), ( 1 , 00) where the function is 
continuous and nonzero; /(-2) is pos so f is 
positive on (-00, - 1) ;  /(0) is neg so f is negative 
on (- 1 ,  l ) ;  /(2) is pos sof is positive on ( l , 00). 

(c) f is never discontinuous. Equ x 2 - x + 2 = 0 
has no real solutions, so f is never 0. So on the 
interval (-oo, 00) , f has one sign ; f (0) is pos so f 
is pos in (-00, 00) . 

(d) No fancy theory necessary. e• is always positive 
so fraction takes sign of denominator and is pos 
in (0, 00), neg in (-00, 0). 

(e) Never discontinuous, zero if x = -3 ,  2. 
/(- 100) is positive so f is positive in (-oo, -3). 
/(0) = -6 so/ is neg in (-3, 2); / ( 100) is pos so 
f is pos in (2, 00) .  

2. (a) / is discontinuous at x = 0 and is O if 16x + 
54 = 0, x = -.I/. In (-00 , -\!), / is pos (test 
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/(- 10) which is . 16 - .054). In (-\?-, 0), f is neg 
since /( - 1 ) = 1 6  - 54. In (0, 00) , f is positive 
since /( l )  = 16 + 54. Solution is x < -¥ or 
X > 0. 

(b) Problem is l /2x + 9/(6x + 4) - 3 < 0. Let 
/(x) = l /2x + 9/(6x + 4) - 3. First find where 
f i s  zero . So lve  l / 2x  + 9/ (6x  + 4 )  = 3 ,  
6x + 4 + 18x = 6x(6x + 4), 36x 2 = 4 , x = ±½, 
f is discontinuous at x = 0, -} where f isn't de­
fined. Now look in between. On (-00, -f)f is neg 
(test x = - 100 for instance). On (-f. -¾) f is pos 
(test x = -½ for instance). On (-½, 0)f is neg, on 
(0, ½) f is pos, on (½. 00) f is neg. Solution to the 
given inequality is x < -J or -½ < x < 0 or 
x > ½. 

(c) l /(x 2 
- 4) is discontinuous when x = 2, -2 ;  

never i s  0 .  Function i s  pos i n  (-00, -2), neg in 
(-2 , 2) and pos in (2, oo) .  Solution is x < -2 or 
X > 2. 

Section 1.7 (page 37) 

1. 

I �£FLEiCf IN I 
I � - AXIS 

PROBLEM / (o.) 

I 
I 
I 

/ 
/ 

1 / f:XP�NP 
1/ V£RflCALt Y 

PROBLE."t'l I (c.) 

,/ 
I 

I 

I 
I 

rf\OBLE M I (e) 

I 

I 
I 

/ 

PROBLEM I (b) 

/ 
/ 

P�OBl.Et-'I I (J) 

/ ,· 

fRANSLAT£ 
VP 2. 
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2. 
8 

6 
J E:XfAN D 

HOR(WN fAU1 

- 8  

PROBL£Nl l_ (a) 

8 ' 
't 3 

-2 
f!?.OBL£"'1 2 (b) 

P£OBL .:-M 

6 
.. '---­TRAN5•�r. 

-'j ½ 

DOWN ::Z. 

PRO!,L£M 2 (cl) 
-'I  

PROBW"1 

-} 

-6 �--

-8  

PR08L£ M 1.. (f) 

3. (a) y = 2(x + 2)7 + (2[x + 2] + 3)6 

(b) y = 2x 7 + (2x + 3)6 - 5 

2. 

� 

fAAN5LAf£ 
RIC,H r � 
6 

Z (c ) 

fl.EF!oC,f IN 
y - AXIS 

'1 

:2. (e) 

4, (See figs . )  (a) To make y's pos, keep that part of the 
sin x graph where y > 0 and reflect the other 
part in the x -axis. 

5. 

(b) Reflect that part of In x which is below the x -
axis, and keep the rest. 

(c) e• is always positive so graph is just y = e' . 
(d) e 1rl is e' if x � 0 and is e -• if x < 0. 
(e) ln lx l  is In x if x > 0 and is ln( -x) if x < 0. 

PROBLEM 1+ ( b) 

PROBLE M lt (cl ) PROB LH'l 1t (e) 

PROBLEM S(a) 

�- fo:x. 

PROBLEM 5(b) 



PROBLEM 5'{c.) 

6. The square (similarly cube) of a number between 0 
and 1 is smaller than the original number. The cube root 
of a number between O and 1 is larger than the original. 
(See fig.) 

PROBLEM 6 

Chapter 1 Review Problems (page 58) 

I. (a) V9 = 3 
(b) Defined for x s 5. Ran§e is � 00). 
(c) /(a1) = �. (/(a)) • ( 5 - a)2 = 5 - a 
(d) / is half of parabola x = 5 - y 1• (See fig.) 

f(x) 

/ 
, , , 

PROBJ.E"M I (cl} 
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Z. (a) Plot �ints. 
x I O I l .3

1
2.8

1
3

1
3.7

1
5.6 I 6 (See fig. ) 

y O 1 .3 2.8 0 . 7 2.6 0 
(b) [O, 3) 
(c) Not 1 - 1 ,  no inverse. 
(d) For example,/( 10) = 1 and/(/( 10)) = /( 1 ) = I .  

I n  general, /(/(x)) = /(x) ; i.e. , second applica­
tion of/ has no funher effect. 

PROBLEM 2.(o.) 

5. (a) /(x) = x, graph is line y = x. 
(b) / is 1 - 1 ,  graph passes a horizontal line test. 
(c) Graph is periodic, repeats every 7 units. (See fig.) 

PR<'.lBI.EM 3 (c;) 

4. 

4-

5. -45° 

6. (a) ,"2 = 3x + 4, x = ¼(e-"2 - 4) 
(b) y - 4 = e "', ln(y - 4) = 3x, x = ¼ ln(y - 4) 
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7. 

' e:-,. 
'<: 

. '  

TRAN5lAfE: 
Leff A 

f'ROBL&M 

,r 

- I  

PROBLE:tv1 

fl;V£LOPE /S e-Y. 
ANP  I� RE"FLfc.rioN 

noBLEM 7 (a.) 

1 

_ ]:  ,. 
7 (b) 

WNSL�flo 
IJP .Jf-2. 

7(c) 

HALv'E 
HE1<,11n 

PROBLEM 7 (J) 

-i 
l 

.. 7½ 
E{PP.IJD 

HORIZONrALL Y 

f'ti:OB/..£f.il 7 (e) 

PROBLEM 7 ( F) 

� I O I % 
'j -2 o 

il 
8 

-;z 
fROBL£M 7 (<:} 

8. (a) 

C.091 1l 

PROBLEM 8 (a) 

(b) cosh2x - sinh2x = ¼(e' + e -•)2 - ¼(e' - e -•)2 

= ¼(eb + 2 + e -2•) - ¼(e b - 2 + e - 2•) = ½ + ½ 
= l 



9 .  (a) l n[x / (2x - 3 )) = 4 ,  x / (2x  - 3 )  = , • ,  x = 
2e 4x - 3e4, x(2e4 - 1) = 3e4, x  = 3t4/(2t4 - l )  

(b) X < , -• 
(c) ,• < -4.  No solutions since ,• is never less than 

0. Solution is not x < ln(-4) since there is no In 
of -4. 

(d) Let /(x) = 1 /(x - 3) - l /4x. / is discontinuous 

2/LIM ITS 

Section 2.1 (page 44) 

1. (a) 9 (Since x2 is continuous, just plug in x = 3.) 
(b) 00 
(c) 1 (Plug in x = 0 since cos x is continuous. )  
(d) -½1r(Left half of tan- 1x graph has asymptote 

y = -½1r; sec Fig. 7, Section 1 .4 . )  
(c) For example, (i) 10000 is very near 0. Limit is 0. 
(f) Sec fig. It shows fictitious points ½1r+ (where 

tan is -oo) and ½1r- (where tan is oo). Left-hand 
and right-hand limits do not agree; no overall 
limit as x ➔ ½,,·. 

PF-O BLffl I (f} 

(g) 9 (Set x = 2 since function is continuous.) 
2 .  For example, Int  2 .99 = 2,  Int 3.01 = 3 . (a) As 

x ➔ 3 - ,  Int x remains 2 and limit is 2 .  (b) As x ➔ 3 + , 
Int x remains 3 and limit is 3 .  
5. Sec Problem le, Section l .2. (a)  - 1  (b) 1 
4. (a) From Problem l (f), lim ... < 111>•- tan x = 00 

(b) Left-hand limit (as x ➔ (½1r)-)  is 00, right-hand 
limit (as x ➔ (-½1r)+)  is -00. No (plain) limit. 
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when x = 0, 3 and is O if x - 3 = 4x, x = - 1 ; 
/( - 1 00) is neg so / is neg in ( -oo, - 1 ); /(-½) is 
pos so/ is pos in ( - 1 , 0); /(2) is neg so/ is neg 
in (0, 3);  f ( 1 0) is pos so f is pos in (3, 00). Solu­
tion is - 1  < x < 0 or x > 3 .  

10 .  5e 1" 51 = 5e 1" 9 = 5 X 9 = 45 
11. ln(x/5x) = In ¼ = -In 5 

5. 

6. 

� 
PR.08LE'M 5(a.) 

rROBL� M 5(b) 

1 Pl!,(. 

6 • Po1 tJ r  
l)ISC 

l � 

3 

' : �
NF 

p 
PRO BLEM 6 ( b) PROBI-E'M 6 ( a.) 

7 / JUMP DISC. 

4 ""---

6 (c) 

INF DISC. 

I 

\I 1 

b (d) 
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7. Yes if f is continuous and we find the limit by setting 
a = 0. But no if / is discontinuous. In the diagram, 
/(2) = 5 but as a --+ 0, 2 + a - 2 and /(2 + a) --+ 4. 

5 • 

l 2 t A­

PRO&l..fM 7 

8. lim,_,_ /(x) = oo, lim.- -- /(x) = 1 (or more specifi­
cally, 1 +)  
9 .  (a) If  x i s  near 65  then x i s  not a power of 10 and 

/(x) = 1 ; so limit is 1 .  
(b) I f  x i s  near, but not at, 1 00 then x i s  not a power 

of 10 ,  /(x) = I and limit is 1 .  
(c) No  limit. Most/ values are I ,  but as x --+  00 there 

are infrequent but persistent 0 values, / never 
settles down. 

10. (See figs.) (a) No limit (violent oscillations). 
(b) Limit is O (damped oscillations approaching the 

x -axis asymptotically). 

PROBLEM /Q (a. ) 
' 

/ 

' 

/ 
/ 

Section 2.2 (page 47) 

fROBI-EM IO (b) 

I. (a) O (b) -00 (c) 00 (d) 00 (e) 0 (f) e 0 = l (g) l /00 = O 
(h) oo (i) 0 (j) -00 
2. (a) (In 0+ )2 = (-00)2 = 00 

(b) 1 /® = 0 

(c) 0 - (-®) = ® 
(d) e0 = l 
(e) In 1 = 0 
(f) 1 /0. Examine denominator more carefully. 

If x --+  (-4)+ ,  fraction is 1 /0+ = ®· 
If x --+  (-4) - ,  fraction is 1 /0- = -®, 
No limit as x --+ -4 since left-hand and right­
hand limits disagree. 

(g) 2 X 6 = 1 2  
(h) e -• = 0 
(i) As x - ½1r, sin x --+ 1 - and fraction is 

3/(( 1 - ) - I ) =  3/0- = -®. 

(j) ® x cos 1 /rr., == ® x cos O == ® x l = ® 
(k) 1 /-® = 0 

3. (See figs.) (a) 1 /0+ = 00 
(b) l f x --+ 0 + ,  limit is 1 /0+  == ®· 

If x --+ 0- ,  limit is 1 /0- = -®. 
(c) I f  x --+  l + , x' is larger than x, x - x 3 --+ 0-,  

limit i s  2/0- = -®,  
I f  x --+ 1 - then x' is smaller than x (cube of a 
number between O and I is less than the num­
ber), x - x ' --+ 0+ ,  limit is 2/0+ = ®· 

J 

PROBLEM 3 (a) 

/i 
I 
I 

• I  I 

/ 
PROBLEM 

4. (See figs.) 

3(,) 

3 (b) 

(a) lim.-- = e -• - 2 == 0 - 2 == -2 ,  l im,--• = 
e• - 2 = ® - 2 = ®· If x = 0, y = l -2  = - 1 . 

(b) l im.-- = 3 + 2 e •  = 3 + 00 = ® • l im,- -• = 
3 + 0 = 3. I f  x = 0, y = 3 + 2 = 5. 

! 
- - - ------- -- -- --- 3 

·l . •  - - - - - - - - - - -

PROBLEM 't(a) PROSl..l:'.M t(b) 



5. LimMo+ f(x) = e• = oo, Jim,-o- f (x) = e -s = 0. In­
finite discontinuity, not a point disc. Not removable. 
6. (a) If x -+  0+ , then 1 /x -+ oo and sin 1 /x oscillates 

between 1 and - 1 . 
(b) sin J/oo = sin O = 0 
(c) Plot a few points to help. (See fig.) 

1�F1•1fl;�Y l'!aNY 
0!41UAT1�S C((10l�rP 
IN HfRr 

,. I -:;: 
'i 11' 

I 1 v 
I .h , .. ,. , 3't 'fir 
rr,; . .  

PR08t-EM 

Section 2.3 (page 51 )  

M¾ 
0 

- I 

0 

0 

6 (,) 

I. (highest power rule) lim,_ ... ( -x4
) = -oo 

2. (a) (highest power rule) 
lim._.,. 2x99/x'4 = lim 2x65 = oo 

(b) (plug in x = 0) -l 
(c) (plug in x = l) -! 

S. (a) lim,_.,.(x/ -x) = lim( - 1 )  = - 1  
(b) l /0- = -oo 
(c) l /0+ = oo 
(d) lim(x/-x) = lim( - 1 )  = - 1  

4. (a) lim(3x4/x4
) = lim 3 = 3 

(b) If x is just less than 1 then x 4 is smaller than x, 
x4 

- x -+  0 - ,  lim is 5/0- = -oo. 
5. lim(-x 2/2x 2) = lim(-½) = -½ 
6.  Tem porari ly get 0/0,  but  (x 2 

- 4 )/ (x - 2 )  = 
(x - 2) (x + 2)/(x - 2) = x + 2. Limit is 4. 
7. lim(2x/3x2) = lim(2/3x) = 0 

Chapter 2 Review Problems (page 51) 

I .  (a) 0 cos O = 0 x l = 0 
(b) 0 + l = l 
(c) Damped oscillations. Limit is 0. (See fig.) 
(d) lim(2x/3x) = lim i = i 
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- - -

I (c:) 
2. (a) lim(2x 4/x2) = Jim 2x 2 = oo 

(b) (32 + 6)/(4 + 5) = 38/9 
S. (a) lim(2/x') = 2/oo = 0 

(b) i. Examine denominator again. 
Method 1 :  I f  x is pos and near O then x 2 is 
larger than x ', x '  - x 2 -+ 0- so l im,-o+ = 
2/0- = -oo. If x is neg and near O then x ' 
is neg, x' - x2 -+ 0 - so lim,-o- = 2/0- = -oo. 
So lim,-o = -oo. 
Method 2: lim(x 5 - x 2) = Jim x 2(x - 1 )  = 
0 x - 1  = 0- so answer is 2/0- = -oo. 

(c) j. Look again .  If x -+ l + then x ' is larger than 
x2, x' - x 2 -+ 0 + ,  lim = 2/0+ = 00• If x -+ 1 - ,  
x '  is smaller than x 2, x '  - x 2 -+ 0 - ,  lim = 
2/0- = -oo. No limit as x -+ I . 

4. (a) (highest power rule) lim( -4x 5) = -oo 
(b) 4 - 32 = -28 

5. (a) If  x = 0 or x -+ 0 - or x = 'Tl' or x -+ 'IT +  then 
sin x is O or neg, and there is no In sin x. 

(b) In sin O+ = In 0+ = -oo 
(c) In sin 7r- = In 0+ = -oo 

6. lim,_. = I - e "' = 1 - oo = -oo, 
lim, ___ = l - e _.,. = I - 0 = 1 .  
If  x = 0 then y = l - l = O .  (See fig.) 

7. 

PDINf DISl 
DEFINE f(3):: �  
T'O �MOV�. \\ 

7(a.) · t ; :,�,. 

� .. ,,,,.," 
PROBLEM 7 (b) 
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3/THE DER IVATIVE PART I 

Section 3.2 (page 61) 

1 .  Slope at x = 0 is 0, so J ' (0) = 0. At x = - 100, curve 
is falling gently so J '  (- 1 00) is a small neg number. Simi­
larly J '( lO0) is small positive number. Slope at x = 2 is 
positive and is the largest slope on the curve so J ' (2) is 
pos and the graph off '  peaks at x = 2. (See fig.) 

� 2  

PRO&LEM I 

2. If p increases, S decreases. Expect neg dS/dp. 
3. Since derivative is negative, as I increases y decreases. 

Distance to top is decreasing so bucket is moving up, 
2 feet per second . 
4. I f  x increases, y increases. So if x decreases, y 

decreases. 
5. (a) At age 13 . 7  you're growing by 2 inches per year, 

so you'll grow by about 2 inches per year x .3 
year = .6 inches by age 14 .  

(b) The derivative i s  2 at  age 13 .  7 but might not stay 
2 between ages 1 3 .7  and 14 .  

6. (a) [0, x  + Ax] people - [0, x] people = number of 
people in [x, x  + Ax]. 

(b) Population density (people per mile) in the in­
terval [x, x  + Ax] 

(c) Instantaneous population density at position x 
(d) Population density can't be negative. 

7 . (a) Brown's salary increases twice as much as 
Smith's. 

(b) Brown increases only half as much as Smith. 
(c) Brown decreases at the same rate as Smith 

increases. 
(d) Brown doesn't change. 

8. Units on J ' (x) are gallons per mile (not miles per 
gallon), always positive. Van needs more gallons to go a 
mile so / '  is larger for van than for motorcycle. 
9. (a) Sentence says that if  two curves have same 

height at x = 2 then they have the same slope. 
False. 

(b) False. Slopes need not increase even if heights 
do increase. (See fig.) 

· ' - /�
TS IHG,£'6£ 

---r-=·-PRO&I.EM Cf (b) 

(c) True. If curve repeats, slopes repeat. 
(d) False. I f /  is even then its graph is symmetric 

w.r.t .  the y -axis. Slope at x = -2 for instance is 
opposite, not equal to, slope at x = 2.  In fact f '  
i s  odd since f ' ( -x) = -f '(x). (See fig.) 

�, r 

PROSLE"M 9 (J) 

10. Car's speed at time 6 is > the speed limit at position 
/(6) so lf '(6) 1 > L(/(6)) (rwt / '(6) > L(6)). 

1 1 • (a) I . /(x + Ax) - /(x) _ lim x + Ax - x 
im,i .. -o Ax - Ax 
= lim 1 = 1 

(b) The graph of / is the line y = x. Slope at any 
point is 1, so J ' (x) = 1 .  

(c) If  a particle o n  a line has position f (t) at time I 
then it is moving to the right at 1 mph. So 
/ ' (I) = 1 .  

1 2 .  From given graph o f  g '  read that g ' (x) i s  near 3 when 
x is - 10 000, decreases to 0 when x = 0, then increases 
again and -+ 3 as x -+ 00. So graph of g has slope near 3 
at the left end, slope decreases to 0 and increases toward 
3 again. No information about heights on the graph of g. 
(See fig.) 

SLOPE 
NJl'tR � 

PROBLE M 1 2_ 



13. (a) Temp is rising by 6° per hour (bad). But the 6° 

per hour figure is dropping by 4° per hour per 
hour (good). 

(b) Temp is dropping by 6° per hour (good) and 
the -6° per hour figure is in the process of go­
ing down still further, by 4° per hour per hour 
(better). 

(c) Temp isn't changing. It's staying hot. Ugh!  
14. (a) Moving left at  4 mph, accelerating by 1 mph per 

hour. 
(b) Moving right at 5 mph, decelerating by 2 mph 

per hour. 
(c) Momentarily halted, but in the process of accel­

erating by 2 mph per hour. 
(d) Moving right at 2 mph, speed not changing at 

the moment. 
15. Graph rises on [2, 8), falls on [8 , 10), concave up on 
[2, 6), concave down on [6, 10). (See fig.) 

It 
3 A 

.t 6 t 10 

PROBLEM 15 
16. The first derivative f' is the "steering ratio," wheel 
turning per steering wheel turning. It is undesirable for 
the steering to be more sensitive in one position than 
another; i .e., want constant f ', so need f" = 0. 
17. f' is positive in [3 , 4) so f increases, more rapidly at 
first (by 5 f units per x unit) and then more slowly (by 
only 1 f unit per x unit) . Since f ' decreases in the interval 
[3, 4], f" is negative in the interval. 
18. (a) First 60 barrels cost a total of $400 to produce. 

(b) J ' (x) is the instantaneous production cost per 
barrel at the moment that x barrels have just 
rolled off the assembly line. For the given data, 
after 60 barrels have been produced, the instan­
taneous cost of producing more is $2 1 per bar­
rel, but after 100 barrels have been made the 
refinery has become more efficient and the in­
stantaneous cost for new barrels is only $ 10 per 
barrel. (The 101st barrel is cheaper to produce 
than the 61st.) 

(c) Total cost of the first 10 barrels is $200, an aver­
age of $20 per barrel. Instantaneous cost of 
the barrels after the 10th is only $3 per barrel, 
much less than the overall average so far. Re­
finery is more efficient if it produces more than 
10 barrels. 
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Section 3.3 (page 69) 

1. (a) 6x 5 

(b) D.x -6 = -6x -7 = -6/x 7 

(c) lx •n 
(d) D.u ,,, = ¼u -21s 
(e) d(x - 112)/dx = -½x -m 
(f) tx - 1/S 
(g) 0 
(h) e ' 
(i) 0 

2. 1 /z 
3. y ' = 1 
4. f ' (x) = 0 
5. sec21 
6. (a) y '  = 1 /x, y" = D.x - • = -x -2 = - l/x 2 

(b) y '  = cos x, y " = -sin x 
(c) y '  = e•, y• = e• 

7. f '(x) = D.x - 112 = -½x -m = - l /2x 312, 
[ '( 17)  = - l/2\/f7! = - 1 /(2 · 1 7W) = - l /(34W) 

8. /(1r) = sin 1r = 0,J ' (x) = cos x,f ' (1r) = cos 1r = - 1  
9. (a) -3x -• 

(b) 14x 13  

(c) D.x 115 = ¼x -•'5 
(d) D.x -5 = -5x -6 = -5/x6 

(e) 1 
(f) 1 /x 
(g) -¼x -•" 
(h) 4x ' 
(i) D.x -• = -4x -5 = -4/x 5 

(j) D.x - •  = -x -2 = - l /x 2 

(k) D.x -2 = -2x -s = -2/x ' 
10. Curve rises slowly at B so the slope is a small positive 
number; the value of 1 /x at B is also small positive since 
x at B is large. Curve rises steeply at A the slope is a large 
positive number; value of 1 /x at A is also large positive 
since x at A is slightly larger than 0. (See fig.) 

g 

PROUL.EM 10 
1 1 . Let y = tan- •x. Then x = tan y where -h < y < 
½1r, and dy/dx = 1 /(dx/dy) = l /sec2y = 1 /( 1  + tan2y) 
(trig identity) = 1 /( 1  + x 2) .  
12. (a) Reflect the piece of sin x between ½1r  and 3 1r/2. 

(See fig.) 
(b) D, llsin- •x  can't be 1 /V'l-x' since all the 

slopes on llsin- 1 x are negative while 1 /\If=-? 
is positive. 
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1 2. (o.) One way to get the correct derivative is to go back to ( 1 1 ) .  But now y is an angle between ½1r and 31r /2, so its cos is negative. Therefore cos y = -YT="? and 
D, l l sin - • x  = - 1 /vT="?. 13.  da/db = -4b-5• Since b = a - 1 14

, db/da = - ¼a -514• Then 1 /(db/da) = -4a 514 = -4(b-4}514 (since a = b-4) = -4b-5, which does equal da/db. So the inverse derivatives are reciprocals of one another. 14. (a) Diffto get velocity cos t, which is -½ at I = 21r/3. Speed is ½ m/sec. (b) Diff �ain to get acceleration - sin t, which is -½V3 if t = 2 1r/3. Velocity and acceleration have same sign so particle is speeding up, name­ly by ½\13 m/sec per sec. (c) Speed is !cos t i .  Max when t = 0, 1r, 21r, etc. (max value is 1 ) .  Min when t = - 1r/2, 1r/2 ,  3 1r/2 etc. (min value is 0). 15. y '  = 4x ', slope at (-2 ,  16) is 4 (-2)3 = - 32 .  Tan line is y - 16  = - 32(x + 2). Perpendicular line has slope ti, equation is y - 16 = i(x + 2). 
Section 3.5 (page 77) 1. (a) 18x '  - sin x (b) 1 0x 4 

- 1 8x 2 
- 4 2. (a) y = x - • , y ' = -x - •, y "  = 2x - ', y '" = - 6x - •, 

y l41 = 24x -5 = 24/x 5 (b) y '  = cos x, y " = -sin x, y '" = -cos x, y '4 1 = sin x (c) y '  = 1 , y" = 0, y '" = 0, y '41 = 0 3. (al h' (b )  6x 2 (c) D2x -3 = -6x -4 = -6/x 4 (d) D½x - 3 = -Ix -• = - 3/2x • (e) -!(3x 2 + 2) (f) (product rule) - 2x 3 sin x + 6x 2 cos x • r l 1 _ 1 12 1 In x (g) v x · - + 2x In x = - + --x Vx 2Vx (h) sec x · sec2x + tan x · sec x tan x 
= sec'x + tan2x sec x (i) 2e'( l /x) + 2e' In x + l0x (j) 2e' + 1 /x 

(k) 4x 2/( l + x 2) + Bx tan- •x ( I )  x '  s in x sec2x + x '  cos x tan x + 3x 2 sin x tan x (m) - 3x -• = - 3/x 2 (n) Dfx - •  = -fx -• = - I /3x2 4. (a) f '(r) = 5r4, f"(r) = 5 • 4r3 , • • · ,  r1(r) = 5 • 4 · 3 · 2 · I = 5 !  (b) F41(r) = 4 • 3 · 2 · l , ['51(r) = 0 l (c) f ' (r) = r4 
• - + 4r3 In r = r 3 + 4r'  In r, r 

I J"(r) = 3r2 + 4r3 • - + 1 2r2 In r r = 7r2 + 12r2 In r, I r(r) = 14r  + 1 2 r2 • - + 24r In r 
T = 26r + 24r In r, 

r•1(r) = 26 + 24{;) + 24 In r = 50 + 24 In r, 24 p•>(r) = -r 5. /(-2) = 48 + 4 = 52, f ' (x) = 12x' - 2 ,  J"(x) = 36x 2
, [ '( - 2) = - 96 - 2 = -98, J"(-2 )  = 144 6. (a)  (product rule) xe• + e' (b) xe• + e• + e• = xe• + 2 e• (c) xe• + e• + 2e' = xe• + 3e' (d) Guess xe• + ne•. (6x + x2)3 - (I + 3x) (6 + 2x) 1 ) 7. (a) 6 2 2 (quot ru e ( X + X )  3x2 + 2x + 6 (6x + x 2)2 

X cos X - sin X 
(b) x•  ( I  + 3e") (xe' + e') - xe• • 3e' 
(c) 

(l + 3t")2 xe• + e• + 3e 2, ( l + 3e')2 l cos x · 0 - (- sin x) sin x 8. D sec x = D -- = ----,-;...._-""" = --cos x cos2x cos2x I sin x 
= -- -- = sec x tan x 

COS X COS X 

{ sin x if 0 s x s 1r 9. (a) /(x) = -sin x if 1r s x s 2 1r  sin x if 2 1r  s x s 3 1r, etc. 
{ 

COS X if 0 < X < 1T 
SO J ' (X) = -COS X if 1T < X < 2 11"  cos x if 2 1r  < x < 3 1r, etc. (b) f ' (x) is 6x 2 if x s 2, and is 0 if x > 2 10. y ' = 6x 2 + 6, slope at ( 1 , 8) is y '  l , - 1  = 12 .  Tangent line is y - 8 = 12 (x - I ) ,  y = l2x - 4 .  



1 1 . y '  = -4x 3, y '  j ,.2 = -32.  Slope of perpendicular line is - k  Perpendicular line is y + 1 I = i(x - 2). 12. (a) y' = cos x, y" = -sin x, negative if 0 < x < 'Tr, positive if ,,, < x < 2 'Tr, etc. So sine curve is con­cave down on [0, 'Tr], concave up on ['Tr, 2 'Tr] as in Fig. 8, Sect. 1 .3 . (b) y '  = 3x 2, y " = 6x, pos if x > 0, neg if x < 0. So x3 is concave down for x < 0, concave up for 
x > 0 as in Fig. 12, Section 1 .2 .  1 3 .  vel = 2 1  - 9 1 2 , ace = 2 - 1 8 1 .  At t ime t = 2 ,  vel = -32, ace = -34. Speed is 3 2  (mph) . Car is speed­ing up by 34 (mph per hour). 14. f ' (x) = 2x + a. Tangent line at (3, 4) has slope 2 so f ' (3) = 2, 2 · 3 + a = 2, a = -4 .  Graph of f passes through (3, 4) so f(3) = 4, 4 = 9 - 12 + b, b = 1. 15. y '  = -6x - 4, slope is 0 when x = -J. If x = -J then y = lf. (See fig.) 

l'R08UM I !> 
16. The graph of f starts out as a parabola and then switches to a line at x = 4.  Need the heights x 2 and ax + b to agree at x = 4 for continuity. Otherwise the graph of f will jump. (See left-hand fig.) So need 16 = 4a + b. Also f ' (x) is 2x if x :s; 4 and is a if x > 4. Need slopes 2x and a to agree at x = 4 for smoothness. Otherwise f will have a cusp. (See center fig.) So need 8 = a ;  then b = 16 - 32 = - 16. Then graph of/ is con­tinuous and smooth. (See right-hand fig.) 

PROBLEM /6 

17. y '  = x cos x + s in X, 
y" = x · - sin x + cos x + cos x = -x sin x + 2 cos x .  Then y" + y = -x sin x + 2 cos x + x sin x = 2 cos x 1 8. T '  = 31 2 

- 15 ,  T" = 61. I f  t = 3 then T = - 18 ,  
T' = 12 ,  T" = 18 ,  so temp is - 18° (cold), temp is  rising 
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by 12° per hour (hopeful) and the 1 2° per hour rate is itself increasing by 1 8° /hour per hour (still better). 19. Graph of y = -x 2 + 8x is a parabola, y '  = -2x + 8, slope is O if x = 4. If x = 4 then y = 16 so turning point is (4, 16). Graph ofy = 16 is a horizontal line . The two pieces join continuously since each has height 16 at x = 4. They also join smoothly (no cusp) since each piece has slope O at x = 4. Graph of y = x2 - 20x + 100 is a parabola, y '  = 2x - 20, slope is 0 if x = IO. If x = 10 then y = 0 so turning point is ( IO, 0). The line and the second parabola join without a jump since each has height 16 at x = 6. They do not join smoothly since pa­rabola slope is -8 and line slope is O at x = 6. (See fig.) 

' IO 
PROBLEM 1'1 

20. lff(t) = 12 1  - 1 3 thenf ' (t) = 12 - 3t 2. J"(t) = -61. f ' (t) = 0 if l = ±2,J ' (t) is neg in (-00, -2), pos in (-2 , 2), neg in (2, oc). J"(t) is pos if I < 0, neg if I > 0. 
time interval sign of J '  sign off" particle 

(-00, -2) neg pos moves left, decelerate� (-2 , 0) pos pos moves right, accelerates (0, 2) pos neg moves right, decelerates (0, 00) neg neg moves left, accelerates 
Key values are J( -00) = 00, f (-2 )  = - 16 , f(0) = 0 ,  
f (2 )  = 16 ,  J(00) = -oc. (See fig.) 

-/6 

t:O . 
' I 
0 16 

PR.OBLEM 20 
f'O.SIT/ON 
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Section 3.6 (page 80) 

J. 6e ... 
2. 2 cos 2x 
3. -e -• 
4. -e•  

1 
5 -:,:;:.=:;:;==;;; · - I • V'l - (3 - x)2 
6. - 10 sin 5x 
7. (product rule and chain rule) 

x2 • cos 5x • 5 + 2x sin 5x = 5x 2 cos 5x + 2x sin 5x 
8. 5x • e h · 2 + e h · 5 = 10xe 2' + 5e 2' 
9, D(2 + sin x)- 1 = - (2 + sin x)-2 • cos x 

= -cos x/(2 + sin x)2 

JO. e• cos e• 
I I .  e -• . -sin 4x · 4  + cos 4x • e -• ·  - 1  
= -4e-• sin 4x - e -• cos 4x 
12, x 3 • 6(2x + 5)5 • 2 + 3x 2(2x + 5)6 

= 12x 3(2x + 5)5 + 3x 2(2x + 5)6 

13.  - 2  sin 5x · 5 = - 10 sin 5x 
I I 

14. -- · - 1  = - --
5 - x 5 - x  

15. -
1
- • -sin x = - tan x 

COS X 
)6, 2t H h  

17, ½(3 + x 2) - 1 12 • 2x = x/'v'3+x'l 
l I I 

1 8, I + (½x)2 
. 

'i 
= 

2 + ½x 2 
19. D4 sec 5x = 4 sec 5x tan 5x · 5 = 20 sec 5x tan 5x 
20. 1T COS 1TX 
2 1. D(cos x)5 = 3 cos2x · D cos x = - 3  cos2x sin x 

I I I I 
22. cos - · D. - = - - cos -

X X x 2 X 
U. e v.D.Vx = e v./2Vx 

I 
24. t 1 1'D - = -e 11'/,c 2 

25. 3(tan- 1x)2/( I + x 2) 
26. 3(x 2 + 4)2 • 2x = 6x(x 2 + 4)2 

27. cos x• • 4x 3 = 4x 3 cos x •  
28. D.(cos x)4 = 4(cos x)' · D cos x = -4 sin x cos'x 
29. D(x 2 + 4x)- 1 12 = -½(x 2 + 4x)-312 • (2x + 4) 
30. In x ' = 3 ln x so derivative is 3/x (alternatively, de­
rivative is ( l /x 3) • 3x 2 = 3/x). 
3 1 .  3(1n x)2 • D In x = 3(1n x)2/x 
32. D(ln x) - 1 = - (In x)-2D In x = - 1 /x(ln x)2 

33. D(sin x)2 = 2 sin x • D sin x = 2 sin x cos x 
34. x • -sin 2x · 2 + cos 2x = - 2x sin 2x + cos 2x 
35. -sin(3 - x) • - 1  = sin(3 - x) 
36. -e• csc2 e• 
37. (product and chain) 
4x 'e s.- cos 4x + Bx'e s.- sin 4x + 3x 2e 8• sin 4x 

I 2x 
38. x • 

2x + 1 
• 2 + ln(2x + l) = 

2x + 1 + ln(2x + l )  

39. 6(3x + 4)5 · 3 = 18(3x + 4)5 

40. D(sec 3x 4
)

3 = 3(sec 3x 4
)

2D sec 3x 4 

= 3 sec2 3x 4 sec 3x 4 tan 3x 4 • 12x'  
4 1 .  -6(4 - x)5 

42. i 
43. (3/VI - (½x)2) • ½ = 3/2VI - ¼x 2 

44. ( I /sin e•) • D sin e• = (e' cos e')/(sin e') = e• cot e• 
45. D(cos 4x)' = 3(cos 4x)2 • D cos 4x 

= - 12 cos24x sin 4x 
46. e•/x + e• In x 
47. D(e• + W 1 = - (e' + W 2e' = -e'/(e' + 1 )2 

48. -4 csc 4x cot 4x 
49. (4/ln x) • D In x = 4/(x In x) 
50. D(ln x) 1 12 = ½On x)- 1'2 • ( 1 /x) = l /(2x vi'itx) 
51 .  lnVx = ½ In x so derivative is l /2x. Alternatively, 
derivative is ( 1 /Vx) • ½x - 1'2 = l /2x. 
52. In 3 is a constant so the problem is of the form c.x 2 

where c is the number In 3. Derivative is 2x In 3 . 
53. Jx l = -x if x < 0 and lx l  = x if x > 0 so 

I I I = {ln(-x) if x < 0 d n " In x if x > 0 an 

I I { ( 1 / -x) • - I if x < 0 I . D ln x = I /x if x > 0 = ; m both cases. 

54. (quotient and chain) 
� • 4 - 4x · ½(2x + 3)- 1 '2 • 2 

2x + 3 

"2 + 2 " 2 + 2 
55. cos -- • D --

x + I x + I 
x 2 + 2 (x + 1 )2x - (x 2 + 2) 

= cos -- ·  
x + I (x + 1 )2 

x 2 + 2x - 2 x 2 + 2 cos --
(x + 1 )2 x + l 

4x + 1 2  
(2x + 3)312 

56 • 
.!. (..!..::.!..)- 1 '2 • (3x + 4) • - I - (2 - x) • 3 
2 3x + 4 (3x + 4)2 

-5 /3x+4 = 
(3x + 4)2 'J �  

57. Remember that by the chain rule, D,v2(t) = 2v(t)v ' (t). 
Then by the prod uct rule D, f m ( t ) v 2 ( t )  = ½ m ( t )  • 
2v(t)v ' (t )  + v 2 (t) • ½m ' (t) .  Set m = 5 ,  v = 3 ,  m '  = 2 ,  
v '  = -1  to get (KE ) '  = -6 at  the fixed time. KE is  de­
creasing at this moment by 6 energy units per second. 

58_ 
l l l 

In In • · · In 2x In In · · · In 2x In In · · • In 2x 
638 logs 637 logs 636 logs 

_1 _ _ _  1_ 
• 

..!. . 2 
In In 2x In 2x 2x 
59. (a) -csc2/(x) • f ' (x) 

(b) xf ' (x) + /(x) 
(c) 3(/(x))2f ' (x) 
(d) f '(x)//(x) 
(e) efl•1f '(x) 

60. D. star 3x = e ''([3x]3 + 3) • 3 
61 ,  w '  = 3eHC 2 9  • sec 28 tan 2 8  • 2 
= 6e""' 21 sec 2 8  tan 2 8 , 



w" = 6t'" 28 sec 28 sec22 8  · 2 
+ 6t'" 21 sec 2 8  tan 2 8  • 2 tan 28  
+ 6,- 2• • sec 2 8  tan 2 8  • 2 · sec 2 8  tan 2 8  

= 12  sec 2 8,- 21(sec22 8  + tan22 8  + sec 2 8  tan228) 
62,  y '  = 4(2 - x)3 • - 1 . If  x = 3 then y '  = 4. Tangent 
line has slope 4 and equation y - l == 4(x - 3) .  Perpen­
dicular line has slope -¼, equation y - l = -¼(x - 3) .  
63.  First derivative = - (2 + 3x)-1 • 3 , second deriva­
tive = 2(2 + 3xf' • 3 • 3, third derivative = 

. - 99!  X 399 

-3 • 2(2 + 3x)-• • 35 , • . .  , 99th der1v = -
(2
-+

-
3
-
x)

-100- , 

. . 100! X 3 100 

100th der1vauve = 
(2 + 3x) 10 1 

64. (See fig.) y = VlOO - x2 , y '  = ½( 100 - x 2r 112 • -2x 
= -x/VlOO - x2 • I fx  = l then y '  = - I/V99; ih = 9 
then y '  = -9/\119. As the ladder be�ns to slide, x is 
small and y is decreasing slowly, by l /'V99 ft/sec. When 
the ladder is nearly horizontal and x = 9, y is decreasing 
more rapidly, by 9/\119 ft/sec. 

rRo8L-EM 6lf-

Section 3.7 (page 84) 

1 . (a) y '  = x cos y • y '  + sin y, 
y '  = sin y/( l - JC cos y) 

(b) l + y '  
= y sec2y • y '  + tan y • y '  + x sec2JC + tan x, 

y '( l  - y sec2y - tan y) = JC sec2x + tan JC - 1 ,  
, JC sec2x + tan JC - l 

'J 
= 

l - y sec2y - tan y 
2. y '  = -sin(x 2 + y2) • (2x + 2.>, ' ) , 

y ' ( l  + 2y sin(JC2 + y 2)) = -2x sin(JC 2 + y 2), 
dy -2x sin(x 2 + y 2) 
;i; 

= 
l + 2y sin(JC 2 + y 2) '  

dx l l + 2y sin(x 2 + ,2) 
dy 

= 
dy/dx == -2JC sin(JC2 + y 2) 

S. (a) Method 1 :  y = -vr-=7 (choose the negative 
square root because point (½. -½VS) is on the 
lower half of the circle, where ' values 

V
e nesJ· 

Then , •  = -½( l - x 2)- 111 • - 2x = JC/ I - JC . 
lf x = l then y '  = I /Vs. Tan�nt line is 
y + ½V3 = ( 1 /VS) (x - ½), y \/5 - x = -2 .  
Method 2: 2x + 2yy ' = 0, y '  = -x/y. If x = -½, 
y = -½VS then y '  = I /VS as above, etc. 
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(b) Method I :  Vy =  3 - Vx ,  y = (3 - Vx)2, y '  = 
2(3 - Vx )  • - l /2Vx . If x = l then y '  = -2.  
Tangent line is  y - 4 = -2(x - 1) ,  2JC + y = 6 .  
Mtthod 2: 1 /2¼ + y ' /2V, = 0,  y '  = -Vy/ 
Vx .  If x = l ,  y = 4 then y '  = -2 as above, etc. 

l -, 2 

4. - y '  = - (JC'j ' + y), y '  = -- . Want y '  when x = 0 
'J l + "'J 

but first need y. If x = 0 then In y = l, y = ,. Then 
y '  = f '(O) = _, 2. 

5. For ellipse, 8x + l8yy '  = 0, y '  = -4JC/9y. For hyp, 
2x - 2yy ' = 0, y '  = JC/y. Product of slopes is -4x2/9y 2• 
Solve system 4x 2 + 9y2 = 72, JC 2 - y 2 = 5 to get points 
of intersection ( -3, 2), (-3, -2), (3, 2), (3, -2).  For these 
values of x and y the product of slopes is - 1 , so curves 
are perpendicular. 

,.,.., ,. 2  
6 .  ,., • (x,. ' + y) = y ', y '  = � = ..-L-" l - u" I - xy 

2 
since ,., = y. So ( l - xy)y '  = ( l  - xy) � "" , 2, 
as desired. 
7. (a) ' = JC 3 sin JC . (JC 2 + 4f 1, 

y '  = x' sin JC • - (x 1 + 4)-2 • 2x 
+ JC 5 cos x • (x 2 + 4)- 1 
+ 3x 2 sin JC • (x 1 + 4)- 1 
- 2x 4 sin x x3 cos x 3x 1 sin x 

= --,,--� + -- + __,,,.--
(x2 + 4)2 x2 + 4 x2 + 4 

(b) In y = 3 In x + In sin x - ln(x 2 + 4), 
l , 3 l 2x - y = - + - · cos x - --
'J x sin x x1 + 4 • 

y ' = ,(; + cot JC - JC/: 
4

) . Replace y by 

x' sin(x2 + 4)- 1 to get same answer as (2). 
8. (a) If y = 2• then ln y = x In 2, ( l /y )y ' = In 2 ,  

y ' = y In 2 = 2• In 2 .  
(b) y "" x• , ln y = x ln x ,  y ' /y = x( l /x ) + ln x , 

y '  = y + y In x = x• + x• In x 
(c) y "" x '"" •, In y = sin x In x, 

( l /y)y ' = (sin x) ( l /x) + cos x In x, 

(sin JC ) y '  = y -x
- + cos x ln x 

. (sin x ) = JC 11" "  -
x
- + cos x In x 

(d) 3x2 

(e) 4(2x + 3)3 • 2 = 8(2x + 3)' 
(0 y = 42••', ln y = (2JC + 3) In 4, ( 1/y) y '  = 2 In 4, 

y '  = 2y In 4 = 2 • 42-+s In 4 
(g) ,. 
(h) y = (2x + 3)4", In y = 4x ln(2x + S), 

I l -y ' = 4x · -- ·  2 + 4 ln(2x + 3),  
y 2x + 3 

y '  = (2x + 3)4•(
2

/: 
3 

+ 4 ln(2x + 3)) 
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Section 3.8 (page 90) 

1. (a) -3 cos x + C 
(b) -i cos 3x + C 
(c) u !/5 + C 
(d) 1r sec(x/ 1r) + C 
(e) fr'dt = , -2/ - 2  + C = - l/2t 2 + C 
(0 lnlx l  + C 
(g) x -•/-4  + C = - l/4x 4 + C 
(h) Jx 512 + C 
(i) J x - •12 dx = x 1 12/½ + C = 2¼ + C 
(j) x9/9 + C 
(k) H x -2 dx = ½x - 1/ - l + C = - l/2x + C 
(I) f 4x -2 dx = 4x - 1 / - l + C = -4/x + C 

2, /(x) = -cos x + ix ' + C. Set x = 0,/(x) = 10 to get 
10 = - 1  + C, C = 1 1 , /(x) = -cos x + ix ' + 1 1  

5x 2 

3. J"(x) = 5x + A , f '(x) = 2 + Ax + B, 

/(x) = ix ' + ½Ax 2 + Bx + C 
4. I f  s is posit ion at t ime t then s ' (t )  = 7 - t 2, 

s = 7t - it' + C. Set t = 3, s = 4 to get 4 = 2 1  - 9 + 
C, C = -8,  s = 7t - it ' - 8. I f  t = 6 then s = -38. 
5. y = x 2 + 3x + C,  -2 = l + 3 + C, C = -6,  y = 

x 2 + 3x - 6 
6. No because D In sin x = ( l /sin x) TIMES D sin x = 

( I /sin x) cos x. 
7. (a) No, since D sin2x = 2 sin x cos x. 

(b) No, since D sin 2x = cos 2x TIMES 2. (Correct 
answer is ½ sin 2x + C.) 

(c) Yes 
(d) No, since D sin x 2 = cos x 2 TI MES 2x. 

8. Let y be height at time t .  Then y" = -32 ,  y '  = 
- 32t + C. Given y '  = 40 when t = 0, so 40 = 0 + C, 
C = 40.  Then y = - 16t 2 + 40t + K. Given y = 24 
when t = 0, so 24 = K, y = - 16t 2 + 40t + 24. Stone 
reaches peak when velocity is O (turns from positive to 
neg), -32t + 40 = 0, t = ¾, y = 49. Stone hits ground 
when y = 0, - 16t 2 + 40t + 24 = O, 2t 2 - 5t - 3 = 0, 
(2t + l) (t - 3) = 0, t = -½ (ignore) or t = 3 (answer) . 
9. - 3 lnl3 - x i  1 0. ½ lnl2x + 51 

1 1 . Can't do. 12, 5 lnlx l 
13. H ( l/x) dx = i lnlx l 14. lnl2 + x i  
15, Can't do. 16. (7 / 1r) sin me 
17. Can't do. 18 .  ¼(ix ' + 3x2) 
19. Can't do. 

_2 5(3x + 6f 1 l -5  
20 .  5 f (3x + 6)  dx = _ 1 • 3 = 

3(3x + 6) 
Z l 4 

(2 + ¼x)512 

= ! (2 + ! )512 
' 3/2 3 .x 

22. 2 tan- •x 23. Can't do. 

2 6 /6 25 
3 . 2 m: 4. - cos(x ) , 

2
'ff' sm 3 

26. x 7/42 27. -3e -• 
28. Can't do. 
29. ix' + ½x 2 + lnlxl - 1 /x - l/2x 2 

30. ½e b 3 1 .  m: 
32. i(3x + 4)5/5 33. 2x -2/ - 2  = - l/x 2 

34. x 4/8 
35. H x -' dx = ½(x -2/ - 2) = - l /4x 2 

36. ¼(x -2/ -2) + C = - l/ l0x2 + C 
37. t 112/½ + C = 2Vt + C 
38. ¾x• + C 
39. i(x -2/-2) + C = - l/6x2 + C 
40. lnlx l + C 4 1 .  Can't do. 
42. 2x - x' + C 
43. f(2 - 3x)-' dx  = -i · (2 - 3xf1/ - 2  + C = 
1/6(2 - 3x)2 + C 
44. ¼x' + 5x + C 45. x + C 
46. -i cos 3u + C 47. Can't do. 
48. -½e -2a + C 49. Can't do. 
50. - 1/x ' + C 51 .  - lnl l - vi + C 
52. 2 • ¼ lnl3 + 4xl + C = ½ lnl3 + 4x l + C 
53. Can't do. 54. ie s. + C 
55, -(3 - x)512/i = -f(3 - x)512 

56. ½[(5t2/2) + 3t] + C = it' + Jt + C 
57. ½[(5x4/4) + 3x] = ix• + Ix + C 
58. Can't do. 
59. ½(2x + 3)6/6 + C = tf(2x + 3)6 + C 

Chapter 3 Review Problems (page 92) 

1. (a) f ' (t) is the rate in gallons/hour flowing in instan­
taneously at t ime t. With the given data , 
20 gal/hour flow in at time 3 (unhappy) but the 
figure 20 is in the process of decreasing by 
I gal/hour per hour (happy). 

(b) Want f ' (t) = 0 so that the rate of flow into the 
flood plain is 0. Negative values would be nice 
but unrealistic since water will not spurt back 
through the hole from the land. 

2, 2 cos(2x + 3 11') 
3. x cos x + sin x 

1 2x 
4. 

l + (x 2)2 
. 2x = 

I + x •  
5. D(2 - xf 1 = - (2 - x)-2 • - 1  = 1 /(2 - x)2 

6. -
1

- ·  - 1  
2 - x 

7. - l/x 2 

8. D ¼x -2 = ¼ · - 2x -' = - l/2x' 
9. -2t -b 

10. -e• 
1 1 .  3 sec2 3x 
12. - 3/x2 

13, x2 • 7(2 - 3x)6 • - 3  + 2x(2 - 3x)7 

= -2 lx 2(2 - 3x)6 + 2x(2 - 3x)7 

14. x/� + sin- •x 
15, 1 cos 4x 



16. !Jx,• sec x tan x + 3xt" sec x + 3,• sec x 
17. -¼ sin x 
1 8. Let y = 4". Then In y = x In 4 ,  ( l /y) y '  = In 4 ,  
, •  = 'J In 4 = 4• I n  4 
19. 4x ' 
20. -,•-· 
21 .  3(8 - x)2 • - 1  
22. Let y = (8 - x)". Then In 'J = x ln(8 - x), 
( 1 /y)y ' = x • 1 /(8 - x) • - 1  + ln(8 - x), 

y '  = (8 - x,(
8 

-
� " + ln(8 - x)) . 

(2,c + 3
)

' 2 8 (2" + 3
)

' 
ZS 4 -- · - = - --

• 5 5 5 5 
H. ½c2x + w 112 • 2 = 1 /v'2i'"+s 
25. 2 • -(3 + 2x)-2 • 2 = -4/(3 + 2x)2 

26, , v. · ½x - 111 = , v./2¼ 
27. _, 

(2x + 3) • l - x • 2 _ 3 
28• (2x + 3)1 - (2x + 3)2 

29. (product and chain) 
l l . 1 l l . 1 

x · cos - · - - + sm - = - - cos - + sm -
" "2 " " " " 

SO. (u" - ej/x2 

31 .  ¼ 
sz. i · -x -2 = - 2/3x2 

SS. D(cos 2x)' = 3(cos 2x)2 • - sin 2x • 2 
= -6 cos22x sin 2x 

S4, 3 COS lb • lb ' 2 = 6t b COS t2" 
35. D(7x' + 2x - 5)- 1 = - (7x 5 + 2x - 5)-2 (2 lx 2 + 2) 
= - (2 lx2 + 2)/(7x' + 2x - 5)2 

(5,c - 4) • 2 - (2x + 3) • 5 -23 
36. 

(5,c - 4)1 
= 

(5,c - 4)2 

37. S I = 2t - 612, s• = 2 - 121. If t = 2 then $ = - 1 1 , 
s ' = -20, s" = -22. Particle is at position - 1 1 ,  moving 
left at 20 meters/sec, speeding up (since acceleration and 
velocity have same sign) by 22 meters/sec per sec. 
38. Graph rises unti l  x = 3, falls until x = 5, then rises 
again, concave down until x = 4, then concave up. 
(See fig.) 

f�BLEM 38 

39. /(x) = ¼x4 - x2 + C,/(2) = - 2 so - 2  = 4 - 4 + C, 
C = -2, /(x) = ¼x4 - x 1 - 2 
40, f ' (t) • 3t 2 + 61 = 31(t + 2) ,  /"(I) = 61 + 6 ;  f.' is 
zero if t = 0, -2 ;  never is disc; f '  is pos in ( -00, - 2) ,  neg 
in (-2,  0), pos in (0, 00); /" is zero when I = - I ;  never 
disc ; /" is neg if t < - 1 , pos if t > - 1 . 
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time interval I '  I" particle 

(-00, -2)  pos neg moves right, slows down 
(-2, - 1 ) neg neg moves left, speeds up 
(- 1 , 0) neg pos moves left, slows down 
(0 ,  00) pos pos moves right, speeds up 

/(-00) = -00, /(-2)  = 5, /( - 1 )  = 3, /(0) = 1 , /(<») = ®· 
(See fig.) 

o I Z 1 't 5 

P�O&LEM 40 
41 .  cos sin sin · · · sin 2x • cos sin sin · · · sin 2x • 

824 sines 823 sines 
. . • • cos sin 2x • cos 2x • 2 
42. (a) y '  = x 2 + ½, always positive. So y increases. Al­

ternatively, ¼x' and jx are both increasing func­
tions, by inspection. So their sum is increasing. 

(b) If x = ½ then y '  = ¾. So as x goes up, y goes up 
¾ as fast. So 7 is increasing slower than x at this 
instant. 

43. Second derivative of ,• is ,• which is always positive. 
So graph of ,• is concave up. 
44. Diff implicitly (a) ry' + y + 3x • 27Y ' + 3, 2 = - 1 , 
y '  = (- 1 - 3,2 - y)/(x + 6ry) 

(b) cos x + y '  cos y = 0, y '  = -cos x/cos y 
(x 2 + 3x) • 5 - (5x + 2) (2x + 3) 

45. (a) 
(x' + 3x)2 

5x 2 + 4x + 6 
(x 2 + 3x)2 

(b) (product rule) 
x 5( 1 /x) + 3x 2 In x = x 2 + 3x 2 In ,c 

(c) Let y = (In 1)2
', then In y = 21 In In t, 

l l l - y ' = 2t • - • - + 2 ln In t, y In t t 

y = (In t)2{i: 
t + 2 In In t] . 

(d) 3x - 6 is positive if x > 2, negative if x < 2 so 

{3x - 6 if x � 2 l3x - SI = 
- (3x - 6) if x < 2 

d . . . {3 if x > 2 
envauve 1s _3 if x < 2 

(cusp at x = 2 ; see fig) . 

-f¥ 
P�OBL.EM 45(d) 
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(e) l + e • (f) (product rule) te '  + e '  � · 2 - 2x · ½(3x + 4)- 1 12 • 3 (g) 3x + 4 3x + 8 (3x + 4)'12 
(h) e 1xl is e -• jfx < O and is e' ifx � O so Delxl is -e -• if x < 0 and is e' if x > 0. 46. (a) (product rule) y '  = 3x cos x + 3 sin x, y" = -3x sin x + 3 cos x + 3 cos x = -3x sin x + 6 cos x, y '" = -3x cos x - 3 sin x - 6 sin x = - 3x cos x - 9 sin x (b) l - In x is pos if O < x < e ;  neg if x > e. So _ { l - In x if O < x � e y - - ( l - ln x) if x > e  

' = { - 1/x if O < x < e  y l /x if x > e " = { l /x 2 if O < x < e  Y - l /x 2 if x > e There is a cusp at x = e. When y '  changes for­mulas at x = e, the two formulas, - 1 /x and l /x, do not agree; i .e. , left-hand slope and right­hand slope disagree at x = e. For confirmation, consider graph of 11 - In xi. First reflect In x to get - In x, then translate up to get l - In x, and finally reflect all points that are below the x -axis. (See fig.) 

PROBLEM ¼6 (b) 

(c) y '  = x •  • - sin x 2 • 2x + 4x 3 cos x 2 
= -2x 5 sin x 2 + 4x 3 cos x 2, y " = -2x'  cos x2 • 2x - lOx• sin x 2 

+ 4x 3 • -sin x 2 • 2x + l2x 2 cos x 2 
= ( l2x 2 - 4x6) cos x 2 - ( l0x 4 + 8x 3) sin x2 (d) ln y = x ln 5 ,  ( 1 /y) y ' = In 5 ,  y '  = y In 5 = 5 '  I n  5 ,  y " = ( I n  5 ) D 5 ' ,  and  we j u s t  got  D5'  = 5' In 5 so y" = 5'(ln 5)2 

47. 1st derivative = -½(2 + 5x)-312 • 5, 2nd derivative = ½ · t(2 + 5x)-5'2 • 52, 

3rd derivative = -H f (2 + 5x) -712 • 53 , . . .  , 3 · 5 · 7 · · · 37 19th derivative = - ------ 5 19(2 + 5x)-,9
12 

2 19 ' 

3 · 5 · 7 · · · 39 20th derivative = 220 5 20(2 + 5x)-• 1 12 
48. y = 1 /x, y '  = - l /x2

• A typical point Q on the graph has coordinates (a ,  l /a). Tangent line at Q has slope - l /a 2 , e q u a t i o n  y - ( l /a )  = - ( l /a 2 ) (x - a ) ,  
a 2y + x = 2a. Tan hits x -axis at C = (2a, 0), hits y -axis at A = (0, 2/a). 1ll; = 2a, M = 2/a so area of triangle = ½BCBX = ½ • 2a • 2/a = 2. All such triangles have same area, namely area 2. 49. By product rule, (/g)" = fg" + f 'g ' + f 'g ' + f"g 

= fg" + 2f 'g ' + f"g, (fg)'" = fg'" + f 'g" + 2(f 'g" + f"g ' )  + f"g ' + f"'g = fg'" + 3f 'g" + 3f"g ' + f"'g Similarly, (fgj<4> = Jg <•> + 4f 'g"' + 6f"g" + 4f'"g ' + j <4 >g. Same pattern as binomial expansion for (x + y)" (Appendix A4). n(n - l )  Guess (fgj<"l = fg<"1 +nf 'g <•- 1 1 + 2 !  ["g <--2> 
+ . , • + nr•- l)g ' + r•>g, 50. (a) f' negative because reversed image appears when f(x) goes down as x goes up. (a') f ' is positive. (b) lf ' (x)I > l so that /(x) goes up or down faster than x goes up. (b') lf ' (x)I < 1 (c) f ' (x) not constant so that /(x) doesn't change steadily as x goes up. (c' )  f ' (x) is constant. 51. ½ lnlxl + C 52. H x -2 dx = - l/7x + C 

53 ( 4x - 2)- 2 l - 1 . "'------'-- • - + C = ---- + C -2  4 8(4x - 2)2 54. 2x 2 + 2x + C 55. ¾e'' + C 56. - (2/1r) cos ½m: + C 57. Can't do. 58. Can't do. 59. - lnl3 - t i + C 

60. f(3 - l)- 112 d1 = (3 - 1) 112 
• - 1 + c l/2 = -2v'3"='"i + C ( 1 + 2x)312 l 1 61 .  __ ...;.._ · - + C = -;;-( 1 + 2x)312 + C 3/2 2 3 62. Can't do. 63. (a) 5x 4 

(b) x6/6 + C 
(c) -4x -5 + C = -4/x' + C (d) x -5/-3  + C = - l /3x 3 + C 



4/THE DERIVATIVE PART I I  

Section 4.1 (page 97) 

1. (a) f '(x) = 3.x2 - 6.x - 24; f ' (.x) = 0 if 
3(.x2 - 2.x - 8) = 0. (.x - 4) (.x + 2) = 0, 
.x = 4, -2, the candidates. 

(i) f ' is pos on ( -0e, -2) , neg on (- 2, 4) ,  pos on 
(4, 0e) so f has max at .x = -2, min at .x = 4. 

(ii) f"(x) = 6.x - 6, /"(-2) = - 18, neg, so f has 
max at x = -2; f"(4) = 1 8, pos, so f has 
min at .x = 4. 

(b) f ' (.x) = 4.x' - 2.x, f ' (.x) = 0 iff 2.x(2.x 2 - 1 )  = 0, 
.x = 0, :!:yt 

(i) f ' i s  neg in ( -0e, - Vi), pos in ( - Vl, 0) 
(test say .x = - .01 ) ,  neg in (0, 'Vt), pos in 
(Yi, 0e); f has min at .x = -vl, max at x = 
o. min at .x = vl 

(ii) f ' (.x) = 1 2.x 2 - 2: j"(-V½) = 4, pos, min at 
x = -'\/l, /"(0) = -2, neg, max at .x = 0, 
["(\/1) = 4, pos, min at .x = Vl 

(c) J"(x) = 5.x4 + 1 ,  never 0. No candidates, no ex­
trema ( f '  is always positive so f is an increasing 
function with no relative extrema). 

(d) f ' (.x) = (.x,• - ,•)/x 2, f ' = 0 if xe• - ,• = 0, 
,·ex - I ) = o. X .. I 

(i) f ' is neg if x < 1 ,  pos if .x > 1 ,  f has min at 
.x = l . 

(ii) Using quotient and rroduct rule, f"(.x) = 
(.x2,• - 2.xe" + 2ej/.x , /"( l) = ,, pos, so f 
has min at .x = l .  

(e) / ' (x) = x • ( 1 /.x) + I n  x "' l + In  x ,  f '  = 0 if 
ln x = - 1 , .x = , - • = 1 /, 

(i) / and f ' are defined only for x > 0. Con­
sider interval (0 ,  1 /e). Test number from 
i n terva l , s a y  . 0 00 1 ;  f ' ( . 00 0 1 )  = l + 
In .0001 • 1 - large neg = neg. So f '  is 
neg in interval; ['  is pos in ( l /e, 0C) so f has 
min at .x = 1 /e. 

(ii) f"(.x) • 1 /.x, /"( 1/e) = ,, pos, so min at 1 /,. 
2. (a) Min at 2 by fint derivative test. 

(b) .x = 2 is a candidate; no further conclusion. 
(c) No conclusion. 
(d) No rel extremum at .x = 3 since slope is not 0. 
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(e) Min at .x = 2 by second derivative test. 
(f) .x = 2 is a candidate;  no further conclusion. 
(g) .x = 7 is a candidate; no further conclusion. 

3. No. ln diagram, the rel min at Xo is higher than the 
rel max at "• · 

I �  
PROBLEM 3 

4. For each function, the derivative is O when .x = 0 and 
the second derivative is also O when .x = 0, an inconclu­
sive second derivative test. By inspection, .x' does not 
have a rel extremum at .x = 0, .x 4 has min at .x = 0, -x 4 

has max at .x = 0. So inconclusive situation can go any of 
three ways. 
5. 

PIWBLEM 5 

Section 4.2 (page 104) 

1. (a) f ' (.x) = 3x2 + 2.x - 5; f '(:ic) = 0 if 
(!b + 5) (:ic - l) • 0, .x = -¾, l .  

(i) Candidates are end values /( -co) = -00, 
/(co) = 00, and critical values /(-i) ,  /( 1 ) .  
Max is  00, min is  -co. 

( i i )  Candidates are /(0) = - 5 ,  /( 1 )  = - 8 ,  
/(2) = -3. Max i s  - 3 ,  min i s  -8. 

(iii) Candidatcs arc /( - 1)  = 0, /(0) = -5. Max 
is 0, min is -5. 

(b) f '(:ic) = (.xe" - ,;/:ic 2 ; f ' (.x) = 0 if :ic,• - ,· = 0, 
e"(:ic - l) • 0, :ic = 1 .  

Note that / h as  a n  infinite disc a t  .x = 0. 
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(i) Candidates are /(0 + ) = l im,-o+ (e ' /x) = 
1 / 0 +  = 00 ,  / ( 0 - ) = l i m , -o - (e ' /x )  = 
1 /0- = -00 (and end values/( -2),/(2) and 
critical value /(1 )). Max is 00, min is -00. 

(ii) Candidates are /(0+ )  = 00, /( 1 )  = e, /(2) = 
e2/2 . Max is 00, min is e. 

(iii) Candidates are f (-00) = e -� /-00 = 
0/- 00  = 0, f (0- )  = -00. Min is -00, 
max is 0. 

(c) f ' (x ) = ( -x 2 + 4x - 3)/(x 2 - 3 )2 (quotient 
rule) ; f ' = 0 if -x2 + 4x - 3 = 0, x = 3,  1 .  Inf 
disc at x = :tV3. 
(i) Candidates are x = 0, 5, 1 ,  3, V3. 

lim /(x) = (V3 - 2)/0 + = -oo, 
... -v1+ 

lim f (x) = (V3 - 2)/0- = 00 . 
x -V3-

No need to look further. Max is/(V3 - )  = 
oo, min is /(V3 + )  = -00. 

(ii) Candidates are /(2) = 0,/(3) = ¾,/(5) = /i. 
Max is ¾, min is 0. 

(d) f '(x) = 3x 2 + 2x - 1 = (3x - l) (x + 1), zero 
if x = ½, - 1 . Candidates are /(0) = 3, /(½) = ¥,, 
/(4) = 79. Max is 79, min is ¥,. 

2. f is decreasing, graph falls to the left. Max is f (3) ,  
min is /(4). 
3. By inspection, max is co when x = ± oo, min is V2 

when x = 0. 
4. Let /(x) be the revenue with x passengers. The num­

ber of passengers over 200 is x - 200 so each ticket is 
reduced from $300 by x - 200 dollars. So 

f (x) = number of passengers x ticket price 
= x(300 - [x - 200]) = 500x - x 2 

where 200 :s x :s 350 . 

f ' (x) is 500 - 2x and is 0 when x = 250. Candidates are 
/(200) = 60,000, /(250) = 62,500 and /(350) = 52,500. 
Max revenue is with 250 passengers, min is with 350 
passengers. 

5. Let "CD = x . Then AB = 1 0 0  + x and  200  -
( 100 + 2x) feet of wire remain for sides AE and BC. So 
BC = ½(200 - ( 100 + 2x)) = 50 - x and area A (x) = 
( 100 + x) (50 - x) = 5000 - 50x - x 2 for 0 :s x :s 50. 
A' (x) = -50 - 2x; A ' (x) = 0 if x  = -25 ; not in [0, 50] so 
ignore. A(50) = 0 ("garden" dimensions are 1 50 x 0), 
A(0) = 5000. Max area is 5000 using wall as entire side, 
min area is 0 as garden collapses to a segment. 

6. Let x = 1fr: (this is not the only way to begin). Then 
EB 100 - 2 7n' = 150 - x --- = - EB = --:x + 100 area 

tw ' 150 - x  150 ' , ' 
A (x) = BC x EB = x( - fx + 100) = -h 2 + lO0x for 
0 :s x :s 150; A ' (x) = -ix + 1 00.  Critical number is 
x = 75. By inspection, the ends x = 0, 150 produce a 

collapsed house with area 0. So max area has dimensions 
x = 75 by EB' = 50. 

7. Let p(x) be profit when farmer sells after x more 
days. Then p(x) = ( 100 + l.2x) ( 1 2  - 'fox) = - .03x 2 + 
l l .9x + 1200 where x .?: 0, or better still 0 :s x :s 480 
since after 480 days the 12¢ figure is down to 0. Then 
p ' (x) = - .06x + 1 1 .9. Critical x is l l.9/.06 or approxi­
mately 198 .3 ;  p ( 1 98 .3 )  is about $23 .80 ,  p(0) = $ 1 2 ,  
p(480) = $0. Sell after 198 days. 

8. Slope s(x) = - 3x 2 - lOx - 13. We want max and 
min values of s (not !). Then s ' (x) = f"(x) = - 6x - 10. 
Critical value is x = -t not in interval. Candidates are 
s(0) = - 13, s(l) = - 26. Max slope on f graph in [0, I] is 
- 13, min slope is - 26. 
9. (See figs.) At 5 AM, car B has reached the A road and 

the cars are 75 miles apart. From then on, the distance 
between them is increasing so min must occur at or be­
fore 5 AM. At t hours after midnight, B has gone 20t 
miles, A has gone 15t miles so 

s(t) = V( lO0 - 20t)2 + 225t 2 , 0 :s t :s 5 . 

For convenience, can work with R(t) = ( 1 00 - 20t)2 + 
2251 2 instead of s(I); R '(t) = -40( 100 - 20t) + 4501, 0 
when I = 11. Candidates are s (ll) = 60,  s(0) = 100, 
s(5) = 75. Cars are closest when t = 3.2 ,  i.e. , at 3 :  12 AM. 

10. Let (x, y) be a typical point on the elli
e

se . (See 
fig.) Distance s from point to ( 1 , 0) is V(x - 1) + y' = 

Y(x - 1 )2 + !(36 - 4x 2) where - 3  :s x :s 3. For con­
venience , one  c a n  work  w i th  R (x )  = (x - 1 ) 2 + 
½(36 - 4x 2

) instead of s; R ' (x) = 2(x - I ) - fx, zero if 
x = t . Candidates are x = J and ends x = ± 3 so candi­
date �oints are A = ( 3 , 0) ,  B = ( - 3 , 0) ,  C = (t \) ,  
D = (5 , - i) .  ifQ = 2 ,  BQ = 4 ,  � = ¼VSO, � = 
¼VSO. Points C and D are closest, B is furthest. 

PROBL.�M 1 0  

1 1 . Let r be the fixed radius, let x be the height of 
the inscribe� r�ctanfle. (See fig.) Area A(x) = base x 
height = 2x r - x where 0 s x s r. 

A ' (x) = 2x½(r2 - x2)- 112 • - 2x + 2� 

= 2� - 2x 2/� . 



A' is 0 when 2(r2 - x 2) - 2x2 = 0, x = ±r/\/2. Ignore 
the neg x. Candidates are ends x = 0, r when rectangle 
collapses to a segment with area 0, and x = r/\/2. Rect­
angle with min area is the degenerate case of a segment, 
rectangle with max area has dimensions r /\/2 by 2r /\/2. 

tCZb � 
fr1-�1 PROBLEM 1 1 

12, Let speed of truck be s. Trip takes 600/s hours and 
total cost C = gas and oil + driver 
= 600 miles x (5 + i\is) cents per mile 

+ 600/s hours x 360 cents per hour 
where 30 :S s s 80; C '(s) = 60 + 360 · (-600/s 2) , zero 
if s = ±60. Ignore s = -60. Candidates are s = 30, 60, 
80. Corresponding costs are $ 120, $ 102, $ 105. Best speed 
is 60 mph, worst is 30 mph. 
l!I. Let x be the square's share and 16 - x the circle's 
piece. Square has perimeter x, side x/4, area x 2/ 16.  
Circle has circum 16 - x ,  radius (16 - x)/2 Tr, area 
11'(16 - x)2/4Tr2 = (16 - x)2/4Tr. Total area is 

A (x )  = x 2/ l6 + ( 1 6 - x ) 2/4 11' where 0 :S x s 1 6 .  
, x l x 16 - x  

A (x) = 8 + 
4,,, 

· 2( 16 - x) · - 1  = 8 - �. 
A '  (x ) = 0 when x = 64/ (  Tr + 4 ) .  Candidates are 
A(64/(Tr + 4)) = 64/(Tr + 4), A(0) = 64/Tr, A( l6) = 16. 
Max is A(0) so for max area, use whole wire for circle. 
14. Let one dimension of garden be x. (See fig.) To keep 
area fixed at A, other dimension is A/x. Perimeter p is 
2A/x + 2x, x � 0. When x = 0, have long thin garden 
with huge perimeter. When x = 00, have tall skinny gar­
den with huge perimeter. So endpoints produce max 
perimeter. Expect min perimeter at a critical point. 
p '(x) = -2A/x 2 + 2, zero when x = VA, i.e. , best�ar­
den is square. Min perimeter itself is p(VA) = 4 VA. 

PROBLEM 14  

15. Let x be the price charged. Then 
number of vacancies is ½(x - 50), 
number of rentals is 100 - ½(x - 50) = - ½x + 125. 
Income I(x) = x x no. of rentals 
= x(- ½x + 125) = 125x - ½x 2 where 50 s x s 250. 
(Once the price reaches $250, all rooms are vacant.) 
l ' (x) = 125 - x. Critical x is 125. Candidates are 
x = 50, 125, 250. Corresponding incomes are $5000, 
$7812.50, $0. Charge $125 a night (have 62½ vacancies, 
but max profit). 
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Section 4.3 (page 109) 

1 .  (a) 0/0 = lim.-1 (3x2 - 5)/(2x - 3) (L'Hopital) 
= -2/- 1 = 2 

(b) i = 2 
(c) lim._..(x'/x2) (highest power rule) = lim x = 00 

2. (a) 00 since x 2 has higher order of magnitude. 

(b 0/0 I. 
1 /(x - 1 )  ,. . ) = 1m 

l 
(L'Hup1tal) = l 

(c) -oo/0+ = -00 (not indeterminate) 
(d) O; e• has h�her order of magnitude . . 
(e) 0/0 = lim 

os � - l 
= 0/0 = lim � 

0 
-sm x -cos x 

= =-i
= 0 

(f) 0/( l + 0) = 0 
-oo -00 • 1 /x , • . (g) -;- = - = hm 1,. 

l /  2 (L Hop1tal) 
t 00 e • - X 

-x 0 
= lim - (algebra) = - = 0 , 11.. 00 

(h) -00/0+ = -00 
(i) 0 since 3x has higher order of magnitude. 

26 1 
(I )27 27(1n x) • -

• 1· n x 00 
1 · 

x 
L'H • · I .,, 1m.-- -- = - = 1m ----- ( opna ) 

X 00 
2S J 

(I )26 26(ln x) · -
n X 00 X 

= 27 lim -- (algebra) = - = 27 lim ----
x 00 

(In x)25 00 
(L'Hopital) = 27 • 26 lim -- = - Keep using 

X oo 

L'H opital to eventual ly get 2 7 !  J im 
1
� = � = 
X oo 

27! lim \x 
= 0. So x is faster than (In x)27. 

4. (a) Method 1 :  Let u = 3x. If x ---+ 0 then u ---+ 0 and 
limit becomes 

I
. sin u 3

1. 
sin u 3 3 

1m -- = - 1m -- = - x 
I 

= -
2 . 

--o 2 2 --o u 2 3u 

Method 2: (L'Hopital) lim(3 cos 3x)/2 = ¾ ,  

(b) Method 1 :  lim 
sin x 

• sin x = l x O = 0. 
X 

Method 2: (L'Hopital) lim 2 sin
� 

cos x 
= 0. 

5. First application is OK since original problem is of 

the form 0/0 . But lim.- 1 
8
6
,c 

- 2 
= �

2
. It is not an 

x - 4 
indeterminate quotient so L'Hopital's rule can't be used 
a second time. No need for a special rule anyway. Answer 
is I =  3. 
6. (a) Same order of mag since each is a multiple of 

the other. 



444 • Solutions to the Problems 

(b) l im.-x e 5'/e 3' = 00/00 = lim 5e 5'/3e 3' = oo/r:r., 
getting nowhere. I nstead use algebra to get 
lim,-x e 5"/e 3" ""  Jim e 2" = r:r.. So e 5" has higher 
order of magnitude. 

. In 3x r:r. (c) Method 1 :  hm -- = -,-m In 4x r:r. 

..!.. . 3 
I . 

3x 
L'H • . I 1 ·  = 1m -

1
- ( op1ta ) = 1m I = I .  

- · 4  
4x 

Same order of magnitude. 
Method 2: In 3x = In 3 + In x, In 4x = 
In 4 + In x. Each has same order of mag as In x. 

7. We already k.now that l im.-o(sin x)/x = l .  Draw the 
hyperbola y = 1 /x and its reflection in the x -axis to serve 
as the envelope. (See fig.) 

\ 
I 

PROBt..£M 7 

Section 4.4 (page 1 12) 

1. (a)  00 X e -x = oo X 0 ;  lim x /e •  = 0 s ince e• has 
higher order of magnitude. 

(b) Oe0 = 0 X 1 = 0 
(c) (-00)ex = -00 X oc = -00 

2, (a) 1 - In I = 1 - 0 = I 
(b) 0 - (-00) = 00 
(c) 00 - 00. Answer is 00 since x 2 has higher order of 

magnitude. 
3, (a) -00 since e• has higher order of magnitude. 

(b) -oo - O = -00 

4. lim,-o+xe 1 '• = 0 X es = 0 x oo. Let u = l /x. Then 
u -+  oc, problem becomes l im.-x e "/u = 00 since e" has 
higher order of magnitude. Also lim,-o- xe 1 1• = 0 x e -z 

= 0 x 0 = 0 .  For the purpose of the graph, can be more 
precise to get 0- x 0+ = 0- .  (See fig.) 

5. (a) 

PROBLEM 't 
In x -oo l /x 0 X -oo; l im -- = - = l im ---
cot x oo -csc2x 

. - sin2x 
= hm -- = 0/0 = · · · = 0. (See Prob. 4b, X 
Section 4 .3 . )  (b) 1 x -oo = -oo 

(c) oo x sin O = r:r. x 0. Let u = l /x to get 
l im.-o+ (sin u)/u 2 = � = lim(cos u)/2u 
(L'Hopital) = 1 /0+ = oo 

(d) 00° (indet). Let y = x 1 1•. Then In y = ( l /x) In x, 
lim.-z In y = l im.-x(ln x)/x = 0 (In x has lower 
order of magnitude). Answer is e 0 = I .  

(e) (0 + t = 0 (not indet) .  I f  you don't  see the 
answer O immediately, let y = x 1 1• ; then In y = 
( 1 /x) In x, l im,-o+ In y = l im,-o+ (ln x)/x = -oo/0+ = -oc. Answer is e -x = 0, as before (no 
indeterminancy in this approach either). 

(f) 1 z (indet). Let y = ( 1  + xt•; then In )' = 
( 1 /x) ln( l + x), 
. . ln( l + x) 

hm.-o+ In y = hm.-o+ ---
x 

O I ' l + x 'H . . I) 1 = 0 = 1m -1
- (L opua = . 

Answer is e 1 = e. 
(g) 00s = 00 
(h) 00 x (e 0 - 1 )  = 00 X 0. Let u = l /x. Then 

u -+  O + ,  and l im.-o+ (e "  - 1 )/u = S 
= l im.-o+t "/ 1  (L'Hopital) = l .  

(i) (0+ )2 = 0 
(j) 1 z (indet). Let y = (e' + 4x)2''; 

then In y = (2/x) ln(e' + 4x), 
. . 2 ln(e' + 4x) _ 0 hm,-o+ In y = hm,-o+ x - O 

2 -- · (e' + 4 ) 
. e• + 4x 

(L'H • . I )  = hm I 
op1ta 

r 2(e" + 4) 1 0 . Answer is e w. = ,m.-o+ e• + 4x 
= 



Section 4.5 (page 1 15) 

Each problem in this section has a diagram. 
I. Parabola, opening down. Turning point when de­

rivative is 0; f ' (x) = - 2x + 4, zero if x = 2. 

2. f ' (x) = 4x 5 + 6x 2, zero if 2x 2(2x + 3) = 0, x = 0, 
-i; f"(x) = 1 2x 2 + 1 2x, f"(0) = 0 (2nd derivative test 
is inconclusive), ["(-!) = 9, pos, rel min. On ( - i, 0), 
f ' is pos and on (0, oo) ,  f ' is pos so no rel extrema at 
x = 0; lim.-.. J(x) = oo and lim,--.. f(x) = oo (x 4 term 
dominates) . 

(- �- -21-) 1 '  ,, 
PR08L£M 2.. 

3. f is defined for x .!: 0 only; f ' (x) = ix 1 '
2

, zero only if 
x = 0, otherwise positive so f increases; lim,_m f (x) = 00 • 
J"(x) = ¾x - •�!JX)sitive for all x > 0 so concave up. 

4. f(x) = W. By inspection, graph of f falls until 
x = 0 and then rises; f '(x) = Jx - 115 = 2/3 � ,  neg if 
x < 0, -oo ifx = 0 - ,  oo ifx = 0 + ,  pos ifx > 0. So again,  
grdph off falls and then rises. At origin, left-hand slope 
is -oo, right-hand slope is oo; /(oo) = oo, /(-oo) = oo. 

lL 
PRoBL.EM 3 PR081.EM Lt-

5. f ' (x ) = 4x 5 + 3x 2 + l 0x ,  zero if x(4x 2 + 3x + 
1 0) = 0. Equation 4x2 + 3x + I O  = 0 has no real roots 
so only sol is x = 0 ; f '  is neg in (-oo , 0) and pos in (0, oo) 
so rel min at x = 0; J(oo) = oo ,J(-oo) = oo (x 4 dominates) 
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PROBLEM 5 
6. Exponential curve ; J(oo ) = 2e _ ., = 0 ,  f( - 00) = 

2em = oo, J(0) = 2.  

1 

PROBLEM 6 
7. Sine curve, period 1r. Plot a few points to pinpoint 

location. 

'){ '-} 

1C 11. ,i,no::o 

� � 
sinll 

PROBLEM ] 

8. f is defined for - v'2  s x s Y2. /(- V2) = 0,  
/(Y2) = 0 .  Use product rule ,  and simplify, to  get 
f ' (x) = (2 - 2x 2)/V°2=7, zero if x = ± l ; f '  is neg in 
( - V2, - l), pos in ( - 1 , 1 ) ,  neg in ( l , Y2). Graph falls, 
rises, falls. 

P,'.06LEM 8 
9 .  l im, -o + = 1 / 0 + = oo , l im, -o - = 1 / 0 - = - oo . 

Otherwise, fit cosine curve in envelope y = ± 1 /x, and 
reflect cosine when 1 /x is neg, i .e. , when x < 0 (see fig.). 
10. J ' (x) = e - 11• • l /x 2 , 

f"(x) = e - 1 1, • - 2  
+ _!... .  e - 1 1, . _!... = e - 1 1, ( - 2  

+ _!...) . 
x '  x 2 x 2 x '  x 4 

f ' (x) > 0 for x -I: 0, graph off rises on ( -oo , 0) and rises 
i n  ( 0 , 00 ) ;  f ( 0 - )  = e "' = oo ,  f ( 0 + )  = e _ ., = 0 ,  
/(oo) = e0 = 1 ,  /(- oo) = e 0 = l ;  f"(x) = 0 if x = ½. I n  
(-oo, 0) , f" pos and graph concave up; i n  (0, ½), /" i s  pos 
and graph is concave up; f" is neg in (½, oo) and graph is 
concave down. 



446 • Solutions to the Problems 

I ' 
I \ 

I \ 
\ ' 

PROBLEM q 

� '  - - - -- - - - - - - - - - - - - - -
� 

PRO&L£M /0 

1 1 . f ' (.x )  = xe • + e•  = e " (x + 1 ) ,  zero i f  .x = - 1 ; 
f"(.x) = e• + e"(x + I ) = e"(.x + 2) ;  ["( - 1 )  is pos so rel 
m i n  a t  .x = - 1 ;  / ( oo ) = oo , / ( - oo ) = - oo X O =  
l i m . - - . ( .x / e - • )  = - 00 / 00  = l i m . - - . ( 1 / - e - • )  
(L'H6pital) = lim.--.( -e") = 0- . 

PROBLEM I I  
12. J ' (.x) = e -"(2.x - .x 2) ,  zero if .x = 0, 2 ;  pos if .x in 
(0, 2) ;  neg if .x > 2 or .x < 0, so relative max at .x = 2 ; 
/(oo) = 00 x O = lim(.x 2 /e") = 0 since e• has higher order 
of magnitude. /(-oo) = 00 x 00 = oo. 

PR08LfM 1 2.  

13. f ' (.x) = 1 + In .x, zero ih = 1 /e; J"(.x) = 1 /.x ; f"( l /e) 
is pos, rel min ; /(00) = oo, /(0 + )  = 0 x -oo 

I. 
In .x -00 

1
. 1 /.x , . I = 1m.-o+ l /.x 

= -;- = 1m.-o+ - l /.x 2 (L H6p1ta ) 

= lim(-.x) = 0. 

-� 
PROBLEM 13 

14 .  Method J :  Draw y = x, y = In .x and subtract heights. 
Method 2: J ' (.x) = 1 - 1 /.x ;  zero if .x = I ;  J"(.x) = l/.x 2, 
f"( l) is pos so rel min ; /(oo) = oo (.x term dominates), 
/(0+ )  = 0 - ( -oo) = oo. 

V 
PROBLEM llt-

15. f ' (.x) = 2/(.x + 1 )2 , pos for .x > - 1  and for .x < - 1 . 
Cu rve rises on ( -oo, - 1  ) ,  rises on ( - 1 ,  00 ) ;  / (®) = 
l i m (.x /.x ) = I ( h i g h e s t  p o w e r  r u l e ) ,  / ( - oo ) = I ,  
lim.-,- 1 1+/(.x) = - 2/0+ = -00, 
lim.-<- • i-/(.x) = - 2/0- = oo 

16. 

,, 
,,. ,, ,,. 

- I  

PROBLEM / 5 

PROBLEM 1 6  



17. Exponential curve. 
/(00) = -4 , f(-00) = -00, f(0) = -5 

rROBLEM 17 
18. 

PROBLEM 1 8  
19. f ' (x) = e"(x - 5)/x 6

, zero if x = 5; J ' (x) is neg on 
(-oo, 0), neg on (0, 5), pos on (5, 00), rel min at x = 5. 
f (00) = 00 since e• has higher order of mag; /(-00) = 
0/-00 = 0; f(0+ )  = 1 /0 +  = 00, f(0-) = 1 /0- = -00. 

u 
PROBL£'M 11 

20. f ' (x) = -2xe -•', zero if x = 0, pos if x < 0, neg if 
x > 0, rel max at x = 0; /(00) = e -• = O, f(-00) = 0. 

4 
PROBLEM 20 

21 . Method l :  Draw line y = x  and hyperbola y = 1 /x 
and add heights. 
Method 2: f '(x) = l - l /x 2, zero if x = :!: 1. f"(x) = 2/x 3 ; 
f"( l )  is pos,["(- 1)  is neg. So rel min at point ( 1 ,  2) and rel 
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m a x  a t  ( - 1 ,  - 2 ) ; f ( oo ) = oo + 0 = oc , f ( - oo ) = 
- 00  + 0 = - oo ,  / ( 0 + ) = 0 + 00 = oo ,  / ( 0 - )  
0 + (-oo) = -oo. Results agree with method I .  

\.� ,, 
I ,, 
\ ,, ' / 

\ ,, 
\ 

/ 
' ,, ,, ,,," , ..... - -

PROBLE"1 2 1  

22. /(00) = 0, /(-00) = 0 .  B y  inspection, / has max value 
of 4,  when x = 0. 

PROBL£M '}J, 

23. (a) f is defined for x > 0; f(0+ )  = -00/0+ = -oc, 
/(00) = 0 since x has higher order of magnitude 
than In x; J ' (x) = ( l  - In x)/x 2, zero if x = e, 
pos if 0 < x < e, neg if x > e, rel max at x = e. 

Ye 

PR.OBI-EM 1-. � (o.) 

(b) The graph of (lnlx l)/x agrees with the graph of 
(In x)/x for x > 0; i.e . ,  the right half of (lnlx l)/x 
is the same as the graph in (a). But now there is 
a left half as well . Consider say x = - 5. Then 
lnlxl In 5 In 5 

h' h . h 
. 

f -
x
- = � = - -

5
- w 1c 1s t e opposite o 

the height in the part (a) graph at x = 5. So left 
half of graph in (b) is obtained by reflecting the 
graph of part (a) as indicated . 
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-� - e  
e 5 

PROBLEM 23 (b) 

Section 4.6 (page 1 18) 

I .  Functions involved are volume V(t ) and radius r(t ) ,  
related by V(I ) = 11r[r(t )P, Then V '(t ) = 4 1TT2r '. Given 
V' = - 1 0  (neg because melting means decreasing vol• 
ume). When r = 2, we have - 1 0  = 4 1r  · 4 · r ' , r ' = 
-5/8 1r. At this instant, radius is decreasing by 5/8 1r feet 
per sec. 
2. A(t )  = b(t )h(t ) so A '(t ) = b(t )h '(t ) + h(t )b ' (t )  (prod­

uct rule) . lf b = 6, h = 8, b '  = 4, h '  = -3 then A'  = 1 4 .  
Area i s  growing by 1 4  ft2/sec. 
3. Let s( t )  and x(I ) be the distances indicated in the 

d iagra m .  Then  s 2 = 8 1 00 + x 2 so ( cl i ff w . r. t .  I ) 
2ss ' = 2xx ', s ' = xx '  /s. Now plug in specific data for in­
stant when runner is 30 feet down the line. Set x = 30, 
s = 30\/To, x ' (I ) = 25 (positive since x is increasing) to 
get s ' = (30) (25)/30Vl0 = 25/V IO .  Runner moves 
away from home plate at rate of 25/vTii ft/sec. 

4, Let h(t ) be the water level at time t, V(t ) the corre­
sponding volume of water. V(t ) = 1rr 2h(1 ) = l 6 1rh(I ), 
V ' (t ) = l 6 1rh ' (I ) .  So h ' (t ) = V ' ( t ) / l 6 1r  = 8/ l 6 1r. At 
every instant of time, the height is increasing by l/21r ft 
per min. 
5. I f  PQR is equilateral, center of circle is A, radius is r 

(see fi�.), then AP = r, PBA is a 30°, 60°, 90° triangle, 
iili = 2r, ]f'/J = ½r\/3, altitude R1f = ! + ½r = Jr, base 
F{1 = r V3, area A (t )  = ½bh = ¾\/3 [r( t )]2, A ' (t ) = 
JV3 rr '  = J\/3 r since we are given r ' = 3. If r = 4,  
then A '  = 1 8V3. Triangle's area is increasing at this in• 
stant by 1 8V3 ft2/sec. 

R 

PROBLEM 

6. In figure, x(I ) = 5 tan 6 (1 ), 
x '(t ) = 5 sec2 6 (t )  · 6 ' (1 ) = I 0 1r  sec2 6 since we are given 
6 ' ( 1 )  = 2 1r  radians/min .  I f  x = 1 2  then BC = 1 3 , 
sec 6 = ¥,, x '  = 338 1r/5 miles per min, speed of the 
spot of light. 

7. In figure, if h(t ) is height of water at time t then 
radius of the water-cone is h/4 by similar triangles, 
V = ½ 1rr 2h = h 1rh ', V ' ( t ) = h 1rh 2 ( t ) h ' (t ) , h ' ( t )  = 
48/1rh 2 since V '  = 3 is given. I f  h = 2 then h '  = 1 2/1r. 
Water level is rising by 1 2/1r meters per min. 

PROBLEtJI 7 
8. In figure, by similar triangles 

is = y ; 
x

, 6y = l 5y - 1 5x, y = ix, y ' (t )  = ix ' (I )  = 5 

since x '  = 3 by hypothesis. Since y is increasing by 
5 ft/sec, speed of shadow's head is 5 ft/sec. 

,,� 
( ')I. )( 

y--,. 

'j 
PROBLEM 8 

) 



9. In figure, let h(t ) be water level at time t. By similar triangles, the corresponding radius of the water-cone is 
½h. Then 

(a) V' = - 10 (negative because leak makes water volume dtcrtaSt). If h = 3 then h' = (4) (- 1 0)/91r = -40/91r. Water level is dropping by 40/91r cm per min. (b) lfh = 6 and h ' = -2 then V' = - l8 1r. Volume is decreasing by l 8 1r  cubic cm/min, leak is l81r cubic cm/min. (c) If  h = 2 then r = I, exposed area = 1rr2 = 1r, 
V '  = -\/.ir (negative because evaporation makes 
V decrease) ,  h '  = 4 V '  /1rh 2 = - 1 /\/.ir. Water level is dropping by I /\/.ir cm per min. 

10. A(t )  = 1r[r(t )]2, A ' ( t )  = 2 11'TT '  = 4 1rr since r' = 2. If 
r = 5 then A' = 201r, disturbed area is growing by 2011' square m/sec. 1 1 .  Let r be inner radius, R the outer radius. Then A(t ) = 1r[R(t )]1 - 1r[r(t )]2, A ' (t) = 2 1rRR ' - 2 11'Tf '  = 4 1rR - 8 1rr since r' = 4, R ' = 2. If r = 5, R = 9 then A ' = 361r - 401r = -41r. Area is decreasing at this instant by 4 11'  m2/sec. lZ. In figure, A(t ) == ½x(t ) y(t ) ,  A ' (t ) == ½x, ' + ½x 'y (prod rule) = 3.x - 2y since y ' = 6 ( positive since y is in­
creasing), x '  = - 4  (negative since x is decreasing) . I f  y = 1 2, x = 1 0  then A = 30  - 24  = 6. Area i s  increas­ing by 6 square meters/sec 

l'ROSLE"M 1 2..  

Solutions to the Problems • 449 
13 .  Let r(t ) be radius of ice-coated sphere. Then V(t ) = i1r[r(t )P, V '( t )  = 4 11'T2r ' . Surface area is 4 1rr2, and melting rate of ice is proponional to surface area. So V '  = -k(4 1rr2) for some positive constant k (V '  is 
negativt because ice is melting ) ,  r '  = V ' /4 1rr 2 = -k(4 1rr2)/41rr2 = -k. Radius is decreasing at the con­
stant rate of k volume units per time unit. So thickness of ice is decreasing at a constant rate. 14. In figure, x 2( t )  = y 2(t ) - 900, 2.xx ' = 2yy ', x '  = yy ' /x = - 2y/x since y '  = - 2 .  If y = 50 then 
x = 40 and x' = -I (appropriately neg since fish is mov­ing toward the dock and x is dtcreasing). Speed of fish is 
i m/sec. If y = 3 1  then x = V61, x' = -62/V61. Fish speed is now 62/V61 m per sec (faster than before). 

�� "" PROBLEM l'f-15 .  Remember that if y i s  a function of t then derivative of I /y with respect to t is (- I /y 2) • y '  by the chain rule. D'f" . l 
R , l 

R ' l 
R , 1 ,erenuate w.r.t .  t to get - 2 = - 2 1 - 2 2 . R R 1 R 2 

( 2 -3) R '  = R 2 R t + R :  since R i = 2, R i  = -3 .  If R 1 = 10,  R2 = 20 then 1 /R = 'to + -Jo = iii, R = �.  R '  400 ( 2 3 ) 5 . . . h = 9 100 - 400 = 9 ; R 1s mcreasmg at t e moment by I ohms/min. 
Section 4.7 (page 122) These problems were solved using a Tl-55 calculator. 1. Let /(x) = x 2 - 39. Then f ' (x) = 2.x, (old)2 - 39 new x = old x - 2 x old . If old x = 6 then 36 - 39 new x = 6 - -1-2- = 6.2:,. If old x = 6.25 then (6.25)2 - 39 new x = 6.25 - 1 2 _5 = 6.245. If  old x = 6.245 then new x = 6.244998. The last two approximations agree on two decimal places. Take v'39 to be 6.24. To check on accuracy, /(6.24) < 0, while /(6.245) > 0 so there is a root between 6.24 and 6.245. The decimal places 6.24 are correct. 2. We want to solve equ x 5 = 1 73 .  Let /(x) = x� - 1 73. (old)' - 1 73 Then [ ' (x) = 3x 2, new x = old x - 2 3(old) 
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Starting with old x = 5 .5 as first guess (since 1 73 is between 53 and 63) we get successive approximations 5.5730028, 5 .5720548, 5 .5720547.  Have agreement in six places, so stop and take 5.572054 as the approxi­mation. To check accuracy, note that /(5 .572054) < 0, /(5.5720548) > 0 so there is a root between 5.572054 and 5.5720548. Our six places are correct. 3. Figure shows two solutions to e• = 3 - x 2, namely xo and "• ·  Let /(x) = e• + x 2 - 3. Then f ' (x) = e• + 2x, e old + (old)2 - 3 . . new x = old - told + 2(old) . Startmg with old x = 1 as first guess, successive approximations are .8477662, .83458 1 5 ,  .8344869. Take .834 as an approxi­mate  so l u t ion . As accu racy check ,  f( . 8 3 4 )  < 0 . /(.8345) > 0 so there is a solution between .834 and .8345. The three places .834 are accurate. Starting with old x = -2, successive approximations are - 1 .  7062267, - 1 .6775 1 67, - 1 .6772327. Approxi­mate solution is - 1 .677. As accuracy check,f(- 1 .677) < 0, [(- 1 .6773) > 0. Solution is between - 1 .6773 and - 1 .677. Our 3 places are accurate. 

PROSLEr-1 3 4, (a) The graphs of y = x and y = tan x (see fig.) do not intersect in interval (0, 1r /2) so there is no solution. (b) See intersection at a point where x = xo, the de­sired solution. To find xo make a first guess near 

PROBLEM 4 

3 w/2, say old x = 4 .5 .  Let /(x) = x - tan x .  Then f' (x) = 1 - sec2x and new x = old _ old - tan(old) = old _ old - tan(old) I - sec2(old) - tan2(old) Next approximations after 4 .5  are 4 .4936 1 39, 4 .4934097. Have 3 place agreement so take solu­tion to be approximately 4.493. To test accuracy, note that/(4.493) > 0 and/(4.4935) < 0 so root lies between 4.493 and 4 .4935. Our three places are accurate. 
Section 4.8 (page 127) 1 .  (a) the/2Vx (b) - sin x the  (c) x 5 d(sin x )  + sin x d(x 5) = x 5 cos x the  + 5x4 sin x the  d x d(sin x )  - sin x d(x) _ x cos x the  - sin x the  ( ) x 2 - x 2 (e) cos x 5 d(x 5) = 5x 4 cos x 5 the 

(f) 0 2. 6x 2 the 3. df = the 4. (a) d(x 3 + x 2) = (3x 2 + 2x) the .  Set x = 3, the = - .000 1 to get d(x 3 + x 2) = - .0033. (b) d(x 1 14
) = ¼x -lll4 the. Set x = 1 6, the =  . l to get d(x 114) = ¼( I W314 x . l  = (¼) (t) (. l )  = 1 /320. 5. (a) By trigonometry (see fig.) , AE = rV3, 7:15 = AD' = 2r, base = 2rv'3, height = 3r, A = ½ bh = 3r2V3. If r changes by dr then dA = 6rV3 dr, the area of the triangular shell. 

k. PROBLEM 5(o.) (b) V = f'tTT2h. If h stays fixed and r changes by dr then dV = f'tTTh dr, the shell volume. 
Section 4.9 (page 134) 1. (a) cos y dy = -x the, sin y = -½x 2 + C (implicit solution) 



(b) 1 d1 = -dx/x\ ½,2 = l/2x 1 + C, 
1 = ±Yl/x1 + D 

(c) 14 dy = -x 1 dx ,  ¼, 5 = -ix' + C, 
1 = {'-Jx5 + D

. 

(d) dy l, = dx/ (2x + 3) ,  In Ky = ½ ln(2x + 3 )  = 
lnv'2i'°"+1, Ky = V2x + 3, y = A v'2i'°"+1 

(e) , -, dy = dx/x1 , -, -, = - 1/x + C, , -, = 1 /x + 
D, -y = ln( l/x + D ), y = - ln( l /x + D )  

(f) y dy = (5x + 3) dx, b' = lx1 + 3x + C, 
y = ±V5x1 + 6x + D 

2. (a) dy/y = x dx, ln Ky = ½x 2 . Ky = ,•lit, y = A,.21t, 
3 = A, 112 , A • 3, -111, 
' = 3, -111,.2/t = 3, 1o•- 1)11 

(b) y dy = (3 - 5x) dx, i, 2 = 3x - ix' + C. Set x = 
2, 1 = 4 to get C = 12. Then i,1 = 3x -Ix' + 
12 ,  y "' Y6x - 5x1 + 24. (Choose the positive 
square root since y is positive when x = 2.)  

(c)  e' dy = 3x dx, ,, = fx1 + C. Set x = 0,  y = 2 to 
get C = ,2 • Then ,, = ix2 + , 2, 
1 = ln(ix 2 + t 1) .  

(d) dyl, 4 = cos x dx, - l/3y'  = sin x + C. Seu = 0,  
y = 2 to get C = - 1 /24, y = - 1/�3 sin x - ¼. 

3. (a) dy/y = 2 dx/x, In Ky = 2 In x = ln x2 , Ky = x 2 , 
y = Ax'. (See fig.) 

(b) 3 = 4.4, A = 3/4, y = ¾x 2 

4, (a) Differentiate w.r.t. x; 2x + 4yy ' = O, y ' = -x/2y. 
For orthog family, y ' = 2y/x , dy/y = 2 dx/x , 
In Ky = 2 ln x = ln x 1 , Ky = x 1 , y = Ax 2 , a 
family of parabolas. (See fig.) 

PIIOBI..EM 4-(o.) 
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(b) Isolate the C first so that it differentiates away: 
,, ,. = C . Then differentiate w.r. t .  x to get 
y • 3 , '" + y ', '" = 0 ,  y '  = - 3y .  For orthog 
family, y ' = l /3y ,  y dy = \ dx , b' = ¼x + C, 
X = b' + D,  
a family of parabolas. (See fig.) 

(c) Using differential notation for variety, 4x dx -
2y dy = 0. For orthog family 4x dy + 2y dx = 0, 
dy l, = - dx / 2x ,  In  Ky = -\ In x = ln  x - 1 12 , 
Ky = l/¼, x = A/y 2• The original is a family 
of hyperbolas, all with asymptotes y = ±x V2. 
For the graph of the orthog family note that 
lim,-- l /y 2 = 0, lim,--- l/y 2 = 0, 
lim,...o l /y 1 = 1/0+ = 00. (See fig.) 

D1411.1 
'h'•y',M 

PRO&EM '-t (c) 

5. (a) y ' (I ) = - foy (t ) , dy/y = -dt/ 1 O, ln Ky = --fot ,  
Ky = , -,110, y = A, -,110 

(b) Set t = 0, y = 75 to get A = 75. Solution is 
y = 75, -1110_ 

(c) Note that in the general solution in part (a), if 
I = 0 then y = A ,  so the constant A represents 
the initial amount. For half-life set y = ½A and 
solve for t ; ½A = A, -1110, ½ = , -1110, ln ½  = -1/ 10,  
t = 10  In 2, for any initial amount A .  

6. m ' (t )  = ½m(I ) ,  dm/m = ½ dt, ln  Km = ½t, Km = ,112 , 
m = A,111 • Set t = 0, m = 2 to get A = 2, m(t ) = 2e 111 • 
Then if t = 3 we have m = 2, :w . 
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dv dv dt 7. m - = mg - cv, --- = -- ,  
dt cv - mg m 

1 I 
- In K(cv -mg) =  --, K(cv - mg) = e -'11"' , 
C m 

_ mg A 
cv - mg = Ae '11•, v = - + - e -'11"'. Set I = 0, v = 0 

C C 

to get A = - mg .  Solution is v = !!!! ( I - e -,11.) .  
C 

Set I = 00 to get steady state velocity mg/c. 

Chapter 4 Review Problems (page 134) 

I .  PV = kT ,  V = k T/P . Differentiate w. r. t .  t ime 

(PT'  - TP '
) t ;  V '(t ) = k p 2 • If T = 20, V = 10 then P = 

20h/ l O  = 2k. With P '  = -2,  T '  = 3 we have 

V , k(
6k + 40

) 
3k + 20 . . 

be k 0 = 4P = -
2
-

/,.
- , pos1uve cause > . 

V is increasing by (3k + 20)/2k volume units per sec. 
I 1 

2 00 
1· 

In JC JC L'H . . I 1· 
l l 

0 . (a) - = 1m --- ( op1ta ) = 1m - = - = 
00 I In JC oc 

JC 
(b) In 0+ /In I +  = -oc/0+ = -oo 

S. Use product rule to get [ ' (JC) = e -'( l - JC) ,  zero if 
JC = l ,  pos ifx < 1 ,  neg if JC > 1 . Rel max at JC = I .  Also, 
f(oo) = oo x O = l im,_. JC/e'  = 0 since e' has higher 
order of mag, f (-00) = -00 x 00 = -00. (See fig.) 

PR08L£"M E 
4. Clearly min is -00 since products such as -90 x 100, 

-990 x 1000, etc. can get unboundedly low. To search 
for max product let the numbers be JC and 10 - JC. Then 
product p = x( I O  - x) = -x 2 + ! Ox ;  p ' (JC) = - 2x + 
1 0, zero if x = 5. Get max product from factors 5 and 5 .  
5. x d(e 2,) + e 2, d(x) = 2xe 2, dx + e 2, dx 
6. (a) In x 2 = 2 In x, a multiple of In x. Same order of 

magnitude. 
(b) lim,_. e''/e' = 00/00 = 2xe''/e' (L'Hopital) .  Still 

00/00 and getting more complicated . Instead, 
lim,-• e''/e' = lim,_. e•'-• = e• (since JC 2 has 
higher order of mag than x) = 00. So e•' has 
higher order of magnitude. 

7. V(I ) = [e(t )J' ,  V '( I )  = 3e 2e ' .  If e = 3,  e '  = 2 then 
V ' = 54. Volume is increasing at the moment by 54 cubic 
mere rs/sec. 

8. (a) 

PERIOD l_½ : 1r1 Al'IPt.lTVl£ 3. )(. 'j 
113 3 sin o=o 

�1 3 .sir.%_= 3  

PROBLEM 8(0.) 

(b) Exponential  cu rve with [(00) = 2 + 0 = 2 ,  
[( -oo) = 2 + 00 = oo, f(0) = 2 + 5 = 7 .  (See 
fig.) 

9, (a) I X -oe = -00 
(b) indeterminate 0°. Let y = x '"" • .  Then In y = 

tan x In x, lim,-u+ In y = lim, .-o+ tan x In x = 
0 x -oo (indet) = · · · = 0 (see Prob. 5(a), Sec­
tion 4.4) .  Final answer is e0 = 1 . 

10. Let diagonal be d, one side x. (See fig,) Other side is 
� ;  area A(x) = JC ...;;rr:::?  where O s x s d. If 
JC = 0 or d, rectangle collapses to segment with area 
0, a minimum.  Maximum wil l  be at critica l point. 
A '(JC) = JC . ½(d 2 _ x 2) - 1 12 . - 2x + � 

= (d 2 
- 2x 2)/�. zero if x = ±d/V2. Ignore neg 

value. Rectangle with max area has sides x = d/\12 and 
� = Vd ' - ½d 2 = d/\12, a square. 

P�SLEM /0 
1 1 .  By quotient rule, y '  = - 2(x 2 - l )/(JC 2 + 1 )2 , zero if  
x = ± I ,  neg in  (-00, - I ), pos in  ( - I .  I ) , neg in  ( I ,  00) .  Min 
at x = - 1 ,  max at x = I ;  lim,-� y = 0 (x 2 has higher 
order of mag). Similarly lim.--� y = 0. (See fig.) 

� - 1  
PROBLEM 1 1  

1 2. (a) [ ' (x) = 4 sin'x cos x, zero if x = · · · , - 1r/2, 0, 
1r /2, 1r, 31r /2, · · · ; f' is neg in ( - 1r  /2, 0), pos in 



(0, 1T /2), neg in ( 1T /2, 'IT), pos in ( 1T ,  31T /2), . .  · . 
By first derivative test, min at x = O, max at 'IT/2, 
min at 'IT, etc. 
/" (x) = 4 sin'x • - sin x + cos x · 12 sin2x cos x 
= -4 sin4x + 1 2  cos2x sin2x. 

/ " (0)  = 0, / " ( 'IT / 2 )  = - 4 ,  /" ( 'IT ) = 0, · · · . 
Second deriv test is inconclusive about critical 
numbers 0, 'IT, · • · ,  shows max at 1T /2, 31T /2 ,  etc. 

By inspection, sin4x 2: 0 and has min when 
sin4x = 0, sin x = 0, x = 0, 'IT, 21T ,  · · · .  Sines are 
between - I and l so sin4x has max value of 1 
when sin x = ± 1 , namely at x = ± 1T/2, ± 31T/2, 
etc. 

(b) J ' (x) = 2(x + 2), zero if x = -2 ;  f ' is neg if 
x < -2,  pos if x > -2.  Rel min at x = - 2  by 
first deriv test; / " (x) = 2, J " (-2) = 2, pos, so 
rel min at x = - 2  by second derivative test. 

By inspection, (x + 2)2 is always 2: 0 and is 
smallest when it is 0, namely when x = -2 .  So 
(x + 2)2 + I has min value of I when x = - 2. 

13. dy/y = dt/1 2, In Ky = :_ 1 /t, Ky = e - 111, y = Ae - 1". 
Set I = 00, y = 2 to get 2 = Ae 0

, A = 2, y = 2e - 1 11 •  

14. Let iID = x. Then 1 00 - 5x is left for AB and OC, 
AB = ½( 1 00 - 5x), 
area A = x X ½( 1 00 - 5x) = 50x - lx2 

where O s x s 20. If x = 0 or 20, plot collapses and 
has zero area, min. Will find max area at critical number. 
A ' (x) = 50 - 5x, zero if x = 10 .  Other dimension is 
25. For max area make outer rectangle 10 x 25, (with 

5/THE INTEGRAL PART I 

Section 5.2 (page 145) 
In Problems 1-3,  each part has a diagram. 

1 .  (a) J4- 1 6 dx  = area under graph = 5 x 6 = 30 
(b) J� i x dx  = area ll - area l = J - ½ = 4  
(c) f-2 x' dx = I I  - I = 0 

PROBLEM I (a.) Pll-OBLEM I (b) 

Solutions to the Problems • 453 

3 fences of length 10 to subdivide into the four smaller 
rectangles). 
15. f is defined on (0, l ) ; f ' (x) = 

1 1 
x • - + In x + ( I  - x) · -- · - I + ln( l - x) · - I 

X I - X 

= In x - ln( l - x). 
Zero if In x = In( I - x) , x = I - x, x = ½. Candidates 
are /(0+ ),f ( 1 - ),/(½) ; lim,-o+ x In x is indet form O x 00; 
ans is O (see § 4.4, ( 1 )-(3)). So /(0+ ) = 0 + I x O = 0; 
lim,- 1 - ( I  - x) ln( l - x) is indeterminate O x 00. Let 
u = 1 - x to get lim.-o+ u In u which is 0, as above. So 
/( 1 - ) = I x O + 0 = O; /(½) = ½ In ½ +  ½ In ½  = In ½ =  
- In 2 ,  neg since In 2 is pos. Min is - In 2 ,  max is 0. 
16. (a) J ' (x) = 3x 2 - 4x + 3. f ' never jumps and is 

never O (the equation 3x 2 
- 4x + 3 = 0 has no 

real roots since b2 - 4ac is neg) . So f ' has only 
one sign. [ ' (0) is pos sof ' is positive for all x, and 
f is an increasing function. 

(b) /( -00) = -00, /(00) = a:i, J increases, so graph of 
f crosses the x -axis only once; equation has only 
one root. 

(c) /( I )  is neg, /(2) is pos ; root lies between x = I 
and x = 2. One sensible starting x is 1 .5. 

(d) I f  first guess is x = 1 .5 then next approxi­
mations are 1 .6666667, 1 .6507937,  1 .6506292. 
Choose approx solution 1 .650. For check on ac­
curacy, /( 1 .650) < 0, /( 1 .6507) > 0. Root lies 
between 1 .650 and 1 .6507. Newton's method 
produces three accurate places. 

2. (a) H In x dx  
(b) -J:ll! I n  x dx  

PROBLEM / (,) 

(c) fl In x dx  - Jl i, In x dx  
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PROSL.EM 1.. 
3. (a) J:x 1 the = I I ,  g . x 2 the = I + I I  (larger) 

PR.OE5LEM 3(a.) 

(b) J:x '  the = A,  J� 1 x 5 the = A - B (smaller) 
(c) f!. 1 x 5 the = -B,  J�2 x 5 the = - (C + B )  (smaller) 

4. (a) More area below than above. Negative. 
(b) cos2x is always � 0, graph lies above x -axis. Inte­

gral must be positive. 
5. (a) True. (See Fig. 5 where graph lies below x-axis, 

integral = -area = neg.)  
(b) False . See diagram in  problem 1 (c) where 

J�1x 5 the < 0 (more area below than above) but 
x 5 is not < 0 throughout [ - 2, l] .  

(c) True. If  graph off lies below graph of g then 
''/ area" is :S "g area". Alternatively if 
/(x) :S g(x) then I/(x) the :S I g(x) the. 

6. (a) Area under cos2x for O s x :S 2'11' equals area 
under sin2x so integrals are equal. (See fig.) 

PROBLEM 6(a) 
(b) fo" sin2x the  = f�" ( I  - cos2x) the 

= fo• 1 the - fo" cos2x the. But 
fo• the =  area of rect (ht 1 ,  base 2'11') = 2,r, 
and fo• cos2x the  = fo" sin2x the  by (a). 
So I'o" sin2x the  = 2'11' - J�• sin2x the, 
2f�• sin2x the  = 2'11', f�" sin2x the  = ,r, 

7. A 1 = area under graph of f between x = a and 
X = b. 

(a) (See fig.) Will get same area if graph of/ and 
interval (a, b] are both translated similarly. In A2 , 
interval is translated right 3 , graph doesn't 
move; in A,, interval moves right 3 , graph moves 
left 3 ; in A., interval and graph both move right 
3 . S0 A 1 = A • . 

b 

PROBLEM 7 (o.) 
(b) (See fig.) In As , both graph and interval have 

contracted horizontally by a factor of 2. New 
area is half the old area, so As = ½A , .  

��f(2:i) 

IV/ 
k� 
1 

PROBLEM 7(b) 
8. (a) 10 (change in dummy variable doesn't change 

value) 
(b) J! 4x ' dx  = 10 so 4 J! x 5 dx = 10, J! x' dx = 10/4 

9. Consider circle x 2 + y 2 = R 2• (5v �g.) ;op semi­
circular area lies under graph of y = R - x between 
x = -R and x = R. Semicircle area = f'!.11 � dx, 
circle area = 2 f'!.11 � dx. 



PROBLEM q 

Section 5.3 (page 1 50) 

1.  (2x 5 
- ix 2 + 2x) l! 1 = 14 - ( - -'t) = � 

2. (3t - ½i 2> I� = i - i = 2 
!I. (½x6 - ix 5) lg = , - 0 = , 
4. - ½ cos 2x I� = ½ - ¼ = ¼ 
5. tan- I X 1i = ¼'IT - 0 = ¼'IT 
6. - 0111'> cos m: w2 = o - (- 1 171'> = 1 171' 
7. In  x I f  = In  5 - In l = In 5 
8. - l/ 1 2x2 I� = - -rk - ( - tR) = :& 
9. 2x 512 I� = 2v'5! - 2 = 1 0V5 - 2 

10. - i( l O  - x)312 l1 = - i  - (- f'\1'95) = - i + 3f = ¥ 
1 1. ½ ln(2x + l) 1; = ½ In 9 - ½ In 7 
12. 4(5 - - 2) = 28 
13. tan x lo'4 = l - 0 = I 
14. fl 1 dx = 1 (5 - 2) = 3 
15. J! 1 (x6 + 4x 5 + 4) dx = (½x 7 + x• + 4x) i! 1 
= � _ ( - ¥) = 5�8 

16. ¼ • ¼(½x + 7)4 • 2 1; = ½(94 - 84) = 2";5 

17. t(x ; 3r .  s 1� .  = 1[(¾)8 
- (i)8

] 

18. ½ lnJxJ J:t = ½ In 4 - ½ In 5 
19. ( 1 0/11') sin ½m: J'!.s = 0 - 1 0/71' = - 10/71' 
20. - l /4(2x - 9)2 J� = - ¼[! - t,] = ;;t 
21 .  ½e 5" \i = ½e 5 

- ½ 
22. (See fig.) 

(a) Base AC; = 6, height = 2, area = ½bh = 6. 
(b) Line AB has equation y = ½x, line BC has equa­

tion y = -x + 6. 

Area = fHx dx + J: (-x + 6) dx 
= ¼x2 li + ( - ½x2 + 6x) I: = 4 + 2 = 6. 

l B 

PROBLEM J....1.. 
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23. 
Io sin xdx 

= 
-cos x Iii 

= 2/71' 
'IT - 0 'IT 

24. (a) ¼x•  + C 
(b) ¼x• I� = 1 5/4 

25. fl 5 dx  + f; 0 dx  + f! x 5 dx 
= 5(3 - 2) + 0 + ¼x· 1: = 5 + 260 = 265 
26. 4 - x is positive if x < 4,  negative if x > 4.  So 
l4 - x i is 4 - x if x < 4 and is - (4 - x) if x > 4. So 
fl0 l4 - x l dx = f; (4 - x) dx + f!0 (x - 4) dx 
= (4.x - ½x 2) I; + (½x 2 - 4x) l!0 = ½ + 1 8  = 37/2. 
27. (a) Graph crosses the x -axis at x = 0, 2,  4. Area = 

fo (x 5 - 6x 2 + Sx) dx - /; (x 5 - 6x2 + 8x) dx 
= (¼x•  - 2x 5 + 4x 2) lg - (¼x• - 2x 5 + 4x 2) J; 
= 4 - (-4) = 8. 

(b) (See fig.) 
Method 1: Given area = f& � dx  - 1 0  

= -i(9 - x)512 I� - 1 0  = '/ - 1 0  = f 
Method 2: Point B has coordinates x = 0, y = 3. Turn 

sideways so that x -axis is vertical, positive y -axis is to your 
left. Region lies under graph of x = 9 - y 2 , area = 

I:-2 (9 - y 2) dy = (9y - ¼, 5) 1 �  = 1 8  - � = l 

PROBLEJvl Z7 (b) 

Section 5.4 (page 1 55) 

1. (a) h = ¼; Xo = 0 ,  Yo = /(xo) = l ; X 1 = ¼, Y • = 

/ (x i ) = 1 . 0 0 1 9 5 1 2 ;  X 2  = ½ , Y 2  = f (x 2 ) = 
l .0307764 ; x5 = ¾, y5 = /(x5 ) = l . 1 473475 ;  
x. = l ,  Y• = /(x.) = l .4 142 1 36; 
ih (yo + 4y 1 + 2y2 + 4y, + y.) = l .0894 1 34 

(b) h = k ;  Xo = 0 ,  yo = /(xu) = l ; X 1 = ¼, Y • = 
/(x 1) = .027399; x2 "' ½, y2 = J(x2) = . 1 053605; 
X s = ½ , Ys = f(xs) = . 223 1 436 ; x. = i , Y• 

= 

/ ( x .) = . 3 6 7 7 2 4 8 ;  X s  = ¾ ,  J s = / ( x s ) = 

. 5 2 7 3 5 4 9 ;  X 5 = l , y6 = /(xs) = . 693 1 4 7 2 ; 
¼h ( yo + 4y 1 + 2y2 + 4ys + 2y. + 4ys + J6) = 

.2639393 
(c) h = ½ ; Xo = l ,  Yo = /(xo) = . 5 ;  x 1 = t Y •  = 

/(x 1) = .4 125705 ; x2 = ¾ .,2 = /(x2) = .3386243 ; 
Xs = !f, Ys = f (xs) = . 2778079 ; x. = ½ , Y• 

= 

/(x .) = . 2 2 8 5 7 1 4 ;  X s  = 1i , Y s  = / ( x s) = 

. l889996; xs = ¾, y6 = /(x6) = . l 572482; x1 = .!j, 



456 • Solutions to the Problems 

y1 = f(x1 )  = . 1 3 1 72 1 1 ;  Xs = 2 , y8 = /(x8 )  = 
. I I 1 1 1 1  I ; ½h (yo + 4y 1 + 2y2 + 4y, + 2y. + 4y; 
+ 2y6 + 4y1 + ys) = . 2543498 

(d) h = t Xo = 0, Yo = /(xo) = I ; X 1 = ¼ , y 1 = 
f(x 1 ) = .9992287; x2 = b2 = /(x2) = .9877302; 
x, = ½,  y, = /(x,) = . 9394 1 3 1 ; x. = t Y• = 
/ ( x 4 ) = . 8 2 0 7 5 4 8 ; X ; = ¾ ,  Y s = / (x , )  = 

. 6 1 7 3 908 ; x6 = I , ys = f(xs)  = . 36 7 8 794 ; 
th ( yo + 4y 1 + 2y2 + 4y, + 2y. + 4y; + ys) = 
.8449433 

2. h = ¼ ;  xo = I ,  yo = /(xo) = I ; x 1 = ¾, y 1 = /(x 1 ) = 
.64 ; x2 = i. y2 = /(x2) = lPs = ¾, y, = /(x,) = .3265306; 
x. = 2, Y• = f (x.) = .25; 
fh (yo + 4y 1 + 2y2 + 4y, + y.) = .5004 1 76.  
The exact answer is - (  1 /x) Jr = -½ + I = .5 .  

Section 5.6 (page 160) 

1. - l /4x 4 J; = 0 + 1 /4(8 1 ) = 1 /324 
2, ¾x 615

J2 = 00 - ¾ • 2v'2 = 00 
3. - l /2x 2 ! :! = -½ + 0 = -½ 
4. - I /x i�, =  - ( 1 /0 -) - I = 00 
5. In x I�+ = In 2 - ( - 00) = 00 
6. ( Integrand blows up at x = 0.) 

J�; 1 /x' dx + J!. 1 /x ' d.t = - l /2x 2 1�, - l /2x 2 1�+ 
= - ( l /0 + )  + ½ - -ta + rJ. = -00 + oo. The integral di­
verges, and there is no "answer". 
7. tan- 1 x I�- = 0 - ( - 1r/2) = 1r/2 
8. ½e •• I�- = ½ - 0 = ½ 
9. ( Integrand blows up at x = 4. )  

J ; - + f .5. = - ½ ( 4 - x ) 2 " 1 ; - - ½ ( 4 - x ) 2 1 ' J .'. 
= ¾V4 - I 
10. ( ) /x 2 blows up at x = 0. )  
J'!.; + Jg. = - 1 /x J'!.2 - 1 /x I�+ = oo + oo = oo 
1 1 . (Improper because 1 /x blows up at x = 0 and be­
cause interval is infinite . )  
In X lo+ = 00 - 00. The integral diverges. 
12. -cos X lo = -cos 00 + I but lim.-- cos X doesn't ex­
ist since cos x oscillates between - I and I as x --+ oo. The 
integral diverges. 
13. e -1>1 is e -• if x :z= 0 and is e• if x < 0. 
J�s e' dx  + Jo e -• Jx  = e' I'!.. + -e -· lo 
= 1 - 0 - 0 + 1 = 2 
14. Improper because tan x blows up at x = 1r/2. 
- In cos x 1&"121- = - In (0+ )  + In I = oo + 0 = oc 
1 5 , l im,_. x / (x 2 + I ) = l im  x /x 2 (h ighes t  power  
rule) = lim 1 /x = 0. Similarly for x --+ -oc.  
tan- 1 oo = 1r/2 ,  tan- 1 (-00) = - 1r/2. 
F(oc) - F(-oo) = ½[O + 1r /2 - (0 - 1r /2)) = 1r /2 
16. (Improper since In x blows up at x = 0). 
lim,-o+ x In x is O x oc and turns out to be O (see ( I )-(3 ), 
Section 4.4) .  So (x In x - x) JJ. = - I .  

Chapter 5 Review Problems (page 16 1 ) 

l. (a) ½x 7 I: 1 = ½ - ( -½) = ¥ 
(b) (Improper, x6 blows up at x = 0.)  

J�, + JJ. = - l /5x 5 I '!., - l /5x 5 IJ+ = oc + oc 
= 00 

(c) - I /5x; Ii = 0 + ¾ = ¾ 
(d) (½x' + 3x) I� = , - 1  = 1 
(e) ½ • f(3x + 4)'12 I� = !( I OVIO - 7V7) 
(f) -½e _,. Ii = ½e -6 

(g) 2 sin ½x lo = o 
(h) 3(7 - 4) = 9 
(i) e -l>I is e -• if x :z= 0 and e• if x < O; 

f� 1 e' dx  + H e -• dx = e' l� 1 - e -• ii 
= I - e - 1 - e _, + I = 2 - I /  e - I / e ' 

(j) ¾ · ¾(2x + 5)6 · -t l� i = ( 1 /48) (56 - 36J 
= 1 4896/48 = 3 1 0½ 

(k) -4 ln(2 - x) li = 4 In 2 
(I) I 7 - 15 = 2 

2. (a) I + I I  + I I I  - IV - V 
= ¾ + I + 2 - 2 - 1 2  = -l; (See fig.) 

(, 

i'ROBLEM 2-
(b) Line AB has equation y = 3x + I ,  line BC has 

equation y = -4x + 8. 
H f<x> dx 
= n (3x + l ) dx  + n ( -4x + 8) dx + H ( -4) dx 
= (¾x 2 + x) IJ + ( - 2x 2 + 8x) I� - 4(3) 
= t + 0 - 12 = - 1 9/2 

3. h = ¼ ;  Xo = 0, yo = f(xo) = I ; X 1 = ¾, y 1 = /(x i ) = 
1 .0068 7 3 3 ;  x2 = ¼ , y2 = /(x2) = 1 .026690 I ; x , = ½, 
y, = /(x,) = 1 .05737 1 3; "• = f. Y• = /(x.) = 1 .0962894 ; 
Xs = t, Ys = f(xs) = 1 . 1 409243 ; xs = I , y6 = /(x6) = 
1 . 1 89207 1 .  
S o  \ h ( yo + 4y 1 + 2y 2 + 4y , + 2y.  + 4y ; + ]6 ) = 
) .069769 
4. See diagrams. The graph of If Ml is found by re­

flecting in the x -axis that portion of the graph off which 
lies below the x -axis, and retaining the rest. (See Problem 
4, Sect. 1 . 7 . )  

Case 1 : Graph off lies above the x -axis, i.e . .f (x) 2 0.  
Then If (x)I = /(x) . Both I and I I  equal area A, so I = I L  



� 

PR0£1..Efv1 4-
cASE I 

Case 2: Graph lies below x-axis. Then I = C, I I  = B,  
and I = I I .  

0.. b 

11 g 

f("J.) b 

PROBLEM '+ 
CM,£  l. 

Case J: Graph crosses x-axis. 
Then I = D + F = D + E, I I  = ID - E l ;  I is larger. 

In general can conclude that in any case, I I  s I .  

PROBLEM 4 CA5£ 3 

6/THE INTEGRAL PART I I  

Section 6.1 (page 170) 

Each problem in this section has a diagram, except for 
9, 15, 19. 

l. The indicated piece of wire has almost constant den­
sity x', length dx so mass dm = density X length = x3 dx. 
Total mass = Jix' dx. 
2. Consider the time interval (3 , 5]. During the dt hours 

around hour t, speed is almost constant at 1 2 • Distance 

Solutions to the Problems • 457 

5. (Ji 1 /xdx)/(e - l ) .  Numerator is In x I i = l .  Answer 
is 1 /(e - l) .  
6 .  Graph crosses the x -axis at x = l ,  -2 ,  3. 

Area = -f� 1 [- (x ' - 2x 2 - 5x + 6)] dx 
+ JH-(x' - 2x2 - 5x + 6)] dx 

= (¼x4 - ix' - ¾x2 + 6x) l � 1 - (¼x• - lx' - ¾x 2 + 6x) j� 
= ,  + .lf = 16 
7. (a) The graph off is symmetric w.r.t . the origin so 

that as much area lies above as below. (See fig.) 
Answer is 0. 

PRO&LEM 7(o..) 

(b) Graph of f is symmetric w.r.t . the y -axis. (See 
fig.) J:, /(x) dx "' 2 /� /(x) dx. 

:; 3 

PROBLEM 7(b) 

.._#.. 
0 -,. 8 

PROSLEM 

dt 

3 t 5 
PROBLEM 2 
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traveled in the dt hours is ddistance = speed x time = 

t 2 dJ. Total distance is J; 1 2 dt. 
3. I ndicated strip of wall has area 7 dx, height x ,  

dcost = . 0 1  x 2 x 7 clx, total cost = J� .07 x 2 d:x. 

PROBLEM 3 
4. Consider slab at position x with thickness d:x. Slab 

radius is vif'""=?. Treat slab as a cylinder with height 
d:x, radius �. dV = 7Tr2h = 1r(R 2 - x 2) clx, 
V = J�R 1r(R 2 - x 2) clx  = 1r(R 2x - ½x') l �R = f1rR '. 

-R O � R 
th. 

PROBLEM 4 
5. I ndicated strip has width dx , distance to tracks 

. strip height 5 . . 
1s x + 6;  1 _ x = 7, str1p height = �(7 - x). 

Strip area is dA = l(7 - x) d:x, 
dprice = area x distance to tracks 
= l(7 - x) d:x x (x + 6). 
Total price = Ht(7 - x ) (x + 6) clx 
= t fl (-x 2 + X + 42) clx = 1 37 . 1 

VI 

I,) ; 
"' 0 

� '1-t 6 7-� 

PR08LEM 5 

7 

➔ 

6. Consider slab x feet up, with thickness d:x. 
slab radius 
---- = fo, slab radius = x/4. Slab is a cylinder with X 
radius x/4, height d:x, vol dV = 7Tr 2h = 1r (x 2/ 1 6) clx,  
d we igh t  = d e n s i ty  x vo l = ¼ 1rx 2 dx . S lab m u s t  
be moved u p  20 - x feet, 
dcost = weight X distance moved = j71X 2 d:x x (20 - x), 
total cost = H0 dcost = fC' ¾71X2(20 - x) d:x 
= ¾1r 1:0 ( -x' + 20x 2) clx. 

PROBLEM 6 
7. I ndicated strip has width d:x, distance x from pole. 
strip height 6 

. h . h . 
x _ 2 = 3, str1p e1g t = 2(x - 2). Strip area 

dA = bh = 2 (x - 2 ) dx ,  d m a s s  = 2 8 (x - 2 ) dx ,  
dmoment = md 2 = 28(x - 2) clx x x 2 , 
total moment = 28 /lx 2(x - 2) clx. 

l'RD6L£M 7 
8. If the temp is t degrees then the specific heat is t ' and 

the number of calories dt required to raise the temp by 
dJ degrees is dt = t ' dt. Total calories = J� t ' dt. 

61' 

.ilt. • t  

sit° 

PROBL£M 8 



9. (a) The time interval [2, 1 4] was subdivided, and 
dx represents a small amount of time around 
time JC. 

(b) Since I/(JC) dx is the total number of words, 
f(JC) dx is the number of words (i.e. ,  dwords) 
typed during dx minutes around time JC. 

(c) Since f(JC) dx is words and dx is number of 
minutes, f (JC) is words/min, the instantaneous 
typing rate at at time JC. If f (3.2) = 25, the secre­
tary is typing at the rate of 25 words/min at 
time 3.2. 

10. (a) Slab in Fig. 1 2(ii) has height dx, radius JC 2
, vol­

ume dV = m-2h = 'll'JC 4 dx. Total volume of solid 
is f� 'll'JC4 dx. 

(b) Revolve a strip to get a small slab with height 
t!.y, radius V,, volume dV = 'll'r2h = 'll'Y dy. Total 
volume = J� .,,.,dy. 

PR08L£M IO (b) 
1 1 , Consider slab JC feet above square base, with thick.-

slab edge h - JC ness dx. Then 
a 

= -
h -,  slab edge a(h - JC)/h. 

Slab volume = (area of base) x height = (edge)2 dJC 
= a 2(h - JC)2/h 2 

• dx, 
total volume = (a 2/h 1) /� (h - JC)2 dx 
= (a 2/h 2

) • -½(h - x)5 I � = ¼a 2h = ½ base x height. 

PROBLEM 1 1  
12. Convenient to let P be the O point on the wire. The 
small piece of wire around position x with length dx is 
roughly distance IJCI from P (not plain JC) so 

Solutions to the Problems • 459 

dcharge = density x length = e -1-l tJx and 
total charge = f�- e -1-l ,Jx  = 2 (Section 5.6, Prob. 13) .  

p --+--..-+-----0------t--:'lt�--IIIIRE 

� � 
PR08LE""'1 1 2.  

U. The points in the indicated shell are all roughly 
distance JC from the center. Density in shell is JC 2• Shell 
has radius JC, thickness dx, dA = 2'11'JCdx (Section 4.8, (8)) , 
dmass = density x area = 2'11'JC 5 dx, 
total mass = ft 2'11'JC 5 dx. 

PROBLEM 13 
14, The indicated cylindrical shell has radius JC, thick­
ness dx, height 2v'R""='?, dV = 2'11'x x 2v'if""='7 dx 
(Section 4.8 ,  (9)), dmass = 4dxv'R""'=7 dx. Shell is 
(almost) all at distance x from the pole so by (5) ,  
dmoment = 4'11'& 5v'R""='? dx, 
total moment = 4'11'8 f � JC 5v'R""='? dx. 

PROBLEM 1 4-
15. (a) Pipeline was divided into pieces, dx is the length 

of a typical piece located around mile x. 
(b) The sum of g(.x) dx 's is total cost, g(JC) dx is the 

dcost of the typical piece of length dx around 
mile JC. 



460 • Solutions to the Problems 

(c) dx is miles, g(x) dx is dollars so g(x) is $/mile, 
the instantaneous cost per mile of the pipeline at 
mile x. I f  g(4) = 1 7000 then at mile marker 4 ,  
the pipeline costs $ I 7000 per mile. 

16. Look at a small piece of the rod around position A: 
with length dx. All of it (almost) travels in a circle of 
radius x. Circumference of circle is 271'x so the piece 
travels at speed v = 27Tx feet per sec. Piece has mass 
3 dx  (use density x length), 
denergy = ½mv 2 = ½ x 3 dx  (27Tx)2 = 671' 2x 2 dx, 
total energy = 671' 2 f�0 x 2 dx. 

1 7. Divide the "sector" into subsectors. The indicated 
radial strip has angle dB, is located roughly at angle 6, 
has radius cos 8 and area dA = ½dB cos28. 
Total area = ½ /314 cos28d8. 

B 

PROBLE'M 1 7  
18. (a) Divide solid cylinder into cylindrical shells (sig­

nificance of the shell is that its points are (al­
most) all the same distance from the axis). Typi­
cal shel l  has radius x, thickness dx, volume 
dV = 27Txh dx (Section 4.8,  (9)) ; distance to axis 
is x so density is x, 
dmass = density x vol = 271'x 2h dx. 
Total mass = 271'h f � x 2 dx. 

(b) Divide solid cylinder into cylindrical slabs (be­
cause slab is (almost) at a constant distance from 
base). Typical slab x feet above base has height 
dx, radius R, volume dV = 1TR 2 dx, density x, 
dmass = 7TR 2x dx. Total mass = 71'R 2 Hxdx. 

19. (a) Machine is dead when 225 - t 2 = 0 (no earn­
ings), t = 1 5 . 

(b) Consider the time interval (0, 1 5] .  During the dt 
years around year t, machine earns at the rate of 
225 - t 2 dol lar s  per year so dearn ings  = 
(225 - 1 2) dt, total earnings = f,\5 (225 - 1 2) dt. 

PROBLEM 

PROBI..E"M 1 8(b) 
%0. The indicated slab is distance x above earth, dimen­
sions are 5 by 6 by dx, volume dV = 30 dx, density is 8, 
mass dm = 308dx, dw = 308dx/(2 + x 2) .  

Total weight = f= 308/(2 + x 2) dx. 

PR.OBLfM 2.0 0 

%1 .  All the points in the circular ring are (almost) at 
distance x from the pump. Ring has radius x, thickness 



dx, area dA = 2'1Tx dx (Section 4.8, (8)) , dcost = 21Txdx x x3 • Total cost = 2'11' Jgx•dx. 

R 

PROBLEM 2/ 
22. Indicated slab is at distance d = 1 2  - x from col­lector, dimensions are 9 by IO by dx, volume dV = 90 dx, dheat = 90 dx/( 1 2  - x + l ) .  Total heat = H2 90/( l 3  - x) dx. 

/0 

J>t{OBLE M 1 )_ 
23. Indicated cylindrical slab has radius 3, height dx, (almost) all water in it fell distance 9 - x, dV = 91Tdx, dsplash = 91rdx x (9 - x). Total splash = 91T J� (9 - x) dx. H. If the moving c.harge is at position x, so that distance from A is x, then deffort required to move dx feet closer is ( l /x 2) dx  (number of feet x effort per foot). (a) Total effort to move from C to B is 

H 1 /x 2 dx = - 1 /x I� "'  3/ 10. (b) fl l /x 2 dx = - l /x Ii+ = -¼ + 00 = 00. 25. (a) During a small time interval of dt hours around time t, the snow fa\l:r. at the rate of R(t) flakes per hour. So dflakes = R(t ) dt, total flakes = Jb0 R(t ) dt. (b) R(t ) di flakes land in the dt hours around time I but in the remaining IO - t hours until time t, 

Solutions to the Problems • 461 

PROBLEM 23 

" B 0 l. 5 

FROBLfM 2 lf-
only O 1 1 th of them will last. So (I - t) + d (last ing flakes) = R (t ) dt / ( 1 1 - I ) , total lasting flakes = Ji0 R(t )/( l l - t ) dt. 

0 t 

PR08L£M 'J-.5 
10 

26. The indicated onion shell has thickness dx, radius x, surface area 41Tx 2 • Current flowing through it travels di.-.1.anc.e L = d.x, d.R = d.x/41rx 2
• Total R = ( l /41T) H0 l /x2 dx. 

10 

PK'OBLEM ?..6 
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Section 6.3 (page 180) 

I. (See figs.) 
(a) u(x) = 3x, l(x) = x 2 • 

Area = J� (3x - x 2) dx = (h 2 - ½x') I� = l 

PR08L£ M  / (a.) 
(b) Graph of x = y 2 is a parabola. Upper part 

is y = Vx so u(x) = Vx, l(x) = x 2 . 
Area = JA (Vx - x 2) dx = (Jx 512 - ½x') IA = ¼. 

(c) Line AB has equation y = -4x - 1 2, 
u(x) = 8/x, l(x) = -4x - 1 2 . 
Area = J:� (8/x - (-4x - 1 2)) dx 
= (8 In lxl + 2x 2 + 1 2x) I =� = 6 - 8 In 2. 

PT�oiLEM I (") 
(d) Need points where parabola crosses x -axis . 

x 2 - 4x + 3 = 0, (x - 3) (x - 1) = 0, x = 3, l .  
Area = -fl (x 2 - 4x + 3) dx 
= -<½x ' - 2x 2 + 3x) n = l 

PROBLEM I (cl ) 
2. (a) A =  (1r/4 ,½Y2), B = (51r/4, -½Y2). To the left 

of A , u (x) = cos x ,  l (x ) = s in x ; s ituat ion 
reverses between A and B .  Area = 

Jr (COS X - Sin X) dx + f!�• (sin X - COS X) dx 
= (sin x + cos x) lo'• + ( - cos x - s in x) l �t't• 
= (V2 - 1) + 2Y2 = 3V2 - I 

(b) A = ( - 2 , 4) ,  B = (¼ , 4) ,  C = ( I ,  I ) .  Area = 

J�; (4 - x 2) dx  + /:,4 ( 1 /x - x 2) dx 
= (4x - ½x ') I �; + (In x - ½x') 1 111• 
= ( I - 1�2 + 8 - !) + (-½ - In ¼ + 1!2) 
= 6 + ln 4 

3. (a) dy 
= e" dx, d.s = Vdx' + (e 'dx)' = � dx. 

s = J::A �dx 
(b) dx = 3y 2 dy , ds = y

=
9y

...,
•
"""'
dy

,....,
, ... +

---,
dy

"""2 = 

v'f°+9y1 dy , s = f�:i v'f°+9y1 dy 

(c) y 
= l /x, dy = - ( l/x 2) dx, ds = V

,_
l _+_l-/x-• dx, 

s = J! • • Vt + 1 /x4 dx 
(d) dx = 2 dt, dy 

= 2t dt, ds = V(2 dt)2 + (2t dt)2 = 

2vT+7 dt. Point (3,  1) corresponds to t = l ,  
point (9,  1 6) to t = 4 so s = 2 J::1 vT+7 dt 

4. Line AB has eq y = m (x - x 1) + Y • where m = 
(y2 - y1)/(x2 - x 1) ,  Then dy = m dx, ds = Vdx 2 + m 2dx 2 

= VT+7 dx. Say x2 > x i , Then s = J:� VT+7 dx. 
Note that VT+7 is a constant, 
so s = VT+7 (x2 -x ,) 

- I l + 
(y2 - ]1)2 

( ) - '\J (x2 - x ,)2 . x2 - x , 

✓ (X2 - X 1)2 + (]2 - ]1)2 

( ) = (x2 - x ,)2 . X2 - x , 

= V(x2 - x 1)2 + ( y, - y 1)2, standard distance formula. 

Section 6.5 (page 187) 

I .  (½12 + 51) 1 ::2 = ½x' + 5x - 1 2  
2 .  (a) The piece o f  wire indicated i n  the diagram is 

(almost all) al distance x from A, charge density 

0 
A X. 

PROBLEM /.... 



in piece is t -•, dcharge = e -• dx. 
Total charge = fo t -"dx. 

(b) foe-• dt 
3. (a) During the time interval of duration dx hours, 

roughly x hours after 3 PM, the drainfall is x 5 dx. 
Total rainfall = fox' dx. 

(b) fo t 5 dt 
4. (See figs. )  Cast 1 :  0 :S x :S 1 .  By similar triangles, 

2/ 1 = "f15 /( 1 - x), 'E15 = 2 - 2x. Then 
A1i = 2 - (2 - 2x) = 2x. 
/(x) = area ACDE = ABE + BCDE 
= x2 + x(2 - 2x) = 2x - x 2 • 

1 A, 

g 

c F 

PR08LEM 't 
CASE I 

Cast 2: I :S x :S 3 .  /(x) = ACF (can use J ( l )  from 
case I )  + FGHJ = 1 + 4(x - I )  = 4x - 3. 

't J ti 
I 
I 
I 
I 
I 

I 
I 

I I 
' F  G :  
I 'X. 3 
( ,i.- I ) 

PROBLEM lf 
CASE A 

Case J: x 2: 3. /(x) = ACF + FGHJ (can use /(3) from 
case 2 for this sum) + HLM + GHLK 
= 9 + ½(x - 3)2 + 4(x - 3) = ½x 2 + x + f. !2x - x 2 if O :S x :S 1 

All in all, /(x) = 4x - 3 if 1 :S x :S 3 
½x2 + x + l if x 2: 3. 

5. (See figs.) /( 1 )  = 0, /(2) = nJ(t ) dt  = area A, /(3) = 
f? J(t ) dt = area B ,  1( 1 0) = area C, /(0) = f? J(t ) dt = 
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PROBLEM 4 
CA S' 3 

-D, /(- 1) = E - D, /(- 5) = E - D - F, etc. Can get 
rough graph by plotting points. Can also use the fact that 
J ' (x) = /(x); graph of / has slope O at x = 0, - 1 ,  slope 3 
at x = 2, slope ½ for large x, slope oo at -oo. 

PROBLEM 5 
6. (a) I(½) = Hit /(t ) dt = Hit dt = ½ 

(b) 1(2) = I'of(t) dt = Hdt + fl f dt 
= l + ln t l? = l + ln 2  

(c) If  O s  x s 1 ,  then /(x) = fo J(t ) dt = fo dt = x. 
lf x > 1 then /(x) = fo /(t ) dt  
= H dt + fi ( l /t ) dt = 1 + ln t li = I +  ln x.  
So l(x) is  x if O s x s 1 and 1 + In x if x > 1 .  

7. (a) ](7) includes the "extra" amount fl1t I n  t dt. That 
amount is negative, namely -A. (See fig.) Soj(7) 
is smaller; j(7) = /(7) - A. 

PROBLfM 



464 • Solutions to the Problems 
(b) The graphs are parallel curves. The](x) graph is lower by A.  8 .  (a) (2/¼)e -•2 (b) e -•;x (c) Continue from (b). D(e -•/x) = ( -xe -• - , -•)/x 2 9. / ' (x) = sin x 2 , r(x) = 2x cos x 2 10. Si ' (x) = (sin x)/x ; zero if x = · • · ,  - 1r, 1r, 21r, 31r, · · · . (If x = 0 then Si ' (x) = (sin 0)/0 which for all practical purposes is I (Example 2, Section 4 .3) .  So x = 0 is not a critical number.) Si"(x) = (x cos x - sin x)/x 2 • Si"(- 1r) = l /1r ,  positive, Si x has rel min at x = - 1r  by 2nd derivative test; Si"( 1r) = - I /  1r, negative, rel max at x = 1r; Si"(21r) is positive, rel min at x = 21r, etc. 1 1 . /(x) = Si (x 3 ) so f ' (x) = 3x 2 Si ' (x 3) .  But  S i ' (x) = (sin x)/x so Si ' (x 3) = (sin x ')/x ' andf '(x) = (3 sin x ')/x. 12 .  Numerator - 0 (s ince Si becomes Jg) so l im is 0/0.  Use  L'H o pita l ; l im  S i ' (x ) /  1 = l im( s in  x )/x = 0/0 = lim(cos x)/ I = 1 13. (a) (½x 2 

- 5x) I! = - 8  - (- 1 2) = 4 (b) ½ ln(2x + 5) I� = ½ In 5 - ½ In 9. 
Chapter 6 Review Problems (page 188) I .  In  dt days around day t, colony grows at/(t ) cm3/day so dgrowth = /(t ) dt  cm'. Total growth = fl f(t ) dt. 2. The cylindrical shell indicated in the diagram has radius x, thickness dx. The significance of the shell is that (almost) all its points are the same distance from the axis, namely distance x. By similar triangles, (h - shell height)/x = h/R, shell height = h(R - x)/R . By Sect. 4.8, (9), shell vol dV = 21rx · h(R - x)/R • dx, dmass = 8dV, dmoment = dmass x d 2 (where d = x) "' 21rh 8/R • x '(R - x) dx. Total moment = n dmoment "' (21rh 8/R ) /g (Rx 3 - x 4) dx  "' (21rh 8/R ) (¼Rx 4 - ¼x 5) lg = -/o1rhR 4 8. 

o ")(. R 

k. 

PROBLEM 1-... 

3. The indicated strip (see fig.) has length 4, width dx, and most importantly is (almost) all at depth 1 1  - x. Area is 4 dx, dreading = depth x area = 4( 1 1  - x) dx. Total reading = /&dreading = 4 /& ( I  I - x) dx = 4( l lx - ½x 2) I& = 1 70. 

0 

PROBLEM .3 4. Line AB (see fig.) has equation y "' 2x - 4, u(x) = 2x - 4,  l(x) = sin 1rx, area = Jt:i (2x - 4 - sin 1rx) dx = (x 2 - 4x + � cos 1rx) lt2 = l /1r  - 1 /4 

A 

PROBLEM 4-5. Region is triangle ABC where B = (4, 8) .  (See fig.) (a) ABC has height 8, base 1 2 , area 48. (b) Area = I + I I = f� 2x dx + n2 ( 1 2  - x) dx = x 2 j� + ( 1 2x - ½x 2) !:2 = 1 6  + 32 = 48. 

C 
1 2  

PROBLEM 5 6. (a) In the dt years around age t the sheep produces wool at the rate of 1 00 - t pounds per year so dwool "' ( 1 00 - t ) dt, total wool = /WOO - t ) dt. (b) f� ( l OO - x) dx (use dummy variable other than t) 7. (a) /(x) = fH2t + 3) dt = (t 2 + 3t ) l2 
= x 2 + 3x - 1 0  



(b) If x s 7 then
/(x) = f'tf(t ) dt = J2 3t 2 dt = t 3 l2 = x 3 - 8.
If x > 7 then 
l(x) = f'!if(t ) dt = H 3t 2 dt + f; 5 dt
= /(7) + 5(x - 7) = (73 

- 8) + 5(x - 7)
= 5x + 300.
All in all, /(x) is x 3 - 8 if x s 7 and is 5x + 300
if x > 7.

(c) Can find formula for f and proceed as in (b) or
can use geometry (see fig.); /(2) = fl /(t ) dt  = 0.
If 2 s x s 4 then /(x) = JU (t ) di = area ABC.
Base E = x - 2 ; by similar triangles, height
'1Il: = 4(x - 2), /(x) = ½E • E = 2(x - 2)2

• 

I f  4 :s x :s 6 then / (x )  = area ADEF =
AGD - EFG = 1 6  - 2(6 - x)2

• 

If x .!! 6 then /(x) = area AGD = 16 .
I f  x :s 2 ,  /(x) = 0 since there i s  no  area under
the graph off to the left of x = 2 .  All in all,

7/ANTIDIFFERENTIATION 

Section 7.2 (page 195)

1 . Let u = x 2 , du = 2x dx. Then
Jxe"'dx = ½f e " du = ½e • + C = ½e•' + C.
z. Let u = 3x2 + 7 ,  du = 6x dx. Then

H Vudu = ¾u 312/i + C = ¼(3x 2 + 7)3rt + C.
S. By inspection or let u = 3 + 5x, du = 5 dx. Then

H Y'udu = ¾u 'rt/i + C = f,(3 + 5x)m + C.
4. Let u = 3 + 7x, du = 7 dx. Then 

t I l /Vudu = Nu + C = fv'3"+"7x + C.
5. Let u = tan x, du = sec2x dx. Then

f u 14 du = 1gu 1 5  + C = 1J tan 1' x + C.
6. Let u = x + 1 ,  du = dx, x = u - l. Then

I u - 2 u - 3 u -•-�- du = J (u - 4 
- 2u - ') du = - - 2 - + C

u - 3 - 4
1 1 = - --- + ----e + C3(x + 1 )3 2(x + 1 )4 

7. Let u = 1 + 2 sec 8, du = 2 sec 8 tan 8d8. Then
J = H l/Vu du = ½u 1 12/½ + C = VI + 2 sec 8 + C.
8. Let u = In x, du = 1 /x dx. Then

J 1 /u du = lnlul + C = lnjln xi + C.
9. Let u = x 2 , du = 2x dx. Then f x� sin u du /2x =

½f x2 sin u du = H u  sin u du = ½(sin u - u cos u) + C
(formula 48) = ½(sin x2 - x 2 cos x 2) + C.
10. By inspection or let u = I + 3x, du = 3 dx. Then
H u 7 du = tu 8 + C = -/:i( l  + 3x)8 + C.
1 1 . By inspection or let u = 2 - 3x, du = - 3 dx. Then-H 1 /u du = -¼ lnlul + C = -¼ lnl2 - 3xl + C.
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A 
If 

PROBLEM 

2(x - 2)2 
{o 

/
(x) =

16 - 2(6 - x)2 

1 6  

if X :S 2 
if 2 :s x :s 4
if 4 :S x :s 6 
if x :s 6 .

8. / '(x) = e•' (not e '') .  l"(x) = D.e•' = 2xe•'

IZ.  By inspection or let u = 2 - x, du = -dx. Then

-f :, du = 
2! 2 + C = 

2(2 � x)2 + C.

llS, By inspection or let u = ½8 - I ,  du = ½dB. Then 
2 J  cos udu = 2 sin u + C = 2 sin(½B - 1) + C. 
14. Let u = -x, du = -dx. Then f (-u)e" · -du 
= f ue" du = e"(u - 1 )  + C (formula 6 1 )
= e -•(-x - 1 )  + C. 
15. Let u = cos x, du = - sin x dx. Then-f u ' du = -¼u • + C = -¼ cos4x + C.
16. By inspection or let u = -x ,  du = - dx . Then
-f e" du = -e•  + C = - e -• + C. 
17. Let u = 3x, du = 3 dx. Then H sin u • ¼du
= H u sin u du = !(sin u - u cos u) + C (formula 48)
= ¼(sin 3x - 3x cos 3x) + C. 
18. Let u = 'ff'X, du = 'ff'dx. Then ( l /71') J sin2u du
= ( l /'ff') ½(u - sin u cos u) + C (formula 39) 
= ( l /271') (71'x -sin 'ff'X cos 71'X) + C. 
19. 3 J x sin xdx = 3(sin x - x cos x) + C (formula 48).
20. Let u = 3x, du = 3 dx. 
J (½u)2 cos u • ½du = i, J u 2 cos u du (use 5 1 )
= t,[(u 2 - 2) sin u + 2u cos u] + C 
= f,(9x 2 - 2) sin 3x + f,;x cos 3x + C. 
2 1 .  Let u = 2x + 3, du = 2 dx. Then 
H In u du = ½(u In u - u) + C (formula 62) 
= ½(2x + 3) ln(2x + 3)- ½(2x + 3) + C. 
2Z. f sec xdx = lnlsec x + tan xi + C (formula 33) 
ZS. NO! The first step is OK, but the second step im-
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plicidy lets u = V3.x in which case du = V3 dx. Then 

I I J I du I _ 1 
I + (V3.x)2 dx = 

I + u 2 V3 
= 

V3 
tan u + C 

I 
= v'3 tan- 1 V3.x + C. 

Z4.  (a)  Let u = 3.x , du = 3 d.x . Then H tan - 1 u du 
= ¼(u tan- 1 u - ½ ln( l + u 2)) + C (formula 59)
= .x tan- 13.x - t ln( I + 9.x 2) + C.

(b) Not possible yet.
ZS. Let u = cos .x, du = - sin .x dx. Then 
-f 1 /u du = -lnlul + C = - lnlcos .xi + C.

%6. f sec .xdx = J sec .x(sec " + tan .x) 
dx 

sec .x + tan .x 

= f sec2
.x + sec .x tan .x 

dx. sec .x + tan .x 
Now let u = sec .x + tan .x, du = (sec .x tan .x + sec2.x )  dx. 
Then f du/u = lnlul + C = lnlsec .x + tan x i  + C. 
Z7. f sin2

.x dx = H ( l  - cos 2.x) dx  = H dx -
H cos 2.xdx = ½.x - ½ · ½  sin 2.x + C = ½.x - ¼ sin 2.x + C. 

Section 7.3 (page 198) 

I . 2 + 6.x - .x 2 = - (.x 2 
- 6.x - 2)

= - (x2 
- 6.x + 9 - 9 - 2) = - ([x - 3]2 - 1 1 ) 

= 1 1  - (.x - 3)2 • Then to do
f 1/Vl l - (x - 3)2 dx let u = .x - 3, du = dx, use ( 1 9)

I du . 1 u . 1 .x - 3 
to get • r,-;--y = sm - v'IT + C = sm- v'IT + C. 

v l l - u - 1 1  l l  
Z ,  X + 2.x 2 = 2(.x 2 + ½.x + 1f. - "fi) = 2([.x + ¼]2 - fti). 

Let u = .x + ¼ ,  du = dx. 
l J dx l f du 

V2 V(x + ¼)2 - iii
= 

V2 Vu 2 - iii

= � In I x  + ¼ + V(.x + ¼)2 
- -k l  + C (formula 27). 

l J dx l . r;---;; 
3 . .  r,; y;q 

= .  r,; ln Ix + V x 2 
- J I + C 

v 3  .x
2 - J v 3  

(formula 27). 

4. f (.x2 
- 4 + �2 : �

6

) dx (long division) 

"
! I " I l = - - 4x + 2 -- dx + 1 6  -- dx 

3 x 2 + 4 x 2 + 4
= ¼x 5 - 4x + ln(x 2 + 4) + 8 tan- 1 ½x + C.
(Sub u = x 2 + 4, du = 2x dx in first integral ; use l (b) 
or 16 for second.) 
5. f xV(x + 1 )2 - I dx. Let u = x + l ,  du = dx;

f (u - l)'\l'u2""=1 du
= f u '\l'u2""=1 du - f '\l'u2""=1 du
= ½(u 2 - 1 )512 - ½u'\l'u2""=1 + ½ lnlu + '\l'u2""=1 i  + C
= ¼(x 2 + 2x)512 - ½(x + l )v?+'"'2x 

+ ½ !nix + I + v?+'"'2x I + C.
(Sub v = u 2 

- l, dv = 2u du in first integral ;  
use 28 in second.) 

6. (a) J ( ½ -
2x 

: 
6) dx (long division)

= ½x - 3 • ½ lnl2.x + 61 + C (by inspection). 
(b) Use formula 5 with a = 6, b = 2 to get

i + ½x - i lnl2x + 61 + C
= ½x - f lnl2.x - 61 + K.

(c) Let u = 2.x + 6, du = 2 dx .  Then

f ½(u
: 6) d; = ¼ J ( l - ;) du

= ¼u - f lnlu l  + C 
= ¼(2x + 6) - i lnl2x + 61 + C as in (b).

7. J ( 1  -
"2 � i) dx (longdivision) = x - tan- 1 .x + C.

Section 7 .4 (page 202) 

A B C D E I . (a) 7 
+ 

x 1 + 
x5 +

x + I + 
2.x + 3

(b) x 1 + 2.x - 2 factors into (x - ( - 1 + V3)) · 
(x - [ - 1 - V3]) and .x 2 - 2.x + 2 doesn't
factor since b 1 

- 4ac < 0, so decomp isA B ----- + -----
x - ( - l + V3) x - ( - l - V3)

Cx + D + 
x 2 - 2x + 2 "  

1 2  A B 
2. (a)

(.x - V3) (x + V3) = " + v'3 
+ 

x - v'J '
1 2  = A(x - V3) + B(x + V3).
If  x = v'3 then
12 = 2V3B, B = 6/V3 = 2V3. 
If x = -V3 then 12 = -2V3A, A = - 2V3. 

. - 2V3 2V3 
Decomp 1s -----:7.:' + -----:7.:' .  

x + v 3  x - v 3  
l A B 

(b) 
(x - 4) (2.x + 3) 

= x - 4 
+ 

2x + 3 '
l = A (2x + 3) + B(x - 4).
lf x = 4 then l = l lA , A = 1 / 1 1 . 
If x = - 3/2 then l = --'f B, B = - 2/ 1 1 .

. 1 / 1 1  2/ 1 1
Decomp 1s --4 

- -
2 3

. 
X - X + 

5x Ax + B  C (c) (x 1 + l ) (x - 2)
= 7+T + x - 2 '

5.x = (Ax + B ) (x - 2) + C(x 2 + l ) .  
If  x = 2 then 1 0  = 5C, C = 2 .
Equate x 2 coeffs to get O = A + C, A = - 2. 
Equate x coeffs to get 5 = B - 2A, B = I . 

- 2.x + l 2 
Decomp is 2 1 

+ --2
. 

X + X -
2.x + 3 A B 

(d) 
(x - 2)1 = 

x - 2 
+ 

(x - 2)2 '
2.x + 3 = A(x - 2) + B. 
lf x = 2 then 7 = B. 



Equate x coefficients to get 2 = A. 

So d  . 2 7ecomp IS x - 2 
+ 

(x - 2)1 .

S A B 3. (a) ---- = -- + -- ,(2 - x) (x + 1 ) 2 - x x + 1
S = A(x + 1) + B(2 - x). 
If x = 2 then S = SA, A = 1 .  
I f  x = - 1  then S = SB, B = 1 .  Decomp is

l l A "d"ff b . . -2 - + -1 - . nt1 1 y 1nspect1on to get- x  + X 

answer -lnl2 - xi + lnlx + I I + C.

(b) For J I 
S dx  

2 use formula l (a) with a = -x + X + l -2x + 1 - S I  - 1 ,  b = I ,  c = 2 to get ln 
-2x + 1 + S + C

-= ln 1
-x - 1 1 + C = In Ix +  I I + C2 - X 12 - xi 

= ll" jx + I I - lnl2 - xi + C.

4. (a) Can write as 2 J x ' _
x: 

+ 4 +

S J  xt _ : 
+ 4 

and use formulas 2 and l (c) . Or

can decompose (see problem 2(d)) into 
x � 2 + 

(x � 2),
. Then antidiff by inspection to get an­

swer 2 lnlx - 21 - 7/(x - 2) + C. 
8x 8x 

(b) (x1 - l ) (x 2 + 1) 
= (x + l ) (x - l ) (x 1 + 1 )A B Cx + D  = -- + -- + --

x + } X - } x 2 + } '
8x = A(x - l ) (x1 + 1 )  + B(x + l ) (x2 + 1 )

+ (Cx + D) (x2 - 1 ) .
If x = 1 then 8 = 48, B = 2. If x = - 1  then
-8 = -4A, A = 2. Equate x 5 coeffs to get O = 
A + B + C, C = -4. Equate x 1 coeffs to get 
0 = - A  + B + D , D = 0 .  So decomp i s

+
2 

I + _!_
I - �l . Antidiff the first frac-x X - X + 

tions by inspection, substitute u = x 2 + 1 for 
the third. Answer is 
2 Inlx + I I  + 2 lnlx - I I - 2 ln(x1 + 1) + C. 

(c) Either use formula 10 or decompose to
-2/9 1/S 4/9 

A "d"ff b . -- - -1 + .;:---; . nu I y inspection X X LJ< - ;, 

to get -1 tnlxl + 1 /Sx + f Inl2x - SI + C.
s. 1 = � + _!_ + C 

x(a + bx)1 x a + bx (a + bx)1 '
1 • A(a + bx)1 + Bx(a + bx) + Cx. 
lf x = 0 then 1 = a1A so A = I /a 1 . 
If x • -a/b then 1 • -(a/b)C, C = -b/a.
Equate x1 coeffs; 0 • b1A + bB , B == -b/a1 • Get 
.l_ f .!.. dx - ! J -1- dx - !.. f 1 

dx. Anti-a I x a 1 a + bx a (a + bx)2 
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diff by inspection or substitute u = a + bx to get 
1 I I l 

41 lnlxl -
4 1 lnla + bxl + -; 4 + bx + C

1 1 
= - 2 (lnla + bxl - lnlxl) + bx 

+ C a a(a + ) 
= _ ..!_ ln l

a + bxl + 1 + C.
a2 x a(a + bx)

1 
6. x2 + 5x + 4)x2 

x 2 + 5x + 4 
-5x - 4 

x 1 5x + 4 so ...,,...--- = 1 - ...,,...--- and 
x2 + 5x + 4 x 2 + 5x + 4 

f x
' x1 + 5x + 4 

dx

= f "" - s I x2 +"! + 4 
- 4 I x2 + :  + 4 · 

First integral is x. For second integral use formula 2 with 
a = 1 ,  b = 5 , c = 4, or factor denom and use 
decomposition. Second is 

- 5 · ½ lnlx1 + 5x + 41 +
5

2'
5 f 2 � dx. X + X + 4

Add in first and third to get 

x - l lnlx2 + 5x + 41 + ¥- f 2 � 4X + X + 
(formula l (a) or decompose) 

= x - l lnjx2 + 5x + 41 + J/ · i ln l: : ! � ! I
= x - l lnjx2 + 5x + 41 + J/ ln lx + 1 1 

x + 4 

= x - i lnlx + 41 Ix + 1 1 + J/ In I" + 1 1 x + 4  
= x - i lnlx + 41 - i lnlx + I I + J/ lnlx + 1 1
- .I/ lnlx + 41 
= x + ¼ lnlx + I I -.!/- lnlx + 41. 

Section 7.5 (page 204) 

1. (a) Let u = x, dv = e• dx. Then du = dx, v = e• and 
f xe" dx = u• - f e" dx = u• - ,• + C.

(b) Let u = tan- • x, dv = dx. Then
du = dx/( 1  + x1) ,  v = x and 

f tan- 1x dx  = x tan- •x - f -"-dx 
1 + x 2 

= x tan- 1x - ½ tn( l  + x 2) + C
(use formula 2 or sub u = 1 + x2) . 

(c) Let u = sin- 1x, dv = dx. Then
du = dx/-../f"'=?, v = x and

f sin- 1x dx  = x sin- 1x -f � dx
1 - X 
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(now sub u = I - x 2) 

= x sin- •x + \/T"-=? + C.
(d) Let u = In x, dv = dx. Then du = dx/x, v = x,

J In x dx  = x In x - f dx = x In x - x + C.
2. (a) Let u = cos(ln x), dv = dx. Thendu = - sin( ln x) · ( 1 /x) dx, v = x,

J cos(ln  x) dx = x cos(ln x) + J sin(ln x) dx.
'.'Jow let u = s in ( ln  x ) ,  dv = dx .  Then du = 
cos(ln x) · ( 1 /x) dx, v = x and 
f cos(ln x) dx = x cos(ln x) + x sin ( In x) - f cos(ln x) dx. 
Collect terms to get 
2 J cos(ln x) dx = x cos(ln x) + x sin(ln x)
so f cos(ln x) dx = ½x [cos(ln x) + sin(ln x)] + C.

(b) Let u = x 2
, dv = e' dx. Then du = 2x dx, v = e', f x 2e' dx = x 2e' - 2 J xe' dx. Now either use for­

mula 61 or use parts again with u = x, dv = 
e' dx. Then du = dx, v = e' andf x 2e' dx = x 2e' - 2(xe' - f e' dx) 
= x 2e' - 2xe' + 2e' + C.

(c) Let u = tan - 1x, dv = x dx. Thendu = dx/( 1 + x 2) , v = ½x 2 ,

f x tan - 1x dx  = ½x 2 tan - 1x - ½ J 1 
:

2

x2 dx

= ½x 2 tan - 1x - ½ J ( I -
1 

: 
x 2) dx (long div)

= ½x 2 tan - 1x - ½x + ½ tan - •x + C. 
3. Let u = sec x, dv = sec2x dx. Thendu = sec x tan x dx, v = tan x,

J sec3x dx  = sec x tan x - J sec x tan2x dx
= sec x tan x - f sec x · (sec2x - l ) dx  (trig identity)
= sec x tan x - f sec3x dx  + f sec x dx  
= sec x tan x - f sec3x dx  + ln isec x + tan x i .  
So 2 J sec 3x dx = sec x tan x + l n l sec  x + tan x i ,
f sec3xdx = ½(sec x tan x + ln lsec x + tan xi) + C.
4. Let u = x ,  dv = xe - •' dx . Then du = dx , v = fx, -•' dx = -½e -•• (sub u = -x •,  du = -2x dx). Thenf x2e ·· •'dx = -½xe -•' + ½ J e -••dx = -½xe -•2 + ½Q(x) + C.

Section 7 .6 (page 206) 

I. Let u = x " ,  dv = e' dx. Then du = nx •- 1 dx, v = e' ,f x "e' dx = x "e" - n fx • - 1e' dx.
2. f ( sec 2x - I )  t a n • - 2x dx = f sec 2x tan • - 2x dx -

f tan"-2x dx. For first integral, sub 11 = tan x,
d11 = sec2x dx  to get (tan•- 'x)/(n - I )  - f tan" ·· 2x dx. 
3. Let u = (In x)", dv = dx. Then du = 11( ln x)'' - 1 

• fdx,
V = X,  f ( In x)" dx = x( ln  x ) "  - n f ( In xr• - I dx. Using it ,
f (In x)3 dx = x(ln xf - 3 J ( In x)2 dx
= x(ln x)3 - 3(x(ln x)2 - 2 f In x dx�
= x(ln x)3 - 3x (ln x)2 + 6(x In x - x) + C.
4. First use 52(a) to get f sin"'x cos"x dx = 

sin"'- 1x cos"+ 'x m - I I . _ . . - ----- + -- sm• 2x cos"x dx. Continuem + n m + n 
with 52(b) on the last integral .  Note that 52(b) uses the 
letter m as the sine exponent but our integral has m - 2 
as the sine exponent so 52(b) has to be used with its letter m replaced by m - 2 to get 

sin•- 1x cos•• 1x m - If sin .. x cos"xdx = ----- + -- · m + n m + n 
[sin•- •x cos•- •x n - I J . ..  -2 .. -2 dx]----- + ---- sm x cos x 

m - 2 + n  m - 2 + n  
5. New integral is missing the numerator x and is not of

the same form as the original.
6. (a) Let u = sin x, du = cos x dx.f sin x cos x dx  = J u du = ½u 2 + C 

= ½ sin2x + C. 
(Can also use u = cos x, du = -sin x dx. )  

(b) Let u = cos x, du = - sin x dx.-f u 1 2 du = --hu ' 3 + C = --h cos"x + C.
(c) Use 52(c) with m = O, n = -5 to get

- sin x cos-•x -3 J , dx ----- + - sec x .
-4 -4

Now use 43 to  get ¼ s in  x sec4x + 
¾[½ sec x tan x + ½ ln l sec x + tan x i ]  + C. 

(d) Use 53;  f tan4x dx  = ! tan3x - f tan2x dx
= ¾ tan'x - (tan x - x )  + C (by 4 1 ) .

(e) Let u = sin x, du = cos x dx.
f du/u 2 = - 1 /u + C = - I /sin x + C.

(f) 
sin3x cos-2x _ ½J sin2x dx (by 52(c)) 

-2 COS X 
= ½ sin'x sec2x - ½ (-sin x + f sec x dx) (52(a)) 
= ½ sin'x sec2x - ½(- sin  x + lo l sec x + tan xi) 

+ C (by 33).
(g) Can use 52(b) once or can use 

J sin4x( l - sin2x) cos x dx  = f (u 4 
- u 6) du

(let u = sin x, du = cos x dx) 
= ¼u 5 

- ½u ' + C = ¼ sin5x - ½ sin 7x + C.
(h) Let u = 3x, du = 3 dx. Then ½ f sin'u du 

= ½ (-¼ sin 3u cos u + ¾ J s in2u du )  (by 52(a) )
= -ft s in'u cos u + ¼ • ½(u - sin u cos u )  + C 
= -i sin33x cos 3x + ¼(3x - sin 3x cos 3x)

+ C.
-sin 2x cos99x 2 9g 7· I O I  

-
1 0 1 (99) 

cos· x 

-cos99x [ 99 . 2 2 ] . 2 = --- -- sm x + - (use sm x = I - cos2x) 
99 1 0 1  I O I  

cos99x [ 99 2 ] -cos99x cos w•x 
= - -- 1 - - cos x = --- + -- . 

99 I O I  99 I O I  

Section 7 .  7 (page 209) 

In each problem, use the indicated diagram. 



1. (a) � = a tan u, x = a sec u,
dx = a sec u tan u du. 

J-1
-a sec u tan u du

a tan u 
= f sec u du = lnisec u + tan u l  + C (by 33) 

= ln l; + �, + c (keep going with

algebra to make answer look like the tables) 
lx + �l + c= ln '-----

a 
= lnlx + v?"'="ii'i - In a + C
= !nix + v?"'="ii'i + K.

L'.J· 
.r;,.1._ Al. 

PR0.8lfM I (�) 

(b) \/iiT-=? = a cos u, x = a sin u,
dx = a cos u du .
f a  cos u • a cos u du
= a2 f cos2u du  = ½a'(u + sin u cos u) + C

X X VizF-=? 
= !a 2(arcsin - + - --- + C2 a a a 
= ½a 2 arcsin x/a + ½x\liiT-=? + C.

��- -,J­

f>RoBLEM I (b) 

(c) \/aY"+? = a sec u, x = a tan u,
dx = a sec2u du .

I a sec u J du --a sec2u du = a 2 • a tan u cos u sm u
(now use 52(c) with m = - 1 , n = -2) 

= a(sec u + f csc u du)
= a sec u - a lnicsc u + cot ul + C (by 34) 

= Va2"+7 - a ln l� + �I + C. 

i::J 0.. 

PROSl..fM I (�) 

2• v'3=x' = v'3 cos u, x = v'3 sin u,
dx = v'3 cos u du. 
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f v'3 cos u v'3 cos u du = f cot2u du 
3 sin2u 

= -cot u - u + C (by 42) 
v'3=x' . - I X + C = 

x 
- sm V3 •

D
,f;_ ').,. 

PROBL.�M 7... 

3. v?'-=s = v'5 tan u, x = v'5 sec u,

f v'5 sec u tan u du 
dx = v'5 sec u tan u du. Then 

5 sec'u V5 tan u 
=

v?'-=s H cos u du = ¼ sin u + C = ¼ 
x 

+ C .

LJg 
� 

PROBLEM 3 
4. v'7+7 = V7 sec u, (7 + x 2)2 = (V7 sec u)• =

49 sec•u, x = V1 tan u , dx = V1 sec2u du ;

I V1 sec'u du 
= _l_ f cos2u du

49 sec•u 7V7 

= _I_ ½(u + sin u cos u) + C 
7V7 

= }4!n ( tan- ' V'f + /�2) + C.

t1r, 
PRo&�M t+ 

5. x = a tan u , dx = a sec2u du, Va'+? =  a sec u ;I a sec2u du  1 J 1 · c ----:- = - cos u du = 2 sm u + 
(a sec u)' a 2 a 

= 
" + C.

a 2v?"+? 

PROBL!.M £ 



470 • Solutions to the Problems 

Section 7.8 (page 2 10)

1. Sub u = Vx
2. Sub u = l - x 2 

3. Formula 16 with a = V3
4. V2x+3 + C by inspection (or sub u = 2x + 3)
5. Sub u = x - l or parts with u = x,

dv = (x - 1 )20 dx 
6. f e -• dx  = -e -• + C by inspection (or sub u = -x)
7. Long division and then inspection
8. Sub u = 4 - x 2 

9. x2 + 9x + C by inspection
10. Formula 19
I I .  Formula 9 or partial fractions
12. Sub u = 3x. Then formula 3 1 .
13. Formula 1 1  or partial fractions
14. Factor out the 2 (or sub u = V2x). Then
formula 2 1 . Or trig sub. 
15. Partial fractions
16. Long division and then inspection
17. Formula 52(b) once, then 42. Or use
cos4x = ( 1  - sin2x)2 . 
18. - ( l/1r) cos 1rx + C by inspection (or sub u = 1rx) 

19. 
1 

8 + C by inspection (or sub u = 3x + 1 ) 24(3x + 1 )  
20. Sub u = 9 + 4x'I sin5x
2 1 .  -- dx.  Use 52(a) once, then 3 1 .  O r  use 

COS X 
sin'x sin x • ( l  - cos2x) . -- = ---'---- = tan x - sm x cos x.
COS X COS X 
22. Tables 22
23. is(9 + 4x)4 by inspection (or sub u = 9 + 4x)
24. f sec2x dx. Formula 35.
25. Trig sub (see fig.)

LJ/h'-4 

'2.. 
PROBLEM 2..') 

26. Use 52(a) twice or use sin'x = ( 1  - cos2x)2• Then
sub u = cos x.
27. f ( l  - 4/x 2) dx  = x + 4/x + C 
28. Formula 43
29. ½ 1nl2x + J I  + C by inspection (or sub u = 2x + 1 )
30. Sub u = x 2 

3 1 .  Use 52(c) once. Then 35.
32. Use 50 (or integrate by parts twice).
33. Factor out the 3 (or sub u = V3x) and use
formula 23.
34. k"' + C by inspection (or sub u = 3x)

35. Long division (or formula 5)

f½dx - i f ___..!!=._ = ½x - ¾ 1nl2x + 31 + C2x + 3 
36. -¼ cos 5x + C by inspection (or sub u = 5x)
37. Sub u = 2 - r 2 

38. Use 42.
39. 52(a) once. Or sin x · ( 1 - cos2x) and sub u = cos x.
40. 2x + C
4 1 .  Sub u = 2x. Then 33. 
42. f (2 + 3/x) dx = 2x + 3 lnlxl + C 
43. Use 46.
44. -½1r cos(2x/,r) by inspection
45. Sub u = sin 2x (or sub u = cos 2x) .
46. ¼ lnl5x - 21 + C by inspection
47. Multiply out numerator and then use long division.
48. Sub u = x 2 + 7
49. Sub u = cos x 
50. Parts with u = sin- 1x, dv = x dx. Get 

½x2 sin- 'x - ½ f �- Then trig sub (or big table) . I - X 
5 1.  Sub u = x 2 

52. Partial fractions
53. Use 6 1  (or integration by parts)

l - cos2x
54. 52(a) or --- = sec x - cos x 

COS X 

55. Factor out 2 (or sub u = V2x). Then 27 .
56. Sub u = 3 - 2x. Then 3 1 .
57. -J(3 - x)�2 + C by inspection
58. -¾(2 - ¼x)s + C by inspection
59. Sub u = e•, du = e• dx. Get I � du = f -2-

1
- du. Then formula 16.

u + 1 /u u + l 
60. f sin x cos'x dx. Sub u = cos x. 
61 .  Factor out 3 (or sub u = V3x). Then formula 20.
62. Complete square. Then formula 24.
63. Use 1 (b) .
64. Sub u = 4x + 5. Then 62.
65. 2eM? + C by inspection (or sub u = ½8) f dx I x dx 2 66. --2 (use 1 6) + 2 --2 (sub u = 1 + x ) 

l + x l + x 
67. Trig sub (see fig.)

L},,,_, 
PRDBLEM 67 

68. 52(a) once. Then 39 (or 52(a) twice).
69. 52(b) once or use cos2x = I - sin2x. Then
sub u = sin x.



70. J tan 2x dx. Sub u = 2x and use 3 1 .
71 . ( I + ,')� = 1 + 2,' + 22,: 

1 2,: 
antideriv = X + 2r + 2 t 

72. 52(a) twice or sin x • ( 1  - cos2x)2 and sub u = cos x.
73. Complete square. Then 19 .J -1 du 
74. Sub u = cos 2x. Get -2

-2 • Then 1 7 or partial
9 - u 

fractions. 
75. Partial fractions
76. Sub u = 2 + 3x. Or parts with u = x,
dv = (2 + 3x)4 dx. Or multiply out whole integrand to
get a polynomial. 
77. Formula 64

78 
J xdx J 4 dx 

• 
2x2 + X - 1 

+ 
2x2 + X - 1 

Use 2, l(a) on first; use l (a) on second. 
79. Parts twice starting with u = (In x)',
dv = dx, du = 3(ln x)2 • dx/x, v = x.
80. Sub u = 3x. Then 4 1 .
8 1 .  Parts; u = x 5, dv = sin x dx. Then 5 1 .
82. Sub u = 2 + cos x.
83. Formula 40
84. Can start with 52(b). For another method,
f cos'x dx = J cos x( l - sin2x) dx 

= J cos x dx  - f cos x sin2x dx .
Sub u = sin x for second integral.
85. Sub u = cos x.

Section 7.9 (page 214) 

I. (a) du = 3 dx , H sin5x dx  = HA' sin' ½u du
(b) du = ¼dx, ft' sin(ln .x) dx  = Ji sin u · x du 

= n,• sin u du 

(c) x = 2 csc u, dx = - 2 csc u cot u du, � =
2 cot u. If x = 2 then u = 1r/2 (degenerate tri­
an

e
e)2 If x = 4 then u = 1r/6. (See fig.) 14 x - 4 1• 111 2 cot u 

2 dx = -4-2- • -2 csc u cot u du 
2 X w12 CSC U 

J•'" cos2u = - -.- du 
w12 sm u 

PROBLE:M I (,) 

Solutions to the Problems • 4 7 1  

2, (a) Let u = 3x 2 
- 1 ,  du = 6x dx. 

l f•1 u
1 o du - ! .!. u 1 1 1•' - • (47 1 1  1 1 1 1 )6 I I  - 6 1 1  1 1 - 1i5 -

(b) Parts with u = e -•, dv = cos x dx.
J;; t -• cos x dx = e -• s in x 1;; + f;; e -• sin x dx
= J;; , -• sin x dx
= -e -· cos X lo - Jo , -· cos X dx (parts again).
So 2 Jo , -· cos x dx = 1 ,  Jo , -· cos xdx = ½.

(c) Let u = In x, du = ¼ dx ; fA u 5 du = ¼u 6 I� = ¼ .
(d) -¼ s in x cos5x l:-2 + ¼ f:it cos2x dx (by 52(a))

= ¼ • ½(x + sin x cos x) 1:it (by (40)) = Tr / 1 6
(e) Let u = x ' ,  du = 3x 2

dx. 
l"2 2 -5

dx _ I f8 " d  I 8 J -x x e - i -� e u = Jt 
(0 Let u = x2 + 4, du = 2x dx.

½ f: v'udu = ½u S/2 1: = 8V8/3 - 8/3
3. (a) Let u = 1 - x, du = -dx.

fAx '"( I - x)" dx = -JW - u)'"u • du (sub) 
= JA( l - u)'"u " du (since J: /(x) dx 

= -/! /(x) dx) = fW - x)'"x " dx (change
dummy variable from u to x) 

(b) Let u = x + 20, du = dx.
n° cx + 20)2

dx = H3 u 2 du (sub) = f�x 2 dx
(change dummy variable)

(c) Let u = ½x, du = ½ dx.
H! Vsin ½.x dx = 2 f! � du = 2 f! � dx
(change dummy variable)

I 1 
4. u = In In x dv = x dx  du = - • - dx v = !x 2 

' ' In x x ' 2 
' 

Hx In In x dx  = ½.x 2 In In x ll - ½ 
J' x dx

2 I n  x 
= f In In 3 - 2 In In 2 - ½k.

Chapter 7 Review Problems (page 2 14) 

I .  (a)  Formula 2 with a = l ,  b = 0, c = 1 .  Get
½ ln(x 2 + 1) + C.

(b) Let u = x 2 + 1 ,  du = 2x dx. Then
½f du/u = ½ lniul + C = ½ ln(x 2 + 1 )  + C.

(c) ee� fig.) tan u = x, dx = sec2u du,
.x + 1 = sec u;

I _x_ 
dx 

_ f tan u sec2u du _ 
J d 

x' + 1 - sec2u - tan u u 

= lnisec ui + C (by formula 3 1 )  
= I n  v'?+l + C = ln(x 2 + 1 ) 1 12 + C 
= ½ ln(x 2 + 1 )  + C. 

fl 
I 

PROBLEM l (c) 
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1 
(d) Let u = x ,  dv = -2-- dx . Then du = dx , 

JC + 1 
v = tan- 1x and 

I� dx = x tan- 1x - f tan- 1x dx  (use 59)
x + I 

= x tan- 1x - (x tan- •x - ½ ln( l + x 2
)) + C 

= ½ ln(x 2 + l) + C. 
2. (a) Let u = x + 2 (could also sub u = x - 4) ,

du = dx.  Then x = u - 2 .  Get 

J l 
du = f  l du

u(u - 2 - 4) u(u - · 6) 

= _ ...!._ ln l
u - 6

1 + C = .!.. 1n l" - 4
1 + C. 

-6 u 6 x + 2 

(b) I x 2 -
� 

- 8 
dx = I (x - 1\2 - 9 

dx 

(now sub u = x - 1 ,  du = dx)

= .!. 1n l" - I - 3
1 + C = .!. ln l" - 4

1 + C.
6 x - 1 + 3 6 x + 2  

(c) I l 
dx - .!_ ln l

2x - 2 - 6
1 + C 

x2 - 2x - 8 - 6 2x - 2 + 6 

= .!.. ln l" - 4
1 + C. (Use l(a).)

6 x + 2 
I - 1 /6 1 /6 

(d) 
2) ) 

decomposes to --
2 

+ --
4 

so 
(x + (x - 4  x +  x -
integral is -¼ lnlx + 21 + ¾ lnl,x - 41 + C which 

is ¼ ln l: : ! I + C.

3. (a) Formula 64 (or parts twice)
(b) ¼ lnl3x + 41 + C by inspection 
(c) Formula 1 9  
(d) Sub u = l + 2x' 
(e) Sub u = 3x. Then formula 4 1 .
( 0  -¼e - &.  + C b y  inspection
(g) ¾ lnl,xl + C by inspection 
(h) Long division and then inspection

(or formula 5)
(i) / ( 1  + 3/x) dx = x + 3 lnlxl + C
(j) Long division and then inspection
(k) Formula 1 3  or sub u = 3x + 4 
(I) Complete square. Then formula 27 .
(m) Partial fractions or formula 10
(n) Formula l (b)

4. (a) By 45 with a = 5, b = 3.
¼ sin 2x - fs sin 8x + C 

(b) H (cos 2x - cos &) dx 
= ¼ sin 2x - � sin 8x + C 

(c) Let u = sin 3x, dv = sin 5x dx (or vice versa) .
Then du = 3 cos 3x dx, v = -¾ cos 5x.
f sin 3x sin 5xdx 
= - \  s in  3x cos 5x + \ f  cos 3x cos 5x dx .
Now let u = cos 3x, dv = cos 5x dx,
du = -3 sin 3x dx, v = ¼ sin 5x. Then
f sin 3x sin 5x dx = -¼ sin 3JC cos 5JC + 
¾ (¼ cos 3x sin 5JC + H sin 3JC sin 5JC dx).
Collect terms to get ½H sin 3x sin 5x dx 
= -¼ sin 3x cos 5JC + fs cos 3x sin 5JC. 
So f sin 3x sin 5x dx 
= ¼ sin 3x cos 5x + ¼ cos 3x sin 5x + C
= ¼ sin 2x - fs sin 8x + C using the identities
for cos JC sin y and sin JC cos y in Sect. 1 .3 .

5 .  Let u = tan x ,  dv  = e• dx. Then du = sec2JC dx,  v = e•
and Jo'3 e• tan JC dx = e• tan JC lo'3 - f '(3 e• sec2JC dx 
= e"'' V3 - Q. 
6. Let u = 2 + x 2 , du = 2JC dx.

JAx(2 + JC2t dx  = ½ Jl u 5 du = fiu 6 li = 665/ 1 2
7 .  (a) -cos x + C 

(b) ½(x - sin JC cos JC) + C by 39
(c) One method is to use 52(a). As another method

f sin'xdx = f sin JC( l - cos2x) dx 
= f sin JC dx  - f sin JC cos2JC dx.
First integral is - cos JC. For second, 
sub u = cos JC, du = -sin JC dx  to fet
J sin JC cos2JC dx  = J ( -u 1) du = -1u 5 = 
-¼ cos3JC. Final answer is -cos x + ¼ cos3JC + C.

(d) Let u = sin x, du = cos JC dx  (or could sub
u = cos JC). Get f u du = ½u 2 + C = ½ sin2JC + C 

(e) Let u = sin JC, du = cos JC dx. Get 
J u 1 du = ¼u ' + C = ¼ sin'x + C.

(f) Begin with 52(a) (or 52(b)) to get
-¼ sin JC cos'JC + ¼ J cos2JC dx  (now use 40)
= -¼ sin JC cos3JC + ¼ · ½(x + sin JC cos JC) + C. 
JC _ , 

(g) -=-i° + C = - l/JC + C

(h) lnlJCI + C
JC l/2 

(i) - + C = ½Vx + C1 /2 



8/SERIES 

Section 8.1 (page 2 19) 

1 . (a) (- 1 )' ½ + (- 1 )4 ¼ + (- 1 )5 ti, i .e., -½ + ¼ - ti
(b) a1 + 402 + 9a,z. (a) Partial sums are 1 , - 1 , 2, -2,  3, -3, · · · . They

oscillate wildly so series diverges (not to 011 or -011 
but plain diverges) 

(b) Partial sums are ½, l ,  l ½, 2, 2 ½, 3, · · · which -+ 011•
Series diverges to 011. 

S. (a) s. --+ 011 as n --+ 011. Series diverges (to 011) . Since
partial sums are l , 2, 3, 4, 5, · · · , series itself is 
l + l + l + l + l + . . . .  

(b) S. --+ l as n -+ 011 so series converges to l .  Since
partial sums are 1 ,  1 ,  l ,  l ,  1 ,  · · · , series is
l + 0 + 0 + 0 + 0 + 0 + · · · .

4. Series is ( l  - ½) + (½ - i) + (i - ¼) + (¼ - i) + " · ·
Partial sums are S 1 = I - �. S2 = I - i (the ½'s cancel in
the sum), Ss = l - ¼ (other terms cancel in the sum), etc.
Limit is l ;  series converges to 1 .
5 .  I + 2 + 3 + 4 + · · · and J + l + I + · · · both di­

verge (to 011) and so does the sum series 2 + 3 + 4 + 5 +
. . . . On the other hand, I + I +  I + · · ·  and (- 1 )  + 
(- 1 )  + (- 1 )  + (- 1 ) + . . · both diverge but the sum se­
ries O + 0 + 0 + · • · converges (to 0). 
6. Sw adds up the first 99 a 's and S 100 adds up the first

100 a 's. So S 100 - S119 = a ,oo.

Section 8.2 (page 221)  

1. r = -i, a = - l .  Series converges since -1  < r < l .
Sum is  - J /( J  - -¾) = -f.
z. r = -¼, a = ¼. Converges to ¼/( 1 - -¼) = ¼.
S. r = i > l .  Series diverges (to QQ).
4. r = 3 > l .  Diverges (to 011). (Even without geom series

test, series obviously diverges since partial sums --+ 011,)
5. Series is 1 /4' + 1 /44 + 1 /4 5 + · · · ; a = 1 /4' ,

1/4' r = 1/4. Converges to 
1 _ 1 14 

= 1/48.

&. a = ¼, r = (1)2 . Converges to ¼/( 1 - (1)2) = lo 
7. a = . 1 ,  r = . 1 .  Converges to . l /( 1 - . 1 ) = ¼ 1 (i.e., the repeating decimal . 1 1 1 1 1 1 1  . . .  is the fraction 9) 
8. Series is sin18 + sin4 8 + sin"B + • • · ;  a = sin28 ,

r = sin19 which is between - 1  and 1 provided 8 ¢ 1r/2,
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31r/2 ,  51r/2 ,  etc . In that case series converges to 
sin26/(l - sin28) = sin26 /cos28 = tan29.

9. Series Is l / 1r  + l / 1r ' + l / 1r 5 + · ·  · ; a = l / 1r,
t 1 /'" t l r = 1 /ff .  Converges to 

1 _ 1 1,,,2 = 1r/(1r - )
. 

Section 8.3 (page 227) 

1. (use nth term test)
(a) F (c) f
(b) T (d) T

2. (a) n!/4" --+ 011 as n -o 011 since n! is listed in (4) as
having higher order of magnitude. Series di­
verges by nth term test. 

(b) n 1/4" --+ 0 as n -+ 011 since 4" has higher order of
magnitude. No conclusion from nth term.

ll. (a) I 1 /3", geometric, r = !, converges.
(b) I l /n 2 , p -series, p = 2, converges .
(c) -I l /Vn, p -series, p = ½, diverges.
(d) I Vn, terms do not -+ 0, diverge by nth term

test.
(e) 3 I 1 /n! , standard convergent series.
(f) I 1/n' p -series, p = 3, convergent.
(g) Every other term (i.e. , subseries) of I 1/n'",

p-series, p = 3/2, convergent.
(h) (Drop !, and 6) I. 1 /n. ,  diverges (harmonic).
(i) I:., n/(n + 1 ), terms -+ 1 not 0, diverges by nth

term test. 
(j) l /2"n! < 1 /n! so I l /2"n! conv by comparison

with convergent series I 1 /n! (or by comparison
with I 1/2").

(k) l /n2" < 1 /2" so I 1 /n2" converges by com-
parison with convergent geom series I l /2".

(1) I l /n 5 , p -series, p = 5, converges.
(m) I 1 /5", geom, r = 1 /5, converges.
(n) Converges by comparison with 1/e ' + l /e 4 +

· . . (conv geom, r = 1 /t) . 
(o) I l /n 1, p -series, p = 2, converges.
(p) Many methods. Terms are less than those of

t + tci + alm + · · · , conv geom. (r = 1 / 1 0) ;
given series converges by comparison.

(q) Converges; subseries of the convergent series
I 1 /n! .
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4. (a) 'i a. converges so a. -> 0, I /a. does not -> 0,'i I /a.  diverges by nth term test. (b) a,,/n! < a . ;  if 'i a. converges so does 'I. a./n!  bycomparison.(c) Can't tell .  If 'I. a. is 'i 1 /n ! then 'i n! a. is I +I + I + I + · · · which diverges. But if 'I. a. is'I. l /(11 ! )2 then 'i n ! a. is 'I. 1 /n ! which converges.(d) I a. converges so a. -> 0. But then cos a. -> 1so I cos a" diverges by nth term test.

Section 8.4 (page 23 I )  1 .  Acts like ½ I I /  n 2 , convergent p -series. So  originalconverges also. 2 a •• , = [2(n + I ) ] !  (3n) ! = (2n + 2) ! (3n) !• a,, [3(n + I )] ! (2n) ! (3n + 3) ! (2n) ! (2n + 2) (2n + I )  (3n + 3) (3n + 2) (3n + I )  Limit a s  n -+ oo i s  O (denominator contains n ', numeratoronly contains n 2) ;  series converges by ratio test.3. p -series, p = ½, diverges.4. Same as I !/'!,", geometric series, r = ½, converges.5. n! / 1 0" does not approach O as n -> oo; series divergesby nth term test.6. 'i l /'C'2, 'C'2 -+ I as n -> oo so I /'C'2 does not --+ 0,series diverges by nth term test.7. Acts like 'i 1 /n �  ( p -series, p = 3 ) ,  original con­verges.8. - 'i (n - 1 )/n ", acts like -'i 1 /n (div harmonic) sooriginal diverges.a,,. 1 (n + 1 /(¾r+ ' 3 (n + 1 ) 2 L' . 9. - = 2 3 • = - -- . 1m1t as n --+ oo 
a,. n (4) 4 n is ¾. Series converges by ratio test. a,.. 1 1 0•· 1 n ! 1 0  L '  . .  0 10. - = --- -- = -- . 1m1t 1s as n -> oo. a,. (n + I ) !  10" n + I Series converges by ratio test .  1 1 . 'i 1 /Vn diverges (P  = ½). Terms of 'i. ln n/Vn are even larger so it too diverges. 1 2. (n - 1 )/n does not -> 0 as n ->  oo, series diverges by nth term test. 13. Acts like 2 'i 1 /n, diverges.

a .. + 1 (n + I )" 5" I (n + 1 ) 2 • • • 1 14. - = --- - = - -- . L1m1t 1s 5°· Senesan 5n+ I 11 2 5 n converges by ratio test. 15. Geometric, r = . I ,  converges.. I · 3 · 5 . . · (2n - I )  16. Ratto test, a .  = 3 . 6 . 9 . . . 3n , a.+ 1 = I · 3 0 0 · (211 - 1 ) (2n + I )  
----'------ , a.+ 1 /a,, = (2n + l )/(3n + 3), '!, • 6 0 0  • (3n) (3n + 3)limit as n ....,. oo is i, series converges. 17. Geometric, r = 1 /5 ,  converges .

(n + I ) ! 18. Ratio test, a. = ------ , a .. 1 =I • 3 . . · (2n + l )  
( n  + 2) !  l · 3 . . .  (2n + 1 ) (2n + 3) ' a.+ 1 /a. = (n + 2)/(2n + 3) .Limit as n ....,. oo is ½. Series converges.19. Geom, r = e/3 between - I and I ,  converges.20. Geom, r = e/2 > I, d iverges .2 1 .  Every other term of 'i l /n 2

, converges .22. I 1 /n(n + 1 )  acts like 'I. l /n 2 , converges.23. Acts like 'i n/n Vn = 'i 1 /Vn which diverges; origi­nal diverges .24. n/(n - 1 )  -+ I not O as n .....,. oo. Diverges by nth term test. 25 a.+ 1 = [(n + 1 ) ! ]2 (2n) ! = [(n + 1 ) ! ]2 (2n) !' a,. [2(n + l ) ] ! (n ! )2 (2n + 2) ! (n ! )" (n + l ) (n + I )  (2n + 2 )  (2n + I ) ·Limit is ¾ (since numerator contains n 2 and denominator contains 4n 2) .  Converges by ratio tt:st. a.+ 1 Vn+l 3" J �+ J . . .  I • 26. - = --- -- = - -- L1m1t 1s .  Senesa. 3"+ 1 Vn 3 n · , . converges by ratio test. . 2 · 4 . . · (2n + 2) 27. Ratio test, a . = 2 3) ,  , ( n + 2 · 4 0 0 • (2n + 2) (2n + 4) 
an+ ) = ---------(2n + 5) ! On+ I = 2n + 4 a. (2n + 5) (2n + 4) = 2n + 5 ·Limit as n ....,. oo is 0. Series converges.28. Acts like 'i Vn/n = � 1 /Vn ,  diverges.29. '£ (¾)", geom, r = ¾, converges.30. 'i (n + l )/n 2 , acts like 'I. 1 /n, diverges.3 1 .  'i l /(4n - 2) (equivalently 'I. l /(4n + 2)), acts l ike ¼I  1 /n, diverges. 32. Terms smaller than those of conv series 'i 1 /4" ;  con­verges by comparison.33. In n < Vn (since In n has lower order of magni­tude) , (In n)/n 2 < Vn/n 2 = l /n 312 ; 'i 1 /n '12 converges(p = i) ; original series converges by comparison. 34. Terms smaller than those of I l /n 2

, converges bycomparison.I I 35. -- + -- + . . . = A I + A2 + A, + . . .2 In 2 3 In 3 
Ix 1 I .: -- dx (let u = In x, du = - dx) 2 x In x x = J;;, 2 1 /u du = In u J;;, 2 = 00• Series diverges. See fig. 

6AAPH OF -
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36. (a) 1 + ¼ + ¼ + • · · = I:. 1 l /(2n - 1 )  which acts
likc ½I 1 /n, diverges ; ½ + ¼ + ¼ +  . . . = 
I l /2n = ½I  1 /n, diverges. 

(b) There are millions, e.g. ,  i + ¼ + ¼ + re + · · ·
(geom,, = i>, 1 + ¼ + i + re +  f& + . .  · <P = 2).

37. (a) If I a. is I l /n 1 then it converges but I na. is
I 1/n which diverges. On the other hand, if I a. 
is I 1 /n '  then it converges and I na. is I l /n 1 

which converges also. 
(b) Suppose I a. converges by ratio test, i . e . ,

lim•-• a.+i!a. < 1 .  Then ratio test for I na.

I. 
(n + 1 )4 •• 1 1 . 

n + 1 
1 . 

a •• , uses 1m ---- = 1m -- 1m - =
•-- na,. •-• n •-• a,. 

1 x (less than 1) .  So limit is less than I ,  new
series also converges by ratio test.

Section 8.5 (page 236) 

1 .  I (- 1}"• 1/v'ii converges by alternating series test
since 1 /Vn l 0. Error using s .. is less than 1 /W = ¼. 
Approximation is under since last term, 1 /¥24, was sub­
tracted. 
2. (a) 1 /n! l 0, series converges by alt series test. First

term less than .001 is 1/7 1 . So use 
1 - 1/2! + 1/3! - 1 /4 !  + 1 /5 1  - 1/6! = Wo 
as approximation. 

(b) 1/n" l O so series converges by alt series test.
First term less than .00 1 is 1 /55 so use 1/44 as the
approximation (i.e., just add one term).

3. (a) False (see warning 1) .
(b) True by nth term test.

4. (a) n 1/n! l 0, series converges by alt series test.
(b) n!/n I does not --+ 0, series diverges by nth term

test.
(c) 1 /n In n l O, series converges by alt series test.
(d) 2n/(n2 + 4) l 0, series converges by alt series

test.
(e) Geometric series, r = - .1 ,  converges (can also

apply alt series test).
(0 Terms --+ 1 ,  not 0, diverges by nth term test. 
(g) '\/n=T./n l 0, converges by alt series test.

5. (a) True. lf i b. converfes then b. --+ 0. Eventually
0 < b. < 1 .  Then b. < b. so I b= converges by 
comparison. 

(b) False. If b. = 1/Vn then I (- l r♦ ' b. converges 
by alt series test, but I b! is I 1 /n and diverges. 

6. (a) All converge since in each case a. l 0.
(b) For the alternating version of Table I ,  the di­

viding line between conditional conv and abso­
lute conv is where the dividing line is in Table 1
itself between convergence and divergence, i.e. ,
I (- 0-• 1 1 /n' is conditionally convergent if
p s 1 and is  abs convergent if p > 1 .
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7. (a) n/( 1 + n 1) l O so series conv. But series of abs
values is I n/(,1 + n 1) , acts like I 1 /n, diverges. 
Original series is conditionally convergent. 

(b) Series of abs values is I (n + 2)/(n ' + 3), acts
like I n/n' = I l /n1 , converges. Original is abs
convergent.

8. (a) I a. can't be absolutely convergent but we can't
tell if it is conditionally convergent or divergent. 

(b) I a. converges, and furthermore is abs con­
vergent.

9. (a) I la.I diverges.
(b) No conclusion (Fig. 2 shows that convergent

series may have I la.I converge or div.
10. (a) 1 /n! l O so series converges by alt series test.

Series of abs values is I 1 /n! , converges. Origi­
nal converges by (9). 

(b) 1 /v'ii l 0, series converges by alt series test.
Series of abs values is I 1 /Vn, diverges. No in­
formation about original.

l l .  (a) Convergent geom series has r between - 1  and
1 .  Series of abs values has r between O and 1 (For
example if r is -f then series of abs values has
r = f. If r is ½ then series of abs values has r = ½).
Series of abs values converges. So original is abs 
convergent. 

(b) p -series are positive series. Series of abs values is 
same as original. Original is abs convergent. 

Sectioq 8.6 (page 240) 

1x•• 1 terml l(n + 2)x"• 1 1 n + 2 . 1. �--,..a = ...,... ________ = --!xi Lim as n --+ ooIx " terml l(n + l )x"  n + l 
· 

is !xi - Interval of convergence is !xi < I ,  - 1  < x < 1 .
jx•• 1 terml I x•• 1 I 1 3"n' Iz. Ix" term! 

= 
3•• 1 (n + 1 )2 7 

= ¾(n : J1x1. 
Limit as  n --+ oo is  ilxl - Interval of convergence is 
ilxl < 1 ,  !xi < 3, -3 < x < 3 .

l(n + l ) l x•• 1 1 
3. 

I 1 "I 
= (n + 1 )  lxl . Limit as n --+ 00 is 00 (ex­

n. x 
cept when x = 0). Series converges only when x = 0, i.e. ,
radius of convergence is 0. 

4
• l cn

"
:

1

l ) I I 1 :: 1 = 
11 � 1 

lxl - Limit as n --+ 00 is 0.

Series converges for all x, i .e. ,  interval of convergence is 
(-00, 00), 

I ••• , I ,_,..,I 5 I• (- 1 )" ... , " term 
= ""-- = I 'I = 2 • ••O x , 1x ••• 1 terml lx '"• ' I " 

x .

Limit as n --+  00 is x1 • Interval is x1 < l ,  - 1  < x < 1 .  
I ... , I 12'·•1 i • .,I6 I• 2'" t.+ , " term - x - 2•1 ti -• .. , x , 
lx '•• I terml - 12••x• .. 1 1 

- " -
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4x 2. Limit as n -+  00 is 4x 2• Interval is 4x 2 < I ,  x 2 < ¼, 
-½ < x < ½. 

1 3
•• •x •• '

l l n
l n 7. "l: 3"x"/n, � 3•x• = 3

;;-:;-T
lx l .  Limit as 

n -+  00 is 3jxj . I nterval is 3lxl < I ,  lxl < l /3, -½ < x < i, 

Section 8. 7 (page 246) 

1 .  (a) Binomial series with q = 1 /3 ,  ( l  + x) '1' = 
1( - 2/3) 1 /3( - 1) (- .?) 1 + ¼x + _3 --x 2 + , s x ' + . . .  

2 ! 3 !  
for  - 1  < x < I 

1 2 2 2 • 5 3 2 • 5 • 8 4 = l + TX - -x + --x - ---x + . . . , 322 !  333 !  344 !  
for - 1  < X < l .  

(b) Multiply series in equation ( l )  by  x ;  get 
x + x 2 + x ' + x• + . .  · for - 1  < x < I . 

(c) Binomial series with q = -3 ,  ( l + x)- 3 = 

1 _ 3x + (- 3) (-4)x 2 + (- 3) (- 4) (- 5\ 3  + . . .  
2 !  3 !  

3 · 4 3 · 4 · 5 
= l - 3x + -- x 2 - ---x 3 + , . . 

2 !  3 !  
for - 1  < X < l . 

I l l l 
(d) 

-2 3 = 
2 1 3 ) = -2 -1 -,- . Use senes for 

- x  ( - 2x - 2x 
1 /( l  - x) with x replaced by ¾x. Get 
½( I + ix + (ix)2 + (fx)' + · ") 

for - 1  < ix < l 
l 3 32 2 33 

3 = - + -x + -x + - x + . . . 
2 22 23 2• 

for - J  < x < J. 

h b. . I . l (e) Factor, t en mom1a senes. (3 + x)6 = 

l I -6 l I 

36( 1  + ½x)6 
= � ( l  + ;x) = � ( l  - 6(;x) + 

( -6) (- 7) (¾x)2 + ( -6) ( - 7) ( -8)
(1x)' + , . .  ) for 2 !  3 3 !  3 

I • l 6 6 · 7 2 
- 1 < -x < l  Answer 1s -, - -x + --x -3 • 30 31 382! 
6 · 7 · 8 ---x 3 + . . · for -3  < x < 3. 393! 

X _ !  ! 
(!) Method 1 :  ------ = -2- + -2-

( l - x) ( l - 3x) 1 - x l - 3x 
by partial fraction decomposition. Get series for 
first fraction directly from ( l ) . Get series for 
second fraction from ( l )  by replacing x by 3x. 
Get - ½( l  + X + x 2 + x 3 + . .  · ) + ½o + 3x + 
9x2 + 27x' + . .  ·) = I;_ , ½<3" - l )x ".  First se­
ries converges for - l < x < l ,  second series for 
- 1  < 3x < I ,  i.e . ,  -½ < x < j. Sum series con­
verges on smaller interval -½ < x < l 

Method 2: Multiply the series for 1 / ( l  - x) 
and for l/ ( l - 3x) and then multiply by x. 

I I I I I 
(g) X - 2 

= - 2 + X 
= 

-2( 1 - ½x) = - 2 I - ½x . 
Replace x by ½x in the 1 / ( 1  - x) series . Get 
- ½( l  + ½x + (½x)2 + (½xf + " ·) ,  - I < ½x < I ,  

I I 1 2 -- - - x  - -x - " '  for -2 < X < 2 2 � � 

�=-o - x •/2•• • for -2 < x < 2. 
(h) ln(2 + x) = In  2 ( 1 + ½x) = In 2 + In ( ! + ½x) . 

Use ( 10), get In 2 + ½x - ½(½x)2 + ½(½x)3 - ¾(½x)4 

C ' X I 2 + · · · ,or - 1 < -x < I In 2 + - - --x + 2 ' 2 22 • 2 
I 3 I • C h --x - --x + · ·  · ,or -2  < x < 2 (t e 23 · 3 24 • 4 

In 2 term is the constant term in the series). 
2, Binomial series, q = 4, x replaced by -3x 2, 

Vl-3x' 
= I + 1( - 3x 2) + ½( - ½) ( - 3x 2)2 + ½ ( - ½) ( - �) ( - 3x 2 )3 2 2 !  3 !  

+ . .  · for - 1  < -3x 2 < l 
, 2 32 

4 3' · I · 3 6 34 • 1 · 3 · 5 8 
= I - 2X - 222 ! X -

2"3 ! X -
2•4 ! 

X 

+ . . · for x 2 < ½, -\/1 < x < \11. 
3 1 7  • I · 3 · 5 . .  · 3 1 ,. . . The x 34 term is - 2 1 1 1 7 !  

x . Senes 1s 

� 3" · I · 3 · · · (2n - 3) I - L ------x 2". 
•- • 2"n! 

3. (a) ( I + -x2)- 1 = l + ( - l ) (-x 2) 

+ (- 1 ) ( -2) ( - 2)2 + ( - l ) ( -2) ( -3) (-x 2)' 2!  X 3! 
+ . .  · for - I < -x 2 < I 

= I + x 2 + x• + x6 + . .  · for - I < x < I .  
(b) Replace x by x 2 in ( I ), 1 /( 1  - x 2) 

= I + x 2 + (x 2)2 + (x 2)" + . .  · for - I < x 2 < l 
= I +x 2 + x • + x 6 + . .  · for - 1 < x < I 

I I I 2 , 

(c) I - x 2 = I - x I + x = ( I + x + x + x ·  + 
. .  • ) ( I - x + x 2 - x ' + . .  · ) for - I < x < I 
= I + x2 + x• + x6 + x 8 + . . · for - I < x < I .  
(use ( I )  twice, once with x replaced by -x) 

1 I ½ ½ (d) I - x 2
= 

( l  + x) ( l - x) = I + x 
+ 

l - x 
= ½( I - X + X2 - X 3 + ' ") 

+ ½( I  + X + X 2 + X 3 + ' ") 
= I + x 2 + x• + x" + . .  · for - I < x < I .  

(e) I + x 2 + x• + · · · 
l - x 2 ) l 

I - x 2 

--.? 
x 2 

- x• --;'4 etc. 
So 1 / ( 1  - x 2) = l + x2 + x• + . . . . Series was 
not obtained from a previously known series, its 



4. (a) 

interval of convergence is not simply "inher­
ited." With this method, must use ratio test to 
find interval (- 1 , l ). 

( l  + -x)-2 = l - 2(-x) + (-2) (-3)
(-x)2 + 

2 !  
<-2) ( - 3H -4)

( -x)3 + . . .  for - 1  < -x < I 
3 !  

= l + 2x + 3x2 + 4x' + · · · fo r  - 1  < x < l .  
l l 

(b) -- -- = ( l  + x + x 2 + x '  + · · · ) ( l  + x 
l - x l - x 

+ x 2 + x 3 + · · ·) for - l < x < l 
= l + 2x + 3x 2 + 4x 3 + · · · for - 1  < x < l .  

5 .  (a) Frrst find series fo r  1 / ( 1 + x 2) b y  replacing x by 
-x2 in ( 1 ) ,  get 1 - x2 + x• - x6 + · · · for - 1  < 
-x 2 < 1 ,  - 1  < x < l .  Then antidiff to get 
tan- •x = C + x - x '/3 + x 5/5 - x 7/7  + · · · 
for - 1  < x < l. Set x = 0 to get C = 0. 

(b) tan - 1 x 2 = x 2 - x 6/ 3  + x 1 0/ 5  - x 1 4 / 7 + . . . 
for - 1 < x 2 < 1 ,  - 1  < x  < 1 by part (a). So 

3 7 I I  

J 112 tan- •x 2 d.x = ::..
1
112 _ _ x_ , ,12 + _x_ , ,12 _ 0 3 ° 3 · 7 ° 5 · 1 1 ° 

· · · = 
2
1
4 

-
(2 l )  � 128) 

+ third term which is less 

than .000 1 - · · · . Use sum of first two terms, 
��8 , as the approx. Underestimate, last term 
used was subtracted. 

6. Can get x + 2x 2 + 3x 3 + 4x 4 + · · · by differen­
tiating 1 + x + x2 + x' + · · · and then multiplying by x. 
1 /( 1  - x) = 1 + x + x 2 + x' + · · • so (diff and then 
multiply by x) x/( 1 - x)2 = x + 2x 2 + 3x' + 4x 4 + • • • . 
Answer is x/( 1  - x)2

• � 1 
7. (a) f(x) = L 2•- 1 x" •• , n 

X .X 2 .x' (b) f ' (.x) = 1 + 2 + ¥ + i5 + · · · 
(c) Series for f ' (.x) is geom, r = ½x. If - 1  < ½.x < l 

it converges to 1 /( l  - ½x), i .e. , f ' (x) is the func­
tion 1 /( l  - ½x) ;  [<x) is  an antiderivative so 
f(x) = -2 ln( l - 2x) + C. To find C, set x = 0, 
get 0 = 0 + C, C = 0. So /(x) is -2 ln( l - ½.x). 

8. (a) 4( 1 + 1&) 112 = 4 ( 1  + ½(¼) + ½(-½Htii)2/2! + • • •) 
= 4 + 4(.09375) - 4(.0043945) + • 1 • Alternat­
ing series, fourth term is less than .0 l. Use sum 
of first three terms as approximation. 

(b) binomial series converges for - 1  < x < I so 
can't use it with x = 18 .  In part (a) we used it 
with x = ft which is between - 1 and 1 .  

Section 8.8 (page 251) 

I .  f (x) = ( I  + x)9, f ' (x) = q( l + x)•- 1 , 
f"(x) = (q - l)q ( l  + .x)•-2 , 
J"'(x) = (q - 2) (q - l )q ( l  + x)r', . • • , 
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/(0) = 1 ,  f ' (0) = q, f"(O) = q(q - 1 ) ,  
r<0) = q(q - 1 )  (q - 2) ,  · · · .  The M aclaurin series is 

1 + qx + �x 2 -+ q(q - l ) (q - 2)
x'  + · · · agree-

2 !  3 !  
ing with binomial series. 

1 1 
2. Let /(.x) = -

1 - . Then f ' (x) = -
1 )2 , /"(x) = 

- X ( - .X 
2 ., _ 3 • 2 

t<•> _ 4! 
( I  - x)' ' f (.x) - ( 1  - x)4 ' 

(x) - ( 1  - x)5 '
· · · ' 

/ ( 0 )  = l , f ' ( 0 )  = 1 , f" ( 0 ) = 2 , f '" ( 0 )  = 3 ! , 

r•>(0) = 4 !  ' . . . . Maclaurin series is 1 + X + fix 2 + 

� x '  + · • • = 1 + x + x 2 + x 3 + .x 4 + · · · again I f  � , 
1 1 

f(x) = ln( l + x) then f ' (x) = 
1 + x , f"(x) = -

( 1  + x)2
, 

2 3 • 2 
f"' (x )  = -- p• > (x ) = - -- J C 5 > (x ) = 

( 1  + x ) 3 ' ( 1  + x ) 4 ' 

( I  
!' x)5 , • · · , /(0) = 0, f '(0) = l , f"(0) = - 1 , f"'(0) = 2, 

['4 > ( 0 )  = - 3 ! , [' 5 > ( 0 )  = 4 ! ,  · · · . Mac laur in  ser ies  
. 1 2 2 ' 3! 4 IS X - -x + - x - -x + . .  • 

2 !  3 !  4 !  
= x - ½x 2 + ½x' - ¼x 4 + • • · . I n  each case the interval 
of conv would have to be found using a ratio test. 

3. (a) Method 1: If /(x) = ½V - e -•) then f ' (x) = 
½(e' + e -• ) ,  ["(x) = ½(e" - e -•) ,  · · · ,  /(0) = 0,  
f ' (0) = 1 ,  ["(0) = 0, f'"(0) = l · · · .  Maclaurin 
series is x + x 3/3 !  + x 5/5 ! + . . . . Need ratio 
test to find interval of convergence (-00, 00). 

Method 2: e• = 1 + x + x 2/2!  + x '/3 !  + • · ·  
for al l  x ,  so  e - • = l + ( -x )  + ( - x )2 / 2 !  + 
( -x>5/3 ! + · · ·  = l - x + x 2/2 !  - .x 3/3 !  + · · ·  
for all x. Subtract series, ½(e" - e -•) 
= ½(2.x + 2x 3/3 ! + 2x 5/5 !  + • · ·) 
= x + x'/3 ! + .x5/5 ! + · · · for all x. 

l 
(b) Method 1 :  Let f(x) = 3 _ 2.x

. Then f ' (x) = 

2 2• · 2 23 
• 3 !  

(3 - 2x)2 ' f"(x) = 
(3 - 2x)3 ' f'"(x) = 

(3 - 2x)4 ' 
(4 ) 2• • 4 !  I 2 f (x) = 

(3 _ 2x)'
, · · · ,  /(0) = 3, f ' (O) = 2/3 , 

f"(0) = 22 • 2/3' ,  f'"(O) = 2' · 3 ! / 34 , J'4>(0) = 

24 
• 4 !/35 , · · · .  Maclaurin series is ..!.. + -;x + 

3 3 
22 • 2 x 2 23 

• 3 !  x '  -- - + -- - + · · · which cancels to 
3' 2 !  34 3 !  

l 2 22 2' - + -.x + -x 2 + -x' + · • · Need ratio test 3 32 3' 34 

to find interval of convergence (-i . ¾). 

Method 2: _I_ = 
..!._ _I _  

= 
3 - 2x 3 1 - h 

1( 1 + ix + (fx)2 + (ix)' + · · ·) 
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for - 1 < ix < l .  Simplifies 
to same answer as method l . 

4. sin x = I;.0 ( - l tx 2•+ 1 /(2n + l ) ! , 
cos x = I;.0(- l )"x2"/(2n) ! 

5. (a) B y  (4) ,  cos 3x = l - (3x)2/2 !  + (3x)4 /4 !  -
(3x)6 /6! + • • • for -00 < 3x < 00 

32 34 36 
= I - -x 2 + -x• - -x6 + · · · for all x. 2 !  4 !  6 !  

(b)  By (3) ,  x '  s in x = x '(x - x '/3 !  + x 5/5! - • · · ) 
= x 4 - x 6/3 !  + x 8/5 ! - · · · for all x. 

(c) By (5), I + (4x) + (4x)2/2!  + (4x)'/3 ! + · · · for 
42 4' 

all x 1 + 4x + -x 2 + -x'  + · · · for all x. ' 2 !  3 !  
6 .  sin2x = ½o - cos 2x) 

= 1( 1 - [ 1 -
(2x)2 

+ 
(2x)4 

-
(2x)6 

+ · · · ] ) 2 2 !  4 !  6! 
2 2' 25 

= -x 2 - -x 4 + - x 6 - • • • for all x. 2 !  4 !  6 !  
7 . f " (x ) = g ' (x ) = / (x ) ,  f"' (x ) = f ' (x ) = g (x ) ,  

J <4 1(x) = g ' (x) = /(x ) ,  · · · ,  /(0) = l ,  f ' (0)  = g(0) = 0 ,  
f"(0) = /(0) = I ,  f"'(0) = g(0) = 0, P41(0) = l ,  · · · . Mac­
laurin series is I + x 2/2 !  + x 4/4!  + x 6/6!  + · · · . Use 
ratio test to get interval. 

Jx 2•+2 term! Jx 2•+2 l (2n) ! lxl2 

lx 2" term! 
= 

(2n + 2) !  lx 2n l 
-

(2n + 2) (2n + I ) · 

Limit as n -+ 00 is 0, series converges 
for all x. 
8. sin(-x) = ( -x) - ( - x)'/3 ! + ( -x)5/5! - · · · 

= -x + x '/3 !  - x 5/5 !  + · · · = -sin x 
9. Derivative of e• = derivative of ( l  + x + x 2/2 !  + 

x '/3 ! + · · · ) = 0 + l + 2x/2 !  + 3x 2/3 !  + 4x '/4 ! + · · ·  
= l + x + x2/2!  + x '/3!  + · • ·  (old series back again). 
10. sin l = I - 1 /3 !  + 1 /5 !  - 1 /7 !  + · · · .  The first 
term under .000 1 is 1 /9! so use sum of the first four 
terms as the approximation, underestimate since 1 /7 !  
was subtracted. 
1 1 .  (a) Use e· series with X rerlaced by -x 2 . 

n( l - X 2 + X 4/2!  - X /3 !  + • · •) dx  

= x i i  -
x ' l

1 
+ �1 1 - . . .  0 3 0 5 . 2 !  0 

= l - ½ + i\i - 12 + · · · . 
Alternating series, fourth term is the first one 
less than . 1 ,  so use I - ½ + i\i as the 
(over)approximation. 

(b) Binomial series with q = -4,  x replaced by x 2• 

f 113( 1 _ 4x 2  + 
( -4) ( -5) 

x• + 
( -4) ( -5) ( -6) 

x6 
0 2 !  3 !  

+ · · • ) dx = ½ - !(½)' + 1(½>5 - · · · . Series alter­
nates and first term less than .0 I is the third one; 
use sum of first two terms as the (under)estimate. 

12. Use ( l 0), Section 8 .7 to get ln( l + x 2) = x 2 - (x 2)2/2 
+ (x 2)"/3 - · · · = x 2 - x 4/2 + x 6/3 - X 8/4 + · · · .  By 

(4), 1 - cos x = x 2/2!  - x 4/4! + x 6/6! - · · · so 
In( ! + x 2) x 2 - x 4/2 + x 6/3 - x 8/4 + · · · 
--- = . (now can-I - cos x x 2/2! - x4/4 ! + x 6/6! - · · · 

I - x2/2 + x 4/3 - · · · . . eel) = 2 •; 
• Ltmll as x -+ 0 1s 1 /2 !  - X /4! + X 6! - • • • 

1 /( 1 /2 ! )  = 2. 
x - x'/3 !  + x 5/5! - x 7/7 !  + · ·  · 

(b) lim ---''---.....;.....---"---
.r-o X 
= lim( I - x 2/3!  + x 4/5! - - - · ) = I 

.-o 
13. By (5), e• = I:.0 x "/n! for all x. Set x = l to get e = 
I:.0 1 /n! ; i .e. ,  answer is e. 

Section 8.10 (page 256) 

I 
(x - 4

r+

1 

1 1 
n 3

" I 
l n 

1 .  
(n + J )'!,"+ i  (x _ 4)" 

= 3 n + 1 
Jx - 4 J .  Limit 

as n -+  00 is ¼Ix - 4J .  Interval is ¾Ix - 41 < l ,  
- 3  < x - 4 < 3 , l < x < 7 (centered about 4). 
2. (a) Function blows up at x = - 8 ,  can't expand 

around - 8, can't do powers of x - -8 ,  i .e . ,  
powers of x + 8. 

(b) In x blows up at x = 0 and is totally undefined 
for x < 0. So can't expand around 0 or any 
negative number, i .e . ,  can't expand in powers of 
x, x + I ,  x + 2, x + ½, x + 1r, etc. 

3. (a) Method 1 :  ln x = ln([x - I ) + 1) (let u = x - 1 )  
= ln( l + u) = u - u 2/2 + u '/3 - u 4/4 + · · ·  

for - 1  < u < l by eq. ( 10),  Section, 8 .7 ; 
= (x - 1 )  - ½(x - l )2 + ½(x - l )' - ¼(x - l )4 

+ • · • for - 1  < x - l < 1 ,  0 < x < 2. 
Method 2: If /(x) = In x then f ' (x )  = 1 /x ,  

f"(x) = - l /x 2 , f"'(x) = 2/x ',  J <41(x) = - 3 ! /x 4 . 
· · · , /( I ) = 0, f '( I )  = l , f"( l )  = - 1 , f'"( l )  = 2,  
f'41( 1 )  = - 3 ! ,  / <51( 1 )  = 4! ,  · · · .  Use ( 1 )  to get 

I 2 , 3! 4 (x - 1 )  - 21 (x - 1 )2 + 31 (x - I )  - 4! (x - I )  

+ • • • which cancels to the answer from method 
l .  Need ratio test to get interval (0, 2) .  

(b) s in x = sin([x - 1r] + 1r) (let u = x - 1r) 
= sin(u + 1r) = sin u cos 7T + cos u sin 7T 
= -sin u (trig) = - (u - u '/3!  + u 5/5! - · · · ) 

for all u (by (3) Section 8.8) 
= - (x - 1r) + (x - 1r)3/3!  - (x - 1r)° /5!  + · · · 
for all x - 1r, i .e . , for all x. 

( c )  e • = e <• - l l + I ( l e t  u = x - l )  = e " • 1 = ee " 
= e( I  + u + u 2 / 2 !  + u '/ 3 !  + · . . ) for all u 

(by (5), Section 8.8) 



= e + e(x - l )  + .!. (x - 1 )2 + .!. (x - 1 )3 

2! 3 !  
+ • • • for all x - l ,  i.e . , for all x. 

l l 
(d) 

-6 - x = 
-6 - [(x + l) - l]  

(let u = x + l )  
l = ---� 

-6 - (u - 1 )  
l l = -- = - - --.- . -5 - u 5 l + iU 

Now use series for 1 /( l  - x) with x replaced by 
-¼u to get 
-¼( I + (-¼u)  + 1

(-¼u )2 + (-¼u )' + ' " ') 
for - 1  < -5u < l 

= -¼ + u/52 - u 2/53 + u '/54 - . .  • 
for -5  < u < 5 

= -¼ + (x + 1 )/52 - (x + 1 )2/5' + (x + 1 )3/54 

- • • • for -5  < x + I < 5, -6 < x < 4. 
I l 1 

(e) - = ---- (let u = x + 2) = --
x (x + 2) - 2  u - 2 

= _ .!_ _l_1_ . Use 1 /( l  - x) series. Get 2 l - iU 
-½( l  + ½u + (½u)2 + (½u)' + · ") 

for - 1  < ½u < I ,  -2 < u < 2 
= -½ - (x + 2)/22 - (x + 2)2/2' - (x + 2)'/24 

- • • • for -2 < X + 2 < 2, -4 < X < 0. 
(f) Vx = V(x - 9) + 9 (let u "' x - 9) 

= '\lu+"'9 = 3( 1 + !u) 112 ( use binomial series) 

= 3( 1 + ½(¼u) + 
(½) 

��
½) 

(¼u)2 

+ (½) (-;: (-i) (¼u)' + ' " ') 

for - 1  < !u < I , i.e . , -9 < u < 9 
l l 

9 2 = 3 + 2 . 3 
(x - 9) - 3'222! 

(x - ) 

+ -3 - (x - 9)5 - � (x - 9)4 + . . .  
35253 !  37244! 

for -9 < X - 9 < 9, 0 < X < 18. 
3 . 5 . 7 . . . 97 Coefficient of (x - 9)50 is - 3992so501 

1 1 (g) Method 1 :  (x + 8)5 = ([x - l] + l + 8)5 

= --1 - (let u = x - 1 )  = -; ( 1  + ¼u)-5 
(u + 9)5 9 
(use binomial series) 

= � ( l  - 5(!u) + (-5
;t

6) (¼u)2 

+ (-5) (-6) (- 7) (!u)' + , . .  ) 3 !  
for  -1  < !u  < l ,  -9 < u < 9 

l 5 5 · 6  2 = 
95 - 9& (x - 1 )  + 912 !  (x - 1 )  - . . .  
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for -9 < x - 1 < 9, - 8 < x < 10. 
5 · 6 · 7 . . .  23 

Coefficient of (x - 1 ) 19 is - 914 19! 
1 -5  

Method 2: /(x) = (x  + 8)5 • f '(x) = (x + st '  
5 · 6  - 5 · 6 · 7 

f"(x) = 
(x + 8)1 • f"'

(x) = 
(x + 8)' • . . .  • /( 1 )  = 

1 / 9 5 , f ' ( l )  = - 5 / 9 6 , / " ( l )  = 5 · 6 / 9 7 . 
a . . 1 

/ "' ( l ) = - 5 · 6 · 7 /9  , · · · . Ser ies  u 9 5 -

5 5 · 6  2 5 · 6 • 7 , 
911 (x - l )  + 91 2 ! (x - l ) - gsF (x - 1 )  

+ • • · . Must use ratio test to get interval of con­
vergence (- 8, 10). 

(h) cos 2x = cos 2([x + j1T] - ½11') 
= cos(2[x + ½11'] - 11') 
= cos 2[x + ½ 11'] cos 11' + sin 2[x + ½ 11'] sin 11' 
= -cos 2[x + ½11'] (let u = 2[x + ½11' ]) 
= - ( l  - u 2/2! + u 4/4 ! - u 6/6! + u'/8! - . . .  ) 
for all u (standard cosine series). So 

22 1 2 24 1 )4 cos 2x = - 1  + - (x + i11') - - (x + i11' 2 !  4 !  
26 

I 6 + 
6!  (x + i11') - . .  · 

for all 2(x + ½11'), i .e . , for all x. 
(i) In 3x = In 3([x - 2] + 2) = ln(3[x - 2] + 6) 

= In 6(½[x - 2] + l )  = In 6 + ln( l + ½ex - 2]) 
(let u = ½[x - 2]) 

= In 6 + u - u 2/2 + u '/3 - u4/4 + . . . 
for - 1  < u < l (use standard In( l + x) series) . 

l l 2 So ln 3x = ln 6 + 2 (x - 2) - 22 • 2 (x - 2) 

l , 1 • + 2' • 3 
(x - 2) - 24 • 4 (x - 2) + . . .  

for - 1  < ½(x - 2) < l ,  0 < x < 4. 
l l 

(j) l + 2x = l + 2([x + 4) - 4) 
l l = -----,,.- = l + 2[x + 4) - 8 - 7 + 2[x + 4) 
l l 1 = -7( 1  - f(x + 4)) = - , l - f(x + 4) 

(let u = f(x + 4) 
= -+o + u + u 2 + u '  + u 4 + ' " ') 
for - 1  < u < l (use standard 1 /( l  - x) series) . 

l I 2 22 2 So -- = -- - - � + � - - � + �  1 + 2x 7 72 7' 
2' - 74 (x + 4)3 - • . .  

for - 1  < l(x + 4) < 1 ,  -.!/ < x < -½. 
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Chapter 8 Review Problems (page 257) 1 . (a) Geom, r = ½, converges. (b) p -series , p = 7, converges. (c) Geom, r = 2,  diverges. Also series is I 2" which diverges obviously by n th term test. (d) p -series, p = ½, diverges. (e) -I 1 /n, harmonic series, diverges. (f) 3n/(n 2 + n) ! 0, converges by alternating series test. (g) Acts like 3 I 1 /n, diverges. 

6"+ 1 (n - 1 ) 1 6 (h) - ---· = - . Limit as n -+ 'oo is 0. Con-n !  6" n verges by ratio test. (i) I t  is an alternating series. It diverges by n th term test since terms approach 1 ,  not 0. (j) Converges by comparison with say ½ + -k + 
,:xi + · · · which is convergent geom (r = i\i). (k) a2/a 1 = 7/ 16, a,/a2 = 9/32, a ... . /a. = (2n + 3)/2••3 , Lim as n -+ 00 is O. Series converges by ratio test. (n + 1 )2 5" 1 (n + 1 )2 • . • 1 (1) � n 2 = 5 -n- . L1m1t as n -+ oo 1s 3 .  Converges by ratio test. (m) Partial sums are I ,  -2 ,  - I ,  -4, -3 , -6, · · · .  Series diverges to -00. 2. Geometric, a = (¾)5 . r = (¾)2 , . (¼); 1 sum 1s 1 _ (¼)2 = 95 _ 9, . 3. 28/8! is first term less than .01 .  So use the sum of the first eight terms I - 2 + 22 /2! - · · · - 2 7 /7! as the ap­prox (underestimate) to get error < .0 1 .  4. (a) 1 / (ln n)2 i O so series converges b y  alternating series test .  Bu t  series of absolu te values is I 1 /(ln n)2 which diverges. So original series is conditionally convergent. (b) Converges absolutely s ince series is  posi t ive already and is convergent geom (r = ½) . 5. (a) Converges. Series of absolu te values is I a. which converges by hypothesis. So I(- l )"+ 1 a. is absolutely convergent, so converges. (b) May converge or may diverge. For example if I a. is I I /n 3 then I n 2a. is I l /n which di­verges . But if I a,. is I 1 /n 4 then I n  2a. is I 1 /n 2 which converges. 6. Must have e"• -+ 0 by n th term test so a. -+ -00. But then I a. is adding many huge negative numbers and series diverges to -00. 7. (a) Let I a. and I b. both be l/Y2 - l/V3 + I /V4 - · · · .  Each converges by alternating series test. But I a.b,. is ½ + ½ + ¾ + · · · which diverges . (b) I f  I b,. converges then b. -+ 0 so eventually b. is between O and 1 .  So a.b. < a. eventually. But 

I a. converges by hypothesis so I a.b. converges by comparison. 8. Series is I: •• x•+ 1 /4" so 1 :::: 1 j):, 1 = 1:1 . Limit as n -+  00 is ¼ lx l so interval of convergence is ¼ lx l < I ,  lx l < 4, - 4  < x < 4 .  I 1 ( 1 ) 9' (a) 3 - x = 3 1 - ix (now use series for 1/ ( l - x)) 
= ½( l  + ½x + (¾x)2 + (_!_x)9 + • • • ) 3 for - 1  < ½x < 1 ,  - 3  < x < 3 .  1 1 1 2 1 s 
= - + -x + -x + -x + • • '  - 3  < X < 3 3 32 3 3 3• ' . 

1 - 1  -2 (b) (x - 1 )  ( 1  - 2x) = x - 1 + I - 2x (partial fraction decomposition) 
= I � x - 2C � 2J 
= 1 + x + x 2 + x' + • . . - 2( 1 + [2x] + [2x]2 + [2x]5 + · · · ) using series for 1/ ( 1  - x). First expansion holds for - 1 < x < 1 ,  second for - 1  < 2x < I ,  
- ½  <x < ½ .  So sum series has interval of conv 
-½ < x < ½ (the smaller) and answer is - 1  + ( 1  - 22)x + ( l  - 23)x 2 + (1 - 24)x 3 
+ · · · for -½ < x < ½. i .e . ,  series is I:.o ( l  - 2•+ 1 )x ". Series can also be found by multiplying series instead of adding but that method doesn't pro­duce as clear a pattern. (c) (Binomial series) ( I  + x) -6 ( - 6) ( - 7) 2 ( -6) ( - 7) (-8) , 
= I - 6x + ---"-- x + -----x 2 ! 3 !  + · · · for - l < x < l  (d) Use series for 1 /( 1 - x). 
1 /( 1 + x6) = 1 + (-x6) + ( -x6)2 + (-x6}5 + · · · for - 1  < -x 6 < 1 ,  - I < x < l .  Get I - x6 + x 1 2  - x 1 8  + · · · fo r  - 1  < x < l . 10. Method l :  /(x) = x 2e", f ' (x) = x 2e" + 2xe• (product ru l e ) ,  / " (x ) = x 2 e "  + 2xe • + 2xe • + 2 e "  = x 2 e •  + 4xe• + 2e", /(0) = 0, f ' (O) = 0, f"(O) = 2. Series begins with O + Ox + (2/2 ! )x 2, i .e . ,  0 + Ox + x 2 • Method 2: e• = 1 + x + x 2/2 ! + x '/3 !  + · · · so x 2e•  begins x 2 + x '  + · · · , actually with O + Ox + x 2• . 1 - ( l  - x 2/2! + x "/4 ! - · · · ) 1 1 . hm.-o 2 X 

= lim.-o( l /2 ! - x 2/4 ! + x 4/6! - · · ·) = ½ .  1 2 ,  ( a )  cos x = cos([x - ¼1r]  + ¼1r)  ( let u = x - ¼1r)  = cos(u + ¼1r )  = cos  u cos  ¼ 1r  - sin u s in ¼ 1r  
= ½ Y2  cos u - ½ Y2  sin u 
= ½ Y2  ( 1  - u 2/2! + u 4/4 ! - u 6/6! + • • ·) -½ Y2 (u - u '/3 ! + u "/5 ! - u 7/7 !  + · · · ) , all u ,  



SO COS X = ½ \/2  - ½ Y2 (x - ¼ 1r) -
V2 1 2 V2 I S  -- (x - 41r) + -- (x - 41r)· + 

2 · 2 !  2 · 3 !  
V2 1 4  V2 1 5  

2 • 4!  
(x - :j1T) -

2 · 5 !  
(x - :j1T) - • • • 

for all x - ¼1r, i .e . ,  for all x. 
(b) � = v'(x - 8) + 8 (now let u = x - 8) 

= 2( 1 + ¼u) 1 15 (use binomial series) 

= 2( l + ¼(¼u) + 
(¼) 

��}
) 

(¼u)2 + · · -) 

for - l < ¼u < l ,  - 8  < u < 8 
2 2 · 2  = 2 + 3 
. 

8 
(x - 8) -

32 2!  82 (x - 8)2 + 

2 · 2 · 5 2 · 2 · 5 · 8  
-- (x - 8)' - --,-----,-- (x - 8)4 + · · · 
3' 3 ! 8' 3• 41 8• 
for -8 < X - 8 < 8,  0 < X < 16 .  

13.  x 'e -•' ,:  x'( l + (-x') + i( -x 5
)

2 + t,(-x ')' + · · · )  
for  all -x', i .e. ,  for  all x so 

9/VECTORS 

Section 9.1  (page 262) 

1 .  (See fig.) 

P:(l,J,·7) 

f>ROBLH-1 I 

(a) Use (•) in Section 9. 1 .  VJ + 4 + 8 1  = \186. 
(b) U se ( * ) ,  Sect ion 9 . 1 w i th  P and (0 ,  0, 0 ) .  

V4 + 9 + 4 9  = v'62. 
(c) P is distance 7 below x, y plane; answer is 7. 
(d) P is distance 2 in front of y, z plane; answer is 2 .  
(e )  Foot of perp from P to z -axis has  coords 

(0, 0, - 7). Answer is distance between P and 
foot: \/4+9 = vTI. 
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H (x'  - x6 + x
9/2! - x 1 2/3 !  + · · · ) dx 

= � 1 ·  - � 1
1 

+ � 1
1 

4 0 7 0 2 ! . 1 0  0 

l l l l l I 
- - - - + -- - -- + -- - -- +  · · · .  

4 7 2 !  1 0  3 !  1 3  4 !  1 6  5 !  1 9  
First term less than .001 i s  1 /(5!  · 1 9) so add five terms to 
get (over) estimate. 

14. ( l  + -x 2r 1 12 = l - ½ ( -x
2) + ( - ½�t�) 

(-x
2)2 + 

b. ' )  
1 2 3 . 3 · 5 6 · · · ( mom1a series) = l + - x  + --x + --x + 
2 22 2 !  23 3 !  

3 · 5 · 7 8 "d ' fl . 
�x + · · · .  Anu I erenuate to get 

l 3 . 3 · 5 
S. - 1  - C + + s + x' + x 1 + m x - x 

2 · 3
x 

22 2 ! 5 2" 3 ! 7 
3 · 5 · 7 
--x 9 + • • • . Set x = 0 to find C ·  
24 4! 9 

0 = C + 0 + 0 + 0 + · · · , C = 0. 

(f) Foot of perp from P to y -axis has coords (0, 3, 0). 
Answer  is d is tance between P and foot : 
V4+49 = V53. 

(g) Foot of perp from (x,y, z) to x -axis is (x, 0, 0). 
Distance between P and foot is Vy' + :z:2 . 

(h) (See fig.) Foot of perp from (x,y ,  z) to z -axis 
is (0 ,  0, z ) .  Distance between P and foot is 
v?+7. 

·AXI� 

(o,o, �) 

(�,Y,1.) 

x.•AXIS 
PROBLEM / {h) 

2. AF = (-4 , 0, 3),  HB = (4 , 5 , 0), HE = (4, 5 , 3)  
3. (0, 2) 
4. (See fig.) Line is y = -}x - � and has slope -t i .e . ,  

goes over 3 ,  down 2. Arrows parallel to  line are (3 ,  - 2), 
(-3 , 2), (6, -4),  (-6 , 4),  etc. 
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PROBLEM It 
5. AB = B - A = (-3 ,  -3) 
6. head - tail = (3 ,  I ,  6), 

head = (3 , 1 , 6) + ( l , 0, 4) = (4, I , 1 0) 
7. u = (3 cos 120° , 3 sin 120°) = ( -Uv'3) 

Section 9.2 (page 269) 

1 . (a) � 
(b) fl§ - - - -
(c) &l + 91 = &l + !M = fl§ 
(d) � - CB = AB + BC = AC 
(e) 0 (not the number 0 but the vector 0) 

2 .  N eed  AB = DC so need C - D = B - A = 
(- 1 ,...::.2, - 3) , D = (5,¾ 5) - (- 1 , - 2, -ll, = (6, 7 ,.fil_. 

3. AB = ( 1 , 4, -4) ,  CD = (-2 ,  -8, 8), CD = - 2 AB so 
lines__!fe parallel. _ _ 
4. AB = (�, - 4) ,  QP = ( 1 0,y , z - 2).  Need QP a 

multiple of AB so need 1 0/3 = y/6, y = 20 and 1 0/3 = 
(z - 2)/(-4),  z = - 34/3. 
5. A, B ,  C are colline!I.,if and only if vectors AB and AC 

are parallel (see fig) . AB = ( - I ,  -6,  4) and 

! ,c. 

A Y PROBLEM 5 -
AC = (-4 ,  -3 ,  - 3).  Vectors are not multiples so not 
parallel. Points are not collinear. 

6. (See fig.) 

P A 8 C. . . . _, 

PROSLE'M 6 
PA = i'nPQ so A - P = in(Q - P ) ,  A = -rn(Q + 9P ).  
Similarly B = -ra(2Q + SP ), C = �(3Q + 7P ). 

7. (See fig.) w = -ii + 2u 
I I I 

I I I 

��---!ft���� 
I -v I I 

1
1 

/ / PROBLEM 7 

8. Method 1 :  ii + BF + CD 
= E - A + F - B + D - C 
= ½(B + C) - A + ½(A + C )  - B + ½(A + B )  - C = 0 

Method 2: ii + BF + CD 
= AA. + Bl + Bl + CF_t CA_t AD_ 
= (AB + BC + CA ) + (BE + CF + AD ) 
= o + ½BC + ½CA + ½AB = ½<BC + CA + AB > . .. .. 
= 10 = 0 
9. (a) llull = V9 + I + 25 = V35 

(b) llull = V1r2 + 11'2 + 11'2 + 11'2 + 11'2 = 11'V5 
10. u /l lull = (2/vi04, -6/vi04, s/vi04) 
1 1 . ii = -5uno.ma1izcd = - 5u /llull 
1 2, BC = 1 2BAnormalizcd = 1 2(0, - 1 /W, - 4/W), 

C - B  = (o - 1 2 -48
) 'YT7 'YT7 ' 

( 1 2  48 
) C =  1 2 - - 6 - -, YT7'  vT7 

(See fig.) 

13. !lull = v'38, so 112 1 1u11 = 2 1 1v'38 

� 
� 
PROBUM / :L  

14, Use Section 9. 1 ,  (3), with r = I to get u = (cos 8, sin 8). 
15. (See fig.) Foot of perp froiaA = (4, 5, 6) to y-axis is 
B = (0, 5, 0); u points l ike AB but has length 3 so 
U = 3.ABnormalizcd = 3(-4,  0, - 6)normalizcd 
= 3(-4/V52, 0. - 6/V52) = ( - 1 2/V52, 0, - 1 8/V52). 

ii-

X. PROBLEM IS 
!§: (See fig.) If origin is nl!med B then u points like 
AB = ( - 5 ,  - 6 ,  - 7) and l lu l l = 1 /( 2 5  + 36 + 49) = 
I /  1 10 SO U = 'rt1;ABnormali1cd 

( -5 -6 - 7 ) 
= uov'fio' uov'fio' uov'fio · 

� lb 
11. u - 2ii = 5j - 3k, 11�1 = V4 + 9 + 1 = Vl4, 
Unorm■1ilcc1 = (2/Vl4)i + (3/Vl4)j - ( l /Vl4)i 
18. Norm of r5r is r5 times the norm ofr so it is r5r = ,• . 
19. (See fig.) u /llull and ii /lliill are unit vectors in the di-



PROBLEr-1 l<f 
rections of  u and ii. They have the same length so their 
sum is the diagonal of a rhombus. On the other hand, u + ii is the diagonal of a parallelogram, not necessarily 
a rhombus. Angle bisection occurs only in the rhombus 
case. 

Section 9,3 (page 275) 

I .  u · ii = 5 + 12 - 15 = 2.  Angle is acute since u · ii > o. 
2. u · ii = l lull l lvl l cos 1 80° = 30( - 1 >  = - 3o. 

AB · AC -
3. cos A =  = = , AB = ( 1 , - 3, 9), 

IIAB II IIAC II 
- 5 1  AC = (3, - l , 5) so cos A = . r,,. . r.,. , about .904 so A is 

v 9 1  v 35 
approximately 25°. .. 
4. (a) 8 1 is determi4ed by u and i so 

U '  j U 1 cos 9 1 = 
11;11 11711 

= 
llul l · 

Similarly cos 82 = u2/llul l and cos 9, = u,/llul l , 
(b) (cos 8 1 , COS 82, COS 9,) = (u i/l lu ll , u,/l lu l l , u,/llu l l) 

(by pan (a)) = u/llull = Unormaliud• 

5. (a) Slope AB = I ,  slope CD = -J1 . Product of 
slopes is - 1 so lines are perpen icular. 

(b) � = �. 5), CD = (5 ,  - 3),  
AB • CD = 1 5  - 15 = 0 so lines are perp. 

6. You start walking in direction of vector AB = (6, 5). 
After a left tBIP you are walking in the perp direction 
i_ = ( - 5, 6). BC points like u and has leng!_h 7 so 
Bc = 1u 111u11 . c - B = < -3s/Y6T, 42/v1>1>. 

( 
35 42

) C = 8 -
Y61

, 9 +
Y61 

7. (See fig.) First line has parallel vector u = (-2 ,  7). 
Second line has parallel vector ii = ( 1 , 4), u · ii 26 cos 9 = 

llull l liill 
= 

\153 vTI
. 

M1 
/\ PROBLEM 7 

8. Let u • u be denoted by a and ii • u bJ b. To show av - bu perp to u, dot them. We have u • (av - bu) 
= a(u • ii) - b(u . u) = (u • u) (u • ii) - (ii • u) (u • u) 
= 0 so u perp to au - bv. 
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9. I I-Gul l  = 611u ll = 1 8 ,  u . 3u = 3(u . u) = 3llull2 = 27,  
llu - iill = Y(i - v) . (i - v) 
= Vi1 • i  - 2i1 • v  + v • v  = Vllilll' - 2i1 • v  + llvll' 
= V9 - 10  + 4 = v'3 
10. (a) u · ii = -33 so lu • iii = abs value of - 33 = 33 

(b) Can't take the norm of the scalar u · ii. 
(c) lliil l = V I 6  + 9 + I + 1 6  = V42 so 

llvl lu = (5Y42, 2v-i2. 3Y42, - 4Y42) 
(d) Can't divide by a vector. 
<e> l lull = \154 so 2/llull is 2/\154. 
<f> u . ii = - 33 so cu • ii>ii = 0 32,  -99, 33, - 1 32> 
(g) Can't dot the scalar u • ii with the vector ii. 

1 1 . (See figs.) 
� ... 

0rJ v" 
�� 

V 

P�OBLfM 1 1  (o. ) 
PROBLEM 1 1  ( b) 

(a) (i) Draw u and ii perp since u · ii = 0. In same 
picture can draw u + ii and u - ii. Then 
l lu + vii and l lu - iill are (lengths ol) diago­
nals of a rectangle. Diagonals of a rectangle 
have same length so l lu + vii = l lu - vii , 

(ii> llu + iill = v c: + v> . <= + v> 
= v: - : - 2: - t  + v • v 
= v: · i1 + v · v , 
llu - iii! = v"""c:----- ... t>,...·--�=-- .,...v> 
= Vi • i - 2: · v + v • v 
= Vi1 • i1 + v · v ,  
so l lu + iill = llu - vii 

(b) (i) Draw u, ii, u + ii, u - ii. Parallelogram is a 
rhombus because llul l = lliill , Diagonals of 
h b .. .. .. .. r om us are perp so u + v perp to u - v. 

(ii) I f  !lul l = l liill then (u + ii> • <u - v> 
= u · u - ii · ii = llull2 - lliil l2 = o 
so u + ii and u - ii perp. 

12. <a> <u · ii)/lliill = -7 /vff 
Cb> (ii • u)/l liill = - 11v'29 _ 

13.  With rays �. DC, and DH as ax� w':.haveLH = 
( - 2 ,  - 1 0 , 0) ,  AG = ( - 2 ,  1 0, 7) so (FH • AG )/IIAG II = 
- 96/v'i53. Length of the projection is 96/v'i53. 
14. (See figs . )  (a) Geometric method (more sensible). 

Projecting onto the line determined by 4ii is 
same as projecting on the line determined by ii ;  
answer is 6 again. 
Algebraic method (overkill). Given u · ii/lliil l = 6. 

u · 4ii 4(u · ii> u • ii  
Then 

l l4iill 
= 

4lliill 
= 

l liil l  
= 6 

by ( 1 0) ,  Section 9.3 ;  ( 1 5) Section 9.2. 

}j 1. '+v', 
\..,y,..J 
l'ROr 

PR08L£M 14- ( o.) 
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(b) Angle between ii and -ii is obtuse; component 
of u in direction of -ii (i.e. , signed projection) is 
-6. 

PRoBL£M llt (b) 
(c) If  ii is quadrupled, its projection is 4 times as 

long as before. Answer is 24. 

15. (See fig. ) p  = l lull cos 60° = 6(½) = 3 ; component ofii 
in direction of ii is - 3. 

vvJ 
p 

PRoBLEM / 5  
16. Component of w in track direction is ( w  · i)/lfill = 
6/V5 > 2. Disqualified! 
17.  ( i · ii)/lliill = 46/\/29 < 1 0. Not enough force. 
18. Component is max in direction of u itself. Max value 
is \\u\\ . .. .. 

V • q ,. 4 � � 20� 8 � 19. -:.---:. q = 29(5 1  - 2J ) = 29 1 - 29} 
q • q 

20. p since it has the longer projection onto u. 

Section 9.4 (page 281)  

1 .  u x ii i s  into the page, p x q i s  in plane of  the page 
pointing !ast, s x) = 0. 
2. u = 0 or ii = 0 or u and ii are nonzero parallel perp 

vectors. The latter is impossible so either ii = 0 or ii = 0. 
3. ii and ,iinormalized are parallel; cross product of parallel 

vectors is 0. .. .. 
4. If ii x x = b then b is perp to ii and to x But if 

ii · b * 0 then b is not perp to ii. So there is no such x. 
5. (a) (ii · ii) x w is scalar x vector; makes no sense. 

ii . (ii X w) is vector . vector; OK. 
(b) ii X ii is perp to u tand to ii) so ii · (v X u) = 0 

(the number 0, not 0). 

(c) ii x ii is O so ii · (ii x ii) = ii · 0 = 0. 
6. Method I: (u + ii) x (ii + ii) 
= u  X u  + ii  x ii  + ii  X u  + u  x ii  
= 0 + 0 + - (u X ii) + U X ii = 0. 

Method 2: t,lie cross product of a vector, namely u + ii, 
with itself is 0. 
7. u x ii and p x q are pei:p to the floors of the,.build­

ing so they are parallel . So (u x ii) x ({, x q ) = 0. 
8. 3ii x (4ii + sii> = 1 2(ii x ii> + 1 5(u x ii> 

= o + 1 5(ii x ii> = 1 5 (u x ii> 
9. (See fig.) ii x w is perp to ii, w plane ; u x (ii x w) is 

perp to ii x w (and to ii). All perps to ii x w land back 
in the ii. UJ plane. So u X (ii X w) is in the plane. 

PROBLE:.M q 
1 O. (a) (- 1 1 , - 12 ,  27) .. .. .. 

(b) - 1 7 i  + 1 3j + k 
(c) (0, 0, 2 1 )  
(d) (4, -2 ,  1 1 ) 

1 1 , w X ii = ( - 1 3, 1 1 , - 3) ,  
ii x w = -(w x ii> =  ( 1 3, - 1 1 , 3> 

u · ii  5 n. cos e = 
l liill 11�11 

= 
Y14 v'3o . 

. \Iii X iil l 1 1(9, -5 ,  1 7 )\\ V395 sm 8 = 
11;\l l liill 

= 
11;i1 \Iii\\ Y14 v'3o ' 

2 • 2 25 395 cos 8 + sm 8 = 
( 1 4) (30) + ( 1 4) (30) 

= l 
13. (a) �nyth,ingJhat d,.ots w�h ii to give O is OK, e.g., 

i + 2j , 6i + 3j - 3k,  etc. 
(b) Only ii x ii =  ( - 3 , 27 , 1 1 ) and multiples of 

ii x ii will do. 
14.  AB =  (4 , - 6, 3 ) ,  AC = ( - 1 , - 6 , 7 ) ,  AB x AC = 
(-24,  - 3 1 ,  - 30), parallelogram area = IIAB x AC\I, 
triangle area = ½\,'(24)2 + (3 1 )2 + (30)2• 

Section 9.5 (page 284) 

1 .  ( l , 2, 3) · ( 1 , 4, - 3) = 0 
2, i.: v �w = _:)6,  volume is 1 6. 
3, AB · AC x AD = ( l , 2 , 3) · ( 1 , - 1 , 2) x ( 1 , -4 , - 3) 

= ( l ,  2, 3) • ( 1 1 ,  5, -3)  = 1 2  ,;, O; vectors not coplanar. 
So points A, B, C, D not coplanar (sec fig.). 



PROBLEM 3 
4. v x w points down, makes an obtuse angle with u ;  u · v x w is negative. 
5. If vectors are placed with a common initial point, 

they are coplanar. So u · v x w = 0 
6. (a) -5 (cyclic perm) 

(b) 5 (noncyclic perm) 
(c) 5 
(d) 60(9 • p X r) = -300 
(e) Method 1: q, p, q are coplanar (since there are 

only two distinct vectors) so scalar triple product 
is o. 
Method 2: q · p x q = p • q x q (cyclic perm) 
= ;  · o ... o. 
Method J: p x q is perp to q so dot product q • (p X q )  is 0. 

(f) Method l :  same as (e). .. 
Method 2: q • r X r = q · 0 = 0. 

Section 9.6 (page 289) 

I .  (See figs.) 
(a) " = , ' + 5 

foWo"M
�
S � I  

TO TO P  

t=- 1  

l'ROBLOII I (�) 
(b) " = ,

2 + 5 

Sftlllll< Pllrll 
AS (�) 

��,-,,-+.t.o-,0 __ _ 

DIRU.TIO� 

PROBLEM I (b) 
(c) y = 4 - 2(x - 2) = 8 - 2x 

PROBLEM ! (,) 
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(d) y = 8 - 2x again, but panicle travels on only 
half the line and then doubles back. 

� 
PROBLEM I �) 

(e) y = 2,c. Graph of , = 2x is a line but particle 
travels on only part of the line. 

- 100 
- 1  

0 
1 0  

etc. 

, <, > 
(e - 100, 2e - 100) 
(, - • , 2, - • ) 
( 1 ,  2) 
(e 'o, 2e 10) 

PROBLfM I (e) 

z. (See figs.) (a) circle, radius 4, one rev per 6,r sec, eel 

rt\� 
'P° 
PROBLEM 1(o.) 

(b) "Circle with radius 1 /f', a spiral 

lim (cos t)/t == 1/0+ = 00, ,...o+ 
lim (sin t )/t = 0/0 = lim (cos t )/ l (L'H6pital) ,--o+ ,-o+ = l .  
So at time t = 0, particle comes in from (00, 1 )  
and at time t = ,r/2 hits the , -axis and starts 
spiraling in toward the origin. 

P�BLEM l(b) 
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(c) Particle circles and rises since z = I. 

� 
-x.. PROBLEM l(c) 

3. (a) One possibility is x = 3 sin I, y = 3 cos t. An­
other is x = 3 cos t, y = - 3 sin t. 

(b) x = 2 + 3 cos I, y = 1 + 3 sin I 
(c) x = 3 cos 211'1, y = 3 sin 211'1 

4. (a) If x = -3 then 2 - I = - 3, t = 5 but t = 5 
does not produce z = 4; point is not on the path . 

(b) If x = 3 then 2 - I = 3, I = - 1 . If I = - I then 
y = 4,  z = -6; point is on the path, reached at 
time t = - l . 

5. The particles travel on the same route but second 
particle gets everywhere 5 seconds later than the first. 
For example at time I = 0, first particle is at the origin 
but second particle doesn't reach the origin until I = 5. 
6. Distance from particle to origin is always 7. (a) Trav­

els on circle with center at origin , radius 7. (b) Travels on 
surface of a .. spher.e centere� at origin ,  radius 7. 

7. ii = 3t 2 i + 2j - sin t k 
8. ii = ( - t  sin I + cos t )i + (I cos 1 .. + sin t )j (prod­

uct rule) . At time I = 11', ii = - i  - 1Tj . Path is a "circle 
with radius I " ,  i .e . ,  a spiral. (See fig. ) 

PROBU/JI 8 
9. ii = -6 sin I i  + 6 cos I J 

(a) l liil l = \!36 sin21 + 36 cos21 
= V36(sin21 + cos21 )  = 6. Circle has radius 6, 
circum 1 2 11'. A speed of one rev per 2'11" seconds 
is 1 211'  rset per 211' sec or 6 ft/sec, same as l liill -

(bl ii = - 6 i  which does point eel. (See fig.) 

+ 
PROBLEM q(b) 

10. ii = ( I ,  21 ) ;  speed is lliill = �- As t goes from 
-co to 0, speed decreases ; as I goes from O to :ic, speed 
increases. So particle decelerates, then accelerates. 

1 1 . Particle has polar coords r = I ,  (J = t 2 • Moves on 
circle with radius I ;  ii = ( - 21 sin 1 2 , 21 cos t 2), l liil l  = 
Y4t2([sin 12]2 + cos 12]2) = \/.ii' =  2ltl . (Note that vi' 
is lt l , not t.) As t goes from - oo  to 0, speed 2lt l  decreases 
(from oo to 0). As t goes from O to oo, speed increases 
(from O to .. oo). .. .. 
12. ii = 3 i  - 2j + 4k. 

(a) ii is constant so particle has constant direction; 
path is a line. 

(b) lliill = V29. 
(c) Want to change (3 ,  -2 ,  4) to keep same direction 

but � norm 2. Use ii = 2(3 ,  - 2, 4)normal;zc,d = 
(6/'\/29, -4/V29, 8/V29); r = 

(- 1 + _
6
_ ,)7 + ( 1  - _4_1)j + _s_,k. V29 V29 V29 

13. (a) Panicle sits at the origin and refuses to move. 
(b) Zero velocity, zero speed. Panicle doesn't move 

(but it isn't necessarily sitting at the origin) .  
14.  (a) Antidiff to get x = 1 2 + C . ,  y = ¾t ' + C2, z = 

61 + C,. Need x = I ,  y = 4, z = 6 when I = 3 
50 need I = 9 + C. ,  C 1 = -8.  Similarly C2 = 
-4 1 c, = - 1 2 .  So 
; = 'c, 2 - s>7 + ct, ' - 4 1 >i + (61 - 1 2>i 

(b) If I = 2 then ii = 4i + 20j + 6k. Unit tangent . .. 
IS Vnormalized 

·= C4/v'452>7 + c20/V452)j + (6/v'452)i. 
15. (a) (½x)2 + (½y)2 = cos21 + sin2t = I 50 path is along 

ellipse x 2/9 + y 2/4 = I .  
(b) ii =  ( - 3  sin t, 2 cos t) ,  

speed = lliil l= V,..9-s"'"'in""2'""
t -+-4-co_s.,...21 

= V9 sin2t + 4( 1 - sin2t )  
= V5 sin21 + 4 .  Speed i s  min when sin2t = 0, 
t = 0, 11', 211', etc. Min value of speed is 2. Speed 
is max when sin21 = I ,  t = 11'/2, 311'/2, etc. Max 
value of speed is 3 .  

Section 9.7 (page 293) 

I. xy = I ;  path is a hyperbola (see fig. ) 

PRo&.tM I 



V = 7 - ( 1/t')i, ii = (2/t'U· 
1f t = - 1  then , = -7 - j , v =i - j, ii = -2j, 
a_ = (a • v)/llvll = 2/V2 • V2. Particle is speeding up 
by V2 meten/sec per sec; llall ., 2 so if mass is III then 2m 
pounds of force act (in direction of ii, i.e., down). 
2. ry -= l but only one branch is travened since :,c > 0, 

y > o (see fig.) ; v = e'i - e -•j, a = e 'i + e -•j. 
If I = - 1  .. thenJ = ( 1/e)i + ej, v = ( l/e)i - e], 
ii = ( l/e) i + ej , a..., is negative at I = - 1  since 
ii · v = l/e 2 - e 1 < O; particle is slowing down. 

PR08L£M 1 
3. -;• = ii = j/f!: , 
.. .. .. (L) ( ' ) .. .. 
T X r "  = T X 

m = ; (r X /). 

r points from the origin to the particle. By hypothesis, j 
points from the particle toward the origin (see fig.). So J 
and r a!e parallel (opposite directions) and their cross 
prod is 0. 

� 
0111611" 

PROBLEM 3 
4. f = -mg] and j = ma so ii = -g], i.e . ,  x" = 0, 

,-• = -g. A�tidiff_!o get x '  .. Ci . y '  = -gt +  C2. lf t  = 0 
then v = 4 i  + 2j so C1 "' 4, C2 = 2. Antidiff again to 
get x = 41 + Ki ,  y = -tgt 2 + 2t + K2• If I = 0 then 
x = 1, y = 2 so need K1 = l ,  K, = 2. So 
r = (41 + l )i + (-½g1 2 + 21 + 2)]. 
5. (a) ds/dJ. is the rate of change of distance traveled 

w.r.t. time so it is the car's speed, i.e. , ds/dJ. = llvll-
d 2s d(ds/dJ. ) d(speed) 
dJ.2 = -dJ.- = dt = rate of change of 

speed = car's acc. So d 2s /dt 2 = a,. •. 
dr dr/dt V .. 

(b) ds = ds/dt = llvll = Vnormahzed 

= unit tangent vector 
6. (al v = (-5  sin 1, 5 cos n. llvll = 

V25 sin21 + 25 cos21 = V-2-5(-si-n-•,-+-co-s-•t) = 5 
(b) ii == (-5 cos 1, -5  sin I), 

a,.. = 0 because ii • i, = 0. 
(c) r = ( - 5  cos I, -5 sin t )  is radial direction ; 

a.ac1 = comp in radial direction 
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= ca · -r)/I1-rll = ¼(25 cos21 + 25 sin21 > = 5 ;  
llvll1/r = (5)'/5 = 5 also. 

7. (a) Force mii acting on particle never makes it 
change direction so jj parallel to v. 

(b) No change in speed, so a,." = 0 so ii perp to v. 
8. (a) v = (-St' , t'  + 1),  jj "' (-61, 311). Particle is at 

point (3, 5/4), moving in direction of 
v = -Si + 2j at speed llvll • vis ft/sec. 
ii "" -6i + sj and (ii • v)/1� "' 24/'Vis; 
speeding up by 24/v'is ft/se�r sec. If mass is 
m then amount of force is mlliill = m V45 lbs in 
direction of ii. 

Chapter 9 Review Problems (page 294) 

1. (a) -8 + 15 - 2 = 5 
(b) Vl4 
(c) ( - 1 1 , 0, 22) 

U • V 5 
(dl llull l lvll 

= 
Vl4 V45  

<el <ii • vl/llvll = 5/vis .. ..  
<fl �

·
� ii  = tsv = ½v = ( -U. -i> 

V • V 

<g> v/llvll = <-4/v'.45>7 + (5/v'i5>] - c21vis>°i 
Qi2 a ii/llull= < 1 2/ffe>7 + o s/Vi4>J - (6/Vl4>°i 

2. AB = (2, -3 ,  1 ) ,  AC = (4 ,  -6, 3). Vectors are not 
multiples, so not parallel ; C is not on the line (see fig.). 

3. (a) v x u = -(u x v) = j - 5h 
<b> llv x ull = 11u x vii = 6 

4. (a) Meaningless to even write (u · v) · w since scalar u · v can't dot vector w. 
(b) False. Make up almost a'!Y vec1ors f, v, w to get 

a counterexample; e.g., i x ( i x j ) = 
i x k = -j but (i x i )  x j = 0 x j = O. 

5. PQ = (2 , 4, z), AB =  (6 , -2 , 2).  Need PQ · AB = 0 
so 12 - 8 + 2z = 0, z = - 2 .  

6 .  u x v = (o, o, I :: :: I ) .  Area of  parallelogram is 

liu X vii which in this case is absolute value of third com• 

ponent lu 1 u2 1 . 
Vi V2 

7. (a) True by Pythagorean theorem (see fig.) 
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��v 
PROBLfM 7 {a. ) 

(b) lf u . ii =  0 then l lu + iil l2 = <u + ii> . <u + ii> = u . u + 2u . ii + ii . ii 
= l lul l2 + o + l lv/12 = llull2 + l lv/12• 

8. u x ii is perp to u and to ii by definition of cross 
frod!1�t ; l lu � vii = l lul l l liil l sin 90° = ( 1 ) ( 1 ) ( 1 )  = I so 
u X v 1s a umt vector 
9. (See fig.) l lu + iill :s l lul l + l liil l because third side of a 

trian�le is shorter than sum of other sides. In special case 
that u and ii point the same way then l lu + vii equals 
l lull + l liil l . 

IO. (a) l lu + iill2 + llu - iill2 
= <u + ii> . <u + ii> + <u - ii> . <u - ii> 
= u . u + 2u . ii + ii • ii + u . u - 2u . ii + ii . ii 
= 2u . u + 2ii . ii = 2llul l2 + 211v112 

(b) Sum of squares of four sides of a parallelogram 
equals sum of squares of the diagonals (see fig.) .  

:/>;11., 

PeoBLEM IO (b )  
1 1. Component of  wind in  plane direction is 
(u · ii)/lliil l = -8/\/42. So it is a head wind slowing the 
plane down by 8/Y-42 mph per hour. 
1%. l lu x iii! is the area of the parallelogram determined 
by u and ii. That area will be the product of the two sides 
if and only if u and ii are perp. Alternatively llu x iill = 

l lul l l liill sin 9 so l lu X iill = l lul l l liil l if and only if sin 9 = I , 
9 = 90°, u perp to ii. 
13. Spirals in x direction (see fig.). 

PROSI..E"M 1 3  
ii = (-t sin t + cos t )i + cos t ], 
ii = (-t  cos t - sin t :;- sin t) i :;- sin t j 
= (-t  cos t - 2 sin t ) i  - sin t j . 
1f t = 1r then r = - 1r i, ii = -i - j, ii  = 1r i, 
speed = l liiJI = V2, a,.." = (ii · ii)/lliill = - ,r  /V2; slowing 
down by 1r/V2 meters/sec per sec. 
14. (a) ii perp to r so particle circles the origin. 

(See fig. )  

� 
PROBLEM 14-(a.) 

(b) ii parallel to r. Particle moves on a line through the 
origin. (See fig.) 

PROBLEM 14- (b) 

(c) ii parallel to ii. Force never makes particle change 
direction. Path is a line. 

(d) ii perp to ii so a,." = 0. Speed never changes (shape 
of path unknown). 
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1 0/ TOPICS IN  THREE-DIMENSIONAL ANALYTIC 
GEOMETRY 

Section 10.1 (page 297) 

1 .  Distance from center to origin is v'so. Equation is 
(x - 4)2 + (y + 3)2 + (z - 5)2 = 50. 
z. x 2 + y 1 + z 2 + z + ¼ = ¼, x 2 + y 2 + (z + ½)2 = ¼. 

Sphere, center (0, 0, -½), radius ½. 
5. Set x = 0, y = 0, z = 0 in left side. Result is >2; 

origin is outside. Eq�ivalently, distance from origin to 
center (-2, 3, 2) is vi7, larger than the radius V2; ori• 
gin is outside. 
4. Distance from (3, 5, 6) to x, l plane is z -coordinate 6. 

Equation is (x - 3)2 + (y - 5) + (z - 6)2 = 36. 

Section 10.2 (page SOI) 

1 .  (a) Normal is  (5, 3, I ) .  Plane is 
5(x - 5) + 3(y - 5) + z - 4 = 0, 
5x + 3y + z = 44. 

(b) Intercepts are a = 2 ,  b = 5, c = 7. Plane is 
x/2 + y/5 + z/7 = I .  

(c) Perpendicular to x -axis means parallel to y, z 
plane; equation is x = 3. 

(d) z = 5 
(e) Normal is 2i + 9] - 6i. Plane is 

2 ( x  - 3 )  + 9 ( y  - ,r )  - 6 ( z  - 7 )  = 0 ,  
2x + 9y - 6z = 9,r - 36. 

_!: No.!!!1al to plane ABC is 
AB X AC = ( 1 , -4, 2) X (3, 1 , 5) = (-22, 1 , 1 3). 
Plane is  - 2 2 (x - 1 )  + (y - 3 ) + 1 3 ( z  + 2) = 0 ,  
-22x + y + 1 3z = -45. Test point D i n  the equation; 
-22( 1 )  + 2 + 1 3(3) = ? -45, NO. Points not coplanar. 
!I. Write equation as 3x - 4y + 2z - 6 = 0. Distance 

. 1 3(2) - 4(3) + 2(-4) - 61 20 u :....;...;...:-;;.:==:;::;::===::'--___. = --
V9 + 16 + 4 v'29' 

4. Write equation as 3 x  - y + 4 = 0 .  Distance is 
13(0) - 0 + 41 4 

V9+1 = vw· 
5. Radius of sphere is distance from center to plane, 

12( 1 )  + 3 - (- 1 )  - 4 1  2 . 
V 

= . � · Sphere 1s 
4 + 1 + I v 6 

(x - 1 )2 + (y - 3)2 + (z + 1 )2 = i. 

6. Planes have common normal n = 2 i - ] + 3i so 
they are parallel. (See fig.) To find distance between 
them pick any point in one plane and find distance from 
it to other plane. Point (0, 0, 2) is in first plane. Its dis-

. 12(0) - 0 + 3(2) - Bl 2 tance to second plane 1s V = • r.-: · 4 + I + 9 v 14 

PROBLEM 6 
7. Plane is !.. + 1.. + � - I = 0 so 

a b c 
10 + 0 + 0 - I I . D = ✓ (; r 

+ 
(Ir 

+ ( 
+ r by distance formula. 

Square both sides and rearrange to get 
2 I I I 1 1 D = 1 I 1 ' a 1 + b2 + ? = D2 • 

, + 
-b, 

+ 2 a C - _ 
8. A normal to the plane is (see fig.) AB x CD = 

( 1 ,  1 ,  - 1 ) x (3, 1 3 , 3) = ( 16, -6, 1 0). Use point A (or B ) 
to get equation 16(x + 1 )  - 6(y  - 2) + I O(z - 4) = 0, 
16x - 6y + lOz = 12 .  

� 

/✓.- -r I 
IAIXil 

PROBLE M  8 

Section 1 O.S (page 306) 

I. (a) Line has same parallel vector as given line, 
namely ( 1 ,  - 2 ,  5). Equations are x = I + t ,  
y = 2 - 21, z = 3 + St. 

(b) Plane's normal is (3, -4, 6) .  This is parallel to 
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l i n e  so l i n e  is x = I +  3 t ,  y = 4 - 4 t ,
z = 5 + 6t.

(c) Method 1: Parallel vector is i = ( I , 0, 0); line is
X = 2 + t, J = 3 ,  Z = 4.
Method 2: Points on the line satisfy y = 3, z = 4,
x = anything; equations are x = t, y = 3,  z = 4.

(d) Line is parallel to the y -axis. Has x = 2, z = 4,
y = a n y t h i n g ;  equat ions  are x = 2, y = t 
(y = 3 + t is OK t(lO), � = 4 . •

(e) Parallel vector is 7 i - j + 1 6k. Line is x = 71,
y = -t, z = 1 61.

(f) (See fig.) Planes have normals u = (2, - 1 , 1 ) , v = (3, l ,  4 ) ; u x v = ( -5,  -5 ,  5) is parallel to 
the line. With the simpler parallel ( l ,  l ,  - 1 ) ,  the 
line is x = l + I, y = 5 + t, z = 7 - I. 

�lL 

PRO BLEM I ( f) 
2. Parallel vector is AB = ( 1 4 , -5) .  With point A, get

x = - l + 1 41, y = 3 - 51. (With B get x = 1 3  + 1 4t,
y = -2 - 5t.) 

3. (a) y = 0 (b) x = 0, y = 0, z = I
4. (See fig.) Line contains point P = (6, 2, 7), has paral­

lel vector u = (4, - 1 , 8). So u  and AP = (3, 3, 5) are both
parallel to plane and u x AP = (-29, 4,  15 )  is normal to 
plane. Plane is - 29(x - 3) + 4(y + l )  + 1 5(z - 2) = 0,
- 29x + 4y + 1 5 z  = - 6 1 .

PROBl..£M 4-
5. (a) Point is t = 2 on first line and t = - l on second

line so it's on both. Lines aren't the same since 
their  para l le l  vectors u = ( I ,  - 4 ,  5 ) ,  v = 
(2, - 1 , -6) are not parallel to each other. 

(b) (See fig.) Normal to plane is u x v = (29, 16 ,  7) .  
With points (2,  3 ,  6) from first  line, plane is  
2 9 (x - 2) + l 6 ( y - 3) + 7 ( z - 6) = 0 ,
29x + 16y + 7z = 148. 

� f<)o/
PROBLEM §(6) 

(c) u x ii is parallel to line; line is x = 4 + 291,
y = - 5  + 1 6t, z = 16  + 7t.

6. Set x = 0 to get t = 2. Then y = 1 1 ,  z = - l so in­
tersection is (0, 1 1 , - 1  ) .
7. (See fig.) Common parallel vector u = (-3 ,  l ,  2 ) ;

lines are parallel. Not  same line since A = (2,  5 ,  4)  is
on first line but not on second (it takes t = - 3  to
get x = 2 but t = - 3  does not produce y = 5, z = 4) .
To get plane's equation, need a normal ._!oint B = 

(-7, 6, 0) and A = (2, 5, 4) are in plane so AB is paral­
le I to p l a n e . N o r m a l  is ii x AB =  ( - 3 , 1 , 2 ) x
( - 9 ,  l , - 4 )  = ( - 6 ,  - 3 0 , 6 ) .  U se s i m p l e r  ·n ormal
( I ,  5, - 1 ) and point A to  get
x - 2 + 5(y  - 5) - (z - 4) = 0, x + 5y - z = 23 .

PROBLEM 7 
8. AB = (3 ,  2 ,  2 ) .  Line AB is x = l + 3 t ,  y = 3 +

2t, z = - 2  + 2t. Point C isn't on the line since to get
x = 3 we need t = J but t = J doesn't give y = 3, z = 5 .

9. By (•), line's parallel vector (a, b, c) and the plane's
normal vector (A , B, C) are perp, so line and plane are
parallel. By ( .. ), point (xo,yo, Zo), which we know is on
line, satisfies equation of plane so line and plane have
(xo,yo, z0) in common. All in all, the line must lie in
the plane. 
10. (a) Parallel vectors are ( -6, l ,  3), ( 1 2, -2 ,  -6). They

are parallel to each other. Point ( 1 ,  2, 4) is on first 
line (when t = 0) but not on second (need I = ½
to get x = l but t = ½ doesn't give z = 4) .  Lines
are parallel (but different) . 

(b) Parallels are ( - I ,  2, - 3) , ( I ,  -4 ,  6) ; not parallel
to each other. Lines are not parallel or coin­
c ide n t .  Solve 2 - t = s ,  3 + 2 1  = 5 - 4s ,
5 - 31 = - l + 6s. Solution to first two equa­
tions is s = - l ,  I = 3 which doesn't satisfy third.
Lines are skew.

(c) Parallel vectors are (- l ,  I ,  2), ( - 1 ,  2,  l ) ; not par­
allel to each other. Solve 2 - t = 3 - s, 3 + I =
4 + 2s, 5 + 2t = l + s . Solution to first two
equations is s = -2 ,  t = - 3 .  Works in third 
equation too. Lines intersect, at point x = 5, 
y = 0, z = - 1 . 

(d) Parallels are (3 , - Ll ) , ( - 3 , 1 , - 1 ) which are
parallel. Point (2 ,  5, 3) is on first line (when
t = 0) and also on second (when t = -2). Lines
are coincident. 

1 1 . (a) 2 ( 1  + 2 t )  + 6(3 - t )  + 2 + 2t = 8, 0 = - 1 4 .
N o  solutions. Line is parallel to but not con­
tained in plane. 

(b) 2( 1 + 2 1 )  + 6(3 - I )  + 2 + 2t = 22,  0 = 0. All
values of t are solutions. Line lies in plane.

12. Normals are u = (2 ,  I ,  3), ii = ( I ,  - 1 , I ) .  Parallel to
line is ii X v = (4, l, - 3) .  To get point, set z = 0 and



solve 2x + , = 5, x - , = 4. Get x = 3, , = - 1 . Point 
on line is (3, - 1 , 0). Line is x = 3 + 4t, , = - 1  + t, 
z = -3t. 
U. Parallel to l ine is u = ( 1 ,  2 ,  8) x ( 1 ,  - 1 . 2 )  = 
( 1 2,  6, -3). Normal to 3rd plane is ii = (3, -2,  8). Since 
ii · ii = 0, vecton are perpendicular so line is parallel to 
plane. To show line is not in plane, find a point on the 
line. Set z = 0 and solve x + 2y - 20 • 0, x - , -
8 = 0 to get x = 12 ,  y = 4. So ( 12,  4, 0) is on line. But it 
doesn't satisfy equation of 3rd plane (36 - 8 + 0 ¢ 5). 
So line is parallel to but not contained in plane. 
14, (See fig.) Plane has normal ii = (2, -3,  1 ) . So line has 
parallel ii. Line is x = - l + 2t, y = l - 3t, z = l + t. 
P is intenection of line and plane. Solve 
2(- 1 + 2t)  - 3( 1 - St) + 1 + t + l = 0, get t = fi, 
P = (- 1 ,  + t.. 1 - ,\, l + fi) = (-�.i\.t¾). 

45 
PR0BW•1 1 4-

15. (See fig.) Parallel to line is ii = ( 1 ,  - 1 ,  4). So ii is 
plane's normal. Plane is x - 4 - <, + 1) + 4(z - 4) = 0, 
x - 1 + 4z = 2 1 ;  P is intersection of plane with line L. 
So lve  1 + t - (2 - t )  + 4 ( 3  + 4 t )  .. 2 1 ;  t = \ . 
P = ( l  + 1. 2 - l, 3  + f) = (.il, .1/,f). Distance from Q 
to line L is PQ = 'V(4 - .11)1 + (- 1 - .1/)1 + (4 - 3J.)2 • 

? 
PRO&LEM 1 5  

16. Parallels are ii = (- 1 ,  1 , 2), ii = (- 1 ,  2 ,  7); not paral­
lel . Solve 2 - t = 3 - s ,  3 + t = 4 + 2s ,  5 + 2t = 
1 + 7s. Solution to fint two equations is s = -2, t = -3 ;  
doesn't work in third. Lines skew. Consider plane con­
taining second line and parallel to fint. (See fig.) Normal 
is u x v =  ( 3 , 5 , - 1 ) . Po int  is (3 , 4 , 1 ) .  P lane  i s  
3(x - 3) + 5(y - 4)  - (z  - 1 )  = 0, 3x + 5, - z = 28. 
Distance between lines is distance from any point on first 

- - - - - - - /  
/ A j/ I '-�t � _,..E 

PROSJ.l:M 1 6  
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line to the plane. Use A = (2, 3, 5). Distance to plane is 
13(2) + 5(3) - 5 - 281 1 2  

V9 + 2 5  + 1 
= «s· 

17. (a) (See fig.) AB = (- 1 , 4, -2) ,  CD = (3, - 1 2, 6) ;  
parallel. But AB and AC = ( 1 , 5 , 4) are not 
parallel. Lines parallel (but not coincident). 

�/ 
PROBLEM 17(0.) 

(b) (See fig.) Plane has normal AB ; equation is 
- ( x - 3 )  + 4 ( ,  - 0 )  - 2 ( z - 2 )  = 0 ,  
-x + 4y - 2z = -7. Find point of intersection 
P of line CD and plane. Line CD is x = 4 - t, 
, = 5 + 4t, z = 6 - 2t. Solve 
- ( 4 - t )  + 4 ( 5  + 4 t )  - 2 ( 6 - 2 t )  = - 7 ; 
t = -#. 
P = (4 + #, 5  - it, 6 + ¥.> = ctU½. •:.8 ). 
Distance between the parallel lines is 
A1' = V(3 - ff>2 + <¥i>2 + (2 - W->2 -

D 

I!, 

p 

PROSL£M l 7 (b) 

Section 10.4 (page 3 12) 

1. 

PROBLEM 
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2. 

3. 

4. 

5. 

6. 

7. 

PRO BLfM 7-.. 

1'­
,, PLANE" CYLIND£R 

(AND A MIN PLAJ,/E 
SiNC.£ ff IS Of 
Tlll. FORM 

(}.�• P'-j • C:l. t�=O) 

PROBLEM 3 

1 
X PROBL�M 4-

>01-IP 
'Z C')'WNDER 

y 

:x. PRDSLfM 5 

�y 
X 

PR08LEM 6 
l 

� 

X P�0BLEM 7 

8. l 

"')(. PWBLEM 8 

9. 

y 

10. 

c;B-J 
PROBLEM /0 

I I . 

?( 
1 1  

12 .  l 

'j 

X PROBLEM 1 2  

13. 

ti 
?<. PR08,LEM /3 



14. 

15. 

t-lAL.f OF�NE � .,,.� . ..,., .. ,/ 
(TltE tfMI WHfRE 

'j i. � O) 

PROBLE"M 14-

16. Hyperbolic paraboloid, saddle shaped; hard to draw. 
17. Need o = b to get circles rather than ellipses. If 
z = 6 get x 1/o1 + y1/o 1 = 56, x 1 + y 1 = S6o 1 • Need 
36o2 = 9, o = ½, equation is 4x1 + 4y 1 = z 1 • 

Section 10.5 (page 3 17) 

1. (a) (See fig.) Point is in y, z plane; 8 = 90°. Distance 
to z -axis is 2 so r = 2. Given that z = S. 

(b) (See fig.) Distance to origin is 5 so p =  5. Point 
is in x, y plane so 4> = 90" i Point is around 90" so 
8 = 90". 

h\. 
frY 

J( PR06L£M I ( b) 

z. (See figs.) 
(a) z = 5, r = v'9"+4 = vTI, tan 8 = J; 8 is in 

quad I, approx 54° 
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*' 
PROBLEM 2 (o.) 

(b) z = 5, r = vTI, tan 8 = =f = f; 8 is in 
quad Ill ,  approx 2 14° 

� 

PROBLEM 1 (b) 

S. (a) X = 2 COS 1 50° = 2(-½VS) = -VS, 
y = 2 sin 1 50" = 2(½) = l , z = 7 

(b) x = 2 sin so• cos 1 20· = 2(½) (-½) = -½, y = 
2 sin so• sin 1 20" = ½\/s, z = 2 cos 30" = VS 

4. (See figs.) 
(a) Region between two cylindrical surfaces plus the 

surfaces themselves. 
i! 

PROBLEM 4-(o.) 
(b) Circle of intersection of plane z = 2 and 

cylinder r = 3. 

'](.. 
PROBLEM lt-(b) 

(c) Ray of intersection of half plane 8 = ,,,. /S and 
plane z = 7. 
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(d) Line of intersection of cylinder r = 3 and halfplane 8 = 1r /3.

-,... PROSLtM 4(d) 5. ( a )  (See  fig . )  C i r cu l a r  co n e .  I n  c y l i nd r i ca lc o o r d i n a t e s ,  r 2 = 4 z 2 • I n  s p h e r i c a l ,  p2 sin2� (cos28 + sin28) = 4p 2 cos2�. tan2
� = 4, tan � = ±2, equ is � = 63° or 1 1 7° (approx). Can see this geometrically since circular cone(s) shou ld be descr ibed en t i re l y  in terms  of  cone angle(s). 

PR.08LEM 6"(o.) (b) Sphere. I n  cylindrical, r2 + z 2 = 1 0. I n  spheri­cal , p = v'w.6. (a) x, y plane is z = 0, z -axis is r = 0.(b) x, y plane is � = 900, z -axis is � = 0° or 1 80° .7. (a) Vx2 + y• + z2 in rect, p in spherical ; convertthe rect answer  u s ing  r 2 = x 1 + y 2 to get v?+'? in cyl (can also see this in triangle ABP in Fig. 5 where hypot AP is v?+'?). (b) r in cy l ,  convert r to get � in rect. Usetriangle ABP in Fig. 5 to convert r to p sin � inspherical.
Chapter 10 Review Problems (page 317) I . L 1 has parallel u = (- 1 ,  1 , 3) ;L2 has parallel v = ( 2 ,  - 1 , l ) .(a) X = 2 - t ,  J = 3 + t ,  % = -3  + 3t (b) u x v = (4, 7, - 1 ) is parallel to l ine. Eqs are

X = 2 + 4t, J = 3 + 7t, Z = - 3  - t.(c) Plane has normal u ;  Equation is - (x - 2) + y - 3 + 3(z + 3) = O,
-x + y + 3z = -8.

(d) u X v = (4, 7, - 1 )  is normal to plane. Equationi s  4 ( x  - 2 )  + 7 ( y  - 3 )  - ( z  + 3 )  = 0 ,4x + 7y - z = 32.2 . (a) I + 5 (3  + 21 ) - (2  - I) = l , I = - l .  l n ter­section is x = - 1 , y  = l , z  = 3.(b) Parallels are ( l ,  -2 , 3) and ( - 1 ,  I ,  - 2) ,  not mul­tiples so l ines not parallel. Solve 2 + I = 2 - s,1 - 2t = 3 + s ,  3 + 31 = l - 2s . Sol to firsttwo eqs is t = -2 ,  s = 2. Satisfies third equ.Lines intersect at x = 0, y = 5 ,  z = -3.(c) Vector parallel to l ine is (3 ,  - 1 ,  I )  x ( l ,  l ,  -6)
= (5 ,  1 9 , 4). To get point, set z = 0 and solve3x - y = 5, x + y = 3, get x = 2, y = l .  Line is_ x = 2 + 5t, y = l + 1 9t, z = 41. S. AB = (-3 ,  -4 ,  - 4) .  Line is x = 9 - 3t, y = 8 - 41,z = 7 - 4t. 4 15(0) + 2(0) - 6(0) - SI 

= 
_s_• V25 + 4 + 36 v'65 5. !

PROBLEM S'(c.) 
6. (- 1 ,  1 ,  V3) satisfies sphere's equ so is on sphere. (Seefig.) Plane has normal vector (- 1 , I, V3),j>asses through(- l , l , V3); equ is - (x + l ) + y - l + Y3 (z - V3) = 0, 

-x + y + V3 z  = 5 .

PR.OSLEM 6 



7. �e fig.) Point lies in y, z plane. x = 0, y = 2, z = 5 
p = 25 + 4 = V29, 8 = 90°, <I> = tan-

1 f 

8. (a) x2 + y 2 = 4 
(b) r = 2 

·�, r-� 
PROBLEM 7 

(c) (See fig.) Convert from r to p sin <I> to get 
p sin <I> = 2, p = 2 csc <f>. 

9. 2 + 4t + 3 - 2t - 2 ( 1  + t )  = 3 ,  0 = 0. Al l  t 's 
work, L lies in plane P i - (See fig.)  L has parallel u = (4, -2, I); P1 has normal v = ( I ,  I , -2). Both u and v are parallel to � so u  x v = (3, 9, 6) is normal to P2• A 

1 1 /PARTIAL DERIVATIVES 

Section 1 1. 1  (page 324) 

I. (See figs.) (a) Graph is circular paraboloid 
z = x2 + , 2 . No neg level sets. Zero level set is 
x2 + y2 = 0, the origin. Pos level sets are circles. 

'i � 
PROBLEM I (o.) 

(b) Graph is hyperbolic paraboloid z = x 2 - y 2 . 

LElifL SffS (b) e,RAPH (b) 
:i!. 

PROBLEM l (b) 
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�l 
PROBLEM 8 (c) 

a 
�

P, 

PROBLEM Cf 

point in P2 is (2, 3, 1) from line L. Equ of P2 is 
3(x - 2) + 9(y - 3) + 6(z - I )  = 0, 
X + 3y + 2z = 13 .  

The 5 level set i s  x 2 - y 2 = 5, a hyperbola ; - 5 
level set is x2 - y 2 = -5 ,  hyperbola; 0 level set 
is x 2 - y 2 = 0, the pair of l ines y = ±x ( the 
asymptotes for the hyperbolas). 

(c) Graph is plane z = x + y. Level sets are the lines 
X + y = C. 

-z 

rs 

i 
0 

':) 

GRAPH 

-;---'�---;--"){. 
I ' 

PROBLEM I (  c) 

2. (See figs. )  (a) Like Problem l (a) but spheres. 

'X PROBLEM l (o.)  

(b) x 2 + y 2 - z 2 = 2 is a hyperboloid of one sheet; 
x 2 + y 2 

- z 2 = - 2  is  a hyperboloid of two 
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i! 

sheets; x 2 + y 2 - z2 = 0 is a cone, etc. The cone 
is an asymptotic surface for all the hyperboloids, 
the two-piece ones arc inside, the one piece ones 
outside. 

(c) 1 /(x + y) = 1 00 is the line x + y = 1�; 
1/(x + y) = -½ is the line x + y = -7. Can't 
have 1 /(x + y) = 0, etc. 

PROBL�M ']_(r,) -l 
(d) Points where y 2: x arc those on and to the left 

of line y = x ; this is the 3 level set. Remaining 
points are 4 level. Other levels are empty. 

3. /(2, 6) = 1 2  so point has / value 12 .  It is on the 12 
level set, the hyperbola xy = 12 .  (See fig.) 

\ PR0BL£M 3 

4. (a) Graph of /(x) = ½(6 - 2x) ; 
6 lcvel set of g(x,y) = 2x + 3y ; 
0 level set of h(x,y) = 2x + 3y - 6, etc. 

(b) Graph of /(x,y) = x 2 + 2y 2 ; 
0 level set of h(x,y, z) = z - x 2 - 2, 2 ; 
0 level set of k(x,y, z) = x2 + 2y 2 - z, etc. 

(c) Not the graph of a function since no unique 
solution for z. It is the O level set of 
/(x, y, z) = z 2 + 2, 2 - x. 

(d) Equ is x 2 + y 2 = 4. Not the graph of a function 
(no z to even try to solve for). It is 4 level set of 
/(x,y, z) = x2 + y 2 . 

5. (See fig.) 6 level set is set of points at distance 6 from 
x-axis, a pair of lines; 0 level set is x -axis itself. No neg 
level sets since distance is never neg. 

I 

1 
0 

0 "X 
6 
7 

PROBLEM 5 
6. Graph is the plane z = 6. (See fig.) The 6 level set is 

entire x, y plane. Other level sets are empty. 

7. (See figs.) (a) f is given as a function of 3 variables 
(even though y2 - x has no z in it). The 6 level 
set is surface y 2 - x = 6, a parabolic cylinder, 
etc. 

(b) Level sets are the lines y = C in 2-space. 
(c) Level sets are planes y = C in 3-space. 



� .  
� 

PROBL�M 7(b) 

8, The 6 level is 2/Y:-:: = 6 or 
Y(x + 2)1 + (y - 1)2 + (z - 3)2 = ¼, 
(x + 2)2 + (y  -· 1 )2 + (z - 3)2 = ! (sphere). There are 
no O or neg levels. In general, if C > 0 the C level set is 
a sphere with center (-2, l , 3) and radius 2/C. 
9. (a) Of points A, B, C, the surface is highest above A, 

i.e., z value is largest for A.  So /(3, 2) is largest. 
(b) (See fig.) Cross section where z = 3 is a single 

line. Cross section where z = 4 is a pair of lines. 
No cross section if z < 3. 

10. 

5

1 •I H 15 
PROBLEM q(b) 

)(.. 

� 

_ ... 
,: HEl(,tff 10 

,. 

�/ ·,,.,, . 
PROBLEM 10 

1 1. NO because then Q has more than one/ value (e.g., 
more than one temperature) and a function can't assign 
two values to the same input. 
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Section 1 1.2 (page 329) 

1.  (a) az/ax = 2x + 6x 2y2 , az/ay = 4x'y 
(b) az/ax = e -' , az/ay = -xe -, 

az (x + .Y - x) y 
(c) - = 2 = ---2 (quotient rule) 

ax (x + y) (x + y )  
az -x 
- = -x(x + ,r2 = --­ay (x + y)2 

(d) az/ax = x • 4(2x + 5y)' • 2 + (2x + 5y)4 

= 8x(2x + 5y)5 + (2x + 5y)4 , (product rule) 
az/ay = 4x(2x + 5y)' · 5 = 20x(2x + 5y)' 

(e) az/ax = -3yx -2 = -3y/x'. az/ay = 3/x 
z. (a) aJ/ay = 3/(2x + 3y), 

a2J/ay 2 = -3(2x + 3y)-2 • 3 = -9/(2x + 3y)2 . 
a2J/ ax ay = -3(2,c + 3yr2 • 2 = -6/(2x + 3y)2 

(b) � = 
l • .!_ = -" -

ay l + (y/x)2 X x2 + y 2 ' 

fl = -x(x2 + y2) -2 . 2y = -2xy 
ay' (x2 + y 2)' ' 
;i2f X 2 + , 2 - X • 2x 

...::...L. = 2 2 2 (quotient rule) 
ax ay (x + y ) 

= (,2 _ x 2)/(x 2 + ,2)2 

� X - J - (X + J) ' - 1  2x 
(c) ay = 

(x - y)2 = (x - y)2 ' 
;i2f 4x 
.:..L = 2x • -2(,c - ,r' · - 1  = -- , ay' (x - y)' 
_!j_ 

= 
(x - y)2 • 2 - 2x • 2(x - y) 

ax ay (x - y)4 

= (-2x - 2y)/(x - y)' 
S. (a) g,,.. (diff first w.r.t. c, then b then a) 

(b) u,.. (first w.r.t. t, then x, x.) 
;if X I z X 

4. (a) ::L = z cos - • - = - cos -
ax y y y y 
af X 2 -,cz X 

(b) - = z cos - · -icy - = - cos -ay Y y 2 Y 
(c) aJ/az = sin(x/y) 

;itr l x 
(d) ...::...L. = - cos -ax az y y 

5. (a) a/ay = -e• sin y, a2/ay2 = -e• cos y, 
a'/ay' = e• sin y 

(b) Successive derivatives w.r.t. x just keep produc­
ing e• cos y. 

(c) a/ax = sin y, a2/ax2 = 0, a'/ax' = 0 
(d) a/ay = X cos y, a2/ay' = -x sin ,, 

a' /ay' = -x cos y 
(e) a(-x sin y)/ax = -sin y 

6. (a) ax/ap = sin q, cos 6, a'x/ap2 = 0 
(b) ax/a6 = -p sin q, sin 6, 

a'x/aq, a6 = -p cos q, sin 6 
7. aJ/ax is probably negative because if the price of a 

camera goes up, sales usually go down; af/ay is probably 
neg because if film goes up, camera sales usually go 
down. 
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8. af/aa is negative because if prices on airline A go up, number of passengers on A goes down; aJ/ab is positive because your passengers increase if competitor's price goes up. 9. Consider employees jogging ½ mile and cycling l mile. Since both partials are positive, increasingjogging or cycling alone boosts company profits. Furthermore increasing the jogging alone boosts them more than in­creasing cycling alone. 1 0. atemp/ax = 8 (2x - 3y)\atemp/ay = - 1 2 (2.x -3y)3 ; if x = 4, y = 3 get -8 and 1 2 . Eastbound particle feels temp dropping by 8° /foot. Northbound particle feels temp rising by 12° /foot. Southbound particle feels temp dropping by 1 2°/foot. 1 1 .  Particle moving east through A feels temp rising so 
aJ/ax is pos. Particle moving north through A feels no temp change instantaneously so af/ay = 0 at A.  12. (See figs.) (a) Particle moving on graph through B with x fixed and y increasing isn't going up or down so aJ/ay = 0, i .e. ,  slope on indicated curve through B is 0. 

PROBLEM 1 2.(o.) (b) Particle moving on graph through B withy fixed and x increasing (i .e. , forward) is descending so 
af/ax is negative, i .e. ,  slope at B on indicated curve is neg. 

PROBW-1 12. (b) 15. Note that P lies behind the y, z plane. A particle moving through P with y, z fixed and x increasing (i .e. , moving forward, but behind the y, z plane) moves from outer to inner cylinders, from lower to higher levels; feels temp increasing. So af/ax > 0. Particle moving through P with x and z fixed and y increasing is moving to the right, from inner to outer cyls, from higher to lower levels ; feels temp decreasing. So af/ay < 0. Par­ticle moving through P with z increasing is moving up a cyl, not changing levels ; feels no change in temp. So 
af/az = 0. 14. ag/ax is larger because for a small eastward step, g changes more than f 

Section 1 1 .3 (page 334) All problems have d iagrams. 
1 .  aw = aw ax + aw ay + aw az 

as ax as a, as az as 

PROBLEM I 
2_ du _ au ax da + au ay da + au az da + au ax db dJ. b h dJ.  � h dJ. h h dJ.  h H dJ.  

au ay db au az db + - - - + - - -ay ab dl az ab dJ. 

l PROS.LEM 3 4. (a) Directly w = sin(t 3 ln t) so 
dw/dJ. = cos(t 3 In t) · (t 3 • 1 /t + 3t 2 In I )  = t 2 cos(t 3 In t) + 31 2 I n  t cos(t ' I n  t). 
With chain rule 
dw aw dx aw dy - = - - + - -
dl ax dJ. ay dt = y COS X'J • J /t + X COS X'J • 312 = t 2 cos(t 5 In t )  + 3t 2 In t cos(t 3 In t ) .  

(b) Directly 

◊ PROBLE.M 4(a.) 
I w = -.- so x sm y 



aw l _2 1 - = - • -,c = -
--

ax sin y x 2 sin y 
With chain rule 
aw dw au l . 1 
ax 

= 
du ax 

= - u2 sm .Y = - x2 sin y '  

S. (a) 
dw = aw dx + aw dy 
dt ax dt ay dt 

(b) At time 3 the traveling particle feels temp drop­
ping by 2° per second. 

&. az _ az dx at + az dy a, 
au ax dt au ay dt au 

az at az a , = cos , _ _  + 6t 2 - -
ax au ay au 

x<}, 
uAv 

PROBLEM 0 

1• -au __ du ap __ x du x du s· .1 I - = - - . 1m1 ar y 
ax dp ax Vx" + y2 + zZ dp p dp 

au }_ du au _ z du Th (au)
2 

(au)
2 

(au)
2 

- = - ,  - - - - .  en - + - + -
ay p dp az p dp ax ay az 

= (
"2 + y2 + z 2

) (du)' = x
2 + ,2 + z 2 

(du)
1 

= (du)'
. p2 p2 p2 dp p2 dp dp 

J. 
PRoBLEM 7 

8, u = u(p , q) where p = ( y  - x)/xy, q = (z - x)/xz. 
au au an au aa Then u. = - = - .::L.  + - ..;.J. 
ax ap ax aq ax 

= au xy(- 1 ) - (y - x)y � au xz(- 1 )  - (z - x)z 
ap (xy)2 aq (xz)2 
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p� ')<. 

PROBLf:M 8 

l au l au s· .1 1 = -
" 2 ap - � aq . 1miar y 

u = au !J!. = au xy - (y - x)x = .!_ au u = .!. au ' ap ay ap x2y2  y 2 ap ' • z2 aq • 
Then x 2u. + y 1u, + z 2u, does equal 0 
(everything cancels out as you add). 
9, The three functions are functions of x and y in a 

special way, namely they are functions of the combina­
tion x2 + y2• In general let z = .z(t ) where t = x2 + y 2 • 

az dz at dz az dz az Then - = - - = 2:r - , - = 2y - , and y - does 
ax dt ax dt ay dt ax 
az dz equal x 
ay (both equal 2:rydi). 

PROBLEM C/ 

10, By product rule u. = x 2 aw/ax + 2:rw where 
w = w(p, q), p = y/x, q = z/x so 

(aw an aw aq) u. = x 1 - .::L. + - - + 2:rw 
ap ax aq ax 

= x• (aw . _ 1.  + aw . - -=-) + 2:rw 
ap x2 aq x2 

aw aw = -,- - z- + 2xw 
ap a9 

u = x•� = x' aw !1!. = ", aw • ..!.. = ,c!.!!! 
' a, ap ay ap " ap '  

U, = "2 aw = ", aw !J!. = "2 aw • ..!.. = :IC aw 
U = ,c aw 

a, ap ay ap " ap ' • a9 · 
Then xu. + yu, + zu, 

aw aw aw aw = -xy- -xz- + 2x 2w + xy- + xz-
ap aq ap aq 

= 2x2w = 2u 

>� 
PROBLEM IQ 
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Section 1 1.4 (page 337) 
All problems have diagrams. 

I. ap 
= 

� aa + ap ab 
= 3 � + 5 

ap 
, au aa au ab au i!a ab 

a2p _ 3 
a 

(
ap

) 5 
a 

(
ap

) au 2 - au aa + au. ab  

3 (
a2p aa � a b

) ( 
a2p aa a2p ab

) = 
i!a 2 au 

+ 
ab iJa iJ u  + 5 aa iJb iJu 

+ 
i!b 2 au 

= 
g!.P_ + 30 a2p + 25 a2p 

i!a 2 aa ab  ab 2 

PROBLEM I 
2. dz - iJz dx + oz dy - 3 

oz + 4 oz . Use product dt ax dt iJy dt iJx ay 
rule to diff again w.r.t. t since az/ax, i!z/ay, dx/dt, dy/dt 

are functions of t. Get 
d
d

2: = 3i (0z) + 4i (0z) 
t at ax at ay 

= 3 (3!2 + 4 �) + 4 (3� + 4 °2z ) iJx 2 ay ax ax iJy ay 2 

c!2z iJ2z c!2z 
= 9- + 1 6- + 24 --iJx 2 ay 2 ax ay 

au au ax au ay au au 3. - = - - + - - = 2 - + 2ab- . Need prod-iJa ax iJa ay aa ax ay 

uct rule to diff 2ab au 
w.r.t. b. 

ay 
a2u 

= 2 i.
(

i!u
) + 2ab i_ (

c!u
) + 2a 

au 
iJb aa ob ax ab ay ay 

2 [
c!2u ax a2u ay] = 
i!x 2 ab 

+ 
iJy iJx ab 

( 
c!2u iJx il2u ay

) 
i)u + 2ab -- - + - - + 2a-

ax ay ab ay 2 ab ay 
ell.I OU 

":�: 
PROBLEM 3 

iJ2u c!2u c!2u i)u 
= 6- + 2a 3b- + -- (2a 2 + 6ab) + 2a - . iJx 2 ay 2 ax ily ay 

dw aw dx aw dy 2 0W aw 4. - = - - + - - = 3t - + 2t- . Need prod-di ax dt iJy dt iJx ay 
uct rule to diff again w.r. t. t since everything on the 
right-hand side is a function of t. 
d2w 2 a 

(
aw

) 
iJw a 

(
aw

) (
aw

) - = 31 - - + 6t- + 21- - + 2 -
dt 2 at ax ax iJt ay ay 
_ 

3 2 (a2w dx c!2w dy
) 6 aw 

- t - - + -- - + t-
ax 2 dt ay ax dt ax 

2 ( iJ2w d.x i!2w dy
) 2 aw + t -- - + - - + -

ax ay dt ay 2 dt ay · 
Use dx/dt = 31 2, dy/dt = 2t to get answer 

4 o2W 2 o2W 3 cJ2w OW OW 9t  - + 41 - + 1 2t -- + 6t- + 2 - . c!x 2 ay 2 ax ay ax ay 

5. (a) 

aw al)/ 

.75: 
PROBLEM 1' 

OT X X 
ax v?+? T 

08 l 
( 

y
) 

y 
iJx = l + (fr -� = 

- ? 

ifr 
iJ2T 

T - X ax . } X 2 y2 
(b) - = --- (quouem rule) = - - - = - , 

ilx 2 T 2 T T 3 r '  
i!28 

= 
-y (-.!) c!T 

= 
2xy 

c!x 2 T 5 ilx r• 
av av OT av i) IJ  

(c) - = - - + - - . Now use product and ax OT ax 08 ax 
chain rule. 

a2v = av 02T + [a (�) oT + a (�) 
a8] ar 

ax 2 iJT iJx 2 OT ax c!IJ iJx ax 

-+' av 029 + [a (:�) ar + 
iJ (:�) a tJ] iJ IJ  

08  iJx 2 c! r  iJ x  0 8  a x  ax 
av c!2r 

[
c!2v c!r c!2v a8

] 
c!r iJv il2IJ 

= 
c!r c!x 2 + 

iJr2 ax
+ 

c! 8 c!r ax ax + i) IJ  c!x 2 

[ 
iJ2v ar a2v c! 8

] 
08  + 

ar iJ IJ ax  
+ 

iJ 82 ax  iJx 

= 
av c!2r + c!2v (or) 2 

+ 2 iJ2v c! IJ  c!r 
ar c!x 2 c!r2 iJx c!r  c!IJ  ax ax 

+ av  iJ28 + a2v (a 8) 2
. i) IJ  ax 2 iJ IJ2 iJx 



ilv x2 a2v xy a2v ,2 a2v :, 2 av 
So (•) ax 2 = r2 a,2 - 2;s ar a B  

+
;. a B2 + ;s a, 

2 av + 2 ,• a B · 
a2v 1 2 a2v X'J a2v 

Remark: Similarly, (••) - = - - + 2 - -- + 
ay

2 r 2 a, 2 r' ar a B  
x2 a2v x2 a v  X'J av - - + - - - 2 - - . Then from (•) and (••) we 
r4 a B2 r'  ar r4 aB 

a2v a2v 
have 

ax 2 + 
a,2 (Laplacian in rect coords) equal to 

a2v I av I a2v . . 
-2 + - - + 2 -2 (Laplaoan m polar coords) . 
ar r ar r a B  

d V  d V  
v, a ,  , de 

rt\e 
,,_!Xly 

PROBLEM S(c.) 
dv av dx av dy 6. - = - - + - - . Now need product rule. 
dt ax dl a, dt 

d2v 
= 

av d2x + a (av) dx + av d1y + a (av) d:J 
dt2 ax dt2 at ax df a, dt2 at a, df 

= !!!_ d 2x + (a2v dx + a2v �) dx + 
!!!. d 2y 

ax dt2 ax 2 dl ay ax dt dt ay dl 2 

+ ( a2v � + a2v �) � 
ax a, dt a,' dl dt 

= 
!!!_ d 2x + av d2y + a2v (dx)' 
ax dt1 a., dt2 ax2 df 

a2v (")i a2v dx dy + 
a, 2 di 

+ 2 
ax a, dt di · 

V dV I <i'I 

'Q, t 
PROBLEM 6 

7. w. = 
aw !J!. + aw !!I. 

= 
aw + aw ' 

ap ax aq ax ap aq 
a (aw) a (aw) 

w 
.. 

=
ax ap 

+ 
ax aq _ a2w an a2w aa a'w an a2w aa 

-
- .:.C. + -- � + --

.:£. + - �  
ab 2 ax aq ap ax ap aq ax aq' ax 
a•w a•w a2w = 
ap2 + 2 

ap aq 
+ 

aq 2 ' 

w, = 
aw !J!_ + aw !!I_ = -c aw + C 

aw 
ap at aq at ap aq ' 

w,, = -, !.. (aw
) + ,!.. (aw

) at ap at a9 
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( a2w � a2w aq
) 

( a2w ap a2w aq ) = -
, ap 2 at 

+ 
aq ap at + ' ap aq at + 

aq 2 at 
2 a

2w 
2 2 a2w 2 a

2w 
= C - - C -- + C - . 

ap 2 ap aq a9
2 

Then c2w .. - w. does cancel to 4c 2wi,, as desired. 

aw- d w 

��: X. t 
PROBLEM 7 

Section 1 1 .5 (page 346) 

1. (a) (See fig. )  Critical: aJ/ax = 3y - 4x, iJJ/ay = 
3x + 2 .  Sol to 3y - 4x = 0, 3x + 2 == 0 i s  
x = - 2/3, y = - 8/9. Not i n  region; ignore. 

Lower bounda
!]: Here y = 0 so f = - 2x 2 + 8 

for 0 s x s V3; f '(x) = -4x, zero when x = 0. 
Ends are x = 0, V3. Candidates are (0, 0) and 
(V3, 0). 

Left boundary: Here x = 0 so f = 2y + 8 for 
0 s y s 3; f ' (y) = 2,  never 0; only candidates 
are ends where y = 0, 3, i .e. ,  points (0, 0), (0, 3) . 

Boundary y = J - x2
: Substitute for y to get 

f = 3x(3 - x 2) - 2x 2 + 2(3 - x 2
) + 8 

= - 3x '  - 4x 2 + 9x + 1 4 ,  0 s x s V3. So 
f ' (x) = - 9x 2 

- 8x + 9. Critical x 's are approx 
.65 and - 1 .5 (not in interval) .  Candidates are 
.65 and ends 0, v'3, i .e . ,  points (.65, 2 .58), (0, 3) , 
(V3, 0). 

For final decision find f(0, 0) = 8, /(0, 3) = 
14 ,  f(V3, 0) = 2 ,  f( .65, 2 .58) = 1 7 . 3  approx . 
Min value is 2, max value is approx 17 . 

a:, 
PROBLEM I (a.) 

(b) Same criticals as in (a) . Again, not in region . On 
boundary x + y = 2 ,  
f = 3x(2 - x)  - 2x 2 + 2(2  - x)  + 8 

= - 5x 2 + 4x + 1 2  for O s  x s 2 .  Then 
f ' (x) = - IOx + 4 so  x = ti; i s  critical. Ends are 
x = 0, x = 2; candidates are (TI;, �).  (0, 2), (2 ,  0). 
On lower boundary y is 0, f = - 2x 2 + 8 for 
0 s x s 2 ;f ' (x) = - 4x, zero when x = 0. Candi­
dates are (0, 0) and (2, 0). On left bdry x is (J and 
f = 2y + 8 for 0 s y s 2; f ' iJ ) = 2, never 0. 
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Only candidates are y = 0, 2, i .e . ,  points (0, 0) and (0, 2) again. For final decision find /(0, 0 )  = 8 ,  f (0 ,  2)  = l 2 ,  f (2 ,0) = 0, [(to, -Hi) = ¥. Min value is  0, max value is ¥,. (c) (See fig.) iJf/iJx = 2, never 0; no criticals. On bdry y = x2 , f = 2x - 3x 2 for - 2 s x s 2 ;  [ ' (x) = 2 - fix, x = ¼ i s  critical. Ends are - 2, 2. Candidates are (½. ¼), ( :!: 2, 4). On boundary y = 4, f = 2x - 12 where -2 s x :s 2 ;  f ' (x) = 2 never 0. No criticals. Candidates are ends x = ±2, points (±2 , 4). Then [(½, ½) = ½ (MAX), [(-2 , 4) = - 1 6(MIN) , [(2 , 4) = -8  (LOSER). 

P�OBLEM / (c.) (d) (See fig. )  iJf/iJx = 2x + 2xy, iJf/iJy = x 2 
- I .  Solve 2x + 2xy = 0 ,  x 2 

- I = 0 to get criticals x = l , y = - l ; x = - 1 , y  = - I . On boundary, f = 4 - 2y 2 + (4 - 2y 2)y - y 
= 4 + 3y - 2y 2 - 2y 3 for - V2  s y :s V2. Thenf '(v) = 3 - 4y - 6, 2 , zero ify = - I . I ,  .5 approx. Ends are y = ± Y2. Candidates are ( 1 , -ll,_ ( - 1 , - 1 ) , (O , :!: V2),  ( :!: VUB, - 1 . 1 ) ,  ( :!:\/3.5, .5 ) .  Max value (at :!:\/3.5, .5 )  i s  4 .75 ; min value (at (0, V2)) is - V2  = - 1 .4 1 4 .  

2 .  ( a )  (See fig. )  iJf/iJx = 2x  + 3y + 1 0, iJf/iJy = 2y + 3x. Solve 2x + 3y + 1 0  = 0, 3x + 2y = 0 to get critical point x = 4, y = - 6. Not in re­gion, ignore. On top boundary y = 3; 
f = x2 + 9 + 1 9x, 0 s x s 5 ;  
f'  = 2x + 19 ,  zero if x = -.!/, not in interval. Candidates are ends x = 0, 5, points (0, 3) and (5, 3) .  On right boundary y = x - 2;  
f = 5x2 + 4,  - 1  S X S 5 ;  [ ' (x) = !Ox, zero if x = 0 .  Candidates are  x = 0 and ends  x = - 1 , 5 ,  i .e . ,  points (0, -2), ( - 1 , - 3) ,  ( 5 ,  3) .  On left boundary y = 6x + 3; 
f = l 9x 2 + ( 6x + 3 ) 2 + l 9x , - 1  :s x :s 0 ;  [ ' (x) = 38x + 1 2(6x + 3) + 1 9. 

Critical x is -½, ends are - I ,  0. Candidates are ( -½, 0), ( - 1 ,  -3) ,  (0, 3) . For final decision find [(-½. 0) = --'t, / (- 1 , - 3 )  = 9, / ( 5 , 3 )  = 1 29 ,  [(0 , - 2 )  = 4 ,  /(0, 3) = 9 .  Max at (5, 3), min at ( -½, 0). 

(b) iJf/iJx = 2x + I , iJf/iJy = 4y. Solve 2x + l = 0, 4y = 0 to get critical point ( -½, 0) .  On bdry, y 2 = I - x 2
, f = -x 2 + x + 2, - 1  s x s I ;  J ' (x) = -2x + I ,  zero if x = ½. Ends in the sub­problem are x = ± I . Then [( - ½. 0) = - l 

I 1 . 1n 9 
< •  fo, ±2 v 3) = , ,/( 1 , 0) = 2.[(- 1 , 0) = 0. Max is at points (½, ±½V3), min at ( -½, 0) 3. (a) I f  (x, y) approaches bdry at 00 then f ...... - 00 be­cause of terms -x2 - y 2 . Min is - 00 .  Max will be at a critical point. iJf/iJx = - 2  - 2x, iJf/iJy = 6 - 2y. They are O when x = - I ,  y = 3. Have /(- 1 , 3) = 1 0, max value. (b) If x = 0 and y ---> 00 (i .e. , point approaches bdry at infinity along positive y -axis) then f ...... 00. I f  x = 0 and y ---> - 00 (approach bdry a t  infinity along negative y -axis) then J ...... -00. Max is oc, min is - 00 .  (c) On any path to bdry at 00,J ---> :x;_ For crit points, iJf/ iJx = 2x - y + 2, of/oy = -x + 2y + 2 . They are 0 when x = -2,  y = -2 .  Min value is /(-2 ,  -2)  = -8,  max is 00. (d) Walk up the y -axis, get/ ---> -00. Walk east on the x -axis, get / ---> 00. Max is 00, min is - 00 .  4. Typical point on plane is (x,y ,  14  - 3x - 2y) .  I ts  dis-tance to origin is s(x,y) = Vx2 + y2 + ( 1 4  - 3x - 2y)2, the function to be minimized over all (x, y), i .e . ,  the region is the entire x, y plane. On the boundary at 00, s is 00, the ?"'ax (i .e. , points (x,y,  z) on given plane are far from origin 1f x ---> 00 or y ...... 00.) Expect min s at a critical point. As a shortcut, minimize the radicand r(x, y) = x 2 + y 2 + ( 1 4  - 3x - 2y)2 over all (x, y) .  This minimizes s too and is simpler. ar/ax = 2x + 2( 14  - 3x - 2y) · -3 ,  ar/iJy = 2y + 2( 1 4  - 3x  - 2y) · -2 .  Partials are 0 when x = 3,  y = 2 .  Corresponding z from equ of plane is z = I .  Point on plane nearest origin is (3, 2, I ) . S. (a) 12( 1 ) - 2(3) + 0 + ! OJ = 2 V4 + 4 + I (b) Typical point on plane is (x, y, - 2x + 2y - 1 0). Distance to ( I ,  3, 0) is [(x, y) = Y(x - 1 )2 + ( y  - 3)2 + ( -2x + 2y - 1 0)2. Get max of 00 when x and/or y -+ 00. Need critical 



point for min. Let 
T = (X - 1 )2 + ( y  - 3)2 + ( - 2x + 2y - 10)2 • 
a r / a x = 2 (x - 1 )  - 4 ( - 2x + 2y - 1 0 ) , 
ar/ay = 2(y - 3) + 4(-2x + 2y - 1 0). Partials 
are O when x = - ½, y = J/. Corresponding :t 
from equ of plane is :t = -f. Distance from 
( -½,-!/, -f) to ( 1 ,  3, 0) is 2, the min. 

6. A typical point on the first line is 
(2 + t, 3 - t, 4 + 2t) and a typical point on second 
line is ( l + s, 2 + s, 7 + 3s) (must use different parame­
ter letters). Distance between them is f = \!( l + t - s)2 + ( 1  - t - s)'' + ( - 3  + 2t - 3s)2 • 
Let r = ( 1  + t - s)2 + ( l  - I - s)2 + ( - 3  + 2t - 3s)2 , 
all s, t. Can work with r instead of/. 
ar/as = -2(1  + t - s) - 2( 1 - t - s) 

- 6(- 3  + 2t - 3s), 
ar/at = 2( 1 + 1 - s) - 2( 1 - t - s) 

+ 4(- 3  + 2t - 3s). 
Partials are O when s = - ¼, t = i, Max value of/ (namely 
oo) comes when s ➔ ±00,  t ➔ ± 00 .  Min  must be at 
s = -¼, t = f. Plug into equations of line to get points of 
closest contact (¥, ¥, f) and (1, I, f) 

7. Let dimensions of base be x and y. Volume is 256 so 
height is 256/xy. Surface area is 

256 256 5 1 2  5 1 2  
A(x,y) = xy + 2x - + 2y - = xy + - + -

X'j X'j y X 
for x .:?: 0, y .:?: 0 (see fig.) .  

-
fflOSLEt-1 7lo.)J,b) 

(a) If  x and or y ➔ 00 (i.e. , on bdry at 00), A ➔ 00, 
Low tank, large base. If x ➔ O+ or y ➔ 0+ then 
A ➔ 00. Tall tank, small base. Both are worst 
options. Between extremes is best tank. 

(b) Pan (a) showed that boundaries give max A . 
Find critical point for min. 
aA / ax = y - 5 1 2/x 2 . aA /ay = x - 5 1 2/y 2 • 
Partials are O when x 2y = 5 1 2 ,  y 2x = 5 1 2 , 
x 2y = y 2x ,  x = y ,  x 5 =- 5 1 2 ,  x = 8 ,  y = 8 .  
Dimensions of  best tank are 8 x 8 x W.  

(c) New region. (See fig.) Critical point (8 ,  8 )  from 
(b) isn't in region. Must get min from bound­
aries. Again, x-axis and y -axis give A = 00, On 
line x = 4 we have A = 4y + 5 12/y + 5 1 2/4, 
0 < y s 20. Then A ' (y) = 4 - 5 1 2/y 2 , zero if 
y = Vffi. End is y = 20. 

J 
PROBI-E:"1 7(<:.) 
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On line y = 20, A = 20x + W + 5 12/x, 
0 < x s 4; A ' (x) = 20 - 5 1 2/x 2 never 0 
if O < x s 4 .  Only candidate is end x = 4 .  
A(4, v'ffi) = 4Vl28 + � + �. 
A(4, 20) = 80 + W + !¾'. First is smaller; best 
tank has dimensions 4 by v'ffi by 256/4Vl28. 

Section 1 1.6 (page 353) 

1 .  V temp = (,2 + 6, 2xy). At point ( 1 , 2) , Vt = ( 1 0, 4). 
Vt · SW - 14 

(a) SW = (- 1 , - 1) so Dsw temp = 
IISWII 

= 
\!2 

(temp is dropping by 14/\!2 degrees per meter). 
- Vt ;_!Q -4 

(b) PQ = (2 ,  - 6), 
IIPQII 

= y:io. .. 
(c) Direction is south, i .e. ,  -j , Vt • (-j )  = -4.  
(d) IIV tempi! = vIT6 
(e) WNW makes angle of 157 .5° with x-axis (see fig.) ;  

a unit WNW vector is (cos 157 .5° , sin 1 57.5°) ,  
DwNw temp = Vt ·  WNW 

= 1 0  cos 1 57 .5° + 4 sin 1 57.5°. 

� 
PROl3L"'1 I (e) 

2. V temp = (2xy, x2) .  At point A ,  V temp is ( 1 2, 4) .  
NE = ( 1 ,  1), (V temp · NE)/IINE II = 1 6/\!2. Both run­
ners feel temp increase by 16/\!2 degrees per meter. 

5. (See fig.) Vf = (y, x - 2y, 1 ) and at A, Vf = (2, l ,  1 ) .  

PROBLEM 3 
(a)  Away from i -axis is vector u = 51 + 2j , 

<Vf • u >!lliill = 1 2/v'29. 
(b) Any arrow perp to Vf such as ( - 1 ,  2, 0), 

(5 ,  -8 ,  - 2) ,  etc. 
(c) At A, V£: (2, 1 , 1 ) .  Particle at A moves in direc­

tion o_,LAB .=_. ( l ,  2, 1) so feels temp changing by 
(V/ • AB )/IIAB II = 5/Y6 degrees per meter. At 
B, Vf = (4, -2 ,  1 ) .  Particle at B moves in direc-
tion of BA = ( - 1 ,  -2 ,  - 1 ) so feels temp chang­
ing by (Vf • BA )/IIBA II = - l /Y6. When they 
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meet midway at (¥, 3 ,  i) , VJ = (3, -½, I ) . First particle � dir.$_tion AB so feels temp increasing by (VJ · AB )/IIAB II = 3/V6° per m. The other particle feels temp dropping fry 3/V6° per m. (d) Direction of - VJ =  - 2i - J - k. In that di­rection, pressure decreases by IIV/11 = V6 units per meter. 4. The direction of motion is tangent u. (See fig.) Makes obtuse angle with VJ so component of VJ in u direction is neg. Particle feels temp dropping. 
PROBL[M 4-5. VJ is.a pos.i,tive multiple of 3i + 2} so 

VJ = c�_ i  + 2j ) where c > 0. Also IIV/11 = 2 so c vT3  = 2 ,.c = 2/Vl3 and VJ = (6/Vl3, 4/Vl3). 
DnonhJ = VJ · j = 4/Vl3 degrees �r m. 6. Direction toward ( I ,  I ) is u = -j and direction to-ward (7 ,  1 0) is ii = 6i + sJ. Let VJ at A be (a, b) .  Given (VJ · u )/llul l = 2 so -b = 2,  b = -2. Also (VJ · ii )/lliill = -4 so "to(6a + Sb) = -4,  a = -4.  Then VJ = (-4 ,  -2)  a t  A. This is direction in which temp rises maximally. Max rate is IIV/11 = V20 deg per m .  7. (a )  J( - 1 , 2) = 2 so  P is on 2- level se t  x 2y = 2, y = 2/x 2

• (See fig.)  
VJ =  (2xy , x 2) which is (-4 ,  I )  at P. 

� 
PROBL£11 7(o.) x PROBLEM 7(b) (b) J( l , 2, 1 )  = 1 2 so P  is on 1 2-level set x 2 + 2y 2 -z 2 + 4 = 1 2 , x 2 + 2y 2 - z 2 = 8 .  (See fig . )  

VJ = (2x, 4y , - 2z) which i s  (2, 8 ,  - 2 )  a t  P. 8. The gradients are perp to level sets and point to higher levels. (See fig.) The functionJ is changing more per meter in direction of VJ than g is changing in the 
AKl � 
(J _(J PROBLEM � 

direction of Vg because the J levels jump by 1 0  among level sets in Fig. 13 while g jumps by only I for similarly spaced level sets. So VJ is longer than Vg. • 9. At a rel max/min, partials are 0. So VJ = 0. 10. Distance is never neg, no neg level sets. Line L is 0 level set. The 2 level set (points at distance 2 from line) is cylinder with axis L and radius 2 ,  etc. (See fig.) Gra­dients are perp to level sets and point to higher levels, so point out of each cylinder. Each VJ has length I because if you walk away from L in the direction of VJ (i .e. , perpendicularly away from L ), J increases by I foot for each foot you walk (since J is distance to L ) .  

PRoBL.£M /0 I I . (a) I x 2 x 6 does equal 1 2 . (b) z = 1 2/xy, Vz : (- 1 �/x'y, - 1 2/xy 2), Vzl,- , .,-2 = - 6 i  - 3j (more west than south) . The path in direction -6i -_lj is steepest. Slope �n P!th at P is IIVzl l = V45. (c) SE = i - j, iJz/iJSE = (Vz · SE )/IISE II = -3/V2. Path descends. Slope is - 3/V2. (d) V(xyz) = ( yz, xz ,xy) ;  at P it is 1 2i + 6j + 2k, a normal to the surface at P. Tangent plane is 1 2(x - I ) + 6(y - 2) + 2(z - 6) = 0, 6x + 3y + z = 18. Normal line is 
X = J + 1 21, J = 2 + 6t, % = 6 + 2t. 1 2. (a) Graph has equation z = 3x 2 - 2y 2 • P is on graph since I = 3 - 2. (b) Vz = 6xi - 4y}, Vz /.- 1 .,- - 1 = 6i + 4j (more e�st tha.!1 north). Steepest path is in direction of 6 i + 4 j . Slope at P on steepest path is I IV zll = 
V52. (c) ilz/i!SE = (Vz · SE )/IISE /1 = 2/V2. So path as­cends; slope is 2/V2. (d) Surface is z - 3x 2 + 2y 2 = 0, V(z - 3x 2 + 2y 2) 
= ( - 6x , 4y ,  I ) , V = ( - 6 ,  -4 ,  I )  at P .  This is normal vector to surface. Tangent plane is -6(x - I) - 4(y + I ) + (z - I) = 0, 6x + 4y - z = I. Normal line is 
x = I - 61, y = - I - 41, z = I + I . 13. (See fig.) (a) VJ = (4x, 2y), VJl.- 1 .,-, = 4i + 6]. I t  is perp to level set of J through point ( I ,  3). Since J( l ,  3) = 1 1 ,  it's the 1 1  level set, ellipse 2x 2 + y 2 = 1 1 . 



.,. ➔ 
Lfu6j - K  

�.c;_-�--'/ 
4, 1+ 6 j(�-olim V£CT1JR) 

PROBLO'l 1 3  
(b) vi2x 2 +. y

2 : z) = (4x, 2y, - 1 ) which is
4 i  + 6j - k ifx = l , y  = 3.  lt is perp to graph
off, % = 2x 2 + y

2 , at point ( 1 , 3, I I ) .  
14. (a) V(x 2 + 2y 2 + 3z 2) = (2x, 4y, 6z) which is

(2, 4, 1 2) at P. This is perp to the earth. From a 
rough sketch can tell it is OUT not in. 

(b) V temp = V(2xz + y
2 + 6) = (2z, �• 2x) which is

(4 ,  2, 2) at P. Takeoff direction is n = (2, 4, 1 2) .  
Then iltemp/on = (Vtemp . n)/llnll = 

40/v'i&i degrees per meter. 
(c) Choose any direction perp to V temp such as

( l , - 1 , - 1 ) ,  ( -3 , 2, 4), (0, -2 , 2) , etc.
(d) Nonburrowing directions must make acute an­

gles with the OUTWARD normal ii.
But ( 1 ,  - 1 , - 1 ) · n is negative so ( I ,  - 1 , - 1 ) 
burrows. Change it to ( - 1 ,  1 ,  I ) . Fortunately,
(-3 , 2, 4) · n is positive so (-3 , 2, 4) is OK, etc.

(e) On northern hemisphere (where P is),
% = v'½( l 5  - x2 - 2y2). Then Vz = 

(-½x/V, -iy/V), Vz�- 1..,- 1  = -{i - ½J. 
Mother's slope = iJz/iJNE

= (Vz · NE )/IINE II = - 1 /2\/'2. 

Section 1 1.7 (page 361) 

1 .  (a) d(y/x) is found immediately by quotient rule. 
(b) d(x 2 + y 2) - 1 = - (x 2 + y 2) - 2 d(x 2 + y 2) (chain)

= - (x 2 + y 2)-2 (2x dx + 2y dy) 
_ - 2x dx  - 2y dy - (x2 + y 2)2 

(c) d( ± V?"+7) = :t½(x 2 + y 2r 1 '2 d(x 2 + y 2)
. 2x dx + 2y dy x dx  + y d" 

(cham rule) = ---,,=:::::::,, = --====:J;,,,, 
:t 2YT+7 ± YT+? 

(d) _I_ d(x 2 + 2) = 
2x dx + 2y dy 

x 2 + y 2 Y x2 + y2
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1 ( y ) 
x dy - y dx 

(e) 1 + (ir d ; = 1 + (if x 2 

_ -y dx + x dy - x 2 + 
y

2 

2. x = r cos (J so by ( I ) , dx = cos (J dr - r sin (J d(J. 
y = r sin (J so dy = sin (J dr + r cos (J d(J .

3. (a) p = 2xy, q = y , aq/ax = 0, ap/ay = 2x ; not
equal so form not exact. 

(b) aq/ax = ap/a, = 3x 2 ; exact. Antidiff p w.r.t. X 
to get terms 4x 4 + x'y. Diff this temporary an­
swer w.r.t .  y to get x '. Compare with q and see we
must tack on ¼, 4 to get final answer 
[(x, y) = ¼x4 + x 'y + ¼y 4 + C.

(c) [(x, y) = -y/x + 5y + C 
4. Need ilq/ilx = ap/ay , ilq/ax = 3xy 2 , q  = ix 2y 2 + any

f(y), e.g., q could be ix 2

y
2 + y ' sin y + 7.

5. (a) d(2x ' + xy 2 + y ') = 0,
implicit sol is 2x ' + xy2 + y' = C.

(b) d(x' + xy) = 0, implicit sol is x' + xy = C, ex­
plicit sol is y = (C - x')/x . 

(c) (x - y cos x) dx - (y + sin x) d
y 

= 0,
d(½x 2 

- y sin x - ½, 2) = 0, 
implicit sol is ½x 2 - y sin x - ½, 2 = C. 

(d) e'' dx - d
y 

= 0, not exact since aq/ax = 0 ,  
ap/ay = xe"> (not equal) .  

(e) (2r cos (J - l ) dr - r2 sin (J d(J = 0,
d(r2 cos (J - r) = 0, implicit sol r2 cos (J - r = C.

( f) Not exact. 
(g) Can move everything to left side of equation or

better still , each side is an exact differential as it
stands, namely d(sin x cosy) = d(¼x4

) .  Implicit sol
is sin x cos y = ¼x 4 + C.

(h) (ye -• - sin x) dx - (e -• + 2y) dy 
= 0,

d( -ye -• + cos x - y 2) = 0,
implicit sol is -ye -• + cos x - y 2 = C.

6. (a) d(x 2
y 

+ ½, 2) = 0, implicit sol is x 2y + ½, 2 = C. lf
x = I ,  y = 4 then C = 1 2  so  implicit particular
sol is x 2

y + ½y 2 = 1 2. 
(b) d(-cos(2x + 3y)) = 0, implicit solution is 

- cos(2x + 3y ) = C .  I f  x = 0, y = ½ 1r  then
C = - cos ½1r, C = 0 .  So particular sol (stil l
implicit) is cos(2x + 3y) = 0.

(c) Each s ide is  exact ,  d ln (x + y) = d(x ) ,  so
ln(x + y) = x + C. I f  x = 0, y = 1 then C = O;
implicit sol is ln(x + y) = x. Then x + y = e',
explicit sol is y = e '  - x. 

7. (a) d(½x '  + 2x + Jy 2) = 0, ½x ' + 2x + h 2 = K
(b) (x 2 + 2) dx = - 3y dy , ½x ' + 2x = -r + K

8. (a) See (22). Use integrating factor -2--2 . Then
X + y 

dx = 
x dy - y dx

, d(x) = d (tan- 1 l) , 
X 2 + y

2 X 

x = tan- 1 l + K.
X 
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(b) See ( 1 7) .  Use integrating factor l /y 2 , 
( y dx  

� 
x dy) 

= dx, =.. = x + K, y = __ x _ _  
y y (x + K )  

(c) See (20). Use integrating factor � • 
X + y 

dy =
x
� , y = \/?'+7 + K. 

X + J 
(d) See (2 1 ) . Use integrating factor � .  

X + J 
2x dx + 2y dy 

2 2 = 2dy , ln(x 2 + y 2) = 2y + K. 
X + y 

Chapter 1 1  Review Problems (page 36 1)  

I .  (a) (See fig.) The 6 level set for example i s  the line 
2x + 3y = 6. The graph is the plane 
z = 2x + 3y (which passes through the origin) .  

b 

�������4 ,,,,' - -
PROBLEM / (o.) 

(b)  (See fig . ) .  The 3 level  set  for exam ple i s  
v'?'"'+"7 = 3, a circle with radius 3 .  There are 
no neg level sets. Graph is z = �. top 
half of cone z 2 = x 2 + y 2 . 

u:vrL si.:r.s 

$ J  !.;;-
')( 

PROBLEM I (b) 

2. (a) (See fig.) The 6 level set is y 2 + z 2 = 6, a cylin­
der. There are no neg level sets. The O level set 
is y 2 + z 2 = 0, the x -axis where y = z = 0. 

(b) (See fig . )  The -3 level set is 5 - x 2 - 2y 2 

- 3z 2 = - 3 ,  e l l i psoid x 2 + 2y 2 + 3z 2 = 8 .  
Highest level possible i s  5 ,  a point ellipsoid . 

PROBLEfol\ j,__ 

z 

PROBLEM 2 ( b) 

3. (a) y 
(b) 0 

az az ax ilz ily ilz ilz . 4. (See fig.) - = - - + - - = - cos 8 + - sm 8, 
ar ax ar ay ar OX ay 

!: = � ax 
+ az !1.. 

il 8  ax a 8  ay a B  
a z  . az 

= - - r  sm 8 + -r cos 8 
ax ay ' 

(az) 2 
+ ..!.. (�) 2 

OT T2 0 8  

( iJz) 2 (iJz)2 
= ax 

cos2 8 + ay 
sin28 

az az 
+ 2- - cos 8 sm 8 

ax ay 
1 ((az) 2 ( az) 2 

+ 

� 
ax 

T2 Sin28 + 
ay 

T2 COS28 

2 ilz ilz . ) - 2r - - cos 8 sm 8 
ax ay 

(ilz) 2 (az) 2 
= 

ax 
(cos28 + sin28) + 

ay 
(sin28 + cos28)  

(by canceling and factoring) 

= (::r + (:;r u, 2.\A - �  

-� " b e, 

/'ROBL£M 5 



au au ay au az au au 
5. (See fig.) - = - - + - - = 4 - + a- , a, ay a, az a, ay az 
a2u 

= 4
!.. (au) + a1. (au) + au 

(prod rule) aa ac aa ay aa az az ( a2u a2u ) = 4 ax ily • 
2 + 

az ily • 
C 

( a2u a2u ) au + a -- · 2 + - · c  + -
ax az az2 az 

a2u a2u a2u a2u au 
= 8-- + 4c-- + 2a-- + ac- + -

ax ay az ily ax az az 2 az 
6. Let /(x , y )  = xy + 2y 2 

- 1 2y .  Then aJ/ax = y , 
aJ/ay = x + 4y - 1 2 .  Partials are O when y = O, x = 1 2  
(critical point); NOT I N  REGION, ignore. 

On bdry y = x, f = y 2 + 2y 2 - 1 2y = 3y 2 - 1 2y 
where 0 s y s 4. Then f ' (y) = 6y - 12 ,  zero if y = 2 .  
Ends are y = 0, 4. Candidates are (2 ,  2 ) ,  (0 ,  0) , (4, 4). 

On bdry x = 4 ,f  = 2y2 - Sy where O s  y s 4.  Then 
f '(y) = 4y - 8; zero if y = 2.  Ends are y = 0, 4. Candi­
dates are (4, 2), (4, 0), (4, 4) . 

On bdry y = 0, f is always 0. 
To make final decision find /(2 ,  2) = - 1 2 ,  /(4, 4) = 0, 
/(4, 2) = -8, /(lower bdry) = 0. 
Max is 0, min is - 12.  
7. V/ = (6x, Sy). At any point, max directional deriv is 

in direction of VJ and has max value IIV/11 - So problem 
wants to know at what point on circle IIV/11 is largest. IIV/11 
= V36x2 + 64y2 and y 2 is 1 - x2 on circle, so on circle, 
IIV/11 = V36x2 + 64( 1 - x2) = V64 - 2sx2 for - 1  s x 
s 1 .  By inspection, max occurs at x = 0 (value is 8) which 
corresponds to points (0 ,  ± l ) on circle. At (0 ,  1 ) , 
VJ = (0, 8), at (0, - 1 ) ,  VJ = (0, - 8) .  

Answer is that max dir deriv on circle has value 8. It  
occurs at (0,  1 )  in north direction and at (0,  - 1) in south 
direction (Note that the circle is not and never was in­
tended to be a level set of/. )  

1 2/MULTIPLE INTEGRALS 

Section 12.1 (page 369) 

I . IR 5 dA = 5 IR dA  = 5 x area of R 
= 5 X 411  = 2011 
z. (See figs.) (a) Consider hemisphere which is top half 

of x 2 + y 2 + z 2 = 9. It is  u nder  graph of  
z = V9 - x2 - y1 and over the circular 
region R with radius 3. So ,-,--..---... 
hemisphere volume = IR V9 - x2 - y2dA. 
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8. VJ =  (2xyz, x 2z, x 2y), V/1,, = ( 1 2 , 3, 2) ,  QP = ( 1 , 3, 2) ,  
PR = ( 1 ,  -5, 2) .  Arriving at P from Q, dir deriv is  
_!L V/1,, · QP 25 . ,. 

d. d . 
-

= 
II- II 

= .  r.-: ·  Departing P ,or R,  1r env 
aQP QP v 1 4  

is af = 
VJ · PR 

= 
_l_ 

aPR IIPR II V'30 .  
9. (a) T(-2 ,  2) = 4 - 2 = 2 so point is on the 2 level 

set which is x 2 - y = 2, y = x 2 - 2, parabola. 
(See fig.) VT = (2x, - 1 ) ,  
VTl,- -2.,- 2  = -4i - J. a perp vector. 

PROBLEM CJ (o.) 
(b) (i) Graph is z = x 2 

- y. Point Q satisfies equa­
tion so is on graph. 

(ii) Surface is x 2 - y - z = 0, V(x 2 - y - z) = 
(2x, - l , - l ) .  At Q get V = ( -4 , - 1 , - 1 ) 
which is perp to surface at Q. 

(iii) Vz = (2x, - 1 ) ,  Vzl,- -2.,-2 = (-4,  - 1 ). 
NW = (- 1 , 1 ) . Slope at Q on NW path 
is az/aNW = (Vz · NW)/IINW II = 3/V2. 
Slope is 3/V2. ➔ ➔ 

(iv) Path in direction of Vz = -4 i  - j (more 
west, some south) rises most steeply. 

10. dS = 2 11(rdh + h dr) + 411rdr (product rule) 
= (211h + 411r) dr + 211rdh. 
1 1 . (2x - y) dx - x dy 

= 0, d(x 2 - xy) = 0, x 2 - xy = C. 
If x = l , y = 2 then C = -,- I .  So sol is x 2 - xy = - 1 , 
explicit solution is y = (x 2 + 1 )/x, y = x + l /x. 

PROSLE.M l(o.) 

ffl: 
,W:' 

'I PROBLEM Z(b) 

(b) Indicated cyclinder is under plane z = 5 and 
over  c i rcu lar  reg ion R w i th  rad i u s  2 so 
cyl volume = IR 5 dA. 
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3. (a) Roof of solid is plane I = 5. The floor is the 
region R 1 ,  Solid is box in fig. 

' PR05L£M 3 (a) 

(b) Roof of solid is paraboloid z,= x 2 + y 2. Floor is 
region R2• Solid lies under roof and over floor as 
indicated in fig. 

4. (a) Each xy dA in I I I  is positive (since x < 0,y < 0) 
so I xy dA is pos, fm xy dA is positive. Alterna­
tively, integral is positive because graph of 
z = xy is a surface in space above region I I I  in 
x, y plane. 

(b) (See fig.) For each subregion in I where xy dA is 
positive there is a corresponding subregion in I I  
where xy dA has the negative value (because 
X < 0). So I xy dA = 0 and /1 and l l xy dA  = 0. 

� 
PROBLEM 4- (b) 

(c) Same answer as (b). 
(d) Negative because each xy 2 dA is neg. 
(e) Pos. In fact the integral is the area of region IV. 

5. Not necessarily. lf/(x, y) is neg in the extension then 
the extra /(x,y) dA 's being added make the sum smaller, 
not larger. 
6. The sum of 0 dA 's is 0. Integral is 0. 
7. (a) True. If /(x, y) > g(x,y) then for any subregion, 

f(x , y ) dA > g (x , y ) dA a n d  I f (x , y ) dA > 
I g(x,y) dA. Alternatively, graph of f is higher 
than graph of g so more volume (above -
below) is caught by the f graph. 

(b) False. If f is larger on the smaller region R2 it is 
possible for the integral on R2 to be larger. In 
particular, i t  will happen if f is  positive on the 
smaller region R2 and negative on the larger 
region R 1 ,  

(c) False. Even i f  x and y are positive, it may be that 
/(x,y) is negative at all or some points (e .g . , 
/(x, y) = -xy , /(x, y) = x + y - 1 00) in which 
case the integral can be neg. 

(d) True, since the integrals are the areas of R 1 and 
R2, 

(e) True.  If f(x , y ) > 0 then /(x , y )  dA > 0 and 
If(x,y) dA  > 0. 

8. Rearrange (3) to get f R x dA  = 

(av value of x in R )  x area of R = 4 x 91r = 361r. 
9. No. f x dA  on the entire region is 0 (since I x dA  on 

the right half cancels I x  dA on the left half) but 4 f x dA 
on region I is positive. 

Section 12.2 (page 376) 

Each problem has a diagram. 
I .  (a) f�o f�:Lx '  dy dx and J;:H::1i'2 x 3 dx dy . 

With second version, inner = ¼x • �:li'2 = t;y
4 , 

outer = Hiiy 4 dy = ts ·  ¼y�  I� = 243/320. 

,:t

= 3

�,3) 

� 
PROOL£M I (().) 

(b) /;:� f��• 3dy dx and n-o f;::, 3 dx dy. 
With first version, inner = 3y &:;, = 3(x - x 3) ,  

outer = 3(½x 2 - ¼x 4) lt = ¾. 

PROBL�M I (b) 
(c) J�vio n=�� 2xy dy dx; and J;�o J:J-v; 2xy dx dy 

= J;2o (x 2y j,;-5_v;) dy = fJ0 0 dy = 0. (The an­
swer 0 is predictable since 2xy dA 's in the left half 
of the region are the negatives of 2xy dA 's in the 
right half, so sum is 0.) 

f-h,,:.., .. 
� -.Jio {io 

PROBLE.M I (c) 



2, (a) J::3 f',:�/(x,y) dy dx and fi:I r.:;:r; /(x, y) dx dy 

,. 
\ I �-y1 

�

)

. 
f'�8L£M 2.(o.) 

(b) J::�"2 J;:� /(x, y) dy dx and J�:l J::�"' /(x,y) dx dy  

" 
ln 2.,1) 

.,_ 

PROSL£M i(b) 

(c) Note that for dy dx order of integration, upper 
boundary is two curves so use f 1er. pan + f r11h, pan 
= J::I f;::S /(x,y) dy dx +  J::I J;;;«.J 10 /(x,y) dy dx. 
Note that for order of integration dx dy, right 
boundary is two curves so use J,op + f bouum 
== f:. 1 J::�-,v, /(x,y) dx dy  

+ f::J f::� /(x, y) dx dy. 

B·Wt-) 

!'I,, 
•3JL •IO 

C: (3,1) 

Mo.o) PFDBL.£M 2(c) 

kfI: 
k$2: 

(d) )l:: J::; /(x,y) dx dy  and /::; J�::f(x,y) dy dx  

2 7 

PROBLEM 2f.d) 

(e) Solve 4' .. x1, x - 2y + 4 = 0 to get points of 
intersection. One set-up is J::�, P,:!�t' /(x,y) dy dx. To use the other order 
of integration note that left boundary consists of 
two curves so divide up region to get 
f1 + Ju = J�:A J::¾/(x, y) dx dy  

+ P,:1 J::l;']. /(x,y) dx dy . 
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.:Qt � 
PROSLfM 2. (e) 

(£) f::I Ji:A,. /(x,y) dy dx. For other order of inte­
gration note that right boundary is two curves so 
divide up region: 

J, + fn = f;:�15 f::i /(x,y) dx dy  
+ P,: l� /::�" /(x,y) dx dJ . 

fROBLEM l (f) 

(g) "Top" of region is boundary at infinity: 
/::�. /;:;, /(x,y) dy dx  and 
P,:;; f::'f°v, /(x,y) dx dy . 

iI2 
PROBLEM 2(g) 

(h) Region is enclosed by "'J · = l and boundary at 
infmity. Each boundary consists of two curves; 
e.g., the left boundary is partly lower branch of 
hyperbola and partly boundary at infinity. 
For one method, J 1owcr ha1r+ J upper hair 
= .P,:'!.. f::ii, /(x,y) dx dy 

+ .P,:;; f::!.". /(x,y) dx dy. 
Also f 1er, hair + f rip, hair 
= /::'!.. f::r,. J(x, y) dy dx  

+ /::;; f;:!.'!. /(x,y) dy dx . 

/1\_ 
� 

PROBLEM l.(h) 
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(i) J�:i J::;•s f(x,y) dx dy . To use other order of in­
tegration must divide up region into three parts : 

/!-o f�:� f(x,y) dy dx + n-2 f�: �J(x, y) dy dx 
+ J::; f�=!-s /(x,y) dy dx. 

h.-
PR08LEM i (i ) 

(J
' ) Jv'i J1•V4-2a2 /( ) d dx d •• -Vi ,- -v4-t•• x, y :y an 

H:!.2 f::����,12 /(x,y)dxdy 

-ir/1\1: 
T 
PROBLEM .2 � )  

3. (a) Lower and upper boundaries each consist of two 
curves so divide up: 

f left pan + J right pan 
= J::'!. 1 f�:"._:� 1 /dy dx + J::A /�:;�r ' / dy dx. 

(b) It depends on f. If /(x,y) takes on the same val­
ues in quads I I ,  I l l ,  IV as it does in I then yes. 
But usually no. For example if /(x,y) = x then 
NO since f whole = 0 but 4 f quad I pan is positive. 

4. (a) Left boundary is line x = jy, right boundary is 
line x = I ,  extreme y 's are O and l. For reverse 
order, divide up region since upper boundary is 
two curves: 

J::l/2 J�:t f(x, y) dy dx + J:: l12 f�:AJ(x,y) dy dx. 

�(o. )  

(b) Lower bdry i s  line y = -x, upper i s  parabola 
y = x2 • Extremes are x = 0, l .  For reverse or­
der, divide up region : 
f uppcf' pan + J lower pan 
= f�:A f;:½ f(x, y) dx dy + f�:'!. 1 f;:�1 /(x,y) dx dy . 

PROBLEM 4-(b) 

(c) Lower boundary is  y = - �. lower half of 
circle x 2 + y 2 = 1 ,  upper boundary is parabola 
y = l - x 2 • For other order of integration di­
vide up region: 

/,op + /boctom = /�:A /::� /(x,y) dx dy 
+ n-- 1  /::� f(x, y) dx dy . 

PRO&LEM 4-(c.) 

(d) J;.o J;:{.'2 f(x, y) dx dy 

PR08l.EM 't(d) 

(e) Lower boundary is y = sin- •x, upper is y = 2. 
Note that the two boundaries don't actually meet 
since sin- •x doesn't get that high. Extremes are 
x = 0 and x = l .  For other order divide up re­
gion since right boundary is two curves : 

/1 + Ju = /�:� J::A J(x,y) dx dy 
+ f�:t' J::�, /(x, y) dx dy . 



* i fr -f.r·,,�J 
PROBLEM 4-(e) 

(f) Left boundary is y -axis, right boundary is x = ,,. 
For other order, d ivide region since lower 
boundary is two curves: 
J::A J;:'o /(x,y) dy dx  + J::i J;::. /(x,y) dy dx . 

P/<O�LEM 4(f) 

5. f.-o J;:!it ,,. dy dx and f;-o J::t ,,• dx dy. With first 
set-up we have to antidiff t' w.r.t. y ;  hard. For second 
set-up, 

inner integral = J::3' ,,. dx = u11 �:3' = 2ye'' 
outer integral = J;:U,e,t dy = t'1 �-o = e - l 

(get antiderivative of 2ye,t by inspection or substitute 
u = y 1, du = 2y dy). 

8·(0 1) 
:(7.,1) 

l(. 

A 
PROBLEM 5 

Section 12,3 (page 381) 

1 .  (a) J�-w12 J:..o r cos 8 rdrd8. Inner = ¼r5 cos B l:-o 
= \! cos 8. Outer = ¥ sin B l�w12 = .!J! .  

(b) J�o J:..o (r cos B) (r sin B) rdrd8 
= f�o J:.o r5 cos 8 sin 8 drd8 
= J�o¾r4 cos 8 sin B l:..o d8 
= fr2 64 cos 8 sin 8d8 = 64 · ½ sin2B lr2 = 32 

(c) I',:o J:.o -
1 

1 
2 rdrd8. Antideriv .of r/( l  + r2

) + r 
is ½ ln( l + r2) (sub u = l + r2 , du = 2r dr) 
so get I',!0 (½ In 1 7  - ½ In l ) d8 
= j In 1 7  fo"d8 = ½ In 1 7  x 211' = 11' In 1 7 . 

2. f:t!o f:"-o e -•'rdr d8 = Jr.2o ( - ½, - •' lo) d8 = ff2 ½ d8 
= ½ X ½11' = ¼11' 

Solutions to the Problems • 5 1 1  

3. Lower boundary of region is x -axis, upper boundary 
is top half of circle ,c 2 + y 2 = 9,  extreme x's are 3,  - 3  
(see fig. ) ;  J;.o f�-o ln( l  + r 2)rdr d8. Let u = l + r 2 , 
du = 2rdr. So inner integral is ½ Jl0 In u du (now use in­
tegral tables) = ½(u In u - u ) I I ° = ½( 1 0  In 1 0  - 9) .  
Outer = ½11'( 1 0  In 1 0  - 9). 

4. (a) I',:o J:.s 
(h) I',:o J:.2 

-+ 
PROBlEM 3 

(c) Inner boundary is r = 0, outer is line x + y = 2 
which in polar coords is r cos 8 + r sin 8 = 2,  
r = 2/(cos 8 + sin 8) ; get J�o f��'ii"" t+un "·  

(d) I nner  bou ndary is  r = 0 .  Outer i s  c ircle 
(x - 2)2 + y 2 = 4 ,  x2 + y 2 = 4x, r2 = 4r cos 8, 
r = 4 cos 8 .  Extreme Ifs are - 11' /2 and 11' /2 so 

fwl'l Jr• 4 cos 9 get t• - w/2 r•O 

(e) f,-o J:-s 
(f) Inner boundary is r = 0. Outer boundary is two 

curves, line AB and line BC . (See fig.) Divide up 
region. Line AB has equ y = 3, r sin 8 = 3 ,  
r = 3 csc 8 .  Line BC has equ x = 6, r cos 8 = 6, 
r = 6 sec 8. 
/square = /1 + /11 = J:!o J:��c • + f,"��o J:�:{ ' 
where 80 is in diagram, can be called tan- • ½ . 

Section 12.4 (page 386) 

All problems except l (d),  2(c) ,  and 4 have diagrams. 
1 .  (a) Method (B): Upper curve is line and parabola; 

divide uVregion. For left pan, u(x) = Vx+l, 
l(,c) = - x + l. For right part, u(x) = l - x, 
l(x) = - Vx+I. 
Area = f-. 1 (Vx+l - - Vx+I) dx  

+ JW - X - - Vx+I) dx  
= 2 J� , Vx+I t1x + JW - x + Yx+I) t1x 
= 2 • i(x + l )m I� 1 + (x - ½x 2 + i(x + l )512

) l g 
= ,. 

Method (C): Area = f ..,,ion dA 
= J�: �, f!;;,_ , dx dy = · · · = ; _ 
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PROBLEM I (o.) 
(b) To get points of intersection solve x(5 - x) = 4 

to get x = 4, I .  
Method (BJ: u(x) = 5 - x, l(x) = 4/x. 

Area = /1 (5 - x - 4/x) dx 
= (5x - ½x 2 - 4 In x) It = Jj - 4 In 4 .  

Method (C) : Area = f,.�on dA 
= f!- 1 f�:t;: dy dx = fl (5 - x  - 4/x) dx, as above. 

PROBLEM I (b) 

(c) Method (B) :  u(x) = 4 ,  l(x) = x 2 . 
Area = I'--2 (4 - x 2) dx  = (4x - ½x') l!2 = 32/3. 

Method (C) : Area = f .. �on dA 
= J::!1 f�=!• dy dx  = f!2 (4 - x 2) dx, as above. 

-l l 
PROBLEM I (G) 

(d) By (C) ,  area = f,cgion dA = J::o J:.o r dr d8. 
Inner = ½r 2 l�-o = ½82 ; 
outer = I'o"½ 82 d8 = ¾8' 1�" = i'II'' .  

2.  (a) Use (A') .  Solid lies under graph of /(x,y) = 

6 - ½x - 3y and above circular region R with 
radius 2; volume = fR (6 - ½x - 3y) dA 
= J:!o J:.o (6 - ½r cos 8 - 3r sin 8)r dr d8 ;  
inner = (3r2 - ¾r'  cos 8 - , ,  sin e, II 
= 1 2  - i cos 8 - 8 sin 8 ;  
outer = f:!o 1 2 d8 - ! fo" cos 8d8 

- 8fo" sin 8d8 = 24'11' + 0 + 0 = 24'11'. 

'J 

" PROSI.E r-1 Z (o.) 

(b) Method (A ') :  Find vol of top hemispherical re­
gion and then double. Sphere is x 2 + y 2 + z 2 = 

R 2 • Hemispherical region lies under graph of 
/(x,y) = VR* - x2 - y" and over circular re­
gion of radius R in x, y plane so 
hemisphere vol = fcirc region V,..R ... ,,..._-x-, ---,-, rJA 
= J::o f:.a � rdrd8. (To get antideriv 
of ,�. let u = R 2 - ,2 , du = -2,dr.) 
Inner = -½(R 2 - r2)312 1:.0 = ¾R 3 ; 
outer = J::o½R ' d8 = 271' · ½R ' ;  
sphere vol = 2 • 2'11' · ½R ' = i'll'R '. 

@-
PROSLE1'1 2(b)  

Method (B ') : u(x, y) = VR 2 - x2 - y2, 
l(x, y) = -VR 2 - x1 - y2, 
sphere vol = fp••i in •. , p1 ... (u(x,y) - l(x, y)) dA 
= Jcirc rcgion 2 VR 2 - X2 - y 2 dA, etc. 

{c) Find vol of top half and double. Use (A') .  Solid 
lies under sphere x 2 + y 2 + z 2 == 36, i.e. , under 
graph of/(x, y) = V36 - x2 - y', and above 
circ region R of radius 3. 
Volume = 2 /R V36 - x2 - ,' dA  
= 2 /?!o J�-o v'36='? r drd8;  
inner = -½(36 - r 2)312 I� = ¾(2 1 6  - 27512) ; 
outer = 2 · 2'11' • ½(2 1 6  - 27512 ) . 

(d) Use (B'). Upper surface is plane z = h, lower 
surface is the cone. Projection in x, y plane is 
circular with radius R. Will use polar coords so 
need cone's equ in terms of z, ,, 8. By similar 
triangles 1./h = r/R so z = rh/R. 
Volume = I',!o J:.o (h - rh/R )rdrdB 
= I',!0 (½hr2 - ½hr'/R ) l:-o d8 
= I',:o¾hR 2 dB = 2'11' · ¾hR 2 = ¾ 'll'R 2h. 

� ,_i 

PRO8LEM Z(d) 

(e) Use (A') .  Solid lies under graph of /(x, y) = h 
and above circ region with radius R.  
Volume = fcirc rc1ion h dA  = I',!o J:.o hrdrd8 
= I',!o thr2 j:.a d8 = I',!oihR 2 d8 = 2'11' • ½hR 2 

= 'll'R 2h. 



5. (a) 

�j 
PROBLEM Z(e) 

Plane intersects parabola in circle 2x2 + 2,2 = 

12 so projection is circle x 2 + y 2 = 6. Use (B') .  
Volume = fpr<!i [ l 2  - (2x 2 + 2y 2)] dA 
= I',:::o f.:l ( I 2  - 2r2)rdrd8. 

PR08LEM 3(o.) 

(b) Use (B') . To f't projection use 
8 - 3x2 - 3y = x 2 + ,2 , i .e., x 2 + y2 = 2. 
Volume = fpr<!i (B - 3x 2 - 3y2 - [x2 + y']) dA  
= I',:::o J';:!o (8 - 4r2)rdrd8. 

(c) Can use (8 1 ) .  Upper surface is sphere x 2 + 
y2 + z2 = 25 so u(x,y) = V25 - x• - y•. Lower 
surface is plane z = Vfi. Projection is circ re­
gion with radius 2.�• ---� 
Volume = Jp"!l (V25 - x2 - y2 - 'V2l) dA 
= f,=o f�-o ('V25°'=7 - 'V2l)rdrd8. 
Or can find volume of a "half apple core" and 
subtract vol of cylinder with radius 2 and height 
V2T (which is essentially what the preceding 
double integral does anyway) . 

• 
, PROBL£M

1 

3(c-) 
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4 .  Use (A'). Half-solid lies under cylinder x 2 + z2 = 9, 
i.e., under graph of /(x,y) = V§""="?, and above a circ 
region R of radius 3 in x, y plane. 
½vol = fR V9°=7 dA  = f;:�5 f�vr-;1 V§""="? dy dx; 
inner = \/9=7 (\/9=7 - -V§""="?) = 2(9 - x2) ;  
outer = 2 J�5 (9 - x 2) dx  = · · ·  = 72 ; 
total volume = 2 X 72 = 144. 
5. �e �A'). !ntegral is vol of solid with floor R and roof 

z = x + y (top half of cone z2 = x2 + ,') . (Note that 
integral is not the volume inside cone since that volume 
lies above the cone, not under it.) 

Section 12.5 (page 390) 

All problems have diagrams. 
1. (a) Distance from (x, y) to longer side is x. 

. . _ f «iponXdA . Av value of x m region -
( h" h . 25)

, 
area w 1c IS 

froaionXdA = f!-o f:!o'b xdydx 
= f�x( l 0  - 2x) dx = (5x 2 

- Jx5) I� = 1
�

5 

so average value = is x 1¥ = i. 
(b) Distances to legs are x and y so 

dmass = mass density x area = xydA; 
total mass 
= f ,....,.,xy dA = f!-o f:!iir.xy dy dx 
= JHx,2 �!iit. dx = H½x( lO  - 2x)2 dx 
= H½( l OOx - 40x2 + 4x 5) dx  = · · · = 625/6. 

IO 

s 
PROBLEM I 

2. Method 1 :  Consider sand in strip at distance 150 - x 
from desert. Area is 500 dx, sand density in strip is 
1/( 1 50 - x) so 

. 500 dx 
dsand = density x area = 

1 50 _ x 
, 
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J, lOO 500 dx total sand = -0-- = - 500 ln( l 50 - x) jA'>0 o 1 5  - X = - 500(1n 50 - In 1 50) = 500 In 3. Method 2: Consider small subregion containing point (x,y) with area dA. Its distance to desert is 1 50 - y so dsand = dA/( 1 50 - y), 
1 l f� f� l total sand = --- dA "' --- dx dy town 1 50 - J 1•0 x•O 1 50 - J I IOO 500 = --- dy "' · · , = 500 In 3 as above . ,-o 150  - y 

J
>
O

s 

/00 

y.. th 
o . f00 -

If<

� 
100 

�A • 
,oo 

,"1ETI-IOD MffHOD 2. 

PROBLEM :Z. 3. Method I :  Consider small subregion with area dA containing point with polar coords r, 6. Then dwater = density x area = r' dA, total water = J:.0 f�-o r'rdrd(J = f:.o¼r' l�-o d6 = 6�1r/5. Method 2: Consider semi-ring of radius r and thickness dr. By (8), Section 4 .8 ,  its area is 1rrdr ;  its density is r' so dwater = r'1rrdr = 1rr• dr; total water = [i 1rr4 dr = 6�1r/5. 
18\ dr O � 6 

METllDD I MffHOD 7.... 
PROBLEM 3 4. (a) Method 1 :  Consider small subregion of area dA containing point r, 0. Then dcost = rdA, total cost = f 1and rdA = ft::o f�-o rrdrd6 

= f�" f�-o r2 drd6. 

-$- '2 f- LINI: 

PROSU.M it (D.) 

Method 2: Consider circular ring of radius r, thickness dr. Then density in ring is r, area is 21TTdr, dcost = r • 21rr dr  = 21rr 2 dr, total cost = f�-o 21rr2 dr. (b) Consider small subregion with area dA contain­ing point (x, y) :  dcost = v'?'+y1 dA ; cost = f 1and0

� dy dx 
= f::1 f ;!JHY• v'?'+y1 dy dx. 

3 
I S PROBLEM 4-(b) 5. (a) The small number of people (i.e. , dpeople) liv­ing in a little subdivision containing point (x, y) and with area dA. 

- �  

� PROBLEM £(0..) (b) /(x,y) is people per unit area, i .e . ,  population density. If /(2, 3) = 8 it does NOT mean that 8 people live (all squashed together) at point (2, 3) .  It means that the pop density at (2, 3) i s  8 people per (say) square mile. 6. Consider small subregion containing point (x, y) with area dA. Density isf(x,y) people per square mile so num­ber 'of people in small region is /(x, y) dA and . f(x, y) dA dd1sease = V 2 2 • (x - 8) + y . I f(x,y) dA total disease = V 2 2 rcg;o,, (x - 8) + y 
f.4 f.•=M,'2 f (x,y) = 2 dx dy. ,-o .-,12 V<x - 8)2 + y 

PROBLEM b 7. Method I :  Consider a strip. By similar triangles, strip height 5 . . _...__"""..._ = - ; stnp height = 5 - x, 5 - x 5 



METHOD 2 

PROBL.EM 7 

. (5 - x) dx 
area of strip = (5 - x) dx; dheat = ----- ; 

8 - x  

total heat = f.5 5 - x dx = f.5( 1 - _3 -
) 

dx 
0 8 - x o 8 - x 

(divide out) = (x + 3 ln(8 - x)) J& 
= 5 + 3 In 3 - 3 In 8. 

Method 2: Consider a small subregion with area dA, 
containing point (x, y). 

dheat = � ,  heat = f � 
8 - x  r0Jion 8 - x  f••S I ,-s-, 1 15 5 - x = -

8 
-dy dx = -

8
- dx etc. (as above). 

.x•O 1•0 - X o - X 

8. Consider a small subregion containing point (x,y) 
with area dA. Distance to tracks is x + 2, distance to TD 
· 7  de x + 2  1s - y ;  ost = -

7
-- dA; 
- y f X + 2 1••6 

J

(6-•Y2x + 2 
total cost = --dA = --dy dx. 

land 7 - J ••O y•O 7 - Y 

9. (a) 

PROSLrM 8 

Method 1 :  Consider a circular ring with radius r, 
thickness dr . Area is 2 ,rr dr ;  d (energy) == 
271'Tdr/r = 2,rdr; total energy = f� 211'dT = 61r. 

Method 2: Consider a small region with area 
dA containing point r, 9; d(energy) = dA /r, 
energy = J..,,;00 ( 1/r) dA "' J::o f�-o ( l /r) rdrd8 
= 61r. 

ME'THOP I 

PROSLEM Gf (o. ) 

Solutions to the Problems • 515 

(b) Like part (a), but dist to heat source i s  V2IT? 13 2,rrdr 
not r so heat = • � , also 

o v 25 + r-

f2w f3 1 
rdrd9. 

,-o ,-o V2IT? 

PROBLEM C/ (b) 

10. Consider a small subregion containing (x, y) with area 
dA. Height above ground is y, distance to ladder is x, 
dcost = xy

2 dA, cost = J!�o JJ! 1oxy 2 dy dx 
= H0½xy 3 �! 1odx = ½(253 - 1000) • ½x 2 Jf 
= -¥ (253 - 1 000). 

''.h 
� 

PR0SLfM 1 0 

Section 12,6 (page 397) 

All problems have diagrams except 2(a), 3(d), and (5). 
I .  {a) Lower boundary is plane z = 0, upper is plane 

z = l. Use x, y projection. 
f x 2 d V = f. � o  f, ?..0 1 - • f . ! o x 2 d z dy dx . 
Left bou n d a r y  i s  p l a n e  y = 0 ,  r i g h t  i s  
x + y = l .  Use x, z projection .  
fx 2 dV = n.o n-o J;:ox 2 dy dz dx. 
Rear boundary is plane x = 0, forward is 
plane x + y = l. Use y, z projection 
fx2 dV = f;.o f;-o f!:ox2 dx dy dz. 
We used version dy dz dx and got answer 1 /6. 

P�osw1 I (o.) 
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(b) Lower boundary is plane z = 0, upper is z = 5. 
Use x,y projection. 
f x 2z dV = H:o f�-o f�-o r 2 cos26 · z · r dz dr d6. 
Left and right boundaries are the cylinder. Use 
x, z projection .  
f x 2zdV = f�-o f:- -2 f:::� x 2z dy dx dz. Also 
f x 2zdV = f;.o J;- -2  J::�x 2z dx dy dz. 
Use version dz dr d6 (antiderivative of cos26 is 
½6 + ¼ sin 26 from tables) to get answer 501r. 

-Fl-� 
y, ! PM.Jrt.,TION 

z 

crr: 
� PROSL£M I (b) 

2. (a) Lower boundary is plane z = 0, upper is plane 
ABC which has equ x/2 + y/3 + z/4 = I ,  z = 
½( 1 2  - 6x - 4y) .  Use projection in x, y plane. 
Line BC is x/2 + y/3 = I ,  3x + 2y = 6. 
f2 J(6-3x)/2 J••( l 2 -o;.-<,)l3 [( ) d d dx x•O 1•0 :•O X,) ,  Z Z ) , 
Also, rear boundary is plane x = 0, forward is 
plane ABC. Project into y, z plane where line AB 
has equation y/3 + z/4 = I .  
J;.o J::�• 2- •,Y' J;:i,•2-<,- 3,)16 f(x, y z) dx dz dy . 

(b) Can use polar coords and z. Lower boundary is 
lower half of sphere where 
z = - VR 2 - x2 - y" = - �; 
upper boundary is z = �- Projection in 
x, y  plane is circular with radius R. 
f!!o f�-o J;:���-.� ,, f (r cos 6, r sin 6, z) r dz drd6. 

2. 

�9 
?'-

" (b) PROBLEM 1.. 

(c) See Example 2 .  
f:!o f�-o  J::,t,R [(r cos 6, r s in  8 ,  z)r dz dr d8. 
Can also project into y ,  z plane.  Cone has 
equation 

rh h 
z = - = - �y R R 

h Z·MIS 

,- - •;f>, -R  R 

PROBLEM 'J... (e,) 

h 2  
z 2 = 

R
2 (x 2 + y 2) .  

Rear boundary is x = - VR 2z 2/h 2 - y", 
forward boundary is x = \!R 2z2/h2 - y2. 
I• Jy•R'1h f••V�•·W•h' ,[( ) dx d d 1.•0 ,• -R,Jlt .1:• - R ,: 11,, -y X, J, Z J Z. 

(d) Lower boundary is plane z = 0, upper is plane 
z = h. Project into x, y plane. 
fe"�1 J,R.o f.'-o f( r  cos 6 , r s in  8, z ) r dz dr d6 . 
Also, rear boundary is plane x = 0, 
forward boundary is 
x = �- Project into y, z plane. 
f�-o f:-o f::tR'-.,, f (x, y , z) dx dy dz. 

(e) Upper boundary is not clear (two surfaces are 
involved) .  Instead, rear boundary is plane x = 0, 
forward is cylinder x 2 + z 2 = 9, x = \/9'=7. 
Can use polar coords for projection in y, z plane 
so that y = r cos 6, z = r sin 6. 
f B'!o f�-o Jz:"t9-·2 ,;

026 f (x, r cos 8, r sin 6)r dx dr d6. 

2 

�y 
PROSLEM 1 (e) 

(f) Left boundary is plane y = 0, right boundary is 
plane y = h .  Use polar  coords for circular 
projection in  x, z plane so that x = r cos 6, 
z = r sin 8. n:. f�-o I:-o [(r cos 6, y, r sin 6)r dy dr d6. 
Also, lower boundary is lower half of cylinder 
x 2 + z 2 = R 2 , z = -�; upper is 
z = �- Use projection in x, y plane: 
f�-o f:1- -R r:.R_';:;;,,_,, [(x,y , z) dz dx dy . 

�1 
" PROBLEM 2 ( f) 



(g) See Examfle 3 of Section 1 2 .4. Lower boundary 
is % = 2x + y 2 , upper is % = 4 - y 2 • Can use 
polar coords for projection. 
n., rv'i J•·•-•• .;.,•, /( 8 · 8 ) J ,-o J ,..c, z•t,,l cos1f+,-2 un21 T cos , T SlD 1 % 

r tk drd8. 
Also, rear boundary and forward boundary are 
both % = 2x 1 + y_2. Use proj in y, % plane. 
J-;-J..v2 J:::,-,• f:_«1:.-$f!,,,,.f(x, y, %) dx d% dy 

(-J1,2) 

(h) Lower boundarr. is z = x 2 , upper iu = 5. Use x, 
y projection; J"f;}_-.15 J:- -2 J::!, f(x, y, %) tk dy dx. 
Also, rear boundary and forward boundary are 
% = x2 • Use y, % projection. 
J:--2 f�-o J;:':�f(x,y , %) dx tk dy. 
Also, left boundary is plane y = - 2, right is 
plane y = 3. Use x, z projection. 
J"f.}_-.15 J::!2 f�:�2 /(x, y, %) dy tk dx. 

ffe� .. 
'-'' - 3  7 � -

: • :fROBlEH ; (h) 

" 

1 I y 2. J 
y,t. P114J£GT,otj 

(i) Lower and upper boundaries are the ellipsoid . 
Projection in x, y plane is bounded by ellipse 
x 2 + 2y 2 = 1 2. 
fV& fV1 2�• t fVC l t-••-2,,•llS 1• -v1l ••- 1 2-111 •• -Vc 1 2-�-2y•)l3 

f(x, y, z) tk dx dy. 
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(j) Lower boundary i s  plane % = O, upper i s  plane 
% = x. Project into x, y plane. 
I',-o J!-o J::o J(x,y , %) tk dx dy. 
Also, rear boundary is plane x = %, forward is 
plane x = l .  
f:-o f:-o [1., f(x, y , %) dx dy tk. 
Also, left boundary is plane y = 0, right is plane 
y = 2 .  
f!-o f::i f;:� f(x, y , %) dy d% dx. 

-:H-y r-;:; f'ROJ£Cflo.J X 

(k) Lower boundary is plane % = 0, upper is plane 
y + % = 5 .  Can  use  polar coords for x ,  y 
projection. 
I',:o J:.o f::g-r sin e /(r cos 8, r sin 8, %) r tk drd8. 
Also, rear and forward boundaries are the cyl 
x' + y 2 = l . 
f I f••S-, fvT=;, /( ) .I.. .,_ d ,- - 1 ,.o •• -vr:;t x,y, % .... ,... y. 

PROBLEM 2(k) 
,k=r 

-J-++-y 
'j, l PROJEC-TION 

(I) Lower boundary is plane % = 0, upper is plane 
z = x. Can use polar coords for projection in x, 
y plane 
J�o f:.o J��• f(r cos 8, r sin 8, %)r d% drd8. 
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?( 

(m) 

PROBLEM 2W  
-,., z. PRru,c.noN 

Also, left boundary is plane y "' 0, right is cyl x 2 + y 2 aa l ; n-o f:-o /�:tr=-' f(x,y, z) dy dz dx. Rear boundary is plane z "' x, forward is cyl. Projection in y, z plane is not obvious. Plane and cyl intersect to give z 2 "' 1 - y 2 . So projection is bounded by circle y 2 + z 2 "' 1 .  Can use polar coords with y "' r �os �• z2 "' r sin 6. 
f �o f:-o J::'t!;J;; r -, co, • f (x, r cos 6, r sin 6) r dx dr dfJ. 

H H - h  Let cone height be H. Then R , "' � • H "' R R rhR . See Example 2. Equation of cone I - 2 is z "' rH/R , in cyl coords and z 2 "' H: (x 2 + , 2) 
R ,  in rect coords .  Lower boundary is two surfaces, plane z "' H - h and the cone, so with this ap• proach must divide up solid . Instead, rear and forward boundaries are the cone surface. Use projection in y, z plane. 

f••H J1•R ,JH r.•V"'R"'"• ••""'•t"'H•"'"-.... ,• f L d  d ••H-h ,- -Ji 1rlH ·• -VR•1 ••IH•--·• (x,y, z) UJ< ':J z . 
h� 

H-ht \} t PRO.BLEM 2.(m) 3. (a) Use cyl coords. Consider a small subregion with volume dV, at point r, (J, z. (i) Density in subregion is r, dmass "' rdV, mass "' f 10rid cyr r dV "'J::o f�-o f�-o rr dz drdfJ = J1rR 'h. 

(Problem can also be done with a single inte­gral and cylindrical shells.) (ii) Density is z, dmass "' z dV. mass "' J::o f�-o f�-o zrdz dr d(J "' ½ 1rh 2R 2 • (Can also use a single integral and slabs. )  (b) Use cy l  coords. Consider a small piece with vol­ume dV containing point r, 6, z. Distance to line of revolution is r, mass is 8 dV, dmoment "' 8 dV • r2 . Lower boundary is cone surface where z "' rh/R (see Example 2), upper is z "' h. total moment "' f,oUd 8r2 dV "' n:o f�o J::�h/R 8r 2rdz dr d(J "' i1rhR 4 8. (Problem can also be done with a single integral using cyl shells.) 

(c) Consider a little blob of liquid of volume dV at point r, 6, z. It has weight 2 dV and must move up 20 - z feet so dwork "' (20 - z) · 2 dV "' (40 - 2z) dV, total work "' f hair-cv, (40 - 2z) dV "' J::o J:.o J:2o (40 - 2z)rdz drd(J "' 75001r. (Problem can also be done with a single integral using slabs of water.) 

( d )  Vo l u m e  i s  / ,o l i d d V .  Lower  bounda r y  i s  z = 2x 2 + 2y 2 , upper i s  z = 1 2 .  When they in­tersect ,  2x 2 + 2y 2 = 1 2 ,  x 2 + y 2 = 6; x ,  y projection is circular with radius V6. Use polar coords ;  vol = J:!o f� J::�-:, rdz drdfJ. (Problem can also be done with a double integral . )  4. Vol = f,oP id dV. Lower boundary is two surfaces ,  plane z = 0 and hyperboloid . Don't use this version . 



·ff {f y 
PROBLEM 4 

Rear and forward boundaries are the hyperboloid . Use 
y, z projection . Then volume is 
I dV - f2 fVc6+Slf''3 • /••Vt•'••-,21' • dxd d 10lid - z.•0 , • - V (  + 3:. ,12 x• - 6•3z -2) · 'J Z. 
5. Not necessarily. It depends on the/. If the values of 

/ in the missing hemisphere match the values off in the 
hemisphere used , then OK. But otherwise NO. In other 
words, the sum of 100 terms of the form/(x, y, z) dV is not 
the same as twice the sum of the first fifty terms unless 
the last fifty match the first fifty. For example, with 
sphere centered at origin ,  f,oHd ,phcre z dV is O but  
2 Jl0p hcm; z dV i s  not 0 .  

Section 12.7 (page 404) 

I . Vol = f,ph••• dV = J::o f:-o f:-o P 2 sin if, dp dif,d8. 
I nner = ½P 5 1 :  = ½R 5 ; m idd le  = - \R ' cos if, lo' = 
fR ' ;  outer = fR ' · 211' = J1rR 5 • 
2. (See fig. )  Vol = f.o ... dV. I nner boundary is p = 0, 

outer is plane z = h, p cos if, = h ,  p = h/cos if, so 
vol = I',:o f:!o f��• p2 sin if, dp dif,d8. 

h '  f•o sin if, Inner = ½l 1!-o = � ;  middle = ½h ' -,- dif,. 
CJ COS 'I' ♦•O COS fP 

To get antideriv, substitute u = cos if,, du = -sin if,dif,. 
Gct !h '-1-1 "0 = ¾h ' (-1 - - 1 ) 2 cos2if, if, = 0 cos2if,o · 

From right triangle, cos � = � so 
h + R 

middle = ¾h' e2 
;/

2 
- 1 )  = ¾R 2h. 

Outer = ¾R 2h • 21r = ½1rR 2h. 
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3 .  Let origin be center o f  sphere. Density i s  l /p2 so 
mass = f ( l /p

2) dV 
= I',!:o f:-o f:-o ( l /p2)p2 sin if,dpdif,d8 = 411'R. 
4. (a) Like Fig. 9 but with "radius" Po = 00 

(b) f!:o f�o f;.o 
(c) J;.o f:-o J;.o. 

5. (See fig.) 

PROBL.U-1 5 
Volume = f dV = J::o J:!!o f!-o P2 sin if, dp dif,d8. 
Inner = ½P' I� = 9; middle = -9 cos if, l:'!.o = 
9( 1 - cos 'Po) =  9( 1  - ½'\15) ; outer = 1 811' ( 1  - ½V5) .  
6. (See fig.) Inner boundary i s  p = 0 ;  outer i s  plane 

z = h, p cos if, = h, p = h sec q,. For any point, distance 
to z-axis is r = p sin if,. 
Moment = 6 J::o f:!!o f::� ... .._ • ( p  sin q,)2p2 sin tf,dpdq,d6. 

PROBLE.M 6 
7. (See fig.) Inner boundary is z = 3, p cos if, = 3 , 

PROBLtM 7 
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p = 3/cos t/,; outer is p = 6/cos t/,. Mass of a small piece is ( I / p) dV so total mass is f ( 1 /p) dV = f::o f:20 J;���::. . ( l /p)p 2 sin t/, dp dt/, dfJ; . 27/2 2.J., 'd . f sin ti> • I mner = cos .,, ; anti env o � 1s --:;: so cos .,, cos .,, . 27 ( I ) 27 I .  r,7; middle = - -- - 1 = 2(1 v 1 3  - l ) ;  2 cos t/>o outer = 27'1T(½Vl3 - 1 ). 
Section 12 .8 (page 408) I . By physical considerations, the centroid lies on seg­ment AB. (See fig.) I nsert axes so that AB is the z -axis. Hemisphere volume = J'ITR 3 , l z dV = I',!o l:!o 1:-o P cos t/,p11 sin t/,dpdtf, d8 = ¼'ITR 4

, So z = l z dlV = iR . The centroid is o� AB , iths o' the 
VO way from A to B .  

PROBLEM I 2. (a) Centroid is on segment CD. (See fig.) Insert axes so that CD is z •axis. Cone vol is i'ITR 1h. 
f z dV = /J:o J�-o J:...,R zr dz drdB = ¼ '1Th 1R 1 (See Example 2, Section 1 2 .6 for limits.) - J z dV 1h C 'd ' CD z = --;;;f" = 4 • entro1 1s on , ¾ ths of the way from C to D. 

w 
fROSLEM 2(o.) (b) Centroid lies on segment .'1B .  (See fig.) Insert axes so that AB is v -axis. Area of semicircle is ½'ITR 2 ; f y dA = l::o l�-o r sin fJ r dr dfJ = JR ',  

y = l y dA = 4R .  Centroid is on AB , i'IT-lhs of area 3'1T the way from A 10  B.  
s 

A 
?11DSL8'1 2(b) 

3. (a) Centroid lies on segment AB . (See fig.) Use AB as z -axis. Then x = y = 0, and (see Example 2, Section 1 2 .7) z = l z dlV where l z dV 
VO 

= I',!o l:!o l:::vt ... . p cos t/> p2 sin t/, dpdt/, dfJ, vol = l dV 
= I',!o l:2.o f:::v'i .. c• p 11 sin t/>dpdt/, dfJ. 

PROBLEM 3 (o.) 

Ii - l x dA • l' 1• -••" d L (b) (See 1g. ) x = -- = ii �-o ,-o · x Y =, area 
Y- - f y dA 

= 11� 1·• - •·"' ., dy L - ri x•U y•O r � area · · 

PROE>LEM 4. (a) With indicated axes (see fig.). x = 0, 
_ f y x density dA 
l = · f density dA J;.o J;.u (r sin 8) (r 2) rdr d8 

/:. 0 J;.u r2r drd8 
L 

Lt--+� 
PROBLt� 4- (o..) (b) Wi th  ind icated axes ,  (see fig . ) i = y = 0 ,  

f z x density dV h . 1 1 . . z = 
f 

. For eac mtegra • 1m11s densi1y dV are I',!o f�o J!-o and dV = r dz dr dfJ. Al an ar• bitrary point P in the solid cylinder, with cylin• drical coords r, 8, z, the distance to the top of cylinder is h - z and distance to z -axis is r. So in (i) density is h - z, in (ii) density is r. 



P r h 

�--'+-...__� 

X. PROBLEM 4- (b) 

Chapter 12 Review Problems (page 408) 

I. (a) (See fig.) Left and right boundaries are the cir­
cle; J;:�Y'2 I;:�x 5

y dx dy . Lower boundary 
is circle, upper is partly circle and partly line, 
divide up region (into three parts) ;  
f·• - I  fV°h! f' f ' •• -V2 >• - � + •• - I y• -� 

+ f"'!  f\/17,T" 
Jt • J  ,--� 

-vf 

PROBLEM I (o.) 
lb) (See fig. )  Outer boundary is line and circle. Di­

vide up region. Line is 
y = l, r sin 8 = l, r = csc 8 ;  n:1!. f�'::t (r cos 8)'r sin 8 rdr d8 
+ J::1;,.,. f� (r cos 8)5r sin 8 r dr d8 

Warning: For the second integral you can use 
f,�•-5 .. 1• but NOT f�� • . 

PROBLtM I (b) 

(c) (See fig.) x'y dA 's are positive in l and I I I  ·and 
take on precisely the negatives of those values in 
II and IV so the sum of x'y dA 's is 0. 
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PROBLE.l'l I (c.) 

2. Not necessarily. It depends on the values of /. I f  
values of / are higher in R ,  then fR . J(x,y) dA will be 
larger. 
,. Area = f: (u(x )  - /(x ) ) dx = J � ,  (x + 2 - x 2 ) dx .  

Also area = f,.g,un dA = f!- - 1 f;:;;2 dy dx. (See fig.) 

PROBLEM 3 

'/ 
// ' 

I I I 1 1  \' 

PROBLEM 4" 
5. (See fig.) Consider a small piece of land with area dA 

containing point (x, y) .  Then dcost = xy dA, 
cost = f1andxy dA = f,�o I',.o (r cos 8) (r sin 8)rdrd8. 

� 
PROBLE:M 5 

6. (See fig.) Lower boundary is z = 0, upper is cyl 
1 6  2 U . . f' f• f•• l6-,, z = - y . se x, y proJecuon; •• o r· -• ,•o - . 

Rear is plane x = 0, forward is plane x = 3. 
Use y, z projection ;  t--• f:�0'2 J:.o. 
Left and right boundaries are the cyl . Use x, z proj .  
f' ! 16 f-vi&=i 

x•O t•O J • - v'i'6="i• 
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7. (See fig.) The only obvious projection is in y, z plane. 
Rear and forward boundaries are the paraboloid. 
/2 J••4-z2 

J
V•-,•-• ,-o z•4 -x:, .-•-V4 -yf-,. 

PROBI.EM 7 
8. 3 J dA = 3 x area of region = 3 · 8 1 ,r = 2431r. 
9. (See fig.) (a) Region lies under z = 1 0  - 3x 2 - 3y 2 

and over circular floor. 
vol = Jcin: region ( 1 0  - 3x 2 - 3y') dA 
= /2e!o f.-o ( l O  - 3r 2)r drd8. 

(b) vol = f w1H1 dV 
- (2w (2 f••I0-1<2-5'•- 10-,,• , d• dr d(J - J •-o J ,--o 1.•0 .. • 

PROSL£M 9 
10. (See fig.) Consider small piece of solid with vol dV 
at point with cyl coords r, 8, z and spher coords p, tf,, 9. 
Its distance to z -axis (around which solid revolves) is r. 
Mass of small  piece is ll dV so dmoment = r 2 ll dV .  
In cyl coords, lower and u�per bdries are the  sphere 
where z = ±VR * - x2 - y = ± �. Projection 
in x, y plane is circular with radius R. So 
moment = f oolid r2lldV 
= ll I',:::o f�-o f-::R:v:,_,, r 2r dz drd8. 
In spher coords, distance from small piece to z -axis is 
p sin tf, (see right triangle), dmoment = p 2 sin2q,lldV, 
moment = ll /:!o f:-o f:-o P 2 sin2tf, p 2 sin q, dp dq, d(J. 
The integration is easier in spherical coords. Use 
tables for f sin3tf,dtf, or use sin3q, = sin tf, ( I  - cos2q,) 
= sin ti> - sin tf, cos2tf,.  To find f s in q, cos2(/, let 
u = cos (/,, du = -sin (/,def,. All in all, 
f sin'c/,dc/, = -cos c/, + ½ cos'(/,. 
Final answer is -/s 1rR "ll. 

z. 

PROSI..EM 10 



APPE N D IX 

Solutions Section Al (page 410) 

1. (a) m = ¼, dist = V36 + 4 = V4o. 
(b) m = 0, dist is 2. 
(c) m = ½, dist = Y4+l = VS. 

y - l 
2. Slope of AB = -2, slope of CD = -:g· 

(a) Need (-2> (' _=-/) = - l, y  = - 3. 

y - l 
(b) Need -:g = -2, y = 1 7. 

Section A2 (page 411) 

I. (a) m = - 7  /6, y - 5 = -i(x - l) , 7x + 6y = 37 
(b) Given line is y = 3x + 7 /2, m = 3. Parallel line 

is y - 7 = 3(x - l) , 3x - y + 4 = 0. 
(c) Given line has m = 3. Perp line has m = - 1/3 , 

y - 8 = -¼(x + 2) .  
2. (a) y = Jx + I, m = J . (b) y = -ix + 4, m = -i . 
3. (See figs.) (a) If x = 0 then y = -4/3. If y = 0 then 

X = 4. 

PROBLEM 3 (o.) 

(b) m = 2, y-intercept 1 

PROBLEM .3 (b) 
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Appendix A3 (page 4 1 2) 

I .  2.  

* 
PROSLEM Z. 

3. 4. 

« 

-« * 
PR08W1 4 

PROBLEM 3 

5. 

� 

6. 

PFiJBLEM 5 fROB�M 6 
7. 

PROBLEM 7 

Section A4 (page 413) 

I. Next two lines in Pascal's triangle are 
1 , 6, 1 5, 20, 1 5, 6, I and I ,  7, 2 1 , 35, 35, 2 1 , 7, l ;  
(x + y)7 = x7 + 7x6y + 2 lx 5y2 + 35x 4y '  

+ 35x 'y 4 + 2 1x 2y 5 + 7xy
6 + y 1. 
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2. (2p)4 == 4(2p)'q + 6(2p)2q 2 + 4(2p)q' + (2p)q 4 

== 16p 4 + 32p 'q + 24p 2q 2 + 8pq' + 2pq 4 

1 4  x 1 3  x 1 2  x 1 1  x · . .  x 4 (eleven factors) 3• 1 1  ! 
1 4  X 1 3  X 1 2  

== 
1 x 2 

x 
3 

= 364. Alternatively, can use coeff of 

14 X 1 3  X 1 2  
x 1 1y '  to get 

3 ,  
directly. 

4. Use Pascal line l .  6, 1 5, 20, 1 5, 6, l ;  
1 6 + 6( 1 )5(-x) + 1 5( 1)4( -x)2 + 20( 1 )'(-x)' + 
1 5( 1 )2( -x)4 + 6( l ) (-x)5 + ( -x)6 

= l - 6x + 1 5x 2 - 20x '  + 1 5x4 - 6x 5 + x6• 

5. 
1 ! : !O 

= 55 

Section AS (page 4 1 5) 

I. 1 0  - ( - 1 2) = 22 

2. (a) -4 1 -! � I + 5 1
1

� � I - -6 1
1

� -! I 
== - 4(23) + 5(67) + 6( - 32) = 5 1  

(b) 3 1
4 5

1 - -6 1
1 0 2

1 + 7 1
1 0 2

1 l - 3  l - 3  4 5 
= 3(- 1 7)  + 6( - 32) + 7(42) = 5 1  

0 3 l l - 1  4 
3. 3 2 l 3 - - 1  0 3 l 

l l 2 2 3 

= 3(-2)  + ( - 1 8) = -24 

Appendix A6 (page 4 1 8) 

I. (a) X = 3 cos 60° = 3/2, y = 3 sin 60° = tvs 
(b) By inspection (see fig.) , x = O, y = 2 (it's OK but 

overkill to use the formulas). 

-L-
PROBL£t.1 l (b) 

(c) x = 3 cos( - 11'/4) = iv'2 . 
y = 3 sin( - '11'/4) = -fv'2 . 

(d) x = 2, y = 0 by inspection. (See fig.) 

j_ 
PJIDBLErl I CJ} 

2. (a) r = V4+l6 = V20, tan- 1y/x = tan - 1 2 = 63° 

approx. Fig. shows that fJ is in quad l so fJ is 63°. 

(b) r = V20 ,  tan-
1J/x = 63° again. This time fJ = 

63° + 1 80° = 243° because fig. shows fJ in the 
third quad. 

PROBLfM 2(b) 

(c) r = vTs = 3V2 , (J = 225° by inspection (the 
ray bisects quad I I I) .  

(d) (See fig.) r = 3 ,  fJ = 311'/2 (or - 11'/2) by 
inspection. 

+ 
PROSLEM 2(d ) 

(e) r = v'2o, tan- 1y/x = tan- 1 ( - 2) = -63° . Point 
is in quad 11 so 8 is not -63° but is 
-63° + 1 so0 = 1 1 7°. 

3. r cos fJ = 3 

4. (a) • 
PROBLEM 4(a.) 

(b) 

� 
PRO&LEM 4 (b) 

(c) 

� 
PROBL�M 4-(c.) 
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5. (a) The rect coords are x 1  = r1 cos 8. , Y• = r1 sin 81 and x2 = r2 cos 82, y2 = r2 sin 82, 
By distance formula for rect coords, distance is 
Y(r1 cos e .  - r2 cos e,)'' + (,. sin e .  - ,, sin B,)

2 

= Vrt cos18 1  - 2r1r2 cos 8 1 cos 82 + rl cos28t + ,t sin28 1  - 2r1r2 sin 8 1  sin 82 + r� sin282 
= Yd(cos28 1 + sin28 1) + rl(cos282 + sin282) - 2r1r2(cos 81 cos 81 + sin 81 sin 82) 

(b) (See fig. which assumes 82 > 8 . .) By law of cosines, 
distance' = r� + r� - 2r1r2 cos(82 - 8 1), 

6. (See figs.) (a) 
0 1r/6 1r/4 11/3 11/2 1 20° 1 35° 1 50° 

sin II 0 I ½V2 ½v'3 I ½v'3 jV2 I t l 

T 2 1 2 - V2 2 - \/3  0 2 - \/3 2 - V2 I 

cos(82 - 8 1 )  

1 80° 2 10° 235° 240° 270° 300° 

0 I -½V2 -½v'3 - 1 -½v'3 -, 
2 3 2 + V2  2 +  v'3 4 2 + v'3 

Using 8 < 0 or 8 > 360° doesn't produce any new points. For instance 8 = -30°, r = 3 
is just point 8 = 330°, r = 3 again. And point 8 = 390°, r = l is just point 8 = ,,, /6, 
r = l again. 

PROBLfM 6(0..) 

3 1 5° 

-½V2 
2 + V2  

(b) 8 0 10° 1 5° 20· 30° 90° 1 00° 105° 1 10° 1 20° 1 30° 140° 

r 2 v'3 v'2 
1 50° 

0 neg, no points 

2,0· I I 0 neg, no poin� 

0 neg, no points 0 
2 1 0° 220° 225° 230° 

0 I v'2 v'3 
330• I 340• I 345• I 350• I 0 l V2 V3 

v'2 v'3 
240° 250° 

2 v'3 
360° 

2 
Using 8 < 0 and 8 > 360° produces no new points in this problem. 

PROBLEM 6(b) 

2 v'3 
255° 260° 

v'2 

330° 360° 

I 0 -, 
3 2 
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(c) (J o· - 45• 45• - 90° 90° - 1 80° 1 80° -+ 270° 210· - 360° 
, 2  o - 4 4 - 0  neg 0 -+ 4 - 0  neg 
r 0 - 2 2 - 0  impossible 0 - 2 - 0  impossible 

PROBLEM 

(d) _B _o_·_-_1 s_o_· ➔1-1_s_o·_-_3_60_0

➔1-3-50_·_-_72_0_0 

---1 r O - 4 4 -+ 0 neg, no points 

(e) 

-4 
i'F,OBLEM 6(d )  

(J I O I ,r/4 I ,r/2 1 1T  1 3,r/2 1 2,r 
r 0 1r/4(approx. ¾) 1r/2(approx. i) 1r 3,r/2 21r 
6 1 5,r /2 1 3,r I · · · I negative I r 5,r /2(about 7�) 3,r neg, no points Note that (J > 21r DOES produce new points here while (J < 0 produces negative r so produces non-points. 

PRDSL£M 6 (e) 



Abbreviations Used in the Solutions 

abs conv absolutely convergent inf disc 
abs value absolute value lim 
alt alternating mag 
antideriv antiderivative max 
antidiff antidifferentiate min 
av average neg 
eel counterclockwise 1 - 1  
cond conv conditionally convergent onhog 
conv converges pcrp 
coord coordinate pos 
cyl cylinder, cylindrical prod 
dee decreasing proj 
denom denominator quot 
deriv derivative rcct 
det determinant rel 
diff differentiate sol 
dist distance sub 
div diver,es tan 
eq, equ equauon temp 
iff if and only if vol 
inc increasing w.r.t. 
indet indeterminate 

LIST OF SYMBOLS 

antiderivative J, 85 
change 4,  53 

derivative f' , f' (x), {, ! /(x), D.f, DJ, y ' , t • 5 7 

differentials dx, dy, 123 

directional derivative D�f. !f.. 346 
au 

double integral ff, 373 

infinite discontinuity 
limit 
mag�itude 
maximum 
minimum 
negative 
one-to-one 
orthogonal 
pcrr.:ndicular 
pos1uve 
product 
projection 
quotient 
rectangular 
relative 
solution 
substitute, substitution 
tangent 
temperature 
volume 
with respect to 

factorial n ! , 224, 4 13 
infinity 00, 3, 42 
integral J:, 140 

interval [a, b], (a, b), (-00, b] etc. ,  3 
limit lim.-. ,  4 1  

partial derivative a ,  325 

substitution I!, 146 

sum I, 138 

triple integral ff f, 393 

527 



I NDEX 

A 

absolute convergence, 235 
absolute extrema, 98- 105, 339-346 
acceleration, 59, 75-76, 29 1 
acceleration vector, 290-294 

normal component of, 292 
tangential component of, 29 1 

alternating series, 232 
test, 234 

amplitude, 1 3  
angle of  inclination, 4 10 
antiderivative formulas, 85-87 
antidifferentiation (see also integration), 84-9 1 ,  146, 

191 ff. 
approximation, using differentials, 1 22 ,  355 
arc length, 177 

on a circle, 1 1  
arccos, 22, 69 
arcsin, 20, 69 
arctan, 22, 69 
area, between two curves, 176 

of a circular shell, 125,  172 
of a region, 365 ,  382 
of a sector of a circle, 172 
of a slab, 182,  183 
surface, 1 8 1- 183 
under a curve, 1 39, 142- 144, 382 

asymptote, 4 1 ,  43, 44, 47, 1 13 
average value, 137-138,  14 1 ,  364-365 

B 

backward limits of integration, 186 
basic functions, 3, 63-70, 79 
binomial series, 24 1 
binomial theorem, 4 1 2-4 1 3  
blow up, 44 , 159 

C 

calculus, differential, 56 
fundamental theorem of, 146, 2 12 
integral, 137 
multidimensional, 3 19 
second fundamental theorem of, 185- 186 

center of mass, 405-408 
centroid, 173- 176, 407-408 
chain rule, 78, 33 1 ,  334 
charge (and charge density), 172,  173 ,  187, 365, 372, 

392 , 395 

5%8 

circle, equation of, 4 1 1  
circular motion, 286 
comparison test, 223 
completing the square, 196 
component of a vector in a direction, 273-275 
composition of functions, 27, 78 
compound interest, 1 1 1  
conditional convergence, 235 
concave (down, up), 60, 6 1 ,  1 13 
concavity, 60, 6 1  
cone, equation of, 3 16 

volume of, 164, 386, 396, 404 
cone angle, 3 14 
constant functions,  3, 7, 63 
constant multiple rule, 7 1 ,  124 
continuous function, 6 
contraction, 33, 34 
convergence, absolute and conditional, 235 
convergent series, 2 17, 222 ff. 
cos - • ,  2 1 ,  69 
cosecant, 16, 69, 75 
cosine, 10, 13 ,  65 
cotangent, 16, 69, 75 
critical numbers, 95 
critical points, 338, 340 
critical values, 99, 338, 340 
cross product of vectors, 276-282 
cusp, 7 1 ,  95 
cycloid, 178 
cylinder, volume of, 386 
cylindrical coordinates, 3 1 2-3 13 

triple integration in, 395-398 
cylindrical shell, 126 
cylindrical surface, 307 

D 

decresing function, 8, 58 
degrees, 1 1 ,  66 
definite integral, 150 
density, 166, 172,  365 
dependence diagram, 33 1 
dependent variable, 2 
derivative(s) , 54 

of basic functions, 63-70, 79 
of a composition, 78 
of constant multiples, 7 1  
definition of, 56 
directional, 327, 346 
of t', 67 
of functions "with two formulas" , 75 



higher, 59 
of inverse functions, 68 
of inverse trigonometric functions, 68-69 
of In x, 68 
partial, 325 ff. 
of power functions, 63, 75,  83 
of products, 72-73 
of quotients, 73-74 
second, 59, 60 
of sums, 72 
third, 59 
of trigonometric functions, 64-67, 69, 74-75 

determinants, 4 13-4 16 
cofactors of, 4 14 

differentials, 122-127, 355-36 1 
exact, 357 

differential calculus, 56 
differential equation(s), 128 

exact, 359 
general solution of, 130 
ordinary, 333 
partial, 333 
particular solution of, 130 
separable, 128-134 

differential form, 357 
differentiation, 56 

implicit, 8 1-83 
logarithmic, 83-84 

direction cosines, 276 
directional derivatives, 327, 346 
discontinuities, 44 

infinite, 44 
jump, 44 
oscillatory, 48 
point, 44 
removable, 47 

distance, between two points, 260, 409 
from a point to a line, 301 
from a point to a plane, 300 

divergent series, 2 17  
domain, 2 
dot product of vectors, 270-276 
double integrals, 363 ff. 

applications of, 387-39 1 
and areas, 365 
and average values, 365 
computation of, 370-377 
in polar coordinates, 377-38 1 
and volumes, 366 

dummy variables, 144, 183-184 

E 

t, 3, 24, 68 
e•, 24, 67-68 
elementary functions, 27 
ellipsoid, 3 1 1  
elliptic cone, 3 l l ,  3 12  
elliptic hyperboloid, of  one sheet, 308, 3 1 1  

of two sheets, 309, 3 1 1  
elliptic paraboloid, 3 l l  
ellipse, 4 12 

envelope, 15 
error function, 184 
exact differential, 35 7 

criteria for, 358 
exact differential equation, 359 
exp, 24 
expansion, 33, 34 
exponential functions, 3,  23-29, 67 
exponential growth and decay, 13 1  
exponential-integral function, 184 
extrema, absolute, 98-105, 339-346 

relative, 95-98, 1 13,  337-339 

F 

Fermat's principle, 103 
first derivative test, 96 
fixed point, 4 
fractions, improper and proper, 197 
function(s) , 1 ff. 

basic, 3, 63-70, 79 
composition of, 27 
constant, 3 ,  7, 63 
continuous, 6 
decreasing, 8, 58 
discontinuous, 6, 44, 70 
elementary, 27, 63 
even, 10, 23, 62 
exponential, 3, 23-29, 67 
graph of, 4,  1 13- 1 16 
greatest integer, 3 
increasing, 8, 23, 58 
inverse, 19, 68 
inverse trigonometric, 3 ,  20-23, 68-70 
logarithm, 3 ,  25-29, 68 
nondifferentiable, 70 
nonelementary, 186 
odd, 10, 23 
one-to-one, 6 
power, 3, 7, 63 
trigonometric, 3, 10- 18, 64-67, 69 

fundamental theorem of calculus, 146, 2 12 
second fundamental theorem, 185-186 

G 

geometric series, 220 
gradient, 348 
graph(s), of a + be'" , 46 

of /(x), 4,  1 13- 1 16 
of /(x) sin x and /(x) cos x, 15 
of /(x,y), 3 19-324 
of inverse trigonometric functions, 2 1 ,  22 
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of translations, reflections, expansions and sums, 
32-38 

of trigonometric functions, 13, 16, 17 
gravity, 89, 90, 293 
greatest integer function, 3 

H 

harmonic series, 224 
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highest order of magnitude rule, l09 highest power rule, 49 horizontal line test ,  7 , 20, 25 hyperbola, 4 12 hyperbolic paraboloid , 3 1 1  hyperbolic sine and cosine, 39 hyperboloid, see ell iptic hyperboloid 
I implicit differentiation, 8 1 -83 improper integral , 1 57  increasing function, 8 ,  23,  58  indefinite integral ,  1 50 independent variable, 2 indeterminate forms, 48-5 1 ,  l 05- 1 1 3 inequalities, solution of, 29-3 I infimum, 98 infinite limits, 42 inner product, see dot product integral(s), 137  ff. applications of, 163 ff. ,  387-39 1 and area, 142- 144 , 366, 382 and average values, 14 1 ,  365, 392 of a constant function, 147  definite, 150 double ,  363 ff. improper, 157  indefinite, 150 iterated , 37 1 triple, 39 1 ff. with a variable upper l imit , 183- 186 and volume, 366-367, 383, 392 integral calculus, 1 3 7  integrand, 140 integrating factor, 360 integration ,  140 limits of, 140,  186, 373 ,  379, 394, 396, 40 1 numerical , 1 5 1  by parts, 203, 2 1 3 by substitution, 1 92 ,  2 12 hy trigonometric substitution, 207 techniques of, 1 9 1  ff. interval of convergence, 239 interval of real numbers, 3 inverse functions, 19 ,  68 inverse trigonometric functions, 3, 20-23,  68-70 iterated integral ,  37 1 
K kinetic energy, 8 1 ,  172 
L Laplacian, 334, 337 left-handed coordinate system, 260 level sets, 320-324 L' Hopital's rule, 1 06- 1 1 3 limit comparison test, 228 limits, 4 1  ff. 

indeterminate, 48, 105- 1 1 3 infinite, 42 f sin x o -x- as x -+ 0, 64-65, 107 one-sided , 4 1  limits of integration , 140, 1 86, 373,  379, 394, 396, 40 1 l ine(s), in 3-space, 30 1 -307 in 2-space, 4 10-4 1 1  intersection of, 303 intersection with a plane, 304 parallel, 265, 303 skew, 303, 304 l inear approximation, 123 ,  356 linear programming, 345 In x, 25, 68 logarithm (natural ; with base e) , 3 ,  25-29, 68 logarithmic differentiation , 83-84 
M Maclaurin polynomials, 250 Maclaurin series, 248 magnitude of a vector, 266 mass (and mass density), 166, 172 ,  390, 395, 398, 404 center of, 404, 408 maxima and minima, see extrema models, mathematical, 145 ,  1 66, 1 79 moment, 174 ,  405 moment of inertia, 168, 1 7 1 ,  172 , 1 89 , 398, 408 motion, along a line, 9, 53, 59 ,  75 circular, 286 
N nth term test, 223, 233 Newton's laws of motion, 290, 294 Newton's method , 1 20- 122 nondifferentiable function, 70 nonelementary function, 186 nonintegrable functions, 155 norm of a vector, 266 normal component of acceleration , 292 normal line, 354 normal vector, 298, 350, 352 normalized vectors, 267 numerical integration, 1 5 1  
0 one-to-one function, 6 order of magnitude, l08- 109,  224 , 229 orthogonal trajectories, 132 
p p -series, 224 parabola, 4 1 2  parabolic cylinder, 307 paraboloid , 3 1 1  parallel l ines, 265, 303 



parallelogram law, 263 
parametric equations, 90, 1 78, 285, 302 
partial derivatives, 325 ff. 

first order, 325 
higher order, 325 
mixed, 325 

partial fraction decomposition, 198 
pecking order for functions, 108 
period, 13 
perpendicular lines, 27 1 
plane(s), 298-302 

general equation of, 299 
intersection of, 305 
point-normal equation of, 298 

point of inflection, 6 1  
point-slope form o f  a line, 4 10 
polar coordinates, 4 16-4 18 

<louble integration in, 377-38 1 
position vector, 286 
power function, 3,  7 ,  63 
power rule, 63, 75, 83 
power series 238 ff. 

interval of convergence of, 239 
Maclaurin, 24 7 
in powers of x - b, 254 
radius of convergence of, 239 
for sin x, cos x, and ex, 249-250 
Taylor, 254 

product rule, 72-73, 124 
projection of a vector in a direction, 275 

signed, 274 

Q 

quadric surface, 307-3 12 
quotient rule, 73-74, 124 

R 

radians, 1 1 ,  66 
radius of convergence, 239 
range, 2 
rate of change, 58, 59, 326 
ratio test, 229, 239 
rectangular coordinate system, 259 _ 

right-handed, left-handed, 260 
recursion formulas, 204 
reference angles, 12 
reflection, 34, 35 
related rates, 1 16- 120 
relative extrema, 95-98, 1 13,  337-339 
Riemann sums, 140 
right-handed coordinate system, 260 

s 
scalar, 259 
scalar triple product, 282-285 
secant, 16, 69, 77 
second derivative test, 96 

Index • 53 1 

second fundamental theorem of calculus, 185- 1 86 
separable differential equations, 128- 134 
series, 2 17 ff. 

absolutely convergent, 235 
addition of, 2 19 
alternating, 232 
alternating harmonic, 233 
binomial, 24 1 
comparison test for, 223 
conditionally convergent, 235 
convergent, 2 17 
divergent, 2 1 7  
factoring of, 2 18 
geometric, 220 
harmonic, 224 
in powers of ,c - b, 254 
integral test for, 226-227, 23 1 ,  232 
limit comparison test for, 228 
Maclaurin, 248 
nth term test for, 223, 233 
p-, 224 
partial sums of, 2 1 7  
positive, 222 
power, 238 ff. 
ratio test for, 229, 239 
standard, 224 
subseries of, 225 
sum of, 2 17 
Taylor, 254 
Tavlor remainder formula for, 252 

shell,' 125, 126, 169, 172, 173 
signed projection, 274 
simple harmonic motion, 14 
Simpson's rule, 154 
sin · ' ,  20, 69 
sine, 10, 13 ,  64 
sine-integral function, 184 
slab, 164 ,  167, 170,  17 1 ,  172,  175 ,  182, 183 
slope, 54, 56, 76, 328, 35 1 ,  352, 409 
slope-intercept form of a line, 4 1 0  
speed, 53, 54, 56, 287 
sphere, equation of, 297 

volume of, 170,  386, 404 
spherical coordinates, 3 13-3 17, 398-404 
spherical shell, 125,  173 
steepest ascent, 349, 352 
steepest descent, 349 
substitution, 192, 2 12 
sum rule, 72, 124 
supremum, 98 
surface, cylindrical, 307 

quadric, 307-3 1 2  
surface area, o f  a cone, 1 8 1  

of a sphere, 183 

T 

tan · • ,  22, 69 
tangent, 10, 13 ,  74-75 
tangential component of acceleration, 29 1 
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Taylor's remainder formula, 252 Taylor polynomial , 254 Taylor series, 254 three-leaved rose, 4 18 tractable and intractable problems, 108 translation , 32, 34 trigonometric functions, 3 ,  10- 18, 64-67, 69 trigonometric identities, 17- 18 trigonometric substitution, 207 triple integrals, 39 1 ff. 

V 

and average values, 392 computation of, 393 ff. in cylindrical coordinates, 395-398 in spherical coordinates, 398-404 and volumes, 392 
vectors, 259 ff. acceleration, 290-294 normal component of, 292 tangential component of, 29 1 addition of, 263 angle between, 270, 27 1 components of, 260 cross product of, 276-282 direction of, 259 dot product (inner product) of, 270-276 lje�. i7 1-272 

i ,  j, k, 268 length of, 259, 266 magnitude of, 266 
n -dimensional, 262 norm of, 266 

normal , 298, 350, 352 normalized, 267 parallel, 265 perpendicular, 27 1 position , 286 projection of (in a direction) ,  275 (scalar) component of (in a direction), 273-274 scalar multiplication of, 265 scalar triple product of, 282-285 signed projection of, 274 subtraction of, 264 vector component of (in a direction) ,  274-275 velocity, 285-290 zero, 26 1 velocity, 53, 56, 75-76, 287 average, 53 instantaneous, 53 velocity vector, 285-290 venical line test, 5 volume, of a cone, 164, 386, 396, 404 of a circular cylinder, 386 of a cylindrical shell, 126 ,  169 by double integration, 366-367, 383 of a pyramid, 172 of a slab, 164, 167, 1 70- 173 ,  175 of a solid of revolution, 1 7 1  o f  a sphere, 170, 386, 404 of a spherical shell, 125 ,  1 73 by triple integration, 392 
w work, 167, 398 
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