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PREFACE

This is a text in calculus, written for students in mathematics and
applied areas such as engineering, physics, chemistry, computer science,
economics, biology, and psychology. The style is unlike that of the usual text
that the student encounters when enrolling in a standard calculus sequence.
We'll try to explain the reasoning behind our approach, which is based on
more than 20 years of teaching experience.

Mathematicians and consumers of mathematics (such as engineers)
seem to disagree as to what mathematics actually is. To a mathematician, it
is important to distinguish between rigor and intuition. To an engineer,
intuitive thinking, geometric reasoning, and physical deductions are all
valid if they illuminate a problem, and a formal proof is often unnecessary
or counterproductive.

Most calculus texts claim to be intuitive, informal, and even friendly,
and in fact one can find many worked-out examples, as well as some geo-
metric and physical reasoning. However, the dominant feature of these
books is formalism. Definitions and theorems are stated precisely, and many
results are proved at a level of rigor that is acceptable to a working mathe-
matician. We admit to a twinge of embarrassment in arguing that this is bad.
However, our calculus students have ranged from close to the best to be
found anywhere, to far from the worst, and it seems entirely clear to us that
most students are not ready for an abstract presentation, and they simply
will not learn the formalism. The better students will succeed in reading
around the abstractions, so that the textbook at least becomes useful as a
source of examples.

Our approach uses informal language and emphasizes geometric and
physical reasoning. The style is similar to that used in applied courses and,
for this reason, students find the presentation very congenial. They do not
regard calculus as a strange subject outside their normal experience. In-
variably, a number of students are motivated toward further study of
mathematics, and there is no better preparation than to learn to think
intuitively, geometrically, and physically.

We expect that this text will be used for independent study, or as a
supplement or reference for those who are having difficulty in a standard
calculus course; for maximum benefit to the student, detailed solutions to
all problems are supplied. (We have used the book as a classroom text, and
have found the inclusion of detailed solutions to be a useful feature here as
well.) The problems are limited in number so that it is feasible to work
through all of them. They have been carefully chosen so that a student who
does most of them will be well prepared for applications of calculus in later
courses. The text and problems concentrate on basic material rather than
fringe topics; as a result the book is of manageable size.

We believe that for a student encountering calculus for the first time,
our approach is most appropriate. We hope that faculty who teach

ix
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courses in which calculus is applied will, after seeing how well the approach
works, try to influence departments of mathematics to change their style
of teaching.

The close cooperation and teamwork of the staff at IEEE PRESS were
invaluable. In particular, we would like to express our gratitude to David
Boulanger, Associate Editor; W. Reed Crone, Managing Editor; and
David L. Staiger, Staff Director.

We wanted the diagrams in the book to be freehand line drawings,
similar to those sketched by an instructor at a blackboard or a student
working at home. We thank our artist, Evan Polenghi, for carrying out our
conception with skill and grace.

Above all, we thank Professor M.E. Van Valkenburg, Dean of the
School of Engineering at the University of Illinois at Urbana-Champaign
and Editor in Chief of IEEE PRESS, for making the publication of this
text possible.

CAROL ASH
ROBERT ASH



We begin calculus with a chapter on functions because virtually all
problems in calculus involve functions. We discuss functions in general, and
then concentrate on the special functions which will be used repeatedly
throughout the course.

1.1 Introduction

A function may be thought of as an input-output machine. Given a
particular input, there is a corresponding output. This process may be
represented by various schemes, such as a table or a mapping diagram
listing inputs and outputs (Fig. 1). Functions will usually be denoted by
single letters, the most common being f and g. If the function g produces
the output 3 when the input is 2, we write g(2) = 3.

TABLE - MAPPING DIRGRAM

FlG. |
Often functions are described with formulas. If f(x) = x2 + x then
f(3)=9+3=12, f(a)=a’+a, f(a+b)=(a +b)?+ (a+0b)=
a’® + 2ab + b? + a + b. We might refer to “the function x? + x” without
using a special name such as f.
For example, if f(x) = 2x — 9 then
fB=6-9=-3
f0) = -9
f(@)=2a -9
fla+b)=2@a+b-9=2+2 -9
f@+fb)y=2a -9+2b-9=2a +2 - 18
f(3a) =2(3a) - 9=6a -9
3f(a) = 3(2a = 9) = 6a — 27
f@) =2%-9
(f(@)* = (20 - 9)* = 42 - 36a + 81
f(-a)=2(-a) -9 =-22a -9
—f@) = -(2a -9)= -2 +9. 1
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The input of a function f is called the independent variable, while the
output is the dependent variable. We say that the function f maps x to f(x), and
call f(x) the value of the function at x. The set of inputs is called the domain
of f, and the set of outputs is the range.

A function f(x) is not allowed to send one input to more than one
output. Figure 2 illustrates a correspondence that is not a function. For
example, it is illegal to write g(x) = +V2x¥ + 3, since each value of x
produces two outputs. It certainly is legal to write and use the expression
*V2x? + 3, but it cannot be named g(x) and called a function.

Functions often arise when a problem is translated into mathematical
terms. The solution to the problem may then involve operating on the
functions with calculus. Before continuing with functions in more detail
we’ll give an example of a function emerging in practice. Suppose a pigeon
is flying from point A over water to point B on the beach (Fig. 3), and the
energy required to fly is 60 calories per mile over water but only 40 calories
per mile over land. (The effect of cold air dropping makes flying over water
more taxing.) The problem is to find the path that requires minimum
energy. The direct path from A to B is shortest, but it has the disadvantage
of being entirely over water. The path ACB is longer, but it has the advan-
tage of being mostly over land. In general, suppose the bird first flies from
A o a point P on the beach x miles from C, and then travels the remaining
10 — x miles to B. The value x = 0 corresponds to the path ACB, and
x = 10 corresponds to the path AB. The total energy E used in flight can
be calculated as follows:

E = energy expended over water + energy expended over land

calories per water mile X water miles
+ calories per land mile X land miles

60 AP + 40 PB
) 60V36 + x* + 40(10 —x), 0 =x =< 10.

Thus the energy is a function of x. Calculus will be used in Section 4.2 to
finish the problem and find the value of x that minimizes E.

In deriving (1), we restricted x so that 0 = x < 10 since we assumed
that to minimize energy the bird should fly to a point P between C and B as
indicated in Fig. 3. Since problems often restrict the independent variable
in a similar fashion, certain notation and terminology has become standard.

A

I
WATER l P&
LAND C

—
~ <K [0-X

e—-—————,'g"-—'?

FiG. 3
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e o——0 om0 /> 0

[,5] (a,b) [a.b) [a,%)  (-0,0)
FIG. %

The set of all x such that a =< x < b is denoted by (g, b] and called a closed
interval (Fig. 4). With this notation, the variable x in (1) lies in the interval
[0, 10]. The set of all x such thata < x < b is denoted by (a, b) and called
an open interval. Similarly we use (g, b) for the set of x wherea = x < b, (4, b]
for a <x = b, [a,%) for x = a, (a,%) for x > a, (—%,a] for x < a, and
(=, a) for x < a. Ingeneral, the square bracket, and the solid dot in Fig. 4,
means that the endpoint belongs to the set; a parenthesis, and the small
circle in Fig. 4, means that the endpoint does not belong to the set. The
notation (—,x) refers to the set of all real numbers.

As another example of a function, consider the greatest integer function:
Int x is defined as the largest integer that is less than or equal to x. Equiva-
lently, Int x is the first integer at or to the left of x on the number line. For
example, Int 5.3 =5, Int 5.4 = 5, Int 7 = 7, Int(—6.3) = —7. Note that
for positive inputs, Int simply chops away the decimal part. The domain of
Int is the set of all (real) numbers. (Elementary calculus uses only the real
number system and excludes nonreal complex numbers such as 3; and
4 + 2i.) The range of Int is the set of integers. Frequently, Int x is denoted
by [x]. Many computers have an internal Int operation available. To illus-
trate one of its uses, suppose that a computer obtains a numerical result,
suchasx = 2.1679843, and is instructed to keep only the first 4 digits. The
computer multiplies by 1000 to obtain 2167.9843, applies Int to get 2167,
and then divides by 1000 to obtain the desired result 2.167 or, in our
functional notation, 1 Int(1000 x).

Most work in calculus involves a few basic functions, which (amazingly)
have proved sufficient to describe a large number of physical phenomena.
As a preview, and for reference, we list these functions now, but it will
take most of the chapter to discuss them carefully. The material is im-
portant preparation for the rest of the course, since the basic functions
dominate calculus.

Table of Basic Functions

Type

Examples

Constant functions

fix)=2 for all x,
gx)=—-= for all x

Power functions

x2, xS, X, xl/2’ x-l, x-99/5, 12‘7

Trigonometric functions

sine, cosine, tangent, secant,
cosecant, cotangent

Inverse trigonometric functions

sin”'x, cos”'x, tan"'x

Exponential functions

2, 3%, @), 10° and especially ¢*,
where e = 2.71828- -

Logarithm functions

logex, logsx, logixx, logiex and
especially logx, denoted In x




4 - 1/Functions

(0,3)

\

Fio. |

Problems for Section 1.1

1. Let f(x) = 2 — x? and g(x) = (x — 3)° Find

(a) f(0) (d) g(0) (g) (g(6)’
(b) f(1) (e) g(1) (h) f(2a + b)
(© f%) () g(* () the range of { and of g, if the domain is (-, %)

2. Let f(x) = |x|/x.

(@) Find f(=7) and f(3).

(b) For what values of x is the function defined?

(c) With the domain from part (), find the range of f.
(d) Does f(2 + 3) equal f(2) + f(3)?

(e) Does f(—2 + 6) equal f(-2) + f(6)?

(f) Does f(a + b) ever equal f(a) + f(b)?

3. The number x, is called a fixed point of the function f if f(x,) = xo; i.e., a
fixed point is a number that maps to itself. Find the fixed points of the following
functions: (a) |x|/x (b) Intx (c) x* (d) x* + 4.

4. Letf(x) = 2x + 1. Does f(a?) ever equal (f(a))*?

5. Iff(x) =2x + 3then f(f(x)) =f(2x + 3) =2(2x + 3) + 3 =4x + 9.

(a) Find f(f(x) if f(x) = x>
(b) Find Int(Int x).
(¢) Iff(x) = —=x + L, findf(f(x)),f(f(f(x))), and so on, until you see the pattern.

6. A charter aircraft has 350 seats and will not fly unless at least 200 of those
seats are filled. When there are 200 passengers, a ticket costs $300, but each ticket
is reduced by $1 for every passenger over 200. Express the total amount A collected
by the charter company as a function of the number p of passengers.

1.2 The Graph of a Function

Information can usually be perceived more easily from a diagram than
from a set of statistics or a formula. Similarly, the behavior of a function can
often be better understood from its graph, which is drawn in a rectangular
coordinate system by using the inputs as x-coordinates and the outputs as
y-coordinates; i.e., the graph of f is the graph of the equation y = f(x). In
sketching a graph it may be useful to make a table of values of the input x
and the corresponding output y.

The graph of the function f(x) = —2x + 3 is the line with equation
y = —2x + 3 (Fig. 1). It has slope —2 and passes through the point (0, 3).

Thegraph of Int x is shown in Fig. 2 along with a partial table of values
used to help plot the graph. The graph shows for instance that as x in-
creases from 2 toward 3, Int x, the y-coordinate in the picture, remains 2;
when x reaches 3, Int x suddenly jumps to 3.

Example 1 The graph of a function g is given in Fig. 3. Various values of
g can be read from the picture: since the point (0,6) is on the graph, we
have g(0) = 6; similarly, g(4) = 11, g(10) = 4. Since P is lower than Q, we
can tell that g(2) < g(3). If g(x) represents the final height of a tree when
it is planted with x units of fertilizer, then using no fertilizer results in a
6-foot tree, using 10 units of fertilizer overdoses the tree and it grows to
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only 4 feet, while 4 units of fertilizer produces an 11-foot tree, the maxi-
mum possible height according to the data.

The vertical line test Not every curve can be the graph of a function. The
curve in Fig. 4 is disqualified because one x is paired with several y's, and
a function cannot map one input to more than one output. In general, a
curve is the graph of a function if and only if no vertical line ever intersects the curve
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more than once. In other words, if a vertical line intersects the curve at all, it
does so only once.

Equations versus functions The hyperbola in Fig. 5 is the graph of the
equation xy = 1. Itis also (solve for y) the graph of the function f(x) = 1/x.
The hyperbola in Fig. 6 is the graph of the equation y* — 2x? = 6. It is not
the graph of a function because it fails the vertical line test. However, the
upper branch of the hyperbola is the graph of the function V2x? + 6 (solve

for y and choose the positive square root since y > 0 on the upper branch),
and the lower branch is the graph of the function —V2x? + 6.

Ve

-6

=—J’677:;’:

FI6. 6

Continuity If the graph of f breaks at x = xo, so that you must lift the
pencil off the paper before continuing, then f is said to be discontinuous at
x = x,. If the graph doesn’t break at x = x,, then f is continuous at x,.

The function —2x + 3 (Fig. 1) is continuous (everywhere). On the
other hand, Int x (Fig. 2) is discontinuous when x is an integer, and 1/x
(Fig. 5) is discontinuous at x = 0.

Many physical quantities are continuous functions. If A(t) is your
height at time ¢, then & is continuous since your height cannot jump.

One-to-one functions, non-one-to-one functions and nonfunctions A
function is not allowed to map one input to more than one output (Fig. 7).
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NON ~ ONE-TO-ONE But a function can map more than one input to the same output (Fig. 8),

in which case the function is said to be non-one-to-one. A one-to-one function
maps different inputs to different outputs (Fig. 9).

The function x? is not one-to-one because, for instance, inputs 2 and
-2 both produce the output 4. The function x* is one-to-one since two

Flb. 8 different numbers always produce two different cubes.

A curve that passes the vertical line test, and thus is the graph of a function, will

ONE-TO-ONE further be the graph of a one-to-one function if and only if no horizontal line

— intersects the curve more than once (horizontal line test). The function in Fig. 10

fails the horizontal line test and is not one-to-one because x, and x, produce

7> the same value of y.

—
FI6.9

e

_— e |~ ——— — -

x\———/;(,x

Fle. |0

f@®):=3 Constant functions If, for example, f(x) = 3 for all x, then f is called a
constant function. The graph of a constant function is a horizontal line
(Fig. 11). The constant functions are among the basic functions of calculus,

Fle.ll

X listed in the table in Section 1.1.

Power functions Another group of basic functions consists of the power
functions x', such as

2 —

X°=Xx°'Xx
x7'=1/x

% =Vx (the positive square root of x)
x-18 = "\/IF
X

xM=Vx = (Vx)
x26 = 52610 — %5

To sketch the graph of x*, we make a table of values and plot a few
points. When the pattern seems clear, we connect the points to obtain the
final graph (Fig. 12). The connecting process assumes that x* is continuous,
something that seems reasonable and can be proved formally. In general,
x"is continuous wherever it is defined. If r is negative then x" is not defined
atx = 0 and is discontinuous there; the graph of 1/x, that is, the graph of
x~!,is shown in Fig. 5 with a discontinuity at the origin. Figure 13 gives the
graph of x? (a parabola) and of x*. For =1 < x < 1, the graph of x* lies
below the graph of x? since the fourth power of a number between —1 and
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1 is smaller than its square; otherwise x* lies above x?. Figure 14 gives the
graph of y = Vx, the upper half of the parabola x = y?.

Increasing and decreasing functions Suppose that whenever a > b, we
have f(a) > f(b); that is, as x increases, f(x) increases also. In this case, f is
said to be increasing. The graph of an increasing function rises to the right
(Figs. 12 and 14).

Suppose that whenever a > b, we have f(a) < f(b); that is, as x in-
creases, f (x) decreases. In this case, f is decreasing. The graph of a decreasing
function falls to the right (Fig. 1).

The functions x? and x* (Fig. 13) decrease on the interval (-2, 0] and
increase on [0, x); overall, on (==, ), they are neither increasing nor de-
creasing. The function 1/x (Fig. 5) decreases on the intervals (-, 0) and
(0, %) but is neither decreasing nor increasing on the interval (—x, x).
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Motion along a line Suppose that at time ¢, the position x of a particle
(such as a car) moving on a number line is given by the function x = ¢2.
Then at time ¢ = -3, the particle is at position x = 9; at time ¢t = —1, it is
at position x = 1; at time ¢ = 0, it is at position x = 0; at time ¢ = 4, it is at
position x = 16, and so on. Note that there is nothing mysterious about
negative time. If time is measured in minutes, then t = 0 is a fixed time,
such as 12:30 p.m. on Jan. 20, 1947, and negative values of ¢ correspond to
times before that moment. For example, ¢ = -3 is 3 minutes earlier, that
is, 12:27 p.m. Instead of drawing the graph of x = ¢? (a parabola in a ¢, x
coordinate system), we might sketch the motion as in Fig. 15. Until time 0,
the particle moves from right to left on the x-line and decelerates (look at
the decrease in distance between consecutive times to see the deceleration).
After time 0, the particle moves from left to right and accelerates. (For
clarity, the right-to-left part of the motion is drawn above the left-to-right
motion in Fig. 15, but, in reality, the particle is assumed to travel back and
forth on the same road, not on a double-decker road.)

z=-1 t=-A €=-3 -
t ‘:‘t(éﬂﬂ
time  t=0 L_Eu t=2 t-3 £=4
-— —>~ R
x- AXIS
ROAD N PSR WY ST SR S W L L N PR A i . L
-1 0 1 X3 456 7 8 4001 (2131415161118

F16.15

One of the applications of calculus (Section 3.2) will be the com-
putation of the speed and acceleration at any instant of time, given the
position function.

Problems for Section 1.2

1. Sketch the graph. Is the function increasing? decreasing? one-to-one?
continuous? (a) 2x (b) x + |x| () |x|//x (d) f(x) is the larger of x and 3

2. Let f(x) be 0 if x is an even integer, 1 if x is an odd integer, and undefined
otherwise. Sketch the graph of f.

3. Figure 16 shows the graph of a function f.

t
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(@) Find f(—1), f(0) and f(6).
(b) Estimate x such that f(x) = 4.
(c) Find x such that f(x) < 0.

4. Suppose [ is an increasing function. If x decreases, what does f(x) do?
5. Are the following functions continuous?

(a) the cost ¢(w) of mailing a package weighing w grams
(b) your weight w(t) at time ¢

6. What can you conclude about the graph of f under the following
conditions.

(@) f(x) > 0 for all x
(b) f(x) > x for all x (for example, f(5) is a number that must be larger
than 5)

7. (a) Sketch the power functions x% x72, x7'% on the same set of axes.

(b) Sketch the power functions x, x®, x7, x® on the same set of axes.

8. A function f is said to be even if f(—x) = f(x) for all x; for example, f(7) = 3
and f(-7) =3, f(-4) = -2 and f(4) = -2, and so on. A function is odd if
f(—x) = —f(x) for all x; for example, f(3) = —12 and f(-3) = 12, f(-6) = -2 and
f(6) = 2, and so on. The functions cos x and x? are even, sin x and x* are odd,
2x + 3 and x? + x are neither.

(a) Figure 17 shows the graph of a function f(x) for x = 0. If f is even, com-
plete the graph for x < 0.
(b) Complete the graph in Fig. 17 if f is odd.

9. Find f(x) if the graph of f is the line AB where A = (1,2) and B = (2,5).
10. Let f(¢) be the position of a particle on a number line at time ¢. Describe the
motion if

(a) f is a constant function (c) f is a decreasing function
() [y =1¢ -2 (d) f@) > 0 for all ¢

1.3 The Trigonometric Functions

We continue with the development of the basic functions listed in
Section 1.1 by considering the six trigonometric functions. The functions
are entitled to be called basic because of their many applications, two of
which (vibrations and electron flow) are described later in the section. We
assume that you have studied trigonometry before starting calculus and
therefore this section contains only a summary of the main results. A list of
trigonometric identities and formulas is included at the end of the section
for reference.

Definition of sine, cosine and tangent Using Fig. 1, we define

in 0
(1 sinf=2, cosf== wng=2=37
r r x cos @

Figure 1 shows a positive 6 corresponding to a counterclockwise rotation
away from the positive x-axis. A negative 8 corresponds to a clockwise
rotation.

The distance 7 is always positive, but the signs of x and y depend on
the quadrant. If 90° < 6 < 180°, so that 8 is a second quadrant angle, then
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x is negative and y is positive; thus sin 8 is positive, while cos 6 and tan 6
are negative. In general, Fig. 2 indicates the sign of sin 6, cos § and tan 6
for 6 in the various quadrants.

e ol e

- ,— — l+ + | -
SIGN OF 5in©  SIbN OF 205 © 56N OF ton ©

Fle. A

Degrees versus radians An angle of 180°is called 7 radians. More gener-
ally, to convert back and forth use

number of radians
() =

™
number of degrees 180

Equivalently

180 .
3) number of degrees = - X number of radians
(4) number of radians = ——~ X number of degrees.

180

One radian is a bit more than 57°. Tables 1 and 2 list some important angles
in both radians and degrees, and the corresponding functional values.

Table 1 Table 2
Degrees | Radians | sin | cos tan Degrees | Radians sin cos tan
0° 0 0 1 0 30° /6 3 V3 | 1/V3
90° /2 1 0 | none 45° /4 Ve | W2 1
180° ™ 0] -1 0 60° w/3 | §V3 | V3
270° 3m/2 -1 0 | none
360° 27 0 1 0
In most situations not involving calculus, it makes no difference
5=r® whether we use radians or degrees, but it turns out (Section 3.3) that for
the calculus of the trigonometric functions, it will be better to use radian
measure.

One geometric instance where radians are preferable involves arc length
on a circle. Suppose a central angle 6 cuts off arc length s on a circle of
radius r (Fig. 3). The entire circumference of the circle is 27r; the indicated
arc length s is just a fraction of the entire circumference, namely, the
fraction /360 if 6 is measured in degrees, and 6/2# if 6 is measured in
radians. Therefore, with 8 in radian measure,

H(D.B (5) s =§—€r°21rr =10.
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If degrees are used, the formula is s = 5%6 ‘2mr = T;'—Ore, which is not as
attractive as (5).

Reference angles Trig tables list sin 6, cos 6 and tan 8 for 0 < 6 < 90°.
To find the functions for other angles, we use knowledge of the appropriate
signs given in Fig. 2 plus reference angles, as illustrated in the following

examples.
If 8 is a second quadrant angle, its reference angle is 180° — 6, so 150°

has reference angle 30° (Fig. 4), and

\&
a\'\‘B
150° dé"(’e

@\\ L

Fl6.4

sin 150° = sin 30° =4,  cos 150° = —cos 30° = —§V3,
tan 150° = —tan 30° = -1/V3.

If 8 is in the third quadrant, its reference angle is 8 — 180°, so 210° has
reference angle 30° (Fig. 5), and

\&
¢ o)
g@(er{/ 30
¢ A
o a"‘b\
) o -
(é‘d 30 30 QJ
210°
M FIG6.5
330 sin 210° = —sin 30° = —§,  cos 210° = —cos 30° = —}V3,
tan 210° = tan 30° = 1/V3.
If 6 is in quadrant IV, its reference angle is 360° — 6, so 330° has
reference angle 30° (Fig. 6), and
sin 330° = —sin 30° = =}, cos 330° = cos 30° = {V3,
OPPOSITE tan 330° = —tan 30° = -1/V3.
Right triangle trigonometry In the right triangle in Fig. 7,
sin 8 = opposite leg cos 6 = adjacent leg
ADJACENT 6) hypotenuse ’ hypotenuse ’

tan 0 = opposite leg

" adjacent leg”

Flo.7
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Graphs of sin x, cos x and tan x Figures 8-10 give the graphs of the
functions, with x measured in radians. The graphs show thatsin x and cos x
have period 27 (that is, they repeat every 2m units), while tan x has
period . Furthermore, —1 < sin x =< 1 and —1 = cos x = 1, so that each
function has amplitude 1. On the other hand, the tangent function assumes
all values, that is, has range (—%,®). Note that sin x and cos x are defined
for all x, but tan x is not defined at x = +7/2, +37/2,---.

Noint

| /tonx. |
!

. R .
\ 1 | |
[ \ ] 1
! t | |
\ { 1 |
[ \ \ |
\ | \ :
A ! \
Ly G g Tl
12 12 A |
{ | | |
| t‘ ' '

{
! ! [ |l
! r . !
\ | \

FIG.10

The graph of @ sin(bx + ¢) The function sin x has period 27 and ampli-
tude 1. The function 3 sin 2x has period 7 and amplitude 3 (Fig. 11). In
general, a sin bx, for positive a and b, has amplitude a and period 2m/b. For
example, 5 sin §x has period 47 and amplitude 5.
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The graph of a sin(bx + ¢) not only involves the same change of period
and amplitude as a sin bx but is also shifted. As an example, consider
sin(2x — 3m). To sketch the graph, first plot a few points to get your
bearings. For this purpose, the most convenient values of x are those which
make the angle 2x — 37 a multiple of m/2; the table in Fig. 12 chooses
angles 0 and #/4 to produce points (0, —1), (w/4,0) on the graph. Then
continue on to make the amplitude 1 and the period 7 as shown in Fig. 12.

O N

o T g 3\ =
; \4/* W\
=

sin(Z2x-57)

FIG. A

Application to simple harmonic motion If a cork is pushed down in a
bucket of water and then released (or, similarly, a spring is stretched and
released), it bobs up and down. Experiments show that if a particular cork
oscillates between 3 units above and 3 units below the water level with the
timing indicated in Fig. 13, its height h at time ¢ is given by h(t) = 3 sin 3¢.

b Y

TIME t=-1 TIME t:o TIME t=T TIME t=271 T’"Et=3’h’

Flo. 12
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(Note that there is nothing strange about time 7. It is approximately
3.14 minutes after time 0.) More generally, the amplitude, frequency and
shift depend on the cork, the medium and the size and timing of the initial
push down, but the oscillation, called simple harmonic motion, always has the
form a sin(bt + c), or equivalently a cos(bt + ¢).

Another instance of simple harmonic motion involves the flow of the
alternating current (a.c.) in a wire. Electrons flow back and forth, and if i(t)
is the current, that is, the amount of charge per second flowing in a given
direction at time ¢, then i(t) is of the form a sin(bt + ¢) or a cos(bt + ¢). If
i(t) = 10 cos ¢ thenattime ¢ = 0, 10 units of charge per second flow in the
givendirection; at time ¢ = w/2, the flow momentarily stops; at time ¢t = r,
10 units of charge per second flow opposite to the given direction.

The graph of f(x) sin x First consider two special cases. The graph of
y = 2 sinx has amplitude 2 and lies between the pair of lines y = *2
(Fig. 14), although usually we do not actually sketch the lines. The lines,
which are reflections of one another in the x-axis, are called the envelope of
2 sin x. The graphofy = —2 sin x also liesbetweenthose lines; in addition,
the effiect of the negative factor -2 is to change the signs of y-coordinates,
so the graph is the reflection in the x-axis of the graph of 2 sin x (Fig. 14).

—_— s e e e S s N
9=1§inx
— w1
x
T\ % |
y=-24mx%
- - e T YRR

FIG. 14

Similarly, the graph of x*sin x is sandwiched between the curves
y = =x* which we sketch as guides (Fig. 15). The curves, called the en-
velope of x* sin x, are reflections of one another in the x-axis. Furthermore,

k]
PSS A
\/-\,/

- “Q y: P x
AN

(‘// k‘.\k}
FIG.15
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whenever x* is negative (as it is to the left of the y-axis) we not only change
the amplitude but also reflect sine in the x-axis to obtain x* sin x. The result
in Fig. 15 shows unbounded oscillations.

In general, to sketch the graph of f (x) sin x, first draw the curvey = f(x)and
the curvey = —f(x), its reflection in the x-axis, to serve as the envelope. Then change
the height of the sine curve so that it fits within the envelope, and in addition
reflect the sine curve in the x-axis whenever f(x) is negative.

Secant, cosecant and cotangent By definition,

1 1 Cos X 1
(7) secx =——, cscx = , cotx = — = .
sinx tanx

sin x

In each case, the function is defined for all values of x such that
the denominator is nonzero. For example, csc x is not defined for
x = 0,+7, *27,---. The graphs are given in Figs. 16-18.
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In a right triangle (Fig. 7),
yp hyp
sec 0 = hypotenuse cscp =Y otenuse

adjacent leg’ opposite leg’

cot § = ‘adlacent leg

opposite leg’
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Notation It is standard practice to write sin’ for (sin x)?, and sin x? to
mean sin(x*). Similar notation holds for the other trigonometric functions.

Standard trigonometric identities

Negative angle formulas

9) sin(—x) = —sin x, cos(—x) = cos x, tan(—x) = —tan x,
csc(—x) = —csc x, sec(—x) = sec x, cot(—x) = —cot x
Addition formulas

sin(x +y) = sinx cosy + cos x sin y
(10)  sin(x —y) =sinx cosy — cosx siny
cos(x + y) = cos x cos y — sin x sin y
cos(x — y) = cos x cos y + sin x sin y
Double angle formulas

sin 2x = 2 sin x cos x

(11)  cos 2x = cos®x — sin® = 1 — 2 sin®x = 2 cosx — 1
2 tan x

—tan’

Pythagorean identities

tan 2x =

sin®x + cos™x =1

1) |y e
1 + cot?’x = cscx
Half-angle formulas
(13)  sin%x = 1-_2cosx
21 1 + cos x
Ccossx = ——(——
2
Product formulas
in(x +y) + sin(x —
sin x cos y = sin(x + y) + sin(x 2)

2
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sin(x +y) — sin(x — y)
2

(14) cos x siny =

cos(x + y) + COS(X - Z)

€Os X COs y = .
sin x siny = cos(x — y) ; cos(x +y)
Factoring formulas

- +
sin x + sin y =2cosx—2zsinx—22

sty x-)y
9 sin )

(15)  sinx — siny = 2 cos

+ —
cosx+cosy=2cosx2‘vcosx—22

+ -
COs X — COS y =2sinx—225in¥

Reduction formulas
cos(dr — 6) = sin 0
(16)  sin@w — 6) = cos 6
cos(m — 6) = —cos 6
sin(w — 6) = sin
Law of Sines (Fig. 19
(7 sin{ﬂ _ sirf Bg= si)n C
a b c
Law of Cosines (Fig. 19)
¢2=a%? - 2abcosC

Area formula (Fig. 19)
(9 areaof triangle ABC = 3ab sin C

Flo, 19
Problems for Section 1.3

L. Convert from radians to degrees.
(@) w/5 (b) 57/6 (c) —7/3

2. Convert from degrees to radians.
(a) 12° (b) —90° (c) 100°
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3. Evaluate without using a calculator.
(a) sin 210° (b) cos 37w (c) tan 5m/4
4. Sketch the graph.

(a) sin 3x (d) 5 sin@@x + m)
(b) tan 4x  (e) 2 cos(3x — 3m)
(c) 3 cos m

5. Let sin x = a, cos y = b and evaluate the expression in terms of a and b,
if possible.

(@) sin(-x) (d) —cosy
(b) cos(~y) (e) sin’x
() =sinx (f) sin x?

6. In each of (a) and (b), use right triangle trigonometry to find an exact
answer, rather than tables or a calculator which will give only approximations.

(a) Find cos 6 if 6 is an acute angle and sin § = 2/3.
(b) Find sin 6 if 8 is acute and tan = 7/4.

7. Sketch the graph.
(@) x sinx (b) x?sinx

1.4 Inverse Functions and the Inverse
Trigonometric Functions

If a function maps a to b we may wish to switch the point of view and
consider the inverse function which sends b to a. For example, the function
defined by F = #C + 32 gives the fahrenheit temperature F as a function
of the centigrade reading C. If we solve the equation for C to obtain
C = }(F — 32) we have the inverse function which produces C, given F. If
the original function is useful, the inverse is probably also useful. In this
section, we discuss inverses in general, and three inverse trigonometric
functions in particular.

The inverse function Let f be a one-to-one function. The inverse of f,
denoted by !, is defined as follows: if f(a) = b then f~'(b) = a. In other
words, the inverse maps “backwards” (Fig. 1). Only one-to-one functions
have inverses because reversing a non-one-to-one function creates a pairing
that is not a function (Fig. 2).

Given a table of values for f, a table of values for f ! can be constructed
by interchanging columns. A partial table for f(x) = 3x and the correspond-
ing partial table for its inverse are given below.

x f(x) x [T
2 6 6 2
5 15 15 5
7 21 21 7

Clearly, f~'(x) = x. Note that we may also think of §x as the “original”
function with inverse 3x. In general, f and f ™ are inverses of each other.

Figure 1shows thatif f and f ~! are applied successively (first f and then
f7%, or vice versa) the result is a “circular” trip which returns to the starting
point. In other words,
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() S7(f®) =x and f(f'(x) = x.

For example, multiplying a number by 3 and then multiplying that
result by 1/3 produces the original number.

Example 1 In functional notation, the centigrade/fahrenheit equations
show that if f(x) = 3x + 32 then f~'(x) = 3(x — 32).

The graph of f'(x) One of the advantages of an inverse function is that
its properties, such as its graph, often follow easily from the properties of
the original function. Comparing the graphs of f and f ~' amounts to com-
paring points such as (2,7) and (7, 2) (Fig. 3). The points are reflections of
one another in the line y = x. In general, the graph of f ™' is the reflection of
the graph of f in the line y = x, so that the pair of graphs is symmetric with
respect to the line. If f(x) = x? and x = 0 so that f is one-to-one, then
f7(x) = Vx. The symmetry of the two graphs is displayed in Fig. 4.

FIG. %

The inverse sine function Unfortunately, the sine function as a whole
doesn’t have an inverse because it isn’t one-to-one. But various pieces of the
sine graph are one-to-one, in particular, any section between a low and a
high point passes the horizontal line test and can be inverted. By con-
vention, we use the part between — /2 and /2 and let sin™'x be the inverse
of this abbreviated sine function; that s, sin~'x is the angle between —m/2 and
7/2 whose sine is x. Equivalently,

(20 sinla=b iandonlyif sinb=aand —w/2=<b = 7n/2.

The graph of sin”'x is found by reflecting sin x, =7/2 < x < #/2, in the
line y = x (Fig. 5). The domain of sin”'x is [—1,1] and the range is
[=7/2, 7/2).
The sin™! function is also denoted by Sin™' and arcsin. In computer
programming, the abbreviation ASN of arcsin is of ten used.
Example 2 Find sin™'
Solution: Let x = s
sin(—=330°) = 3, sin 150° =
and 90°; therefore sin™' 4

n~' §; then sin x = §. We know that sin 30° = 3,
3,++. We must choose the angle between —90°

30°, or, in radians, sin™' § = /6.

1
2
1

Example 3 Find sin™'(-1).
Of all the angles whose sine is —1, the one in the interval [-7/2, 7/2]
is —7/2. Therefore, sin”'(—=1) = —7/2.
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Warning 1. The angles —#/2 and 37/2 are coterminal angles; that is, as
rotations from the positive x-axis, they terminate in the same place. How-
ever —m/2 and 37/2 are not the same angle or the same number, and
arcsin(—1) is —7/2, not 37/2.

2. Although (1) states that f~'(f(x)) = x, sin”!(sin 200°) is not 200°.
This is because sin™' is not the inverse of sine unless the angle is between
—90° and 90°. The sine function maps 200°, along with many other angles,
such as 560°, —160°, 340°, —20°, all to the same output. The sin~' function
maps in reverse to the particular angle between —90° and 90°. Therefore,
sin~!(sin 200°) = —20°.

The inverse cosine function The cosine function, like the sine function,
has no inverse, because it is not one-to-one. By convention, we consider the
one-to-one piece between 0 and =, and let cos™'x be the inverse of this
abbreviated cosine function (Fig. 6). Thus, cos™'x is the angle between 0 and
 whose cosine is x. Equivalently,

+
:
Iy
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(3) cos™'a =b ifandonlyif cosb=aand 0 =<b = 7.

The domain of cos™'x is [—1, 1] and the range is [0, 7).
The cos™ function is also denoted by Cos™', arccos and ACN.

Example 4 Find cos™'(—9).
Solution: The angle between 0° and 180° whose cosine is —3 is 120°.
Therefore, cos™'(—4) = 120°, or in radians, cos™'(—3) = 2#/3.

Warning The graphs of sin x and cos x wind forever along the x-axis, but
the graphs of sin™'x and cos™'x (reflections of portions of sin x and cos x) do
not continue forever up and down the y-axis. They are shown in entirety in
Figs. 5 and 6. (If either curve did continue winding, the result would be a
nonfunction.)

The inverse tangent function The tan™' function is the inverse of the
branch of the tangent function through the origin (Fig. 7). In other words,
tan”'x is the angle between —1/2 and /2 whose tangent is x. Equivalently,

(4) tan"'a =b ifandonlyif tanb =aand —-w/2<b < 7/2.

The tan™! function is also denoted Tan™', arctan and ATN.
For example, tan™!(—=1) = —7/4 because —m/4 is between —m/2 and
m/2 and tan(—7/4) = —1.

Example 5 The equation y = 2 tan 3x does not have a unique solution
for x. Restrict x suitably so that there is a unique solution and then solve for
x. Equivalently, restrict x so that the function 2 tan 3x is one-to-one, and
then find the inverse function.

Solution: To use tan™! as the inverse of tangent, the angle, which is 3x
in this problem, must be restricted to the interval (—%m,im), that is,
—3m < 3x < jm. Consequently, we choose — /6 < x < m/6. With this
restriction,

%y = tan 3x (divide both sides of the original equation by 2)

tan"' 3y = 3x  (take tan™' on both sides)

-11

jtan"'4y =x  (divide by 3).
Equivalently, if f(x) = 2 tan 3x and -7 /6 <x < 7/6, then f7'(x) =

jtan”! §x.
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Problems for Section 1.4

1. Suppose f is one-to-one so that it has an inverse. If f(3) = 4 and f(5) = 2,
find, if possible, f~'(8), f~'(4), £ '(5), f ~'(2).
2. Find the inverse by inspection, if it exists.

(@ x-3 (o) 1/x
() Intx (d) —x

3. If f(x) = 2x — 9 find a formula for f ~'(x).
4. Find f7'(f(17)).
5. Show that an increasing function always has an inverse and then decide if the
inverse is decreasing.
6. True or False? If f is continuous and invertible then f ™' is also continuous.
7. Are the following pairs of functions inverses of one another?
@) x*and Vx (b) x*and Vx

8. Find the function value.

(a) cos™'0 () sin™'(—3V3)
(b) sin~'0 (f) tan™'1
(c) sin™'22222  (g) tan”'(-1)

(d) cos™'(-3V3)

9. Estimate tan~'1000000.

10. True or False? (a) If sina = b then sin™'b =a (b) If sin"'c =d then
sind = c.

11. Place restrictions on 8 so that the equation has a unique solution for 8, and
then solve. (@) z = 3 + 3sin 0 (b) x = 5 cos(20 — 3m)

12. Odd and even functions were defined in Problem 8, Section 1.2. Do
odd (resp. even) functions have inverses? If inverses exist, must they also be odd
(resp. even)?

1.5 Exponential and Logarithm Functions

This section completes the discussion of the basic functions listed in
Section 1.1 by considering the exponential functions and their inverses, the
logarithm functions. As with the other basic functions, they have important
physical applications, such as exponential growth, discussed in Section 4.9.

Exponential functions Functions such as 2%, (})* and 7* are called
exponential functions, as opposed to power functions x?, x'* and x”. In gen-
eral, an exponential function has the form 4% and is said to have base b.

Negative bases create a problem. If f(x) = (—4)* then f3) = V=4 and
f&) = V=4, which are not real. Similarly, there is no (real) f@),f @).f &),
the domain of (—4)" is too riddled with gaps to be useful in calculus. (The
power function x " also has a restricted domain, namely [0, x), but at least
the domain is an entire interval.) Because of this difficulty, we do not consider
exponential functions with negative bases.

To sketch the graph of 2%, we first make a table of values. (Remember
that 277, for example, is defined as 1/27, and 2% is 1.)

x | -7 |-8[-1[o]1] 4]0 [
ol ! 41 47112l 16 [1024]

For convenience, we used integer values of x in the table, but 2* is also
defined when x is not an integer. For example,
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93 _ \3/? = \3/,1’ 931 — 930 — Y931

and the graph of 2" also contains the points (2/3, V/4) and (3.1,V2%).

We plot the points from the table, and when the pattern seems clear,
connect them to obtain the final graph (Fig. 1). The connecting process
assumes that 2 is continuous.t Figure 1 also contains the graphs of (3) and
3* for comparison.

2

Fi6. |

The exponential function e* In algebra, the most popular base is 10, while
computer science often favors base 2. However, for reasons to be given in
Section 3.3, calculus uses base e, a particular irrational number (that is, an
infinite nonrepeating decimal) between 2.71 and 2.72; the official defini-
tion will be given in that section. Because calculus concentrates on base e,
the function e* is often referred to as the exponential function. It is some-
times written as expx; programming languages use EXP(X).

Figure 2 shows the graph of ¢*, along with 2* and 3" for comparison.
Note that 2 < e < 3, and correspondingly, the graph of ¢* lies between the
graphs of 2* and 3*. We continue to assume that exponential functions
are continuous.

In practice, a value of ¢*, such as e? may be approximated with tables
or a calculator. Section 8.9 will indicate one method for evaluating ¢* di-
rectly. A rough estimate of 2 can be obtained by noting that since e is
slightly less than 3, ¢? is somewhat less than 9.

1The connecting process also provides a definition of 2* for irrational x, that is, when x
is an infinite nonrepeating decimal, such as #. For example, 7 = 3.14159..., and by con-
necting the points to make a continuous curve, we are defining 2" by the following sequence
of inequalities:

23.“ < 2- < 2!,“1
21!1! <9< 23.]“5
2!.I4I5 < 2' < 25.1"”
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_ 3

FIG. A
The graph of e* provides much information at a glance:
(1) e*is defined for all x.
(2) e*> 0; in fact, the range of e* is (0,).
(3) e*is increasing.
The functionln x  Since ¢* passes the horizontal line test and is one-to-one,

it has an inverse, called the natural logarithm function and denoted by In x.
It is also written log, x and called the logarithm with base e. In other words,

4) Ina=b ifandonlyif e =a.

For example, if e#™ = z thenln z = 2p — ¢. Asan important consequence
of (4), since

(5) e®=1 and e'=e¢,
we have
(6) Inl1=0 and Ilne =1.

The graph of In x is the reflection of ¢* in the line y = x (Fig. 3). The
graph reveals the following properties (7)—(10).

/ In X

/ e
/
’
s
N ’
’
/
/
,
’

FIG.3
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(7) Inx is defined for x > 0; we cannot take the logarithm of a
negative number or of 0.

(8). The range of In x is (—%,%).
(9) Inx is negative if 0 < x < 1, and positive if x > 1.
(10) In x is increasing.
Since In x and ¢* are inverses,
(11) Ine*=x and " = x;
thatis, when exp and In are applied successively tox, they “cancel each other

out.” For example,In ¢’ = 7, ¢"8 = 8, In e*** = a + b, ¢"* = 6x.

Warning It is impossible to take In of a negative number, but it is
perfectly possible for In x to come out negative. Infact, by (9), In x is negative
whenever 0 < x < 1. For example, In(-3) is impossible, but In x = -3
is possible.

Laws of exponents and logarithms The familiar rules of exponents hold
for e*.

(12) e'e) = e
(13) e /e’ = 7
(14) e = 1/e
(15) (e = en.

We will derive the property of logarithms analogous to (12). Leta = e*
and b = ¢* so that, by (4), x =Ina and y =1Inb. Then (12) becomes
ab = ¢™*'""* which, by (4), may be rewritten as

(16) Inab =lna + Inb.

Similarly, the other rules of exponents lead to the following laws
of logarithms:

(17) h%=ha—hb
1
(18) In— =-Ina
a
(this is a special case of (17) sinceIn2=In1-Ilna=0-1Ina = -In q)
(19) Ina*=blIna.

We assume throughout that identities and equations involving the loga-
rithm function never involve the logarithm of a negative number or 0. For
example, we might use (19) to write In x* = 2 In x. It is understood that x-
must not be 0 or negative, so that In x? and In x are both defined.

Note that In x? means In(x?), not (In x)%.

Example 1

@ nh4+In3=In1l2 (by (16))
(b) In81 =ln3*=4In3 (by (19))
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© 3In9=1n92=InVI=In3 (by(19)
(dIne*=3Ine=3 (by(19) and (6))
(¢)Inl/e=-=lne=-1 (by (18) and (6))

Warning 1. In 3x is not 3 In x; instead, In 3x =In 3 + In x.

2. 2 In 3 is neither In 6x nor 6 In x, nor In 3x?; instead, 2 In 3x =
In(3x)? = In 9x2.

3. In 2x + In 3x is not In 5x; instead, In 2x + In 3x = In 6x2.

Example 2

(@ In3e¢*=In3+Ine*=1n3 + 4x (by (16) and (11))
(b) 20 = o = % = g2 (by (19) and (11))
() 2lnx +Inx =lnx*+Inx =Inx? (by (19) and (16))

Logarithms with other bases There are logarithm functions with bases
other than e, corresponding to exponential functions with bases other than
e: logsx is the inverse of 2%, logsx is the inverse of 3* log)ex is the inverse
of (), and so on. Since calculus uses the exponential function with base e,
in this book we will consider only the logarithm function with base e, that
is, In x.

The elementary functions We have now introduced all the basic functions
listed in Section 1.1. However, applications often involve not only the basic
functions, but combinations of them, such as the sum x? + x or the product
x? sin x. Still another way of combining two functions f and g is to form
the functions f(g(x)) and g(f(x)), called compositions. If f(x) = sin x and
glx) = Vx thenf(g(x)) = sin Vx and g(f(x)) = Vsin x. The basic functions
plus all combinations formed by addition, subtraction, multiplication, division and
composition, a finite number of times, are referred to as the elementary functions. For
example, sin x, 2x* + 4, sin x%, 1/x and x cos 2x are elementary functions.

All the basic functions are continuous wherever they are defined, and
it can be shown that the elementary functions also are continuous except
where they are not defined, usually because of a zero in a denominator.
For example, ¢'* is continuous except at x = 0 where it is not defined,
(x® + sin x)/(x — 1) is continuous except at x = | where it is not defined,
sin x? is continuous everywhere.

Solving equations involving e* and Inx To solve the equation ¢* = 7,
take In onbothsides and use In ¢* = x togetx = In 7. Tosolve the equation
In x = -6, take exp on both sides and use " = x to getx = ¢7°.
Example 3 Solve 4 In(2x + 5) = 8.

Solution:
In(2x + 5) = 2 (divide by 4)
2x + 5 =¢*  (take exp)
x =3e?—5) (algebra)
Example 4 Solve In 12x + In 3x = 4.

First solution:
In 36x2 = 4 (lna +Ilnb = In ad)
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36x* = e*  (take exp)

It looks as if the solution should be x = *e?, but if x is negative, then 12x
and 3x are also negative, and there is no In 12x or In 3x. Thus the only

solution is x = geZ.

Second solution:

In 12x+1n 3x

e =e'  (take exp)
elanernSx = e4 (erfb - eaeb)

(12x) (3x) = ¢* (e = a)

36x? = ¢*

x = %2  (asin the first solution)

Warning Ifln 12x + In 3x = 4, itis not correct to take exp of each term to
get 12x + 3x = ¢*; if exp is used at all, it must be applied to each entire side
of the equation, to obtain ¢"'>*"% = ¢% In general, if p + ¢ = 4 then
applying exp to both sides produces e?*? = ¢*, not e? + ¢ = ¢*; and ap-
plying In to both sides produces In(p + ¢) =In 4, not Inp + In ¢ = In 4.

Example 5 Solve In(—x) = 3. Note that writing In(—x) does not violate the
principle that it is impossible to take In of a negative number. The function
In(—x) is defined for —x > 0, that is, for x < 0.

Solution: Take exp on both sides to obtain —x = ¢3, x = —e>.

Solving inequalities involving ¢* and In x Consider the inequalities
(a) e* < 5 and (b) In x > —3. To solve (a), take In on both sides to get the
solution x < In 5. For (b), take exp on both sides to get x > ¢~"2.

Note that, in general, we can’t “do the same thing” to both sides of an
inequality and expect another similar inequality to result. If a > b, we
cannot conclude that sina > sin b (for example, 27 > 0, but sin 27 =
sin 0). If @ > b, we cannot square both sides to conclude that a® > b? (for
example, 2 > -3, but 4 < 9). However, if we operate on both sides of an
inequality with an increasing function, the sense of the inequality is main-
tained. Since exp and In are increasing functions (as opposed to the squar-
ing function and the sine function which are not) it is true that if a > b then
e* > e’and In @ > In b, justifying the method for solving (a) and (b).

Problems for Section 1.5

L. Arrange each set of numbers from smallest to largest without using tables or
a calculator.

() emI0 g0 g0

(b) e""‘:. e, P e et

(c) —e®, —e’

2. Simplify each expression.
@) o7 (€) etn1?

(b) ln el (f) el*ln-l

(€ ¢*"* (g exp(lnx +Iny)
(d) In Ve
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3. Letln 2 = g,In 3 = b and write each expression in terms of a and b.

(@) In6 g In2+In3
) In8 (h) (In2)(In 3)
© InV3 @ (In2/(n3)
) In81 (j) (In2°

() Ing () In2

) In

4. For which values of x is the function defined.

(@) In(2x +3) (d) Inlnx
(b) Insinwx (e) Inlnlnx
(c) e>* (f) Inlnlnlnx

5. Show that —In(V2 - 1) simplifies to In(V2 + 1).
6. True or False?

(@) Iflna =1lnb, thena = b.
(b) If e* = ¢, thena = b.
(c) If sina = sin b, thena = b.
7. Show that exp(i———-ﬂn—;’—;l—n—g) simplifies to eVel18

8. Show that 2* = ¢*'"2, (In fact, some computers evaluate 2°, not by finding
222, but by converting 2° to ¢*'"* and evaluating that expression.)

9. Suppose a car travels on the number line so thatits position at time ¢ is ¢".
Describe the car’s motion during the time interval (—%, ).

10. Solve

(@ 227*-3=0 (k) 4lnx +In2x =3
b) In2x + 7)=-1 (1) In(5x — 3) = In2x
(c) e£= -5 (m) In(5x + 3) = In 2x

d -2<Ilnx<8 n) Inx +1)+Ilnx =2
(e) e**">5 (0) e*=¢*

f) -lnx =4 ) xInx=0

g) In(—x) = 4 (@ xe*+2°=0

(h) ¢™*3 = ¢* (r) elnx=0

(i) Inlnx = -2 25

(j) arcsin e* = /6" (s) 9+ In3x

11. Show that In $V/2 simplifies to —4 In 2.

12. A scientist observes the temperature T and the volume V in an experi-
ment and finds that In T always equals —% In V. Show that TV**® must therefore
be constant.

13. The equation 4 In x + 2(In x)* = 0 can be considered as a quadratic equa-
tion in the variable In x. Solve for In x, and then solve for x itself.

14. True or False? (a) If a = b, then ¢* = ¢*. (b) If ¢ + b = ¢, then
e+ et =

15. Find the mistake in the following “proof” that2 < 1. We know that3)? <3,
soIn@)?® <In} Thus2In <In} Cancellnftoget2 < 1.

1.6 Solving Inequalities Involving Elementary Functions

This section contains algebra needed in Chapters 3 and 4. A simple
inequality such as 2x + 3 > 11 is solved with the same maneuvers as the
equation 2x + 3 = 11 (the solution is x > 4), but, in general, inequal-

2

. — . -2+ 1

ities are trickier than equations. For example, to solve——————— > 0, we
x -



30 - 1/Functions

want to multiply on both sides by x — 5 to eliminate fractions. But if
x < 5, then x — 5 is negative and multiplication by x — 5 reverses the
inequality; if x > 5, then x — 5 is positive, and the inequality is not re-
versed. (For equations, this type of difficulty doesn’t arise.) This section
offers a straightforward method for solving inequalities of the form
f(x) >0, f(x) < 0, or equivalently for deciding where a function is positive
and where it is negative.

In order for a function f to change from positive to negative, or vice
versa, its graph must either cross or jump over the x-axis. Therefore, a
nonzero continuous f cannot change signs; its graph must lie entirely on
one side of the x-axis. Suppose f is 0 only at x = =3 and x = 2, and is
discontinuous only at x = 5, so that within the open intervals (-, —3),
(—3,2),(2,5) and (5,=), f is nonzero and continuous. Then in each interval
f cannot change signs and is either entirely positive or entirely negative.
One possibility is shown in Fig. 1. In general, we have the following method
for determining the sign of a functionf, that is, for solving the inequalities

flx) >0, f(x) <0.

FIG. |

Step 1 Find values of x where f is discontinuous. For an elementary
function f, these occur where f is not defined, in practice because of a zero
in a denominator.

Step 2 Find values of x where f is zero; that is, solve the equation
fx) =0.

Step 3 Look at the open intervals in between. On each of the intervals,
f maintains only one sign. To find the sign that f takes on each interval, test
one number from each interval.

Example 1 Solve the inequalities

x2-2x + 1 x2—2x + 1
x—5 >0, x—5 <
2 _
Equivalently, if f(x) = x—x—2_ig+—l
is negative.
Solution: Step 1 The elementary function f is discontinuous only at
x = 5, where it is not defined because of a zero in the denominator.
Step 2 Solve the equation f(x) = 0.

) 0.

, decide where f is positive and where f



1.6 Solving Inequalities Involving Elementary Functions - 31

x2—2x+l_
x—-5

x2=2x +1=0  (multiply by x = 5; equivalently, a fraction
is 0 if and only if its numerator is 0)

0

(x=12=0
x=1

Step 3 Consider the intervals (-, 1), (1,5) and (5, »). Test one value of
x from each interval.

interval l a value of x in the interval l f(x) | sign of f in the interval

(==, 1) 0 -1 negative
(1,5) 2 -3 negative
(5,%) 6 25 positive

Therefore, f(x) is positive for x > 5, and negative for x < 1 and for
1 < x < 5. Equivalently, the solution to the first inequality in (1) is x > 5,
and the solution to the second inequality isx < 1 or1 <x <5.

Note that Steps 1 and 2 locate points where the function either jumps
or touches the x-axis. These are places where f might (but doesn’t have to)
change sign by crossing or jumping over the x-axis. Indeed, in this example,
f changes sign at x = 5 but not at x = 1. The graph in Fig. 2 shows what
is happening. At x = 1, f touches the x-axis but does not cross, so there is
no sign change. At x = 5, f happens to jump over the axis, so there is a
sign change.

t---—=s

d

Problems for Section 1.6

FIG. A

1. Decide where the function f is positive and where it is negative.

10 - 10x? e
@ U = 3 @

x+1 2
(b)x-l (e) x*+x -6
(© x*-x+2
2. Solve

1
<3 (C)xg

16 54 1
(a)?+x—s>0 (b)z*'
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1.7 Graphs of Translations, Reflections, Expansions
and Sums

Considerable time is spent in mathematics finding graphs of functions
because graphs can be extremely useful. It is possible to see from a graph
where a function is positive, negative, increasing, decreasing, large, small,
one-to-one, discontinuous, and so on, when it may be very hard to do this
from a formula.

Suppose that the graph of y = f(x) is known. We will develop efficient
techniques for finding the graphs of certain variations of f. For example, in
trigonometry it is shown that the graph of sin 2x can be obtained easily
from the graph of sin x by changing the period to . Similarly, the graph
of 2 sin x can be derived from the graph of sin x by changing the amplitude
to 2. We will generalize these ideas to arbitrary graphs. In each case, the
problem will be to find the graph of a variation of f, assuming that we have
the graph of f. We are not concerned here with how the original graph was
obtained. Perhaps it was found by plotting many points, possibly it was
generated by a computer, it may be a standard curve such asy = ¢* or it may
have been drawn using techniques of calculus, coming later.

We will first consider three variations in which an operation is per-
formed on the variable x in the equation y = f(x), resulting in horizontal
changes in the graph. Then we examine three variations obtained by oper-
ating on the entire right-hand side of the equation y = f(x), resulting in
vertical changes in the graph. Results are summarized in Table 1. Finally we
consider the graph of a sum of functions, given the individual graphs.

Horizontal translation The graphofy = x* + 3x? — 1is given in Fig. 1.
The problem is to draw- the graph of the variation y = (x — 7)* +
3(x — 7)? — 1. First, look for a connection between the two tables of values.

(5,149)
y:X}*’ﬁ’x’V’
(24)
FIG. |
OLD NEW
x | y=x"+3x2-1 x | y=Gx-7D+3k-7-1
9 I 2 +32)-1=19 9 | 2 +32)—1=19
5 5+ 3(5%) — 1 = 199 12 5 + 3(5%) — 1 = 199

Substituting x = 9 into the new equation involves the same arithmetic
(because 7 is immediately subtracted away) as substituting x = 2 in the
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original equation. Similarly, x = 12 in the new equation produces the same
calculation as x = 5 in the old equation. In general, if (a,b) is in the old
table then (@ + 7,b) is in the new table. Now that we have a connection
between the tables, how are the graphs related? The new point (9, 19) is
7 units to the right of the old point (2, 19). In general, given the (old) graph
of y = f(x), the (new) graph of y = f(x — 7) is obtained by translating
(i.e., shifting) the old graph to the right by 7 units (Fig. 2). This agrees with
the familiar result thatx* + y? = r2isacircle with center at the origin, while
(x = 7)* + y2 = r?is a circle centered at the point (7,0), that is, translated
to the right by 7.

- (1_7>3f 3(7&'7>1-1 61,!‘7‘0

TRANSLATE RIGHT

PN
/

4,19)

FI6. A

Similarly, the graph of y = f(x + 3) is found by translating y = f(x) to
the left by 3 units.

Horizontal expansion/contraction Consider the following two equations
with their respective tables of values.

OLD NEW

x l y=x3+ 3x2 -1 x ] y = (5x)% + 3(5x)% — 1
2 ‘ 2% +32Y) - 1 =19 2/5 ‘ 2 +32)-1=19
5 | 5°+3(5%) - 1=199 1 | 5 +35)-1=199

Substituting x = 2/5 in the new equation produces the same calcu-
lation as x = 2 in the old equation (because each occurrence of 2/5 in the
new equation is immediately multiplied by 5). If (g, b) is in the old table then
(a/5,b) is in the new table. In general, given the graph of y = f(x) (Fig. 3a),
the graph of y = f(5x) is obtained by dividing x-coordinates by 5 so as to
contract the graph horizontally (Fig. 3b). Similarly, the graph of y = f(3x)
is found by tripling x-coordinates so as to expand the graph of f horizontally
(Fig. 3c). Note that in the expansion (resp. contraction), points on the y-axis
do not move, but all other points move away from (resp. toward) the y-axis
so as to triple widths (resp. divide widths by 5).

The expansion/contraction rule says that the graph of y = sin 2x is
drawn by halving x-coordinates and contracting the graph of y = sin x
horizontally. This agrees with the standard result from trigonometry that
y = sin 2x is drawn by changing the period on the sine curve from 27 to
, a horizontal contraction.
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y: \C(-X)
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5 (Q) 10 1% (c)

Horizontal reflection Consider the following two equations and their
respective tables of values.

OLD NEW
x | y= 4320 x |y =(=0"+3(-x2 -1
2 ’ 2 +3(2) - 1=19 -2 ‘ 2+ 329 - 1= 19
5 5+ 3(59) - 1 =199 -5 5+ 3(5%) - 1 =119
Substituting x = —2 into the new equation results in the same calcu-

lation as x = 2 in the original. If (a,b) is in the old table then (—a, b) is in the
new table. In general, given the graph of y = f(x) (Fig. 3a), the graph of
y = f(—x) is obtained by reflecting the old graph in the y-axis (Fig. 3d) so
as to change the sign of each x-coordinate.

Vertical translation Consider the equations
y=x*+3x2-1 and y = x* +3x? - 1) + 10.

For any fixed x, the y value for the second equation is 10 more than the first
y. In general, given the graph of y = f(x), the graph of y = f(x) + 10 is
obtained by translating the original graph up by 10.t Similarly, the graph
of y = f(x) — 4 is found by translating the graph of y = f(x) down by 4.

Vertical expansion/contraction Consider the equations
y=x3+3x2-1 and y =2(x*+ 3x* - 1).

For any fixed x, the y value for the second equation is twice the first y. In
general, given the graph of y = f(x), the graph of y = 2f(x) is obtained by
doubling the y-coordinates so as to expand the original graph vertically.
Similarly, the graph of y = §f(x) is found by multiplying heights by 2/3, so
as to contract the graph of f(x) vertically.

tThe conclusion that y = f(x) + 10 is obtained by translating up by 10 may be compared
with a corresponding result for circles, provided that we rewrite the equation as (y — 10) =
f(x). The circle x* + y* = r? has center at the origin, while x* + (y ~ 10)* = r? is centered at
the point (0, 10), that s, translated up by 10. Similarly, the graph of (y = 10) = f(x) is obtained
by translating y = f(x) up by 10.
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The familiar method for graphing y = 2 sin x (change the amplitude
from 1 to 2) is a special case of the general method for y = 2f(x) (double
all heights).

Vertical reflection Consider y = f(x) versus y = —f(x). The second y is
always the negative of the first y. Thus, the graph of y = —f(x) is obtained
from the graph of y = f(x) by reflecting in the x-axis. A special case ap-
peared in Fig. 14 of Section 1.3 which showed the graphs of y = 2 sin x
and y = —2 sin x as reflections of one another.

Table 1 Summary

How to obtain the graph from
Variation of y = f(x) the original y = f(x)

An operation is performed on
the variable x
y = f(—x) Reflect the graph of y = f(x) in the

y-axis

y = f(2%) Halve the x-coordinates of the graph
of y = f(x) so as to contract
horizontally

y = fGx) Multiply the x-coordinates of the

graph of y = f(x) by 3 so as to
expand horizontally
y = f(x + 2) | Translate the graph of y = f(x) to the
left by 2
y = f(x — 3) | Translate the graph of y = f(x) to the
right by 3
An operation is performed on
f(x), i.e., on the entire right-
hand side

y = —f(x) Reflect the graph of y = f(x) in the
x-axis
y = 2f(x) Double the y-coordinates of the
graph of y = f(x) so as to expand
vertically
y = 3f(x) Multiply the y-coordinates of the
graph of y = f(x) by $ so as to
contract vertically
y = f(x) + 2 | Translate the graph of y = f(x) up
by 2
y = f(x) — 3 | Translate the graph of y = f(x) down
by 3

Example 1 The graph of cos™
in Figs. 5-10.

x is shown in Fig. 4. Six variations are given

Warning Thegraphoff(x — 1) (note the minus sign) is obtained by trans-
lating f(x) to the right (in the positive direction). The graph of f(x) — 1 (note
the minus sign) is found by translating f(x) down (in the negative direction).
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The graph of f(x) + g(x) Given the graphs of f(x) and g(x), to sketch
y = f(x) + g(x), add the heights from the separate graphs of f and g, as
shown in Fig. 11. For example, the new point D is found by adding height
AB to height AC to obtain the new height AD. On the other hand, since
point P has a negative y-coordinate, the new point R is found by subtracting
length PQ from QS to get the new height 5

Y:F(l\-#‘jb“)
\\ 0 ///7= 9t
\ / /’y:‘((X)

FIG. I

Tosketchy = cos x + sin x,drawy = cos x and y = sin x on the same
set of axes, and then add heights (Fig. 12). For example, add height 4B to
height AC to obtain the new height AD; at x = , when the sine height
is 0, the corresponding point on the sum graph is point E, lying on the
cosine curve.

COS % + SInYX

FIG. I

Problems for Section 1.7

1. Sketch the graph and, in each case, include the graph ofIn x for comparison
(@) In(=x) (d) In2x

(b) =Inx (e) In(x + 2)

() 2lInx (f) 2+ Inx

2. Figure 13 shows the graph of a function, which we denote by star x. Sketch
the following variations given on the next page.
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8
O\
X

B B

FIG.3

(a) star 3x (d) star x — 2
(b) % star x (e) star(—x)
(c) star(x —2) (f) —starx

3. Find the new equation of the curve y = 27 + (2x + 3)® if the curve is
(a) translated left by 2 (b) translated down by 5.
4. Sketch the graph.

(@) y =[sinx] (d)y =e¥
(b)y=|inx| (e) y =Inlx]
© y =l

5. Sketch each trio of functions on the same set of axes.

(@) x,Inx,x + In x
(b) x,Inx,x —Inx
(¢) x,sin x,x + sin x

6. The variations sin’, sin®x and Vsin x were not discussed in the section.
Sketch their graphs by graphically squaring heights, cubing heights and cube-
rooting heights on the sine graph.

REVIEW PROBLEMS FOR CHAPTER 1

1. Letf(x) = V5 — x.

(@) Find f(-4).

(b) For which values of x is f defined? With these values as the domain, find
the range of f.

(c) Find f(a® and (f(a))*.

(d) Sketch the graph of f by plotting points. Then sketch the graph of f 7/, if
it exists.

2. For this problem, we need the idea of the remainder in a division problem.
If 8 is divided by 3, we say that the quotient is 2 and the remainder is 2. If 26.8 is
divided by 3, the quotient is 8 and the remainder is 2.8. If 27 is divided by 3, the
quotient is 9 and the remainder is 0.
If x = 0, let f(x) be the remainder when x is divided by 3.

(a) Sketch the graph of f.
(b) Find the range of f.
() Find f~'(x) if it exists.
(d) Find f(f(x)).
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3. Describe the graph of f under each of the following conditions.

(@) f(a) = a foralla
() f(a) # f(byifa # b
(c) fla +7) =f(a) foralla

4. If log.x is the inverse of 2%, sketch the graphs of logzx and In x on the same
set of axes.

5. Find sin™'(-3V2).

6. Solve for x.

(@ y=2InBx +4) (b)y=4+¢>
7. Sketch the graph.

(@) e*sinx (e) sin~' &

(b) sin™'(x + 2) (f) sin 3mx

() sin"'x + 37 (g) 2 cos(4x — m)
(d) 3 sin”'x
8. The functions sinh x = §(¢* — ¢™*) and cosh x = §(¢* + ¢ ™) are called the

hyperbolic sine and hyperbolic cosine, respectively.

(a) Sketch their graphs by first drawing 4¢* and 3¢ ~*
(b) Show that cosh’s — sinh’x = 1 for all x.

9. Solve the equation or inequality.
@ Inx-In2x —3)=4 (c) 22 +8<0

b)Inx < -8 (d) ! >l

x—3 4«

10. Simplify 5¢*"">.
11. Show that In x — In 5x simplifies to —In 5.
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2.1 Introduction

We begin the discussion of limits with some examples. As you read
them, you will become accustomed to the new language and, in particular,
see how limit statements about a function correlate with the graph of the
function. The examples will show how limits are used to describe discon-
tinuities, the “ends” of the graph wherex — * or x = -, and asymptotes.
(An asymptote is a line, or, more generally, a curve, that is approached by
the graph of f.) Limits will further be used in Sections 3.2 and 5.2 where
they are fundamental for the definitions of the derivative and the integral,
the two major concepts of calculus.

A limit definition The graph of a function f is given in Fig. 1. Note that
as x gets closer to 2, but not equal to 2, f(x) gets closer to 5. We write
lim,.; f(x) = 5 and say that as x approaches 2, f(x) approaches 5. Equiva-
lently, if x = 2 then f(x) = 5. This contrasts with f(2) itself which is 3.

If point A in Fig. 1 is moved vertically or removed entirely, the limit of
f(x)asx — 2 remains 5. In other words, if the value of fat x = 2 is changed
from 3 to anything else, including 5, or if no value is assigned at all to f(2),
we still have lim,., f(x) = 5.

In general, we write

lim f(x) = L

if, for all x sufficiently close, but not equal, to a, f(x) is forced to stay as close
as we like, and possibly equal, to L.

One-sided limits In Fig. 2, there is no f(3), but we write
1) li{‘r_lf(x) =4,

meaning that if x approaches 3 from the left, that is, through values less than
3 such as 2.9,2.99, -, then f(x) approaches 4; and

2) lim f() = 5,

meaning that if x approaches 3 from the right, that is, through values greater
than 3 such as 3.1,3.01,---, then f(x) approaches 5.

We call (1) a left-hand limit and (2) a right-hand limit. The symbols
3— and 3+ are not new numbers; they are symbols that are used only
in the context of a limit statement to indicate from which direction 3
is approached.

In this example, if we are asked simply to find lim,.; f(x), we have to
conclude that the limit does not exist. Since the left-hand and right-hand
limits disagree, there is no single limit to settle on.

41
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Infinite limits Let

_ 1
flx) = 3

A table of values and the graph are given in Fig. 3. There is no f(3), but

\ R
28| 5

[
f :’ 2.91-10
; [ 27; —LO
!
|
I

2.99|- 100

FIG.3

we write

lim f(x) = =

1.3+

meaning that as x approaches 3 from the right, f(x) becomes unboundedly
large; and we write

lim f(x) = —=

x+3~
to convey thatas x approaches 3 from the left, f(x) gets unboundedly large

and negative.
There is no value for lim,.s f(x), since the left-hand and right-hand

limits do not agree. We do not write lim, .y f(x) = *x.

In general, lim,., f(x) = * means that for all x sufficiently close, but not
equal, to a, f(x) can be forced to stay as large as we like. Similarly, a limit of
—% means that f(x) can be made to stay arbitrarily large and negative.

Limits as x > ©,x = —o For the function in Fig. 4, we write

N/

FIG. &
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(3) lim flx) = 4

to indicate that as x becomes unboundedly large, far out to the right on the
graph, the values of y get closer to 4. More precisely,

3" lim f(x) = 4-

because the values of y are always less than 4 as they approach 4. Both (3)
and (3') are correct, but (3') supplies more information since it indicates
that the graph of f(x) approaches its asymptote, the line y = 4, from below.

For the same function, lim,._. f(x) = = because the graph rises un-
boundedly to the lefi.

If a function f(t) represents height, voltage, speed, etc., at time ¢, then
lim,.. f(¢) is called the steady state height, voltage, speed, and is sometimes
denoted by f(=). It is often interpreted as the eventual height, voltage,
speed reached after some transient disturbances have died out.

Example 1 There is no limit of sin x as x = = because as x increases
without bound, sin x just bounces up and down between —1 and 1.

Example 2 The graph of ¢* (Section 1.5, Fig. 2) rises unboundedly to the
right, so
4) lim e* = .

X%

Alternatively, consider the values '™, ¢'™, ¢! ... to see that the limit
is . We sometimes abbreviate (4) by writing ¢* = x.

The left side of the graph of e* approaches the x-axis asymptotically
(from above), so
(5) lim ¢* =

Xeo=%

Alternatively, consider e '™ = 1/¢'™, ¢~ = ] /¢!™... tosee that the limit
is 0 (more precisely, 0+). The result in (5) may be abbreviated by ¢ ™ = 0.

Warning The limit of a function may be L even though f never reaches
L. The limit must be approached, but not necessarily attained. We have
lim,._. ¢* = 0 although e never reaches 0; for the function f in Fig. 1,
lim,.; f(x) = 5 although f(x) never attains 5.

Example 3 The graph of In x (Section 1.5, Fig. 3) rises unboundedly to
the right, so
(6) limlnx = =,

X%

The graph of In x drops asymptotically toward the y-axis, so

(7) li{'n Inx = —x,

Limits of continuous functions If f is continuous at x = a so that its graph
does not break, then lim,., f(x) is simply f(a). For example, in Fig. 2,
lim,.., f(x) = f(-1) = 2. If there is a discontinuity at x = a, then either
lim,., f(x) and f(a) disagree, or one or both will not exist.

Example 4 The function x* — 2x is continuous (the elementary
functions are continuous except where they are not defined) so to find
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the limit as x approaches 2, we can merely substitute x = 2 to get
lim,.o(x* — 2x) = 8 — 4 = 4.

Some types of discontinuities Figure | shows a point discontinuity at
x = 2, Fig. 2 shows a jump discontinuity at x = 3 and Fig. 3 shows an infinite
discontinuity at x = 3. In general, a function f has a point discontinuity at
x = a if lim,., f(x) is finite but not equal to f(a), either because the two
values are different or because f(a) is not defined. The function has a jump
discontinuity at x = a if the left-hand and right-hand limits are finite but
unequal. Finally, f has an infinite discontinuity at x = a if atleastone of the
left-hand and right-hand limits is © or —. A function with an infinite
discontinuity at x = a is said to blow up at x = a.

Problems for Section 2.1

1. Find the limit

(a) lim,.y x* () lim @)
(b) lim,.. Vx (f) lim .pm tan x
(¢) lim,. cos x (g) lim.o(x? + 3x — 1)

(d) lim,._. tan"'x

2. Find lim Intx as (@) x > 3— (b) x - 3+

3. Find lim |x|/x as (a) x > 0— (b) x = 0+

4. Find limtan x as (a) x = 37— (b) x > —37

5. (a) Draw the graph of a function f such that f is increasing, but lim,.= f(x)
is not . (b) Draw the graph of a function f such that lim,.. f(x) = o, butf is not an
increasing function.

6. ldentify the type of discontinuity and sketch a picture.

(@) lim,.sf(x) =2 and f(3)=6

(b) lim..s f(x) = =

(©) limy.os f(x) =4 and lim,.o- f(x) = 7

(d) lim,.s, f(x) = =© and lim..s- f(x) = 5

7. Does lim,.o f(2 + @) necessarily equal f(2)?

8. Use limits to describe the asymptotic behavior of the function in Fig. 5.

F(x
/ )

|
]
)
!
I
|
1
)
-~ ————— -

W

—_—— e - — 4

FI6.5

9. Let f(x) = 0 if x is a power of 10, and let f(x) = 1 otherwise. For example,
£(100) = 0, f(1000) = 0, f(983) = 1. Find
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(@) limy-es ()
(b) limxoloof(x)
() lim,.x f(x)

10. Use the graph of f(x) to find lim,.x f(x) if
sin x

(@) f(x) =xsinx (b) f(x) = —

2.2 Finding Limits of Combinations of Functions

The preceding section considered problems involving individual basic
functions, such as e*, sin x and In x. We now examine limits of combinations
of basic functions, that is, limits of elementary functions in general, and
continue to apply limits to curve sketching.

Limits of combinations To find the limit of a combination of functions we
find all the “sublimits” and put the results together sensibly, as illustrated
by the following example.

Consider

lim x2+5+ Inx
x+0+ 281 '

We can’t conveniently find the limit simply by looking at the graph of the
function because we don’t have the graph on hand. In fact, finding the limit
will help get the graph. The graph exists only for x > 0 because of the term
In x, and finding the limit as x = 0+ will give information about how the
graph “begins.” We find the limit by combining sublimits. If x = 0+ then
x2— 0, 5 remains 5 and In x = —«. The sum of three numbers, the first
near 0, the second 5 and the third large and negative, is itself large and
negative. Therefore, the numerator approaches —=. In the denominator,
e*— 1 50 2¢* = 2. A quotient with a large negative numerator and a de-
nominator near 2 is still large and negative. Thus, the final answer is —x.
We abbreviate all this by writing

“mx"’+5+lnx_0+5+(—oo)__—2
x+0* 2e* 2 2

In each limit problem involving combinations of functions, find the
individual limits and then put them together. The last section emphasized
the former so now we concentrate on the latter, especially for the more
interesting and challenging cases where the individual limits to be com-
bined involve the number 0 and/or the symbol <.

Consider ©/0—, an abbreviation for a limit problem where the numer-
ator grows unboundedly large and the denominator approaches 0 from the
left. To put the pieces together, examine say

= - (Fig. 1).

100 1000
—_—l—/—2' = =200, :_l/—7 = -7000, cre,
which leads to the answer —x. In abbreviated notation, /00— = —.

Consider 2/, an abbreviation for a limit problem in which the nu-
merator approaches 2 and the denominator grows unboundedly large.
Compute fractions like
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1.9 2.001

1—6'6 =. , 1000 = .002001,

to see that the limit is 0. In abbreviated notation, 2/> = 0 or, more pre-
cisely, 2/ = 0+.

To provide further practice, we list more limit results in abbreviated
form. If you understood the preceding examples you will be able to do the
following similar problems when they occur (without resorting to memo-
rizing the list).

0x0=0 x -4 =x 0_0

0+0=0 x *
e 0

3 -9 X = —x —%

40_1 x'&_x Oi+=x

5 x +x =2

—_— =

0+ x X =2 Oi_=—:x;

0%:—::: x X —x = —-% 1"=1

3 = (6-) X x == (04)* = 0

1 _

lz X' = ¢

(3) -0

2 (0+)' =0

=0

Example 1 lim,..e*Inx =% X © =, lim.y e*Inx =1 X - = —=x

The graph of @ + be”™ Consider the function f(x) = 2 — ¢*. From
Section 1.7 we know that the graph can be obtained from the graph of ¢*
by reflection, contraction and translation. The result is a curve fairly simi-
lar to the graph of ¢*, but in a different location. The fastest way to deter-
mine the new location is to take limits as x — < and x — —x, and perhaps
plot one convenient additional point as a check:

fle)=2-¢=2-2=-x
flex)=2-¢7"=2-0=2
and, as a check,
fl0)=2-1=1.

The three computations lead to the graph in Fig. 2.

Example 2 Let
2
5-x"

Then f is not defined atx = 5. Find lim.; f(x) and sketch the graph of f in
the vicinity of x = 5.

flx) =
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. . 2 C
Solution: We have lim,,; —— = On closer examination, if x re-

5-x 0
mains larger than 5 as it approaches 5, then 5 — x remains less than 0 as it
approaches 0. Thus

2 2 2 2

’]rl‘?': 5 x = 0—_ = — and (Slml]arly) }1?_) 5—'_—x = 6.: =,

Since the left-hand and right-hand limits disagree, lim,.; f(x) does not
exist. However, the one-sided limits are valuable for revealing that { has
an infinite discontinuity at x = 5 with the asymptotic behavior indicated
in Fig. 3.

Warning A limit problem of the form 2/0 does not necessarily have the
answer . Rather, 2/0+ = x while 2/0— = —<x. In general, in a problem
which is of the form (non 0)/0, it is important to examine the denominator
carefully.

Example 3 Letf(x) = ¢~"*". Determine the type of discontinuity atx = 0
where f is not defined.
Solution:

-2 — -1+ -x

lim e = =¢" =0+ (Fig. 4).
x+0

Therefore f has a point discontinuity at x = 0. If we choose the natural
definition f(0) = 0, we can remove the discontinuity and make f con-
tinuous. In other words, for all practical purposes, e is 0 when x = 0.

In general, if a function g has a point discontinuity at x = g, the
discontinuity is called removable in the sense that we can define or redefine
g(a) to make the function continuous. On the other hand, jump discon-
tinuities and infinite discontinuities are not removable. There is no way to
define f(5) in Example 2 (Fig. 3) so as to remove the infinite discontinuity
and make f continuous.

Problems for Section 2.2

1. Find
-3 (f) eux
(a) ® 1/e"
W= O3
SO
() -4 4
-19 0 (==
(d) 0=
1
(e) ==
2. Find
@) lim (In x)* @ lim e
(b) lim L (e) lim In(3x - 5)
Nex ln X N2

x+5

(© lmkx -Inx) () lim
N+ Ae—d X
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® I,'P; xx *+4) () hmx cos:lc-

(h) lim ¢

ve—x

e\
- 3 k) lim —
@ lm —— (k) o, In x
v sSinx — 1
3. Find the limit and sketch the corresponding portion of the graph of the
function:

_ ] 1 . 2
(@) im = (b) lim =— (¢) m ——
x*0 X x+0 SIN X xel X — X

4. Use limits to sketch the graph:
(@) e =2 (b) 3+ 2>

5. The function f(x) = ¢'* has a discontinuity at x = 0 where it is not defined.
Decide if the discontinuity is removable and, if so, remove it with an appropriate
definition of f(0).

6. Let f(x) = sin 1/x.

(@) Try to find the limit as x = 0+. In this case, f has a discontinuity which is
neither point nor jump nor infinite. The discontinuity is called oscillatory.

(b) Find the limit as x — .

(c) Use (a) and (b) to help sketch the graph of f for x > 0.

2.3 Indeterminate Limits

The preceding section considered many limit problems, but deliber-
ately avoided the forms 0/0, 0 X %, » — = and a few others. This section
discusses these forms and explains why they must be evaluated with caution.

Consider 0/0, an abbreviation for

function f(x) which approaches 0 as x = a
m - - .
-« function g(x) which approaches 0 as x = a

Unlike problems say of the form 0/3, which all have the answer 0, 0/0
problems can produce a variety of answers. Suppose that as x — a, we have
the following table of values:

numerator | 1 [ 01 | .001 | .0001 |
denominator I B l .01 I .001 | .0001 ]

Then the quotient approaches 1. But consider a second possible table
of values:

numerator l 2/3 L 2/4 l 2/5 L?/G l
denominator l—l/?) I 1/4 | 1/5 | 1/6 |

In this case the quotient approaches 2. Or consider still another possible
table of values:

numerator J 1/2 \ 1/3 l 1/4 | 1/5 l
denominator I .1 [ .01 T 001 | .0001 [

Then the quotient approaches . Because of this unpredictability, the limit
form 0/0 is called indeterminate. In general, a limit form is indeterminate when
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different problems of that form can have different answers. The characteristic of
an indeterminate form is a conflict between one function pulling one way
and a second function pulling another way.

In a 0/0 problem, the small numerator is pulling the quotient toward
0, while the small denominator is trying to make the quotient = or —x. The
result depends on how “fast” the numerator and denominator each ap-
proach 0.

In a problem of the form =/, the large numerator is pulling the
quotient toward o, while the large denominator is pulling the quotient
toward 0. The limit depends on how fast the numerator and denominator
each approach =.

In a problem of the form (0+)", the base, which is positive and nearing
0, is pulling the answer toward 0, while the exponent, which is nearing 0,
is pulling the answer toward 1. The final answer depends on the particular
base and exponent, and on how “hard” they pull.

In a problem of the form 0 X =, the factor approaching 0 is trying to
make the product small, while the factor growing unboundedly large is
trying to make the product unbounded. In an =" problem, the base tugs the
answer toward = while the exponent, which is nearing 0, pulls toward 1. In
a 1* problem, the base, which is nearing 1, pulls the answer toward 1, while
the exponent wants the answer to be = if the base is larger than 1, or 0 if
the base is less than 1. In a problem of the form = — =, the firstterm pulls
toward = while the second term pulls toward —=. Thus, 0 X =, =%, 1* and
® — x are also indeterminate.

Here is a list of indeterminate forms:

Nt -t ot —Q i|0 X xIO X =% x = xl(_x) - (_m)|(0+)”| lxlx“-
o€ -—C

Every indeterminate limit problem can be done; we do not accept
“indeterminate” as a final answer. For example, if a problem is of the form
0/0, there is an answer (perhaps 0, or 1, or =2, or %, or —x, or “no limit”),
but it usually requires a special method. We discuss one method in this
section, but most indeterminate problems require techniques from differ-
ential calculus. Further discussion appears in Section 4.3.

Highest power rule The problem lim,..(2x* — x?) is of the indeterminate
form = — =, but by factoring out the highest power we have

lim2x’(l—%)===X<l—%)=°°x(l—0)=xxl==<=.

Xox

The final limit depends entirely on 2x* since the second factor approaches
1. This illustrates the proof of the following general principle:

(2) As x — x or x = —x, a polynomial has the same limit
as its term of highest degree.

For example, lim,,_.(x* + 2x? + 3x — 2) = lim,,_x x* = x.



50 - 2/Limits

3 _ .2 l
Similarly the problem lim,._. fm is of the indeterminate
form -.-. but by factoring out the highest power in the numerator and

denominator we have

. , ===
hm x5 — x? — l l x.l x x.l
—— = lim —
Xe*-x 5x:‘ + 7x + 2 No=x st 7
1+—+ —
5x* = 5x’

The second factor is of the form 1

T+030 and approaches 1. Therefore,

.oxP-xt—1 x 1 1
l —_——— =] _—= 1 —_— - 1 = —,
OB+ 7x + 2 }1'31 5x* lim 5 (by canceling) T

In general, we have the following principle:

(3) As x = - or x = —=, a quotient of polynomials has the
same limit as the quotient
term of highest degree in numerator
term of highest degree in denominator

which cancels to an expression whose limit is easy to evaluate.

Example 1 Describe the left end of th hof —2t X+ 1
xample escribe the left end of the graph of e————5————

Solution: By the highest power rule,
x®+ x>+ 1 x? x?

lim = lim — = lim — = .
x+-x 6x3 - 7x2 +x +4 xe-x 6x’ xe-x O

Therefore at the left end, the curve rises unboundedly.

Warning The highest power rule for polynomials and quotients of poly-
nomials is designed only for problems in which x — x or x = —x. The
highest powers do not dominate if x = 6 or x = —10 or x = 0. In fact if
x — 0 then the lowest powers dominate because the higher powers of a small
x are much smaller than the lower powers.

Summary To find the limit of a combination of functions, find all the
sublimits.

If you are fortunate, the result will be in a form that can be evaluated
immediately; for example, 8/4, which is 2, or 3 X =, which is .

If the sublimits produce a result of the form 6/0, then the denominator
must be examined more carefully. If it is 0+, then the answer is x; if it is
0-, then the answer is —=; and if the denominator is neither (perhaps it
is sometimes 0+ and sometimes 0—) then no limit exists.

If the sublimits produce an indeterminate form, perhaps the highest
power rule will help; if not, wait for methods coming later.
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Problems for Section 2.3

L lim,..(x* — x*)
9x 4 ¥B _ 7

2. lim——w—as(a)x—»x b x>0 (©x—1
3.Iimlixas(a)x—->x B x—>1+ (x> 1- d) x> -=
‘_
4.lim3—x—x4—%€—ﬁas(a)x—>x b) x> 1-
5. lim x+3)©2-x
Txex 2 + 3)(x — 5)
. x*-4
6‘[‘ng—2
. 2 -5
L !lg3x2+4x

REVIEW PROBLEMS FOR CHAPTER 2

1. Find

(a) hrf} X COS x (c) lim ¢ cos x

(b) lim(x + cos x) . 2&x+ 4
e @ lim 5575

4
2. Find lim 25>
X

s as(a) x > —x (b) x> 2

3. Find lim as@x—>x b)yx—>0 (cgx—1

3 3
X —x‘

4. Find lim(2x — 4x*) as (@) x > » (b) x = 2

51

5. (a) Show that In sin x is not defined at x = 0 or x = =, or as x = 0— or

x = w+. (b) Find lim,.¢+ In sin x. (c) Find lim,..- In sin x.
6. Use limits to help sketch the graph of 1 — ¢*.

7. Suppose f is not defined at x = 3. Identify the type of discontinuity and

decide if it is removable if

(@) limy.s f(x) =5
(b) Iim,..s_f(x) =6 and lim,..,q, f(x) = o



3.1 Preview

This section considers two problems which introduce one of the funda-
mental ideas of calculus. Subsequent sections continue the development
systematically.

Velocity Suppose that the position of a car on a road at time ¢ is f(t) =
12t — ¢*. Assume time is in hours and distance is in miles. Then f0) =0,
f(1) =11, f(2) = 16, so the car is at position 0 at time 0, at position 11 at
time 1, and so on (Fig. 1). The problem is to find the speedometer reading
at any instant of time.

t=0 t=l
t=3 =2
i —t +— POSITION
0 9 1 [6
FIo. |

It is easy to find average speeds. For example, in the two hours between
times¢ = 0 and ¢ = 2, 16 miles are covered so the average speed is 8 mph.
An average speed over a period of time is not the same as the instantaneous
speedometer readings at each moment in time, but we can use averages to
find the instantaneous speed for an arbitrary time ¢,

First consider the period between times ¢ and ¢ + At. (The symbol At
is considered a single letter, like & or k, and is commonly used in calculus
to represent a small change in ¢) The quotient

change in position _ later position — earlier position

(1)

change in time At
_fe+ At) - [(t)
B At

iscalled the average velocity. It will be positive if the car is moving to the right,
and negative if the car is moving to the left (when the later position is a
smaller number than the earlier position). The average speed is the absolute
value of the average velocity.

To find the instantaneous velocity at time ¢ consider average velocities,
but for smaller and smaller time periods, that is, for smaller and smaller

53
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values of At. In particular, we take the instantaneous velocity at time ¢ to be

@) lim L+ 80 ~ [)

at+0 At
Therefore, for our specific function f(t) = 12¢ — ¢*,

instantaneous velocity at time ¢
- 3 _ — 43
= lim 12(¢ + At) — (¢ + At)* — (12t — ¢
Ats0 At

L 120 + 1240 — 3 — 32 At - 3e(AL)? - (Ae)* - 12 + P
= lim
At=0 Al
lim (12 — 3¢2 — 3t At — (At)?)
At-0

12 — 32

We began with f(¢) = 12¢ — ¢* representing position. The function 12 — 3¢?
just obtained is called the derivative of f and is denoted by f'(t). It repre-
sents the car’s instantaneous velocity. If the derivative is positive then the
car is traveling to the right, and if the derivative is negative the car is
traveling to the left; the absolute value of the derivative is the speedometer
reading.t Velocity is even more useful than speed because the sign of the
velocity provides extra information about the direction of travel. For ex-
ample, f'(0) = 12, indicating that at time ¢ = 0, the car is traveling to the
right at speed 12 mph. Similarly, f'(2) = 0, so at time 2 the car has tempo-
rarily stopped; f'(3) = —15, so at time 3 the car is traveling to the left
at 15 mph.

Slope The slope of a line is used to describe how a line slants and, as a
corollary, to identify parallel and perpendicular lines. The problem is to
assign slopes to curves in general.

A curve that s not a line will not have a unique slope; instead the slope
will change along the curve. It will be positive and large when the curve is
rising steeply, positive and small when the curve is rising slowly, and nega-
tive when the curve is falling (Fig. 2).

To compute the slope at a particular point A on a curve, we draw a line
tangent to the curve at the point (Fig. 2) and take the slope of the tangent
line to be the slope of the curve. If the curve is the graph of a function f(x),
then the problem is to find the slope of the tangent line at a typical point A
with coordinates (x, f(x)). We can’t determine the slope immediately because
we have only one point on the tangent, and we need two points to find the
slope of a line. However, we can get the slope of the tangent by a limiting
process. Consider a point B on the curve near A with coordinates
(x + Ax, f(x + Ax)). (Flgure 2 shows Ax posmve since B is to the rlghtofA
Ax can also be negative, in which case B is to the left of A.) The line AB is
called a secant and has slope

change in y-coordinate _ Ay _ (x + Ax) — f(x)
change in x-coordinate  Ax Ax

(1)

tInitially, in (1), we assumed that A¢ > Osothat¢ + At is a later time than t. However, the
limit in (2) allows At to be negative as well. In that case, a similar argument will show that the
derivative obtained still represents an instantaneous velocity with these properties.
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which is equivalent to (1), but with the independent variable named x
instead of ¢. If we slide point B along the curve toward point A, the secant
begins to resemble the tangent at point A. Figure 2 shows some of the
in-between positions as the original secant AB approaches the tangent line.
This sliding is done mathematically by allowing Ax to approach 0 in (1').
Therefore we choose

@) lim {(x + Ax) — f(x)

ax+0 Ax

as the slope of the tangent, and hence as the slope of the curve at
point A.

From the calculations in the velocity problem we know that if
f(x) = 12x — x* then the limit in (2') is 12 — 3x%, denoted f'(x). Since
f(1) =11 and f'(1) = 9, the point (1,11) is on the graph of f, and at that
point the slope is 9. Similarly, f(2) = 16 and f'(2) = 0, so the slope on the
graph at the point (2, 16) is 0; f(3) = 9 and f'(3) = —15 so the slope at the
point (3,9) is —15. Figure 3 shows a partial graph of f.

In the first problem, (1) appeared as an average velocity; in the second
problem, the same quotient, eq. (1'), represented the slope of a secant line.
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In the first problem, the limit in (2) was an instantaneous velocity f’(¢); in
the second problem, the limit appeared again in (2’) as the slope f'(x) of a
curve. It is time to examine f' systematically. In the next section we will
define the derivative and look at a few applications to help make the
concept clear.

3.2 Definition and Some Applications of the Derivative

Definition of the derivative The derivative of a function f is another
function, called f’, defined by

1) () = lim L& 89 = [6)

Ax0 Ax

(We will assume for the present that the limit exists. Section 3.3 discusses
instances when it does not exist.) Equivalently, if y is a function of x, the
derivative y' is defined by

(2) y'=|imm=“mﬂ'

ar-0 change in x  ars0 Ax

The process of finding the derivative is called differentiation. The branch of
calculus dealing with the derivative is called differential calculus.

Speed and velocity Section 3.1 showed that if f(¢) is the position of a particle
on a number line at time ¢ then f'(t) is the velocity of the particle. If the velocity
is positive, the particle is traveling to the right; if the velocity is negative, the
particle is traveling to the left. The speed of the particle is the absolute value
of the velocity, that is, the speed is |f'(¢t)|. If f(3) = 12 and f'(3) = —4 then at
time 3 the particle is at position 12 with velocity —4, so it is traveling to the
left at speed 4.

Slope Section 3.1 showed that f'(x) is the slope of the tangent line at the
point (x, f(x)) on the graph of f. Thus f’(x) is taken to be the slope of the
graph of f at the point (x, f(x)). If the slope is positive, then the curve is
rising to the right; if the slope is negative, the curve is falling to the right.
Iff(3) = 12 and f'(3) = —4 then the point (3, 12) is on the graph of f, and
at that point the slope is —4.

Example 1 Figure 1 gives the graph of a function f. Values of f’ may be
estimated from the slopes on the graph of f. It looks as if f'(—3) is a large
positive number since the curve is rising steeply atx = —3. The curve levels
off and has a horizontal tangent line at x = -2, so f'(—2) = 0. Similarly,
f'(=1) is large and negative, while f'(100) is a small negative number. We
can plot a rough graph of the function f' (Fig. 2) by plotting points such as
A = (-3, large positive), B = (-2,0), C = (-1, large negative), D = (100,
small negative). Note that on the graph of f’ we treat values of f' as
y-coordinates, just as we do for any function, although the values of ' were
obtained originally as slopes on the graph of f.
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Notation If y = f(x) there are many symbols for the derivative of f. Some
of them are

, d d , d
R N CHE VAR T 2

The notation dy/dx looks like a fraction but is intended to be a single
inviolate symbol.

More general physical interpretation of the derivative So far, the deriva-
tive is a velocity if f represents position, and is a slope on the graph of f.
More abstractly, the quotient

change in f _ f(x + Ax) = f(x)

change in x Ax

is the average rate of change of f with respect to x on the interval between
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x and x + Ax. Thus f'(x) is the instantaneous rate of change of f with respect to
x. Suppose f(3) = 13 and f'(3) = —4. If x increases, y (that is, f(x)) changes
also, and when x reaches 3, y is 13. At that moment y is decreasing instan-
taneously by 4 units for each unit increase in x.

In general, we have the following connection between the sign of the
derivative and the behavior of f.

3) If f'(x) is positive on an interval then f increases on that interval. In
particular, a graph with positive slope is rising to the right.

If f'(x) is negative on an interval then f decreases on that interval.
4) . . . e .
In particular, a graph with negative slope is falling to the right.

If f'(x) is zero on an interval then f is constant on that interval. In
particular, a graph with zero slope is a horizontal line.

Example 2 Let f(t) be the temperature at time ¢ (measured in hours).
Then f'(t) is the rate at which the temperature is changing per hour. If
f(2) = 40 and f'(2) = —5 then at time 2 the temperature is 40° and is
dropping at that moment by 5° per hour.

Example 3 Consider the steering wheel of your car with the front wheels
initially pointing straightahead. Let 8 be the angle through which you turn
the steering wheel, and let f(8) be the corresponding angle through which
the front wheels turn (Fig. 3). As in trigonometry, positive angles mean
counterclockwise turning.

If f is negative, take the car back to the dealer, driving very cautiously
along the way, since wires are crossed somewhere. When 6 increases, f(6)
decreases, so when you turn the steering wheel counterclockwise, the
wheels turn clockwise.

Iff" is constantly 0, again take the car back to the dealer, but you'll need
a tow truck, because no matter how the steering wheel is turned there is no
turning in the wheels.

If f' is 10, the steering is overly sensitive, since for each degree of
turning of the steering wheel there is 10 times as much turning of the
wheels (in the same direction at least, since 10 is positive). Even f' = 1 is
probably too large; f' = { is more reasonable. In this case, as you turn the
steering wheel in a particular direction, the wheels also turn in that direc-
tion (because { is positive), but each degree of turning in the steering wheel
produces only ; of turning in the front wheels.
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Higher derivatives The function f' is the derivative of f. The derivative
of f' is yet another function, called the second derivative of f and denoted by
f". A second derivative may sound twice as complicated as a first derivative,
but if " is regarded as the first derivative of f' it isn’t a new idea at all: f”
is the instantaneous rate of change of f* with respect to x. If f"(6) = 7 then, when
x =6, f"is in the process of increasing by 7 units for every unit increase in
x. There are many notations for the second derivative, such as
d? d2 d2
[ LR - A TR

Similarly, f", the derivative of f”, is called the third derivative of f, and
SO on.

Example 4 Let C be the cost (in dollars) of a standard shopping cart of
groceries at time ¢ (measured in days). Suppose that at a certain time,
dC/dt = 2 and d*C/dt* = —.03. Then at this instant, C is going up by $2 per
day (inflation), but the $2/day figure is in the process of going down by
3¢/day per day (the rate of inflation is tapering off slightly). If the second
derivative remains —.03 for a while then in another day, the first derivative
will decrease to 1.97, and C will be rising by only $1.97 per day. If the
second derivative remains —.03 long enough, the first derivative will even-
tually become zero and then negative, and C will start to fall.

Acceleration Let f(¢) be the position of a particle on a number line a* cime
¢t (use miles and hours) so that f’(t) is the velocity of the particle. The
problem is to interpret f"(¢) from this point of view.

Suppose f'(3) = =7 and f"(3) = 2. Then, at time 3, the particle is
moving to the leftat 7 mph. Since " is the rate of change of f*, the velocity,
which is =7 at this instant, is in the process of increasing by 2 mph per hour,
changing from —7 toward —6 and upwards. The absolute value of the
velocity is getting smaller so the speed is decreasing. Thus the car is slowing
down (decelerating) by 2 mph at this instant.

Unfortunately, the word acceleration has two meanings. Physicists and
mathematicians call f" the acceleration; their acceleration is the rate of change of
VELOCITY. But drivers use acceleration to mean the rate of change of SPEED,
that is, an indication that the car is speeding up or slowing down. The
(mathematician’s) acceleration f"(x) does not, by itself, determine whether
a driver is accelerating or decelerating; both f” and f’ must be considered.
If f'(3) = 7 and f"(3) = 2 then, at time 3, the particle is traveling to the
right at 7 mph, and the velocity, which is 7 at this instant, is in the process
of increasing by 2 mph per hour. Its absolute value is increasing and the car
is speeding up by 2 mph per hour. Further examination of the four possible
combinations of signs gives the following general result:

If the velocity f ' and the acceleration f" have the same sign then the particle
is speeding up (accelerating). If they have opposite signs then the particle is

(6) slowing down (decelerating). For example, suppose f"(4) = —5.1ff'(4)
is also negative, then at time 4 the particle is accelerating by 5 mph
per hour. Iff'(4) is positive, then at time 4 the particle is decelerating
by 5 mph per hour.

Warning  If the acceleration f* is positive, it is not necessarily true that the
particle is speeding up. If the acceleration f" is negative, it is not necessarily
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true that the particle is slowing down. The conclusions are true if the
particle is traveling to the right, but the conclusions are false if the particle
is traveling to the left.

Units If f(¢) is the temperature at time ¢ (measured in hours) then the
units of f’ are degrees/hour, and the unitsof " are degrees/hour per hour,
thatis, degrees/hour?. If f(¢) is position at time ¢ (miles and hours) then the
units of the velocity f’ are miles/hour, and the units of the acceleration f”
are miles/hour per hour, or miles/hour?. In general, if f is a function of
x then the units of f' are (units of f)/(unit of x), and the units of /" are
(units of f)/(unit of x).

Concavity The derivative f'(x) is the slope of the graph of f(x) at the point
(x,f(x)). The problem is to interpret the second derivative f"(x) from a
geometric point of view.

If f is positive then the graph of f is rising to the right, but this still
allows some leeway. The graph can “bend” in two possible ways as it goes
up. The two types of bending are called concave up and concave down
(Fig. 4). Similarly, when f ' is negative, the graph of f has negative slope but
the graph can be either concave up or concave down (Fig. 5).

We can use the second derivative to detect the concavity. If f” is positive
on an interval then f is increasing, so the graph of f has increasing slope,
as in Figs. 4(a) and 5(a). If /" is negative on an interval then ' is decreasing,
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so the graph of f has decreasing slope, asin Figs. 4(b) and 5(b). If f" is zero
on an interval then the slope f" is constant, and the graph of f is a line. We
summarize as follows.

f” onan interval | graph of f in that interval
0 positive concave up
negative concave down
zero a line

A point on the graph of f at which the concavity changes is called a point
of inflection.

Example 6 Suppose f'(x) >0 for 2 =x < 7, f'(x) <0 for 2 =x <5,
f"(5) =0, and f"(x) > 0 for 5 <x =< 7. Sketch a graph consistent with
the data.

Solution: The graph of f rises on [2, 7], is concave down untilx = 5 and
then switches to concave up. The point (5,f(5)) is a point of inflection
(Fig. 6).

The sketch deliberately omits the axes (but assumes, as usual, that they
are horizontal and vertical). Since we have no information about the values
of f, we don’t know any specific heights on the graph. The curve can
intersect the x-axis, or lie entirely above or below it.

Problems for Section 3.2

1. If the curve in Fig. 7 is the graph of f, estimate f'(0), f'(—100) and f*(100).
Sketch the graph of f'(x).

Fe.7

2. Let p be the price of a camera and S the number of sales. Find the probable
sign of dS/dp.

3. Lety be the distance (in feet) from a submerged water bucket up to the top
of the well at time ¢ (in seconds). Suppose dy/dt = -2 at a particular instant. Which
way is the bucket moving, and how fast is it going?

4. If dy/dx is positive, how does y change if x decreases?

5. Let f(x) be your height in inches at age x, and let f'(13.7) = 2.

(@) By about how much will you grow between age 13.7 and age 14?
(b) Why is your answer to (a) only approximate?
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6. A street (number line) is lined with houses. Let f(x) be the number of people
living in the interval [0,x]. For example, if f(8) = 100 then 100 people live in the
interval [0, 8].

(a) What does f(x + Ax) — f(x) represent in this context?
flx + Ax) = f(x)

W .
(b) What does the quotient Ax

represent?

(c) What does f'(x) represent?
(d) What values of f’(x) are impossible?

7. Suppose Smith’s salary is x dollars and Brown’s salary is y dollars. If Smith’s
salary increases, how will Brown fare in comparison if dy/dx is (a) 2 (b) 1/2
() -1 ) 0?

8. Let x be the odometer reading of a vehicle and f(x) the number of gallons
of gasoline it has consumed since purchase. Describe f'(x) for a van and for a
motorcycle (what units? positive? negative? which is larger?).

9. True or False?

(@) If f(2) = g(2), then f'(2) = g'(2).

(b) Iff is increasing, then [’ is increasing.

(c) If f is a periodic function, that is, f repeats every b units, then " is also
periodic.

(d) If f is even, then f' is even (even functions were defined and their graphs
discussed in Problem 8 of Section 1.2).

10. Thé posted speed limit at position x on a straight road is L(x), and a car
travels so that at time ¢ its position on the road is f(¢). For example, if f(2) = 3 and
L(3) = 50 then, at time 2, the car is at position 3 on the road and the posted speed
limit is 50 mph. Suppose that at time 6 the car breaks the law and exceeds the speed
limit. Express this fact mathematically using a derivative and an inequality.

11. Let f(x) = x for all x. Find f'(x) (a) using the definition in (1) (b) using
slope (c) using velocity.

12. If the curve in Fig. 7 is the graph of g’, sketch a possible graph of g.

13. Let f(¢) be the temperature in your city at time ¢. If it is uncomfortably hot
at time ¢ = 2, are you pleased or displeased with the indicated data?

@[@=6/@=-4 b [Q=-6/Q=-4 (f'@=0

14. Lets(¢) be the position of a particle on a line at time ¢ (miles and hours). Find
the direction of motion and the speed at time 3. Is the particle speeding up or
slowing down, and at what rate?

@) s'3) = —4,5"3) = -1 (c) s'(3) =0,5"3) = 2
) s'(3) = 5,5"8) = -2 d) s'(3) =2,5"3) =0

15. Suppose f(2) = 3, f(10) = 4; f'(x) is positive on (2,8), zero at x = 8, and
negative on (8, 10]; /" is positive on [2,6), zero at x = 6, and negative on (6, 10).
Sketch a rough graph of f on [2, 10].

16. What kind of second derivative (positive? negative? large? small?) would the
car owner prefer in Example 3?

17. If {'(x) decreases from 5 to | as x increases from 3 to 4, what can you
conclude about f(x) and ["(x) for 3 = x =< 4?

18. Let f(x) be the cost to a refinery of starting up production and turning out
x barrels of oil.

(a) What does it mean if f(60) = 400?

(b) f'(x) is called the marginal cost. What does it represent to the refinery? In
particular, what does it mean if {'(60) = 21 and f'(100) = 10?

(c) Suppose f(10) = 200 and f*(10) = 3. Interpret physically.
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3.3 Derivatives of the Basic Functions

We now begin computing derivatives. In this section we find the deriva-
tives of (almost) all the basic functions; a summary appears at the end of the
section. Sections 3.5 and 3.6 will develop rules for differentiating combina-
tions (sums, products, quotients, compositions) of the basic functions. Then
you will be able to differentiate any elementary function. (If the derivatives
of the basic functions x* and sin x are known, along with the rules for
differentiating compositions and products, then such elementary functions
as sin x2 and x? sin x can be differentiated.)

Derivative of a constant function If f(x) is a constant function then the
graph of f is a horizontal line and has slope 0. Thus f'(x) = 0. In other
words, D,c = 0 for any constant c.

Derivative of the function x The graph of f(x) = x is the line y = x. The
line hasslope 1 sof'(x) = 1. In other words D.x = 1. (See also Problem 11
in the preceding section.)

Derivative of the function x® It is easy to find D,c and D,x using slopes.
However, the graph of x° (Fig. 1) has varying slope, so D.x? is not easy to
predict. To get the precise formula for f’(x), we use the definition of
the derivative:

(e + Ax)? = x°
m .

) = lim LT 8D 2@ _

Ax+0 Ax Ax+0 Ax

Now, expand (x + Ax)? by the binomial theorem (Appendix A4) to get

f'(x) = lim x® + 9xPAx + apx’(Ax)? + -+ + agx(Ax)® + (Ax)® — x°
Ax+0 Ax )

(The values of the coefficients ay, -, as will turn out to be unimportant,
so we don’t bother computing them.) Then

[t = !\inrtlj[gx8 +apx’Ax + oo + agx(8x)7 + (Ax)°] = 9x*.

Thus D,x® = 9x% Note that the slope 9x® is a large positive number when
x = *4 for example, corresponding to the steep rise in the graph of x° at
x = *4, and 9x® is a small positive number when x is *3, corresponding to
the gentle rise in the graph at x = 3.

Derivative of x* The formula D.x° = 9x® is a special case of the more
general pattern D,x” = x""'. This pattern, called the power rule, also works
for every other power function: to differentiate x’, lower the exponent by
1 and drop the old exponent down to become a multiplier. For example,
D.x? = 2x, D,x* = 3x?, and similarly

3 -3 3
d(l/x) d(:x ) - =37 = = (the exponent —3 goes down to —4),

dx
dVx) _dE") _ 1, _ 1
. 2 Vx|
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The proof of the power rule for x%x* x* - is similar to the proof for x°.
The rule holds for r = 1 since the desired formula D .x' = 1x° amounts to
the formula D.x = 1, already proved. Section 3.5 will prove the power rule
for r a negative integer and Section 3.7 will give the proof for fractional r.

Warning There are many ways to indicate that the derivative of x* is 3x?.
For example, you may write D.x* = 3x%, d(x%)/dx = 3x% if f(x) = x* then
f'(x) = 3x*. But do not write ['(x*) = 3x* and do not write x* = 3x2.

Letters other than x and y may be used. If z = ¢? then dz/dt = 2¢; if
f(u) = u’ then f'(u) = 4u®>

Example 1 Find the slope at the point (2, 8) on the graph of y = x* and
find the equation of the tangent line at the point.

Solution: 1f f(x) = x3 then f'(x) = 3x? and f'(2) = 12. So the slope at
(2, 8) is 12. The tangent line has slope 12 and contains the point (2, 8) so its
equationisy — 8 = 12(x — 2).

Derivative of sinx We can make an educated guess for the derivative of
sin x, based on slopes on the sine curve (Fig. 8 of Section 1.3). It looks as if
the slope of sin x atx = 0 is about 1, the slope at x = #/2is 0, the slope at
x = mis —1, the slope at x = 37/2is 0, and so on. Thus, the derivative of
sin x is a function with the following table of values:

x l derivative of sin x
0 1
w/2 0
g -1
3m/2 0
27 1

A well-known function that has these values is cos x; and we guess that
D, sin x = cos x.

We will continue with the proof to confirm the guess, but must admit
that students who find it too lengthy to read can grow up to lead rich full
happy lives anyway. For the proof we use the definition of the derivative.

sin(x + Ax) — sin x

D, sin x = lim

Ax+0 Ax
1 L |
= lim 2508 32x * 8% sinadx @ e dentity in (15) of
fx=0 Ax Section 1.3)
. \ sin § Ax
(1 = lim cos §(2x + Ax) ———— (rearrange).
ax+0 7x

As Ax — 0, the first factor in (1) approaches cos x. If we let § = 3Ax for
convenience, the second factor is (sin 6)/8 where 6 — 0. Therefore, to
complete the proof we must show that
sin
i =1.
(2) lim 5

8+0

First consider the special case where § — 0+ so that we may use a picture
with a positive angle 6. Consider a circle of radius 1 and a sector with angle 6
(Fig. 2). Then
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(3) area of triangle OAB = 3bh = jOA - AB = }AB
and
(4) area of triangle OAC = 3bh = 304 - DC = 3DC .
By trigonometry,

v .
(5) tan0=g=§=AB and sin0=ﬁ=D

Therefore, by (3), (4) and (5),
area of triangle OAB = jtan § and area of triangle OAC = § sin 6.

(6)

The area of the entire circle with radius 1 is 7, and the sector OAC is a
fraction of the circle, namely, the fraction 6/27 if 6 is measured in radians.
Therefore

V) area of sector OAC = m=140.

L
Py
Now we are ready to put the ingredients together to prove (2). Since area
of triangle OAC < area of sector OAC < area of triangle OAB, we have, by
(6) and (7), 3 sin @ < 30 < 3 tan 6. Divide each term by 3 sin 8 (which is
positive since § — 0+) to get

6 1
<

1 <=
sin 06 cos 8

and take reciprocals to obtain

c050<¥<1.

We know that limg.g. cos 8 = 1, so as 8 = 0+, (sin 6)/6 is squeezed be-
tween | and a quantity approaching 1. Therefore limg.q. _51_1;_9 = 1. For the
case where 8 — 0—, note that (sin 6)/0 takes on the same values when 6
approaches 0 from the left as from the right; that is, (sin 8)/6 is the same
whether 8 equals b or —b since

sin(—b) _ —sinb _ sin b

-b -b b

Therefore, more generally, we have the two-sided limit in (2). This in turn
concludes the proof that D, sin x = cos x.

Derivative of cos x To find D, cos x note that the cosine and sine graphs
(Figs. 8 and 9 of Section 1.3) are translations of one another. The slope
at x on the cosine graph is the same as the slope at x + 37 on the sine
graph. In other words, cos’x = sin’(x + 7). But sin’ is cos, so D, cos x =
cos(x + 3m). Furthermore, cos(x + §m) = —sin x. To see this, either use the
trig identity for cos(x + y) or note that the cosine curve translated to the left
by 37 is the same as a reflected sine curve (Fig. 3). Therefore we have the
final result D, cos x = —sin x. (Equivalently, Dy cos 8 = —sin 6, D, cos y =
—sin y, D, cos u = —sin u, and so on.)
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Derivatives of the other trigonometric functions The functions tan x,
cot x, sec x and csc x are various quotients of sin x and cos x. We will find
their derivatives in Section 3.5 using a quotient rule, but for completeness
we include them in the table of basic derivatives in this section.

Notation If f(x) = sin x then f'(7) means the value of the derivative when
x = . Thus, f'(m) = cos # = —1. We might also let y = sin x and use the
notation y'|,-, = cos x|,-, = cos 7 = —1.

Radians versus degrees Radian measure is used in calculus rather than
degrees because the derivative formula for sin x (and hence all the other
trigonometric functions) is simpler in radians. We will explain why in
this paragraph but if you find it difficult, as many students do, consider
it optional.

The rate of change of sin x is different when x is measured in radians
than when x is measured in degrees. In particular, sin x changes more
rapidly with respect to x when x represents radians. A change of 1 radian
has more effect on sin x thana change of 1 degree. In fact, 1 radian has the
same effect as approximately 57°. Equivalently, if the rate of change of sin x
per radian is g then the rate of change of sin x per degree is approximately
571q, actually 55 ¢. Therefore the formula D, sin x = cos x, which holds when
radian measure is used, becomes D, sin x = 55 cos x when degree measure
is used.

Both the guess and the proof of the derivative formula D, sin x = cos x
were based on radian measure. In the proof, formula (7) assumed radian
measure. Similarly, the guess was based on a graph of sin x using radian
measure on the x-axis. If degrees are used (Fig. 4) then the graph of sin x
has a different appearance. The slopes are smaller, ranging between —1/57
and 1/57 approximately (actually between —7/180 and #/180) rather
than between —1 and 1. Slopes read from Fig. 4 lead to D, sin x = §; cos x,
x in degrees.

SLOPE 15 APPROXIMATELY ?
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The formula D, sin x = cos x, x in radians, is simpler than D, sin x =
18 €0s x, x in degrees. Therefore radian measure is used in calculus.

Derivative of e* and a definition of the number ¢ Finding D,e* is a sub-
stantial and difficult problem, especially since it is at this stage that we must
define the number e. We'll start by assuming that we have not yet singled
out a favorite base, and try to find the derivative of b*, where b is a fixed
positive number. We have

x+Ax _ x
D,b* = lim oy (definition of the derivative)
ax+0 Ax
8 ax _
@® = lim b"[b l] (factor) .
Ax+0 Ax

Now look at sublimits. The factor b* does not change since it does not
contain Ax. Thus we concentrate on finding the limit of the second factor,

b -1
Ax

which is of the indeterminate form 0/0. The quotient in (9) happens to be
the slope of the line through the points (0, 1) and (Ax, b*%), a secant line on
the graph of b* (Fig. 5). If Ax — 0, then the point (Ax,5*) slides along the
graph toward the point (0, 1) and the secant approaches the tangent line.
Therefore, the limit of (9) is the slope of the tangent line, or equivalently,
the slope on the graph of b* at (0, 1). Consequently (8) becomes

9)

(8")  D,b* = mb* where m is the slope at (0, 1) on the graph of b*.

The value of m depends on the value of b. The slope m at the point (0, 1)
on the graph of 100" (Fig. 6) is a large positive number; thus D, 100* =
m 100* where m is a specific large positive number. On the other hand, the
slope m at (0, 1) on the graph of 1.01* (Fig. 7) is a very small positive
number. We have the most convenient version of (8') when the slope at
(0, 1) on the graph of b* is 1. Somewhere between the extremes of 100* and
1.01%, there is such a b* (Fig. 8). That particular b is named e. Thus we arrive
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at the following definition of e: e is the base such that the graph of b* has slope
1 at the point (0, 1). This definition of ¢ is not yet of computational value; in
fact we cannot tell immediately from the definition that e is between 2.71
and 2.72. (One of the ways of computing ¢ will be demonstrated later in
Section 8.9.) However, with the definition of ¢ we do immediately have the
derivative of ¢*. Set m = 1, b = ¢ in (8') to get D,e* = ¢".

The derivative of the inverse function If we find the general connection
between the derivatives of inverse functions, we can use it to easily find the
derivatives of In x, sin™'x and cos™'x, now that we have derivatives for ¢*,
sin x and cos x.

Suppose y is an invertible function of x. Then x is a function of y, and
we want the connection between the original derivative dy/dx and the in-
verse derivative dx/dy. Suppose dy/dx = 3, meaning that if x increases, then
y increases 3 times as much. If the perspective is changed, and y is viewed
as the independent variable, then if y increases, x also increases, but only
1/3 as much; that is, dx/dy = ;. In general,

(10)

S &
I
S|

The inverse formula is easy to remember, because if we pretend that dy/dx
and dx/dy are fractions, the formula looks like standard algebra.

Derivative of Inx Lety = In x. Then x = ¢, and

dilnx) _dy 1 1

We don’t stop here because when y is a function of x we expect the deriva-
tive to be a function of x also. Thus we must express 1/e” in terms of x, which
is easy because e* = x. Therefore, dy/dx = 1/x, that is, D, In x = 1/x.

Derivatives of the inverse trigonometric functions We continue to take
advantage of (10). To find the derivative of sin”'x, let y = sin™'x, so that
x = sin y where —3m <y < 3m Then
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(11) disin"®) _dy _ 1 _ 1
dy

We want to express the answer in terms of x since y is a function of x. We
know that siny = x, and cos® = 1 — sin’y by a trig identity, so cos®y =
1 — x% Thus cos y is either V1 — x2or —V1 — x2. In this case, y is an angle
between —3m and 3, so its cosine is positive. Therefore cos y = VI — x2
and D, sin”'x = 1/VI —x2.

Derivatives of cos™'x and tan™'x may be obtained similarly and are
listed in the table of basic derivatives.

Table of basic derivatives

D, =0 D, sin x = cos x 1

D, sin"'x = ==
Dx =1 D, cos x = —sin x 1 -x
Dy’ = rx’! D, tan x = sec’ x D. cos”'x = .
s
- x
(powerrule) ooty = —cscix
1
D.Inx = 1 D, sec x = sec x tan x D, tan™'x = 3
x x l + x
D, csc x = —csc x cot x

Problems for Section 3.3

1. Find
(@) D,x® d(x2®)
®) D1 O %

(C) Dxxsn (g) D,O
(d) DVu d(e)

:‘_(L) ® =g
©&\E) o pa

. If f(z) = In 2, find f'(2).

. Ify =x findy".

. If f(x) = 7 for all x, find f'(x).

2
3
4
5. If u = tan ¢, find du/dl

6. Find y' and " if (@) y =Inx (b) y =sinx (¢ y = ¢
7

8

9

CIff(x) = 1/Vx find f'(17).
. If f(x) = sin x find f(#) and ' (7).
. Differentiate the function.

@x° (g ="

(b) x*  (h) x*
© Vx® @) 1/x*

@ 1/x* 1
@x O3
(f) Inx 1

k) =

X

10. Examine the graph of In x and convince yourself that the slopes do look
like 1/x.
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11. Use (10) together with the derivative formula for tan x to prove the deriva-
tive formula for tan™'x.

12. The sin™' function is the inverse of sin x when x is restricted to [—3,37].
Consider a second sin™' function, called II sin~', defined as the inverse of sin x
when x is restricted to [7/2,37/2].

(a) Sketch the graph of y = II sin™'x.
(b) Doesthe derivative of II sin™'x equal 1/V1 — x2? If not, find its derivative.

da 1
— h-4 £ H 1 —_— = ——
13. If a = b7, find da/db and db/da directly and verify that b dbjda
14. A block bounces up and down on a spring so that at time ¢, its height is sin ¢
(use meters and seconds).

(@) Find the speed of the block at time t = 27/3.

(b) Is the block speeding up or slowing down at time ¢ = 2#/3, and by
how much?

(c) When is the speed of the block maximum? minimum?

15. Find the slope at (=2, 16) on the graph of y = x* and find the equations of
the lines tangent and perpendicular to the graph at the point.

3.4 Nondifferentiable Functions

It is possible for a function not to have a derivative for some value of
x. We mention this possibility not because it will happen frequently and
hinder you in later work, but because you will understand the derivative
better if you see examples where one doesn’t exist. A function that doesn’t
have a derivative at x = x, must correspondingly have a graph with no slope
at the point (xo,f(xo)). We will illustrate a few (but not all) of the ways in
which this can happen.

Discontinuities Imagine traveling from left to right along the graph of f
in Fig. 1. Itis a vertical step up to point A and then a vertical step back down
again, so we say that the left-hand slope at A is © and the right-hand slope
is —o. But even if we are willing to accept infinite derivatives, the left-hand
andright-hand slopes don’t agree. Thus f is not differentiable atx = 2; that
is, there is no f'(2).

Continuing from left to right in Fig. 1, it is a vertical step up to the
point B and then a slope of approximately 1 leaving point B. Thus, the

%ﬁ)\ \,\ o

> 4
s+
= 1
oV

FIG. |
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left-hand slope is =, and the right-hand slope is about 1. The disagreement
means that there is no f'(3).

Similarly, f is not differentiable at x = 4, and in general, if f is discon-
tinuous at x = xy, then f is not differentiable at x = x,. (Equivalently, if f is
differentiable then f is continuous.)

Cusps Continuing from left to right in Fig. 1, the slope coming into
point D, the left-hand slope, is about 1, while the slope leaving the point, the
right-hand slope, is about —2. Since the two values disagree, there is no
slope assigned to D and there is no f'(5). We call point D a cusp. In general,
a cusp arises when the graph is continuous but suddenly changes direction (so that
the curve is not “smooth”), and in this case f is not differentiable.

Note that differentiability is a more exclusive property than continuity:
a differentiable function must be continuous, but a continuous function
need not be differentiable (at the cusp in Fig. 1, f is continuous but not
differentiable). In other words, the collection of differentiable functions is
a subset of the collection of continuous functions.

Example 1 Let f(x) = |x|. The graph of f (Fig. 2) has a cusp at x = 0, so
there is no f'(0). In particular, the figure shows that the left-hand slope is
—1 and the right-hand slope is 1. Let’s try to find f'(0) using the definition
of the derivative to see what happens:

@ = i L0820 _ 0+ 8xl = J0] _ . Ax]

Ax+0 x Ax+0 x ax+0 Ax

The limit doesn’t exist because the left-hand limit is ~1 and the right-hand
limit is 1 (see Problem 3, Section 2.1). Again we conclude that the left-hand
slope is —1, the right-hand slope is 1, and there is no f'(0).

3.5 Derivatives of Constant Multiples, Sums, Products
and Quotients

Now that we have derivatives for the basic functions, we’ll continue by
looking at combinations of functions. All our combination rules assume that
we are working with differentiable functions.

The constant multiple rule for the derivative of ¢f(x) The graph of 2f(x)
is a vertical expansion of the graph of f(x), which makes it twice as steep (for
example, see Figs. 4 and 7 in Section 1.7). Thus D,2f(x) = 2D, f(x) and, in
general, for any constant c,

(1 Dicf(x) = cD,f(x).

The constant factor ¢ can be “pulled out” of the differentiation problem.
In other words, slide past the constant and then start differentiating. If
f(x) = 3 sinx then f'(x) = 3 cos x. If f(x) = —tan x then f'(x) = —sec’x.
Combining the power rule with (1), we have D,4x> = 4 3x* = 12«2
Similarly, D,8x* = 16x, and D,(—3x®) = —4x’.
Combining the formula D,x = 1 with (1), we have D.8x = 8-1 = 8.
Similarly, Dgx =3, D,7x = 7, D,(—x) = —1 and so on.
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Note that (1) includes the case of a constant divisor. For example,
In ¢ 1 1 1 1

b= =D int=-3=5

and
a1\ _d., _ s__2
dx(2x‘)’dx(2" )= %7 =0

The sum rule for the derivative of f(x) + g(x) By definition of the
derivative,

flx + Bx) + g(x + Ax) = (flx) + g(x))
Ax ’

D.(f(x) + g(x)) = kxn;

To evaluate this limit, first rearrange to separate the f and g parts.

[+ 8x) - [(x) gl + Ax) -5(::))
Ax Ax '

D.(f(x) + g(x)) = lierl(

Further separation is possible since the limit of a combination of functions
is computed by finding the individual limits; in this case, the limit of the sum
is the sum of the limits. Therefore

flx + Ax) = f(x) + limgﬁt + Ax) - g(X)_
Ax Ax+0 Ax

D.(f(x) + g(x) = Lmz]

But the first limit on the right-hand side is f’(x), by definition of the
derivative, and the second limit is g'(x). Thus the sum rule is

(2) D.(f +g) =D.f + Dg.

The derivative of the sum is the sum of the derivatives. In other
words, differentiate f and g separately, and then add. For example,
D,(2x® + 7x2 — 3x + 4) = 6x2 + 4x — 3.

The product rule for the derivative of f(x)g(x) Again we’ll use the defini-
tion of the derivative:

flx + Ax)g(x + Ax) —[(x)g(x)'

Ax

D.f(x)g(x) = lma

Now add and subtract f(x + Ax)g(x) in the numerator, which is strange but
legal, to get

D,f(x)g(x) =
lim flx + Ax)g(x + Ax) — f(x + Az)g(x) + f(x + Ax)g(x) —[(x)g(x)‘
Ax+0 X

Then factor and rearrange:

DSWg(o) = lim(fis + anEET BD 7 €W S X ED TS i),

Now there are four sublimits to examine. To find lim,. f(x + Ax), we
simply substitute Ax = 0 because f is assumed differentiable, hence con-
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tinuous. Thus the limit is f(x). For the next two sublimits, we have, by
definition of the derivative,

. +A - o , . +A - e ’
i £ g0 ana i B -,

Finally, lim,,.y g(x) = g(x) because Ax does not appear in the expression
g(x). Thus the final limit is f(x)g'(x) + f'(x)g(x); that is, the product rule is

@) (fe) =fg' +/'g

The derivative of a product is the first factor times the derivative of the second
plus the second times the derivative of the first. If f(x) = x*sin x then
f'(x) = x* cos x + 3x%sin x.

Warning The derivative of x* sin x is not 3x? cos x. The derivative of
a product fg is not found by differentiating f and g separately and
multiplying.

Example 1

3
ﬂ‘_l".i)=x3-%+3lenx=x2+3xglnx.

The product rule for more than two factors If y = fg then y' =
fg' + f'g. Suppose y = fgh, a product of three functions. By grouping, we
can rewrite y as f(gh) which represents y as a product of two factors, al-
though one of the two factors is itself a product. Then
y' = f(gh)' + f'(gh) (product rule for two factors)
=f(gh' + g'h) + f'(gh)  (product rule for two factors again)
=feh' + fg'h +['gh.
Therefore the product rule for three factors is
(4) (fgh)' = fgh' + fg'h + f'gh.
If f(x) = x? sin x cos x then

f'(x) = (x? sin x) (—sin x) + x2 cos x cos x + 2x sin x cos x
= —x?sin®x + x2 cos’x + 2x sin x cos x.

Similar results hold for products of four or more factors.

Warning Certain possibly ambiguous notations have standard inter-
pretations in mathematics. The notation tan xe* is assumed tomean tan(xe*).
If you intend (tan x) (¢*) then you must insert the appropriate parentheses,
or better still write ¢* tan x which is unambiguous. Similarly, sin x cos x
means (sin x) (cos x), sin x2 means sin(x?) and sin’ means (sin x)?. Be careful
to have your notation match your intention.

The quotient rule for the derivative of f(x)/g(x) By the definition of the
derivative,
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flx + Ax) _ f(x)

f&) _ gl +8x) glx)
ng(x) !\le) Ax )

Simplify the fraction on the right-hand side by multiplying numerator and
denominator by g(x)g(x + Ax) to get

b [ _ lim g)f(x + Ax) = f(x)g(x + Ax)
“glx)  axe0 Axg(x)g(x + Ax) )

Add and subtract f(x)g(x) in the numerator to obtain
D [ _ g)flx + Ax) — f(x)g(x) — flx)glx + Ax) + flx)glx)
g (%) Axg(x)g(x + Ax) ’
Factor and rearrange to get
(f&x +8x) = flx)) . [gx + 8x) — g(x))
D [&x) = lim g(x)\ Ax ] f(x)\ Ax ]
“gx)  axeo gx)glx + Ax)

Finally, find the separate sublimits as in the proof of the product rule, to
produce the quotient rule

(5) ([)= L
g g

The derivative of a quotient is the denominator times the derivative of the numerator,
minus the numerator times the dertvative of the denominator, all divided by the square
of the denominator.

Example 2 By the quotient rule,
4x  (3x +5)-4-4x-3 _ 20

b3 5 (3x + 5)2 (3x + 5)°

Warning It is correct but silly to use the quotient rule to write
Dx2+3x_6(2x +3)—(x2+3x)'0=2x +3
Y6 36 6

Instead, write the function as #(x? + 3x) and use the constant multiple rule
to get the derivative §(2x + 3) immediately.

Delayed proof of the tangent derivative formula The formulaD, tan x =
sec’x, stated in Section 3.3, can now be justified by the quotient rule

sin x

D,tan x = D,
Cos X

cos x cos x — sin x(—sin x)
cos’x
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_ cos’ + sin’
cos®x

1
= — by a tri tric identit
7 (by a trigonometric identity)

= sec’x.

The derivatives of cot x, sec x and csc x can be found in a similar manner.

Delayed proof of the power rule D.x" = rx"~' when r is a negative
integer Consider D,x~° for example. By the quotient rule and the pre-
viously proved case of the power rule for r a positive integer (Section 3.3)
we have

The proof in the general case is handled in the same way, with —9 replaced
by an arbitrary negative integer r.

The derivative of a function “with two formulas” Suppose f(x) = |In x|.
Then f(x) = In x when In x = 0 but f(x) = —In x when In x < 0. Thus

) = -lnx if0<x <l ,()_{—l/x if0<x <l
fx—{lnx ifx =1 O SW= e e

(The graph of f (see Problem 4b of Section 1.7) has a cusp at x = 1 and f
is not differentiable there. In fact, set x = 1 in the formula —1/x to obtain
the left-hand slope —1 at the cusp, and set x = 1 in the formula 1/x to
obtain the right-hand slope 1, a different value.)

In general, if f(x) is defined by different formulas on various intervals
then f'(x) is found by differentiating each formula separately.

Example 3 We discussed velocity and acceleration in Section 3.2 but did
not actually compute them in that section since efficient techniques of
differentiation had not yet been developed. If f(t) = ¢* — 3t* — 45¢ is the
position of a particle at time ¢, we are now prepared to describe its motion
using derivatives.

The velocity is f'(t) = 3t* — 6¢ — 45. To determine when the particle
travels left and when it travels right, we will determine the sign of f(t) using
the method of Section 1.6. The function f(t) has no discontinuities, and is
0 when

3t2 -6t —45=0
2-2-15=0
t+3)¢-5=0
t =-3,5.
To find the sign of f’(¢) in the intervals (-, —3), (=3, 5) and (5,%), test a

value of f(¢) for ¢ in each interval. For example, f'(—100) is positive so f ()
is positive in (=, —3). The results are shown in Table 1.



76 - 3/The Derivative Part |

Table 1
Time interval Sign of f* Particle
(==, -3) positive moves right
(-3,5) negative moves left
(5,%) positive moves right

We continue further to determine the sign of the acceleration
f"(t) = 6¢ — 6. The function f"(t) is continuous, and is 0 when 6t — 6 = 0,
¢t = 1. Table 2 shows the sign of f"(¢).

Table 2
Time interval Sign of f"
(=»,1) negative
(1,%) positive

By (6) of Section 3.2, the particle accelerates when f' and " have the same
sign, and decelerates when f and f" have opposite signs. Table 3 combines
Tables 1 and 2 to display the sign pattern.

Table 3
Time interval  Signof f'  Sign of " Particle
(=%,-3) positive negative moves right, slows down
(-3,1) negative negative moves left, speeds up
(1,5) negative positive moves left, slows down
(5,) positive positive moves right, speeds up

It is helpful to locate a few positions precisely before plotting the
motion. Some key values of f(t) are f(—x) = —x, f(-3) = 81, f(1) = —47,
f(5) = =175, f() = ». Figure 1 shows the final result.

DECELERATING

e
DECELERATING tz | ACCELERATING ﬁtz -3
e5( ACCELERATING

-175 47

FIC. |

+—POXITION
2l

Example 4 Section 3.2 discussed slopes, and now we are ready to actually
compute some. Use the derivative to find the vertex of the parabola
y = 2x2 + 8x + 9, and sketch its graph.

Solution: At the vertex of a parabola the slope is 0. We have y' =
4x + 8, which is 0 when x = —2. If x = =2 then y = 1, so the vertex
is (-2,1).
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We know that the parabola opens upward since the coefficient of x? is
positive. Alternatively, " = 4, and a positive second derivative implies that
the curve is concave up. Figure 2 gives the graph.

Problems for Section 3.5

1. Find f'(x) if (a) f(x) = 3x® + cosx (b) f(x) = 2x® — 6x° _ 4x + 5.
2. Find y, the fourth derivative of y.
@y=1/x B)y=sinx (y=x

3. Differentiate
3

@) 12- (h) secx tanx
(b) 2x* (i) 2e*Inx + 5x2
© 3 () 2 +Inx
(d) 7211‘ (k) 4x? tan”'x
(€) i ; 2 1) *sinxtanx

(f) 2x*cosx (m) —i—
1
® Vx Inx (n) ™
4. Find f®(r), the fifth-order derivative, if (a) f(r) = r* (b) f(r) = r*

(€ fr)=r*Inr.
5. If f(x) = 3x* — 2x, find f(—2), f'(—2) and ["(-2).

6. Find

@ LD (g Lo

0 LD (g L)

7. Differentiate the function (a) 6—lx++_3:'" (b) sme (c) —l-:—e;—;;.

8. Prove that the derivative of sec x really is sec x tan x.
9. Find £ if . b A% -4  ifx=2
. Find f'(x) if (a) f(x) = [sin x| ( )f(x)—{9 fx>9
10. Find the slope on the graph of y = 2x* + 6x at the point (1,8). Then find
the equation of the tangent line at the point.
11. Find the equation of the line perpendicular to the graphof y = 5 — x*at the
point (2, —11).
12. Use the second derivative to find the concavity of (a) y = sin x and
(b) y = x* and verify the accuracy of the graphs drawn in Sections 1.2 and 1.3.
13. Suppose the position of a particle at time ¢ is t* — 3¢*. Find its speed at time
t = 2. Is the car speeding up or slowing down at time ¢ = 2, and by how much?
M. Iff(x) = x* + ax + b, and the liney = 2x — 2 is tangent to the graph of
at the point (3, 4), find a and b.
15. Find the vertex of the parabolay = —3x? — 4x + 2 and sketch its graph.

16. Let /() {x2 ifx =4
. Let f(x) =
ax + b ifx >4

neither a discontinuity nor a cusp at x = 4.

. Find @ and b so that the graph of f has
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17. If y = x sin x, show that y" + y = 2 cos x.
18. Suppose the temperature T athour tist* — 15¢. Use 7, T’ and T" to describe
the weather at time 3.
19. Use calculus to help sketch the graph of the function if
I -x* + 8x forx <4
y = (16 for4<x <6
x? =2 + 100 forx =6
20. If the position of a particle at time ¢ is 12t — ¢*, sketch its motion, showing
the direction of travel and when it speeds up and slows down.

3.6 The Derivative of a Composition

In this section we continue to find derivatives of combinations of func-
tions so that you may differentiate all the elementary functions.

The chain rule for the derivative of a composition Compositions of the
basic functions, such as ¢* and sin x?, occur frequently, and the chain rule
we are about to derive is very important.

The composition y = sin x? can be written as y = sin u where u = x2.
In general, a composition can be denoted by y = y(u) where u = u(x),
meaning thaty is a function of 4, and u in turn is a function of x. We want
to express the composition derivative dy/dx in terms of the individual de-
rivatives dy/du and du/dx. Suppose dy/du = 3 and du/dx = 2. Then, if x
increases, u increases twice as fast, and in turn, y increases 3 times as fast
as u. Overall, y is increasing 6 times as fast as x; that is, dy/dx = 3 -2 = 6.

In general, we have the following chain rule:

(1) & _ dy du
dx dudx’

This form of the chain rule is easy to remember because if we pretend that
dy/dx is a fraction with numerator dy and denominator dx, and similarly that
dy/du and du/dx are fractions, then the right side “cancels” to the left side.

For example, lety = sin x% Theny = sin u where u = x?and, by the
chain rule,

%=%% =cosu *2x = cos x?*2x = 2x cos x>

Before continuing with more examples, we will restate the chain rule
in a form that is more useful for rapid computation. The last example
shows that the basic derivative formula D, sin x = cos x leads to the result

D, sin x? = cos x2* 2x (insert the extra factor 2x).

More generally, from any known derivative formula D, f(x) = f'(x), we get

(2) D, f(u(x)) = f'(u)u'(x) (insert the extra factor u'(x)).

The result in (2) is a restatement of the chain rule from (I). It says that if
D, f(x) is known, probably from the list of basic derivatives, and x is replaced
by something else so that a composition is created, then
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D.f(thing) = f'(thing) + D, thing.

In other words, differentiate “as usual,” and then multiply by D, thing. The
table of basic derivatives can be rewritten to incorporate the chain rule.

D' = ru""u'(x) D, sec u = sec u tan u * u'(x)

D, Inu =%u'(x) Drcscu = _Cscl"cmu'“'(")
oy ,

Dee* = e'u’(x) Dosinu = =z v ®

D, sin u = cos u * u'(x) D o 1 ,

D, cos u = —sin u * u'(x) v Cos U= Vl-u'u(x)

D, tan u = sec’u * u'(x) " ,

D, cot u = —csctu * u'(x) D tan”u = e )

Example 1 Iff(x) = In 3x then f is of the form In u, so by the chain rule
for D, In u,

1 1 1
") =— +D3x =— +8 = —_
f'(x ™ D, 3x 3 3 "

Example 2 If y = (3x* — 4x)** then y is of the form u® so, by the chain
rule for D',

y' = 25(3x* — 4x)*D,(3x? — 4x) = 25(3x* — 4x)*'(6x — 4).
Warning The most common mistake made in computing derivatives is the
omission of the extra step demanded by the chain rule. For example,

D, sin x = cos x but D, sin x2 is not cos x*; rather, D, sin x* = 2x cos x°.
Similarly, D.e* = ¢* but D,e™ is not e™; rather, De* = 3¢™.

Example 3 If y = sec 2x, find y' and y".
Solution: By the chain rule,

y' = sec 2x tan 2x + D,2x = 2 sec 2x tan 2x.
Then

3" = 2D,(sec 2x tan 2x) (rule for Dcf)

= 2(sec 2x * D, tan 2x + tan 2x * D, sec 2x) (product rule).

Now use the chain rule to differentiate tan 2x and sec 2x and obtain
3" = 2(sec 2x * sec’2x + 2 + tan 2x * sec 2x tan 2x - 2)
= 4 sec’2x + 4 sec 2x tan? 2x.

Example 4 Let z = cos’50. The notation means (cos 58)® so z is of the
form u®. Then

2'(8) = 3(cos 58)°Dy cos 50 (by the chain rule)
3(cos 58)°+ —sin 50 * 5 (by the chain rule again)
—15 cos?50 sin 56 .
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Note that (cos 50)* is a composition of three functions, and the chain rule is

used twice to find its derivative.

Example 5 Find dy/dx if y = 1/(3x* + 4).
Furst solution: Write y as (3x2 + 4)™' and use the chain rule to obtain

9 _(3x?+ 4)2bx = ——D
T 3x2+ 4)%-6x = Gl A7
Second solution: By the quotient rule,
dy _(3x*+4)-0-1-6x_ 6
dx (3x2 + 4)? (3x? + 4)*"

Problems for Section 3.6

In Problems 1-56, find the derivative of the function.

L & 30. In x*

2. sin 2x 31. (In x)°
3.¢7" 1

4 o 32. e

5. sin”'(3 - x) 33. sin’x

6. 2 cos 5x 34. x cos 2x
7. x? sin 5x 35. cos(3 — x)
8. 5xe™ 36. cot ¢*

9. 1 37. x%® sin 4x

2 + sin x 38. x In(2x + 1)

10. sin ¢* 39. 3x + 9°
11. ™" cos 4x 40. sec*3x’
12. x*(2x + 5)° 41. (4 - x)°
13. 2 cos 5x 2+ 7x
14. In(5 - x) 2
15. In cos x 43. 3 sin”' ix
16. *** 44. In sin ¢*
17. V3 + 17 45. cos’4x

18. tan™' 3x 46. ¢" In x

4
19. cos bx 1. ﬁ
20. sin 7x 48. csc 4x
21. cos’x 49. 5+ 4Inlnx
22, sin — 50. Vin
x 51. In Vx
23. ¢V* 52. x%In 3
24. o' 53. Il
25. (tan™'x)® 4x
2. (x? + 4)° T
27. sin x* 2
28. cos'x 55. sin 2
i x+1
29, ————— 2-x
VT + 4x 56.
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57. The kinetic energy of an object with mass m and speed v is 3mv®. More
specifically, if m and v are functions of time ¢ then the kinetic energy is Im(t)v(e).
Suppose at a certain time, the mass is 5 grams, the speed is 3 meters per second, the
mass is increasing by 2 grams per second and the speed is decreasing by 1 meter
per second. Is the kinetic energy increasing or decreasing at this moment and by
how much?

58. Find D. In InInIn --- In In In 2x, where there are 639 logarithm functions
in the composition.

59. Let f(x) be an arbitrary differentiable function. Differentiate the indicated
combinations

(@) cotf(x) (d) Inf(x)
(b) xf(x) © ¢
© (f(x)?

60. Suppose star x is a function whose derivative is e*(x* + 3). Find D, star 3x.

61. Let w = 3¢*?, Find w"(0).

62. Find the equations of the lines tangent and perpendicular to the graph of
y = (2 — x)* at the point (3, 1).

63. Find the 99th and 100th derivative of 1/(2 + 3x).

64. A 10-foot ladder leans up against a wall. Let x be the distance from the foot
of the ladder to the base of the wall, and let y be the distance from the top of the
ladder to the ground below. If the ladder slides down the wall then x increases while
y decreases. Find the rate of change of y with respect to x in general. Then find the
rate of change in particular when x = 1 and again when x = 9.

3.7 Implicit Differentiation and
Logarithmic Differentiation

Implicit differentiation Suppose we want the slope on the graph of
(1) y-6x2=3

at the point (—2,3). The equation defines y implicitly as a function of x.
When the equation is solved for y to obtain

2 y = (6x* + 3)'%,

then y is expressed explicitly as a function of x. From the explicit description
in (2),
4x

'__l 2 -23 , = —
y' =g 6+ 3 12 = s,

50 y'|=—s = —3. Therefore the slope at the point (-2, 3) is —§.

It is possible to find the derivative y’ without having the explicit expres-
sion for y. This is particularly useful for equations that are too difficult to
solve for y. To find y’ from the implicit description in (1), differentiate with
respect to x on both sides. In this procedure y is treated as a function of x, so
that the derivative of y* with respect to x is 3y*’ by the chain rule. Then

3y2y' - 12x =0
y' =&

32
PEB
Y lx=-2,4=3 9 .

Therefore, the slope at the point (-2, 3) is —8/9, as before.
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The process of finding y’ without first solving for y is called implicit
differentiation.

Note that the derivative of x* with respect to x is 4x° but if y is a
function of x then the derivative of y* with respect to x is 4y*’, by the chain
rule. Similarly, if the differentiation is with respect to x, then the derivative of
¢* is ¢* but the derivative of ¢’ is ¢%'; the derivative of sin x is cos x but the
derivative of sin y is y' cos y.

The derivative of a term such as x%? with respect to x requires the
product rule and the chain rule:

D,x%® = x°D,y> + y°Dx® = x3 - 5y'y’ + 3% - 3x? = Bxyly’ + 3x%S.

Warning Don’t omit the extra occurrences of ' demanded by the chain
rule.

Example 1 The equation y® + x% + x? — 3y? = 0 is not easy to solve for
y, and as a matter of fact it does not have a unique solution for y since a
cubic equation has three solutions. The equation implicitly defines three
functions, corresponding to the indicated three sections of the graph in
Fig. 1. By a single implicit differentiation we can find the derivative of

each function.
( I/ )+ -JT)
A

50,1

(1,1-47)

e

x"')
FIG. |

Differentiate on both sides of the equation with respect to x (use the
product rule on x?%) to obtain

39%y" +xl' + 2y + 2x — 6yy' = 0.
Although it is difficult to solve the original equation for y, it is easy to solve
the differentiated equation for y':
(392 + x2 — 6y)y' = —2xy — 2x,
__—2xy — 2x
3y? + x2 - 6y

’

Y

The derivative formula holds for each of the implicitly defined functions.
To find the slope at the point B, substitute x =1,y =1 to get y' = 2,
Similarly, substitute x = 1,y = 1 + V2 to find that the slope at point A is
~1 - $V2 (appropriately negative, since the curve is falling at A).
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Delayed proof of the power rule D,x” = rx""! for fractional r Consider
y = x*3 for example. Assuming that the function is differentiable, we are
now ready to use implicit differentiation to show that y’ really is 3x'® as
claimed in Section 3.3. Cube both sides of y = x** to obtain y* = x*, an
implicit description of y. This appears to be a step backwards when we
began with the explicit function y = x** but the implicit version has the
advantage of involving only integer exponents. Then, by the previously
proved cases of the power rule for r an integer (Sections 3.3-3.5), we have
3yY’ = 4x3, so

, 4x3_ 4x° _ 4x° =ix”3

y = 3;’5 = 3(x7)2 32 3
as desired. The proof in the general case is handled in the same way, but
with 4/3 replaced by p/q where p and ¢ are arbitrary integers.

Logarithmic differentiation There are three kinds of functions involving
exponents.

I. The base contains the variable x and the exponent is a constant, such
as (3x + 4)° and sin’x.

2. The base is ¢ and the exponent contains the variable x, such as ¢*
and e*.

3. The base is not ¢ and the exponent contains the variable x, such as
2%, (x2 + 2¢)* and (sin x)*. (As usual, for this type we consider only
positive bases. The domain of the function (sin x)* is taken to be the
set of x for which sin x is positive.)

Derivatives of the first two types have already been discussed. To dif-
ferentiate the first type, use Du” = ru’"'D,u. For example, D,(3x + 4)° =
5(3x + 4)*+ 3 = 15(3x + 4)*. To differentiate the second type, use D,e* =
¢*D,u. For example, D,e™ = 3¢,

Consider y = (sin x)*, a function of the third type. To find its deriva-
tive, first take logarithms on both sides and use In a® = 4 In a to obtain

3) Iny =xInsinx.

This redescribes y implicitly (a step backwards) but it has the advantage of
avoiding exponents. Differentiate implicitly in (3) and use the product rule
on x In sin x to get

ly' =xD,(n sinx) + Insinx * Dix = x .l +cosx + In sin x.
y sin x

Therefore
4) y' = y(x cotx + In sin x).

When y' is obtained by implicit differentiation, it is expressed in terms of
x and y, as in (4). However, in this case we may replace y by the explicit
expression (sin x)*toobtain the finalanswery’ = (sin x)*(x cot x + In sin x).
The process of taking logarithms on both sides of y = f(x) and then
finding y’ by implicit differentiation is called logarithmic differentiation. It is
used to differentiate functions of the third kind and, in general, may be
used in any problem in which In f(x) is easier to differentiate than f(x).
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Warning D, (sin x)* is not x(sin x)*"'.

Example 2 Find D,8"

Solution: 1fy = 8" then Iny = x In 8, which we may write more sug-
gestively as In y = (In 8)x. Note that In 8 is a constant. Just as the derivative
of 5x is 5, so the derivative of (In 8)x is simply the number In 8. Thus by
implicit differentiation we have

1
—y'=In8
y)’

3 =yIn8.

Replace y by the explicit expression 8* to get the final answer D,8* = 8" In 8.
Warning D, 8" is not x8".
Problems for Section 3.7

1. Find dy/dx if (a) y = xsiny () x +y =y tany + x tan x.

2. Find dy/dx and dx/dy if y = cos(x® + y?).

3. Find the line tangent to the graph of the equation at the indicated point, first
by solving for y, and then again by implicit differentiation.

(a) x> + y* = 1, point @ -3V3) (b) Vx + \/; = 3, point (1,4)

4. IfIny = 1 - xy defines y = f(x), find f'(0).

5. Show that the ellipse 4x* + 9y* = 72 and the hyperbola x* — y* = 5 inter-
sect perpendicularly, that is, at the point of intersection, the product of the slopes
is — 1.

6. If y(x) is defined implicitly by ¢® =y, show that y satisfies the equation
(I = xy)y' =y%

x*sin x

7. Lety = T 1
(b) logarithmic differentiation.

8. Differentiate the function:

. Find y’ with (a) the product rule for three factors and

@ 2° (e) 2x + 3)}
(b) x* (f) 42x+3

(c) xblnl (g) F.(

(d) x* (h) (2x + 3)*

3.8 Antidifferentiation

So far we have concentrated on finding f’, given f{. We now turn to the
problem of finding f, given f . This process is called antidifferentiation. One
important application occurs at the end of the section and more applica-
tions will appear later.

The set of antiderivatives of a function We say that {x* is an antiderivative
of x3 because Ddx* = x*. Also, D,(3x* + 7) = x*, D,(3x* — 2) = x* and, in
general, D,(3x* + C) = x* where C is an arbitrary constant. Therefore all
functions of the form 3x* + C are antiderivatives of x*. All of the anti-
derivatives of x* have “parallel” graphs (Fig. 1) in the sense that they all
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have slope x*. There are no antiderivatives of x*® except the functions {x* + C
since the only way to produce the slope x* is to translate x* up or down.

The notation [ f(x) dx stands for the entire collection of antiderivatives
of f(x), and we write

4
3 =x_+
fxdx 3 C.

Some antiderivative formulas Antiderivatives for some of the basic
functions can be obtained by reversing derivative formulas. We have
D, sin x = cos x, so [ cos xdx =sinx + C. Similarly, D, cos x = —sin x, so
J(—sin x)dx = cos x + C. However, it is more useful to have a formula for
[ sin xdx, since it is sin x and not —sin x that is considered the basic
function. Therefore, we use D,(—cos x) = sin x to obtain [ sin xdx =
—cos x + C. Proceeding in this way, we assemble the following list.

(1) f kdx = kx + C (where % stands for a constant)
(2) Jsin xdx = —cosx + C
(3) jcosxdx=sinx+C
(4) je"dx =¢+C
j dx xr+l
(5) x _r+l+c’ r# -1
(6) j%dx=lnx+c, x>0

In (6), the function 1/x is defined for x # 0 but the antiderivative In x
is defined only for x > 0. We can do better if we observe that by Problem 53
in Section 3.6, D, Injx| = 1/x. Therefore we can extend (6) to

(6" f%dx=ln|x|+(}, x #0.

Both In x and Inlx| differentiate to 1/x, but In|x| has the advantage of being
defined for all x # 0, while In x is defined only for x > 0.

If we reverse the formula D, tan x = sec’, we have
(7) fsec’xdx =tanx + C.

This is not as “basic” as (1)—(6), but we’ll take what we can get. Similarly,

(8) fcsc’xdx = —cotx +C
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9) fsecx tan xdx = secx + C
(10) jcscx cot xdx = —cscx + C
(11) I 1 d sin"Ix + C
—dx = x
V1 - x?
l — -1
(12) jmdx—lan x +C

We do not yet have antiderivatives for In x, the basic trigonometric
functions other than cos x and sin x, or the inverse trig functions, because
there is no well-known derivative formula whose answer is any of these
functions.

6

Example 1 fx5 dx = % + C.

1 , t
Example 2 ft—ﬁdz =ft‘°dt = *C= Lic

Selecting a particular antiderivative Consider the function f such that
f'(x) = x*> and f(2) = 3. To find f we must select from all parallel curves
with slope x?, the particular one through the point (2,3). (Just as a line is
determined by a point and a slope number, a curve, more generally, is
determined by a point and a slope function.)

If ) = x> then y = x* + C. To find C, set x = 2, y = 3 to obtain
3 =4+ C,C = —1. Therefore f(x) = ix* — 1.

Antiderivatives of the elementary functions We would like to follow the
same strategy for antidifferentiation that we used for differentiation, that
is, find antiderivatives for all the basic functions and then use combination
rules to find antiderivatives for all the elementary functions.

It's easy to find rules for constant multiples and sums. For example,
[6 cos xdx = 6 sinx + C because D,6 sin x = 6 cos x. Similarly,
J(x®+ cos x)dx = }x* + sinx + C because D.(3x* + sinx + C) = x>+
cos x. In general,

(13) fcf(x)dx =cff(x)dx
and
(14) j[f(x) +gx)]dx = jf(x)dx + jg(x)dx.

For example, [(2x* + 3x — 4)dx = ¥x* + 3x? — 4x + C.
But there are no other easy rules. We are collecting information about
antidifferentiation by reversing differentiation formulas, and a reversed
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formula is often not of the same character as the original. The reverse of
the basic derivative formula D, tan x = sec’x becomes an antiderivative
formula for the nonbasic function sec’x. Similarly, the reverse of the prod-
uct rule (fg) =fg' + f'g is [(fg' + f'g)dx = fg, which is no longer a
product rule.

Since we are missing some of the basic antiderivative formulas and
combination rules, we are thwarted, at least temporarily, in the effort to
antidifferentiate all the elementary functions. It will turn out that there
simply are no product, quotient, or composition rules and, in fact, the
antiderivatives of some elementary functions don’t have nice formulas at
all. All of Chapter 7 will be devoted to overcoming these difficulties. In the
meantime, the scope of (1)—(12) can be widened sufficiently so that even
before Chapter 7, some significant applications can be discussed.

Extending known antiderivative formulas If we know an anti-
derivative for f(x), we can also find an antiderivative for f(ax + b). For
example, consider [ cos(mx + 7)dx. We might guess that the answer is
sin(mx + 7) + C, but differentiate back to see that this is not quite right,

since, by the chain rule, D, sin(mx + 7) = cos(wx + 7) - m. We don’t want
the extra factor , so we refine our guess to

](cos wx + 7)dx =%sin(m¢ +7)+C.
This is correct because
D,% sin(mx + 7) = % cos(mx + 7)+ 7w = cos(mx + 7).

In general,

if F(x) is an antiderivative of f(x) then
(15) jf(ax +b)dx=—i—F(ax +b) +C.

In other words, if x is replaced by ax + b in (1)—(12), anti-
differentiate “as usual” but insert the extra factor 1 /a.

Example 3 fe"‘dx = T;-es‘ + C.

Example 4 f e dx = 2 + C.

1
5x — 8

Example 5 j dx = % Inj5x — 8§ + C.
1

(4-x7
4 -x?

-2

dx=f(4—x)'3dx=-l +C

S S
2(4 — x)?

Example 6 f

+ C.
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Warning 1. The answer to Example 6is not In(4 — x)* because the deriva-

tive of In(4 — x) is times 3(4 — x)? + —1 by the chain rule.

1
4 - %

2. Any antidifferentiation problem can be checked by differentiating
the answer. (The catch is that you must be able to differentiate correctly to
catch mistakes in the antidifferentiation.)

3. Within the context of this section, the only functions f(x) which you
are prepared to antidifferentiate are those in (1)-(12), along with their
constant multiples, sums and variations of the form f(ax + b) where a and
b are constants.

Example 7 Assume x > 0 so that (6) can be used instead of (6'), and
1
find j adx.
. ) 1 1[1 1
s |—dx == —dx = — + C.
First solution f ™ e 3 Inx + C

. 1 1
s === + .
Second solution f el In 4x + C (by (15))

We seem to have two different answers, § Inx + C and } In 4x + C. But
1

—Iln4x + C

7 In &

1 1 1
+ = — + — + = — + .
(n4+Inx)+C 4lnx 4ln4 C 4lnx D

-hli—-

The arbitrary constant C plus the particular constant { In 4 is another
arbitrary constant D. Therefore the two solutions do agree.

An application of antidifferentiation and an introduction to parametric
equations Suppose that a gun has a muzzle velocity of 60 feet per second,
and is fired from a 40 foot hill at an angle of 30° with the horizontal. What
is the path of the bullet? Where does it land? For how long is it in flight?
How high does it get?

Establish a coordinate system so that the gun is at the point (0, 40)
(Fig. 2). Physicists do the problem in two parts, worrying separately about
the x-coordinate x(t) and the y-coordinate y(¢) of the bullet at time ¢. They
separate the muzzle velocity into a horizontal speed and a vertical speed as
follows. The muzzle velocity 60 together with the 30° angle is represented
by an arrow 60 units long at angle 30° with the horizontal. By trigonometry,
the horizontal arrow in Fig. 2 has length 30V3, and the vertical arrow

0
£ 2
G‘“\
A 7, 30\)’3——
HilL

FIG. A
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has length 30. Physicists conclude that the bullet can be considered to
have horizontal speed 30V3 feet per second and vertical speed 30 feet
per second.

Let’s continue with the vertical part of the problem. Let ¢ = 0 be the
time at which the bullet is initially fired (any other choice would be all right,
too). Since the bullet is fired at time 0 from the point (0,40), we have
y(0) = 40. Also, the bullet is initially moving upward with vertical speed 30,
50 y'(0) = 30. Furthermore, from basic physics, the gravitational field of
the earth causes any vertical velocity to decrease by 32 feet/second per
second, so

y"(t) = -32  for all ¢.

Now, work backwards to find y'(¢) and then y(t). We have y'(t) = ~32¢ + C.
To determine C, use y'(0) = 30, and set ¢t = 0, y' = 30 to get 30 =
-32-0 + C, C = 30. Therefore,

(16) y'(t) = —32¢t + 30.

Antidifferentiate again to get y(t) = —16¢2 + 30t + K. To determine K,
use y(0) = 40, and set ¢t =0, y =40 to get 40 =-16-0+ 30-0 + K,
K = 40. Thus,

(17) y(t) = —16¢2 + 30t + 40.

Consider the horizontal part of the problem. By Newton’s laws of
motion, an object will maintain its initial horizontal velocity (until the ver-
tical component of velocity causes a crash), so

x'(t) = 30V3  for all ¢.

Therefore x(t) = 30V3¢ + Q. Since x(0) = 0 we have 0 = 30V3-0 + Q,
Q = 0. Thus

(18) x(t) = 30V3¢.
Now we can answer all of the questions about the bullet. It lands when
+ \/
y =0, sosety = 0in (17) and solve for ¢ to get ¢t = 15—1—6865, t=-9

or 2.775 approximately. Ignore the negative solution, since the experiment
starts at time ¢ = 0. Thus the bullet lands about 2.775 seconds after being
fired. From (18), if ¢ = 2.775 then x = 144 approximately. Therefore the
bullet travels about 144 feet horizontally before landing (Fig. 3).

_
ﬂ-r- t- ff
40 t:o
t=2.775
144

Fl6.3
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To find its maximum height, note that the bullet has positive velocity
as it rises, negative velocity as it falls, and reaches a peak at the instant its
velocity is 0. From (16), y' = 0 when ¢ = 15/16, and, from (17), at this
momenty = 54 approximately. So the bullet rises to a maximum height of
about 54 feet.

In general, a curve in the plane may be described with one equation in
x and y, or by a pair of equations, such as (17) and (18), which give x and
y in terms of a third variable, ¢ in this case. The two equations x = x(¢),
y = y(t) are called parametric equations, and ¢ is called a parameter. 1f (18) is
solved for ¢ and substituted into (17), we have

- —pe(—22Y (_1_>
(19) y 16(30\/3) +30(2575) + 40,

a nonparametric description of the bullet’s path. Equation (19) is of the
formy = ax? + bx + ¢, and therefore the path is a parabola.

Problems for Section 3.8

1. Find
@) fssinxdx ® f;];dx
(b) f sin 3xdx (h) f Vi dx
ofea o [La
@ ]sec%tan%dx () fxsdx
@ [pa 0 [gme
) fx"dx ) f%dx

2. Find f(x) if f'(x) = sin x + x* and f(0) = 10.

3. Find all functions f(x) such that f"(x) = 5.

4. A particle traveling on a number line has velocity 7 — ¢? at time ¢. 1f it is at
position 4 at time 3, where is it at time 6?

5. Findy ify’ =2x + 3andy = -2 whenx = 1.

1
6. We know thatj%dx =Inx + C Does];;—x-dx equal In sinx + C?

7. We know that [ cos xdx = sin x + C. (a) Does [ cos’xdx equal sin’x + C?
(b) Does [ cos 2xdx equal sin 2x + C? (c) Does [3 cos xdx equal 3 sinx + C?
(d) Does [ cos x?dx equal sin x? + C?

8. A stone is thrown up from a point 24 feet above the ground with an initial
velocity of 40 feet per second. Assume that the only force acting on the stone is the
force due to gravity which gives the stone a constant acceleration of —32 feet/
second per second. How high will the stone rise and when will it hit the ground?

In Problems 9-35, find an antiderivative for the function, if possible within the
context of this section.

3
3 - x 11. Vx“ + 5

I 2.2
2x + 5 x

9.
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13. 51—; 24, sin %
1 2mx
4. 2+ x 25. cos T
1 x®
15. m 26. E
16. 7 cos mx 27. 3¢~
17. cos x° 28. %~
2 + 6x
18. = 29.x"’+x+l+l,+l,
5 x  x x*
19. sec x 30. >
0 5 3. =
20. (3x + 6) 32. (3x + 4)°
[ 1 2
21. 2 + Tx 33. ?
2 x*
4, —
2. 1+ x? 3 2
2 35 L
B 7

In Problems 36-59, perform the indicated antidifferentiation, if possible within
the context of this section.

36. ]—l;dx 48. fﬂ*
37. f—dt 49, Jln xdx
. 3
38. [ 3x>dx 50. —dx
39, —l-dx 51. J
* ) 83
40. Jldx 52.
X
1 1
= 53. j_
4 J? - Sx’dx sin
42, I(? - 3x%)dx 54, I S dx
: [ve==
43.J(2_3x),dx 55. | V3 —x dx
+
44. f(x‘ + 5)dx 56. X 3dt
S+
45.fdx 57, 5"2 3 ix
46. fsm Sudu 58. J5x T3

47, j sin®xdx 59, f (2x + 3)°dx



92 . 3/The Derivative Part |

REVIEW PROBLEMS FOR CHAPTER 3

L. Let f(¢) be the number of gallons of water that has spurted through a hole
in the dike during the ¢ hours since the leak started. For example if f(3) = 100 then
100 gallons flowed in during the first 3 hours of the leak.

(a) Whatdoesthe derivative f'(¢) represent? If f'(3) = 20 and f"(3) = -1, are
the residents of the flood plain happy or unhappy?
(b) What value(s) of f’(t) is the flood plain rooting for?

In Problems 2-36, differentiate the function.

2,
3.
4.

8.

9.
10.
11.

12

13.
14.

15.
16.
17.

18,
19.
20.
21.

37.

sin(2x + 3m)

x sin x

tan"'x?

x%2 - 3x)7

x sin™'x

2 + sin 4x
5

3xe” sec x

COs x

8-x°

22,
23.
24,
25.
26.
27.

28.

29,

30.

31.

32.

33.
34,

35.

36.

(8 —x)

2 + 3\*
(>57)
V2 +5

2
3+ %

cos®2x
3 sin e
|

X+ 2% -5

2x +3
5x — 4

A car particle’s positions on a number line at time ¢ is ¢* — 2> + 1. Find
the particle’s position, speed, velocity and direction of motion at time ¢ = 2. Is it
speeding up or slowing down at time ¢ = 2, and by how much?

38. Sketch a possible graph of f if f’(x) is positive in the intervals (-, 3) and
(5,%), negative in the interval (3,5) and zero at x = 3,5; and ["(x) is negative for x
in (=%, 4), zero at x = 4 and positive for x in (4, ®).

39. If {'(x) = x* — 2x and the graph contains the point (2, —2), find f(x).

40. If f(¢) = (> + 3¢ + 1 is the position of a particle at time ¢, sketch a picture
of its motion, indicating its direction, when it speeds up, and when it slows down.

41. Find D, sin sin sin sin sin---sin sin 2x, where the composition contains
825 sine functions.
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42. Lety = 3x® + ix. (a) Show that y is an increasing function of x. (b) Sup-
pose x increases and has just reached 3. At this instant is y increasing faster or slower
than x?

43. Use derivatives to see if the graph of ¢” really has the concavity indicated in
Fig. 2 of Section 1.5.

44. Find dy/dx (a) xy + 3xy* =62 —x (b) sinx + siny = 6.

45. Find

bx + 2
@) Dig- (€) Dilx + &)
)
(b) dfﬁ%’) (6) dite’)/de
o 2x
) "dx  (h) D™

46. Find y' and y".

(@) y =3xsinx (c) y = x* cos x*
b y=1-Inx (d)y=>5*

47. Find the 19th and 20th derivatives of 1/V2 + 5x .
48. Show that the lines tangent to the graph of xy = 1 in the first quadrant form
triangles all of which have the same area (Fig. 1 shows two such triangles).

Al xy=| A1

xy=1

Fl6. |

49. The product rule states that (fg)' = fg' + f'g. Diffierentiate again to get a
product rule for (fg)", and again for (fg)" and again for (fg)™. Look at the pattern
and invent a product rule for (fig)*, the nth derivative of fg.

50. Suppose that a one-dimensional object placed on a slide (number line) is
projected onto a screen (another number line) so that the point x on the slide
projects to the point x* on the screen. If a 2-foot object AB is placed with A at
x = =2 and B at x = —4 (Fig. 2) then its image is magnified (to 12 feet), distorted
(the magnification is “uneven” —for example, the right half of the object has a
5-foot image while the left half has a 7-foot image), and reversed (A is to the right
of B but the image of A is to the left of the image of B).

Consider a projector which sends x to f(x), where f is an arbitrary function
instead of x* in particular. What type of derivative (positive? negative? large? small?
etc.) is to be expected when the image is (a) reversed (a’) unreversed (b) magnified
(b’) reduced (c) distorted (c’) undistorted.
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Do Problems 51-62 if possible within the context of this section.

1
51. [ﬂdx
1

52 dx

* ) Ix?

1
53. f———“x — 2),dx

54, f(‘lx + 2)dx

55. fe"dx

56 fsinimcdx
) 2

63. Find (a) Dx® (b) f x*dx  (c) Ds

57. f sin’%ﬂxdx

58.[,1 dx
x"+x

1
. | —— di
59 f:}-—:t

1
60. J dt
V3 -t

ﬁl.f\/l+2xdx

62. f\/l + 2x7 dx

1

x-‘

d f—lgdx.
X
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4.1 Relative Maxima and Minima

It is useful to be able to locate the peaks and valleys, called relative
extrema, on the graph of a function f. They help in making an accurate
sketch, and can also be used to find the overall highest and lowest values of
f, called absolute extrema, for such purposes as maximizing profit and
minimizing cost. This section shows how to find relative extrema and later
sections continue the applications to graphs and absolute extrema.

Definition of relative extrema A function f has a relative maximum at x, if
f(xo) = f(x) for all x near xo. Similarly, f has a relative minimum at x, if
f(xo) = f(x) for all x near x,. Figure 1 shows relative maxima at x; and x,,
and relative minima at x; and x;.

REL MAX No SI0PE
REL MAX NoT AN ex;lM

Z=R0 5 LOPE

FlG. |

Critical numbers Consider the graph of the function in Fig. 1. At the
relative extrema where a slope exists (at x,, x5 and x,), that slope is 0. For
example, the relative maximum at x = x, occurs when the function in-
creases and then decreases. The slope changes from positive to negative,
and is 0 at the maximum point. In general, if f is differentiable and f has a rela-
tive extreme value at xo then f'(xo) = 0. Equivalently, if f'(x,) is a nonzero
number then f cannot have a relative extreme value at x,.

On the other hand, if f'(x) = 0 then a relative extreme value may (see
X9, X3, X4) but need not (see x;) occur.

Similarly, if f is not differentiable at a point then a relative extreme value may
(see the cusp at x;) but need not (see the cusp at xs and the jump at x;) exist.

If f'(xo) = 0 or f'(xg) does not exist then x, is called a critical number. The
preceding discussion shows that the list of critical numbers includes all the

95



96 - 4/The Derivative Part Il

relative maxima, all the relative minima, and possible nonextrema as well.
In otherwords, critical numbers do not necessarily produce maxima or minima, but
they are the only candidates. In Fig. 1, x, through x; are critical numbers, but
the function does not have a relative extreme value at x,, x¢ or x;.

There are two standard methods for classifying critical numbers.

First derivative test Let f be continuous. To identify a critical number x,
as a relative maximum, relative minimum or neither, examine the sign of
the first derivative to the left and right of x,. If the derivative changes from
positive to negative, so that f increases and then decreases, f has a relative
maximum at x, (see x, in Fig. 1). If the derivative changes from negative to
positive then f has a relative minimum at x, (see xs in Fig. 1). Otherwise, f
has neither.

Example 1 Let f(x) = 4x* — 5x* — 40x*. Find the relative extrema of f
and sketch the graph.
Solution: Solve f'(x) = 0 to find some critical numbers.

20x* — 20x® — 120x? =
20x%(x2—x —-6) =0
(x-3)x+2=0
x=0,3,-2.

The function is differentiable everywhere, so there are no critical
numbers other than 0, 3 and -2.

Determine the sign of f'(x) in the intervals between the critical num-
bers by testing one value from each interval, as described in Section 1.6.

Interval Sign of f' Behavior of f Relative Extrema
(—»,—2) positive increases } -
(-=2,0) negative decreases rel max at x 2

no extremum at x = 0 (but the
l graph is instantaneously hori-
zontal as it falls through x = 0)
0,3) negative decreases

.. . rel minatx =3
3, positive increases

Finally, we find the y-coordinates corresponding to the critical num-
bers, namely, f(-2) = 112, f(0) = 0 and f(3) = —513, and use them to
plot the graph in Fig. 2.

Second derivative test This test is applicable to the type of critical point
at which f”(x¢) = 0. In this case, if f"(xg) < 0 then in addition to zero slope
we visualize downward concavity at x = x, (see x4 in Fig. 1) and expect a
relative maximum. If f"(x,) > 0 then in addition to zero slope we picture
upward concavity atx = x, (see x3 in Fig. 1) and expect a relative minimum.
In general we have the following conclusions.

(1) Iff'(xo)) =0 and f"(xo) <O then f has a relative maximum at x,.
(2) Iff'(x)) =0 and f"(xg) >0 then f has a relative minimum at x,.
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(3) Iff'(xd) =0 and f"(xo) = 0 then no conclusion can be drawn. As
problems will demonstrate, it is possible for there to be a relative maxi-
mum, or a relative minimum, or neither at x,. Another method must be
used in this case, such as the first derivative test.

With the second derivative test, a decision about a critical number x; is
made by examining f” only at xo; with the first derivative test, the deci-
sion is made by examining f" to the left and right of xo. The second derivative
test is perhaps more elegant; on the other hand, the first derivative test
never fails to produce a conclusion, whereas the second derivative test is
inconclusive in case (3).

Example 2 Find the relative extrema in Example 1, using the second
derivative test this time.

Solution: Again find the critical numbers x = 0, 3, —2. We have f"(x) =
80x* — 60x? — 240x, s0f"(—2) = —400, f"(0) = 0 and f"(3) = 900. There-
fore f has a relative maximum atx = -2 and a relative minimum atx = 3.
The second derivative test is inconclusive for x = 0. We must resort to the
first derivative test for the intervals (—2,0) and (0, 3) as in Example 1 to
show that f does not have a relative extremum at x = 0.

Problems for Section 4.1

1. Use (i) the first derivative test and (ii) the second derivative test to locate
relative maxima and minima.

(@) f(x) = x> — 3%x? - 24x (d) e;"

ib)) x:—xa (€ xInx
c) x* +x

2. Locate relative maxima and minima, if possible, with the given information.

@ '@ =0,f()<0forl.9<x<2 (¢ 2 =0["=6

f'(x) >0 for2 <x < 2.001 ®S@=0/@=0
(b) f'(2=0 ® /'6)<0,f'(7) =0,
(© f@=0 ['®>0

@ /@=3
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3. Suppose f has a relative minimum at x, and a relative maximum at x,. Is it
necessarily true that f(xo) < f(x,)?

4. Use the functions x*, x* and —x* to show that when f”(xo) = 0 and f"(x;) = 0,
there may be a relative maximum, a relative minimum or neither at xo, thus veri-
fying part (3) of the second derivative test.

5. Sketch the graph of a function f so that f'(3) = f'(4) = 0 and f'(x) > 0
otherwise.

4.2 Absolute Maxima and Minima

If f(x) is the profit when a factory hires x workers then, instead of puny
relative maximum values, we want to find the maximum, often referred to
as the absolute maximum. This section shows how to find the (absolute)
extrema for a function f(x). Furthermore, the extrema are usually to be
found for x restricted to a particular interval; in the factory example we
must have x = 0 since the number of workers can’t be negative, and (say)
x =< 500 by Fire Department safety regulations.

gt MAX

24 MIN

FIG. |

To see extrema graphically, consider Fig. 1, showing a function de-
fined on the interval [—3, 5]. Its highest value is 8, when x = 5, and its
lowest value is 2, when x = 4. The function has a relative maximum at
x = 3, but the maximum is at x = 5. The function has a relative minimum
at x = 4, and the minimum also occurs here. As another example, the
function in Fig. 2, defined on (0, ®), has no maximum value because f(x) can
be made as large as we like by letting x approach 0 from the right. In this
case, we will adopt the convention that the maximum is © when x = 0+.
Similarly, the function has no minimum because f(x) gets closer and closer
to 6 without reaching it. As a convenient shorthand in this case (albeit an
Fl6. 2 abuse of terminology) we will say that the minimum is 6 when x = «.f

Finding maxima and minima The extrema of a function occur either at
the end of the graph (see the maximum atx = 5 in Fig. 1), or at one of the
relative extrema (see the minimum at x = 4 in Fig. 1), or at an infinite

tMore precisely, 6 is called the infimum of f rather than the minimum because f never
reaches 6. Similarly, a “maximum that is not attained,” such as /2 for the arctangent function,
is called a supremum.
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discontinuity (see the maximum at x = 0+ in Fig. 2). To locate the maxi-
mum and the minimum, first find the following candidates.

(A) Critical values of f Find critical numbers by solving f'(x) = 0,
and by finding places where the derivative does not exist, a less likely
source. For each critical number xo, find f(xo), called a critical value of f. This
list contains all the relative maxima and relative minima, and possibly some
values of f with no particular max/min significance. It is not necessary to
decide which critical value of f serves which purpose. Include them all in
the candidate list without classifying them.

(B) End values of f If a function f is defined for @ = x = b then
the end values of f are f(a) and f(b). If f is defined on [a,®) then the end
values are f(a) and f(®), that is, lim,.. f(x).

(C) Infinite values of f In practice, f may become infinite at the
ends where x — © or x = —x (overlapping with candidates from (B)), or
at a place where a denominator is 0.

The largest of the candidates from (A)—(C) is the maximum value of f
and the smallest is the minimum value. (Candidates from (C) are immediate
winners.)

Example 1 Find the maximum value of f(x) = x* + 4x* — 6x* — 8 for
0=x=<1

Solution: We have f'(x) = 4x* + 12x? — 12x. Find the critical num-
-3+ V9]
—
But -3 — V21) is negative, and hence not in [0, 1], so ignore it. Count
3(—3 + V21 ) since it is about .79 and is in [0, 1).

The candidates are f(0) = —8 which is both a critical value of f and an
end value, the critical value f(3{—3 + V21 )) which is approximately f(.79),

or —9.4, and the end value f(1) = —9. The largest of these, —8, is the
maximum.

bers by solving f'(x) = 0 to get 4x(x* + 3x — 3) = 0, x = 0,

Warning The preceding example asked for the maximum value of f,
so the answer is —8, not x = 0. If the problem had asked where { has
its maximum, then the answer would be x = 0. Make your answer fit
the question.

Example 2 We don't always have to rely on calculus to produce maxima

and minima. Consider f(x) = By inspection, the largest value of f

1+ x¥
is 4, when x = 0; any other value of x would increase the denominator and
therefore decrease f(x). The smallest value of f is 0 when x = *x, since
this maximizes the denominator and therefore minimizes f.

Example 3 Let f(x) = 4—"_—x Find the maximum and minimum values

of f(x) on (a) (—=,=) and (b) [6,%).
Solution: (a) The function has an infinite discontinuity at x = 4 since

_ _4 _ 1 __
f@=) =lima== = G- == and f(4+) =lim 7—— === -=.
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There is no need to search for other candidates. We say that the maximum
is ® and the minimum is —x.

(b) Since 4 is not in [6,%), we ignore the infinite discontinuity now.
There are no critical numbers since, by the quotient rule,

-x) - x(=1) _ 4
(4 - x)? (4 = x)?

which is never 0. The only candidates are the end values f(6) = —3 and
f(=). By the highest power rule (Section 2.3),

i =

fE) = lim == = lim = = lim(-1) = -1,

X% x+x = x+®

Therefore, the minimum value of f is =3 (when x = 6) and its maximum
is —1 (when x = %),

Example 4 In (1) of Section 1.1 we found that the energy E used by a
pigeon flying on the route APB (Fig. 3 of Section 1.1) is
E(x) = 60V36 + x? + 4010 = x)  for 0 <x =< 10.

We are now ready to finish the problem and find the value of x that
minimizes E.
Solve E'(x) = 0 to find critical numbers.

60x
——-40=0
V36 + x°
60x___ - 40
V36 + x°
3x = 2V36 + x°
9x? = 4(36 + x?)  (square both sides)
5x2 = 4-36
4-36
2 T ——
* 5
x = 2—\/36- = % =54  (approximately).

Therefore, the only critical value of E is E (12/V/5) which is approximately
E(5.4), or 670. The end values are E (0) = 760 and E(10) = 700 (approxi-
mately). The smallest of the three candidates is 670. Therefore, in Fig. 3 of
Section 1.1, the best the pigeon can do is to fly across the water to a point
P about 5.4 miles from C and then fly the remaining 4.6 miles to town
along the beach.

Example 5 Find the point on the graph of y = Vx which is nearest the
point (2,0).

Solution: A typical point on the curve is (x, V) (Fig. 3 on next page). By
the distance formula, the distance from this point to (2, 0), that is, the func-
tion to be minimized, isd(x) = V(x—2)* + x forx = 0. As a shortcut, to find
a value of x that minimizes (maximizes) an entire square root, it is sufficient to find
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a value of x that minimizes (maximizes) the expression under the square root sign;
that is, VR (x) is smallest (largest) when R (x) is smallest (largest). Therefore
we can work with R(x) = (x — 2)? + x, a slight advantage, since R(x) is
simpler than d(x). We have R’(x) = 2(x — 2) + 1, whichis 0 whenx = 3/2.
Therefore, the candidates are the critical number x = $and the ends where
x =0, x = ». The closest point must be chosen from (0, 0), (%, \/§) and
points far out to the right on the curve. Clearly, points far out to the right
make the distance approach © so we will not find a minimum from that
source. The distance from (0,0) to (2,0) is 2. The distance from (3, \/g) to
2,0)isV}+3= V7, which is less than 2. Consequently the closest point is
& V3.
Example 6 A tin can is to be manufactured with volume V (V is a fixed
constant throughout the problem). To save money, the manufacturer wants
to minimize the amount of material, that is, minimize the surface area A.
What dimensions should the can have?

Solution: The relevant geometry formulas for a circular cylinder with
radius r and height 4 are

(1) V=

(2) lateral surface area = 277k

(3) top circular surface area = bottom circular surface area = mr?.

From (2) and (3), the function A to be minimized is given by
4) A = 2marh + 27,

Before using any calculus, we can see that if r is very large and & very small
(Fig. 4), but still satisfying (1) as required, then A will be huge because of
the top and bottom pieces. On the other hand, if r is very small and & very
large (Fig. 5), then A will be huge because of the lateral surface area, since
lateral surface area = 27rh = 277 - L2 = H
wr r
which blows up as r — 0+. Thus, extreme shapes require large A, and a tin
can in between will use the least material. In other words, if A is considered
as a function of 7 for r = 0, then A has a maximum value of « at the ends
where r = 0, ® and the minimum will occur at a critical number within the
interval (0, ).
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Although A depends on both r and 4, we can eliminate k by solving (1)
for h and substituting in (4) to obtain

Vv
A=2mr —+2m?= v + 272

wr r

Then
Vv
A'(r) = -gr? + 47r.

Solve A'(r) = 0 to obtain
5) ==, r=—.

m

The corresponding value of k can be found by using h = V/#r® Better still,
for a more attractive answer, go back to r* = V/27 in (5) and replace V by
wr*h to obtain h = 2r. Therefore, if the volume is fixed, the tin can with
minimum surface area has a height which is twice its radius.

As another method, leave A in terms of r and 4, and consider that 4 is
a function of r defined implicitly by (1) (alternatively, r may be considered
a function of k). Differentiate with respect to r in (4) to obtain A" =
27h + 27rh’ + 47y, and set A" = 0 to get

(6) h+rh" +2r=0.

Differentiate implicitly with respect to 7 in (1) to obtain 0 = wr?h’ + 27rh,
k' = —2h/r. Substituting this into (6) gives h + r - (=% + 2r =0, or
= 2r as in the first method.

Example 7 Points A and B are a and b feet from a wall, respectively
(Fig. 6). How can weleave A and bounce of f the wall to B so as to minimize
the total distance from A to the wall to B?

Solution: The total distance is very large if the ricochet point P is either
far above A or far below B. We expect that somewhere on the wall between
A and B is a point at which the distance is a minimum.

Let ¢ be the fixed distance and x the variable distance indicated in
Fig. 6, and let f(x) be the distance APB to be minimized. Then

WALL

|
4|
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fx) =AP + PB=Vx’+a®*+ V(c-x"+b? forO0s=x=<c.

X _ c — X
Vit +a? Vi -x)+5b°

We switch from the variable x to the angles 6, and 6, to simplify the algebra.
The derivative is 0 if cos 8, = cos 8, which, for acute angles, means
6, = 0,. Thus the only candidate is the point at which 8, = 6,, and hence
the condition for minimum distance is simply that 8, = 6,.

By a law of physics (Fermat’s principle), if light is reflected off a surface
from A to B, the total time, hence distance, is minimized. Therefore light
travels so that the angle of incidence equals the angle of reflection.

= cos §; — cos 0,.

f'x) =

Example 8 Two corridors of widths 8 and 27 meet at right angles. What
is the longest steel girder that can slide around the corner without getting
stuck?

Solution: Consider all line segments of the type shown in Fig. 7. As the
girder is maneuvered most efficiently around the corner, at each instant it
hugs the corner as these segments do. If the girder is longer than any of the
segments, it will not fit (we assume the thickness of the girder is negligible).
Equivalently, if the girder is longer than the smallest segment, it will get stuck; we
have therefore turned the problem into a minimization. The longest girder
that will survive has the same length as the shortest segment.

Let 6 be the angle in Fig. 8 and let L be the length of the indicated
segment AC. Then

8 27

L(6) = AB +BC = +
(6) ¢ sin @ cos @

=8csc O + 27 sec 0,

where 0° = 6 = 90°.

Figure 7 shows that values of 8 near 0° and 90° correspond to very long

segments, so the minimum length will occur at a critical angle in between.
We have

L'(6) = —8 csc 6 cot @ + 27 sec 6 tan 6.

F6.8
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Solve L’(8) = 0 to find the critical angles:

27 sec 0 tan 0 = 8 csc 6 cot 8

3g = 2
tan’6 97

tan 0 = —

An approximate value of 6 can be found from tables or a calculator, but the
problem asks for the minimum L, and not the value of 6 that produces it.
To compute L efficiently, use the right triangle of Fig. 9 with legs labeled
so that tan 6 = 2/3. Then the hypotenuse is V13 and

Vi3 \/_

minimum L = 8 csc § + 27 sec§ = 8 - T+ 27— =13V13

Thus the longest girder that can be carried through has length 13V13.

Problems for Section 4.2

(If you have difficulty setting up verbal problems, you are not unique. Many
students find the computational aspects of extremal problems fairly routine but
(understandably) don’t know how to begin problems such as Example 8.)

1. Find the maximum and minimum values of f(x) on the indicated intervals.

@ fx)=x>+x*=5x -5 (i) (-=,%) (i) (0,2] (ii) (~1,0]

x

(b) f<x>=-’; i) (2.2 Gi) [0,2) (iii) (-=,0]

-2
(€) f(x) = —— 3 @ [0,5] (i) (2,5]
(d) f(x) = x* + x? = x + 3,[0,4]

2. Suppose f'(x) is always negative. Find the largest and smallest values of
fon[3,4)].

3. Without using any calculus at all, find the largest and smallest values of
V2 + %2 for x in (—®, ).

4. A charter aircraft has 350 seats and will not fly unless at least 200 of those
seats are filled. When there are 200 passengers, a ticket costs $300, but each ticket
is reduced by $1 for every passenger over 200. What number of passengers yields
the largest total revenue? smallest total revenue?

5. Abuilder with 200 feet of wire wants to fence off a rectangular garden using
an existing 100-foot stone wall as part of the boundary (Fig. 10). How should it be
done to get maximum area? minimum area?

E WALL D

FIG.10
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6. A rectangular house is built on the corner of a right triangular lot with
legs 100 and 150 (Fig. 11). What dimensions for the house will produce maximum
floor space?

D
100 E
HOUSE
< g A
750

FIG. |

7. A farmer has calves which weight 100 pounds each and are gaining weight
at the rate of 1.2 pounds per day. If she sells them now she can realize a profit of
12 cents per pound. But since the price of cattle feed is rising, her profit per pound
is falling by 1/40 of a cent per day. If she sells right now she gets the higher profit
per pound but is selling skinny cows. If she waits to sell fat cows she makes less per
pound. When should she sell?

8. Let f(x) = —x* — 5x* — 13x + 4; find the maximum and minimum slope
on the graph of f for 0 = x < 1.

9. At midnight, car B is 100 miles due south of car A. Then A moves east at
15 mph and B moves north at 20 mph. At what time are they closest together?

10. Given the ellipse 4x* + 9y? = 36 and the point Q = (1, 0), find the points on
the ellipse nearest and furthest from Q.

11. Of all the rectangles inscribed in a semicircle with fixed radius 7, which one
has maximum area?> minimum area?

12. A truck is to travel at constant speed s for 600 miles down a highway where
the maximum speed allowed is 80 mph and the minimum speed is 30 mph. When
the speed is s, the gas and oil cost (5 + 1;5) cents per mile, so the slower the truck
the less the transport company pays for gas and oil. The truck driver’s salary is $3.60
per hour (use 360 cents per hour so that all money is measured in cents). Thus, the
faster the truck the less time it takes and the less the company must pay the driver.
Find the most economical speed and least economical speed for the trip.

13. A wire 16 feet long is cut into two pieces, one of which is bent to form a
square and the other to form a circle. How should the wire be cut so as to maximize
the total area of square plus circle?

14. Suppose you wish to use the least amount of fencing to fence off a rectan-
gular garden with fixed area A. What is the best you can do?

15. A motel with 100 rooms sells out each night at a price of $50 per room. For
each $2 increase in price it is anticipated that an additional room will be vacant.
What price should be charged in order to maximize income?

4.3 L’Hopital’s Rule and Orders of Magnitude

Section 2.3 identified a group of indeterminate limit forms, and we are
now prepared to evaluate indeterminate limits, beginning in this section
with quotients.

Consider

(1) lim
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which is of the indeterminate form 0/0. We will find the limit by working
with the graphs of the numerator and denominator separately, and then
extract a method for problems of this form in general. Each graph crosses
the x-axis atx = 3 (which is why the problem is of the form 0/0). The graph
of the numerator has slope 24 as it crosses, because the derivative of the
numerator is 3x* — 3, which is 24 when x = 3. The graph of the denomi-
nator has slope 6 when it crosses, because the derivative of the denominator
is 2x, which is 6 when x = 3 (Fig. I on next page). The limit in (1) depends
on the ratio of the heights near x = 3 (at x = 3 we have the meaningless
ratio 0/0). The two functions start “even” on the x-axis, the “starting line,”
at position x = 3, but the graph of the numerator is rising above the x-axis
4 times as steeply as the graph of the denominator. Thus, near x = 3, the
graph of the numerator is about 4 times as high above the x-axis as the
graph of the denominator. It follows that the ratio of their heights near
x = 3 is near 4, and the limit in (1) is 4. The number 4 came from the
computation 24/6 which in turn came from examining the quotient

numerator derivative 3x* — 3
denominator derivative 2x

atx = 3. This suggests that if lim,., % is of the indeterminate form 0/0,
g

it can be found by switching to lim,., g,f'_'((:—)) This result holds not only for

0/0, but can be shown (with a different argument) to hold for the other

indeterminate quotients as well. The following rule contains the details.

L’Hopital’s rule Suppose lim izx—i is one of the indeterminate forms
S glx
0 x - x< -
0 < =< = =
Switch to lim ';T(x))
If the new limit is L, x or —2 then the original limit is L, = or —=x,

respectively.

If the new limit does not exist because f'(x)/g'(x) oscillates badly
then we have no information about the original quotient (which does not
necessarily oscillate also); L’Hdpital’s rule does not help in this situation.

If the new limit is still an indeterminate quotient, L’'Hopital’s rule
may be used again.

The rule is also valid for limit problems in whichx — a+,x = a—,
x > <and x - —x,

x>+ 6x2-5

% , which is of the indeterminate
23 + 5x° — 3x

Example 1 Find lim,..
form x/x,

Solution: In this particular problem two methods are available, the
highest power rule from Section 2.3 and L'Hépital’s rule. With the first
method

3x® + 6x? — 5 3x* . 3

lim —————————— =lim— =
rex 263 4 5x% = B3x cex 2 ax 2
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NUMERAT
S R
DENOMINATOR
Store 6
2
FI6. |
With the second method,
@) lim x5+ 6x2 -5 __°_°_=lm9x2+ 12x _i_l 18x + 12
om0 + 527 = 3x  ®© mx6xt+ 10x © o212 + 10
© . 18 3
=S slmpp=ot

As L'Hépital’s rule is applied repeatedly in this example, the lower powers
differentiate away first, showing that the highest powers dominate as
x — o, in agreement with the highest power rule.

Example 2

(3) lim 3% =0y ©
x+0 X 0 x+0

;x (L’Hopital’s rule) = 1.1

The result in (3) shows that if an angle 6 is small, and is measured in radians
(so that the derivative of sin 8 is cos 8) then sin 6 and 6 are about the same
size since their ratio is near 1. This is important in physics and engineering
where many calculations may be simplified by replacing sin § by 6 for
small 6.

Warning L’Hopital’s rule applies only to indeterminate quotients.
It should not be used (nor is it necessary) for limits of the form 2/
(the answer is immediately 0) or 3/0— (the anwer is —=) or 6/2 (the answer
is 3) and so on.

Example 3 By L’Hopital's rule,
2
(4 <

=0.

The result indicates that while both x? and ¢* grow unboundedly large as
x — o, ¢* grows faster.

tWe should not equate the original limit with the new limit at line (2) until after we have
determined that the latter limit is either a number L, or > or —». However, it is customary to
anticipate the situation and write the solution in the more compact form indicated.

$As part of the proof in Section 3.3 that D sin x = cos x, we used geometry to show that
lim,.o(sin x)/x = 1. Since L'Hpital’s method is so much simpler than the geometric proof, you
may wonder why we used geometry in the first place. We needed the limit in order to derive
D sin x = cos x. But before the derivative formula is available we cannot do the differentiation
necessary to apply L'Hdpital’s rule. Thus we resorted to the geometric argument. The use of
L'Hdpital’s rule in Example 2 must be regarded as a check on previous work, rather than as
an independent derivation.
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Example 4
. x ol . 1 a1 .
lim l =— = |lim 7 (L’Hopital’s rule) = lim x (algebra) = o,

Therefore, while both x and In x grow unboundedly large as x = =, x
grows faster.

Order of magnitude Suppose f(x) and g(x) both approach « as x — » so

that lim,.. % is of the form =/o- If the limit is  then f(x) is said to be of
ahigher order of magnitude than g(x); that is, f grows faster than g. If the limit
is 0 then f(x) has a lower order of magnitude than g(x). If the limit is a positive
number L then f(x) and g(x) have the same order of magnitude.

Examples 3 and 4 show that ¢* is of a higher order of magnitude than
x%, and x is of a higher order of magnitude than In x. Similarly it can be
shown that for any positive r, ¢* grows faster than the power function x’,
and x" grows faster than In x. (When 7 is negative, x” doesn’t grow at all
asx — ,)

The pecking order below in (4) contains some well-known functions
which approach » as x = », and lists them in increasing order of mag-
nitude, from slower to faster.

(4) In x, (In %)%, (In x)%,+ -, Ve, x, 232, x%,x3, -+ ",

Examples 3 and 4 illustrate how the order of the functions in (4) is justified.
Functions which remain bounded as x — , such as sin x, tan™'x or constant
functions, may be considered to have a lower order of magnitude than
any of the functions in (4). Many indeterminate limit problems of the form
oo can be handled by inspection of the ordering in (4). For example,
lim,.= e*/x* is of the indeterminate form »/x; the function ¢ is of a higher
order of magnitude than x* and the answer is x.

Note that the list in (4) is not intended to be, and indeed can never be
made, complete. There are functions slower than In x, faster than ¢* in
between \/5? and x, and so on.

The concept of order of magnitude is useful in many applications.
Suppose f(x) is the running time of a computer program which solves a
problem of “size” x. Programs involving a “graph with x vertices” might
require a running time of x3 seconds, or x* seconds (worse), or e* seconds
(much worse, for large x), depending on the type of problem. If f(x) is a
power function, then the problem is said to run in polynomial time and is
called tractable; if f(x) = ¢*, the problem is said to require exponential time
and is called intractable. Tractability depends on the order of magnitude of
f(x), and computer scientists draw the line between power functions and e*.
A major branch of computer science is devoted to determining whether a
program runs in polynomial or exponential time. If it takes exponential
time to find the “best” solution (such as the sales route with a minimum
amount of driving time) then we often must settle for a less than optimal
solution (a sales route with slightly more than the minimum driving time)
that can be found in polynomial time.

Order of magnitude of a constant multiple Consider 4x? versus x2. We
have lim, .. 4x?/x? = lim,.. 4 = 4. Since the limit is a positive number, not
0 or =, 4x? and x? have the same order of magnitude, even though one is
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4 times the other. In general, f(x) and cf(x) have the same order of magnitude
for any positive constant c.

Highest order of magnitude rule We can extend the highest power rule
from Section 2.3: the proofs involve similar factoring arguments which we
omit. As x — », a sum of functions on the list in (4) has the same limit as
the term with the highest order of magnitude and, in fact, the sum has the
same order of magnitude as that term. For example, e — x* has the same
order of magnitude as e and

lim(e* - x*) = 0 — © = lim ¥ = ®,

X% x+x

As x = ©, a quotient involving functions on the list in (4) has the same
limit as

term with highest order of magnitude in the numerator
term with highest order of magnitude in the denominator

and the final answer depends on which of the remaining terms has higher
order of magnitude. For example,
3-—¢ - I —e* i e o
=—=lm—=-lm== -
e x3+ 2 ® o i xox X

since e* has a higher order of magnitude than x*.

Warning The highest power rule is only valid for problems where
x — *o, The highest order of magnitude rule is even more restrictive. It
applies only when x — o« since the increasing orders of magnitude in (4)
hold only in that case.

Problems for Section 4.3

. . x*—5x +4
1. Find hmm‘as (a) x> 1 (b) x>0 (c)x—boc.
2. Find
. ox? . N
@ltny Olrres
. Inx =1) . Inx
®lim="% ® ln7w
. Inx . In2x
@lm~> W lmg
Coxt 4t 1
@ lim =25 ) i B2
xox (4 xee  3x
sinx — x

(e) im ——
x+0 cOosx — |

3. Use L'Hbpital's rule to verify that (Inx)*” has a lower order of magnitude
than x.
4. Both (a) lim,o 2% and (b) lim,., 2o
2x x

done using L'Hopital’s rule. But they can also be cleverly done using the fact
in x

are of the form 0/0 and can be

(Example 2) that lim,., X = 1. Do them both ways.
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5. What is wrong with the following double application of L'Hopital’s rule?
I 4x2—2x—2_l, 8x—2_l, 8 4
AT ax+ 1 anbe-4 06 3
6. For cach pair of functions, decide which has a higher order of magnitude.
(a) 3e',4¢* (b) ¢™.e™ (c) In 3x,In 4x
7. The graph of (sin x)/x can be drawn using the procedure of Section 1.3 for
/(x) sin x where f(x) = 1/x. The tricky part is handling the graph near x = 0 when
sin x approaches ) and the envelope 1/x blows up. Sketch the entire graph.

4.4 Indeterminate Products, Differences and
Exponential Forms

The preceding section discussed indeterminate quotients. We conclude
the discussion of indeterminate limits in this section with methods for the
remaining forms.

The forms 0 x © and 0 x —o L’Hopital’s rule applies only to in-
determinate quotients. To do an indeterminate product, use algebra or a
substitution to transform the product into a quotient to which L’'Hopital’s
rule does apply. For example, consider lim,.,, x In x which is of the form
0 x —x. Use algebra to change the numerator x to a denominator of 1/x
to get

. . Ihx -x
= X - = — I —
() limxdnx = 0> - =lim 70 ==
. /x AT .
(2) = lim (use L’Hopital's rule on the quotient)

sa00 = 1/x?

(3)

In general, for indeterminate products, try flipping one factor (preferably the
simpler one) and putting it in the denominator to obtain an indeterminate quotient.
Then continue with L’Hapital’s rule.
As a second method in this example, let u = 1/x. Then x = 1/u and
as x = 0+ we have u — =, so
lim x In x = lim In 1/u = lim —IE-E (law of logarithms)

Vel 4 uex u ux

lim(-x) (by algebra) = 0.
X0+

which is of the form —x/=. Since u has a higher order of magnitude than
In u, the answer is 0. In general, as a second method for indeterminate products,
try letting u be the reciprocal of one of the factors, preferably the simpler one.

The function x In x is defined only for x > 0, but this limit problem
shows that for all practical pruposes x In x is 0 when x = 0, and the graph
can be considered to begin at the origin. In applied areas where the limit
occurs frequently, the result is abbreviated by writing 0 In 0 = 0.

Warning 1. Don’t use L'Hopital’s rule indiscriminately. It applies only to
indeterminate quotients and not to other indeterminate forms, and not to
nonindeterminate problems, which can always be done directly.

2. Simplify algebraically whenever possible. If (2) is left unsimplified it
is of the indeterminate form */—2%, but canceling produces (3) which is not
indeterminate and gives the immediate answer 0.



4.4 Indeterminate Products, Differences and Exponential Forms - 111

The forms © — ® and (-®) — (-®) L’Hopital’s rule applies only to in-
determinate quotients, so other methods must be used for indeterminate
differences. We will describe two possibilities.

If x = =, a limit involving functions from the pecking order in (4) of
Section 4.3 may be found using the highest order of magnitude rule. For
example, lim,.x(x — In x) is of the form x — o; the answer is ®© since x has
a higher order of magnitude than In x.

If a problem involves the difference of two fractions, they- can be
combined algebraically into a single quotient, to which L’Hdpital’s rule may

be applied, if necessary. For example, consider lim,.(,(—i- - %) Ifx > 00—,
the limit is of the form (—x) — =, so the left-hand limit is —. But the
right-hand limit is of the indeterminate form < — x. In either case, we can

use algebra to combine the fractions and obtain

lim(l —l) = lim = gt SR
x x? 0 x? 0+ '

The forms (0+)°, 1* and =® We will illustrate with an example how to
use logarithms to change exponential problems into products. Consider
lim,..(1 + £)* which is of the indeterminate form 1*. Let y=(@1+ LBy
Take In on both sides, and use In a® = b In g, to obtainln y = x In(1 + L8
Then

limlny=limxln<l+ﬁ>=xxlnl=acx0,
X

N X%

To turn the indeterminate product into a quotient, one method is to let
u = 1/x. Then x = 1/u, and as x = = we have u = 0+, so

In(1 + .06u) O
M e

lim Iny li0 ” 0
1
— .06
+ . . .
lim I—O?u— (apply L’Hopital’s rule to the quotient)

u-0+
= .06.

If In y approaches .06 then y itself approaches ¢*. So as a final answer,

(4) lim(l + @)' = ¢,
X% X
In general, if lim f(x) is an indeterminate exponential form, lety = f(x)
and compute In y, which will no longer involve exponents. Find lim In y, and if that
answer is L, then the answer to the original problem is et.

Warning In the preceding problem, the answer is ¢, not .06. Don't
forget this last step.

An application to compound interest Suppose an amount A (dollars) is
deposited in a bank which pays 6% annual interest compounded three times
ayear. The bank divides the 6% figure into three 2% increments, and after
four months pays 2% on amount A. Thus the four month balance is
A+ .024 = A(1 + .02) = 1.02A. In other words, the balance has been
multiplied by 1.02. After eight months, the depositor receives 2% interest
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on amount 1.024, so the money is again multiplied by 1.02. Similarly, after
twelve months, the bank pays a final 2% which again multiplies the balance
by 1.02. Therefore after one year, amount A, compounded at 6% three
times a year, accumulates to (1.02)%4, thatis, to (1 + $5%4. More generally,
if the bank pays r% interest compounded x times a year, then A grows
to A(l + ) at the end of the year. If the bank generously compounds
your money not just x times a year but “continually” then A grows to
lim,.. A(1 + })*. As a generalization of (4) we have

() lim(l + 1) =,

xex X
so A grows to Ae". For example, $1 compounded continually at 6% will grow
to ¢ dollars in a year, or approximately $1.062, compared with $1.06
obtained with simple interest.

A formula for the number ¢ We defined e in Section 3.3, but otherwise
have given no indication of how to compute ¢ to any desired number of
decimal places. If r is set equal to 1 in (5), we have

l X
e = lim(l + —) .
xox X
(In banking circles, this means that §1 compounded continually at 100%
interest grows to $¢ after a year.) The accompanying computer program
prints out values of (1 + ;)* for larger and larger x, and therefore the values
are approaching e. But if we pick out a value far down on the list and call
it “approximately ¢”, we have no way of knowing how close this is to e. (For
example, is the approximation accurate in the first three decimal places, or
would even these places change as we continue computing?) An approxi-
mation with an error estimate would be much more useful, and we’ll have
such an estimate for ¢ in Section 8.9

0020 PRINT “X", “(1 + 1/X)—X"
0030 FOR N=2000 TO 8000 STEP 1000
0040 PRINT N,(1+1/N)—N

0050 NEXT N

*RUN

X (1 + 1/X)~X
2000 2.7176026
3000 2.7178289
4000 2.7179421
5000 2.7180101
6000 2.7180553
7000 2.7180877
8000 2.718112

END AT 0050

Problems for Section 4.4

1. Findlimxe™as(a) x > (b)x =0 (c) x &> —.
2. Findlimx? = Inx)as(a) x> 1 (b) x =» 0+ (c) x = =,
3. Find lim(x — ¢ as (@) x > ® (b) x > —o.
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4. Sketch the graph of xe'* near x = 0 after finding limits as x > 0+ and
x—0-.

5. Find

(a) li:’n(tan x)(Inx) (f) liloxl(l + x)'

(b) |i{)n e“Inx (g) lim x*
x=0+ xX*®

© limetsinL 0 mx(e" - 1)
lim * sin —

(d) lim x' @ limx - 2

(©) lim xi* (j) lime" + 4%

x+0+

4.5 Drawing Graphs of Functions

In this section we'll list some of the aids already discussed for sketching
graphs, and add new ones involving the derivative. For any particular
function you may find some, but not necessarily all, items on the list useful
in producing a graph.

1. Ends If f is defined on (-, ®), find lim,. f(x) and lim,._. f(x) to
determine the ends of the graph. If f is defined only on (g, b] for instance,
find f(b) and lim,.,.. f(x) to determine the ends.

2. Gaps If f is defined around but not at x = x, (in practice, because
of a zero in a denominator), find lim,.,, f(x), or if necessary find the right-
hand and left-hand limits separately, to discover the nature of the gap.

3. Relative extrema  Find the critical numbers and classify them as rela-
tive maxima, relative minima or neither, using the first or second derivative
test. This identifies the rise and fall of the graph. Furthermore, find the
values of y corresponding to the critical numbers so that a few significant
points can be plotted accurately.

4. Concavity Determine the sign of f”, with the method of Section 1.6,
and use it to decide where f is concave up (f" positive) and concave down
(f" negative). Often, approximately correct concavity is created auto-
matically as you employ other graphing aids, so you may decide that using
f" to determine precise concavity is not worth it.

5. Famihar graphs  If the new graph is related to a familiar graph then
you have a head start, as the following examples illustrate.

The graph ofy = 2 + (x — 3)is the parabolay = x? translated to the
right by 3 and up by 2 (Section 1.7).

The graphs of y = a sin(bx + ¢)andy = a sin b(x + ¢) are sinusoidal.
Each has amplitude a and period 27/b, and the translation is best identified
by plotting a few points (Section 1.3).

The graph of y = f(x) sin x is drawn by changing the heights on the
sine curve so that it fits within the envelope y = %f(x) (Section 1.3).

The graph of y = a + be™ has the shape of an exponential curve. It is
located on the axes by plotting a point and finding limits as x = *=
(Section 2.2).

Example 1 Sketch the graph of f(x) = 1 - % + %

Solution: Find lim,.ef(x) =1 -0+ 0= 1 and lim,._. f(x) =
1 = 0 + 0 = 1, which indicates that the line y = 1 is an asymptote at each
end of the graph.
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The function is not defined at x = 0, so consider the limit as
x = 0. It is an advantage to let ¥ = 1/x so that the problem becomes
lim(l — 6u + 9u?) as u > « (if x = 0+) or u = —» (if x > 0-). By the
highest power rule, 9u? dominates in each case and the limitis ®. Therefore
lim,.o f(x) = o, and the graph approaches the positive y-axis asymptotically
from each side. (Intuitively, the term 9/x? is so large as x = 0 that it
dominates f(x).)

To find relative extrema, first find f'(x) = % - ;ltg The derivative is 0
when 6x* = 18x% x = 3. The derivative doesn’t exist when x = 0, but
neither does f; we have already found that f blows up at x = 0. The
following table displays the pertinent information about the sign of the
derivative and the behavior of f.

Interval Signof f' Graph of f

(=00, 0) positive rises
0,3) negative falls
(3,%) positive rises

Therefore, f has a relative minimum at x = 3. (Alternatively, f"(x) =

12 54
3 + iy f"(3) is positive. Therefore, by the second derivative test, f

has a relative minimum at x = 3.) When x = 3, we have y = 0 so the
relative minimum occurs at the point (3, 0).

FIG. |

So far we have the curve in Fig. 1, with the concavity tentatively sug-
gested by the rise, fall, and asymptotic behavior of f. In this example, we’ll
check the concavity with the second derivative which has already been
computed above. It is discontinuous at x = 0, and is 0 when —12x + 54 =
0, x = 43. We collect the relevant information about the sign of " and the
behavior of f.

Interval Sign of f" Graph of f
(=, 0) positive concave up
(0,43) positive concave up
(43,%) negative concave down




4.5 Drawing Graphs of Functions - 115

This confirms the concavity in Fig. 1. Since f(43) = 4, the point of inflection
at A is (43,49).

Example 2 Sketch the graph of y = In(x* + 8).

Solution: Itis not always necessary to use all of the five aids described.
If f is a variation of a familiar function g (the logarithm in this case), it may
be possible to sketch the graph of f quickly by plotting a few points and
using known properties of g.

The function f is defined only if x*+ 8>0,x > -2 Then, as x in-
creases, x*> + 8 increases, and in turn, so does In(x* + 8). Thus the graph
always rises. For the right end, lim,.. In(x* + 8) = In * = x. For the left
end, lim,.y: In(x* + 8) = In 0+ = —x. Therefore, the usual asymptotic
behavior of the logarithm function at x = 0 now takes place at x = —2.
Also,sthe graph crosses the x-axis, not at x = 1, but when x* + 8 = 1,
x=V-T7.

For large x, the highest power rule suggests that f(x) behaves like In x°,
which is 3 In x. Therefore, far out to the right, the graph of f is approxi-
mately 3 times the height of the graph of In x. A rough sketch is given

in Fig. 2.
oul' TO THE
M Rl

FIG.Z

Problems for Section 4.5

In Problems 1-22, sketch the graph of the function f(x).

L -x*+4x +5 10. e~
2. x* + 2«° 11. xe*
3. x* 12. x%~*
4. %™ 13. x Inx
5. x* + x> + 5x? 14. x — In x
6. 27> |
x -
7. sin(?x - %) 15. x+1
8 xV9 — x 16. ¢7* sin x
g, COS% 17. —e™* -4

x 18. 3 cos(zmx + 3m)
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ol

FIG. |

19. ¢*/x’ 4
20, ¢ 2. 1+ x?
1
2l. x + —
x

I
23. (a) Sketch the graph of 2 (b) Use part (a) to help sketch the graph
In |x| x

o
X

4.6 Related Rates

Suppose two (or more) quantities are related to one another. If one
quantity is changing instantaneously with time, we can use differential
calculus to determine how the other changes.

Example 1 Two cars travel west and north on perpendicular highways as
indicated in Fig. 1. The problem is to decide if the cars are separating or
getting closer. (Picture an elastic string between the two cars. Is the string
getting shorter or longer?)

We do not have enough information to solve the problem at this stage.
The westbound car is trying to close the gap while the northbound car
is trying to increase it. What actually happens will be determined by
the speeds of the cars, and also (although this is less obvious) by their
distances from the intersection of the roads. Thus we continue stating the
problem by asking if the cars are separating or getting closer at the particular
instant when the westbound car is traveling at 25 mph, the northbound car
is traveling at 10 mph, and they are respectively 5 miles and 12 miles from
the intersection.

Now let’s set up the problem so that we can use derivatives.

Step 1 Identify the functions involved.

In our problem, with ¢ standing for time, one of the functions is the
distance n(¢) from the northbound car to the intersection (Fig. 1). (The
10 mph is a specific value of dn/dt and the 12 milesis a value of n.) Similarly,
the other functions needed are w(¢), the distance from the westbound car
to the intersection, and s(t), the distance between the two cars.

Step 2 Find a general connection among the functions.

In our problem, s = n? + w? by the Pythagorean theorem. More pre-
cisely, s%(t) = n*(t) + w¥(¢) since s, n and w are functions of ¢.

Step 3 Differentiate with respect to ¢ on both sides of the equation
from Step 2 to get a general connection among the derivatives of the func-
tions involved.

In our problem

ds dn dw
(1) 2sdt—2ndt+2wdt'

Note that the derivative of s? with respect to s is 2s, but the derivative
of s*(¢) with respect to ¢ is 2s - ds/dt by the chain rule. Don’t forget the factor
ds/dt, and similarly the factors dn/dt and dw/dt, in (1).

Step4  Substitute the specific data for the particular instant of interest.

In our problem, the instant occurs whenw = 5and n = 12,s0s = 13
by the Pythagorean theorem. Also dn/dt = 10 (positive because when the
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car moves north at 10 mph the distance n is increasing) and dw/dt = —25

(negative because when the car moves west at 25 mph, the distance w is

decreasing). Substitute these values into (1) and solve for ds/dt to obtain
dn + dw

0 ds_"d T Vd (1200 + (5)(-25) _ 5

®) d 5 13 3

Therefore, at this moment, the distance s is decreasing, so the cars are

getting closer by 5/13 miles per hour.

Note from (2) that the change in the gap between the cars depends not
only, as expected, on their speeds and directions (because the formula for
ds/dt involves the velocities dn/dt and dw/dt) but also on their distances to
the intersection (because the formula contains n and w). For example,
suppose the westbound and northbound cars travel at 25 mph and 10 mph
again, but this time are respectivi}L‘Z miles and 6 miles from the inter-
section, so thatw = 2,n = 6,5 = V40. Then ds/dt in (2) is positive, namely
10/V40, and the cars are moving further apart at this instant.

Warning Be careful about signs when assigning values to derivatives. Sup-
pose abucketisbeinghauledup awellat2 ft/sec. If x(t) is the distance from
the bucket to the top of the well, and y(t) is the distance from the bucket to
the bottom of the well, then x is decreasing by 2 ft/sec, while y is increasing
by 2 ft/sec. Thus dx/dt = —2 and dy/dt = 2.

Example 2 A TV camera 10 meters across from the finish line is turning
to stay trained on a runner heading toward the line (Fig. 2). When the
runner is 9 meters from the finish line, the camera is turning at .1 radians
per second. How fast is the runner going at this moment?

%sﬂ 5 :Qf@
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Solution:

Step 1 Let ¢ stand for time. Let 6(¢) be the angle indicated in Fig. 2
and let s(¢) be the distance from the runner to the finish line.

Step 2 The general connection between the functionsis s = 10 tan 6,
or more precisely s(t) = 10 tan 6(¢).

Step3  Differentiate with respectto toobtain ds /dt = 10 sec?6(d6/dt).
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Step 4 At the moment of interest, d6/dt = —.1 (negative because 6 is
decreasing) and s = 9. Therefore the hypotenuse of the triangle is V'181 and
sec 6 = V181/10. Thus

ds 181
i 10(@)(—.1) = —1.81.

The negative sign is well deserved as an indication that s is decreasing.
Since the problem asked only for the speed of the runner, the answer is
1.81 meters per second.

Problems for Section 4.6

(As with the section on maximum/minimum problems, this section contains verbal
problems that students sometimes find difficult to set up.)

1. A snowball is melting at the rate of 10 cubic feet per minute. At what rate
is the radius changing when the snowball is 2 feet in radius?

2. Ata fixed instant of time, the base of a rectangle is 6, its heightis 8, the base
is growing by 4 ft/sec, and the height is shrinking by 3 ft/sec. How fast is the area
of the rectangle changing at this instant?

3. A baseball diamond is 90 feet square. A runner runs from first base to
second base at 25 ft/sec. How fast is he moving away from home plate when he is
30 feet from first base?

4. Water flows at 8 cubic feet per minute into a cylinder with radius 4. How fast
is the water level rising?

5. An equilateral triangle is inscribed in a circle. Suppose the radius of the
circle increases at 3 ft/sec. How fast is the area of the triangle increasing when the
radius is 4?

6. A light 5 miles offshore revolves at 1 revolution per minute, that is, at 27
radians per minute (Fig. 3). When the light is directed toward the beach, the spot
of light moves up the beach as the source revolves. How fast is the spot moving when
it is 12 miles from the foot A of the source?

.
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7. A cone with height 20 and radius 5 is filled with a hose which pumps in water
at the rate of 3 cubic meters per minute. When the water level is 2 meters, how fast
is the level rising?

8. As you walk away from a light source at a constant speed of 3 ft/sec, your
shadow gets longer (Fig. 4). The shadow’s feet move at 3 ft/sec and it follows
that the head of the shadow must move faster than 3 ft/sec to account for the
lengthening. How fast does the head move if you are 6 feet tall and the source is
15 feet high?
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9. Consider a cone with radius 6 and height 12 (centimeters).

(a) If water is leaking out at the rate of 10 cubic centimeters per minute,
how fast is the water level dropping at the moment when the level is
3 centimeters?

(b) Suppose water leaks from the cone. When the water level is 6 centimeters,
it is observed to be dropping at the rate of 2 centimeters per minute. How
fast is the leak at this instant?

(c) Suppose the cone is not leaking, but the water is evaporating at a rate equal
to the square root of the exposed circular area of the cone of water. How
fast is the water level dropping when the level is 2 centimeters?

10. A stone is dropped into a lake, causing circular ripples whose radii increase
by 2 m/sec. How fast is the disturbed area growing when the outer ripple has
radius 5?

11. Consider the region between two concentric circles, a washer, where the
inner radius increases by 4 m/sec and the outer radius increases at 2 m/sec. Is the
area of the region increasing or decreasing, and by how much, at the moment the
two radii are 5 meters and 9 meters?

12. Let triangle ABC have a right angle at C. Point A moves away from C at
6 m/sec while point B moves toward C at 4 m/sec. At the instant when AC =12,
BC = 10, is the area increasing or decreasing, and by how much?

13. A sphere is coated with a thick layer of ice. The ice is melting at a rate
proportional to its surface area. Show that the thickness of the ice is decreasing at
a constant rate.

14. A fish is being reeled in at a rate of 2 m/sec (that is, the fishing line is being
shortened by 2 m/sec) by a person sitting 30 meters above the water (Fig. 5). How
fast is the fish moving through the water when the line is 50 meters? when the line
is only 31 meters?

DoK

B WATER LEVEL g
FIG.5
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15. If resistors R, and R. are connected in parallel, then the total resistance R
of the network is given by 1/R = 1/R, + 1/R,. If R, is increasing by 2 ohms/min,
and R; decreases by 3 ohms/min, is R increasing or decreasing when R, = 10,
Ry = 20 and by how much?

4.7 Newton’s Method

Newton’s method uses calculus to try to solve equations of the form
f(x) = 0. (Note that any equation can be written in this form by transferring
all terms to one side of the equation.) First we’ll demonstrate the geometric
idea behind the method.

Solving f(x) = 0 is equivalent to finding where the graph of the func-
tion f crosses the x-axis. Begin by guessing the root, and call the first guess
x; (Fig. 1). Draw the tangent line to the graph of f at the point (x, f(x,)). Let
xg be the x-coordinate of the point where the tangent line crosses the x-axis.
Now startagain with x,. Draw the line tangent to the graph of f at the point
(x2,f(x2)) and let x5 be the x-coordinate of the point where the tangent line
crosses the x-axis. In Fig. 1, the numbers x,, x,, x3, * - - approach the root; in
Fig. 2, x),xy,x3," - - do not approach the root (a change in concavity near the
root is dangerous). However, more often than not, the situation in Fig. 1
prevails and Newton’s method does work. It is certainly worth a try, espe-
cially if a computer or calculator is available to do most of the work.

(1' “F (X- l%

y=F(x)
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Now let’s translate the geometry into a computational procedure. The
line through the point (x,f(x;)) and tangent to the graph of f must have
slope f'(x,). By the point—slope formula, the equation of the tangent line
is y = flx1)) = f'(x)) (x — x,). Set y =0 and solve for x to find that the
line crosses the x-axis when x = x, — %S This value of x is taken to

L
be x,. In general, each new value of x is generated from the preceding
one as follows:

(l) new x = last x — }%)' or, equivalently, Xn+]l = Xp — f'((t:")) .

To see the method in operation, consider the computer program in (2)
for solving f(x) = x* = 10x* + 22x + 6 = 0. When the program is run, it
requests (with a question mark) a first guess at a root. After receiving the
guess, it calculates successive values of x from (1), along with the corre-
sponding values of f(x). When two successive values of x differ by less than
.00005, line 60 instructs the program to stop. If the values of f(x) approach
0, then the values of x are approaching a root, and the last value of x can
be taken to approximate the root.

To choose a first guess, note that f(—1) <0, f(2) > 0. Since f is con-
tinuous, the graph of f must cross the x-axis between x = -1 and x = 2.
Therefore, we began by running the program with the guess x = 2.

0010 INPUT X

0020 DEF FNF(X)=X*X*X-10*X*X+22*X+6
0030 DEF FND(X)=3#*X*X-20*X+22

0040 PRINT “X",“F(X)"

0050 LET Y=X-FNF(X)/FND(X)

0055 PRINT Y, FNF(Y)

0060 IF ABS(X-Y)<.00005 THEN GO TO 0080

0065 LET X=Y
0070 GO TO 0050
(2) 0080 END
*RUN
? 2
X F(X)
5 -9
2 18
5 -9
2 18
5 -9
2 18

STOP AT 0055

The printout shows values of f which do not approach 0, so the values of
x do not approach a root. The first tangent line at x = 2 leads tox = 5, but
the second tangent line leads back to x = 2, the third tangent line is the
same as the first and leads back tox = 5, and so on. We had to hit the escape
button and stop the program manually, or it would have run forever,
producing useless and repetitive results.

We ran the program again, this time with first guess x = 1. The print-
out shows values of f(x) approaching 0. (The computer notation E —15
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indicates a factor of 107, Thus the last value of f, —2.6645353E—15, is
-2.6645353 - 107", a very small number.)

*RUN

> 1
X F(X)
-2.8 -155.952

-1.2638298 —-39.795585
—.49953532 —7.6097842
—.26709965 —.60866996
-.24501119 -5.2591762E-03
—.24481698 —4.0487743E-07
—.24481697 —2.6645353E—-15

END AT 0080

Therefore x = —.24481697 is an approximate root, but we do not know
how many accurate decimal places we have. (One way to determine ac-
curacy is to increase x until f(x) changes from negative to positive. For
example, f(—.24481690) = .000002, so there must be a root between
—.24481697 and -.24481690, and the decimal places —.2448169 are
correct.) Since the last two entries in the x column agree through 7 digits
it is common practice to use the first 6 rounded digits, namely —.244817.
This does not guarantee six place accuracy but merely provides a con-
venient stopping place for the procedure.

Problems for Section 4.7

Use Newton’s method and continue until two successive approximations agree
to the indicated number of decimal places. Then check the accuracy by searching
for a sign change in f(x) as above.

1. Find V39 by solving x* = 39 for the positive value of x. Use x = 6 as the
initial guess and stop after agreement in two decimal places.

2. Find the cube root of 173; at least 3 decimal places.

3. Solve e* = 3 — x?; 3 decimal places. Begin by sketching the graphs of ¢* and
3 — x?on the same set of axes. Examine their intersections to determine the number
and approximate values of solutions.

4. Find a solution of tan x = x (if possible) in interval (0, 7/2) and then again
in (m/2,3m/2); 3 decimal places.

4.8 Differentials

As a by-product of the derivative of f(x), which measures the rate of
change of f(x) with respect to x, we will develop the differential of f(x) to
describe the effect on f(x) of a small change in x. The immediate results may
not seem exciting, but in Section 5.3 the result in (1’) below will be used to
explain the Fundamental Theorem of Calculus, in Section 6.1 the shell
volume formulas developed here will be used to find moments of inertia of
spheres and cylinders, and in Chapter 7, the new differential notation of
this section will be used throughout.

Approximating a change in y Suppose y = f(x), and we start with a
particular value of x and change it slightly by Ax so that there is a corre-
sponding change Ay in y. The precise connection between Ax, Ay and f' is
given by
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by
f1) = lAlxl.r(} Ax’
If the limit is removed so that we are no longer entitled to claim equality,
we have Ay approximately equal tof'(x) Ax; i.e., Ay ~ f’(x) Ax. The symbols
dx and dy, called differentials, are defined as follows: dx = Ax,dy = f'(x)dx.
With this notation we have
dx
1) change Ay in y ~f'(x)K;.’
dy

In other words, dx is simply Ax, a change in x. The corresponding change Ay in
y is approximated by f'(x) dx, denoted by dy

To see the geometric interpretation of approximating the change in y
by f'(x) dx, consider the graph of y = f(x). If the value of x is changed by
dx, then the corresponding change in y is the change in the height on the
graph of f (Fig. 1). On the other hand, consider the tangent line at the point
(x,f(x)); its slope is f'(x). As x changes by dx,

change in y on the tangent line
change dx in x

= slope of the tangent line,

50
change in y on the tangent line = f'(x) dx.
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Therefore, f'(x)dx is the change in the height of the tangent line (Fig. 1).
We call f'(x) dx the linear approximation to the change in y; it approximates
the rise or fall of the graph of f by the rise or fall of the tangent line. The
error in the approximation is the difference between the height of the
tangent line and the height of the graph of f, and approaches 0 as dx
approaches 0. In fact, it can be shown that the error approaches 0 faster
than dx.

The symbols Ax and dx both represent a change in x.t Mathematicians
use the notation Ay for the change in y, and use dy for f'(x)dx which

1The symbol dx in the antiderivative notation [ f(x)dx is another story. It is not a small

change in x; rather, it indicates that the antidifferentiation is to be done with respect to the
variable x.
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approximates the change in y (see (1)). In applied fields,and in this text, the
distinction between f'(x) dx and the change in y is often blurred, and both
are referred to as dy; i.e., we often take the liberty of claiming that

(1) dy = f'(x)dx = change in y when x changes by dx.

d
Example 1 Lety = x°. As usual, we writec-i:,c2 = 3x?to mean that the deriv-

ative of y is 3x% The differential version is dy = 3x?dx, interpreted to
mean that if x changes by dx there is a corresponding change in y given
approximately by 3x?dx.

Example 2 We have d(sin x) = cos xdx; that is, the differential of sin x is
cos xdx. If x changes by dx then sin x changes by approximately cos x dx.

Warning Don’t omit the dx and write d(sin x) = cos x when you really
mean either d(sin x) = cos xdx, D sin x = cos x or d(sin.x)/dx = cos x.

Example 3 Find the linear approximation to the change in x> when x
changes from 2 to 1.999.

Solution: We have f(x) = x°, so f'(x) = 5x*. When x changes from the
value 2 by dx = —.001, the linear approximation to the change in x° is
f'(2)dx, which is (80)(-.001) or —.08.

Sum, product and quotient rules for differentials Let u and v be func-
tions of x. Analogous to the rules for derivatives, we have

(2) sumruled(u + v) =d(u) + d(v)

(3) product rule d(uv) = ud(v) + vd(u)

(4) quotient rule d(%) = M

(5) constant multiple rule d(cu) = cd(u), where ¢ is a constant.

2 + 3
First solution (directly): As in Examples 1 and 2, we simply find f'(x) dx.
Thus
d( x2 ) _ 2x(2x + 3) —x%-2

5 13 = % + 3 dx  (derivative quotient rule)
X X

%+ 6x
(2x + 3)?
Second solution (differential quotient rule): By (5),
( x? ) _ (2x + 3)d(x) - x2d(2x + 3)
2« +3/ (2x+3)
_ (2x +3)-2xdx — x*- 2dx
N (2x + 3)?
_ Bide + Gxdsx
T (2x + 3)

2
Example 4 Find d( z )

dx.
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Volume of a spherical shell Consider a hollow rubber ball with inner
radius r and thickness dr (Fig. 2). The problem is to find a formula for the
volume of this spherical shell, in other words, the volume of the rubber in
the ball and not the volume of the air it holds. We can get an exact but ugly
formula, and then an approximate but simpler one.

ML

Fl6.2

To find a precise formula, think of the volume of the rubber material
as the difference between the overall sphere of radius r + dr and the
inner sphere of air with radius . The volume of a sphere of radius r is
V = $mr’, so

shell volume = outer sphere — inner sphere

(6)

i'n-(r + dr)® - %m’

3

dmrtdr + dmr(dr) + %’rr(dr)’.

To find an approximate formula, think of the volume of the rubber
material as the change in the volume V of the inner sphere when its
radius r is increased by dr. If the change is referred to as dV and we use
dV = V'(r)dr then we have the (approximate) shell volume formula

(7 av = 4mridr.

Note that the difference between (6) and (7) is 47r(dr)? + $m(dr)® which is
very small if dr is small. When the shell formulas of this section are used in
Section 6.1, it will be in situations where dr — 0, which justifies the use of
(7) as the volume formula of the spherical shell.

Area of a circular shell The circular shell (washer) of Fig. 3 has inner
radius r and thickness dr. We want a formula for its area, comparable to (7).
The inner circle has area A = 7r? and the area of the shell is the change in
A when 7 increases by dr. If the change in A is called dA, and we use
dA = A'(r)dr, we have the shell area formula

(8) dA = 2qrdr.
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FIG. 3

Volume of a cylindrical shell Consider a piece of glass tubing with inner
radius 7, thickness dr, and height k (Fig. 4). We want a nice formula for the
volume of the cylindrical shell, that is, the volume of the glass material
alone, and not the air inside. The inner cylinder has volume V = mr2h, and
the shell volume is the change in V when r changes by dr and h stays
fixed. If the change in V is called dV, and we use dV = V'(r)dr, where k is
regarded as a constant in the differentiation process, then we have the shell
volume formula

9) dV = 2qrhdr.

The notation dy/dx When dx and dy are used to represent small changes
in x and y in the notation of (1’), the symbol dy/dx has two meanings. It can
represent the actual fraction

(10) small change iny

small change in x

or it can mean the derivative of y with respect to x, that is, f'(x). More
precisely, the fraction approaches the derivative as dx — 0. Until now, it has
been illegal to consider the derivative symbol dy/dx as a fraction, except as
a mnemonic device. Now it is acceptable to think of dy/dx as the fraction in
(10). Many practitioners take the convenient liberty of sliding back and
forth between the fraction and derivative interpretations of dy/dx (under
the baleful glare of the mathematician). We will give an illustration.
Suppose a researcher is interested in the connection between stimulus
(what is actually done to a person) and sensation (what the person feels). If
salt is put in food, is the salt actually tasted? Suppose x is the number of
milligrams of salt injected into a doughnut, and T is the salty taste reported
by the doughnut eater on a taste scale where 0 indicates no salt taste and
higher values indicate a very salty taste. How does x affect T? In particular,
if x is increased by a small amount dx = .1, does T go up by a correspond-
ingly small amount dT = .1? Experimenters have found that the answer is
no; a change in x does not necessarily produce a change in T of similar, or
even proportional, size; that is, dT is not kdx. Rather, if the doughnut is not
very salty to begin with then a smallchange in the amount x of salt produces
a large change in the perception T. If the doughnut is very salty, then the
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same small change in x goes virtually unnoticed so that T is practically
unchanged. A similar phenomenon occurs in weightlifting. If you are lift-
ing 10 pounds, you will notice an extra half pound, but if you are lifting
1000 pounds, you will barely feel an extra half pound. The experimenter’s

hypothesis for the connection between dx and dT is dT = E;ﬁ where k is a

fixed constant depending on the particular stimulus; this hypothesizes that
the larger the value of x (that is, the saltier the doughnut), the less the effect
of dx on T. The hypothesis may be written as dT /dx = k/x, and switching
from the fraction interpretation of dT/dx to the derivative interpretation
we have T'(x) = k/x. Antidifferentiate to get T = k In x + C. Therefore,
one hypothesis proposes a logarithmic connection between stimulus x
and sensation T.

Problems for Section 4.8
1. Find the differential.

@ dVx) () d(f'ﬂf)

X
(b) d(cosx)  (e) d(sin x®)
(©) dx®*sinx) (f) d(5)

2. Find dy ify = 2x* + 3.

3. Find df if f(x) = x + 3.

4. Use linear approximations to make the following estimates. (a) Estimate the
change in x> + x? as x changes from 3 to 2.9999. (b) Estimate the change in ¥x
when x changes from 16 to 16.1.

5. Use the methods which produced the shell formulas in (7)-(9) to find
(a) the area dA of the equilateral triangular shell (Fig. 5) with “radius” r and
thickness dr, and (b) the volume dV of the conical shell (Fig. 6) with height &,
radius r and “thickness” dr (that is, the volume of the sugar wafer and not of the ice
cream inside).

FlI6. 6
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4.9 Separable Differential Equations

Differential equations constitute a vast topic, an entire branch of
mathematics, and this section is only a bare introduction. We will use simple
calculus to solve one type of differential equation.

To see how differential equations arise, consider a 10-liter punch bowl,
initially filled with cider, being drunk at the rate of 2 liters per minute. As
the punch is drunk, the bowl is simultaneously refilled, but with whiskey,
not cider. Initially, there is no whiskey in the bowl, but gradually the whis-
key content increases, until at “time ®”, the bowl is entirely filled with
whiskey. The problem is to find a function w(¢) to give the number of liters
of whiskey in the bowl at time ¢.

So far, the only known value of w is w(0) = 0. But we have information
about the rate of change of w, that is, about w’(t), the net liters of whiskey
coming into the bowl per minute:

w'(t) = IN - OUT
whiskey poured in per minute — whiskey drunk per minute.

The whiskey is poured in at the constant rate of 2 liters/min, so IN = 2, but
the OUT rate is harder. The punch is drunk at the rate of 2 liters/min, but
since the whiskey content of the punch varies from minute to minute, the
OUT rate for whiskey is not 2 liters/minute; instead it is 2 times the fraction
of the bowl which is whiskey at the moment under consideration. That
fraction is

liters of whiskey in bowl at time ¢
10 ’

that is, fw(t) where w(t) is the unknown function. Therefore w'(t) =
2 — 2 - fw(t). So instead of finding w(t) immediately, we have

(1) w'(t) = 2 - 3w,

called a differential equation.

In an algebraic equation, such as x* — x? = 2x + 3, the unknown is a
number, frequently named x, although any letter can be used. In a differential
equation, such as y” + 2xy = xy’, the unknown is a function, usually named
y(x) and abbreviated y. In (1), the unknown is the function w(t). An alge-
braic equation involves powers of x, while a differential equation involves
derivatives of the function y. Some differential equations can be easily
solved. A solution toy’ = 3x%isy = x°, and the complete solution is the set
of all functions of the formy = x* + C. This is an easy differential equation
because y' is given explicitly. The differential equation y' = 2 — {y (a re-
statement of (1) with w(t) replaced by y) is harder. It may look as if y' is
given, but since the right side involves y, the equation only reveals a con-
nection between y and y’, and the solution is not obtained by anti-
differentiating the right-hand side with respect to x. We will develop a
procedure for “separating the variables” (if possible) before anti-
differentiating, and then return to (1).

To illustrate the method, we will consider the differential equation

x

(2) y =3

e
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Rewrite the equation as
3 y(y'(x) = x,

and antidifferentiate on both sides with respect to x to obtain

(4) Jyg(x)y'(x)dx = fxdx.

To compute the left-hand side, note that the derivative of §y° with respect to
x is y%’, so we have

1s_1,

— = — + .
(5) 3P’ =3* c
An arbitrary constant is inserted on one side only, as explained below. The
procedure in (2)—(5) is usually written in a second notation, which might be
considered an abuse of language, but which is easier to use and produces
the same result. In this second notation, we have

, d x
@) il
(3" y2dy = xdx  (multiply by y*dx on both sides)
4') Jﬁdy = dex
1s_1,
' —y =—x2+C.
(5" gy =gx +C

In future examples, we’ll follow standard procedure and use the second
notation.

So far, the function y has been found implicitly in (5'). The explicit
solution is

(6) y = \sl-gx’ +3C or, equivalently, y =y —3"‘2 +D.

More generally, if it is possible to separate the variables so that the differential
equation has the form

(expression in x) dx = (expression in y)dy,

(as in (3') for example), then the equation is called separable, and is solved by
antidifferentiating on both sides. (Only first order equations, that is, equations
involving y’ but not y”,5", -+, may be separated.) The process usually leads
to an implicit description of y. If it is feasible to solve for y explicitly, we do
so, but otherwise we settle for an implicit version.

The algebra of arbitrary constants The algebraic rules for combining
arbitrary constants are quite enjoyable. If A and B are arbitrary constants
thensoareA + B,3A,A — B,AB, etc., and may be named renamed C,, C,,
Cs, Cy, etc. In (6), 3C became D because 3C and D are equally arbitrary.
Similarly, in (5'), we did not write 3y* + K = 3x? + C,because C — K would
combine to one constant anyway.

Warning 1. Don’t turn C + x or Cx into D. A constant cannot swallow a
variable. The curves of the form y = Ax? form a family of parabolas, con-
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taining y = 3x2, y = —5x?and soon, but if Ax?is incorrectly combined to
K, then the family becomes y = K, which is a set of horizontal lines.

2. Don’t wait until the end of the problem to insert an arbitrary con-
stant. At line (5'), don’t write 4y = §x%, y = V3x? and then add the ne-
glected constant to get the wrong answer y = V3x? + C. The constant
must be inserted at the antidifferentiation step, not later.

Nonseparable example Ify’ = x + y so thatdy = (x + y)dx, there is no
way to continue and separate the variables. If both sides are divided by
x + y,then x turns up on the same side as dy. The method of this section
simply doesn’t apply.

Antiderivatives for 1/x The usual rule is [(1/x)dx = Inx + C, but it is
also true that

(7) f%dx = In Kx,

sinceInKx =InK + Inx = C + In x. The version in (7) is often more
useful. It will also be convenient to ignore absolute valuessigns and use In x
and In Kx instead of In|x| and In|Kx|. In physical applications of diffierential
equations, it is likely that variables and arbitrary constants will be positive,
and even if they are not, it is fortunately the case that omitting the absolute
values in intermediate steps usually leads to the same final solution as
including them. In general, it is often easier to relax our standards in
solving a differential equation (such as omitting absolute values in (7)) and,
if in doubt, substitute the proposed solution into the equation. If the equa-
tion is satisfied then the proposed solution must be correct.

Example 1 We will continue the punch bowl problem by solving (1).

dw 1

PR

_dw dt  (multiply by d¢ and divide by 2 — 3w to separate
9 — %w the variables)

=5In K(? - —lw) =t (antidifferentiate)

5
1 ..
w) = —gt (divide by —-5)
) = ¢ (take exp on both sides)

2 - %w = Ae™  (Let 1/K be named A)

(8) w=10-Be™  (Let 5A be named B).

Equation (8) describes many solutions and is called the general solution. In
this problem we want the particular solution satisfying the condition
w(0) = 0 (the punch bowl contains no whiskey at time 0). Substitute ¢ = 0,
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w = 0toget 0 =10 — Be’, B = 10. Therefore, the final solution is w =
10 — 10¢7%. Note that, as expected, the steady state solution is w(®) = 10;
after a long time, the punch is essentially all whiskey.

Exponential growth and decay If you have ever waited for a cup of hot
coffee to cool down, you have probably noticed that liquids do not cool at
a constant rate. If the net temperature of a particular liquid (that is, degrees
above room temperature) is 150° at time ¢ = 0, and the liquid is cooling at
that instant by 50° per minute, then it does not continue to cool at 50° per
minute. Rather, by experimentation and physical law, when its temperature
has decreased to 99°, it will be cooling at only 33° per minute; for this
particular liquid, the cooling rate is 1/3 of the net temperature. The prob-
lem is to find a formula for y(¢), the net temperature of the liquid at time ¢.

Since the cooling rate for this liquid is 1/3 its net temperature,

y' = —{y. The negative sign is designed to make y' negative since the liquid's
temperature is decreasing. Then
g__1
de 3
y__1
9) ) 3 dt
InKy = ——t
Ky =¢"
Y =% i
(10 y = Ce™,

(Instead of line (9) we could just as well have used _%dy = —dt, or —%dy =dt,
etc. All ultimately lead toy = Ce™.)

To determine the particular solution satisfying the initial condition
y = 150 when ¢ = 0, substitute in (10) to get 150 = Ce®, C = 150. There-
fore the final solution is y = 150e™". The graph of the solution is an
exponential curve with y(0) = 150 and y(») = 0 (Fig. 1). Theoretically, the
liquid never reaches room temperature (that is, zero net temperature), but
approaches room temperature as ¢ — . For example, to find how long it

\-ANS
y:‘soe'tlz, t=0

1%
3‘\

e

o bAxs

Flo. |
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takes for the liquid to cool from 150°to 3° (net temperature), sety = 3 and
solve for ¢ to get 35 = ¢™, —3t = In 35, = —In 50, ¢ = 3 In 50, or approxi-
mately 11.7 minutes.

Net temperature is not the only quantity that changes in such a way that
the rate of change is proportional to “how much is there.” If a particular cell
has a mass of 99 milligrams and is growing at 33 milligrams per minute,
then it does not continue to grow at 33 mg/min. Instead, when the cell
grows to 150 myg, it will be growing faster, namely, at the rate of 50 mg/min.
In general, the rate of growth of a cell is proportional to its mass (until the
cell reaches a certain size and the rate of growth satisfies a different law,
since cells do not grow arbitrarily large). Radioactive decay is another ex-
ample; the rate of decay of material is proportional to the amount of
material. Similarly, population growth is proportional to the size of the
population. In general, the net temperature, population size, cell mass and
amount of a radioactive substance at time ¢ all satisfy a differential equation
of the form y’ = by. The value of the constant b (which was —1/3 in the
liquid cooling example above) depends on the particular liquid, population,
cell or substance; it is positive if the quantity is growing and negative if it is
decaying. Thesolution is of the formy = Ce¥. This type of growth or decay
is called exponential.

Orthogonal trajectories An orthogonal trajectory for a family (collection) of
curves is a curve which intersects each member of the family at right angles.
The equation x? + 32 = K, K = 0, describes a family of circles (for ex-
ample, K = 9 corresponds to the circle with radius 3 and center at the
origin). The orthogonal trajectories for the family are lines through the
origin (Fig. 2). The lines and circles constitute a pair of orthogonal families.
The physical significance of the orthogonal trajectories depends on the

)Hmf

X AX15

F16.2
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purpose of the original family. If the given curves are isotherms, that is,
curves of constant temperature, then the orthogonal trajectories are heat
flow lines (Section 11.6).

Consider the family of ellipses

(11) +4?=K, K=0 (Fig.3).

The orthogonal trajectories are not geometrically obvious, but they can be
found using differential equations.

Step 1 Find a differential equation for the given family. In (11), treat
y as a function of x and differentiate implicitly to get 2x + 8yy’ = 0. There-
fore the family has the differential equation

=X
(12) .
At every point (x,y) on an ellipse in the family, the slope is —x/4y. For
example, at point P in Fig. 3, x is negative and large, y is positive and small,
—x/4y is a large positive number, and correspondingly the slope on the
ellipse at P is a large positive number.

Step 1 goes backwards from the family of curves in (11), usually con-
sidered to be the “solution”, to the differential equation in (12), usually
regarded as the “problem.”

Step 2 Find a differential equation for the orthogonal family. Perpen-
dicular curves have slopes which are negative reciprocals, so the orthogonal
family has the differential equation y' = 4y/x. In other words, at every
point (x,y) on an orthogonal trajectory, the slope is 4y/x.

Step 3 Solve the differential equation from Step 2 to obtain the or-
thogonal family.

& RIS
[]
| x|l

4Inx =lnx

4

5
TR
I

Ky
y = Ax*.

X

Thus the orthogonal trajectories are the curves of the formy = Ax*(Fig. 3).
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Alternatively, differential notation may be used. In Step 1, take differ-
entials on both sides of (11) to obtain 2xdx + 8ydy = 0, the differential
equation for the family of ellipses. In Step 2, switch to 2xdy = 8ydx = 0 for
the orthogonal family. The solution then continues as before in Step 3.

Problems for Section 4.9

1. Solve
[ (- y
@y x secy d)y %13
(b) dx + x’ydy = 0 (e) x’dy = ’dx
@+yZao @y=222
ydx y = y

2. Find the particular solution satisfying the given condition.

@y =x,y(1)=3 (c) y'e’/x = 3,y(0) =2
(b) ' +5x=3,52 =4 (d) y' =y*cosx, y(0) =2

3. (a) Solve xy’ = 2y and sketch the family of solutions. (b) Find the particu-
lar solution in the family through the point (2, 3).

4. Find the orthogonal trajectories for the given family and sketchboth families
(@ x*+2*=C (b)y=Ce™ (c) 2x* - y? =K.

5. Suppose a substance decays at a rate equal to 1/10 the amount of the
substance. (a) Find a general solution for the amount y(¢) at time ¢. (b) Find y(¢)
if the initial amountis 75 grams. (c) Find the half-life of the substance, that is, the
length of time it takes for the substance to decay to half its original amount, and
verify that the answer is independent of the initial amount.

6. Suppose the rate of growth of a cell is equal to 3 its mass. Find the mass of
the cell at time 3 if its initial mass is 2.

7. The velocity v(¢) of a falling object with mass m satisfies the differential
equation mv’ = mg — cv, where g and ¢ in addition to m are constants. (The equa-
tion is derived from physical principles. The object experiences a downward force
mg, due to gravity, and a retarding force cv proportional to its velocity, due to air
resistance. Their sum, that is, the total force, is mv’ since force equals mass times
acceleration.) Find v(t) if the initial velocity is 0, and then find the steady state
velocity v(e).

REVIEW PROBLEMS FOR CHAPTER 4

L If P is the pressure of a gas, V its volume and T its temperature, then
PV = kT where & is a positive constant depending on the particular gas. Suppose
at a fixed instant of time, T = 20, V = 10, P is decreasing by 2 pressure units per
second and T is increasing by 3 temperature units per second. Is V increasing or
decreasing at this moment, and by how much?

InIn x

2. Find lim as(@ x—>» (b)x—1+.

In x
3. Sketch the graph of xe ™.
4. Of all pairs of numbers whose sum is 10, which pair has the maximum
product?
5. Find d(xe™).
6. \Ag’hich of each pair has a higher order of magnitude? (a) In x, In x?
(b) e*, e*.
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7. Atone instant, the edge of a cube is 3 meters and is growing by 2 m/sec.
How fast is the volume growing at this moment?
8. Sketch the graph. (a) 3 sin 2(x = #/3) (b) 2 + 5¢~>.
9. Find (a) lim,.o+ ¢* Inx (b) lim, .. x*"~.
10. Show that of all rectangles with a given diagonal, the square has the
largest area.

11. Sketch the graph of y = ol

12. Find the relative extrema of each function three ways: with the first
derivative test, with the second derivative test and with no derivatives at all.
(a) sin*x (b) (x + 2)* + 1.

13. Lety be a function of t. Solve t*’ = y with the condition that the steady state
solution isy = 2, i.e., if t = o theny = 2.

14. A gardener with 100 feet of wire wants to fence in a rectangular plot and
further fence it into four smaller rectangles (not necessarily of equal width), as
indicated in Fig. 1. How should it be done so as to maximize the total area.

D c

Flo. |

15. Find the maximum and minimum values of x In x + (1 — x) In(l - x).

16. Let f(x) = x> — 2x* + 3x — 4. (a) Show that f is an increasing function.
(b) Use part (a) to show that the equation f(x) = 0 has exactly one root. (c) Choose
a reasonable initial value of x for Newton’s method. (d) Continue with Newton'’s
method until successive approximations agree in 3 decimal places and check the
accuracy of those places.
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5.1 Preview

This section considers two problems to introduce the idea behind
integral calculus.

Averages If your grades are 70%, 80% and 95% then your average grade
. 70 + 80 + 95 . .

is ———5——or 81.7%. Carrying this a step further, suppose the 70%
was earned in an exam which covered three weeks of work, the 80% exam
grade covered four weeks of work, and the 95% covered six weeks of
material (Fig. 1). For an appropriate average, each grade is weighted by the

corresponding number of weeks:
(70)(3) + (80)(4) + (95)(6)
13

Note that we divide by 13, the sum of the weights, that is, the length of the
school term, rather than by 3, the number of grades.

= 84.6%.

weighted average =

VALWE 70%  yALVE $0% VAUE 95%
N’_\/M/\

~— A:; —
jv2

T
L

<~ > >
2 WeEKS 4 weeks 6 WEEKS

FlG. |

For the most general situation, let f be a function defined on an interval
[a, b]). The problem is to compute an average value for f. To simulate the
situation in Fig. 1, begin by dividing [a, §] into many subintervals, say 100
of them (Fig. 2). The subintervals do not have to be of the same length, but
they should all be small. Let dx, denote the length of the first subinterval,
let dx, be the length of the second subinterval, and so on. Pick a number in

vawe L (x,) VALVE es vawe £ (o) ymue %/m)
N , T N T
a X% ' %99 o b
> —— >
475, d)(z qu7 /)&,,0
Fle. 2
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each subinterval; let x, be the number chosen from the first subinterval, x,
the number chosen from the second subinterval, and so on. Pretend that [
is constant in each subinterval, and in particular has the value f(x;) through-
out the first subinterval, the value f(x;) throughout the second subinterval,
and so on. With this pretense we may find an average value in Fig. 2 as we
did in Fig. 1:

x))dx; + f(xs)dxs + - + f(x100) dx100
dxl + dx? + - + dxmo

average value of f = fl

(approximately).

The length of each subinterval is used as a weight, and the sum of the
weights dx, + --- + dx,y in the denominator is the length b — a of the
interval itself.

We use some abbreviations to avoid writing subscripts and long sums.
First of all, the sum

fx)dxy + f(xo)dxo + --- + f(x100) dx100

is abbreviated

100

Zf (x;) dx;.

i=1
The letter 2 is called a summation symbol. If we take the liberty of allowing
an unsubscripted dx to stand for the length of a typical subinterval, and an
unsubscripted x to stand for the number chosen in that subinterval (Fig. 3),
we can further abbreviate the sum by 2 f(x)dx. Thus we write

average [ = —Z% (approximately) .

This isn’t the precise average value of f because it pretends that f is constant
in each subinterval. If the subintervals are very small, which forces them to
become more numerous, then (a continuous) f doesn’t have much oppor-
tunity to change within a subinterval, and the pretense is not far from the
truth. Therefore to get closer to the precise average, use 100 small sub-
intervals, then repeat with 200 even smaller subintervals, and continue in
this fashion. In general,

(N average value of f = lim m

a0 b —a

We don't intend to find any averages yet because computing Z f(x) dx is too
tedious to do directly. Much of this chapter is designed to bypass direct
computation and obtain numerical answers easily.

% b

dx

F&. 3
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Area under a curve Areas of rectangles are familiar, but consider th
region under the graph of the function f betweenx = a and x = b (Fig. 4
The problem is to find its area. Begin by dividing the interval [a, 5] int
many small pieces. Let dx be the length of a typical subinterval, and letx b
a number in this subinterval. Build a thin rectangle with a base dx an
height f(x). (Figure 5 shows [a, b] divided into four subintervals with fou
corresponding rectangles.) The area of the typical rectangle is f(x)dx. Th
entire region can be filled with such rectangles, and therefore the are
under the graph is approximately the sum of rectangular areas, or 2 f(x) d:
The area is not necessarily Z f(x) dx precisely because the rectangles underla
and overlap the original region. However, there will be less underlap an
overlap if the values of dx are small, so it appears sensible to claim th:

()

\/{(7

\

T

LS

&Ix

Q) area under the graph of f = Lm}’ Zf(x)dx.

Although averages and areas seem to be very different concepts, th
new idea of lim,,.o 2 f(x) dx appears in both (1) and (2). Beginning in th
next section we will give the limit an official name, find ways to compute i
and present many more applications.

5.2 Definition and Some Applications of the Integral

Definition of the integral Let f be a function defined on the interval [a, b
Begin by dividing the interval into (say) 100 subintervals of length

1 dxg, ", dx 100, and choosing numbers x;,xy, - *,x00 in the subinterval
(Fig. 1). Find

100
%f(xi)dxi = f(x) dx) + f(xo)dxg + + -+ + f(x100) dX100,

which we abbreviate by I f(x)dx. Figure 2 shows the correspondingly at
breviated picture. The sum is a weighted sum of 100 “representative” value

. ! X2 . %qq Xloo
o " N J ¥ b
————> D>
dx, dx, Axgqg  dr,p,
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of f, each value weighted by the length of the subinterval it represents.
Different people performing the computation might choose different sub-
intervals and different values within the subintervals, and their sums will
not necessarily agree. However, suppose the process is repeated again and
again with smaller and smaller values of dx, which requires more and more
subintervals. Itis likely that the resulting sums will be close to one particular
number eventually, that is, the sums will approach a limit. The limit is called
the integral of f on [a,b] and is denoted by [2f(x) dx.

That is, the integral is defined by
b
(1) f f@)dx = lim 3 f() d.

For a simplistic but useful viewpoint, we can ignore the limit and consider
[t f(x)dx as merely 2 f(x)dx, found using many subintervals of (a,b). In other
words, think of the integral as adding many representative values of f, each value
weighted by the length of the subinterval it represents.

The process of computing an integral is called integration. The integral
symbol [ is an elongated S for “sum” (the same symbol was used in a
different context for antidifferentiation) and the symbols a and b attached
to it indicate the interval of integration. The numbers a and b are called the
limits of integration, and f is called the integrand. The sums of the form
2 f(x)dx are called Riemann sums.

2
Example 1 To illustrate the definition we will try to find [ édx. The
1

computer program in (2) finds some Riemann sums using n subintervals,
for n = 100, 300, 500, 700, 900 and 1100. For convenience in writing the
program we chose subintervals of equal length, and numbers x,,---,x,
at the left ends of the subintervals. For example, in its third run, with
n = 500, the computer divides [1, 2] into 500 subintervals of length

b-—a 2-1

dx = —— = —— = .002 ig.
” =0 (Fig. 3)

and chooses x, = 1,x, = 1.002,xs = 1.004,---,x500 = 1.998. Then the
computer evaluates the Riemann sum

D
v Q
© & ,,\?‘
PAEPAEPAY &
I, daliite U —
T 2
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U 1
> ;;dx = (1)2(.002) + (1.002),(.002)

1 1
(1.004)2(.002) + 0 4 {1099)" (.002)

+

to get .500751.
10 DEF FNF (X)= 1/(X*X)
20 A=1
30 B=2
35 PRINT “N”, “RIEMANN SUM”
40 FOR N = 100 TO 1200 STEP 200
50 D = (B—A)/N
60 L= FNF(A)
70 FORI =1TON-1
80 L =L + FNF(A + I*D)

90 NEXT I
100 L = L*D
2) 130 PRINT N,L

140 NEXT N

150 END

READY.

RNH

N RIEMANN SUM
100 503765
300 501252
500 500751
700 .500536
900 500417
1100 .500341

This printout suggests that the Riemann sums approach a limit. It can be
shown that for still larger values of n and smaller values of dx, the Riemann
sums continue to approach a limit, even if the subintervals are not of the
same length, and no matter how x,,---,x, are chosen in the subintervals.
Although the computer program alone is not sufficient to determine

2
the limit (that is, the integral), it suggests that j ;lgdx might be .5. In
1

Section 5.3 we will bypass this attempt at direct computation and find the
integral easily.

Integralsand average values As one of the applications of the integral, (1)
of the preceding section showed that

ff(x)d::

b-a '

3) average value of f in [g,b] =

Think of the numerator as a weighted sum of “grades” and the denomi-
nator as the sum of the weights.
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Integrals and area The preceding section indicated a relation between the
areaunder the graph of a function f and [* f(x) dx. We’ll examine this more
carefully now. It will seem as if there are several different connections
between integrals and areas, but they will be summarized into one general
conclusion in (8).

Case 1 The graph of f lies above the x-axis.

Figure 4 shows the area under the graph, and a typical rectangle with
area f(x)dx. The integral adds the terms f(x)dx and takes a limit as dx
approaches 0, so [} f(x)dx adds an increasing number of thinning rect-
angles. The limit process is considered to alleviate the underlap and overlap
and, therefore,

(4) area between the graph of f and the interval [a, b] on the x-axis

= f fx)ds.
L {EZTPH ofF £
9
a X b—
dx.
FIG. 4

Case 2 The graph of f lies below the x-axis.

Figure 5 shows the region between the x-axis and the graph of f. The
area is positive (all areas are positive), but the terms f(x)dx are negative
because f(x) is negative. Hence the area of the indicated rectangle is
—f(x)dx, not f(x)dx. The integral adds the terms f(x)dx so the integral is a
negative number, and

dx
<>

*

GRAPHOF f

Flo.5
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(5)  area between the graph of f and the interval [, b] on the x-axis

== f bf(x)dx
or, equivale:'nlly,
(6) [ }(x)dx
= —(area between the graph of f and the interval [, b] on the x-axis).
Case 3 The graph of f crosses the x-axis.

Figure 6 shows the area between the graph and the x-axis, while Fig. 7
shows six subintervals of [a, b] with corresponding rectangles. Then

2fx)dx = f(x))dx, + f(xo)dxy + f(xs) dxs + f(xq)dx,

+ f(xs) dxs + f(xe) dxs
=A|+A2—A3—A4+A5+A6
(because f(xs) and f(x,) are negative)

=1-11+1I1  (approximately).

£
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On passing to the limit, we have

b
7 ff(x)dx = area I — area Il + area III (exactly).
In all cases, remember that areas are positive but integrals can be
negative if more area is captured below the x-axis than above the x-axis. The
single rule covering all cases is

b
(8) f f(x)dx = area above the x-axis — area below the x-axis.

Example 2 Suppose the problem is to compute the area of the shaded
region in Fig. 6. The answer is not [! f(x)dx since the integral is
I = II + III and we want I + II + III. Instead, find the points ¢ and d
where the graph of f crosses the x-axis. Then

1+11+111= f:f(x)dx -ff(x)dx + f:f(x)dx.

Warning Area Il in Fig. 6 is not negative (areas are never negative). It is
the integral [? f(x)dx that is negative, not the area.

Example 3 The graph of sin x on the interval [0,2#] (Fig. 8 of
Section 1.3) determines as much area above the x-axis as below, so by (8),
J% sin xdx = 0.

Some properties of the integral The graphof f + g is found by building
the graph of g on top of the graph of f (Section 1.7), so the area deter-
mined by the graph of f + g is the sum of the areas determined by the
graphs of f and g. Therefore

9) f[f(x) +gx)]dx = f:f(x)dx + fg(x)dx.

The graph of 6f(x) is 6 times as tall as the graph of f. Therefore the area
captured is 6 times as large, and [36f(x)dx = 6 J* f(x)dx. In general,

(10) fkf(x)dx = k[f(x)dx where k is a constant.

Finally, if a < b <, then the area between a and b plus the area
between b and ¢ equals the area between a and ¢, so

(11) f:f(x)dx + J:f(x)dx = J:f(x)dx.

Dummy variables Although we don’t have the techniques to compute its
value yet, [3x*dx is a number, without the variable x appearing anywhere in
the answer. We can just as well write f3¢%dt, [32°dz or [a’da. The letter x
(or ¢, or z or a) is called a dummy variable because it is entirely arbitrary. If
J3x*dx were 4, then [3b%db would also be 4. In general, [} f(x)dx =
I fyde = [ b f(u)du, and so on. (Equivalently, the horizontal axis may be
named an x-axis or a ¢-axis or a u-axis.)



52 Definition and Some Applications of the Integral - 145

Mathematical models How do we know that [? f(x) dx computes the area
in Fig. 4 exactly? We don’t! There is a philosophical point involved here.
Most non-mathematicians agree that area is a measure of how spacious a
region is, but do not give a precise definition of area. They believe that the
integral can be used to compute area because they visualize adding many
rectangular areas, with the limit process wiping out overlap and underlap.
Most mathematicians on the other hand define the area in Fig. 4 to be
J® f(x)dx. In a sense, this just begs the question because it is still up to the
non-mathematician to decide whether the definition really captures physi-
cal spaciousness.

In general, mathematics is used to make models. The integral [3 f(x) dx
is the mathematical model for the area in Fig. 4, just as |f’(x)| is the model
for the speed of a car traveling to position f(x) at time x. It can never be
proved that the mathematical model completely mirrors the physical idea,
and neither can the connection be defined into existence. It is ultimately the
responsibility of those who work with physical concepts to decide whether
they approve of the mathematical models offered them. The models in
this text (for area, volume, slope, speed, average value, tangent line and
so on) have endured for centuries. Their “exactness” cannot be proved.
The best we can do is demonstrate their reasonableness and cite their
wide acceptance.

Problems for Section 5.2
1. Use areas to compute the integral.
4 s 2
@) j 6dx (b) f xdx (c) f x3dx
-1 -1 -2

2. Use integrals to express the area between the graph of y = In x and the
x-axis for

1 1
@ l=sx=<5 (b)Es::sl (c)gs::s7
3. Decide which is the larger of each pair of integrals.
3 3 3 3 0 0
(a) fx’dx.j x2dx (b) fx’dx,] x3dx  (c) J x’dx,[ x%dx
0 -1 0 -1 -1 -2
4. Decide if the integral is positive, negative or zero.
Sw/2 2w
(a) j cos xdx (b) f cos’xdx
o (1]

5. True or false?

(a) If f(x) < O for all x in [a,b] then [% f(x)dx < 0.
(b) If [% f(x)dx < 0 then f(x) < 0 for all x in [a,b].
() If f(x) = g(x) for x in [a,b] then [} f(x)dx = [ig(x)dx.

6. (a) Use area to show that [3" sin’xdx = [§" cos’dx. (b) Use part (a) and
the identity sin’ + cos®x = | to show that [3" sin’xdx = m.
T Let A, = b f(x)dx.

(a) Consider area and translation to decide which of the following is equal
to Az Ae = [ f(x)dx, As = [233f(x + 3)dx, Ay = [233 f(x — 3)dx.

(b) Let As = [%% f(2x) dx. Use area and expansion/contraction to find the con-
nection between A, and As.
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8. If [24x®dx = 10, find (a) [24¢%dt (b) [ox>dx.
9. Express with an integral the area of a circle of radious R (begin with a
semicircle and then double).

5.3 The Fundamental Theorem of Calculus

So far, we have no general method for evaluating an arbitrary integral
J% f(x)dx. The Fundamental Theorem will provide a nice way to compute
the integral, provided that f can be antidifferentiated. The theorem says
that to find [? f(x) dx, first find an antiderivative F of f. Then evaluate F at
x = b and at x = a, and subtract F(a) from F(b). The result is the value of
the integral. We will first state the theorem formally, do some examples, and
then discuss informally why the method works.

Fundamental Theorem If f is continuous on [a,b] and F is an antiderivative

of f then

0] ff(x)dx = F(b) - F(a).

For example, the function In x is an antiderivative of 1/x, so
2
f—xl—dx=ln2—lnl=ln2—0=ln2.
1

The computation F(b) — F(a) is often denoted by F(x) [ the symbol |
declares the intention of substituting b and @, and subtracting.

Example 1 We expect [3xdx to be the area in Fig. 1, namely 3-3-3 =
9/2; indeed,

i 1
= —x2
J;xdx 2x

9 9
=——0=—‘
2 2

Using a different antiderivative Suppose we use 3x? + 7 as an anti-
derivative of x in Example 1, instead of 3x2. Then we find that

3
(L, )’=(3 )_ -9
J;xdx <2x + 7 2+7 0 +7 5

0
Notice that the 7 eventually canceled out. Any antiderivative of x is accept-
able, and all produce the same final value for the mtegral Thus, we might
as well use the simplest possible antiderivative, 3x2.

Example 2 Example 1 of the precedmg section used Riemann sums for
f $1/x?dx to estimate that the integral is near .5. An antiderivative of 1/x?
is —1/x, so by the Fundamemal Theorem,

2
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-2

Example 3 Find % dx.
-3

-2

Solution: I %dx =1Injx||Z3=1n2 — In 3 =In}. Note that while
s

In x is an antiderivative for 1/x if x > 0, it is useless in a situation in which
x < 0. To integrate 1/x on [—3, —2), use the antiderivative In|x|.

The integral of a constant function Consider [}6dx. The integral com-
putes the area of a rectangle with base b6 — a and height 6 (Fig. 2) so the
integral is 6(> — a). As another approach, [26dx = 6x|. = 6b — 6a =
6(b — a). In general, if k is a constant then

(2) Ikdx = k(b - a).
1
a b
L& ——————>
b-a

FI6. 2

The integral of the zero function If f(x) = 0, then the area between the
graph of f and the x-axis is 0, since the graph of f is the x-axis. Thus

3) dex =0.

As another approach, every Riemann sum [ f(x)dx is 0 because each value
of f is 0, so the integral must be 0. As still another approach, any constant
function C is an antiderivative of the zero function, so [20dx = C|.. Since
the constant function C remains C no matter what value, a or b, is substi-
tuted for the absent x, the integral is C — C, or 0.

Informal proof of the Fundamental Theorem Since F is an antiderivative
of f, we may rewrite (1) as

b
(1) fF'(x)dx =F(@() - F(a).
We wish to show why (1’) holds. To evaluate the integral, divide [a, b] into

many subintervals. Figure 3 shows a typical subinterval with length dx,
containing point x, where we assume dx — 0. Then, by definition,

b
4) fF'(x)dx = Y F'(x)dx.

From (1') of Section 4.8, each F'(x) dx is the change dF in the function F as
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toraL chance 15 Fb). Fla)

A CHANGES BY dx
F cHANGES BY A F= F (x)dx
N

o TR ' b
dx
FlG.2

x changes by dx. Therefore
(5) DF'(x)dx = Y dF.

But the sum, 2 dF, of all the changes in F as x changes little by little from
a to b is the total change F(b) — F(a) (Fig. 3 again); that is,

(6) > dF = F(b) - F(a).
Therefore, by (4)—(6), [*F'(x)dx = F(b) — F(a), as desired.

Example 4 Find the average value of x* on the interval [0, 3].
Solution:

Y /yr-x“-B
\ ]
' T G *
-3

F16.4%

First solution: The curve crosses the x-axis at V3. The region is below
the x-axis, so

V3 X3
area = —f (x? = 8)dx = —(E - 3x)

0

%]

= —(V3 - 3V3) = 2V3.

0
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*~

1

T izW‘E

,’//4 1:-(9’;\5

FIG.5

Second solution: Turn Fig. 4 sideways to get Fig. 5, and consider the
vertical axis to be the x-axis and the horizontal axis to be the y-axis. From
this point of view, the region is above the horizontal axis, betweeny = =3
and y = 0, and under the graph of the functionx = Vy + 3. (The lower,
irrelevant, portion of the parabola is x = =Vy + 3.) Thus

0

0
area=j Vy+3dy=§(y+3)”2 =%(3)”2-0=%3\/§=2\/§.
-3

The interval of integration is still named [—3, 0] even though the y-axis is
drawn so that y increases from right to left, and we use [24 as usual, not [5°.
(In fact if you view Fig. 5 from behind the page, the horizontal axis is still
the y-axis, but now y increases in the usual manner from left to right.)

The integral of a function with several formulas Suppose

x? ifx<3

f)=12x+3 if3<x<7
17 - x ifx=7.

To find say [{° f(x)dx, use (11) of the preceding section:

10

J;f(x)dx = j:x’dx + f(?x + 3)dx + Lw(n - x)dx

3 7 xz)
+ - =
. (17:: 5

3
+ (x% + 3x)
0

10

®

o]

7
+ 52 + 25.5

6.5.

I
0 ©

Example 6 Find [3;¢"dx.
Solution: Since

{e" forx =0
M =
e forx <0,
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we have

3
f e dx
-2

0 3
j e *dx + fe‘dx
-2 0

0 3
+ e*

-2
=—-1+e2+e2-1

-x

—-e

0

= -2 + e+ &3

Definite versus indefinite integrals So far the symbol [ has been used in
two ways. First, I f(x)dx is an integral, defined as the limit of the Riemann
sums Xf(x)dx. In this context, dx stands for the length of a typical sub-
interval of [a,b). Second, [f(x)dx is the collection of all antiderivatives
of f(x). In this context, the symbol dx is an instruction to an(idifferentiale
with respect to the variable x. The symbol [ is used in [} f(x)dx because it
signifies summation. The same symbol is used for anudlfferenuauon be-
cause one of the methods of computing an integral (using the Fundamental
Theorem) begins with antidifferentiation.

Frequently, both [ f(x)dx and [f(x)dx are referred to as integrals; in
particular, [} f(x)dx is called a definite integral and [f(x)dx an indefinite
integral. We w1ll usually continue to call the former an integral and the latter
an antiderivative. No matter which termmology you encounter, it will
always be true, for example, that [3x%dx = x* + C while [33x%dx = 19.

Problems for Section 5.3

In Problems 1-21, evaluate the integral.

2 5
1. f (6x2 — 3x + 2)dx 12. f 4dx
3 i
2 jl(3 - t)dt 13. j sec?x dx
0
2
5 _ 2 5
S.L(Sx 2 ?) dx 14.f¢x
2

>

2
j sin 2xdx 2
3 15. J’ (x* + 2)%dx
-1

1
5 j 4 (1 3
- + ~
T 1, [,
6. f sin wxdx | .3\
5 17.[ (" - )dx
7. f—dx -!
1 X -1
3 18.j —dx
8. f s 3x
Bx5 0 1
9. j 19. I_SS cosE-rrxdx
e
le 10 — x dx 20. 2mdx
1
- . [
)
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22. Find the area of the triangle with vertices A = (0,0), B = (4,2), C = (6,0)
(a) using a geometric formula and (b) using an integral.
23. Find the average value of sin x on [0, 7).

2
24. Find (a) j x*dx and (b) I x° dx.
1
. 5 f2=x=<3
25. Find jf(x)dx where f(x) = {0 if3<x =<4.
: «*  ifx>4
10
26. Find | |4 — x|dx.
3
27. Find the areas indicated in (a) Fig. 6 (b) Fig. 7.

Y= A (-R)(x-4)

FIG.7

5.4 Numerical Integration

The evaluation of [%, f(x)dx using F (b) — F(a) seems very simple, but it
is often very difficult, and sometimes impossible, to find an (elementary)
antiderivative F. In such a case, it may be possible to approximate the
integral, a procedure called numerical integration. A variety of numerical
integration routines exist, each involving much arithmetic, preferably to be
done on a calculator or a computer. In fact, some calculators have a button
labeled “numerical integration.” In order to program the calculator in the
first place, a background in numerical analysis is required. This section is
a brief introduction.
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One way to estimate [ f(x) dx is to use a specific Riemann sum X f(x) dx,
instead of the limit of the Riemann sums. In other words, we can estimate
the area under a curve using a sum of areas of rectangles such as those
in Fig. 1. (This was actually done by the computer program in (2) of
Section 5.2.) The error in the approximation arises from the underlap
and overlap created when a horizontal line is used as a substitute “top”
instead of the graph of f itself. Frequently, a large number of very thin
rectangles is required to force the error down to a reasonable size. There
are other numerical methods which require fewer subintervals and are said
to converge more rapidly. Figure 2 shows chords serving as tops, creating
trapezoids. The sum of the areas of the trapezoids is an approximation
to [ f(x)dx; it is expected to converge faster than a sum of rectangles
because the trapezoids seem to fit with less underlap and overlap than
the rectangles.

Fle. 3

There is yet another top that usually fits even better than a chord.
Figure 3 shows 8 subdivisions of [a,b], of the same width. The parabola
determined by the points Py, Py, P; on the graph of f can serve as a top for
the first two subintervals, creating area I. Similarly, we use the parabola



5.4 Numerical Integration - 153

determined by Py, Py, P, on the graph of f as a top for the next two sub-
intervals, forming area 11, and so on. The sum of the areas I, II, IIl and IV
approximates the area under the graph of f(x), and thus is an approxi-
mation to f* f(x) dx. The approximation using parabolas is viewed by many
as the best numerical method within the context of elementary calculus, so
we will continue with Fig. 3 and develop the formula for the sum of the
areas I, II, III and IV.
As a first step we will derive the formula

(1) area = %h(}’o + Y, + 4Y))

for the area of the parabola-topped region with the three “heights” Y,, Y}, Y,,
and two “bases” of length & shown in Fig. 4. The second step will apply the
formula to the regions I, 11, 111 and 1V in Fig. 3. To derive (1), insert axes
in Fig. 4 in a convenient manner; one possibility is shown in Fig. 5. The
parabola has an equation of the form y = Ax? + Bx + C, so the area in
Fig. 5 is

h A
J (Ax2 + Bx + C)dx = le’ + le2 + Cx
-4 3 2 "

h® + 2Ch

w|— w|r
>

h(2Ah* + 6C).

@)

7
L// %o g

Fl6. 4 Fl16.5

The points P = (—=h,Y;), Q = (0,Y}), R = (h,Y5) lie on the parabola, and
substituting these coordinates into the equation of the parabola gives

() AR =-Bh+C=Y,, C=Y,, Ak*+Bh+C =V,.

From (3), Yy + Y, = 2Ah% + 2C and Y, = C, so the factor 2Ah? + 6C in (2)
is Yy + Y, + 4Y), and (1) follows.

Now apply (1) to I, I, III and IV in Fig. 3. Since the interval [a,}] is
divided into 8 equal subdivisions, h = (b — a)/8 and"
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I+11+1II1+1V =%h(y0 +y+ 4y) + %h(y.z + 35 + 4ys)
1 1
+ ?h()h + Y6 + 4y5) + ?h()’s + Y8 + 4)’7)

1
gh(yo + 4y, + 2y, + dys + 294 + 4y;
+ 2)’5 + 4)’7 + ys)

More generally, using n subintervals where n is even,

b
1
(4) jf(x)dx =§h(yo + 4y, + 29 + 4y, + 2y,
+ -+ 2):.—2 + 4yn-l + )'-.)
where
b= b — a’
n

Yo = f(xo) = f(a)

(5) n=f()=fla+h)
y2 = flx2) = fla + 2h)
ys = flxs) = f(a + 3h)

and so on. The approximation in (4) is known as Simpson’s rule.
As an example, we will use Simpson’s rule with 6 subintervals to ap-
proximate [{e* dx. We have

f@=e® a=0, b=1, h=b—a=l.
n 6
Then,
x=0 )'o=f(xo)=1
1
X = 5 N = f(x)) = 1.0281672
2
x2=-6— y2 = f(xo) = 1.1175191
3
xs = ys = flxy) = 1.2840254
4
Xy = E ys = f(xg) = 1.5596235
5
Xx5=F s = f(xs) = 2.0025962
x¢=1 ¥ = flxe) = 2.7182818
and

1
?h(% + 4y, + 2y + 4ys + 2y, + 4ys + y5) = 1.4628735.

Therefore, [}e* dx is approximately 1.4628735.
PP y
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It is not easy to find an error estimate for Simpson’s rule, that is, to
decide how many accurate decimal places the approximation contains. The
following procedure is often used instead. To find an approximation to
four decimal places, use Simpson’s method repeatedly, doubling the value
of n each time, obtaining successive approximations Sy, Ss, Ss, Si6, Ssg, -
When two successive approximations agree to five decimal places, choose
the first four rounded places as the approximation. The accuracy of the
four decimal places is not guaranteed, but experience shows that if approxi-
mations converge rapidly, then when two successive approximations are
near each other, they are also near the limit. Therefore, computer users
who adopt this rule of thumb have reason to hope for four place accuracy.

Problems for Section 5.4

1. Approximate the integral using Simpson’s rule with the given number of
subintervals.

1 2 1
(a) Lvl+xidx,n=4 () fll+—dx,n=8

x!

1 1
(b) foln(l + x%)dx,n =6 (d) Le"‘dx,n =6

2]
2. Approximate I —=; dx using Simpson’s rule with n = 4, and compare with
the exact answer. 1x

5.5 Nonintegrable Functions

So far we have ignored the possibility that a function might not have
anintegral, and concentrated on the methods that will compute the integral
if it exists. This section will display two nonintegrable functions to give
more insight into the definition of the integral.

Example 1 To understand our first nonintegrable function you must
know the difference between rational and irrational numbers, and how
they are distributed on a line. The rational numbers are the decimals
that either stop or eventually repeat, such as 2.5, 0.33333..., 3.14,
4.78626767676767.... All other decimals are called irrational. For ex-
ample, 2.123456789101112131415161718192021222324 ... (which has a
pattern but doesn’t repeat) is irrational; so are 7, V2 and e. On the number
line, the rationals and irrationals are so thoroughly interspersed that there
are no solid intervals of rationals and no solid intervals of irrationals; in any
interval there are both rationals and irrationals. We can demonstrate this
with the interval (4.2,4.3). The rational number 4.25 is in the interval, and
so is the irrational number 4.25678910111213141516171819.... Thus the
interval is neither entirely rational nor entirely irrational.
Now we are ready to define a nonintegrable function. Let

(1) f(x) ={

0 if x is rational

1 if x is irrational .

Consider two people trying to compute [3 f(x)dx. Each divides (2, 5]
into many small subintervals (as in Fig. 1 of Section 5.2). Each picks values
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of x in the subintervals, but she chooses rationals and he chooses irrationals.
Her f(x,),f(xs),- - are all 0, so her Riemann sum X f(x)dx is 0. His f(x)),
f(x3),---are all 1, so his Riemann sum is ¥ dx, which is 3, the length of the
interval. They repeat the process with smaller subintervals, but if she keeps
picking rationals and he keeps picking irrationals, they again get
2 f(x)dx = 0 and I f(x)dx = 3, respectively. Since their Riemann sums
continue to disagree drastically, limg.o 2 f(x)dx does not exist, and the
function is not integrable on [2, 5], or on any other interval for that matter.

It is the extreme discontinuity of the function in (1) that causes it to be
nonintegrable. In fact, the function is discontinuous everywhere. If we try
to draw the graph of f, you will see this. We can plot many points on the
graph, for instance, (2, 0), (2.6, 0), (4.1, 0), (e, 1), (, 1), and so on. All points
of the graph are either at height 0 or height 1. But no part of the graph is
a solid line at height 1 or at height 0 because no interval on the x-axis is
solidly rational or solidly irrational. So no portion of the graph can be
drawn without lifting the pencil from the paper (and the complete graph is
humanly impossible to draw).

Example 2 Letf(x) = 1/Vx. Consider two people trying to find f§ f(x)dx
by computing Z f(x)dx. Suppose they begin by dividing [0, 1] into 100
subintervals of equal length, so that each dx is 1/100 (Fig. 1). Then they
must choose values of x in the subintervals. If their Riemann sums disagree,
and continue to disagree as more and more subintervals of smaller size are
used, then f is not integrable on [0, 1]. The greatest opportunity for dis-
agreement comes from the first subinterval, where f varies enormously.
The product f(x)dx corresponding to the first subinterval is of the form
“large X small” and its value depends on “how large” and “how small.”
Suppose he picks x = 1/100 at the right end of the first subinterval and she
picks x = 1/100* near the left end. Then

. 1)1 _ 1
s e e = f{ 05) 35 1915 ™
while

1 1 1
her f(x,) dx, =f(m)m = 100%- 100 = 100.

|
\TFT

! |
1007 oo

—__-‘——-’———F-‘+—— oo e — +
NER-’_‘ H'5)g‘ |

dx,: :

20

FIG. |
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If they use 10,000 subintervals and he picks x = 1/10,000 at the right end
of the first subinterval while she picks x = 1/ 10,000° near the left end, then

- a1 Y1 0.1 ___L
his f(x,) dx, = 10,000) 10,000 ~ 1°° " 10000 ~ 100
while
1 1 L1
her f(x)) dx, = m 10,000 ~ 10,0002 - = 10,000.

Their values of f(x,) dx, grow more unlike (hers becomes large, his becomes
small) as dx — 0. This predicts that their entire Riemann sums will also grow
more unlike (in fact it can be shown that hers will approach « and his will
approach 2), indicating that f is not integrable on [0, 1].

Itis the infinite discontinuity of the function 1/Vx atx = 0 that causes
it to be nonintegrable. The next section will define a new integral to handle
unbounded functions.

5.6 Improper Integrals

The definition of [% f(x)dx involves dividing [a,b] into many small
subintervals, and finding Riemann sums 2 f(x) dx. The definition does not
apply to intervals of the form [a,®), (=%, )] and (-, ) because it isn’t
possible to divide infinite intervals into a finite number of small subintervals.
Furthermore, with this definition of f% f(x)dx, it can be shown that func-
tions with infinite discontinuities are not integrable; one of the difficulties
that can arise is illustrated in Example 2 of the preceding section. New
integrals, called improper integrals, will be defined to cover the cases of
infinite intervals and infinite functions.

Integrating on intervals of the form [e, =) and (—«, ] As an illustration,
we define

o0 b
f ld:c = lim -ldx.
1 X box J) X

In other words, to integrate on [1, ), integrate from x = 1 tox = b and
then let b approach «. Therefore

[ldx =lim(lnx
1 X

boce

b
)=lbim(lnb—lnl)=°°—0=°°.
) *%0

We interpret this geometrically to mean that the area of the unbounded
region in Fig. 1 is infinite. As a convenient shorthand, we write

=ln®=-ln]l =0-0=o0m,
1

(1) f—i—dx=lnx
1

In general,

f. xf(x)d.x = lim f bf(x)dx
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FIC.Z

W

l |
FI6. 1
and

f fx)dx = lim | f(x)dx.

a+-»

In abbreviated notation, if F is an antiderivative for f then

x b b
and f— f(x)dx = F(x) -

(2) ff(x)dx = F(x)

Convergence versus divergence Evaluating an improper integral will
always involve computing an ordinary integral and a limit. If the limit is
finite, then the improper integral is said to be convergent. If the limit is ® or
—=, or if no value atall, either finite orinfinite, can be assigned to the limit,
the integral diverges. For example, the integral in (1) is divergent; in particu-
lar, it diverges to .

1—2

-2
1
Example 1 j J?dx=—"- =

<+ .
x|. 2 - 2 2
The integral converges to 3 and the unbounded region in Fig. 2 is consid-
ered to have area 3.

The unbounded regions in Figs. 1 and 2 look similar, but the former
has finite area and the latter has infinite area. The function x2 has a higher
order of magnitude than x, the graph of 1/x? approaches the x-axis faster
than the graph of 1/x, and the region in Fig. 2 narrows down fast enough
to have a finite area.

Integrating on the interval (—»,®) The usual definition is
b

(3) j f(x)dx = lim | f(x)dx.

as=
bex a

This is the first appearance of a limit involving two independent variables,
a and b in this case. When we say that the limit in (3) is L we mean that we
can force [% f(x) dx to be as close as we like to L for all b sufficiently high and
all a sufficiently low.

In abbreviated notation, if F is an antiderivative for f, then

) | o = Feo

»




5.6 Improper Integrals - 159

provided that the right-hand side is not of the form « — «. If it is of the
form ® — ® we assign no value at all (an instance of divergence).

For example,
Tom_ (_1) -
2 ?) ™

As an example of (4) which results in the form ® — «, consider
= 4

sg. X

j_," =7

No specific value can be assigned since asa = —® and b — , the value of
$x*|% = {b* — ja* depends on how fast a and b move. Therefore the integral
is simply called divergent.

T
[ e = s

»

= 00 — 0,

-x

Integrating functions which blow up at the end of the interval of
integration The function 1/x? blows up at x = 0. To integrate on an
interval such as [0, 1] we define

1

1
1 . 1
Lx2dx—llm 5 dx.

as0+ J, X

Then

In general, let F be an antiderivative of f.

b

If f blows up at x = a then jf(x)dx = F(x)

b

a+

)

b-

b
If  blows up at x = b then ff(x)dx = F(x)

a

Example 2 The function l/\/; has an infinite discontinuity at x = 0;
Example 2 in the preceding section showed that itis not integrable on [0, 1]
using the definition of the integral from Section 5.2. But reconsidered asan
improper integral,

1

1
1
—=dx = 2Vx| =2.
[0\/; T
3
Example 3 Find N dx.

Solution: The integral is improper because the integrand blows up at
x = 3. Then
1

=——|=oo-—l=oo

s 0+

3
1 1
L(B—x)gdx_?y—x
Note that when the blowup is located at 3, and 3 is the upper limit of

integration, it is treated as 3— in the calculation. If 3 were the lower limit of
integration, it would be treated as 3+ in the calculation.
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Warning Whenever a limit of the form 1/0 arises in the computation, look
closely to see if it is 1/0+ or 1/0—.

Integrating functions which blow up within the interval of integration
Suppose f blows up at ¢ between a and b. If F is an antiderivative of f, we
define [% f(x)dx by

b = b - Iy
(6) ff(x)dx =f flx)dx + f f)dx = F(x)| + F(x) .

As before, if (6) results in the form ® — «, no finite or infinite value is
assigned (an instance of divergence).

For example, the function 1/x* blows up at x = 0, inside the interval
[—1,3], so

3
1 -1 -1p
—dx =
f_lx" 3x3 -1 3.!3 0+
-1 1 1 -1 1 1
=— - — - — —- — = - — — — 4+ 0 = X
0- 3 81 0+ 3 8l
The improper integral diverges to .
3 1 3
Warning It is not correct to write f . dx = - 35| and, in general, if
-1 -1

f blows up inside [a, b), it is not correct to write [% f(x)dx = F(x) . You must
use (6) instead.

7
Example 4 Find j; = _} 5 dx.
Solution: The integrand blows up atx = 5, inside the interval (4, 7]. So
7
1 -1 | -1 " _-1_1 -1 -1
— = + =— =+ = - —
L(x - 5) o 2(x — 5)?|, 2x — 5)|;. 0+ 2 8 0+

This results in the form —= + « so the integral diverges.

Problems for Section 5.6

=1 f‘ 1
= . dx
! fs-\’bdx 9 2 V4 —x

=1 3]

. | —=dx 10.[ — dx
2 2% —2-’52

-21 xl
3 f = ll.f—dx

. 4 0o X

0 1 ®
4.f — dx 12. J sin x dx

-1 X 0

2 | »
5f—a lSJeM&

0o X -

3 I "2 .
6.[ ?dx l4.I tan xdx given F(x) = =In cos x

-2 )]

0 1 f- 1 . 1( x . )
dx —_— . = +
7. j_, 1722 15. LT dx given F(x) T\ 1 tan~'x

0 !
8. f 2¢* dx 16. f In xdx given F(x) =xInx — x
1]
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REVIEW PROBLEMS FOR CHAPTER 5

1.

1 ]
(a) j_lx“dx 8) fo cos—é—xdx

1 1 7
of & o[

sl 3
() I,?dx (i) f_‘e"“dx

2 . 0 (2x + 5)5
(d) J‘l(x2 + 3)dx  (j) I-l—4——dx

2 1 4
(e)[‘v3x+4dx (k)f2——xdx

02 -

|I 17

f) Le”’dx () |5dx

2. Let f(x) be the function in Fig. 1. Find [§ f(x)dx (a) using areas and
(b) using the Fundamental Theorem.

o=

Fl6. |

3. Use Simpson’s rule to approximate [§ ¥/T + x° dx using 6 subintervals.
4. Let 1 = [i|f(x)|dx and II = |f2 f(x) dx|. Which is larger, I or 1I?

5. Find the average value of 1/x on the interval 1,¢].

6. Find the area in Fig. 2.

Y={-x) (o x-6)

‘ il \

-
FIG. A
7. Odd and even functions were defined in Problem 8 of Section 1.2. (a) If f
is odd, find 25 f(x)dx. (b) If f is even, compare [, f(x)dx and [3 f(x)dx.
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6.1 Further Applications of the Integral

Section 5.2 included applications to area and average values. This sec-
tion continues with integral models for many more physical concepts, and
the problems will ask you to construct your own models in new situations.
Itis time-consuming material because the examples and problems are quite
varied. On the other hand, it is precisely the wide scope of the applications
that makes the material so important. After a while, you will get a feeling
for the type of problem that leads to an integral, namely, one that is solved
with a sum of the form I f(x) dx.

Example 1 The volume formula “base X height” applies to a cylinder
and a box, but not to a cone, pyramid or sphere. To understand why not,
consider the full implications of the “base” in the formula. It does not mean
the bottom of the solid; instead it refers to the constant cross-sectional area
(Fig. 1). The formula really says

(1) volume = cross-sectional area X height,

provided that the solid has constant cross-sectional area.

HEIoHT

Flo. |

Consider a cone with radius R and height . Geometry books declare
its volume to be §mR *h, and the problem is to derive this volume formula
using calculus. Formula (1) does not apply directly because the cone does
not have constant cross sections. To get around this difficulty, divide the
cone into thin slabs. With the number line in Fig. 2, a typical slab is located
around position x and has thickness dx. The significance of the slab is that
its cross-sectional area is almost constant. The lower part has smaller radius
than the upper part, but the slab is so thin that we take its radius throughout

163



164 - 6/The Integral

Part Il

Flo. 2

to be the radius at position x. By similar triangles,

slab radius R

x N
slab radius = Bf
h
. Rx\? )
Thus the slab has cross-sectional area ! W and height dx, so, by (1),

2
volume dV of the slab = #(%) dx.

This is only the approximate volume of the slab, but the approximation
improves as dx — 0. We want to add the volumes dV to find the total
volume of the cone, and use thinner slabs (i.e., let dx = 0) to remove the
error in the approximation. The integral will do both of these things. We
integrate from 0 to & because the slabs begin at x = 0 and end at x = .
Thus

" 2 2 (h 2 3
cone volume = Lw(%) dx = 1",%_ Lx2dx _ _7%?2_%

o 3
the desired formula.

Example 2 A flag pole painting company charges customers by the
formula

cost in dollars = % (Fig. 3)

where h is the height (in meters) of the flagpole above the street and [ is the
length of the pole. If the pole in Fig. 3 is 4 meters above the ground and
2 meters long, then the paint job costs $32.1

tThe units on h*! are (meters)*, so to make the units on each side of the formula agree,
it is understood that the right-hand side contains the factor 1 dollar/(meter)®. It is common
in physics for formulas to contain constants in this manner for the purpose of making the
units match.
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Now consider the cost of painting the pole in Fig. 4. Its length is
10 meters, but the formula £ can't be used directly because the pole is not
at one fixed height above the ground. To get around this, divide the pole
into pieces. With the number line in Fig. 4(a), a typical piece has length dx
and is small enough to be considered (almost) all at height x. Use the
formula A% to find that the cost of painting the small piece, called dcost to
emphasize its smallness, is x*dx. Then use the integral to add the dcosts
and obtain

o

10 T-20
l

30 30
(2) total cost = | dcost = j x2dx.

20 20
(The integration process includes not only a summation but also a limit as
dx approaches 0, which removes the error caused by the “almost.”) The
interval of integration is [20, 30] because that’s where the flagpole is located.
If you incorrectly integrate from 0 to 30, then you are paying to have a

white stripe painted down the front of the house.

3|30

If we compute the integral we get the final answer % = 1_9%)9
20

However, (2) is considered to be final enough in this section since the

empbhasis here is on setting up the integral that solves the problem, that is,

on finding the model.
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The number line does not have to be labeled as in Fig. 4(a). Another
labeling is shown in Fig. 4(b). In this case, the small piece of flagpole has
height x + 20 and length dx, so dcost = (x + 20)?dx and the total cost is

o’(x + 20)%dx. The integral looks different from (2), but its value is the
same, namely 19,000/3.

Example 3 If a plane region has constant density, then its total mass is
given by

(3) mass = density X area.

For example, if a region has area 6 square meters and density 7 kilograms
per square meter then its total mass is 42 kilograms.

Consider a rectangular plate with dimensions 2 by 3. Suppose that
instead of being constant, the density at a point in the plate is equal to the
distance from the point to the shorter side. The problem is to find the total
mass of the plate.

Divide the rectangular region into strips parallel to the shorter side.
Figure 5 shows a typical strip located around position x on the indicated
number line, with thickness dx. The significance of the strip is that all its
points are approximately distance x from the shorter side, so the density
in the strip may be considered constant, at the value x. The area dA of the
}trip is 2 dx and, by (3), its mass dm is 2x dx. Therefore, total mass = [ddm =

3 2x dx.

P
Fl6.5

The general pattern for applying integrals After three applications in
this section, perhaps you already sense the pattern. There will be a formula
(base X height from geometry, A%/ from our imagination, density X area
from physics) that applies in a simple situation (constant cross sections,
heights, densities) to compute a total “thing” (volume, cost, mass). In a more
complicated situtation (nonconstant cross sections, heights, densities) the
formula cannot be used directly. However, if a physical entity (the cone, the
flagpole, the rectangular plate) is divided into pieces, it may be possible to
apply the formula to the pieces and compute “dthing” (dV, dcost, dmass).
The integral is then used to add the dthings and find a total.

The comment on mathematical models in Section 5.2 still applies. We
are not proving that the integral actually computes the total; the integral is
just the best mathematical model presently available.
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Warning By the physical nature of the particular problems in this section,
the simple factor dx should be contained in the expression for dthing; it
should not be missing, nor should it appear in a form such as (dx)? or 1/dx.
For example, dthing may be x*dx, but should not be x*, or x*(dx)?, or x*/dx.
The integral is defined to add only terms of the form f(x) dx. A sum of terms
of the form x* or x*(dx)* or x*/dx is not an integral, and in particular cannot
be computed with F(b) — F(a).

Example 4 The charges of a moving company depend on the weight of
your household goods and on the distance they must be shipped. Suppose

(4) cost = weight X distance,

where cost is measured in dollars, weight in pounds and distance in feet. If
an object weighing 6 pounds is moved 5 feet, the company charges $30
(and physicists say that 30 foot pounds of work has been done).

Suppose a cylindrical tank with radius 5 and height 20 is half filled with
a liquid weighing 2 pounds per cubic foot. Find the cost of pumping the
liquid out, thatis, of hiringmoverstolift the liquid up to the top of the tank,
at which point it spills out.

Solution: Formula (4) doesn’t apply directly because different layers of
liquid must move different distances; the top layer moves 10 feet but the
bottom layer must move 20 feet. Divide the liquid into slabs; a typical slab
is shown in Fig. 6, with thickness dx and located around position x on the
number line. The significance of the slab is that all of it must be moved up
20 — x feet. The slab has radius 5 and height dx, so its volume dV is 25mdx.
Then

dweight = 2 pounds/cubic foot X 25mdx cubic feet = 50mdx pounds,
and, by (4),
dcost = 50mdx X (20 — x) = 507(20 — x)dx.

Integrate on the interval [0, 10], since that is the extent of the liquid,
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to obtain

10

10 10
total cost = f dcost = f 50m(20 — x)dx = 50#(20:: - —;-x“)
0 ]

0

= 75007 .

If a different number line is used, say with 0 at the top of the cylinder and
20 at the bottom, the integral may look different, but the final answer must
be 75007.

Example 5 Merry-go-round riders all pay the same price and can sit any-
where they like. This is a comparatively unusual policy because most events
have different prices for different seats; seats on the 50-yard line at a
football game cost more than seats on the 10-yard line. Obviously, some
merry-go-round seats are better than others. Seats right next to the center
pole give a terrible ride; the best horses, the most sweeping rides, and the
gold ring are all on the outside. The price of a ticket should reflect this and
depend on the distance to the pole. Furthermore, the price of a ticket
should depend on the mass of the rider (airlines don’t measure passengers
but they do take the amount of luggage into consideration). Suppose the
price charged for a seat on the merry-go-round is given by

(5) price = md?

where m is the mass of the customer and d is the distance from the seat to
the center pole. (In physics, md? is the moment of inertia of a rotating object.)
Consider a solid cylinder with radius R, height k& and density 8 mass
units per unit volume, revolving around its axis as a center pole (Fig. 7).
Find the price of the ride.
Solution: Formula (5) doesn’t apply directly because different parts of
the cylinder are at different distances from the center pole. Dividing the

CENTER
PoLE

K ’ SLAB NoT
I USEFUL
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cylinder into slabs, one of which is shown in Fig. 7, doesn’t help because the
same difficulty persists—different parts of the slab are at different dis-
tances from the center pole. Instead, divide the solid cylinder into cylindri-
cal shells. Each shell is like a tin can, and the solid cylinder is composed of
nested tin cans; Fig. 8 shows one of the shells with thickness dx, located
around position x on the number line. The advantage of the shell is that all
its points may be considered at distance x from the pole. The formula
dV = 2mrhdr for the volume of a cylindrical shell with radius r, height 4
and thickness dr was derived in (9) of Section 4.8. The shell in Fig. 8 has
radius x, height & and thickness dx, so dV = 2mxhdx and

dmass = density X volume = 2mxh&dx.
By (5), when the shell is revolved,
dprice = 2mxh §dx - x* = 2mx*h 8dx.
Therefore
ko

R R 4
total price = f dprice = 21rh8f x*dx = 2mh8=| = —mhSR".
0 0 4 0 2

Note that the shell area and volume formulas from Section 4.8 are only
approximations. But we anticipated that they would be used in integral
problems, such as this one, where the thickness dr (or in this case, dx)

approaches 0 as the integral adds. Section 4.8 claimed that under those
circumstances, the error in the approximation is squeezed out.
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Example 6 Let’s try a reverse example for practice. Usually we conclude
that [ f(x) dx is a total. Suppose we begin with the “answer”: let [] f(x) dx be
the totalnumber of gallons of oil that has flowed out of the spigot at the end
of the Alaska pipeline between hour 3 and 7. Go backwards and decide
what was divided into pieces, what dx stands for, and what a term of
the form f(x)dx represents physically. In general, what does the function
f(x) represent?

Solution: The time interval [3, 7] was partitioned. A typical dx stands
for a small amount of time, such as 1/10 of an hour. Since the integral adds
terms of the form f(x)dx to produce total gallons, one such term represents
gallons; in particular, one term of the form f(x) dx is the (small) number of
gallons, more appropriately called dgallons, that has flowed out during the
dx hours around time x. Since the units of f(x)dx are gallons, and those of
dx are hours, f(x) itself must stand for gallons/hour, the rate of flow. If
f(4.5) = 6, then at time 4.5, the oil is flowing instantaneously at the rate of
6 gallons per hour.

Note that in general, the integral of a “rate” (e.g., gallons per hour)
produces a “total.”

Warning In the preceding example, a term of the form f(x)dx represents
the dgallons of oil flowing out during a time interval of duration dx hours
around time x, not oil flowing out at time x. It is impossible for a positive
amount of oil to pour out at an instant. Furthermore, if f(4.5) = 6 then it
is not the case that 6 gallons flow out at time 4.5; rather, at this instant, the
flow is 6 gallons per hour.

Problems for Section 6.1

(The aim of the section was to demonstrate how to produce integral models for
physical situations. In the solutions we usually set up the integrals and then stop
without computing their values.)

1. If an 8-centimeter wire has a constant density of 9 grams per centimeter
then its total mass is 72 grams. Suppose that instead of being constant, the density
at a point along the wire is the cube of its distance to the left end. For example, at
the middle of the wire the density is 64 grams/cm, and at the right end the density
is 512 grams/cm. Find the total mass of the wire.

2. If travelers go at R miles per hour for T hours, then the total distance
traveled is RT miles. Suppose the speed on a trip is not constant, but is {* miles per
hour at time {. For example, the speed at time 3 is 9 miles per hour, the speed at time
3.1i59.61 miles per hour, and so on. Find the total distance traveled between times 3
and 5.

3. Suppose that the cost of painting a ceiling of height h and area A is .01h%A.
For example, the cost of painting the ceiling in Fig. 9 is .01(36)(35) or $12.60.
Find the cost of painting the wall in Fig. 9 (which is not at a constant height & above
the floor).

4. Useslabs to derive the formula 7R * for the volume of a sphere of radius R.

5. The price of land depends on its area (the more area, the more expensive)
and on its distance from the railroad tracks (the closer to the tracks, the less ex-
pensive). Suppose the cost of a plotof land is area X distance to tracks. Find the cost
of the plot of land in Fig. 10.

6. Suppose a conical tank with radius 5 and height 20 is filled with a liquid
weighing 2 pounds per cubic foot. Continue from Example 4 to find the cost of
pumping the liquid out.
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7. Suppose the right triangular region in Fig. 11 with density 8 mass units per
unit area revolves around the indicated pole. Continue from Example 5 to find its
moment of inertia.

8. If the specific heat of an object of unit mass is constant, then the heat needed
to raise its temperature is given by

heat = (specific heat) X (desired increase in temperature).

For example, if the object has specific heat 2 and its temperature is to be raised from
72° to 78° then 12 calories of heat are needed. Suppose that the specific heat of the
object is not constant, but is the cube of the object’s temperature. Thus, the object
becomes harder and harder to heat as its temperature increases. Find the heat
needed to raise its temperature from 54° to 61°.

9. Suppose [3* f(x) dx is the total number of words typed by a secretary between
minute 2 and minute 14.

(a) What does dx stand for in the physical situation?

(b) What does a term of the form f(x)dx represent?

(c) What does the function f represent? If f(3.2) = 25, what is the secretarial
interpretation?

10. Find the volume of the solid of revolution formed as follows. (First find the
volume of the slab obtained by revolving a strip, and then add the slab volumes.)

(a) Revolve the region bounded by y = x? and the x-axis, 0 = x < 2, around
the x-axis (Fig. 12).

(b) Revolve the region bounded by y = x* and the y-axis, 0 = y =< 4, around
the y-axis.
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11. Suppose a pyramid has a square base with side a, and the top vertex of the
pyramid is height A above the center of the square. Find its volume.

12. Let P be a fixed point on an infinitely long wire. Suppose that the charge
density at any point on the wire is ¢ ™ charge units per foot, where d is the distance
from the point to P. Find the total charge on the wire with an integral, and compute
the integral to obtain a numerical answer.

13. Find the total mass of a circular region of radius 6 if the density (mass units
per unit area) at a point in the region is the square of the distance from the point
to the center of the circle. (Divide the region into circular shells, i.e., washers.)

14. Suppose a solid sphere of radius R and density 8 mass units per unit volume
revolves around a diameter as a pole. Continue from Example 5 to find its moment
of inertia.

15. Suppose [3g(x)dx is the cost in dollars of building the Alaska pipeline be-
tween milemarker 3 and milemarker 7.

(a) What does dx represent in the physical situation?

(b) What does a term of the form g(x)dx stand for?

(c) What does the function g represent? If g(4) = 17,000, what is the physical
interpretation?

16. The kinetic energy of an object with mass m grams and speed v centimeters
per second is 3mv®. Suppose a rod with length 10 centimeters and density 3 grams
per centimeter rotates around one fixed end (like the hand of a clock) at one
revolution per second. The formula $mv?® does not apply directly because different
portions of the rod are moving at different speeds (the fixed end isn’t moving at
all and the outer tip is moving fastest). Find the kinetic energy of the rod by using
an integral.

17. The area of a circle with radius R is @R *. If a sector has angle 8 (measured
in radians) then its area is a fraction of the circle’s area, namely the fraction
0/2m, so

6 Y 1
area of sector = = mR? = -§-9R z,

Suppose that we start at point C to draw a sector with angle 7/4 and center at
Q (Fig. 13) but the “radius” R varies with the angle 8 so that R = cos 6. Find the
area of the “sector” CQB.

18. Find the total mass of a solid cylinder with radius R and height 4 if its density
(mass per unit volume) at a point is equal to (a) the distance from the point to the
axis of the cylinder (b) the distance from the point to the base of the cylinder.

19. A machine earns 225 — ¢*dollars per year when it is ¢ years old. (a) Find the
useful lifetime of the machine. (b) Find the total amount of money it earns during
its lifetime.

20. The weight w of an object depends on its mass m and on its height h above

the (flat) earth. Suppose w = __:—n—F (The further away from the earth, the lighter

2
the object.) If the mass density of the solid box in Fig. 14 is  mass units per unit of
volume, find its total weight.

21. Ifaplotofland of area A is at distance d from an irrigation pump, then the
cost of irrigating the plot is Ad* dollars. Find the cost of irrigating a circular field
of radius R if the pump is located at the center of the field.

22. The flat roof of a one-story house acts as a solar collector which radiates heat
down to the rooms below. Suppose that the heat collected in a region of volume V
at distance d below a collector is V/(d + 1). Find the total heat collected in a room
whose ceiling has height 12 and whose floor has dimensions 9 by 10.

23. When water with volume V lands after falling distance d, then a splash of size
Vd occurs. For example, if water of volume 6 is poured onto the floor from a height
of 7 then the total splash is 42.
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Suppose a cylindrical glass with radius 3 and height 5 is set under a faucet so
that the distance from the top of the glass to the faucet is 4. Water drips into the glass
until it is full. The falling water creates a splash, but the formula Vd can’t be used
directly since different slabs of water in the full glass fell through different heights
(the lowest slab fell through distance 9 while the top slab fell through distance 4).
Express the total splash with an integral.

24. Consider a unit positive charge fixed at point A. Like charges repel so if a
second unit positive charge moves toward A, effort is required, and the effort
increases as it nears A. Suppose that when the moving charge is d feet from A, the
effort required to advance a foot toward A is 1/d?; i.e., it takes 1/d? effort units per
foot. Find the total effort required for the charge to advance (a) from distance 5 to
distance 2 from A (b) from distance 5 to point A itself.

25. Snow starts falling at time ¢ = 0, and then falls at the rate of R(t) tlakes/
hour at time ¢. (a) How much snow will accumulate by time 10? (b) Some of the
flakes melt after they land, and don't live to see time 10. Suppose that only 1/4 of
newly landed flakes still exist 3 hours later, only 1/5 still exist 4 hours later and, in
general, of F newly fallen flakes, only F/(x + 1) flakes will last x more hours. How
much snow accumulates by time ¢ = 10?

26. If current flows for distance L through a wire with cross-sectional area 4,
then the resistance R thatit encountersisL/A. Suppose a sphere with radius 10 has
a hole of radius 1 at its center, and current flows radially out of the hole through
the solid sphere. The formula L/A doesn’t apply directly because the current
encounters spherical “cross sections” (Fig. 15) with increasing area rather than
constant area A; e.g., visualize the current flowing away from the center of an onion
through layers of onion shells. Use spherical shells to find an integral formula
for R.

6.2 The Centroid of a Solid Hemisphere

This section consists of just one substantial application of integration,
primarily of interest to those who will take physics courses.

If an object has constant density, then its balance point is called its
centroid. For example, to picture the centroid of a wire (Fig. 1) imagine the
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wire lying in a plane which is weightless except for the wire. The point at
which the plane balances is the centroid of the wire. Note that the centroid
does not necessarily lie on the wire itself. One application of centroids is
in the analysis of the behavior of an object in a gravitational force field,
where the solid may be replaced by a point mass at its centroid. For some
objects, the centroid is obvious. The centroid of a solid sphere is its center;
the centroid of a rectangular region is the point of intersection of its
diagonals. In this section we will find the centroid of a solid hemisphere of
radius R, illustrating a method that may be used for other (symmetric)
objects as well.

X X X2 -
N\
PranNce
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We need some balancing principles first. Experiments have shown that
if masses m, and m, dangle from a rod at positions x; and x, (Fig. 2) then the
rod will balance at the point x where m,(x — x;) = my(x; — x). This is the
well-known seesaw principle, which says that the heavier child should move
forward on the seesaw to balance with a lighter partner. Solve the equation
to obtain

mp.c = MXy = M9Xg9 — m2.§
x(my + mg) = myx, + maxy

- mpx, + MoXo
X = —

m, + mq
The terms m\x, and mox, are called the moments (with respect to the origin) of the
masses m, and my respectively. In other words, moment = mass X coordinate.
More generally, if n masses m,,---,m, hang from positions x,,---,x, then

) - mx, + -+ mx, total moment
X = = .
m + -+ m, total mass
Now consider a solid hemisphere with radius R and constant density 8
mass units per unit volume. By geometric considerations, the centroid must
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lie on the axis of symmetry (Fig. 3). To decide where on the axis, divide the
hemisphere into slabs. Figure 3 shows a typical slab with thickness dx lo-
cated around position x on the number line AB. By the Pythagorean the-
orem, the slab radius is VR? — x_. The (cylindrical) slab has height dx, so

volume dV = base X height = m(VRY — x2)2dx = m(R? — x%)dx
and
dmass = 8dV = 6 m(R? — x?)dx.

To simulate the situation in Fig. 2, picture each slab as a mass hanging from
the axis of symmetry. Figure 4 shows the mass corresponding to the slab in
Fig. 3. For this slab,

dmoment = xdmass = §m(R>* — x%)dx.

To find the total moment of all the slabs for the numerator of the formula
in (1), add dmoments and let dx approach 0 to improve the simula-
tion. Thus

4o
2
42

dmass 5 (R=2)dx

Flo. 4
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A
_1(1)
A
P

R R
total moment = f dmoment = 61rf (Rx — x¥)dx
0 0

_ . (R%!? x‘)
_8"( 2 4

One way to find the total mass is to compute [§ dmass = [§ § m(R? — x?)dx.
Better still, since a sphere with radius R has volume $7R>, the hemisphere
has volume $7R* and its total mass is #8mR>. Therefore

R

1 )
= —4‘57TR4.

0

total moment _ 3
total mass 8

X =

The centroid lies on axis AB, three-eighths of the way from A to B. Note
that the density § does not appear in the answer. As long as the density is
constant, its actual value is irrelevant for the location of the centroid.

6.3 Area and Arc Length

Section 6.1 constructed integral models for a variety of (sometimes
fictional) physical concepts. This section is concerned with the standard
models for the area between two curves, and arc length on a curve.

We will continue the policy of not evaluating integrals if antiderivatives
are not readily available for the integrands. In such cases, numerical inte-
gration can be used, if desired, or you can return to the integrals later, after
learning more antidifferentiation techniques in Chapter 7.

Area between two curves So far, integrals have been used to find the area
of a region bounded by the x-axis, vertical lines and the graph of a function
f(x) (see Figs. 4, 5 and 6 in Section 5.2). Integration can also be used to find
the area bounded by vertical lines and two curves, an upper function u (x)
and a lower function /(x) (Fig. 1). To find the area, divide the region into
vertical strips. Figure 1 shows a typical strip located around position x on
the x-axis, with thickness dx. The strip has a curved top ana bottom, but it
is almost a rectangle with base dx and height u(x) — I(x). In Figs. 2 and 3,
one or both of u(x) and /(x) is negative, but u(x) — I(x) is positive and in each
case is the height of the strip. Therefore the area dA of the strip is
(u(x) — l(x))dx. Thus, for the region between x = a and x = b, bounded by an
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upper curve u(x) and a lower curve l(x),

b
(1) area = j(u(x) - l(x))dx.

The formula holds whether the region is above (Fig. 1), below (Fig. 2) or
straddling (Fig. 3) the x-axis.

Example 1 Find the area of the region bounded by the parabola
y =5 — x? and the line through the points (1,4) and (-3,-4) on the
parabola.

Solution: The line has slope 2, so by the point-slope formula its equa-
tionisy — 4 = 2(x — 1),ory = 2x + 2. Figure 4 shows that the region has
the parabola as its upper boundary, the line as its lower boundary, and lies
between x = —3 and x = 1. Therefore u(x) = 5 — x2, l(x) = 2x + 2, and

1 1
area = I [5-x2-(2x + 2))dx = f (—x% — 2x + 3)dx
-3 -3

3
= (—%——x?+ 3x>

Arc length To find the arc length s on a curve between points P and Q
(Fig. 5), divide the curve into pieces. A typical piece with length ds is ap-
proximately the hypotenuse of a right triangle whose legs we label dx and
dy. Then ds? = dx* + dy? and

(2) ds = Vidx? + dy*.

The total length of the curve is the sum of the small lengths ds, so,
symbolically,

(3) s = fpoiqus.

point P

bo32

5 3

The details will depend on the algebraic description of the curve, as the
next two examples will show.

i ds={ g+ dyz

Fl16.5

Example 2 Consider the arc length on the curve y = x* between the
points (—1, —1) and (2, 8). Before using the integral in (3) we will express
ds in terms of one variable. If y = x* and dy is a change in y thendy = 3xdx
(Section 4.8, (1')). Therefore

ds = Vdx® + dy’ = Vidx® + (3x2dx)* = V1 + 9x* dx,
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=2
s =Jd V1 + 9x* dx.

x==1

Example 3 Suppose a circle of radius a, with a spot of paint on it, rolls
along aline. The spot traces out a periodic curve called a ¢ycloid (Fig. 6), and
the problem is to find the arc length of one arch.

CYCAO/D

OO0 S

A1a- Fl6. 6

We'll begin by finding an algebraic description of the cycloid. Insert
axes so that the circle rolls down the x-axis and the spot of paint begins at
the origin. The x and y coordinates of a point on the cycloid are more easily
described in terms of the angle of revolution 8 (Fig. 7) than in terms of each
other, so we will derive parametric equations for the cycloid instead of a
single equation in x and y.

A C
Fl6.7

Figure 7 shows a typical point P = (x,y) on the cycloid with corre-
sponding angle 6. Then x = AC — PQ. Furthermore, the length of segment
AC is equal to the length of arc PC (visualize the arc PC matching segment
AC point for point as the circle rolls). So
x = FC - PQ
a9 — PQ  (by the arc length formula s = r6 in (5) of Section 1.3)

ad —asin@  (by trigonometry in right triangle PDQ).

Also,y = DC — DQ = a - a cos 6. Therefore the cycloid has parametric
equations

(4) x=a0 —asinb, y =a —acosé,

where a is the radius of the rolling circle and 6 is the parameter. The cycloid
is periodic, and the first period begins with § = 0,x = 0 and concludes with
0 = 2w, x = 27a (the circumference of the circle).
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Tofindthelength of the firstarch using the integral in (3), first express
ds in terms of one variable, 8 in this case. We have

dx = x'(0)d0 = (@ — a cos 6)d0 and dy = y'(6)d0 = a sin 6d6.
Then (2) becomes
ds = V(a — a cos 6)2d6® + a* sin*6d6*
= Va® - 2a” cos 0 + a® cos*0 + a° sin°0 d
= V27 - 2a%cos 0d0  (since cos’d + sin’0 = 1)

and

f V2a*® — 2a° cos 0 d6

2af \\— I - cos 0 (by algebra)
Ny 1 — cos 6\*
=2a| sin --0d0 by the identity sin 50 = 2
0

2n

o
I

1
= - —0
2a( 2 cos 9 )

0

= 8a.

The cycloid has some surprising physical properties (too hard to prove
in this course). If a frictionless slide is to be built so that children can slide
down under the force of gravity from an arbitrary point A to an arbitrary
point B, then one built in the shape of a half an arch of a reflected (.)’Cl()l(l
will produce the least time for the trip (Fig. 8). Furthermore, if several
children slide down the reflected arch from different points, they all arrive
at the lowest point at the same time.

Credibility of the integral models As this chapter has shown, to compute
a total size (volume, area, arc length) we divide the object into pieces and
find dsize (dV, dA, ds) of a piece. The formulas we use for dV, dA and ds are
not exact. In Figs. 1-3, dA is only approximately [u(x) — /(x)]dx since each
strip is only approximately rectangular. In Fig. 5, ds is only approximately
Vié + dy? and furthermore in Example 2, the length dy is only approxi-
mately 3x*dx. However, when the integral adds dV’s, dA's or ds’s, we believe
(not prove, but merely believe) that the value of the integral deserves to be
called the exact value of the total volume V, total area A and total arc
length s. The integral not only adds, but also takes a limit as dx approaches
0, and we count on the limit process to wipe out the approximation error.

tIt is not true in general that taking square roots on both sides of the identity produces

L !l-cosﬂ
—_—f = y
(*) sm2 2

because the right-hand side of (¥) is positive while the left-hand side may be negative. Bul it
is true when @ is in the interval [0, 27), the interval of integration, since in that case. sin 3 30
is positive.
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(As further reassurance, whenever a previous formula for size exists, it
agrees with the integral. Problem 4 will show that the integral formula for
arc length does produce the standard formula for the distance between
two points.)

Not every approximation for dsize can be integrated to achieve a rea-
sonable total. In the next section we will have to be careful to avoid a bad
model for surface area.

Problems for Section 6.3

1. Find the area of the region with the indicated boundaries.

@@ y=x%y=3

(b) y =x*x =y*
(¢ xy =8, line AB where A = (-2,-4)and B = (—1,-8)
(d) y = x* — 4x + 3, the x-axis

2. Find the area of the region in (a) Fig. 9 (b) Fig. 10.

,’&y: |

Fl6.10

3. Express with an integral the arc length along the indicated curve.

(@) y = ¢* between (0,1) and (l,e)  (c) xy = 1 between (1,1) and (2,3)
(b) x = y* between (0,0) and (64,4) (d) x = 2t + 1,y = ¢* between the
points (3, 1) and (9, 16)

4. Use an integral to find the distance between the points A = (x;,3) and
B = (Xzy)‘z)-
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6.4 The Surface Area of a Cone and a Sphere

This section will continue the geometric applications of the integral by
deriving the surface area formulas for a cone and a sphere. (Its omission
will not affect your understanding of any other section of the book.)

A cylinder with height & and radius » may be cut open and unrolled to
form a rectangle with one dimension A& and the other dimension equal to
the perimeter 277 of the circular end of the cylinder. Therefore the (lat-
eral) surface area (not including top and bottom) of the cylinder is 27rh. To
find the surface area of noncylinders, we need a formula dS for the (lateral)
surface area of an almost-cylindrical slab. Figure 1(a) shows a typical slab
with heightdx and “radius” r. It is not precisely cylindrical since the radius
varies; in fact Fig. 1(a) deliberately exaggerates the variation in radius to
show an accordion-like ridge of length ds. In Example 1 of Section 6.1 we
ignored the varying radius and selected the volume formula dV = 2mr?dx
(Fig. 1(b)). If we were to continue to ignore the varying radius, we would
choose dS to be 27rr dx. But with this dS, [* dS produces values which do not
match results from geometry. (If a surface is cut open and unit squares
drawn on it, the number of squares does not agree with the integral.) The
variation of the radius which we successfully ignored in finding dV cannot
be ignored in finding dS. (A wrinkled elephant has about the same volume as, but
much more surface area than, an unwrinkled elephant.) To find an appropriate
formula for dS, imagine the accordion (Fig. 1(a)) pulled open to form a
genuine cylinder with height ds, not dx (Fig. 1(c)). Then, by the standard
formula for the surface area of a cylinder, the newly created cylinder, hence
the original almost-cylinder, has surface area

(M dS = 2mrds.

We are now ready to use (1) on cones and spheres.

Surface area of a cone Consider a cone with radius R, height 4 and slant
height s. To find its (lateral) surface area, begin by dividing the cone into

slabs. Figure 2 shows a typical slab with thickness dx around position x on
the indicated number line. To use (1), we need the slab radius and ds. By

ds IGNORE '
N\_«-\_\) 0 F'ND KID&E !
Av=mrrt
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S
=

similar triangles,

slab radius _ R
x h’
SO
slab radius = &
h
Again by similar triangles,
b _s
dx h
SO
ds = % dx.
Then, by (1),
27R
ds = 27r(—1—;5)% x = %xdx,
and
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Surface area of a sphere Consider a sphere with radius R. To find its
surface area, divide the sphere into slabs. It will be convenient to locate slabs
(shown in cross section in Figs. 3 and 4) using a central angle 6 rather than
position along a horizontal line. For the typical slab in Fig. 3, ds = Rd#6 by
(5) of Section 1.3, and the slab radius is R sin 8 by trigonometry. There-
fore, by (1),

dS = 2nR sin 0 -+ Rd0 = 2#R? sin 0d6.

The sphere is packed with slabs whose corresponding values of 6 range
from 0 to = (Fig. 4) so

L4

S = j ds = 217R2f sin 0d0 = 27R*(—cos 0) | = 4wR2
0 0 0

6-

PR
e
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o:=N 0:=0
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6.5 Integrals with a Variable Upper Limit

This section describes a new way of creating functions, and discusses
applications, computation and derivatives of the new functions.

Introductory example Suppose a particle starts at time 4 and travels with
speed 2x feet per second at time x. The problem is to find the distance
traveled by time 7, and then more generally, the cumulative distance traveled
by time x, denoted by s(x).

Divide the time interval [4, 7] into subintervals, with a typical sub-
interval containing time x and of duration dx seconds. The distance ds
traveled during the dx seconds is 2xdx (since distance = speed X time),
and the total distance traveled by time 7 is [}2xdx = x?|} = 33.

More generally,

(1) cumulative distance s(x) traveled up to time x

=x?-16.

4

=f2xdx=x2
4

In order to distinguish the independent variable x of the function s(x) from
the dummy variable of integration, we usually choose a letter other than x
for the dummy variable and rewrite (1) as
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=x2-16.

4

(1) s(x) = f2tdt =12

Integrals with a variable upper limit The function s(x) in (1°) is given by
an integral with an upper limit of integration x. More generally, for a given
function f and fixed number a, [ f(t)dt is a function of the upper limit of
integration, and we may define a new function /(x) by

(2) I(x) = flf(t)dt.

For example, /(4) is the number [} f(¢) dt. The integral in (2) can also be
written as [% f(u) du, J%f(r)dr and so on. However, most books avoid writing
I(x) = J%f(x)dx so that the independent variable of the function /(x) is not
confused with the dummy variable in the integral, and the student is not
tempted to write /(4) = [} f(4) d4, which is meaningless.

The introductory example illustrates one application of the functions
in (2). They are used to represent a cumulative total such as the distance
traveled until time x, the mass of a rod up to position x, or your income up
to age x. The particular lower limit used depends on the time, position or
age at which you choose to begin the accumulation.

Some functions of the form (2) are especially useful in mathematics
and science:

2
Erfx = —JJ 2 d the error function
Ev-S K ‘ )
3) Eix = f El_ dt (the exponential-integral function)
1
Six = -5%5 dt (the sine-integral function).
0

The integral in (1') is defined only for x > 4 since an integral is defined
only on an interval of the form [a,b] where b > a. On the other hand, the
function s(x) is 0 when x = 4 since no distance has yet accumulated. This
suggests the definition

4) jf(t)dt =0.
With this definition, the function in (2) is defined for x = @, and I'(a) = 0.
Computing I(x) If f(t) has a readily available antiderivative, then an

explicit formula for I(x) may be found using the Fundamental Theorem.
For example,

(5) ifI(x) = f3t"’dt then I(x) =¢
|

x
=x¥-1;
1

(6) if J(x) = L3t2dt then J(x) =¢*| =x*-8.

2
Note that I(x) and J (x) differ by only a constant since they begin the same
accumulation process but from different starting places, that is, with differ-
ent lower limits. In particular they differ by the constant [} 3t2dt = ¢3[} = 7.
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If the graph of f is simple, it may be possible to find a formula for /(x)
using cumulative area. Suppose f(t) is the function shown in Fig. 1, and
I(x) = [ f(t)dt. Consider a value of x between 0 and 2 (see point B). Since
AB = x, we have GB = 2x by similar triangles. So

I(x) = area of triangle ABG = —;-x « 2% = x%

For a value of x larger than 2 (see point D),

I(x) = area of triangle ACF + area of rectangle CDEF

%'2'4+4(x-2)
4x

-4,
Therefore
x2 ifo=sx=<2?

1 =
) {4x -4 ifx>2.

On the other hand, it is more difficult to evaluate the functions in (3).
It can be shown in advanced courses that it is not possible to find anti-

°?

-t .
A 2 € sint . . . . .
derivatives for ¢7", - and =, using the basic functions listed 1n

Section 1.1; so Erf, Ei and Si cannot be simplified as in (5) and (6). However,
tables of values for Erf, Ei and Si can be produced by numerical integration.

. ¢ . . .
For example, Si 7 = [ _s_n_rtl_ dt, and its value may be approximated with a

numerical integration routine such as Simpson’s rule.

As still another method of evaluating an integral with a variable upper
limit, given a fixed number a, an electric network can be designed so that
if voltage f(¢) is fed in at time ¢, the network will produce, on an oscilloscope,
the graph of the function I(x) = [* f(¢)dt.

The derivative of I(x) When functions of the form I (x) arise, we want to
be able to find their derivatives.

Consider the functions /(x) and J (x) defined in (5) and (6). From their
explicit formulas we can see that I'(x) and ] '(x) are both 3x?, the integrand
used in the original formulation of I (x) and | (x). This is not a coincidence. It can
be shown in general thatif I (x) = [% f(t)dtthen I'(x) = f(x) at all points where
f is continuous. In other words, if a continuous function f is integrated with a
variable upper limit x, and then the integral is differentiated with respect to x, the
original function f is obtained. This result is called the Second Fundamental
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Theorem of Calculus. For example,

(7) D, Six = %.1

sin x

.. - sint . .
(Note that the derivative of Si x is » mot == since the independent

variable of the function Si x is named x, not ¢.)

To see why the Second Fundamental Theorem holds, first consider the
introductory example. If f(x) is the speed of a particle at time x and
I1x) = [% f(¢t)dt, then I (x) is the cumulative mileage traveled by time x (the
odometer reading). Therefore I'(x) is the rate of change of mileage with
respect to time, which is the speed of the particle.

To understand the Second Fundamental Theorem from a geometric
point of view, let x increase by dx and consider the corresponding change
dl in I (x). Since I (x) is the cumulative area under the graph of f, Fig. 2 shows
that ] increases by approximately a rectangular area with base dx and height
f(x), so dI = f(x)dx (approximately). Equivalently

change dl. _
@® change dx /@,

or, I'(x) = f(x).

N
oS+
A

Xrdx

FIG. 2

Backward limits of integration So far it makes no sense to write
“backward” limits such as [3 f(x)dx, where the upper limit of integration is
smaller than the lower limit. The solution of a physical problem (averages,
area, arc length and so on) never involves backward limits. However, there
is a situation in which backward limits do arise in a natural way. The
function I(x) = [% f(¢)dt is defined only for x = a. If I(x) is the cumulative
distance traveled by an object starting at time a, then the integral continues
to have physical meaning only for x = a. But in more theoretical circum-
stances, it may be useful to define I (x) for x < a, for example to have Erf x
and Si x defined for x < 0 and Eix defined for x < I.

In one sense, the definition of fZ f(x) dx, where a < b, can be anything
we like. But it is desirable that the integral with backward limits retain the
same properties as the original integral. It can be shown that, fora < b, if
we define

tAs already mentioned, it can be shown that (sin x)/x does not have an elementary
antiderivative, that is, an antiderivative expressed in terms of the basic functions. But (7) shows
that Six is an antiderivative for (sin x)/x. Therefore Si x is a nonelementary function. Similarly,
Ei x and Erf x are nonelementary.
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9) f:f(X)dx = -ff(x)dx,

then properties (9)-(11) of Section 5.2 still hold, and so do both funda-
mental theorems. For example, with the definition in (9),

2

1 2
j3x2dx = -J 3xldx = —x3
) 1

1

But more directly, we can use the Fundamental Theorem with the back-
ward limits and get the same answer:

! 1
f3x2dx=x3 =1-8=-7.
2 2
Unfortunately, the relationship between integrals and area is different
with backward limits of integration. If a < b then

ff(x)dx = area above the x-axis — area below the x-axis,
SO
a b
[f(x)d = —If(x)dx = area below — area above.
b a

If I(x) = J3f(t)dt where the graph of f is given in Fig. 1, then /(0) =
J2f(t)dt which is —(area of triangle ACF), or —4.

Problems for Section 6.5

1. Find an explicit formula for I(x) if I(x) = f “« + 5)d.
2

2. A wire beginning at A and extending infinitely in one direction has charge
density e ™ charge units per foot at a point x feet from A. (a) Find the total charge
in the wire. (b) Find a formula for the cumulative charge in the first x feet of
the wire.

3. Suppose it begins raining at 3 P.M., and x hours later it is raining at the rate
of x” inches per hour. For example, at 3:30 P.M. it is raining at the rate of 1/8 inch
per hour. (a) Find the total rainfall by 5 p.M. (b) Find the cumulative rainfall after
x hours.

4. Figure 3 gives the graph of f(x). If I(x) = [§ f(t) d, find an explicit formula
for I(x) for x = 0.

5. LetI(x) = [3 f(t)dt where the graph of f is shown in Fig. 4. Sketch a rough
graph of I(x).

1 if0=sx=<1 _
6. Let f(x) = and let I(x) = [3 f(¢)dt.

- ifx>1
x

(a) Find I(3).
(b) Find 71(2).
(c) Find I(x), in general, for x = 0.

7. Let/(x) = [ In tdt and J(x) = [}z In tdt. (a) Which is the larger of (7) and
J(7)? (b) How do the graphs of /(x) and J(x) compare with one another?
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d(Erf x) b d(Eix) d*Eix)
dx ( ) dx €7 o
9. If I(x) = [% sin ¢?dt, find I'(x) and I"(x).
10. Where does Si x have relative maxima and minima?

8. Find (a)

11. (harder) Let /(1) = f 2% 41, (Note that the upper limit is x*, not x.)
Find [ (x). : ¢

Six

12. Find lim,., —.
x

13. Evaluate the integral (which has backward limits).

2
(a) L(x = 5)dx

[
® ) 575

REVIEW PROBLEMS FOR CHAPTER 6

1. A colony of bacteria grows at the rate of f(t) cubic centimeters per day at
day ¢. By how much will it grow between days 3 and 72
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2. Refer to Example 5 in Section 6.1 and find the moment of inertia of a solid
cone with radius R, height A and density § mass units per unit volume, which
revolves around its axis of symmetry.

3. An empty scale submerged in water will register a weight due to the water
pressing on it. The larger the scale and the greater the depth, the higher the scale
reading. Suppose that the empty scale reading is depth X scale area (Fig. 1), so that
a scale of area 6 submerged at depth 4 reads 24 pounds. If a scale lies on its side
(Fig. 2) there is still a reading since water presses as hard sideways as downward, but
the simple formula no longer applies since the depth is not constant. Find the scale
reading in Fig. 2.

Lo UV W e W 04

0T

Flo. A

4. Find the area of the region bounded by the graph of y = sin 7x and the
segment AB where A = ¢ -1) and B = (2,0).

5. Consider the region bounded by the linesx + y = 12,y = 2x and the x-axis.
Find its area using (a) plane geometry (b) calculus.

6. A farmer purchases a 2-year-old sheep which produces 100 — ¢ pounds of
wool per year at age ¢. (a) Find the total amount of wool it produces for the farmer
by age 4. (b) Find the cumulative amount of wool produced for the farmer by
age t.

7. Let I(x) = f3f(¢)dt. Find an explicit formula for I(x) if (a) f(x) = 2x + 3

b) )_{3::2 forx =7 has th Hin Fie. 3
f(x) = 5 for x > 7 (c) f(x) has the graph in Fig. 3.
+8
2 ¢ 6

FIG. 3

8. If I(x) = [5¢”dt, find I'(x) and I"(x).
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7.1 Introduction

Antidifferentiation has many applications, such as finding the path
of a bullet (Section 3.8), evaluating integrals (Section 5.3) and solving
differential equations (Section 4.9). We began finding antiderivatives in
Section 3.8 but were limited to a few standard types of problems. This
chapter covers some techniques of antidifferentiation, also called in-
definite integration, or simply integration, so that additional functions can
be handled.

Let's compare antidifferentiation with differentiation to see what we
are up against. Each operation begins with a function, probably arising
from a physical problem. If the function is elementary, then differentiation
is easy and mechanical. Using the derivatives of the basic functions and the
rules for combinations (sums, products, quotients, compositions), we can
differentiate any elementary function, no matter how complicated. Fur-
thermore, the derivative is another elementary function. The situation for
antidifferentiation is very different. First of all, an elementary function
might not have an elementary antiderivative. Even if there is an elementary
antiderivative, there is no mechanical rule for finding it. There are no
product, quotient and chain rules for antiderivatives. The best we can offer
so far are the sum and constant-multiple rules (Section 3.8):

M| e + geolex = [foax + [ gtas

(2) fcf(x)dx = cff(x)dx where ¢ is a fixed constant.

In the absence of sufficient combination rules, it is common practice to
consult tables of antiderivatives. However, tables can’t contain every func-
tion because there are infinitely many functions. If a function is not in the
tables we try to “reduce” it to one that is in the tables. (This is not a first
encounter with incomplete tables. Trigonometry tables only go up to 90°.
To find sin 91°, the reduction rule sin 91° = sin 89° is used.) If we learn
from the tables that our function has no elementary antiderivative, we quit,
with the justification that this course concentrates on elementary functions.
If we cannot find our function (reduced or unreduced) in the tables, we are
forced to quit again, although it is possible that a larger set of tables or
extended reduction techniques would help. (An entire book of tables is
usually available in the library.)

191
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Our tables do not contain the following very simple antiderivative
formulas which should be in your mental tables:

r+l
3) [x'dx= X +cC forr # —1
r+1
@) fxldx = Infs] + C
(5) fe"dx=e‘+C
(6) fsin xdx = —cosx + C
(7 fcosxdx=sinx+C.

Much of this chapter is concerned with procedures for reducing func-
tions not listed in the tables to listed functions. (One of the difficulties here
is that there is no precise rule for deciding how to reduce or even if a
reduction is possible.) We will also show how some of the formulas in the
tables were derived. (In retrospect, each antidifferentiation formula in the
table can be checked by differentiating the answer.)

7.2 Substitution

Substitution is a very effective method for reducing a function not
listed in the tables to one that is listed. The method involves reversing the
chain rule. As with all antidifferentiation methods, you will have to practice
to become accustomed to it.

By the chain rule, D, sin x? = 2x cos x?, 50 [ 2x cos x’dx = sinx? + C.
But how can we obtain the antiderivative formula without seeing the deriva-
tive problem first? To go backwards and find [ 2x cos x?dx, use the device
of letting u = x?, du = 2xdx. Substitute this into the integral to get

[2x cos x2dx =jcos udu =sinu + C

=sinx?+ C (replace u by x?).

We'll continue to illustrate the technique with some more examples.

Example 1 To find f (—2——+7)— dx (which is not in the tables), let u =

2* + 7, du = 8x3dx. Replace (2x* + 7)* by u” and replace x*dx by jdu
to obtain

f(?x + 7)2 jdu

Example 2 To find [ cos’x sin xdx, let u = cos x, du = —sin xdx. Then
replace cos’ by u? and replace sin xdx by —du to get

u™! 1
4 C=-—p——+C.
-1 +C 8(2x* + 7) ¢

1
8
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fcos*x sin xdx = —fu’du = f—;-u” +C = ——; cos’x + C.

Choosing a good substitution Unfortunately there is no set rule for de-
ciding when or what to substitute. One useful tactic is to search the inte-
grand for an expression whose derivative is a factor in the integrand, and
let u be that expression. In Example 1, the expression is 2x* + 7; its deriva-
tive x* (give or take an 8) is a factor. In Example 2, the expression is cos x;
its derivative sin x (give or take a negative sign) is a factor. It is also possible
for more than one substitution to work or for no substitution to help.

Example 3 From Section 3.8, we have [e*dx = 3¢™ + C, by inspection.
The extra factor j is inserted to counteract the factor 3 produced by the
chain rule when we differentiate back. The problem can also be done by
substitution. Let u = 3x, du = 3dx. Then [e%dx = {[e"du = {e* +
C = 3¢* + C. The extra factor j is automatically inserted by the substitu-
tion process.

Warning Don’t forget to substitute for dx. In the preceding example, dx
must be replaced by sdu. The substitution process will give wrong answers
if dx is ignored, lost or incorrectly replaced by just du.

Example 4 Find [x° cos x*dx.
Solution: Try the tables first, but without success. Then try substituting
u = x* du = 3x?dx to get

fx5 cos x*dx = fxs cos u% (replace x* by u, dx by du/3x?)

% f x3 cos udu (cancel x?)

u cos udu  (replace x* by u)

(cosu + usinu) +C (formula 49)

-(cos x* + x* sin x%) + C.

o | —

Remember that every antidifferentiation problem can be checked by differ-
entiating the answer. In this case, you can check to see that the derivative
of 3(cos x* + x* sin x?) is x? cos x>.

Warning Don'’t forget to substitute at the end of a problem to get a final
answer in terms of the original variable.

Example 5 Formula 13 in the tables is

xdx 2(bx — 2a)
ax—= Va + +C.
j Va + bx 3b? atb +C
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The formula can be derived in the first place with the substitution u =
a + bx and also with ¥ = Vaa + bx. In the latter case, it is algebraically
easier to write x in terms of u and find dx in terms of du rather than du in
2
u‘—a 2
,dx = ;udu. Therefore

b

terms of dx. We have u? = a + bx,s0x =

f xdx =f b2
Va + bx u b
2
b?

j(u“’ - a)du (algebra)

3
(u?_ au) +C
u(u?®-3a)+C

Va + bx (a + bx — 3a) + C

=3—i§(bx—2a)\/a +bx +C.

Warning The tables list the formula
(1) fusinudu=sinu—ucosu+€.

Therefore it is also true that [ x sin xdx = sin x — x cos x + C since all we
did was change every occurrence of the dummy variable u to x. Similarly,
it is also true that [¢ sin tdt = sint — ¢ cos ¢t + C and so on. However

x . x . . X x x
(2) fgSandxnsNOTsm2 2cos2+C

because not all occurrences of u in (1) have been changed to x/2; in particu-
lar the occurrence of u in the symbol du did not become x/2. Instead, to do
the integral in (2), let u = x/2. Then du = 3dx and

j—;—sin—;—dx =2fu sin udu = 2(sinu — u cosu) + C

. X X X
= — - =) +C.
2(sm 9 9 Ccos 2) C

Furthermore, despite (1),
(3) jx’ sin x2dx is NOT sin x? — x? cos x? + C,

because not every occurrence of u in (1) has been replaced by x% In an
auempt to apply (1) to the integral in (3), let u = x*. But then du = 2xdx,

1 .
]x"’sinx"’dx=fusinudzu=[usinu§dvuu-=?f\/;smudu

and it turns out that (1) doesn’t apply at all.
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Problems for Section 7.2

1
x2 e
l.fxedx l2.f(2_x),dx
1
2. Ix\/?:x’ + 7dx 13. fcos ?0 - l)do
3.]V3+5xdx 14. fxe"dx
4 ]-—l——dx 15 fcos“x sin xdx
INVI T Ix ’
5. f tan"x sec?xdx 16. fe”"dx
x =1 J’ .
6. I(x " l)’dx 17. | x sin 3xdx
sec 6 tan 0 ;
) [pume 8. [ sotona
1 +2secd s
8. I ! dx 19. fo sin xdx
x Inx
9. [x’ sin x%dx 20. fx’ cos 3xdx
10. [(l + 3x)" dx 21. fln(?x + 3)dx
1 dx
II.I dx .
2 - 3x 22 Cos x

1
23. We know that f 7732 dx = arctan x. Is the following antidifferentiation
correct: *

1 _f 1 _ 5
fl+3x,dx— l_’.(\/S.r).zdx—arctzm 3x + C?

24. Find if possible at this stage (a) f tan"'3xdx (b) I tan'x?dx.

sin x

25. Derive formula 31 for f tan xdx using substitution on f p
x

26. Derive formula 33 for [ sec xdx by multiplying numerator and denominator
by sec x + tan x and using substitution.

27. Derive formula 39 for [ sin’xdx using the trigonometric identity
sin®x = (1 — cos 2x).

7.3 Pre-Table Algebra I

If the function to be antidifferentiated is not listed in the tables, some-
times it may be reduced to a listed function by algebra. This section and the
next offer algebraic suggestions.

Example 1 Consider f\/ﬁ dx. Formula 23 in the tables lists

1
[ Voot du which matches the given problem, except for the 6. Thus
a®+ u’

we try to eliminate the 6. One possibility is to factor it out to obtain
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f‘a‘vi—nwf“a(—v—xi—rgd“v%fvﬁn“

Then use formula 23 with a® = 3 to get

(1 f\/r \/l-ln( +ﬂx’+~%~)+c.

Another possibility is to write 6x2 as ( \/_x)2 and then let u = V6x,
du = V6dx. With this substitution,

1 | du
j Verri3 & 'f Vivea) + 3 Val+3 f 3 V6
= %6 In(u + Vul + 3)+C (formula 23)
@) = % In(V6x + V6x* + 3) + C.t

Warning Don't forget to substitute for dx in carrying out the substitution.

Example 2 [V3x? + 4x — 8 dx isn't in a small set of tables which con-
centrates on forms involving u? — a? and a? * u? rather than on forms
involving Ax? + Bx + C. In this case, use the algebraic process called
completing the square. First factor out the leading coefficient to get

4 8
3x2+4x—8=3(x2+-§-x—~§->.

Then take half the coefficient of x, square it to obtain #, and add and
subtract that value within the parentheses:

3x2+4x—8=3(x2+ix+i—i—§)= [(x +%)-—2—98].

jmm\/ﬂ,/(ﬁé)?-?}dx

Now let u = x + §, du = dx to get

Thus

tNote that at first glance the two methods do not seem to produce the same answers in
(1) and (2). But (2) may be rewriten as

_\}E ln[\/g(x + "x” +% ] +C  (by factoring)
=\—/_— Lﬁ (x \’ )+C (since Inab =Ina + Inb)

1
= call -\/—6 In V6 + C a new constant K)

which matches (1).
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V3u [, 28 14
= —9 —3\/§ln
<x+2)
3

AN

14V3
9 In

u+\,u2—% +C

(formula 28)

3)2 28
3

9
x+-§+ \/(x +-§-) —%‘+C.
x® 3x°

Example 3 Improper fractions, such as

; and — , are those
x*+x+2 x> =17

where the degree of the numerator is greater than or equal to the degree
. . 3x
of the denominator. Proper fractions, such as Ty are those where the
x

degree of the numerator is less than the degree of the denominator. The
improper kind are rarely listed in antiderivative tables. To find an anti-
derivative for animproper fraction that is not listed, begin with long division.
. x°dx
Consider | ————. We have
x*+x+2
-xt-x+3
x?+x + 2)x°
X +xt 42

—x* - 23
—xt— X% - 2%?
- x3 + 2%?
- x3 - x?- %
3x? + 2
3x2+ 3x + 6
-x — 6.
So
x’ s 2 -x — 6
3 €2+x+2j—x\_x—x+3+x2+x+2'
D g
improper polynomial proper
fraction fraction

This illustrates that an improper fraction can be written as the sum of
a polynomial and a proper fraction, each of which is easier to anti-
differentiate than the original improper fraction. For the polynomial in (3)
we have

1 1 1
4 J’ S _ 2y 4 et 3 2
) (x> = x? = x + 3)dx 2 T g e+ C
To antidifferentiate the proper fraction in (3), first separate it into the sum
x 6

®) T+ x+2 xXP+x+2
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Then, for the first term in (5), we have

x lj
- —_—— =__ + + _—
fx2+x+ dx Injx? + x + 2| 2+x+2
(formula 2)
1 > 1 2x + 1
=-—In)x+x+2+——=tan"’ +C
R Y

(formula 1b).

For the second term in (5), use formula 1b to get

dx -12 2 + 1
7 ot T
@ *+x+2 V7 tan 1 ¢
Finally, combine (4), (6) and (7) for the final answer
x? X x? 11 2% + 1
- === - = + - —tan”'
jx'+x+2 4 3 2 3x \ﬁ[an V7
—-;-In|x2+x +2/+C.
Problems for Section 7.3
1 [————ix———— 5. I Vo + x? dx
"I V2 Fex - X2 X
2 j 1 dx 6. f three ways (long division, tables,
‘I Vx + 22 2x + 6 substitution)
= o
R L Ty
4
4 fx 2+ Qxdx
x°+ 4

74 Pre-Table Algebra II: Partial Fraction Decomposition

The preceding section advised dividing out improper fractions because
they are rarely listed in tables. But tables often omit proper fractions as well,
when the degree of the denominator is greater than 2. Partial fraction
decomposition is an algebraic technique that helps in this case.

The addition of fractions is a familiar idea from algebra. By finding a
least common denominator we have

2x . 7 =2x(2x—9)+7(x2+6)

xX+6 2-9 (x2 +6)(2x — 9)
11k - 18x + 42
9x3 — 9x? + 12x — 54°

(D

However, if the aim is to antidifferentiate the expression on the left in (1),

it is silly to change to the rightmost fraction. The pieces on the left are

easier to handle than the single fraction on the right. In fact, the point is to
11x? — 18x + 42 2x 7

+ .
2x* — Ox? 2x—54baCkle9+6 2x—9In

learn how to decompose
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general, we want to decompose a proper fraction which is not in the tables into a
sum of “partial fractions” which are either in the tables (formulas 1-4) or which
may be antidifferentiated by substitution or inspection. The decomposition is
accomplished in several steps, and it works only for proper fractions. We will
describe the general steps, and cover the details in the examples. (The proof
of the method is beyond the scope of the course.)

Step 1 Factor the denominator as far as possible, which means into linear
factors and nonfactorable (also called irreducible) quadratics. A quadratic
is taken to be nonfactorable only if its two linear factors involve nonreal
numbers. For example x? — 3 does factor, namely into (x — V3)(x + \/3-),
but x% + 4, which equals (x — 2i)(x + 21), is considered nonfactorable.
Quadratics can sometimes be factored by trial and error, but the following
general rule is available:

If b2 — 4ac < 0 then ax? + bx + ¢ doesn’t factor.
(2) If b°> — 4ac = 0 then

-b + \/b"’-4ac)( -b - Vb*° - 4ac)
— )

There is no easy rule for factoring polynomials of higher degree but they
can all be factored into linear and nonfactorable quadratics.

ax2+bx+c=a(x—

Step 2 The nature of the decomposition depends on the factors in the
denominator.

If a linear factor such as 2x + 3 appears in the denominator then a
fraction of the form A/(2x + 3) appears as one of the partial fractions in
the decomposition.

If a repeated linear factor suchas (2x + 3)° appears in the denominator
then

A B c
% + 3 (2% ¥ 32 (2x 3

appears in the decomposition.
If a nonfactorable quadratic such as x* + x + 10 appears in the denomi-

nator then Ax + B appears in the decomposition
—_— ion.
<X+ x + 10 2PP po

If a repeated nonfactorable quadratic such as (x* + x + 10)* appears in
the denominator then
Ax + B Cx +D Ex + F + Gx + H
xT4+x+10 (P+x+10° (x2+x+ 107 (x*+x + 10)°

appears in the decomposition.

Step 3 Determine A,B,C, - in the decomposition by the methods to be
shown in the examples.

Decomposition is a useful algebraic tool which has applications in addi-
tion to antidifferentiation. It will be used in Section 8.7 to find a power
series for a quotient of polynomials, and it occurs in the theory of Laplace
Transforms, encountered in advanced engineering mathematics. In each
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instance it is easier to work separately with the partial fractions than with
their sum.

22+ 3x — 1 -~ .
Example 1 Decompose Ty l)and the n antidifferentiate.
Solution: The decomposition has the form
2x? + 3x — 1 A B C

(x+3)(x+2)(x—l)=x+3 x+2+x—l'

Before trying to determine A, B and C, simplify by multiplying both sides
by (x + 3)(x + 2)(x — 1) to obtain
(3) %2+ 3x - 1=Ax+2x-1)+Bx+3)(x—-1)
+Ckx +3)(x +2).
Equation (3) is supposed to be true for all x, so we are allowed to substitute

an arbitrary value of x. Use the “good” values —3, -2, 1 to facilitate the
algebra.

Ifx =—-3then8 = 44,A = 2.

Ifx =-2thenl = -3B,B = —?;-.
1

Ifx =1then4 = 12C,C = —

3
Using good values of x in this manner produces A, B, C immediately. (They
are good because they make two of the factors on the right-hand side of (3)
become 0.) Using other values of x will produce three equations in the three
unknowns A, B, C. The equations can be solved for A, B, C, but this proce-
dure is unnecessarily complicated. Stay with the good values of x as long as
they last.
The result is

243 -1 2 13 13
x+3)x+Dx-1) x+3 x+2 x-1

Finally, each term in the decomposition may be antidifferentiated by in-
spection to obtain

f 2x% + 3x — 1 I
x+3Px +Dx—-1)

=2Inlx + 3|—%ln|x + 2|

+%ln|x— 1| + K.

. x2+2x +6
Example 2 Find f @ 3G =9 dx.

Solution: The fraction is proper, but not in the tables. The decom-
position has the form
x2+ 2x + 6 A B C
= + + .
2x +3)(x—-22 22 +3 x-2 (x—-2?

Multiply both sides by (2x + 3) (x — 2)* to simplify:
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4 xXX+2%+6=Ax-22+B(x—-2)(2x +3)+C(2x + 3).
If x =2 then 4 = 7C, Cc =2.

3 21 49
Ifx = 2then4-4A, A=23/7.

Although the good values of x are exhausted, there are still several
ways to find B easily. One possibility is to use any other value of x. For
example, ifx = 0then6 = 44 — 6B + 3C. Since we already have A and C,
B =§(4A + 3C - 6) = 3. Another possibility is to equate coefficients. Each
side of (4) is a polynomial, and since they agree for all values of x, it can be
shown that they must be the same polynomial. The polynomial on the left
leads with an x* term whose coefficient is 1. When the right-hand side is
multiplied out and rearranged, its x* term is (A + 2B)x®. Equate the two
coefficients of x* to obtain 1 = A + 2B, B = §(1 — A) = }. Instead of
using the coefficients of x* we can also use the coefficients of x. On the
left side the coefficient is 2 and on the right-hand side, after simplifica-
tion, the coefficient is —4A — B + 2C. Thus 2= -4A - B + 2C, B =
-4A + 2C -2 =%,

Therefore

x2+2+6  3/7 2/7 2
2 +3)(x -2 2+3 x-2 (x-2°
Each term on the right can be antidifferentiated by inspection or with a
simple substitution to give
J' x*+ 2 +6
(2x + 3)(x — 2)?

3 2
dx—l—41n|2x+3|+71n]x—2|— +K.

x =2

x2+ 2% — 2
x = Dx2+x+1)
Solution: First see if the denominator factors further. Since x? + x + 1

is nonfactorable (b — 4ac < 0), we can proceed to the decomposition
which is of the form

3x2 + 2x — 2 A Bx + C

= + :
x-DE2+x+1) x-1 x2+x+1

Example 3 Find f (

Then
(5) I+ 2% —2=A(*+x+ 1)+ Bx+C)(x — 1).

Ifx = 1 (the only good x) then 3 = 34,A = 1. The preceding example
illustrated two ways to find the remaining letters if there are not enough
good values of x. We prefer not to solve a system of equations to find B and
C, and from this point of view, equating coefficients is usually better than
using other values of x. The constant term on the left side of (5) is —2. When
the right side is multiplied out and simplified, its constant term is A — C.
Therefore =2 = A — C,C = A + 2 = 3. The coefficient of x? on the left
side is 3. The coefficient of x* on the right side is A + B. Therefore
3=A+B,B =3-A =2 Thus the decomposition is

3x2+ 2 — 2 1 2 + 3

D) +‘)
x=-Dx*+x+1) x-1 x*+x+1
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and

3x2+ 2x — 2 f dx f x
x = +
f(x—l)(x2+x+l)dx e I I s

+3 ] -,-—-_—dx
*+x+ 1

The first integral on the right may be done by inspection or with the

substitution u = x — 1. Use formula 2 and then 1b on the second integral,

and use 1b for the third integral. Thus

] 3x? + 2x — 2 e
(x=DE2+x+1)
=lnx = 1| + Inx®+ x + 1] _%[an-lg‘v}l
+%lan" 2x\/+?_,l +K
=lInjx — 1| + Ing® + x + l|+—\-;—?_’[an-'2x\/+§l+1<_

Warning 1. The factor x* — 5 in a denominator is factorable and

.. . Ax + B .
the decomposition does not contain "—; 5 Instead, factor into
x? —

x — V5)(x + V5) and putx _A\/g + " +B\/§ in the decomposition.

2. A numerator of the form Bx + C goes on top of a nonfactorable
quadratic only. A factor such as (x — 3)? in the denominator is a repeated
linear factor, not a nonfactorable quadratic, and the decomposition con-

A B A Bx + C .
tains + .NOT + 5. Similarly, the factor x* in
x -3 (x-3) x—-3 (x-3) Y
a denominator is a repeated linear factor, and the decomposition contains
A B
— + —.
x x*

3. The decomposition technique in this section does not work for

improper fractions. Use long division on improper fractions first, and then

decompose further, if necessary.

Problems for Section 7.4

1. Describe the form of the decomposition without actually computing the
values of A, B,C, -+

s 3
(a) %%+ 3 by 4x

S+ D +3) P+ - R -2& + 2)

2. Decompose into partial fractions

12 1 5x 2 + 3

fo— d >

@ Op—hm-r T@rne-y Ya-
3. Find J(—2—_;i—x—+—])dx (a) by decomposing and (b) directly from the

tables. Confirm that the two answers agree.
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. 2x +3
4. Find (a) j e e—"

5. Derive formula 11.
2
6. Find I ,——x—-dx and aim for the answer x + §Injx + 1| -
x4+ 5x +4

8x dx
dx (b) fx-l - ldx (C) fx2(2x :?)'

Linjk + 4]

7.5 Integration by Parts

The substitution method in Section 7.2 is a reversal of the chain rule
for derivatives. The idea behind integration by parts is to reverse the de-
rivative product rule. Since Dauv = uv’ + vu’ we have the integration for-
mula [ (uv’ + vu')dx = uv. But problems don’t usually originate in the
form [(uv' + vu')dx, so we continue on to a more useful version of the
integration formula. Write it as Juv'dx = wv — [wvu’'dx, and then to make
it easier to apply, use the notation dv = v'dx, du = u'dx to get

(1) fudv=uv—fvdu.

This formula can be used to trade one problem (namely, [ u dv) for another
(namely, [vdu), which may or may not help depending on how good a
trader you are. To apply (1), a factor in the integrand must be called u. The
rest of the integrand including the “factor” dx is labeled dv. Success of the
method, called integration by parts, then depends on being able to find v
from dv (this in itself is antidifferentiation) and on being able to find [ vdu.

Example 1 We’ll show how the tables arrived at the formula for
[ x sin xdx. We must think of x sin xdx asudv. One possibility istoletu = x,
dv = sin xdx. Then du = dx and v = —cos x. (Finding v after choosing
dv is a small antidifferentiation problem buried in the overall anti-
differentiation problem.) Then, by (1),

fx sin xdx = —x cos x +fcosxdx = -xcosx +sinx + K.

The trade was a good one since the new integral, J cos xdx, was easy to do.
Another possibility (which proves to be a false start) is to let ¥ = sin x,
dv = xdx. Then du = cos xdx, v = 3x* and, by (1),

. L, . Ly,
x sin xdx = —x smx——[x cos x dx .
2 2
This is correct but not useful since the new integral looks harder than the
original.

Example 2 Derive the formula in the tables for [ ¢* cos x dx.
Solution: Let u = ¢*, dv = cos xdx (it would do just as well to begin
with u = cos x and dv = ¢*dx). Then du = e*dx, v = sin x and

fe"' cos xdx = e*sin x — fe"' sin x dx.

The new integral is just as bad as the original, but surprisingly if we work
on the new one we’ll succeed. Let u = e%,dv = sin xdx. (Using u = sin x,
dv = ¢*dx at this stage leads nowhere.) Then du = ¢'dx, v = —cos x and
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fe" cos xdx = e*sinx — (—e" cos x + fe“ cos xdx).
On the right-hand side is the original integral which seems circular.
But collect the terms involving [e* cos xdx to get 2 [e* cos xdx =

e sin x + ¢* cos x. Thus the final answer is

fe"cosxdx =-;—(e" sinx + e“cosx) + C.

Problems for Section 7.5
1. Derive the formulas given in the tables for

(a) jxe"dx (b) jtan"xdx (c) jsin"xrlx (d) jln xdx

2. Find (a) jcos(ln x)dx (b) sze‘d" (© J”‘ tan " 'xdx.

3. Problem 26 in Section 7.2 derived the formula for [ sec xdx. Use it to find
the formula for [ sec*xdx. ‘
4. Suppose Q(x) is an antiderivative for ¢ ™. Find [ x? ~**dx in terms of Q (x).

7.6 Recursion Formulas

Some antiderivative formulas, said to be recursive, can be applied re-
peatedly within a problem to help get a final answer. We will illustrate how
they are used and how they are derived.

Example of a recursion formula Suppose we want to find [x7 sin xdx.
The tables in this book do not help, and even larger tables will probably not
contain this specific integral. However many tables will list the following
pertinent formula:
(1) jx" sinxdx = —x"cosx + nx"'sinx — n(n — l)fx"‘2 sin xdx.
Use (1) with n = 7 to obtain

jx’ sin xdx = —x” cos x + 7x®sin x — 42]::5 sin xdx.

Then use (1) again with n = 5 to get
fx’ sin xdx = —x” cos x + 7x% sin x
- 42(--,\:5 cos x + 5x*sin x — 20[::3 sin xdx) .
And again with n = 3 to get

fx’ sin xdx = —x" cos x + 7x%sin x + 42x° cos x — 210x* sin x

+ 840(—x3 cos x + 3x%sin x — ij sin xdx).
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Finally use formula 48 in the tables to finish the job and compute
[ x sin xdx. The final answer is

jx’ sin xdx = (—x7 + 42x* — 840x® + 5040x) cos x
+ (7x% — 210x* + 2520x% — 5040) sin x + C.

Many of the formulas collected in tables are recursion formulas like (1),
and are usually found by integration by parts. To derive (1), let ¥ = x*,
dv = sin xdx. Then du = nx""'dx, v = —cos x and

(2) ]x" sin xdx = —x" cos x + n]x"" cos xdx.

We don'’t stop here because (2) is not recursive; that is, it can’t be used over
and over again. If it is used on [x” sin xdx, we obtain the new integral
J x® cos xdx to which (2) no longer applies. So we integrate by parts again.
Let u = x*', dv = cos xdx. Then du = (n — 1)x""%dx, v = sin x and

]x" sin xdx = —x" cos x + n[x"" sinx — (n - l)jx"'2 sin xdx],

which simplifies to the recursion formula in (1). Typically, a recursion
formula lowers an exponent in the integrand. The formula in (1) happens
to bring an exponent down by 2. Look at formula 3 in the tables to see an
instance where an exponent (called ) is lowered by 1.

The recursion formulas for J sin"x cos"xdx Products of powers of sines
and cosines occur frequently, and the tables contain four recursion formu-
las for them. Formula 52a brings the sine exponent down by 2 and leaves
the cosine exponent alone. Formula 52b brings the cosine exponent down
by 2 and leaves the sine exponent alone. Similarly, formulas 52c and 52d
leave one exponent unchanged and raise the other exponent by 2; they are
used if an exponent is negative to begin with. For example,

sin®x cos’x

3[ .
+ = 2 !
3 3 sin’x cos'xdx

J sin'x cos'xdx =

(by formula 52a withm = 4,n = 4)
_sin' cos’x 2[_sin x cos’x lJ’ ‘g ]
—3 T3l Tt g cos'xdx
(by formula 52a withm = 2,n = 4)

sin’x cos’ 1 . 5
————— — —sinx cos’
8 16

1 [sinx cos®’x 3 j ]
+=|—+= 2
16 [ 2 n cos’x dx

(by formula 52b withm = 0, n = 4)

sin’x cos’ 1 . s+ Lo s
————= - —sin x cos’ + — sin x cos’x
8 16 64

3 .
+——[x + +
128 [x + sinx cosx] + C

(by formula 52b or 40).
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The special case of [ sin"x cos"xdx where m and/or n is a positive odd
integer One way to find [ sin"’ cos xdx is to use formula 52a fifty times
to bring the sine exponent down to 0, and finish by doing [ cos xdx. But it

is much easier to substitute u = sin x, du = cos xdx to obtain

101 s 101
s 100 - g, =% _ oS X,
jsm x cos xdx ]u du 101 C 101 C.

As another example, consider
(3) fcos*"’x sin3xdx.

One possibility is to use formula 52b forty-nine times to bring the cosine
exponent down to 0, use formula 52a once to bring the sine exponent down
to 1, and finish by finding [ sin xdx. Butitis easier to use formula 52a once
to obtain

sin’x cos®x 2

98, oS = _ = 98,
fcos x sin’x dx T01 To1 ) 5% sin xdx
and then substitute u = cos x, du = —sin xdx to get
in 99,
Wy cindede = — X €OS x 2 o8
fcos x sin°x dx TR du
_ _sin’x cos®x 2 u™ s
101 101 99

B sin®x cos™x ; 2
101 (101) (99)

Another approach to (3) is to use the identity cos’x + sin’ = 1 and write

cos® + C.

4) =

sin’x = sin’x sin x = (1 — cos’x) sin x.
Then

f cos™x sin’xdx = f cos®x (1 — cos’x) sin x dx

= j (cos®x — cos'™x) sin xdx

and the problem may be completed with the substitution u = cos x,
du = —sin xdx to obtain

cos®x  cos'x
99 101
In general, suppose at least one of the exponents, say =, is a positive
odd integer. Instead of using the recursion formulas to lower both m and
n, it is faster to use 52b or the identity sin’x + cos’x = 1 to reduce the
problem to [ sin"x cos xdx, and then finish with the substitution u = sin x,
du = cos xdx.

Problems for Section 7.6

(5) fcos”x sin®xdx = — +K.

1. Derive a recursion formula for [ x"e*dx.
2. Derive recursion formula 53 by writing tan"x as tan®x tan" *x and using the
identity tan’x = sec’x — 1.
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3. Derive a recursion formula for [ (In x)"dx and then use it to find [ (In x)* dx.

4. Use formula 52 to derive a recursion formula for [ sin"x cos"xdx which
brings m and n each down by 2.

5. Explain why formula 4 is not recursive.

6. Find

(a) fsinx cos xdx (b) fsinx cos'*xdx © jsec"xdx

(d) flan‘xdx © J'COSX 0 J' sin’ x
sin’x oS’ x

® f sin'x cos’xdx (try it without tables for practice) (h) J sin*3x dx

7. Show that the answers in (4) and (5) agree.

7.7 Trigonometric Substitution

A collection of integrals in the tables (and similar integrals not listed)
can be found using a substitution of a special type called trigonometric
substitution. We will illustrate the method by deriving formula 26 for

1 . -
f Y/ ] dx. The expression Va* + x* can be labeled as the hypote-
xVa*+=x

nuse of the right triangle in Fig. 1. The triangle will be the basis for the
substitution. Let 4 be one of the acute angles in the triangle (it doesn't
matter which angle you choose.) All the relations between x and u that are
needed for the substitution will be read directly from the triangle. There
are many relations available:

X a X

tanu = — Cos U = ——=——r sin u = ———.
a’ \/a'+x?’ Va® + x°

The second relation can be used to replace Va* + x* by an expression
involving u alone, namely by a/cos u. But we also have to replace dx and x
and for this purpose, the first relation, which is simplest, is most useful. It
yields x = a tan u, dx = a sec’udu. (So far, our substitutions have usually
expressed u in terms of x, and du in terms of dx. In trigonometric substi-
tutions it is more convenient to express x in terms of u, and dx in terms
of du.) Then

1

. 1
—a sectudu = —— | csc udu
a a

1
__d =
jx\/a§+x§ *

atanu*
COos u

(1) = —% In|csc u + cotu| + C (formula 34).

To express the integral in terms of x, read directly from the triangle that

hypotenuse _ Va? + «* adjacent
— = and cotu = —/——
opposite x opposite

a
csCu = =—.
X

Substitute these expressions into (1) to obtain the final answer

1 Va’+x2 a .
dx=—;|n—-—+— +cC.

1

X
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In general, trigonometric substitution applies to integrands containing the expres-
X stons a® + x? (use Fig. 1), a® — x? (use Fig. 2) and x* — a? (use Fig. 3). In each
% case, u can be either of the acute angles in the triangle. If the antidifferentiation
is part of an overall physical problem, it is very likely that the triangle will

already be part of the setup, as the following example illustrates.

Vq* x2

FiG Example 1 A destroyer detects an enemy battleship 8 km due west
R (Fig. 4). The destroyer’s orders are to follow the battleship, always move

toward it, but maintain the 8 km distance between them. The problem is to

find the path of the destroyer if the battleship moves north.
bz A
B

VXL g%

Fle. 3 Veu-oF

INITIAL wmm_
BATTLESHIP DESTROYER
POsSITION PosiTioN

FIG.%

For convenience draw axes so that initially the battleship is at the origin
and the destroyer is at the point (8, 0). Let the unknown path be named
y = f(x). Since the destroyer always moves towards the battleship, it is
characteristic of the destroyer’s path that at any point, the line from the
destroyer D to the battleship B is tangent to the destroyer’s path. Figure 4
shows a typical point (x,f(x)) on the unknown path. To find the unknown
function f{(x), read from the picture that f’(x), the slope of line BD, is
negative, and in particular is — V64 — x*/x. Therefore, to find f(x) we need

_f V64x— x—fdx.

The integral can be found with formula 21, but we’ll practice with tri-
gonometric substitution (which was used to derive formula 21 in the first
place). The problem already contains a suggestive right triangle; let u be
one of its acute angles. From the triangle, tan u = V64 — x°/x so the entire
integrand becomes tan u. We also have cos u = x/8, so x = 8 cos u,
dx = —8 sin udu. Therefore,
f V64 — x° sin’u
x cos u

dx=—[tanu--85inudu=8] du.

We can continue with formula 52c in the tables, or with the identity
sinu + cos®s = 1 as follows:
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" 2
_j\/64 xi:=8[l cos'u
x cos u

2,
= 8]( L _cos u) du  (by algebra)

Cos u Cos u

= 8f(secu — cos u) du

=8 In(secu + tanu) — 8sinu + C
(by formula 33).

(The absolute values in formula 33 may be omitted because sec « and tan u
are positive in this problem.) To finish the substitution and express the
answer in terms of x, read sec u, tan u and sin u from the triangle to get

64 — x2
@ 81n<%+\/6—4xi)—\/54—x2+c.
The function f(x) must have the form of (2). To determine C, note that the
point (8, 0) is on the graph, that is, f(8) = 0. Thus if x is set equal to 8 in (2),
theresultmustbe0.S00 = 81In 1 — 0 + C. Therefore C = 0 and the path
1s y = 8 1n(M—_x

- ) - V64 - x? (an example of a curve called
a tractrix).

Problems for Section 7.7

1. Derive the formulas in the tables for

@ f—xv_,‘-i-"__,—a (b)f\/,?—_x’dx (c)f-————'“:’“k

2.J’\/S—Jz!

x!

dx

s [
") xVET -5

dx
. [t

dx
5. f (@ + x)*?

7.8 Choosing a Method

So far, the chapter has dealt with one method at a time. A list of
miscellaneous problems is more forbidding, especially since there is no
definite set of rules for deciding which method to use. If you have access
to a large set of tables, they will be a great comfort. If a function is not listed
in the tables, we have a few suggestions.

Incomplete list of imperfect strategies (a) Complete the square if the
problem involves ax? + bx + ¢ but the only similar formula in the tables
does not contain the term x.
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(b) Substitute if there is an expression in the integrand whose deriva-
tive is also a factor in the integrand. Substitutions might (unpredictably)
work in other situations too.

(c) Use long division on improper fractions.

(d) Decompose proper fractions if they aren’t in the tables.

(e) Use integration by parts to get recursion formulas. Integration by
parts may also work when other methods don’t seem to apply.

(f) If a problem involving a? = x? or x* — a? is not in the tables, try
trigonometric substitution.

The perfect strategy The reason that we, the authors, can find anti-
derivatives is that we have already done so many. Almost any reasonable
problem, suitable for a calculus course, is either one we have seen before or
similar to one we have seen before. We don’t have a secret weapon or inborn
ability or a strict set of rules. Our real strategy is second sight, and it comes
from practice.

Problems for Section 7.8

Outline a method for finding each antiderivative.

1 JSInv;dx 15. f———l————-—;dx
Vx (x+3x+1)
x I -x
2 | o)k
1 'cos‘x
3 IS +x2dx 17. sin%
1 f ,
4. j\/?:c—+3 dx 18. | sin mxdx
1
_ )20
5. fx(x 1)*dx 19. j————(sx " l)gdx
1 J' x?
G.f—;dx 20. | oo
7. jx * ix]+ 3dx 21. flanx sin’x dx
X
dx
8.[ dx 22.] —_—
V4 - x xV3 - x2
9, j(?x + 9)dx 23. f(g + 4x)*dx
10 I;dx 24 f L g
YRV g—— * ] cos’x
VxZI - 4
1. f—l—-dx 25. {%dx
x(x + 1) x
.3
12, f?um Sxdx 26. f M e
cos'x
1 x? -4
o[ [Pt
x(x + l)’dx 2 x?

14, I—de

x

28. [ sec’x dx



1
29'f2x+ldx

30. ]x sin x? dx

31. Isec‘xdx
32. fx’ sin xdx
o
R T
34, fe"dx

x
35'j2x+3dx

36. f sin 5xdx

37. er? — 12 dr
cos’x
-
39. f sin®x dx

38. dx
40. [ 2dx

41. f5 sec 2x dx

+
42.[2" 3 i

X

43. f sin 3x cos 2xdx
44, j sin & dx
T

45, J' cos 2x sin 2xdx

6. [ s
] f(x +x3)_(x

-9
1 dx

48. J.x’\/x’ + 7 dx

47

4. f smzx &
cos®x

50. fx sin” 'xdx

51. fxe""dx

78 Choosing a Method -

1
. dx
s [

53. f xe” dx

54, I SN e
COS X

1
55.j—dx
Vet -5

56. fS tan(3 — 2x)dx

57.jv3—xdx

(e~ 1) a

1
59.[ ——— dx
et +e

60. f tan x cos’xdx
61. f\“!—?x’dx
GZ.fo!—x+3dx

3
63'jx2+x+ldx

64. f7 In(4x + 5)dx

65. Iemdo
1+ 2
R

67. ]’x"\/i’ox§ - ldx
68. fsin‘xdx

69. J cos®x sin’xdx

sin 2x

.
71. j(l + ¢")?dx
72. ]sinsxdx
73 f;w:
Ve =T

sin 2x
74- f —
9 — cos*2x dx

211
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75 f .f 3
o :))(l = dx 81. | x* sin xdx
76f 2 + 3x)*dx szf sin x
(2 + cos x)?
71. f sin 3xdx 83. fcostdx
3
78. f2L+X“l 84.fcosxdx
79. J(ln x)* dx 85. jcoszx sin xdx
80. [lan“"%xd,\

7.9 Combining Techniques of Antidifferentiation with the
Fundamental Theorem

By the Fundamental Theorem of Section 5.3, to find the (definite)
integral [% f(x) dx, we first try to find the antiderivative (indefinite |nlegral)
F(x) = [ fx) dx and then compute F(b) — F(a). This can be done in two
separate steps, or to save time and paper, the two steps can be combined as
shown in this section.

Combmmg substitution and the Fundamental Theorem Consider
J3x? cos x* dx. We'll begin by finding an antiderivative for the integrand as
afirststep, apply the Fundamental Theorem in a second step, and then see
how to merge the two. To antidifferentiate, substitute

(1) u=x% du=3x%dx.
Then

. ' | | | B
fxzcosx“dx=-§fcosu(1u =3 sinu +C =—3-smx"+C.

Any antiderivative may be used in applying the Fundamental Theorem;
with the antiderivative 1 sin x*, we have
X}

. | R
jxl cos x*dx = — sin x*
2

1 . .
3 \ = —3-(sm 27 — sin 8).

To accomplish this in one step, use the substitution in (1) to express the

integrand in terms of u, and write the limits of integration in terms of u. If x = 2

thenu = 8 if x = 3 then u = 27. Thus
’ 1 1 ¥

(2) jx"’ cos x*dx = —[ cos udu = —sinu| = —(sin 27 — sin 8).
2 3 Jy 3 s 3

Switching to u limits produces the same answer as before, but in less space.

Note the difference between a substitution in [ f(x)dx versus [ f(x) dx.

For the former, we must eventually change back from u to x so that the final

antiderivative is expressed as a function of x. But in (2), the new integral

[% cos udu computes to be a number, and there is no “changing back” to

be done.
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N
Example 1 Find J; 5~ ox dx.

Solution: Letu =5 — 2x,du = —2dx. If x = 7thenu = =9;ifx — =
then u & —x=. Therefore

R P[] 1 -
R T
(3) 75_2xdx 5 _gudu 2ln|u| .
1 1
= —Elnx+§ln9= -,
Note that after the substitution, the lower limit ¥ = =9 is larger than
the upper limit ¥ = —x, that is, the limits are backwards. This causes no

difficulty. Simply continue with F (b) — F (a), which still holds even for back-
ward limits.

Warning When substituting in a (definite) integral, the limits of integra-
tion must be changed to new u limits. In (3), it is not correct to write

x l £ l £ l 1 .

L - 2xdx = —%L ;du orJ'7 5o 2xdx = —%fa-du. The original x
limits cannot be retained, nor can they be dropped in the middle of a
problem (even if you intend to restore them later).

Example 2 Without evaluating either integral, show that
3 3
je‘ sin(3 — x)dx = f €37 sin xdx.
0 0

Solution: Letu = 3 — x,du = —dx. Ifx = Othenu = 3;ifx = 3 then
u = 0. Since u = 3 — x, we have x = 3 — u. Therefore

3 0
fe‘ sin(3 — x)dx = —jes'" sin udu (substitution)
0 3

= I:ea"‘ sin udu (use J:f(x)dx = -—ff(x) dx)

3
= je"" sin x dx
0

(change the dummy variable from u to x).

The last step often bothers students. Remember that [§¢*™ sin udu is a
number; the letter u is a dummy variable. We can write the integral as
f3e3 " sin tdt or [}e* sin ada or (as we did) [} sin xdx. All of these
stand for the same number.

Combining integration by parts with the Fundamental Theorem To find
x sec’xdx, let u = x, dv = sec’xdx. Then du = dx, v = tan x and

w4 m4

w4
T
- f tan xdx = il In|cos x|
0

nl4
f x secxxdx = x tan x
0

0 [}

T 1
—74’ ln?\@
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The limits of integration do not change in the process. More generally, the
integration by parts rule for (definite) integrals, as opposed to anti-
derivatives (indefinite integrals) is
b b
- f vdu.

b
judv = v

a

Problems for Section 7.9

1. For each integral, perform the indicated substitution, and then stop after
reaching an integral involving only u.

(a) j sin®xdx, u = 3x
2

(b) j’. sin(ln x) dx, u=Inx
]

S
7\ 4 x‘ -4
(0 j = dx,  u is the angle indicated in Fig. 1
u 2 X
VZ_ g 2. Evaluate the integral.
e ! 3t )0 S "(In x)°
FIG. | @ | x(3x* = 1)"dx (b) | e ™ cos xdx (c) " dx
2 0 |

d) j sin’x cos’xdx (e) f x%e*" dx ) j-x\/x' + 4 dx
2 -s (]
3. Show that the integrals are equal without evaluating them.

1 !
(a) jx"‘(l - x)"dx = [x"(] - x)"dx
0 ‘0
1 30
(b) | (x + 20)*dx =f x?dx
o 20

2 b
(c)f\sinixdx=2j\/sinxdx
2a 2 v

3 3
4. Given that f —x—dx = k, find fx In In xdx in terms of k.
2 In x 2

REVIEW PROBLEMS FOR CHAPTER 7

1. Find f A dx

H

(a) directly from the tables (b) by ordinary substitution
(c) with a trigonometric substitution (d) by integration by parts

1
2. Fi —_—
2 Fmd[(x Ty _4)dx

(a) using substitution and formula 9

(b) by completing the square and using formula 18
(c) directlv from the tables

(d) by partial fractions
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3. Indicate a method.
@ [ersnxa w [ e
a) |e* sinx -

1 . x+3
(b)[3x+4dx @ f x dx

2 + 1

1 .
(c) fﬁ-dx §)] s

2

d ] —X o« f —X
@iy Wil
(e) flan23xdx ()} ]—-é\/_xlr_Txdx

e 1
(f) fe dx (m)fx._,(l_‘_x)dx
® j —l'dx (n) f — dx
& ) 5% R
4. Find j sin 3x sin 5xdx
(@) directly from the tables
(b) with the identity sin x sin y = Hcos(x — ¥) — cos(x + )]

(c) with integration by parts

w3 s
5. lff " sec’xdx = Q, find f ¢ tan xdx in terms of Q.
0 0

'
6. Find jx(2 + x%)°dx.
0

7. Find

(a) jsin xdx ) Isin"x cos’x dx
(b) I sin®xdx ®) I %dx

() jsin’xdx (h) j%dx

(d) jsinxcosxdx (i) I%
X

(e I sin’x cos xdx

215
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8.1 Introduction

In precalculus mathematics, addition can only be done with finitely
many numbers. Addition of this type is very concrete: 3 + 4 = 7 because
a pile of 3 apples merged with a pile of 4 apples becomes a pile of 7 apples.
Addition of infinitely many numbers is physically impossible in the apple
sense, but this chapter presents a sensible mathematical definition and its
consequences. The first application is in the next section, and the main
applications are in Sections 8.6 and 8.7.

Series and their sums The symbola, + a; + a5 + ---is called a series with
termsay,ag,as, - -. Theseriesis alsowrittenas 2, _, a,. Frequently we will use
Za, as an abbreviation. The partial sums of the series are

Sl=a1
S =a, + a,
(l) S,=al+a2+a3

If the partial sums approach a number §, that is, if
() lim S, =§,

we call § the sum of the series, and write 2 a, = S. In this case the series is
called convergent; in particular, it converges to S. The definition of the sum of
a series says to start adding and see where the subtotals are heading.

If the partial sums do not approach a number, the series is divergent.
There are three types of divergence. If the partial sums approach =, we say
that the series diverges to », and write X a, = . Similarly, if the partial sums
approach —, the series diverges to —, and £ a, = —. If the partial sums
oscillate so vigorously that they approach neither a limit, nor «, nor —, we
simply say that the series diverges.

Example 1 Theseries] —2+1-3+1-4+1-5+ - divergesto
—, since the partial sums are 1,-1,0, -3, -2,-6, -5, —10, -+ which ap-

proach —. In other words,1 —2+1-3+1-4+1-5+ .-+ = -0,
Example 2 Consider i(l)n =—l-+l+-l—+i+ -++. The partial
2 2 4 8 16

sums are n=l

217
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1
Sl—'E

1 1 3
=— 4 — = —
52244

1 1 1 7
=—+—+—=—=—
832488
S—intl+l+l=l—5
79 4 8 16 16

Since lim,.. S, = 1, the series has sum 1, that is, the series converges to 1,
and we write 2., (3) = 1. (If you eat half a pie, then half of the remaining
half-portion, then half of the still remaining quarter-portion, and so on, you
are on your way to eating the entire pie.)

Warning If the sum of a series is S, it is not necessarily true that S is ever
reached as term after term is added in. In the preceding example, if we start
adding %,%,%, --- we will never reach 1. But the subtotals are getting closer
and closer to 1, so the definition calls 1 the sum.

Example 3 Consider the series
(3) 2-2+4+2-242-2+---.

The partial sums are §; = 2,5, = 0,85 = 2,5, = 0,---. They do not have a
limit as n — =, so the series does not have a sum,; it diverges.

This example often disturbs students. Some would like the answer to
be either 2 or —2 depending on whether the “last” term is odd or even
numbered. But there is no last term; they just keep coming. Some would
like the answer to be 0 because they visualize the series grouped into pairs
and turned into

4 @2-292+@2-29+@2-2)+:--=0+0+0+0+---.
Some would like the answer to be 2 because they group the terms into
(5) 2+(-2+2)+(-2+2)+--=24+0+0+0+---.

It is true that the series in (4) converges to 0 because the partial sums are
all 0, and the series in (5) converges to 2 because the partial sums are all 2.
But they are not the same as the original divergent series in (3), whose
partial sums oscillate between 0 and 2.

Grouping a string of 10 numbers has no effect on their sum. But this
example illustrates that grouping the terms of a series may produce a new
series with a different sum.

Factoring a series For a sum of two numbers we have the factoring prin-
ciple ex + ¢y = c(x + y). Similarly, it can easily be shown that
(6) cay +cag+cas+cas+ - =clay tag+as+ast--),

or equivalently, ¥ca, = ¢ £a, (we assume ¢ # 0). The equation in (6)
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is intended to mean that either the series ca, + ca; + cas + -+ and
a, + a; + as + - both converge, in which case the first sum is ¢ times the
second, or both diverge.
For example,
1 1 1

1 1 1 1 1
3T+TT+§T+—1-6T+"'—T(E+T+§+E+"°)
T

Term by term addition of two convergent series It is not hard to show
that if £ a, converges to A and X b, converges to B, then X (a, + b,) con-
verges to A + B. In abbreviated form, £ (a, + b,) = Za, + Zb,.
We offer a numerical illustration although the principle is more useful
for theory than for computation. Since Example 2 showed that
1 1 1 1

—t—— 4 — 4 e =
2 4 8 16 b

and the next section (Problem 2) will show that

1 1 1 1 1

——— et ——— = —,

4 16 64 256 5
we may add termwise to obtain

3,33, B ,..._8

4 16 64 256 5

Dropping initial terms It can easily be shown that if the first three terms
of 2._, a, are dropped, then the new series 2._, a, and the original series
will both converge or both diverge. In other words, chopping off the begin-
ning of a series doesn’t change convergence or divergence. Of course,
dropping terms will change the sum of a convergent series.

Dropping terms is useful if a series doesn’t begin to exhibit a pattern
until say the 100th term. In that case, it is convenient to drop the first
99 terms when the series is tested for divergence versus convergence.

For example, the series 6 + 100 + 2+ 3 + 3+ { +§ + & + -+ con-
verges because if the first four terms are dropped, the remainder is the
convergent series in Example 2. In particular, the sum of the remaining
terms is 1, so the sum of the original seriesis 6 + 100 + 2 + 3 + 1, or 112.

Problems for Section 8.1

1. Write the first three terms of the series.

. . .
@ X (-1 ®) 3 nl,

n=3 271 + l =l

2. Decide if the series converges or diverges.

1 1 1 1 1
1-24+%3-4+5—-6+--- —t —t — 4 — =+ -
(a) 3 5-6 (b)2 7 t3t3 2+

3. Find the terms and the sum of the series given the following partial sums.

(a) S,=n () S,.=1foraln
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4. Find the sum of the series 2, (—l- -
n n+l

partial sums until you see the pattern.

5. There is no term-by-term addition principle for two divergent series; that s,
their term-by-term sum is unpredictable. Prove this by finding two divergent series
whose term-by-term sum also diverges, and two other divergent series whose term-
by-term sum converges.

6. If 2 a, has partial sums S, then Si00 = Sg9 = Gunal?

) by slowly writing out some

nm]

8.2 Geometric Series

One particular type of series, called geometric, occurs often in applica-
tions, and is easy to sum.

Definition of a geometric series A series of the form

atart+al+art+art+., a#0,

is called a geometric series with ratio r. The series is also denoted by «-.yar".
Each term of a geometric series is obtained from the preceding term by
multiplying by 7.

For example, 5 + 15 + 45 + 135 + ---is geometric witha = 5,r = 3.

Geometric series test Not onlyisthere a simple criterion for convergence,
but if the series converges, the sum can easily be found. We will show:

(A) Ifr=1orr =< -1then J ar" diverges.
n=0
(B) If -1 <r <1 then Y ar converges to 1 2 -
n=0 -

To illustrate why (A) holds, we'll look at some series with r = 1 or
r = —1. For example, the series 2 + 2 + 2 + 2 + --- has+ = 1 and di-
verges to «; the series 1 + 2 + 4 + 8 + -+~ has r = 2 and diverges to x.
The series 1 — 2+ 4 — 8 + -+ has r = —2 and diverges because the
partial sums oscillate wildly.

To prove (B) we will find a formula for the partial sums S, and examine
the limit as n — . We have

(1 Ss=a+ar+ar’+ard+ .- +arl,
Multiply by 7 to obtain
(2) rSe=ar +ar*+ar’+ -+ ar" + ar.
Subtract (2) from (1) to get

(1-7rS,=a - ar
Finally, divide by 1 — r, assuming r # 1, to get

_a—ar

S, =,
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If n > oand -1 <r <1, then r*— 0. Therefore

a — ar" a

lim S, = lim for-1<r<1,

neo ne® -r l -r

and the series converges to a/(1 - r).

For example, the series 3 — ¥ + % — 5 + --- converges since
r = —1/5, which is strictly between —1 and 1. The sum § is given by
a 3 15 5
s = = -2 5

1-7 1)?
1= (-5

Application Consider a game in which players A and B take turns tossing
one die, with A going first. The winner of the game is the first player to
throw a 4. We want to find the probability that A wins.

Player A wins if A throws a 4 immediately or the results are

(3) non-4 for A, non-4 for B, 4 for A
or

(4) non-4 for A, non-4 for B, non-4 for A, non-4 for B, 4 for A
and so on.

Note that the probability of a non-4 on any toss is 3 and the probability
of a 4 is §. Therefore the probability that A throws a 4 immediately is 3.
To find the probability of (3), consider that in five-sixths of the games, A
begins by throwing a non-4; then in five-sixths of those games, B continues
by tossing a non-4; and in one-sixth of those games A follows with a 4.
Therefore the probability of (3) is the product  x § X 4, that is (3)?4. Simi-
larly, the probability of (4) is §)*3. Therefore the probability that A wins
is + 2@+ 3®@* + 4@° + ---. The series is geometric with a =  and
r = (})? and its sum is a/(1 — ), or £. So the probability that A wins is L.

Problems for Section 8.2

Decide if the series converges or diverges. If a series converges, find its sum.

Lo-l 4t - dh 6l+l(2)2+3—(2)4+l(3)6+..,
' 6 36 216 2773 33 T35
1 1 1 1
"7 6tea mt O . -
23 6 e = 7..1 + .01 +.001 + .0001
3 9 927 8l w
=t =+ =+ =+ . H 2n
I IA TR 8 E(sm 8)™ for a fixed 8
4.3+9+27+81+-- 9.3 2lm

n-n"
5.3 L
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8.3 Convergence Tests for Positive Series I

It is important to be able to decide if a given series converges or
diverges, and if it converges, we want the sum. We were extraordinarily
successful with geometric series, but we will not be so lucky otherwise. This
section begins to collect tests for convergence versus divergence. No test
supplies an absolute criterion, a condition that is both necessary and suf-
ficient for convergence, and consequently more than one test may have to
be tried. Furthermore, even if a series is identified as convergent, it is
usually too difficult to find the sum. We often settle for an approximation
to the sum, obtained by adding some of the terms of the series.

The series that arise most frequently in applications either have all
positive terms or else terms that alternate in sign, so we concentrate on these
types in the next three sections.

Positive series A series with all positive terms is called a positive series. As
a by-product of studying positive series, we will be able to test series with all
negative terms as well, since in that case a factor of —1 can be pulled out,
leaving a positive series. A series which has some negative terms, but be-
comes positive after say a0, counts as a positive series, since the first 1000
terms can be dropped in testing for convergence versus divergence.

Since the partial sums of a positive series are increasing, a positive
series will either converge or else diverge to . The size of the terms of a
positive series 2 a, determines whether the series converges or diverges. If
the series is to converge, the terms a, must approach 0 and furthermore, must
approach 0 rapidly enough. Otherwise, the subtotals will be dragged to o and the
series will diverge to . For example, if a, approaches 3, rather than 0, then
eventually the series is adding terms near 3, such as

(1) 29+ 299 + 3.002 + ---

and will diverge to . As another example, consider the series

+—+—+—+

N)I-—-

1 1 1 1 1
— + — — — —
(2) 2 4 4 4 4
[ S — e
two terms four terms

—

LIS S SIS L NI SR SV LI SR T
88 8 8 8 8 8 8 16 16

eight terms sixteen terms

The series diverges because S = 1,:++, §=2,-++, §);, =3,-++, and
§, = =. The terms of the series do approach 0, but not rapidly enough. On
the other hand,

3 _l_ + l + .l_ + L 4 e

) 2 4 8 16

is geometric (r = 1/2) and converges. Its terms approach 0 rapidly enough.
Our general conclusions may be rephrased in the following four

statements.
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nth term test Let X a, be a positive series.

(A) If a, doesn’t approach 0 then X a, diverges to = (e.g., (1)).
(B) If £ a, converges then a, = 0.

(Part (B) follows from (A): Suppose 2 a, converges. If a, does not approach
0 then, by (A), 2 a, diverges, contradicting the hypothesis. Thus a, must
approach 0. In fact, (A) and (B) are logically equivalent, since (A) similarly
follows from (B).)

(C) If a, — 0 then X a, may converge (see (3)) or may diverge (see
(2)). Convergence of the series depends on whether a, approaches 0
rapidly enough. More testing will be necessary to decide.

(D) If Z a, diverges then a, may or may not approach 0. Either a,
does not approach 0 at all (see (1)), or a, approaches 0 too slowly (see (2)).

2
Example 1 Consider Y, %—;’4_—5 By the highest power rule (Section 2.3),
lim
we 3n% + 2
nth term test. In particular, it diverges to .

= 1/3, which is nonzero. Therefore the series diverges by the

Warning Don'’t confuse the limit 1/3 with the sum of the series. The terms
approach 1/3, but the sum of the terms is «.

2
n‘+n .
Example 2 Test 2 m for convergence versus divergence.
n

i+
Solution: By the highest power rule, lim 2" = 0.Butuntil we can

n+po 4ﬂ3 + 6
decide if the terms approach 0 rapidly enough, the series can’t be categorized.

Additional procedures will be necessary before we can finish this example
(Section 8.4).

Warning The nth term test is only a test for divergence. When a, does not
approach 0, the test concludes that the series diverges, but the test can never
be used to conclude that a series converges. The nth term test is a crude
weapon. It identifies the grossly divergent series, where a, does not
approach 0. But if a series passes the nth term test, that is, a, = 0, then
the only conclusion is that the series has a chance to converge ((3) does but
(2) doesn’t), and more refined tests must be applied.

Comparison test Suppose a positive series has terms that approach 0. One
of the ways to decide if the terms approach 0 rapidly enough is to compare
them as follows with the terms of a series already categorized.

Suppose £ a, and X b, are positive series, and a, < b, for all n. If 2 b,
converges, then X a, converges. If Z a, diverges to «, then X b, diverges
to . Thus, if the series with larger terms converges, then the series with smaller
terms converges also. If the series with smaller terms diverges to ®, then the series
with larger terms also diverges to .
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5)

The comparison test isn't useful unless the terms of a given series
can be compared with those of a series already known to be convergent or
known to be divergent. Therefore our next task is to produce a collection of
known standard series, important in their own right and useful for com-
parison purposes.

Standard series Section 4.3 listed some functions in increasing order of
magnitude. The following expanded version of that list, with x replaced by
n (representing a nonnegative integer) will be helpful.

4) Inn,(nn?(nnpd,---,Va,n,n¥n,---, (%) ,2" 100, - -, !

The new entry in (4) is the function n!. Remember that n! is defined as the
product n(n — 1)(n — 2)---1, so that, for example, 5! =5 X 4 x 3 x
2 X 1 = 120. As a special case, 1! and 0! are both defined to be 1. To see
that n! is indeed of a higher order of magnitude than 100", consider the
quotient 100"/n! say for n = 200:

1002 _ (100- 100 ----- 100\(100- 100 - 100 - --- - 100\
200! 1-2--.--100 /\101-102- 103 - ----200/"

We have written the result as the product of two factors; note that the
second factor is very small. As n — %, we may continue to write 100"/n! as
the product of two factors, one remaining fixed and the other approaching
0. Therefore 100"/n! approaches 0, showing that n! grows faster than 100"
Similarly, it may be shown that n! has a higher order of magnitude than any
exponential function b".

Next, consider the reciprocals of the functions in (4):

IS S NS S W W U N WO SOS B
Inn’(In n)’(Inn)®’  'Va 'n'n¥' 2’23’ (1.5)"°2°°100"" ’n!’
The entries in (5) approach 0 as n — =, as opposed to (4) where the entries
approach ». Section 4.3 discussed orders of magnitude for functions which
approach «. Similar ideas hold for functions approaching 0. If a, and b,
both approach 0 as n — =, their quotient takes on the indeterminate form
0/0, and its value depends on the particular a, and b,. If a,/b, = =, or
equivalently b,/a, — 0, we say that a, approaches 0 more slowly than b, and
has a higher order of magnitude than b,. If a,/b, — L, where L is a positive
number, (not 0 or ) then a, and b, are said to have the same order of
magnitude. The orders of magnitude in (5) decrease reading from left to
right. Equivalently, the entries in (5) approach 0 more rapidly reading from left
b right.

Finally, consider the series in Table 1, corresponding to the terms in
(5). Some, such as $1/2", are geometric series. The series of the form
S 1/n? are called p-series. For example, 21/n? =1+ {+3+ 5+ ---isa
p-series with p = 2. The p-series with p = 1,

1 1,1 1
Z;— IT+g g+t

is called the harmonic series. All the series in the table are given a chance to
converge by the nth term test, since their terms do approach 0 as n — .
When the terms approach 0 slowly, the series will diverge; when the terms
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Table 1 Standard Series

Diverge Converge
1 1 1 1 1 1 1 1 1
Eln_nrzm’.“,z\/rjvz;1 ')znsmyzn2r'“,2(l—.5-)-n,2—2—nr !Zn!
1 1 1 n
E(_lm’ 2;,0<psl Zﬁ,p>l Srmo<r<l
p-series p-series geometric series

approach 0 rapidly, the series will converge. We will show at the end of the
section that a p-series converges if p > 1 and diverges if p < 1; in particular, the
harmonic series diverges. Thus the dividing line in Table 1 comesafter X 1/n.
The series in the table to the left of the series = 1/n have terms which are
respectively larger than 1/n so they too diverge, by comparison. Similarly,
the series to the right of the convergent p-series where p > 1 converge by
comparison with their neighbors on the left, since they have correspond-
ingly smaller terms. (Table 1 does not contain all series. In particular, there
are divergent series between T 1/n and the dividing line, albeit not p-series,
and there are convergent series between the dividing line and the p-series
with p > 1. There is no “last” series before the line and no first series after
the line.)
1 1 1

For example, 3, -—\‘-/!_n— =1+ Vs +—=+ Vi + «++is a p-series with

(]

p = 1, and diverges.

Warning Don’t confuse a p-series such as
1 1 1 1 1
—=l4+—-+—=+—+—+--
2 n® ! 8 27 64 125

with a geometric series such as

(p = 3, series converges)

1 1 1 1 1 1 . )
_— = + — —_— —_— — 4 - — .
>, 3 1 3 + 9 + 27 + 81 (r 3 » series converges

Example 3 TestE% =1+ % + T217 + 2—513 + --- for convergence versus
divergence.

Solution: The series is not a p-series because the exponent n is not
fixed, and is not a-geometric series because the base n is not fixed. However,
it can be successfully compared to either type. If n > 2, the termsof 3 1/n"
are respectively less than those of the convergent p-series = 1/n? =
1+5+§+%+ -, that is 1/n" < 1/n? for n > 2. Therefore X 1/n"
converges by the comparison test.

Subseries of a positive convergent series If = a, is a positive convergent
series, then every subseries also converges. In other words, if the original
terms produce a finite sum then any subcollection will also produce a finite sum. For
example, 1 + { + § + 3 + & + --- converges since it consists of every
other term of the convergent p-series T 1/n’.
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FIG. |

Proof of the p-series principle We conclude the section with a proof that
a p-series converges for p > 1 and diverges for p =< 1.

We'll begin with the case of p = 2, that is, with £ 1/n2 The trick is to
assign geometric significance to the terms of the series using the graph of
1/x? and the rectangles in Fig. 1. The first rectangle has base 1 and height
1, soarea A, is%. Similarly, A, = 3, As = 1, and so on. Therefore,

1 1 1 1

—=1l+—+—+—=+-=1+A + A+ A +---.
(6)21:’14916 LA+ 4.+ 4
But the sum of the rectangular areasin Fig. 1isless than the area under the
graph of 1/x2forx = 1, so

=1.

(7) A,+A2+A3+---<fl2dx=—i
1 X X

Therefore, by (6) and (7), Z 1/n? converges (to a sum which is less than 2).
The general proof for £ 1/nf, p > 1, is similar, but with the exponent
2 replaced by p.
Next, consider the case where p = 1. As a first attempt, see the graph
of 1/x in Fig. 2 which shows that
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+"'=1+B1+B?+BS+“"

1
4

The area B, + By + Bs + -+ is less than the total area under the graph of
1/x, x = 1. The latter area is [5(1/x)dx = In x|} = . But this is useless
since it does not reveal if the smaller area B, + B, + B; + - is finite or
infinite. As a second attempt, consult Fig. 3 to see that

1 111

—_— =]t —F—F—F .-
Zo=ltotgryg
’=ao_
1

C,+CQ+C,+---2j%dx=lnx
1

Therefore, the second attempt shows that £ 1/n diverges to .

Finally, the p-series with p <1 (which are to the left of 1/n in
Table 1) diverge by comparison with X 1/n, since their terms are re-
spectively larger.

Problems for Section 8.3

1. Suppose Z a, is a positive series. Decide if the statement is true or false.

(@) If a, = O then Za, converges. (c) If a, diverges then a, does not
(b) If a, does not approach 0 then approach 0.
2 a, diverges. (d) If 2 a, converges then a, — 0.

2. What conclusion can you draw from the nth term test about the convergence
or divergence of the series?

] 2
@ISz &%

3. In Problems (a)-(q), decide if the series converges or diverges.

@iedel Lo L
3 9 27 8l V3 Vi 5
<b)1+l+'+l+l+--- d) V3+Va+V5+V6+--

4 9 16 25
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3 3 3 11
(e)§+a+7—!+--~ ) _5+§+65+.“
U T S 11
fy —+ — —_ _ —_ 4 — —
A AR T m &+t
N B U NN T N
¥ 353 "5 VI ™ttt
(h)5+6+l+—l+—l-+l+-~ (l>2+(i>2+(1>2
6 7 8 9 © \3 9 10
3 4 5 6 7 1\2
—t — 4 = = — 4 . —
W gty sty +(11>+
. 1 r.r. 1 ..
0)] 2-2-",7 ® 8+88+888+
1 1 1 1
— _+_ Y
) 3 @ gtatat

4. Suppose T a, is a positive convergent series. Decide, if possible, if each of the
following series converges or diverges.

1 n
@ 2 - (b) E% © Xnlan  (d) D cosan

8.4 Convergence Tests for Positive Series II

This section continues with two more tests for positive series.

Limit comparison test We'll begin with a preliminary example to intro-
duce the idea behind the test. You may prefer to skip directly to the test
itself (next page) which most students find plausible without proof. Con-
siderthe seriesZ 1/(2n + 3). Since T 1/n diverges, it might appear that we
can test the given series by comparison. But 2n + 3 > n, so

1 <_l-
2n +3 n

(1

which is not a useful inequality; if the terms of a series are respectively
smaller than the terms of a divergent series, no conclusion can be drawn.
However, we can find another comparison by first finding a limit. We have

. 1/@2n +3) . n 1.
= l = - .
(2) I:T m :T on 3 (by algebra) 2 (highest power rule)
Numbers which approach 1/2 must eventually go above and remain
+
above .4, so eventually l/(2l+n3) > 4.
Thus, eventually,
1 4
3 >—.
4) 2n+3 n

But the series 3 .4/n is 4 X 1/n, which diverges (harmonic series). There-
fore, £1/(2n + 3) diverges by comparison with Z.4/n.

Let’s summarize the results. Although the original comparison in (1)
did not help, the impulse to compare the given series with £ 1/n was sound,
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and in (3), we found a useful comparison with a multiple of T 1/n. The
procedure worked because the limit in (2) was a positive number rather
than 0 or ». In essence, £ 1/(2n + 3) divergesbecause 1/(2n + 3) and 1/n
have the same order of magnitude and X 1/n diverges. In general, we have
the following limit comparison test.

Suppose that a, and b,, both positive, have the same order of magnitude.
Then T a, and X b, act alike in the sense that either both converge or both diverge.

Intuitively, the test claims that for positive series, if a, and b, have the
same order of magnitude, they are similar enough in size so that £ a, and
2 b, behave alike. The preliminary example showed why this is the case for
21/2n + 3 and £ 1/n. We omit the more general proof.

To apply the limit comparison test to a positive series 2 a,, try to find a standard
series 2 b, such that b, has the same order of magnitude as a,. One way to do this is
to use the fact (whose uninteresting proof we omit) that if a, is a fraction then
a, has the same order of magnitude as the new fraction

term of highest order of magnitude in the numerator
term of highest order of magnitude in the denominator’

For example, (n? + n)/(4n® + 6) has the same order of magnitude as
n2/4n®, or 1/4n. Therefore

n’+n . 1 1 o 1
Zm acts like 24” = 2 E n
Since the latter is the divergent harmonic series, the first series diverges
also.

Ratio test Series such as
nd n’ 3"
(4) 2> o 2 - 2 o

are not standard series, nor can they be compared to standard series via the
limit comparison test. The ratio test is a general method for testing positive
series and is particularly useful for the series in (4). We'll state the test first,
give examples, and then prove it.

. . . . a
Let Za, be a positive series. Consider lim ==

nex Q,
(A) If the limit is less than 1 then I a, converges.
(B) If the limit is either greater than 1 or is » then T a, diverges.
(C) If the limit is 1 then no conclusion can be drawn. Try another test.

For example, consider £ 2"/n!. Then a, = 2*/n!, a,.1 = 2**!/(n + 1)!
and

Gy _ 2%+ 1! 2 ol B
an 2%/n! Tn+ 1) 9 (by algebra) = —— (cancel).
Therefore,
: Qn+ -1 -
l:g) a, -l:mn+l 0.

Since the limit is less than 1, the series £ 2"/n! converges by the ratio test.
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As another example, we'll test Tn?/2". We have
o+ 1) 2 l(n + 1)*_ 1

= = lim—< =—
n“ wex 2

9

. a,ﬂ*',l T
lim — = lim

nex @, nex 2n+l

Since the limit is less than 1, the given series converges by the ratio test.

Proof of the ratio test

(A) We assume that lim, .. a,.,/a, is less than 1. Suppose the limitis .97.
1f the ratios approach .97, eventually they must go below and remain below
.98. We'll discard initial terms until we reach this eventuality, so that we may
consider that all the ratios a,.,/a, under consideration are less than .98.
Then a,.+, < .98a,, and if we imagine multiplying our way from one term
of the series to the next, we have to multiply by something less than .98
each time:

(5) a + as + as + ay t+ -
— ~——— —~—
multiply by less multiply by less multiply by less
than .98 than .98 than .98

The multiples in (5) may all be different, but each is less than .98. If we
multiply by precisely 98 each time we have

(6) a) + .98a, + (.98)201 + (.98)3(1]
,— ———— —_—
multiply by .98 multiply by .98 multiply by .98
4 e

The series in (6) is a convergent geometric series (r = .98), and the terms
in (5) are respectively smaller than the terms in (6). Therefore, (5) con-
verges by comparison.

The proof, in general, is handled in the same way with .97 replaced
by an arbitrary positive number r, » < 1, and .98 by a number between
r and 1.

(B) If a,.1/a, approaches =, or any number greater than 1, then even-
tually a,,, must be larger than a,. Therefore the terms of 2 a, increase and
cannot approach 0, and the series diverges by the nth term test. In fact,
any series in case (B) can more easily be identified as divergent by the nth
term test.

(C) We will produce both convergent and divergent series with
lim,.x a,+,/a, = 1. Consider the harmonic series 2 1/n, which we know
diverges. We have

1
n+1
1

a,+) . n
- = lim e 1.
nex N

lim = lim

nex 4, nex

n

On the other hand, consider I 1/n?, which we know converges. In this case,

2

. a,+) —_ n —
lim — = lim == 1
nex Qa, nsx (n + l).

Since both convergent and divergent series can have ratio limits of 1, such
a limit does not help categorize a series.
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Choosing a test There is no decisive rule for selecting a convergence test.
The more problems you do, the more expert you will become, because
being an “expert” usually means that you have seen the problem, or a
similar problem, before. We have the following recommendations.

1) See if the series is standard or acts like a standard series.

2) Apply the nth term test. Examine a, to see if it approaches 0 (incon-
clusive) or does not approach 0 (series diverges).

These methods are accomplished by a quick inspection of the
series. If the inspection produces no immediate results, keep going.

3) Try the ratio test, especially if a..,/a, looks like it will cancel nicely
so that its limit is easy to find. The ratio test is usually more suc-
cessful with ingredients such as n! or 5" than with sinn or In n.
In particular, it can be used to show that series such as those in
(4) converge.

4) Perhaps the comparison test can be used with your series and a
standard series.

5) As a last resort, you might try using integrals as in the proofs in
Section 8.3 that £ 1/n diverges and X 1/n? converges. Or you
may be able to find a formula for the partial sums as we did for a
geometric series.

There are other tests for convergence that are not included in the
book, but more tests still give no guarantee of success. On the other hand,
you now have enough methods to testmany, although notall, series. In fact,
it is quite possible for more than one method to work in a particular
problem.

So far, this chapter has been mainly concerned with distinguishing
convergent from divergent series. The results will be used in the important
applications beginning in Section 8.6.

Problems for Section 8.4

In Problems 1-35, decide if the series converges or diverges.

1 g\
. o3
1.22712'*'" 9-271 (4)
(2n)! 10
2. (—3n)! 10. 3 -
1 Inn
3. 1. 3 =X
Z /n E\/;
1 -
4.3 — 2. 30t
3 n
n! 9
5.3 )
10" 13 zn+7'
1 1 1 n?
6. —+ —+ —+ - 14. e
V2 Ve V2 25..
1 15. .3 + .03 + .003 + .0003 + ---
(> -
m -2y 1 1-3 1-3:5
16 =+ — + ——— + -
g -L_2_3 _4 3 36 3-6-9
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1 6 92.4-6
1. 3 = 27?3+274' °. “'9‘°8+
! 3! 4!
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36. The harmonic series 1 + 3 + 3 + § + --- diverges to . (a) Show that the
two subseries created by using every other term of the harmonic series also
diverge. (b) Find a subseries that converges.

37. (a) Show that if a,. converges then 3 na, may converge or may diverge.
(b) Show that if £ a,. converges by the ratio test then Z na, also converges.

8.5 Alternating Series
Let a, be positive. A series of the form
(1 2‘1"“ =a —atas—a;t+ -

is called an alternating series. The partial sums of a positive series are in-
creasing, so a positive series either converges or else diverges to =. But the
partial sums of an alternating series rise and fall since terms are alternately
added and subtracted; therefore an alternating series either converges,
diverges to =, diverges to —, or diverges but not to ® or —x. For example,
the series

2) 3-3+3-3+3-3+-.

diverges (but not to » or —x) since the partial sums oscillate from 3 to 0;
the series

(3) 3-4+3-5+3-6+3-7+3-8+---

diverges to —x since the partial sums are 3,-1,2,-3,0,-6,-3,-10,---
which approach —».

There are two major tests for alternating series. We have an nth term test
for divergence which is very similar to the nth term test for positive series.
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(In fact, an nth term test holds for arbitrary series, not necessarily positive
or alternating.) Also there is an alternating series test for convergence.

nth term test Consider the alternating series in (1).

(A) If a, doesn’t approach 0 then the series diverges. (The partial sums
oscillate but are not damped, and hence do not approach a
limit—see (2) and (3).)

(B) If the series converges then a, — 0.

(C) If a, does approach 0 then the alternating series may converge or
may diverge. More testing will be necessary to make a decision.

(D) If the series diverges then a, may or may not approach 0.

As before, the nth term test is only a test for divergence. When a, does not
approach 0, the test concludes that the series diverges, but the test can never
be used to conclude that a series converges. Again, it identifies the grossly
divergent series.

Alternating series test The alternating harmonic series

N N
2 3 4
passes the nth term test, and as an introduction to the next test we
will show that the series converges. Furthermore, although we can’t find the
sum, we can do the next best thing by producing a bound on the error when
a partial sum is used to approximate the sum of the series. Then we will
state the alternating series test in general.

Consider the partial sums, plotted on a number line in Fig. 1. Begin
with §; = 1. Move down 3 to plot Sy; move up 3 to get Ss; move down §
to locate S,; and so on. As successive terms are added and subtracted, the
swing of oscillation of the partial sums is (consistently) decreasing because
each new term added or subtracted is less than the one before. Figure 1 suggests
that the partial sums oscillate their way to a limit § between 0
and 1. (Surprisingly, the formal proof requires quite sophisticated mathe-
matics.) In other words, the series converges to a sum S between 0 and the
first term a,. Furthermore, note that S; is above the sum S, but the gap
between S; and § is less than § because subtracting # sends us below S. In
other words, if §; is used to approximate S then the approximation is an
overestimate and the error is less than §. Similarly Ss is an underestimate
and the approximation error is less than 1.

The key to the argument above is that the terms 1,3,3,4, - being
alternately added and subtracted do not merely approach 0 casually but
decrease (steadily) toward 0. If this is not the case, then the alternating series

Ve 51 S“‘ Sbocﬁoouss 53 S.
!
0 % > a;:
<>

H@ I ERROR
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may be (but is not necessarily) divergent. As an example of the latter
possibility, consider
1 1 1 1 1

1 1
—+ —
10 2 100 3 1,000 4 10,000

The numbers 1,1,3, 75, - - - do approach O butdonotdecrease (steadily). They
go up and down and up and down as they wend their way toward 0. The
partial sums of the series in (4) do not oscillate with decreasing swing as in
Fig. 1, and the argument used to show that the alternating harmonic series
converges simply does not apply to (4). As a matter of fact, the positive
terms alone in (4) amount to a harmonic series which diverges to =; the
negative terms alone are a geometric series which converges to —1/9; and
it can be shown that the partial sums are dragged to o by the positive terms.
Hence the series in (4) diverges to =.

If a, not only approaches 0 but decreases (that is, decreases “steadily")
meaning that each term is smaller than the preceding one, then we write
a, | 0. As an example, for the alternating harmonic series we do have
a, | 0 but for the series in (4) we have a, = 0 but not a, | 0. With this
terminology we are ready for the following general conclusions, called the
alternating series test.

4) 1 -

Consider the alternating series T (—1)"*'a,,. Suppose a, 1 0. Then the series
converges to a sum S between 0 and a,.

Furthermore, if the last term of a subtotal involves addition, then the subtotal
is greater than S; if the last term of a subtotal involves subtraction then the subtotal
is less than S. In either case if only the first n terms are used, then the error, the
difference between the subtotal S, and the series sum S, is less than the first term
not considered. In other words, |S — S,| < a,.,.

The nth term test and the alternating series test are adequate to test
most alternating series as follows.

If a, does not approach 0 then the alternating series diverges by the nth term test.

If a, | O then the alternating series converges by the alternating series test. For
most alternating series, one of these two cases occurs.

It is unusual to have a, — 0 and not also have a, | 0 so that neither test
applies. For all practical purposes, if a, — 0 and there aren’t separate formulas for
Goddn ANA Gevenn a5 in (4), then it will also be true that a, | 0. For example, if
a, = n*/2" then not only does a, = 0 but also a, | 0 eventually and
Z(=1)"'n?/2" converges by the alternating series test.

Example 1 Show that the series
Z(—]"”/n'—l—- %_llﬁ"'"'

converges. Bound the error in using the sum of the first three terms to
approximate the sum of the series. Is the approximation an overestimate or
an underestimate?

Solution: Since 1/n? l 0, the series converges by the alternating series
test The partial sum 1 — § + § = % is above the sum S since the last term,
3, was added The error is less than the next term, %. In other words, 3} is
within 7 of the series sum.
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Warning 1. Thealternating series test is just a test for convergence. When
a. | 0, the test concludes that £ (—1)"*'a, converges. But if we do not have
a. | 0, the test does not conclude that the series diverges.

2. If a, and b,, both positive, have the same order of magnitude then
the limit comparison test states that the two positive series 2 a, and 2 b, act
alike. But the two alternating series  (—1)"*'a, and = (—1)"*'b, do not nec-
essarily act alike. It is possible for an alternating series to converge so
gingerly, because of a delicate balance of positive and negative terms, that
another alternating series with terms of the same order of magnitude may
behave differently. In other words, the limit comparison test does not apply
to alternating series.

Absolute convergence Another way to test the alternating series
(5) a—ay+as—aq+a, —ag+ -+, wherea,>0,

is to remove the alternating signs and test the positive series

(6) a,tay+tayst+a t+astagt -

We will prove that if (6) converges then (5) also converges. For the proof,
consider the two new series

(7 a;+0+a+0+a;,+0+a,+0+--
and
(8) 0+a,+0+a,+0+a+0+ag+---

The terms in (7) and (8) are positive (and zero), and in each case are
respectively less than or equal to the terms of (6). Since (6) converges by
hypothesis, the series in (7) and (8) converge by the comparison test. If (8)
is multiplied by —1, it still converges, by the factoring rule in Section 8.1,
and the sum of (7) and —(8) converges by the term by term addition rule
in that section. But (7) — (8) is (5), so (3) converges.

More generally, a similar proof can show that for any series (with any
pattern of signs),

9) if 2 la.| converges then 3, a, converges.

If 2 |a.| converges then the original series Z a, is called absolutely convergent,
so (9) shows that absolute convergence implies convergence.

For example, | —§ —{ + § — % — % + & — - is neither alternating
nor positive. It converges by (9) since the series of its absolute values is a
convergent geometric series. As another example, consider X (=1)"*!/n% It
converges by the alternating series test since 1/n% | 0. Alternatively, its
series of absolute values is a convergent p-series,p = 2, so the original series
converges by (9).

Conditional convergence If I |a,| diverges it is still possible for 2a, to
converge. In this case, X a, is called conditionally convergent. The alternating
harmonic series is conditionally convergent, since it converges but the series
of its absolute values, i.e., the harmonic series, diverges.

So far we have been concerned with distinguishing convergent from
divergent series. Now we have three categories since every convergent series
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2 a, can be further categorized as either absolutely convergent (2 |a,| con-
verges) or conditionally convergent (2 |a,| diverges). Divergent series can-
not be subcategorized in this manner; if £ a, diverges then, by (9), 2 |a.|
cannot converge. Figure 2 shows the three possibilities for a series:
divergent, conditionally convergent, absolutely convergent.

Conditionally convergent and absolutely convergent series both
do converge, but absolute convergence is more desirable for several rea-
sons, one of which we will mention here. It can be shown that if the terms
of an absolutely convergent series are rearranged, that is, added in a differ-
ent order, then the new series still converges to the same sum as before. On
the other hand, if £ a, is conditionally convergent then, given any number,
the series can be rearranged to converge to that number. Furthermore, the
series can be rearranged to diverge to ®, and rearranged to diverge to —=.t

1'We wrll llluslrale with the conditionally convergent alternating harmonic series
3+3%— 1+ -, which converges to a sum between 0 and 1. We wnll rearrange the series
to convergc to 37. Flrst note that the subseries of positive terms 1 + 5 + § + -+ diverges to o
and the subseries of negative terms -3 — { — 4 - -- dlverges to P (Problem 36a,
Section 8.4). Then begin the rearrangement of the alternating harmonic series by adding
positive terms until the subtotal goes over 37. (How do we know that the subtotal will ever get
that large? The positive subseries diverges to ©, so surely if enough positive terms are added,
the subtotal passes 37.) Then add negative terms until the subtotal goes below 37. (How do we
know that the subtotal can be brought down below 372 Because the negative terms add to —x.)
Then add positive terms to bring the subtotal back over 37, add negative terms to bring the
subtotal back below 37, and so on. The partial sums oscillate around 37 and the overall swing
of oscillation is approaching 0 because a, — 0. 1t can be shown in fact that the rearrangement
converges to 37. The alternating harmonic series can also be rearranged to diverge to . First
add positive terms until the subtotal is larger than 1, possible because the positive terms
themselves add to =. Then feed in one negative term to avoid being accused of leaving out the
negatives. Then add positive terms until the subtotal is larger than 2, followed by one more
negative term, and so on. This produces a rearrangement, since all terms are eventually used,
although each partial sum contains many more positive than negative terms. Furthermore, the
partial sums approach =, so the rearrangement diverges to =. Similarly, the series can be
rearransed to diverge to —x. On the other hand, the absolu(ely convergent geometric series
2,_0( %)" has sum § and every rearrangement converges to $ifa rearrangement has 1,000
ositive terms followed by one negative term, followed by 1,000,000 positive terms followed
y one negative term, and so on, the rearrangement still converges to 3.
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Problems for Section 8.5

1. Show that 1 - - converges, and estimate the error
\/- \/- \/- g

if the sum is approximated by S4. Is the approximation an overestimate or an
underestimate?

2. Show that the series converges and approximate the sum so that the error
is at most .001. Is your estimate over or under?

< 1 1 1 1

a )= b)) -mStm-

@ ZCDE O Tt

3. True or false?

(a) If we do not have a, | 0 then 2 (-1)"*'a, diverges.
(b) If we do not have a, — 0 then X (- 1)"*'a, diverges.

4. Test the series for divergence versus convergence.

mZHW& O ZETE @ DEt
n ninn

d) 2(- '~ 4 (€ .1 - .01 +.001 —---
4 5 6 V2 V3 Vi
(f)——g'f’z—‘g"'"' ()——4+5

5. True or False?

(a) If b, is a convergent positive series then I b3 converges also.
(b) If (—1)""'b, is a convergent alternating series then I b? converges also.

6. Table 1 in Section 8.3 lists some standard positive series, some convergent
and some divergent. Consider all the corresponding allemating series, namely,

2( lnﬂ 2( l"l

(@) Test them for convergence versus divergence. (b) Of the convergent series in
part (a), test for conditional versus absolute convergence.
7. Test for conditional convergence versus absolute convergence versus
divergence.
+2
*+3

8. What conclusions can be drawn about 2 a, if

-1 n n+1
@ 201 b S0

(@) Z|a.| diverges (b) Z|a.| converges
9. What conclusions can be drawn about X |a,| if
(a) Za, diverges (b) Za, converges?

10. Test the series for convergence versus divergence using the alternating
series test, and then again using the series of absolute values.

1
@ S0 6 et

11. Decide, if possible, whether the series converges absolutely or conditionally.
(a) a convergent geometric series (b) a convergent p-series
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8.6 Power Series Functions

Polynomials such as ax? + bx + ¢ are familiar elementary functions.
The generalization of a polynomial is a series of the form

(1) ao + ax + apx? + agx® + axt + o1,

called a power series. For example, 5 + 6x + 7x? + 8x* + 9x* + -+ is a
power series. A power series is a function of x, often nonelementary. The
rest of the chapter discusses power series and their applications.

Application Power series may be used to create new functions when the
elementary functions are inadequate. It can be shown that the differen-
tial equation

(2) xy"+y=0

cannot be satisfied by an elementary function. Thus it is necessary to invent
a new function to solve the equation. Consider the power series

y=ap+ax +ax?+ax®+ ..
We will determine the coefficients so that y satisfies (2). We have
(3) y' =a; + 2 + 3apx’ + 4a,x> + Bagx* + -+
" =2a; + 3-2ax + 4-3ax2+ 5-4ax>+ -,
Substitute y and y” into (2) to obtain
x(2a; + 3 2ax + 4-3ax?+5-4ax®+--7) + ag + ajx + ax?
+ax*+---=0.
Collect terms to get
(4) a0+ (2a3 + a))x + (3 2a5 + ag)x?+ (4:3a4 + ag)x®*+ --- = 0.

(We write 4 - 3 instead of 12, and 3 - 2 instead of 6, because we want to
discover patterns, and the combined form conceals patterns.) Now choose
@9, ay,as, -+ so that (2) holds. We can do this by forcing all coefficients on the
left side of (4) to be 0. Therefore, let gy = 0. Then let 24, + g, = 0, which
doesn’t determine either a, or a, but can be written as a;, = —3a,. Then
choose 3 * 2a5 + a, = 0 so that

-—a,
as _ a)

“3.2” "3-2 3.2-2°

Continue with 4 - 3a, + as = 0 so that

as =

as 3-2-2 a,

ay = — = - =

4-3 4-3 "4-3.3-2-2°

a) a
5:4-4-3-3-2-2°"

The pattern is now established. We have a; = d,

in general,

— (— n*___a'l
@ = (=1 ln!(n—l)z'
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Coefficient a, isn’t determined, so we conclude that for every value of g,

y = 2 (_l)nH n

a, x
nl(n = 1)!

is a solution to (2). The factor a, serves as an arbitrary constant. Equiva-
lently, the power series function

S 1
(5) Y S Xty e Y Ti3.3.2.2"

and all multiples of it, are solutions to the differential equation in (2).

..

Interval of convergence The domain of a power series function is the set
of all x for which the series converges. For example, if g(x) =7 + x +
2x? + 3x3 + 4x* + --- then g(0) =7+ 0+ 0+ 0+ --- = 7 but there is
no g(1) because the series7 + 1 + 2 + 3 + 4 + ---diverges. If we're going
to work with power series functions we must be able to decide when the
power series converges. The preceding sections were designed in part to
provide that capability.

In general, a power series a,x" converges absolutely (hence con-
verges) for x in an interval (—,r) centered about 0, and diverges for x > r
and x < —r. (Anything may happen for x = *r.) The series is said to have
radius of convergence r and interval of convergence (—r,7) (see Fig. 1). This
includes the possibility that a power series may converge only for x = 0,
in which case it has radius of convergence 0, or may converge absolutely for
all x, in which case it has radius of convergence » and interval of con-
vergence (—,®). The value of r depends on the particular power series.

To illustrate the validity of these claims, and to actually find the interval
of convergence of any given power series, we will use a version of the ratio
test extended to include series that are not necessarily positive.

DVERGENCE ¢ ABSOLUTE CONVERGENCE T DIVERGENCE
N ____J
RADIUS OF
CONVERGENCE

Fo. |
Ratio test Given a series 2 b,, not necessarily positive, consider

. |bn+l|
lim —-.
ne® Ibnl
(a) If the limit is less than 1, then ¥ b, converges absolutely (and there-
fore converges).
(b) If the limit is greater than 1, or is «, then £ b, diverges.
(c) If the limit is 1, we have no conclusion.

To prove (a), note that if the limit is less than 1 then 2 |6, ] converges by
the ratio test for positive series (Section 8.4). Therefore the original series is
absolutely convergent.

To prove (b), note that if |b,.,|/|b.| approaches a number larger than 1
then eventually |b,,)| > |b,|. Therefore the terms |b,| are increasing and
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hence do not approach 0. Therefore b, does not approach 0 either, and so
2 b, diverges by the nth term test.

1\" 1
Finding the interval of convergence Consider 2 (— -5) —— x". To find

the interval of convergence, compute

(_l)nﬂxnﬂ
2 n+1 0 l_n+l|x|
e
2

Since n — o while x is fixed, the limit is 3jx|. By the ratio test, the series
converges absolutely if 3x| < 1, |x] <2, =2 < x < 2; and diverges if
x| > 1, that is, x > 2 or x < —2. Therefore there is an interval of con-

, which

. x™term|
lim = lim
ne= [x"term|  ne=

vergence, namely (—2,2). (If x = 2 then the series is E(—l)"n T

converges by the alternating series test. If x = —2 then the series is the
divergent harmonic series. Thus the series converges at the right end of the
interval of convergence and diverges at the left end.)

As another example, consider

z(_l)vﬁl ' l
n.

m-

the power series in (5) that solved the differential equation xy” +y = 0.
We have

©) k" term| _ |x™*! al( - 1)!
[xterm| (n + 1n! |«
Note that
m-1)! =-1)mn-2)n—-3)---1 _ 1

mn+1) m+Dhnn-NDn-2-1 (n+ n
so (6) cancels to

]
(n+ n’
For any fixed x, the limit is 0 as n — . Therefore the limit is less than 1 for
any x, and the series converges for all x. The interval of convergence is
(—%,%) and the radius of convergence is .
In practice, the interval of convergence of a power series is the set of x for which
|xn*l I

m| .
" is less than 1.
nex  |x"term|

Problems for Section 8.6

For each power series, find the interval of convergence.

LS(ym+ x2S 3 Tax" 4 2"5'—,

3"n?

Box —x3+x®—x"+ - 6. 2%3 + 245+ %7 + ...
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9x?  27x* 8lx*
8% 4 — + +
7. 3x 2 3 1

8.7 Power Series Representations for Elementary
Functions I

The solution to the differential equation in (2) of Section 8.6 illustrated
why it is useful to invent new functions using power series. But it is useful
to have power series expansions for old functions as well. Polynomials
are pleasant functions, and representing an old function as an “infinite
polynomial” can make that function easier to handle. In this section and the
next we will find power series expansions for some elementary functions.

A power series for 1/(1 — x) The power series 1 + x + x? + x* +
x* + .-+ is a geometric series with @ = 1 and r = x. Therefore it converges
for —1 < x < ], that is, its interval of convergence is (—1, 1), and the sum
is 1/(1 — x). Thus

(1) l—l—;=l+x+x2+x3+x‘+--- for-1<x<1,

and we have a power series expansion for 1/(1 — x). The function 1/(1 — x)
exists for allx # 1 butits expansion is valid only for —1 < x < 1. The series
has a smaller domain than the function 1/(1 = x), but when the series and
the function are both defined, they agree.

Binomial series There is an entire class of familiar elementary functions
whose power series expansions we can guess. Recall (Appendix A4) that

N+x=0+x0+x)0+x+x(1 +x)
5.4 5-4-3 5:4-3-2
=l+5x+2!x2+ 3 x*+ T x!
5.4:3-2-1
M T

(2) 1 +5x + 10x2 + 10x3 + 5x* + x5,

Functions such as (1 + x)™ and (1 + x)"? cannot be similarly written as
polynomials because the exponents —5 and 1/2 are not positive integers.
However, we might suspect that these functions can be written as infinite
polynomials, in the same pattern exhibited by the polynomial expansion for
(1 + x)°. In other words, we guess that the function (1 + x)? has the power
series expansion

(3) l1+¢gx + 9(127 l)x2 +ﬂ(ﬂ — l;'(q - 2)x’ + ..

for x in the interval of convergence of the series. We omit the proof that
confirms the guess.
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For example,

VIitz=(+2"

1 2 2/
l+—2x+ o1 xt + 31 x>+ .-

1 1 1-3 1-3-5
+ —x - — 2 + s _
S TR TR T
We still must find the interval of convergence in (3). If ¢ is a posi-
tive integer then (3) collapses to a polynomial (as in (2) where ¢ = 5)
and “converges” for all x. If ¢ is not a positive integer, the inter-
val of convergence can be found with the ratio test. We have

m=dq =g -[n—- 1},

n!

Xt

nth ter

and

g=1):(q—[n-1)(g - n) w1

oy
(n + 1)st term T 1!

So

|(n + 1)st term| _ lg = n|
[nth term| n+1

|x|.

The limit as n — @ is |x[; solve [x| < 1 to get the interval of convergence
(=1, 1). Thus

I1+x)0=1+¢gx+ q(QQT l)x2 + g9 - 13)'(1— 2)x’ + .

for-1<x<1.

(4)

The series in (4) is called the binomial series.

Application We will show why it may be useful to approximate a function
by the first few terms of its series expansion.

An inverse square law states that if two unit positive charges are dis-
tance r apart, then each is repelled by a force F = 1/r? if a unit positive
charge and a unit negative charge are distance r apart, then they are
attracted by a force F = 1/r% Now suppose that one negative charge and
two positive charges are situated as shown in Fig. 1, where d is much smaller
than r. The problem is to find the total force on charge C.

d r

M"\ N— —
s, KA S,
TR o
A £ TOTAL FORCE
A B ¢

FIG. |
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Since C is repelled by B and attracted by A, we have

1 1
(5) total force on C = i m .
This is an accurate description of the force on C, but it is difficult to tell
from (5) just how the force varies with d and r. So we continue by rewriting
the second fraction in (5). Factor to get

(r +ld)2 - (r[l l£]>2= 72<l :—-é-)2 =715(1 +%)-2.
r

r

Since d is less than r, d/r is in the interval (-1, 1), so we may expand
(1 + (/1] in a binomial series by setting ¢ = =2, x = d/r to obtain

T eols) - )

R

If d is much less than r, as intended in Fig. 1, then (d /r)% d/r)} -+ are so
small that

l —
(r +d)?

%(1 - 2% + negligible lerms)

; r (approximately) .

Thus, back in (5), we have (approximately)

1 d
total force on C = -!5 - (—2 - 2—) =2
r r r
Therefore, the force on C may be succinctly (albeit approximately) de-
scribed as directly proportional to d and inversely proportional to 7>

Making replacements in an old series to find a new series So far we have
expansions for 1/(1 — x) and (1 + x)%. We continue the problem of finding
expansions for functions by showing how new series may be obtained from
existing series.

Suppose we want an expansion for the function 1/(1 + 2x). Rewrite
the function as I—_Tm so that it resembles the left-hand side of (1). Then
replace x by —2x in (I) to obtain

1
———— =1+ (=2x) + (=222 + (=2x)* + (—2x)* + ---
1 - (—2x)

for -1 < -2x < 1.

To solve the inequality, divide each member by -2 to get 3 > x > —3
(multiplying or dividing b?' a negative number reverses an inequality),
which may be written as —3 < x < 3. Thus we have an expansion for the
function 1/(1 + 2x) and its interval of convergence, namely,
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1 2 3 4 1 1
=1 - - + - - —
1 ) 1 - 2x + 4x 8x 16x for 2 <x < 9

(6)

As you can see, the replacement method involves solving an inequality
to obtain the new interval of convergence. Table 1 lists some inequalities
and their solutions, typical of those that occur most frequently.

Table 1

Inequality Solution

2 2
- r<—x<u, - r<-——x<r ——r<x<—-r

3 3 2 2
< 3ee < =3g —\"/ir<x<{/ir
r 4x T, r 4x r 3 3

As another example of replacement, we will find an expansion for
1/(3 = x?). First do some factoring:

1 1
3—x? ( 1 2) 3 1,
31 3% 1 3 ¥
Then replace x by 3x* in (1) to obtain
1 1 1 1 ,)\’ 1,
SINENIENIE
3-x 3[‘ <3" 3" 3"

(7) for-l<%x3<l.

Some students are bothered by the inequality in (7) because the left-hand
part, —1 < 3x2 is vacuous (it is always true that ix?is greater than —1).
chertheless it is not wrong. The inequality may be rewritten simply as
3x2 < I, and its solution, as indicated by the second line in the table, is
—V3 < x < V3. Therefore the final answer is
l =l+lx il Loy

3-x* 3 32 33 31 3

for -V3 <x < V3.

Adding and multiplying old series to find new series Suppose f(x) has a
power series expansion with interval of convergence (—7,7)), and g(x) has
an expansion with interval of convergence (—7,, ;). It can be shown that if
the two series are multiplied like polynomials, then the product series is
an expansion for f(x)g(x) Similarly, if the two series are added like poly-
nomials, the sum series is an expansion for f(x) + g(x). Furthermore, the
intervals of convergence of the product and sum series are at least the
smaller of the two intervals (-r,,7) and (—7r,7,), and, for all practical
purposes, are the smaller of (—7,7)) and (—7,73).

1
As an example, suppose we want an expansion for (l_——x)—(l_-F—Q_x)
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T

—1,3), respectively. The smaller of the intervals is (—3,3). Therefore,

From (1) and (6) we have expansions for on (—1,1) and

1 __1 1
1-x)(1+2x) 1-x1+2
=(l+x+x?+x+x*+ -9 (1 — 20 + 4x? — 8x3 + 16x* — -+)
for x in (——;—,%)

As with polynomials, multiply each term in the first parentheses by each
term in the second parentheses, and collect terms to get

1

— = - + +42_2?+ 2_83+43_2S
T-00+ 20 1 —2x + x X x x X X x

+x3+ 16x* — 8x* + 4x* — 2x* + £t + -

=1-x+3x2 - 5x>+ 1lx* = 2Ix® + -

. 1 l)
forxm( 35"

For another approach to the same problem, use partial fraction decom-
position (Section 7.4) to get

1 2
®) (1-x):1+2x)=1ix+1+32x‘
1
To find a series for I—:ix' multiply on both sides of (1) by 1/3, and keep the
2
interval of convergence (-1, 1). Similarly, to find a series for T o0 mul-

tiply on both sides of (6) by 2/3, and keep the interval of convergence
(—=1/2,1/2). The smaller of the two intervals is (—1/2, 1/2), so (8) becomes

1 =

1
=00+ ?(l+x+x2+x3+---)

+%(l—2x+4xz—8x’+---) for—%<x<%

=] -x+3x2-5x3+ llx* - 2Ix®> + --.
|

fo—i< <—=
r-g <x<3.

In this example, the second method is better. No pattern seems to be
revealed by the first method, whereas the second method easily predicts any
term in the series; e.g., the coefficient of x'* is 3 + §(—2)'°.
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Differentiating and antidifferentiating old series to find new series
Suppose f(x) has a power series expansion with interval of convergence
(=r,7). It can be shown that if the series is differentiated like a polynomial,
the new series isan expansion for f’(x) (we already anticipated thisin (3) of
Section 8.6); and if the series is antidifferentiated like a polynomial, and the
arbitrary constant of integration appropriately evaluated, the new series
represents any desired antiderivative of f(x). Furthermore, it can be shown
that both the differentiated and antidifferentiated series have the same
interval of convergence as the original.

As an illustration, suppose we want an expansion for 1/(1 — x)% We can
get it by squaring the series for 1/(1 — x), and also by using the binomial
series with ¢ = —2 and x replaced by —x. For a third method, use the fact
that 1/(1 — x)?is the derivative of 1/(1 — x). Differentiate on both sides of
(1), and keep the interval of convergence, to get

_1

(1 - x?
As another example, suppose we want to expand In(1 + x). First find
an expansion for 1/(1 + x) by replacing x by —x in (1) to get

1
I +x

9) =1+ 2 +3x2+4x>+ 5x*+ --- for x in (—1,1).

=1+ (=x)+(=x)+(—xP*+(-x)*+--- for-1<—x<1

=]l-x+x*-xP+xt—-..- for-1<x<1.

Then antidifferentiate to get

2 3 4 3
ln(l+x)=C+x—%+%—%+%—--- for-1<x<1.

To determine C, substitute a value of x for which both sides can be
computed. The best value to use is x = 0, in which case we have
Inl+0)=C+0+0+0+---,0 =C. Therefore,

x?

3 4 5
(10) ln(l+x)=x—5+%—%+%—--- for -1 <x <1.

Summary of procedures for finding the new interval of convergence If
a new series is obtained from a known series by differentiation, anti-
differentiation, multiplication by a constant, or, more generally, multi-
plication by a polynomial, keep the original interval of convergence.

If a new series is obtained from two known series by addition or multi-
plication, keep the smaller of the two original intervals.

If a new series is obtained from a known series by replacement, make
the same replacement in the inequality describing the original interval, and
solve for x to find the new interval. (If the known series converges for all
x, then after any replacement, the new series also converges for all x.)

4 ]

Application We can use the binomial series to estimate j —_———
pp (l + x?)Sl?

0
so that the error is less than .0001.
First, use (4) with ¢ = —3/2 and x replaced by x* to get
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1 3.4 (“3) <_%)

—— - 2)2
Tr= - 1773 21 (<)
(-3)(-3)(-3)
s 2 3'2 2/ s for—1<x<1
3., 3:5 . 3:5:7 . 3:5:7.9,
S L T T TR TR

for-1<x<1.

Since the interval of integration [0, 1/4]is inside the interval of convergence
(=1, 1), it can be shown that we may integrate term by term to obtain

/4 l /4 3 xs 1/4 3 . 5 x5 14
f Tram®=x —53| ta g%
o (1+x) o 23|, 20-25

3-5-7x"|"
. “WH

The series in (11) is not a power series and does not have an interval of
convergence. It is a convergent series of numbers whose sum is the integral
on the left-hand side. Continuing, we have

14
j (_1_-0-_1122_)55 dx = .25 — .0078125 + .0003662 — .0000191 + ---.
0

By the alternating series test, if we stop adding after two terms, the error
is less than .0003662, not enough of a guarantee. But we use the sum of the
first three terms, .2425537, as the approximation (an overestimate), then
the error is less than .0000191, which & less than .0001, as desired.

Problems for Section 8.7

1. Find a power series for each function, and find the interval of convergence
of the series.

x ! ! —
@¥T+x O, Oy 9imn ©Ogey

1
(g)x_

X

1 =-x)(1 - 3x)

2. Find an expansion for VT = 3x and the interval of convergence. Find the
term containing x™* to illustrate the pattern, and then express the series in sum-
mation notation.

3. Find an expansion and its interval of convergence for 1/(1 — x?) by

®

2 (h) In(2 + x)

(a) using the binomial series (b) using the series for 1/(1 — x)
(c) multiplying series (d) adding series (e) using long division

4. Rederive (9) by (a) using the binomial series (b) multiplying series.

5. (a) Find a series for tan™'x and find the interval of convergence.
(b) Approximate [§? tan™'x2dx so that the error is less thar: .0001. Do you have an
underestimate or an overestimate?

6. What function has the expansion x + 2x® + 3x> + 4x* + ..-? (Consider
how the series is related to the series in (1).)
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x? xS x1
7. Lelf(x)=x +ﬁ+3_-_?+4_--2—3+
(a) Write the series in summation notation.
(b) Find an expansion for f'(x).
(c) Identify f'(x) and f(x) (they are familiar elementary functions).

8. (a) Write V19 as V16 + 3 = 4V1 + < and use the binomial series with
q =%, x = 75 to approximate V19 so that the error is less than .01. (b) What is
wrong with writing V19 as V1 + 18 and using the binomial series with ¢ = 3,
x = 18?

8.8 Power Series Representations for Elementary
Functions II (Maclaurin Series)

We continue with the task of finding series expansions for functions.
The preceding section showed that if a connection can be found between
f(x) and a function (or functions) with a known expansion, then the con-
nection can be exploited to find an expansion, along with its interval of
convergence, for f(x). But sometimes too much cleverness is required to
find such a connection, and sometimes there simply is no connection. Itisn’t
possible to use the preceding section to find an expansion for sin x, since
sin x is not related to 1/(1 = x) or (1 + x)7, our functions with known
expansions. This section considers a second method for finding an expan-
sion for a function, based on an explicit formula for the coefficients.

The Maclaurin series for a function Suppose
f(x) =ag + a1x + a;x® + agx® + ax* + ---.

Set x = 0 to obtain ay = f(0), a formula for the coefficient ao. Differentiate
to get
f'(x) = a) + 2aox + 3asx? + 4ax® + -+
and substitute x = 0 to obtain a, = f'(0), a formula for a,. Differentiate
again to get
f"(x) = 2a5 + 3 2a5x + 4+ 3a,x? + 5 4ax® + ---

and substitute x = 0 to obtain f"(0) = 2a,, or a; = % We’ll continue

until we are sure of the pattern. Differentiating again, we have
f"(x)=3-2a5+4-3-2a,x +5-4-3asx? + --.
= "y — _fMo) “(0)
Let x = 0 to get f"(0) =3 2a3,ora3—3.2- T4 8.9
and, in general,
(n) 0
0 [0

" n!

(Remember that 0! = 1, 1! = 1 and f* means the nth derivative of f.)
We have shown that given a function f(x), there are two possibilities.
Either f has no power series expansion of the form Za.x", or
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@) f(x)==%)2+f’l(!0)x +f2(!0)x2+f3!0)x’+

Certain functions fall into the “no series” category because they and/or their
derivatives blow up at x = 0. In that case, the coefficients in (2) can’t even
be computed, so the series doesn’texist. Some functions of thistype are In x,
Vi and 1/x. Otherwise, every function occurring in practice (provided it does not
blow up or have derivatives which blow up at x = 0) has the expansion in (2), called
the Maclaurin series for f. In this case, the expansion holds on the interval of
convergence of the series, which can be found by the ratio test. (There are
functions f(x), rarely encountered, whose Maclaurin coefficients exist but
whose Maclaurin series regrettably converge to something other than f(x).
However, such functions will play no role in this book.)

If a series is found for f using a method from the preceding section, or
using several methods from that section, the answer(s) will inevitably be the
Maclaurin series for f; no other series is possible. Regardless of how it is
obtained, the coefficient a, is given by (1). All series found in the preceding
section are Maclaurin series although they were not computed directly
from (2).

We'll use (2) to find a power series for sin x. We have

f(x) = sinx f(0)=0
f'(x) = cos x f'0) =1
f"(x) = —sin x f"0)=0
f"(x) = —cos x f"0) = -1
f(a)(x) = sin x f“’(O) =0
f®x) = cos x F90) =1

Thus the Maclaurin series in (2) is

_e g Y
*Tytm oot
To find the interval of convergence, consider
|x**'term| _ || (@2n - D! _ |x[?
|« term| (2n + 1)!  |x2*7Y 2n + 1)2n°

For any fixed x, the limit as n — «is 0. So the series converges for all x, and

x3 x.’) x7

3) sinx=x—§+a—ﬂ+-~- forall x.

As a corollary, we can differentiate (3) to find a series for cos x. Note that
the derivative of a term such as x*/5! is 5x*/5!, or x*/4!. Thus

x? x' x®

(4) cosx=1—§I+4—!—a+--- for all x.
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We can also use (2) to find a series for e*. If f(x) = ¢* then any derivative
f™(x) is e* again, and f™(0) = 1. Therefore the Maclaurin series for e is
1 +x +x%/2! + x3/3! + x*/4! + ---. The ratio test will show that the
series has interval of convergence (—%, %), so

2 3 4
(5) e‘=l+x+%+%+:—!+-~- for all x.

Using (2) to find a series for f(x) works well if the nth derivatives of f
are easy to compute, as with sin x and e*. It would not be easy with func-
tions such aWElTxT and x/(1 — x)(1 — 3x), whose derivatives become
increasingly messy; the methods of the preceding section are preferable
in such cases. Note that when (2) is used (as for sin x), the interval of
convergence must be found with the ratio test. When a series is found
using a known series for a related function (as for cos x, related to sin x),
the interval of convergence is found easily from the interval for the
known series.

Maclaurin polynomials The discussion in Example 2 of Section 4.3
showed that for x near 0, sin x is approximately the same size as x. The
power series for sin x goes many steps further and shows that we can get
a better approximation using the polynomial x — x*/3!, a still better ap-
proximation using x — x*/3! + x*/5!, and so on. In general, the partial
sums of the Maclaurin series in (2) are called Maclaurin polynomials. We will
show graphically how f is approximated by its Maclaurin polynomials. Con-
sider the graph of f versus the graph of its Maclaurin polynomial of
degree |, that is, f versus

0 (0

Equation (6) is a line, and a line does not usually approximate a curve very
well. But (6) is special; it is the line tangent to the graph of f at the point
(0,(0)) (Fig. 1). To confirm this, note that the tangent line has slope f*(0),
and so, using the point-slope formy = mx + b, the tangent line has equa-
tion y = f'(0)x + f(0), which is (6).

FIG. |
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Consider
_fO [ "(0)
@ Y % T a1 <

the Maclaurin polynomial of degree 2. Its graph is a parabola (Fig. 2) which
passes through the point (0,£(0)), and hugs the graph of f more closely than

FIG.2,
the tangent line in Fig. 1. Similarly, the graph of
’ ", 0

passes through the point (0,£(0)) and does still a better job of staying close
to the graph of f (Fig. 3).

Fle.3

In general, graphs of successive Maclaurin polynomials provide better
and better approximations to the graph of f. At first (that is, after adding
only a few terms of the Maclaurin series for f), the polynomials approxi-
mate the graph of f nicely only if x is near 0. After a while (that is, after
adding many terms), the polynomials approximate f nicely even if x is far
from 0, near the end of the interval of convergence.

If the sum of just a few terms of a series produces a good approxi-
mation to the sum of the series, the convergence is said to be fast; if many
terms must be added before the approximation error becomes small, the
convergence is slow. The graphs of the Maclaurin polynomials in Figs. 1-3
illustrate that the power series expansion for f(x) converges more rapidly
if x is near 0 and more slowly if x is far from 0.
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Application Suppose we want to approximate sin 1° so that the error is
less than 107", Switching to radian measure so that we may use (3), we have

sin l°=sin—‘”——l——l—(—1)s+l<l)5_...
180 180 3!\180 5'\180 '

Since the series alternates, and the third term s the first one less than 1077
ke T 1 ( ™ )’ L

we take o0 — 51\ 1g5) the approximation. Only two terms were

needed for the approximation; the series in (3) converges rapidly to sin x

when x = /180 since w/180 is very close to 0.

Problems for Section 8.8

1. We found the series expansion for (1 + x)? in the preceding section by
guessing. Find it again by using the Maclaurin series.

2. We found series for 1/(1 — x) and In(l + x) in the preceding section ((1) and
(10)). Find them again using the Maclaurin series formula.

3. Find aseries expansion for the function, and the interval of convergence of
the series, by using the Maclaurin series and then again by using established series.

1

— x -x b
(8)2(! 0)()3_2x
4. Write the series for sin x and cos x using the notation Z,_¢a.x".
5. Find a series expansion and the interval of convergence.

(@) cos3x (b) x*sinx (c) e*

6. Find a series expansion for sin’x using sin’x = §(1 — cos 2x).
7. Suppose f(0) = 1, g(0) = 0, f'(x) = g(x) and g'(x) = f(x). Find a series for
f(x) and find its interval of convergence.
8. Use the series for sin x to confirm that sin(—x) = —sin x.
9. Differentiate the series for ¢* to see what happens. (In a sense, nothing
should happen since the derivative of e* is ¢* again.)
10. Usethe series for sin x to estimate sin 1 (radian) so that the error is less than
.0001. Do you have an overestimate or an underestimate?
11. Estimate the integral using the given error bound. Do you have an over-
estimate or an underestimate?

1 173 l
(a) joe"‘? dx, error < .1 (b) L m dx, error < .01

12. Use series to find the limit, which is of the indeterminate form 0/0.

. In(l + x? . sinx
(a) lim—
x0 ] — cos x x+0

13. Use the power series for ¢* to find the sum of the standard convergent series

oo l/nl.
8.9 The Taylor Remainder Formula and an Estimate for
the Number e

If we set x = 1 in the power series for ¢* (see (5) of the preceding
section), we have
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1) e=1+1+%+§li+4l!+-.-
We can approximate e by partial sums of the series, but since the series does
not alternate we do not have an error bound. The aim of this section is to
introduce an error bound for the Maclaurin series for f(x) in general, and
then use it in the special case of ¢*.

Suppose x is fixed and f(x) is approximated by the beginning of its
Maclaurin series, that is, by a Maclaurin polynomial, say of degree 8:

0, [O_, [0, () ,
o! 1! 2! TR

If the series alternates, then the first term omitted supplies an error bound.
But whether or not the series alternates, the error in the approximation
[(9) (m) £
9!

m between 0 and x, and find the maximum of the values. Taylor’s remainder
formula states that the error, in absolute value, is less than or equal to that
maximum.

In general, the error (in absolute value) in approximating f(x) by its Maclaurin
polynomial of degree n is less than or equal to the maximum value of

(n+1) (m) .
@) ’hx !

for m between 0 and x. We omit the proof.

Returning to the problem of approximating e, we will obtain a first
estimate using areas, and then use it, along with power series, to find a
sharper estimate.

In Fig. 1, the shaded region has area [}(1/x)dx =In2 = In1 =In 2.
The rectangular region ABCD within the shaded region has area 1/2,
so In2 > 1/2. Therefore In4=1n22=2In2> 1. Butlne =1, so
In 4 > In e. Since In x is an increasing function, we have 4 > e. Similarly,
sincelne = 1 and In 1 = 0, we have ¢ > 1. Thus, a first estimate of ¢ is
1<e<4

Now let’s return to (1). Suppose the first five terms are added to obtain
the approximation

may be bounded as follows. Consider all possible values of for

1 1 1
(3) e-l+l+§+-@3—!+z—2.708.
To estimate the error, consider (2) with f(x) = ¢*, x = 1, n = 4 (since we
added through the x* term in the series for ¢%), and 0 < m < 1. Then

f®(x) = e*and
(5)(m) 15 _ i'
5 | s

Since 1 < ¢ < 4, the maximum occurs when m = 1, and that maxi-
mum is less than 4/5! or 1/30. Therefore the error in the approximation
in (3) is less than 1/30. Furthermore, when the expansion in (1) stops
somewhere, all the terms omitted are positive, so the approximation in (3)
is an underestimate. Thus,
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2.708 < e < 2.708 + L < 2.742.
39
In a similar fashion, by adding more terms, it can be shown that
2.718281 < e < 2.718282.

8.10 Power Series in Powers of x — b (Taylor Series)

Certain basic functions such as In x, Vx and 1/x cannot be expressed
in the form Z a,x" because they and/or their derivatives blow up at x = 0
(Section 8.8). Also, other functions have power series which converge too
slowly if x is far from 0. We attempt to overcome these difficulties by
considering power series of the form
() Dax = )" =ap+a(x = b) +ay(x = b)? + ag(x = b)°* + -+

n=0
We call (1) a power series about b. The power series we have considered so far
are the special case where b = 0. In this section we will show how a function
f(x) can be expanded about b with a generalization of the Maclaurin series
formula, or, better still, using known series about 0.

In Section 8.8 we showed that if f has an expansion of the form £ a,x",
then a, = f™(0)/n!. A similar argument shows that if f has an expansion of
the form S a,(x — b)*, then a, = f™(b)/n!. This leads to the following gen-
eralization of Maclaurin series.

Every function f(x) encountered in practice, which does not blow up or
have derivatives which blow up at x = b, has the expansion

@ [f = L2 L8 gy o L —pp o LOG v

called the Taylor series for f about b. The expansion holds on an interval of
convergence centered about b and found with the ratio test. The partial sums
of the Taylor series are called Taylor polynomials. Graphs of successive Taylor
polynomials are a line, a parabola, a cubic, and so on, tangent to the graph
of f(x) at the point (b,f(b)); they supply better and better approximations to
the graph. The Taylor series converges more rapidly if x is near b, and more
slowly if x is far from b.

The Maclaurin series, with interval of convergence centered about 0,
and the Maclaurin polynomials, tangent to the graph of f(x) at the point
(0,£(0)), are the special case of Taylor polynomials when b = 0.

One method for expanding a given f(x) in powers of x — b is to use (2)
directly, along with the ratio test to determine the interval of convergence.
Another method is to write f(x) as f(x — b] + b) and maneuver alge-
braically, as illustrated in examples, until it is ultimately possible to make use
of a known series in powers of x, but with x replaced by x — b. With this
approach, the interval of convergence can be obtained from the interval for
the known series. No matter which method is used, the answer will agree
with (2); no other series in powers of x — b is possible.

Example 1 Find an expansion for cos x in powers of x — 3, and
find the interval of convergence.
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Solution: For a first approach, use (2) with f(x) = cosx, b = 3m Then
f'(x) = —sinx, f"(x) = —cos x, f"(x) = sinx, f*(x) = cosx,--+; and
fGm =0, f'Gm) = -1, f"Gm) =0, f"¢m = 1, f¥@Em) = 0, and so on.
Therefore

_f64m |, [4m, ["4m)

1\
X

(x _%1,-)2+

1 1 .
= —(x —:}m) +§(x —%‘rr)3 -;(x —:}‘rr)" + ...

To find the interval of convergence, use the ratio test. We have

| = 3m)*'term| _ |(x — §m)™*![| (20 - 1)!
lx — $m) term| | 2n + 1)! ||(x — m)>*!
_ k- gwf

T (@2n + 1)2n°

The limit as n = « is 0 so the series converges for all x.
As a second approach, write cos x = cos(x — 3] + 3m), and, for con-
venience, let u = x — §m Then

cos x = cos[u + 3m)
= Ccos u cOs 3w — sin u sin 37

(by a trig identity, Section 1.3)

—-sinu  (since cos 3w = 0, sin §m = 1)

_ £+£_.>
S YR TR

forall u (using the series for sin u, Section 8.8).

Now replace u by x — 37 to obtain the final answer

e~ 4l [~ drP
3! R

forall x — §m, that is, for all x.

() cosx=—-[x —3m] +

Warning Consider an incorrect approach to the preceding example.
Begin with

4) cosx=1->—+%_ ...

and replace x by x — 37 to obtain

(x —%17)2+ (x —gm*

cos(x —3m) =1- 5 0

This is a series expansion in powers of x — #m for the function cos(x — 3m),
but it is not an expansion for cos x, as requested.
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Application Suppose we want to estimate cos 80°, that is, cos(807/180), so
that the error is less than .0001. We can set x = 807 /180 in any series for
cos x, say the series about 0 in (4) or the series about gm in (3). Since 80° is
nearer to 90° than to 0° the convergence will be faster if we use the series
about 3. So using (3), we have

COS 80° = COS§O—Tr = _(@1 -_— lf) + l(g.o—‘” -— E)s - l(s_olr - 1_T>5
180 180 2 31\180 2 5!\180 2

+L(§_°z_z>’ .
7'\180 2

T L(1)3 + i(1)5 - L(z)’ N
18 3!\18 51\18 7'\18
= .1745329 - .0008861 + .0000013 — ---.

The series alternates, and the first term less than .0001 is the third term of
the series. Therefore we use two terms as the approximation and have
cos 80° = .1736468 (an underestimate) with error less than .0000013.

Example 2 Expand 1/(2 — x) in powers of x + 4; that is, expand

about —4.
1

m and simplify by

Solution: Write the function as
letting v = x + 4. Then

| 1 _ 1
2-x 2-(u-—-4 6-u

1

1
6 u’
—

Now use the expansion for 1/(1 — x) (Section 8.7, (1)) with x replaced by
u/6 to get

1 1 u u)? (u)’ ] u
= — —_— — —_— Y -_— < —<
R 6[1+6+(6>+6 + for —1 6 1
__l_[l+x+4+(x+4)2+<x+4>5+.”]
"6 6 6 6

for -1 <

x + 4

<
6 1

1 1 1 2 1 s
= — J— p— —_— + + -
5 +62(x + 4) +63(x + 4) +64(x 4)
for -10 < x < 2.

Note that the interval of convergence is centered about —4.
Example 3 Expand In x in powers of x — 2, that is, about 2.

Solution: Write In x as In([x — 2] + 2), and for convenience, let
u =x — 2. Then

Inx =In(u +2) =1In2(1 +3u) (factor)
=In2+In(l +4u) (usinglnab =1Ina + Inb).
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Now use the established series for In(l + x) (Section 8.7, Eq. (10)) with x
replaced by 3u to get

Inx=In2+{u - 2 3

for-1<4u <1

x —2 l(x—2)2+l(x-2)’_
2 2 2 3 2

x —2
-1l <—K
for —1 3 1
24— 2) - o = 9+ e (x — 2)° -
neyol 97. g\ 3
for0<x <4.

The term In 2 is the constant term in the series. Note that the interval of
convergence is centered about 2.

Warning Don’t combine numbers if by doing so you conceal the pattern

In Example 3, the coefficients should be left as 22 3 95,3 24

to indicate the pattern, rather than written as g, 3. g, ** which obscures

the pattern.

Problems for Section 8.10

- 4)
n3"

2. Consider expanding each function in powers of x — . For which value(s) of
b is it impossible?

1. Find the interval of convergence of 2

1
a) m (b) In x

3. Find the series expansion and its interval of convergence. For parts (a) and

(), try both methods. Otherwise, use known series.

(@) Inx in powers of x — 1 ) Vxin powers of x — 9, and find the
coefficient of (x — 9)*°

(b) sin x in powersof x — 7 (g) owers of x — 1,

1 .
Zx—':-g)-; in p
and find the coefficient of (x — 1)"°
(c) ¢”in powersof x — 1 (h) cos 2x in powers of x + 3w

(d)

! in powers of x + 1 (i) In 3x in powers of x — 2

+ . .
(e) m powers of x + 2 ) T o in powers of x + 4

REVIEW PROBLEMS FOR CHAPTER 8

1. Test the series for convergence versus divergence.
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@ 2;: () 2(n (—i“ 1)!

& 3 o 2-2.2-8,

© Sg () 7+ 35 + 735 + 7ass + 7
(d)Enl,,g +7—8%E+“'

O 21— u)zg

(g)Enzg—:" M) 1-3+1-3+1-3+...

2. Find the sum of the series (3)° + 3)’ + )° + ---.
3. Estimate the sum of 3;,_, (—1)"(2"/n!) so that the error is less than .01. Do you
have an overestimate or an underestimate?

4. Decide if the series converges absolutely, converges conditionally, or
diverges.

1 1
@ 2-Dgms O 25

5. Suppose Z a, is a positive convergent series. Decide, if possible, if the given
series converges or diverges.

@ 2(-D"""a. (b) Xn’a.

6. Suppose e“! + ¢°? + ¢™* + --- converges. Decide, if possible, whether
a, + a; + as + --- also converges.

7. (a) Show that if £a, and X b, converge, then X a.b. does not necessarily
converge.

(b) Show that if T a, and I b, are positive convergent series, then X a,b, also
converges.

8. Find the interval of convergence of x*>/4* + x°/4° + x"/4° + --
9. Expand the function in powers of x, and find the interval of convergence.

1
@) 3 -x

() T +ar

1 1

(b) x = 1)(1 - 2x) () 1+ x8

10. Find the first three terms of the power series for x?¢% first using the Mac-
laurin series formula and then again using an established series.

11. Use power series to find lim,.o(1 — cos x)/x2, which is of the indeterminate
form 0/0.

12. Find an expansion and its interval of convergence for (a) cos x in powers of
x —im (b) Vxin powers of x — 8.

13. Approximate [§x% ™ so that the error is less than .001. Is your estimate
over or under?

14. Find a senies in powers of x for sin™' x by antidifferentiating 1/VT — x".
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FORCE 9.1 Introduction
VECTOR
Certain quantities in physical applications of mathematics are repre-
sented by arrows; we refer to the arrows as vectors. For example, a force is
represented by a vector (Fig. 1); the direction of the vector describes the
direction in which the force is applied, and the length (magnitude) of the
vector indicates its strength (in units such as pounds). The velocity of a car
is represented by a vector which points in the direction of motion, and
Fle. | whose length indicates the speed of the car (Fig. 2). If an object moves from
point A to point B (Fig. 3), its displacement is depicted by a vector drawn
from A to B. In the context of vector mathematics, numbers are usually
referred to as scalars. We say that velocity, force, displacement and so on,
which are represented by arrows, are vector quantities, while speed, weight,
time, temperature, distance and so on, which are described by numbers, are
scalar quantities. We will use letters with overhead arrows, such as # and 7,
to denote vectors. For a vector whose tail is point A and head is point B, as
in Fig. 3, we often use the notation AB.

VELOCITY
—
frsel () VECTOR

FIC. A

DISPLACEMENT
VECTOR

FIG. 3

Rectangular coordinate systems in 3-space We will draw vectors in space,
as well as in a plane, so we begin by establishing a 3-dimensional coordinate
system for reference. You are familiar with the use of a rectangular coordi-
nate system to assign coordinates to a point in a plane. A similar coordinate

259
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system may be used in space; see Fig. 4 where the point (2, 3,-5) is plotted
as an illustration. The plane determined by the x-axis and y-axis is called the
x,y plane; Fig. 4 also shows the y,z plane and the x,z plane.

For a 2-dimensional coordinate system it is traditional to draw a hori-
zontal x-axis and a vertical y-axis, but several different sets of axes are
commonly used in 3-space. Figures 5-7 show three more coordinate sys-
tems. Each coordinate system in 3-space is called either right-handed or
left-handed according to the following criterion. Hold your right hand so
that your fingers curl from the positive x-axis toward the positive y-axis. If
your thumb points in the direction of the positive z-axis then the system is
right-handed (Figs. 4-6). Otherwise, the system is left-handed (Fig. 7). For
certain purposes (Section 9.4) right-handed systems are necessary, so we
use right-handed systems throughout the book.

In 2-space, the distance between the points (x;,y,) and (xy,ys) is

(*) \/(xz -x)}+ ()’2 - )h)z-

It may similarly be shown that the distance in 3-space between the points
(x1,31,21) and (xg, o, 29) is

Vi =)+ (5 = 3)° + (. — )%

For example, if D = (3,4,7) and E = (-5,-2,5) then DE =
V64 + 36 + 4 = VI104.

Components of a vector A vector in 2-space has two components, indicat-
ing the changes in x and y from tail to head. The vector # in Fig. 8a has
x-component —2 and y-component 3, and we writeu = (—2,3). In 2-space,
the coordinates of a point and the components of a vector both measure
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FIG. 8a

POINT (%,,9,)

Aw& ®,y,)

Fio. 8b
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“over” and “up.” However, the coordinates of a point measure over and up
from the origin to the point, while the components of a vector measure over
and up from the tail to the head. Note that if the vector (xo, yo) is drawn with
its tail at the origin then the coordinates of the head are the same as the
components of the vector (Fig. 8(b)).

A vector in 3-space has three components, indicating the changes in x,
y and z from tail to head. For vector AD in Fig. 9, to move from tail A to
head D we must go 4 in the negative x direction, 5 in the positive y direction
and 3 in the positive z direction. Thus AD = (-4,5,3).

x Fi6.9

Any vectors # and U with the same lenglh and direction will have_the
same components, and in that case we write % = 7. In Fig. 9, GB = FC =
(0,5,-3), AH = BC = GF = ED = (-4,0,0).

The vectors (0,0) and (0,0, 0) are thought of as arrows with zero length
and arbitrary direction, and called zero vectors. Both are denoted by 0.

Suppose the tail of a vector is the point (6, — 1) and its head is the point
(2, 4) (Fig. 10). Examine the changesin x andy from tail to head to see that
the vector has components (—4,5). In general

POINT B=(2,)

wmk AB=(4,5)

N
PoNT A=(6,71)

Fl6.10
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(1 vector components = head coordinates — tail coordinates,

which we abbreviate by writing
(2) vector AB = point B — point A.

For example, the vector with tail at (3,5, 1) and head at (2,1, 5) has
components (2 — 3,1 — 5,5 — 1), or (-1, —4,4).

POINT (%,y) i

QE"TO r o
r Ahe r? """"

FIG. 1

Suppose a vector i in 2-space has length r and angle of inclination 6
(Fig. 11). To find the components (x, ) of %, note that if the vector is drawn
starting at the origin then the head of the arrow has rectangular coordinates
x,y and polar coordinates r, 8 (Appendix A6). Since the two sets of coordi-
nates are related by x = rcos 6, y = r sin 6, we have

(3) %= (r cos 6,7 sin 6).

If a 2-dimensional vector has length 6 and angle of inclination 127°, then its
components are (6 cos 127°,6 sin 127°).

n-dimensional vectors An arrow in space with a triple of components
(uy,up, us) is called a 3-dimensional vector. More generally, a 3-dimensional
vector is any phenomenon described with an ordered triple of numbers, such as
position in space, or a weather report which lists, in order, temperature,
humidity and windspeed. Similarly, an ordered string of seven numbers,
such as (4,8,6,2,0, —1,6) is said to be a 7-dimensional vector (or point). For
example, (0,0,0,0,0, 0, 0) is the 7-dimensional zero vector, or, alternatively,
the origin in 7-space. If an experiment involves reading five strategically
placed thermometers each day then a result can be recorded as a
5-dimensional vector (T, Ty, Ts, Ty, T5). If a system of equations with four

unknowns has the solution x;, = 2, x, = —4, x5 = 0, x, = 2 then the
solution may be written as the 4-dimensional vector (2, —4,0,2). If n > 3
then the n-dimensional vector (uy, -+ +, u,) cannot be pictured geometrically as

an arrow or a point, but (with the exception of the cross product in
Section 9.4) vector algebra will be the same whether the vector has 2, 3 or
100 components.

Problems for Section 9.1

1. Let P = (2,3, -7). Find the following distances.

(@) P topoint Q =(1,5,2) (c) P tothe x,y plane
(b) P to the origin (d) P to the y,z plane
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(e) P to the z-axis (g) point (x,y,2) to the x-axis
(f) P to the y-axis (h) point (x,y,2) to the z-axis

2. In Fig. 9, find the components of AF, HB, HE.

3. Find the components of # if % points like the positive y-axis and has length
2 in 2-space.

4. Find several vectors parallel to the line 2x + 3y + 4 = 0.

5. Find the components of AB if A = (2,7) and B = (—1,4).

6. If the vector (3, 1, 6) has tail (1,0,4), find the coordinates of its head.

7. Find the components of the 2-dimensional vector % with length 3 and angle
of inclination 120°.

9.2 Vector Addition, Subtraction, Scalar Multiplication
and Norms

In this section we will develop some vector algebra along with the
corresponding vector geometry.

TENDED
r IN
NOCENT ﬁmkm
% j '''''
,/ FINAL MUZ2LE

>
VELOCITY W

A

CAR VELOCITY V

FlG. |

Vector addition Let the vector % in Fig. 1 be the muzzle velocity of a bullet
fired toward a target. Suppose further that the gun is fired from a car
moving with velocity 7. Experiments show that the bullet does not head
toward the intended target; instead, the car velocity and muzzle velocity
combine (physicists call it “addition”) to produce the final bullet velocity
shown in Fig. 1. In general, the sum of two vectors is defined by the paral-
lelogram law of Fig. 2, or equivalently, the triangle law in Fig. 3 (the tri-
angle is half the parallelogram). Figure 4 shows addition of parallel vectors,
and Fig. 5 shows a sum of three vectors.

To find the algebraic counterpart of the parallelogram law, we want the
components of i + ¥ given the components of i and 7. Suppose & = (2,3)
and ¥ = (5, 1). Figure 6 shows i, 7 and & + ; we can read the changes in x
and y from tail to head of & + ¥ to see that 2 + 7 = (7,4). Each component
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N-Z=(2,3)

Fle.7

of i + vis the sum of the corresponding components of % and v. In general,
ifa=(u, ,u)and v = (v,,---,v,) then

(1) a2+ 0= (u + v, Ut ).

If & and v are vectors in 2-space or 3-space, then (1) accompanies the
geometric parallelogram rule. If i and o are higher dimensional, then (1)
serves as an abstract definition of vector addition.

The vector —u If & = (uy,- -, u,) we define
(2) —& = (_ul)““—ull)‘

For example, if & = (4,2, —1,3) then —2 = (-4,-2,1, -3).
If 4 is a vector in 2-space or 3-space then —u has the same length as %
but points in the opposite direction (Fig. 7).

Vector subtraction If ¢ = (u;,-:*,u,) and ? = (v, -, v,), we define
(3) i‘._i"=(ul—l’ly"'-un_vn)-

For example, if & = (2,—1) and 9 = (1,7) then « — v = (1, -8).

If 4 and v are drawn as vectors with a common tail (Fig. 8a) then the
vector & — U can be drawn by reversing ¥ and adding, that is, by finding
u + —v (Fig. 8b). The final result, the triangle law for vector subtraction, is
shown in Fig. 9: the head of 4 — ¥ is the head of %, and the tail of # — 7 is
the head of v.

Note that to add two vectors geometrically, they can either be placed
with a common tail and added with the parallelogram law in Fig. 2, or can
be drawn head to tail and added with the triangle law in Fig. 3. But
to subtract two vectors geometrically, they should be placed with a common
tail so that the triangle rule of Fig. 9 can be applied. The parallelo-
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-
v

._’
L+-v U=

/7
' = v

(@) & (b)
Fl6.8 Fle.9

gram in Fig. 10 neatly displays the vectors #, 7, % + ¥ and & — 9 all in the
same diagram.

=
=i
=i

Properties of vector addition and subtraction As expected, the vector
operations behave like addition and subtraction of numbers.

Scalar multiplication If & = (uy,---,u,) and ¢ is a scalar, we define
(8) f‘lz = (Culr”'vcun)

and call the operation scalar multiplication. For example, if # = (2, —3) then
54 = (10, —15). If it is a vector in 2-space or 3-space then 24 and # have the
same direction, but 2i is twice as long. A car with velocity 24 is traveling in
the same direction as a car with velocity i, but with twice the speed. The
vectors # and —3ii have opposite directions, and —3i is half as long as @. In
general, two vectors are parallel if one is a multiple of the other; they are parallel
with the same direction if the multiple is positive, and parallel with opposite
directions if the multiple is negative (Fig. 11).

Parallel lines In 3-space,twolines are either parallel, intersecting or skew.
The pyramid in Fig. 12 illustrates parallel lines BE and CD, intersecting
lines AB and AD, and skew lines AE and CD. We will consider coincident
lines as a special case of parallel lines; the lines BF and BA are parallel, and
furthermore are coincident.

Vectors may be used to detect parallel lines: the lines PQ and RS are
parallel if and only if the vectors PQ and RS are multiples of one another. For
exampl_e‘let A=(,23),B = (4,8, —_ll, P = (6,1,3) and Q = (—4,0,2).
Then AB=B - A =(3,6,-4) and PQ=Q — P =(-10,-1,-1). The
vectors are not multiples of one another, so the lines are not parallel.
(Section 10.3 will give a method for distinguishing between the two remain-
ing possibilities, skew versus intersecting, and show how to find the point of
intersection if it exists.)

In 2-space, both slopes and vectors may be used to detect parallel lines.
In fact we will show that the two techniques have much in common. Let’s
decide if the lines AB and CD are parallel, where A = (1,2), B = (3,5),

C = (21,-3) and D = (25,3). The slope of the line AB isg—:—?or%, while
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)

F16.13

5 231 or §. Since 3 and § are equal, the
lines are parallel. Alternatively, we have AB = (3 - 1,5 — 2) = (2,3) and

= (25 - 21,3 — —3) = (4,6). Since (2,3) and (4, 6) are multiples of one
another, the lines are parallel. Both methods involve subtraction to find the
key numbers 3,2 and 6,4. But one method uses them to form quotients,
called slopes, and the other approach uses them to form ordered pairs, the
components of vectors. Deciding if the two quotients are equal is equivalent
to deciding if the two vectors are multiples of one another; the two methods
accomphsh the same purpose, but in different notation. The slope of a line
AB is a convenient way of combining the two components of the vector AB
into one number, without losing information about the direction of the line.
Since there is no useful way of combining the three components of a
3-dimensional vector into one number, slopes are not defined in space.
Questions about parallelism, perpendicularity, angles and direction will be
answered in 3-space using vectors. In 2-space we may choose between
vectors and slopes.

the slope of the line CD is g —

Properties of scalar multiplication

9 cu+d)=cu+cv (For example, 2(it + 7) = 2i2 + 20.)
(10) au + bi = (a + b)u (For example, 2& + 34 = 5u.)
(11) a(bit) = (ab)u (For example, 2(3%) = 6u.)

Properties (9)—(11) are similar to familiar algebraic identities for scalars. We
omit the straightforward proofs.
Example 1 Precalculus algebra courses show that if A = (x),y,) and

+ N+
B = (x3,7;) then the midpoint of the segment AB is (%ﬁ)'—Qﬁ) In

. .. . A+B
vector notation, the mid point is . We can use vectors to find the two

trisection points, C and D, of segment AB (Fig. 13). We have AC = }4B, so
+

C—-A=38B -A),andC =2A3 5

average of the endpoints. The formula for the trisection point C takes

a welghled average of the endpoints, with A weighted twice as much as B,
since C is the trisection point nearer to A. Similarly, AD = 3AB and

b= 2 +3213' If A=(2,3 and B = (—1,6) then the trisection point
+ B

. The midpoint formula computes an

nearest A is 24 = (1,4).

The norm of a vector If & = (u;, u,) then the x component of i changes
by %, and the y component changes by u; from tail to head. Thus by the
Pylhagorean theorem, the length of the vector is Vu] + u}. In general, if
% = (u)," -, u,) we define the norm or magnitude of @ by

(12) lall = Vul + - + ul.
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If the vector i is 2-dimensional or 3-dimensional then ||i] is the length of
. If a point has coordinates (u,,* -, u,) then the square root in (12) is the
distance from the point to the origin.

For example, if & = (2,3, —5) then |[i = V4 + 9 + 25 = V/38. The
length of the vector # is V/38 and the distance from the point (2, 3, =5) to
the origin is V38,

Properties of the norm It follows from the interpretation of ||i/ as the
length of a vector that

(13) izl = 0

and

(14) & = 0 if and only if & = 0.

We have already observed that the vectors 3% and —34 are each 3 times as
long as . In the language of norms, |3 = ||-3d| = 3|il|, and in general,
(1) ledi| = felll

Geometrically, (15) says that the length of the vector cii is the absolute value
of ¢ times the length of ii. Algebraically, (15) claims that the scalar ¢ can be
extracted from inside the norm signs in the expression ||cii]|, provided that
its absolute value is taken.

Example 2 Suppose a force f acts at point A due to a nearby disturbance.
Let 7 be the vector from the disturbance to A (Fig. 14). Describe the direc-

I7 ||3

Solution: The denominator ||7|® is a positive scalar, so f has the same
direction as 7. Thus the dlsturbancc creates a repelling forceat A. To fmd the

tion and magnitude of f if f =

magmtude of f use (15): since 7= E "3 is a positive scalar, the length of i— B ”3 is

5 times the length of 7. Therefore,

[ER ||
» 1 1 1
1Al = el = =5 = = - :
f" "rllS" " "1‘\"2 (dls[aﬂCE f]EClI] A to [bE dlsllltbanCE]2
Thus the magnitude of the repelling force is inversely proportional to the
square of the distance to the disturbance. (The electrical force felt by a

positive charge at point A due to a nearby positive charge is an example of
a repelling, inverse square force.)

Normalized vectors By (15), the norm of %‘ is § times the norm of i.

1 . . .

Similarly, the norm of —= is — times the norm of ii. Thus = is a
|| i Nl

unit vector, that is, has norm 1. Furthermore it has the same direction as i since

the scalar multiple E " is positive. The process of dividing @ by ||z is

called normalizing the vector #. We will use the notation i normaiiced S0 that
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U u u
16 U b = —_—= <-——I DR —.—”) .
( ) Unormalized "12" "'-2" ’ ’ "{l"

_ 4 5
For example, if & = (4,5) then [|i| = V41 and #,yrmatizea = (_, r—:_)

ple, if & = (4,5) then [@]| = V41 and % ,umaiized VI
(Fig. 15).

The normalized # will be a useful geometric tool because of its unit
length.

Warning A norm is a scalar, but as the name implies, a normalized vector is
a vector. In other words, ||ii]| is a scalar but #normaisca is @ vector.

Finding a vector with a given direction and norm Suppose i has length
3 and the same direction as a given vector 0. Then @ = 3¥,5maiized SinCE
tripling the unit vector 9,o,mai.ca produces a vector with length 3, still point-
ing like 9. In general, if ||il| = ! and i has the same direction as a given vector
0, then

(17) iz = lanormalizcd = 1_1:'
[

For example, if % has length 4 and the same direction as w = (1, 3, 2) then

5= A =4(;L_2__>=(_‘!__& 8)
normalized mym ,\/1—4 \/ﬁ'\/ﬁ ,W .

Example 3 If you start at point A = (1,6) and walk 2 units toward point
B = (4,10), at what point do you stop? —

Solution: Let the final destination be named C (Fig. 16). Then AC has
length 2 and the same direction as AB = (3, 4) $0 AC = 2AB ormalized =
%Y. ThereforeC —A =¢HandC =4 + &) = & 3.

3 FIG. 16

The vectors i, ], k In 2-space, the special vectors i and j are defined by
1=(1,0)and j J = (0, 1). Both are unit vectors, and if attached to the origin
they point along the coordinate axes (Fig. 17). Every 2-dimensional vector
can be easxly wrmen in terms of i and] For example, (2,3) = 2(1,0) +
30,1 = 27 + 3] (Fig. 17). The notation & = u,t + u,j is often used in
place of & = (u),uy). From now on, we will use both representauons

Similarly, in 3- space,z = (1,0,0), ] =(0,1, O)andk = (0,0, 1) (Fig. 18).
The vector (u), uy, us) can be wrltten asuyz + upj + ugk For example, if
u—2z—7 +3kandv=z+ +2kthenu+v—3l—6]+5k 3u=
61—211+9k il = va&+49 +9 = V2.
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Warning If & has components 2 and 8, you may write & = (2,8) or
i = 21 + 8}, buti is not (21,8;).

Problems for Section 9.2

1. Use the parallelogram in Fig. 19 to find

(a) DC + DA (d) AB - CB
(b)ég—él_) (e) AB + CD
(c) AB +CB

2. LetA =(2,4,6),B =(1,2,3),C = (5,5, 5). Find point D so that ABCD is a
parallelogram.

3. LetA =(1,4,5),B = (2,8,1),C = (8,8,8), D = (6,0, 16). Are the lines AB
and CD parallel?

4. Let A = (1,2,3),B = (4,8,-1),P = (6,52),Q = (—4,0,2). Find y and z so
that the lines PQ and AB are parallel.

5. Are the points A = (3,6,-1), B = (2,0,3), C = (-1,3, —4) collinear?

6. Of the nine points that divide the segment PQ into ten equal parts, find the
three nearest to P.

7. Figure 20 shows vectors i, 7, @ lying in the plane of the page. Find scalars a
and b so that & = au + bv.

Fi6. 40

8. A median vector of a triangle is a vector from a vertex to the midpoint of the
opposite side. Show that the sum of the three median vectors is (Fig. 21).

B +C . . L
Suggestions: For one method note that E = since E is the midpoint of

segment BC. For another method note that AE = AB + BE.



270 -

9/Vectors

0.

A D B

Flo. Al

9. Find |4l if (@) % = (3,-1,5) (b) & = (m, o, m, mm).

10. Find the unit vector in the direction of (2, -6, 8).

11. If ¥ and i have opposite directions and [[i]| = 5, express # as a multiple of ii.

12. Suppose that you walk on a line for 12 meters from point B = (1, 2,6) to
point C, passing through the point A = (1, 1, 2) along the way. Find the coordinates
of C.

13. If i = (2,3,5), find the norm of 2174.

14. Ifi makes angle @ with the positive x-axis in 2-space, find a unit vector in the
direction of .

15. Suppose u has tail at point (4, 5, 6), is directed perpendicularly toward the
y-axis in 3-space, and has norm 3. Find its components.

16. Suppose the tail of it is at the point A = (5,6, 7), % points toward the origin,
and the length of it is 1/(distance from A_to the origin)®. Find the components of .

17. Ifii = 21 + 3] —kandd =1 —] +k find & — 29, il and finormatized-

18. If ||| = r, find the norm of r*+.

19. Let 6 be the angle determined by i and 9 drawn with a common tail. Use
plane geometry to explain why # + 9 does not necessarily bisect angle 6, but

lIuIJHVH

—= does bisect the angle.

9.3 The Dot Product

We'll begin by finding a formula for the angle between two vectors.
This leads to a new vector product and further applications.

If two vectors % and ¥ are drawn with the same tail, they determine an
angle @ (Fig. 1). If the vectors are parallel with the same direction, the angle
is 0°; if the vectors are parallel with opposite directions, the angle is 180°.
Otherwise, the angle is taken to be between 0° and 180°. We want to find the
angle @ in terms of the components of % and 7. In Fig. 1, the vectoré — ¥
completes a triangle with sides |/, |7l and [[& = 3. By the law of cosines
(Section 1.3),

0] lli =3l = [lal* + |I31* - 2l |3] cos 6.
If & = (uy,uy,us) and ¥ = (v}, vg, vs) then (1) becomes
(uy = )+ (ug — vo)? + (us — v3)® = ud + uf + ul + v} + v+ 0
— 2| |3] cos 6.
This simplifies to u,v, + ugvy + usvs = |[itl|||7]| cos 8, so

uv; + ugvy + usvs
Nzl 1

We single out the numerator of the cosine formula for special attention.

cos 8 =
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The dot product Ifu = (u),--,u,)and v = (v, -+, v,) then the dot product
or inner product of & and 7 is defined by

(2) ©d=wu + o0+ U,

For example, if & = 23 + 3] — 4k and 7 = 57 — 3] + 2k then @ -7 =
@) (5) + (3)(-3) + (-4)(2)=10-9-8=-7.

With this definition, if  is the angle determined by the nonzero vectors
4 and ¥ drawn with the same tail, then

u-v
@ “? ” Felll
or, equivalently,
(4) i = ]3] cos 6.

- + - + - F -39 . .

=2+ 5k =-21+2/ -7 =
Ifi=2:+ 5kand ¥ 21 + 2j — 7k then cos 6§ VRV which is
approximately —.959. Since the angle is always taken to be between 0° and
180°, an approximation for 6 is cos™!(—.959), or about 164°.

The sign of cos 8 determines whether 8 is acute or obtuse. This sign in
turn is determined by the sign of % - 7 since the denominator in (3) is always
positive. In particular,

(5) ifu - 9 is positive then 0° = § < 90°
ifi-9 =0 then 6 =90°
if & + 7 is negative then 90° < 6 = 180°.

As a corollary of (5), for nonzero vectors # and 7,

-

%0 = 0if and only if i and T are perpendicular.

More generally,i - & = Oifand only ifi = O or? = 0 or# and 7 are nonzero
perpendicular vectors.

Examplel LetA = (1,2,3),B = (3,5,-1),C = (5,-1,0),D = (11,-1,3).
Are the lines AB and CD perpendicular? __ -

Solution: Wehave AB = (2,3,~4) and CD = (6,0,3). ThenAB - CD =
12 + 0 — 12 = 0, so the vectors are perpendicular. Therefore the lines are
considered perpendicular although we cannot tell from the dot product
alone whether they are perpendicular and intersecting (such as a telephone
pole and the taut telephone wire) or perpendicular and skew (such as a
telephone pole and a railroad track).

Warning Note that for AB - CD is not (12,0, —12); it is 12 plus 0 plus —12.
The dot product is a scalar.

Free vectors versus fixed points and lines Suppose A = (1,2) and
B = (5,0). Then the points A and B are fixed in the plane, line AB is fixed
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in the plane, but the vector AB = (4, —2) is said to be free in the sense that
an arrow with components 4 and —2 can be drawn starting at any point in
the plane.

Similarly, two vectors # and ¥ can be drawn with a common tail to
display the angle they determine (Fig. 1), but the same vectors can also be
drawn apart. It makes sense to ask if two vectors are parallel or nonparallel,
perpendicular or nonperpendicular, but it makes no sense to refer to vec-
tors as skew or as intersecting.

Properties of the dot product Several dot product rules are similar to
familiar algebraic identities for the multiplication of numbers:

(6)
@)

-

=0°u

&

ﬂc

c@+w)=u-0v+
+0)(p+§=1u-
@8 #-0=0-a=0.

We omit the proofs, which are stralghtforward.

Ifi = (uy, - +,u,) theni & = ui + -+ + u?. But this sum of squares is
also ||i|f?, so

-,
4+

g

—
[

SEERELR

9 i = .

Still another property is
(10) (ca) v =1"(cv) = c(ua-7)
which states that a scalar multiplying one factor in a dot product may be
switched to the other factor or taken to multiply the dot product itself. For
the proof of (10), let & = (uy,--*,u,) and ¥ = (vy,--,v,). Then

c@-9) = c(yvy + -+ + uv,) = cyvy + - + cu,v,

(ct) * 0 = (cu))vy + -+ + (cun)v, = cyyv; + +++ + cu,v,

U (cD) = uylevy) + -+ + ux(evy) = cuyvy + -+ + cuv,.
Therefore, (10) holds. Note that three kinds of multiplication appear in
(10), dot multiplication, scalar multiplication (in the products cii and ¢7) and

multiplication of two numbers (in the product ¢(i * 7) since both ¢ and i * ¥
are scalars).

Example 2 By (9), (7) and (6),
e+ =@+ -@+d)=tu-u+2u-9+7-9
= |l + 24 -9 + ||9IP.

Example 3 Show that i is perpendicular to ¥ — ||u||2

v, . .
(Note that TE is the quotient of two scalars, so it too is a scalar,

multiplying the vector i.)
Solution: For the vectors to be perpendicular, their dot product must
be 0. We have
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=57 - __'_.(,2 i) (by (10) with ¢ taken to be y-H&_H;)

. (cancel the scalars ||u|? and % - &,

by (9))

]
(=}
—
(=8

~<
—
(=2
=

Warning Don't write meaningless combinations. For example, (i - 9) + o
is the sum of a scalar and a vector, which is impossible. Similarly, expressions
such as %2 %7 and %/7 make no sense.

The (scalar) component of i in a direction We’ll begin with an example
to introduce a new and important application of the dot product. Suppose
a boxer is vulnerable to the knockout force KO = (1,2,3). If a fist has the
direction of the vector KO as it lands on his chin, and has V14 units of force
behind it, he will be knocked out. More units of force will also knock him
out, but not less. Suppose he is hit by the blow @ = (1, 4, 2). There is suf-
ficient strength, namely ||| = V21, in the blow but it isn't in the KO direc-
tion. The problem is to decide whether he is knocked out. Think of i as the
sum of two vectors, @, parallel to KO, and b, perpendicular to KO (Fig. 2).
Physical experiments show that applying the force # is equivalent to simul-
taneously applyingd and §. Furthermore, the vector b is harmlessly tangent
to his chin and can be ignored. In other words, the blow that has effectively
been struck is 4, and the possibility of a knockout depends on whether the
magnitude of @ is at least V/14. This is a geometry problem. We want to find
the length of the projection of & onto the KO direction. (Figure 2 is drawn
with @] > V14, that is, with & longer than KO. The problem is to decide if
this is indeed the case.) In the right triangle in Fig. 3, the length of the

projection is labeled p. Then cos 8§ = ﬁ $O

. .. KO
p = lill cos 6 = il ez Gy (3)
i - KO 5 15 —
(ll) —ﬁ (Cancel)——\/—-l—z—-lz 14.

Since p > V14 (barely), the force i does knock him out.
Let’s extract some general results from the example. By (11), if the
angle @ between # and ¥ is acute (as in Fig. 3) then the length p of the

. - P C e u-v
projection of % onto the ¥ direction is given by p = TISW In the case where

6 is obtuse (Fig. 4) then, instead of (11),

p = |lill cos(m — 8) = —||iil| cos 8 [since cos(m — 8) = —cos 6] = —E“-ﬁ

(This is positive, as expected, since % - ¥ is negative in this case.) We sum-
marize as follows.
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%

-7, .. o
The scalarﬁ is called the component of i in the direction
7

of 9. If & and ¥ are drawn with a common tail then this
(12) | component may be thought of as the “signed projection” of
i onto a line through 9. It is positive if the angle between %
and 7 is acute, negative if the angle is obtuse, and in either
case, its absolute value is the length of the projection.

Example 4 Leti =i — 3] and # = —5: + 2]. Find the component of &
in the direction of ¥ and show its geometric significance in a sketch.

‘o -1l T, .

Solution: We have — = The negative sign indicates that u

ERRY%E

makes an obtuse angle with 7, and the absolute value, , is the length of

iy
V29
the projection in Fig. 5.
Example 5 Figure 6 shows a rectangular box with edges 10, 7 and 2. Find
the length of the projection of segment GF on the line CA. (One way to
visualize the projection is to imagine the foot of the perpendicular from F
to line AC, and the foot of the perpendicular from G to AC, which happens
to be C; the projection is the distance between the two feet. In Fig. 6 the
projection of GF may also be visualized as the prOJecuon of CB.)

Solution: If ray DA is taken as the positive x-axis, ray DC as the positive
y-axis and ray DH as the positive z-axis then GF = 2,0,0), CA = (2,-10,0)
and

GF - CA 4
Tjca T Vios
Therefore the length of the projection is 4/V'104.

-

. e 0D
The vector component of it in a direction We have already identified —"6"

as the (scalar) component of i in the direction of 7. We now examine the

/1/,# 6
/ F
£
7 L C
TR
A B
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i vector obtained by projecting % onto ¥ (Figs. 7 and 8); it is called the vector
component or projection of i in the direction of ©.
The vector component in Fig. 7 has the same direction as 7 and its
length is the scalar component 2“5% Therefore, by (17) in Section 9.2, the
-y
v vector component is
VECTOR _COMPONENT @09
F o (13) TR
oF W oon ENE
F |6.77 Let’s see if (13) applies to Fig. 8 as well, where the angle between # and v is
obtuse. In this case, the scalar component -’-‘“_—"v is negative. When it multi-
LY v
N .

u plies "v?" in (13), it has the effect of reversing direction as desired for Fig. 8
where the vector component has a direction opposite to 9. Thus (13) is the
vector component in both Figs. 7 and 8. Simplifying (13) produces the

ve following conclusion.
\[E?@,R cm%ﬂ!ur The vector component of i in the direction of 7 may be
OF W on R -, s

written as -u—.lf' or, equivalently, as yﬁ. In other words,
3 (14 LA o
F'G the vector component is a multiple of 7, and the multiple is

Uy

the scalar =—.

For example, if 2 = i — 3] and 7 = =57 + 2 then the vector compo-
nent of % in the direction of 7 is

v

—7 =

-11 -+ + _bb. 22. .
E(—51+21)—29! 29] (Fig. 9).

(S
<

v

VECTOR.  COMPONENT
557> 317
29+h7 29 J

w

Problems for Section 9.3

1. Decide if the angle betweeni = i + 2j — 3kand & = 5i + 6; + 5kis acute,
right or obtuse.

2. Find it * 9 if |lii| = 5, [|[Z]| = 6 and @ and ¥ have opposite directions.

3. Find angle A in the triangle with vertices A = (1,4,-3), B = (2,1,6) and
C =432).
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4. Let it = (u), us,us) and let 6;, 8, 65 be the angles between u and the positive
x-axis, y-axis and z-axis, respectively.

(@) Find cos 6,, cos 6, cos 65 (called the direction cosines of i)
(b) Show that (cos 6y, cos 6, cos 8s) is the unit vector in the direction of .

5. LetA =(2,3),B =(5,8),C =(-1,4), D = (4, 1). Show that lines AB and
CD are perpendicular using (a) slopes (b) dot products.

6. Suppose that you walk from point A = (2,4) to point B = (8,9) and then
make a left turn and walk 7 feet to point C. Use vectors to find the coordinates of
C.

7. Find the acute angle determined by two lines with slopes —7/2 and 4.

8. Show that (i - #)7 — (0 - u1)a is perpendicular to .

9. If |l@l| = 3, 5]l = 2 and & - ¥ = 5, find [|-6iil|, & - 3@ and ||z - 7.

10. Let i = (5,2, 3,-4) and o = (-4, 3, —1,4). Compute whichever of the fol-
lowing are meaningful

2
@ la-9 (e 5]

o) lz-3 )
© lBllE (g

2
(d) —
u

i o)
u

—_ o~

“P)

11, Give (i) a geometric argument and then (ii) an algebraic argument for the
following.

(@) Ifa+7=0then|a+ 7| = la - 7.
(b) If|l@| = |l5|| then & + ¥ is perpendicular to i — o.

12. Ifi = 47 + 2] + 3kand? = —i — 3] + kfind (a) the component of i in the
direction of 7 and (b) the component of 7 in the direction of u.

13. In Fig. 6, find the length of the projection of segment FH on the line A