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Preface

A dull proof can be supplemented by a geometric analogue so simple and beau-
tiful that the truth of a theorem is almost seen at a glance.

Martin Gardner
Behold!

Bh–askara

A thespian or cinematographer might define a cameo as “a brief appearance of a known figure,”
while a gemologist or lapidary might define it as “a precious or semiprecious stone.” How
might a mathematician define it? In this book I present fifty short enhancements for the first-
year calculus course in which a geometric figure briefly appears, which I call Cameos for
Calculus. Some of the Cameos illustrate mainstream topics such as the derivative (Cameo 3),
combinatorial formulas used to compute Riemann sums (Cameo 16), or the geometry behind
many geometric series (Cameo 33). Other Cameos present topics accessible to students at the
calculus level but not usually encountered in the course, such as the Cauchy-Schwarz inequality
(Cameo 24), the arithmetic mean-geometric mean inequality (Cameos 10, 15, and 45), and the
Euler-Mascheroni constant (Cameo 37).

In an early 1990s article “Visual Thinking in Calculus” (in Visualization in Teaching and
Learning Mathematics, W. Zimmerman and S. Cunningham, editors, MAA, 1991), Walter
Zimmerman wrote:

Of all undergraduate mathematics courses, none offers more interesting and varied op-
portunities for visualization than calculus. Most of the concepts and many problems of
calculus can be represented graphically. Recognizing the importance of graphics in calcu-
lus, texts are adorned by numerous figures and diagrams. In many cases, however, these
are little more than decorations. In selected cases, diagrams may be used directly as a tool
in problem solving, but considering the calculus course as a whole, geometrical reasoning
is used inconsistently at best, and the role of visual thinking is not seriously addressed.

Many of the Cameos are adapted from articles published in journals of the MAA, such as
the American Mathematical Monthly, Mathematics Magazine, and the College Mathematics
Journal. Some come from other mathematical journals, and some were created for this book.
By gathering the Cameos into a book I hope that they will be more accessible to teachers of
calculus, both for use in the classroom and as supplementary explorations for students.

There are fifty Cameos in the book, grouped into five sections: Part I, Limits and Differ-
entiation; Part II, Integration; Part III, Infinite Series; Part IV, Additional Topics; and Part V,
Appendix: Some Precalculus Topics. Many of the Cameos include exercises, so Solutions to
the Exercises follow Part V. The book concludes with References and an Index.
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PART I

Limits and Differentiation

α
β

θ

a

b

 x

1





CAMEO 1

The limit of .sin t /=t

Almost all modern calculus texts include a proof that limt!0 .sin t /=t D 1. Many do so in the
same way: for t in .0; �=2/ compare the areas of the circular sector and two triangles illustrated
in Figure 1.1a. The area of �OAP is .sin t /=2, the area of sector AOP is t=2, the area of
�OAB is .tan t /=2, and thus .sin t /=2 � t=2 � .tan t /=2. These inequalities are then cleverly
manipulated to obtain cos t � .sin t /=t � 1, from which it follows that limt!0C .sin t /=t D 1
(the limit as t ! 0� is usually obtained by noting that .sin.�t //=.�t / D .sin t /=t/. It is the
manipulation of the inequalities that may cause some students difficulty.

x2+y2 = 1

P(cos t, sin t)

B(1,tan t)

A(1,0)
t

O

(a)

x2+y2 = 1

P(cos t, sin t)

A(1,0)
t

O

(b)

x2+y2 = (cos t)2

C(cos t,0)

Q

Figure 1.1. Two illustrations for the limit of .sin t /=t

The manipulation of the inequalities can be simplified by using one triangle and two circular
sectors, as illustrated in Figure 1.1b. The area of sector COQ is t .cos t /2=2, the area of �OCP
is .sin t /.cos t /=2, the area of sector AOP is t=2, and hence t .cos t /2=2 � .sin t /.cos t /=2 �
t=2. Multiplication by 2=.t cos t / immediately yields cos t � .sin t /=t � 1=cos t . The limit
now follows from the squeeze theorem once we show that limt!0 cos t D 1.

To do so, see Figure 1.2.

x2+y2 = 1

P(cos t, sint)

A(1,0)

t

O

Figure 1.2. An illustration for two cosine limits
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4 CAMEO 1. The limit of .sin t /=t

For t in .��=2; 0/[ .0; �=2/, cos t < 1 and the length of chord AP is less than the length t
of arc AP, so that q

.cos t � 1/2 C sin2 t < jt j or 2 � 2 cos t < t2:

Thus 1 � .t2=2/ < cos t < 1 and limt!0 cos t D 1 follows from the squeeze theorem.

Exercise 1.1. Show that limt!0 .tan t /=t D 1.

Exercise 1.2. Show that limt!0 .1 � cos t /=t D 0. (Hint: use Figure 1.2.)

The expression in the title of this Cameo and its limit at 0 together define the sinc func-
tion (from the Latin sinus cardinalis), which finds applications in Fourier analysis and signal
processing:

sinc.x/ D

�
.sin x/=x; x ¤ 0

1; x D 0:

y = sinc(x)

Figure 1.3. y D sinc.x/ for x in Œ�5�; 5��

SOURCE: Adapted from C. Alsina and RBN, “Teaching tip: The limit of .sin t /=t ,” College
Mathematics Journal, 41 (2010), p. 192.



CAMEO 2

Approximating � with the
limit of .sin t /=t

The primary, and often only, application of the limit in the preceding Cameo in many calculus
texts is differentiating the sine and cosine functions. Few texts provide another application of
the limit. Here is a simple one, approximating the value of � .

After the limit has been established, set t D �=n for large n, so that .sin .�=n//=.�=n/ � 1,
or equivalently, n sin.�=n/ � � . Of course, we need to evaluate n sin.�=n/ without using � ,
so we begin with 2 sin.�=2/ D 2, and then employ the half angle formulas for the sine and
cosine to compute n sin.�=n/ where n is a power of 2.

The half angle formulas (see Cameo 49) are

sin
x

2
D

r
1 � cos x

2
and cos

x

2
D

r
1C cos x

2
:

We arrange our work in the table below, computing each row (after the n D 2 row) from the
previous row:

Table 2.1. Approximating �

n sin.�=n/ cos.�=n/ n sin.�=n/

2 1.0 0.0 2.0
4 0.7071067812 0.7071067812 2.8284271248
8 0.3826834324 0.9238795325 3.0614674589

16 0.1950903220 0.9807852804 3.1214451522
32 0.0980171403 0.9951847267 3.1365484904
64 0.0490676743 0.9987954562 3.1403311573

128 0.0245412285 0.9996988187 3.1412772512
256 0.0122715383 0.9999247018 3.1415138074
512 0.0061358846 0.9999811753 3.1415729225

1024 0.0030679567 0.9999952938 3.1415876920

There is an ancient geometric interpretation of the results in the n sin.�=n/ column, one that
explains why the approximations approach � through values less than � . With Figure 2.1 we
can show that n sin.�=n/ equals the area of a regular polygon with 2n sides (a “2n-gon”) for
n � 2 inscribed in a circle of radius 1.

5



6 CAMEO 2. Approximating � with the limit of .sin t /=t

(a) (b)

π/n

h

1

1

Figure 2.1. Inscribing a 2n-gon in a circle of radius 1

The 2n-gon in Figure 2.1a has been partitioned into 2n isosceles triangles, each with a vertex
angle at the center of the circle measuring 2�=2n D �=n radians. The altitude h of one of these
triangles (in Figure 2.1b) is h D sin.�=n/, hence the area is .1=2/ sin.�=n/. Since there are
2n triangles, the area of the inscribed 2n-gon is n sin.�=n/, and is less than the area � of the
circle.

Exercise 2.1. Show that for n > 2 the results in the n sin.�=n/ column of Table 2.1 equal
one-half the circumference of a regular n-gon similarly inscribed in a circle of radius 1.

Exercise 2.2. Use the result of Exercise 1.1 (limx!0 .tan x/=x D 1/ to generate another
sequence of approximations to � . Is there a geometric interpretation of this sequence? (Hint:
consider the areas of regular n-gons circumscribed about a circle of radius 1.)

In Cameos 28 and 40 we explore additional ways to approximate � using calculus.



CAMEO 3

Visualizing the derivative

Perhaps the most common way of introducing the derivative of a function f is to consider the
problem of finding the slope of the tangent line to graph of y D f .x/ at a point P D .a; f .a//.
This is usually accomplished by choosing a variable pointQ D .x; f .x//, computing the slope
mPQ of the secant PQ, and letting Q approach P .

In this Cameo we show that with the addition of another vertical axis (which we call the
slope axis, or m-axis), we can see the slopes of the secants converge. Since the slope of a line
corresponds to the vertical displacement resulting from a horizontal displacement of one unit,
we draw them-axis as the vertical line x D aC 1 with its origin at .aC 1; f .a// and the same
scale as the y-axis. See Figure 3.1a.

(a)

x
a

1

a+1

y

y = f(x)
1

1

0

0P

Q

mPQ

m

f(a)

x
a a+1

y

y = f(x)
1

1

0

0P

m

mT

(b)

Figure 3.1. A method to visualize the derivative

Consequently, when we extend the secant PQ to intersect them-axis, the point of intersection
has the coordinate mPQ on the m-axis, as illustrated in Figure 1.1a. As we move Q towards
P , the secant lines converge to the tangent line, and the slopesmPQ converge to the slope mT
of the tangent line on the m-axis, as illustrated in Figure 3.1b. In this example, it appears that
mT may be about 2=3, and now the exact value of mT can be found using the limit process
with the difference quotient for mPQ.

SOURCE: N. A. Friedman, “A picture for the derivative,” American Mathematical Monthly, 84
(1977), pp. 470–471.
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CAMEO 4

The product rule

The standard approach for deriving the product rule starts with the definition of the derivative,
which has the obvious advantage of reinforcing the definition. However, some students find
little that is intuitive or inspiring in that approach, since they see the algebra employed as tricky
at best and totally confusing at worst. For such students a second approach may be beneficial.

In this approach we use a technique common in mathematics: we prove a special case
first, and then use it to prove the general case. Our special case of a product is the square
of a function, since every two-term product can be written as a difference of squares. See
Figure 4.1.

f(x)g(x)

[f(x)]2

[g(x)]2

g(x)f(x)

f(x)g(x)f(x)

g(x)

Figure 4.1. Expressing a product in terms of squares

Since

Œf .x/C g.x/�2 D Œf .x/�2 C 2f .x/g.x/C Œg.x/�2

we have

f .x/g.x/ D
1

2

�
Œf .x/C g.x/�2 � Œf .x/�2 � Œg.x/�2

�
: (4.1)

We now derive the formula for the derivative of the square of a differentiable function with-
out using the power, product, or chain rules. By definition we have

d

dx
Œf .x/�2 D lim

�x!0

Œf .x C�x/�2 � Œf .x/�2

�x

when the limit exists. The difference quotient in the limit can be written as

Œf .x C�x/�2 � Œf .x/�2

�x
D Œf .x C�x/C f .x/� �

Œf .x C�x/� � Œf .x/�

�x

9



10 CAMEO 4. The product rule

and consequently, if f .x/ is differentiable then so is Œf .x/�2 and

d

dx
Œf .x/�2 D lim

�x!0
Œf .x C�x/C f .x/� �

Œf .x C�x/� � Œf .x/�

�x

D lim
�x!0

Œf .x C�x/C f .x/� � lim
�x!0

Œf .x C�x/� � Œf .x/�

�x
:

Hence
d

dx
Œf .x/�2 D 2f .x/f 0.x/: (4.2)

Exercise 4.1. In the above derivation we use the fact that lim�x!0f .x C�x/ D f .x/. Why
is this true?

Exercise 4.2. Use (4.1) and (4.2) to derive the product rule: If f .x/ and g.x/ are differentiable,
then so is f .x/g.x/ and

d

dx
f .x/g.x/ D f .x/g0.x/C g.x/f 0.x/: (4.3)

SOURCE: R. Euler, “A note on differentiation,” College Mathematics Journal, 17 (1986),
pp. 166–167.



CAMEO 5

The quotient rule

In Cameo 4, we derived the product rule for differentiation by first considering a special case,
the derivative of the square of a function. Can we do something similar with the quotient rule?

For the quotient rule, the special case we consider is sometimes called the reciprocal rule: if
g is differentiable and g.t/ ¤ 0, then

d

dt

�
1

g.t/

�
D
�g0.t/

Œg.t/�2
; (5.1)

which we can combine with the product rule to differentiate a general quotient:

d

dt

�
f .t/

g.t/

�
D

d

dt

�
f .t/ �

1

g.t/

�
: (5.2)

A simple quotient with which students are familiar is the slope of a line or line segment.
Consider a line segment OP from the origin O to P D .g.t/; 1/ with a variable slope given by
m.t/ D 1=g.t/ at time t as shown in Figure 5.1, where the “rise” is 1 and the “run” g.t/ is a
nonzero differentiable function.

O

P Q

Δg(t)g(t)
g(t+Δt)

1

Figure 5.1. Illustrating the reciprocal rule

Suppose that the endpoint P moves to Q D .g.t C�t/; 1/ at time t C�t so that the slope
of OQ is m.t C �t/ D 1=g.t C�t/. Now consider the resulting change in slope �m.t/ D
m.t C�t/ �m.t/ as P moves to Q:

�m.t/ D
1

g.t C�t/
�

1

g.t/
D
g.t/ � Œg.t/C�g.t/�

g.t/g.t C�t/

D
��g.t/

g.t/g.t C�t/
:

11



12 CAMEO 5. The quotient rule

Now divide both sides by �t and take the limit as �t ! 0:

m0.t/ D lim
�t!0

�m.t/

�t
D lim
�t!0

��g.t/
�t

g.t/g.t C�t/
D
�g0.t/

Œg.t/�2
;

which, since m.t/ D 1=g.t/, establishes (5.1).

Exercise 5.1. In the above derivation we use the fact that lim�t!0g.t C�t/ D g.t/. Why is
this true?

Exercise 5.2. Use (5.1) and (5.2) to derive the quotient rule: if f .t/ and g.t/ are differentiable
and g.t/ ¤ 0, then f .t/=g.t/ is differentiable and

d

dt

�
f .t/

g.t/

�
D
g.t/f 0.t/ � f .t/g0.t/

Œg.t/�2
; (5.3)

or, replacing f .t/ and g.t/ by u and v respectively, .u=v/0 D .vu0 � uv0/=v2.

Exercise 5.3. Here is another “proof” of the quotient rule using the product rule. Set y D u=v
so that yv D u, then product rule yields yv0C y0v D u0. Solving for y0 yields y0 D .u=v/0 D
.vu0 � uv0/=v2. But there is a serious flaw in this “proof.” What is it?



CAMEO 6

The chain rule

In order to illustrate the chain rule geometrically, we begin with a way to graph a composite
function y D f .g.x// from the graphs of two functions y D f .x/ and y D g.x/ (when,
of course, the range of g is a subset of the domain of f /. One way to do it is illustrated in
Figure 6.1.

a

g(a)

f(g(a))

g(a)

 y = f(x)  y = f(g(x)) y = x

 y = g(x)

x

 y

Figure 6.1. Graphing a composite function

Start with a point a on the x-axis, and use the graph of y D g.x/ to locate g.a/ on the
y-axis. Then by means of the graph of y D x we can relocate g.a/ on the x-axis. Now use the
graph of y D f .x/ to locate f .g.a// on the y-axis, and translate this value horizontally to lie
above .a; 0/, and thus we have the point .a; f .g.a/// on the graph of y D f .g.x// as desired.

As Figure 6.1 illustrates, there is a moving frame (shaded gray) with one corner on the
diagonal y D x, the two adjacent corners on the graphs of f and g, and the opposite corner
on the graph of f ı g.

To illustrate the chain rule, let f and g be differentiable, choose another point t on the x-axis
close to a, and repeat the procedure to locate .g.t/; f .g.t/// on the graph of y D f .x/ and
.t; f .g.t/// on the graph of y D f .g.x//. Then draw the three secant lines, the heavy dashed
segments shown in Figure 6.2.

We now compute the slopes of the three secant lines:

The slope of the secant of g between a and t is g.t/�g.a/
t�a

:

The slope of the secant of f between g.a/ and g.t/ is f .g.t//�f .g.a//
g.t/�g.a/

:

The slope of the secant of f ı g between a and t is f .g.t//�f .g.a//
t�a

:

13



14 CAMEO 6. The chain rule

a t

g(a)

g(t)

f(g(a))
f(g(t))

g(a) g(t)

 y = f(x)  y = f(g(x)) y = x

 y = g(x)

x

 y

Figure 6.2. Illustrating the chain rule

Clearly the third slope is the product of the first two. In the limit as t approaches a, the three
secant lines become tangent lines with slopes g0.a/, f 0.g.a//, and .f ı g/0.a/, respectively,
thus

.f ı g/0.a/ D f 0.g.a// � g0.a/:

A minor modification of the illustration is needed if the secant of g between a and t is
horizontal. In this case there is just one line through the two points on the graph of g, yielding
a single point on the graph of f rather than a secant. It then follows that the secant of f ı g is
also horizontal.

SOURCE: Adapted from Karl Menger’s 1955 text Calculus: A Modern Approach, recently
reprinted by Dover.



CAMEO 7

The derivative of the sine

Most textbooks prove that the derivative of the sine is the cosine using the definition of the
derivative, the addition formula for the sine, and two limits previously derived. Here is a visual
plausibility argument for this derivative that may help students see that the derivative of the
sine should be the cosine.

θ

Δθ

Δy
φ

sinθ = y0
(x0,y0)

x

y

x   + y   = 12 2

θ φ

Δθ

Figure 7.1. Illustrating the derivative of the sine

The smaller dark gray region is not a triangle, but approaches one similar to the light gray
triangle in the limit as �� ! 0, so that

dy

d�
�
�y

��
D
x0

1
D sin� D cos �:

Exercise 7.1. Illustrate the derivative of the cosine in a similar manner.

SOURCE: D. Hartig, “On the differentiation formula for sin � ,” American Mathematical
Monthly, 96 (1989), p. 252, and S. Sridharma, “The derivative of sin � ,” College Mathematics
Journal, 30 (1999), pp. 314–315.
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CAMEO 8

The derivative of the arctangent

The simplest of the derivatives of the inverse trigonometric functions is the derivative of the
arctangent. A purely geometric derivation of the derivative of the arctangent can be obtained
from the formula for the area .1=2/r2� of a sector of a circle of radius r whose angle at the
origin is � (see Figure 8.1a).

r

θ
r

(1,0)

A(1,t)
B

C

D(1,t+Δt)

O

θ

(a) (b)

Figure 8.1. The derivative of the arctangent

The arctangent is an odd function (since the tangent is), so its derivative is even. Hence

we need only find d arctan t=dt for t � 0. In Figure 8.1b
_

AB is an arc of a circle with radius
p
1C t2, and

_

CD is an arc of a circle with radius
p
1C .t C�t/2 for�t > 0 (the case where

�t < 0 is similar). Hence � D arctan.t C�t/ � arctan t . Since the area of sector AOB is less
than the area �t=2 of triangle OAD, we have

1

2
.1C t2/Œarctan.t C�t/ � arctan t � <

�t

2

or
arctan.t C�t/ � arctan t

�t
<

1

1C t2
:

Similarly the area of triangle OAD is less than the area of sector COD so that

�t

2
<
1

2
Œ1C .t C�t/2�Œarctan.t C�t/ � arctan t �

or
1

1C .t C�t/2
<

arctan.t C�t/ � arctan t

�t
;

17



18 CAMEO 8. The derivative of the arctangent

and therefore
1

1C .t C�t/2
<

arctan.t C�t/ � arctan t

�t
<

1

1C t2
:

(When �t < 0 we obtain the same terms but with the inequality signs reversed.)
Thus from the squeeze theorem for limits

lim
�t!0C

arctan.t C�t/ � arctan t

�t
D

1

1C t2
;

and similarly for the limit as �t ! 0�, So the ordinary limit as �t ! 0 exists, and we have

d

dt
arctan t D

1

1C t2
:

The derivatives of other inverse trigonometric functions now follow using the chain rule and
identities:

arcsin t D arctan
t

p
1 � t2

; arccos t D
�

2
� arcsin t; arcsec t D arccos

1

t
; etc.

Exercise 8.1. Follow the same procedure using Figure 8.2 to show that d
dx

tan � D sec2 � .
(Hint: jOAj D sec �; jODj D sec.� C��/.)

(1,0)

A(1,tanθ)
B

C

D(1,tan(θ+Δθ))

O

Δθ

θ

Figure 8.2. The derivative of the tangent

SOURCE: N. Schaumberger, “The derivatives of arcsecx, arctanx, and tanx,” College Mathe-
matics Journal, 17 (1986), pp. 244–246.



CAMEO 9

The derivative of the arcsine

Most calculus texts use implicit differentiation to evaluate the derivatives of the inverse trigono-
metric functions—two or three as examples and the others as exercises. With the fact that the
area of a sector of the unit circle equals one-half the radian measure of the angle at the origin,
an area integral, and the fundamental theorem, we have the following direct derivation of the
derivative of the inverse sine.

As with the arctangent in the preceding Cameo, the arcsine is an odd function (since the
sine is), so its derivative is even. Hence we need only find d sin�1 x=dx for x 2 Œ0; 1/. See
Figure 9.1.

sin   x–1

0 x 1

t  +y  = 12 2

y

t

Figure 9.1. The derivative of the arcsine

The area of the shaded region can be computed in two ways:

1

2
sin�1 x D

Z x

0

p
1 � t2dt �

1

2
x
p
1 � x2:

Multiplication by 2 and differentiation yields

d

dx
sin�1 x D 2

p
1 � x2 �

�p
1 � x2 �

x2
p
1 � x2

�
D

1
p
1 � x2

:

SOURCE: Adapted from M. R. Spiegel, “On the derivatives of trigonometric functions,” Amer-
ican Mathematical Monthly, 63 (1956), pp. 118–120.
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CAMEO 10

Means and the mean value theorem

The mean value theorem is a staple of every calculus course. However, textbooks rarely explain
the relationship between this theorem and means. The word “mean” comes from the French
moyen, “middle,” “medium,” or “average.” A mean of two numbers a and b (which we will
take to be real and positive) is a number c that lies between a and b. Familiar examples are the
arithmetic mean .aC b/=2 (the usual method of averaging numbers such as exam scores) and
the geometric mean

p
ab. The origin of the geometric mean is, of course geometry—it is the

side length of a square with the same area as an a-by-b rectangle.
The mean value theorem (“MVT”) states that if f is a function continuous on Œa; b� and

differentiable on .a; b/, then there exists a number c in .a; b/ such that

f .b/ � f .a/

b � a
D f 0.c/: (10.1)

The relevant portion of the theorem for this Cameo is the fact that c is in .a; b/, and hence
c is a mean of a and b. All we need to do is solve (10.1) for c, the number in .a; b/ where the
tangent line is parallel to the secant line joining .a; f .a// and .b; f .b//.

Example 10.1. Let f .x/ D x2 on Œa; b�. The MVT yields .b2 � a2/=.b � a/ D 2c, so that
c D .aC b/=2, the arithmetic mean of a and b. See Figure 10.1.

a b

y = x2

(a + b)/2

Figure 10.1. The MVT for f .x/ D x2 on Œa; b�

Example 10.2. Let f .x/ D 1=x on Œa; b�. The MVT yields Œ.1=b/�.1=a/�=.b�a/ D �1=c2,
from which we have c D

p
ab, the geometric mean of a and b. See Figure 10.2.
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22 CAMEO 10. Means and the mean value theorem

a b

y = 

√ab

1
x

Figure 10.2. The MVT for f .x/ D 1=x on Œa; b�

Exercise 10.1. Use the MVT to find the mean c for the function y D ln x on Œa; b�. This mean
is naturally called the logarithmic mean of a and b. See Figure 10.3.

a c b

y = 1nx

Figure 10.3. The MVT for f .x/ D ln x on Œa; b�

Exercise 10.2. An unusual mean of two positive numbers a and b is the identric mean, .1=e/ �
.bb=aa/1=.b�a/. Derive this mean using the MVT with f .x/ D x ln x on Œa; b�.

So, why are means useful in a calculus course? See Cameo 15 for an application of the
arithmetic and geometric means to solve some optimization problems where first-year calculus
techniques fail, and Cameo 29 for an application of the logarithmic mean to deriving inequali-
ties for the number e.

We study relationships among the various means in Cameos 11, 12, 15, 21, and 29.



CAMEO 11

Tangent line inequalities

Tangent lines to the graph of a concave up function lie below the graph of the function, and
tangent lines to the graph of a concave down function lie above the graph of the function. This
simple observation can be exploited to derive a variety of inequalities.

Example 11.1. Is .�=e/C .e=�/ > 2? One way to answer the question is to use a calculator.
Another way is to show that the sum of a positive number and its reciprocal is always at least
2, i.e.,

if x > 0 then x C
1

x
� 2: (11.1)

with equality if and only if x D 1.

Consider the graph of y D 1=x and its tangent line y D 2 � x at (1,1), as shown in Figure
11.1. Since the curve is concave up, 1=x � 2 � x, and (11.1) follows.

2

y = 2 – x

y = 1/x

10

1

2

Figure 11.1. Graphs of y D 1=x and y D 2 � x

Example 11.2. The AM-GM inequality for two numbers. We encountered the arithmetic mean
.aC b/=2 and the geometric mean

p
ab for positive numbers a and b in the preceding Cameo.

The AM-GM (for arithmetic mean-geometric mean) inequality states that

if a and b are positive, then
aC b

2
�
p
ab (11.2)

with equality if and only if a D b. To prove (11.2), we first show that .1C x/=2 �
p
x for

x > 0. See Figure 11.2. Since the graph of y D
p
x is concave down, the line y D .1C x/=2

23



24 CAMEO 11. Tangent line inequalities

tangent to the curve at (1,1) lies above it, and .1C x/=2 �
p
x follows (with equality if and

only if x D 1/.

2 3

y = √x

y = 

10

1

2 1 + x
2

Figure 11.2. Graphs of y D
p
x and y D .1C x/=2

To obtain (11.2), set x D b=a in .1C x/=2 �
p
x and multiply both sides by a.

Exercise 11.1. Use Figure 11.3 to give a purely geometric proof of (11.2). (Hint: compare the
sum of the areas of the two isosceles right triangles to the area of the shaded rectangle.)

b

a

b

a

Figure 11.3. A geometric proof of (11.2)

Exercise 11.2. For a purely algebraic proof of (11.2), expand and simplify the inequality
.
p
a �
p
b/2 � 0 (which is obviously true since squares are never negative).

Exercise 11.3. Show that (11.1) and (11.2) are equivalent. (Hint: let x D
p
a=
p
b in (11.1)

and clear fractions to obtain (11.2); then let fa; bg D fx; 1=xg in (11.2) to obtain (11.1).)

Exercise 11.4. Find the minimum value of

.x C 1=x/6 � .x6 C 1=x6/ � 2

.x C 1=x/3 C .x3 C 1=x3/

for x > 0. (Hint: simplify the expression by setting a D .x C 1=x/3 and b D x3 C 1=x3.
This is problem B1 from the 1998 edition of the Putnam Mathematical Competition, which we
discuss in Cameo 20.)

See Cameo 15 for some applications of the AM-GM inequality (11.2) to optimizations prob-
lems in calculus.
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Exercise 11.5. Prove Bernoulli’s inequality (named for Jacob Bernoulli, 1654–1705): Let x >
�1. If r > 1 or r < 0, then

.1C x/r � 1C rx; (11.3)

and if 0 < r < 1, then
.1C x/r � 1C rx: (11.4)

See Figure 11.4 for illustrations of Bernoulli’s inequality.

r < 0 0 < r < 1 r > 1

Figure 11.4. The three cases of Bernoulli’s inequality

Exercise 11.6. Prove the weighted AM-GM inequality: Let 0 < r < 1. If a and b are positive,
then

arb1�r � raC .1 � r/b

with equality if and only if a D b. (Hint: let x D .a=b/ � 1 in (11.4) and multiply by b.)
When r D 1=2 this inequality coincides with (11.2). See Cameo 36 for an application of the
weighted AM-GM inequality to calculus.

The next three exercises in this Cameo lead to an expression for the natural logarithm as a
limit:

if x > 0 then ln x D lim
n!1

n.x1=n � 1/: (11.5)

Exercise 11.7. Show that if x > 0 then ln x � x � 1 � x ln x. (Hint: see Figure 11.5.)

y = x – 1

y = 1nx

y = x1nx

210

–1

1

Figure 11.5. Graphs of y D ln x, y D x � 1, and y D x ln x

Exercise 11.8. Let n > 0. Show that

ln x � n.x1=n � 1/ � x1=n ln x:
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(Hint: multiply each term in the double inequality in Exercise 11.7 by n and then replace x
with x1=n.)

Exercise 11.9. Take the limit as n!1 of each term in the double inequality in Exercise 11.8
and apply the squeeze theorem to obtain (11.5).

Exercise 11.10. (i) Show that x cos x < sin x < x for x in .0; �=2/. (Hint: first show that
sin x < x < tan x for x in .0; �=2/. See Figure 11.6.)

y = tanx

y = sinx

y = x

0 π/2

1

2

Figure 11.6. Graphs of y D sin x, y D x, and y D tan x

(ii) Prove Aristarchus’s inequalities:

if 0 < ˇ < ˛ < �=2; then
sin˛

sinˇ
<
˛

ˇ
<

tan˛

tanˇ
:

(Hint: it suffices to show that .sin x/=x is decreasing and .tan x/=x is increasing on .0; �=2/.
Use (i) to determine the signs of the derivatives of .sin x/=x and .tan x/=x.) The inequalities
are named for the Greek mathematician and astronomer Aristarchus of Samos (circa 310–
230 BCE).

Aristarchus of Samos Jacob Bernoulli



CAMEO 12

A geometric illustration of the
limit for e

Calculus texts define e in various ways: the number satisfying limh!0 .e
h � 1/=h D 1 or

ln e D 1 being common. But nearly every one goes on to show that

lim
n!1

�
1C

1

n

�n
D e; (12.1)

often by an analytical argument, such as finding the derivative of the natural logarithm. But the
limit (in the stronger form limt!0.1C t /

1=t D e/ can be illustrated geometrically, as we now
show.

y = x + 1

y = 2x

y = 4x

y = e x

2

1.5

1

0.5

–0.5 0.5 1 1.50

Figure 12.1. Graphs of three exponential functions

In Figure 12.1 we have graphed y D bx for three values of b: e, one number (2) smaller
than e, one number (4) larger than e, and the line y D x C 1. The three curves and the line all
pass through (0,1) where the line is tangent to y D ex , but not tangent to y D 2x or to y D 4x .
For these two curves, y D xC1 is a secant line and has a second point of intersection with the
curve at a point .t; bt / where

bt D 1C t: (12.2)

For example, when b D 2, t D 1 since 21 D 1 C 1, and when b D 4, t D �1=2 since
4�1=2 D 1C .�1=2/.

27



28 CAMEO 12. A geometric illustration of the limit for e

When t ¤ 0 we can solve (12.2) for b as a function of t :

b D .1C t /1=t : (12.3)

Moving t closer and closer to 0 changes the value of b for which the curve y D bx has a
second intercept with y D xC1 until we reach (in the limit) the value of b for which y D xC1
is a tangent line, namely b D e. Hence limt!0.1C t /

1=t D e.
When t D 1=n for a positive integer n, we obtain (12.1). However, this geometric il-

lustration of the limit has several other consequences. For example, we have the inequality
.1C .1=n//n < e since the values of b are smaller than e when t is positive in (12.3).

When t D �1=.nC1/ for a positive integer n, we obtain (after some algebra) the inequality
e < .1C .1=n//nC1 since the values of b are larger than e when t is negative in (12.3).
Combining the two inequalities yields for n positive

�
1C

1

n

�n
< e <

�
1C

1

n

�nC1
: (12.4)

With a geometric argument using the midpoint and trapezoidal rule approximations to a
definite integral (see Cameo 29), the double inequality in (12.4) can be strengthened to

�
1C

1

n

�pn.nC1/
< e <

�
1C

1

n

�nC 12
(the new exponents are the geometric and arithmetic means of n and nC 1/.

SOURCE: Adapted from Karl Menger’s 1955 text Calculus: A Modern Approach, recently
reprinted by Dover.



CAMEO 13

Which is larger, e� or �e? ab or ba?

The first question in the title of this Cameo is easy to answer: get out your calculator, compute
e� � 23:14 and �e � 22:46, and conclude that e� > �e . But while technology can answer
the question, it doesn’t shed much light on why the inequality e� > �e is true.

In 1849 the Swiss mathematician Jakob Steiner (1796–1863) published the following prob-
lem in the Journal für die reine und angewandte Mathematik (the Journal for Pure and Ap-
plied Mathematics), better known as Crelle’s Journal after its editor August Leopold Crelle
(1780–1855): For what positive value of x is the xth root of x the greatest? Note that “the
xth root of x” is related to e� > �e since the inequality is equivalent to e1=e > �1=� . See
Figure 13.1.

y = e x/e

e x/e

y = x

y

x
x

e

e0

(a)

1

y = t1/e

e 1/e

x1/x

y

x
0

(b)

Figure 13.1. An illustration of the maximum value of x1=x

In Figure 13.1a, we see that ex=e � x since the graph of y D ex=e is concave up and y D x
is its tangent line at (e; e/. Taking the xth root of x and ex=e yields e1=e � x1=x with equality
if and only if x D e, as illustrated in Figure 13.1b for x > 1 (the other case differs only in
concavity). Thus e1=e > �1=� and consequently e� > �e .

To answer the question about ab versus ba (where 0 < a < b/, we need to know a little more
about y D x1=x . Using logarithmic differentiation, its derivative is y0 D x.1=x/.1 � ln x/=x2,
so the graph is increasing for x in (0,e/ and decreasing for x > e. See Figure 13.2 for a graph
of y D x1=x and its horizontal asymptote y D 1.
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30 CAMEO 13. Which is larger, e � or � e? ab or b a?

e

y = x1/e

0 5 10 15

1

Figure 13.2. A graph of y D x1=x

The graph yields the following conclusions (the cases where a or b equals 1 are trivial and
omitted):

Case 1. For e � a < b, a1=a > b1=b so that ab > ba. So for example, 20152016 > 20162015.

Case 2. For 0 < a < b � e, a1=a < b1=b so that ab < ba. So for example, 2:0152:016 <
2:0162:015.

Case 3. For 0 < a < 1 < b, ab < ba since ab < 1 and 1 < ba.

Case 4. For 1 < a < e < b, no general conclusion can be drawn, since 23 < 32, 24 D 42, and
25 > 52.

Jakob Steiner August Leopold Crelle

SOURCES: I. Niven, “Which is larger, e� or �e?” Two-Year College Mathematics Journal,
3 (1972), pp. 13–15; and RBN, “Proof without words: Steiner’s problem on the number e,”
Mathematics Magazine, 82 (2009), p. 102.



CAMEO 14

Derivatives of area and volume

Many students notice that the derivative of the area A of a circle with respect to its radius r
equals its circumference C , and that the derivative of the volume V of a sphere with respect to
its radius r equals its surface area S :

dA

dr
D

d

dr
�r2 D 2�r D C and

dV

dr
D

d

dr

4

3
�r3 D 4�r2 D S:

Consequently, students may ask: Are there other two-dimensional figures and three-
dimensional solids with these properties?

Example 14.1. (a) An annulus is the region between two concentric circles. If the outer radius
is twice the inner radius r , as shown in Figure 14.1a, then its area A D �.2r/2 ��r2 D 3�r2

and its perimeter P D 4�r C 2�r D 6�r . Hence dA=dr D P . (b) In Figure 14.1b we
see a circular cylinder whose height h equals the diameter of the base, so that its volume
V D �r2.2r/ D 2�r3 and its total surface area (the sum of the areas of the top, bottom, and
the lateral or curved portion) is S D 2.�r2/C 2�r � 2r D 6�r2. Hence dV =dr D S .

r 2r

(a) (b) r

h = 2r

Figure 14.1. The annulus and cylinder in Example 14.1

Are the circle, sphere, annulus, and cylinder special in this regard, or do these relationships
hold for other plane figures and solids? In this Cameo we learn the answer to this question,
showing that it depends on how you choose to measure the linear dimensions of the objects.

Exercise 14.1. Consider a square and a cube each with side length s. Does the derivative of the
area A of the square with respect to s equal the perimeter P ? Is the derivative of the volume V
of the cube with respect to s equal to the surface area S?

You discovered that the answer to each question is no, so perhaps the circle, sphere, annulus,
and cylinder are special. But let’s repeat the calculations using a different linear measurement.

Exercise 14.2. Repeat Exercise 14.1, but take the derivatives with respect to half the side
length, i.e., set s D 2x and find dA=dx and dV =dx.
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32 CAMEO 14. Derivatives of area and volume

Aha! Now dA=dx D 8x D P and dV =dx D 24x2 D S . So perhaps the “area-perimeter”
and “volume-surface area” differentiation relationships do hold for objects other than the circle,
sphere, annulus, and cylinder.

Consider a region in the plane whose perimeter P and area A are defined and finite, and
expressible in terms of some linear dimension s of the region (such as side length, diameter, or
radius) as P D ks and A D cs2 for constants k and c. We now find a linear dimension x (as a
constant times s/ such that dA=dx D P .

Let x D ts for some constant t . Then A D c.x=t/2 and P D kx=t , so that dA=dx D P if
and only if t D 2c=k, or equivalently, x D 2cs=k D 2cs2=ks D 2A=P .

Exercise 14.3. Suppose the region in the plane is an equilateral triangle with side length s.
Since its perimeter P D 3s and area A D .

p
3=4/s2, show that if dA=dx D P then (a)

x D h=3, where h D s
p
3=2 is the altitude of the triangle (geometrically, x is the radius of

the inscribed circle), and (b) express P and A in terms of x and verify that dA=dx D P . See
Figure 14.2a.

s
h

x

(a) (b)

r

R

Figure 14.2. The equilateral triangle and torus in Exercises 14.3 and 14.5

Example 14.2. The results in Exercises 14.2 and 14.3 hold for regular n-gons. Let r denote
the inradius (the radius of an inscribed circle) of the n-gon. Then the n-gon has side length s D
2r tan.�=n/, perimeter P D 2nr tan.�=n/, and area A D nr2 tan.�=n/, hence dA=dr D P .

Exercise 14.4. Now consider a region in space whose surface area S and volume V are defined,
finite, and expressible in terms of a linear dimension s as S D ks2 and V D cs3 for constants
k and c. Show that in this case dV =dx D S if and only if x D 3V =S .

Let’s apply this result to the torus (perhaps from the Latin word for “knot”), a doughnut-
shaped object (doughnut was originally spelled dough knot) obtained by revolving a circle
about a line outside the circle. Let r denote the radius of the circle and R (R > r/ the distance
from the center of the circle to the axis of revolution, as shown in Figure 14.2b. Using integra-
tion, the volume V and the surface area S of the torus are V D 2�2r2R and S D 4�2rR.

Exercise 14.5. Consider a torus for which R D mr where m > 1 is a constant. (a) Show that
dV =dr ¤ S . (b) For what linear dimension x is dV =dx D S?

SOURCE: Adapted from J. Tong, “Area and perimeter, volume and surface area,” College Math-
ematics Journal, 28 (1997), p. 57.



CAMEO 15

Means and optimization

Some of the most important applications of derivatives in the calculus course are the optimiza-
tion problems. Many of these are geometric in nature, for example, finding the dimensions of
a region in the plane with fixed perimeter that has maximum area, or finding the dimensions of
an object with a fixed volume that has minimum surface area. However, for some of these prob-
lems there is a non-calculus method that is often simpler, and can be used to solve problems
that can’t be solved with single variable calculus.

The non-calculus method is based on the arithmetic mean-geometric mean (or AM-GM)
inequality that we derived in Cameo 11. If a and b are positive numbers, then the arithmetic
mean of a and b is .a C b/=2, the geometric mean is

p
ab, and the AM-GM inequality states

that
aC b

2
�
p
ab (15.1)

with equality if and only if a D b. In Exercise 11.1 we presented a visual proof, and in
Exercise 11.2 a simple algebraic proof. Let’s see how this simple inequality (and its extension
to three numbers) can be used to solve some optimization problems often encountered in a
calculus course.

Example 15.1. Of all rectangles with a given perimeter, which one has the largest area? Of all
rectangles with a given area, which one has the smallest perimeter? We can solve both parts of
the problem by using the AM-GM inequality to construct an inequality between the perimeter
P and the area A of a rectangle. If the lengths of the sides of the rectangle are x and y, then
P D 2.x C y/, A D xy, and hence

p
A D

p
xy �

x C y

2
D
P

4
;

so that A � .P=4/2, with equality if and only if x D y. So if the perimeter of the rectangle
is given, then the square has maximum area, and if the area of the rectangle is given, then the
square has minimum perimeter.

Exercise 15.1. Solve both parts of the problem in Example 15.1 using calculus.

Example 15.2. In 1471 Johannes Müller (1436–1476), called “Regiomontanus” after his birth-
place Königsberg, wrote a letter to Christian Roder containing the following problem:

At what point on the earth’s surface does a perpendicularly suspended rod appear longest?
(That is, at what point is the visual angle a maximum?)
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In his classic work 100 Great Problems of Elementary Mathematics, Heinrich Dörrie writes
that this problem, now known as Regiomontanus’s maximum problem, “deserves special atten-
tion as the first extreme problem encountered in the history of mathematics since the days of
antiquity.”

α
β

θ

a

b

 x

Figure 15.1. The Regiomontanus maximum problem

In Figure 15.1 we see the suspended rod, whose top and bottom are a and b units, respec-
tively, above the eye level of the observer, x units away. The task is to find x to maximize the
angle � . Let ˛ and ˇ denote the angles that the lines of sight to the top and bottom of the rod
make, respectively, with the observer’s eye level. Then

cot � D
1

tan.˛ � ˇ/
D
1C tan˛ tanˇ

tan˛ � tanˇ

D
1C .a=x/.b=x/

a=x � b=x
D

x

a � b
C

ab

.a � b/x
:

Since the cotangent is a decreasing function for � in the first quadrant, to maximize � we
minimize cot � . The AM-GM inequality now yields

cot � D
x

a � b
C

ab

.a � b/x
� 2

s
x

a � b
�

ab

.a � b/x
D
2
p
ab

a � b
;

with equality if and only if x=.a � b/ D ab=.a � b/x, or x D
p
ab. Thus the observer should

stand at a distance equal to the geometric mean of the heights of the top and bottom of the rod
above the observer’s eye level.

Exercise 15.2. Use calculus to solve Regiomontanus’s maximum problem in Example 15.2.

Many optimization problems involve volumes of objects. Since volume is a three dimen-
sional concept, we may be able to use the AM-GM inequality for three numbers: If a, b, and c
are positive numbers, then the arithmetic mean is .aC b C c/=3, the geometric mean is 3

p
abc,

and

3
p
abc �

aC b C c

3
(15.2)

with equality if and only if a D b D c. See Figure 15.2 for a visual proof.
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x

z
y

x

x
x

y

y

y z

z
z

x

z
y

Figure 15.2. The AM-GM inequality for three numbers

In Figure 15.2 (a three-dimensional version of Figure 11.3) we see how a box with sides x; y,
and z fits inside the union of three right pyramids whose bases are squares with sides x; y, and
z and whose altitudes are also x; y, and z, respectively. Since the volume of a pyramid is 1=3
the area of the base times the height, we have

xyz �
1

3
x2 � x C

1

3
y2 � y C

1

3
z2 � z D

x3 C y3 C z3

3
:

Setting x D 3
p
a, y D 3

p
b, and z D 3

p
c yields (15.2).

Exercise 15.3. Prove (15.2) algebraically. (Hint: first establish the identity

x3 C y3 C z3 � 3xyz D .x C y C z/.x2 C y2 C z2 � xy � yz � xz/;

then use the AM-GM inequality (15.1) for two numbers to show that the second term on the
right is nonnegative for positive x, y, and z, and set x D 3

p
a, y D 3

p
b, and z D 3

p
c as

before.)

The AM-GM inequality (15.2) for three numbers is a powerful problem-solving tool. We
illustrate its use with four examples—the first and fourth can be solved with single-variable
calculus, but the second and third require multivariable calculus.

Example 15.3. Years ago tents were made of canvas and shaped like cones, as seen in the pho-
tograph in Figure 15.3 of the Native American encampment at the Pan-American Exposition
in Buffalo, NY in 1901.

Among all possible conical canvas tents with a specified volume and no floor, what is the
ratio of the height h to the base radius r to minimize the amount of canvas used?

The volume of the conical tent is V D �r2h=3 and the amount S of canvas is the lateral
area S D �r

p
r2 C h2 of the cone. To minimize S it suffices to minimize S2. To that end, we

have

S2 D �2r2.r2 C h2/ D �2.r4 C r2h2/

D �2
�
r4 C

r2h2

2
C
r2h2

2

�
� 3�2

�
r4 �

r2h2

2
�
r2h2

2

�1=3
D 3�2

�
3V

�
p
2

�4=3

with equality if r4 D r2h2=2, or equivalently, h D r
p
2. Thus the ratio of h to r should be

p
2

to minimize the amount of canvas used to make the tent.
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Figure 15.3. Conical tents

Exercise 15.4. Use calculus to solve the problem in Example 15.3.

In the above problem we minimized a sum by expressing the sum as a sum of terms with a
constant product. In the next problem we maximize a product by expressing the product as a
product of terms with a constant sum.

Example 15.4. A well-known package delivery service restricts the size of packages it will
accept. Packages cannot exceed 108 inches in length plus girth, i.e., length C 2 � width C
2 � height � 108. Find the dimensions of an acceptable package with maximum volume. See
Figure 15.4.

Figure 15.4. Designing an acceptable package with maximum volume

Let x D length, y D width, and z D height of the rectangular box in Figure 15.4. Then the
sum of the length and girth is S D xC 2yC 2z. If V denotes the volume, then 4V D 4xyz D
x � 2y � 2z. From (15.2) we have

3
p
4V D 3

p
x � 2y � 2z �

x C 2y C 2z

3
D
S

3
�
108

3
D 36
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and so the volume satisfies V � 363=4 D 11664 in3 with equality if x D 2y D 2z. Hence the
design of the acceptable rectangular box with maximum volume is given by x3=4 D 11664, so
that x D 36 in, y D z D 18 in. (To solve this problem with single-variable calculus requires
another assumption, such as a square end for the package.)

Note that a cubical box 22 in on a side with volume 10648 in3 is unacceptable (since its
length plus girth is 110 in) although the volume of the cube is over 1000 in3 less than the
volume of the acceptable package described above.

Example 15.5. Plastic boxes with compartments, such as the one with 24 compartments in
Figure 15.5, are common for storing small items in the home, office, or workplace.

Figure 15.5. A plastic box with 24 compartments

How should such a box (with 24 compartments and a lid) be designed (length, width, and
height) if it is to have a volume of 560 in3 and use as little plastic as possible?

Let x = length, y = width, and z = height in inches, with volume V = 560 in3. The amount
P of plastic used is proportional to the total area of the top, bottom, sides, and partitions in the
box, so P D c.2xy C 5xz C 7yz/ for some constant c. Hence

.70V 2/1=3 D 3
p
2xy � 5xz � 7yz �

2xy C 5xz C 7yz

3
D
P

3c

with equality if and only if 2xy D 5xz D 7yz, or x D 7z=2 and y D 5z=2. Hence V D
560 D 7

2
z � 5

2
z � z D 35

4
z3 so that z = 4 in, x = 14 in, and y = 10 in. However, in such a box,

the dimensions of the compartments are 21
3

in by 21
2

in by 4 in, so boxes like the one in Figure
15.6 are most likely not designed to minimize the amount of plastic used for their construction.
(As in Example 15.4, to solve this problem with single-variable calculus one usually has to
make an additional assumption, such as the box or its compartments have square bases.)

Example 15.6. Supermarkets sell ground coffee in cylindrical cans constructed of three dif-
ferent materials, a metal bottom, cardboard sides, and a plastic cap, as shown in Figure 15.6.
If the costs of metal, cardboard, and plastic are m, c, and p cents per in2 respectively, what
should the ratio of the height h to the base radius r be in order to minimize the construction
cost for a can with volume V ?

The volume V and cost C are given by V D �r2h in3 and C D .p C m/�r2 C 2c�rh

cents. Hence
3
p
c2�.p Cm/V 2 D

3
p
.p Cm/�r2 � c�rh � c�rh

�
.p Cm/�r2 C c�rhC c�rh

3
D
C

3
;
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CC OO FF FF EE EE

Figure 15.6. A coffee can

with equality if and only if .pCm/�r2 D c�rh, or h=r D .p Cm/=c. Since it is reasonable
to assume that both p andm are greater than c, it follows that these cans should have h=r > 2,
which often appears to be the case.

Exercise 15.5. Use calculus to solve the problem in Example 15.6.

Exercise 15.6. In Example 15.1 we derived an inequality between the area and the perimeter
of a rectangle. Now consider a rectangular box with dimensions a, b, and c. Let V D abc be
its volume, S D 2.ab C bc C ac/ the total area of the six faces, and E D 4.a C b C c/ the
total length of the twelve edges. Prove that

6V 2=3 � S � E2=24;

with equality if and only if the box is a cube.

Exercise 15.7. Prove the AM-GM inequality for four positive numbers a, b, c, and d :

4
p
abcd �

aC b C c C d

4
(15.3)

with equality if and only if a D b D c D d . (Hint: use (15.1) twice.)

The AM-GM inequalities in (15.1), (15.2), and (15.3) extend to n positive numbers. See
Cameo 45 for a calculus-based proof.



PART II

Integration

 p=f(a)  q=f(b)

r=g(a)

s=g(b)

v

u

u = f(x)
v = g(x)

0

R2

R1
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CAMEO 16

Combinatorial identities for
Riemann sums

Almost all current calculus texts, when introducing the definite integral, ask students to eval-
uate a few by hand, usually for polynomial integrands. To do so, the students need several
combinatorial identities, including these three:

nX
iD1

i D 1C 2C 3C � � � C n D
n.nC 1/

2
(16.1)

nX
iD1

i2 D 12 C 22 C 32 C � � � C n2 D
n.nC 1/.2nC 1/

6
(16.2)

nX
iD1

i3 D 13 C 23 C 33 C � � � C n3 D

�
n.nC 1/

2

�2
: (16.3)

When proofs are presented they are often by mathematical induction. However, while induc-
tion will verify a correct formula, students may tell you that induction doesn’t say much about
why the formula is true. As the Italian-American mathematician Gian-Carlo Rota (1932–1999)
put it, “If we have no idea why a statement is true, we can still prove it by induction.”

Whether or not students see a proof of the above formulas, they should, at a minimum, be
convinced of the truth of each one. And if seeing is believing, perhaps a visual argument or
two for the truth of each one is in order.

In the next three examples we illustrate (16.1), (16.2), and (16.3).

Example 16.1. In Figure 16.1a we represent the sum 1C 2C 3C � � � C n with a collection of
balls in a triangular array with n rows.

(a) (b)

Figure 16.1. Representing 1C 2C � � � C n D n.nC 1/=2

41



42 CAMEO 16. Combinatorial identities for Riemann sums

In Figure 16.1b we see how two such triangular arrays, each with 1C 2C 3C � � � C n balls,
form a rectangular array with n rows and n C 1 columns, so that 2.1 C 2 C 3 C � � � C n/ D
n.nC 1/, from which (16.1) follows. The sum 1C 2C 3C � � � C n D n.nC 1/=2 in (16.1) is
often called a triangular number, as illustrated in Figure 16.1a.

Carl Friedrich Gauss and the 100th triangular number

Nearly every biography of the great mathematician Carl Friedrich Gauss (1777–1855)
relates the following story. When Gauss was about ten years old, his arithmetic teacher
asked the students in class to compute the sum 1 C 2 C 3 C � � � C 100, anticipating this
would keep them busy for some time. He barely finished stating the problem when young
Carl came forward and placed his slate on the teacher’s desk, void of calculation, with the
correct answer: 5050. When asked to explain, Gauss admitted he recognized the pattern
1 C 100 D 101; 2 C 99 D 101; 3 C 98 D 101, and so on to 50 C 51 D 101. Since
there are fifty such pairs, the sum must be 50 � 101 D 5050. The pattern for the sum
(adding the largest number to the smallest, the second largest to the second smallest, and
so on) is illustrated below, along with a portrait of Gauss on a pre-euro 10 Deutsche Mark
note.

Gauss and his computation

For a second illustration of (16.1) we represent the sum 1C 2C 3C � � � C n as the area of a
triangular array of unit squares (squares with area 1), as shown in Figure 16.2a.

(a) (b)

Figure 16.2. A second illustration that 1C 2C � � � C n D n.nC 1/=2

In Figure 16.2b we compute the total area of the array a second way, as the area 1
2
n�n D n2=2

of the large white triangle plus the total area n � 1
2
D n=2 of the n small gray triangles each

with area 1=2, so that

1C 2C 3C � � � C n D
n2

2
C
n

2
D
n.nC 1/

2
:
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Example 16.2. To represent a sum of squares, we consider a collection of n squares with areas
12; 22; : : : ; n2. Three such collections are shown (for n D 5/ in Figure 16.3a.

(a) (b)

Figure 16.3. Illustrating the sum of squares formula

If we slice up the third collection of squares as indicated by the different shadings, all the
squares can be rearranged into the rectangle in Figure 16.3b with height 1C 2C 3C� � �Cn D
n.nC 1/=2 and base nC 1C n D 2nC 1, so that

3.12 C 22 C 32 C � � � C n2/ D
n.nC 1/

2
� .2nC 1/ D

n.nC 1/.2nC 1/

2
;

from which (16.2) follows upon division by 3.
Our second illustration of (16.2) uses three stacks of n layers of unit cubes (cubes with

volume 1) where the volumes of the layers are 12; 22; : : : ; n2, as shown (for n D 4/ in Fig-
ure 16.4a. Each stack of cubes has a pyramidal shape so that the three stacks fit together as
shown in Figure 16.4b.

(a) (b) (c) (d)

Figure 16.4. A second illustration of the sum of squares formula

In Figure 16.4c we slice the top layer of cubes horizontally, and place the darker gray half-
cubes on top of the unshaded portion of the stack, to form a rectangular box of cubes with base
n by nC 1 and height nC .1=2/ in Figure 16.4d, so that

3.12 C 22 C 32 C � � � C n2/ D n.nC 1/

�
nC

1

2

�
D
n.nC 1/.2nC 1/

2
;

and again (16.2) follows after division by 3. If the three-dimensional argument is difficult to
visualize, you may want to illustrate Figure 16.4 with a collection of small plastic cubes, which
can be obtained from educational supply houses.
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Example 16.3. Here we represent k3 by a k � k � k collection of unit cubes. Slice n such
cubes (with volumes 13; 23; : : : ; n3/ into layers and arrange on a plane, as shown (for n D 4/

in Figure 16.5a.

(b)(a)

Figure 16.5. Illustrating sums of cubes

Now arrange four copies of the cubes in Figure 16.5a into a square pattern with side length
n � nC n D n.nC 1/ as shown in Figure 16.5b, so that

4.13 C 23 C 33 C � � � C n3/ D Œn.nC 1/�2

from which (16.3) follows. Combining (16.3) and (16.1) yields this attractive formula relating
the sum of cubes to the squared sum of the first n positive integers:

13 C 23 C 33 C � � � C n3 D .1C 2C 3C � � � C n/2: (16.4)

In Figure 16.6 we see an illustration of (16.4) representing k3 as k copies of k2 for k from
1 to n (shown here for n D 6/. When k is even two squares overlap, but the area of the overlap
is the same as the area of a square (in white) not covered by the shaded squares.

Figure 16.6. Illustrating (16.4)

SOURCES:
Figure 16.2: I. Richards, “Proof without words: Sum of integers”’ Mathematics Magazine, 57
(1984), p. 104.

Figure 16.3: M. Gardner, “Mathematical games,” Scientific American, 229 (1973), p. 115, and
D. Kalman, “.1 C 2 C � � � C n/.2n C 1/ D 3.12 C 22 C � � � C n2/”, College Mathematics
Journal, 22 (1991), p. 124.
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Figure 16.4: M.-K. Siu, “Proof without words: Sum of squares,” Mathematics Magazine, 57
(1984), p. 92.

Figure 16.5: A. Cupillari, “Proof without words: 13C 23C � � � C n3 D .n.nC 1//2=4” Math-
ematics Magazine, 62 (1989), p. 259, and W. Lushbaugh, Mathematical Gazette, 49 (1965),
p. 200.

Figure 16.6: S. Golomb, “A geometric proof of a famous identity,” Mathematical Gazette, 49
(1965), pp. 198–200.
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Summation by parts

Summation by parts is a deceptively simple yet remarkably powerful method for computing
certain sums in calculus, and can be used in higher level courses as well. For two sequences
a1; a2; a3; : : : and b0; b1; b2; : : : of real numbers, we have

nX
iD1

bi .aiC1 � ai /C

nX
iD1

ai .bi � bi�1/ D anC1bn � a1b0: (17.1)

Expanding the sums and observing that almost all of the terms in the first sum cancel with
terms in the second sum readily verifies the formula. In Figure 17.1 we have a geometric
illustration of (17.1) for the case when both sequences are increasing sequences of positive
numbers, so that each summand represents the area of a rectangle.

. . . 

. . . 

. . . a1 a2 a3 a4 an an+1

b1

b2

b3

b0

bn

bn–1

Figure 17.1. Illustrating summation by parts

A similar picture will be used to illustrate a continuous version of (17.1)—integration by
parts—in the next Cameo. We now examine several applications. The first three are the sums
of integers, squares, and cubes illustrated in the preceding Cameo.

Example 17.1. If we set ai D bi D i , then aiC1 � ai and bi � bi�1 are equal to 1 for every i ,
and (17.1) yields

nX
iD1

i C

nX
iD1

i D .nC 1/n

and hence
Pn
iD1 i D

n.nC1/
2

, as in (16.1) in the preceding Cameo.

47
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Example 17.2. To verify the formula (16.2) for the sum of squares of the first n positive
integers, we use the sequences of odd numbers and triangular numbers in (16.1), setting ai D
2i � 1 and bi D i.i C 1/=2. Then aiC1 � ai D 2 (the difference of consecutive odd numbers
is 2) and bi � bi�1 D i (since bi D bi�1 C i/, and (17.1) yields

nX
iD1

i.i C 1/

2
� 2C

nX
iD1

.2i � 1/ � i D .2nC 1/ �
n.nC 1/

2
� 1 � 0;

or
nX
iD1

.i2 C i/C

nX
iD1

.2i2 � i/ D
n.nC 1/.2nC 1/

2
:

Thus 3
Pn
iD1 i

2 D n.nC1/.2nC1/
2

, so that
Pn
iD1 i

2 D n.nC1/.2nC1/
6

.

Exercise 17.1. Show that
Pn
iD1 .2i � 1/ D n

2, i.e., the sum of the first n odd numbers is n2.
See Figure 17.2. (Hint: try ai D i � 1 and bi D i .)

Figure 17.2. The sum of the first 9 odd numbers is 92

Example 17.3. For (16.3), the sum of the first n cubes, we set ai D bi D i2. From the
preceding exercise, the difference between consecutive squares is an odd number, and hence

nX
iD1

i2.2i C 1/C

nX
iD1

i2.2i � 1/ D .nC 1/2 � n2 � 1 � 0

so that 4
Pn
iD1 i

3 D Œn.nC 1/�2, or
Pn
iD1 i

3 D Œn.nC1/�2

4
.

Exercise 17.2. Find the sum
Pn
iD1

i.iC1/
2

of the first n triangular numbers. (Hint: set ai D iC1

and bi D
i.iC1/
2

.) Although this one isn’t needed in calculus, it’s good practice using (17.1).

Exercise 17.3. Evaluate
Pn
iD1 i

4. (Hint: set ai D 3i.i � 1/ and bi D
i.iC1/.2iC1/

6
.)

Summation by parts can also be used to find formulas for partial sums of certain infinite
series, such as geometric series and telescoping series. We illustrate with the next two examples
and the final two exercises.

Example 17.4. To use (17.1) to find the formula for the nth partial sum
Pn
iD1 ar

i�1of the
geometric series

P1
iD1 ar

i�1, we set ai D a and bi D r i (r ¤ 1/. Then (16.1) yields

nX
iD1

a.r i � r i�1/ D arn � a;

so that .r � 1/
Pn
iD1 ar

i�1 D a.rn � 1/ and hence
Pn
iD1 ar

i�1 D a.1 � rn/=.1 � r/.
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Example 17.5. We can use (17.1) to find the nth partial sum of a telescoping series with-
out having to use partial fractions to simplify the summand. To find the nth partial sumPn
iD1

1
i.iC1/

of the series
P1
iD1

1
i.iC1/

, set ai D �1
i.iC1/

and bi D i C 2. Then aiC1 � ai D
2

i.iC1/.iC2/
and bi � bi�1 D 1 so that

nX
iD1

.i C 2/ �
2

i.i C 1/.i C 2/
C

nX
iD1

�1

i.i C 1/
� 1 D

�1

.nC 1/.nC 2/
� .nC 2/ �

�1

2
� 2;

and hence
Pn
iD1

1
i.iC1/

D 1 � 1
nC1

.

Exercise 17.4. Find a formula for the nth partial sum of the series
P1
iD1

1
i.iC1/.iC2/

. (Hint:

set ak D
�1

i.iC1/.iC2/
and bi D i C 3.)

The final exercise shows that summation by parts can be used to find the formula for the
partial sums of an infinite series that may be difficult to obtain by other methods.

Exercise 17.5. Show that the nth partial sum of the series
P1
iD1 i.1=2/

i�1 is 4 �

.nC 2/.1=2/n�1. (Hint: set ai D .1=2/i�1, bi D i , and use the result of Example 17.4.)

SOURCE: Adapted from G. Fredricks and RBN, “Summation by parts,” College Mathematics
Journal, 23 (1992), pp. 39–42.
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Integration by parts

Let f and g be two functions with continuous derivatives. The definite integral version of the
integration by parts formula

Z b

a

f .x/g0.x/dx D f .x/g.x/jba �

Z b

a

g.x/f 0.x/dx (18.1)

can be illustrated geometrically in the special case when f and g are both positive and in-
creasing on the interval [a; b]. Let u D f .x/ and v D g.x/, and sketch a graph of the curve
(u; v/ in the uv-plane, as shown in Figure 18.1. Since this is a curve given parametrically (a
topic usually appearing later in a calculus course), students may wish to think of x as time,
with both the u and v coordinates of the curve changing over the time interval [a; b].

 p=f(a)  q=f(b)

r=g(a)

s=g(b)

v

u

u = f(x)
v = g(x)

0

R2

R1

Figure 18.1. Integration by parts

The area of the dark gray region R1 is
R q
p v du(the rectangles in the Riemann sum for this

integral have, in the limit, height v and width du), and since u D f .x/ and v D g.x/, we haveZ q

p

v du D

Z b

a

g.x/f 0.x/dx:

Similarly the area of the light gray region R2 isZ s

r

udv D

Z b

a

f .x/g0.x/dx:

The sum of the areas of the two regions equals the difference of the areas of two rectangles,
so thatZ b

a

f .x/g0.x/dx C

Z b

a

g.x/f 0.x/dx D f .b/g.b/ � f .a/g.a/ D f .x/g.x/jba ;

from which (18.1) follows.
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Exercise 18.1. Establish (18.1) in the case where f is increasing and g decreasing, as shown
in Figure 18.2.

 p=f(a)  q=f(b)

r=g(a)

s=g(b)

v

u
0

R2

R1

R0

R3

u = f(x)
v = g(x)

Figure 18.2. Integration by parts, a second case

(Hint: if Ak denotes the area of Rk , compute A1 � A2 in two ways: .A0 C A1/ – .A0 C A2/
and .A1 C A3/ – .A2 C A3/.)

SOURCE: R. Courant, Differential and Integral Calculus, Vol. 1, Interscience, New York, 1937.
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The world’s sneakiest substitution

In his book Calculus Michael Spivak writes “The world’s sneakiest substitution is undoubtedly
z D tan.x=2/,” used in calculus to integrate rational functions of the sine and cosine. It leads
to the substitution

sin x D
2z

1C z2
; cos x D

1 � z2

1C z2
; and dx D

2dz

1C z2
(19.1)

so that a rational function of sinx and cos x becomes a rational function of z that can often
be integrated using the partial fractions technique. The substitution is known more formally
as the Weierstrass substitution, named for the German mathematician Karl Theodor Wilhelm
Weierstrass (1815–1897).

Most calculus texts derive (19.1) analytically, but perhaps a geometric illustration for small
positive values of x can provide a motivation for the proof. See Figure 19.1.

A(1,z)

x/2
x/2

O BD

C(1–z2,2z)

1+
z2

(1+z2,0)

Figure 19.1. The world’s sneakiest substitution

Notice that z D tan.x=2/ (in �OAB) implies that sin x D 2z=.1C z2/ and cos x D
.1 � z2/=.1C z2/ (in�OCD). To obtain the formula for dx, write x D 2 arctan z and evaluate
the differential of x.

While the picture in Figure 19.1 isn’t a proof, it does suggest one: use z D tan.x=2/ for x
in .��; �/ to evaluate sin.x=2/ and cos.x=2/, and then use double-angle formulas to find sinx
and cosx. In �OAB we have

sin.x=2/ D
z

p
1C z2

and cos.x=2/ D
1

p
1C z2

;

so that the double angle formulas (see Cameo 49) yield

sin x D 2 sin.x=2/ cos.x=2/ D
2z

1C z2
and cos x D cos2.x=2/ � sin2.x=2/ D

1 � z2

1C z2
;

as seen in �OCD in Figure 19.1.
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Exercise 19.1. Use Figure 19.2 to give another proof of (19.1). (Hint: express jAC j in terms
of z and note that the two shaded triangles are similar.)

x2 + y2 = 1
C(cosx,sinx)

B(–1,0) O A(1,0)

z
xx/2

x
2

D

1+z2

Figure 19.2. A second proof of (19.1)

Exercise 19.2. In Figure 19.3 we see a trapezoid consisting of three similar right triangles.
Use the figure to give a third proof of (19.1). (Hint: express the lengths of the hypotenuses of
the right triangles in terms of z.)

zz
x/2

x/2
x/2

1

z2

Figure 19.3. A third proof of (19.1)

Karl Theodor Wilhelm Weierstrass

SOURCES:

Figure 19.1 is adapted from RBN, “Proof without words: The substitution to make a rational
function of the sine and cosine,” Mathematics Magazine, 62 (1989), p. 267.
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Figure 19.2 is from P. Deiermann, “The method of last resort (Weierstrass substitution)”,
College Mathematics Journal, 29 (1998), p. 17.

Figure 19.3 is adapted from S. H. Kung, “Proof without words: The Weierstrass substitution,”
Mathematics Magazine, 74 (2001), p. 393.





CAMEO 20

Symmetry and integration

Consider the integral

Z 2�

0

1

1C esinx
dx: (20.1)

None of the techniques in the traditional calculus course for finding antiderivatives seem
to help here. But before resorting to a numeric method such as the midpoint, trapezoidal, or
Simpson’s rule, take a look at the graph of the integrand. Since it is positive on Œ0; 2��, the
integral represents the area of the shaded region in Figure 20.1.

1

1

1 + esinx

0 2π

y =

Figure 20.1. A graph of the region whose area is given by (20.1)

The function appears to have symmetry similar to the symmetry of an odd function, but the
center of symmetry is not the origin but rather the point .�; 1=2/. Hence we suspect that the
value of the integral in (20.1) should equal one-half the area of the enclosing rectangle with
width 2� and height 1, that is, � .

If the graph of y D f .x/ on Œa; b� is symmetric with respect to the point ..aC b/=2;
f ..aC b/=2//, then

for all x in Œa; b�;
1

2
Œf .x/C f .aC b � x/� D f

�
aC b

2

�
: (20.2)

We illustrate this symmetry condition in Figure 20.2.
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58 CAMEO 20. Symmetry and integration

(a + b)/2

f (a + b – x)

f (x)
f ((a + b)/2)

a + b – xa bx

Figure 20.2. Illustrating the symmetry condition (20.2)

Then we haveZ b

a

f .x/dx D
1

2

Z b

a

f .x/dx C
1

2

Z b

a

f .t/dt D
1

2

Z b

a

f .x/dx �
1

2

Z a

b

f .aC b � x/dx

D

Z b

a

1

2
Œf .x/dx C f .aC b � x/�dx D

Z b

a

f

�
aC b

2

�
dx D .b � a/f

�
aC b

2

�
:

So if (20.2) holds, then

Z b

a

f .x/dx D .b � a/f

�
aC b

2

�
; (20.3)

that is, the midpoint rule for numeric integration with a single interval is exact.

Exercise 20.1. Show that when (20.2) holds, the trapezoidal rule with a single interval
and Simpson’s rule with two intervals are also exact for

R b
a
f .x/dx.

Example 20.1. So, to evaluate (20.1) we need only verify (20.2) for the integrand and employ
(20.3). For f .x/ D 1=.1C esinx/ on Œ0; 2�� we have

1

2

�
1

1C esinx
C

1

1C esin.2��x/

�
D
1

2

�
1

1C esinx
C

1

1C e� sinx

�

D
1

2

�
1

1C esinx
C

esinx

esinx C 1

�
D
1

2
D

1

1C esin�
;

so (20.2) holds and hence
R 2�
0

1
1Cesinx dx D 2� �

1
2
D � .

Here are some to try (answers are in parentheses). We recommend using a graphing calcu-
lator first to observe the symmetry of the integrand in each, and then using (20.2) and (20.3) to
evaluate the integral.

Exercise 20.2. Evaluate
R 4
0

dx
4C2x

(1=2/.

Exercise 20.3. Evaluate
R 1
�1 arctan.ex/ dx (�=2/.

Exercise 20.4. Evaluate
R 1
�1 arccos.x3/dx (�).

Exercise 20.5. Evaluate
R 2
0

dx

xC
p
x2�2xC2

(1).
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The William Lowell Putnam Mathematical Competition

William Lowell Putnam (1861–1923), a member of the Harvard class of 1882, believed
in the value of team competition in academics. In 1927, Putnam’s widow Elizabeth es-
tablished a trust fund to support the William Lowell Putnam Mathematical Competition, a
challenging proof-oriented annual mathematics contest for college and university students
in the United States and Canada. An article in Time magazine (December 16, 2002) called
it the “world’s toughest math test.” Since 1962 “the Putnam,” as it has become known,
consists of twelve problems in two sessions of three hours each, held on the first Saturday
in December.

William Lowell Putnam

Here are three problems from the Putnam that can be solved by exploiting the symmetry of
the integrand.

Example 20.2. [Problem A5, 2005]. Evaluate
R 1
0

ln.xC1/
x2C1

dx. While this integrand is not

symmetric on [0,1], the presence of x2 C 1 in the denominator suggests the substitution
� D arctan x, tan � D x, and d� D dx=.x2 C 1/ so thatZ 1

0

ln.x C 1/

x2 C 1
dx D

Z �=4

0

ln.tan � C 1/d�:

Next we verify (20.2) for the integrand f .�/ D ln.tan �C1/ on Œ0; �=4� and employ (20.3):

1

2

h
ln.tan � C 1/C ln

	
tan

	�
4
� �



C 1


i
D
1

2

�
ln.tan � C 1/C ln

�
1C

1 � tan x

1C tan x

��

D
1

2
ln 2 D ln

	
1C tan

�

8



since tan �

8
D
p
2 � 1. Hence

R �=4
0 ln.tan � C 1/d� D �

4
� 1
2

ln 2 D �
8

ln 2.

Exercise 20.6. [Problem A3, 1980]. Evaluate
R �=2
0

1

1C.tanx/
p
2
dx.

Exercise 20.7. [Problem B1, 1987]. Evaluate
R 4
2

p
ln.9�x/

p
ln.9�x/C

p
ln.xC3/

dx.

By the way, calculators, graphing or otherwise, are not permitted in the Putnam Competition!

SOURCE: Adapted from RBN, “Symmetry and integration,” College Mathematics Journal, 26
(1995), pp. 39–41.





CAMEO 21

Napier’s inequality and the limit for e

Approximations to the area of a region bounded by an arc of the hyperbola y D 1=x lead to
inequalities for natural logarithms. For example, if we bound the region under the graph of
the hyperbola over the interval Œa; b� with inscribed and circumscribed rectangles and com-
pute areas, as shown in Figure 21.1, we obtain Napier’s inequality, named for the Scottish
mathematician John Napier (1550–1617), the inventor of logarithms:

if 0 < a < b; then
1

b
<

ln b � ln a

b � a
<
1

a
: (21.1)

y = 1/x
1/a

1/b

0 a b

Figure 21.1. Illustrating Napier’s inequality

Comparing areas of the rectangles and the region under the hyperbola yields

1

b
.b � a/ <

Z b

a

1

x
dx <

1

a
.b � a/

from which (21.1) follows.
In Cameo 12 we saw a derivation of limn!1.1 C

1
n
/n D e using secant and tangent lines

to curves of the form y D bx . In this Cameo we can derive the limit using Napier’s inequality.
Setting a D n and b D nC 1 in (21.1) yields

1

nC 1
< ln

�
1C

1

n

�
<
1

n
(21.2)

and multiplication by n and exponentiation yields

en=.nC1/ <

�
1C

1

n

�n
< e; (21.3)

from which limn!1.1C
1
n
/n D e follows using the squeeze theorem.

61
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Exercise 21.1. Show that limn!1.1C
1
n
/nC1 D e. (Hint: first establish

e <

�
1C

1

n

�nC1
< e.nC1/=n (21.4)

by multiplying (21.2) by nC 1.)

Exercise 21.2. Show that for every n � 1, .1C 1
n
/n < e < .1C 1

n
/nC1.

Exercise 21.3. Show that limx!1 .ln x/=.x � 1/ D 1. (Hint: set .a; b/ D .1; x/ for x > 1 and
.a; b/ D .x; 1/ for 0 < x < 1 in (21.1).)

Exercise 21.4. Show that for x > �1 and x ¤ 0, x=.1C x/ < ln.1 C x/ < x. See Figure
21.2. (Hint: consider two cases as in Exercise 21.3.)

–0.5 0

–0.5

0.5

1

0.5 1 1.5

y = 1n(1 + x)
y = x/(1 + x)

y = x

Figure 21.2. The inequality in Exercise 21.4

Taking reciprocals in (21.1) yields

if 0 < a < b; then a <
b � a

ln b � ln a
< b;

where .b � a/=.ln b � ln a/ is the logarithmic mean of a and b from Cameo 10. In Cameo 29
we show that the logarithmic mean lies between the geometric and arithmetic means of a and
b, also encountered in Cameo 10.

Exercise 21.5. Give a second proof of Napier’s inequality by comparing slopes of the lines
tangent to the graph of y D ln x at .a; ln a/ and .b; ln b/ and the secant line joining .a; ln a/
and .b; ln b/, as shown in Figure 21.3.

y = 1nx1nb

1na

0 a b

Figure 21.3. A second proof of Napier’s inequality
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John Napier

SOURCES: N. Schaumberger, “An alternate classroom proof of the familiar limit for e, Two-
Year College Mathematics Journal, 3 (1972), pp. 72–73, and RBN, “Napier’s inequality (two
proofs),” College Mathematics Journal, 24 (1993), p. 165.





CAMEO 22

The nth root of nŠ and another limit
for e

The factorial function nŠ D 1 � 2 � 3 � � � � � n increases rapidly with n. The derivative of
a function provides us with a way to measure how rapidly a function increases, but it only
applies to certain functions defined on intervals. Since the domain of the factorial function is
the set of nonnegative integers, we seek another approach. Comparing the nth root of n! to n
yields the data in Table 22.1.

Table 22.1. The nth root of n factorial

n 10 100 1000 10000 100000
n
p
nŠ 4.5287 37.9927 369.4916 3680.8272 36790.3999

n=
n
p
nŠ 2.2081 2.6321 2.7064 2.7168 2.7181

In this Cameo we use integration to show that

lim
n!1

n
n
p
nŠ
D e: (22.1)

Exercise 22.1. Show that ln. n
p
nŠ=n/ D

Pn
kD1 ln.k=n/ � .1=n/. (Hint: n

p
nŠ=n D n

p
nŠ=nn.)

Exercise 22.2. The sum in the preceding exercise looks as if it might be a Riemann sum. Is it?
If so, what definite integral does it approximate? (Hint: see Figure 22.1.)

10

–1

–2

...

y = 1nx

3/n1/n 2/n

Figure 22.1. Illustrating a Riemann sum
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Since the Remann sum in Exercise 22.1 approximates the convergent improper integralR 1
0

ln x dx, we now find its value.

Exercise 22.3. Show that
R 1
0

ln x dx D �1.

Exercise 22.4. Conclude that limn!1.
n
p
nŠ=n/ D 1=e, which is equivalent to (22.1).

SOURCE: Adapted from C. C. Mumma II, “N ! and the root test,” American Mathematical
Monthly, 93 (1986), p. 561.
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Does shell volume equal disk volume?

Two applications of the definite integral are to find the volume of a solid of revolution by the
so-called disk method and the cylindrical shell method. Both methods can be applied to some
solids of revolution, which yields a convenient way for students to check their work: compute
the volume both ways, the answers should agree. But is it true that both methods must agree?

We begin by considering the relationship between the definite integrals of a continuous
monotone function y D h.x/ and its inverse x D h�1.y/ on the interval x 2 Œa; b�, as illus-
trated in Figure 23.1a for an increasing function and in Figure 23.1b for a decreasing function
(in the case where the common graph of the two functions lies in the first quadrant).

(a) (b)

a b

h(b)

h(a)

x

 y

a b

h(a)

h(b)

x

 y

 y = h(x)

 x = h   (y)1

 y = h(x)

 x = h   (y)1

Figure 23.1. Graphs of y D h.x/ for h increasing and h decreasing

Area interpretations of integrals in Figure 23.1a yield

Z b

a

h.x/dx C

Z h.b/

h.a/

h�1.y/dy D bh.b/ � ah.a/

or Z b

a

h.x/dx D bh.b/ � ah.a/ �

Z h.b/

h.a/

h�1.y/dy: (23.1)

Exercise 23.1. Show that (23.1) also holds in Figure 23.1b. (Hint: note that the integralR h.b/
h.a/ h

�1.y/dy represents the negative of the area of the region to the left of the graph of

x D h�1.y/ over the interval y 2 Œh.b/; h.a/�.)

A rigorous proof of (23.1) requires Riemann sums, but if we make the additional assumption
that h0.x/ is continuous, we can give a simple proof using integration by parts in

R b
a
h.x/dx.
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68 CAMEO 23. Does shell volume equal disk volume?

With u D h.x/ and dv D dx we obtain

Z b

a

h.x/dx D xh.x/jba �

Z b

a

xh0.x/dx D bh.b/ � ah.a/ �

Z b

a

xh0.x/dx:

If we now substitute y D h.x/ so that x D h�1.y/ and h0.x/dx D dy in the rightmost
integral, we obtain (23.1).

We now use (23.1) to prove the equivalence of the disk and shell methods for a region in the
first quadrant bounded by the graph of an increasing function (other cases are similar).

Theorem. Let f be continuous, increasing, and positive on Œa; b� where 0 � a < b, and let
R denote the region bounded by the graph of y D f .x/, the x-axis, and the lines x D a and
x D b. Let S denote the solid obtained by revolving R about the x-axis. Then the disk and shell
methods for computing the volume of S yield the same result. See Figure 23.2.

a b

 f(a)

 f(b)

x

 y

 y = f(x)

R

Figure 23.2. Revolving a region R to form a solid of revolution

If Vshell denotes the volume of S from the cylindrical shell method, then

Vshell D �Œf .a/�
2.b � a/C

Z f .b/

f .a/

2�yŒb � f �1.y/�dy

D �bŒf .a/�2 � �aŒf .a/�2 C �by2
ˇ̌̌
f .b/

f .a/
�

Z f .b/

f .a/

2�yf �1.y/dy

D �

 
bŒf .b/�2 � aŒf .a/�2 �

Z f .b/

f .a/

2yf �1.y/dy

!
: (23.2)

Exercise 23.2. Show that we also obtain (23.2) by first computing the volume of a cylinder
with height b and base radius f .b/ and then subtract both the volume of a cylinder with height
a and base radius f .a/ and the volume (computed by the shell method) of the solid of revolu-
tion formed by rotating the region to the left of the graph of y D f .x/ about the x-axis.

The volume Vdisk of S from the disk method is clearly Vdisk D �
R b
a
Œf .x/�2dx. Letting

h.x/ D Œf .x/�2 so that h�1.y/ D f �1.
p
y/ in (23.1) yields

Vdisk D �

 
bŒf .b/�2 � aŒf .a/�2 �

Z Œf .b/�2

Œf .a/�2
f �1.

p
y/dy

!
:
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If we substitute t D
p
y in the last integral, dy D 2t dt and thus

Vdisk D �

 
bŒf .b/�2 � aŒf .a/�2 �

Z f .b/

f .a/

2tf �1.t/dt

!
D Vshell

as desired.

SOURCE: E. Key, “Disks, shells, and integrals of inverse functions,” College Mathematics Jour-
nal, 25 (1994), pp. 136–138.





CAMEO 24

Solids of revolution and the
Cauchy-Schwarz inequality

Let f be a continuous nonnegative function on the interval Œa; b� where 0 < a < b, and let
R denote the region bounded by the graph of y D f .x/, the x-axis, x D a, and x D b. Now
generate two solids, one by revolving R about the x-axis, the other by revolving R about the
y-axis. See Figure 24.1.

y = f(x)

a b

R

y

x

Figure 24.1. Revolving a region R about the x- and the y-axes

Using the disk method, the volume of the solid obtained when R is revolved about the x-
axis is Vx-axis D

R b
a �Œf .x/�

2dx, and using the shell method, the volume of the solid obtained

when R is revolved about the y-axis is Vy-axis D
R b
a 2�xf .x/dx. How are the volumes of the

two solids related? In this Cameo we first show that

V 2y-axis �
4

3
�.b3 � a3/ � Vx-axis: (24.1)

The fact that an inequality exists between the two volumes is somewhat surprising. Further-
more, the inequality itself is a bit strange, as the first term 4

3
�.b3 � a3/ in the product on

the right doesn’t depend on the function f , and it can be interpreted as the difference of the
volumes of two spheres, one with radius b and another with radius a.

Exercise 24.1. Under the assumptions in the first paragraph, show that for any t ,Z b

a

�Œf .x/C tx�2dx � 0:

Exercise 24.2. Show that the integral in Exercise 24.1 can be written asZ b

a

�Œf .x/C tx�2dx D At2 C Bt C C; (24.2)

where A D 1
3
�.b3 � a3/, B D Vy-axis, and C D Vx-axis.
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72 CAMEO 24. Solids of revolution and the Cauchy-Schwarz inequality

Exercise 24.3. How are the coefficients A, B , and C related when At2CBt CC � 0? (Hint:
show that At2 C Bt C C � 0 with A > 0 implies that B2 � 4AC � 0.)

Exercise 24.4. Show that B2 � 4AC � 0 is equivalent to (24.1).

Exercise 24.5. Show that (24.1) is a best-possible inequality—that is, there are functions f
that yield equality in (24.1). (Hint: consider f .x/ D mx for m > 0.)

Exercise 24.6. Show that Vy-axis�Vx-axis �
�
3
.b3�a3/. (Hint: let t D �1 in (24.2).) Is the

inequality best-possible?

The same procedure outlined above in Exercises 24.2 through 24.4 can be used to prove
the Cauchy-Schwarz inequality for definite integrals: If f and g are continuous on the interval
Œa; b�, then

"Z b

a

f .x/g.x/dx

#2
�

Z b

a

Œf .x/�2dx �

Z b

a

Œg.x/�2dx: (24.3)

Exercise 24.7. Prove (24.3). (Hint: consider
R b
a Œf .x/C tg.x/�

2dx � 0.)

Exercise 24.8. Use the Cauchy-Schwarz inequality to show that if the region R in Figure
24.1 has area AR and the average value of f on Œa; b� is fave, then

Vx-axis � �ARfave:

(Hint: in (24.3) let g.x/ D 1 and recall that fave D AR=.b � a/.) Is this inequality best-
possible? (Hint: let f .x/ D k > 0.)

Exercise 24.9. Let . Nx; Ny/ denote the centroid of the region R in Figure 24.1. Show that Ny �
fave=2. (Hint: Vx-axis D 2� NyAR.)

The Cauchy-Schwarz inequality

The inequality (24.3)—also known as the Cauchy-Bunyakovsky-Schwarz inequality—is
one of the most important in mathematics, and finds applications in a variety of ar-
eas including linear algebra, probability, and analysis. In 1821 Augustin-Louis Cauchy
(1789–1857) published the version for sums. The integral version (24.3) was published
in 1859 by Viktor Yakovlevich Bunyakovsky (1804–1889), and rediscovered in 1885
by Hermann Amandus Schwarz (1843–1921), whose proof was essentially the same as
Exercise 24.7.
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Cauchy, Bunyakovsky, and Schwarz





CAMEO 25

The midpoint rule is better than the
trapezoidal rule

After deriving the formulas for the midpoint and trapezoidal rules, and before presenting the
error bounds, we can use the following illustration to show that the midpoint rule is more
accurate than the trapezoidal rule for continuous concave down functions. A similar illustra-
tion, which makes a good exercise, is to show that the same is true for continuous concave up
functions. The question “how much better?” leads naturally to discussion of the bounds on the
errors.

 f (       )a+b
2

a+b
2

a b

≤ =

= ≤

Figure 25.1. Comparing the midpoint and trapezoidal rules

Exercise 25.1. Show that the same result holds for continuous positive concave up functions.

SOURCE: F. Burk, “Behold! The midpoint rule is better than the trapezoidal rule for concave
functions,” College Mathematics Journal, 16 (1985), p. 56.
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Can the midpoint rule be improved?

Let f be a continuous positive concave down function on an interval [a; b], and consider the
midpoint rule approximation M1 to

R b
a
f .x/ dx using a single interval and midpoint. Most

calculus texts illustrate the fact that M1 is equal to the area of a trapezoid, i.e., the area under
the line tangent to f at the midpoint x D .aC b/=2. See Figure 26.1a.

(a) (b)

a b(a + b)/2

y = f(x)

a

h

b(a + b)/2

y = f(x)

Figure 26.1. A modification of the midpoint rule

But is this particular trapezoid the best one to use? Does one constructed from another
tangent line, such as the one illustrated in Figure 26.1b, perform better? The answer is easily
seen to be no. As the shaded area under the graph of y D f .x/ is constant, the unshaded area
in Figure 26.1b (the error in approximating

R b
a f .x/ dx by the area under a tangent line) will

be minimized when the total area below the tangent line is minimized. This area is the base
b�a times the height h of the tangent line at the midpoint .aC b/=2, so it suffices to minimize
h. And that occurs when the point of tangency is at x D .aC b/=2.

Exercise 26.1. Show that the same result holds for continuous positive concave up functions.

Exercise 26.2. Show that M1, usually defined as the area of a rectangle, is also the area of a
trapezoid for continuous positive functions.

SOURCE: R. Paré, “A visual proof of Eddy and Fritsch’s minimal area property,” College Math-
ematics Journal, 26 (1995), pp. 43–44.
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Why is Simpson’s rule exact for cubics?

One of the great freebies of calculus is the fact that Simpson’s rule, guaranteed to be exact
for quadratics, is also exact for cubics. Of course this follows from the error bound, but the
following explanation is more direct. It suffices to consider the interval Œ�h; h� for arbitrary
h > 0. Let f be an arbitrary cubic polynomial, and let g be the unique quadratic polynomial
that agrees with f at –h, 0, and h. Now let p.x/ D f .x/ � g.x/. See Figure 27.1.

f
g

p h–h

Figure 27.1. Graphs of typical functions f , g, and p

Since p.�h/ D p.0/ D p.h/ D 0, the three zeros of p are –h, 0, and h. Therefore p.x/ D
ax.x C h/.x � h/ D ax3 � ah2x (where a is the coefficient of x3 in f /. Hence p is an odd
function, so that

R h
�h p.x/ dx D 0. Thus

R h
�h f .x/ dx D

R h
�h g.x/ dx, that is, the two gray

regions in Figure 27.1 have the same area. Hence, since Simpson’s rule is exact for g, it is also
exact for f .

SOURCE: Adapted from R. N. Greenwell, “Why Simpson’s rule gives exact answers for cu-
bics,” Mathematical Gazette, 83 (1999), p. 508.
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CAMEO 28

Approximating � with integration

In Cameo 2 we approximated � using the limit of n sin.�=n/ as n ! 1 through powers of
2, and noted that geometrically we were finding the area of polygons inscribed in a circle of
radius 1. We can do something similar with numeric integration. Since the area of one-quarter
of a circle with radius 2 is � (see Figure 28.1a), we can approximate � with approximations to
the definite integral

R 2
0

p
4 � x2dx.

2

(2,2)

(b)(a)
x2 + y2 = 8

x2 + y2 = 4

Figure 28.1. � as the area of two circular sectors

Example 28.1. Let’s use Simpson’s rule to approximate
R 2
0

p
4 � x2dx. The results we ob-

tain depend naturally on the software and the number n of subintervals in Simpson’s rule.
Here are some typical results where Sn denotes the Simpson’s rule approximation with n sub-
intervals:

Table 28.1.

n Sn

10 3.1364470643
20 3.1397753524
40 3.1409504859
100 3.1414302492

The disappointing results (e.g., only three correct decimals with n = 100) are not surprising,
since the first and higher order derivatives of the integrand are unbounded at x D 2 (recall the
formula for the error bound for Simpson’s rule).

Example 28.2. One-eighth of a circle of radius
p
8 also has area � , so perhaps using one-

eighth of the circle x2 C y2 D 8 (see Figure 28.1b) will produce better results. The integral
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82 CAMEO 28. Approximating � with integration

R 2
0

p
8 � x2dx equals �C2, but � and �C2 look exactly the same to the right of the decimal

point. Using Simpson’s rule to evaluate
R 2
0

p
8 � x2dx and subtracting 2 yields the following

approximations to � .

Table 28.2.

n Sn � 2

10 3.1415918322
20 3.1415926017
40 3.1415926503
100 3.1415926535

The derivatives of this integrand are bounded on [0,2], and consequently the results are much
better. We get five decimals correct with n = 10; and ten decimals correct with n = 100.

Exercise 28.1. Show that

� D

Z 1

0

6
p
4 � x2

dx D

Z 1

0

4

1C x2
dx;

and use Simpson’s rule with these integrals to approximate � . See Figure 28.2.

10

3

6
4 – x2√

π

y =

10

4
4

1 + x2

π

y =

Figure 28.2. Two regions with area �

An ancient but common rational approximation to � is 22=7. In the next exercise we use
calculus (rather than a calculator) to show that � < 22=7.

Exercise 28.2. Prove that � < 22=7. (Hint: show that

22

7
� � D

Z 1

0

x4.1 � x/4

1C x2
dx:

This is problem A1 from the 1968 Putnam Competition discussed in Cameo 20.)



CAMEO 29

The Hermite-Hadamard inequality

A surprisingly useful—and easy to prove—double inequality is the Hermite-Hadamard in-
equality, named for the French mathematicians Charles Hermite (1822–1901) who first
published it in 1883, and Jacques Hadamard (1865–1963) who rediscovered it ten years
later.

Charles Hermite and Jacques Hadmard.

The Hermite-Hadamard inequality. If f is continuous and concave up on [a; b], then

f

�
aC b

2

�
�

1

b � a

Z b

a

f .x/ dx �
f .a/C f .b/

2
; (29.1)

and if f is continuous and concave down on [a; b], then

f .a/C f .b/

2
�

1

b � a

Z b

a

f .x/ dx � f

�
aC b

2

�
: (29.2)

The middle term in the Hermite-Hadamard inequality is the average value fave of f on
[a; b], and the inequality states that fave lies between f evaluated at the average of a and b
and the average of f at a and f at b.

To derive the inequality, consider the integral
R b
a
f .x/ dx and its trapezoidal rule approx-

imation T1 with one trapezoid and midpoint rule approximation M1 with just one midpoint.
See Figure 29.1 for the concave up case, when the value of the integral is larger than M1 and
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84 CAMEO 29. The Hermite-Hadamard inequality

smaller than T1, so that

.b � a/f

�
aC b

2

�
�

Z b

a

f .x/ dx � .b � a/
f .a/C f .b/

2
;

from which (29.1) follows. The proof for the concave down case is similar.

a b(a + b)/20

y = f(x)

Figure 29.1. Proving the Hermite-Hadamard inequality

Example 29.1. As an application, consider the function f .x/ D cos x on the interval
Œ��=2; �=2�. Since this function is concave down, (29.2) yields for a and b in Œ��=2; �=2�

cos aC cos b

2
�

sin b � sin a

b � a
� cos

aC b

2
:

When fa; bg = f0,tg for t ¤ 0 in Œ��=2; �=2� we have

1C cos t

2
�

sin t

t
� cos

t

2
:

This double inequality is an improvement over the double inequality cos t � .sin t /=t � 1

discussed in Cameo 1, as can be seen in Figure 29.2.

0–π/2 π/2

y = 1

y = cost

y = (1 + cost)/2
y = (sint)/t
y = cos(t/2)

Figure 29.2. An illustration of the Hermite-Hadamard inequality

Exercise 29.1. Use (29.1) with f .t/ D 1=t and positive numbers 1 and x ¤ 1 to derive a
double inequality for .ln x/=.x � 1/. How does the result compare to the inequalities used in
Exercise 21.1 to show that limx!1 .ln x/=.x � 1/ D 1?

Example 29.2. Now consider the function f .x/ D ex on the interval Œln a; ln b� where 0 <
a < b. Since the graph of the function is concave up, (29.1) yields

e.lnaClnb/=2 <
elnb � elna

ln b � ln a
<
elna C elnb

2



CAMEO 29. The Hermite-Hadamard inequality 85

(the inequalities are strict in this case) which is equivalent to the arithmetic mean-logarithmic
mean-geometric mean inequality: for positive numbers a and b with a ¤ b

p
ab <

b � a

ln b � ln a
<
aC b

2
: (29.3)

The inequality between the arithmetic and geometric means was established in Cameo 11,
and the logarithmic mean was introduced in Exercise 10.1 and seen again in Cameo 21.

Exercise 29.2. Show that for n a positive integer,

1p
n.nC 1/

> ln

�
1C

1

n

�
>

1

nC .1=2/
: (29.4)

(Hint: set a D n and b D nC 1 in (29.3) and take reciprocals.)

The left-hand inequality in (29.4) is equivalent to .1C .1=n//
p
n.nC1/ < e and the right-

hand inequality is equivalent to e < .1C .1=n//nC.1=2/, so that for every positive integer n,

�
1C

1

n

�pn.nC1/
< e <

�
1C

1

n

�nC.1=2/
: (29.5)

In Cameo 12 we established the inequality

�
1C

1

n

�n
< e <

�
1C

1

n

�nC1
: (29.6)

So how does the new boxed inequality (29.5) compare to the traditional one (29.6)? Here
are some data with n = 10 and n = 50:

Table 29.1. A comparison of (29.5) and (29.6)

Bounds on e n = 10 n = 50
.1C 1=n/n 2.59374 (–4.48%) 2.69159 (–0.982%)

(29.6):
.1C 1=n/nC1 2.85312 (+4.96%) 2.74542 (+0.998%)

.1C 1=n/
p
n.nC1/ 2.71725 (–0.038%) 2.71824 (–0.0016%)

(29.5):
.1C 1=n/nC1=2 2.72034 (+0.076%) 2.71837 (+0.0033%)

Note the remarkable improvement in percent relative error (in parentheses) for (29.5) over
(29.6)!





CAMEO 30

Polar area and Cartesian area

Suppose we have a region in the plane for which it is possible to find its area using either
Cartesian (i.e., xy-) coordinates or polar (i.e., r� -) coordinates. We certainly hope that the two
procedures yield the same answer for the area, and in this Cameo we show, in a set of exercises,
that they indeed do.

We consider only a simple case—when the region lies in the first quadrant and its curved
boundary is the graph of a function in both Cartesian and polar coordinates, as illustrated in
Figure 30.1. Other cases can be dealt with similarly.

y

x
a b

θ = β

θ = α

y = f(x)
r = r(θ)

Figure 30.1. A region in Cartesian and polar coordinates

Let Acart and Apolar denote the area of the shaded region in Figure 30.1 when computed in
Cartesian and polar coordinates, respectively.

Exercise 30.1. Show that Acart D
R b
a
f .x/dxC 1

2
af .a/� 1

2
bf .b/. (Hint: express the area of

the shaded region in terms of the area under the graph of y D f .x/and the areas of two right
triangles.)

Exercise 30.2. Show that Acart D
1
2
Œxf .x/ja

b
� 2

R a
b
f .x/dx�. (Hint: notice the change in the

order of the limits of integration in the integral.)

Exercise 30.3. Show that Apolar D
1
2

R ˛
ˇ
Œr.�/�2d� D 1

2

R ˛
ˇ
Œr.�/ cos ��2d.tan �/.

Exercise 30.4. Show that Apolar D
1
2

R a
b
x2d.f .x/

x
/. (Hint: use the change of variables x D

r.�/ cos � and f .x/ D y D r.�/ sin � .)

Exercise 30.5. Show that Apolar D
1
2
Œx2 f .x/

x
ja
b
�
R a
b
f .x/
x
� 2xdx� to conclude that Apolar D

Acart. (Hint: integrate the result in Exercise 30.4 by parts and then compare to Exercise 30.2.)
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88 CAMEO 30. Polar area and Cartesian area

For the final two exercises, consider the case where the function f has an inverse g, as
illustrated in Figure 30.2, and set A D f .a/ and B D f .b/:

y

xa b

θ = β
θ = α

y = f(x)

r = r(θ)
x = g(y)

A
B

y

xa b

θ = β
θ = α

y = f(x)

r = r(θ)
x = g(y)

A
B

Figure 30.2. Two more regions in Cartesian and polar coordinates

Exercise 30.6. Derive the somewhat unexpected result that Apolar is equal to the average of
the areas of the two shaded regions in Figure 30.2, i.e.,

Apolar D
1

2

Z ˛

ˇ

Œr.�/�2d� D
1

2

 Z b

a

f .x/dx C

Z A

B

g.y/dy

!
:

(Hint: use the results in Exercises 30.1 and 30.5 to show that Apolar D
R A
B g.y/dy C

1
2
bf .b/ � 1

2
af .a/.)

Exercise 30.7. Are there any curves in the first quadrant for which the three shaded regions
in Figures 30.1 and 30.2 have identical areas for every choice of (positive) a and b? (Hint: the
answer is yes. Equating any two of the three yields af .a/ D bf .b/, so that xf .x/ must be a
(positive) constant.)

SOURCE: Exercises 30.6 and 30.7 are adapted from G. Strang, “Polar area is the average of
strip areas,” American Mathematical Monthly, 100 (1993), pp. 250–254.



CAMEO 31

Polar area as a source of
antiderivatives

In this Cameo we will learn that interpreting a definite integral as the area of a region in
polar coordinates may help us find an antiderivative of the integrand. The idea is based on the
fundamental theorem: if you can use geometry to evaluate F.x/ D

R x
a f .�/d� , then you have

found an antiderivative of f since d
dx
F.x/ D f .x/.

Example 31.1. Using either a double angle formula or integration by parts, it is easy to show
that

R
cos2 x dx D .1=2/.x C sin x cos x/ C C . Now consider a definite integral in polar

coordinates with the same integrand, i.e.,
R ˛
0 cos2 � d� . This integral looks suspiciously like a

polar area integral since the integrand is a square. Since the graph of r D 2 cos � is a circle, we
write

R ˛
0 cos2 � d� D 1

2
� 1
2

R ˛
0 .2 cos �/2 d� so that

R ˛
0 cos2 � d� represents one-half the area

of the region in the plane bounded by r D 2 cos � and the rays � D 0 and � D ˛, as illustrated
in Figure 31.1 for ˛ in .0; �=2/. (The coordinates for P in the figure are its polar coordinates,
the Cartesian coordinates of P are .2 cos2 ˛; 2 cos˛ sin˛/.)

1 2

P = (2cosα,α)

α 2α

α
r = 2cosθ

Figure 31.1. An area interpretation of
R ˛
0 cos2 � d�

We can also compute the area of the region using geometry. The circular sector (in dark
gray) has angle 2˛ and radius 1, so its area is .1=2/.2˛/ D ˛. The light gray triangle has base
1 and altitude 2 cos˛ sin˛ (the y-coordinate of P / soits area is sin˛ cos˛. HenceZ ˛

0

cos2 � d� D
1

2
.˛ C sin˛ cos˛/ D

1

2
.� C sin � cos �/j˛0 ;

and thus Z
cos2 � d� D

1

2
.� C sin � cos �/C C:
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90 CAMEO 31. Polar area as a source of antiderivatives

Exercise 31.1. Use this polar area method to integrate the square of the secant by showing thatR ˛
0

sec2 �d� D tan˛. (Hint: consider the graph of r D sec � .)

Exercise 31.2. Show thatZ
d�

.a cos � C b sin �/2
D

1

a.a cot � C b/
C C:

(Hint: the graph of r D 1=.a cos � C b sin �/ is a straight line! Sketch a picture for a and b
both positive.)

Exercise 31.3. Show thatZ
d�

.1C cos �/2
D

sin �.2C cos �/

3.1C cos �/2
C C:

(Hint: the graph of r D 1=.1C cos �/ is a parabola, so you will need to use geometry and
integration in Cartesian coordinates to find the area of the region.)



CAMEO 32

The prismoidal formula

A prismatoid is a polyhedron all of whose vertices lie in two parallel planes, as illustrated in
Figure 32.1.

h/2

h/2

h
A m

1A

0A

Figure 32.1. A prismatoid

The volume V of a prismatoid can be found using the prismoidal formula. Let A0 and A1 be
the areas of the faces in the two parallel planes, and letAm be the area of the intersection of the
prismatoid with the plane parallel to the two planes and midway between them. If h denotes
the distance between the planes with areas A0 and A1, then

V D
h

6
.A0 C 4Am C A1/: (32.1)

Example 32.1. A pyramid with a square base is a prismatoid. If the length of a side of the base
is s and the height h, then A0 D s2, A1 D 0, and Am D .s=2/2, so that V D .h=6/.0C s2 C
s2/ D .1=3/s2h, the familiar formula for the volume of a pyramid.

In this Cameo we examine whether the prismoidal formula applies to solids other than pris-
matoids.

Example 32.2. Does the prismoidal formula work for a sphere? Let r be the radius of the
sphere, and let the two planes be tangent to the sphere at the north and south poles. Then
A0 D A1 D 0, Am D �r2 is the area of the circle at the equator of the sphere, and h D 2r .
Then (32.1) yields V D .2r=6/.0C 4�r2 C 0/ D .4=3/�r2, the correct volume of a sphere.

Exercise 32.1. Is the prismoidal formula exact for cylinders and cones?

You may have been surprised to learn that the prismoidal formula gives the exact volume
for cylinders and cones, as well as for spheres. It also gives the exact volumes for many other
solids. Let’s see why.
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92 CAMEO 32. The prismoidal formula

Example 32.3. Using the disk method, let’s set up an integral of the form
R b
a
A.x/dxfor the

volume of a sphere (whereA.x/ is the area of the cross-section at the point x between a and b/.
To obtain a sphere of radius r using the disk method we revolve the gray semicircle bounded
by the graph of y D

p
r2 � x2 and the x-axis for x in Œ�r; r� about the x-axis, as shown in

Figure 32.2:

x   + y   = r2 2 2

Figure 32.2. The volume of a sphere using the disk method

The cross-sectional area isA.x/ D �.
p
r2 � x2/2 D �.r2�x2/, and thus the volume of the

sphere is Vsphere D
R r
�r �.r

2 � x2/dx. Rather than evaluate the integral using the fundamental
theorem of calculus, let’s approximate it using Simpson’s rule with two subintervals, S2. Since
�x D 2r=2 D r ,we have

Vsphere � S2 D
r

3
ŒA.�r/C 4A.0/C A.r/� D

r

3
Œ0C 4�r2 C 0� D

4

3
�r3:

Observe two things: S2 is the prismoidal formula, and it is exact. In fact, the prismoidal for-
mula will be exact whenever S2 is exact, as it is for solids whose cross-sectional area function
is a polynomial of degree 3 or less (as shown in Cameo 27).

The Moscow Papyrus, an ancient Egyptian papyrus dating from about 1850 BCE, contains
25 mathematical problems. The 14th problem concerns the volume of a frustum of a pyramid,
as seen in Figure 31.3a. A frustum (Latin for “a piece”) of a pyramid is a portion of the pyramid
lying between two planes parallel to the base, as illustrated in Figure 32.3b.

(a) (b) a

b

h

Figure 32.3. A portion of the Moscow papyrus and a frustum of a pyramid

For a frustum with square bases measuring a and b on a side and height h, the Papyrus gives
the volume V as (in modern notation)

V D
h

3
.a2 C ab C b2/:

Exercise 32.2. Is this ancient formula a special case of the prismoidal formula? Is it exact?



PART III

Infinite Series

1 x2 x3

1

x2
x3

x

x

1

x

x

x2

x2

x2

x3

x3

x3

x3

...

...

... ...

1/(1–x)

1/(1–x)

...
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CAMEO 33

The geometry of geometric series

Geometric series—series of the form aCarCar2C� � �CarnC� � � for nonzero a and r—are
among the first encountered in calculus, and many of them can be illustrated visually.

Example 33.1. An illustration of the geometric series with a D r D 1=2 begins with a square
with area 1. Cut it in half vertically, as shown on the left in Figure 33.1, to create two rectangles
each with area 1=2.

1
2 1

4

1
8

1
4

1
2

1
2

1
16

1
8

1
4

1
2

Figure 33.1. Dissecting a square with area 1

Then cut the right hand rectangle in half, to create two squares each with area 1=4. Next cut
the square in the upper right hand corner in half vertically, creating two rectangles each with
area 1=8. If we continue this process indefinitely we will have cut the square into infinitely
many pieces whose total area is the same as the area of the original square, so that

1

2
C
1

4
C
1

8
C

1

16
C � � � D 1:

Example 33.2. Figure 33.2 shows a second dissection of a square with area 1. The white
squares have areas 1=4, 1=16, 1=64, and so on, as do the light gray and the dark gray squares.
Thus

1

4
C

1

16
C

1

64
C � � � D

1

3
:

Figure 33.2. A second dissection of a square with area 1
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96 CAMEO 33. The geometry of geometric series

Exercise 33.1. In Figure 33.3 we see two dissections of an equilateral triangle with area 1.
What geometric series do they illustrate?

(a) (b)

Figure 33.3. Two dissections of an equilateral triangle with area 1

When r is negative we can illustrate the geometric series by adding and subtracting areas of
regions, as in the next example.

Example 33.3. In Figure 33.4 we show that the geometric series with a D 1 and r D �1=2
has sum 2=3, beginning with an isosceles trapezoid with area 1 and alternately adding and
subtracting the areas of smaller similar trapezoids.

1 1– 1
2

1– 1
2

+ 1
4

1– 1
2

+ 1
4

– 1
8

1– 1
2

+ 1
4

– 1
8

+ 1
16

1– 1
2

+ 1
4

– 1
8

+ 1
16

– … = 2
3

Figure 33.4. A dissection of a trapezoid

Exercise 33.2. What geometric series (with r < 0/ is illustrated by the dissection of a square
with area 1 in Figure 33.5?

Figure 33.5. Another dissection of a square with area 1

Example 33.4. More generally, the sum a=.1 � r/ of a geometric series with a > 0 and
0 < r < 1 can be illustrated with rectangles as shown in Figure 33.6. The rectangle labeled
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“a” has area a since its height is a=.1 � r/ and its base is 1� r , the rectangle labeled “ar” has
area ar since its height is a=.1 � r/ and its base is r � r2 D r.1 � r/, and so on. The entire
gray rectangle has area a=.1 � r/, thus illustrating aC ar C ar2 C � � � D a=.1 � r/.

0 1r

ar a. . .

. . .

1  r
a

ar2

r2r3

Figure 33.6. Summing a geometric series geometrically

Exercise 33.3. Use Figure 33.7 to show that 1C r C r2C � � � D 1=.1 � r/. (Hint: �PQR and
�PST are similar triangles.)

1

r

1–r

P Q

S T

R

1

1

2r 3r 4r . . .

r
2r

Figure 33.7. A right triangular representation of a geometric series

Convergence of an infinite series is defined in terms of the sequence fSng of partial sums.
For a geometric series with first term a and common ratio r , Sn has the form Sn D a C

ar C ar2 C � � � C arn. In Figure 33.6, Sn is represented by the area of a rectangle with height
a=.1 � r/ and base 1 � rnC1 so that Sn D Œa=.1 � r/� � .1 � rnC1/ D a.1 � rnC1/=.1 � r/.

Since the geometry in Figures 33.6 and 33.7 only applies for positive values of r , we still
need an algebraic argument to establish the closed formula for Sn. Perhaps the simplest way
to do this is to compute SnC1 from Sn in two different ways. One way is to add the next term
arnC1 to Sn, i.e., SnC1 D Sn C arnC1, while a second way is to multiply Sn by r and add a:
SnC1 D aC rSn. These two ways to compute SnC1 yield the same number, hence

Sn C ar
nC1 D aC rSn; or .1 � r/Sn D a.1 � r

nC1/;

and thus for r ¤ 1 we have

Sn D a
.1 � rnC1/

.1 � r/

(when r D 1, Sn is simply .nC 1/a/.
See Example 17.4 in Cameo 17 for another method to find partial sums of geometric series.
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Example 33.5. The recurrence SnC1 D a C rSn as well as the limit S D a=.1 � r/ of the
sequence fSng is illustrated in Figure 33.8 for a > 0 and 0 < r < 1. The coordinates of the
black dots on the dashed line are .Sn; SnC1/.

y =
 x

y = a + rx

a
ar

ar 2

a

ar

(S,S)
y

x

Figure 33.8. The convergence of fSng to S D a=.1 � r/ when 0 < r < 1

When �1 < r < 0 the illustration looks like Figure 33.9.

y =
 x

y = a + rx ar
ar 2

a a

ar

ar 2

x

y

(S,S)

Figure 33.9. The convergence of fSng to S D a=.1 � r/ when �1 < r < 0

SOURCES:

Figure 33.5 is from H. Unal, “Proof without words: Sum of an infinite series,” College Mathe-
matics Journal, 40 (2009), p. 39.

Figure 33.6 is adapted from C. G. Spaht and C. M. Johnson, “Mathematics without words,”
College Mathematics Journal, 32 (2001), p. 109.

Figure 33.7 is from I. C. Bivens and B. G. Klein, “Geometric series,” Mathematics Magazine,
61 (1988), p. 219.

Figures 33.8 and 33.9 are from The Viewpoints 2000 Group, “Proof without words: Geometric
series,” Mathematics Magazine, 74 (2001), p. 320.
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Geometric differentiation of
geometric series

As noted in the preceding Cameo, some of the first series studied in calculus are the geometric
series: for real numbers a and r with jr j < 1 we have

aC ar C ar2 C � � � D
a

1 � r
:

Consider the special case a D 1 and r D x with x in (0, 1), and construct a square with
sides 1C x C x2 C � � � D 1=.1 � x/ as shown in Figure 34.1, and use the terms of the series
to partition the square into smaller squares and rectangles.

1 x2 x3

1

x2
x3

x

x

1

x

x

x2

x2

x2

x3

x3

x3

x3

...

...

... ...

1/(1–x)

1/(1–x)

...

Figure 34.1. A geometric series partition of a square

Summing the areas of the interior squares and rectangles yields

1C 2x C 3x2 C 4x3 C � � � D
1

.1 � x/2
;

which we may be tempted to write as the equivalent statement

d

dx
.1C x C x2 C x3 C � � � / D

d

dx

1

1 � x
:

This suggests (but does not prove) that we may be able to differentiate each term in a con-
vergent geometric series, and the series of derivatives will converge to the derivative of the sum
of the original series. Series where the terms involve powers of a variable x are power series,
and the study of the calculus of power series is a major focus of the series chapter in calculus
texts.
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100 CAMEO 34. Geometric differentiation of geometric series

Exercise 34.1. What series (and its sum) is represented by Figure 34.2? Does it represent the
derivative of some other series?

1

1
2

1
4

1
16

1
2

1
4

1
4

1
8

1
8

1/8
1/8

1
16

1
16
1

16
1

16

Figure 34.2. Another series partition of a square

SOURCE: Figure 34.1 is from RBN, “Mathematics without words,” College Mathematics Jour-
nal, 32 (2001), p. 267.



CAMEO 35

Illustrating a telescoping series

Many calculus texts introduce telescoping series with the series

1

1 � 2
C

1

2 � 3
C

1

3 � 4
C � � � C

1

n.nC 1/
C � � �

and use partial fractions to show that the sequence of partial sums (and hence the series) con-
verges to 1.

Example 35.1. We can illustrate the above result with the graphs of y D xn�1 for x in [0,1]
and n D 1; 2; 3; : : : shown in Figure 35.1 for n D 1; 2; : : : ; 9. The areas of the regions between
the graphs of y D xn�1 and y D xn for n D 1; 2; 3; � � � are the terms in the series, since

Z 1

0

.xn�1 � xn/ dx D

�
xn

n
�
xnC1

nC 1

�1
0

D
1

n
�

1

nC 1
D

1

n.nC 1/
:

1

0.5

0 0.5 1

1
1·2

1
2·3

1
3·4
1

4·5

Figure 35.1. The telescoping series
P1
nD1 1=n.nC 1/

It now follows that the nth partial sum Sn is

Sn D
1

1 � 2
C

1

2 � 3
C

1

3 � 4
C � � � C

1

n.nC 1/
D 1 �

Z 1

0

xndx D 1 �
1

nC 1

and thus the sum of the series is S D limn!1 Sn D 1.
See Example 17.5 in Cameo 17 for another method to evaluate the partial sums of this

telescoping series.
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102 CAMEO 35. Illustrating a telescoping series

Example 35.2. For another illustration of this series see Figure 35.2, where we use the graph
of y D 1=x. The rectangle enclosing the portion of the graph over the interval Œn; nC 1� has
area 1 � . 1

n
� 1
nC1

/ D 1
n.nC1/

, and the rectangles telescope to yield a rectangle with area 1.

1 1/2

1/6
1/12 1

… ...

1

0 1

y = 1/x

2 3 4

Figure 35.2. A second illustration of
P1
nD1 1=n.nC 1/

Exercise 35.1. Show that

1

1
C

1

1C 2
C

1

1C 2C 3
C � � � C

1

1C 2C � � � C n
C � � � D 2:

(Hint: see Example 16.1).

SOURCE: Figure 35.1 is from J. H. Mathews, “The sum is one,” College Mathematics Journal,
22 (1991), p. 322.



CAMEO 36

Illustrating applications of the
monotone sequence theorem

In studying infinite series, an important tool for studying the convergence of sequences (in
particular, sequences of partial sums) is the theorem known as

The monotone sequence theorem. Bounded monotone sequences converge. In particular,
increasing sequences bounded above converge and decreasing sequences bounded below
converge.

Example 36.1. As an illustration of the use of this theorem, consider the series

1X
kD1

1

k2
D 1C

1

4
C
1

9
C � � � C

1

n2
C � � � :

Many calculus texts use the integral test to show that this series converges. However, we will
use the monotone sequence theorem to establish convergence. Since the terms of the series are
positive, the sequence of partial sums is an increasing sequence. So we need only show that the
partial sums are bounded above in order to invoke the monotone sequence theorem to conclude
that the sequence of partial sums converges (and hence the series converges).

We represent each term of the series by the area of a square with side length 1=k, and show
that for any n, the sum of the first n terms of the series is less than 2. To do so, we place the
squares inside a rectangle with height 1 and base 2 (recall that the sum of the geometric series
with first term 1 and common ratio 1=2 is 2). See Figure 36.1.

1
1
4

1/9

1/2 1/41

1

1/16

...

...

...

Figure 36.1. 1C .1=4/C � � � C .1=n2/ is bounded above by 2

In the column of squares above the interval on the base with length 1=2 we can stack two
squares, since the sum of their heights is less than 1. Similarly, in the column above the interval
on the base with length 1=4 we can stack four squares, since the sum of their heights is less
than 4.1=4/ D 1. In general, in the column above the interval on the base of the rectangle
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104 CAMEO 36. Illustrating applications of the monotone sequence theorem

with length .1=2/k we can stack 2k squares, since the sum of their heights will be less than
2k � .1=2/k D 1. Hence for any n, the nth partial sum is less than 2. Using the Maclaurin series
for the arcsine, it can be shown that the sum of this series is �2=6 � 1:645.

Exercise 36.1. Modify Example 36.1 to show that the series

1X
kD1

1

k3
D 1C

1

8
C

1

27
C � � � C

1

n3
C � � �

converges. (Hint: see Figure 36.2.)

Figure 36.2. Bounding 1C .1=8/C � � � C .1=n3/

Example 36.2. For another illustration, we combine the monotone sequence theorem with
the weighted AM-GM inequality from Example 11.5 in Cameo 11 to show that the sequence
fŒ1C .1=n/�ng1nD1 often used to define e actually converges.

The weighted AM-GM inequality states that if a and b are positive numbers and 0 < r < 1,
then

arb1�r � raC .1 � r/b (36.1)

with equality if and only if a D b. See Figure 36.3 for an illustration.

b

a y = ex

ra + (1 – r)b

1na r1na + (1 – r)1nb 1nb

arb1 – r

Figure 36.3. The weighted AM-GM inequality
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To show that fŒ1 C .1=n/�ng1nD1 is increasing we set a D 1, b D 1 C .1=n/, and r D
1=.nC 1/ in (36.1), yielding

�
1C

1

n

�n=.nC1/
<

1

nC 1
� 1C

n

nC 1
�
nC 1

n
D 1C

1

nC 1
so that

�
1C

1

n

�n
<

�
1C

1

nC 1

�nC1
:

To show that fŒ1 C .1=n/�ng1nD1 is bounded above, we set a D 1, b D 1=2, and r D
.n � 1/=.nC 1/ in (36.1), yielding

�
1

2

�2=.nC1/
<
n � 1

nC 1
� 1C

2

nC 1
�
1

2
D

n

nC 1
so that

�
1C

1

n

�n
< 4n=.nC1/ < 4:

Since fŒ1 C .1=n/�ng1nD1 is increasing and bounded above, it converges by the monotone
convergence theorem.

Exercise 36.2. Show that the sequence fŒ1 C .1=n/�nC1g1nD1 converges by showing that the
terms of the sequence are decreasing and bounded below. (Hint: use a D 1, b D n=.nC 1/,
r D 1=.nC 2/ and note that the terms are all positive.)

Consequently, if limn!1Œ1C .1=n/�
n D e, then we also have

lim
n!1

�
1C

1

n

�nC1
D lim
n!1

�
1C

1

n

�
� lim
n!1

�
1C

1

n

�n
D 1 � e D e;

and for any n � 1, �
1C

1

n

�n
< e <

�
1C

1

n

�nC1
:

In the next Cameo we present another example of the use of the monotone sequence theorem.

SOURCES:

Example 36.1 is adapted from M. K. Kinyon, “Another look at some p-series,” College Math-
ematics Journal, 37 (2006), pp. 385–386, and G. Kimble, “Euler’s other proof,” Mathematics
Magazine, 60 (1987), p. 282.

Figure 36.3 is from M. K. Brozinsky, “Proof without words,” College Mathematics Journal, 25
(1994), p. 98.

Example 36.2 and Exercise 36.2 are adapted from N. S. Mendelsohn, “An application of a
famous inequality,” American Mathematical Monthly, 58 (1951), p. 563.





CAMEO 37

The harmonic series and the
Euler-Mascheroni constant

One of the most important infinite series in calculus is the harmonic series. It is usually the
first infinite series that the students encounter where the terms converge to zero yet the series
diverges. Many calculus texts present Nicole Oresme’s proof: if Hn D 1C 1

2
C 1

3
C � � � C 1

n

denotes the nth partial sum, show that H2n > 1C n
2

via a clever grouping of the terms. Some
texts present the simple visual proof, where we interpret each term 1=k of the series as the
area of a rectangle with base 1 and height 1=k, and compare the nth partial sumHn to the area
under the graph of y D 1=x over the interval Œ1; n C 1�. See Figure 37.1 (the number above
each shaded rectangle is its area). This proof has a pedagogical advantage of foreshadowing
the integral test that usually follows the introduction of the harmonic series.

1

0.5

0 1 2 3 4 5

…

n

1/n

y = 1/x

1/41/3
1/2

1

n + 1

Figure 37.1. A partial sum of the harmonic series

Thus

Hn D

nX
kD1

1

k
>

Z nC1

1

1

x
dx D Œln x�nC11 D ln.nC 1/:

Since limn!1 ln.nC 1/ D 1, we have limn!1Hn D 1 and hence the harmonic series
diverges. But it diverges very slowly. With the aid of a calculator or computer, it is easy to
compute some values of Hn as shown in Table 37.1.

Table 37.1. Partial sums of the harmonic series

n 10 100 1,000 10,000 100,000 1,000,000

Hn 2.9290 5.1874 7.4855 9.7876 12.0901 14.3927
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108 CAMEO 37. The harmonic series and the Euler-Mascheroni constant

In Figure 37.1 we see that for each n � 1, the partial sum Hn D 1 C 1
2
C 1

3
C � � � C 1

n
is

larger than ln.nC1/. But how much larger? The answer to this question leads to a real number
known as the Euler-Mascheroni constant. To compare Hn to ln.n C 1/, we add two rows to
Table 37.1, as shown in Table 37.2:

Table 37.2. Comparing Hn to ln.nC 1/

n 10 100 1,000 10,000 100,000 1,000,000

Hn 2.9290 5.1874 7.4855 9.7876 12.0901 14.3927
ln.nC 1/ 2.3979 4.6151 6.9088 9.2104 11.5129 13.8155
Hn � ln.nC 1/ 0.5311 0.5723 0.5767 0.5772 0.5772 0.5772

If we set �n D Hn � ln.n C 1/ (with �0 equal to 0), then it appears that the sequence
f�ng in the last row is converging. We can now prove that f�ng converges by showing that
it is increasing and bounded above, using the monotone sequence theorem from Cameo 36.
Observe that �n is the sum of the areas of the portions of the rectangles representing Hn that
lie above the curve y D 1=x over the interval Œ1; nC 1�. See Figure 37.2 where �n appears in
gray.

1

0.5

0 1 2 3 4 5

…

n

y = 1/x

n + 1

Figure 37.2. A visual representation of �n

To show that f�ng is increasing, note that �n � �n�1 represents the area of the region shaded
dark gray in Figure 37.3 and thus �n � �n�1 > 0 so that �n > �n�1.

…
n

y = 1/x

1/n
1/(n + 1)

n + 1

Figure 37.3. A visual representation of �n � �n�1

To show that f�ng is bounded above, observe that �n � �n�1 is less than the area of the
rectangle in two shades of gray in Figure 37.3, or

�n � �n�1 <
1

n
�

1

nC 1
D

1

n.nC 1/
: (37.1)
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Now replace n by k and sum both sides of (37.1) from 1 to n to obtain

�n D �n � �0 D
Xn

kD1
.�k � �k�1/ <

Xn

kD1
1=n.nC 1/:

Recall from Cameo 35 that
Pn
kD1 1=n.nC 1/ is a partial sum of a positive term series that

telescopes to 1, hence �n < 1. Thus the sequence f�ng converges, and its limit is traditionally
denoted by the Greek letter � :

� D lim
n!1

�n D lim
n!1

ŒHn � ln.nC 1/�:

This limit is known as the Euler-Mascheroni constant after the Swiss mathematician Leon-
hard Euler (1707–1783) and the Italian mathematician Lorenzo Mascheroni (1750–1800).
Evaluated to 20 decimal places, � � 0.57721566490153286060. It is still unknown whether �
is rational or irrational.

We conclude this Cameo with another proof that the harmonic series diverges. This proof
is attributed to the Italian mathematician Pietro Mengoli (1625–1686), and is based on the
inequality

1

n � 1
C
1

n
C

1

nC 1
>
3

n
(37.2)

for any n � 2, which follows from the concavity of the graph of y D 1=x. See Figure 37.4.

…
n

y = 1/x

1/n

1/(n – 1)

(1/2[1/(n – 1) + 1/(n + 1)]

n + 1n – 1

1/(n + 1)

Figure 37.4. Proving Mengoli’s inequality

In Figure 37.4 we see that

1

2

�
1

n � 1
C

1

nC 1

�
>
1

n
or

1

n � 1
C

1

nC 1
>
2

n
;

which is equivalent to (37.2). Hence if Hn again denotes the nth partial sum of the harmonic
series, then (37.2) implies that

H3nC1 D 1C

�
1

2
C
1

3
C
1

4

�
C

�
1

5
C
1

6
C
1

7

�
C � � � C

�
1

3n � 1
C

1

3n
C

1

3nC 1

�

> 1C
3

3
C
3

6
C � � � C

3

3n
D 1CHn: (37.3)
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Thus if the harmonic series converges to a real numberH , then taking the limit as n!1 of
both sides of (37.3) yields the contradictionH D 1CH , so the harmonic series must diverge.

Lorenzo Mascheroni, Leonhard Euler, and Pietro Mengoli.



CAMEO 38

The alternating harmonic series

Perhaps the simplest series to show convergent by the alternating series test (which we consider
in the next Cameo) is the alternating harmonic series

1 �
1

2
C
1

3
� � � � C .�1/nC1

1

n
C � � � D

1X
nD1

.�1/nC1
1

n
: (38.1)

In this Cameo we present a visual argument that it converges to ln 2 by interpreting the terms
in the series as areas of rectangles and ln 2 as the area under the graph of y D 1=x over the
interval Œ1; 2�, as seen in Figure 38.1.

y = 1x

ln2

1

0 1 2

Figure 38.1. ln 2 as the area of a portion of a square

In Figure 38.2a we see the first partial sum, 1, the area of a square with side 1 (the gray
curve in the square is the graph of y D 1=x over the interval Œ1; 2�/. We now delete a rectangle
with area 1=2 (the right half of the square in Figure 38.2a) and add a rectangle with area
1=2 � 2=3 D 1=3, yielding the partial sum 1 � 1=2C 1=3 seen in Figure 38.2b.

2/3

1 3/2 2

(b)(a)

Figure 38.2. Two partial sums of (38.1)
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112 CAMEO 38. The alternating harmonic series

Next we delete a rectangle with area 1=4 and add a rectangle with area 1=4 �4=5 D 1=5, then
delete a rectangle with area 1=4 � 2=3 D 1=6 and add a rectangle with area 1=4 � 4=7 D 1=7,
yielding the partial sum 1 � 1=2C 1=3 � 1=4C 1=5 � 1=6C 1=7 seen in Figure 38.3a.

4/5
2/3
4/7

1 3/2 25/4 7/4

(a) (b)

Figure 38.3. Two more partial sums of (38.1)

We continue in this manner with four more deletions and additions yielding the partial sum
1 � 1=2 C 1=3 � � � � � 1=14 C 1=15 in Figure 38.3b. In the limit we obtain the region (with
area ln 2/ under the graph of y D 1=x over the interval Œ1; 2�, as seen in Figure 38.1.

SOURCE: M. Hudelson, “Proof without words: The alternating harmonic series sums to ln 2,”
Mathematics Magazine, 83 (2010), p. 294.
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The alternating series test

Let a1 � a2 C a3 � � � � C .�1/nC1an C � � � be a series of real numbers. If we let S2k D
a1 � a2 C a3 � a4 C � � � � a2k and S2kC1 D a1 � a2 C a3 � � � � � a2k C a2kC1 denote the
even and odd numbered partial sums, respectively, then we have the following theorem, called
the alternating series test:

Theorem. The alternating series a1 � a2C a3 � � � � C .�1/nC1anC � � � converges to a sum S
if a1 � a2 � a3 � � � � � 0 and limn!1 an D 0. Furthermore, for every k, S2k < S < S2kC1
and for every n, jS � Snj < anC1.

For a visual proof, we use the hypotheses that a1 � a2 � a3 � � � � � 0 and limn!1 an D 0

to construct the three columns of rectangles in Figure 39.1, placing the terms a1, a2, a3, . . . on a
vertical axis as a sequence of points decreasing to zero. Next we draw horizontal line segments
one unit in length to bound a strip of gray rectangles with the indicated areas.

Let S be the area of the gray rectangles in Figure 39.1a, and S2k and S2kC1 the areas of the
gray rectangles in Figures 39.1b and c, respectively. It now follows that S2k < S < S2kC1.

a2
a3
a4
a5
a6
a7
a8

a2k–1
a2ka2k+1a2k+2

a  – a1 2
a1

(a) (b) (c)S = S    = S       =

a  – a3 4

a  – a5 6

a  – a7 8

a       – a2k–1 2k

0
1

. .
 .

. .
 .

1

a2
a3
a4
a5
a6
a7
a8

a2k–1
a2k

a  – a1 2
a1

a  – a3 4

a  – a5 6

a  – a7 8

a       – a2k–1 2k

0

. .
 .

. .
 .

a2
a3
a4
a5
a6
a7
a8

a2k–1
a2ka2k+1a2k+2

a  – a1 2
a1

a  – a3 4

a  – a5 6

a  – a7 8

a       – a2k–1 2k

0
1

. .
 .

. .
 .

     2k        2k+1

a2k+1. .
 .

. .
 .

. .
 .

Figure 39.1. A visual proof of the alternating series test
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114 CAMEO 39. The alternating series test

The area of the gray rectangles in Figure 39.1a below the a2kC1 line segment represent the
difference S � S2k , and comparing Figures 39.1a and c shows that jS � S2kj < a2kC1. Simi-
larly, the area of the white rectangles below the a2kC2 line segment in Figure 39.1a represent
S2kC1 � S , and comparison with Figure 39.1c shows that jS � S2kC1j < a2kC2. Combining
the last two inequalities yields jS � Snj < anC1 for all n. Since limn!1 an D 0 it now follows
that limn!1 Sn D S , so that series does indeed converge to S .

SOURCES: R. H. Hammack and D. W. Lyons, “Proof without words,” College Mathematics
Journal, 36 (2005), p. 72, and “Alternating series convergence: a visual proof,” Teaching Math-
ematics and Its Applications, 25 (2006), pp. 58–60.



CAMEO 40

Approximating � with Maclaurin
series

The Maclaurin series for the arctangent

arctan x D x �
x3

3
C
x5

5
�
x7

7
C � � � D

1X
nD0

.�1/n
x2nC1

2nC 1

converges for x in [�1,1], and since arctan 1 D �=4 we can use the series with x D 1 to
approximate � . However, the convergence is much too slow to be practical. For example, the
1000th partial sum is only correct to two decimals. However, with the aid of Hutton’s formula

�

4
D 2 arctan

1

3
C arctan

1

7
; (40.1)

we can use the arctangent series to approximate � to as many decimal places as we wish rather
easily.

Exercise 40.1. Prove Hutton’s formula. While this can be done with trigonometric identities,
it can also be done with Figure 40.1. (Hint: show that the acute angles in the lower left corner
are arctan.1=3/ for the two light gray right triangles and arctan.1=7/ for the dark gray right
triangle, and that the three angles sum to �=4.)

Figure 40.1. A visual proof of Hutton’s formula

Using the arctangent series with x D 1=3 and x D 1=7 in Hutton’s formula yields the
following alternating series for � , where we have combined the series for arctan.1=3/ and
arctan.1=7/ into a single series:

� D 4

1X
nD0

.�1/n

2nC 1

h
2 .1=3/2nC1 C .1=7/2nC1

i
:
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116 CAMEO 40. Approximating � with Maclaurin series

Example 40.1. We now use this series to approximate � correct to eight decimal places. Since
it’s an alternating series, � lies between successive partial sums (which we denote by �n/.
Computing the first few partial sums yields

�0 D 3:238095238 � � �

�1 D 3:135442536 � � �

�2 D 3:142074498 � � �
:::

�7 D 3:141592650 � � �

�8 D 3:141592653 � � �

and we quit here since every number in the interval .3:141592650 � � � ; 3:141592653 � � � / has
the same first eight decimals. Thus to eight decimal places, � � 3:14159265. Charles Hutton
published (40.1) in 1776, and in 1789 Georg von Vega used it with the arctangent series to
compute � to 143 decimal places, of which the first 126 were correct.

Exercise 40.2. A formula similar to Hutton’s is Strassnitzky’s formula:

�

4
D arctan

1

2
C arctan

1

5
C arctan

1

8
: (40.2)

Prove Strassnitzky’s formula (hint: see Figure 40.2), and use it to approximate � .

Figure 40.2. Strassnitzky’s formula

L. K. Schulz von Strassnitzky provided (40.2) to Zacharias Dase in 1844, who then used it
to compute � correct to 200 decimal places.

Prior to the work of Hutton and Strassnitzky, Isaac Newton wrote the book Methodus Flux-
ionum et Serierum Infinitarum in 1671, which contains an approximation to � correct to 16
decimal places based on what we now call the Maclaurin series for

p
1 � x. We now recreate

his approximation using modern terminology. It is based on Figure 40.3.

Exercise 40.3. Use Figure 40.3 to show that

�

24
D

p
3

32
C

Z 1=4

0

p
x � x2 dx

and hence

� D
3
p
3

4
C 24

Z 1=4

0

p
x � x2 dx: (40.3)
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1/2

0 1/4 1/2
π/3

1

y = √ x – x2

Figure 40.3. The semicircle in Newton’s approximation of �

(Hint: the two shaded regions have a total area of �=24 (1=6 of the area �=4 of a circle of
radius 1=2/, while the light gray triangle has area

p
3=32.)

Exercise 40.4. Show thatZ 1=4

0

p
x � x2 dx D

1

12
�

1

5 � 25
�

1

4 � 7 � 27
�

1 � 3

4 � 6 � 9 � 29
�

1 � 3 � 5

4 � 6 � 8 � 11 � 211
� � � � :

(Hint: write the integrand in (40.3) as
p
x
p
1 � x, expand

p
1 � x into its Maclaurin series,

multiply by
p
x and integrate.)

The first nine terms of the series and (40.3) yield the approximation � � 3:141592668 � � � ,
which is accurate to seven decimal places.

Issac Newton

You may wonder how Newton computed
p
3 in his approximation. He used the Maclaurin

series for
p
1 � x after writing

p
3 as 2

p
1 � .1=4/. At the time he wrote “I am ashamed to

tell you to how many places of figures I carried these computations, having no other business
at the time.”

SOURCE: Newton’s approximation of � is adapted from Chapter 7 in W. Dunham, Journey
Through Genius: The Great Theorems of Mathematics, John Wiley & Sons, Inc., New York,
1990.
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Additional Topics

P
F1

F2

G1G2r

119





CAMEO 41

The hyperbolic functions I: Definitions

In most calculus texts hyperbolic functions are defined in terms of exponential functions:
coshu D .eu C e�u/=2 and sinhu D .eu � e�u/=2. Later certain identities are verified, and
the source of the name “hyperbolic” is revealed: the points .coshu; sinhu/ lie on the right-
hand branch of the unit hyperbola x2 � y2 D 1. But this observation provides no motivation
for the choice of these particular combinations of exponential functions in defining coshu and
sinhu.

Recall that the circular functions are generally defined as coordinates of points on the unit
circle x2Cy2 D 1. If � represents the radian measure of the signed angle between the positive
x-axis and the radius to a point P on the unit circle (by “signed” we mean that the angle is
positive if the angle is measured in the counterclockwise direction, and negative in the clock-
wise direction), then the coordinates of P are defined to be .cos �; sin �/. This is equivalent
to letting �=2 denote the signed area of the circular sector swept out by the radius OP, as in
Figure 41.1a.

(a) (b)

θ/2

x   +y   = 12 2

P(cosθ, sinθ)

O

x   –y   = 12 2

u/2
O

Q(0,s)

(1,0)

P(c,s)

Figure 41.1. Defining the hyperbolic functions

Let’s see what happens if we try to define the hyperbolic functions in an analogous manner
by replacing the unit circle with the unit hyperbola. For a real number u, let a ray from the
origin intersect the hyperbola at a point (c; s/ so that the signed area of the hyperbolic sector
is u/2, as illustrated in Figure 41.1b for u > 0 (the signed area of the sector is positive when
it lies above the x-axis and negative when it lies below the x-axis). Then we define sinhu and
coshu to be the coordinates of the point on the hyperbola, that is, (c; s/ = (coshu, sinhu/.

We can now use an integral to express the area u/2 of the hyperbolic sector in terms of c and
s, since it is the area to the left of the hyperbola for y between 0 and s minus the area of the
right triangle OPQ:

u

2
D

Z s

0

p
y2 C 1 dy �

1

2
cs:
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The trigonometric substitution y D tan t followed by integration by parts yields

Z s

0

p
y2 C 1 dy D

Z arctan s

0

sec3 t dt D
1

2
Œsec t tan t C ln jsec t C tan t j�arctan s

0 :

Since tan.arctan s/ D s and sec.arctan s/ D
p
s2 C 1 D c, we have

Z s

0

p
y2 C 1 dy D

1

2
Œcs C ln jc C sj�

and thus
u

2
D
1

2
Œcs C ln jc C sj� �

1

2
cs D

1

2
ln.c C s/;

where we have removed the absolute value bars in the logarithm since c > s. Hence u D
ln.c C s/, or equivalently

c C s D eu: (41.1)

But the point (c; s/ lies on the hyperbola so that c2 � s2 D 1 and thus

c � s D
c2 � s2

c C s
D

1

eu
D e�u: (41.2)

Solving (41.1) and (41.2) simultaneously yields the desired result:

c D coshu D
eu C e�u

2
and s D sinhu D

eu � e�u

2
:

Exercise 41.1. Use integration in polar coordinates to find the area u=2 of the shaded region
in Figure 41.1b. (Hint: since the polar equation of the hyperbola is r2 D sec 2� , integration by
parts is not required.)

Exercise 41.2. Let h be a function given by h.x/ D f .x/Cg.x/ where f is an even function
and g is an odd function. In this case, the functions f and g are called the even and odd
parts of h. For example, if h.x/ D 1=.x2 � 2x C 2/, then f .x/ D .x2 C 2/=.x4 C 4/ and
g.x/ D 2x=.x4 C 4/. See Figure 41.2.

1

0–1

y = f(x) y = h(x)

y = g(x)
–2–3 1 2 3

Figure 41.2. Graphs of the even and odd parts of a function
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(a) Verify that the functions f and g sum to h.

(b) Show that if the domain of h is symmetric with respect to the origin (i.e., if a is in the
domain so is –a/, then there exists an even function f and an odd function g with the
same domain such that h.x/ D f .x/ C g.x/ for all x in the domain of h. (Hint: if
h.x/ D f .x/C g.x/ with f even and g odd, what can you say about h.�x/?)

(c) Find the even and odd parts of the exponential function h.x/ D ex .
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The hyperbolic functions II: Are
they circular?

Admittedly the graphs of the hyperbolic sine and hyperbolic cosine look nothing like the graphs
of the circular sine and cosine. But have you ever compared the graphs of all six hyperbolic
functions to the graphs of all six circular functions? In Figure 42.1a we’ve graphed the six hy-
perbolic functions over the interval Œ�2:25; 2:25�, and in Figure 42.1b the six circular functions
over the interval .��=2; �=2/:

(a) 3

2

1

0 1

cosh

cos
sech

sec

csch

csc

sinh

sin

cot

coth

tanh

tan

–1–2 2

–1

–2

–3

(b) 3

2

1

0 1–1

–1

–2

–3

Figure 42.1. Graphs of the hyperbolic and circular functions

The similarity of the two sets of graphs is striking, which suggests that there may be func-
tional relationships between the two sets of functions. To explore the relationships, recall that
(coshu,sinhu/ is a point on the right-hand branch of the unit hyperbola x2 � y2 D 1, draw a
ray from the origin to the point (1; sinhu), and let � denote the angle that the ray makes with
the positive x-axis, as illustrated in Figure 42.2.
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(1, sinhu) (coshu, sinhu)

x2 – y2 = 1

0

φ

Figure 42.2. Relating the hyperbolic and circular functions

Now we evaluate the circular functions of �, first noting that the length of the ray from the
origin to the point (1; sinhu) is coshu. Consequently, we have

tan� D sinhu; sec� D coshu; cot� D cschu;
sin� D tanhu; cos� D sechu; csc� D cothu;

(42.1)

and so each hyperbolic function (of u/ is a circular function (of �).
The angle � can be expressed in six ways:

� D arctan.sinhu/ D arcsec.coshu/ D arcsin.tanhu/

D arccot.cschu/ D arccos.sechu/ D arccsc.cothu/:

The angle � is called the Gudermannian of u, named for the German mathematician
Christoph Gudermann (1798–1852) and written � D gdu. Hence we have sinhu D tan.gdu/,
coshu D sec.gdu/, etc., explaining the appearance of the graphs in Figure 42.1.

The domain and range of � D gdu are .�1;1/ and .��=2; �=2/, respectively. The Gud-
ermannian is graphed in Figure 42.3 along with its horizontal asymptotes.

–3 –2 –1 0 1 2 3

φ = gdu

π/2

–π/2

Figure 42.3. The graph of � D gdu

Example 42.1. One of the hyperbolic Pythagorean identities, 1 C sinh2 u D cosh2 u, fol-
lows from the definitions of the functions. The other two follow from the circular Pythagorean
identities applied to the Gudermannian: for all real u,

sin2.gdu/C cos2.gdu/ D 1 implies tanh2 uC sech2 u D 1I

1C cot2.gdu/ D csc2.gdu/ implies 1C csch2 u D coth2u:
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See Figure 42.4 for an illustration of the hyperbolic Pythagorean identities (angles marked
] have measure � D gdu/. Ratios of corresponding sides in similar triangles yields identities
such as tanhu=1 D sinhu=coshu, cothu=1 D 1=tanhu, etc.

ta
nh

u

sechu
sinhu

cschu

co
th

u

φ=gdu

1

coshu

x   + y   = 122

Figure 42.4. The hyperbolic Pythagorean identities

Example 42.2. The Gudermannian has a simple derivative:

d

du
gdu D

d

du
arctan.sinhu/ D

coshu

1C sinh2 u
D sechu;

which simplifies finding derivatives of the hyperbolic functions. For example,

d

du
sinhu D

d

du
tan.gdu/ D sec2.gdu/sechu D cosh2 usechu D coshu:

Exercise 42.1. Use (42.1), the derivative of the Gudermannian, and the chain rule to evaluate
the derivatives of the other five hyperbolic functions.

Example 42.2. Since the derivative of the Gudermannian � D gdu is positive on .�1;1/,
� D gdu has a differentiable inverse u D gd�1 �, and

du

d�
D

1

d�=du
D

1

sechu
D coshu D sec�:

Hence

gd�1 � D
Z �

0

sec t dt D ln.sec� C tan�/:

With the inverse of the Gudermannian, we can now find the inverse hyperbolic functions and
their derivatives. For example, if y D sinhu D tan.gdu/, then

u D sinh�1 y D gd�1.arctany/ D ln.y C
p
1C y2/

and
d

dy
sinh�1 y D

d

dy
gd�1.arctany/ D

sec.arctany/

1C y2
D

1p
1C y2

; etc.
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Exercise 42.2. Establish the following properties of the Gudermannian:

a. gd.�u/ D �gdu

c. limu!�1 gdu D ��=2

e. tanh.1
2
x/ D tan.1

2
gd x/

b. limu!1 gdu D �=2

d. ex D sec.gd x/C tan.gd x/

f. gd x D 2 arctan ex � �
2

.

SOURCE: J. M. H. Peters, “The Gudermannian,” Mathematical Gazette, 68 (1984), pp. 192–
196.



CAMEO 43

The conic sections

Many calculus texts define conic sections as, naturally, sections of a cone, and illustrate them as
shown in Figure 43.1, where we see both nappes (a nappe of a cone is one of the two portions
of a double cone) of three cones, and a parabola, an ellipse, a circle, and a hyperbola as conic
sections.

Figure 43.1. The conic sections

However, to find either the rectangular or polar equations of a conic, a different definition is
used, involving a fixed point (the focus of the conic) and a fixed line (the directrix of the conic).
What is missing is a justification that the two definitions are equivalent, that is, the same curves
result from either procedure.

The following theorem and elegant geometric proof of the equivalence of the conic-section
and focus-directrix approaches is due to Germinal Pierre Dandelin (1794–1847) and Adolphe
Quetelet (1796–1874). The following lemma is essential to their proof.
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Germinal Pierre Dandelin and Adolphe Quetelet

Lemma. The lengths of any two line segments from a point to a plane are inversely propor-
tional to the sines of the angles that the line segments make with the plane.

x yz

α β

Figure 43.2. The proof of the lemma

See Figure 43.2, and observe that z D x sin˛ D y sinˇ, hence x=y = sinˇ=sin˛.

Theorem. Let � denote a plane that intersects a right circular cone in a conic section, and
consider a sphere tangent to the cone and tangent to � at a point F (see Figure 43.3). Let � 0

denote the plane determined by the circle of tangency of the sphere and the cone, and let d
denote the line of intersection of � and � 0. Let P be any point on the conic section, and let D
denote the foot of the line segment from P perpendicular to d. Then the ratio jPF j=jPDj is a
constant.

P

F

E D
d

π

α β

π

Figure 43.3. The proof of the theorem
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To prove the theorem, we let E denote the point of intersection of the element of the cone (a
line on the cone passing through the vertex) through P and the circle of tangency of the sphere.
Then jPF j D jPEj, since two line segments from P tangent to a sphere must have the same
length. Let ˛ denote the angle that every element of the cone makes with � 0 and let ˇ denote
the angle between � and � 0. Then jPF j=jPDj D jPEj=jPDj D sinˇ=sin˛, and sinˇ=sin˛
is a constant.

The point F in the proof is the focus of the conic section, and the line d the directrix. The
constant sinˇ=sin˛ is often denoted by ", the eccentricity of the conic section. When � is
parallel to one and only one element of the cone, ˛ D ˇ, " D 1, and the conic is a parabola;
when � cuts every element of one nappe, ˛ > ˇ, " < 1, and the conic is an ellipse; when �
cuts both nappes of the cone, ˛ < ˇ, " > 1, and the conic is a hyperbola.

Ellipses (and circles) also result from the intersection of a cylinder with a plane that cuts all
elements of the cylinder. When the plane is perpendicular to the axis of the cylinder the curve
in the section of the cylinder is a circle. When the plane is not perpendicular to the axis of the
cylinder, we can show that the curve in the section is an ellipse, that is, there are two points F1
and F2 (the foci, plural of focus) and a constant c such that for every point P on the curve we
have jPF1j C jPF2j D c. See Figure 43.4.

P
F1

F2

G1G2r

Figure 43.4. A cylindrical section

Consider two spheres of radius r inscribed in a cylinder of radius r and tangent to the
intersecting plane � . Let F1 be the point of tangency of the sphere on the right and F2 the
point of tangency of the sphere on the left. If P is any point on the curve, jPF1j D jPG1j,
where G1 is the intersection of the equator of the sphere on the right with the element of the
cylinder that contains P . Analogously, jPF2j D jPG2j so that

jPF1j C jPF2j D jPG1j C jPG2j D jG1G2j D c;

where c is the distance between the equators of the two spheres.
You may have noticed that we have two different descriptions for the ellipse, one with a

cone (a single focus and the directrix) and one with the cylinder (two foci). But when the plane
� passes through all the elements of the cone in Figure 43.3, we can inscribe a second sphere
tangent to � at a point F 0. Let the element of the cone through P and E intersect the circle of
tangency of the second sphere at E 0. Then jPF 0j D jPE 0j, which along with jPF j D jPEj
yields jPF j C jPF 0j D jPEj C jPE 0j. But jPEj C jPE 0j is a constant, the distance between
the circles of tangency of the two spheres. So the curves in a plane intersecting all the elements
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of a cone and a plane intersecting all the elements of a cylinder are the same, the locus of points
P such that the sum of the distances from two fixed points is a constant.

SOURCE: H. Eves, An Introduction to the History of Mathematics, Fifth Edition, Saunders
College Publishing Company, Philadelphia, 1983.
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The conic sections revisited

In the preceding Cameo we demonstrated the equivalence of the conic-section and the directrix-
focus definitions of the conic sections. We now derive the familiar Cartesian equations of the
conic sections from their definitions as intersections of a cone and a plane. Rather than using a
fixed cone intersected by various planes, we rotate the axes and use a fixed plane.

For simplicity we consider a standard cone z2 D x2 C y2 in the xyz-coordinate system, as
illustrated in Figure 44.1, and rotate the y- and z-axes through an angle � (0 � � � �=2/ in
the yz-plane to obtain an x Ny Nz-coordinate system. Note that for an observer in the space of the
figure, the axes remain fixed while the cone rotates.

y

x

z

θ

y

z

z = k

Figure 44.1. A standard cone with a rotation of axes

The y, z, Ny, and Nzcoordinates are related by y D Ny cos � � Nz sin � and z D Ny sin � C Nz cos �
so that in the x Ny Nz-coordinate system the cone is given by

. Ny sin � C Nz cos �/2 D x2 C . Ny cos � � Nz sin �/2:

To find the equation of the intersection of the plane Nz D k with the cone we set Nz D k,
expand, and simplify to get

x2 C .cos 2�/ Ny2 � .2k sin 2�/ Ny D k2 cos 2�: (44.1)

If we replace y by Ny and set � D �=4 we have x2�2ky D 0, which is a parabola, and when
� ¤ �=4 we can complete the square in (44.1) to obtain the standard form for the equation of
a translated conic,

x2

cos 2�
C
.y � k tan 2�/2

1
D k2 sec2 2�:

We now consider four cases: (i) when � D 0 we obtain the circle x2 C y2 D k2; (ii) when
0 < � < �=4 we have an ellipse since cos 2� > 0; (iii) when �=4 < � < �=2 we have a
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hyperbola since cos 2� < 0; and (iv) when � D �=2 we have x2 � y2 D k2, a hyperbola for
k ¤ 0 and two intersecting lines for k D 0. In each case, the value of cos 2� determines the
nature of the conic.

Exercise 44.1. Use the same technique to find the equation for the intersection of a right
circular cylinder and a plane. (Hint: In xyz-coordinates use the cylinder x2 C y2 D r2, and
after rotation of the y- and z-axes as above set Nz D 0.)

SOURCE: M. R. Cullen, “Cylinder and cone cutting,” College Mathematics Journal, 28 (1997),
pp. 122–123.
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The AM-GM inequality for n
positive numbers

In Cameo 11 we encountered the arithmetic mean-geometric mean (AM-GM) inequality for
two positive numbers, and in Cameo 15 the AM-GM inequality for three and for four pos-
itive numbers. The inequality actually holds for any finite number n of positive numbers
a1; a2; a3; : : : ; an.

Theorem. The geometric mean G and the arithmetic mean A of n numbers a1; a2; a3; : : : ; an
are given by

G D n
p
a1a2a3 : : : an and A D

a1 C a2 C a3 C � � � C an

n

and satisfy

n
p
a1a2a3 : : : an �

a1 C a2 C a3 C � � � C an

n
(45.1)

with equality if and only if a1 D a2 D a3 D � � � D an.

The proof begins with the simple inequality ex � ex(with equality if and only if x D 1/. In
Figure 45.1 we see that the line y D ex is tangent to y D ex at (1,e/, and since the graph of
y D ex in concave up, the inequality follows.

10

e

y = ex
y = e x

Figure 45.1. Graphs of y D ex and y D ex

With x D ai=G we have, for each i in f1; 2; 3; : : : ; ng,

e
ai

G
� eai=G
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with equality if and only if ai D G. Multiplying the n inequalities together yields

en �
a1

G
�
a2

G
�
a3

G
� � �
an

G
� e.a1Ca2Ca3C���Can/=G :

The inequality simplifies to en � enA=G , or G � A, with equality if and only if a1 D a2 D
a3 D � � � D an D G.

Example 45.1. The arithmetic mean of the set f1; 2; 3; : : : ; ng of the first n positive integers is
An D .nC 1/=2, while the geometric mean isGn D

n
p
nŠ. While both means increase without

bound as n!1, their ratio (which is greater than 1 for each n � 2/ has a finite limit. Using
(22.1) we have

lim
n!1

An

Gn
D lim
n!1

nC 1

2
n
p
nŠ
D lim
n!1

nC 1

2n
�
n
n
p
nŠ
D
e

2
:

Exercise 45.1. Show that nŠ < Œ.nC 1/=2�n for n � 2.

Example 45.2. Let a1; a2; : : : ; an and b1; b2; : : : ; bn be nonnegative real numbers. Show that

.a1a2 � � � an/
1=n C .b1b2 � � � bn/

1=n � Œ.a1 C b1/.a2 C b2/ � � � .an C bn/�
1=n:

(This is problem A2 from the 2003 Putnam Competition discussed in Cameo 20.)
If ai C bi D 0 for some i , then both sides of the inequality are 0, so assume ai C bi > 0 for

every i . Then (45.1) yields�
a1

a1 C b1
�

a2

a2 C b2
� � � � �

an

an C bn

�1=n
�
1

n

�
a1

a1 C b1
C

a2

a2 C b2
C � � � C

an

an C bn

�

and�
b1

a1 C b1
�

b2

a2 C b2
� � � � �

bn

an C bn

�1=n
�
1

n

�
b1

a1 C b1
C

b2

a2 C b2
C � � � C

bn

an C bn

�
:

Adding the two inequalities yields�
a1a2 � � � an

.a1 C b1/.a2 C b2/ � � � .an C bn/

�1=n
C

�
b1b2 � � � bn

.a1 C b1/.a2 C b2/ � � � .an C bn/

�1=n
� 1;

which is equivalent to the desired inequality.

Example 45.3. The geometric mean for n numbers can be used to explain the relationship be-
tween the ratio test and the root test for absolute convergence of an infinite series

P1
nD0 an with

nonzero terms. The ratio test states that if limn!1 janC1=anj < 1 then the series converges
absolutely, whereas the root test states that if limn!1 janj

1=n < 1 then the series converges
absolutely. The connection between the two involves the consecutive ratios janC1=anj in the
ratio test:

lim
n!1

janj
1=n D lim

n!1

ˇ̌̌
ˇ anan�1 �

an�1

an�2
� � �
a2

a1
�
a1

a0
� a0

ˇ̌̌
ˇ
1=n

D lim
n!1

�ˇ̌̌
ˇ anan�1

ˇ̌̌
ˇ �
ˇ̌̌
ˇan�1an�2

ˇ̌̌
ˇ � � �

ˇ̌̌
ˇa2a1

ˇ̌̌
ˇ �
ˇ̌̌
ˇa1a0

ˇ̌̌
ˇ
�1=n
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(the last equality follows from limn!1 ja0j
1=n D 1/. Thus the limit of the nth root of the nth

term is the limit of the geometric mean of the first n consecutive ratios.

While the ratio test depends on the behavior (in the limit) of each consecutive ratio, the root
test depends only on the average behavior (in the geometric mean sense) of the ratios. If all
the ratios become small, then the geometric mean will become small; however, the converse is
false, which is why the root test is stronger than the ratio test.

SOURCES: The proof of (45.1) is adapted from N. Schaumberger, “A coordinate approach to
the AM-GM inequality,” Mathematics Magazine, 64 (1991), p. 273, and Example 45.3 is from
D. Cruz-Uribe, “The relation between the root and ratio tests,” Mathematics Magazine, 70
(1997), pp. 214–215.





PART V

Appendix:
Some Precalculus Topics

si
n θ

cosθ

tanθ

cotθ

cs
c θ

θ

1

secθ

x   + y   = 122
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Are all parabolas similar?

In many calculus texts one finds examples and exercises concerning the properties of parabolas
and their tangent lines. Here are a couple of examples:

1. Let P be a point on a parabola with focus F , and letQ be the point on the directrix closest
to P . Show that the tangent line at P bisects angle FPQ.

2. Let P be a point on the parabola with focus F , and let R be the point where the tangent
line at P intersects the tangent line at the vertex. Show that triangle FPR is a right triangle.

When the examples and exercises such as those above involve the focus and/or the directrix
of the parabola, the texts often use x2 D 4py and y2 D 4px (or y D kx2 and x D ky2/

as equations of general parabolas. Students often ask “Why can’t we just use y D x2, or
x D y2?” An answer is “Well, you could, if all parabolas were similar.” At first glance parabo-
las seem to have different shapes, as can be seen by graphing three different parabolas, such as
y D x2, y D 4x2, and y D .1=4/x2 in the same window (e.g., the standard one Œ�10; 10� �
Œ�10; 10�/ on a graphing calculator (see Figure 46.1 for a computer generated version).

10

5

0 5 10–10 –5

–5

–10

Figure 46.1. Graphs of the three parabolas in Œ�10; 10� � Œ�10; 10�

But parabolas, like circles, are all similar, as a simple geometric exploration reveals. Ask
the students to look at the graphs of the three parabolas in different square windows (recall that
square windows look rectangular on most calculator screens):

a) graph y D x2 in Œ�2; 2� � Œ0; 4�

b) graph y D 4x2 in Œ�1=2; 1=2� � Œ0; 1�

c) graph y D .1=4/x2 in Œ�8; 8� � Œ0; 16�.
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142 CAMEO 46. Are all parabolas similar?

The students will see exactly the same shape in each graph, with the parabola passing
through the top left and top right vertices of the window and the midpoint of the bottom of
the window, as seen in Figure 46.2 (again computer generated).

(a) (b)

(c)

210

1

2

3

4

–1–2 0.50.250

0.25

0.5

0.75

1

–0.25–0.5

840

4

8

12

16

–4–8

Figure 46.2. Graphs of (a) y D x2, (b) y D 4x2, and (c) y D .1=4/x2

Thus zooming in by a factor of 4 (from Œ�2; 2� � Œ0; 4� to Œ�1=2; 1=2� � Œ0; 1�/ makes the
graph of y D 4x2 look just like the graph of y D x2; and zooming out by a factor of 4 (from
Œ�2; 2�� Œ0; 4� to Œ�8; 8�� Œ0; 16�/ makes the graph of y D .1=4/x2 look just like the graph of
y D x2.

Now it’s a simple matter to show algebraically that y D kx2 (k ¤ 0/ is similar to y D x2:
Multiply both sides of y D kx2 by k to yield ky D .kx/2 and let Ny D ky and Nx D kx

(zooming in when k > 0, zooming out when k < 0/.

Exercise 46.1. Solve the two problems at the beginning of this Cameo. (Hint: solve the two
problems simultaneously by showing that�FPQ is isosceles, FQ passes through R, and PR?
FQ. See Figure 46.3.)

P

R

F

x

Qdirectrix

y

Figure 46.3. The two parabola problems



CAMEO 47

Basic trigonometric identities

Familiarity with basic trigonometric identities—the three Pythagorean relations as well as all
the reciprocal and quotient identities—is essential for success in using the trigonometric sub-
stitution technique for integration. All the identities can be found in Figure 47.1 (for the case
of first quadrant angles) by using the Pythagorean theorem and properties of similar right trian-
gles. It can be a profitable exercise to find all of them in the Figure. (Hint: each angle marked
] has measure � .)

si
nθ

cosθ

tanθ

cotθ

cs
cθ

θ

1

secθ

x   + y   = 122

Figure 47.1. Trigonometric identities

For example, using the Pythagorean theorem on right triangles with an acute angle at the
origin yields the three Pythagorean identities (sin2 � C cos2 � D 1, tan2 � C 1 D sec2 � ,
and cot2 � C 1 D csc2 �/ while ratios of corresponding sides in two of these triangles yields
identities such as tan �=1 D sin �=cos � , cot �=1 D 1=tan � , etc.

Exercise 47.1. Use Figure 47.1 to establish these less-familiar identities:

.a/ .tan � C cot �/2 D sec2 � C csc2 � .b/
sec � � cos �

cos �
D

sin �

csc � � sin �
:

SOURCE: R. D. Carmichael, “On the representation of the trigonometric functions by lines,”
American Mathematical Monthly, 15 (1908), pp. 199–200.
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CAMEO 48

The addition formulas for the sine
and cosine

The addition formulas are used in simplifying the difference quotient when using the definition
of the derivative to differentiate the sine and cosine. We use Figure 48.1 to illustrate both
formulas for acute angles ˛ and ˇ whose sum is less than �=2.

sinαcosβ

co
sα

co
sβ

cosαsinβ

si
nα

si
n β

(a) (b)

α
β

α

sinβ co
sβ

1 α
β

α

sinβ co
sβ

1

Figure 48.1. Illustrating the addition formulas for the sine and cosine

If we let the sides of the gray triangle in Figure 48.1a be sinˇ, cosˇ, and 1, then it is easy
to compute the lengths of the sides of the two triangles with acute angle ˛, as shown in Figure
48.1b. Evaluating the lengths of the legs of the gray right triangle in Figure 48.1b yields

sin.˛ C ˇ/ D sin˛ cosˇ C cos˛ sinˇ;
cos.˛ C ˇ/ D cos˛ cosˇ � sin˛ sinˇ:

Exercise 48.1. Use Figure 48.2 to illustrate the subtraction formulas:

sin.˛ � ˇ/ D sin˛ cosˇ � cos˛ sinˇ;
cos.˛ � ˇ/ D cos˛ cosˇ C sin˛ sinˇ:

cosαcosβ

si
nα

co
sβ

sinαsinβ

co
sα

si
n β

α
β

α

sinβ co
sβ

1

α

Figure 48.2. Illustrating the subtraction formulas for the sine and cosine
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146 CAMEO 48. The addition formulas for the sine and cosine

Exercise 48.2. Create figures to illustrate the addition and subtraction formulas for the tangent:

tan.˛ C ˇ/ D
tan˛ C tanˇ

1 � tan˛ tanˇ
and tan.˛ � ˇ/ D

tan˛ � tanˇ

1C tan˛ tanˇ
:

SOURCE: RBN, “One figure, six identities,” College Mathematics Journal, 31 (2000),
pp. 145–146.



CAMEO 49

The double angle formulas

The double angle formulas for the sine and cosine are used in calculus for integrals of the formR
sin2m x cos2n x dx where both m and n are nonnegative integers. The formulas are

sin 2x D 2 sin x cos x and cos 2x D

8<
:
2 cos2 x � 1
1 � 2 sin2 x
cos2 x � sin2 x:

These are special cases of the addition formulas for the sine and cosine in Cameo 48, however
they can also be illustrated with Figure 49.1, in which we inscribe a right triangle in a semicircle
of radius 1. The angle at the origin marked ] has the value 2x since it is an exterior angle of
an isosceles triangle with base angles each equal to x.

(cos2x,sin2x)

1–cos2xcos2x

si
n2

x1

2x
1

x

x
2cosx 2sinx

Figure 49.1. The double angle formulas

The large right triangle in two shades of gray has hypotenuse 2 and legs 2 sin x and 2 cos x.
In the light gray right triangle, we have sinx D sin 2x=2 cos x, hence sin 2x D 2 sin x cos x. In
the light gray right triangle we also have cosx D .1C cos 2x/=2 cos x or cos 2x D 2 cos2 x �
1. In the dark gray right triangle, we have sinx D .1 � cos 2x/=2 sin x, so that cos 2x D
1 � 2 sin2 x. The Pythagorean relation yields the third form of the cosine formula.

For an alternate illustration of the double angle formulas (with cos 2x = cos2 x� sin2 x/, see
Figure 49.2.

Closely related to the double angle formulas are the half angle formulas

sin
x

2
D ˙

r
1 � cos x

2
and cos

x

2
D ˙

r
1C cos x

2
:

Exercise 49.1. Derive the half-angle formulas. When is theC or � sign used?
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148 CAMEO 49. The double angle formulas

sinxcosx

sin2x

cos2x

x

1

sinx

cosx

sinxcosx

x x
2x

sin2x

cos2x

Figure 49.2. The double angle formulas, again

Exercise 49.2. Should you ever need them (you probably won’t in calculus), there are triple
angle formulas:

sin 3x D 3 sin x � 4 sin3 x and cos 3x D 4 cos3 x � 3 cos x:

Use Figure 49.3 and the double angle cosine formulas to derive them.

2cosxcos2x

2sinxcos2x

sinx

2x
1

x
cosx cos3x

sin3x
2cos2x

x
2x

1

3x

Figure 49.3. The triple angle formulas

SOURCES:

Figure 49.1 is from R. Woods, “The trigonometric functions of half or double an angle,” Amer-
ican Mathematical Monthly, 43 (1936), pp. 174–175.

Figure 49.3 is from C. Alsina and RBN, “Proof without words: The triple angle sine and cosine
formulas,” Mathematics Magazine, 85 (2012), p. 43.



CAMEO 50

Completing the square

In calculus the completing the square technique is frequently used in the evaluation of inte-
grals whose integrand involves a power of a quadratic expression with a nonzero linear term,
usually encountered when studying trigonometric substitutions. Students may well have en-
countered the completing the square technique in elementary algebra, as it is the foundation
for the quadratic formula.

The technique is based on the following identity: for any two real numbers x and a,

x2 C 2ax D .x2 C 2ax C a2/ � a2 D .x C a/2 � a2: (50.1)

Here is a geometric illustration of (50.1) for positive x and a:

=x

a x a x a

x

a

ax x2

a2

axax x2

ax

Figure 50.1. x2 C 2ax D .x C a/2 � a2

Identity (50.1) can be used in two ways to complete the square in the general quadratic
expression ax2 C bx C c (a ¤ 0/:

1. ax2 C bx C c D a.x2 C b
a
x/C c D aŒ.x C b

2a
/2 � . b

2a
/2�C c.

2. ax2 C bx C c D 1
4a
.4a2x2 C 4abx/C c D 1

4a
Œ.2ax C b/2 � b2�C c.

Completing the square can also be used to factor certain sums of squares by expressing the
sum as a difference of squares. In Figure 50.2 we illustrate with x4 C 4a4:

Thus

x4 C 4a4 D .x4 C 4a2x2 C 4a4/ � 4a2x2 D .x2 C 2a2/2 � .2ax/2

D .x2 C 2ax C 2a2/.x2 � 2ax C 2a2/: (50.2)

Combining (50.2) with (50.1) yields

x4 C 4a4 D Œ.x C a/2 C a2�Œ.x � a/2 C a2�:

Observe that in (50.1) we added and subtracted the missing constant in a squared polynomial,
whereas in (50.2) we added and subtracted the missing middle term in a squared polynomial.
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2ax

2ax2a2x2 4a2x22a2

4a4

x2+2a2

x2+2ax+2a2

x2–2ax+2a2

x2+2a2

2a2
x2 x4

x2 2a2

2a2x2 x2

Figure 50.2. Completing another square

Example 50.1. The form of completing the square in (50.2) is the first step in the partial
fraction decomposition of the integrand in

R
Œ1=.x4 C 4/�dx:

1

x4 C 4
D

1

.x2 C 2x C 2/.x2 � 2x C 2/
:

Exercise 50.1. Factor (a) x6 C 1 and (b) x8 C x4 C 1 into products of quadratic polynomials
with real coefficients.



Solutions to the Exercises

Part I Limits and Differentiation
1.1. lim

t!0

tan t
t
D lim
t!0

sin t
t
= lim
t!0

cos t D 1=1 D 1.

1.2. Since cos t < 1 and 2 � 2 cos t < t2 for t in .��=2; 0/ [ .0; �=2/, we have 0 <
1 � cos t < t2=2. Division by t yields 0 < .1 � cos t /=t < t=2 for t > 0 and 0 >
.1 � cos t /=t > t=2 for t < 0. Hence the two one-sided limits as t ! 0 are 0, and
limt!0 .1 � cos t /=t D 0.

2.1. The circumference of a regular n-gon inscribed in the unit circle is 2n sin.�=n/.

2.2. The sequence results from dividing the fourth column of Table 2.1 by the third column.
The area of a regular n-gon circumscribed about the unit circle is n tan.�=n/.

4.1. The function f is continuous since it is differentiable.

4.2. d
dx
f .x/g.x/ D 1

2
. d
dx
Œf .x/C g.x/�2 � d

dx
Œf .x/�2 � d

dx
Œg.x/�2/

D 1
2
.2Œf .x/C g.x/�Œf 0.x/C g0.x/� � 2f .x/f 0.x/ � 2g.x/g0.x//

D f .x/g0.x/C g.x/f 0.x/:

5.1. The function g is continuous since it is differentiable.

5.2.
d

dt

�
f .t/

g.t/

�
D f 0.t/ �

1

g.t/
C f .t/ �

�g0.t/

Œg.t/�2
D
g.t/f 0.t/ � f .t/g0.t/

Œg.t/�2
.

5.3. In the “proof” it is assumed that y is differentiable.

7.1. In Figure 7.1 let x0 D cos � . Since �� > 0 we have �x < 0, so that the length of the
shorter leg of the dark gray triangle is ��x. Hence

dx

d�
�
��x

��
D
�y0

1
D � cos� D � sin �:

8.1. Assume �;�� , and �C�� are in .0; �=2/, as illustrated in Figure 8.2. Then Area(sector
OAB) � Area (�OAD) � Area(sector OCD), so that

�� sec2 �

2
�

tan.� C��/ � tan.�/

2
�
�� sec2.� C��/

2
:

Hence

sec2 � �
tan.� C��/ � tan.�/

��
� sec2.� C��/

and the result follows (since the secant, as the reciprocal of the cosine, is continuous on
.0; �=2//.
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10.1. The MVT yields lnb�lna
b�a

D 1
c

, so c D b�a
lnb�lna .

10.2. The MVT yields b lnb�a lna
b�a

D 1C ln c, so c D .1=e/ � .bb=aa/1=.b�a/.

11.1. The sum of the areas of the two triangles is at least the area of the rectangle, so
.
p
a/2=2C .

p
b/2=2 �

p
a
p
b, equivalent to (11.2).

11.2. 0 � .
p
a �
p
b/2 D a � 2

p
ab C b, equivalent to (11.2).

11.3. (i)
p
a
p
b
C
p
bp
a
� 2, hence aCb

2
�
p
ab.

(ii) xC.1=x/
2
�
p
x � .1=x/ D 1, hence x C 1

x
� 2.

11.4. The minimum value is 6. Using the hint, the expression becomes

a2 � b2

aC b
D a � b D 3

�
x C

1

x

�
� 3.2/ D 6

with equality at x D 1, using either (11.1) or (11.2).

11.5. In each case, y D 1C rx is tangent to y D .1C x/r at (0, 1). When r > 1 or r < 0,
y D .1C x/r is concave up and .1C x/r � 1C rx. When 0 < r < 1, y D .1C x/r

is concave down and .1C x/r � 1C rx.

11.6. Using the hint, (11.4) becomes .a=b/r � 1 C .ra=b/ � r , and hence arb1�r �
.1 � r/b C ra.

11.7. y D x � 1 is tangent to both y D ln x and y D x ln x at (1, 0), while y D ln x is
concave down and y D x ln x is concave up.

11.8. The inequality in Exercise 11.6 becomes n ln x1=n � n.x1=n � 1/ � nx1=n ln x1=n,
which simplifies to ln x � n.x1=n � 1/ � x1=n ln x.

11.9. Taking the limit as n ! 1 yields ln x � limn!1 n.x
1=n � 1/ � ln x and hence

limn!1 n.x
1=n � 1/ D ln x by the squeeze theorem.

11.10. (i) y D x is tangent to both y D sin x and y D tan x at (0, 0), while y D sin x is
concave down and y D tan x is concave up, which establishes sinx < x < tan x.
But x < tan x is equivalent to x cos x < sin x, hence x cos x < sin x < x. The
inequalities are strict since x is in .0; �=2/.

(ii) Using the hint we have d
dx
. sinx
x
/ D x cosx�sinx

x2
< 0 and d

dx
. tanx
x
/ D x sec2 x�tanx

x2
D

2x�sin2x
2x2 cos2 x

> 0, so .sin x/=x is decreasing and .tan x/=x is increasing on .0; �=2/.

Hence sinˇ
ˇ
> sin˛

˛
and tanˇ

ˇ
< tan˛

˛
on .0; �=2/.

14.1. No, since dA=ds D 2s ¤ 4s D P and dV =ds D 3s2 ¤ 6s2 D S .

14.2. A D .2x/2 D 4x2 and P D 4.2x/ D 8x so that dA=dx D P , V D .2x/3 D 8x3, and
S D 6.2x/2 D 24x2 so that dV =dx D S .

14.3. (a) x D
2A

P
D
s2
p
3=2

3s
D
s
p
3

6
D
h

3
:

(b) s D 2x
p
3 so P D 6x

p
3, A D 3x2

p
3, and dA=dx D P .
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14.4. Let x D ts. Then V D c.x=t/3 and S D k.x=t/2, so dV =dx D S if and only if
t D 3c=k. Thus x D 3cs=k. But V=S D cx=kt D cs=k, so x D 3V =S .

14.5. (a) If R D mr , V D 2m�2r3 and S D 4m�2r2, so dV =dr D 6m�2r2 ¤ S .
(b) x D 3V =S D 6m�2r3=4m�2r2 D 3r=2.

15.1. (i) Assume P D 2.x C y/ is constant, so that y D P=2 � x. Then A.x/ = xP=2� x2

for x 2 Œ0; P=2�, and A0.x/ D P=2 � 2x yields the critical point x D P=4. But
A.0/ D 0 D A.P=2/ and A.P=4/ > 0, so the area is maximized at x D y D P=4. (ii)
Assume A D xy is constant so that y D A=x. Then P.x/ D 2.x C A=x/ for x > 0,
and P 0.x/ D 2.1 � A=x2/ yields the critical point x D

p
A. But P 00.x/ > 0 for all

x > 0, so we have an absolute minimum perimeter when x D y D
p
A.

15.2. Using the notation of Example 15.1, let f .x/ D cot � D Œx C .ab=x/�=.a � b/ for
x > 0. Then f 0.x/ D Œ1 � .ab=x2/�=.a � b/ so that x D

p
ab is the only criti-

cal point. Since f 00.x/ > 0 for all x > 0 x D
p
ab minimizes cot � , and hence

maximizes � .

15.3. Algebra easily establishes the identity. Since x2 C y2 � 2xy, etc., we have

x2 C y2 C z2 � xy � yz � xz

D
1

2
Œ.x2 C y2 � 2xy/C .y2 C z2 � 2yz/C .x2 C z2 � 2xz/� � 0;

and hence x3 C y3 C z2 � 3xyz.

15.4. Assume V D �r2h=3 is constant, so that h D 3V =�r2. Let f .r/ D S2 D �2r2.r2C
h2/ D �2r4 C 9V 2=r2 for r > 0. Then f 0.r/ D 4�2r3 � 18V 2=r3 so that r D
.V=�/1=3 6

p
9=2. Since f 00.r/ > 0 for all r > 0, this critical point yields an absolute

minimum with h=r D 3V =�r3 D
p
2.

15.5. Since V is fixed, h D V=�r2 and f .r/ D C D .p C m/�r2 C 2cV =r for r > 0.
Hence f 0.r/ D 2.p C m/�r � 2cV =r2, so that r D 3

p
cV =.p Cm/� is the criti-

cal point. Since f 00.r/ > 0 this critical point yields an absolute minimum cost with
h=r D V=�r3 D .p Cm/=c.

15.6. S=6 D .ab C bc C ac/=3 � 3
p
ab � bc � ac D V 2=3, so S � 6V 2=3. Then

E2=8 D .a2 C b2/C .b2 C c2/C .a2 C c2/C 4.ab C bc C ac/

� 6.ab C bc C ac/ D 3S;

and hence E2=24 � S , with equality if and only if a D b D c.

15.7. aCbCcCd
4

D 1
2
.aCb
2
C cCd

2
/ � 1

2
.
p
ab C

p
cd/ �

pp
ab
p
cd D

4
p
abcd .

Part II Integration
17.1.

Pn
iD1 i C

Pn
iD1 .i � 1/ D n

2 � 0, so
Pn
iD1 .2i � 1/ D n

2.

17.2.
Pn
iD1

i.i C 1/

2
C
Pn
iD1 .i C 1/i D .nC 2/

n.nC 1/

2
, so

Pn
iD1

i.i C 1/

2
D

n.nC 1/.nC 2/=6.
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17.3.
Pn
iD1

i.i C 1/.2i C 1/

6
� 6i C

Pn
iD1 3i.i � 1/ � i

2 D 3n.nC 1/
n.nC 1/.nC 2/

6
, soPn

iD1 .5i
4 C i2/ D 3n.nC 1/

n.nC 1/.nC 2/

6
and hence

Pn
iD1 i

4 D
3n.nC 1/ � 1

5
�
n.nC 1/.nC 2/

6
D
n.nC 1/.nC 2/.3n2 C 3n � 1/

30
.

17.4.
Pn
iD1 .i C 3/ �

3

i.i C 1/.i C 2/.i C 3/
�
Pn
iD1

1

i.i C 1/.i C 2/
� 1 D

�1

.nC 1/.nC 2/.nC 3/
.nC 3/C 3 �

1

6
;

so
Pn
iD1

1

i.i C 1/.i C 2/
D
1

4
�

1

2.nC 1/.nC 2/
.

17.5. �
Pn
iD1 i

�
1

2

�i
C
Pn
iD1

�
1

2

�i�1
� 1 D n

�
1

2

�n
, so

1

2

Xn

iD1
i

�
1

2

�i�1
D

�n

�
1

2

�n
C
1 � .1=2/n

1 � .1=2/
, and hence

Pn
iD1 i

�
1

2

�i�1
D 4 � .nC 2/

�
1

2

�n�1
.

18.1. From the hint we have A0 C A1 D
R q
p
vdu, A0 C A2 D

R r
s
udv, A1 C A3 D qs,

A2 C A3 D pr , and (18.1) follows.

19.1. jAC j D 2 sin.x=2/ D 2z=
p
1C z2. Ratios of sides in similar triangles yields

sin x

2z=
p
1C z2

D
1

p
1C z2

; hence sin x D
2z

1C z2

and

1 � cos x

2z=
p
1C z2

D
z

p
1C z2

; hence cos x D
1 � z2

1C z2
:

19.2. The lengths of the hypotenuses of the three right triangles are (from shortest to longest)
z
p
1C z2,

p
1C z2, and 1 C z2. In the shaded right triangle we then have sinx D

2z=.1C z2/ and cos x D .1 � z2/=.1C z2/.

20.1. The trapezoidal rule is exact since setting x equal to a or b in (20.2) yields 1
2
Œf .a/C

f .b/� D f .aCb
2
/. Simpson’s rule is exact since it is a weighted arithmetic mean of the

midpoint and trapezoidal rules.

20.2. 1
2

h
1

4C2x
C 1

4C24�x

i
D 1

2

h
1

4C2x
C 2x�2

2xC4

i
D 1

2
Œ1
4
� D 1

8
D 1

4C22
, henceR 4

0
dx
4C2x

D 4 � 1
8
D 1

2
.

20.3. 1
2
Œarctan ex C arctan e�x � D 1

2
Œ�
2
� D �

4
D arctan e0, hence

R 1
�1 arctan.ex/dx D

2.�=4/ D �=2.

20.4. 1
2
Œarccos.x3/C arccos.�x3/� D 1

2
arccos.�1/ D 1

2
� D arccos 0, henceR 1

�1 arccos.x3/dx D 2Œ�=2� D � .
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20.5. 1
2
Œ 1

xC
p
x2�2xC2

C 1

2�xC
p
x2�2xC2

� D 1
2
Œ2C2

p
x2�2xC2

2C2
p
x2�2xC2

� D 1
2
D 1

1C
p
1
;

hence
R 2
0

dx

xC
p
x2�2xC2

D 2 � 1
2
D 1.

20.6. 1
2
Œ 1

1C.tanx/
p
2
C dt

1CŒtan.�=2�x/�
p
2
�D 1

2
Œ 1

1C.tanx/
p
2
C 1

1C.cotx/
p
2
� D

1
2
Œ 1

1C.tanx/
p
2
C .tanx/

p
2

1C.tanx/
p
2
� D 1

2
D 1

1C.tan.�=4//
p
2

, hence

R �=2
0

dx

1C.tanx/
p
2
D �

2
� 1
2
D �

4
:

20.7. 1
2
Œ

p
ln.9�x/

p
ln.9�x/C

p
ln.xC3/

C
p

ln.xC3/
p

ln.9�x/C
p

ln.xC3/
� D 1

2
D
p

ln6
2
p

ln6
,

hence
R 4
2

p
ln.9�x/ dx

p
ln.9�x/C

p
ln.xC3/

D 2 � 1
2
D 1.

21.1. Multiplying (21.2) by nC 1 yields 1 < .nC 1/ ln.1C 1=n/ < .nC 1/=n, and (21.4)
follows upon exponentiation. The squeeze theorem now yields the desired limit.

21.2. Combine the second inequality in (21.3) with the first inequality in (21.4).

21.3. When x > 1 setting .a; b/ D .1; x/ in (21.1) yields 1
x
< lnx

x�1
< 1 and when 0 < x < 1

setting .a; b/ D .x; 1/ in (21.1) yields 1 < lnx
x�1

< 1
x

. Applying the squeeze theorem
yields limx!1C

lnx
x�1
D 1 D limx!1�

lnx
x�1

so limx!1
lnx
x�1

= 1.

21.4. When x > 0 we have 1
1Cx

< ln.xC1/
x

< 1, or x
xC1

< ln.xC1/ < x. When �1 < x < 0

we have 1 < ln.xC1/
x

< 1
1Cx

, or x > ln.x C 1/ > x
xC1

. Hence x
xC1

< ln.x C 1/ < x

for x > �1, x ¤ 0.

21.5. Since the graph is concave down, y0.x/ is strictly decreasing so that the slopes of the
tangents and the secant satisfy 1

a
> lnb�lna

b�a
> 1

b
(note that the slope of the secant is

y0.c/ for some c in (a; b//.

22.1. ln. n
p
nŠ=n/ D ln.nŠ=nn/1=n D .1=n/ ln. 1

n
� 2
n
� � � � � n

n
/ D

Pn
kD1 ln.k=n/ � .1=n/.

22.2. The sum is a right endpoint Riemann sum with n subintervals on [0, 1] for f .x/ D ln x,
so its limit as n!1 is

R 1
0 ln x dx.

22.3.
R 1
0

ln x dx D limt!0C
R 1
t

ln x dx D limt!0C Œx ln x � x�1t

D lim
t!0C

Œ�1 � t ln t C t � D �1 � lim
t!0C

ln t

1=t
D �1:

22.4. Since limn!1 ln. n
p
nŠ=n/ D �1 D ln.1=e/, limn!1

n
p
nŠ=n D 1=e.

23.1.
R b
a h.x/dx C ah.a/ D bh.b/C

R h.a/
h.b/ h

�1.y/dy, which is (23.1).

23.2. Let V denote the volume of the object described in the exercise. Then

V D �bŒf .b/�2 � �aŒf .a/�2 � 2�

Z f .b/

f .a/

yf �1.y/dy D Vshell:

24.1. Since �Œf .x/C tx�2 � 0 and b � a > 0,
R b
a
�Œf .x/C tx�2dx � 0.
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24.2.
R b
a
�Œf .x/C tx�2dx D

R b
a
�Œf .x/�2dx C t

R b
a
2�xf .x/dx C t2

R b
a
x2dx

D Vx-axis C tVy-axis C t
2.b3 � a3/.b3 � a3/3=3:

24.3. If At2 C Bt C C � 0, the quadratic y D At2 C Bt C C with A > 0 has at most one
real root, hence B2 � 4AC � 0.

24.4. B2 � 4AC � 0 is equivalent to V 2y-axis � 4Vx-axis � .b
3 � a3/=3 � 0, which is (24.2).

24.5. With f .x/ D mx, Vx-axis D �
R b
a .mx/

2dx D �m2.b3 � a3/=3 and Vy-axis D

2�
R b
a
mx2dx D 2�m.b3 � a3/=3, and so

V 2y-axis D
4�2m2

9
.b3 � a3/2 D

4�

3
.b3 � a3/ �

�m2

3
.b3 � a3/

D
4�

3
.b3 � a3/ � Vx-axis:

24.6. When t D �1 (24.2) becomesA�BCC � 0 orB�C � A, which is Vy-axis�Vx-axis �

�.b3 � a3/=3. When f .x/ D x, we have

2�

3
.b3 � a3/ �

�

3
.b3 � a3/ D

�

3
.b3 � a3/;

so the inequality is best possible.

24.7. 0 �
R b
a Œf .x/C tg.x/�

2dx D At2 C Bt C C where A D
R b
a Œg.x/�

2dx, B D

2
R b
a Œf .x/g.x/�dx, and C D

R b
a Œf .x/�

2dx. As in Exercise 24.3, B2 � 4AC , which
is (24.3).

24.8. With g.x/ D 1 (24.3) yields A2R � .Vx-axis=�/.b � a/, so Vx-axis � �ARfave. When
f .x/ D k > 0, Vx-axis D �.b � a/k

2 D � � .b � a/k � k D �ARfave.

24.9. When Vx-axis D 2� NyAR, the inequality in Exercise 24.8 becomes 2� NyAR � �ARfave,
or Ny � fave=2.

25.1. Turn Figure 25.1 upside down.

26.1. When f is concave up, the error is minimized when the total area below the tangent
line is maximized. This area is the base b � a times the height h of the tangent line at
the midpoint x D .aC b/=2, so it suffices to maximize h. That occurs when the point
of tangency is at x D .aC b/=2.

26.2. See Figure S26.3, where we have rotated the horizontal line through the point P to a
tangent line. The two shaded triangles have the same area.

a (a+b)/2 b

P

Figure S26.3.
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28.1.
R 1
0

6dxp
4�x2

D 6 arcsin.x=2/j10 D � and
R 1
0

4dx
1Cx2

D 4 arctan xj10 D � .

n Sn for
R 1
0
6dx=

p
4 � x2 Sn for

R 1
0
4dx=.1C x2/

10 3.1415955916 3.1415926139
20 3.1415928398 3.1415926529
40 3.1415926652 3.1415926535

100 3.1415926538 3.1415926535

28.2. Evaluating the integral suffices since the integrand is positive on (0, 1), and thus so is
the integral. Hence

0 <

Z 1

0

x4.1 � x/4

1C x2
dx D

Z 1

0

�
x6 � 4x5 C 5x4 � 4x2 C 4 �

4

1C x2

�
dx

D
x7

7
�
2x6

3
C x5 �

4x3

3
C 4x � 4 arctan x

ˇ̌1
0

D
1

7
�
2

3
C 1 �

4

3
C 4 � � D

22

7
� �:

29.1. Since f is concave up, (29.1) yields 2
1Cx
� lnx

x�1
� xC1

2x
. This is an improvement over

the bounds from Exercises 21.1, as can be seen in Figure S29.1 (the solid black curve is
the graph of f , the dashed curves the Hermite-Hadamard bounds, and the gray curves
the bounds from Exercise 21.1).

10

1

2

2 3

Figure S29.1

29.2. Using a D n and b D nC1 in (29.3) yields
p
n.nC 1 � 1= ln..nC 1/ � .2nC 1/=2,

and taking reciprocals yields (29.4).

30.1. The area af .a/=2 of the right triangle with base [0; a] plus the area
R b
a f .x/dxunder

the curve minus the area bf .b/=2 of the right triangle with base [0,b] equals Acart.

30.2. Acart D
R b
a f .x/dx C

1
2
xf .x/jab D

1
2

�
xf .x/jab � 2

R a
b f .x/dx

�
.

30.3. Apolar D
1
2

R ˛
ˇ Œr.�/�

2d� D 1
2

R ˛
ˇ Œr.�/ cos ��2 sec2 �d�

D 1
2

R ˛
ˇ
Œr.�/ cos ��2d.tan �/
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30.4. In the suggested change of variables, d .f .x/=x/ D d.tan �/ and Apolar D
1
2

R a
b
x2d.f .x/=x/.

30.5. Using integration by parts with u D x2 and v D f .x/=x yields Apolar D
1
2
Œx2 f .x/

x
ja
b
�
R a
b
f .x/
x
� 2xdx� D 1

2
Œxf .x/ja

b
� 2

R a
b f .x/dx� D Acart.

30.6. Analogous to Exercise 30.1 we have Acart D
R A
B g.y/dy C

1
2
bf .b/ � 1

2
af .a/.

Adding this to the result in Exercise 30.1 and dividing by 2 yields Acart =
1
2
.
R b
a f .x/dx C

R A
B g.y/dy/. By Exercise 30.5, this is also Apolar.

30.7. When af .a/ D bf .b/ for all a and b (in the domain of f /, then xf .x/ is a positive
constant c, i.e., f .x/ D c=x.

31.1. The graph of r D sec � is the line x D 1 in Cartesian coordinates. So for ˛ in Œ0; �=2/,R ˛
0

sec2 �d� is twice the area of a right triangle with legs 1 and tan˛, So
R ˛
0

sec2 �d� D
tan˛ and

R
sec2 �d� D tan � C C .

31.2. The graph of r D 1=.a cos � C b sin �/ is the line ax C by D 1 in Cartesian coordi-
nates. For ˛ in Œ0; �=2/, the ray � D ˛ intersects the line at the point with Cartesian co-
ordinates .1=.aC b tan˛/; 1=.a cot˛ C b//. The integral equals twice the area of a tri-
angle with base 1=a and altitude 1=.a cot˛ C b/, so

R ˛
0

d�
.a cos �Cb sin �/2

D 1
a.a cot˛Cb/ ,

which establishes the result.

31.3. In Cartesian coordinates, r D 1=.1C cos �/ is y2 D 1 � 2x, a parabola opening
to the left with vertex .1=2; 0/ and y-intercepts .0;˙1/ as shown in Figure S31.3.
The ray � D ˛ intersects the parabola at the point P with Cartesian coordinates
.cos˛=.1C cos˛/; sin˛=.1C cos˛//.

θ = a
1

0.5

0 0.5

P

r = 1/(1 + cosθ)

Figure S31.3

The area of the light gray triangle is sin˛ cos˛=Œ2.1C cos˛/2�, and the area of the
dark gray parabolic region is Œsin˛.1 � cos˛/�=Œ3.1C cos˛/2�. HenceZ ˛

0

d�

.1C cos �/2
D

sin˛ cos˛

.1C cos˛/2
C
2 sin˛.1 � cos˛/

3.1C cos˛/2
D

sin˛.2C cos˛/

3.1C cos˛/2
;

which establishes the result.

32.1. For a cylinder with base radius r and height h, A0 D Am D A1 D �r2 and (32.1)
yields V D .h=6/.6�r2/ D �r2, the correct volume. For a cone with base radius r
and height h,A0 D �r2,Am D �r2 4,A1 D 0, and (32.1) yields V D .h=6/.2�r2/ D
�r2=3, the correct volume.



Solutions to the Exercises 159

32.2. For the frustum in Figure 32.3b, A0 D b2, Am D Œ.aC b/=2�2, A1 D a2, and (32.1)
yields V D .h=6/.a2 C .a C b/2 C b2/ D .h=3/.a2 C ab C b2/. So yes, the ancient
formula is a special case of the prismoidal formula, and yes, it is exact since the frustum
is a prismatoid.

Part III Infinite Series
33.1. (a) 1

4
C 1

16
C 1

64
C � � � C 1

4n
C � � � D 1

3

(b) 2
9
C 2

9
.1
3
/C 2

9
.1
3
/2 C � � � C 2

9
.1
3
/n C � � � D 1

3
.

33.2. Since �PQR and �PST are similar, ST =PS D PQ=QR so that

1C r C r2 C r3 C � � �

1
D

1

1 � r
:

34.1. 1 C 2.1
2
/ C 3.1

4
/ C 4.1

8
/ C 5. 1

16
/ C � � � D 4. It represents the derivative of 1 C x C

x2 C x3 C � � � D 1=.1 � x/ at x D 1=2.

35.1. Since 1C 2C 3C � � � C n D n.nC 1/=2, the nth term of the series is 2=n.nC 1/, and
the nth partial sum is 2Sn, where Sn is the nth partial sum in Example 35. Hence the
sum of this series is limn!1 2Sn D 2.

36.1. Figure 36.2 illustrates how cubes with volumes 1; 1=8; : : : ; 1=n3 fit inside a box with
volume 1�1�3=2 D 3=2. Hence the sequence of partial sums of

P1
kD1 1=k

3 is increasing
and bounded above, so the series converges.

36.2. Using (36.1) with a D 1, b D n=.nC 1/, and r D 1=.nC 2/ yields
Œn=.nC 1/�.nC1/=.nC2/ < .nC 1/=.nC 2/ so that Œ1 C .1=n/�.nC1/=.nC2/ > 1 C

Œ1=.nC 1/�, hence Œ1 C .1=n/�.nC1/ > Œ1 C 1=.nC 1/�.nC2/ so that the sequence is
decreasing. The terms of the sequence are positive, hence bounded below.

40.1. By counting squares in the grid, the tangent of the small acute angle in the dark gray
triangle is 1=7 while the tangent of the small acute angle in each of the light gray
triangles 2=6 D 1=3, The tangent of the union of those three angles is 5=5 D 1, which
proves (40.1).

40.2. The tangents of the three acute angles in the lower left corner of Figure 40.2 are 2=10 D
1=5, 5=10 D 1=2, and 1=8. The tangent of their union is 8=8 D 1, which proves (40.2).
The successive partial sums �n of the series

� D 4

1X
nD0

.�1/n

2nC 1

�
.1=2/2nC1 C .1=5/2nC1 C .1=8/2nC1

�
are

�0 D 3:30

�1 D 3:1200625

�2 D 3:145342914 � � �
:::

�12 D 3:141592654 � � �

�13 D 3:141592653 � � �
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so to eight decimal places, � � 3:14159265. While the convergence to � with Strass-
nitzky’s formula is slower, it may have been more suited to hand calculation than Hut-
ton’s since the powers of 1=2, 1=5, and 1=8 have terminating decimals while those of
1=3 and 1=7 do not.

40.3. Combining the hint with the area
R 1=4
0

p
x � x2 dx under the semicircle over the inter-

val Œ0; 1=4� yields �
24
D
p
3
32
C
R 1=4
0

p
x � x2 dx.

40.4.
p
1 � x D 1 �

1

2
x �

1

22
x2

2Š
�
1 � 3

23
x3

3Š
�
1 � 3 � 5

24
x4

4Š
� � � � ,

p
x
p
1 � x D x1=2 �

1

2
x3=2 �

1

22
x5=2

2Š
�
1 � 3

23
x7=2

3Š
�
1 � 3 � 5

24
x9=2

4Š
� � � � ;

Z 1=4

0

p
x
p
1 � xdx D

2

3

�
1

4

�3=2
�
1

2
�
2

5

�
1

4

�5=2
�
1

22
�
2

7

�
1

4

�7=2

�
1 � 3

23
�
2

9

�
1

4

�9=2
�
1 � 3 � 5

24
�
2

11

�
1

4

�11=2
� � � �

D
1

12
�

1

5 � 25
�

1

4 � 7 � 27
�

1 � 3

4 � 6 � 9 � 29
�

1 � 3 � 5

4 � 6 � 8 � 11 � 211
� � � � :

Part IV Additional Topics

41.1. u=2 D .1=2/
R tan�1.s=c/
0

sec 2�d� D .1=4/ ln jsec 2� C tan 2� jtan�1.s=c/
0 , but since c2�

s2 D 1, sec.2 tan�1.s=c// D c2 C s2 and tan.2 tan�1.s=c// D 2cs. Hence u=2 D
.u=4/ ln.c C s/2 D .u=2/ ln.c C s/, and so u D ln.c C s/.

41.2. (a) f .x/C g.x/ D x2C2xC2
x4C1

D x2C2xC2
.x2C2xC2/.x2�2xC2/

D 1
x2�2xC2

.

(b) h.�x/ D f .�x/Cg.�x/ D f .x/�g.x/, then solve this with h.x/ = f .x/Cg.x/
to yield f .x/ D Œh.x/C h.�x/�=2, g.x/ D Œh.x/ � h.�x/�=2.

(d) when h.x/ D ex , f .x/ D cosh x and g.x/ D sinh x.

42.1. d
du

coshu D d
du

sec.gdu/ D sec.gdu/ tan.gdu/sechu D sinhu

d
du

tanhu D d
du

sin.gdu/ D cos.gdu/sechu D sech2 u

d
du

sechu D d
du

cos.gdu/ D � sin.gdu/sechu D �sechu tanhu

d
du

cschu D d
du

cot.gdu/ D � csc2.gdu/sechu D �cschucothu

d
du

cothu D d
du

csc.gdu/ D � csc.gdu/ cot.gdu/sechu D �csch2 u:

42.2. (a) gd.�u/ D arctan.sinh.�u// D arctan.� sinh.u//
D � arctan.sinh.u// D �gd.u/:

(b) lim
u!1

gdu D lim
u!1

arctan.sinhu/ D lim
x!1

arctan.x/ D �=2.

(c) lim
u!�1

gdu D lim
u!�1

arctan.sinhu/ D lim
x!�1

arctan.x/ D ��=2.
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(d) sec.gd x/C tan.gd x/ D egd�1.gdx/ D ex .

(e) tan.1
2

gdx/ D 1�cos.gdx/
sin.gdx/ D

1�sechx
tanhx D

coshx�1
sinhx

D 2 sinh2.x=2/
2 sinh.x=2/ cosh.x=2/ D tanh.x=2/:

(f) tan.1
2

gdx/ D tanh.x=2/ D ex=2�e�x=2

ex=2Ce�x=2
D ex�1

exC1
D tan.arctan ex � �

4
/, and

hence gd x D 2 arctan ex � .�=2/.

44.1. Rotating the y- and z-axes through an angle � (0 � � � �=2/ as in this Cameo yields
x2 C . Ny cos � � Nz sin �/2 D r2 as the equation of the cylinder. Setting Nz D 0 and
replacing Ny by y yields x2 C .cos2 �/y2 D r2 as the equation of the intersection. This
is a circle, an ellipse, or two parallel lines when � D 0, 0 < � < �=2, or � D �=2,
respectively.

45.1. From Example 45.1 we have n
p
nŠ < .nC 1/=2, which is equivalent to the desired

inequality.

Part V Appendix: Some Precalculus Topics

46.1. Let the parabola be given by y D .1=4/x2. Then the points are F.0; 1/, P.a; b/ with
b D a2=4, and Q.a;�1). �FPQ is isosceles since jFP j D jPQj. The tangent line at
P is y D .a=2/Œx � .a=2/�, which intersects the x-axis (the tangent line at the vertex)
at R.a=2; 0/. PQ is the line y D 1 � .2=a/x, which also passes through R. Since
the slopes of PR and FQ are negative reciprocals, PR and FQ are perpendicular. Thus
�FPR and �QPR are congruent right triangles, so PR bisects †FPQ.

47.1. (a) Use the Pythagorean theorem on the largest right triangle.
(b) The triangles with hypotenuses tan� and cot� are similar.

48.1. Evaluating the lengths of the legs of the gray right triangle in Figure 48.2 (note that the
smaller acute angle has measure ˛ � ˇ/ yields

sin.˛ � ˇ/ D sin˛ cosˇ � cos˛ sinˇ;

cos.˛ � ˇ/ D cos˛ cosˇ C sin˛ sinˇ:

48.1. Divide all lengths in Figures 48.1b and 48.2 by cos˛ cosˇ.

48.2. Replacing x by x=2 in two of the cosine formulas yields cosx = 2 cos2.x=2/ � 1 and
cos x D 1 � 2 sin2.x=2/. Solving for cos.x=2/ and sin.x=2/ yields the half angle
formulas. The sign is positive in the sine formula if x=2 is in quadrant I or II, negative
if x=2 is in quadrant III or IV. The sign is positive in the cosine formula if x=2 is in
quadrant I or IV, negative if x=2 is in quadrant II or III.

49.2. Evaluating the lengths of the legs of the right triangle with an acute angle measuring
3x and employing the double angle cosine formulas yields

sin 3x D 2 sin x cos 2x C sin x D 2 sin x.1 � 2 sin2 x/C sin x D 3 sin x � 4 sin3 x;

cos 3x D 2 cos x cos 2x � cos x D 2 cos x.2 cos2 x � 1/ � cos x D 4 cos3 x � 3 cos x:
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50.1. (a) x6 C 1 D .x2 C 1/.x4 � x2 C 1/

D .x2 C 1/Œ.x4 C 2x2 C 1/ � 3x2�

D .x2 C 1/Œ.x2 C 1/2 � .
p
3x/2�

D .x2 C 1/.x2 �
p
3x C 1/.x2 C

p
3x C 1/:

(b) x8 C x4 C 1 D .x8 C 2x4 C 1/ � x4

D .x4 C 1/2 � .x2/2

D .x4 C x2 C 1/.x4 � x2 C 1/

D Œ.x4 C 2x2 C 1/ � x2�Œ.x4 C 2x2 C 1/ � 3x2�

D Œ.x2 C 1/2 � x2�Œ.x2 C 1/2 � .
p
3x/2�

D .x2 � x C 1/.x2 C x C 1/.x2 �
p
3x C 1/.x2 C

p
3x C 1/:



References

C. Alsina and R. B. Nelsen, “Teaching tip: The limit of (sint //t ,” College Mathematics Journal,
41 (2010), p. 192.

——— “Proof without words: The triple angle sine and cosine formulas,” Mathematics Mag-
azine, 85 (2012), p. 43.

M. K. Brozinsky, “Proof without words,” College Mathematics Journal, 25 (1994), p. 98.

F. Burk, “Behold! The midpoint rule is better than the trapezoidal rule for concave functions,”
College Mathematics Journal, 16 (1985), p. 56.

R. D. Carmichael, “On the representation of the trigonometric functions by lines,” American
Mathematical Monthly, 15 (1908), pp. 199–200.

R. Courant, Differential and Integral Calculus, Vol. 1, Interscience, New York, 1937.

D. Cruz-Uribe, “The relation between the root and ratio tests,” Mathematics Magazine, 70
(1997), pp. 214–215.

M. R. Cullen, “Cylinder and cone cutting,” College Mathematics Journal, 28 (1997), pp. 122–
123.

A. Cupillari, “Proof without words: 13C 23C � � � C n3 D .n.nC 1//2=4” Mathematics Mag-
azine, 62 (1989), p. 259.

P. Deiermann, “The method of last resort (Weierstrass substitution)”, College Mathematics
Journal, 29 (1998), p. 17.

H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover Publications, New York,
1965.

W. Dunham, Journey Through Genius: The Great Theorems of Mathematics, John Wiley &
Sons, Inc., New York, 1990.

R. Euler, “A note on differentiation,” College Mathematics Journal, 17 (1986), pp. 166–167.

H. Eves, An Introduction to the History of Mathematics, Fifth Edition, Saunders College Pub-
lishing Company, Philadelphia, 1983.

G. Fredricks and R. B. Nelsen, “Summation by parts,” College Mathematics Journal, 23
(1992), pp. 39–42.

N. A. Friedman, “A picture for the derivative,” American Mathematical Monthly, 84 (1977),
pp. 470–471.

163



164 References

M. Gardner, “Mathematical Games,” Scientific American, 229 (1973), p. 115.

S. W. Golomb, “A geometric proof of a famous identity,” Mathematical Gazette, 49 (1965),
pp. 198–200.

R. N. Greenwell, “Why Simpson’s rule gives exact answers for cubics,” Mathematical Gazette,
83 (1999), p. 508.

R. H. Hammack and D. W. Lyons, “Proof without words,” College Mathematics Journal, 36
(2005), p. 72.

——— “Alternating series convergence: a visual proof,” Teaching Mathematics and Its Appli-
cations, 25 (2006), pp. 58–60.

D. Hartig, “On the differentiation formula for sin� ,” American Mathematical Monthly, 96
(1989), p. 252.

M. Hudelson, “Proof without words: The alternating harmonic series sums to ln 2,” Mathemat-
ics Magazine, 83 (2010), p. 294.

D. Kalman, “.1 C 2 C � � � C n/.2n C 1/ D 3.12 C 22 C � � � C n2/”, College Mathematics
Journal, 22 (1991), p. 124.

E. Key, “Disks, shells, and integrals of inverse functions,” College Mathematics Journal, 25
(1994), pp. 136–138.

G. Kimble, “Euler’s other proof,” Mathematics Magazine, 60 (1987), p. 282.

M. K. Kinyon, “Another look at some p-series,” College Mathematics Journal, 37 (2006), pp.
385–386.

S. H. Kung, “Proof without words: The Weierstrass substitution,” Mathematics Magazine, 74
(2001), p. 393.

W. Lushbaugh, Mathematical Gazette, 49 (1965), p. 200.

J. H. Mathews, “The sum is one,” College Mathematics Journal, 22 (1991), p. 322.

N. S. Mendelsohn, “An application of a famous inequality,” American Mathematical Monthly,
58 (1951), p. 563.

K. Menger, Calculus: A Modern Approach, Ginn, Boston, 1955 (reprinted by Dover Publica-
tions, Inc, Mineola, NY, 2007).

C. C. Mumma II, “N ! and the root test,” American Mathematical Monthly, 93 (1986), p. 561.

R. B. Nelsen, “Proof without words: The substitution to make a rational function of the sine
and cosine,” Mathematics Magazine, 62 (1989), p. 267.

———, “Napier’s inequality (two proofs),” College Mathematics Journal, 24 (1993), p. 165.

———, “Symmetry and integration,” College Mathematics Journal, 26 (1995), pp. 39–41.

———, “One figure, six identities,” College Mathematics Journal, 31 (2000), pp. 145–146.



References 165

———, “Proof without words: Steiner’s problem on the number e,” Mathematics Magazine,
82 (2009), p. 102.

I. Niven, “Which is larger, e� or �e?” Two-Year College Mathematics Journal, 3 (1972),
pp. 13–15.
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alternating harmonic series 38
alternating series test 39
annulus 14
approximating � 2, 28, 40
area, derivatives of 14

integral 9
of a circular sector 1
of a regular polygon 2
polar 30, 31

Aristarchus’s inequalities 11
arithmetic mean 10–12, 15, 21, 29,

45
arithmetic mean-geometric mean

inequality 11, 15, 29, 45
average value of a function 24, 29

Bernoulli’s inequality 11

Cauchy-Schwarz inequality 24
centroid 24
chain rule 6
circle 1, 2, 14, 43, 44
circular sector 1
combinatorial identities 16
completing the square 44, 50
composite function 6
cone 15, 32, 43, 44
conic sections 43, 44
cubes, sums of 16, 17
cylinder 14, 32, 43, 44

derivatives 3
and polar area 31
of a composite function 6
of a product 4
of a quotient 5
of a square 4
of area 14

of hyperbolic functions 42
of the arcsine 9
of the arctangent 8
of the cosine 7
of the sine 7
of the tangent 8
of volume 14

directrix 43, 46
disk method 23, 32
double angle formulas 31, 49

e as a limit 12, 21, 22, 36, 45
to the � power 13

eccentricity 43
ellipse 43, 44
equilateral triangle 14
Euler-Mascheroni constant 37
even part of a function 41
exponential function 12, 13

focus 43, 46
frustum of a pyramid 32
fundamental theorem 9, 31

geometric mean 10–12, 15, 21, 29,
45

geometric series 33
differentiation of 34
partial sums of 17, 33

Gudermannian 42

half angle formulas 2, 49
harmonic series 37

alternating 38
Hermite-Hadamard inequality 29
Hutton’s formula 40
hyperbola 43, 44
hyperbolic functions 41, 42
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identric mean 10
inequalities, Aristarchus’s 11

for a rectangle 15
for a rectangular box 15
for e 12, 21, 29, 36
tangent line 11

inequality, arithmetic mean-geometric mean
(AM-GM) 11, 15, 45

Bernoulli’s 11
between ab and ba 13
between e� and �e 13
between 22/7 and � 28
Cauchy-Schwarz 24
Hermite-Hadamard 29
Mengoli’s 37
Napier’s 21
Weighted AM-GM 11, 36

integral test 36, 37
integration and symmetry 20

by parts 18, 23, 31
numeric 25–28

limit for e 12, 21, 22, 36, 45
for the natural logarithm 11
of (sint)/t 1
of the nth root of n! 22, 45

logarithmic mean 10, 21, 29
differentiation 13

Maclaurin series 40
mathematical induction 16
mean, arithmetic 10–12, 15, 21, 29, 45

geometric 10–12, 15, 21, 29, 45
identric 10
logarithmic 10, 21, 29

mean value theorem 10
means 10–12, 15, 21, 29, 45
Mengoli’s inequality 37
midpoint rule 12, 20, 25, 26, 29
monotone sequence theorem 36, 37

n factorial 22, 45
Napier’s inequality 21
natural logarithm as a limit 11
nth root of n! 22, 45
numeric integration 25–28

odd numbers, sums of 17

odd part of a function 41
optimization 15

� , approximating 2, 28, 40
to the e power 13

parabola 43, 44, 46
partial fractions 19, 50
partial sums of alternating harmonic series

38
of alternating series 39
of geometric series 17, 33
of harmonic series 37
of telescoping series 17, 35

perimeter 2, 14
polar area 30, 31, 41
positive integers, sums of 16, 17
prismatoid 32
prismoidal formula 32
product rule 4
Putnam Competition 11, 20, 28, 45
pyramid 15, 32

frustum of 32

quotient rule 5

ratio test 45
reciprocal rule 5
Regiomontanus’s maximum problem 15
Riemann sums 16, 22, 23
root test 45
rule, chain 6

midpoint 12, 20, 25, 26, 29
product 4
reciprocal 5
quotient 5
Simpson’s 27, 32
trapezoidal 12, 20, 25, 29

secant lines 3, 6, 10, 21
shell method 23
series, geometric 33

harmonic 36
Maclaurin 40
telescoping 35

Simpson’s rule 27, 32
slope axis 3
solids of revolution 23, 24
sphere 14, 32, 43
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squares, sums of 16, 17
Strassnitzky’s formula 40
substitution, Weierstrass 19
summation by parts 17
sums of cubes 16, 17

of odd numbers 17
of positive integers 16, 17
of squares 16, 17
of triangular numbers 17
Riemann 16, 22, 23

surface area 14
symmetry and integration 20

tangent lines 3, 10–12, 46

telescoping series 35
partial sums of 17, 35

torus 14
trapezoidal rule 12, 20, 25, 29
triangle, equilateral 14
triangular numbers 16, 17
triple angle formulas 49

volume by disks 23
by shells 23
derivatives of 14

Weierstrass substitution 19
weighted AM-GM inequality 11, 36
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