
ROBERT W FLOYD RICHARD BEIGEL 

T II E 

IANGIUAGE 
OF 

IIACIIINES 
Rn lnt�oduction ho 

Computability and 

Formal �anouaoes 



The Language of Machines 

An Introduction to Computability 
and Formal Languages 



The Language of Machines 

An Introduction to Computability 
and Formal Languages 

Robert W Floyd Stanford University 
Richard Beigel Yale University 

Computer Science Press 
An imprint of W. H. Freeman and Company 

New York 



Lib ra ry of Congress Cataloging-in -Publication Data 

Floyd, Robert W 
The language of machines : an introduction to computability and formal 

languages / Robert W Floyd, Richard Beige!. 
p .  cm. 

Includes index. 
ISBN 0-7167-8266-9 
1. Formal languages. 2. Machine theory. 3. Computable functions. I. Beige!, 

Richard. II. Title. 
QA267 .e.F56 1993 
511'.3--dc20 93 -3 910 

CIP 

Copyright© 1994 by W. H. Freeman and Company 

No part of this book may be reproduced by any mechanical, photographic, or electronic 
process, or in the form of a phonographic recording, nor may it be stored in a retrieval 
system, transmitted, or otherwise copied for public or private use, without written 
permission from the publisher. 

Printed in the United States of America 

Computer Science Press 

An imprint ofW. H. Freeman and Company 
The book publishing arm of Scientific American 
41 Madison Avenue, New York, NY 10010 

20 Beaumont Street, Oxford OXl 2NQ, England 

12 3 45 6 789 0 RRD 9 987 654 



CONTENTS 

Preface 

Acknowledgments 

About the Authors 

0 Mathematical Preliminaries 
0.1 Quantifiers and Two-Player Games 
Exercises ......................... . 

0.2 Sets, Tuples, Sequences, Bags, Relations, and Functions 

0.3 

0.4 
0.5 
0.6 

0.2.1 Sets ........... . 
0.2.2 
0.2.3 
0.2.4 
0.2.5 
0.2.6 
0.2.7 
Strings 

0.3.1 
0.3.2 
0.3.3 

Set Extensions and Closures 
Tuples .. 
Sequences 
Bags ... 
Relations . 
Functions 

Regular Operations 
Miscellaneous String Operations and Relations 
6-ary and 6-adic Number Representations 

Graphs ..... 
Big-O Notation 
Induction 

0.6.1 Strong Induction 
0.6.2 Pigeonhole Principle 
0.6.3 Recursive Definitions . 

Xl 

xv 
XVll 

1 
2 
5 
5 
6 
9 
13 

15 
16 
18 
24 
29 
3 1  
3 2  
3 3  
3 6  
3 8  
39 

51 
55 
60 

V 



vi Contents 

1 

2 

Introduction to Machines 
1.1 Programs . . . . . 
1.2 Controls . . . . . 
1.3 Unsigned Counters 
1.4 Signed Counters . 
1.5 Stacks . . . . .  . 
1.6 Two-Counter Machines 
1. 7 Turing Machines . . . 
1.8 Random Access Machines . 
1.9 Determinism and Nondeterminism 
1.10 Chapter Summary . . . . . . . . 

Devices, Machines, and Programs 
2.1 Representing Problems 
2.2 Devices . .  . 
2.3 Machines .. . . . .  . 
2.4 Instructions ... . . 
2.5 Initializers and Terminators . 
2.6 Programs ..... . . . .  . 
2.7 Running a Program 

2. 7 .1 Computations, Traces, and Histories 
2.7.2 Infinite Computations, Traces, and Histories 

2.8 Determinism and Blocking .. .. . 
2.9 Three Important Kinds of Programs 

2.9.1 Acceptors 
2.9.2 Recognizers 
2.9.3 Transducers 

2.10 Chapter Summary 

67 
68 
80 
82 
86 
87 
89 
91 
96 
99 

107 

111 
112 
115 
117 
118 
120 
126 
132 
133 
136 
139 
142 
142 
144 
146 
151 

3 Simulation 15 3 
3.1 Simulation of Programs. . . . . . . . . . . . . . . . 155 
3.2 Lockstep Simulation . . . . . . . . . . . . . . . . . 156 

3.2.1 One Control Simulates Two Controls (Pairing 
Construction) . . . . . . . . . . . . . . . . 166 

3.3 Simulation via Subprograms . . . . . . . . . . . . . 174 
3.3.1 Eliminating the NONZERO Test from an Unsigned 

Counter . . . . . . . . . . . . . . . . . . . . . 180 
3.3.2 An Unsigned Counter Simulates a Signed Counter 184 
3.3.3 Eliminating the EMPTY Test from a Stack 190 

3.4 Standardization . . . . . . . . . . . . . . . 194 
3.4.1 Factoring Programs . . . . . . . . 195 
3.4.2 Eliminating the New Operations and 

Redundant Tests . . . . . . . . . . . . . . . . . . . . 200 



4 

5 

6 

Contents vii 

3.4.3 Eliminating Dead States and Unreachable States 204 
3.4.4 Eliminating Null Instructions 208 
3.4.5 Cleaning Up and Eliminating Blocking . 212 

3.5 Chapter Summary 214 

Finite Machines and Regular Languages 217 
4.1 Standardizing Finite Machine Programs . 219 
4.2 Regular Expressions and Languages 220 

*4.3 Regular Expressions in the Real World: egrep . 225 
4.4 Kleene 's Theorem 229 

4.4.1 Algorithms for Computing Regular Sets of Paths 232 
4.4.2 NFA Languages Are Regular Languages 238 
4.4.3 Pencil-and-Paper Algorithm 240 

4.5 NFA Languages Are the Same as Regular Languages 247 
4.6 Equivalence of NFAs and DFAs . 250 
4.7 Minimizing DFRs 258 

4.7.1 Determining Equivalent States 267 
4.8 Closure Properties 279 

4.8.1 Closure under Finite Transductions 281 
4.8.2 Composition Theorem 284 

4.9 Pumping Theorems for Regular Languages 293 
4.9.1 Al and Izzy Pump Strings 299 

4.10 Chapter Summary 306 

Context-Free Languages 313 
5.1 Defining Languages as Solutions to Equations 314 

*5.2 Existence of Unique Minimal Solutions 322 
5.3 CFGs and Their Standardizations 329 

*5.4 Parse Trees 339 
5.5 Derivations . 342 
5.6 CFLs Are the Same as NSA Languages 347 

*5.7 The Chomsky Hierarchy 354 
5.8 Pumping Theorems for CFLs 356 
5.9 Ambiguity . 369 

*5.10 Greibach Normal Form 375 
5.11 CYK Parsing Algorithm 389 

*5.12 Earley's Parsing Algorithm 391 
5.13 Chapter Summary 400 

Stack and Counter Machines 401 
6.1 Closure Properties 402 
6.2 DSA Languages Are DSR Languages 407 

6.2.1 Eliminating PUSH-POP Pairs from DSAs 407 



viii Contents 

*6.3 
*6.4 
6.5 
6.6 
*6.7 
6.8 

6.2 .2 Making DSAs Halt . 
Unambiguous Programs . .  
On-line Recognition . . . . 
Two Counters Simulate a Stack 
Two Counters Simulate Any Number of Counters 
Counter Languages and Prefix Equivalence 
Chapter Summary . . . . . . . . . . . . 

410 
414 
418 
427 
435 
437 
441 

7 Computability 443 
7 .1 Tapes and Turing Machines . . . . . 445 

7.1 .1 One Tape Simulates k Tapes 447 
7 .1. 2 Two Stacks Simulate a Tape . 451 

7.2 Putting the Argument on a Tape, Stack, or Counter 454 
7.3 Random Access Memory . . . . . 456 
7.4 Universal Turing Machine Program . . . . 458 
*7.5 Herbrand-Godel Computability . . . . . 461 
7 .6 Recursive and Recursively Enumerable Sets 467 
7.7 The Halting Problem . . . . . . . . . . . 478 
7.8 Diagonalization . . . . . . . . . . . . . 481 

*7.8 .1 The Real Numbers Are Uncountable 482 
7 .8.2 Recursively Inseparable Sets . . . . 486 
*7 .8.3 The Total Recursive Functions Cannot Be Enumerated 

Exactly . . . . . . . . . . . . 489 
7.9 Many-One Reductions . . . . . . . . 490 

*7 .10 Re writing Systems and Word Problems 498 
*7 .11 The Post Correspondence Problem . 5 08 
7 .12 Undecidability of First-Order Logic . . 520 
7.13 Valid and Invalid Computations 527 
*7 .14 Diophantine and Exponential Diophantine Equations 5 3 7 

7.14.1 Some Diophantine and Exponential Diophantine 
Relations . . . . . . . . . . . . . . . . . . . . 541 

7 .14 .2 Arithmetization of 3 -Counter Machine Programs 546 
7.15 Chapter Summary . . . . . . . . . . . . . . . . . . . 553 

8 Recursion Theory 5 5 7 
8.1 Rice's Theorem . . . . . . . . . . . . . . . . . . . . 558 
8.2 The Recursion Theorem and the Fixed-Point Theorem 563 
8.3 Godel's Incompleteness Theorem 569 
8.4 Oracles and Turing Reductions 574 

8.4.1 Representational Issues 5 77 
8.4.2 Relativization . . . 578 
8.4.3 Jumps . . . . . . . 580 

8.5 The Arithmetical Hierarchy 582 



8.6 Chapter Summary . . . . . . . 

9 Feasible and Infeasible Problems 
9. 1 Time-Bounded Computation: P and NP 
9 .2 NP-Completeness . . .. .. . . . 
9 .3 Search and Optimization vs . Decision 
9 .4 Canonical NP-Complete Problems 
9.5 Symbol Systems . . . . . .  . 
9.6 Boolean Formula Satisfiability 
9 .  7 NP-Complete Graph Problems 
9 .8 NP-Complete Problems Involving Sets, Vectors, 

and Numbers . . . . . . . . . . . . . . 
*9 .9 An NP-Complete Problem about DFRs . 
*9 .10 Complexity of Some Problems Involving 

Regular Languages 
9 .11 Chapter Summary .. . . . . . . . . . 

10 Appendix 
10.1 Greek Symbols 
10.2 Glossary . . . 
10.3 Common Acronyms 
10.4 Program and Grammar Equivalences 
10.5 Hierarchy of Partial Functions . . .  
10.6 Hierarchy of Relations . . . . . . . 
10.7 Closure Properties for Language Classes 
10.8 Decision Problems for Language Classes . 

Index 

Contents ix 

. 59 8 

601 
60 2 
611 
616 
621 
624 

. 631 
6 39 

653 
664 

670 
679 

681 
681 
684 
687 
690 
69 2 
69 4 
69 5 
696 

697 



PREFACE 

The elementary theory of computability and of languages defined by formal 
grammars is a mature subject that has changed little since the mid- l 960s . 
This theory underlies modern recursive function and complexity theory, as 
well as modern methods in the design of compilers for computer program
ming languages. Students of computer science, many of whom have little 
experience in the deductive algebraic side of mathematics, often find the 
subject difficult to follow and harder to apply. In response, we have reexam
ined the foundations of computability theory, asking ourselves how Turing, 
Godel, Herbrand, Post, Kleene, and the other founders would have defined 
computability had they foreseen its entire development, along with the de
velopment of the corresponding arts and technologies of digital computer 
usage. 

Our purpose is to make the subject easier for students and professionals 
in computer science and therefore more useful. Toward this end, we relate 
many of the paradigms of computability to concepts that are familiar to the 
average programmer. As much as possible we present definitions, proofs, 
and constructions informally first and formally second. The core of the 
text is written with third-year computer science undergraduates in mind. 
A substantial amount of optional material will appeal to more advanced 
students. The Language of Machines is our proposal for the redefinition of com
putability and formal language theory. These are the major innovations we 
propose: 

■ A single definition encompasses all the familiar types of machine
finite automaton, Turing machine, counter, stack, and random
access machine-whether used as recognizer, acceptor, or transducer. 

■ We present nondeterminism and non-halting computations early, 
and in a natural, nontraumatic way. 

• A mechanism is provided to combine machines, analogous to the 
way programs are combined through "pipes" by modern operating 
systems such as Unix on real computers. 

• The capabilities of a machine type are separated from the details of 

xi 



xii Preface 
the specific algorithms. A machine type is a collection of "devices" capable of executing an infinite variety of programs. Because it is easier to design programs than to design hardware, the practical world replaced special-purpose computers by the general-purpose kind forty years ago; the theoretical world should follow. 

■ In practical programming as well as computability theory, it 1s important to be able to establish that one program simulates another. We define simulation in a way that captures the key intuitions and permits modularized proofs. The correct simulation of each part of a program is validated separately by verifying a mechanically generated condition. The same logical framework that supports showing that a two-counter machine simulates a Turing machine could, in principle, be used in showing that a microcode simulates the design specifications of a real computer. In a rigorous approach to automata theory, every simulation requires its own ad hoc induction. Our approach distills the ad hoc inductions into a single induction and confines the details to a single chapter so that subsequently the student may concentrate on the underlying ideas. We have supplemented the inductive proof with commutative diagrams that should appeal to all students regardless of mathematical background. 
• Many proofs are facilitated by showing that programs for a machine can be standardized, i.e., put into a very restricted form. Proofs by standardization are more accessible than some of the classical proofs, because they appeal to programming insights. Such proofs can be validated by applying the formal definition of simulation. 

In addition to these innovations in definitional framework, we have looked hard at the logical structure of traditional proofs. For example, by choosing the right induction hypothesis, the proof of Ogden's generalization of the classic pumping theorem becomes simpler than the classic proof of the special case. By expressing the halting problem for two-counter machines in first-order logic, we find an extremely simple proof that the set of theorems in first-order logic is undecidable. By expressing the set of computations of a two-stack machine as the intersection of two CFLs, we simplify the classic 



Preface xiii 

undecidability proofs for CFL properties. By introducing symbol systems, 
we are able to separate the key ideas of the Cook-Levin reduction from the 
technical encoding details. 

In The Language of Machines, we assume that the reader is familiar with 
sets, functions, and relations, with the use of universal and existential quan
tifiers, with proof by induction, and with arithmetic congruences. Chapter 0 
contains a quick review of this material. The most direct preparation would 
be a one-term course in discrete mathematics. In turn, we introduce the 
reader to some mathematical results of value outside computability, such 
as the Tarski-Knaster fixed-point theorem (important, for example, in de
notational semantics). We believe that this book will properly prepare the 
student for subsequent courses in complexity theory and recursive function 
theory. This book is also valuable preparation for the study of modern 
programming languages, compilers, and interpreters. 

We have made several judgment calls in defining the perimeter of our 
subject. We have ruled the theory of primitive recursive functions out as 
a historical dead end. We have returned to the original Herbrand-Gi::idel 
equational definition of the recursive functions, dropping the use of the 
µ-operator and the operation of primitive recursion as defined by Kleene. 
We make extensive use of finite transductions; however, homomorphisms, 
Moore machines, and Mealy machines per se are not needed and not men
tioned. We present the core theory of NP-completeness but mostly resist 
the temptation to explore complexity theory. 

We have tried to appeal to the reader's experience and intuition as much 
as possible without sacrificing mathematical rigor. Programs for all kinds 
of automata (not just finite automata) are presented informally as directed 
graphs labeled with actions to be performed so that they can be followed 
visually, although formally they are sets of tuples of partial functions. Our 
definitions are chosen to make algorithm design for automata seem as much 
like computer programming as possible. We have incorporated numer
ous concrete examples, some of practical value. Where possible, exercises 
explore historical variants of the theory. 

The theory of computation uses a number of algorithms, e.g., to min
imize a finite automaton or to put a context-free grammar into a normal 
form. We have made an effort to provide algorithms that are intelligible, 
feasible for execution by hand, and efficient on a real computer. Where 



xiv Preface 

these goals conflict, we emphasize the first two, citing the literature for the third. We have taught this subject for many years and at several universities. Between the two of us, we have class-tested this formulation of the subject in nine classes. We are pleased by the level of student satisfaction. In an era of watered-down courses, we hope to revive the careful use of deductive methods in theory of computability. Finally, we realize that we are asking teachers to overhaul their conceptual framework, but we think their effort will be amply repaid. Our unified approach to automata and languages will clarify the subject for teachers as well as students. 
Notes: Exercises marked with an asterisk(*) are more challenging than others. Exercises marked with two asterisks(**) are much more challenging than others. Exercises marked with a dagger (t) are unsolved problems, to the best of our knowledge. Exercises marked with a plus (+ ) are used later. Sections marked with an asterisk(*) contain material that we consider optional, although not necessarily more difficult than other material. As much as possible we have tried to make sections self-contained so that difficult material can be skipped with minimum consequences. 

Robert W Floyd 
Richard Beigel 

November 1993 



ACKNOWLEDGMENTS 

We are grateful to a large number of colleagues, students, and friends for 
their assistance and support while we were preparing this textbook. 

Students whose suggestions improved our early drafts include at Yale: 
Kostas Vassilakis, Tuija Kaisla, Jim Cowie, Nick Reingold, and Rebecca 
Wright; at Stanford: Brian Hagenbuch, Pat Lincoln, and Jim Hwang; at 
Johns Hopkins: Ashutosh Roy and others. 

Some of the ideas for a unified approach to the theory of automata first 
appeared in a paper by Jonathan Goldstine. His advice as a reviewer has 
been exceptionally thorough and valuable. 

We have had numerous helpful discussions with Rao Kosaraju and 
Mike Fischer. Bill Gasarch gave priceless, comprehensive advice on the 
manuscript and suggested numerous exercises. Terry Winograd provided 
some excellent general advice on the exposition. Udi Manber gave valu
able advice on the presentation of mathematical induction. Ron Sigal, 
Nick Reingold, and Zohar Manna gave valuable advice on mathematical 
logic. We had helpful discussions with Sheila Greibach and Derick Wood 
on Greibach-normal-form grammars and other helpful discussions with 
Dana Angluin, Steven Rudich, Lance Fortnow, David Harel, Rod Downey, 
Steve Mahaney, Victor Miller, Sam Buss, Martin Davis, Greg Johnson, Neil 
Immerman, Ian Parberry, Gil Neiger, Christos Papadimitriou, Russell Im
pagliazzo, Ken Regan, Don Colton, Arny Rosenberg, Louxin Zhang, and 
Arthur Keller. Erann Gat helped us pick the colors for the stack of cafeteria 
trays. 

We are grateful to John Rickard for the clever proof of Corollary 5.28. 
We are grateful to several researchers for showing us recent results that 
would not otherwise have made it into this manuscript: Exercise 2.9-7 is 
from a manuscript by Ken Regan; Exercise 4. 7-15 is from a paper by Hing 
Leung; Exercise 5.8-1 is from a manuscript by Don Colton; Exercise 7.10-
5(6) is from a paper by Louxin Zhang; Exercise 9.7-6(e) is from papers by 
Sam Buss and by Christos Papadimitriou and Mihalis Yannakakis. 

The Internet provided valuable links between the two authors and to 
other educators. We are grateful to the National Science Foundation and 
agencies in other countries that support the Internet. 

xv 



xvi Acknowledgments 

Bicoastal authorship required several extended visits to the east and west 
coasts, facilitated by Mike Fischer, Nick Reingold, Martin Schultz, Allen 
Cohn, Anna Karlin, Jeff Westbrook, Jeri and Ross Kirk, and Jane Reece, 
who also advised us on the publication process. The second author is also 
very grateful to his friends Clyde and Cathy Kruskal for their hospitality 
during the final preparation of the manuscript. 

The manuscript was prepared using GNU Emacs and Jt\T]3X. The di
agrams were prepared by artists at Publication Services, based on roughs 
prepared using xfig, Jt\T]3X, and Emacs. We are grateful to Richard Stallman 
for his assistance with Emacs. We are also grateful to Mike Fischer, Nick 
Reingold, and Donald Arseneau for their assistance with TEX and Jt\TEX· In 
addition to our home institutions, the University of California at San Diego 
and the University of Maryland at College Park provided computer time and 
other support. The National Science Foundation provided partial support 
for the second author's efforts through a Presidential Young Investigator 
award, number CCR-8958528. 

RWF 

RB 



ABOUT THE AUTHORS 

Robert Floyd studied the liberal arts, mathematics, and physics at the 
University of Chicago, earning a BA and a BS degree. He spent ten years as 
computer operator, programmer, and analyst, during which he developed 
widely used methods for translating programming languages. He has been 
a teacher and researcher in computer science since 1965, first at Carnegie
Mellon University and now at Stanford University. He was also the first 
Grace Murray Hopper Professor at the U.S. Naval Postgraduate School. 
His inventions include algorithms for finding shortest paths in a network, 
for parsing programming languages, for calculating quantiles, for printing 
shades of gray on a dot printer, and for selection of random permutations and 
combinations. He invented nondeterministic programming and systematic 
methods of program verification. He was given the Alan M. Turing Award of 
the Association for Computing Machinery in 1978 and the IEEE Computer 
Pioneer award in 1992. He is a fellow of the American Academy of Arts and 
Sciences, the ACM, and the American Association for the Advancement of 
Science. Nevertheless, he remains a simple unspoiled country boy. 

Richard Beigel studied mathematics and computer science at Stanford 
University, where he received his BS, MS, and PhD. He has been a teacher 
and researcher in computer science since 1986, first at the Johns Hopkins 
University and now at Yale University. His research interests include com
plexity theory, circuits, algorithm design, and the mathematical theory of 
computation. In 1989 he received a Presidential Young Investigator Award 
from the National Science Foundation to further his research and teaching. 

xvii 



0 

Mathematical 
Preliminaries 

THIS CHAPTER PRESENTS the mathemat
ical definitions, conventions, and foundations necessary for understanding 
this book. For a reader with experience in discrete mathematics, much of 
this material may be a review; however, this chapter will at least be worth 
skimming, especially Section 0.2.6 on relations. 



2 Mathematical Pre l im i naries 

0 . 1 QUANTI F I ERS AND TWO-PLAYER GAM ES 

A predicate p(u) is a statement about u that is either true or false for each u. 
For example , p (u) could be the statement "2 < u and u < 17." 

We can precede a predicate p(u) by the quantifier (Vu) (which we read 
as "for all u" or, informally, "for every u"), meaning that whatever value is 
chosen for u,p(u) is true . (In this and the next few examples, u is an integer.) 

EXAMPLE 0. 1 

• Let p(u) be the predicate u2 
- 1 = (u + 1) (u - 1) . The predicate (Vu)p(u) is (Vu) [u2 

- 1 = (u + l ) (u - 1)] ,  which is true. 

• Let q(u) be the predicate u2 > u. The predicate (Vu)q(u) is 
(Vu) [u2 > u], which is false because q( l )  is false, i.e., 12 is not 
greater than 1 .  ■ ■ ■  

We may also precede p(u) by the symbol (:Ju) (which we read as "there 
exists u" or, informally, "for some u") to mean that a value of u can be chosen 
such that p(u) is true. 

EXAMPLE 0.2. Let p(u) be the predicate u2 = 9. The predicate (=lu)p(u) 
is (3u) [u2 = 9], which is true , because p(3 )  is true, i.e. , 32 = 9. ■ ■ ■ 

The symbols (:Ju) and (Vu) are called quantifiers. When a predicate has 
two arguments, quantifiers may be applied to both arguments. 

EXAMPLE 0.3. The following predicates are true: 

• (Vu) (Vv) [u2 
- v2 = (u + v) (u - v) ] .  

• (=lu) (=lv) [ (u - 1) 2 + (v - 3) 2 = O] . ■ ■ ■  

Life gets more exciting when we mix the two kinds of quantifiers. If 
we say (Vu) (=lv)p(u, v) , we are saying "for every u there exists a v  such that p(u, v) is true," i.e., "for every value given to u, a value depending on u can 
be given to v to make p(u, v) true. " 



0. 1 Quantifiers and Two-Player Games 3 

EXAMPLE 0.4. Let p(u, v) be the predicate lu - vi = 1. 

• Consider the predicate (\iu) (=lv)p(u, v) , which is 

(Vu) (=lv) [ lu  - vi = 1] . 

It says that for every u there is a number v, depending on u, that 
differs from u by exactly 1. That predicate is true because however 
u is chosen, we can choose v to be u + 1, so that lu  - vi = 1. 

• The predicate (=lv) (\iu)p(u, v) , which uses the same quantifiers in 
the reverse order, is a different matter entirely. It says there is a 
single value v (independent of u) that differs from every number u 
by exactly 1. That predicate is false. ■ ■ ■ 

We can illustrate the preceding example's distinction in terms of a 
game, with two players named Izzy ("there is") Existential and Al ("for all") 
Universal. 

Al tries to make predicates false by choosing values for the arguments 
that have a (V) quantifier. If (\iu)p(u) is true, Al can't win. If (\iu)p(u) is 
false, there is at least one value of u that makes p(u) false, and Al can win 
by picking that value for u .  

Izzy tries to make predicates true by choosing values for the arguments 
that have an (3) quantifier. If (=lu)p(u) is true, Izzy can win by picking a 
value of u that makes p(u) true. If (:Ju )p(u) is false, Izzy can't find a value 
of 11 for which p(11) is true, so Izzy loses. 

If Al and Izzy play against each other, using a mixture of quantifiers, 
they take the quantifiers in left-to-right order. 

EXAMPLE 0.5 

• Consider the predicate 

(\iu) (=lv) [u < v] . 

Al goes first and tries to make the predicate false. However, he 
cannot win. Suppose Al picks some particular value for u .  Now 
Izzy plays in turn and tries to pick v to make u < v .  He picks 



4 Mathematical Pre l im i naries 

v = u + 1 ,  making u < v, and wins. (For example, if Al picks 
u = 1 7 ,  then Izzy picks v = 1 8.) The predicate is true, and if Izzy 
plays well, he can always win, no matter how clever Al is. 

• Consider the predicate 

(=lv) (\iu) [u < v] . 

Now the game is different, because Izzy has to go first. He must 
make his choice without knowing Al's. Suppose that Izzy picks 
some value for v .  Now Al plays in turn. He picks u = v, so u is 
not less than v, and wins. (For example, if Izzy picks v = 1 8 ,  then 
Al picks u = 1 8.) Al's winning strategy shows that the predicate is 
false. ■ ■ ■ 

In a truth table for p(u,  v) , the entry in row u and column v is the value 
of p(u,  v) . (See Figure 0. 1 for an example.) (\iu) (\iv)p(u , v) means that Al chooses both u and v, but cannot find 
a "false" in the table; every entry is true. The same happens with (\iv) (Vu )p(u ,  v) . Al makes his choices in the opposite order, and they still 
do not make p(u,  v) false. 

V 

F F F T T F 

F F T T F T 
u 

T T F T F F 

F F F T F F 

FIGU RE 0. 1 :  A truth table where u takes on 4 possible values and v takes on 
6 possible values. The entry in row u, column v denotes p(u, v) .  T abbreviates 
"true," and F abbreviates "false." In this example the predicates (:lu) (:lv)p(u, v) , 
(\>'u) (:lv)p(u, v) , (:lv) (\>'u)p(u, v) , and (\>'v) (:lu)p(u, v) are true. The predicates 
(\>'u) (\>'v)p(u, v) and (:lu) (\>'v)p(u, v) are false. 



0 .2  Sets ,  Bags ,  Relations ,  Functions ,  and Sequences 5 

(3u) (3v)p(u, v) means that Izzy can find a "true" in the table. So does 
(3v) (3u)p(u, v) . Some entry is true. 

(=lu) (\iv)p(u, v) means that Izzy can pick a row where Al cannot find a 
"false," i.e., some (at least one) row consists entirely of "true. " Similarly, 
(=lv) (\iu)p(u, v) means that some column consists entirely of "true. " 

(\iu) (=lv)p(u, v) means that however Al picks a column, Izzy can find 
a "true" in it ; there is at least one '' true" in every column. Similarly, 
(\iv) (=lu)p(u, v) means that there is at least one "true" in every row. 

As a shorthand, we write (:Ju :S n )p(u) to denote (:Ju) [u :S n and p(u) ] .  
We use similar shorthands with < ,  2 ,  and > .  For example, the predicate 
(=lu > 4) [u2 = 25] is true, but the predicate (:Ju > 5 ) [u2 = 25] is false. 

Exerc i ses  

0 .1-1 Refer to the predicate p( u, v) in Figure O .1. W hich of the following 
predicates are true? 

(a) (=lv) (=lu)p (u, v) 
(b) (\iv) (\iu)p(u, v) 
(c) (\iu) (=lv)p(v, u) 
(d) (=lv) (\iu)p(v, u) 
(e) (\iv) (=lu)p(v, u) 
( f) (=lu) (\iv)p (v, u) 

Solution: 
(a) true 
(b) false 
(c) true 
(d) false 
(e) true 
( f) true 

0 . 2  SETS , BAGS, RELATIONS,  FU NCTIONS ,  AN D 
SEQU ENCES 

In this section we review the mathematical notions of sets, bags, relations, 
functions, and sequences. Although this material will be familiar to most 



6 Mathematical Pre l im inaries 

readers, it is important to at least skim the section on relations. Numer
ous examples are designed to familiarize the reader with postfix notation 
and certain operations on relations that facilitate studying the theory of 
languages and computation . 

0 . 2 . l Sets 
We assume that the reader is already familiar with sets. 

EXAMPLE 0.6 

• { red, green, blue}, the set of primary colors of light 

• {chocolate, vanilla, strawberry}, the set of primary flavors of ice 
cream 

• Z, the set of integers 

• z+ = {i E Z :  i > O}, the set of positive integers 

• z- = {i E Z : i < 0}, the set of negative integers 

• N = {i E Z : i 2: 0}, the set of natural numbers 

• R, the set of real numbers ■ ■ ■  

We review some basic notation: 

• x E A  means that x is an element of the set A. 
• XA denotes the characteristic function of the set A. 

XA (x) = 1 if x E A, 0 if x � A .  
• 0 denotes the empty set. 

(\ix) [x � 0] . 

• A U B denotes the union of the sets A and B. 
A U B = { x : x E A or x E B}. 

• A n B denotes the intersection of the sets A and B. 
A n B = { X : X E A and X E B}.  



0.2 Sets ,  Bags ,  Relations,  Functions ,  and Sequences 7 

• A and B are disjoint if A n B = 0. 

• A l±J B denotes the union of the sets A and B and also asserts that A 
and B are disjoint. 

A l±J B = A U B if A and B are disjoint, but is undefined otherwise. 

• Nonempty sets A 1 , . . .  , Ak are said to partition a set A if we have A =  A 1 l±J · · · l±J Ak . 
• A - B denotes the difference of the sets A and B .  

A - B = { x : x E A and x � B}.  

• A denotes the complement of the set A. 
A = U - A ,  where U is a universal set containing all x of interest 
(the choice of the universal set will usually be clear from context). 

• A s;;;; B means that the set A is a subset of the set B .  
A s;;;;  B iff (Vx) [x E A ⇒ x E B]. 

• A C B means that the set A is a proper subset of the set B.  
A C B iff A s;;;; B and B <l:_ A .  

• A = B means that the sets A and B contain the same elements. 

A =  B iff A s;;;;  B and B s;;;; A .  
• (x1 , • . .  , xk ) denotes the ordered k-tuple whose ith element is x;, for 

i = 1, . . .  , k. 

• In particular, (x, y) denotes the ordered pair whose first element is 
x and second element is y. 

• A X B denotes the Cartesian product of the sets A and B.  
A X B = { ( x ,  y) : x E A and y E B} .  

• IA I denotes the cardinality of the set A .  



8 Mathematical Pre l im inaries 

IA I is the number of elements m A if A 1s finite, undefined 
otherwise. 1 

• 2A denotes the power set of the set A ,  i .e., the set of all subsets of A .  

One cannot hope to prove anything without knowing the definitions. 
When you run into an obstacle it often helps if you go back to the definitions 
to see what you have to prove. An example illustrates the steps involved in 
proving that two sets are equal. 

EXAMPLE 0.7.  Let A = {x E R :  y1x = x - 2}, and let B = { 4}. Suppose 
that we want to prove that A = B.  Then we have to prove two inclusions: A s;;;;  B and B s;;;; A .  

To show that A s;;;; B,  we show that x E A ⇒ x E B.  Suppose that x E A .  Then ylx = x - 2, so x = x2 
- 4x + 4, x2 

- Sx + 4 = 0, 
(x - 4) (x - 1 )  = 0. Therefore x = 4 or x  = 1 .  But Vl #- 1 - 2, so x = 4. 
Therefore x E B . Thus we have shown that A s;;;; B.  

To show that B s;;;; A,  we show that x E B ⇒ x E A .  Suppose that x E B . Then x = 4, so ylx = 2 = x - 2. Therefore x E A. Thus we have 
shown that B s;;;; A .  

Having shown that A s;;;; B and B s;;;; A,  we conclude that A = B.  ■ ■ ■ 

For reasonable predicates p, we can talk about the set of all x for which p(x) is true, which is denoted {x : p(x) } (Exercise 7.8- 1 1 exhibits an 
unreasonable predicate). Several variants on this notation may be used when 
convenient. We may write {x E A  : p(x) } to denote {x : x E A  andp(x) }, 
and we may write {x � m : p(x) } to denote {x : x � m andp(x) } .  As 
examples, we have {x E Z : x2 < 7} = { -2, - 1 ,  0,  1 , 2} and {x < 1 7  : 
x is prime} = { 2, 3 ,  5, 7 ,  1 1 ,  1 3 } .  (A positive integer n is composite if n is 
divisible by a positive integer other than n or 1 .  A positive integer n is prime if n #- 1 and n is not composite .) Similarly, we write (=lx E A)p (x) to 
denote (=lx) [x E A  andp(x)] . 

1 For the set theorist, IA I is always defined, even for infinite sets. This need not concern 
us. 



0 .2  Sets, Bags ,  Relations, Functions, and Sequences 9 

We will often consider the union or intersection of many sets, instead of 
just two as described earlier. Suppose that A; is a set for each i, and suppose 
that P(i) is a predicate . Then 

EXAMPLE 0.8 

LJ A; = {x : (=li) [P(i) and x E A;] } .  
P(i) 

1 0  
• LJ A; = LJ A; = A 1 U · · · U A 10 . 

l :S;i :S; l O  i=l 
• Let A; {x : (=ly > l ) [x = iy] }, i .e ., A; contains all multi-

ples of i greater than i .  Then U;22 A; is the set of all composite 
numbers . ■ ■ ■  

0 .2 . 2  Set Exte n s ions  and C losures 
I f  we have a binary operation EB on elements, then we may extend that 
operation to apply to sets in the following general way: 

A EB' B = {a EB b :  a E A  and b E B}.  

When no confusion can arise we abbreviate EB' as EB, although these are 
technically different operations . In later sections we will present very im
portant examples of set extensions . For now, let us consider some frivolous 
examples that will have no subsequent use . 

EXAMPLE 0.9. We extend integer addition to sets of integers by defining 

A + B = { a + b : a E A and b E B}.  

Then, for example 

• { 1 , 2 , 3 }  + { 1 , 2 , 3 } = {2 , 3 , 4 , 5 , 6} ,  

• { 1 }  + {0, 2 , 4 , 6} = { 1 , 3 , 5 , 7} , 

• {o, 1 } + {0, 2 , 4 , 6} = {o ,  1 , 2 , 3 , 4 , 5 , 6, 7} ,  



1 0 Mathematical Preliminaries 

• z+ + Z = Z, 

• z+ + Z � = Z, and 

■ 0 + {1, 2, 3} = 0 . 

If E9 is a unary operation, we extend it similarly :  

E9'A = {E9a : a E A } .  

■ ■ ■  

EXAMPLE 0.1  0. Let us extend the square root operation to sets of nonneg
ative reals: 

VA = { ya : a E A } .  

Then, for example, 

• If A =  {O,  1, 4} then yA = {O ,  1, 2}. 

• If A = { x E R : 4 < x � 2 5} then yA = { x E R : 2 < x � 5}. ■ ■ ■ 

A set A is dosed under a binary operation E9 if for every pair of elements 
x and y (not necessarily distinct) of A, we have x E9 y E A, i .e ., if A E9 A � A .  
A set A is dosed under a unary operation E9 if for every element x of A ,  we 
have E9x E A, i .e ., if EBA � A .  

EXAMPLE 0. 1 1 

• The sets {o} ,  N, and z+ are closed under addition, but the set 
{o ,  1} is not . 

• The sets { 0, 1}, { x E R : 0 < x < 1}, and { x E R : x 2 1 } are 
closed under square root, but the set { 0, 1 ,  2} is not . ■ ■ ■ 

We may order sets by containment . That is, if A � B then we think 
of A as being smaller than B or equal to it . 2 Let P be any property of sets, 

2 Technically, this is a partial order because there are sets like { 0, 1 }  and { 1 ,  2, 3 } ,  
neither of which i s  a subset of the other. 



0.2  Sets, Bags, Relations, Functions, and Sequences 1 1  

e.g.,  finiteness, infiniteness, or closure under EB .  We say that A is the least 
set with property P if 

• A has property P, and 

• if A'  has property P, then A s;;;; A' . 

EXAMPLE 0. 1 2  

• If P(A )  is the property A s;;;; N, then the least set with property P 
is 0. 

• If  P(A) is the property " IA I is even," then the least set with property 
P is also 0. 

• If P (A )  is the property { 3 ,  6 ,  7} C A, then the least set with 
property P is { 3 ,  6, 7 } . 

• If P(A )  is the property " { 3 ,  6, 7 }  s;;;; A and A is closed under nega
tion," then the least set with property P is { 3 ,  6, 7 ,  -3 ,  -6, -7 } . 

• If P(A) is the property "{ 3 ,  6, 7 }  s;;;; A and A is closed under 
addition," then the least set with property P is { 3 ,  6 ,  7 ,  9, 10} U 
{x : x 2 12} . ■ ■ ■  

EXAMPLE 0. 1 3. Sometimes, there is no least set with property P. 

• If P (A )  is the property " IA I is odd," then there is no least set with 
property P. 

• If P(A) is the property "A is infinite," then there is no least set with 
property P. ■ ■ ■ 

THEOREM O. 1 4. If the least set with property P exists, then it is given by the following formula: 
n A .  

A has property P 



1 2 Mathematical Preliminaries 

Proof: Let L be the least set with property P. Let 

B =  A. 
A has property P 

Since L has property P, L is one of the terms in the intersection, so B � L.  
Since L is the least set with property P, L is contained in each term of the 
intersection, so L � B .  Therefore L = B .  ■ 

EXAMPLE 0. 1 5  

• The intersection of all sets A with an even number of elements is 0, 
which is also the least set A with an even number of elements. 

• The intersection of all infinite sets is also 0, which is not infinite, so 
there is no least infinite set. ■ ■ ■  

DEFINITION 0. 1 6  (Closure). The closure of a set A under an operation EB is 
the least set that contains A and is closed under EB, i.e., a set B satisfying 

• A �  B, 

• B is closed under EB, and 

• if A � B' and B' is closed under EB, then B � B' .  

EXAMPLE 0. 1 7 

• The closure of { 1} under addition is z+ . 

• The closure of { 0, 2} under addition is the set of nonnegative even 
integers. 

• The closure of { x 2 < x < 4} under square root 1s the set 
{x : 1 < X < 4}. ■ ■ ■ 

A binary operation EB is called associative if, for every x, y, and z, 
(x EB J) EB Z = X EB (y EB Z) . 



0 .2  Sets ,  Bags ,  Relat ions ,  Functions ,  and Sequences 1 3 

THEOREM 0. 1 8. The closure of A under EB is given by formula (i) below. I/EB is a unary operation or an associative operation, then the closure of A under EB is also given by formula (ii) below. 
( i) n B 

A � B  and 
B is closed under EB 

( ii) LJ;> i A i, where A k is the result of applying EB to A k times, i. e. , A 1 = A and A k+ 1 is equal to A EB A k if EB is a binary operation, EBA k if EB is a unary operation. 
Proof: We present the proof assuming that EB is an associative binary op
erator. The cases when EB is unary or nonassociative are left as exercises . 
Let 

n B.  
A � B  and 

B is closed under EB 

Let A2 = U;:::> 1 N .  
If A � B and B is closed under EB, then A i � B for every i, so each term 

of A2 is contained in each term of A 1 •  Therefore A2 � A 1 . 
Suppose that x and y belong to A2 . Then x E N and y E N for some i 

and j. Therefore (by associativity) x EB y E A i+i, so x EB y E A2 • Thus A2 is 
closed under EB. 

If B is closed under EB then A 1 � B, because B is one of the terms of A 1 •  Therefore A2 � A 1 � B,  so A2 is the least set that is closed under EB .  
Since A 1 is contained in every set that is closed under EB ,  A I is contained 

in the closure of A under EB .  We have already shown that A 1 contains the 
closure of A under EB (because that is A2 ).  Therefore, A I is equal to the 
closure of A under EB .  ■ 

0.2 . 3  Tu p les  
The differences and similarities between sets and tuples are worth noting . 

First, order is completely unimportant in a set, e .g . ,  the set { 1, 2, 3 }  is 
equal to the set { 2, 1, 3 } .  In contrast, order matters somewhat in a tuple: 
the 3-tuple (1, 2, 3 )  is not equal to the 3-tuple (2, 1, 3 ) .  



1 4  Mathemat ical Pre l im inaries 

Second, a set may not contain the same element twice, e .g . ,  { 1 ,  1 ,  2}  
i s  equal to  { 1 ,  2} (as a notational convention, we would always write the 
latter). In contrast, a tuple may contain two identical components; e.g . ,  
( 1 ,  1 ,  2 )  is a 3-tuple whereas ( 1 ,  2 )  i s  a 2-tuple. 

Third, many interesting general operations are defined on sets, e .g. , 
membership, union, intersection, and complementation. In contrast, the 
only general operation defined on tuples is to select a particular component. 
When tuples contain specific kinds of data, then interesting functions may 
be defined on them in an ad hoc fashion. For example, the distance function 
is defined on 3-tuples that represent points in 3-dimensional space: 

dist( (x, y , z ) , (x' , y' , z' ) )  = J(x - x' ) 2 + (y - y') 2 + (z - z') 2 . 

However, the distance function is not defined for general 3-tuples, because 
it would not make sense if the components of the 3-tuples were primary 
colors or flavors of ice cream, for example. 

Next we describe a similarity between tuples and sets, which may be a 
bit surprising. Although we said that order matters somewhat in a tuple, 
it matters very little, as long as one is consistent about it. For example, 
there is no intrinsic reason that x-coordinates precede y-coordinates and y
coordinates precede z-coordinates in the 3-tuples that represent points in 
3-dimensional space. Geometry works just as well if points are represented 
as (y-coordinate, x-coordinate, z-coordinate), provided that one is consistent 
about the representation. Similarly, in your personal phone directory you 
might store 3-tuples, each consisting of a name, home phone number, 
and work phone number. It does not matter whether the home phone 
number always comes second or always comes third; as long as you are 
consistent about the order, you will know what the 3-tuple means. In 
this sense, tuples are analogous to the "record" data structure in high
level programming languages . Order in a record is arbitrary, but it is 
important to be consistent about the order when storing the record in 
computer memory. 

The phone directory example highlights one more distinction between 
sets and records. Elements of a set are all of the same type, whereas compo
nents of a tuple may have different types, like a name and a phone number. 



0 .2  Sets, Bags ,  Relat ions, Functions,  and Sequences 1 5 

0.2  . 4  Sequences 
A sequence is  an ordered list, which may contain repetitions . Exam
ples are the sequence consisting of the decimal digits in increasing order 
((o, 1, 2, 3 ,  4, 5, 6, 7 ,  8, 9)) and the sequence consisting of the first six Fi
bonacci numbers (( 1, 1, 2 , 3 ,  5, 8)) . As with sets, the elements of a sequence 
are all of the same type . An important sequence is the empty sequence, which 
contains no elements and is denoted A. Sequences may be finite or infinite, 
but finite sequences are the most important for the study of computation . 

There are two main differences between sequences and sets: sequences 
are ordered and may contain duplicates, whereas sets are unordered and may 
not contain duplicates. 

The differences between sequences and tuples are more subtle : First, 
order matters a lot in sequences, e .g., ((p, a, 1 , e)) and ((1 , e , a, p)), whereas 
order is merely a bookkeeping consideration in tuples. Second, lots of inter
esting general operations will be defined on sequences, e.g., concatenation, 
reversal, and shuffle, whereas most operations on tuples are ad hoc . 

Usually we number the elements of a finite sequence s and write s = 
((x1 , . . .  , x,i )) . 3 The number n is called the length of s, denoted Is l . There 
are two important operations on nonempty finite sequences: first(s) is x 1 , 

the first element of s; rest(s) is the sequence ((x2 , . . • , xn)) . Two finite 
sequences ((x 1 , . . •  , x11i )) and ((y 1 , • . .  , y,i )) are equal if m = n and x; = y; for 
i = l ,  . . .  , m . 

It is possible to concatenate two finite sequences to obtain a longer se
quence. If s = ((s1 , . . • , s11i )) and t = ((t1 , . • .  , tn)) , then the concatenation of 
s and t (denoted s ® t) is the sequence ((s 1 , . . •  , sm , t1 , • . •  , tn)) . When there 
is no possibility of confusion, we will identify a single element x with the 
sequence ((x)) . Under this convention, we have s = first (s) ® rest(s) . We 
note that concatenation is associative, i.e., (s ® t) ® u is always equal to 
s ® (t ® u) . Therefore we may drop the parentheses and write s ® t ® u for 
the concatenation of three sequences. 

The operations first ( ) , rest () ,  and 0 are also defined on infinite se
quences . This will be useful when we discuss programs that do not termi
nate. Let t = ((t1 , t2 , • • . )) . Then first(t) = t 1 and rest (t) = ((t2 , t3 , . . •  )) . 

3 Notes on the use of three-dots notation: When n = 1 ,  ((x 1 , . . .  , xn)) denotes ((x1 )) ; 
when n = 0, ((x1 , . . .  , xn)) denotes A. More generally, when i = j, ((x; , . . .  , x;)) 
denotes ((x,)) ; when i = j + 1 ,  ((x; , . . .  , x;)) denotes A .  



1 6  Mathematical Pre l im inaries 

If s = ((s1 , . • •  , sn )) , then s ®  t = ((s 1 , • . • , sn , t1 , t2 , . . . )) . In this book, we will not need to concatenate a sequence on the right of an infinite sequence, so we do not define t ® u when t is an infinite sequence. 
0.2 . 5  Bags A bag is an unordered list. Like a sequence, a bag may contain duplicate elements. Like a sequence and a set, the elements of a bag are all of the same type. Historically, bags have been called multisets, because they are like sets that can contain multiple copies of the same element. An example is the bag that contains i copies of the number i for O � i � 4: { 1 ,  2 ,  2, 3, 3, 3, 4 ,  4 ,  4 ,  4 } .  This bag is equal to { 1 ,  2 ,  3, 4 ,  2 ,  3, 4 ,  3, 4 ,  4} because order is unimportant in bags. The operations on bags are similar to the operations on sets, and we use set-theoretic notation to denote them: 

• XA denotes the characteristic function of the bag A. 
XA (x) is the number of copies of x in bag A .  
For example, if A = { 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4, 4 , 4} , then xA (3 ) 3 and XA ( 5 )  = 0.  

• x E A means that x is an element of the bag A. 
For example, if A 5 E,t A.  { 1 , 2, 2 , 3 , 3 , 3 , 4 , 4 , 4, 4} ,  then 3 E A  and 

• A � B means that the bag A is a sub-bag of the bag B .  
A � B iff B contains at least as many copies of each element as A contains, i.e., (\ix) [XA (x) � XB (x) ] .  
For example, {3 ,  3 }  � { 1 ,  2 ,  2 ,  3 ,  3 ,  3 ,  4 ,  4 ,  4 ,  4 } .  

• A = B means that the bags A and B contain the same number of copies of each element. 
A = B iff A � B and B � A .  
For example, { 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4} = {4, 4, 4 , 4 , 3 , 3 , 3 , 2 , 2 , 1 } . 



0 .2  Sets, Bags ,  Relations, Functions, and Sequences 1 7 

• A l±J B denotes the disjo int union of the bags A and B .  
A l±J B contains everything that is in A plus everything that is in B ,  
i.e . ,  (\fx) [XA\jJB (x) = XA (x) + x8 (x)]. Observe that this definition 
is meaningful for bags that have elements in common . 

For example, {1, 2, 2, 3 ,  3 ,  3 } l±J { l ,  1, 3 ,  3 ,  5, 5} = {1, 1, 1, 2, 2, 3 ,  
3 ,  3 ,  3 ,  3 ,  5, 5} . 

• Nonempty bags A 1 , • • •  , Ak partition the bag A if A is the disjoint 
union of A 1 , • • •  , Ak , i.e., if A =  A 1 l±J · · · l±J Ak . 
For example, the bags { 1, 1, 1}, { 1, 6} ,  and { 3 ,  4, 5} partition the 
bag {1, 1, 1, 1, 3 , 4, 5, 6}. 

• '5:.xEA f (x) denotes the sum, over all elements x in the bag A, count
ing multiplicities, of the function/(x). 

'5:.xEA f(x) = '5:.xf(x)xA (x) , where the sum is over all distinct x. 

For example, if A = { l , 2, 2, 3 ,  3 ,  3 ,  4, 4, 4, 4} then '5:.xEA x = 30 . 

• IA I denotes the cardinality of the bag A .  
I A  I is the number of elements of A, counting multiplicities, i.e. , /A I = '5:.x XA ( x), where the sum is over all distinct x. 

For example, if A = { l ,  2, 2, 3 ,  3 ,  3 ,  4, 4, 4, 4} then /A / = 10. 

• A U B denotes the union of the bags A and B.  
XAuB (x) = max(xA (x) , XB (x) ) .  

For example, {1, 2 ,  2 ,  3 ,  3 ,  3 } U { l ,  1 ,  3 ,  3 ,  5 ,  5 }  = {1, 1, 2 ,  2 ,  3 ,  3 ,  
3 ,  5 ,  5} . 

• A n  B denotes the intersection of the bags A and B.  
XAnB (x) = min(xA (x) , XB (x) ).  

For example, {1, 2, 2, 3 ,  3 ,  3 }  n {1, 1, 3,  3 ,  5, 5} = {1, 3,  3 } .  



1 8 Mathematical Prel im inaries 

Exe rc i ses 

0.2-1 Let A = {1, 2, 2, 3 , 3 , 3 , 4, 4, 4, 4} .  Find bags B and C such that B 
and C partition A,  �xEB x = �xEc x, and I B I  = I C l -

0.2-2 Let A = { l ,  2, 2, 3, 3 ,  3 ,  4, 4, 4, 4, 5, 5, 5, 5, 5} .  Prove that there 
do not exist bags B and C such that B and C partition A and 
�xEB X = �xEC X. 

0 . 2 . 6  Re lations 
Formally,4 a relation is a set of ordered pairs. For example, the less-than 
relation is { ( x, y) : x < y} .  Usually a relation p is understood to be a subset 
of X X  Y for some sets X and Y .  The set X is called the source of the relation, 
and the set Y is called the target of the relation. We say that p is a relation from X to Y ;  if X = Y ,  we say that p is a relation on X. 

For example, the integer-part relation is 

{ (x, y) : x is real, y is an integer, and y :S x < y + 1}.  

Its source is R,  its target Z .  Another relation with source R and target Z is 
the round-off relation, { (x, y) : x is real, y is an integer, and Ix - Y I :S ½ } . 
Usually the sets X and Y are understood from context, and they are not men
tioned explicitly. But sometimes the sets X and Y truly matter. For exam
ple, there are really several different less-than relations: the less-than relation 
on integers is { (x, y) : x and y are integers and x < y} ,  and the less-than 
relation on real numbers is { (x, y) : x and y are real numbers and x < y} .  

If the ordered pair (x, y) belongs to the relation p ,  we say that p relates x to y.  In symbols, we can denote that in any of five ways: 

(i) (x, y) E p. 

(ii) X p y.  

4 In many cases, we  have a good intuitive notion of  what something means, but i t  
is still important to  have a precise definition using mathematical formulas. Such 
a definition is called "formal. "  Both formal and informal definitions are valuable. 
Informal definitions can help us develop our intuition; formal definitions are needed 
so that we can verify our intuition via a mathematical proof. 



0 .2  Sets, Bags ,  Relations, Functions, and Sequences 1 9  

(iii) X � y.  

(iv) y E p(x) . 
(v) y E xp. 
The first notation reflects the formal definition of p as a set of ordered 

pairs. The second notation is probably the most familiar, because that is 
how we denote relations like equality (x = y) and less than (x < y); it would 
be confusing to write ( x, y) E = or ( x, y) E < .  The third notation suggests 
that the value x goes to the value y via p; it is used extensively in describing 
a program's effect on data. The fourth notation is similar to conventional 
notation for functions; we think of p as a multiple-valued function, i .e . ,  a 
function that produces a set of values. The fifth notation is similar to postfix 
notation for functions, which we will discuss in Section 0.2. 7 .  

Let us present some examples of relations on the set of all humans who 
have ever lived. I 

ts-parent 

is-grandfather 
is-grandmother 

is-grandparent 

is-greatgrandparent 

is-father 

is-mother 
is-child 

ts-son 
is-daughter 

is-sibling 

is-brother 

is-sister 

ts-ancestor 

is-descendant 
is-relative 

{ (x, x) : x is a human} , 

{ (x, y) : x is a parent of y } ,  
{ (x, y )  : x is a grandfather of y } ,  
{ (x, y) : x is a grandmother of y} ,  
{ (x, y )  : x is a grandparent of y } ,  
{ (x, y) : x is a greatgrandparent of y} ,  
{ (x, y) : x is the father of y} ,  
{ ( x, y )  : x is the mother of y} ,  
{ (x, y )  : x is a child of y} ,  

{ (x, y) : x is a son of y} ,  

{ (x, y) : x is a daughter of y } ,  
{ (x, y) : x is a brother or sister of y} ,  

{ (x, y )  : x is a brother of y } ,  
{ (x, y) : x is a sister of y} ,  

{ (x, y) : x is an ancestor of y } ,  
{ ( x ,  y) : x is a descendant of y} ,  { (x, y) : x is a blood relative of y}.  



20 Mathematical Prel iminaries 

The relation I is the identity relation on humans in this example . In 
general we write Ix to denote the identity relation on the set X; we write 
simply I if the set X is clear from context. 

The domain of a relation p (denoted Dom(p)) is {x : (:3y) [x p y] } ,  and 
the range of p (denoted Range(p)) is {y : (3x) [x p y] } .  For example, the 
domain of is-daughter is the set of all human females ever born, and the 
range of is-mother is the set of all humans ever born. 

The union of two relations is already defined, because relations are sets. 
For example, we have 

is-parent 

is-child 

is-mother U is-father, 

is-son U is-daughter. 

That is, x is a parent of y if and only if x is the mother of y or x is the father 
of y, and similarly for children. The notation � and C carry over from sets, 
and we have 

is-father C is-parent , 
is-daughter C is-child . 

The composition of two relations p and CJ (denoted po  CJ or pCJ) is defined 
as follows: 

p o  CJ =  { (x, y) : (::lt) [(x, t) E p and (t, y) E CJ] }.  

For example, we have 

is-grandmother 

is-brother 

is-mother o is-parent, 

( is-son o is-mother) n ( is-son o is-father) - I. 
That is, x is a grandmother of y iff x is the mother of someone who is a 

parent of y. In the second line, x is a brother of y iff x is a son of the mother 
of y and x is a son of the father of y, but x is not the same person as y.  

If  A is any set then we define 

Ap = A op = {y : (::lx E A ) [x p y] } .  



0 .2  Sets, Bags, Relations, Functions, and Sequences 2 1  

For example, if A =  { l .O ,  1.4, 1 .9 ,  2 .2} and p is the round-off relation from 
reals to integers, then Ap = { 1, 2} . If A = { 1, 3 }  and p is the less-than 
relation on integers, then Ap = { 2, 3 ,  4, . . .  } . By convention, if A is a 
singleton set, then we may also write xp to denote { x} p, which is equal to 
{y :  X p y} .  

We obtain the converse of a relation p (denoted p- 1 ) by reversing each of 
its elements. That is 

p- 1 = { (x, y) : (y , x) E p} . 

For example, 

is-mother - 1 

. - ]  is-parent 

is-ancestor - 1 

{ ( x, y) : y is the mother of x} , 
is-child , 

is-descendant. 

Note that is-ancestor o is-ancestor- I -/- I. 
Transitive Closure A relation p is transitive if p is closed under o, i .e. , p op � p. Thus, for example, is-ancestor is transitive because your ancestor's 
ancestor is also your ancestor. I is transitive but is-parent is not . 

The transitive closure of a relation p (denoted p+) is the closure of p under 
o ;  i .e. , it is the least relation that contains p and is also transitive. For 
example, the transitive closure of is-parent is is-ancestor. By Theorem 0.18 
the transitive closure of p is equal to p U p  o p  U p  o p  o p  U · · · ; e .g ., is-an
cestor = is-parent U is-grandparent U is-greatgrandparent U · · · . 

A relation p is reflexive if I � p, i .e . ,  if x p x for all x. For example, 
the relations = and � are reflexive; on the other hand, the relations < and 
is-son are not reflexive. 

The reflexive transitive closure of p (denoted p*) is the least relation that 
contains p and is reflexive and transitive. For example, the reflexive transi
tive closure of is-sibling is I U is-sibling . In contrast, the transitive closure 
of is-sibling is (I U is-sibling) - { (x, x) : x is an only child} . 



2 2  Mathematical Pre l im inaries 

THEOREM 0. 1 9. The reflexive transitive closure of p is equal to both of the fol
lowing: 

• the union of I and the transitive closure of p 

• the transitive closure of p U / 

The proof of this theorem is left to the reader. ■ 

For example, the reflexive transitive closure of is-parent is /U is-parent U 
is-grandparentU is-greatgrandparentU · · · , which is equal to /U is-ancestor . 

When we have x 1 p 1 x2 and x2 p2 x3 , we can write x1 P i  x2 P2 x3 . 
(For example, we can write 1 < 2 < 3 or 29 < 2 1 0  = 1024 .) If we know 
that x 1 p x2 p · · · p Xn , we can conclude that x 1 p* X; for 1 � i � n .  
(For example, if x is-parent y is-parent z,  then x is-ancestor z .) If p is 
reflexive and transitive, i .e ., p = p* , we can conclude further that x 1 p x; 
for 1 � i � n .  
Equivalence Relations A relation p i s  symmetric if p = p- 1

, i .e ., if x p y =} y p x. For example, is-sibling is symmetric. A relation p is an 
equivalence relation if p is reflexive , symmetric , and transitive. 

EXAMPLE 0.20. The following are equivalence relations: 

• I 
• { (x, y) : the numbers x and y have the same number of digits when 

written in base 10} 

• { ( x, y) : the people x and y live on the same street} 

The following are not equivalence relations: 

• is-sister,  because it is not symmetric, reflexive, or transitive 

• the relations is-sibling and is-relative, because they are not reflexive 
or transitive 

• is-sister U /, because it is not symmetric 

However, is-sibling U / is an equivalence relation . ■ ■ ■  



0 .2  Sets, Bags, Relations, Functions, and Sequences 2 3  

An important equivalence relation is congruence modulo m, explained 
below. 

Arithmetic Congruence When we divide an integer n by a nonzero in
teger m, we obtain integers q and r such that n = qm + r and O � r < m. 
The number q is called the quotient, and r is called the remainder. The binary 
operation mod calculates this remainder, that is, n mod m = r, where r is 
the remainder upon dividing n by m. For example, we have 7 mod 5 = 2, 
7 mod 2 = 1, and 14 mod 7 = 0. 

If a mod m = b mod m, then we say that a is congruent to b modulo m, 
which is denoted a = b ( mod m) . For example 7 = 2 ( mod 5), n is odd 
iff n = l (mod 2) , and n is divisible by m iff n = 0 mod m. 

The relation congruence modulo m is { ( x, y) : x = y ( mod m) } .  The reader 
may verify that congruence modulo m is an equivalence relation. 

Equivalence Classes Let p be an equivalence relation on a set A.  We 
define the equivalence class of a (denoted [a])  to be { x E A  : x p a} . 

EXAMPLE 0.2 1 .  If p is the congruence-modulo-5 relation, then p has 5 
distinct equivalence classes. They are [ 0] = { x : x = 0 ( mod 5) } ,  [ 1] = 
{ x : x = l ( mod 5)}, [ 2] = { x : x = 2 ( mod 5) }, [ 3] = { x : x = 3 
(mod 5) } ,  and [4] = {x : x = 4 (mod 5 )} .  Notice that in this example 
distinct equivalence classes have no elements in common. ■ ■ ■  

In general, if A = LJ; B; where every set B; is nonempty and every pair 
B; and B1 are disjoint if i =/- j, then we say that the sets B; partition A .  
(This is slightly more general than our previous definition because we allow 
infinitely many B;'s . )  Note that the equivalence classes of the congruence
modulo-5 relation partition the integers. This is a general phenomenon, as 
we now show: 

THEOREM 0.22. If p is an equivalence relation on A, then the distinct equivalence 
classes of p partition A. 

Proof: First we must show that A = UaEA [a] . Suppose that x E A .  Since 
p is reflexive, we have x E [x] ; therefore x E UaEA [a] . Thus A s;;;; UaEA [a] . 
Conversely, [a] s;;;; A for every a, so UaEA [a] s;;;; A .  

Now we must show that [a] and [b] are either disjoint or equal. Suppose 
that [a] and [b] are not disjoint, i .e . ,  that [a] n [b] =/- 0 .  Then there exists 



24  Mathematical Pre l im inaries 

x E [a] n [b], i .e. , x p a  and x p b. Suppose that y E [a] . Then y p a. But 
then we have y p a p x p b, since p is symmetric. Since p is transitive, 
we have y p b, so y E [b] . Thus [a] <:;;;; [b] . Similarly, we have [b] <:;;;; [a] , so 
[a] = [b] . ■ 

Partial Orders A relation p is antisymmetric if 
a p b and b p a ⇒ a = b. 

A relation p is a partial order if p is transitive and antisymmetric. 

EXAMPLE 0.23  

• The relations <,  :s; ,  >,  2:, C, <:;;;; ,  and = are partial orders. (Nore 
that a partial order may or may not be reflexive.)  

• Congruence modulo 5 is not a partial order, because it is not anti
symmetric. 

• The relation is-mother is not a partial order, because it is not tran-
sitive. ■ ■ ■  

0 .2 . 7  Funct ions  
A relation p is a/unction if for every x in p's source there is a unique y in p's 
target such that x p y, i .e . ,  if 

(V x) [ I {y : x p y} I = 1 ]  . 

A relation p is a partial function if for every x in p's source there is at most 
one y in p's target such that x p y, i .e . , if 

(V x) [ I {y : x p y} I :s; 1] . 

If a relation p is not a partial function, p is called multiple-valued. 
Observe that, by the definitions above, every function is a partial func

tion. If the relation p is a partial function but not a function, p is called 
a strictly partial function. Sometimes we call a function a total function to 
emphasize that it is not strictly partial. 



0.2 Sets ,  Bags ,  Relations ,  Functions ,  and Sequences 2 5 

EXAMPLE 0.24. The relation I is a function, called the identity function, 
and integer part is a function, but round-off is not even a partial function 
because round-off(x) has two values whenever x is an integer plus ½ .  The re
lation is-mother - I is a strictly partial function, because the first human had 
no human mother (whatever the origin of the human species may be). ■ ■ ■ 

In addition to the terminology and notation that apply to a relation p, 
we have special terminology and notation that apply only to functions. If p 
is a partial function such that x p y, then we say that p maps x to y, and we 
can denote that in two ways: 

• p(x) = y, 
• xp = y. 

The former is the prefix notation for partial functions; the latter is the postfix notation for partial functions. We will typically use postfix notation with 
functions that denote some action. For example, suppose that, for all inte
gers x, xp = x + l and xCJ = x * 2. Then xpCJ is the result of adding 1 to x 
and then multiplying by 2 .  Observe that the function symbols are written 
in the same order as the actions are performed. 

When composing functions, we write the function symbols in the same 
order as when we apply them. Thus xpCJ, x(p o CJ) , a(p(x) ) ,  and (a o p) (x) 
all denote the same value, namely 2x + 2. The first two expressions are in 
postfix notation, and the last two are in prefix notation. 

We say that a partial function p is one-to-one (abbreviated one-one) if for 
every y there is at most one x such that x p y, i . e . ,  if 

(\fy) [ l {x : x p y} I :S 1 ] . 

Equivalently, p is one-one iff p- 1 is a partial function. This definition 
applies to all relations as well, although one-one functions are the most 
interesting. 

For example, consider the function that maps an integer x to the real 
number that is "equal" to x: 

float = { (x, y) : x E Z, y E R, and x = y} . 



26 Mathematical Prel iminaries 

The function float is one-one. The function xp = x2 from Z to Z is not 
one-one because -2 p 4 and also 2 p 4. However the function xp = x + l 
from Z to Z is one-one. 

We say that p is onto if for every y there is at least one x such that x p y ,  
i . e . ,  if 

(\fy) (3x) [x p y] .  

An equivalent definition is that p is onto if and only i f  its range is equal to 
its target. 

The source and target sets are important in determining whether a 
function is one-one and whether it is onto. 

EXAMPLE 0.25 

• If we define a function p from Z to Z by p(x) = x + 1 ,  then p is 
one-one and onto. 

• But if we define p from N to N by the same formula, p(x) = x + 1 ,  
then p is one-one and not onto. 

• If we define p from Z to Z by p( x) = x2 , then p is neither one-one 
nor onto. 

• But if we define p from N to N by the same formula, p(x) = x2 , 

then p is one-one and not onto. 

• The integer-part function from R to Z is onto, but not one-one. ■ ■ ■ 

A function that is both one-one and onto is called a one-one correspon
dence from its source to its target. 

EXAMPLE 0.26 

• If we define p by p(stop) = red, p (go) = green, and p (slow) = 
yellow, then p is a one-one correspondence from { stop, go, slow} to 
{ red, green, yellow} .  

• If  we define p by p( x)  = x + 1 ,  then p i s  a one-one correspondence 
from Z to Z. 



0.2 Sets ,  Bags ,  Relations ,  Functions ,  and Sequences 2 7  

• If we define p by 

p(x) = { 
2x 
-2x - 1 

if X :2'. 0, 

otherwise, 

then p is a one-one correspondence from Z to N .  ■ ■ ■  

Suggestion: Many of the exercises in this book call for proofs. When a proof is more than one or two lines long, it is a good idea to begin your writeup with a one-paragraph summary of how your proof will proceed This saves your grader lots of time when your proof differs from the one he or she had in mind. What's more, if your proof is incorrect in one or two inessential details, but the grader does not understand your approach, you might not get partial credit. You cannot expect any partial credit if your approach to the problem is hopeless or if your writeup is completely incomprehensible, but a short summary paragraph makes it possible for the grader to allot partial credit for a workable nonstandard approach that may be wrong in one or two correctable details. If your summary is clear enough, the grader might even choose not to check the details. 
Exerci ses  

0.2-3 Prove that A - B = A n  B. 

0.2-4 (a) What is 2{4,5} ? 
(b) Prove that I 2A / = 2IA I .  

0.2-5 Which of the following sets-Z, the set of even integers, the set of 
odd integers- are closed under addition? 

0.2-6 Let E9x = 2x. What is the set extension of E9 ?  What is the closure 
of { 1 } under E9 ?  

0.2-7 (a) What is wrong with the following outline for a proof of The-
orem 0.18 for associative operations? Let A0 be the closure of A under Ef). Let A 1 and A2 be as already defined. We show that 
A0 � A2 , A2 � A 1 ., and A 1 � A0. The cycle of containments implies that Ao = A2 = A 1 . 



2 8  Mathematical Pre l im inaries 

(b) What is the correct expression in Theorem 0. l 8(ii) when EB 
is a nonassociative binary operator? Prove the theorem for 
nonassociative relations . 

(c) What is the correct expression in Theorem 0 .  l 8(ii) when EB is 
unary ? Prove the theorem for unary operations. 

0. 2-8 What is the relation ( is-son o is-mother) U ( is-son o is-father) 
(is-brother U I) ? 

0.2-9 What is the relation is-mother o is-parent o is-parent? 

0.2-10 What is is-ancestor- I  o is-ancestor? 
is-ancestor- 1 ? 

0. 2-11 What is the converse of is-sibling? 

What is is-ancestor o 

0.2-12 Define relations is-grandchild and is-cousin. Express those relations 
in terms of the relations defined in this section . 

0.2-13 Which of the following relations are transitive : is-descendant, 
is-brother, is-sibling? 

0.2-14 What is the transitive closure of is-child? the reflexive transitive 
closure of is-child? 

0 .2-15 Prove Theorem 0.19 . 

0.2-16 Define symmetric closure . Give an equivalent formulation. 

0.2-17 Prove that congruence modulo m is an equivalence relation. 

0. 2-18 Prove that ~ is an equivalence relation if defined in any of the ways 
below: 

(a) x rv y iff/(x) = f(y) , where/ is a total function. 
(b) x ~ y iff (\fz) V(x, z) = f(y, z)] , where/ is a total function. 
(c) x ~ y iff x ::::::: y and x � y, where ::::::: and � are equivalence 

relations. 
(d) x rv y iff (:3a, b) V(al (x) = j(bl (y)] , where/ is a total function. 

j(n) denotes f composed with itself n times if n > 0, 1- 1 

composed with itself -n times if n < 0, and / if n = 0. 
Apply part (d) to the function/(x) = x+m, and conclude something 
interesting. 



0 .3  Strings 2 9  

0.2-19 What is wrong with the following "proof' that every symmetric, 
transitive relation is an equivalence relation? Assume that p is symmetric and transitive. Let a be an arbitrary element in the domain of p. Choose b such that a p b. By symmetry, b p a. By transitivity, a p a. Since that statement is true for arbitrary a, the relation p is reflexive. Therefore p is an equivalence relation. 

0.2-20 Prove that p is a one-one correspondence if and only if p- 1 1s a 
one-one correspondence. 

0.2-2 1 The equivalence closure of a relation is its reflexive, symmetric, tran
sitive closure. Prove that the equivalence closure of p is (p U p- 1 ) * .  

Solution: Let R be any relation that contains p and is reflexive, 
symmetric, and transitive. Since R contains p and is symmetric, R 
contains the symmetric closure of p, i .e . ,  p U p- 1 . Since R contains 
p U p- 1 and is reflexive and transitive, R contains the reflexive 
transitive closure of p U p- 1 , i .e. , (p U p- 1 ) * .  
If we can show that (p U p- 1 ) * contains p and is an equivalence 
relation, then it will be the least relation with those properties, 
completing the proof. Clearly (p U p- 1 ) *  contains p. Since it is 
a reflexive transitive closure, it is reflexive and transitive. Finally, 
suppose that (a , b) E (p u p- 1 ) * .  Then 

where each ordered pair on the right-hand-side belongs to p U p- 1
• 

Because p U p- 1 is symmetric, it also contains the ordered pairs (b, ck ) ,  . . .  , (c2 , c1 ) , (c1 , a) ,  so (p U p- 1 ) * contains (b, a) . Therefore 
(p U p- 1 ) *  is symmetric, completing the proof. 

0 . 3  STR I NGS 

The geometer begins with points and lines . We begin with characters and 
alphabets. 5 Although we usually think of characters as the roman letters, 

5 Historically, characters have been called symbols. 



30  Mathematical Pre l im inaries 

digits, and punctuation that usually appear on a keyboard, characters can be anything we want. An alphabet is a nonempty finite set of characters, e.g. , { 0 ,  1 } ,  { a, b} ,  { 0, . . .  , 9} ,  { a, . . .  , z} ,  and { # ,  $} .  
DEFINITION 0.2 7 (Alphabets and Characters). An alphabet i s  any finite set. Elements of an alphabet are called characters. 

We usually use the capital Greek letter I: to denote an alphabet. In later chapters, we will also use the capital Greek letters r and .6..  A finite sequence of characters is called a string. When writing a string, we usually leave out the angle brackets and the commas that ordinarily separate elements of the finite sequence . For example, abc ,  aba, word, and string are strings over the alphabet { a, . . .  , z} .  
DEFINITION 0.28. Let I: be  an alphabet. A string over I: i s  a finite sequence of characters that belong to E .  

There are two main differences between sequences and strings: First, the elements of a string are taken from a finite set, whereas the elements of a sequence may be taken from a finite or infinite set. Second, strings always have finite length, whereas sequences may be finite or infinite. A particularly important string is the finite sequence that contains no characters at all . This string is called the empty string, which we denote by 
A.  Strings may also be defined recursively: 
DEFINITION 0.29. Let I: be an alphabet. s is a string over I: if 

• s is equal to the empty string, A, or 
• s = ct, where c is a character belonging to I: and t is a string over I:. 

The recursive definition is equivalent to the definition of strings as finite sequences of characters. We will talk more about recursive definitions in Section 0 .6. 3 .  A language i s  a set of strings.6 For example, {this ,  is ,  a ,  language} is a language; recall that order in sets is unimportant, so the language above is equal to { a, is ,  language,  this} .  The set of all strings over { a, b} 
6 Such languages are also called formal languages, because the form of the strings is 

important, rather than their meaning. 



0 .3  Strings 3 1  

that contain exactly one a is an example of an infinite language. The set of 
all grammatically correct sentences in English is another infinite language. 

Often we will work with sets of languages. By convention a set of sets 
is usually called a class of sets. Because languages are sets themselves, a set 
of languages is typically called a class of languages.7 Examples include the 
class of finite languages, the class of infinite languages, the class of languages 
containing the string boo la, and the class of Indo-European languages. 

If C is a class of languages, then co-C is the class of languages whose 
complement belongs to C, i .e . ,  

co-C = {L : [ E C} =  {[ : L E C } .  

For example, if C i s  the class o f  finite languages, then co-C i s  the class of 
languages whose complement is finite. Such languages are called co-finite, 
which is not the same as "infinite."  For example, the language consisting of 
all strings over { a, b} that end with a is infinite, but not co-finite, because 
the set of all strings over { a, b} that do not end with a is also infinite . Thus, 
in this example, co-C -::/- C. The set of all strings over {a , b} whose length 
is greater than 5 is an example of a co-finite language. 

0. 3 . 1  Regu lar  Operat ions 
The regular operations on  languages are union, concatenation, and Kleene
closure. 8 From Section 0 .2 . 1 ,  the reader is already familiar with the union 
of two sets; we proceed to define the other two operations . 

If s and t are strings, the concatenation of s and t is the string s ® t 
obtained by writing the string s immediately followed by the string t .  That 
is, if S = S1 • " • Sm and t = t 1 • " " tn then S Q9 t = S1 " " " s,,J1 " " " tn · We 
usually write st to denote s ®  t .  For example, if s = bed and t = knob, 
then st = bedknob and ts = knobbed. The empty string is the identity 
element for string concatenation, i .e . ,  sA = As = s for all strings s. 

The concatenation of two languages A and B is the set extension of the 
concatenation operation on strings, i . e . ,  

A ® B = { s ® t : s E A and t E B } .  

7 Classes of languages have historically been called "families" of languages. 
8 Kleene's name is pronounced "cleany." 



32  Mathematical Pre l im inaries 

For example, 

{ a, ab} ® {ba, aa} = { aba, aaa, abba, abaa }.  

We usually write AB to denote A ® B .  Frequently we want to concatenate 
a language with itself. As a shorthand we write A 2 = AA . More generally, 
we define A k to be the set of strings obtained by concatenating exactly k 
elements of A (allowing duplicates). Formally, we have the definition 

• A0 = {A} 
• Ak+ 1 = A ® Ak (= Ak ® A) 

The Kleene-closure of a language L (denoted by L * ) is the closure of 
L U { A} under concatenation, i .e . ,  the least language that contains the 
string A, contains the language L, and is closed under concatenation. By 
Theorem 0. 1 8, we have a practical formula for this: 

EXAMPLE 0.30 

• {a}* = { an : n 2:: 0} 

• {aaa}* = {an : n is divisible by 3 }  

• { aa, aaaa} * = { an : n i s  divisible by 2 }  

• { aa, aaa} * = { an : n = 0 or n 2:: 2 }  (which i s  less obvious) 

• { a, b} * is the set of all strings over the alphabet { a, b} 

• 0* = 0° = {A} ■ ■ ■  

We abbreviate { c} * as c* . 

0 . 3 . 2  M i sce l laneous Stri ng Operations  and Re lat ions 
We say that the string s is a substring of t i f  the characters of  s appear as 
consecutive characters of t. Thus, for example, plane is a substring of 



0 .3  Strings 3 3  

interplanetary. I f  the substring s appears at the beginning of t, then 
we call s a prefix of t; if s appears at the end of t, then we call s a suffix of t. 
Thus inter is a prefix and ary is a suffix of interplanetary. 

DEFINITION 0.3 1 . Let s and t be strings. 

• s is a substring of t if there exist strings u and v such that t = usv. 
• s is a prefix of t if there exists a string u such that t = su. 
• s is a suffix of t if there exists a string v such that t = vs. 

Note that A is a prefix, a suffix, and a substring of every string. In addition, 
every string is a prefix, a suffix, and a substring of itself. Furthermore, 
is-a-substring-of, i s-a-prefix-of, and is-a-suffix-of are partial orders. If s is a string, then the reversal of s (denoted sR ) is the string obtained 
by reversing the order of the characters in s. For example, if s = abc 
then sR = cba. In general if s = a 1 • • • an , then sR = b 1 • • • bn , where 
b - 9 i - an-i+ I ·  

We extend the string reversal operation to languages: 

A palindrome is a string that reads the same forward and back
ward, like ada, deed, radar, redivider, madamimadam, and 
madeupexampleelpmaxepuedam. 

DEFINITION 0.32. s is a palindrome ifs = s R . 
0 . 3 . 3  b-ary and b-ad ic  Number Representat ions  
When we write numbers i n  base b ,  the string akak- I · · · a0 denotes the 
number I:o::;;9 a;bi. (When k = - l this sum is 0, so A denotes the number 
0.) Numbers are commonly written in base 1 0 , although base 8, base 1 6 , 
and base 2 are very important in computer applications. In computer theory, 
base 2 and base 1 are the most important. 

9 Informally we can also write sR = a" · · • a1 . In most contexts the meaning will be 
intuitively clear; however, in some contexts a2 • • · a1 means A .  See footnote 3 .  The 
reader should beware of this potential ambiguity. 



34  Mathematical Preliminaries 

We can evaluate the base-b number ak · · · a0 from left to right with the 
following algorithm: 

n := O; 
for i := k down to O do 

n := b * n + a; ; 
print n 

We can also evaluate it from right to left as follows: 

n := O; power := 1 ;  
for i := 0 to k do begin 

n := n + a; * power; power := b * power; 
end; 
print n 

These algorithms can be modified to compute n modulo m without com
puting large intermediate results. 

The two most important base-2 representations for numbers are the 
familiar binary notation and the dyadic notation. In binary notation, we 
use the alphabet {O ,  1 } ;  a natural number is represented as akak- i · · · a0 , 
where each a; is O or 1 .  The binary representation of a natural number is 
not unique because of leading Os; e.g . ,  10001 and 0 1 0001 both represent 
the number 1 · 1 6  + 0 · 8 + 0 · 4 + 0 · 2 + 1 · 1 = 1 7 .  

I n  dyadic notation, we use the alphabet { 1 ,  2 } ;  a natural number i s  rep
resented as akak- I · · · a0 , where each a; is 1 or 2 .  For example, A represents 
the number O and 1 12 1  represents the number 1 · 8 +  1 · 4 +  2 · 2 +  1 · 1 = 1 7 .  
Dyadic notation is very convenient because the dyadic representation of 
a natural number is unique. We write dyadic (s) to denote the number 
whose dyadic representation is s, so for example dyadic ( 1 12 1 )  = 1 7 and 
dyadic- 1 ( 1 7) = 1 1 2 1 .  

In base 1 ,  we have only the monadic notation, where we use the alphabet 
{ 1 } ,  i .e . ,  the string 1 n represents the number n. Monadic notation has also 
been loosely called unary notation. 

In general, b-ary notation is base-b notation using { 0, . . .  , b - l }  as 
the alphabet; b-adic notation is base-b notation using { 1 ,  . . .  , b} as the 
alphabet. The b-adic representation of each natural number is unique. We 
write b-adic (x) to denote the number whose b-adic representation is  x. For 
example, 3-adic( 1 2 3 )  = 1 8, and 5-adic ( 1 23 )  = 38 .  



Exe rc ises  

0 .3  Strings 3 5  

0.3-1 Which of the following are alphabets? 0, {0}, {17 , 19, 23} ,  
{o, 1, . . .  } ,  {e ,  f , g, h} , {q1 , q2 , . . .  , qk } ,  {1, . . .  , 100}, the set of 
all real numbers between 1 and 100 

Solution: They are all alphabets except for 0 , { 0, 1, . . .  } , and the 
set of all real numbers between 1 and 100. Although we have to be 
careful to include commas when we write strings over { 1, . . .  , 100}, 
it is still an alphabet. 

0 .3-2 Which of the following are strings over { a, b}?  Which are lan
guages over { a, b}?  A, a, b, abc, abab, { aa, ab, ba, bb}, 
{this , is , a, language} 

0.3-3 Which of the following are palindromes? A, a, b, aa, aaa, aca, 
abc, abab, ababa 

0.3-4 Prove that x is a palindrome iff there exists a string w such that x = wufi or there exist a string w and a character a such that x = waul . 
0.3-5 Prove that Ak ® A = A ® Ak . 

0 .3-6 What is { aaa, aaaaaa} * ? What is { aaa, aaaa} * ? 

0 .3-7 Is there a string operation whose set extension is Kleene-closure? 

0.3-8 Prove that if s is a prefix of t and t is a prefix of s then s = t. What 
if s is a prefix of t and s is a suffix of t? 

0.3-9 Prove that is-a-prefix-of is a partial order. 

0.3-10 What is the sum of the dyadic numbers 1212 and 2121? Give your 
answer as a dyadic number. 

0.3 -11 When adding two binary numbers in the standard way, you carry 
either 0 or 1 into the next position. Describe a similar algorithm 
for adding two dyadic numbers. What values might be carried? 

0.3-12 When adding two decimal numbers in the standard way, you carry 
either 0 or 1 into the next position. Describe a similar algorithm 
for adding two 10-adic numbers. (Use A to represent 10 if you like.) 
What values might be carried? 



3 6  Mathematical Pre l iminaries 

0 .3- 1  3 Modify the algorithms from this section to determine the value of n modulo m when n is represented in base b. You should not compute 
n itself, because n may be too large to store practically. 

0.3 - 1 4  Prove that every natural number has a unique dyadic representation. 
0 .4 G RAPHS 

A directed graph consists of vertices and edges that connect pairs of vertices. We think of the vertices as points, and the edges as arrows that connect the points, as in Figure 0 .2 .  As indicated by the arrows, each edge has a direction; i.e. , it goes from one vertex, called its origin, to another vertex, called its destination (possibly the same one). A directed graph is often called a digraph for short. The singular of vertices is vertex. A vertex may also be called a node. We typically write G to denote a directed graph, V to denote the set of vertices, and E to denote the set of edges. Typically an edge is represented by the ordered pair of vertices that it connects. For example, the edge from vertex 1 to vertex 2 is represented as ( 1 ,  2 )  and the edge from vertex 4 to itself is represented as ( 4,  4 ) . (An edge that goes from a node back to itself is called a self-loop.) Represented in this way, the edge set E may be thought of as a relation on the vertex set V. 

FIGURE 0.2: A directed graph . V = { 1 ,  2 , 3 , 4} ,  E = { ( 1 ,  2) ,  (2 , 3), (2 , 4) , ( 3 , 2) ,  ( 3 , 4) ,  (4, 4)} . 



0.4 Graphs 3 7 

A path in a digraph is a sequence of vertices each of which is connected 
to the next one by an edge . The length of a path is the number of edges . 
Like an edge, each path has an origin and a destination. The first element 
of a path is called its origin, and the last element is called its destination. A 
path is said to go from the origin to the destination . To be precise, a path 
is a sequence of vertices ((v0 , . . .  , vn)) , with n 2'. 0, such that the relation 
vi E Vi+ i holds for each i. The length of that path is n.  

In Figure 0 .2, the sequence ((1, 2 ,  3 ,  2 ,  3 ,  4, 4)) is a path; its source is 1 ,  its destination is 4, and its length is 6 .  The sequence ((1, 2 , 4, 3 ,  2)) is 
not a path in that digraph, because there is no edge from 4 to 3 .  

We say that a vertex t is reachable from a vertex s if there is a path from 
s to t. For example, in Figure 0 .2, vertex 4 is reachable from vertex 1 ,  but 
vertex 1 is not reachable from vertex 4 .  

The distance from a vertex s in a digraph to a vertex t is the length of the 
shortest path from s to t or oo if there is no path from s to t .  For example, 
in Figure 0 .2, the distance from 1 to 4 is 2, the distance from 3 to 4 is 1, 
the distance from 2 to 2 is 0, and the distance from 4 to 1 is oo .  

We often write labels on the edges of a graph . Formally, a labeled digraph 
consists of a digraph and a mapping from the edge set E to the set of possible 
labels. Integral labels are often called weights; a digraph with weights on 
the edges is called a weighted digraph. The cost or weighted length of a path in 
a digraph is the sum of the weights on its edges . For example, a weighted 
digraph is shown in Figure 0 . 3 ;  the cost of the path (( 1, 2, 3 ,  2, 3 ,  4, 4)) in 
that graph is 7 + 60 + 19 + 60 + 1 1  + 30 = 187 . 

FIGURE 0.3: A weighted digraph. 



38  Mathematical Pre l imi naries 

0 .  5 B IG -O NOTATION 

In this section we present a notation for describing numerical functions. 
This notation is very useful when discussing the running time of algorithms. 

Let/ and g be functions from N to R. We use 0( · )  notation (pronounced 
"big oh") to indicate that, for large n, f(n) is bounded by a constant times 
g(n) . More precisely, 

f = 0(g) {=::::::;, (::lc) (::lN) (Vn 2: N) V(n) ::; cg(n)] . 

We write / -=/- 0(g) otherwise . Furthermore, although it may look like we 
are defining an object 0(g) , we are not. The notation simply expresses a 
relationship between two functions/ and g. 

EXAMPLE 0.33.  Let f(n) = 2n and g(n) = n2 ; for every n 2: 0, 
J(n) = 2n ::; 2n2 = 2g(n) , so f = 0(g) . However, for every c, if n = 
max(N, 2c + 1 ) ,  then g(n) = n2 > 2cn = cf(c) , so g -=/- 0(/) . ■ ■ ■ 

EXAMPLE 0.34. Let /(n) = 3n2 + Sn +  1 and g(n) = n2 • Then, for all 
n 2: 1 , /(n) = 3n2 + Sn +  1 ::; 9n2 = 9g(n) , so / = 0(g) . Furthermore, 
for all n 2: 0, g(n) = n2 

::; f(n ) ,  so g = 0(/) as well. ■ ■ ■ 

Often one writes/(n) to mean the function/ rather than f's value at n. 
For this reason, it is conventional to write f(n) = 0(g(n) )  to mean that 
f = 0(g) . For example, 3n2 + Sn +  1 = 0(n2 ) .  In this example, the O( · )  
allowed us to simplify 3n2 + Sn + 1 by ignoring constants and low-order 
terms. That kind of simplification makes the notation useful. 

See the exercises for some useful properties of 0( · )  notation. 



Exe rc i ses  

0 . 5 - 1  A polynomial i s  a function of the form 

0.6 I nduction 39  

where k is a natural number and a0 , • • •  , ak are real numbers. +(a) Prove that if p( n) is a polynomial, then p( n) = 0( nk ) for some natural number k. 

Solution: If p(n) = aknk + ak_ 1 nk- l  + · · · + a0 , then let 
a = lao l + · · · + lak l - Therefore, for n 2 1 , p(n) ::; ank . 

(b) If p is a polynomial , prove that (::lN) (Vn 2 N) [p(n) ::; 2t 
0 . 5 -2 Prove the following: (a) If/(n) = O(g(n) ) and g(n) = O(h(n) ) ,  then/(n) = O(h(n) ) .  (b) If/(n) = O(h(n) ) and g(n) = O(h(n) ) ,  then /(n) + g(n) = O(h(n) ) .  
0 . 6  I N DUCTION 

Mathematical induction i s  an important technique for proving theorems. Suppose that P( n) is some statement about the natural number n, and that we wish to prove the statement (\ln)P(n) , i .e . ,  that P(n) is true for all n. The principle of induction says that it is sufficient to prove the following two statements: 
Base case: P( 0) is true. 
Inductive case: (\In 2 0) [P (n) ⇒ P(n + 1 ) ] .  
EXAMPLE 0. 35 .  Suppose that we draw a finite collection of lines i n  the plane. These lines form the boundaries of regions in the plane, and we say that two regions are contiguous (adjacent) if they share two or more points, 



40 Mathematical Pre l im inaries 

i.e., if they have a linear border in common. Examples are the checkerboard pattern of Figure 0.4 and the irregular pattern of Figure 0.5 , where we have colored the regions black or white in such a way that contiguous regions have different colors. As our first example, we will prove that such a coloring is always possible. 

FIGURE 0.4: 2-coloring the regions of a checkerboard pattern. 

FIGU RE 0.5:  2-coloring the regions of an irregular pattern. 



0.6  Induction 4 1  

Our proof will be by induction on the number of lines drawn. Our 
assertion, for all n, is 

If n lines are drawn in the plane, then it is possible to color regions black 
or white so that contiguous regions have different colors. 

First we prove the assertion for n = 0, which is called the base case. If 0 
lines are drawn in the plane, then there is only one region, namely the entire 
plane. For concreteness we may color it black. There are no contiguous 
regions, so the assertion is true for n = 0 .  

Second, we assume that the assertion is true for some particular n 2". 0, 
and we prove the assertion for n + 1 .  Assume that when n lines are drawn in 
the plane, it is possible to color the regions black or white so that contiguous 
regions have different colors; this is called the inductive hypothesis. 

Now suppose that n + 1 lines are drawn in the plane (Figure 0.6). 
Remove any one of those lines f, so that only n lines remain. By the 
inductive hypothesis, it is possible to color the remaining regions black or 
white so that contiguous regions have different colors (Figure 0. 7). Now 
put back the line f that we removed, pick one side of f, which we call 
the left side for concreteness, and reverse the colors on that side of f, i.e. , 
replace white with black and black with white everywhere on the left side 
of f (Figure 0.8). 

FIGURE 0.6: n + 1 lines in the plane. 



42 Mathematical Prelimi naries 

FIGURE 0. 7: We remove one of the n +  1 lines and color the resulting figure. 

FIGURE 0.8: We replace the line and reverse the colors on one side of it. 

Now all regions are colored black or white. We assert that contiguous 
regions are colored differently. Pick any two contiguous regions. If they are 
both on the right side off, then they were originally colored differently and 
their colors were not changed when we replaced f, so they are still colored 
differently. If they are both on the left side of f, then they were originally 
colored differently and their colors were reversed when we replaced f, so 
they are still colored differently. The only remaining possibility is that the 



0 .6 Induction 43 

regions are on opposite sides of f. Then their common border must be 
part of f, so they were in the same region before f was replaced. Therefore 
they had the same color before f was replaced, but exactly one of them 
had its color reversed when f was replaced, so now they have different 
colors. In every case, we have shown that two contiguous regions are colored 
differently. 

Thus if n + 1 lines are drawn in the plane, it is possible to color the 
regions black or white so that contiguous regions are colored differently. 
This completes the inductive step of the proof. The assertion now follows 
for all n by the induction principle. ■ ■ ■ 

EXAMPLE 0.36. Now let us consider an arithmetic identity. We wish to 
prove that Lo:::;k:s;n k = ½n(n + 1 ). We could bolster our confidence in this 
statement by verifying it for small values of n. 

Lo9:::;o k 0 0 ½o (o + 1 ) ,  

I:09:::;i k 0 + 1 1 ½ 1 ( 1 + 1 ) , 

Lo99 k 0 + 1 + 2 3 ½ 2 (2 + 1 ) ,  

Lo<k< c,  k 0 + 1 + 2 + 3  6 ½ 3 ( 3  + 1 ) ,  

I:09:::;4 k 0 + 1 + 2 + 3 + 4 10  ½4(4 + 1 ) ,  

Lo9:::;5 k 0 + 1 + 2 + 3 + 4 + 5  1 5  ½ 5 ( 5  + 1 ) .  

Checking small values of n is a good way to weed out incorrect conjectures 
in practice, but it cannot prove the theorem, because infinitely many cases 
remain unverified. For a mathematical proof, we use the induction principle. 

First we prove the base case, i.e. , that I:09:::;0 k = ½o(o + 1 ) .  Since 
the expressions on both sides of the equal sign evaluate to 0, the statement 
is true, so the base case is established. 

Second, we prove the inductive case, i.e. , if I:09:::;n k = ½n(n + 1 ) ,  then 
Lo:s;k:s;n+l  k = ½ (n + l ) (n + 1 + 1 ) .  In order to prove it, we assume that, 
for some fixed n, Lo:::;k:s;n k = ½n(n + 1 ). (Note that it would be nonsensical 
to assume that the statement is true for all n, for that is exactly what we 



44 Mathemat ical Pre l im inaries 

have set out to prove by induction.) Our assumption is called the inductive 
hypothesis. Identically, 

L k O:::;k'.Sn+ l (n + l ) +  L k  O:::;k'.Sn 1 
(n + 1 )  + 2n(n + 1 )  

(n + 1 )  ( 1  + }n) 

1 
2 (n + l ) (n + 2)  

1 - (n + l ) (n + 1 + 1 ) .  
2 

by the inductive hypothesis 

Thus the inductive case is established. That completes the proof by induc-tion. ■ ■ ■  

EXAMPLE 0.3 7. Next, let us consider the sum of the first n cubes . Notice that 
0 0 02 ' 
0 + 1 1 1 2 ' 
0 + 1 + s 9 32 , 

0 + 1 + 8 + 27 36 62 ' 
0 + 1 + 8 + 27 + 64 1 00 1 02 ' 

Lo9:::;o k3 

Lo99 k3 

Lo9:::;2 k3 

Lo<k<3 k3 

Lo9:::;4 k3 

I:09:::;s k3 0 + 1 + 8 + 27 + 64 + 1 25 225 1 52 . 

Thus we are led to conjecture that Lo:::;k:s;n k3 is always a square, i .e . , 
(Vn) (::lm E N )  [ L k3 = m2] . O:::;k'.Sn 

Suppose that we tried to prove that statement directly by induction. For the inductive case, we would assume that Lo:s;k:s;n k3 = m2 for some natural 



0.6 Induct ion 4 5  
number m .  Then we would reason that 

(n + 1 ) 3 + L k3 
O<:;k<'-;n 

(n + 1 ) 3 + m2 by the inductive hypothesis. 
Then we would be stuck, for it is not true for all n and m that (n + 1 ) 3 + m2 is a square. What can we do? We need to know more about m in order to prove that (n + 1 ) 3 + m2 is a square. Looking at the small cases again, we notice a pattern. In order to prove that I:o<:;k<:;n k3 is a square, we prove something stronger, namely that 

First, the base case is easy, because both sides of the equal sign evaluate to 0. Second, we assume that, for some fixed n, I:09:s;n k3 = ( ½n(n + 1 )  ) 2
. Identically, 

(n + 1 ) 3 + L k3 
O<'-;k<'-;n 

(n + 1 ) 3 + ( 1n(n + 1 )  r by the inductive hypothesis 
(n + 1 ) 2 

( n + 1 + ( 1n r) 
(n + 1 )2 (1 (n + 2)r 

(1 (n + l ) (n + 2)  r 
Thus, the inductive case is established. This completes the proof by induction that I:o<:;k<:;n k3 = ( ½n(n + 1 ) ) 2 for all n. In particular, I:o<:;k<:;n k3 is a square, as we originally set out to show. This example demonstrates that when we use mathematical induction, it is sometimes easier to prove a stronger statement than a weaker statement. This is because, although the statement to be proved is stronger, the inductive hypothesis is stronger as well. ■ ■ ■ 



46 Mathematical Pre l iminaries 

EXAMPLE 0.38. In this inductive proof, we will have the moral equivalent 
of two base cases. Let us prove that for all n, 2n 2 2n. The proof is by 
induction on n. Observe that 2° = 1 > 0 = 2 · 0, so the base case is 
established. Our inductive hypothesis is that 2,, 2 2n for some particular 
n 2 0, and we wish to conclude that 2n+ 1 2 2 ( n + 1 ) .  We have 

2n+ 1 = 2 · 2n 2 2 · 2n = 4n = 2 ( n + 1 ) + 2 ( n - 1 )  2 2 ( n + 1 ) , 

whenever n 2 1 .  Thus we have proved that 2,, 2 2n when n = 0, and we 
know that if it is true for n = 1 then it is true for n = 2, and then it is true 
for n = 3 ,  and so on. However, we still have to prove it for n = 1 .  We 
do so as a special case: 2 1 = 2 = 2 · 1 ,  so the case n = 1 is established. 
Therefore 2,, 2 2n for all n. 

Sometimes one must be careful when performing the inductive step for 
small values of n. In this example, we had a special case for n = 1 .  When 
some small values of n constitute special cases, we typically call them "base 
cases" and prove all of them first. ■ ■ ■ 

EXAMPLE 0.39. In this inductive proof, we will have three base cases. Let 
us prove that for all n, 2,, 2 3n - 2 .  The base cases are n = 0, n = 1 ,  and 
n = 2 .  Observe that 2° = 1 > - 2  = 3 · 0 - 2, 2 1 = 2 > 1 = 3 · 1 - 2 ,  
and 22 = 4 = 3 · 2 - 2,  establishing the base cases. The inductive hypoth
esis is that 2,, 2 3n - 2 for some particular n 2 2 .  We have 

2n+ l = 2 · 2,, 2 2 · (3n - 2) = 6n- 4  = 3 (n+ l ) - 2 +3n - 5  > 3 (n+ l ) - 2 , 

because n 2 2, establishing the inductive case. This completes the proof 
by induction. ■ ■ ■ 

EXAMPLE 0.40. Sometimes we prove statements that are not true for small 
values of n, but only for sufficiently large n. Let us prove that for all n 2 4, 
2,, 2 4n. For the base case, we take the least value of n for which the 
statement is asserted , i .e . , n = 4. We observe that 24 = 1 6  = 4 · 4,  
establishing the base case. The inductive hypothesis is that 2,, 2 4n for 
some particular n 2 4. We wish to prove that 2n+ l 2 4(n + 1 ) .  We have 

2n+ 1 = 2 · 2,, 2 2 · 4n = 8n = 4 ( n + 1 ) + 4 ( n - 1 )  2 4 ( n + 1 ) , 
") 



0 .6 Induct ion 47 

because n 2: 4 2: 1 .  This completes the proof by induction. (Observe that in this example the inductive step worked fine for n = 1 ,  2 ,  3 as well, but the statement is not true for n < 4 for lack of a base case.) ■ ■ ■ 
Exe rc i se s  

0.6- 1 Binomial Theorem. Prove that (x + 1 r = I:osiSn (:)xi , where 
(:) = n

(
n
�!LS'.�;

+ 1 ) . Hint: Use the fact that (::n = C� 1) + (;) for all natural numbers n and i. 
0.6-2 Prove that I:09sn G) = (::n . Hint: Use the fact that (;:;) 

(� 1) + (;) for all natural numbers n and i. 
0.6-3 Prove that I:09sn k2 = � (2n) (2n + 1 ) (2n + 2) .  
0.6-4 Prove that I:oSksn k4 = ¾in(n + 1 ) (2n + 1 ) (3n2 + 3n - 1 ). 
0.6-5 Prove that LoSkSn kd ::; d!i nd+ l + nd , for d � 1 .  

Solution: The proof is by induction on n. When n = 0, the statement becomes O ::; 0, so the base case is established. Assume for some particular n that I:09sn e ::; d!l nd+! + nd. Identically, 

1 < - - (n + 1 t+ 1 + (n + 1 )'1 d + l 

by the inductive hypothesis 
by the binomial theorem. 

Thus the inductive case is established, which completes the proof. 
0.6-6 (a) Let f be a function such that /(0) = 1 and f(n + 1 )  

= 2/(n) + 1 for all n. Prove that/(n) = 2n+ 1 - 1 .  



48 Mathematical Pre l im inaries 

(b) Towers of Hanoi. You are given three pegs and n disks of 
different sizes. Initially the n disks are piled on one of the pegs , 
with the smallest on the top, then the second-smallest, . . .  , 
and the largest on the bottom. Your job is to move the n disks 
to one of the other two pegs. However, you are only allowed 
to move one disk at a time, and you cannot ever place a larger 
disk on top of a smaller disk. Let H(n) denote the minimum 
number of moves in which your task can be accomplished. 
Prove that H(n + 1 ) ::; 2H(n) + 1 .  

*(c) Prove that H(n + 1 )  2': 2H(n) + 1 .  
(d) Conclude that 2n+ 1 - 1 moves are necessary and sufficient in 

order to move all disks from one peg to another. 

0.6-7 (a) Prove that for all n, 2n 2': n2 
- 1 .  

(b) Prove that for all n 2': 4, 2n 2': n2 . 
(c) Prove that for all n 2': 10 ,  2n 2': 1 00n. 

0.6-8 (a) Prove that (p U O") * = p* (O'p* ) * . 
(b) Prove that (p U O")*  = O"* (pO'* ) * .  

+ (c) Prove that (p U O") *  = (p* O') * p* .  
(d) Prove that (p U O") *  = (O"* p) * O"* . 

Solution 
(a) First we show that p* (O"p* ) *  � (p U O")* . Proof: Because 

p � (p U O") and O" � (p U O") * , 

p* (O"p* ) *  C (p U O")* ( (p U O") * (p U O") * ) *  
C ( p  U O") * 

because (p U O") * is reflexive and transitive. 
Conversely, we show that (p U O") * � p* ( O" p* )  * . For all k we 
assert that 

(p U O"l � p* (O'p* ) * .  

We prove the assertion by induction on k. The base case 
(k = 0) is established because 



Assume that the assertion is true for k. 
(p LJ o-) (p LJ o-)k 

C (p U o-)p* (o-p* ) * 

0.6 I nduction 49 

by the inductive hypothesis 
by the pp* (o-p* ) * U o-p* (o-p* ) * distributive 

C p* (o-p* ) *  U (o-p* ) * 
p* (o-p* ) * . 

That completes the induction. Therefore, 

law for sets 
because TT* � T* for all T 

(p U o-) * = LJ (p u o-t k:0:0 C LJ p* (o-p* ) * k:0:0 
p* (o-p* ) * . 

(b) (p U o-)  * = ( O" U p) * = o-* (po-* ) * , by part (a). (c) It is easily verified for all relations p and O" that p- 1 0-- 1 (o-p) - 1 , P- 1 U 0"- 1 = (p U o-t 1 , and (p- 1 ) *  = (p* t 1 . By part (a), 
Taking the converse of both sides, we have 

(p u O") * = ( (p) * O") * (p) * . 
(d) (p U o-) * = (o- U p) * = ( (o-) * p) * (o-) * , by part (c). Alternatively, parts (b-d) may be proved analogously to part (a). 

0.6-9 Suppose that n lines are drawn in the plane such that no two lines are parallel and no three lines go through the same point. These 



50  Mathematical Pre l im inaries 

lines divide the plane into a number of regions rn . Prove that rn = 1 + ½n(n + 1 )  for all n. Hint: Prove that rn+l = rn + n + 1 .  

0 .6- 1 0  Consider the following "proof" that all pigs are yellow. First, we 
buy a pig from a nearby farmer, and we paint it yellow. Next comes 
the hard part. We say that a set of pigs is monochromatic if all pigs in 
the set are the same color. We will prove that all finite sets of pigs 
are monochromatic. The proof is by induction on the size n of the 
set. The base case (n = 0) is trivial, because the empty set contains 
no pigs. 

Inductive case: Assume that all sets consisting of n pigs are 
monochromatic for some particular n. We prove that all sets consist
ing of n + 1 pigs are monochromatic. Let {pig 1 , • • •  , pign+ 1 } be a set 
containing n+ 1 pigs. By the inductive hypothesis {pig 1 , . . .  , pign} 
is monochromatic. It remains to show that pign+l  has the same 
color as pign , for then all n + 1 pigs must have the same color. But 
{pig2 , . • .  , pign+ 1 } is a set consisting of n pigs, so by the induc
tive hypothesis it is monochromatic. Therefore pign+ l has the same 
color as pign , so {pig 1 , . . .  , pign+ 1 } is monochromatic, as desired. 
That completes the proof by induction. 

Because all finite sets of pigs are monochromatic, in particular the 
set of all pigs is monochromatic. Because that set contains the pig 
we painted yellow, all pigs must be yellow. 

Question: What is wrong with the proof given above? 1 0  

Solution: The inductive step is incorrect when n = 1 ,  i .e . , when we 
try to prove that every set consisting of two pigs is monochromatic. 
This is to be expected, because if every two pigs were the same color, 
then all pigs really would be the same color. 

*0.6- 1 1 An undirected graph is a digraph whose edge relation is symmetric ;  
if (u ,  v) is an edge then u and v are called neighbors. A k-coloring 
of an undirected graph is a mapping from its vertex set to a set 
consisting of k colors such that neighbors are mapped to distinct 
colors. An undirected graph is planar if it can be drawn in the plane 

10 The earliest version of this paradox seems to be due to George P6lya, Induction and 
Analogy in Mathematics. 



0.6 Induction 5 1  

in such a way that no edges cross. Prove that every planar graph has 
a 6-coloring. Hint: every planar graph contains a vertex that has at 
most 5 neighbors. 

Solution: We prove this by induction on the number of vertices 
in the graph. Base case: If there are no vertices then the graph 
has a trivial 6-coloring. Inductive hypothesis: Every planar graph 
containing n vertices has a 6-coloring. Let G be a planar graph 
containing n + 1 vertices. Because G is planar it contains a vertex 
v with at most 5 neighbors. Obtain G' by deleting v and all edges 
going to or from it. By the inductive hypothesis, G' has a 6-coloring. 
Map v to a color that none of its neighbors is mapped to. 

0 .6 . 1 Strong I nd uct ion 
There is another form of induction, which appears more powerful than 
ordinary mathematical induction. Ordinary induction lets us assume a 
statement is true for n when proving it for n + 1 ;  equivalently, it lets us 
assume a statement is true for n - 1 when proving it for n. However, 
the principle of strong induction lets us assume the statement is true for 
0, 1 ,  . . . , n - 1 when proving it for n. (Strong induction is also known as 
course-of-values induction or complete induction .) To be precise, suppose that we 
are trying to prove ('v'x)P(x) . The strong induction principle says that it is 
sufficient to prove the following single statement: 

Inductive case: ('v'n 2: o) [ ( (Vk < n)P(k)) ⇒ P(n)] . 

More compactly, the strong induction principle says that 

('v'n) [ ( ('v'k < n)P(k)) ⇒ P(n)] ⇒ ('v'x)P(x) . 

This principle is in fact equivalent to ordinary induction, but it is often easier 
to apply. First, the base case is part of the inductive case, rather than being 
proved separately. Second, we may assume P( 0) , . . .  , P( n - 1 )  when trying 
to prove P(n) , whereas ordinary induction only lets us assume P(n - 1 ) .  
This makes intuitive sense, because if we are proving the statements P (  0) , 
P( 1 ) ,  . . .  in order, then we have P( 0) through P( n - 1 )  at our disposal when 
it is time to prove P(n ) .  



5 2  Mathematical Pre l im inaries 

Later in this section, we present some examples using the strong induction principle. But first, let us show that the strong induction principle is a logical consequence of the ordinary induction principle. 
Proof of the strong induction pr inciple:  Let us use ordinary induction to prove the principle of strong induction. Assume that, for all n, 

( (Vk < n)P(k) ) ⇒ P(n) . ( 0.1 ) 
We wish to prove (Vx)P(x) . In fact we will prove something seemingly stronger. Let Q(x) be the statement (Vy < x )P(y) . In particular Q(x+ 1 )  ⇒ 
P(x) . Therefore it suffices to demonstrate (Vx) [Q(x) ] ,  which we prove by induction. First, we establish the base case, with x = 0, which says 
(Vy < 0 )P(y) . This statement is true because there are no values of y less than 0. (In that kind of situation we say that the statement is vacuously true.) Thus the base case is established. Second, we establish the inductive case. Assume that (Vy < x )P(y ) ,  for some particular x .  By equation (0.1 ), P(x) is true. Therefore the statement P(x) A (Vy < x )P(y) is true, but that is equivalent to the statement 
(Vy < x + l )P(y) , establishing the inductive case. That completes the proof by induction. ■ 

EXAMPLE 0.4 1 .  We will prove that the recursive program below computes the identity function. Of course, there are easier ways to compute the identity function; our purpose here is to demonstrate the use of strong induction. Let/ be a function on the natural numbers satisfying 

f(n) = 
0 
2/(n/2) 

if n = 0, 
if n is even and n > 0,  

/(n - 1)  + 1 if n is odd. 
We wish to prove that/ is the identity function, i.e., that (Vn) V(n) = n] . The proof is by strong induction. Assume that (V k < n) V ( k) = k] for some particular n.  We will show that /(n) = n. If n = 0, then /(n) = 0,  



0.6 Induction 5 3  

as desired. Henceforth we may assume that n > 0 .  If n is even then 
f(n) = 2/(n/2). By the inductive hypothesis, /(n/2) = n/2, so f(n) = 
2(n/2) = n. If n is odd, then f(n) = f(n - 1 )  + 1 .  By the inductive 
hypothesis, f(n - 1 )  = n - 1 ,  so /(n) = n - 1 + 1 = n. Thus, in 
all cases, we have shown /( n) = n. That completes the proof by strong 
induction. ■ ■ ■ 

EXAMPLE 0.42. For a less trivial application of strong induction, we prove 
that the recursive program in Figure 0.9 computes the greatest common 
divisor of two natural numbers. The greatest common divisor of a and b is 
the largest natural number d such that a and b are both divisible by d; it 
is denoted by gcd(a, b) .  By convention gcd(0, 0) = 0. Let Euclid be the 
function computed in Figure 0.9. 

We assert that for all a, b 2 0, Euclid(a, b) = gcd(a, b) . Observe that 
when the function Euclid calls itself recursively, it uses a smaller value for 
one of the parameters, although their order might be reversed. In any case, 
the sum of the parameters to the recursive call is smaller. This is just what we 
need for a proof by strong induction. We prove that Euclid(a, b) = gcd(a, b) 
by strong induction on a +  b. 

Inductive hypothesis: For all a' , b' such that a' + b' < a + b, 
Euclid(a' , b' ) = gcd(a' , b' ) .  (We wish to conclude that Euclid(a, b) = 
gcd(a, b) .) 

If b > a, then the first line will swap a and b; without loss of generality 
we assume henceforth that a 2 b. There are only two cases. 

function Euclid(a, b) ;  
begin 

if b > a then swap a and b; ( * Henceforth a 2 b * ) 
if b = 0 then return a (* gcd(a, 0) = a *) 
else return Euclid(a - b, b) ; ( * gcd(a, b) = gcd(a - b, b) * ) 

end; 

FIGU RE 0.9: The Euclidean algorithm for computing greatest common divisors. 
a and b are any natural numbers. 



54  Mathematical Pre l im i naries 

Case 1 :  b = 0. T hen Euclid(a, b) = a. Clearly a is the largest divisor 
of a. Since every number is a divisor of 0, a is the largest divisor of a and 0, 
so Euclid(a, b) = a = gcd(a, b) , as desired. 

Case 2: b > 0. Then Euclid(a, b) = Euclid(a-b ,  b) . Since (a- b) +b < a +  b, the inductive hypothesis says that Euclid(a - b, b) = gcd(a - b, b) . 
Furthermore, if d is a divisor of a and b, then d is a divisor of a - b as well. 
Therefore every divisor of a and b is a divisor of a - b and b. Conversely, if 
d is a divisor of a - b and b, then d is a divisor of (a - b) + b = a as well. 
T herefore every divisor of a - b and b is a divisor of a and b. Consequently, 
gcd(a - b, b) = gcd(a, b ) .  Thus, 

Euclid(a, b) = Euclid(a - b, b) = gcd(a - b, b) = gcd(a, b) , 
as desired. 

In both cases, Euclid(a, b) = gcd(a, b) , so the inductive step is estab-
lished. T his completes the proof by strong induction. ■ ■ ■ 

Exerc i ses 

0.6- 12 Let / be a function on natural numbers satisfying 

0 if n = 0, 

f(n) = 4/(n/2) if n is even and n > 0, 

f(n - 1) + 2n - 1 if n is odd. 

Prove that/(n) = n2 for all n 2:: 6. 

0.6- 1 3  Suppose that/ is a function on integers satisfying 

/(n) = 
0 

2/(n/2) 

if n = 0, 

if n is even and n > 0, 

f(n - 2) + 2 if n is odd. 

Can you prove that /(n) = n for all n 2:: 0? 



0.6 Induction 5 5 

Solution: No. If we tried to apply the inductive proof given in this 
section, it would fail for n = 1 ,  because the inductive hypothesis 
says nothing about /(- 1 ).  For a concrete counterexample, note 
that any positive integer can be written as 2km, where m is odd, and 
we may define /(2km) = 2k (m + 1 ) .  

0.6- 1 4  Use the strong induction principle to prove the ordinary induction 
principle. 

0.6- 1 5  A natural number is prime if it has exactly two distinct divisors, 
i.e. , itself and 1 .  (That is, p is prime iff p 2'. 2 and p is divisible only 
by 1 and p.) A prime factorization of n is a sequence of prime numbers 
((p1 , . . .  , h)) , not necessarily distinct, such that 

n = P1 · · · ·  · h · 

Prove that if n > 1 then n has a prime factorization. (You need not 
prove that the prime factorization is unique.) 

Solution: The proof is by strong induction on n. 

Case 1 :  n is prime. Then ((n)) is a prime factorization of n. 
Case 2: n is not prime. Then n is divisible by some natural number d 
such that 1 < d < n. Because 1 < d < n, the inductive hypothesis 
says that there is a prime factorization ((p1 , . . .  , p1 )) of d. Because 
1 < n/ d < n, the inductive hypothesis says that there is a prime 
factorization ((p� , . . .  ,p'J of n/ d. Then 

I I n = P1  · · · · · Pi · P 1 · · · · · P1 , 

so ((p1 , . . .  , Pi , P� , . . . , p;)) is a prime factorization of n. 

0 .6 .2  P igeonhole  Pri nc ip le  

The pigeonhole principle is a convenient version of the induction principle, 
which was discovered by the mathematically inclined daughter of a pigeon 
farmer. 1 1  Pigeons roost in homes called "holes. " This particular farmer 

1 1  This farmer is also reported to raise yellow pigs. 



56 Mathematical Pre l im i naries 

built 1 00 holes for his pigeons, but he owned 1 0 1  pigeons. Each evening he would count 1 0 1  pigeons returning home to roost, and he would ask himself, "How can 1 0 1  pigeons live in 1 00 holes? "  Needless to say, he was perplexed and concerned about his pigeons' welfare. His question was answered one evening when his daughter returned home from the university and observed the phenomenon. "Clearly," she said, "two of the pigeons must be in the same hole." In general, the pigeonhole principle says that if p pigeons occupy h holes, where p > h, then two of the pigeons must occupy the same hole. More formally let P and H be finite sets such that IP I  > IH I , and let/ be a function from P to H; the pigeonhole principle says that/ must not be one-one, i.e., 
(::li E P ) (::lj E P) [i =/- j and/(i) = /(j)] . 

THEOREM 0.43 (Pigeonhole Principle). Let P and H be finite sets such that IP I > IH I . If f is a function from P to H, then f is not one-one. 
Although the pigeonhole principle may seem too obvious to require a proof, it is in fact equivalent to the principle of mathematical induction (Exercise 0.6-22). In this section, we present several applications of the pigeonhole principle. 

EXAMPLE 0.44. Suppose that we are given three integers x1 , x2 , x3. We assert that the average of two of these numbers must be an integer; i.e., there exist xi , x1 among the given numbers such that (xi + x1) /2 is an integer. We prove the assertion by the pigeonhole principle. Note that (xi + x1) /2 is an integer if and only if Xi = x1 (mod 2).  Let 
f (x) = x mod 2, so f maps to a range of size 2. Since we are given three integers, /  must map two of them to the same value; i .e . ,  there are distinct 
i and j such that/(xJ = f(x1) .  Then xi = x1 (mod 2 ) ,  so the average of xi and Xj is an integer. This completes the proof. ■ ■ ■ 
EXAMPLE 0.4 5. For a slightly more complicated application along the same lines, let us say that a point (x, y) in the plane is a lattice point if x and y are both integers. Suppose that we are given 5 lattice points (x1 , y 1 ) ,  . . .  , (x5 , y5 ) in the plane. Find the midpoint of each of the 1 0  pairs of points. We assert that one of these midpoints must be a lattice point. We prove our assertion by the pigeonhole principle. 



0 .6 Induction 5 7  

The midpoint of (x; , y; )  and (x1 , y1) is ( (x; + x1 ) /2 , (y; + y1) / 2 ) ,  which 
is a lattice point if and only if x; = x1 (mod 2 )  and y; = y1 (mod 2 ) .  Let f( (x, y) ) = (x mod 2 , y  mod 2 ) .  Then / maps to a range of size 4. 
Since there are 5 points, two of them must be mapped to the same value, 
i .e., we have /((x; , y; ) )  = J( (x1 , y1) ) . T hen x; = x1 (mod 2 )  and y; = y1 
(mod 2) ,  so ( (x; + x1)/2 ,  (y; + y1) /2 )  is a lattice point. T hat completes the 
proof. ■ ■ ■ 

EXAMPLE 0.46. Suppose that we are given a sec A = { x 1 , . . .  , x10 } consist
ing of 10 numbers between 1 and 100 .  A surprising fact is that there exist 
two distinct, disjoint subsets B and C of A whose elements sum to the same 
number, i.e. ,  B =I- C, B � A,  c � A ,  B n c = 0, and LxEB x = LxEC x. 
We will prove this mathematical curiosity using the pigeonhole principle. 

Let A 1 , • • .  , A1024 be a list of all subsets of A.  Let /(i) denote the sum 
of the elements of A;, i .e . , /(i) = LxEA; x. The function / maps numbers 
in the domain { 1 ,  . . .  , 1024} to numbers in the range { 10, . . .  , 1000}. 
Therefore, by the pigeonhole principle,/ cannot be one-one . In other words, 
there exist two distinct subsets A; ,  A1 of A such chat LxEA; x = LxEAJ x. To 
obtain disjoint sets, we remove from A; and A1 any elements they have in 
common. That is, lee B = A; - (A; n A1 ) and C = A1 - (A; n A1 ) .  Then 
B -=/- C, B � A ,  C � A ,  B n C = 0 ,  and 

L X - L X 
xEA; xEA;nA1 

That completes the proof . 

Exe rc i ses  

L X - L X 
xEA1 xEA;nAJ 

■ ■ ■  

0.6-1 6  The pigeon farmer's daughter has taken a summer job as a parking 
lot attendant. How would the pigeonhole principle be useful to her 
in chis job? 

0 .6- 1 7  (a) Let us say that a point (x, y ,  z)  in Euclidean 3-space is a lattice 
point if all of its coordinates are integers. Suppose that we are 
given 9 lattice points. Construct the midpoints of all 36 pairs 



58  Mathematical Pre l im inaries 

of points. Prove that at least one of these points is a lattice point. 1 2  (6) Provide an example of 9 lattice points such that 3 5 of the midpoints are not lattice points. 0 .6- 1 8  Suppose that we are given a set A = {x1 , . . .  , x20 } consisting of 20 numbers between 1 and 50,000. Prove that there exist two distinct, disjoint subsets B and C of A whose elements sum to the same number, i .e . , B -=/- A,  B � A ,  C � A,  B n C = 0 ,  and I:xEB X = I:xEC X. 0 .6- 1 9  Suppose that we are given 1 00 numbers x1 , . . .  , x100 between 1 and 1 00, 000, 000 , 000. Prove that for two of those numbers Xi and x1 , the sum of the base- 1 0  digits of Xi is equal to the sum of the base- 1 0  digits of x1 . 0 .6-20 Suppose that we are given a set X containing n positive integers. Prove that there is a nonempty subset of X whose elements add up to a multiple of n. 0.6-21  The Fibonacci numbers are defined as follows: 
1 if n = 1 ,  

In = 1 if n = 2 ,  
ln- 1 + ln-2 if n 2: 3 .  

We say that an infinite sequence ((x 1 , x2 , . . .  )) is periodic if there exists a number p called the period and a number f called the latency such that (Vn 2: f) [xn = Xp+nl .  Fix a positive integer m, and let 
gn = In mod m. (a) Prove that the sequence ((g 1 , g2 , • • •  )) is periodic . Hint: The period is less than or equal to m2 . (6) Prove that the latency is 0. Hint: The recurrence can be run backwards, i .e. , f,, = fn+2 - ln+ l · (c) Prove that there is a Fibonacci number In , with n 2'. 1 ,  that is divisible by m. Hint: Define .f<i -

12 This problem originally appeared on the William Lowell Putnam mathematical 
competition. 



0.6 Induction 59  

0.6-22 (a) Use induction to prove the pigeonhole principle. 

Solution: The proof is by induction on IP I .  If IP I  = 0, then 
it is impossible for IP I  > IH I , so the base case is vacuously 
true. Assume that the pigeonhole principle is true whenever 
IP I  = n, for some n 2 0. 
Now assume that IP I  = n + 1 .  Because P is nonempty, there 
exists some element p in P. If there exists q E P such that 
q -=/- p and/(p) = f(q) , then/ is not one-one, as we wished to 
prove. Otherwise, we may assume that for all q E P - {p  } ,  
/ ( P) -=/- f ( q) . Let P' = P - { p} , H' = H - {f ( p) } ,  and /' 
be the restriction off to the domain P', i.e., f' (x) = f(x) for 
all x in P' and /' is defined only on the points in P' . Since 
f(q) -=/- f(p) for all q E P' , /' is a function from P' to H' . 
Because IP' I = IP I  - 1 and IH' I  = IH I  - 1 ,  IP' I  > IH' I .  By 
the inductive hypothesis, /' is not one-one, so there exist q 
and r in P' such that q -=/- r and/' ( q) = /' (r) . But then q and 
r belong to P as well, and/(q) = f' (q) = J' (r) = f(r) , so/ is 
not one-one. This establishes the inductive case, completing 
the proof by induction. 

(6) Using the pigeonhole principle, prove the principle of math
ematical induction; i.e., assume that for no finite sets P and H 
such that IP I  > IH I  is there a one-one function from P to H, 
and prove for every predicate P 

( Q ( 0) A (V n) [Q ( n) ⇒ Q ( n + 1 ) ] ) ⇒ (V n) Q ( n) . 

Solution: Assume Q(0) A (Vn) [Q(n) ⇒ Q(n + 1 ) ] .  Assume, 
for the sake of contradiction, that Q(m) is false for some partic
ular m. Define a function/ from { 0, . . .  , m} to { 0, . . .  , m - 1 }  
as follows 

/(x) = { X 

x - 1 

if Q(x) is true and 0 :S x :S m, 

if Q(x) is false and 0 :S x :S m. 

Note that for all x,/(x) E {x - 1 , x}. We assert that/ is one
one. Suppose that i -=/- j. We wish to show that /(i) -=/- /(}) . 



60 Mathematical Preliminaries 

Without loss of generality we can assume that i _::; j - 1 .  If i _::; j - 2 or Q(i) is false, then/(i) ::; j - 2 < f(j) , so J(i) =/
f(j) . The only remaining possibility is that i = j - 1 and 
Q(i) is true. But Q(i) ⇒ Q(i + 1 ) ,  by assumption. Therefore 
Q(j) is true, so /(}) = j. Thus /(i) = i = j - 1 < j = J(j) , so f(i) =/- /(}) . Thus/ is one-one, as asserted. But that contradicts the pigeonhole principle. Therefore, 
Q(m) must in fact be true . Since our proof applies to every m, we have shown (Vn)Q(n) .  

0 .6-23 We present yet a fourth principle that is equivalent to mathematical induction. The least-element principle says that every nonempty set of natural numbers has a least element, i .e . ,  if 0 C A � N then 
(::lf) [f E A  A (Vx) [x E A ⇒  f _::; x] ] . (a) Using mathematical induction, prove the least-element principle. (6) Using the least-element principle, prove the induction principle. 

0 . 6 . 3  Recu rs ive Defi n it ions  Often i t  i s  convenient to define concepts recursively. 
EXAMPLE 0.4 7. Let us fix an alphabet I: and define strings by the following two rules: 
Rule 1 :  A is a string. 
Rule 2:  If s is a string and c E I:, then cs is a string. 

An object is a string if and only if it can be proved to be a string by using rule 1 and rule 2 some number of times. For example, let us take I: = { a, b} ;  then abab can be shown to be a string by applying rule 1 once and then applying rule 2 four times. A third rule is implicit in the definition of strings given above: Nothing is a string unless it can be proved to be a string by rules 1 and 2. For this reason, the set of all strings is the least set of objects that satisfies rules 1 and 2. This kind of rule is implicit in all recursive definitions and is rarely stated explicitly. ■ ■ ■ 



EXAMPLE 0.48. Here is  another recursive definition: 

Rule 1 :  A is a pal. 
Rule 2: If c E I:, then c is a pal. 
Rule 3:  If x is a pal and c E I:, then cxc is a pal. 

0.6 Induction 6 1  

For example, abba is shown to be a pal by applying rule 1 and then 
applying rule 3 twice; abbba is shown to be a pal by applying rule 2 and 
then applying rule 3 twice. ■ ■ ■ 

Theorems about recursively defined objects can often be proved by an 
induction that mimics the recursive definition. 

EXAMPLE 0.49. Let us prove that if x is a pal then x = x R . The proof is 
by induction on the number of times a rule is applied in order to show that 
x is a pal. (We call this kind of induction structural.) 

Inductive hypothesis: If x can be shown to be a pal by k applications 
of rules 1-3, then x = x R . 

Base case: k = 0. No string x can be shown to be a pal without 
applying a rule at least once, so the base case is vacuously true. 

Inductive case: k � 1 .  Rule 1 ,  2, or 3 is the last one applied in showing 
that x is a pal. If rule 1 or 2 is the last one applied, then x = A or x is a single 
character, so x = x R as desired. Otherwise rule 3 is the last rule applied. So 
x = eye where y is shown to be a pal by k - 1 applications of the rules. By 
the inductive hypothesis y = y R . Therefore xR = (eye) R = ey Rc = eye =  x, 
completing the inductive case. ■ ■ ■  

Trees are structures with numerous uses in computer science. Trees have 
the following properties: Every tree contains a finite set of nodes, which are 
abstract objects that we will not define, like points or vertices . Exactly one 
node of the tree is called its root. Every node in the tree has a sequence of 
0 or more children, which are nodes in the tree. Every node other than the 
root has a unique parent, which is a node in the tree. Children and parents 
satisfy the following relationship: c is a child of p iff p is the parent of c. In 
addition, if we connect each child to its parent by an edge, then there is a 
unique path from each node to the root. You can think of a tree as the family 



62 Mathematical Pre l im i naries 

FIGURE 0. 1 0: A tree. The root is R.  The leaves are L 1 , • . •  , L1 1 . The internal 
nodes are R, I 1 , • . •  , / 5 • 

tree of an organism that reproduces asexually, such as the amoeba. You can 
think of the unique path from a node to the root as the node's lineage. 

Trees are usually depicted as in Figure 0 . 10 .  Nodes are drawn as points. 
The topmost node in the diagram is the root of the tree. n Parents are 
connected to their children by edges, with the parent at the top of the 
edge and the child at the bottom. The children are ordered left to right. 
Some nodes have no children; they are called leaves. The tree in Figure 0 . 1 0  
contains 1 7  nodes . R is the root. R's children are / 1 , L3 , 12 , and /4 , in that 
order. 1 1 's children are L 1 and L2 , in that order. The parent of /3 is 12 • 

The nodes labeled L 1 , . . .  , L 1 1  are leaves. The non-leaves are called internal 
nodes; in this example, the internal nodes are labeled R ,  1 1 , • • •  , 15 . 

EXAMPLE 0. 50. We can also define trees recursively. This recursive defi
nition will provide a useful structure for inductive proofs. 

Rule 1: If N is a node, then there is a tree whose only node is N. N is the 
tree's root. N has no parent and no children. 

13 Beware: Mathematicians draw their trees upside-down. 



0.6 Induction 63 

FIGURE 0. 1 1 :  A recursively defined tree. The root is N. The subtrees' roots 
are Nt , . . . , N, .  

Rule 2: Let N be a node. Let T1 , . . .  , Tk be trees containing disjoint sets of 
nodes. Let N1 , • • • , Nk be the roots of T1 , • • • , Tk , respectively. Then 
there is a tree whose nodes are N and all the nodes of T1 , . . .  , Tk . We 
call this tree T. T's root is N. N has no parent, and the children of N 
are N1 , . . .  , Nk , in that order. The parent of Ni is N for i = 1 ,  . . .  , k. 
Other than that, the parents and children of nodes in T are the same 
as in T1 , . . .  , Tk , which are called the subtrees of T. 

Rule 2 is illustrated in Figure 0. 1 1 . ■ ■ ■  

Two nodes in a tree are called adjacent if either one is the parent of the 
other. In Figure 0. 1 1 ,  N is adjacent to N1 , but N 1 is not adjacent to N2 .  

EXAMPLE 0.5 1 .  Let us prove by structural induction that every tree can be 
colored with two colors so that adjacent nodes are colored differently. In 
fact, we will prove something slightly stronger. 

Inductive hypothesis: Let T be a tree produced by applying rules 1 
and 2 at most k times. Then T can be colored with two colors so that the 
root has any desired color and adjacent nodes are colored differently. 

Base case: k = 0. The base case is vacuous , as in Example 0.49. 
Inductive case: k 2:: 1 .  If rule 1 is the last rule applied in producing 

T, then T is a single node, which can be colored any desired color. 



64 Mathematical Pre l im inaries 

Otherwise, rule 2 is the last rule applied. Let N denote the root of T, 
and let T1 , . . .  , Tk be the subtrees of the root. Color N the desired color, 
say "white" for concreteness. Call the other color "black" for concreteness. 
By the inductive hypothesis each of T's subtrees may be colored with two 
colors so that the root is colored "black" and adjacent nodes have different 
colors. This yields a coloring of T with two colors so that the root is colored 
the desired color and adjacent nodes have different colors. This completes 
the proof by structural induction. 

Note: Since the base case (k = 0) is always vacuous in a structural 
induction, it is quite common to take k = 1 for the base case. ■ ■ ■ 

Exe rc i ses 

0.6-23 Fix an  alphabet I: and let x be a string over I:.  Prove that if  x = xR 

then x is a pal. Hint: Prove it by induction on the length of x. 
Conclude that the set of all pals is equal to the set of all palindromes. 

0.6-24 For the purposes of this exercise, a tree is called prolific if every 
internal node has at least two children. 

(a) Give a recursive definition of prolific trees. 

(6) Prove that the number of leaves in a prolific tree is greater 
than the number of internal nodes. 

0.6-25 A tree is called a binary tree if every internal node has exactly two 
children. 

(a) Give a recursive definition of binary trees. 

(6) Prove that the number of leaves in a binary tree is exactly one 
greater than the number of internal nodes. 

(c) Prove that every binary tree contains an odd number of nodes. 

(d) Prove that the number of leaves in a binary tree is equal to 
(n + 1 ) /2, where n is the number of nodes. 

0.6-26 The depth of a node in a tree is its distance from the root, i.e . ,  the 
number of edges on the unique path from the node to the root. A 



0.6 Induction 65  

binary tree (see Exercise 0.6-25) is called full if every leaf has the 
same depth. Let T be a full binary tree in which each leaf has depth d. 

(a) Prove that the number of leaves in T is 2d. 
(6) Prove that the number of nodes in T is 2d+i  - 1 .  

0.6-27 Descendants are defined recursively. A node m is a descendant of a 
node n if m = n or m is a descendant of a child of n. The height of 
a node n in a tree is the distance from n to its deepest descendant. 
The height of a tree is the height of its root. 

(a) Restate the recursive definition of descendants using two rules 
(see the recursive definitions of strings, pals, and trees for ex
amples). 

(6) Suppose that the nodes of a binary tree are colored red, yellow, 
blue, orange, green, and violet. Let n be a node such that 
there are 33  leaves that are descendants of n. Prove that there 
are two nodes a and b such that a is a descendant of b, b is a 
descendant of n, and a and b have the same color. Hint: Use 
the pigeonhole principle. 

Solution: Let T be the subtree whose root is n. If the height 
of T were 5 or less, then T would contain 32 leaves or fewer, 
by Exercise 0.6-26. Therefore the height of T is at least 6. 
Let c be the deepest descendant of n, so the path from n to c 
contains at least 6 edges. Then the path from n to c contains at 
least 7 nodes. But there are only 6 colors. By the pigeonhole 
principle, two of the nodes on this path have the same color. 
Let a be the deeper one, and let b be the other. Then a is a 
descendant of b; a and b are descendants of n. 

0.6-28 Show how to restate any proof by structural induction on trees as a 
proof by strong induction on 

(a) the number of nodes in a tree. 
(6) the height of a tree. 

*0.6-29 Infinite trees. An infinite tree consists of an infinite set of nodes, 
a root node R, and a partial function p( · )  on the set of nodes such 
that p(R) is undefined and for every node N -=/- R there exists i such 
that pi ( N) = R. That is, p(  · ) is the parent function, the root has no 
parent , and every node has a unique lineage from the root. A tree is 



66 Mathematical Preliminaries 

finite-branching if each node has finitely many children, i.e.,p is finite
to-one. An infinite branch in a tree T is a sequence (( v1 , v2 , • • •  )) such 
that v1 = R and, for all i, v; belongs to T and v; is the parent of V;+ 1 , 
i.e. , v; = p(vi+i ) -

The following result is called Kiinig's tree lemma or Kb'nig's compactness lemma: Let T be a finite-branching, infinite tree. Prove that 
T contains an infinite branch. Hint: Construct the infinite b:anch 
i terati vel y. 

Solution: If v is a node in T, let T(v) denote the subtree rooted at 
v. We define an infinite branch in T as follows : 

i := l ;  
v1 : =  the root of T; 
while true do begin 

end; 

(* assertion: T( v;) is infinite * ) 
let v;+ 1 be a child of vi such that T ( v;+ 1 ) is infinite; 
i := i + l ; 

We prove by induction on i that ( 1 )  vi is well-defined and (2) the 
assertion is true for i. Base case: v1 is well-defined and T( vi ) = T, 
which is infinite. Assume the two statements are true for i. The 
choice of v;+ 1 is possible, because if every child of vi were the root of 
a finite tree, then vi itself would be the root of a finite tree, contra
dicting the assertion for i. Because vi+ 1 is chosen so that T( v;+ 1 ) is 
infinite, the assertion is true for i + 1. This completes the inductive 
proof. By construction ((v1 , v2 , . . • )) is an infinite branch in T. 



1 

Introduction to 

Machines 

THE MOST FUNDAMENTAL question in  
theoretical computer science concerns computability : What problems can 
computers solve ? Once we have determined that a particular problem indeed 
can be solved on a computer, the next natural question concerns complexity: 
How efficiently can computers solve it? 

Although there are many approaches to answering these two questions, 
much of our understanding of the capabilities of computers arises from 

67 



68 Introduction to Mach ines 

reasoning about the capabilities of computers with limited storage devices, such as finite memories, counters, stacks, and certain kinds of tapes. In this chapter, we will informally describe some of the most important storage devices and present examples of programs that run on machines using those devices. Precise mathematical definitions of "device,"  "program," and "machine" are, however, postponed until Chapter 2 .  
1 . 1 PROGRAMS 

We introduce programs by way of three examples. 
EXAMPLE 1 . 1 .  Recall that a string x is a palindrome if x reads the same forwards as backwards, i .e . ,  if x = x R . Let us consider a special kind of palindrome, namely, strings of the form w#w R where w is a string of a's and b's and # is a particular character. Such palindromes are called palindromes 
with central marker. The following is an algorithm that recognizes palindromes with central marker: 
Phase 1 :  Read characters of x and store them in the order read until a # is read, but don't store the #. 
Phase 2 :  Read the remaining characters of x and compare them to the characters stored in Phase 1 in reverse order. If a mismatch is detected or if a different number of characters are read than were stored in Phase 1 ,  then indicate that x is not a palindrome with central marker. Otherwise, indicate that x is a palindrome with central marker. 

The algorithm can be implemented as a program for a machine that has an input device and a last-in-first-out storage device, called a stack, which we describe by the following metaphor: In a certain cafeteria, trays are stored on a spring that is designed to make the topmost tray accessible, while keeping the others hidden. This cafeteria is rather upscale, and it uses trays of several different colors. The pattern of tray colors on the spring can encode useful information. We can add a tray of a particular color to the top of the pile or remove the tray from the top of the pile if it has the color we 



1 . 1 Programs 69 

want. We can test visually whether the pile is empty. Such a pile of trays is informally called a stack. Adding a tray of a particular color c to the stack is called "pushing" it and is denoted by PUSHc. Removing a tray of a particular color c from the stack is called "popping" it and is denoted by PO Pc. Suppose for concreteness that the trays are colored aqua, burgundy, and chartreuse. We could abbreviate aqua by a, burgundy by b, and chartreuse by c .  If the stack has an aqua tray at the bottom, then two chartreuse trays, another aqua tray, and finally a burgundy tray at the top, we could represent the stack's contents by the string ace ab. If we apply the operation POPb to this string, we obtain the string ac ca. We could not, however, apply the operation POPa to the string ace ab because that would be like trying to remove an aqua tray when the top one is burgundy. If we apply the operation PUSH c to the string acca, we obtain the string accac. The program that recognizes palindromes is presented graphically in Figure 1 . 1 .  The nodes labeled 1 and 2 correspond to phases 1 and 2,  respectively, of the algorithm. Nodes 3 and 4 ,  respectively, indicate that x is or is not a palindrome with central marker. Nodes are formally called control states; node 3 is called an accepting control state, and node 4 is called a rejecting control state. The set of all control states is called the control set. If the program stops in control state 3 we say that it accepts x, and if it stops in control state 4 we say that it rejects x. An edge indicates a transition from one phase to another, and the label on an edge indicates the operations performed on the input device and the stack simultaneously with the transition. 1 A slash (/) inside a label separates the input operation from the stack operation. When there is more than one label on a single edge, any one of them may specify the operations to be performed on the input device and the stack simultaneously with the transition (the program does not perform the operations specified by all the labels). Thus, an edge with several labels is a shorthand for several parallel edges, each with a single one of the labels .  The operation SCAN a removes an a from the input; i .e . ,  an edge labeled SCANa maps the input string ax to x, and the edge cannot be followed 
1 Our diagrams are not the same as conventional flowcharts. For example, we always 

label edges, rather than nodes, with operations. 



70 I ntroduction to Machi nes 

FIGURE 1 . 1 :  A program char recognizes palindromes wich central marker. 

except when the next input character is an a. Informally, SCAN a can be expressed as 
ax --+ x, 

where it is understood that the relation holds for all strings x over { a, b} .  Analogously, the operation SCANb removes a b from the input; i .e . ,  an edge labeled SCANb maps the input string bx to x, and the edge cannot be followed except when the next input character is a b. Informally, SCANb can be expressed as 
bx --+ x, 

where it is understood that the relation holds for all strings x over { a, b} .  



1 . 1 Prog ram s  7 1  

The operation EOF tests whether the input string has been scanned com
pletely; i .e . ,  an edge labeled EOF does not alter the input string, but it can 
be followed only when the input string has been exhausted. More precisely, 
the operation EOF maps the input string A to A and is undefined on other 
input strings. Informally, EOF can be expressed as 

A -----+ A, 

where it is understood that the relation holds for only this one pair. 
Because SCAN a, SCANb, and EOF are partial functions, it may be help

ful to think of them as having preconditions and actions. The precondition 
for SCAN a is that the next input character be an a; the action of SCAN a 
is to remove that a from the input. The precondition for SCANb is that 
the next input character be a b; the action of SCANb is to remove that b 
from the input . The precondition for EOF is that the input be empty; EOF 
performs no action. 

It is important to distinguish our SCANc and EOF operations from 
the input operations commonly encountered in real-world programming 
languages . For example, in Pascal read( ch) removes a character from the 
input and stores it in the variable parameter called ch. In contrast, our 
SCANa removes the fixed character a from the input and does not store it 
anywhere. If the input does not start with an a, then an edge labeled SCAN a 
simply cannot be followed; the program has to follow a different edge or 
stop. For motivation, one may imagine that the first character of the input 
is always "visible" to the program; in that sense, the SCAN a operation is 
equivalent to 

if the next input character is an a then it is OK to begin 
read forward to the next input character; 
follow this edge; 

end else 
do not follow this edge; 

Pascal's eof is a Boolean function that returns the value true iff the 
input has been exhausted. In contrast, our EOF operation does not return 
a Boolean value. An edge labeled EOF simply cannot be followed unless 
the input has been exhausted; if some input characters have not yet been 



72 Introduction to Mach ines 

scanned, the program must follow a different edge or stop. The effect of 
E0F can be viewed as 

if there is no next input character then it is OK to 
follow this edge 

else 
do not follow this edge 

The operation PUSHa has no precondition; its action is to append an 
a to the string stored in the stack (the end appended to is conventionally 
called the top of the stack). Ordinarily, we append characters to the right 
end of a string, so the top of the stack is the right end of the string it holds. 
(We could just as well make the top of the stack the left end of the string 
it holds; this has no bearing on our convention of scanning the input string 
from left to right, which is firmly rooted in Western tradition.)  Formally, 
the operation PUSII a maps the stack contents s to sa. Informally, PUSH a 
can be expressed as 

s ---+ sa, 

where it is understood that the relation holds for every string s over { a, b} .  
The precondition for the operation P0Pa i s  that there be an a on the 

top of the stack (an edge labeled with POP a cannot be followed unless there 
is an a at the top of the stack); its action is to remove an a from the top of 
the stack. Formally, the operation P0Pa maps the stack contents sa to s. 
Informally, POP a can be expressed as 

sa ---+ s ,  

where it is understood that the relation holds for every string s over { a, b } .  
The precondition for the operation EMPTY i s  that the stack be empty; 

it performs no action. Informally, EMPTY tests whether the stack is empty; 
its practical effect is to prevent following an edge unless the stack is empty. 
Formally, the operation EMPTY maps the stack contents A to A. Informally, 
EMPTY can be expressed as 

A ---+  A ,  

where i t  is understood that the relation holds for only this one pair. 



l . l Programs 73 

Note that the labels on the edges enforce the following behaviors: In 
Phase 1 the same character that is read is pushed onto the stack. In Phase 2 
the same character that is read is popped off of the stack. A transition 
from Phase 1 to Phase 2 is possible only when the character # is read. The 
accepting node is not reached unless the entire input has been read and the 
stack is empty. 

Consider the behavior of this program on input abb#bab. During 
Phase 1 ,  it will successively push the characters a, b, and b onto the top 
of the stack, so the stack holds the string abb. When the # is scanned, 
the program will enter Phase 2. Next, b is scanned and popped from the 
stack, leaving ab on the stack. When a is then scanned, a mismatch is 
detected and the program enters phase 4,  rejecting abb#bab, which is not 
a palindrome. 

The program in Figure 1 . 1  is called a recognizer for the language con
sisting of all palindromes with central marker, because it accepts all strings 
that are in the language and rejects all strings that are not in the language. 
In Figure 1 . 2  we present a simpler program with similar behavior: If the 
input x is a palindrome with central marker, then the program accepts x, 
but if x is not a palindrome with central marker, then the program at some 
time becomes unable to proceed and does not accept x. Such a program is 
called an acceptor for the set of palindromes with central marker. 

Consider the behavior of the acceptor on input abb#bab. It behaves 
the same as the recognizer, until the second a is reached . Since it is nor 

FIGURE 1 .2 :  A program char accepts palindromes wirh central marker. 



74 I ntroduction to Mach i nes 
possible to scan a b  or pop an a, neither edge can be followed, so the program cannot proceed. (When a program is in  a nonfinal control state but is unable to proceed, we say that the program is blocked. ) Thus the nonpalindrome abb#bab is not accepted. ■ ■ ■ 
EXAMPLE 1 .2.  Next we consider a simple kind of arithmetic calculation. The input is a sequence of monadic numbers separated by plus signs and minus signs, for example 1 1 1 - 1 1 1 1 1+ 1 1 1 1- 1 1 1 1 1 1. The output is a single signed monadic number representing the result of performing the indicated additions and subtractions. For the sample input above, the output is - 1 1 1 1. An algorithm for performing this calculation is as follows: Set the variable total equal to the first number in the input. Each time a +  is seen, add the next number to total. Each time a - is seen, subtract the next number from total. Finally, print out the value of total. This algorithm can be implemented as a program for a machine with an input device, an output device, and a signed counter, as shown in Figure 1 .3.  Slashes inside 

FIGU RE 1 .3 :  A program for monadic addition and subtraction. 



1 . 1  Programs 75 

labels separate operations on the different devices-in this case, the input, 
the output, and the counter. 

A signed counter holds a single integer, which we call its state or its 
value. The operation INC (short for "increment") adds 1 to the state of 
the counter; the operation DEC (short for "decrement") subtracts 1. The 
operation ZERO maps the counter's state from O to O ;  that is, it can be 
performed if the counter's state is zero. Similarly the operation POS can be 
performed if the counter's state is positive, and the operation NEG can be 
performed if it is negative. 

We call operations like ZERO,  POS, and NEG tests because they examine 
the counter's state but do not change it. Our usage of the word "test" 
is analogous to the usage in traditional programming languages, but not 
identical. In traditional usage, a test selects among two or more courses of 
action; in our usage, a test permits a single course of action, though there 
may be alternatives permitted by other tests. 

The program adds by counting up by ls ;  it subtracts by counting down 
by ls. Addition is performed while in the control state labeled +, and 
subtraction is performed while in the control state labeled -. The counter's 
state, when the input is exhausted, is equal to the value to be written on the 
output device. If the counter's state is positive, we decrement and print 1 
until the counter's state reaches zero. If the counter's state is negative we 
print a minus sign, and then we increment and print 1 until the counter's 
state reaches zero. If the counter's state is zero we print nothing. ■ ■ ■ 

EXAMPLE 1 .3. A very practical problem is to determine where a pattern 
string p occurs as a substring of a text string x. For example, most text 
editors have some facility that permits searching for a word in a file. Recall 
that p is a substring of x if there exist (possibly empty) strings u and w such 
that upw = x. 

For simplicity, we consider the related problem of determining, for a 
fixed pattern p, whether p is a substring of the input text x. We present an 
algorithm that solves this problem roughly as follows: We let y denote the 
prefix of the input that we have scanned so far. A partial match is a suffix 
of y that is also a prefix of p. We let q denote the longest partial match. It 
turns out that the only datum we need to keep track of is q, and that it is 
rather easy to update q when another input character is read. 



76 I ntroduction to Machines 

p ababb 

q abab 

qa ababa 

FIGURE 1 .4: Determining the longest suffix of ababa that is a prefix of ababb. 

For example, let p = ababb and let x = babababba. Suppose that we 
have read 5 characters of x so that y = babab. Then q = abab, the longest 
prefix of p that matches the characters most recently read. 

Let us describe the algorithm more precisely: Initially q and y are both 
the empty string. At the start of the loop, if q = p then we accept. 
Otherwise, if y = x then we stop. Otherwise, we read the next character c 
from the input and set y = ye. The new value of q is the longest suffix of qc 
that is a prefix of p. Now we go back to the start of the loop. The proof of 
the algorithm's correctness is left as an exercise. 

Continuing our example, suppose that we read the sixth character of x, 
which is a. Now qa = ababa, so aba is the longest prefix of p that is also 
a suffix of qa (Figure 1.4), and therefore q becomes aba. When we read the 
seventh and eighth characters of x, q takes successively the values abab and 
ababb; since the latter is equal to p, a complete match is detected. 

Because p is fixed, this algorithm can be implemented as a program for 
a machine with only an input device and a finite number of control states. 
The program has one control state for each possible value of q, i .e. , for each 
prefix of p, and a single accepting control state. One edge exits each of those 
control states for each character in the input alphabet; a single additional 
edge leads to the accepting control state. Since p has exactly IP I + 1 prefixes, 
the resulting program has IP I + 2 control states and ( IP I + 1) I I: I + 1 edges, 
where I: is the input alphabet. 

In Figure 1.5, we present a program that accepts exactly those strings 
containing the pattern p = ababb . Observe that the edges going from 
control state ababb ensure that the entire input string is scanned before 



FIGURE 1 . 5 :  A paccern-matching program with p = ababb. Each control state 
corresponds co a partial match. After a complete match is found (state ababb), the 
remainder of the input is scanned and ignored. For brevity, we have written a for 
SCANa and b for SCANb; we have also omitted the state name from a node. These 
space-saving conventions may be used in diagrams when no confusion is possible. 

" .... 
0 

lC 
iiJ 
3 
VI 

-...J 
-...J 



78 I ntrod uction to Mach ines  

the program accepts it. We will almost always require that programs scan 
the entire input before accepting. ■ ■ ■ 

Exerc i ses  

1 . 1 - 1  A queue (pronounced like the letter "q") i s  a storage device that 
can hold a string. Its operations are ENQUEUEe and DEQUEUEe, 
for each character e in some alphabet, and EMPTY. The operation 
ENQUEUEe appends a e to (the right end of) the queue's contents, 
mapping x to xe, and the operation DEQUEUEe removes a e from 
the left end of the queue's contents, mapping ex to x. The operation 
EMPTY tests whether the queue holds the empty string. Design 
a program, for a machine with an input device and a queue, that 
accepts exactly those strings of the form w#w for some string w over 
the alphabet { 0 ,  1 } .  

1 . 1 -2 Design a program for a machine with an input device, an output de
vice , and a stack that performs the monadic addition and subtraction 
calculations described in this section. 

1 . 1 -3 Design a program for a machine with only an input device that 
accepts exactly those strings containing the substring abbabbab. 
Use only 1 0  control states. 

1 . 1 -4 Design a program for a machine with only an input device that 
accepts exactly those strings containing the substring ababb or 
baaa. Use only 1 0  control states. 

Solution: The program is given in Figure 1 . 6.  

1 . 1 -5 In parts (c) and (d) "the algorithm" refers to the pattern-matching 
algorithm described in this section for pattern p. 

(a) Prove that if p is a substring of x, then there exists y such that 
y is a prefix of x and p is a suffix of y. 

(b) Suppose that q is  the longest suffix of y that is a prefix of p. ( 1 )  
Prove that p is a suffix of y iff q = p .  (2) Prove that the longest 
suffix of qe that is a prefix of p is also the longest suffix of ye 
that is a prefix of p. 



FIGURE 1 .6:  A program char accepts exaccly chose strings containing che substring ababb or baaa. 
""CJ 
0 

\0 ..., � 
3 
V, 

" 
'-0 



80 Introd uction to Mach ines  

(c) Prove that if p is a substring of x, then the algorithm will 
accept input x. 

(d) Prove that if p is not a substring of x, then the algorithm will 
not accept input x. 

1 . 2 CONTROLS 

In this section we will see some of the things that machines can do with 
very little memory. Although we did not mention it explicitly before, the 
control state of a program is actually stored in a device called the control. 
This control is the weakest of storage devices, but it is useful, because its 
value limits the action of the program to a very small number of choices 
at each step. Without it, programs would run out of control. A control 
can be thought of as a finite memory, which holds a bounded amount of 
information. We have seen that even this very limited memory device can 
be applied to real problems like pattern matching. 

With a control, we associate a finite set of states Q = { q 1 , . • .  , qk} .  
When we represent a program as a digraph, the control states are represented 
by the nodes. For each pair of control states q; , q1 there is an operation q; ---+ q1 
that maps control state q; to q1 ; it is not applicable when the control state 
is different from q; . The operations on the control are represented by the 
edges in the program digraph. 

As storage devices go, a control is not very powerful. A counter can 
hold any integer, and a stack can hold any string over its stack alphabet; for 
both devices the set of possible states is infinite. In contrast, a control is a 
finite memory; it can hold only an element of its finite set Q.  

A machine whose only devices are input, output, and a control is called 
a.finite machine (FM, for short) .2 While severely limited in capability, finite 
machine programs can solve some important problems, such as pattern 
matching (Figure 1 . 5) .  In that example, the control holds a prefix of the 
pattern. In general, we can write programs that use the control in order to 
hold a bounded amount of information. 

2 Historically, finite machines have been called "finite state machines" (FSMs) or "fi
nite automata" (FA). We think that the term "finite machine" is more concise and 
unpretentious. 



FIGURE 1 .  7: An FM program that accepts the language 
{awa : a E { 0 , 1 } ,  w E {0 , 1 } * }  U {0 , 1 } .  

1 . 2 Contro ls  8 1  

EXAMPLE 1 .4. A control can hold a pair of characters. Thus, by keeping 
track of the first character and the most recent character scanned, a finite 
machine program can test whether its input string begins and ends with 
the same character (Figure 1 .  7) .  ■ ■ ■ 

EXAMPLE 1 .5. A control can also hold a single integer in the finite range 
O, . . .  , m - 1 .  Because this makes it possible to count modulo m, a finite 
machine program can test whether the number of characters in its input is 
a multiple of m (Figure 1 . 8). ■ ■ ■ 

Exerc i ses  

1 .2- 1 Design an FM program that accepts exactly those smogs over 
{ 0, 1 }  * containing an odd number of 1s .  

1 .2-2 Design an FM program that accepts exactly those strings over 
{ 0, 1 }  * containing a number of 1s that is congruent to 2 or 4 
modulo 7 . 



82 I ntroduction to Mach ines 

FIGURE 1 .8 :  An FM program that accepts the language { w E { 0 , 1 } * 
/w/ = 1 (mod 5 ) } .  

1 .3  UNSIGNED COUNTERS 

In this section we will see some things that machines can do if we give them a little more memory. Except for the control , the weakest storage device we consider is the unsigned counter. We will see that a machine with a counter can solve real-world problems like checking whether parentheses balance properly. An unsigned counter can hold any nonnegative integer. The operations on the unsigned counter are INC, DEC, ZERO ,  and NONZERO .  The increment operation (INC) adds 1 to the counter's value. The decrement operation (DEC) subtracts 1 ;  it is applicable only if the counter value is 1 or greater. The operation ZERO tests whether the counter value is 0; i . e . ,  the operation does not affect the counter's value, and an edge labeled ZERO can only be followed when the counter holds the value 0. The operation NONZERO tests whether the counter value is different from 0 (i .e . , whether the counter holds a positive integer); the operation does not affect the counter's value, and an edge labeled NONZERO can only be followed when the counter holds a value different from 0.  Notice that we allow very limited access to a counter's value. We can directly test only whether the value is 0 or not . For example, there is no 



l . 3  Uns igned Counters 83  

operation that tests whether the counter holds the number 5 or whether the 
third bit from the left in its binary representation is a O (though we could 
write a program to determine the former-Exercise 1 . 3-9). A metaphor for 
this kind of counter exists in certain cafeterias that cannot afford multicol
ored trays . Identical trays are stored on a spring that is designed to make 
the topmost tray accessible while keeping any others hidden. Because the 
trays are identical, the only information stored in this way is the size of the 
pile. A tray may be added to the pile (INC) or removed from the pile if there 
are any left (DEC). One can visually determine whether there are any trays 
on the pile (NONZERO) or whether there are none (ZERO). 

Remember that an edge can be followed only if all the operations la
beling it can be performed. Thus an edge labeled DEC cannot be followed 
unless the counter holds a positive integer. If the counter holds 0, then the 
program must follow some other edge or stop. 

A machine with a control and an unsigned counter is called an unsigned 
counter machine (UCM, for short). (Input and output (I/0) devices are storage 
devices because they hold strings, but the capabilities of a machine are 
usually dictated by its non-I/0 devices. For that reason, we characterize 
a machine by its collection of non-I/0 devices. For the remainder of this 
chapter, assume that all machines have input and output devices when 
necessary, though we may not say so explicitly.) 

EXAMPLE 1 .6. A program using a counter can determine whether the input 
is a string of a's followed by an equal number of b 's (Figure 1 .9). ■ ■ ■ 

FIGURE 1 .9: A UCM program that accepts { anbn : n 2 1 } .  



84 Introduction to Mach ines 

FIGURE 1 . 1 0: A UCM program that accepts { a"b2n : n :::: 1 }. 

EXAMPLE 1 . 7. To determine whether a string is of the form anb2n , i.e. , a 
string of a's followed by twice as many b's , we count each a twice and each 
b once, as shown in Figure 1 .10. This program counts up twice as fast as it 
counts down. ■ ■ ■  

When we write arithmetic expressions like (7 + 2) ( 6 + (3  + 1) ( 4 + 5) ), 
we use parentheses to force certain operations to be performed first. A se
quence of parentheses that could be used in a well-formed arithmetic expres
sion is called balanced. In the example above, the sequence of parentheses is 
( )  ( ( )  ( ) ) .  By way of definition, we say that a string is balanced if it has 
one of the following three forms: 

• A, 

■ (w) , where w is balanced, or 

• wx, where w and x are both nonempty and balanced. 

The set consisting of all balanced strings of parentheses is called L o .  
The following proposition is the key to designing a UCM program that 
tests whether its input belongs to L o .  



1 . 3 Unsigned Counters 8 5  

FIGURE 1 .  1 1  : A UCM program char accepts 
{ w : w is a balanced sequence of parenrheses} .  

PROPOSITION 1 .8. w is a balanced string of parentheses if and only if 

• w contains equal numbers of ( 's and ) 's, and 

• every prefix of w contains at least as many ( 's as ) 's. 

The proof of this proposition is left as an exercise. • 
EXAMPLE 1 .9. By counting the number of ( 's minus the number of ) 's, a 
UCM can determine whether its input is a balanced string of parentheses 
(Figure 1 . 1 1 ) .  This program really exploits the fact that the counter value 
cannot become negative. Notice that if a prefix of the input contains more ) 's 
than C 's, then the program becomes blocked, and so i t  does not accept. ■ ■ ■ 

Exerc i ses 

1 . 3 - 1  For each unsigned counter operation, give its precondition and its 
action. 

1 . 3-2 Design a UCM program that accepts { anba" : n 2: 0}. 

l .  3-3 Design a UCM program that accepts { a"b" amb111 
: m > 0 and 

n 2: o} . 

1 . 3-4 Design a UCM program that accepts { a2"b3" :  n 2: O} .  



86 Int roduction to Mach ines  

1 .3-5 Design a UCM program that recognizes L o . 

*+ 1 . 3-6 Design a UCM program that accepts the set of strings over { a, b} 
that contain the same number of a's as b's . 

1 . 3-7 Design another UCM program that accepts { anb2n n > O} by 
counting each a once and each pair of b's once. 

* 1 . 3-8 Prove Proposition 1 .8 .  

1 . 3-9 In this exercise we will consider a UCM that starts with a number 
stored in its counter. Write a program that stops in an accepting 
control state if that number is 5 ,  but never reaches an accepting 
control state if that number is different from 5 .  

1 .4  S IG N ED COU NTERS 

Now let us see what we can do with a counter that can hold negative values, 
which we call a signed cotmter. Some problems are easier to solve using a 
signed counter, though we will see in Chapter 3 that any problem solvable 
with a signed counter can be solved with an unsigned counter via a slightly 
more complicated program. 

A signed counter can hold any integer. Its operations are INC,  DEC, 
ZERO, POS, and NEG. The operations INC and DEC, respectively, add and 
subtract 1 from the counter's value; the operations Z ERO, POS, and NEG, 
respectively, test whether the counter's value is 0, positive, or negative. A 
machine with a control and a signed counter is called a signed counter machine 
(SCM, for short). 

EXAMPLE 1 . 1 O. Since the counter is allowed to contain negative values, 
it is easy to design an SCM program that determines whether its input 
contains an equal number of a's and b's (Figure 1 . 1 2). ■ ■ ■ 

It is also possible to program a UCM to solve the problem in the pre
ceding example (Exercise 1 . 3-6), though the solution is not as easy. In fact, 
in Chapter 3 ,  we will see that a UCM can solve any problem that an SCM 
can solve, and vice versa. 



l . S Stacks 87 

FIGURE 1 .  1 2 :  An SCM program chat accepts { w : w contains an equal number 
of a's and b's} .  

Exerc ises 

1 .4-1  Suppose that the program of Figure 1 . 1 1  is  run on an SCM. What 
language does the program accept then? 

1 .4-2 Design an SCM program that accepts exactly those strings contain
ing more a's than b 's. 

1 .4-3 Design an SCM program that accepts exactly those strings contain
ing twice as many a's as b's. 

1 .4-4 Design an SCM program that accepts exactly those strings contain
ing two-thirds as many a's as b's .  

1 .4-5 Design an SCM program that accepts Lo . 

1 . 5 STACKS 

In general, a stack uses a finite alphabet f. The stack can hold any string 
over r. For each character c belonging to r, the stack operation PUSHc 
pushes c onto the stack (maps x to xc), and the operation PO Pc pops c off the 
stack provided that the top character is in fact a c (maps xc to x). The stack 
operation EMPTY tests whether the stack holds the empty string (maps A 



88 Introd uction to  Machines 

FIGURE 1 . 1 3 : A stack machine program that accepts { w w is a balanced 
sequence of parentheses and brackets} .  

to  A). A machine with a control and a stack i s  called a stack machine (SM, 
for short).3 

Remember that an edge can be followed only if all the operations la
beling it can be performed . Thus an edge labeled POPc cannot be followed 
unless the top stack character is in fact a c. If the top of stack is some other 
character or if the stack is empty, then the program must follow some other 
edge or else stop. 

A sequence of parentheses ( )  and brackets [ ] is balanced if it has one 
of the following forms: 

• A, 

• (w) or [w] where w is balanced, or 

■ wx where w and x are both nonempty and balanced. 

EXAMPLE 1 . 1 1 . The set consisting of all balanced strings of parentheses 
and brackets is called Lo [ J . In Figure 1 . 1 3 is a stack machine program 
that determines whether its input belongs to Lo [ J . ■ ■ ■ 

3 Other authors have defined stacks slightly differently, e.g., allowing several characters 
to be pushed at once. However, our stacks are computationally equivalent to theirs. 



Exerc i ses  

1 .6 Two-Counter Mach ines 89 

1. 5 - 1  Design a stack machine program that accepts { anb"'a"'bn 

m > 0 and n ?". o}. 

1 .6  TWO-COU NTER MACH I N ES 

A 2-UCM (two-unsigned counter machine) has a control and two unsigned 
counters. It can use each of its counters independently in order to keep track 
of two numbers (Figure 1 . 14). The subscripts on the counter operations 
indicate which counter is affected. 

Exerc ises 

1.6- 1 Construct a 2-UCM program that accepts 
(a) { anbncn : n ?". 1 }  

(b) { anbncndn : n ?". 1}  

* * (  c) { w#w : w E { a, b} * } . Hint: I f  the input i s  x#y, the first 
counter should hold 2dyadic(x) 3dyadic(y) . 

1 .6-2 A 2-stack machine has a control and two stacks. Construct a 2-stack 
machine program that 

(a) recognizes {x#x : x E { a, b}  * } . 

(b) takes as input x#y and outputs z where dyadic(z R ) 
dyadic (x) + dyadic(y) .  

*(c) takes as input x#y and outputs z where dyadic (z) 
dyadic (x) + dyadic(y) .  

Solution: Call the stacks S1 and S2 . Because the control i s  a 
finite memory, it can hold two variables, each with a finite set 
of possible values. One variable, called "sum" holds 0, 1, or 2 
depending on the result of adding a bit from x, a bit from y,  
and a carry bit. The other variable, called "done," holds either 



FIGURE 1 . 1 4 : A 2-UCM program that accepts {anbmanbm : m > 0 and n > O} .  The first counter counts 
the a's and the second counter counts the b's. The subscripts indicate which counter is being used. 

\0 
0 

:::s -"" 0 a. 
C ,.., �-
0 :::s 
-
0 
$'. 
A> ,.., 
::,-
:::s 
(D 
V, 



l .  7 Turi ng Mach i nes 9 1  

"true" or "false." The control also keeps track of which step 
we are on in the following algorithm: 

Step 1 :  Scan the input and push it onto Sl ,  so Sl holds x#y . Let 
sum = 0. Push a $  onto S2 . Let done = true. 

Step 2 :  If the top of the stack is #, then go to step 4, else let 
done = false. 

Step 3 :  Pop the low-order digit of y and add it to sum. Pop the 
rest of y R and push it onto S2 . 

Step 4: Pop the # and push it onto S2. 
Step 5 :  If the stack is empty, then go to step 9 ,  else let done = 

false. 
Step 6: Pop the low-order digit of x and add it to sum. 
Step 7 :  Pop everything above the $ from S2 and push it onto Sl . 
Step 8: Pop the $ from S2. Push sum mod 2 onto S2, and let 

sum = sum div 2 .  Push a $ onto S2 . 
Step 9: If done = false go to step 2 .  
Step 10 :  Pop the $ from S2. Pop the remaining characters from 

S2 and print them on the output. 

l .  7 TURING MACHI NES 

Alan Turing invented a machine that he intended to model human com
putation. His machine is now called a tape machine or a Turing machine. 
He observed that a person can keep only a limited amount of information 
in short-term memory but a virtually unlimited amount of information on 
pieces of paper. 

Turing's machine uses a control and a new device called a tape or Turing 
tape. A tape is more powerful than any single device we have studied so far. 
Like a stack, a tape holds a finite string over a tape alphabet r (along with 
some additional information). Unlike a stack, access to the finite string is 
not restricted to the rightmost character. Access to the tape is governed 
by the read/write head, which indicates which character of the string is 
currently being operated on. This tape character is said to be under the tape 
head. An operation on a tape is any one of the following : examining the 



92 Introduction to Mach ines 

character under the tape head, overwriting the character under the head 
with a new character, moving the tape head one square to the right, moving 
the tape head one square to the left , or checking that the tape head is at the 
left end of the tape. 

A machine with k tapes is called a k-tape Turing machine. A machine 
with one tape is commonly called a Turing machine, and a machine with an 
unspecified positive number of tapes is commonly called a multi tape Turing 
machine. We usually write TM to abbreviate Turing machine. 

(While stacks and counters are data structures in everyday use, tapes are 
not. One reason for this is that (limited versions of ) stacks and counters 
are easier to design in hardware than tapes are. A second reason is that 
stacks and counters are less awkward to program with. Hence, one may 
wonder why tapes are mentioned at all in a course on computability. The 
answer is that, despite its awkwardness, one tape is computationally as 
powerful as any collection of known memory devices; we will prove so in 
Chapter 7. Thus, any problem that can be solved on any known computer 
can also be solved on a machine with a control and a single tape. Because 
Turing machines are very simple compared with computers in practical use, 
it is conceptually easier to prove impossibility results for Turing machines. 
These impossibility results apply as well to all known computers. ) 

We indicate the location of the tape head by drawing a box around the 
character that is under the tape head. For example, a tape stringbbabc 
with the head on the fifth character is indicated by abaa� c. Let lIJ denote 
{ GJ : c E f}. Then the state of the tape is denoted by a string in f* [Br* . 

For each character c in the tape alphabet r, the tape operation PRINTc 
writes a c on the square under the tape head; i.e., it replaces the character 
previously under the head by a c. Thus if the tape state is x� y, then the 
operation PRINTc changes the tape state to x [£] y. 

The operation SEEc tests that the character under the tape head is a c. 
Thus it maps the tape state x[£] y  to x[£]y .  However, the operation SEEc 
cannot be performed if the character under the tape head is not a c, i.e., if 
the tape state is xG:J y  for some a -/:- c. 

Two additional operations move the tape head. The first is M0VEL, 
which moves the tape head one square to the left. If the tape state is xa W y, 
then the operation M0VEL produces the tape state x�by. The second is 



1 .7 Tu ring Machines 93 

MOVER, which moves the tape head one square to the right. If the tape 
state is x �by , then the operation MOVER produces the tape state xa w y. 

Observant readers may wonder what happens if the tape head is moved 
right from the right end of the tape or left from the left end of the tape. We 
imagine that the tape extends infinitely far to the right, where previously 
unvisited squares hold blank characters (spaces). We denote the blank 
character by u. If the tape state is x�, then the operation MOVER produces 
the tape state xa�. In contrast, it is not possible to move left from the 
left end of the tape; i.e. , if the tape state is WY , then the operation M OVEL 
cannot be performed. Because the tape extends infinitely only to the right, 
it is called "one-way" infinite. 

The SEE , PRINT , and MOVE operations may, when convenient, be 
combined into a single operation, following the convention that see
ing precedes printing and printing precedes moving. We use brackets 
[ ]  to denote such a combination of tape operations; e.g. , the operation 
[SEE a, PRINTb, MOVER] overwrites an a with a b  and then moves right. It is also permissible to combine only two of the operations. For example, 
the operation [SEE a, M OVEL] moves left if the character under the tape head 
is an a. For consistency, brackets may enclose a single tape operation as well. 

The operation ATHOME tests that the tape head is on the leftmost 
tape square, which we may think of as the home square on the tape. Thus 
A THOME maps the tape state WY to WY • However, the operation ATHOME 
cannot be performed if the tape head is not in the leftmost position, i.e. , if 
the tape state is x[�]y for some nonempty string x. 
EXAMPLE 1 .  1 2. Let us see how a 1 -tape Turing machine program can ac
cept the set of all strings of the form x#y where x = y (Figure 1.15 ). While 
in state 1, the program copies x from the input device to the tape. Then, 
while in state 2, the program moves the tape head back to the left end of 
the tape. While in state 3 ,  the program compares x to y , one character at a 
time. ■ ■ ■  

EXAMPLE 1 . 1 3. Let us use a 2-tape Turing machine to test whether a string 
is of the form ww (Figure 1.16). Using control states 1 and 2, the program 
copies the input string x onto tape 1, while at the same time writing ½ lx l  
#'s on tape 2 (it becomes blocked if lx l  is not even). Using control states 3 
and 4 ,  it moves both tape heads to the home position. Using control state 



FIGURE 1 . 1 5 :  A 1 -tape TM program that accepts { w#w : w E { a,b} * } . This program copies the first part of 
the input onto the tape and then compares it to the second part of the input. 

I.D 
.i::,. 

::::l ,... 
0 a. C: ,..., ,... o· ::::l ,... 
0 
:s: PJ ,..., ::::r ::::l ro 
V, 



1 . 7 Tu ring Machines 9 5  

FIGURE 1 .  1 6: A 2-cape TM program chat accepts { ww : w E { a,b} * }. 

5 ,  it then copies the first half of x from tape 1 to tape 2, leaving the tape 
head in the middle of tape 1 .  Using control state 6, it moves the second 
tape's head to its home position. Finally, using control state 7, it compares 
the last half of x (on tape 1 )  to the first half of x (on tape 2). If the two halves 
are equal, the program accepts in control state 8. ■ ■ ■  



96 Introduction to Machines 

Exerc ises 

1.7- 1  Design a 1-tape Turing machine program that accepts {x#x R 

x E { a, b} * } .  

1.7-2 Design a multitape Turing machine program that accepts 
{ x E { a, b} * : x = x R }. 

1.7-3 Design a 1-tape TM program that accepts { x E { a, b} * : x = xR } .  
Hint: Use a larger tape alphabet than { a, b } .  

1.7-4 Design a multitape Turing machine program that adds two numbers 
given in binary. Let us write binary (s) to denote the number whose 
binary representation is s, so, for example, binary( 100 1 1 )  = 1 9. 
On input x#y the program should output z, where binary(z) 
binary (x) + binary (y). 

l . 8  RANDOM ACCESS MACH INES 

The memory of most modern computers consists of several megabytes of 
static memory, where almost all of a program's data resides , along with 
several registers that are able to perform arithmetic operations on the data 
they contain. We describe an idealized device, called a random access memory (RAM, for short), which comprises an unbounded static memory and a finite 
set of registers . Each memory location and each register is able to hold a 
single natural number. A machine with a control and a random access 
memory is called a random access machine (also RAM, for short). 

The operations consist of storing data from a register into memory and 
fetching data from memory into a register, along with several operations 
on numbers held in registers . These operations are addition, a restricted 
form of subtraction, division by 2 (with truncation), clearing a register to 
0, setting a register to 1 ,  testing whether a number is greater than another, 
testing whether two numbers are equal, testing whether a number is odd, 
and testing whether a number is even. W hile most practical computers 
also support negative numbers and multiplication, those can in fact be 
implemented efficiently using the RAM operations. 



1 .8 Random Access Mach ines 97 

Let us consider a RAM with k registers. The numbers held in the 
registers are denoted R 1 , . . .  , Rk . The ith location in the static memory 
is denoted MEM[i] , where i may be any natural number. We require that 
all memory locations initially hold the value 0 .  At any time only finitely 
many memory locations are nonzero, so a finite description is possible . If 
location n is the highest-numbered memory location that has been stored 
into, then the state of the RAM does not depend on any memory locations 
numbered higher than n . The state may thus be defined as a finite sequence: 
((R1 , . . .  , Rk , MEM[0] , . . . , MEM[n] ;) . The fetch and store operations are 
denoted 

respectively. The fetch operation above is a total function, which maps 
\\Y1 , . . .  , Ya , . . .  , Yk ,  mo ,  . . .  , mn)) to \\Y1 , . . .  , mrp . . .  , Yk ,  mo , . . .  , mn)) . 

The store operation is also a total function; if ra S n, it maps 
((r1 , • • · , rk , mo , • • · , m,a , · · • , mn)) to ((r1 , • · · , rk , mo , • • · , rb , · · • , mn)) . If 
ra > n, it maps ((r1 , . . .  , rk ,  mo ,  . . .  , mn )) to ((r1 , . . .  , rk ,  mo , . . .  , mn , 
0, . . .  , 0, rb)) . 

The register operations are denoted 

Ra : = Rb + Re , 
Ra :=  Rb -'- Re , 

Ra := 0, 
Ra :=  1 , 
Ra > Rb , 
Ra = Rb , 
Ra ODD, 
Ra EVEN . 

The addition operation maps ((r1 , . . .  , ra , . . . , rk , m0 , . • •  , mn )) to 
((r1 , • . .  , rb + re , . . .  , rk ,  m0 , • . •  , mn )) . The monus operation (subtrac-
tion) maps ((r1 , . . .  , ra , . . .  , rk ,  mo , . . .  , mn)) to ((r1 , . . .  , rb - re , . . .  , rk ,  



98 Introduction to  Machines 

mo , . . .  , mn)) if rb 2 r0 and to ((r1 , . . .  , 0, . . . , r1 n m0 , . . .  , m11 )) other
wise. The halving operation maps ((r1 , . . .  , ra , . . . , rk , m0 , . • •  , m11 )) to 
((r 1 , • • •  , lrb/2 J , . . .  , rk , m0 , • . •  , m11 )) . The greater-than operation maps 
((r1 , . . . , rk , mo , . . . , m11 )) to ((r1 , . . .  , rk , m0 , . . .  , m11 )) if ra > r1, and is un-
defined otherwise. The equality operation maps ((ri , . . .  

1 
rk , m0 , • • •  , mn )) 

to ((r1 1  • • •  , rk , m0 , • • •  , m,, )) if ra = r1, and is undefined otherwise. The 
oddness test maps ((r1 , . • •  , rk , m0 , . • •  , m,, )) to ((r1 1 • • •  1 rk , m0 , . . .  , m11 )) 
if ra is odd and is undefined otherwise. The evenness test maps 
((r1 , . • .  , rk , m0 , . . .  , m11)) to ((r1 , . . .  , rk , m0 , . • •  , m11)) if ra is even and is un
defined otherwise. 

EXAMPLE 1 . 1 4. We present a RAM program that multiplies two natural 
numbers (Figure 1 . 17 ) . This justifies our omiss ion of multiplication from 
the repertory of a RAM. Our program implements the standard algorithm 
for binary multiplication. We assume that the numbers to be multiplied 
are initially in R1, and R, . The product will be in R,, . The program uses 

FIGURE 1 . 1  7: A RAM program that performs Ra := Rb * Re . 



1 .9 Determin i sm and Nondeterm i n i sm 9 9  

MEM[O] and MEM[l] as temporary storage. In control states 1 through 
3 ,  the program clears Ra and saves the values of Rb and Re in memory. 
In control states 4 through 8 , the program performs the main loop of the 
multiplication . When Re is 0, the multiplication is done; otherwise, the 
loop continues. If R1 is odd, then Rh is added to Ra . R, is shifted right, Rb 

is shifted left, and then the loop is repeated. Once that loop is complete, 
the program restores the original values of Rb and Re , in control states 9 
through 1 1 .  ■ ■ ■ 

Exerc ises 

1 .8-1  Write a RAM program that computes xn . 
1 .8-2 Write a RAM program that scans a number written in binary and 

stores the result in R 1 . 

1.8-3 Write a program that puts the value 17 into register 1 .  

1 . 9 DETER M I N IS M  AN D NONDETERM I N IS M  

When a machine runs a program, we have come to expect the machine's 
behavior to be uniquely determined at each step by the contents of its 
storage devices. Programs having that property are called deterministic. 4 
While we are most comfortable with programs whose behavior is uniquely 
determined and hence predictable, nondeterministic programs, which allow 
their machines a choice of actions in some configurations, are of fundamental 
importance in the study of computer science. Informally, we think of a 
nondeterministic program as being able to guess the correct way to proceed 
whenever it is faced with a choice. 

4 This name comes from the philosophy of determinism, which asserts that the entire 
universe's behavior at any time is uniquely determined by the universe's state at that 
rime. In this light, nondeterministic programs may be thought of as having free 
will; however, it may be more illuminating to think of nondeterministic programs as 
prescient. 



l 00 Introduction to Machi nes 

FIGURE 1 . 1 8: Three program fragments that are not deterministic. 

EXAMPLE 1 . 1 5. It is easy enough to design a program that is not deter
ministic (Figure 1 . 1 8)-for example, we could draw two distinct edges out 
of control state 1 and label them identically. A program may also fail to 
be deterministic in subtler ways, e.g. , by having two edges, one labeled 
"EMPTY" and the other labeled "PUS H a," emanate from a single control 
state (when the stack is empty, both operations are applicable). In some 
cases, a program may fail to be deterministic when edges leaving a single 
control state operate exclusively on different devices. ■ ■ ■ 

Nondeterminism is a mathematical construct that helps us to under
stand some important problems. We will see in Chapters 5 and 6 that 
nondeterministic programs for stack machines can be implemented effi
ciently on real computers. Nondeterministic programming is also the basis 
for declarative programming languages like Prolog. Lest the reader think 
that nondeterministic programs are always of practical use, however, we 
point out that no one has discovered a way to implement nondeterministic 
programs for general purpose machines efficiently on existing computers. 

If we run a nondeterministic program several times on the same input 
x, then the program might very well give different results each time it is 
run. If every possible run results in x being accepted, then it is clear that we 
should say that the program accepts x, and similarly if every run results in 
x being rejected. In the case that some runs result in acceptance and others 



1 . 9 Determ in i sm and Nondeterm in i sm 1 0 1 

FIGURE 1 . 1 9: A nondeterministic SM program that accepts the language 
{wu· R : w E {a,b } * } .  

do not, we have not yet defined whether the program accepts x .  In order to 
make our theory turn out nicely, we make the following definition: 

A nondeterministic program accepts a string x if at least one of its 
runs on input x results in acceptance. 

Thus a program is said to accept if at least one sequence of legal transi
tions leads to acceptance. 5 Informally, we may think of a nondeterministic 
program as having foreknowledge: When confronted with a choice of pos
sible edges to follow, it will always make the "right choice" in the sense 
that it leads to acceptance if possible. Alternatively, we may think of the 
nondeterministic program as "guessing" the way to proceed. If its guesses 
lead to acceptance, then we say that it guessed correctly. 

EXAMPLE 1 . 1 6. Recall that a stack machine program can test whether its 
input is of the form w#w R by pushing each character that it scans until a #  
is encountered, then popping each character that it scans (Figure 1 .2). The 
# indicates when to go from Phase 1 (pushing) to Phase 2 (popping) . A 
nondeterministic stack machine program can test whether its input is an 
even-length palindrome, i.e., has the form ww R ,  by using a similar technique 
(Figure 1 . 1 9). Since there is no marker to indicate when the middle of the 

5 There is a dual notion: programs that accept if every sequence of legal transitions leads 
to acceptance. A third possibility is to assign probabilities to transitions and thereby 
define the probability that a string is accepted. Although these modes of acceptance 
are of interest in the theory of computability, we do not address them in this book. 



1 02 Introduction to Mach ines 

string has been reached, the program uses an edge nondeterministically 
to move from Phase 1 to Phase 2, "guessing" when the middle of the 
string has been reached. Although the program may have many ways to 
guess incorrectly, it needs only one way to guess correctly in order for the 
input to be accepted, by our definition of acceptance for nondeterministic 
programs. ■ ■ ■ 

EXAMPLE 1 . 1 7. Nondeterminism can help us to simplify FM programs by 
reducing the number of control states needed. The program in Figure 1 . 20 
accepts any input string that has a 1 four characters from the end by non
deterministically guessing when it has read all but the last four characters . 
Note that the program must verify that it has guessed correctly, for otherwise 
it would accept all strings containing a 1 anywhere. To verify its guess, the 
program makes sure that there are at least four characters remaining in the 
input by scanning the next four characters (if there are fewer than four, then 
the program becomes blocked), and then it makes sure there is not a fifth 
character remaining by testing for EOF before accepting. As an exercise, the 
reader may consider the number of control states required by a deterministic 
FM program that accepts the same language (Exercise 1 .9-3). ■ ■ ■ 

EXAMPLE 1 . 1 8. In Section 1 .3 we saw that a deterministic UCM program 
can test whether its input consists of a string of a's followed by an equal 
number of b's. We also saw that a deterministic UCM program can test 
whether its input consists of a string of a's followed by twice as many b's. 
In Figure 1 . 2 1 ,  we see how a nondeterministic UCM (NUCM) program 
can test whether its input satisfies at least one of those conditions. The 
nondeterministic program succeeds where no deterministic UCM program 
can by nondeterministically guessing whether to count up by ones or by 
twos. ■ ■ ■  

EXAMPLE 1 . 1 9. We have seen how nondeterminism allows a program to 
test for the disjunction (OR) of two conditions. In this example we will 
convert the negation of a conjunction (AND) into a disjunction. The idea 
is that L 1 n L2 = L 1 U L2 ; if L1 and L2 are accepted nondeterministically, 
then so is L1 U L2 . Consider the language L = { aibi ck : -, (i = j = k ) } .  By 



FIGURE 1 .20: A 7-state nondeterministic FM program that accepts :E* 1 1:4 , where :E = { 0, 1 } .  

<.O 

0 
11) ;; ""' 
3 
::, "' 
3 
PJ 
::, a. 
z 
0 
::, a. 
� 
11) 

3 
::, 
"' 
3 

0 
w 



l 04 Introduction to Machines 

FIGURE 1 .2 1 : A nondeterministic UCM program that accepts the language 
{ ambn : n = m or n = 2m}.  

De Morgan's laws, L = { a;bi ck : i i- j or i i- k}. Now we can nondeterministically check each disjunct separately (Figure 1 . 22) . ■ ■ ■ 

EXAMPLE 1 .20. Finally, we use nondeterminism in order to test a large disjunction, i .e . ,  to determine if one of many possibilities has occurred. We say that two strings x and y agree at position i if the ith character of x is equal to the ith character of y. Consider the language 
L = { x#y : the strings x and y agree in at least one position} .  We use nondeterminism in an NUCM program in order to guess a position in which x and y agree; if we guess correctly then we accept. The program is shown in Figure 1 . 2 3 .  ■ ■ ■ 

Determinism is a special case of nondeterminism. By historical ac-cident, "nondeterministic" does not mean "not deterministic" ;  it means "not necessarily deterministic. "  For this reason, deterministic programs are a special case of nondeterministic programs in which there is at most one possible action in each configuration. Therefore, if a problem can be 



l .9 Determin ism and Nondetermin ism l 0 5  

FIGURE 1 .22 :  A n  NSCM program that accepts { aib'ck : , (i = j = k) } .  

FIGURE 1 .23:  A n  NUCM program that accepts { x#y : x and y agree i n  at least 
one position} .  



l 06 Introduction to Mach ines 

solved by a deterministic program, then it can automatically be solved by a 
nondeterministic program. 

Exe rc ises  

1 .9-1  Recall that a string x i s  a palindrome iff x = xR . Design a nonde
terministic SM program that accepts the set of palindromes over the 
alphabet {O ,  1 ,  2 ,  3 } .  (Don't forget about strings of odd length.) 

1 . 9-2 Same as Exercise 1 .9- 1 ,  but use a 2-character stack alphabet. Hint: 
Each number between O and 3 can be represented by a two-bit binary 
sequence, e.g . ,  2 is represented by 10 .  Use the control to convert 
between the binary representation and the base-4 representation. 

1 .9-3 (a) Construct a deterministic FM program that accepts I;* 1I;4 

where I; = { 0, 1 } .  Try to use as few control states as possible. 
*(b) Prove that the number of control states you used in part (a) is 

as small as possible. 

1 . 9-4 Design a nondeterministic SCM program that accepts the language 
{ w : #a (w) = 2#b (w) or 2#a (w) = #b (w) } ,  where #,(x) denotes 
the number of e's in the string x. 

1 .9-5 The program of Figure 1 . 2 1  can make nondeterministic choices 
when in control state 2 or 4. Modify the program so that it makes 
a nondeterministic choice only when in control state 1 .  

1 .9-6 Design a nondeterministic UCM program that accepts the language 
{ ambn : m ::; n ::; 2m}.  

1 .9-7 Design a nondeterministic SCM program that accepts the language 
{ wx E { 0 ,  1 }  * : lw l  = lx l  and w =/- x} . Hint: Guess where w and 
x differ. 

Solution: If w and x differ, then they differ somewhere, so w E I;iaI;i 
and x E I;ibI;i for some i and j, where a =/- b. Thus wx E I;iaI;kbI;i 
where k = j + i. Nondeterministically guess when the first i 
characters have been read and when the next k characters have been 
read. Use the counter to make sure that k = j + i. 



l .  l O Chapter Summary l 07  

NSCM program that accepts 
{a'b.Jc' :  i*j or J*k) .  
(cf. Figure 1 .22) 

FIGURE 1 .24: An NSCM program that accepts the complement of the language 
{anbncn : n ;::::  O} .  

1 .  9-8 Design a nondeterministic SCM program that accepts the set of all strings over the alphabet { a, b ,  c }  that are not of the form anbn en . Suggestion: Handle strings like cba separately, using nondeterminism. 
Solution: The program is given in Figure 1 . 24. 

1 .9-9 Speculate. (a) How might one define the notion of a nondeterministic program computing a relation? (b) How might one define the notion of a nondeterministic program computing a partial function? 
1 .  1 0 CHAPTER S U M MARY 

In this chapter, we introduced the most important storage devicescontrols, inputs, outputs, stacks, counters, tapes, and RAMs-and we described how to write programs for machines equipped with these devices. We also introduced the notions of determinism and nondeterminism. Table 1 . 1  summarizes the operations on all of our important devices except the RAM. 



Device Operations 

Control q ----> r 

Input SCANc EOF 

ex ----> x A ----> A  

Output WRITEc 

X ----> XC 

Unsigned INC DEC ZERO NONZERO counter 
n ----> n + 1 n + 1 ----> n 0 ----> 0 n + l ----> n + l  

Signed INC DEC ZERO POS NEG counter 
z ----> z + 1 z ----> z - 1 0 ----> 0 n + l ----> n + l  -n - 1 ----> -n - 1 

Stack PUSHc POPc EMPTY 

X ----> XC XC ----> X A -> A 

Tape ATHOME SEEc PRINTc MOVEL MOVER 

GJx _, GJx xG} ----> xG} xGJy ----> xG} xa[�Jy ----> xGJby xGJby ----> xa[�Jy 

xG] ----> xa� 

TABLE 1 . 1 :  Names and informal descriptions of control, input, output, counter, stack, and 
tape operations. Here, q and r mean arbitrary control states, x and y mean arbitrary strings over 
the device's alphabet, n means an arbitrary natural number, z means an arbitrary integer, and a, 
b, and c mean arbitrary characters in the device's alphabet. 

0 
00 

:J 
,-+ ..... 
0 
0.. 
C n 
,-+ a· 
:J 

,-+ 
0 

:s: 
� n :::r 
:J 
(1) 
V, 



Exe rc i ses 

1 .  1 0 Chapter Summary 1 09 

1.10-1 Let #, (x) denote the number of e's in the string x. Design finite 
machine programs that accept the following languages: 

(a) the set of all strings over { a, b} that contain an odd number 
of a's 

(b) the set of all strings over { a, b} such that #a (x) = 0 ( mod 5) 
(c) the set ofall strings over {a, b} such that #a (x) = 0 (mod 3 )  

and #b (x) = 1 (mod 4) 
(d) the set of all strings over { a, b} such that #a (x) = 1 (mod 6) 

or #b (x) = 3 (mod 7) 

1.10-2 Design UCM programs that accept the following languages: 
(a) { a!'nbqn : n � 0} ,  where p and q are fixed natural numbers 

*(b) { w E { a, b} * : #a (w) -/- #b (w) } 

1. 10-3 Design SCM programs that accept the following languages: 
(a) { w E { a,b,c} * : 3#a (w) = 4#b (w) } 
(b) {w E { a,b,c} * : #a (w) = 2. S #b (w)} 

1.10-4 Design a nondeterministic 1-tape TM program that accepts the 
language { ww : w E { a, b} * }. 



2 

Devices
J 

Machines
J 

and 

Programs 

IN THE PRECEDING chapter, we informally 
introduced machines, programs, and the most important memory devices. 
Many fundamental models of computation fall out of this framework. In this 
chapter, we will formalize our models of devices, machines, and programs. 
This treatment lays the foundation for the rest of the book, where we will 
prove important properties of languages and the machines that recognize 
them. 

l l l 



l 1 2  Devices,  Mach ines ,  and Programs 

2 . 1  REPRESENTING PROBLEMS 

Computer scientists consider a variety of problems,  including many whose answers are yes or no: Is a string x a palindrome? Is a number n prime? Is a sequence of strings ((x 1 , . . .  , Xn }} sorted alphabetically in increasing order? Problems having a yes/no answer are called decision problems . Because there is exactly one correct answer and exactly one incorrect answer, this kind of problem is modeled as the membership problem for the set consisting of all the yes instances. Some other problems call for a more substantial, but unique, answer, such as finding the longest prefix of x that is palindromic, finding the smallest prime factor of n, and sorting the sequence of strings ((x1 , . . .  , Xn }} alphabetically in increasing order. Because the answer is unique, this kind of problem is usually modeled as the function that maps each instance to its unique answer. A third kind of problem may have several correct answers or none. Examples include finding any palindromic substring of x having maximum length, finding any prime factor of x, and sorting the sequence of strings ((x 1 , . . .  , Xn}} into increasing order by length. Because the answer is not unique, this kind of problem is modeled as a relation. Formally, a problem is a relation from a set of instances to a set of answers. Some examples follow: 
Problem name: primality 
Instance: a natural number n 

Answer: yes if n has exactly two distinct positive divisors, no otherwise 
The set of instances is N .  The set of answers is {yes , no} . 
Problem name: least prime factor 
Instance: a natural number n 

Answer: the least prime factor of n if n i- 1 ,  1 otherwise 
The set of instances is N .  The set of answers is N .  



Problem name: any prime factor 
Instance: a natural number n 

2 . 1  Representi ng Problems 1 1 3 

Answer: any prime factor of n if n i- 1 ,  otherwise 1 
The set of instances is N .  The set of answers is N .  Observe that problem instances may be of many types, such as strings, numbers, or sequences, but input devices hold only strings. In order to pass a nonstring argument to a program, we represent the argument as a string. In order to obtain a nonstring result from a program, we represent the result as a string . For example, a natural number can be represented in decimal, binary, dyadic, or monadic notation, to name a few. An ordered pair of strings over { a, b} can be represented as a string over { a, b ,  ( ,  ) , , } ; e.g . ,  (baa, baaaa) is represented as (baa , baaaa) . A sequence of strings over { a, b} can be represented as a string over {a,  b, < ,  > , , } ; e .g . ,  ((a ,  baba, baa)) is represented as <<a , baba , baa>> .  In fact, virtually anything you can write down can be represented as a string. There are two popular ways to represent a set S of natural numbers. The first representation is the sequence of elements in S; we would represent 
{2 ,  3 ,  5 ,  7 }  as ((2 ,  3 ,  5 ,  7 )) .  Sequences and numbers can be represented as above. The second representation, called the bit-vector representation, works for subsets of { 1 ,  . . .  , n} ; we represent a set S by a string of O 's and 1 's with a 1 in position i if and only if i E S. If we take n = 8, we would represent {2 ,  3 ,  5 ,  7 }  as 01 1 0 1 0 10 .  There are three popular ways to represent graphs. Consider a graph with vertex set V and edge set E. Without loss of generality the vertex set 
V may be treated as a set of positive integers { 1 ,  . . .  , I V I } ,  so it need not be represented explicitly as long as the number I V I is represented somehow. The edge set E may be represented in one of the following ways , which we illustrate for the graph in Figure 0 .2 :  
edge list the sequence of edges in the set E,  e.g . ,  (( ( 1 ,  2 ) ,  (2 ,  3) ,  (2 ,  4 ) ,  

( 3 , 2 ) ,  ( 3 , 4 ) ,  (4, 4 )» .  
adjacency lists for each vertex v ,  the sequence of vertices adjacent to V, e.g. , (( ((2)) ,  (( 3 ,  4)) , ((2 ,  4)) , ((4)) )) . 



1 1 4 Devices, Mach ines ,  and Programs 

FIGURE 2 . 1 : A labeled digraph. 

adjacency matrix for each vertex v, the bit-vector representation of the 
set of vertices adjacent to V, e .g. ,  ((0 1 00 ,  001 1 ,  0 1 0 1 , 0001 )) 

Sequences ,  ordered pairs, and numbers may be represented as above. If 
the edge-list representation is used, it is also necessary to represent I V I  
explicitly; however this number i s  implicit i n  the other representations. If the edges in a graph have labels, then we include the label along with 
the edge in the representation. For example, the graph in Figure 2 . 1  would 
be represented as 

edge list (( ( ( 1 , 2 ) , a) ,  ( ( 2 ,  3 ) , b) ,  ( ( 2 ,  4 ) , a) ,  ( ( 3 ,  2 ) ,  b) , ( ( 3 ,  4) , b) , 
( (4 , 4) , a) )) . 

adjacency lists (( (( (2 ,  a) )) , (( ( 3 ,  b) ,  (4 , a) )) , (( (2 ,  b) ,  (4 , b) )) , (( (4, a) )) )) . 

adjacency matrix ((0a00, 00ba, 0b0b, 000a)) . 

Typically, numbers will be represented in b-adic or b-ary notation for 
some base b. Binary and dyadic notation are often the easiest to program 
with because they use only two distinct digits. However, some ether base 
like 5 ,  8 ,  or 1 0  can be used if it is appropriate to the problem at hand. Rep
resenting a number n in monadic notation is sometimes convenient, but the 
representation can be very long: n characters versus l logb ( ( b - 1 )  n + 1 )  J 
characters in b-adic notation or llogb n + 1 J characters in b-ary notation 
with b 2'. 2 .  In general, b-adic has a slight advantage over b-ary notation 



2 .2 Devices 1 1  5 

because each number has a unique b-adic representation; i .e . ,  there are no 
leading zeroes. 

A rational number r can be represented over { 1, 2, /} as the string nl d 
where n is the dyadic representation of r's numerator and d is the dyadic 
representation of r's denominator in lowest terms. 

Exerc i ses  

2 . 1 - 1  Let b 2'. 2 .  
(a) Prove that the number of characters i n  the b-ary representation 

of n is 

if n > 0, 

if n = 0 .  

(b) Prove that the number of characters i n  the b-adic representa
tion of n is l logb ( ( b - 1 )n + 1 )  J .  

2 . 2 DEVICES 

We run programs on machines, which consist of devices . We will define 
machines in Section 2 .3  and programs in Section 2 .4 .  First , it is necessary 
to define the building blocks of machines: devices. 

Recall from the informal treatment in Chapter 1 that storage devices 
(henceforth "devices") can hold, test, and modify data. The value held by a 
device is called the device's state . The realm of a device is the set of values 
that the device can hold, i . e . ,  the set consisting of all of the device's states .  
For example, the realm of an unsigned counter is N, and the realm of a 
signed counter is Z. A control is really a finite memory, so the realm of a 
control is some finite set, called the control set and conventionally denoted 
Q. The realm of an input device is I:* for some alphabet I:,  which we call 
the input alphabet. The realm of an output device is 6. * for some alphabet 
6.,  which we call the output alphabet. 



1 1  6 Devices ,  Mach ines, and Programs 

An operation  is a partial function on the realm of a device. For example, 
SCAN a is the partial function that maps strings of the form ax to x; it is 
undefined on strings that are not of the form ax. (It is important to read 
Sections 0 .2 .6  and 0 .2 .7 before continuing.)  

One kind of operation is a test. A test is a partial identity function; 
i . e . ,  a particular test is applicable only when the device's state belongs 
to a particular set , and it does not alter the device's state. For example, 
EOF, EMPTY, ZERO,  POS, and NEG are tests (EOF = EMPTY = /{A} , 
ZERO = /{o} , POS = lz+ , and NEG = lz- ). 

The reader will notice that our notion of a test is different from a 
Boolean-valued function . Like any operation, a test is a partial function on 
a device's realm . For example, the test POS does not return a truth value-it 
returns a number, the same number it is applied to . An edge labeled with 
POS may be followed if the counter holds a positive integer, but the edge 
must not be followed otherwise . 

The NOOP operation on a device leaves that device's value unchanged; 
i .e . ,  NOOP denotes the identity function on a device's realm. 

The repertory of a device is a set of operations on the de
vice's realm . For example, the repertory of an unsigned counter is 
{ INC, DEC , ZERO , NONZERO} ,  and the repertory of a signed counter is 
{ INC,  DEC , ZERO,  POS, NEG } .  

A device consists of a realm and a repertory of operations on the realm . 
For example, a stack with alphabet { a, b} consists of the realm { a, b} * 
and the repertory {POPa, POPb, PUSH a, PUSHb, EMPTY}.  An input de
vice with alphabet { a, b} consists of the realm { a, b} * and the repertory 
{ SCAN a, SCANb, EOF } .  

Table 2 . 1  on page 1 23 shows the realm and repertory o f  most common 
devices other than the tape and the RAM. A formal treatment of tapes is 
postponed until Chapter 7 .  

Exerc i ses  

2 .2-1  Consider a control with states q 1 and q2 . What is its realm? Its 
repertory? 



2 . 3  Machi nes 1 1 7  

2 . 2-2 A queue (pronounced like the letter "q") holds a string. The oper
auons on a queue are 
ENQUEUEc: Insert a c at the right end of the queue. 
DEQUEUEc: Delete a c from the left end of the queue . 
EMPTY: Test whether the queue is empty. 
Fix a queue alphabet r. 

(a) Define the realm of a queue formally. 
(b) Express the queue operations informally using the --+ notation. 
(c) Define the queue operations formally as relations. 

2 .2-3 A deque (pronounced "dek") is a double-ended queue that holds a 
string. The operations on a deque are 
LEFT-INSERTc: Insert a c at the left end of the deque. 
RIGHT- INSERTc: Insert a c at the right end of the deque. 
LEFT-DELETEc: Delete a c from the left end of the deque. 
RIGHT-DELETEc: Delete a c from the right end of the deque. 
EMPTY: Test whether the deque is empty. 
Fix a deque alphabet r. 

(a) Define the realm of a deque formally. 
(b) Express the deque operations informally using the --+ notation. 
(c) Define the deque operations formally. 

2 . 3  MACH INES 

A machine M is an ordered tuple of devices ( d1 , . . .  , dk ) .  Because ma
chines are a very important kind of tuple, we write "machine [d1 , . . .  , dk] '' 
to distinguish them from other kinds of tuples. For example, a 
machine [control, input, stack] is a stack machine with input but no output; 
a machine [control, input, output] is a finite machine with input and output; 
and a machine [control, output, counter, counter] is a 2-counter machine 
with output but no input. Since most interesting machines have a control, 
by convention the control is usually a machine's first device. The input 
and output devices ,  if present, are usually the machine's next two devices . 
Machines without input are sometimes called inattentive. 

Two machines belong to the same machine type if, except for input and 
output, they have the same kinds and number of devices , although possibly 



1 1 8 Devices ,  Machines ,  and Programs 

in a different order. Machines of the simplest type are called finite machines. 
A finite machine can be a machine [control] , a machine [control, input] , a 
machine [control, output] , or a machine [control, input, output]-or one 
of those machines with the devices in a different order. Another type of 
machine is the stack machine, which can be a machine [control, stack] , a 
machine [control, input, stack] , a machine [control, output, stack] , or a 
machine [control, input, output, stack]-or one of those machines with 
the devices in a different order. An unsigned counter machine contains a 
control, an unsigned counter, and optional input and output devices . A 
signed counter machine contains a control, a signed counter, and optional 
input and output devices. A counter machine is either an unsigned counter 
machine or a signed counter machine. A 2-counter machine contains a 
control, two counters, and optional input and output devices. 

A configuration of one of our machines carries information analogous to a 
core dump from a real-world machine. That is, a configuration of a machine 
is the aggregate of all information stored by the machine's devices . Whereas 
a core dump from a real machine consists of the values of all variables, a 
configuration of one of our machines M consists of the state of each of M's 
devices . Formally, a configuration is a k-tuple of states (s 1 , . . .  , sk ) ;  it specifies 
that the state of device di is si for i = 1 ,  . . .  , k. 

EXAMPLE 2 . 1 . Let M be a machine [control, input, stack] where the control 
set is { 1 ,  2, 3 ,  4} ,  the input alphabet is { a, b, #} ,  and the stack alphabet is 
{ a, b } .  Then (2 ,  abaa, bbaa) is one configuration of M; the reader may 
verify that the program of Figure 1 . 1  enters this configuration on input 
bbaaa#aabaa. ■ ■ ■ 

2 .4 I NSTRUCTIONS 

We can combine operations on individual devices to form an instruction, 
which operates on all of a machine's devices. A collection of instructions, 
together with mechanisms for the initialization of devices and the designa
tion of results, forms a program. We define instructions formally in this 
section; we will define initializers, terminators, and programs formally in 
the next two sections. 



2 .4 Instructions 1 1 9 

An instruction for a machine M designates an operation for each device of 
M.  Typically we apply an instruction to a configuration in order to obtain 
the next configuration of M.  Formally, an instruction is a k-tuple (/1 , . . .  ,fk ) 
of operations, where each /2 is either NOOP or an operation belonging to 
the repertory of d; . We identify instructions with partial functions on 
the set of M's configurations . That is, the instruction (/1 , . . . ,/k) maps 
the configuration (s i , . . .  , sk) to the configuration (sJ1 , • • •  , sJ,,) . We will 
explain how this definition causes devices to interact after an example . 

EXAMPLE 2.2.  Let us continue Example 2 . 1 .  Because M is a machine 
[control , input , stack] , (2 --+ 4, SCAN a, POPb) is an instruction for M.  
We call this instruction Jr . (7r i s  the Greek letter fo r  "p."  We use it 
to denote an instruction, because instructions are the building blocks of 
programs.) We present 7f pictorially in Figure 2 . 2 .  The instruction 7f maps 
the configuration (2 ,  aaba, aabb) to (4, aba, aab) , i .e . ,  

( 2 , aaba, aabb) 7r = (4, aba, aab) . ■ ■ ■ 

It is possible that an instruction specifies an operation that cannot be 
performed on a device given the device's current state. For example, consider 
the configuration ( 4, aba, aab) and the instruction 7f as above. State 4 is 
not in the domain of the control operation 2 --+ 4, i .e . ,  4(2  --+ 4) is 
undefined, and we say that ( 4, aba, aab ) 7r is undefined simply because the 

FIGU RE 2.2 :  The 
instruction 
(2 ----->  4, scAN a, POPb) . 
This edge was seen 
previously in Figure 1 . 1 .  



1 20 Devices, Mach ines ,  and Prog rams 

first component is undefined. The control prevents 7f from acting on the 
input and the stack because 7f cannot act on the control. 

In general, (si , . . .  , sk ) (/1 , . . .  ,fk ) is undefined if sj; is undefined for 
some i. In this situation we say that the instruction (/1 , . . .  , ./2 ) is inapplicable 
to the configuration (s1 , . . .  , sk ) -

EXAMPLE 2.3 .  Consider a machine [control, input] , the configuration 
( q 1 , abb) , and the instruction ( q1 � q2 , SCANb) ;  since abb SCANb is 
undefined, the instruction is inapplicable to the configuration. ■ ■ ■ 

We think of the configuration C as going by the instruction 7f to the 
new configuration C' . To capture this idea, we adopt the notation C � C', 
which is equivalent to C 7f C' . 

By convention, we do not allow an instruction to use the operation 
NOOP on the control. This makes it possible to depict each instruction as 
a single labeled edge. The reader may verify that this does not impose a 
significant limitation on programs (Exercise 2 .4-2). 

Exerc i ses 

2 .4- 1 What is the difference between the operation 4 � 4 and the oper
ation NOOP on a control ? 

2 .4-2 Suppose we allow the repertory of a control to include all partial 
functions from Q to Q. Show how to transform a program using 
this expanded repertory into a program that uses only the standard 
control operations like q; � q1 . 

2 . 5  I N ITIALIZERS AN D TERM I NATORS 

It is usually desirable for a program to initialize each of a machine's devices to 
some reasonable value before doing anything else. For example, we usually 
want a stack or output device to start empty (its state being A), a counter 
to start at zero (its state being 0), an input device to start out holding 
the program's argument, and a control to start in some specified state. In 
general, an initializer of a device determines that device's start state based 



2 . 5  In itial izers and Terminators 1 2 1 

on the argument; formally, the initializer maps an argument to a state of 
the device. Similarly, the terminator of a device relates the device's state to a 
result. A state s of a device d is called an initial state ifs is in the range of d's 
initializer, and a final state if s is in the domain of d's terminator. A program 
can produce a result when all devices are in final states, but not otherwise . 

Usually, controls start in their specified initial state and finish in one of 
their specified final states, input devices start holding the argument (or some 
reasonable encoding of the argument if the argument is not a string) and 
finish empty, and output devices start empty and finish holding the result (or 
some reasonable encoding of the result if the result is not a string). Unless 
explicitly stated otherwise, stacks start and finish empty, and counters start 
and finish at 0 .  Tapes start blank with the head at the left end and finish in 
arbitrary states. RAMs start with O in all registers and memory locations, 
and they finish in arbitrary states. 

The initializer of a device maps each argument to a starting state of the 
device. The typical initializer of a control is X x {q,rarr }, which maps each 
argument to the initial control state, q,rarr · The typical initializer of an input 
device is Ir;• ,  which maps each argument to itself. The typical initializer of 
an output device or a stack is X X {A} ,  which maps each argument to the 
empty string. The typical initializer of a counter is X X { 0} ,  which maps 
each argument to O .  

The terminator of a device relates each final state of the device to a 
result. The typical terminator of a control is Qfinal X Y, which relates each 
final state to every possible result. The typical terminator of an input device 
is {A} X Y, which relates the empty string to every possible result . The 
typical terminator of an output device is /il* , which maps each output string 
to itself. The typical terminators of a stack are {A} X Y, which relates A 
to every possible result, and r* x Y, which relates each stack string to 
every possible result . The typical terminators of an unsigned counter are 
{O} x Y, which relates O to every possible result, and N X Y, which relates 
each counter state to every possible result .  The typical terminators of a 
signed counter are { 0} X Y, which relates O to every possible result, and 
Z X Y, which relates each counter state to every possible result . 

Initializers and terminators are not meant to increase the computing 
ability of machines . They should only give machines a way to receive 
their arguments and communicate results . For example, an initializer that 



1 2 2 Devices, Machines, and Programs 

puts the control in state 1 if the argument is a palindrome but in state 2 
if the input is not a palindrome would be unreasonable, because such an 
initializer is performing computation for the machine. In order to prevent 
this, we require that the initial state of each device either be the argument 
or else a fixed state that is independent of the argument. For example, if 
the argument is a number, then a counter could be initialized to hold it 
(although this would be unusual). Observe that the usual initializers put 
the argument into the input device and start all other devices in a fixed state 
independent of the argument. 

If the set X of possible arguments is different from the device's realm, 
then the device may be initialized to hold a reasonable representation of the 
argument. For example, if the argument is a number, then an input device 
could be initialized to hold its dyadic or decimal representation . While there 
is no precise theory of what constitutes a reasonable representation, it should 
be computationally easy to convert from one reasonable representation to 
another. For example, representing a positive number n as dyadic- 1 ( n) 
is generally considered reasonable, but representing n as dyadic- 1 (n)#1 if 
n is prime but as dyadic - l ( n) #2 if n is not prime would be considered 
unreasonable in most contexts. Section 2 . 1  describes some representations 
that are generally considered reasonable . 

A terminator that accepts if the input device holds a palindrome but 
rejects if the input device holds a nonpalindrome would be unreasonable, 
because it also performs computation for the machine. Similarly, a termi
nator that accepts if the counter holds a prime number but rejects if the 
counter holds a composite number would also be unreasonable . In order to 
prevent this, we put the following limitation on terminators : it must be 
possible, using a device's tests, to test whether the device is in a final state 
and to determine which result it gives. For input devices the test is EOF; for 
stacks the test is EMPTY; for counters the test is ZERO; for output devices, 
tapes, and RAMs the test is NOOP.  For controls, it is necessary to use all 
the tests q ---+ q for which q is a final state. The result may be either a fixed 
value, such as ACCEPT or REJECT, or else a reasonable representation of 
the device's state. 

The usual initializers and terminators for common devices, except tapes 
and RAMs, are listed in Table 2 . 1 .  All programs will employ usual initial
izers and terminators unless explicitly stated otherwise . 



Device Realm 

Control with Q = {ql , · · · , qn} 

Repertory 

{ qi ____, q1 : 1 :'.S i, j :S n} 

Usual Initializer 

X X  {qsrarr } 

Usual Terminator 

Qaccept X Y (for an 
states q1 , . • . , qn (same as Q X Q) acceptor or transducer) or 

Input with 
alphabet 'E 

Output with 
alphabet � 

Stack with 
alphabet r 

Unsigned Counter 

Signed Counter 

Qaccept X ACCEPT 
U Qrejecr X REJECT 
(for a recognizer) 

I:* {SCANc : c E 'E}  U { EOF} Ix {A} x Y 

�* {WRITEc : c E �} X x  {A} ly 

r* { PUSHc : c E I' } U { POPc : c E I'} X x  {A} {A} x Y 
U {EMPTY} 

N {INC, DEC , ZERO, NONZERO} X X  {0} {0}  X Y 

z {INC, DEC , ZERO , POS, NEG} X X  {0} {0} X Y 

TABLE 2.1 : Realm, repertory, usual initializer, and usual terminator for common devices. X 
denotes the set of possible arguments, Y the set of possible results. For controls, qstarc denotes 
an element of Q, Qac,epr a subset of Q, and Q,ejecr a subset of Q that is disjoint from Qa,cepr · 

or I'* X Y 

or N x Y  

or Z x Y 

"-' 
u, 
3" 
;::.· 

N 
rt) .... "' 
p., 
::i 
0.. 

� 
3 
:5 
p., ,... 

"-' 
w 



1 24 Devices ,  Mach i nes ,  and Programs 

An initializer for a machine is a one-one function that determines the 
machine's initial configuration. An initializer for M consists of an initializer 
for each of M's devices d1 , . . .  , dk , which we denote a = ( a 1 , . . .  , ak ) ,  
where each a; is an initializer for d; . Typically x denotes the argument to 
the program. Then we have xa = (xa 1 , . . .  , xak ) .  (a is the first letter of 
the Greek alphabet; hence our choice of a to denote an initializer . )  

When no confusion is possible, we may write ad to denote the initializer 
of device d without referring to a particular numbering of devices. For 
example, O'control , O'input,  O'output ,  O'counter , and O'srack denote the initializers of 
a control, input, output, counter, and stack, respectively. If, however, a 
machine has two counters, O'counrer would be ambiguous notation; in this 
situation we can give the counters names like Kl and K2 and refer to their 
initializers as aK1 and aK2 · If the initializer a maps an argument x to a 
configuration C0 of M, we call C0 an initial configuration. We write x a C0 

or, more descriptively, x � C0 . 

Equally important is a terminator for a machine, a partial function that 
we use to determine whether a program accepts and to extract the result 
of running it. A terminator for M consists of a terminator for each of M's 
devices. The machine's terminator maps the machine's configuration to a 
particular result if and only if each device's terminator relates that device's 
state to the same result. In particular, a result is not produced unless all 
devices are in a final state. 

To be precise, let M's terminator w = ( w 1 , . . .  , wk) ,  where each W; is 
a terminator for d; , let C = (s 1 , . . .  , sk )  where each s; is a state of d, , and 
define the relation w as follows: 

(w is the last letter of the Greek alphabet; hence our choice of w to denote 
a terminator.) 

Although the individual w;'s are relations, w is required to be a partial 
function. This is typically accomplished by having one or more of the 
w;'s be a partial function. If the terminator for a particular device is a 
partial function, then we say informally that that device determines the 
result. For example, if the program uses the output device to produce a 
result string, then the output device determines the result, and the output 
device's terminator is the identity function on � * . For another example, in 



2 . 5  In itial izers and Terminators 1 2 5 

a DFR the result is determined by the control, and the control's terminator 
is the partial function that maps all accepting control states to ACCEPT 
and maps all rejecting control states to REJECT. 

As with a,  we may write wd to denote the terminator of device d without 
referring to a particular numbering of devices, provided that no confusion 
is possible. If the terminator w maps the configuration C to some result y, 
i . e . ,  if C is in the domain of w, we call C a  final configuration. We may also 

. C w  write 1---+ y.  

EXAMPLE 2.4. Let M be a machine [ control, input, output, counter] , and let 
the control set be q0 , • . .  , qk .  We define a typical initializer and terminator. 
The initial control state is q0 , and the final control state is qk .  The initial 
input state is x, the argument, and the final input state is A. The initial 
output state is A, and the final output state is y, the result. The initial and 
final counter states are both O .  

The devices' initializers are functions defined as follows: 

• XO'.control = qo, 

• XO'.input = X, 

• XO'.output = A, 

• XO'.munter = 0 · 

M's initializer is the one-one function a defined by 

XO: = (qo , x, A , o) . 

We can also denote this relation by x � (q0 , x, A, 0 ) .  
The devices' terminators are relations defined as follows: 

■ qk Wcontrol y, for all y, 

■ A Winput y, for all y ,  

■ y Woutput y, for all y, 

• 0 Wcounter y, for all y .  



1 26 Devices, Mach i nes, and Programs 

M's terminator is the partial function w defined by 

(qk , A, y , O) w = y,  for all y .  

(le is implicit in this definition that (q, x ,  y,  n) w i s  undefined for all other 
values .)  We can also denote the relation above by (qk ,  A ,y ,  0) � y.  

Observe that in this example, w is indeed a partial function, as  required. 
In contrast, u.,'

rn
unrer merely forces the counter to be O in every final config

uration but has no other effect on the program's result; since Wcounrer relates 
0 to every possible result, it is multiple-valued. So are Wconrrol and Winpur · 
Only Woutput is a partial function. ■ ■ ■  

2 . 6  PROGRAMS 

A program P for machine M consists of an initializer a,  a terminator w, and 
a finite set T of instructions for M. 

EXAMPLE 2.5.  Let M be a machine [control, input, stack] with control set 
{ 1 ,  2} ,  input alphabet { a, b, #}, and stack alphabet { a, b} . Define a and w by xa = ( 1 , x, A) and ( 2 , A , A) w  = ACCEPT. We can specify a program 
P for M, consisting of initializer a, terminator w, and instruction set T 
given below: 

( 1 ---+ 1 SCANa PUSH a ) ' 
( 1 ---+ 1 SCANb PUSHb ) ' 
( 1 ---+ 2 SCAN# NOOP ) ' 
( 2 ---+ 2 SCANa POP a ) ' 
( 2 ---+ 2 SCANb POPb ) 

It is represented graphically in Figure 2 . 3 .  ■ ■ ■  

EXAMPLE 2.6. Let us design a program for a machine [control, input, 
output, stack] that adds one to a number. The argument will be repre-



2 .6  Programs 1 2 7 

FIGURE 2.3 :  Another program chat accepts palindromes with central marker. 

sented as a binary numeral. However, the result will be represented as a 
binary numeral written in reverse. That is 

binary(s) a 

(qaccepr , A , s, A) W 

(qstatt , s, A, A) , 

binary(s R ) , 

where qsrarr is the initial control state and qaccepr is the final control state. 
The program is depicted in Figure 2 .4 .  ■ ■ ■ 

EXAMPLE 2. 7. Let us consider another problem where the argument and 
result are not strings. We design a program to be used in a vending 
machine that sells three kinds of soda pop : cola, root beer, and grape. 

FIGURE 2.4: A program that reads n as a binary numeral and writes n + 1 as a 
binary numeral with the bits in reverse order. 



1 2 8 Devices ,  Mach ines ,  and Prog ram s  

The vending machine has a coin slot that takes nickels, dimes, and quar
ters, as well as three buttons that permit the user to choose a kind of soda. 
The argument to the program is a sequence of nickels, dimes, quarters, and 
button pushes, which can be represented as a string over the alphabet I; = 
{CD, @, @  c, r, g} .  Consider the function that maps a nickel to the char
acter CD, a dime to the character @, a quarter to the character @ a push of the 
cola button to the character c, a push of the root beer button to the character 
r, and a push of the grape soda button to the character g. By extending that 
function to sequences, we obtain the initializer of the input device, o: inpur · 

The result of the program is a sequence of sodas and change, which can 
be represented as a string over the same alphabet 6 = { CD, @,  0, c,  r, g} . 
Consider the function that maps the character G) to a nickel , the character 
@ to a dime, the character @ to a quarter, the character c to a can of cola, 
the character r to a can of root beer, and the character g to a can of grape 
soda. By extending that function to sequences, we obtain the terminator of 
the output device , Wourput · 

The initializer and terminator for this program require specialized hard
ware, called a vending machine, which works properly only if restocked 
regularly. A finite machine program that sells 25-cent sodas is shown in 
Figure 2 .5. ■ • ■ 

Thus far, we have defined devices, like controls, inputs, outputs, stacks, 
and counters. We have defined machines, which are composed of devices. 
We have defined instructions, which operate on machines. We have defined 
initializers, which provide, based on an argument, the initial values held 
by a machine's devices . We have defined terminators, which determine a 
result based on the final values held by the machine's devices. And we have 
defined programs, which consist of a set of instructions together with an 
initializer and a terminator. 

EXAMPLE 2.8. Finally, let us design a program for a finite machine that 
recognizes the set of all strings over { a, b} that contain an odd number of 
a's. We will use a machine [control, input] , where the input alphabet I; is 
{ a, b}  and the control set Q is { 0, 1 } . The initializer o: is defined by 

x � (O, x) . 



FIGURE 2 .5 :  A finite machine program that operates a soda machine. All control states are accepting. 

N 
0'1 

N 
\.D 



1 3 0  Devices, Mach i nes, a n d  Programs 

FIGURE 2.6: An FM program that accepts {x E {a,b}* : #a (x) = 1 (mod 2 ) } .  

The instruction set I is 

( 0 -----+  1 SCANa ) , 
( 1 -----+ 0 SCANa ) ' 
( 0 -----+  0 SCANb ) ' 
( 1 -----+ 1 SCANb ) 

The terminator w is defined by 

( 1 ,  A) � ACCEPT. 

The program is depicted in Figure 2.6. 

Exerc i ses  

■ ■ ■  

2 .6- 1 What are the initializer and terminator of the program in Fig
ure 1 . 1 9? 

2 .6-2 For each of the following types of arguments, choose an input al
phabet and tell how you would initialize the input device: 

(a) an integer 
(6) an ordered pair of natural numbers 



(c) a sequence of natural numbers 

2 . 6  Programs 1 3 1  

(d) a point in 3-dimensional space having integer coordinates 

2.6-3 Consider the program represented in Figure 1 .2. 

(a) What are the machine's devices? 

(6) What is the program's initializer? 

(c) What is the program's instruction set? 
(d) What is the program's terminator? 

2.6-4 Repeat Exercise 2.6-3 for Figure 1 . 3 .  

2.6-5 Repeat Exercise 2.6-3 for Figure 1 . 12 .  

2 .6-6 Repeat Exercise 2.6-3 for Figure 1 .2 1 .  

2 .6-7 Can a state be both an initial control state and a final control state? 
If so, give an example . 

2 .6-8 (a) Design a deterministic FM program that reads n as a dyadic 
numeral with the digits in reverse order and writes n + 1 as a 
dyadic numeral with the digits in reverse order. 

(6) Design an NFM program that reads n as a dyadic numeral 
(with the digits in the normal order) and writes n + 1 as a 
dyadic numeral (with the digits in the normal order). 

(c) Design a DSM program that reads n as a dyadic numeral (with 
the digits in the normal order) and writes n + 1 as a dyadic 
numeral with the digits in reverse order. 

2 .6-9 Repeat Exercise 2 .6-8 for numbers written in 3-ary. 

2 .6- 10 Repeat Exercise 2 .6-8, but compute n - 1 instead of n + 1 .  The 
program should reject if n = 0. 

2.6- 1 1 Repeat Exercise 2.6- 10 for numbers written in 3-ary. 

2 .6- 12 Design an FM program to operate a vending machine that sells 
bubble gum for 1 5  cents and mints for 20 cents . 



1 3 2 Devices , Mach ines, and Programs 
2. 6- 1 3  Design an FM program that takes a natural number as its argument and determines if the number is congruent to O modulo 5 .  Use the following input representation: (a) monadic (6) binary (c) dyadic (d) binary with the digits written in reverse order (e) dyadic with the digits written in reverse order (f) 5 -ary (g) 5 -adic (h) 5 -ary with the digits written in reverse order (i) 5 -adic with the digits written in reverse order (j) decimal (k) 1 0-adic (1) decimal with the digits written in reverse order (m) 1 0-adic with the digits written in reverse order 
2 . 7  RU N N I N G  A PROGRAM 

Informally, we run a program on argument x by determining the initial configuration and then repeatedly applying instructions to the current configuration in order to determine the next configuration. The general process is as follows: 
Step 1 :  C : =  xa (we say that the initial configuration C is entered). 
Step 2 :  If there is an instruction 7r such that C1r is defined and C is a final configuration, then go to step 3 or step 4, as you please. Otherwise, if there is an instruction 7r such that C1r is defined, then go to step 3 .  Otherwise, if  C is a final configuration, then go to step 4.  Otherwise, stop (no result is given if the program stops here; instead, we say that the program blocks). 



2 . 7  Running a Program 1 3 3 

Step 3 :  Choose any instruction 7r such that C1r is defined (we say that the 
instruction 7r is executed). C := C1r (we say that the configuration 
C is entered). Go to step 2. 

Step 4: Stop and give the result Cw (we say that the program has run to 
completion). 

The process of running a program may end at a final configuration, it 
may end at a nonfinal configuration (if no instruction is applicable), or it 
may go on forever. A result is only given if the program stops in a final 
configuration, i.e. , runs to completion. If the program blocks or runs forever, 
then no result is given. 

2 . 7 . l Com putat ions , Traces ,  and H i stor ies 
Traces, computations, and histories summarize the entire behavior of a 
program, i .e . ,  all instructions executed and all states of all devices while the 
program is run to completion . A trace of one of our programs, analogous to 
a debugging trace of a real-world program, consists of all the configurations 
entered while the program is run to completion. A computation consists 
of all the instructions executed while the program is run to completion . 
A history consists of a computation plus the corresponding trace, i.e . ,  all 
configurations entered and instructions executed while the program is run 
to completion. Partial traces, partial computations, and partial histories 
summarize the behavior of a program up to a certain time, at which the 
program may still be running, may have run to completion, or may have 
blocked. 

One can understand the behavior of individual programs without think
ing about computations, traces, and histories as objects of study, but in later 
chapters we will find it useful to treat them as objects. They will provide 
powerful tools for understanding the capabilities of different types of ma
chines. 

Formally, a partial history of program P on argument x consists of x, 
a, and a finite sequence of configurations interleaved with the sequence of 
instructions that maps each configuration to the next, i .e . ,  a finite sequence 
((x, a,  CO , 7r 1 , C 1 , 7r2 , . • •  , 7rn , Cn )) , where n 2". 0, CO , . . • , Cn are configura
tions, 7r 1 , . . .  , 7r" are instructions belonging to P, x � CO , and C; �

1 C+ 1 
for each i .  



1 34  Devices, Machines , and Prog rams 

EXAMPLE 2 .9. Recall the program P shown in Figure 2 . 3 ,  which accepts 
palindromes with central marker. A partial history of the program P on 
argument a#a is: 

(( a#a 

( 1 ,  a#a, A) 
( 1 ,  #a, a)  

(2 ,  a,  a) )) . 

( 1 -----+ 1 ,  SCAN a, PUSH a) 

( 1  -----+ 2 , SCAN#, NOOP) 

I I I 

A history (or complete history) of program P for argument x and 
result y consists of a partial history that ends in a final configu
ration, followed by w and then the result y; i .e . ,  a complete his
tory is a finite sequence ((x, a ,  C0 , 7r 1 , C 1 , 7r2 , . . .  , 7rn , C,, , w,  y)) ,  where 
((x, a, Co , Jf 1 ,  C I , 7r2 , . .  , , Jrn , Cn )) is a partial history and Cn � y. 

EXAMPLE 2. 1 0. A history of the program P from the previous example on 
argument a#a is: 

(( a#a a 

( 1 ,  a#a, A) ( 1 -----+ 1 ,  SCAN a, PUSH a) 

( 1 ,  #a, a) ( 1  -----+ 2, SCAN#, NOOP) 

(2 , a, a)  (2 -----+ 2, SCAN a,  POP a) 

(2 , A , A) w 

ACCEPT )) . I I I 

If a program has a complete history on argument x, then we say that 
the program halts on x. (The history must be complete; blocking does not 
imply halting.) If a history ends with ACCEPT, like the one above, we call 
the history accepting. If a program has an accepting history on argument x, 
then we say that the program accepts x. 

Using histories, we can describe the acceptance mechanism for nonde
terministic programs in terms of a simple game. The only player is Izzy. 
Let a nondeterministic program P and an argument x be given. Izzy tries 



2 .  7 Running a Program 1 3 5 

to choose an accepting history of program P on input x. If Izzy succeeds, 
then the game is a win for Izzy. If it is possible for Izzy to win, then the 
nondeterministic program P accepts x. If it is not possible for Izzy to win, 
then P does not accept x. 

We say that a configuration C is blocked in program P if C is neither in 
the domain of any instruction (it is impossible for the program to proceed) 
nor in the domain of w (the program has not terminated). A partial history 
that ends in a blocked configuration obviously cannot be extended to any 
longer partial history or to a complete history. We will discuss blocking 
again in Section 2.8. 

A computation is the sequence of instructions executed when a program 
is run. More precisely, if ((x, a ,  Co , 7r 1 , C J , 7r2 , . . .  , Jrn , en , w,  y)) is a history 
of P, then the sequence of instructions ((1r 1 , • • •  , 7rnJJ is called a computation 
of P for argument x and result y. 

A trace of one of our programs is analogous to a debugging trace 
from a real-world program. That is, a trace is the sequence of 
configurations entered when the program is run. More precisely, if 
((x, a ,  Co , 7r 1 , C 1 , 7r2 , . . .  , Kn , Cn , w ,  y)) is a history of P, then the sequence 
of configurations ((Co , . . .  , Cn )) is called a trace of P for argument x and 
result y. 

A computation or trace is called accepting if the associated history is. Partial computations and partial traces are similarly defined . A partial com
putation or partial trace is called complete if it is a computation or trace, 
respectively. 

We can reach configuration C' from configuration C in one step of 
program P iff there exists some instruction 7r E I such that C 7r C' . 
Equivalently, we can reach configuration C' from configuration C in one step 
of program P iff C II C' where II = U1rEI Jr. We can reach configuration 
C' from C in exactly k steps iff C IIk C' . We can reach C' from C (in a finite 
number of steps) iff C II* C'. Therefore, there is a computation of P on 
argument x with result y iff x aII*w y . 

If C II C', we say that C' is a sequel of C. The relation II is called the sequel relation of P. T he relation a o II* o w, which relates arguments of P 
to results of P,  is called the transfer relation of P and is denoted T ( the Greek 
letter for "t"): 

T = a O II* O W. 



1 36  Devices , Machines , and Programs 

B . . C II C' C Ilk 

C' C u* C' d y convent10n, we write 1-------+ , 1-------+ , or 1-------+ to enote 
C II C' ,  C IIk C', or C II* C',  respectively. We write x � y to denote 
x T y. Thus in Example 2. 10, we have a#a � ACCEPT (and, in fact, 
T = { (x, ACCEPT) : x is a palindrome with central marker}). 

EXAMPLE 2. 1 1 .  Consider the monadic calculation program in Figure 1 . 3 .  
The unique history, of that program o n  input 1 1  - 1 + 1 1  is given in Figure 2 .  7 .  

The transfer relation of the monadic calculation program is { (x, y) 
x is a sequence of monadic numerals separated by plus and minus signs 
and y is the monadic numeral that results from performing the additions 
and subtractions} . Observe that for every x there is at most one y such 
that (x, y) E T; i .e. , this program's transfer relation is a partial function. 
In fact, the transfer relation of a deterministic program is always a partial 
function. ■ ■ ■  

Exe rc i ses 

2.7-1  (a) What are the initializer, terminator, and instruction set of the 
program shown in Figure 1 .  10? 

(6) What are that program's history, computation, and trace on 
input aabbbb? 

2 . 7 . 2  I nfin ite Computat ions , Traces ,  and H i sto r ies 
When a program is  run, i t  may halt, block, or  run forever. Running 
forever is formalized through the notion of infinite histories, computations, 
and traces. An infinite sequence ((x, a ,  C0 , 1r 1 , C 1 , 7r2 , C2 1  • • •  )) is an infinite 
history if each prefix of the form ((x, a,  C0 , 1r 1 , C 1 , . . .  , Jr; , C;)) is a partial 
history. Observe that an infinite history is not in fact a history. An infinite 
history of a program corresponds to the program's running forever without 
blocking or producing a result . 



(( 1 1 - 1 + 1 1  

(+ , 1 1- 1+1 1 , A, o) ' 
(+ , 1- 1 + 1 1 , A, 1) 

( + , - 1  + 1 1 , A, 2) 

(- , 1+1 1 ,  A, 2) 

( - , +1 1 , A,  1) 

(+, 1 1 , A, 1) 

(+, 1 , A , 2) 

(+, A, A, 3 )  

(2, A, A, 3 )  

( 3 , A , A, 3 )  

(4, A, A,  3 )  

( 3 ,  A ,  1 ,  2) 

(4, A, 1 , 2) 

( 3 , A ,  1 1 ,  1) 

(4, A, 1 1 , 1) 

( 3 , A , 1 1 1 , 0) 

(6 ,  A, 1 1 1 ,  o) 

1 1 1  )) 

2 . 7  Running a Program 1 3 7 

Q 

(+ ----+ +, SCAN 1 , NOOP, INC) 

(+ ----+ +, SCAN 1 , NOOP, INC) 

(+ ----+ - , SCAN -, NOOP, NOOP) ' 
( - ----+ - ,  SCAN 1 ,  NOOP, DEC) 

( - ----+ +, SCAN +, NOOP, NOOP) ' 
(+ ----+ +, SCAN 1 , NOOP, INC) 

( + ----+ +,  SCAN 1 ,  NOOP, INC) 

( + ----+  2, EOF, NOOP , NOOP) 

(2 ----+ 3 , NOOP , NOOP , POS) 

( 3 ----+ 4, NOOP, NOOP, POS) 

(4 ----+ 3,  NOOP, WRITE 1 ,  DEC) 

( 3  ----+ 4, NOOP, NOOP, POS) 

(4 ----+ 3 ,  NOOP, WRITE 1 ,  DEC) 

( 3 ----+ 4, NOOP,  NOOP , POS)  

( 4 ----+ 3 ,  NOOP , WRITE 1 ,  DEC) 

( 3 ----+ 6 ,  NOOP, NOOP , ZERO) 

w 

FIGURE 2 .7: The unique history of the program in Figure 1 . 3  on input 
1 1 -1+1 1 .  



1 3 8  Devices , Machines , and Programs 

FIGURE 2.8: An NUCM program that accepts { ambn : m :s; n } .  

For example, consider the NUCM program in Figure 2 .8 ,  which accepts the set of strings of the form ambn where m � n .  Its instruction set is 
( 1 ----+ 1 SCAN a INC ) ' 
( 1 ----+ 1 NOOP INC ) ' 
( 1 ----+ 2 NOOP NOOP ) ' 
( 2 ----+ 2 SCANb DEC ) 

This program can run forever, incrementing the counter without scanning anything. An infinite history on input ab is 
(( ab O'. 

( l , ab, 0) ( 1  ----+ 1 ,  NOOP, INC) 
( 1 ,  ab, 1 )  ( 1  ----+ 1 ,  NOOP, INC) 
( 1 ,  ab, 2) ' ( 1  ----+ 1 ,  NOOP , INC) 

)) 

Infinite computations and infinite traces are defined analogously. An infinite sequence is an infinite computation if each of its prefixes is a partial computation. Equivalently, an infinite computation is the infinite sequence of instructions in some infinite history. An infinite sequence is an infinite 



2 . 8  Determ in i sm and Blocking 1 39 

trace if each of its prefixes is a partial trace. Equivalently, an infinite trace is the infinite sequence of configurations in some infinite history. 
Exe rc i ses  

2 .  7 - 1  What are the infinite computation and infinite trace that correspond to the infinite history presented in this section? 
2 .7-2 Present another infinite history of the program in Figure 2 .8  on input ab. What are the corresponding infinite computation and infinite trace? 
2. 7 -3 Design a deterministic UCM program that recognizes the language { ambn : m ::; n} .  Does your program have any infinite computations? 
2 .  7 -4 Present a deterministic program that has an infinite computation. 
2 .8 DETERM I N IS M  AND BLOCKI NG  

Recall from Section 1 .9 that nondeterministic programs may perform one of several instructions at each step when they are run, but deterministic programs have at most one option at each step (zero options if the program is blocked). In this section, we formally describe the notions of determinism, nondeterminism, and blocking. In a program, there may be more than one instruction applicable to a configuration, or an instruction may be applicable to a final configuration. Such a program could be faced with a choice of which instruction to perform next or whether to continue or halt. In such cases the program's behavior is not precisely determined. Such a situation may arise when two instructions 
(µ1 , µ2 , . . .  , µn ) and (v1 , v2 , . . .  , Vn ) have overlapping domains, operation by operation, or when an instruction (µ1 , µ2 , . . .  , µ11 ) and the terminator 
( w 1 , w2 , • • •  , Wn ) have overlapping domains. When no such overlap occurs, a program is called deterministic . We say that determinism is a syntactic property because it does not depend on the behavior (semantics) of the program. 



1 40 Devices, Machines , and Programs 

If a program is deterministic it has exactly one complete, blocked, or infinite computation on each input. In particular, it has at most one complete computation for each argument, so its transfer relation is a partial function (Exercise 2 .8-2). The converse is not true; i .e . ,  a program might not be deterministic, but still compute a partial function. 
EXAMPLE 2 . 1 2.  Consider the nondeterministic program m Figure 1 . 19 that accepts even-length palindromes. Its instructions are 

( 1 -----+ 1 SCAN a PUSHa ) ' 
( 1 -----+ 1 SCANb PUSHb ) ' 
( 1 -----+ 2 ' NOOP NOOP ) ' 
( 2 -----+  2 SCAN a ' POPa ) ' 
( 2 -----+  2 SCANb POPb ) ' 
( 2 -----+  3 ' EOF EMPTY ) 

Its terminator is (2 ,  A ,  A)  w = ACCEPT. The program is not deterministic because the first and third instructions have overlapping domains; they are both applicable to configurations belonging to { 1 }  X a { a, b} * X { a, b} * , i .e . ,  in which the control state is 1 ,  the next input character is a, and the stack contents can be anything. The second and third instructions also have overlapping domains . ■ ■ ■ 

EXAMPLE 2 . 1 3. Consider a program for a machine [control, input, stack, unsigned counter] , whose instruction set is given below: 
(o -----. 1 ' SCAN 0 , PUSH a , ZERO ) ,  
(o -----. 1 , SCAN 1 , EMPTY , INC ) ' ( 1 -----+ 2 , NOOP POP a , NOOP) ,  
( 1 -----+ 3 , NOOP NOOP , DEC ) 

Its terminator is the everywhere-undefined partial function. See Figure 2 .9. 



2 . 8  Determinism and B locking 1 4 1  

FIGU RE 2.9: A program chat is not deterministic but never has co choose. 

This program is not deterministic because any configuration having the form ( 1 ,  x, sa, n + 1 )  is in the domain of both ( 1 ----+ 2 ,  NOOP, POP a, NOOP) and ( 1  ----+ 3 ,  NOOP , NOOP , DEC) ;  i .e. , the program has the choice of popping an a or decrementing the counter. Observe, however, that no configuration of the form ( 1 ,  x, sa, n + 1 )  is actually reached during any partial computation that starts at control state 0, because the program can enter control state 1 only when the stack is empty or the counter is zero. Thus, when this program runs, it is never faced with a choice. However, it is not deterministic. By definition, determinism depends only on local properties of the instruction set and the terminator, rather than on the actual behavior of the program. This is important, because there is no general algorithm to determine which configurations of a program are actually entered, but we want to be able to decide easily whether a program is deterministic. • • •  

Recall from Section 1 .9 that deterministic programs are a special case of nondeterministic programs. Nondeterministic means "not necessarily deterministic," as opposed to "not deterministic . "  Blocking is another property that depends only on local properties of the instruction set and the terminator. Recall that a configuration C is 
blocked if C is not in the domain of any instruction or w .  A program is called 
nonblocking if no configuration is blocked. Like determinism, the nonblocking property does not depend on which configurations of the program are actually reachable. 



1 42 Devices, Mach ines ,  and Programs 

Observe that the program in Example 2 . 1 2  is blocking because any 
configuration of the form ( 2 ,  ax, sb) or ( 2, bx, sa) is not in the domain of 
any instruction or w. In particular, ( 2 ,  a, b) is a blocked configuration. 

Exerc i ses  

2 .8-1  For each nondeterministic program in Figures 1 . 1 9 through 1 . 23 ,  
tell which pairs of instructions have overlapping domains. 

2 .8-2 Prove that if a program is deterministic, then 

(a) it has at most one computation on each argument .  

(b) its  transfer relation is a partial function. 

The converses to (a) and (b) are not true. Give counterexamples. 

2 . 9 TH REE I M PORTANT KI N DS OF  PROG RAMS 

Programs tend to fi t  into one of three paradigms: An acceptor i s  a non
deterministic program that takes a string as input and either accepts it or 
does not (it can fail to accept by blocking or running forever). A recognizer 
is a deterministic program that takes a string as input and either accepts 
it or rejects it .  A transducer is a nondeterministic program in which each 
complete computation maps an input string to an output string. 

Recognizers and acceptors are used for testing membership in a lan
guage. Transducers compute relations or partial functions on strings. Of 
course, all programs will be limited by the capabilities of the machines they 
run on. 

2 .9 .  1 Acceptors 
A common application of programs is to test whether a string belongs to a 
language L. Informally, acceptors do so as follows: If the input x belongs to 
L, then the program has a complete computation on x with a result called 
ACCEPT (which can be thought of as "yes" or "true"); if x does not belong 
to L, then all computations of the program on x are blocked or infinite, 



2 . 9  Three I mportant Kinds of Programs 1 43 

producing no result. Acceptors can say yes, but they cannot say no. In symbols, 
x E L � x � ACCEPT. 

Acceptors are nondeterministic. Therefore, for an input string in L, there may be more than one partial or complete computation. So long as there is at least one complete computation with result ACCEPT, the input string is accepted, even if other partial computations on that input are be blocked or infinite. In this convention, we say the program accepts the language L. We write L(P) to denote the language accepted by program P. Formally, an acceptor is a program that computes a partial function from 
I:* to {ACCEPT} and obeys a certain input convention that we will specify. The program's argument is the initial state of the input device. Each noninput device is initialized to a particular initial state that is independent of the argument. That is, let M be a machine [control, input, d3 , . . .  , dk] with input alphabet I:. A program for M is an acceptor if its initializer satisfies the following conditions: 

• The input's initial state is equal to the argument, i .e . ,  O'.inpur = I�• -
■ For d =/- input, the initial state of d does not depend on the argument, i .e. , ad = I:* X {sd} for some state sd in the realm of d. 

The restrictions on O'. ensure that the program's only direct access to its argument is via the input device. If an acceptor P accepts a language L, then we call P an acceptor for L. For example, the programs presented in Figures 1 .2 ,  1 . 5 ,  1 .7 ,  1 .8 ,  1 .9, 1 . 10 ,  1 . 1 1 ,  1 . 1 2 ,  1 . 13 ,  1 . 14 ,  1 . 1 5 ,  1 . 16 ,  1 . 19,  1 .20, 1 .2 1 ,  1 . 22 ,  and 1 . 23 are all acceptors. An acceptor that runs on a finite machine is called a nondeterministic finite acceptor (NFA, for short). An acceptor that runs on a counter machine is called a nondeterministic counter acceptor (NCA, for short). An acceptor that runs on a stack machine is called a nondeterministic stack acceptor (NSA, for short). An acceptor that runs on a tape machine is called a nondeterministic Turing acceptor (NTA, for short). Deterministic acceptors running on those machines are called DFAs, DCAs, DSAs, and DTAs, respectively. 



1 44 Devices, Mach ines ,  and Programs 

Exerc i ses  

2 .9- 1 Design deterministic acceptors that run on a machine [control , input] and accept the following languages: (a) the set of numbers that are congruent to 1 modulo 5 ,  written in monadic notation (b) the set of numbers that are congruent to 1 modulo 5 ,  written in dyadic notation (c) the set of numbers that are congruent to 1 modulo 5 ,  written in binary notation (d) the set of numbers that are congruent to 1 modulo 2 and to 2 modulo 5 ,  written in monadic notation (e) the set of numbers that are congruent to 1 modulo 2 and to 2 modulo 5 ,  written in dyadic notation (f ) the set of numbers that are congruent to 1 modulo 2 and to 2 modulo 5 ,  written in binary notation 
2 .9 . 2  Recogn i zers A second convention for programs that test membership in a language L requires that the program be nonblocking and deterministic and that it give a result for every input string. In particular, the program must have no infinite computations. Because the program is deterministic and gives a result for every string, its transfer relation is a function. The transfer function maps each string in the language L to a particular result, called ACCEPT (possibly synonymous with "yes" or "true" ). The transfer function maps each string in L, i.e . ,  each string not in L, to a second particular result, called REJECT (possibly synonymous with "no" or "false"). In this convention, we say that the program recognizes L. In contrast with acceptors, recognizers can say yes or no. In symbols, 

XT = { ACCEPT if x E L, 
REJECT if x ¢:_ L. 

We write L(P) to denote the language recognized by program P. A program that follows those conventions for recognizing a language and also obeys the same input convention as an acceptor is called a recognizer. 



2 . 9  Th ree Important Kinds  of Prog rams 1 4 5 

FIGURE 2. 1 0: A recognizer for the set of strings that are not palindromes with 
central marker. 

If a recognizer P recognizes a language L, then we call P a recognizer for L. 
For example, the program presented in Figure 1 . 1  is a recognizer for the set 
of palindromes with central marker. 

Given a program that recognizes L, if we interchange ACCEPT and 
REJECT in the specification for the terminator w, we obtain a program 
that recognizes L .  Therefore, a language is recognized by some program 
for a machine iff its complement is recognized by another (nearly identical) 
program for the same machine . In Figure 2 . 10, we apply this technique to 
convert the program in Figure 1 . 1 to a recognizer for the set of strings that 
are not palindromes with central marker. 

Alternatively, if we delete from w all ordered pairs whose second com
ponent is REJECT, we obtain a program that accepts L. Therefore, if a 
language is recognized by some program for a machine, then it is accepted 
by a nearly identical program for the same machine . (The converse need not 



1 46 Devices, Machines, and Programs 

FIGURE 2 . 1 1 :  The result of converting the recognizer in Figure 1 .1 to an 
acceptor. 

be true, as we shall see in Chapters 6 and 7 .) In Figure 2. 1 1 , we apply this 
technique to convert the program in Figure 1 . 1 to an acceptor for the set of 
palindromes with central marker. (We can also delete control state 4 and the 
edges leading to it, thereby obtaining a smaller program. See Figure 1 .2.) 

A recognizer that runs on a finite machine is called a deterministic finite recognizer (DFR, for short). A recognizer that runs on a counter machine is 
called a deterministic counter recognizer (DCR, for short). A recognizer that 
runs on a stack machine is called a deterministic stack recognizer (DSR, for 
short). A recognizer that runs on a tape machine is called a deterministic Turing recognizer (DTR, for short). 

Exe rc i ses 

2.9-2 Repeat Exercise 2.9- 1 for recognizers. 

2 . 9 . 3  Tran sdu cers  
Another important application of programs is to compute a multiple-valued 
function, i.e. , a relation. A transducer is a program that computes a relation 



2 . 9  Th ree Important Kinds of Programs 1 4 7 

from I:* to L\ * and obeys certain input and output conventions that we 
will specify. The input device is initialized to hold the argument, and the 
output device holds the result. Each non-input device is initialized to a 
particular initial state that is independent of the input. Each non-output 
device has a particular set of final states, but the result does not depend on 
which final state any non-output device is in . 

To be precise, let M be a machine [control, input, output, d4, . . .  , dk] 
with input alphabet I: and output alphabet L\. A program for M is a transducer if its initializer and terminator satisfy the following conditions: 

• The input's initial state is equal to the argument, i.e. , ainpur = h_ • .  

• For d # input, the initial state of d does not depend on the argu
ment, i.e., ad = I:* X {sd} for some state SJ in the realm of d. 

• The result is equal to the output's final state, i.e., Wourpur = lt:,• . 

• For d # output, the result does not depend on the state that d ends 
up in, i.e. , WJ = sd X L). * for some subset sd of the realm of d. 

The restrictions on a ensure that the program's only direct access to the 
input is via the input device. The restrictions on w ensure that the result, 
if there is one, is not affected by any device but the output device. Note, 
however, that the program produces no result unless it enters a final configuration, i. e, unless every device enters a final state. 
EXAMPLE 2. 1 4. Consider the program for a machine [control, input, out
put, stack] in Figure 2. 12 .  Its initializer is xa = (O, x, A, A) ,  and its 
terminator is ( 1 , A, y , A) w = y. The program is a transducer that maps 
strings of the form xx R to x. The program does not accept any other inputs, 
so it does not produce any result when the input is not of the form xx R . (In 
fact, any program with that initializer and terminator is a transducer.) ■ ■ ■ 

The program in Figure 1 . 3, which performs monadic addition and sub
traction, is also a transducer. 

FM transducers, also called finite transducers, transform strings while 
using a bounded amount of memory. The transfer relation of a (determin
istic) finite transducer is called a (deterministic) finite transduction. Finite 
transductions will have many uses in subsequent chapters. 



1 48 Devices ,  Machines ,  and Programs 

FIGURE 2. 1 2 : A program that maps strings of the form xx R to x. 

FIGURE 2. 1 3 : A deterministic finite transducer that maps x ro a#a (x). 

EXAMPLE 2 . 1  5. Let us design a deterministic finite transducer that maps 
each string x over { a, b} to the string a#a (x) (recall that #a (x) is the number 
of a's in the string x). The transfer relation is { (x, y) E { a, b} * x a* : 
x and y contain equal numbers of a's} (a partial function) .  The program, 
shown in Figure 2 . 1 3 , scans a's and copies them to the output device; it 
also scans b's but ignores them. ■ ■ ■ 

EXAMPLE 2. 1 6. Let us design a nondeterministic finite transducer that 
relates each string x over { a, b} to each string y over { a, b} such that 
#a (x) = #a (Y) ,  i .e . ,  the output is any string that has the same number of a's 
as the input string. The transfer relation is { (x, y) E {a, b} * X { a, b}* : x 
and y contain equal numbers of a's} .  The program, shown in Figure 2. 1 4, 
scans a's and copies them to the output device, scans b's but ignores them, 
and also nondeterministically writes b's to the output device. ■ ■ ■ 



2 .9 Three I m portant K inds of Prog rams 1 49 

FIGU RE 2. 1 4 : A nondeterministic finite transducer that relates x ro any suing 
with the same number of a's. 

The behavior of acceptors, recognizers, and transducers is summarized 
in Figure 2. 1 5. 

Exerc i ses  

2.9-3 Design a stack transducer whose transfer relation 1 s  { (w, w R ) :  
w E {a, b}* } .  

2.9-4 Design a finite transducer that maps each string of the form ai#a.J 
to aib' .  

2 .9-5 Design a finite transducer that maps each string of the form aib' ck 

to ajbk _ 

2. 9-6 Filters 
(a) Let P be an acceptor for a language L. Show how to convert 

P into a transducer P' , running on the same type of machine, 
whose transfer relation T1 is given by 

1 { X 
xT 

= 
undefined 

if X E  L, 

otherwise, 

i .e . ,  T1 = h- Such a program is called a filter for L, and we say 
that the program filters L. 



1 5 0  Devices,  Mach ines ,  and Prog ram s  

Acceptor: 

Recognizer: 

Transducer: 

In short, 

Acceptor: 

Recognizer: 

Transducer: 

x E L  

x E L  

x' r/. L 

X f--+ y 

x E L  

x E L  

x' r/. L 

X f--+ y 

( q5tart , x, A, etc. ) 
rr* f--+ ( qaccept , A, A, etc. ) 
w f--+ ACCEPT. 

a 
X f--+ (qsran , x, A, etc. ) 

x' 

rr* f--+ ( qaccept , A, A, etc. ) 
w f--+ ACCEPT, 

(qstart , x', A, etc. ) 
rr* f--+ (qreject , A, A, etc. ) 
w f--+ REJECT. 

a 
X f--+ (qstart , x, A, etc. ) 

(qstart , x, A, etc. ) 

(qsram x, A, etc. ) 

(qstan , x' , A, etc. ) 

(qsran , x, A, etc. ) 

rr* f--+ ( %nal , A, y, etc. ) 
w f--+ y. 

rr* f--+ 

rr* f--+ 
rr* f--+ 

rr* f--+ 

(qaccept , A, A, etc. ) . 

(qaccept , A, A, etc. ) , 

(qreject , A, A, etc. ) . 

(%nal , A, y, etc. ) . 

FIGURE 2 . 1 5:  The behavior of acceptors and recognizers for a language L and 
of transducers computing a relation T. Assume that the programs run on a 
machine [control, input, output, d4 , . . .  , dk] where d4 , . . .  , dk arc devices other 
than input or output. We write "etc." as shorthand for the states of devices 
d4 , . . .  , dk , qstart denotes the unique initial state; qaccepc , qrejecc , and qfinal denote 
arbitrary accepting, rejecting, and final states, respectively. Recognizers must be 
deterministic. Note that the output device is not used by acceptors or recognizers, 
so it need not be present in their machines. 



2 . 1 0  Chapter Sum mary 1 5 1 

(b) Show how to convert a filter for L into an acceptor for L running 
on the same type of machine . 

*2.9-7 Design a deterministic finite transducer with the following proper
ties: 

• If the input x is a balanced string of parentheses, then the pro
gram outputs a balanced string of parentheses having length 
½ !x i  or less. 

• If the input x is not a balanced string of parentheses, then 
the program either rejects or outputs an unbalanced string of 
parentheses having length ½ /xi or less. 

2 . 1 0 CHAPTER SUM MARY 

In this chapter we showed how to represent problems, instances, and results. 
Then we formally defined many concepts that had already been presented 
informally in Chapter 1 .  It is important to remember that an operation 
is a partial function on the state of a device, a configuration captures all 
the state information needed to describe a machine at one moment, and an 
instruction is a partial function on the configuration of a machine. 

Next we defined computations, histories, and traces, which record the 
behavior of a program. Finally, we defined three important kinds of pro
grams: recognizers, acceptors, and transducers. Recognizers are always 
deterministic and test membership in languages. Acceptors are nondeter
ministic (although deterministic acceptors are an interesting special case) 
and also test membership in languages. Nondeterministic transducers com
pute relations, and deterministic transducers compute partial functions. 

Throughout this book, it is important to remember that determinism 
is a special case of nondeterminism. 

Exerc ises 

2 . 10- 1  Construct a DFR that scans a binary number x left to right and 
determines whether 

(a) x = 0 (mod 2 ) .  



1 5 2 Devices , Machines , and Programs 

(b) x = 1 (mod 3 ) .  
(c) x = 5 (mod 7) .  

2. 10-2 Repeat Exercise 2. 10- 1  for decimal numbers. 

2. 10-3 Programs with nonstandard initializer 
(a) Construct a DUCM program that starts with a number x in 

the counter and determines whether x 1 ( mod 3 ) .  
(b) Construct a DSM program that starts with a string x on the 

stack and determines whether x contains the pattern gram. 
(Assume that the stack alphabet is { a, . . .  , z}, and use appro
priate abbreviations when describing the program.) 

(c) Construct a DSM program that starts with a string x on the 
stack and determines whether x contains the pattern bbaba. 
(Assume that the stack alphabet is { a, b} .) 

In each part, be sure to define a .  

2. 10-4 Generators 
(a) Let P be an acceptor for a language L. Assume that P does not 

use the EOF test. Show how to convert P into a program P', 
running on the same type of machine, that has no input but 
writes all strings belonging to L. To be precise, let the argu
ment to P' be called START (since the argument is ignored, 
its name does not really matter). The transfer relation T1 of P' 
is given by 

r' START � x -¢=:::} x E L. 

Such a program is called a generator for L, and we say that the 
program generates L. 

(b) Show how to convert a generator for L into an acceptor for L 
running on the same type of machine. 

(c) Prove that if a program P generates an infinite language, then 
P has at least one infinite computation. Hint: Use Konig's 
tree lemma (Exercise 0.6-29). 



3 

Simulation 

SIMULATION IS A major topic in computer science, arising in hardware design, distributed systems, programming language semantics, and theory. In this chapter we will define what it means for one program to simulate another program. Although we do not present the most general notion of simulation, our simulation techniques suffice to prove many important theorems in computability theory. Furthermore, 
1 5 3 



1 54  S imu lation 

similar simulation techniques, beyond the scope of this book, are applicable to other areas of computer science. We begin by informally discussing some practical uses of simulation. Suppose, for example, that your computer company wants to create a new Super Behemoth 2000 model of workstation to replace its popular Behemoth 1000 model. The design of a new real-world computer typically begins with the specification of an abstract machine that can hold certain kinds of information and perform instructions that affect that information. Next a network of wires and standard logic gates is designed (on paper) that behaves the same as the SB2000's specification. If correct, the design simulates the specification. Finally, the SB2000 is constructed from real hardware; if put together correctly, the SB2000 simulates the design and, by transitivity, simulates the specification. While the design and construction are going on, one may also write a program called a simulator that runs on the existing B 1000 computer and simulates, instruction by instruction, programs for the SB2000. The simulator is likely to be slow, even compared to the B 1000, because it may take several B 1000 instructions to simulate one instruction of the SB2000, but the simulator makes it possible to write and debug software for the SB2000 even before it has been built. Your company's SB2000 customers may depend on existing software written for the B 1 000. In order to keep them happy, it is useful to have a simulator that runs on the SB2000 and simulates B 1 000 programs. Because it may take several instructions of the SB2000 to simulate one instruction of the B 1000, simulated programs will typically run slower than programs written expressly for the SB2000, but at least they will work. Consumers who do much scientific computing will purchase chips that perform arithmetic on floating point numbers. However, most users will use floating point operations only occasionally; they do not mind if floating point is slow, and they do not want to pay extra for a special chip. For them it makes sense to provide subroutines that use the SB2000's instructions to perform floating point arithmetic. These subroutines simulate the operations performed by floating point chips. In hardware design, one generally wants to prove that a design simulates its specification; in distributed systems, that a system simulates its specification; in programming language semantics, that a program meets its specification. Theory provides techniques to prove the correctness of 



3 . 1  Simu lation of Prog rams 1 5 5 

simulations and hence that hardware, systems, and programs behave as desired. 
3 . 1  S I M U LATION OF PROGRAMS 

A major topic of computability theory i s  comparing the relative computing power of different kinds of machines. For most of this book, we will measure the power of machines by which problems they can solve, regardless of how fast they can solve them; only in Chapter 9 will we make a formal study of running time. We say that two programs P and P' , possibly running on different machines, are (computationally) equivalent if P and P' have the same transfer relation; this is an equivalence relation on programs. We say that one machine M' is at least as (computationally) powerful as another machine M if every program P for machine M is equivalent to some program P' for machine M'; this is a partial order on machines. We prove equivalence of programs so often that it is economical to find a standard proof framework into which we can plug the particulars of each proof. Usually we will prove the equivalence of programs P and P' by showing that their histories pass through some closely related configurations. Such similar behavior is called simulation. Proofs by simulation are desirable because the key ideas are computational rather than abstract. If every program for a machine M can be simulated by a program for a machine M', then we say that the machine M is simulated by the machine 
M'. In particular, if a machine M' can simulate a machine M, then machine 
M' is at least as powerful as machine M. In Section 3.2 we introduce a simple framework for proving simulation, called lockstep simulation, in which the behavior of P' corresponds to the behavior of P step for step. In Section 3 .3 , we describe a more general framework, using subprograms, in which P' may spend several steps simulating each step of P. Simulation via subprograms will permit us to mechanize the details of almost every simulation we wish to verify in this book. That is not to say that simulations do not involve creativity. Some insight is usually needed in order to determine how the states of one machine's devices represent the 



1 5 6  Si mu lation 

states of another machine's devices. Given that insight, the details of the 
proof become routine. 1 

Typical simulation proofs can be explained informally. In later chapters 
they will be. The main purpose of this chapter is to develop formal tools so 
that you can take an informally explained simulation, describe it precisely, 
and formally prove its correctness. To understand Chapters 4 through 9,  
it  suffices to have an informal understanding of simulation, especially the 
concrete examples that we will present in this chapter. 

3 . 2  LOCKSTEP S I M U LATION 

I n  proving simulation we must first discover how the states of one machine's 
devices can effectively represent the states of another machine's devices, 
or, more succinctly, how the configuration of one machine can effectively 
represent the configuration of another machine. This is done on an ad 
hoc basis. After the correspondence between the configurations of the two 
machines is understood, we prove that the behavior of the programs preserves 
the correspondence. That part of the proof can often be performed in a purely 
mechanical way. 

EXAMPLE 3. 1 .  Let P be the program for a machine [control, input, 
unsigned counter] shown in Figure 3 . 1 ,  which accepts { anbn : n 2 1 } .  Let 
P' be the DSA with a one-character stack alphabet, shown in Figure 3 . 2 , 
which also accepts { anbn : n 2 1 } .  In fact, P' simulates P. The control 
state q in P is represented by the same state q in P' . The input state x in P is 
represented by the same state x in P' . The counter state i in P is represented 

. I by the stack state 1' in P . 
On argument x, the initial configuration of P is ( 1 , x, 0 ) ,  which cor

responds to the initial configuration ( 1 ,  x, A) in P' . The instruction 
( 1  -+ 1 ,  SCAN a, INC) in P maps the configuration ( 1 ,  ax, i) to ( 1 ,  x, i +  1 ) ;  
the instruction ( 1 -+ 1 ,  SCAN a ,  PUSH 1 )  in P' maps the corresponding con
figuration ( 1 ,  ax, 1; ) to ( l , x, 1 ;+ 1 ) .  The instruction ( l -+ 2 , SCANb, DEC) 
in P maps the configuration ( 1 , bx, i + 1 )  to ( 2 , x, i ) ;  the instruc-

1 There is no general algorithm for obtaining proofs of equivalence, as we will prove in 
Chapter 7 .  



3 . 2  Lockstep Si mu lation 1 5 7 

FIGURE 3. 1 : A DCA that accepts { a"b" : n 2: 1 }. 

FIGURE 3.2 :  A DSA with a one-character stack alphabet that accepts 
{ a"b" : n 2: 1 } .  

tion ( 1 --+ 2 ,  SCANb, POP 1 )  i n  P' maps the corresponding configura
tion ( 1 ,  bx, 1 i+ l ) to (2 , x, i i ) . The instruction (2 --+ 2 ,  SCANb, DEC) 
in P maps the configuration (2 , bx, i + 1)  to (2 , x, i) ; the instruc
tion ( 2 --+ 2, SCANb , POP 1 )  in P' maps the corresponding configuration 
( 2, bx, 1 ;+ 1 ) to ( 2, x, 1 ;) . The accepting configuration ( 2, J\., 0) in P corre
sponds to the accepting configuration (2, J\.,  J\.) in P'. ■ ■ ■ 

In this section we define a simple framework, called lockstep simulation, 
for proving simulation. Then we prove that lockstep simulation possesses 
the key feature of simulation: If one program simul ates another in lockstep, 
then both programs have the same transfer relation. To prove lockstep 
simulation, it suffices to state how one program's configurations represent 
the other's and then to verify three equations involving this representation. 
The inductive part of the proof of program equivalence need be done only 
once and can be applied many times. Thus lockstep simulation eliminates 
the need for many tedious inductive proofs of program equivalence. 



1 58  S imu lation 

Let P be a program with initializer O'., terminator w, sequel relation II, 
and transfer relation T for a machine M whose control set is Q. Let P' be a 
program with initializer a', terminator w', sequel relation IT', and transfer 
relation 71 for a machine M' whose control set is Q' . We want to prove that P' is equivalent to P, i .e . ,  that 71 = T.  

In any simulation, we will define a relation p that relates configurations 
of M' to configurations of M. p is called the relation of representation. If C' 
is a configuration of M' and C is a configuration of M such that C' p C, we 
say that C' represents C. In the simplest kind of simulation, P' takes one 
step for each step of P, and the kth configuration of P' represents the kth 
configuration of P. We call this a lockstep simulation. 

There are three conditions to establish in a lockstep simulation. First, 
we must show that the initial configuration of P' represents the initial 
configuration of P and no other configuration. That is, x � C0 if and only 

if x � C� for some c;1 that represents C0 • Let us expand that formula: 

Stated in a diagram, this amounts to showing that the relations indicated 
by the dashed lines in Figure 3 . 3  are satisfied if and only if there exists 
C'.1 such that the relations indicated by the dotted lines are satisfied. More 
compactly, 

a = a' o p. ( 3 . 1 )  

We say that the diagram in Figure 3 . 3  commutes or is commutative because 
starting at the upper right hand corner one arrives at the same destination 
by following arrows down and then left as by following arrows left and then 
down.2 

Second, we must show that a single instruction is simulated properly. 
That is, if c; represents C; and C;+ 1 is a sequel of C;, then there is a sequel 
c;+ 1 of c; such that c;+ 1 represents C;+ 1 ; conversely, if c;+ 1 is a sequel of 

2 Experienced travelers know that Manhattan streets form a commutative diagram, 
whereas Boston streets do not. 



3 . 2  Lockstep Simu lation 1 59 

FIGURE 3.3 :  A commutative diagram demonstrating the simulation of a: 
x I x �  C0 � (:3c;i ) [x � c� p C0 ] . 

c; and C'.+ i represents Ci+l , then there exists a configuration C; such that 
c; represents C; and Ci+l is a sequel of Ci . That is, 

Stated in a diagram, this amounts to showing that there exists Ci satisfying 
the relations indicated by the dashed lines in Figure 3 .4 if and only if there 
exists C'.+ i satisfying the relations indicated by the dotted lines. Much more 
compactly, 

p o II = II' o p. ( 3 . 2) 

Third, we must show that every final configuration of P' represents 
a final configuration of P, and, conversely, every final configuration of P 
is represented by a final configuration of P' . That is, c: represents some 

configuration Cn such that Cn � y if and only if c: � y. Expanding that 
formula, 

Diagrammatically, we show there exists Cn such that the relations indicated 
by the dashed lines in Figure 3 .5 are satisfied if and only if the relations 



1 60 Simu lation 

FIGURE 3.4: A commutative diagram demonstrating the simulation of II: 

(:lc,) [c; p C; !!. C;+ i J  ¢=} (=1c;+ 1 ) [c; � c;+ 1 p C;+ i J -

FIGURE 3 . 5 :  A commutative diagram demonstrating the simulation of w :  

(:3Cn) [c: p Cn r":. y] ¢=? c;, i, y I y. 

indicated by the dotted lines are satisfied . More compactly, 

p o w = w' . ( 3 . 3 )  

Formally, we say that P '  simulates P in lockstep if there is a relation p 
that satisfies equations (3 . 1-3 .3 ). These three equations are summarized in 
Figure 3 .6 .  



a 

p o  IT 

p o w  

a' o p, 

IT' o p, 

w' . 

3 .2  Lockstep S imu lation 1 6  l 

(3 . 1) 

(3 .2) 

(3 .3)  

FIGURE 3.6:  The three conditions of  lockstep simulation. 

Assume that equations (3. 1-3 . 3) hold. First, we will prove by induction 
that p o Ilk = (IT'/ o p for every k 2 0. When k = 0, we have p o IT0 = 
p = (IT')0 o p, so the base case is established. Assume inductively that 
p o  Ilk = (IT')k o p  for some k 2 0. Then, using (3 .2), 

P o  rrH 1 = P o  rrk o rr = (II' )k o p  o rr = (II') k o rr' o P = (II') k+ 1 o p, 

completing the proof by induction. Then, for every k, 

a' o p  o Ilk o w  

a' o (II' /  o p o w  

a' o (II') k o w' 

(This equality is depicted in Figure 3 .7 .) Therefore, 

T 0: 0 rr* 0 W 

<> o (�, 11•) o W 

LJ a o Ilk o w  
k2:0 

LJ a' o (II' /  o w' 
k2:0 

,/ o (y
0 
(11')') o w' 

a' o (II') * o w' 
I 

T ,  

by (3 .1) 

by (3 .3) .  



1 62 S imu lation 

FIGURE 3. 7: A commutative diagram demonstrating the simulation of an entire 
history: (:3Co , • • · , C,, ) [x / x a Co II C 1 · · · Cn w y] ¢=? 
(:JC!i , . . . , c;, ) [x a' C[i II' c; · · · c;, w' y I y] . 

so P' and P have the same transfer relation. Thus equations (3 . 1-3 .3)  suffice 
to prove that P' is equivalent to P. We summarize this result: 

THEOREM 3.2.  If P' simulates P in lockstep, then P and P' have the same transfer 
relation. 

Let us return to Example 3 . 1  and formally verify that it is a lockstep 
simulation. The relation of representation is given by 

(q, x, 1' ) p (q, x, i) . 



3 . 2  Lockstep S imulation 1 63 

FIGURE 3.8: The simulation of a in Example 3 . 1 .  

Observe that p is a one-one, onto function; this will simplify the verification 
of equations (3 . 1-3 . 3 ). 

Equation (3 . l ) requires that a = d op. For all x we have xa = ( 1, x, 0) 
and xa' = ( 1, x, A) = ( 1, x, 1 °) .  Therefore 

xap =  ( 1 , x, 1° )p = ( 1 , x, 0) = xa. 

Because that equality is true for every x, a'p = a, as required. This equality 
is diagrammed in Figure 3 .8 .  

Equation (3 .2) requires that p o  II = II'  o p. Let 

7r1 ( 1 ---, l , SCANa, INC) 
I ( 1 ---, 1, SCANa, PUSH 1) 7r 1 

7rz ( 1  ---, 2 ,  SCANb, DEC) 
I ( 1  ---, 2, SCANb, POP 1 )  7rz 

7r 3 (2 ---, 2 ,  SCANb, DEC) 
I ( 2  ---, 2, SCANb, POP 1 ) ,  7r 3 -

so we have I =  {1r1 , 1r2 , 1r3 }  and I' = {1r� , 1r; , 1r; } .  We assert that 
P7r 1 = 1r�p, p1r2 = 1r�p, and p1r3 = 1r�p. (We say that the instruction 7r� 



1 64 S imu lation 

simulates the instruction 7!"1 , etc .)  From this assertion it follows that 

pII p1r1 U p1r2 U p1r3 
( 7r� u 1r; u 7r� ) p II'p, 

as desired. It remains to prove the assertion that p1ri = 1r; p for i = 1, 2,  3 .  
We prove it for 1r 1 , but we leave 1r2 and 1r3 as exercises. 

Consider any configuration C' = (q, x, i i ) of P'. Then C'p = (q, x, i ) ,  
so 

C'p,r, = { ( 1 , y, i +  1) if q = 1 and x has the form ya , 
undefined otherwise. 

On the other hand, 

C'1l": = { ( l , y , 1i+l ) if q = 1 and x has the form ya, 
undefined otherwise, 

so 

C'1l": p = { ( 1 , y , i +  1 ) if q = 1 and x has the form ya, 
undefined otherwise.  

Therefore 

Because that equation is true for all configurations C',  p1r1 = 1r�p, as 
required. This equality is diagrammed in Figure 3 .9. 

Equation (3 . 3) requires that p o w  = w'. Let C' = (q, x, i i) be any 
configuration of P' . Then C'p = (q, x, i) ,  so 

C'pw = { ACCEPT 

undefined 

if q = 2, x = A, and i = 0,  

otherwise.  



3 . 2  Lockstep S imu lation 1 6 5 

FIGU RE 3.9: The simulation of 71"1 in Example 3 . 1 .  

FIGU RE 3. 1 0: The simulation o f  w in Example 3 . 1 .  

O n  the other hand, 
ACCEPT 
undefined 

if q = 2, x = A, and i = 0 ,  
otherwise , 

so C' pw = C' w' . Because that equality is true for every configuration C' , 
pw = w', as required. This equality is diagrammed in Figure 3 . 1 0 .  



1 66 S imulation 

Exe rc i ses 

3 .2 - 1  Refer to  Example 3 . 1  and its continuation after Theorem 3 . 2 .  Prove that p7r2 = 1r;p and p7r3 = 7r�p. 3 . 2-2 Prove that lockstep simulation is transitive. That is, prove that if program A simulates program B in lockstep and program B simulates program C in lockstep, then program A simulates program C in lockstep. 
Solution: Let A simulate B in lockstep using the relation of representation PAB ·  Let B simulate C in lockstep using the relation of representation Pnc •  Define PAc = PAB o Pnc ,  We will prove that A simulates C in lockstep using the relation of representation PAc .  Let O!p , IIP , Wp denote the initializer, sequel relation, and terminator of 
P, respectively. (i) By the definition oflockstep simulation, we have °'A PAB = an and O!nPnc = O!c . Therefore, 

(ii) By the definition of lockstep simulation, we have IIA PAB PAn IIn and IIn Pnc = PncIIc . Therefore, 
IIA PAnPnc PAnIInPnc 

(iii) By the definition oflockstep simulation, we have WA = PAnWn and w8 = PncWe , Therefore, 

Thus we have proved the three conditions of lockstep simulation. 
3 . 2 .  1 One Contro l  S i m u lates Two Contro l s  (Pa i r i ng  

Construct ion)  Let us  present a simple example using the lockstep simulation framework developed in the preceding section. We show that one control can 



3 . 2  Lockstep S imu lation 1 67 

simulate two controls, in a sense that we will explain. For example, a 
machine [control, input] can simulate a machine [control , control, input] . 

We say that a collection of devices d( , . . .  , d;, can simulate a collec-
tion of devices di , . . .  , dk , if a machine [d( , . . .  , d�, ,  other] can simulate a 
machine [di , . . .  , dk , other] , for every choice of the device "other. " A seem
ingly stronger but equivalent definition of device simulation allows a choice 
of more than one other device instead of just one (see Exercise 3 .2-4). 

Let M be a machine [Con l ,  Con2, other] , where Con l and Con2 are 
controls and "other" is any device. Given a program P for M, we want to 
write a program P' for a machine [control, other] that simulates P.  Before 
writing a program, it is important to decide how the data are represented. 3 

P' will hold in its control an ordered pair consisting of the state of Con 1 and 
the state of Con2. The control set of P' will be the set of all such ordered 
pairs, i .e . , the Cartesian product of the realms of Con l and Con2. To be 
precise, assume that Q i is the realm of Con l and Q2 is the realm of Con2 .  
Then we let the control set of P'  be  Q i X Q2 • I t  should be  clear how P'  can 
hold the states of Con l and Con2 in its single control and thus mimic the 
behavior of P.4 In order to have a formal proof, it remains for us to write the 
program P' explicitly, state the relation of representation, and verify that 
equations (3 . 1-3 .3) are satisfied. 

Before writing the program P', we specify the relation of representation 
formally: 

( (a , b ) , s) p (a, b, s) , 

where a is any state of Con 1 ,  b is any state of Con2 , and s is any state of the 
other device. 

This relation of representation p is a one-one, onto function. Thus every 
configuration of M' corresponds to a unique configuration of M, and vice 
versa. This is not the only way to obtain lockstep simulations, but it is 
among the easiest. We proceed to write the program P' and prove that it 
simulates P.  

3 Would you want t o  buy software written by someone who disagrees with this principle? 
4 This kind of construction is called a pairing construction because the control states of 

the simulating machine are ordered pairs of control states of the simulated machines. 



1 68 S imu lation 

FIGURE 3 . 1 1 :  Simulating two controls with one (a). 

First, if (a, b, s)  is the initial configuration of P on argument x, we let 
( (a, b) ,  s) be the initial configuration of P' on argument x. In the language 
of relations, this means a' = a o p- 1 • Then o:' o p = a o p- 1 o p. Since p 
is a one-one, onto function, p- 1 o p = I, so we have 

a =  a' o p, 

i .e . , condition (3 . 1 )  is satisfied (Figure 3 . 1 1 ) .  
Second, we convert an instruction of P that operates on two controls into 

an instruction of P' that operates in a corresponding way on the components 
of an ordered pair. For each instruction 7r = (a 1 -------+ a2 , b 1 -------+ b2 , /) in P, 
where/ is an operation on the other device, we let P' contain the instruction 
7r1 = ( (a 1 , b 1 ) -------+  (a2 , b2 ) ,  /) . lnspection of Figure 3 . 1 2 shows that 

p O 7r = 1r' 0 p 

for each instruction 7r in P.  Therefore, p o II = II' o p, so (3 .2)  is satisfied. 
Finally, for each final configuration (a, b, s) of P such that (a, b, s) w y 

for some result y, we let ( (a , b) , s) be a final configuration of P' such that 
( ( a, b) , s) w' y. In terms of relations, this means 

w' = p o w, 

so (3 .3) is satisfied (Figure 3 . 1 3) . 



3 . 2  Lockstep S imu lation 1 69 

FIGURE 3 . 1 2 :  Simulating two controls with one (7r). 

FIGURE 3. 1 3 : Simulating two controls with one (w). 

EXAMPLE 3 .3. Let us design a DFA that accepts the set of strings over 
{ a, b} that contain an even number of a's and an odd number of b's. We 
begin by writing a program for a machine [control , control , input] that 
accepts that language. The first control will keep track of the number of a's 
mod 2, and the second control will keep track of the number of b's mod 2. 
Both controls are initialized to 0. The first control accepts in state 0, and 



1 70 S imu lat ion 

the second control accepts in state 1 .  The instruction set is 

(o ___, 1 , NOOP , SCAN a) , 

( 1  ___, 0 ,  NOOP , SCAN a) , 

(NOOP , 0 ___, 1 , SCANh) , 

(NOOP , 1 ___, 0 , SCANb) 

Before merging controls, we need to replace each NOOP by the pair 
of operations O ___, 0 and 1 ___, 1 .  The resulting program, called P, is 
shown in the left column of Table 3 . 1 ;  an equivalent program, called P', for 
a machine [control, input] is shown in the right column. The DFA P' is 
diagrammed in Figure 3 . 1 4. ■ ■ ■ 

Instruction of P Instruction of P' 

(0 ----> 1 , 0 ---->  0 , SCAN a) ( (o, o) _, ( 1 , 0) , SCAN a) 

(o _, 1 , 1 ----> 1 , SCAN a) ( (o , 1 )  _, ( 1 , 1 ) ,  SCAN a) 

(1 ----> 0 , 0 ---->  0 ,  SCAN a) ( ( 1 , 0) _, (o, o) ,  SCAN a) 

( 1  ----> 0 , 1 ----> 1 , SCAN a) ( ( 1 , 1 )  ----> ( o, 1 )  , SCAN a) 

(o _, o ,  0 ---->  1 , SCANb) ( (o, o) _, (o, 1 ) , SCANb) 

( 1 ----> 1 , 0 ---->  1 , SCANb) ( ( 1 ,  0) ----> ( 1 ,  1 ) , SCANb) 

(o _, o , 1 ----> 0 ,  SCANb) ( (o, 1 )  _, (o, o) , SCANb) 

( 1 ----> 1 , 1 ----> 0 , SCANb) ( ( 1 ,  1) _, ( 1 , o) , SCANb) 

TABLE 3. 1 :  An example of merging two controls. The DFA P' simulates the 
program P. The initial control state of P' is ( 0, 0 ) ;  the accepting control state of 
P' is (0, 1 ) . 



3 . 2  Lockstep S imu lat ion 1 7 1 

FIGURE 3. 1 4 : The result of merging two controls. P' is a 
DFA that accepts the set of all strings over { a,b} with an even 
number of a's and an odd number of b's. 

By the same techniques, we can merge any number of controls. 
EXAMPLE 3.4. Consider the program for a machine [control, control, control, input] shown in Figure 3 . 2 . 1 ,  which accepts those strings over { a, b, c }  in which the first input character other than an a is equal to the last input character other than an a. The first control stores the program's location , the second control stores the first non-a in the input, and the third control stores the last non-a in the input. The second and third controls both have the realm { A, b, c } .  They are both initialized to A. The first control accepts in state 3 ,  the second and third controls accept in all states, and the input accepts when empty. 

We can combine the three controls into a single control using the techniques developed in this section. We replace NOOP's on the second and third controls by three operations : A ___, A, b ___, b, and c ___, c .  Then we combine states of the three controls into ordered triples. The resulting program P' runs on a machine [control, input] . The program is given in Table 3 . 2 .  ■ ■ ■ 



FIGURE 3 . 1 5:  A program with three controls chat accepts all strings over { a,b ,c}  in 
which the first non-a is equal to the last non-a. 

'-I 
IV 

Vl 

3 
C 
PJ 
r+ a· 
::::, 



Instruction of P 

( 1 ----> 1 , A ----> A , A ----> A , SCAN a) 

( 1 ----> 2 , A ->  b ' A ->  b , SCANb) 

( 1 ----> 2 , A ----> C ' A ---->  C , SCAN c)  

(2 ----> 2 , b ---->  b , b ---->  b , SCANa) 

(2 ----> 2 , b ---->  b ' C ----> C , SCANa) 

(2 ----> 2 , C ----> C ' b ---->  b , SCANa) 

(2 ----> 2 , C ----> C ' C ----> C , SCANa) 

(2 ----> 2 , b ---->  b ' b ---->  b , SCANb) 

(2 ----> 2 , b ---->  b ' C ---->  b , SCANb) 

(2 ----> 2 ,  C ----> C ' b ---->  b , SCANb) 

(2 ----> 2 , C ----> C ' C ---->  b , SCANb) 

(2 ----> 2 , b ---->  b ' b ----> C , SCAN c) 

(2 ----> 2 , b ---->  b ' C ----> C , SCAN c)  

(2 ----> 2 , C ----> C ' b ----> C , SCAN c)  

(2  ----> 2 , C ----> C ' C ----> C , SCAN c) 

(2 ----> 3 , b ---->  b ' b ---->  b ' EOF ) 
(2 ----> 3 , C ----> C ' C ----> C ' EOF ) 

3 . 2  Lockstep Simu lation 1 73 

Instruction of P' 

( ( 1 , A, A) ----> ( 1 , A , A) ,  SCAN a) 

( ( 1 ,  A, A) ----> (2 ,  b, b) , SCANb) 

( ( 1 ,  A, A) ----> (2 ,  c, c) ' SCANc)  

( (2 ,  b, b) ----> (2 , b , b) , SCANa) 

( (2 ,  b, c ) ----> (2 ,  b , c) , SCANa) 

( (2 ,  c, b) ----> (2 , c ,  b) , SCANa) 

( (2 ,  c, c) ----> (2, c, c) , SCANa) 

( (2 ,  b, b) ----> (2, b, b) , SCANb) 

( (2 ,  b, c) ----> (2 ,  b, b) , SCANb) 

( (2 ,  c ,  b) ----> (2 , c ,  b) , SCANb) 

( (2 ,  c, c) ----> (2 ,  c , b) , SCANb) 

( (2 ,  b , b) ----> (2 ,  b, c )  , SCAN c)  

( (2 ,  b , c) ----> (2 ,  b, c )  , SCAN c) 

((2, c ,  b) ----> (2 ,  c ,  c )  , SCAN c)  

( (2 ,  c, c ) ----> (2 , c ,  c )  , SCAN c)  

( (2 , b , b) ----> (3 , b, b) ' EOF ) 
( (2 ,  c ,  c) ----> (3 , c, c )  ' EOF ) 

TABLE 3.2:  An example of merging three controls. The DFA P' sim
ulates the program P. The initial control state of P' is ( 1 , A , A) . We 
have omitted instructions that go from unreachable control states. The 
accepting control states of P' are (3 ,b,b), (3 ,b,c), (3 ,c ,b), and (3 ,c ,c). 
Note that only two of the accepting control states are reachable: (3 ,b,b) 
and (3 ,c,c). 



1 74 S imu lation 

Exerc i ses  

3 .2-3 (a) Prove that a machine [control, input, stack] where the stack 
has a one-character alphabet can simulate a machine [control, 
input, unsigned counter] . 

(b) Prove that a machine [control, input, unsigned counter] can 
simulate a machine [control, input, stack] where the stack has 
a one-character alphabet. 

3 .2-4 In this exercise we consider extending the definition of simulating a 
collection of devices to allow a list of more than one "other" device. 
Say that one collection of devices d; , . . .  , d�, simulates a collection of 
devices d1 , . . .  , dk if every machine [d; , . . .  , d�, ,  e 1 , . . .  , e1] simulates a 
machine [d1 , • . •  , dk , e 1 , • • .  , e;] .  Although this definition may seem 
more restrictive than the one in the text, prove that they are in fact 
equivalent. Your proof should apply to any kind of simulation, not 
just lockstep. 

3 . 3  S I M U LATION VIA SU BPROG RAMS 

In  the previous examples, each step of program P was simulated by executing 
one step of program P' . Usually, however, some steps of P will be simulated 
by several steps of P' . To keep the proofs of simulation simple, we try to 
partition the program P' into subprograms where each step of P is simulated 
by executing a subprogram of P' . 

EXAMPLE 3.5.  In Figure 3 . 16,  we present a DCA P that accepts the 
set of all nonempty strings over { a, b} in which every nonempty pre
fix contains more a's than b's. In Figure 3 . 1 7 ,  we present another DCA 
P' that accepts the same language. (Both counters are unsigned.) The 
configuration (q , x, n) in P is represented by the same configuration in 
P' . The instructions ( 1 --+ 2, SCANa, INC) , (2 --+ 2, SCAN a, INC) , and 
( 2 --+ 3 ,  SCANb, DEC) in P are simulated by the same instructions in 
P' . The instruction ( 3 --+ 2, NOOP , NONZERO) is simulated by a pair of 
instructions-( 3 --+ v, NOOP,  DEC) and (v --+ 3 ,  NOOP,  INC)-in P'. We 
call that pair of instructions a subprogram. Why does the simulation work? 



3 . 3  S imu lation via Subprograms l 75 

FIGURE 3. 1 6 : A DCA rhar accepts the set of  all srrings in  { a,b} + such that 
every nonempty prefix contains more a's than b's. 

FIGURE 3 . 1  7:  A DCA without the NONZERO rest that accepts the set of all 
strings in { a, b} + such that every nonempty prefix contains more a's than b's .  

The DEC operation can be performed exactly when the counter value is 

positive , and the subsequent INC restores the counter to its previous value. 

This simulation will be discussed in greater generality and formality in 

Section 3 . 3 . 1 .  



1 76 S imulation 

FIGURE 3 . 1 8: A commutative diagram for simulating the instruction 
(3 -----+ 2, NOOP, NONZERO) by a subprogram. 

The simulation of the instruction ( 3  ---+ 2, NOOP,  NONZERO )  is shown 
in a commutative diagram in Figure 3 .18. ■ ■ ■  

When proving simulation by subprograms, it is useful to preserve in P' 
the control states Q of program P, while introducing a set N of new control 
states as needed, as in the preceding example. The states belonging to Q (Q 
states) indicate where subprograms in P' begin and end. Reaching a Q state 
marks the end of one subprogram execution and the beginning of the next. 
The sequence of Q states reached in a simulating computation is the same 
as in the simulated computation. 

We identify the subprograms themselves as sets of instructions. We 
say that an instruction uses a control state if it goes to or from that control 
state. Two instructions meet at a control state if they both use that control 
state. If two instructions meet at a state v in N, they belong to the same 
subprogram. (The Greek letter v is pronounced "new. ") The subprograms 
can be determined graphically by drawing the state digraph for P' and 
cutting it at the Q states . This cuts the digraph into three kinds of pieces: 
The piece that starts at the initial state of P' and ends at a Q state is called 
the initial subprogram; a piece that starts and ends at Q states is called an 
ordinary subprogram; a piece that starts at a Q state and ends at a final state of 
P' is called a final subprogram. If the initial state of P' is a Q state, then the 
initial subprogram contains no instructions and is called trivial. If a final 



3 . 3  S imu lation via Subprog rams 1 77 

state of P' is a Q state, then its final subprogram contains no instructions 
and is called trivial. 

A computation of a subprogram is an executable sequence of instruc
tions of that subprogram, beginning at an initial state of P' or a Q state 
and ending at a Q state or a final state of P'. The transfer relation O'l of 
a subprogram S is the relation between configurations at the beginning 
and end of such a computation. We write O'(n it to denote the transfer rela
tion of the initial subprogram. The relation 0"

1 = Us is an ordinary subprogram O'� 

gives the effect of executing any single ordinary subprogram. The relation 
O'�nal = Us is a final subprogram O'� gives the effect of executing any single final 
subprogram. A complete computation of P' can be cut into a sequence of 
subprogram computations, so informally we may treat subprograms as if 
they were single instructions. 

The three conditions of lockstep simulation translate readily into the 
framework of simulation by subprograms. They become 

0: 
I I 

0: 0 ()' . .  tnlt o p (3 . 1  *) 
p o II O"' 0 p (3 . 2*) 
p o w  I I 

()'final O W  · (3 .3*) 
The first condition indicates that the initializer of P is simulated by the 
initializer of P' followed by its initial subprogram. The second condition 
indicates that each instruction of P is simulated by a single subprogram of 
P'. The third condition indicates that the terminator of P is simulated by 
a final subprogram of P' followed by its terminator. 

By a simple induction, as in the preceding section, these three conditions 
imply that 

T = 0: o II* o W 
I I 

( ' ) *  I I Q: o ()'. . o O' o O'fi l o W . 101t na 

It remains only to show that I I ( I ) * I I I 
0: O O"init O O" O O"final O W  T · 

Cl l I I d I . d . (II' )*  I ( ' ) *  I ear y O'init , O' , an O' final are conta1ne 1n , so O'
i nit o O' o O' 

final (II' ) * ,  and therefore 

I I 
( ' ) * I I 

Q: o O' . o O' o O'
fi l O W 1ntt na C o:' o (II') * o w' T' . 

C 



1 78 S imu lation 

For the reverse containment, suppose that (x, y) E a' o (II' )*  o w' .  Then there is a computation mapping x to y. That computation can be broken, at the Q states, into a computation of the initial subprogram, followed by some computations of the ordinary subprograms, and finally a computation of the final subprogram; therefore, (x, y) E o:' o O''.nit o (Cl' ) *  o O'�nal o w' .  Therefore, 
o:' 0 (II' ) *  0 w' C o:' 0 ()''.nit O ( 0'1 ) * 0 O'�nal O w' , 

completing the proof that 
T1 = a' o (II' ) *  o w' I O I O ( ' ) * O I I 0: O'init O' O' final O W · 

We will define p so that every configuration of M is represented by a configuration of M'; i .e. , p will be an onto function. Furthermore, every configuration of M' with a control state in Q will represent a unique configuration of M with the same control state. When proving simulation by subprograms, the instructions on the right side of a single box in the commutative diagram are limited to a single subprogram. Figure 3 . 19 diagrams the simulation of the initializer o: by o:' and the initial subprogram. We must show that the rectangle in that figure can be traversed left and then down if and only if it can be traversed down 

FIGURE 3. 1 9: Showing that a = a' o cr(0i, o p. 



3 . 3  S imu lation via Subprog rams l 79 

FIGU RE 3.20: Showing that p o  1r = a� o p. 

and then left. That is, we show that x � C0 if and only if 

I 

a' C' � C'ci x � inir � 

and c;J represents C0 . In many simulations, e.g. , Example 3 .5, the initial 
state of P' will be a Q state and Cl:nic will be a trivial subprogram; then 
Cl;nic = /{c[, } , so the simulation of a is no different from lockstep simulation. 

Figure 3 .20 diagrams the simulation of an instruction 7r by an ordinary 
subprogram S. We must show that the rectangle in that figure can be 
traversed left and then down if and only if it can be traversed down and then 
left. That is, we show that if c; represents C; and C; � C;+ 1 , then there 
exists c;+ 1 such that 

and c;+ 1 represents C;+ 1 ; conversely, if 

and C'.+i  represents C;+ 1 then there exists a configuration C; such that c; 
represents C; and 



1 80 Simulation 

FIGURE 3.2 1 :  Showing that p o  w = a�nal o w' .  

Figure 3.21 diagrams the simulation of the terminator w by a final 
subprogram and w'. We must show that the rectangle in that figure can 
be traversed left and then down if and only if it can be traversed down and 
then left. That is, we show that if C'.1 represents a configuration C11 such that 

ell � y, then there exists c�nal such that c: w' c�nal 1---+ y; conversely 
cr;mal W

1 

if c:/ >---- c�nal 1---+ y, then there exists ell such that c:/ represents ell 

and Cn � y. (Although a�nal is the union of several programs, exactly 
one of them corresponds to each final state of P.) In many simulations, 
e.g . ,  Example 3 .5, the final states of P' will be Q states and each final 
subprogram will be a trivial subprogram; then a�nal is the identity function 
on final configurations, so the simulation of w is no different from lockstep 
simulation. 

Simulation via subprograms is a very useful technique: It will enable us 
to standardize programs in Section 3 .4 and to classify machines according 
to their computing power in later chapters. 

3 . 3 . 1  El i m i nat i ng  the NONZERO Test from an Uns igned 
Counte r 

In this section we will show that an unsigned counter that does not use the 
NONZERO operation can simulate an unsigned counter that does use the 
NONZERO operation. This generalizes Example 3 . 5. In this simulation, 
as in many simulations via subprograms, each subprogram will simulate 
exactly one instruction, and each instruction will be simulated by exactly 
one subprogram; i.e., there will be a one-one correspondence between sub-



3 . 3  S i m u lation via Subprograms 1 8 1 

programs and instructions. For that reason, each subprogram will have 
exactly one initial control state and exactly one final control state, which 
correspond to the simulated instruction's origin and destination. (A con
trast will be seen in Sections 3 .4 . 1  and 6. 5, where a single subprogram will 
simulate several instructions.) In addition, the initializer and terminator 
will be simulated by trivial subprograms. 

Let M be a machine [control, unsigned counter, input] in which 
the counter's repertory is {INC, DEC , ZERO , NONZERO } .  Let M' be a 
machine [control, unsigned counter, input] in which the counter's repertory 
is { INC, DEC, ZERO } ;  i .e. , the counter in M' cannot perform the NONZERO 
test. Obviously M is at least as powerful as M', because every program for 
M' is also a program for M. We wish to show that M' is at least as powerful 
as M. 

Let P be any program for M. We want to find a program P' for M' 
such that the transfer relations T and T1 are the same. We can simulate the 
NONZERO operation by performing a DEC, which ensures that the counter 
value is positive, followed by an INC, which changes the counter value back 
to what it was before it was decremented. Another way to see this is because 
NONZERO = DEC o INC, i .e . , 

NONZERO DEC INC 
n + 1 --- -------+ n + 1 ¢::::::} n + 1 f--- - -----+  n - - ---.  n + 1 . 

We will produce P' from P by replacing each instruction of P that uses 
the NONZERO operation by a pair of instructions in P'; the first of these 
instructions uses the DEC operation, and the second uses the INC operation. 

Let Q' = Q 1±1 N, where N is a set of new control states, let a' = a, and 
let w' = w.  (Recall that A 1±1 B denotes the union of sets A and B that are 
guaranteed to be disjoint.) For each instruction 7f of P that does not use 
the NONZERO operation, let P' contain the same instruction 7f, so that 7f is 
simulated by the single-instruction subprogram { 7f} . 

In addition, P may contain some instructions 7f of the form 
(q1 ---+ q2 , NONZERO ,/) , where / is an arbitrary input operation (Fig
ure 3.22). In this case, let P' contain instead the pair of instructions 
7f� = (q1 ---+ v, DEC ,/) and 1r; = (v ---+ q2 , INC, NOOP ) ,  where v E N (as 
shown in Figure 3 .23). The instruction 7f is simulated by the subprogram 
{ 7f� , 1r; } .  (Note that we need one new control state v in P' for each occur
rence of the NONZERO operation in P. We do not reuse the same state v in 



1 82 S imu lation 

FIGURE 3.22: An instruction that uses the NONZERO operation . 

FIGURE 3.23 :  Simulating the NONZERO operation by a subprogram. 

simulating each instruction that uses NONZERO . This is usually clear from 
context, but if there is a chance of confusion, the new state can be called V1r 

to distinguish it from the new states used in simulating other instructions.) 
If in a history of P we have C 1 c..'.'.+ C2 , where 7f does not use the NONZERO 

operation, then in the corresponding history of P' we also have C 1 c..'.'.+ C2 , 

because 7f is simulated by the single-instruction subprogram { 7f } .  On the 
other hand, suppose that in a history of P we have (q1 , n, x) c..'.'.+ (q2 , n, xf) ,  
where 7f uses the NONZERO operation. Then n � 1 .  In the corresponding 
history of P' we have 

1r' 1r' 
(q1 , n , x) � (v, n - l , x/) � (q2 , n , xf) .  

Because state v is used only in these two instructions and is not an initial or 
final state, the two instructions can only be used together, and their com
position is 1r; o 1r; = 7f ,  so P' has no histories that do not correspond to 
histories of P. 

In this example, the closely related configurations are those with control 
states in Q; the configurations are in fact identical. Configurations of P' with 
control states in N do not correspond to configurations of P. In this example, 
P and P' have the same initializer and terminator. In general, however, 
it is not necessary for corresponding configurations in a simulation to be 
identical, nor for the initializers and terminators to be the same. 



3 . 3  S imu lat ion via Subprograms 1 83 

FIGURE 3.24: A UCA that accepts all strings of the form a'b1 ckdf , where 
i > j and k > Ji.. All counter states are accepting. 

Until we prove their equivalence, we will want to distinguish between signed and unsigned counters. In this section and Section 3 .3 .2  we will use the acronyms UCA and SCA to denote acceptors running on a machine [control, input, unsigned counter] and a machine [control, input, signed counter] , respectively. 
EXAMPLE 3.6. The UCA in Figure 3 .24 accepts strings of the form aib' ckd£ , where i > j and k > €. All states of the counter are accepting states. In Figure 3 . 25  we present an equivalent UCA that does not use the NONZERO operation. ■ ■ ■  

Exerc ises 

3 .  3 - 1  Define a relation on instructions a s  follows: 7r 1 is related to 1r 2 i f  7r 1 and 1r2 meet at a state belonging to N. (a) Prove that "is related to" is symmetric . (6) Let ~ be the reflective , transi rive closure of "is related to. " Prove that ~ is an equivalence relation . 



1 84 Simulation 

3 . 3-2 

FIGURE 3.25 :  A UCA without the NONZERO test that accepts strings of  the 
form a1b1ckdf , where i > j and k > /J.. 

(c) Prove that, in general, the subprograms of P' are exactly the 
equivalence classes of ~. 

(d) Prove that each state in N belongs to exactly one subprogram. 

(a) Would it be correct to simulate the UCM instruction 
(qt ----+ q2 , NONZERO,/) by the following subprogram? 

{
(q1 ----+ V ,  DEC , NOOP) ,

} 
(v ----+ q2 , INC , / ) 

(b) W hat disadvantage does this simulation have? 

Solution: It does not preserve determinism. 

3 . 3 . 2 An U ns i g ned Cou nter S i m u l ates a S ig ned Cou n te r  
As another simple example , we show how any program for a machine with 
a signed counter can be simulated by a program for a machine with an 
unsigned counter and an extra control. (If desired, we can merge controls 



3 . 3  S imu lation via Subprograms 1 8 5 

using the techniques of Section 3 . 2 .1.) When the signed counter holds an 
integer n, the unsigned counter simulating it will hold l n l  and the extra 
control will hold the sign of n. When the sign is positive, we simulate INC 
by incrementing l n l  and we simulate DEC by decrementing l n l - However, 
when the sign is negative , we simulate INC by decrementing ln l  and we 
simulate DEC by incrementing l n l .  As in Section 3 .3 .1 ,  the initializer and 
terminator will be simulated by trivial subprograms . 

Let M be a machine [control, signed counter, other] , where the realm of 
M's control is Q. Let M' be a machine [control, sign, unsigned counter, other] 
where the control has realm Q' = Q i±J N for some set N of new states that 
we will specify shortly, and where the sign is a control device with two 
states denoted "+" and " - " .  By the preceding section's simulation, we 
may assume without loss of generality that the unsigned counter of M' is 
equipped with the operation NONZERO . We will use the sign to distinguish 
positive numbers from negative numbers . The initial and final control states 
of subprograms of P' will be the elements of Q, and the internal control states 
will be the elements of N. The representation relation p is given below for 
n 2 0, q E Q, and s any state of the "other" device: 

(q, + , n, s) p (q, n, s) , 
(q, - , n, s) p (q, -n, s) . 

Notice that p is a partial function from configurations of M' to configurations 
of M.  p is not total because M' has more control states than M. p is onto, but 
p is not one-one because (q, + ,  0, s) and (q, - , 0, s) both represent (q, 0, s) . 

Each kind of instruction of P is listed in the left column of Table 3 . 3 .  
The right column lists the instructions of the corresponding subprogram of 
P', where v denotes a previously unused control state . (By convention we 
use different v's to simulate different instructions unless otherwise specified . 
For example, the control state v used for simulating the INC instruction 
below is meant to be distinct from the control state v used for simulating 
the DEC instruction . If there are several INC instructions or several DEC 
instructions, they all use different new states .) The initial control state for 
each subprogram below is the origin of the instruction being simulated, 
and the final control state for each subprogram is the destination of the 
instruction being simulated. 



1 86 S imu lation 

Instruction of P 

(q1 -----+ q2 , INC 

(q1 -----+ q2 , DEC 

, I) 

, I) 

(q1 -----+ q2 , ZERO , /) 
(q1 -----+ q2 , POS ' /) 

(q1 -----+ q2 , NEG , I) 

Subprogram of P' 

(q1 -----+ V , NOOP ' NOOP , /  ) (v -----+ q2 ' + - + , INC , NOOP) 
(v -----+ q2 ' - ---+ - , DEC , NOOP) 
(v -----+ V ' - -----+ + , ZERO , NOOP) 
(q1 -----+ V ' NOOP ' NOOP , I  ) 
(v -----+ q2 ' + - + , DEC , NOOP) 
(v -----+ q2 ' - -----+ - ' INC , NOOP) 
(v -----+ V ' + - - ,  ZERO , NOOP) 
(q1 -----+ q2 , NOOP ' ZERO , /  ) 

(q1 -----+ q2 , + - + , NONZERO ' I ) 

(q1 -----+ q2 , - -----+ - ' NONZERO ' I ) 

TABLE 3.3 :  An unsigned counter simulates a signed counter via subprograms. 
A generic instruction of the SCM is shown in the first column; a subprogram that 
simulates it is shown in the second column. 

We present one of these subprograms in Figure 3 .26; an INC instruc
tion for the signed counter is shown on the left, and the subprogram that 
simulates it is shown on the right . 

On the right side of a commutative diagram we will show a computation 
of a subprogram that corresponds to a single instruction 7r of P. The 
computation of the subprogram may depend on the configuration to which 
7r is applied; we show commutative diagrams for each possible case . We 



3 . 3  Simu lation via Subprograms 1 87 

FIGURE 3.26: Simulating an INC instruction by a subprogram. 

must also be sure to account for every computation of the subprogram, lest 
the subprogram do more than intended. 

The computation that simulates the ZERO operation is only a single 
instruction in length, but there are two cases, depending on the value of 
sign, as shown in Figure 3 .27 .  The computations of subprograms that 
simulate INC and DEC are two or three instructions long, depending on 
the values of sign and of the unsigned counter of M'. The three cases of 
simulating the INC operation, depending on whether the sign and counter 
of M' are ( +, n) where n 2'. 0, ( - ,  n) where n > 0, or ( - ,  0 )  are shown in 
Figure 3 .28. It is necessary only to confirm that all the relations shown are 
satisfied and that there are no other computations of the subprograms. 

Similar diagrams, which the reader may construct, apply to the other 
signed counter operations. We note that this simulation preserves deter
minism (Exercise 3 . 3-3). 

EXAMPLE 3.7. Consider the SCA shown in Figure 1.12, which accepts 
those strings over { a, b} that contain an equal number of a's and b's. By 
replacing each instruction in P with a UCM subprogram that simulates it, 
we construct an equivalent UCA (Figure 3 .29). ■ ■ ■ 



1 88 Simulation 

FIGURE 3.27:  Simulating the ZERO test of a signed counter. 

Exerc ises 

3 . 3-3 Prove that this section's simulation of a signed counter via an un
signed counter preserves determinism. 

3 . 3-4 Show informally how to simulate a signed counter via an unsigned 
counter and a control with realm { +,  -} as in this section but 
without augmenting Q with any new control states N. Does your 
simulation preserve determinism? 

3 . 3-5 Show informally how to simulate a signed counter via an unsigned 
counter and a control with realm { +,  -} as in this section, using 
subprograms that take at most two steps to simulate an instruction 
of P. Your simulation should preserve determinism. In your con
struction, how many subprograms of P' simulate a single instruction 
of P? 



3 . 3  S imu lation via Subprograms 1 89 

FIGURE 3.28: The three cases of simulating INC. 

*3 .3-6 Design a simulation of a signed counter by an unsigned counter using a relation of representation that is one-one. 
3 . 3 -7 Refer to the simulation of a signed counter by an unsigned counter and a control called "sign," as explained in this section. (a) Define a' and w' appropriately. What do we need to prove about those two partial functions? Prove it. 

(b) Construct the commutative diagram corresponding to the NEG operation. 



1 90 S imu lation 

FIGURE 3.29: A UCA that accepts { w : w contains an equal number of a's and 
b's } .  The new states are depicted slightly smaller. 

(c) Draw the subprogram corresponding to the DEC operation. (d) Construct the commutative diagram corresponding to the DEC operation. 
3 . 3-8 Prove that there is a UCA that does not use the NONZERO test which accepts {x : #a (x) cf. #b (x) } .  

Solution: It is easy to construct an SCA that accepts that language. The SCA can be converted to an equivalent UCA, which can in turn be converted to a UCA that does not use the NONZERO test. 
3 .3-9 Show how to simulate an unsigned counter by a signed counter. 
3 . 3 . 3  E l i m i nat i ng the EMPTY Test fro m a Stack In this section we show how any stack machine program can be simulated by a one that does not use the EMPTY test. The construction is simple. If 



3 . 3  S imulation via Subprograms 1 9 1 

P is a stack machine program, the simulating program P' will use a new 
character Z to mark the bottom of the stack. P' will start by pushing a Z 
onto the stack, P' will simulate the EMPTY test by popping the Z and then 
pushing it back onto the stack, and P' will finish by popping the Z so that 
the stack ends up empty. Unlike the previous two sections, this simulation 
uses nontrivial subprograms to simulate the initializer and terminator. 

Let M be a machine [control, stack, other] in which the stack alphabet is 
f and the stack has the usual initializer, terminator, and repertory. Let M' 
be a machine [control, stack, other] in which the stack alphabet is f U {Z} , 
where Z is a new character, and the stack has the usual initializer, terminator, 
and repertory except that it is unable to perform the EMPTY test. We wish 
to show that M' is at least as powerful as M. 

The configuration ( q, s ,  v)  of P will be represented by the configuration 
(q, Zs, v) of P', i .e . , 

(q, Zs, v) p (q, s, v) . 

Let P be a program for M. If the initial configuration of P is 
(qsrarr , A, v) , let the initial configuration of P' be (vsrarr ,  A, v) . P's initial
izer is simulated by the subprogram consisting of the single instruction 
(vsrarr ---+ qsrarr , PUSHZ, NOOP ) ,  as shown below : 

Each instruction of P that does not use the EMPTY test is simulated by the 
same instruction in P. 

Because the character Z can appear only at the bottom of the stack , 
the instruction (q ---+ r, EMPTY,/) in P can be simulated by the pair of 



1 92 S imu lation 

instructions (q --+  v, POP Z,/) and (v - r, PUSH Z, NOOP) in P' , as shown 
below : 

If qfinal is an accepting (rejecting) state of P, let Vfinal be a new accepting 
(rejecting) state in P' . For each such final state, let P' contain a subprogram 
that consists of the single instruction (qfinal - VfinaI ,  POPZ,  NOOP) , as 
shown below: 

To prove the simulation's correctness we construct commutative diagrams 
for a, w, and each kind of stack operation. These are presented in Fig
ures 3 . 30 through 3 . 34 .  In Figure 3 . 3 3 ,  we implicitly use the fact that Z 
can appear only at the bottom of the stack. 

FIGURE 3.30: Eliminating the EMPTY operation from a stack: verifying the 
simulation of a . 



3 . 3  S imulation via Subprograms 1 93 

FIGURE 3.3 1 : Eliminating the EMPTY operation from a stack: verifying the 
simulation of PUSHc. 

FIGURE 3.32: Eliminating the EMPTY operation from a stack: verifying rhe 
simulation of POPc. 

FIGURE 3.33:  Eliminating the EMPTY operation from a stack: verifying the 
simulation of EMPTY. 



1 94 S imulation 

FIGURE 3.34: Eliminating the EMPTY operation from a stack: verifying the 
simulation of w. 

Exerc ises 

3 . 3-9 Eliminate the EMPTY test from the program in  Figure 1.1. 

3 . 3-10 Since programs can have more than one final control state, Dr. Curtin 
has proposed that we change the definition of initializers so that a 
program can have more than one initial control state . Prove that 
a nondeterministic program for a machine [control, other] with a 
standard initializer can simulate a nondeterministic program for a 
machine [control, other] with Dr. Curtin's kind of initializer. 

3 . 3- 1 1  Often it is desirable to put a particular number in one of a RAM's 
registers. The operation of putting the number n into register a 
is denoted Ra := n. Given a and n, design a subprogram that 
simulates Ra := n using only standard RAM operations. 

3 .4 STANDARD IZATION 

I n  this section we present systematic sequences of transformations on pro
grams that put them into increasingly restricted form. Each transformation 
changes a program into one that simulates it, so a sequence of transfor
mations will yield an equivalent program, i .e . ,  one with the same transfer 
relation . Usually the transformations preserve or introduce certain desirable 



3 .4 Standardization 1 95 

properties, such as determinism, absence of blocking, and absence of infinite computations. Programs that have been transformed into a restricted form are said to be standardized. Often we will want to prove that no program for a certain machine can perform a certain task, i .e . ,  have a certain transfer relation. Since standardization preserves transfer relations, we will see that any task that can be performed by a program for a certain machine can, in fact, be performed by a standardized program for the same machine. Therefore , we need only show that no standardized program for the machine can perform the task. Thus, standardizations can illuminate the limitations of a machine type. We have already seen some standardizations in this chapter. For example, in Section 3 .3 . 1  we showed that every UCM program can be converted to an equivalent UCM program that does not use the NONZERO operation. 
3 .4 .  l Factor ing  Programs Proving things about programs is simpler if each instruction does only one thing at a time. It is easy to split each instruction into separate instructions, each of which operates on only one device other than the control . However, doing so in a naive fashion may destroy determinism. Consider the deterministic program fragments in Figure 3 .3 5 .  If we always perform the input operations first, then the second fragment does not remain deterministic. If we always perform the stack operations first, then the first fragment does not remain deterministic. In this section we will develop a way to split instructions without destroying determinism. We illustrate the key idea in terms of the input device. Instead of using the SCAN operation to access the next input character, we will store the next character in a look-ahead buffer. This buffer is implemented as an extra control. That way we can see what character is next without actually performing any input operations. Similar ideas apply to outputs, stacks, counters, tapes, and RAMs. We will spend the rest of this section and the next filling in the details of this standardization. If an instruction operates only on the control and a device d other than the control, then we say that the instruction is dedicated to device d. An instruction with control operation q1 ___, q2 is said to go (or be) from q1 to 
q2 . If all instructions that go from control state q are dedicated to the same non-control device d, we say that the control state q is dedicated to d. The 



1 96 Simu lation 

FIGURE 3 .35 :  Two deterministic program fragments. We wish to split each 
instruction into separate instructions, each of which operates on only one device 
other than the control. However, if we always perform the input operations first, 
the second fragment does not remain deterministic. If we always perform the 
stack operations first, the first fragment does not remain deterministic. 

first standardization we present ensures that each control state is dedicated 
to one device. Such a program is called factored. 

For each non-control device we define a set of partitioning tests that 
determine which operations are applicable on that device. Some partitioning 
tests are operations that have already been presented. In addition, we define 
the tests NEXTc = lc'E,* on the input device and TOPc = lr* c on the stack.  
The operation NEXTc tests whether the next input character is a c without 
actually consuming it; the operation TOPc tests whether whether the top 
stack character is a c without actually popping it. As the name suggests, 
the partitioning tests on a device are exhaustive and mutually exclusive . 
The partitioning tests for an input device, a stack, a counter, and an output 
device are listed in Table 3.4. The partitioning tests for tapes and RAMs 
are left as Exercises 3.4-4 and 3.4-5. 

To factor a program, replace the set of instructions from each control 
state with a subprogram that uses the partitioning tests to find an applicable 
instruction and then performs that instruction, one operation at a time. 
Determinism is preserved; i .e., a deterministic program, when factored, 
remains deterministic. 



Device Partitioning Tests 

NEXTa 

Input NEXTb 

EOF 

TOPa 

Stack < 
TOPb 

EMPTY 

ZERO 

Counter < 
NONZERO 

Output { NOOP 
TABLE 3.4: Partitioning tests. 

3 . 4  Standard ization 1 97 

Applicable Operations 

{ 
NEXTa 

SCAN a 

{ 
NEXTb 

SCANb 

{ EOF 
TOPa 

POPa 

PUSH a 

PUSHb 

TOPb 

POPb 

PUSH a 

PUSHb 

{ 
EMPTY 

PUSHa 

PUSHb 

{ 
ZERO 

INC 

{ 
DEC 

INC 

{ 
WRITEa 

WRITEb 



1 98 S imu lation 

FIGURE 3.36: Factoring (q0 -+ q 1 , SCAN a, DEC) . 

EXAMPLE 3.8. Consider a machine [ control, input, unsigned counter] . We 
factor the instruction (q0 --+ q1 , SCAN a, DEC) into four instructions: 

, NEXTa, NOOP 

(va --+ Va+ , NOOP , NONZERO) 

(va+ --+ Va+' ,  SCAN a ,  NOOP ) 

(va+' --+ qi , NOOP , DEC ) 

These instructions are shown in Figure 3 .36. The first two instructions check 
that SCAN a and DEC are both applicable. If so, the last two instructions 
perform those operations. • • •  

In general, there may be several instructions going from a single control 
state. We factor those instructions all together; i.e., the factored instructions 
share some new states. 

EXAMPLE 3.9. Suppose that P contains five instructions that go from qi , 
as shown in Figure 3 .3  7. The transformed subprogram in P' is shown in 
Figure 3. 38. Notice that P' is not deterministic, because a choice is possible 
from control state Vbo •  This choice was present in the original program. 

Obviously the subprogram in Figure 3.38 can be simplified. The lower 
third could be simply 



FIGURE 3.3 7: Before factoring. 

3.4 Standard ization 1 99 

FIGURE 3.38: After factoring the instructions in Figure 3 . 3 7 .  



200 S imu lation 

and the first line could be 

When actually transforming a program into standardized form, com
mon sense indicates simplifying where possible. However, when proving 
that standardizing transformations are possible, we use the simplest trans
formation rules rather than trying to produce the simplest programs. ■ ■ ■ 

The transformation presented in this section-factoring a program
is an example of simulation by subprograms. Proving the simulation's 
correctness is routine and not interesting enough to include here. 

Exe rc ises  

3.4- 1 Factor the program presented in Figure 1 . 1 3. 

3 .4 . 2  E l i m i nat ing  the New Operat ions and Red u ndant Tests 
In the preceding section we introduced some new operations that are not 
ordinarily part of a device's repertory. In this section we show how to sim
ulate the new input operations using the input device's original operations 
while also eliminating redundant tests (i.e. , EOF will be performed at most 
once). We call this standardizing the input device. (A stack can be simi
larly standardized; this is left as an exercise.) As a corollary, we are able to 
eliminate EOF tests from any nondeterministic program. 

We simulate the input operation NEXTc using the ordinary input op
erations: SCAN c and EOF. The simulating program will stay one character 
ahead and keep track of this character (or end of input) in the control, so it 
always knows what the "next" input character is. To be precise, we intro
duce an additional control device, which we call the buffer, which can hold 
A,  an element of the input alphabet � ,  or a special value z that does not 



3 .4  Standard ization 20 l 

FIGURE 3.39: Standardizing the input in the top line of Figure 3 . 38 .  

belong to I:.  Let M be a machine [control, input, other] and let M' be a 
machine [control, buffer, input, other] . We transform program P (running 
on M) to P' (running on M'), where P' scans one character ahead of P, saving 
the look-ahead character in the buffer. If P' detects the end of input, it 
records that fact by storing z in the buffer. 

The relation of representation p is the partial function given by 

(q, c, x, s) p 
(q, z , A, s) p  

(q, ex, s) 
(q, A, s) 

where c E I: or c = A, 

(and C'p is undefined for all other configurations C'). 
The initial and final relations of P' will agree with those of P on the 

devices that they both have; i .e. ' a�ontrol Cle control , w;ontrol = Wcontrol , 
I I I d ' Th Clcinput = Clcinput , Winput = Winput , Clcother = Clcother , an Wother = Wother · e 

buffer used by P' must start empty and finish holding the character z that 
denotes empty input. The instructions are simulated as in Table 3 . 5 .  (Note 
that the self-loops on Q states may belong to several subprograms. If P is in factored form, then each instruction of P' will operate on a 
single device other than the control and the buffer. We can merge the buffer 
with the control of P' , so that P' will also be in factored form. Standardizing 
the input device in this way also preserves determinism. 

We apply this transformation to the top line of Figure 3 . 38;  the result 
is shown in Figure 3 . 39 .  



202  S imu lation 

In a factored program with standardized input, a complete computa
tion on input x = a1 • • • an consists of J. part where the buffer is not z,  
during which the input operations consist of exactly lx l  scans; next there 
is an EOF, during which the buffer is changed to z; finally, there is a 
part where the buffer is always z and no input operations occur. The 
sequence of input operations in a partial computation is some prefix of 
((SCANa1 , . • •  , SCAN an , EOF;; .  Thus no partial LOmputation contains more 
than lx l  + 1 input operations. 

An instruction consisting of only a control operation, i .e . ,  having NOOPs 
on all other devices, is called a null instruction (cf. Section 3 .4 .4). If we can 
bound the number of instructions dedicated to each device and also bound 
the number of null instructions, then we can bound the total number of 

Instruction of P Instructions of P' 
(qi ----> q1 , SCANc, NOOP) (qi ----> qi , A ---->  c, SCANc, NOOP) 

(qi ----> q" c ---->  A, NOOP, NOOP) 
(qi ----> q1 , NEXTc, NOOP) (qi ----> qi , A ---->  c, SCANc, NOOP) 
(qi ---->  q1, EOF, NOOP) 

(qi ----> q1 , c ---->  c, NOOP, NOOP) 
(qi ----> qi , A ---->  z, EOF, NOOP) 
(q, ---->  q1 , z ---->  z ,  NOOP, NOOP) 
(qi ----> q1, c ---->  c, NOOP, /) 
(qi ----> q, ,  Z ---->  z, NOOP, /) 
(qi ----> q,, A ----> A, NOOP, /) 

TABLE 3. 5:  Standardizing the input. Here qi and q1 denote any control states, 
and c denotes any character in the input alphabet. In effect, each instruction is 
broken into two parts: One part fills the buffer if necessary, and the second part 
acts depending on the contents of the nonempty buffer. 



3 .4 Standard ization 203  

instructions in any partial computation. In  particular, we  will eliminate 
infinite computations . Although this is not possible for every kind of 
machine, it is possible for some machines, and standardizing the input is 
the first step in this direction. 

Now we can eliminate the EOF operation entirely from nondeterministic 
programs, relying instead on the input device's terminator to ensure that 
the input is exhausted. In a nondeterministic program with standardized 
input, we replace each occurrence of EOF by NOOP, effectively guessing 
when the input has been exhausted. Because the program will place a z in 
the buffer, no further scanning will occur, even if the guess is wrong. The 
input device's terminator will check that the guess is correct. 

Eliminating EOF in this way does not preserve determinism; however, 
specialized techniques work for DFRs (Section 5 .4 . 1 ), DCRs (Exercise 6.4-
9), DSRs (Section 6.4), and DTRs (Exercise 7 . 2 -4). 

Exerc i ses 

3 .4-2 In order to standardize a stack, we must eliminate the TOP op
erations and also ensure that any two occurrences of EMPTY in a 
partial computation are separated by at least one PUSH. Show how 
to perform this standardization. Be sure to preserve factored form. 

3 .4-3 In the program you produced for Exercise 3 .4- 1 ,  standardize the 
input and the stack. 

3 .4-4 Define partitioning tests for a tape with alphabet { a, b }, and show 
how to simulate them using ordinary tape operations. 

Solution: In order to know which tape operations are applica
ble, it is necessary to know the character under the tape head 
and also whether the head is on the leftmost square. There are 
four possibilities, which we test for with the following new op
erations : SEE a-ATHOME, SEEa-NOT-ATHOME, SEEb-ATHOME, 
and SEEb-NOT-ATHOME. SEEc-ATHOME is simulated by per
forming SEEc followed by ATHOME. SEEc-NOT-ATHOME is sim-



2 04 S imu lation 

ulated by performing SEEc, followed by MOVEL, followed by 
MOVE R. 

3 .4-5 Define partitioning tests for a RAM, and show how to simulate 
them using ordinary RAM operations . 

3 .4-6 Prove that factoring preserves determinism. 

3 .4-7 Prove that factoring does not introduce infinite computations. 

3 .4 . 3  E l i m i nat ing  Dead States and U n reachab l e  States 
Eliminating dead states A control state q is a live state in program P 
if there is a directed path from q to a final control state in the graph of 
P (regardless of the labels on the edges); q is a dead state otherwise. More 
formally, q is a live state if there is a final control state f and sequence of 
instructions 7r 1 , . . .  , 7f

k in P such that q1r :,mrrol . . .  1riontrol = /. Although 
there is no general way to determine whether there is a computation frag
ment that goes from q to a final state (Chapter 7) ,  it is possible to determine 
whether q is live because liveness depends only on the control operations. 
We say that liveness is a syntactic property because it does not depend on the 
behavior (semantics) of the program. If all of a program's control states are dead, then it has no computations ; 
it is equivalent to a program with no instructions and a single dead control 
state. If a program has at least one live state, our next transformation 
eliminates all dead states and all instructions going to or from dead states. A 
valuable side effect is the elimination of some kinds of infinite computations 
(Section 6 .2 .2) .  

Let Qfinal denote the set of final control states, and let r,, be the relation 
that is the union of all control operations in the program. Thus q1 r,, q2 if 
and only if there is an edge from q1 to q2 in the graph of P, and q1 r,,* q2 if 
and only if there is a directed path from q1 to q2 in the graph of P. 

Then the set of live control states Qiive is Qfinal ( t,,- l ) *. We call an 
instruction live if it goes to a live state, and we denote the set of live 
instructions Itive • Note that every instruction that goes to a live state must 
go from a live state as well (Exercise 3 .4-9). 

Assume that P has at least one live state. We eliminate dead states 
from P by keeping only the live states and the live instructions, i .e . ,  we let 
0'.1 = O'., w' = w, Q' = Qiive , and I' = Iiive · Since all control states and 



3 .4 Standard ization 205  

FIGURE 3.40: The control stares labeled q 1 and q2 are dead. 

FIGURE 3.4 1 :  The dead states in Figure 3 .40 have been removed. 

instructions that appear in complete computations are live, P' has the same 
computations as P, so P' has the same transfer relation as P. 

EXAMPLE 3. 1 0. Consider the program shown in Figure 3 .40, which ac
cepts 12* . Ir has two dead stares, labeled q1 and q2, which we eliminate in 
Figure 3 .4 l .  ■ ■ ■ 



206 Sim u lation 

Eliminating unreachable states A control state q in a program P is a reachable state if there is a directed path from qsrarr to q in the graph of P; q 
is an unreachable state otherwise. Thus the set of reachable states is qsrarrr,,* . 

We say that an instruction is reachable if and only if it goes from a 
reachable state. Note that every instruction that goes from a reachable state 
must go to a reachable state as well (Exercise 3 .4-11). Let Ireachable denote 
the set of reachable instructions. 

To eliminate unreachable states from P, we let Q' = qsrarrr,,* , a' = a, 
and I' = Ireachable · We obtain w' by deleting from w any element that 
references an unreachable state; i .e . ,  if a control state is eliminated, then it 
is no longer a final control state. 

Because all control states and instructions that appear in a complete 
computation of P must be reachable, the resulting program P' has the same 
computations as P, so P' must have the same transfer relation as P. (See 
Figures 3 .44 and 3 .45 for an example.) 

Because the deletion of instructions cannot create new choices, this 
standardization preserves determinism. 

Technically, we have omitted one important step in eliminating dead 
states and unreachable states: determining which states are live and which 
are reachable. An algorithm for determining dead and live states can be 
based on the graph-theoretic techniques of Section 4.4 (see Exercise 4.4-9). 

Exe rc i ses  

3 .4-8 Eliminate dead states from the program depicted in Figure 3 .42. 

3 .4-9 Prove that if 7r goes to a live state, then 7r goes from a live state. 

3 .4-10 Using lockstep simulation, obtain yet another correctness proof for 
the procedure to eliminate dead states. Hint: Define p to be the 
identity relation on configurations of P', i .e . ,  C p C' if and only if 
C' is a configuration of P' and C = C'. Prove that P simulates P', 
rather than the other way around. 

3 .4-11 Prove that if an instruction goes to an unreachable control state, 
then it goes from an unreachable control state. 



FIGURE 3.42 : For use with Exercise 3 .4-9. 

3 . 4  Standard ization 207 

3 .4-12 Using lockstep simulation, obtain an alternate correctness proof for 
the procedure to eliminate unreachable states. Hint: Define p to be 
the identity relation on configurations of P'; i .e . , C' p C if and only 
if C' is a configuration of P' and C' = C.  

3 .4-13 I f  we want to eliminate dead states and eliminate unreachable states 
from P, does the order in which we perform this section's transfor
mations matter? 

Solution : No. The transformations may be applied in either order 
to obtain a program with no dead or unreachable states. 

Suppose that we eliminate dead states from P, obtaining P' , and 
then we eliminate unreachable states from P', obtaining P" . We 
assert that P" has no dead states. Proof: Let q be any control state 
in P" . By construction, q must be a control state in P'; hence q is 
a live state in P'. Therefore there is an accepting state qaccepr in P' 
that is reachable from q. Because q is a control state in P", q must 
be reachable in P"; by construction, q is reachable in P'. Since q 
is reachable in P', every control state on the directed path from q 
to qaccepr is reachable in P'. By construction, all of those control 
states are in P", so qaccepr is reachable from q in P", so q is live in 
P". Thus we have shown that if we eliminate dead states and then 
eliminate unreachable states, the resulting program has no dead 
states. Obviously it has no unreachable states. 



208 S imu lation 

Next suppose that we eliminate unreachable states from P, obtaining 
P', and then we eliminate dead states from P', obtaining P" . We 
assert that P" has no unreachable states. Proof: Let q be any control 
state in P" . By construction, q must be a control state in P' ; hence 

q is a reachable state in P' . Because q is a control state of P", q 

must be live in P" ; by construction, q must be live in P'. Since q 
is live in P', every control state on the directed path from qsrarr to q 
is live in P'. By construction, all of those control states are in P", 
so q is  reachable in P" . Thus we have shown that if we eliminate 
unreachable states and then eliminate dead states, the resulting 
program has no unreachable states. Obviously it has no dead states . 

3 .4- 14 Construct a program in which every control state is reachable in 
the syntactic sense described in this section, but one of the control 
states is not entered in any partial computation. 

3 .4 .4  El i m i nati n g  N u l l  I n struct ions  
An instruction consisting of only a control operation, i . e . ,  having N00Ps on 
all devices other than the control, is called a null instruction . In this section, 
we show how to eliminate null instructions from any program. 

Informally, we will look for paths in  the program's digraph labeled 
"N00P, . . .  , N00P, 7r" where 7r is a non-null instruction . We replace every 
such path by a single edge labeled Jr .  In addition, if a path labeled "N00P, 
. . .  , N00P" ends in a final control state, then we change the control state 
at the beginning of that path to a final control state. 

Formally, let TIA be the union of the null instructions in P, and let II+ 
be the union of the remaining (non-null) instructions.  The transfer relation 
T is a o II* o w = a o (TIA U II+ ) * o w . By Exercise 0 .6-8(c), (p 1 U p2 ) * = 
(p{' p2 ) * Pi for all relations p 1 , p2 . Therefore T = a o ( IIAII+ ) * IIA o w . 

Let a' = a, so P' will have the same initial configuration as P. Let 
w' = TIA o w . Since TIA operates only on the control , this amounts to 
letting the final control states of P' consist of all control states from which 
a sequence of null instructions leads to a final control state of P. 

For each non-null instruction 7r + in P, let P' contain all the instructions 
in TIA o Jr+ , so that II' = TIA o II+ .  That is, the instruction (q1 -----+ qk ,f) is 
simulated by the set of instructions of the form (q; -----+ qk ,f) such that q1 is 



3 . 4  Standard ization 209 

reachable from q; by a sequence of null instructions. Since each instruction 
in P' belongs to TIX o II+ , none of them is null. 

By our construction, 

so P' simulates P. 
We are not quite done with our standardization, however, because our 

transformation may make some states unreachable . We remove the unreach
able states as in Section 3 .4. 3 .  Since the elimination of unreachable states 
does not introduce any new instructions, there are still no null instructions. 

EXAMPLE 3. 1 1 . Consider the program in Figure 3 .43 , which contains 
several null instructions. Eliminating the null instructions results in the 
program in Figure 3 .44, which contains two unreachable states; eliminating 
those unreachable states results in the program in Figure 3 .45 .  ■ ■ ■ 

The elimination of null instructions has a subtle effect on nondeter
ministic programs that are in factored form. Suppose that P is in factored 
form, and we construct P' by eliminating null instructions. Clearly, each 
instruction in P' operates on only one device other than the control. This 
arrangement is useful; however, control states may no longer be dedicated 
to a single device (Figure 3 .46). 

Fortunately, the elimination of null instructions from deterministic pro
grams does preserve factored form. The elimination of null instructions 
also preserves determinism. Why? Let P be a deterministic program. If 
a null instruction goes from some control state, then no other instruction 
can go from that control state . Let q be any control state in P. If a non
null instruction is reachable from q then, by a simple induction, there is a 
unique sequence (possibly empty) of null instructions in P that starts at q 
and finishes at some control state r such that only non-null instructions go 
from r. Let P' be obtained by eliminating null instructions from P but not 
unreachable states. The set of instructions that go from q in P' is equal to 
the set of instructions that go from r in P, except for renaming the source. 
If r is dedicated to a single device in P, q is dedicated to a single device 
in P' ; thus P' is factored if P is factored . Similarly, P' is deterministic be
cause P is deterministic . Eliminating unreachable states from P' preserves 
factored form and determinism. Thus, we have shown that the elimination 



2 1  0 S imu lat ion 

FIGURE 3.43: A program with some null instructions. 

FIGURE 3.44: Null instructions are eliminated from the program in Fig
ure 3 .43 .  For example, the instruction (q0 --> q5 , SCAN 1 )  was formed 
by combining the instructions (q0 --> q1 , NOOP) ,  (q 1 --, q2 , NOOP) ,  and 
(q2 _, qi , SCAN 1 ) . Observe that q 1 and q2 are now unreachable. 

FIGURE 3.45:  The unreachable states, q1 and q2 , are removed from the program 
in Figure 3 .44, along with all instructions going to or from those states. 



3 .4 Standardization 2 1 1 

FIGU RE 3.46: Eliminating null instructions from nondeterministic programs 
does not preserve factored form. On the left we have a fragment of a nondeter
ministic factored program that contains a null instruction. On the right we have 
eliminated the null instruction. Each instruction still operates on a single device, 
but the control state O is no longer dedicated to a single device. 

of null instructions preserves determinism and that the elimination of null instructions from a deterministic program preserves factored form. 
Exerc ises 

3 .4- 1 S Eliminate the null instructions from the programs in  the following figures: (a) Figure 1 . 1 9 (b) Figure 1 .2 1  (c) Figure 1 .22  
3 .4- 1 6  Given a program P, we wish to  construct a program P'  such that a' = aII:t_ , II' = II+II'.t, and w' = w.  (a) Show how to  construct P'. (b) Prove that P' has the same transfer relation as P. (c) Can P' contain dead states ? 



2 1 2  S imu lation 

(d) Can P' contain unreachable states? (e) If P is nondeterministic, then P' may violate a standard pro-gramming convention. What is it? (f) Assume that P is nonblocking. Must P' be nonblocking? (g) Assume that P is deterministic. Must P' be deterministic? (h) Assume that P is deterministic. If we eliminate dead states from P' , prove that the resulting program is deterministic. Does it violate the programming convention you noted in part (e)? 
3 . 4 . 5  C lean i n g  Up and El i m i nat i n g  B lock i ng 

Cleaning Up Suppose that the terminator for a program does not depend on the contents of some particular devices; e.g. , the program may terminate regardless of the input state, rather than requiring the input to be exhausted. We show how to convert such a program to one with the same transfer relation that leaves each device except the control and the output in some standard state, usually O or A .  We illustrate the method for a machine with an input, a stack, and two unsigned counters. Similar ideas apply to machines with any number of inputs, stacks, signed counters, unsigned counters, tapes, and RAMs (Exercise 3 .4- 1  7) .  This standardization is called cleaning up. For each final control state q, we construct a cleanup subprogram that first verifies that the program is in a final configuration and then proceeds to clear (empty) all devices except control and output. The final states of all devices except control and output are changed to O or A .  The particular final state of the control is changed to q' , and the control's terminator is changed accordingly. One such cleanup subprogram is shown in Figure 3 .47 for a machine [control, input, stack, unsigned counter, unsigned counter] that accepts in state qaccept whenever the first counter is zero. 
Eliminating Blocking We can also convert a program to one that accepts the same strings but never blocks (its former blocking computations will become rejecting computations). Nonblocking is a highly desirable property. Since transformed programs will reject rather than block, this standardization can change the transfer relation; for that reason it is not actually a simulation. It is, however, an important step in converting cer-



3 .4 Standard ization 2 1 3 

FIGURE 3.4 7: A cleanup subprogram that clears the input, the stack, and the 
second unsigned counter. The first counter is required to already hold O as a 
condition of acceptance. SCAN any is shorthand for SCAN a, SCANb, etc. 

rain kinds of deterministic acceptors, which may block on some inputs, 
into recognizers, which reject all inputs that are not accepted. If P is a 
deterministic acceptor with no infinite computations , then the elimination 
of blocking converts P to a recognizer for the same language. 

We give the construction for an input device. Similar ideas work for 
stacks, unsigned counters, signed counters, tapes, and RAMs (Exercise 3 .4-
1 8) .  

To eliminate blocking, we introduce a single new rejecting state r. 
From any state where blocking can occur, as in Figure 3 .48 for example, 
we introduce appropriate alternative instructions that verify that blocking 
would have occurred and go directly to the rejecting state r. Then blocking 
does not occur. 

FIGURE 3.48: On the left side, blocking occurs if the remaining input does 
not start with a. On the right side, blocking has been eliminated. 



2 1 4  S imu lat ion 

Exe rc ises  

3.4-17 (a) A signed counter is clean if it holds 0. Show how to clean up 
a signed counter. 

(b) A tape is clean if all squares are blank and the head is in the 
home position. Show how to clean up a tape. 

(c) A RAM is clean if all registers and memory locations hold 0. 
Show how to clean up a RAM. 

Hint: In all three parts, the program will need to remember some 
extra information that is needed only for cleaning up. What is it? 

3 .4-18 Show how to eliminate blocking from a program that uses a 
(a) stack 
(b) unsigned counter 
(c) signed counter 
(d) tape 
(e) RAM 

3.4-19 Eliminate blocking from your program for Exercise 3.4-9. 

3.4-20 How many new control states do we introduce when we eliminate 
blocking from a program P that runs on a machine [control , input, 
stack] , assuming that P might block in k different control states? 

3 .4-21 Show how to eliminate blocking from any program for a machine 
with arbitrary devices without affecting the transfer relation. Hint: 
The simulation may introduce undesirable properties, like null in
structions and infinite computations. 

3.4-22 Suppose that P is a deterministic program that does not block. Must 
P have a computation for every input? 

Solution: No. P might have only infinite computations. For ex
ample, consider a program with initial control state 1 and only one 
instruction, (1 ---+ l , NOOP , INC ) .  

3 . 5  CHAPTER S U M MARY 

In this chapter we described informally what it means for one program to 
simulate the behavior of another. Then we presented two specific kinds 



3 . 5  Chapter Summary 2 1 5 

of simulation: lockstep simulation and simulation by subprograms. One 
machine or machine type simulates another if every program for the latter 
is simulated by a program for the former. Thus, simulation allows us to 
prove that one type of machine is at least as powerful as another. It also 
allows us to construct standard forms for programs, which will facilitate 
proofs . Although the mathematical details of simulation are not necessary 
to understand the rest of this book, an informal understanding of simulation 
will be very important .  

Exerc i ses 

3 . 5 - 1  Chaos Computing i s  designing a new line of  computers that have 
no control device. Because of your expertise in simulation, you have 
been hired to consult on the project. Assume that the control to be 
simulated has realm Q. Be careful not to use any controls in your 
simulation. 

(a) Show how to simulate the control using a tape. 

(b) Show how to simulate the control using two stacks. 

(c) Show how to simulate the control using I Q I  unsigned counters. 
You may use the NONZERO instruction on the counters. 

(d) Show how to simulate the control using unsigned counters 
without the NONZERO test. 

(e) What effects do your simulations in parts (a-d) have on pro
grams that are in factored form? 

(f) Show how to simulate a machine [control, stack, stack] by a 
machine [stack, stack, stack] . 

3 . 5-2 Devices 'R Us® is marketing a new-and-improved counter. Their 
new device has all the ordinary operations and two additional oper
ations: INC2, which adds 2 to the counter's state, and DEC2, which 
subtracts 2 from the counter's state. Their ads say that their new de
vice will speed up counter machine programs by a factor of 2 .  Their 
competitors, the ltty Bitty Machine Corporation, have countered by 



2 1 6  S imu lation 

providing a free control with every purchase of an ordinary counter. 
They have hired you-an independent researcher-to prove that an 
ordinary counter together with a control is just as good and just as 
fast as a new-and-improved counter. 

Show how to simulate a new-and-improved counter, in lockstep, 
using an ordinary counter and a control. 



4 

Finite Machines 
and Regular 
Languages 

IN THIS CHAPTER we examine finite ma
chines, i .e . ,  machines with no storage devices other than the control. Al
though computationally quite limited, finite machines are nonetheless use
ful. The control is a finite memory, so it can store a bounded amount 
of information, such as a number between 1 and 100, the last five input 

2 1 7  



2 1 8  F in ite Mach ines and Regu lar Languages 

characters scanned, or a 1 6-bit binary sequence. Furthermore, the control 
can store a bounded number of different pieces of information as long as 
each is bounded in size. 

Every real computer has a fixed, finite amount of memory, so finite 
machines can, in principle, simulate real computers. Thus, in principle, 
real computers are subject to the limitations of finite machines. However, 
in practice, finite machines are a useful model of computers with only small 
amounts of memory; RAMs, which have infinite memory, are a more useful 
model for real computers. 

Finite machines are useful for pattern matching, as we saw in Exam
ple 1 . 3 .  They are also useful in the lexical analysis phase of parsing computer 
languages, when the input is separated into reserved words, identifiers, oper
ators, and punctuation. Finite machines are used in the theory of distributed 
computing, where they model individual processes that have a small number 
of states. From a theoretical viewpoint, finite machines can also help us to 
understand more complicated machines. Finite machines are easy to build 
in hardware, easy to simulate on real computers, and also easy to analyze. 

Let us recall some terminology from Chapter 2 .  If P is a nondeter
ministic acceptor running on a finite machine, then P is called an NFA 
(nondeterministic finite acceptor). If P is a recognizer running on a finite 
machine, then P is called a DFR (deterministic finite recognizer). If P is 
a deterministic acceptor running on a finite machine, then P is called a DFA (deterministic finite acceptor). If P is a nondeterministic transducer 
running on a finite machine, then P is called a finite transducer. If P is a 
deterministic transducer running on a finite machine, then P is called a deterministic finite transducer. 

In this chapter we define the regular expressions, which generate lan
guages called regular languages. We prove that the class of regular lan
guages is equal to the class of languages accepted by NFAs. This is the 
first illustration of a major paradigm in the theory of computability: the 
correspondence between grammar-based and machine-based definitions of 
languages . 

Then we prove that the class of languages accepted by NFAs is equal 
to the class of languages recognized by DFRs. (The analogous statement is 
false for machines with counters, stacks, or tapes. )  Thus, regular languages 
can be represented by regular expressions, NFAs, or DFRs. None of these 



4 . 1  Standard iz ing F ini te Mach ine Programs 2 1 9  

representations for regular languages is always better than another; each is 
useful for different applications. 

Finally, we develop three tools for proving that certain languages are 
not regular: the Myhill-Nerode theorem, closure properties, and pumping 
theorems. 

4 .  1 STANDARDIZING F INITE MACH INE PROG RAMS 

I n  this section we present some standardizations for NFAs that we will use, 
as needed, in this chapter. Recall that in Chapter 3 we saw how to eliminate 
null instructions, dead control states, and unreachable control states from 
any program. 

We saw how to eliminate the EOF test from acceptors in Section 3 .4 .2 .  
I t  will also be useful to eliminate the EOF test from DFRs. To do so, we first 
eliminate null instructions and standardize the input as in Section 3 .4 .2 .  If 
such a standardized program contains the instruction (q ---, r, EOF ) ,  then 
there are no instructions going from control state r. Because the program 
is deterministic , q is not a final state and there is at most one such r. Delete 
the instruction (q ---, r, EOF).  Make q an accepting state if r is accepting 
and a rejecting state if r is rejecting. The terminator will make sure that 
the input is exhausted before accepting or rejecting. This transformation 
will be useful in Section 4. 7 .  

Thus we may assume that all instructions in an  NFA or  a DFR perform 
a SCAN operation on the input, i . e . ,  that all instructions have the form 
(q ---, r, SCANc) . Similarly, we may assume that all instructions in a finite 
transducer perform a SCAN or a NOOP on the input device. Because dead 
states and unreachable states can be eliminated, we may further assume that 
every control state is on a path from the initial control state to a final control 
state. 

A simple transformation ensures that no instructions go to the initial 
control state qsrart of any program (Exercise 4 . 1 - 1 ). At the price of intro
ducing null instructions and destroying determinism, we might also ensure 
that an acceptor has a unique accepting control state qaccept such that no 
instructions go from qaccept (Exercise 4. 1 -2). These transformations ofNFAs 
will be useful in Sections 4.4 and 4 . 5 .  



2 2 0  Finite Machines and Regu lar Languages 

Exerc i ses  

4.1-1 Show how to convert any program into an equivalent program in 
which the initial control state has no edge going to it. Your trans
formation should preserve determinism. 

4.1-2 Show how to convert any program into an equivalent program with 
a unique accepting state that has no edge going from it. Your 
transformation may introduce null instructions. 

4.1-3 Is it possible to eliminate the EOF test from deterministic finite 
transducers (while preserving determinism)? 

Solution: No. Consider a deterministic finite transducer that maps 
each string x to x#. Assume that it does not use the EOF test. 
Because it maps A to #, it must write # before performing any input 
operations. Therefore all of its results begin with #, a contradiction. 

4 . 2  REG U LAR EXPRESS IONS AND LANGUAGES 

In this section we define regular expressions and languages. Some important 
parts of programming languages, such as tokens, numbers, and identifiers, 
are regular languages . Regular expressions are important because they 
provide a succinct way to represent regular languages. In particular, they 
are useful in specifying programming languages and in pattern matching. 

Recall that a set of strings is called a language and that the operations 
union (U), concatenation ( 0 ), and Kleene-closure (*)  on languages are called regular operations. We say that a language is regular if it can be obtained by 
applying a finite number of regular operations to the empty set and the 
sets containing just the empty string or a single character. We restate this 
definition formally below (this would be a good time to read Section 0. 3 .1 
on regular operations and Section 0.6.3 on recursive definitions if you have 
not already done so): 

DEFINITION 4. 1 (Regular Languages). We define regular languages re
cursively : 

(i) 0 is a regular language. 



4 .2  Regu lar Expressions and Languages 2 2 1  

(ii) {A} is a regular language. 

(iii) If c is a character ( 1-character string), then { c} is a regular language. 

(iv) If L 1 and L2 are regular languages, then L 1 UL2 is a regular language. 

(v) If L 1 and L2 are regular languages, then L 1 0L2 is a regular language. 

(vi) If L 1 is a regular language, then Li is a regular language. 

For example, 

{a, ab}* ( {a} U {ab} ) * 
( {a} U ( {a} 0 {b} ) ) * ,  

so { a, ab}* is regular. 
Regular expressions, defined next, are a shorthand way of describing 

regular languages. 

DEFINITION 4.2 (Regular Expressions). We define regular expressions 
recursive! y: 

(i) 0 is a regular expression. 

(ii) A is a regular expression. 

(iii) If c is a character ( 1 -character string), then c is a regular expression. 

(iv) If r1 and r2 are regular expressions, then h )  U h )  is a regular 
expression. 

(v) If r1 and r2 are regular expressions, then h )  (r2 ) is a regular expres
s10n. 

(vi) If r is a regular expression, then (r) * is a regular expression. 

The language generated by a regular expression r (denoted L(r)) is defined 
recursively as follows: 

(i) L(0) = 0. 
(ii) L(A) = {A}. 



2 2 2  Finite Machines and Regu lar Languages 

(iii) If c is a character, then L(c) = {c } .  

(iv) L ( (r1 ) U h ) ) = L(ri ) U Lh ) 

(v) L( h ) h ) )  = L(r1 ) ® L h ) .  

(vi) L ( (r) * )  = (L(r) ) * .  
For example, ( (a) U ( (a) (b) ) )  * is a regular expression, and 

L( ( ( a) U ( (a) (b) ) ) * ) = { a, ab}* . 

We adopt precedence rules in order to reduce the need for parentheses 
in regular expressions . Kleene-closure (*) has the highest priority, concate
nation has the next highest priority, and union (U) has the lowest priority. 
Thus, for example, 

( ( a) u ( (a) (b) ) ) *  = (a u ab) * .  

Because concatenation distributes over union in the same way that mul
tiplication distributes over addition, we have the following rules for ma
nipulating regular expressions: 

• L(r(s U t) ) = L(rs U rt) .  
• L(  (s U t)r) = L (sr U tr) .  

The justification for these rules and others is left as Exercise 4.2-1. 
We often write s+ to denote the set of strings obtained by concatenating 

a positive number of strings from S, i.e., s+ = SS* .  If S is regular, then s+ 

is regular, because s+ is defined via Kleene-closure and concatenation. For 
example, a+ = { a; : i 2 1 }, which is a regular language. 

Exe rc i ses 

4.2-1  Let R ,  S, T be any sets of strings. Prove the following identities: 
(a) Distributive law. R (S U T) = RS U RT 
(b) Distributive law. (S U T)R = SR U TR 



4.2 Regu lar Express ions and Languages 2 2 3  

(c) (S U T)* = (S* T* ) *  
(d) ( s  u T)* = s*  u (s*Ts* )+ 
(e) (S U T)* = s* (TS* )*  
(f) (S U T)* = T* (ST* ) *  

(g) (S U T)* = (T* S) *T* 
(h) (S U T)* = (S*T)*s* 
(i) (R U S)(T U V) =  RT U RV U ST U SV 

4.2-2 Write regular expressions that generate the following languages: 
(a) the set of all strings over { a, b }  that contain exactly two a's 
(b) the set of all strings over { a, b} that contain at least two a's 
(c) the set of all strings over { a, b} whose length is divisible by 3 

4.2-3 Prove that the following definition of  regular languages is equivalent 
to Definition 4 . 1 .  
A language is regular if it can be shown to  be regular by a finite 
number of applications of the rules below: 

(a) Every finite set is regular. 
(b) L 1 U L2 is regular if L 1 and L2 are regular. 
(c) L 1 ® L2 is regular if L 1 and L2 are regular. 
(d) L';' is regular if L 1 is regular. 

4.2-4 Recursively define a function/ from regular expressions to natural 
numbers as follows: 

/(a) 1 

/(b) 1 

/(A) 0 

/(h )  u h ) )  min(/(r1 ) ,f(r2 ) )  

/((r1 ) h ) )  /h ) + /h ) 

/( (r)* ) o .  

Prove that J(r) is equal to  the length of the shortest string generated 
by r, i.e., 

J(r) = min lx l . 
xEL(r) 



224  Fin ite Machi nes and Regu lar Languages 

4.2-5 Define a function/ from regular expressions to natural numbers: 

/(a) 
/(b) 

/(A) 

1 
0 

/(h ) u (r2 ) )  
/( h ) h ) )  

0 
min(/(ri ) ,Jh ) )  
/h ) + /h) 

/( (r) * )  = 0 .  

Prove that /(r) i s  equal to the smallest number of a's in any string 
generated by r, i .e . ,  

J(r) = min #a(x) . xEL(r) 

4 .2-6 Give a recursive algorithm to determine whether the language gen
erated by a regular expression is empty, finite but nonempty, or 
infinite. 

Solution: Knowing whether r1 and r2 are empty, finite, or infinite 
is enough to determine whether r1r2 and r1 U r2 are empty, finite, or 
infinite. However, knowing whether r is empty, finite, or infinite is 
not enought to determine whether r* is finite. Why? Because {A} 
and {a} are finite languages, but {A}* is finite whereas {a} *  is 
infinite. Thus we will also need to determine whether L(r) = {A}.  
Fix an alphabet �- Let 

/(r) = 

0 if L(r) = 0 ,  

A if L(r) = {A}, 

F if L(r) is any other finite language, 
I if L (r) is infinite. 

Then L(r) is empty if J(r) = 0, finite but nonempty if /(r) = A 



*4.3 Reg ular Expressions in the Real World: egrep 22 5 

orf(r) = F, infinite if /(r) = I. We compute /( · )  by a recursive 
algorithm whose structure mimics the definition of L( · ) . 

/(0) 0 ,  
/(A) A, 

/(c) F for each c E �, 

/(h ) u h ) )  max (/(ri ) ,Jh ) )  
using the order 
0 < A <  F < I, 

/( (ri ) h ) )  max (/(ri ) ,f(r2 ) )  
using the order 
A <  F < I <  0 ,  

J((r) * ) { 
A if /(r) = 0 or /(r) = A, 

I if /(r) = F orf(r) = I. 

4.2-7 How would you represent a regular expression as a string? 

Solution: Suppose that the regular expression's alphabet is �- When 
we write down the regular expression, we use the characters in � and 
the special characters 0, A, U, * , ( , and ) . That is, we represent the 
regular expression as a string over the alphabet �,, where �, consists 
of the characters in � and the six special characters mentioned above. 

*4 . 3  REGULAR EXPRESS IONS I N  THE REAL WORLD: 

EGREP 

(This section is optional; it is intended only for students with access to 
Unix® . ) If you have used the Unix operating system, you may have used 
the program fgrep, grep, or egrep 1 in order to search for a string or a more 
complex pattern in a file. Regular expressions provide a convenient, compact 
way of expressing patterns. This section describes the use of egrep. (The 
internal workings of egrep are based on finite machines; although we will 

1 The name "egrep" is an acronym for "extended global regular expression print." 



2 2 6  F in ite Mach ines and Regu lar Languages 

develop some of the relevant theory later in this chapter, the algorithmic 
details are beyond the scope of this book.) 

We say that a string s matches a regular expression r if s belongs to the 
language generated by r, i .e . ,  ifs  E L(r) . Given a regular expression and a 
file name, egrep will print out every line (of the file) that contains a substring 
that matches the regular expression. The command format is 

grep ' regexp ' file 
where file is a file name and regexp is a regular expression whose format we 
will describe below. (The single quotes around the regular expression are 
not strictly necessary, but they prevent undesired preprocessing by the Unix 
command shell .)  

EXAMPLE 4.3. The command 

% grep ' depend ' /usr/dict/words 

searches the dictionary for all words containing depend as a substring. The 
result: 

depend 
dependent 
independent I I I 

Because of the limitations of standard keyboards, we must write regular 
expressions slightly differently when using egrep (Table 4. 1 ). The Kleene
closure operator (*) is denoted by * (not a superscript), union (U) is denoted 
by a vertical bar ( I ) , and concatenation is denoted by adjacency in the 
ordinary way. Parentheses have their usual meaning as grouping operators . 
The alphabet (�) is denoted by a period ( .  ), i .e. , . matches any character. 

For example, the regular expression ( ab U c ) * would be denoted 
(ab I c )  * , and �* would be denoted . * · 

There is no way to express the empty string in egrep; e.g . ,  ( )  is not 
permitted . Instead, r? denotes zero or one occurrences of the regular 
expression r, so the empty string is not needed in practice. 

Egrep understands other special characters, of which we will mention 
only two more. Imagine that a line starts with an invisible character, which 
we call beginning-of-line, and ends with an invisible character, which we call 



*4.3 Regu lar Express ions in the Real World: egrep 2 2 7  

end-of-line. These are not standard characters, though they are loosely related 
to the carriage return/line feed pairs that separate lines of text in real files. 
In egrep, beginning-of-line is denoted by - , and end-of-line is denoted by 
$. Thus -r$ matches an entire line of text rather than a substring, though 
- . *r. *$ is equivalent to r. 

EXAMPLE 4.4. To find words of two or more letters that begin and end 
with y, we could type 

% egrep , -y . *y$ ' /usr/dict/words 
yeasty 
yeomanry 
yesterday 

In contrast, the command 

% egrep ' Y · *Y '  /usr/dict/words 

Expression Egrep Notation 

r* r* 

r+ r+ 

r U A  r? 

r U s  r l s  

rs rs 

(r) (r) 

� 

C C 

d \d 

beginning-of-line � 

end-of-line $ 

TABLE 4. 1  : Egrep notation (r and s denote nonempty regular expressions; c 
denotes an ordinary character; d denotes a special character). 



228  Fi n ite Mach ines and Regu lar Languages 

results in a list of 1 1 3 words, gomg all the way from alleyway to 
yesteryear. 

EXAMPLE 4.5. For help with spelling we might type 

% egrep , -rec (ei l ie) ve$ ' /usr/dict/words 
receive 

EXAMPLE 4.6. For help with a crossword puzzle 

u 

we might type 

% egrep , - s . .  u . t  . .  e$ ' /usr/dict/words 
seductive 
structure 

• • •  

I I I 

I I I 

If one wants to specify the character ( rather than use it as a grouping 
operator, one types \ ( .  A character with a special meaning can be quoted 
by preceding it with \ .  

EXAMPLE 4.7. To search for all occurrences of the string f (x)  in a file 
called ch4.tex, we could type 

% egrep ' f\ (x\) ' ch4 . tex 
string \verb : f (x) : in a file called ch4 . tex , we could type 1 1  ■ 

EXAMPLE 4.8. Egrep is also useful in checking files for common grammat
ical errors. The following command looks for two consecutive occurrences 
of the word the separated by one or more spaces: 

% egrep ' ( - 1  ) the +the ( 1 $ ) '  myf ile . txt I I I 

This short section explains only a few of the capabilities of egrep. For 
additional information consult your Unix documentation or type the Unix 
command 

% man egrep 



Exe rc i ses 

4 .4  Kleene's Theorem 2 2 9  

4.3-1 A common grammatical error is to write the word a followed by a 
word beginning with a vowel. Write a Unix command using egrep 
that checks myfile . txt for this error, assuming that the error occurs 
inside a single line . 
Solution: 
egrep ' ( - 1  ) ( a l A) + C a l e l i l o l u) ' myfile . txt 

4.3-2 Write a command using egrep that searches myfile.txt for all lines 
that contain the letter a and the letter b. 

Solution: 
egrep ' a . *b l b . *a '  myfile . txt 

4. 3-3 Write a command using egrep that searches myfile. txt for all lines 
that contain at least two y's or at least two z's. 

4.3-4 Write a command using egrep that searches myfile.txt for all lines 
that contain the string Bob and do not start with %. Hint: [ -%] 
matches each character other than %. 

4 .4  KLEENE'S THEOREM 

In our diagrams, we have represented programs as labeled digraphs. This 
metaphor for programs is very powerful. In this section, we present a fun
damental theorem about directed graphs. Using the relationship between 
digraphs and programs, we then show that every NFA language is a regular 
language. 

Recall that the first element of a path is called its origin, and the last 
element is called its destination. A path of length 0, such as ((v)) , will be 
identified with the vertex v. A path of length 1, such as ((v0 , v1 )) , will be 
identified with the edge ( v0 , vi ) .  

The catenation operation (denoted ®) on paths is very similar to the 
concatenation operation on sequences. If one path's destination is another 
path's origin, then the catenation operation joins the two paths at that vertex; 
if one path ends at a different vertex from where the other path starts, then it 



2 30 Fi nite Mach i nes and Regular Languages 

is impossible to join the paths and their catenation is undefined. Formally, 
we have 

((u, , . . .  , u;)) @ ((v, , . . .  , vJ)) = { 
undefined 

if U; = Vi 

otherwise . 

We extend the catenation operation to sets of paths in the standard way, 
so S 1 ® S2 = {s 1 ® s2 : s1 E S 1 and s2 E S2 } . Henceforth we treat cate
nation as an operation on sets of paths. Catenation is easily seen to be 
associative, and the vertex set V (which is the same as the set of paths of 
length 0) is an identity element for catenation; i .e . ,  for every set S of paths, 

----t ----t V ® S = S ® V = S.  
----t 

We define successive powers of S inductively: S0 = V and s;+ i = S; ® S. 
(Observe that S 1 = S.) By Theorem 0. 1 8 , the closure of V U S  under 
catenation ( denoted S* ) is given by 

S* is sometimes called simply the closure of S.  
Let G be a digraph with vertex set V = { 1 ,  . . .  , m} and edge relation 

E. We show how to compute the set of paths with origin i and destination 
k. Let P;,j,k denote the set of paths with origin i and destination k that 
do not pass through any intermediate vertices greater than j, i .e . ,  all paths 
((v1 , • • •  , vn)) such that v1 = i, Vn = k, and Va _'.'S j for 1 < a < n. Note 
that even if i and k are greater than j, P;,J,k may contain many paths; for 
example, if (i, k) E E, then ((i, k)) E P;,j,k for all j. Similarly, P;,1, ; always 
contains the path ((i)) having length 0 .  

The sets P;,j,k can be computed for all i ,j, k by recursion on  j. Since G 
has no vertices numbered greater than m,  the set of paths with origin i and 
destination k is exactly P;,m,k · When j = 0, no paths may pass through any 
intermediate vertex, so the only possible paths are of length O or 1 .  That is ,  
P;,o,k contains ((i)) if i = k, it contains ((i ,  k)) if (i, k) E E,  and it contains 
nothing else; in particular, 

P;,o,k � { ((i)) , ((i, k )) } . ( 4 . 1 )  



4 .4 K leene's Theorem 2 3 1  

Now assume that j 2 1. Some paths in P;,j,k do not pass through j, 
while others pass throughj one or more times . The former paths are exactly 
those belonging to P;,j- l ,k · Each of the latter kind consists of ( 1) a segment 
from i to the first occurrence of j on the path, then (2) a nonnegative number 
of segments, each going from one occurrence of j to the next, and finally 
(3)  a segment going from the last occurrence of j to k. Since the vertex j 
appears only at the start or end of a segment (or both), the latter set of paths 
is exactly P;,j- l ,j ® (Pj,j- i ,j ) *  ® P;,;- l ,k • Combining the two cases, we 
have 

--t * --t 

P;,j, k  = Pi,j- l , k u P;,;- 1 ,j ® (Pj,j- 1 ,j) ® Pj,j- 1,k · (4.2 )  

Before presenting an actual algorithm to compute the set of paths with origin 
i and destination k, we will prove an important theorem about digraphs that 
is due to Kleene. 

If each edge in a digraph is labeled with a character from some alphabet, 
then each path is labeled with a string over that alphabet. We will extend 
our definition of regular operations to apply to paths in digraphs. Then 
we will prove a theorem about regular sets of paths and use it to draw 
conclusions about regular sets of strings. 

In our definition of regular sets of paths, the edge set E will play the 
role of the alphabet � in our definition of regular sets of strings. Catenation 
will play the role of concatenation. V will play the role of A .  

We call the operations union (U), catenation ( ® ), and closure ( * )  on 
sets of paths regular operations. We say that a set P of paths on a vertex set V is regular if P can be obtained by applying a finite number of regular 
operations to the empty set and sets consisting of a single vertex or a single 
edge. (Recall that we identify a sequence of length O with a vertex and a 
sequence of length 1 with an edge.) Formally, we define a regular set of 
paths recursively: 

(i) 0 is a regular set of paths. 

(ii) If v is a vertex, then { v} is a regular set of paths. 

(iii) If v0 and v1 are vertices, then { ( v0 , v1 ) }  is a regular set of paths . 

(iv) If P 1 and P2 are regular sets of paths, then P 1 U P2 is a regular set 
of paths. 



2 32 Fi n ite Machi nes and Regu lar Languages 

---t 

(v) If P 1 and P2 are regular sets of paths, then P 1 ® P2 is a regular set 
of paths . 

(vi) If P is a regular set of paths, then p* is a regular set of paths. 

We are now ready to state and prove Kleene's theorem for digraphs. 

THEOREM 4.9 (Kleene's Theorem for Digraphs). Let G be a digraph. The set of paths in G with origin i and destination k is a regular set of paths. 
Proof: Assume that G has m vertices . Define P;,J, k  as above. Then the set 
of paths with origin i and destination k is equal to P;,m,k · We prove by 
induction on j that P;,J,k is regular for every i and every k. The theorem 
follows by takingj = m .  For the base case, assume thatj = 0. Then P;,o,k is 
either 0, {i} , { (i , k ) } ,  or {i} U { (i, k) } by equation (4.1), so P;,o,k is regular 
by rules (i-iv) . For the inductive case, assume that P;,J- l ,k is regular for 
every i and every k. In particular, P;,J- l ,k, P;,J- l ,j, Pj,j- l ,J, and Pj,j- l ,k are 
regular for every i and every k. By equation (4.2), 

---t * ---t 
. P;,j,k = Pi,j- l ,k LJ Pi,j- l ,J Q9 (Pj,j- l ,j ) Q9 Pj,j- 1 ,k , 

so P;,J,k is regular for every i and every k by rules (iv- vi). ■ 

4.4 . 1 Al gor ith ms  for Comput i ng Regu lar  Sets of Paths  
Kleene's theorem is of fundamental importance in understanding the class of 
languages accepted by NF As. Before discussing this application, we present 
an algorithm for determining the set of paths in a digraph with origin i and 
destination k. 

Equation (4.2) provides a simple recurrence for P;,J,k ·  We solve this 
recurrence via the recursive algorithm of Figure 4.1, thus computing the 
set of paths with origin i and destination k. In the algorithm, the set of paths 
can be represented by a regular expression involving union, catenation, and 
closure. 

The remainder of this section is devoted to finding more efficient algo
rithms than the recursive algorithm in Figure 4.1. The technique we will 
use is known as dynamic programming . Dynamic programming has many 
important applications; in particular, we will use it again in Section 5 .11. 



procedure P(i , j, k) ; 
local S: set of paths; 

if j = 0 then begin 
s := 0; 
if i = k then 

s := s u {i}; 
if (i, k) E E then 

S := S U  { (i, k) } ;  
return S; 

end else 
return P(i,j - 1, k) U 

4 .4 Kleene's Theorem 2 3 3  

P(i,j - l ,j) ® (P(j,j - l ,j) ) * ® P(j,j - l , k) ; 
end procedure P; 

begin main 
return P(i, m, k) ; 

end main 

FIGURE 4. 1 : A recursive algorithm for the set of paths from i to k. 

Observe that the recursive algorithm will wastefully evaluate P;,o,k a 
huge number of times, even though its value does not change. Therefore, it 
is economical to redesign the algorithm so that it does not recompute any 
values. The algorithm in Figure 4.2 stores the value of P;,J, k  the first time 
it is computed in order to avoid recomputation. 

Since the values of P;,j,k are computed in order of increasing j, we 
may replace our algorithm with a simple iterative algorithm, shown in 
Figure 4 . 3 .  Algorithms like this one, which fill in a table of values iteratively 
(instead of computing the single desired value recursively), are called dynamic programming. 

Finally, we make a simple practical improvement to our iterative algo
rithm by considering only paths of length 1 or greater. Let P;,j,k denote the 
set of paths of length 1 or greater from i to k that pass through no interme
diate vertex numbered higher than j. Then P;,o,k = { (i ,  k) } if (i, k) E E, 



2 34 Finite Machines and Regular Languages 

global Parray[m, m, m] : set of paths; 
global Known[m, m, m] : boolean; 

procedure P(i,j, k) ; 
local S: set of paths; 

if Known[i,j, k] then return Parray[i,j, k] ; 
if j = 0 then begin 

s := 0 ;  
if i = k then 

s :=  s u {i} ; 
if (i, k) E E then 

S := S U { (i, k) } ; 
end else 

S := P(i,j - 1, k) U 
P(i,j - l , j) ® (P(j, j - l ,j) ) *  ® P(j,j - l , k) ; 

Known[i ,j, k] := true; 
Parray[i,j, k] : = S; 
return S; 

end procedure P; 

begin main 
for i := 1 to m do 

for j := 0 to m do 
for k : = 1 to m do 

Known[i,j, k] :=  false; 
return P(i, m, k) ; 

end main 

FIGU RE 4.2 : Avoiding recomputation in the recursive algorithm of Figure 4. 1 
for the set of paths from i to k. 

and P; 0 k = 0 otherwise. As an exercise, the reader may verify that the 
recurr��ce of equation (4.2) applies as well to P;,J,k, i.e., that 

� � � 
---t 

� * --+ �  P;,j,k = Pi,j- 1 ,k U Pi,j- l ,j ® (Pj,j- l ,j ) ® Pj,j- 1 ,k · (4. 3 ) 



global Parray[m, m, m] : set of paths; 

for i := 1 to m do 
for k := 1 to m do begin 

Parray[i, 0, k] := 0 ;  
if i = k then 

4.4 K leene's Theorem 2 3 5  

Parray[i, 0, k] := Parray [i, 0, k] U {i} ; 
if (i, k) E E  then 

Parray [i, O , k] := Parray [i, O , k] U { (i , k) } ; 
end; 

for j := 1 to m do 
for i := 1 to m do 

for k :=  1 to m do 
Parray [i ,j, k] := Parray [i, j - l , k] U 

Parray [i,j - l ,j] ® (ParrayU,J - l ,j] )* 
® ParrayU,J - 1, k] ; 

return Parray[i, m, k] ; 

FIGURE 4.3:  An iterative algorithm for the set of paths from i to k. 

We solve this recurrence via the algorithm in Figure 4.4 .  If i is equal to k, 
then we include the length-0 path from i to k at the very end . 

EXAMPLE 4. 1 O. Let us consider the complete digraph on two vertices 
shown in Figure 4.5 (we say that a digraph is complete if it contains all 
possible edges on the vertex set). The edges are labeled a, b, c, and d; 
henceforth we will identify an edge with its label. 

Abusing our standard notation, we identify a singleton set with the 
element it contains, so that we can write, for example, c to denote {c} . 

-> . -> 
We also drop the symbol 0,  writing ST in place of S 0 T. Applying the 
algorithm of Figure 4.4, we obtain the formulas shown in Figure 4.6. ■ ■ ■ 



2 3 6  Finite Machines and Regular Languages 

global Phat [m, m, m] : set of paths; 

for i := 1 to m do 
for k := 1 to m do 

if (i, k) E E then Phat[i, 0, k] := { (i, k )}  
else Phat[i, 0 ,  k] := 0 ;  

for j := 1 to m do 
for i := 1 to m do 

for k := 1 to m do 

if i = k then 

Phat [i,j, k] := Phat [i, j - 1 ,  k] U 
Phat [i, j - l , j] ® (PhatU,j  - l ,j] ) *  

® PhatU,j - l , k] ;  

return Parray [i, m ,  k] U {i} 
else 

return Parray [i, m, k] ; 

FIGURE 4.4: An improved iterative algorithm for the set of paths from i to k. 

FIGURE 4.5: The complete digraph on two vertices. 



P 1 ,o , 1  

P 1 ,o,2 

P2,o, 1 

P2 ,o,2 

P 1 , 1 , 1  

P1 , 1 ,2 

P2 , 1 , 1  

P2 , 1 ,2 

P 1 ,2 , 1  

P 1 ,2,2 

P2,2 , 1  

P2,2,2 

P 1 ,2 , 1  

P 1 ,2 ,2  

P2,2,1  

P2,2,2 

c, 
a, 
b, 
d, 
c U cc*c = c(c° U c*c) = cc* , 
a U cc* a = ( c0 U cc* )a = c *a, 
b U bc*c = b(c0 U c*c) = be* , 

* d U be a ,  
cc* U c * a ( d U be* a)*  be* , 

4.4 Kleene's Theorem 2 3 7 

c * a U c * a ( d U be* a)*  ( d U be* a) = c * a ( d U be* a) * , 
be* U ( d U be* a) ( d U be* a)*  be* = ( d U be* a)*  be* , 
d U be* a U ( d U be* a) ( d U be* a)*  ( d U be* a) 
( d U be* a) ( d U be* a ) * ,  
cc* U c * a ( d U be* a ) *  be* U 1 ,  
c* a(d U be* a) * ,  
( d U be* a) * be* , 
( d U be* a) ( d U be* a) * U 2 .  

FIGU RE 4.6: The results of applying the algorithm o f  Figure 4.4 t o  the complete 
digraph on two vertices shown in Figure 4. 5 .  The first 1 2  formulas give the values 
in the array Phat. (We have simplified the formulas at each step in order to prevent 
them from becoming unmanageably long.) The last four formulas give the sets 
of paths from 1 to 1 ,  from 1 to 2 ,  from 2 to 1 ,  and from 2 to 2, respectively. 

EXAMPLE 4. 1 1 .  To obtain formulas for sets of paths in other digraphs on 
the vertex set { 1 ,  2 }, we can simply replace the name of any omitted edge 
by 0 in the preceding formulas . For example, in the digraph shown in 
Figure 4 .  7, the set of paths from 1 to 2 is given by 

0* a(d U b0* a)*  = a(d U ba) * .  



2 3 8  F in ite Machi nes and Regu lar Languages 

FIGU RE 4. 7: A proper subset of the complete digraph on two vertices. 

That formula may also be obtained directly with somewhat less work by the techniques of Section 4 .4 . 3 .  ■ ■ ■ 

4 .4 .2  N FA Lang uages  Are Reg u lar Lang uages  In  this section we show that the set of computations of a standard ized NFA is a regular language and that the set of strings accepted by any NFA is a regular language. Recall that we represent programs as digraphs, where the labels on the edges indicate noncontrol operations. A computation corresponds to a path from an initial state to a final state in the program's digraph. The sequence of control operations performed is just the sequence of edges in the path. The sequence of noncontrol operations is just the sequence of labels on the edges. 
EXAMPLE 4. 1 2. In Figure 4 .8 ,  we show the digraph of a DFA. Consider the computation 

((a ,  ( 1 ---+ 1 ,  SCAN e) , ( 1 ---+ 2 ,  SCAN f ) ,  (2 ---+ 2 ,  SCANg) , (2 ---+ l , SCAN f ) ,  ( 1 ---+ 2 , SCAN f ) , w)) . 
The corresponding path is (( 1 ,  1 ,  2 ,  2 ,  1 ,  2)) ,  which can be written as the catenation of five edges: ( 1 ,  1 ) ( 1 ,  2 ) ( 2 ,  2 ) ( 2 ,  1 ) ( 1 ,  2 ) .  The sequence of noncontrol operations is the sequence of labels of these edges ((SCAN e ,  SCAN f ,  SCANg, SCAN f ,  SCAN f)) ,  and the string scanned is efgff .  ■ ■ ■ 



FIGURE 4.8: A DFA. 

4.4 Kleene's Theorem 2 3 9  

For every computation of any program P, there i s  a path i n  P's digraph from an initial state to an accepting state, which is labeled by the noncontrol operations performed during the computation. Conversely, assuming that 
P is an FM program, consider any path in P's digraph from an initial state to an accepting state. This path is labeled by a sequence of input operations. Provided that null instructions and EOF operations have been eliminated from P (cf. Sections 3 .4 .4 and 3 .4 .2), this sequence of operations must have the form ((SCANx i , . . .  , SCANx11 )) . Thus, this path corresponds to an accepting computation on input x i · · · x11 • Therefore, we can determine the set of accepting computations of a standardized finite machine program by forming its digraph, determining the set of all paths that go from the initial control state to an accepting control state, and replacing each edge in a path by the corresponding instruction. If we wish to determine the set of strings accepted by a standardized NFA, we can simply replace each edge in a path by the character scanned by the corresponding instruction. 
EXAMPLE 4. 1 3. The set of accepting computations of the program in Figure 4 .8  is obtained by substituting the names of the instructions into Figure 4.6 's formula for P 1 ,2 ,2 , the set of paths with origin 1 and destination 2 :  
( 1 ----+ 1 ,  SCAN e ) * ( l  ----+ 2 ,  SCANf )  
( (2 ----+ 2 , SCANg) U (2 ----+ l , SCAN f ) ( l ----+ l , SCAN e) * ( l ----+ 2 , SCAN f ) ) * 
Therefore the set of strings accepted by that program is 

e* f (g U fe*f ) * . I I I 



240 F i nite Machines and Regu lar Languages 

Kleene's theorem for digraphs yields a nice corollary about NFA lan
guages. 

COROLLARY 4. 1 4. If P is an NFA, then P accepts a regular language. 
Proof: Let qsrarr be P's initial state, and let Qaccepr be the set consisting of P's accepting states. We assume that null instructions and EOF operations 
have been eliminated from P. Let G be the digraph of P, and let paths (i ,  k) 
denote the set of paths whose origin is i and whose destination is k. The set 
of paths whose origin is an initial state and whose destination is a final state 
is given by 

LJ paths(qsrarr , k) . 
kEQaccept 

Because paths(i, k) is a regular set of paths for each i and each k by The
orem 4.9, so is the finite union above. In the expression for that regular 
set of paths, we replace each edge by the character scanned while traversing 
that edge, we replace each vertex by A, and we replace ® by ®· Thus we 
obtain the set of strings accepted by P. Since that set is constructed from 
0, A, and individual characters by a finite number of regular operations, it 
is a regular language. ■ 

Exerc i ses  

4.4- 1 Let P be any NFA. Prove that the set of computations of P 1s a 
regular language. 

4.4-2 Let L be a language filtered or generated by a finite machine program 
(for definitions, see Exercises 2 .9-6 and 2 . 1 0-4). Prove that L is a 
regular language. 

4 . 4 . 3  Pe nc i l -and-Paper Algor ith m 
In order to convert an NFA to an equivalent regular expression, we can 
use the algorithm in Figure 4.4 .  That algorithm is suitable for use on real 
computers, but it is not so easy to work by hand. In this section, we describe 
an algorithm that is suitable for pencil-and-paper calculation. 



4.4 Kleene's Theorem 24 l 

First, we standardize the NFA so that ( 1 )  no EOF operations are used, (2) the initial control state has no edges going to it (Exercise 4 . 1 - 1 ), and (3)  there is a unique accepting control state with no edges going from it (Exercise 4 . 1 -2). Assume that the control states of the standardized program are numbered 1 through m, where m - 1 is the initial control state and m is the unique accepting control state. Because there are no edges to m - 1 or from m, they cannot be intermediate vertices, so Pm- l ,m,m = Pm- Lm-2 ,111 • Construct the digraph representation of program P,  but instead of labeling edges SCANc or NOOP, label them c or A, respectively. Thus each edge is labeled by the string scanned when that edge is traversed. Suppose that in the course of executing the algorithm of Figure 4 .4 we ha;e computed P;,;,k for every i, k. Then clearly we need no longer store P;,;- t ,k for any i, k. In addition, since our goal is only to compute Pm- l ,m-2 ,m , we need not compute P;.;,k if i S j or k S j, because these values will not be needed in later computations. Thus, each pass through the outermost for-loop corresponds to eliminating vertex j and its incident edges, while maintaining for each i ,  k > j that P;.;,k is the set of paths from 
i to k whose intermediate vertices have already been eliminated. Finally, when all vertices but m - 1 and m have been removed, the digraph is reduced to a single edge from the start state to the accepting state, which is labeled by the set of paths from m - 1 to m. Since the noninitial , nonfinal vertices can be numbered arbitrarily, we may in fact eliminate them in any order that pleases us . Because this algorithm repeatedly simplifies the digraph, it is particularly amenable to pencil-and-paper computation. Step 1: Standardize the start and accepting state. Step 2: For every pair of vertices r and t, if there is more than one edge from r to t, then combine them into a single edge, which is labeled with the union of the labels of the individual edges (Figure 4.9). S tep 3 :  After parallel edges have been merged, remove any vertex s except the initial vertex or the accepting vertex. For every pair of vertices r and t, see if ((r, s, t)) is a path in the digraph. If so, there are four cases, depending on whether there is an edge from r to t and whether there is an edge from s to s. These cases are shown in Figure 4 . 1 0. When eliminating s from the old digraph, put the correspondingly labeled edge from r to t in the new digraph (replacing the old edge from r to t if it already exists). 



242 Fi nite Mach ines and Regu lar Languages 

FIGURE 4.9: Merging parallel edges. 

FIGU RE 4. 1 0: Four cases when eliminating vertex .r. 



FIG U RE 4. 1 1 : A finite acceptor. 

4.4 Kleene's Theorem 243 

FIGURE 4. 1 2 : Standardizing the initial and final states. 

Now repeat step 3 - removing a single vertex and the incident edges - until only the start and the final vertex remain. A single edge must join them and be labeled with the language accepted by the original program. 
EXAMPLE 4. 1 5. We apply this technique to the program in Figure 4 . 1 1 . We introduce a new initial state with no edges going to it and a new unique final state with no edges going from it (Figure 4 . 1 2). Since there are no parallel edges, we go immediately to step 3, where we eliminate control state q 1 (Figure 4 . 1 3) .  Then we eliminate control state q2 (Figure 4 . 14) .  



244 F in ite Mach i nes and Reg u lar Languages 

FIGURE 4. 1 3 : Eliminating q 1 • 

FIGU RE 4. 1 4 : Eliminating q2 . 

It is helpful to simplify the regular expressions (Figure 4 . 1 5 ) if one can see how to, although this is not strictly necessary and may not always be easy. Finally, we eliminate q3 (Figure 4 . 16). ■ ■ ■ 



4.4 Kleene's Theorem 245 

FIGURE 4. 1 5 :  Simplifying the regular expressions. 

FIGURE 4. 1 6: Eliminating q, .  

Exe rc ises 

4.4-3 Prove equation (4. 3) .  

4.4-4 Let R and S each be any language. Prove that R U RSS* = RS* . 

4.4-5 Use our pencil-and-paper algorithm to determine the regular lan
guage accepted by the NFA in Figure 1 . 5 .  Show your work. 

4.4-6 Use our pencil-and-paper algorithm to determine the regular lan
guage accepted by the NFA in Figure 4 . 1 7 .  Show your work. 



246 F in ite Machines and Regu lar Languages 

FIGURE 4 . 1  7: An NFA. 

+ 4.4-7 If L is a nonempty language accepted by an NFA with N states, 
prove that L contains a string whose length is less than N. 

4 .4-8 Let L � a* be accepted by a DFA with N states. Prove that there 
exist a natural number M ::; N and sets F, F' � {O , . . .  , N - 1 }  
such that 

L = { a; : i E F or (i � N and (i mod M) E F' ) } . 

4.4-9 Reachability 
(a) Design an efficient algorithm that will determine for every 

pair of vertices s, t in a directed graph whether there is a path 
from s to t .  Hint: One approach is to  label the edges by 
A and apply Kleene's algorithm, although somewhat faster 
algorithms are possible. 

(b) Design an algorithm to determine which of a program's states 
are live. 

(c) Design an algorithm to determine which of a program's states 
are reachable. 

4.4- 10  All-pairs shortest path. Design an efficient algorithm that will 
determine for every pair of vertices s, t in a weighted digraph the 



4 . 5  NFA Languages Are the Same as Regular Languages 247  

minimum weighted length of a path from s to t. Hint: Replace ® 
by addition and replace U by minimum in Kleene's algorithm. 

4 . 5  N FA LANGUAGES ARE TH E SAM E AS REGU LAR 

LANG UAGES 

In the preceding section, we proved that every NFA language is a regular 
language. We now prove the converse; hence we conclude that the class of 
NFA languages is exactly equal to the class of regular languages. 

LEMMA 4. 1 6. Every regular language is an NFA language. 
Proof: If L is regular, then L is built from 0,  {A} , and sets containing a 
single character {c} by applying the regular operations union (U), concate
nation (CQ), and Kleene-closure ( * ) .  We prove that L is an NFA language 
by induction on the number of applications of the regular operations used 
in building L. 

Let L be a regular language. If L is 0 ,  {A} , or {c} , where c is any 
character, then clearly L is an NFA language (the desired NFA has one or 
two control states and is easily constructed). Otherwise, L is equal to L i UL2 , L i C9 L2 , or L;' for some regular languages L i and L2 that are built up using 
one fewer application of the regular operations . By the inductive hypothesis, L i and L2 are NFA languages. By our standardizations (Exercise 4 . 1 -2) we 
may assume that L i and L2 are accepted by NFAs P i and P2 , respectively, 
with start states qi- and q2 _ and unique accepting control states qi+ and q2+ . 

In each of three cases, we construct a program P with start state q_ and 
accepting state q+ . If L = L i U L2 , then we connect the start state of P by 
null instructions to the start states for P i and P2 ; similarly, we connect the 
accepting states of P i and P2 to the accepting state of P (Figure 4 . 1 8) .  If L = L i ® L2 , then we connect the start state of P to the start state of P 1 , the 
accepting state of P i to the start state of P 2 , and the accepting state of P 2 to 
the accepting state of P (Figure 4. 5 ) . If L = L;',  then we connect the start 
state of P to the start state of P i , the accepting state of P i to the accepting 
state of P, and the accepting state of P i to the start state of P i ; we also 
connect the start state of P directly to the accepting state of P, in order to 
accept A (Figure 4 .20) .  (A more compact construction for Kleene-closure 
is possible. See Exercise 4 . 5-2 . )  



248 Finite Mach ines and Regu lar Languages 

FIGURE 4. 1 8 : An NFA that accepts L 1 U L2 . 

The NFA P so constructed accepts L; therefore L is an NFA language. ■ 
THEOREM 4. 1 7  (Kleene). L is a regular language if and only if L is an NFA language. 
Proof: By Corollary 4 . 14 ,  if L is an NFA language, then L is a regular language. By Lemma 4 . 1 6, if L is a regular language, then L is an NFA language. ■ 

Exerc i ses  

4 . 5 - 1  Use Lemma 4 . 1 6  to construct NFAs that accept the following lan-guages: 
(a) A U a( a U b) * 
(b) (ab* ) * 
(c) (ab* ) *  U (ba* ) *  

4 .5 -2  In Figure 4 .20, we introduced four new edges in  order to construct an NFA for L; with start state q_ and accepting state q+ . Show how to do the construction with only three new edges, still ensuring 



4 . 5  NFA Languages Are the Same as Regu lar Languages 249 



2 5 0  Finite Mach ines and Regular Languages 

FIGURE 4.20: An NFA that accepts L'f .  

that no instructions go to the start state or from the accepting state. 
If we drop that condition, show that one new edge suffices. 

4. 5-3 A program is called planar if its digraph can be drawn in the plane 
without having any edges cross. 

(a) Prove that every regular language is accepted by a planar NFA. 

*(b) Construct a regular language that is not accepted by any planar 
DFA. Hint: Every undirected planar graph contains a vertex 
with at most five neighbors (cf. Exercise 0.6-11). 

4 . 6  EQU IVALENCE OF N FAs AN D DFAs 

A very important concern in computer science is the relation between the 
computing power of deterministic programs and nondeterministic pro
grams. Because every deterministic program for a machine M is also a 
nondeterministic program for M, it is clear that nondeterministic programs 
are at least as powerful as deterministic programs. Although nondetermin
istic programs may be strictly more powerful than deterministic programs 
running on the same kind of machine, we will show in this section that 
this is not the case for finite acceptors. We will show that any NFA with n 
control states can be simulated by a DFA with 2n control states. Although 
2n is much larger than n, it is still finite. (In some cases, the exponential 
blowup in control states is unavoidable.) 



4.6 Equ ivalence of NFAs and DFAs 2 5 1  

The ability of a DFA to simulate an NFA is very important because it 
gives us additional characterizations of the regular languages: They are ex
actly the set of DFA languages and, because DFAs and DFRs are equivalent, 
they are exactly the set of DFR languages. However, it is also worth noting 
that deterministic finite transducers cannot simulate all nondeterministic 
finite transducers (Exercise 4.6-2). 

THEOREM 4.1 8. L is a regular language if and only if L is a DFA language. 
Proof: By Theorem 4.1 7 ,  the class of regular languages is equal to the 
class of NFA languages, so it suffices to prove the equivalence of NF As and 
DFAs. Every DFA is also an NFA; therefore every DFA language is an NFA 
language. For the converse, let L be accepted by an NFA P with control 
set Q. We assume that all null instructions and EOF operations have been 
eliminated from P. 

After P has scanned a string w, P can be in one of many different 
control states, because P is nondeterministic. We construct a corresponding 
deterministic program P' such that, after reading w, P' will be in a control 
state that represents the set of all possible control states that P could be in 
after reading w. In fact, we let Q' consist of all subsets of Q, so the control 
state of P' will be the set of all possible control states that P could be in after 
reading w. 

We let Q' = 2Q , where Q is the set of control states of P. Then Q' is 
finite. (Recall that 2Q denotes the set of all subsets of Q, also known as the 
power set of Q. If Q is finite, then 2Q is finite and in fact l2Q I = 2IQ I _) Let t, be the union of all the control operations that accompany SCANc 
in P. Then for every S � Q and every character c E �,  let P' contain the 
instruction 

(S -----+  S( , SCANc). (4 .4)  

(St, is the set of  states of  P that are reachable from an element of  S via a 
single SCANc instruction. Since S and St, are single states of P', (4 .4) is a 
single instruction of P', not a set of instructions.) 

Let qscart denote the initial state of P, and let Qaccept denote the set of 
accepting states of P. The initial state of P' is { qscarc }. A control state S of 



2 5 2  Fi nite Machines and Regu lar  Languages 

P' is accepting if and only if it contains an accepting state of P, i .e . ,  if and 
only if S n Qaccert -=/- 0. 

It is not hard to prove that P' simulates P in lockstep. The details are 
left as an exercise for the reader. 

We prove that P' is deterministic. Suppose that (S 1 ---+ S I t, , SCAN c) and 
(S2 ---+ S2tJ , SCANd) are two instructions of P' with overlapping domains. 
Then the control operations have overlapping domains, so S 1 = S 2 ; the input 
operations have overlapping domains, so c = d. Thus the two instructions 
are identical. Therefore P' is deterministic. ■ 

The construction in the preceding proof is known as the "subset construc
tion" because Q' is the set of all subsets of Q. 

EXAMPLE 4. 1 9. Consider the NFA shown in Figure 4 .2 1 ,  which accepts 
those strings over { a, b} that have an a two characters from the end. Its 
initial control state is 1 ,  and its unique accepting control state is 4 .  

To construct an  equivalent DFA P' , we could just write the instruc
tions (S ---+ Sta , SCAN a) and (S ---+ Stb , SCA Nb) for every S S: Q. 
However, in order to save some work we construct only the reachable 
states of P'. The initial state of P' is { 1 } .  From { 1 }  we can go to 
{ l }ta = { 1 , 2} and { l }tb = { l } ;  hence we include the two instruc
tions ( { l } ---+ { 1 , 2 } , SCAN a) and ( { l } ---+ { 1 } , SCANb) in P'. From 
{ l ,  2} we can go to { l ,  2}ta = { l ,  2 ,  3 }  and { l ,  2}tb = { l ,  3 } ; 
hence we include the two instructions ( { 1 ,  2} ---+ { 1 ,  2 ,  3 } ,  SCAN a) and 

FIG U RE 4.2 1 :  An NFA that accepts { a, b} * a{ a, b } 2 . 



4 .6  Equ ivalence of NFAs and DFAs 2 5 3  
( { 1 ,  2} --, { 1 ,  3 } , SCANb) in P' . Continuing this process, we obtain the entire instruction set of P': 

( { 1 } - { 1 , 2 }  , SCAN a) , 
( { 1 } - { 1 }  , SCANb) , 
( { 1 , 2 } - { 1 , 2 , 3 }  , SCAN a) , 
( { 1 , 2 } - { 1 , 3 } , SCANb) , 
( { 1 , 2 , 3 } - { 1 , 2 , 3 , 4}  , SCAN a) , 
( { 1 , 2 , 3 } --, { 1 , 3 , 4} , SCANb) ,  
( { 1 , 3 } - { 1 , 2 , 4} , SCANa) , 
( { 1 , 3 } - { 1 , 4} , SCAN b) , 
( { 1 , 2 , 3 , 4 } --, { 1 , 2 , 3 , 4} , SCAN a) , 
( { 1 , 2 , 3 , 4 } --, { 1 , 3 , 4} , SCANb) , 
( { 1 , 3 , 4} - { 1 , 2 , 4} , SCAN a) , 
( { 1 , 3 , 4} --; { 1 , 4} , SCANb) , 
( { 1 , 2 , 4 } --, { 1 , 2 , 3 }  

( { 1 , 2 , 4 } - { 1 , 3 }  

( { 1 , 4} --, { 1 , 2 }  

( { 1 , 4} - { 1 }  

, SCAN a) , 
, SCANb) , 
, SCAN a) , 
, SCANb) 

The accepting control states are { 4} ,  { 1 ,  4}, { 2, 4}, { 3, 4}, { 1 ,  2, 4} ,  
{ 1 ,  3 ,  4} ,  {2 ,  3 ,  4} ,  and { 1 ,  2 ,  3 ,  4} .  Note that only four of them are reachable. ■ ■ ■ 
COROLLARY 4.20. L is a regular language if and only if L is a DFR language. 
Proof: By Theorem 4. 1 8  it suffices to prove that L is a DFA language iff L is a DFR language. We can convert a DFR to a DFA for the same language by making rejecting states non final . Conversely, given a DFA, we can eliminate 



2 54 Finite Machines and Regu lar Languages 
blocking . Then we eliminate null instructions and EOF tests, so that each instruction scans a character; this rules out infinite computations, so the resulting program is a DFR. ■ 

The final step of converting an NFA to a DFR is actually simpler than the proof of Corollary 4. 2 0 suggests. Theorem 4 . 1 8 's construction actually produces a DFA that has no null instructions and does not use the EOF test, so it cannot have infinite computations. Furthermore, for every state S and every character c there is an instruction (S ---+ St, ,  SCANc) ,  so the DFA cannot block except when the input is exhausted. To eliminate blocking, it suffices to convert nonaccepting states to rejecting states, thus producing an equivalent DFR. 
EXAMPLE 4.2 1 .  Figure 4 .22 shows an NFA P and Figure 4 .23 shows the equivalent DFR P' produced by this method. Some states of P' , such as { 1 ,  2 } ,  are not shown because they are unreachable from the initial state { 1 } .  ■ ■ ■ 

The DFR that we construct from a k-state NFA may have as many as 2k states . For some languages, this exponential blowup is unavoidable, i .e . ,  there are languages that are accepted by a k-state NFA but are not recognized by any (2k - 1 ) -state DFR. This will be discussed further in Section 4 .7  (Corollary 4 .28 and Exercise 4 .7 - 1 5 ) .  
Exerc ises 

4 .6 - 1  

4.6-2 

(a) Can every nondeterministic finite transducer be simulated by a deterministic transducer running on some type of machine? Hint: Deterministic transducers compute partial functions. (6) Suppose that we replace the input device by an output device in this section's proof that an NFA without null instructions can be simulated by a DFA. Where does this introduce an error in the proof? 
(a) Let T be the partial function that maps xc to ex for every string x E { a, b} * and every character c E { a, b} .  Prove that T is a nondeterministic finite transduction. *(b) Prove that T is not a deterministic finite transduction. 



FIGURE 4.22: An NFA. 

4 .6  Equivalence of NFAs and DFAs 2 5 5  

FIGURE 4.23: A DFR that accepts the same language. 



2 5 6  F in ite Mach ines  and Regu lar Languages 

*(c) Prove that T is not even computed by a deterministic pro
gram for a machine [control, input, output, stack] . Hint: 
Prove that the program must scan the entire input before 
writing anything. In addition, you may use the fact that 
{ xcx : x E { a, b}  * and c E { a, b} } is not accepted by any 
NSA, although you will not be able to prove it until Chap
ter 5 .  

4 .6-3 Prove the correctness of the simulation of an NFA by a DFA in the 
proof of Theorem 4 . 18 .  

4 .6-4 Prove that the set of NFA languages is closed under complementa
tion. 

4 .6-5 Use the techniques of this section to convert the NFAs you con
structed in Exercise 4. 5 - 1  to DFRs. 

4.6-6 Design an efficient algorithm to solve the following problem: 

Problem name: NFA acceptance 
Instance: a string x and a k-state NFA P 
Question: Does P accept x? 

You should assume that !x i  is not much larger than k. Hint: Observe 
that only !xi + 1 states of the DFR P' are actually reached on input x. 

Solution : With suitable data structures, the following algorithm 
runs in time 0 ( III · !XI ) = 0(k2 (x l ) :  

S : =  { qsrarr } ;  ( * S holds the set of states P could be i n  *) 
while not eof do begin 

end; 

read (c) ; 
T := 0; (* T will hold the new value of S *) 
for each instruction in P of the form ( q ---+ q' , SCAN c) do 

if q E S  then T := T U  {q' } ;  
S := T; 

if S contains an accepting state of P then accept else reject; 

*4.6-7 An alternating finite machine program (AFM program) has two kinds 
of states, existential (nondeterministic) and universal. Informally, 



4.6-8 

4.6 Equ ivalence of NFAs and DFAs 2 5 7  

an AFM program accepts when started i n  an existential state if at 
least one of its choices leads to acceptance; it accepts when started 
in a universal state if all of its choices lead to acceptance. 

Formally, an AFM program is a directed graph where each edge 
is labeled SCAN c for some character c and each node is labeled 
existential or universal. A subset of the nodes are accepting states. 
tc is defined as in the proof of Theorem 4. 1 8 . An AFM program 
accepts a string x iff A (q0 , x) is true, where q0 is the start state and 
the predicate A is defined recursively as follows: 

• A (q1 A) is true iff q is an accepting state. 
• If q is an existential state, then 

A (q, ex) = V A (q' , x) . 
q'Eqt,. 

• If q is a universal state, then 

A (q, cx) = I\ A (q' , x) .  
q'Eqt, 

Prove that every AFM language is regular. Hint: Construct a DFR 
whose control set is the set of functions from Q to { true, false} .  

(a) In  this problem we define a notion of acceptance that is dual 
to nondeterministic acceptance. An \!FA (pronounced "all
eff-ay") is like an NFA except that it accepts an input x iff all 
computations on input x are accepting and there are no infinite 
computations or blocked partial computations on input x. 
Show how to convert an \!FA to an equivalent DFR. 

(b) Lucy and Charlie are sitting at a table. On the table is a square 
tray with four glasses at the corners. Charlie's goal is to turn 
all the glasses either right-side up or upside down. However, 
Charlie is blindfolded and he is wearing mittens . He does 
not know the initial state of the glasses. If they are initially 
all turned the same way, then Charlie automatically wins. In 
his turn, Charlie may grab one or two glasses and turn them 
over; however, because of the blindfold and mittens he cannot 
see or feel whether the glasses he grabbed are right-side up 



2 5 8  Finite Machines and Regular Languages 

or upside down. He can, however, choose whether to grab 
adjacent glasses or diagonally opposite glasses. If the glasses 
are all turned the same direction, Lucy announces that Charlie 
has won. Otherwise, Lucy may rotate the tray, just to make 
Charlie's goal harder. 

Find the shortest sequence of actions by Charlie that is 
guaranteed to win the game, no matter how Lucy plays. Prove 
that your solution is correct and is the shortest possible. 

4 . 7  M I N I M IZ ING  DFRs 

Computer scientists put a lot of effort into finding optimal programs for 
tasks, where "optimal" means "using the minimum amount of some re
source. "  Some important resources are time and memory, so we may look 
for real programs that run as fast as possible or use as little storage as possible. 
Although it is difficult or impossible to optimize programs for real-world 
computers, it is possible to optimize DFRs . This is useful in designing 
compilers and hardware . 

Suppose that L is the language recognized by a DFR P. We say that 
the program P is minimal if no DFR for L has fewer control states than P. 
Given a DFR P, we will show how to find a minimal DFR for L (P) .  

Step 1 :  Standardize. We eliminate null instructions and then EOF 
tests (Section 4. 1 ), so that every instruction of the DFR performs a SCAN on 
the input device. Next we eliminate unreachable states as in Section 3 .4 . 3 .  
Call the resulting program P .  

Recall that a recognizer may contain nonfinal control states. We assert 
that every control state in P is in fact final. Why? Let q be a control state 
in P. Then q is reachable via some path labeled SCANx1 , . . .  , SCANxn . Let x = x1 · · · Xn . On input x, the program P must reach q and stop there, 
because every instruction scans a character. Because a recognizer must give 
a result for every input, the control state q must be either accepting or 
rejecting. 

Step 2: Merge equivalent states. In this paragraph , we think of P's 
initial state as variable ; only P's final states and instruction set are fixed. 
We say that two control states q 1 and q2 are equivalent if for every string 



4. 7 M in im iz ing DFRs 2 5 9  

x ,  P accepts x when started in state q 1 iff P accepts x when started in state 
q2 , i.e. , iff P produces the same result whether it is started in state q1 or 
q2 . If q1 is reached in the middle of running P and q2 is equivalent to q1 
then the computation could continue from q2 without changing the result. 
Thus, if q1 and q2 are equivalent then they can both be replaced by a single 
state without changing the language accepted. Furthermore, we will prove 
that every program that accepts L (P) has at least as many control states as P 
has inequivalent states. Thus, merging equivalent states into a single state 
produces the minimal program that is equivalent to P. 

We give the details of how to merge equivalent states, and then we 
prove that the resulting program is in fact a DFR and is minimal. In the 
next section, we will give an algorithm for determining which states are 
equivalent. 

How to merge equivalent states Let E denote the equivalence relation 
on states defined above, i.e., qi E q2 if and only q1 is equivalent to q2 . 

We merge states as follows: Let [q] denote the set of control states that 
are equivalent to q, i.e., 

[ q] = { q' : q' E q} .  

I n  the minimal program P', the single state [q] will replace all the states 
that are equivalent to q in P; we let 

Q' = { [q] : q E Q} . 

Instructions that use q in P will be converted to instructions that use [q] in 
P'. To be precise, for each instruction ( q1 ---+ q2 , SCAN c) in P, let P' contain 
the instruction ( [qi ] ---+ [q2 ] ,  SCANc). If q is the initial state of P, we make 
[q] the initial state of P' . If q is an accepting state in P, we make [q] an 
accepting state in P' . If q is a rejecting state in P, we make [q] a rejecting 
state in P' . That completes the minimization algorithm. The reader may 
verify that P' simulates P in lockstep (Exercise 4.7-4). 

Proving that P' is deterministic For each string u E I;* , we define a 
partial function tu from Q to Q. The partial function tu maps each control 
state q to the control state that P would finish in if it were started in control 
state q with input u. (Because P is deterministic and has no null instructions, 



260 Finite Machines and Regu lar Languages 

t11 is a partial function. If P were nondeterministic or had null instructions, 
then we could say only that t11 would be a relation.) Observe that if P is 
in control state q' at some time in a computation and then the string v is 
scanned, P will be in the control state q'tv immediately afterward. Therefore 
qtuv = qtufv . 

If control states q 1 and q2 are equivalent and u is any string then we assert 
that the control states q1t11 and q2t11 must also be equivalent. Why? Let x 
be any string. Because q 1 and q2 are equivalent, P produces the same result 
on input ux whether started in state q 1 or state q2 . Therefore q1 tux = q2tux , 
so 

Since this is true for every x, q1 t11 and q2t11 are equivalent control states. 
Now we show that P' is deterministic. For the sake of contradiction, 

assume that P' is not deterministic. Then P' contains two instructions of 
the form ( [qi ] ---+ [q2] ,  SCANc) and ( [qi ] ---+ [q3 ] ,  SCANc) . We must show 
that [q2] = [q3 ] ,  so that these are really the same instruction. In order for 
these instructions to belong to P', the original program P must contain the 
instructions (q10 ---+ q20 , SCANc) and (qn ---+ q31 , SCANc) where q10 E q 1 , 

q20 E q2 , qu E q1 , and q31 E q3 . Because E is an equivalence relation, 
q10 E ql l ,  so q1otc E ql l tc . Therefore, 

Proving that P' is minimal Next we show that P' has the fewest states 
of any DFR that is equivalent to P. 

DEFIN ITION 4.22 (Prefix Equivalence). Let L be a language. Two strings 
x 1 and x2 are prefix equivalent with respect to L (denoted x 1 '"'-'L x2 ) if 

The reader may verify that '"'-'L is an equivalence relation. If strings x1 , • • •  , Xk are all prefix inequivalent with respect to L, then, on an informal 
level, any DFR that recognizes L needs to be able to tell those strings apart, 
and it needs at least k control states in order to do so. This is made precise 
in the theorem and proof below. 



4. 7 M inimizing DFRs 26  l 

THEOREM 4.23 (Myhi ll-Nerode Theorem). The number of control states in any minimal DFR for a language L is equal to the number of equivalence classes of '""'L· (Such a DFR exists if and only if the number of equivalence classes of '""'L is finite.) 
Proof: First, if P is any DFR that recognizes L, we show that P has at 
least as many control states as '""'L has equivalence classes. Let x1 , . . .  , xk 

be strings that belong to distinct equivalence classes of '""'L · We show 
that qsrarrtx1 , • • • , qsrarrtxk are distinct control states of P. The proof is by 
contradiction. Suppose that qsrarrtx; = q,rarrtx1 

for distinct i and j. Then for 
every string u, 

X;U E L {=:::} qstarttxJuWcontrol = ACCEPT 
{=:::} qstarrtx/uWcontrol = ACCEPT 

{=:::} XjU E L. 

Therefore , x; '""'L x1 , which is a contradiction. 
If '""'L has a finite number k of equivalence classes, we construct a DFR 

P that recognizes L and has exactly k control states. In its control , this 
program P keeps track of which equivalence class the input belongs to, as 
follows. For each string x E I;* ,  let 

[x] = {x' : x' '""'L x} . 

P's control set is { [x] : x E I;* } ,  which has exactly k elements. State [x] 
is accepting if x E L, rejecting otherwise. P's instruction set consists of all 
instructions of the form 

( [x] --+ [xc] , SCANc). 

The reader may verify that the program is deterministic, and that after an 
input x is scanned the control state is in fact [x] (Exercise 4. 7-6). ■ 

COROLLARY 4.24. Let P be a DFR in which all control states are reachable, and let E be the equivalence relation on states defined in this section. Any DFR that is equivalent to P has at least as many control states as E has equivalence classes. 



262 F inite Mach ines and Regu lar Languages 

Proof: Let the initial control state of P be qsraro and let the distinct equiva
lence classes of E be [qi ] ,  . . .  , [qk] . For each i choose U; such that qsrarrt11, = q;. 
(These strings must exist because each state q; is reachable in P. )  If i =/- j, 
then q; and q1 are not equivalent, i . e . ,  q; I/ q1, so there exists a string v such 
that q;tvWcontrol =/- q;fvWcontro! · But 

U;V E L � qstarrf11, fvWconrrol = ACCEPT 
� q;tvWconrro! = ACCEPT 
� q;fvWcontrol = REJECT 
� qstarrf11/vWcontrol = REJECT 

� u1v t/:. L.  

so u; 'i'L u1 . Since this holds for all i andj, we have shown that u 1 , . . .  , uk be
long to different equivalence classes of ~L · By the Myhill-Nerode theorem, 
any DFR that recognizes L must have at least k states. ■ 

Corollary 4 .24 implies that the program P' constructed by our algorithm 
actually contains the minimum number of states possible for any DFR that 
is equivalent to P. 

EXAMPLE 4.25.  Let L be the set of strings over { a, b} that contain at least 
one occurrence of abbaba or bbaabb as a substring. Using ideas from 
Figure 1 . 5 ,  we have designed a DFR that recognizes L. The program is 
presented in Figure 4 .2 5 .  We will use the Myhill-Nerode theorem to prove 
that this DFR is in fact minimal. 

We say that a string u distinguishes two control states q1 and q2 in a DFR 
P if, on input u, P produces different results depending on whether it starts 
in control state q1 or control state q2 . Such a string proves that q1 and q2 
are inequivalent. 

Let p; ( x) denote the prefix of x having length i, and let s; ( x) denote 
the suffix of x obtained by deleting p; ( x) from the beginning. Note that all 
rejecting states have been labeled with the stringp; ( abbaba) or p; (bbaabb) 
for some i S 5 .  Let x be abbaba or bbaabb; then p; (x) is distinguished 
from each other state by the string s; ( x). Because all states of this DFR are 
inequivalent, it has the minimum possible number of states. ■ ■ ■  

The Myhill-Nerode theorem can be used to prove that certain languages 
are not regular. 



FIGURE 4.24: A program that recognizes { a, b} * ( abbaba U bbaabb) { a, b} * .  
scares are rejecting unless marked accepting. 

All 

-?-"' 
:s: 
3· 
3 
N 
::J 

\C 
0 
"TI 
;:CJ 
V> 

N 
0) w 



264 F in ite Mach ines  and Regular Languages 

EXAMPLE 4.26. Let L = { anbn : n 2:: 0}. None of the strings A,  a, a2 , . . .  
are equivalent under ~L , because aibi E L but a1bi � L for i =/- j. There
fore ~L has infinitely many different equivalence classes, so L cannot be 
recognized by a DFR.  Therefore L is not regular. ■ ■ ■ 

In Section 4.9 ,  we will present another method for proving that certain 
languages are not regular. 

EXAMPLE 4.2 7. We can also use the Myhill-Nerode theorem to obtain 
lower bounds on the size of DFRs for certain languages. For example, fix 
a positive integer n and let L = { a, b} * a{ a, b }n- l .  Let x and y be two 
distinct strings in { a, b }n ; then x and y differ in at least one character, say 
the ith . Therefore xbi- l  E L <===? ybi- !  � L,  because one of them has 
an a n - l characters from the end, and the other has a b n - l characters 
from the end. Therefore ~L has at least 2n distinct equivalence classes, so 
any DFR that recognizes L requires at least 2n states. 

In contrast, L is accepted by an NFA with only n + l control states. 
Thus we see that an exponential blowup may be necessary when simulating 
an NFA by a DFR. ■ ■ ■ 

COROLLARY 4.28. For every k 2:: 1 there is a language accepted by an NFA with k states but not recognized by any DFR with fewer than 2k- !  states. 
Proof: Let n = k - l ,  and define L as in Example 4 .27 .  L is accepted by 
an NFA with n + l = k states (Exercise 4 . 7- 1 2) but is not recognized by 
any DFR with fewer than 2n = 2k- l  states. ■ 

Exe rc ises  

4 .7 - 1  Repeat Example 4 .25  for substrings abbaba and bbaaba. 

4 .  7-2 Prove rigorously that t11v = t11tv for all strings u and v .  
4.  7-3 Prove that E is an equivalence relation. 

4 .  7-4 Prove that the minimal equivalent DFR P' constructed by the tech
niques of this section recognizes the same language as P. 



4 .  7 M in i m iz ing DFRs 2 6 5  

4 .7-5 Prove that ~L is an equivalence relation. 

4. 7 -6 Let P be the k-state DFR constructed in the second half of the proof 
of Theorem 4.23 . 

(a) Prove that P is deterministic. 
(b) Prove, by induction on lx l ,  that on input x the program P 

halts in state [x] . 

4. 7-7 Let L be recognized by a DFR P that has no null instructions, EOF 
tests, or unreachable states. Let qs,an be the initial state of P.  

(a) Prove that if qs,ar,tx = qstar,ty, then X ~L y. 
(b) Give a counterexample to show that x ~L y does not imply 

qs,anfx = qstartfy , 
(c) Define the infix equivalence relation for L (denoted �L ) by x �L y 

if and only if 

(Vu) (Vv) [uxv E L <===} uyv E L] . 

Prove that if fx = fy then x �L y. 
(d) Give a counterexample to show that x �L y does not imply 

fx = fy , 
(e) Now assume that P is minimal. Prove that 

and 

4. 7-8 Refer to the definition of infix equivalence in Exercise 4 .  7-7(c). 
(a) Prove that if x 1 ~L x2 and J 1 �L J2 then X1J 1 ~L X2J2 -
(b) Prove that if x1 �L x2 and J 1 �L J2 then X1J 1 �L X2J2 -
(c) Prove that y 1 �L J2 if and only if 

(Vx1 , x2 ) [x1 ~L x2 =} X1J1 ~L X2Yl 

4 .  7-9 Refer to the definition of infix equivalence in Exercise 4. 7-7(c). 
(a) Prove that �L is an equivalence relation. 
(b) Prove that L is recognized by a DFR if and only if �L has 

finitely many equivalence classes. 



266 Finite Machines and Regu lar Languages 

4. 7 - 10  Refer to the definition of infix equivalence in  Exercise 4. 7-7(c). Give 
an algorithm to determine whether x �L y. 

4 . 7- 1 1 Use the Myhill-Nerode theorem to prove that the following lan
guages are not regular: 

(a) { anban : n � 0} 
(b)  { an2 

: n � 0} 

4 . 7- 1 2  Construct an NFA with n + l states that accepts {a,  b} *a{a,  b}n . 
Hint: See Figure 1 . 1 7 .  

4 .  7- 1 3  Let Ln be the set of all strings x 1 #x2# · · · x111##x such that 
x1 , x2 , . . .  , x111 and x are each n characters long and there exists i 
such that x = xi . 

(a) Prove that every DFR that recognizes Ln must have at least 
22" control states. 

(b) Refer to Exercise 4 .6-7 for the definition of AFM programs.  
Prove that Ln i s  accepted by an AFM program with O(n) con
trol states. 

4 . 7 - 14  Let L = {x : #a (x) = 0 (mod k) } .  
(a) Prove that L is recognized by a DFR with k control states but 

not by any DFR with fewer than k control states. 
(b) Prove that L is not recognized by any NFA with fewer than k 

control states. 

4 .7- 1 5  Prove that for every k � 3 there is a language accepted by an NFA 
with k states but not recognized by any DFR with fewer than 2k 

states. Hint: Consider an NFA N with control set { 0, . . .  , k - l } ,  
initial state 0 ,  accepting state 0 ,  and the following instructions: 

(i --+ (i + 1 )  mod k,  SCAN a) for 0 :'.S i  :'.S k - l 

(i --+ i, SCANb) for 1 :'.S i  :'.S k - l 

(0 --+ 0 ,  SCANa) . 

(Such an NFA, with k = 6, i s  shown in  Figure 4 . 2 5 . )  Construct an 
equivalent DFR D via the subset construction but without eliminat
ing unreachable states. Then D's control set consists of all subsets 



4 . 7  M i n i miz ing DFRs 2 6 7  

FIGURE 4.2 5:  A n  NFA with 6 states chat i s  not equivalent co any DFR with 
fewer than 64 states . 

of N's control set. If S and S' are distinct control states of D prove 
that S and S' are not prefix equivalent. Prove that every subset of 
{ 0, . . .  , k - 1} is a reachable state in D. Therefore D is a minimal 
DFR, so every equivalent DFR requires at least 2k states. 

4. 7-16 Let R and S be regular languages recognized by DFRs with r control 
states and s control states, respectively. By using the pairing con
struction, we can produce DFRs with rs control states that recognize 
the languages R n S and R U S. Prove that these constructions are 
optimal, i .e ., for every r and s, there exist regular languages R and 
S recognized by DFRs with r control states and s control states, 
respectively, such that 

(a) every DFR that recognizes R n S has at least rs control states. 
(b) every DFR that recognizes R U S  has at least rs control states. 

4. 7 - 1  7 *(a) Re-do Exercise 4. 7 - 16(a) for NF As. 
(b) Is Exercise 4 .7-16(6) true for NFAs? 

4.  7 .  l Dete rm i n i n g  Eq u ival e nt States 
In this section, we give an algorithm for the difficult step in DFR mini
mization, namely, computing the equivalence classes of the relation E.  We 
compute these equivalence classes by successive refinement, first consider
ing inputs of length at most zero, then at most one, then at most two, and 
so on. That is, we define q 1 Ee q2 if for all strings x of length € or less, P 
accepts x when started in state q1 if and only if P accepts x when started in 



268 F in ite Mach ines and Regu lar Lang uages 

state q2 . It is easy to see that Ee is an equivalence relation . In symbols, we 
have q1 Ee q2 if and only if 

As we consider more inputs, we distinguish more states, so we obtain more 
but smaller equivalence classes. By definition, 

To compute E0 , note that if lu l  = 0 then u = A, so tu = I; thus 

i . e . , q 1 E0 q2 iff control states q 1 and q2 are both accepting or both rejecting. 
Suppose that we have computed Ee and wish to compute Ee+ i - We 

have q 1 Ee+ 1 q2 iff ( 1 )  q1 Ee q2 and (2) for every string u of length € + 1 ,  
q 1 t11Wcontrol = q2t11Wcontrol · We rewrite condition (2) i n  symbols : 

Thus 

(Vu E �e+ i ) [q1 tuWcontrol = q2t11WcontroI ]  
¢:=} (Ve E �)  (Vv E �€ ) [q1 t,vWcontrol = q2tcvWcontroi ] 

¢:=} (Ve E �) (Vv E �e ) [q1 tJvWcontrol = q2tJvWcontroi ] 

¢:=} (Ve E �) [ (q1 t, ) Ee (q2t, ) ] . 

Observe that E � Ee+ 1 � Ee for all €. Since Ee+ 1 and Ee are both equivalence 
relations, Ee+ i must have at least as many equivalence classes as Ee . The 
relation E0 has at least one equivalence class, and the relation E has at 
most I Q I  equivalence classes. Therefore, by the pigeonhole principle, there 
must exist k =s; I Q I  - 1 such that EH 1 and Ek have the same number of 
equivalence classes. Then EH 1 and Ek are equal . Because Ek+2 is computed 
from EH 1 in the same way that EH 1 is computed from Ek , it follows that 



4 .7  Minim izing DFRs 269 

Ek+2 = Ek+1 = Ek . In fact , a simple induction (Exercise 4.7-2 1 ) shows that 
Ee = Ek for every /i, 2 k. Since Ek � Ee for every /i, ::; k, we have 

E = n Ee = Ek . 
e20 

Thus we can compute E by computing Ee for /i, 
soon as we find k such that Ek = Ek+ 1 • 

1 ,  2 ,  . . .  , stopping as 

EXAMPLE 4.29. Consider the DFR shown in Figure 4.26,  which recognizes 
the set of all strings over {a} whose length is 1 or 5 modulo 8. The relation 
E0 partitions the control set into two equivalence classes: C00 = { 1 ,  5 } ,  
the set of accepting states, and C01 = { O ,  2 ,  3 ,  4 ,  6 ,  7 } ,  the set of rejecting 
states. 

The equivalence classes of E 1 partition the equivalence classes of E0 . 

To determine how an equivalence class of E0 is partitioned, we apply ta to 
each of its elements and see if any of the resulting states belong to distinct 

FIGURE 4.26: A DFR that recognizes the set of all strings over {a} whose 
length is 1 or 5 modulo 8. The control state records the length of the input 
modulo 8.  



2 70 F in ite Mach ines and Regu lar Languages 

equivalence classes of £0 • In general, ita = ( i  + 1 )  mod 8. Let us see how C00 is partitioned. We find lta = 2 and Sta = 6; because 2 and 6 belong to the same equivalence class of £0 , this does not lead to any partitioning of Coo , so C 10 = Coo = { l ,  5 }. Now let us see how C0 1  is partitioned. We have Ota = 1 ,  2ta = 3 ,  3ta = 4,  4ta = 5 ,  6ta = 7 ,  and 7 ta = O;  because 1 and 5 belong to a different equivalence class from 3 ,  4 ,  7 ,  and 0, we have distinguished the states O and 4 from 2 ,  3 ,  6, and 7. Thus C0 1  is partitioned into C 1 1  = { 0, 4}  and C12 = {2 ,  3 ,  6 ,  7} . By repeating this process, we determine the equivalence classes of £2 . Let us see how C 1 0  is partitioned. We get lta = 2 and Sta = 6; because 2 and 6 belong to the same equivalence class of E 1 , this does not lead to any partitioning of C 1 o , so C20 = C 1 0  = { l ,  5 } .  Now let us see how C 1 1  is partitioned. We have Ota = 1 and 4ta = 5 ;  because 1 and 5 belong to the same equivalence class of E 1 , this does not lead to any partitioning of C 1 1 , so C2 1  = C 1 1  = { 0 , 4} .  Next let us  see how C 1 2  is partitioned. We find 2ta = 3 ,  3ta = 4, 6ta = 7 ,  and 7ta = O; because 3 and 7 belong to a different equivalence class from 4 and 0, we have distinguished the states 2 and 6 from 3 and 7. Thus C 1 2  is partitioned into C22 = {2 ,  6} and C23 = { 3 ,  7} .  By repeating this process, we determine the equivalence classes of £) . Let us see how C20 is partitioned. We have lta = 2 and Sta = 6; because 2 and 6 belong to the same equivalence class of £2 , this does not lead to any partitioning of C20 , so C30 = C20 = { l ,  5 } .  For C2 1 , we get Ota = 1 and 4ta = 5 ;  because 1 and 5 belong to the same equivalence class of £2 , this does not lead to any partitioning of C 2 1 , so C3 1 = C2 1 = {O,  4} .  For C 22 , we find 2ta = 3 and 6ta = 7 ;  because 3 and 7 belong to the same equivalence class of £2 , this does not lead to any partitioning of C22 , so C32 = { 3 ,  7} .  Finally, for C23 have 3ta = 4 and 7ta = O ;  because 4 and O belong to the same equivalence class of £2 , this does not lead to any partitioning of C23 , so C33  = C23 = {3 , 7 }. Because £3 has the same equivalence classes as E2 , the relation £3 must be equal to £2 ; therefore £3 = E and no more partitioning is possible. The control states of the minimal DFR are {O,  4} , { 1 ,  5 } ,  { 2 ,  6} , and {3 , 7 } ,  the 



4 .7  M in im iz ing DFRs 2 7 1  

FIGURE 4.2 7 :  A minimal DFR that recognizes the set of all strings over {a} 
whose length is 1 or 5 modulo 8.  The control state records the length of the 
input modulo 4. 

four equivalence classes into which E partitions the original control set. The instruction ( 0 -----+ 1 ,  SCAN a) becomes ( { 0, 4} -----+ { 1 , 5 } ,  SCAN a) in the minimal program; ( 1 -----+ 2 , SCAN a) becomes ( { 1 , 5 } -----+ {2 , 6} , SCAN a) ; and so on. The minimal DFR is shown in Figure 4 .27 . ■ ■ ■ 
EXAMPLE 4.30. Consider the DFR shown in Figure 4 .28 ,  which recognizes the set of all strings over { a, b} such that the number of a's is the same as the number of b's modulo 3 .  The relation £0 partitions the control set into two equivalence classes: 

C 00 = { ( O ,  O) , ( 1 , 1 ) , ( 2 ,  2 ) }  , 

the set of accepting states, and 
C01  = { (o, 1 ) ,  (o ,  2 ) ,  ( 1 , o ) ,  ( 1 ,  2 ) ,  ( 2 ,  o ) ,  (2 ,  1 ) } ,  

the set of rejecting states. The equivalence classes of E 1 partition the equivalence classes of £0 . To determine how an equivalence class of £0 is partitioned, we apply ta to each of its elements and see if any of the resulting states belong to distinct equivalence classes of £0 ; then we do the same with tb . In general, (i,j)ta = 
( (i + 1 )  mod 3 , j) and (i, j)tb = (i, (j + 1 )  mod 3 ) .  Let us see how Coo 



272  F i n ite Mach ines  and  Regu lar Languages 

FIGURE 4.28: A DFR that recognizes the language { x E { a,b} * 
#a (x) = #b (x) ( mod 3 ) } .  The control stores the number ofa's and b's modulo 3 
seen so far. The initial control state is (0 ,  0 ) .  The accepting control states are 
(0 ,  0) , ( 1 ,  1 ) ,  and (2 ,  2 ) ;  the other six control states are rejecting. 

is partitioned. We get (0,  O)ta = ( 1 ,  0) ,  ( 1 ,  l ) ta 
= (2 ,  1 ) ,  and (2 ,  2 ) ta = 

( 0, 2 ) ;  because ( 1 ,  0) ,  ( 2 ,  1 ) ,  and ( 0, 2 )  belong to the same equivalence class of E0 , this does not lead to any partitioning of C00 . In addition, (0, O)tb = 
(0, 1 ) ,  ( 1 ,  l )tb = ( 1 ,  2 ) ,  and (2 ,  2)tb = (2 ,  O ) ;  because (0 ,  1 ) ,  ( 1 ,  2 ) ,  and ( 2 ,  0) belong to the same equivalence class of £0 , this does not lead to any partitioning of C00 either, so C l () = C00 = { (0,  0 ) ,  ( 1 ,  1 ) ,  (2 ,  2 ) } .  Now let us see how C01  i s  partitioned. We find ( 0, 1 )ta = ( 1 ,  1 ) ,  
(0, 2 ) ta 

= ( 1 , 2 ) ,  ( 1 , 0)ta 
= (2 , 0 ) ,  ( 1 , 2 )ta = (2 , 2 ) ,  (2 , 0)ta 

= (o , o) ,  and ( 2 ,  1 )ta = ( 0 ,  1 ) ;  because ( 1 ,  1 ) ,  ( 2 ,  2 ) ,  and ( 0,  0 )  belong to a different equivalence class from ( 1 ,  2 ) ,  ( 2 ,  0 ) ,  and ( 0, 1 ) ,  we have distinguished the 



4. 7 M in im izing DFRs 273  

states (0 ,  1 ) ,  ( 1 ,  2 ) ,  and (2 ,  0) from the states (o , 2 ) ,  ( 1 ,  0 ) ,  and (2 ,  1 ) . In addition, (0, l )tb = (0, 2 ) , (0 , 2 ) tb = (o , o) , ( 1 , 0)tb = ( 1 ,  1 ) ,  
( 1 ,  2 ) tb = ( 1 ,  0 ) ,  ( 2 ,  0)tb = ( 2 ,  1 ) ,  and (2 ,  l )tb = (2 ,  2 ) ; because 
(0, 0 ) ,  ( 1 ,  1 ) ,  and (2 ,  2 )  belong to a different equivalence class from 
(0 ,  2 ) ,  ( 1 ,  0) , and (2 ,  1 ) ,  we have distinguished the states (0 ,  2 ) ,  ( 1 ,  0) , and ( 2 ,  1 )  from (0 ,  1 ) ,  ( 1 , 2 ) ,  and ( 2 , 0) . Coincidentally, we discovered exactly the same thing by examining ta . Thus C01 is partitioned into C 1 1  = { (o , 2 ) ,  ( 1 ,  0) , (2 ,  1 ) }  and C 1 2  = { (0,  1 ) ,  ( 1 ,  2 ) , ( 2 ,  0) } .  By repeating that process, we determine the equivalence classes of 
E2 • Let us see how C 10  is partitioned. We find that (0, 0)ta 

= ( 1 ,  0) , 
( 1 ,  l ) ta = (2 ,  1 ) ,  and (2 ,  2 ) ta = (0 ,  2 ) ;  because ( 1 ,  0 ) ,  (2 ,  1 ) ,  and (0, 2 )  belong to  the same equivalence class of E 1 , this does not lead to  any partitioning of C 1 0 - In addition, (o, 0)tb = (o , 1 ) ,  ( 1 ,  l ) tb = ( 1 ,  2 ) , and 
(2 ,  2 ) tb = (2 ,  0 ) ;  because (0, 1 ) ,  ( 1 ,  2 ) ,  and (2 ,  0) belong to the same equivalence class of E 1 , this does not lead to any partitioning of C 10 either, so C 20 = C 10 = { ( 0, 0) , ( 1 ,  1 )  , ( 2 ,  2 ) } . Now let us see how C 1 1  is partitioned. We get (0 ,  2 ) ta 

= ( 1 ,  2 ) , 
( 1 ,  0)ta = (2 ,  0) , and (2 ,  l )ta = (0, 1 ) ;  because ( 1 ,  2 ) ,  (2 ,  0 ) ,  and (0, 1 )  belong to the same equivalence class of E 1 , this does not lead to any partitioning of C 1 1 . In addition, (0 , 2 ) tb = (0, 0 ) ,  ( l , 0)tb = ( 1 ,  1 ) ,  and 
(2 ,  l ) tb = (2 , 2 ) ;  because (0 , 0) ,  ( 1 ,  1 ) ,  and (2 , 2 )  belong to the same equivalence class of E 1 , this does not lead to any partitioning of C 1 1 . Thus C2 1  = Cu = { (o , 2 ) ,  ( 1 ,  o) , (2 ,  1 ) } . Finally, let us see how C 1 2  is partitioned. We have (2 ,  0)ta = (0, 0) , 
(0, l ) ta = ( 1 ,  1 ) ,  and ( 1 ,  2 ) ta = (2 ,  2 ) ;  because (0, 0) , ( 1 ,  1 ) ,  and (2 ,  2 )  belong to  the same equivalence class of E 1 , this does not lead to  any partitioning of C 1 2 - In addition, (2 ,  0)tb 

= ( 2 ,  1 ) ,  (o, l ) tb 
= (o, 2 ) ,  and 

( 1 ,  2 ) tb = ( 1 ,  0 ) ;  because (2 ,  1 ) ,  (0 ,  2 ) ,  and ( 1 ,  0 )  belong to the same equivalence class of E 1 , this does not lead to any partitioning of C 1 2 . Thus 
C22 = C 1 2  = { (2 ,  o) ,  (o , 1 ) ,  ( 1 ,  2 ) } .  Because E2 has the same equivalence classes as E 1 , the relation E 2 must be equal to E 1 ; therefore E2 = E and no more partitioning is possible . Let C0 = { (0,  0 ) ,  ( 1 ,  1 ) ,  ( 2 ,  2 ) } ,  C 1 = { (o , 2 ) ,  ( 1 ,  0 ) ,  ( 2 ,  1 ) } ,  and C 2 = { ( 2 ,  0) , ( 0 , 1 ) , ( 1 , 2 ) } , the three equivalence classes into which E partitions the control set. The instruction ( ( 0, 0) ---+ ( 0, 1 ) ,  SCAN a) becomes (Co ---+ C2 , SCANa) in the minimal program; ( (o , 0) ---+ ( 1 ,  0 ) ,  SCANb) 



2 74 Finite Machines and Regu lar Languages 

FIGURE 4.29: A minimal DFR that recognizes the set of all strings over { a,b} 
that contain equal numbers of a's and b's modulo 3 .  The control set records the 
number of a's minus the number of b's modulo 3 .  

becomes (Co -----+ C 1 , SCANb) ; and so  on .  The minimal DFR is shown in 
Figure 4. 29 . ■ ■ ■ 

EXAMPLE 4.3 1 . We minimize the DFR shown in Figure 4. 30 . By exam
ining the terminator, we see that the equivalence classes of E0 are { 1 ,  3 }  
and { 2 ,  4 } .  We find that E i = E0 , so E = E0 . The equivalence classes of 
E are therefore { 1 , 3 }  and {2 , 4} .  The instruction ( 1 -----+ 2 , SCANa) be
comes ( { 1 ,  3 }  -----+ { 2, 4 } ,  SCAN a) in the minimal program, the instruction 
(2 -----+ 4, SCANb) becomes ( {2 , 4} -----+ {2 , 4} , SCANb) , and so forth. The 
minimal DFR is shown in Figure 4 . 3 1 .  ■ ■ ■  

The minimization algorithm is very handy. For example, we can use 
it in order to determine whether two DFRs P 1 and P2 recognize the same 
language. Rename the control states of P2 if necessary so that P i and P2 

have no control states in common. Eliminate null instructions and EOF 
tests from both programs.  Combine P i and P2 into a single progrnm P with 
control states being all the control states of P 1 and P2 ; the instructions are 
all the instructions of P i and P 2 ; the final states are all the final states of 
P i and P2 • Do not identify initial states or eliminate unreachable states. 
P is deterministic because P i and P2 are deterministic and have no control 
states in common. Construct E for the combined program. P i and P2 are 



4. 7 Minimizing DFRs 2 75 

FIGURE 4.30: A DFR. 

FIGURE 4.3 1 :  The minimal equivalent DFR. 



2 76 Finite Machines and Regu lar Lang uages 

equivalent if and only if their start states are equivalent under E. Thus we 
have the following corollary. 

COROLLARY 4.32. There is an algorithm to determine whether two DFRs are equivalent. ■ 

For each DFR P, the minimal equivalent DFR is essentially unique 
(Exercise 4.7 -24). 

Exerc i ses 

4.7- 1 8  Construct a minimal DFR equivalent to  the following: 
(a) the DFR in Figure 4 .32 
(b) the DFR in Figure 4 .33 
(c) the DFR in Figure 4.7- 1 8  

4.7- 1 9  Using this section's algorithm, minimize the DFR i n  Figure 3 .4 5 .  

4 .7-20 Minimize the DFRs that you produced i n  Exercise 4 .6- 5 .  

4.7-2 1 (a) Let n be a natural number, and let / be any function. Let g be a strictly decreasing function from sets to natural numbers, 
i .e . ,  

X C Y =;, g(X) > g(Y) . 
Let S0 , S 1 , . . .  be sets satisfying Si+I = /(Si) � Si and 
1 :s; g(Si) :s; n for all i � 0. Prove that Si = Sn� \  for all i � n - 1 . 

(b) Prove that Ee = Ek for every /i, � k (see the algorithm for 
computing E). 

4.7-22 Give an algorithm that determines whether two NFAs accept the 
same language. Your algorithm need not be efficient. 

4. 7-23 A classifier is like a recognizer except that there are more than two 
possible results. More precisely, each device starts in its usual initial 
state, the program is deterministic and gives a result for all inputs, 
and the result depends only on the final control state. 



4 . 7  M in imizing DFRs 2 7 7  

FIGURE 4.32:  A DFR that recognizes the set of all strings over {a} whose 
length is 1 or 4 modulo 6. The control state records the length of the input 
modulo 6. 

FIGURE 4.33 :  A DFR that recognizes the language { x E { a, b} * : 
#a (x) = #b (x) (mod 4) } .  The control stores the number of a's and b 's mod
ulo 4 seen so far. The initial control state is (0, 0) .  The accepting control states 
are (0, 0) ,  ( 1 ,  1 ) ,  (2 ,  2 ) ,  and ( 3 ,  3 ) ;  the other 1 2  control states are rejecting. 



2 78 Finite Mach ines and Regu lar Languages 

8 



4.8 Closure Properties 2 79 

FIGURE 4.35:  A program that computes x mod 3 ,  where x is a binary numeral . 

(a) Construct a classifier that determines the remainder modulo 3 of a nonnegative number written in binary. 
Solution : The program is shown in Figure 4 . 3 5 .  

(b) Prove an analogue of the Myhill-Nerode theorem for classifiers. (c) Show how ro minimize a classifier. 
4 .7-24 (a) Let P 1 and P2 be two minimal DFRs that do not use the EOF test and recognize the same language. Prove that P 1 and P2 are identical except for the renaming of control states. (b) Using part (a), present another algorithm that determines whether two DFRs recognize the same language . 
4 .8  CLOSURE PROPERTIES 

In this section we prove that the class of regular languages is closed under several important operations: union, intersection, complementation, Kleene-closure, reversal, and quotient by arbitrary languages. Another very important property of regular languages is closure under finite transductions. Furthermore, the class of languages accepted by programs for machines with any fixed set of devices is closed under finite transductions; 



280 F in ite Mach i nes and Regu lar Languages 
this general property of machines will be useful when we study NSA languages in Section 6. 1 .  
THEOREM 4.33. The class of regular languages is closed under the following operations: 

• Boolean operations (e.g. , union, intersection, and complementation) 
• concatenation 
• Kleene-closure ( *) 
• reversal 

Proof: Closure under union, concatenation, and Kleene-closure follows directly from the definition of regular languages. Closure under complementation is implied because the regular languages are the DFR languages. Closure under the remaining Boolean operations follows from closure under union and complementation. Closure under reversal is obtained by reversing the edges in an NFA. ■ 
We can use these closure properties to prove that certain languages are not regular. 

EXAMPLE 4.34. Let L be the set of all strings over { a, b} that have different numbers of a's and b's. Suppose that L is regular. Then I is regular. Now, L is the set of all strings with the same number of a's and b's. Then L' = I n a*b* is regular. But L' = {anbn : n � o} ,  which was proved not regular in Example 4 .26. This contradiction implies that L is not regular. ■ ■ ■ 
DEFINITION 4.35 (Quotient). If R and S are languages, the quotient of R by S (denoted R/S) is {x : (::ly E S) [xy E R] }. 

Intuitively, we have x E R/S if it is possible to extend x by a string in S to obtain a string in R or, equivalently, if x can be obtained by deleting a string in S from the end of a string in R .  We prove that if R is regular and S is any language whatsoever, then R / S is regular. 
THEOREM 4.36. The class of regular languages is closed under quotient by arbitrary languages. 



4 .8  Closure Propert ies 2 8 1  
Proof: Let R be a regular language, and let S be any language. Then there is a DFR P that recognizes R .  The language R/S will be recognized by a DFR P' with the same initial control state and the same instruction set as P. Only the accepting states of P' will be different. We let q be an accepting control state in P' if and only if there exists y E S such that qty is an accepting control state of P .  ■ 

Unlike the earlier proofs of closure properties, this proof is nonconstructive because we did not give an algorithm to determine whether there exists y E S such that qty is an accepting control state of P. In fact, no such algorithm is possible (there may not even be an algorithm to determine which strings belong to S). However, the proof can be made constructive if S is regular. See Corollary 4 .4 1 .  
Exerc i ses  

4.8-1  Let R be a regular language over an alphabet � - Let 
C = {R/L : L <:::; �* } .  

Prove that C i s  a finite set of languages. 
4.8 . 1 C losure under  F i n ite Transd uctions  Recall that transducers running on finite machines are called.finite transducers and their transfer relations are called finite transductions. 2 Finite transductions are very important in obtaining closure properties for general classes of languages. We will use them in this section to obtain closure properties for regular languages. We will also use them in Section 6 . 1  to obtain closure properties for NSA languages. By interchanging SCAN and WRITE, we can convert a program that computes T into a program that computes T- 1 . 

2 Historically finite transducers have been called "generalized sequential machines" 
(gsm's) and finite transductions have been called "gsm maps. "  



282 F in ite Machi nes and Regu lar Languages 

LEMMA 4.3 7. If T is a finite transduction, then T- 1 is a finite transduction; i. e. , the class of finite transductions is closed under converse. 
Proof: Let P be a finite transducer with transfer relation T. Eliminate the 
EOF instruction, as in Section 3 .4 .2 .  Replace each SCAN c by a WRITEc and each WRITEc by a SCANc to obtain a finite transducer P' with transfer relation T1

. If P scans a string x and writes y ,  then P' writes x and scans y; thus x T y  if and only if y T1 x. Therefore T1 = T- 1 , so T- 1 is a finite transduction. ■ 

The following theorem says that very general classes oflanguages defined in terms of machines are closed under finite transductions. 
THEOREM 4.38 

( i) Let C be the class of languages accepted by nondeterministic programs for a machine [control , input, d1 , . . .  , dk] ,  C is closed under finite transductions. 
(ii) Let D be the class of languages accepted by deterministic programs for a machine [control, input, d1 , . . .  , dk ] - D is closed under the converses of deterministic finite transductions; i. e., if L E D and T is a deterministic finite transduction, then LT- 1 E D. 

(iii) Let D be the class of langttages recognized by deterministic programs for a machine [control, input, d1 , . . .  , dk ]. D is closed under the converses of deterministic finite transductions; i. e. , if L E D and T is a deterministic finite transduction, then LT- 1 E D. 
The proof of Theorem 4 .38  will be given in Section 4 .8 .2 .  For now, let us explore some interesting corollaries. 

COROLLARY 4. 39. The class of regular languages is closed under finite transductions. 
Proof: The class of regular languages is equal to the class of languages accepted by nondeterministic programs for a machine [control, input] . Apply Theorem 4 . 38(i). • 



4 .8  Closure Properties 2 8 3  
Suppose that R i s  a regular language. Then there i s  a DFA that accepts 

R. By replacing each S CANc operation in that DFA by SCANc/WRITEc, we construct a deterministic finite transducer whose transfer relation T is given by 
xT � { :ndefined 

if X E  R ,  

otherwise. 
(Such a program is called a .filter for R (cf. Exercise 2 .9-6), and we say that the program filters R . )  For every language L, L n R = LT. If L is regular, this result must be regular by the preceding corollary. This yields another proof that the class of regular languages is closed under intersection. For yet a third proof, see Exercise 4.8-2.  
COROLLARY 4.40 (i) Let C be the class of languages accepted by nondeterministic programs for a machine [control, input, d1 , . . .  , dk] - C is closed under intersection with regular languages. 

(ii) Let D be the class of languages accepted by deterministic programs for a machine [control, input, d1 , • • •  , dk] - D is closed under intersection with regular languages. 
(iii) Let D be the class of languages recognized by deterministic programs for a machine [control, input, d1 , . . .  , dk]- D is closed under intersection with regular languages. 

Proof: If R is a regular language, then R is filtered by a deterministic FM program, as described above. Let T be that program's transfer relation. Apply Theorem 4.38. In parts (ii )  and (iii), note that T = T-1 . ■ 
Similarly, if R is a regular language, then there is a finite transduction T satisfying LT = L/R for every L (Figure 4.36). This yields a constructive proof that the class of regular languages is closed under quotient by regular languages. 

COROLLARY 4.4 1 .  Let C be the class of languages accepted by programs for a machine [control, input, d1 , . • .  , dk] - C is closed under quotient with regular languages. Furthermore, the proof is constructive. 



284 Finite Mach ines and Regular Languages 

FIGU RE 4.36: A finite transducer such that LT = L/ R for all L. This program 
copies a prefix of the input and then checks that the remainder is a string in R. 
q_ denotes the initial state of R's acceptor, and q+ denotes its final state, which 
is assumed to be unique. 

Proof: Let T be the transfer relation of the program constructed as m 
Figure 4.36. Apply Theorem 4.38(i) to T . ■ 

Corollary 4. 39 also allows us to prove that certain languages are not 
regular. 

EXAMPLE 4.42. Let L = { ( ab ) n en : n 2'. 0}. Assume that L is regular. 
It is easy to construct a finite transduction T that maps (ab) i cJ to a1b1 
(Figure 4. 3 7) . Then LT = { anbn : n 2'. 0},  which must be regular. But by 
Example 4.26 that language is not regular. This contradiction implies that 
L must not be regular. ■ ■ ■ 

EXAMPLE 4.43. Let L be the set of all strings over { a, b} that contain 
more a's than b's .  Assume that L is regular. Let L' be the set of all strings 
over { a, b} that contain more b's than a's. It is easy to construct a finite 
transduction that replaces a with b and vice versa, so L' must be regular. 
Therefore L U L' must be regular. But L U L' is the set of all strings with 
unequal numbers of a's and b's, which is not regular by Example 4.34. This 
contradiction implies that L is not regular. ■ ■ ■  

4 .8 . 2  Com pos it ion Theorem 
In  this section, we prove an important theorem about machines in general. 
Recall that the composition of two relations T1 and T2 (denoted T1 o T2) is 



4.8 Closure Properties 2 8 5  

FIGURE 4.3 7 :  A finite transducer that takes strings of the form ( ab U c ) * and 
replaces all occurrences of ab by a and all occurrences of c by b. In particular, it 
maps ( ab ) i c1 to aib-1 . 

{ (x, z) : (:::ly) [x Ti y and y T2 zl } .  It is often convenient to define relations as 
the composition of simpler relations. Therefore we investigate the difficulty 
of computing the composition of two relations compared to computing the 
individual relations. 

Suppose that Ti is computed by a program P 1 for a machine M i and 
T2 is computed by a program P2 for a machine M2 . By combining these 
programs and machines we create a program P that uses the devices of M 1 
and M2 and computes T1 o T2 . This is especially useful when M 1 (or M2 ) is 
a finite machine and M2 (or M 1 ) contains a control, because the controls can 
be merged; then the program P can be run on a machine of the same type 
as M2 (or M i ); no additional computing power is required. 

In order to preserve determinism when composing programs, we will 
need to assume that their terminators are well-behaved. A terminator for 
a program is called well-behaved if it  is possible, using operations for each 
device, to test whether that device is in an accepting, rejecting, or nonfinal 
state. This is possible for the usual devices, because we can test whether a 
stack or input device is empty, whether a counter holds 0, and whether a 
control holds a specific state; furthermore, all states of tapes and RAMs are 
accepting . 
LEMMA 4.44. Let T1 be the transfer relation of a program P i for a 
machine [output, di ] and T2 be the transfer relation of a program P2 for a 



286 Fi n ite Mach i nes and Regu lar Languages 

machine [input, d2] .  Then T1 o T2 is the transfer relation of a program P for a machine [control, d1 , d2]. Furthermore, if P 1 and P2 are deterministic and the terminator of P 1 is well-behaved, then P is deterministic. 
Proof: We will use an extra control called the buffer to support communication between P 1 and P2 . When an instruction of P 1 would write a character on its output device, the corresponding instruction of P stores the character in the buffer. When an instruction of P2 would scan a character from its input device, the corresponding instruction of P removes the character from the buffer. In order to handle an EOF test of P2 deterministically, we use the hypothesis that we can test whether d1 is in a final state. Thus when P 1 would be in a final configuration, a corresponding instruction of P stores a z in the buffer, where z is a new character that does not belong to the output alphabet of P1 or the input alphabet of P2 . Let accept 1 denote an operation that tests whether d1 is in an accepting state. (For example, accept 1 is EMPTY if d1 is a stack, EOF if d1 is an input device, ZERO if d1 is a counter, and NOOP if d1 is a tape or a RAM. If d1 is a control, accept 1 is shorthand for the collection of operations { (q, q) : q is a final control state} . ) We let 
P contain the instruction 

(A --+ z, acceptp NOOP) . 
If we allow P to be nondeterministic, then we need make no assumption about the final states of d1 . Instead, we let P contain the instruction (A --+ z, NOOP,  NOOP ) .  In this case P guesses that P 1 has finished writing. If P guesses wrong, then P will block. Table 4 .2  shows generic instructions of P 1 or P2 and the corresponding instruction of P. The initial and final states of P's buffer are A. The initial and final states of d1 are the same as in P 1 ; the initial and final states of d2 are the same as in P 2 . ■ 

The devices d1 and d2 in the preceding lemma can be replaced by collections of devices. 
THEOREM 4.45 (Composition Theorem). Let T1 be the transfer relation of a program P 1 for a machine [output, d1 1 , . . .  , d11] and T2 be the transfer relation of a 



Instruction of P 1 

(NOOP , fr ) (WRITEc , ft ) 

Instruction of P2 

(NOOP l h 
(SCANc , [2 

(EOF ' f2 

) 

) 

) 

4.8 Closure Properties 2 8 7  

Instruction of P 

(A ---+ A 1 f1 , NOOP) (A ---+ C 

(c ---+ C 

(c ---+ A 
(z ---+ z 

' f1 , NOOP) 
, NOOP , f2 , NOOP , f2 ' NOOP l h 

) 

) 

) 

TABLE 4.2 :  Composing two transductions. P's transfer relation T is equal to 
Ti o T2 . f1 denotes an operation on d1 and [2 denotes an operation on d2 . c denotes 
any character in P i 's output alphabet (P/s input alphabet). z is a special character 
placed in the buffer to indicate that P 1 's computation is complete. 

program P2 for a  machine [input, d2 1 , . . . , d2k ] - Then T1 O T2 is the transfer relation of a program P for a machine [control , d1 1 , . . .  , d11 , d2 1 , . . .  , d2k] - Furthermore, if P 1 and P2 are deterministic and P 1 's terminator is well-behaved, then P is deterministic. 
Proof: We combine the devices d1 1 , . . .  , d11 into a new device d1 . The realm of d1 is the Cartesian product of the realms of dl l , . . .  , d11 . The repertory of d1 is formed by combining the operations of d1 1 , . . .  , d11 in the natural way. Define 

Then the repertory of d1 is the Cartesian product of the repertories of d1 1 , . . .  , d11 . The terminators can be combined analogously and will remain well-behaved. We combine the devices d2 1 , . . .  , d2k into a new device d2 similarly. Clearly a machine [output, d1 1 , . . .  , d11] is equivalent to a machine [output, d1 ] ,  and a machine [input, d2 1 , . . .  , d2k] is equivalent to a machine [input, d2] .  



288 F in ite Mach ines and  Regu lar Languages 
Therefore T1 is computed by a program for a machine [output, di ] and T2 is computed by a program for a machine [input, d2 ] . By Lemma 4 .44, T1 o T2 is computed by a program for a machine [control, di , d2 ] , which is equivalent to a machine [control, d1 1 , . . .  , d11 , d2 1 , . . .  , d2k ] - ■ 

When P 1 and P2 are finite transducers we obtain a nice consequence. 
COROLLARY 4.46. The class of finite transductions is closed under composition, 
i. e. , if T1 and T2 are finite transductions, then T1 o T2 is a finite transduction. 

Proof: Let T1 and T2 be programs for a machine [input, output, control] . Applying the composition theorem ( 4.45 ), we find that T1 o T2 is the transfer relation of a program for a machine [control , input, control, output, control] . The three controls can be merged into a single control, so T1 OT2 is the transfer relation of a program for a finite machine. ■ 
When only T2 is a finite transduction, we obtain a very important consequence, namely the proof of Theorem 4.38. 
Proof of Theorem 4 . 38 :  First we prove that C is closed under the converses of finite transductions and that D is closed under the converses of deterministic finite transductions. Let T be computed by a finite transducer 

T, which runs on a machine [control, input, output] ; let L be accepted by program P for a machine [control , input, d1 , . . .  , dk] .  Let TL be the transfer relation of the program that accepts L .  By the composition theorem, T o TL is the transfer relation of a program for a machine [control , control, input, d1 , . . .  , dk] .  Now merge controls, so T o  TL is the transfer relation of a program for a machine [control, input, d1 , . . .  , 

dk] .  Call that program P'. We assert that P' accepts LT- 1 . Why? It suffices to show that the transfer relation of P' is { (x, ACCEPT) : x E LT- 1 } .  The transfer relation of P' is 
T O TL  { (x, y ) : x T y} o { (y , ACCEPT) : y E L} { (x, ACCEPT) : (:3y) [x T y and y E L] }  { (x, ACCEPT) : x E LT-l } .  

I f  T and P are deterministic, then P'  is deterministic as well. This proves part (ii). 



4.8 Closu re Properties 289  

To prove part (i), observe that i f  T is a finite transduction, then T- 1 is a finite transduction as well; LT = L (  T- 1 ) - 1 , which we showed is accepted by a program for a machine [control , input, d1 , . . .  , dk] .  To prove part (iii), eliminate EOF and dead states from T so that it has no infinite computations (every state in an infinite loop must be dead because T is deterministic). Construct the deterministic program P' that accepts LT- 1 as above; it has no infinite computations because T and P have none; by eliminating blocking, we convert P' to a recognizer for LT- 1
. ■ 

An alternative proof of part (i) may be more intuitive: Let L be a language accepted by a program for a machine [control , input, d1 , . . .  , dk] .  By replacing each SCANc in that program by a WRITEc, we construct a nondeterministic program without input that writes all the strings belonging to L (one per computation). (We call such a program a generator for L, and we say that the program generates L. ) Thus L is generated by a program for a machine [control , output, d1 , . . .  , dk] ;  call that program's transfer relation TL - Let T be a finite transduction.  Then T is the transfer relation for a machine [control , input, output]. By the composition theorem, there is a program for a machine [control, control, d1 , . . .  , dk , control, output] whose transfer relation is TL o T.  That program generates LT. By merging controls, we obtain a program for a machine [control, output, d1 , . . .  , dk ] that generates LT . By replacing WRITEc operations with SCANc operations, we construct a program for a machine [control , input, d1 , . . .  , dk] that accepts LT. 

Exerc i ses  

4.8-2 One can emulate the behavior of two FM programs by using two controls. These controls can be merged into one using the pairing construction described in Section 3 .2 . 1 . Use pairing constructions to prove the following theorems directly: (a) The intersection of two DFR languages is a DFR language. (b) The union of two DFR languages is a DFR language. (c) The difference of two DFR languages is a DFR language. (d) The symmetric difference of two DFR languages is a DFR language. 



290 F in ite Mach i nes and Regu lar Languages 

(e) The intersection of two NFA languages is an NFA language. (f ) The union of two NFA languages is an NFA language. 
4.8-3 Let L 1 and L2 be accepted by NFAs having k1 and k2 control states, respectively. How many control states might be required if we constructed an NFA for L 1 n L2 as in the proof of Theorem 4 .33?  If  we constructed it  by composing a filter for L 1 with an acceptor for L2 ? If we constructed it by composing a generator for L1 with a filter for L2 ? If we constructed it via the pairing construction of Section 3 . 2 . 1 ?  
4.8-4 Prove directly from the definition that the class of regular languages is closed under reversal. 
4 .8-5 A derivative is  like a quotient on the left. More precisely, if R and S are languages, the derivative of R by S is { x : ( :ly E S) [yx E R] } .  We write Ds (R) to denote the derivative of R by S. (a) Prove that the class of regular languages is closed under derivative by arbitrary languages. (b) Give a constructive proof that the class of regular languages is closed under derivative by regular languages. (c) Let R be a regular language over an alphabet � - Let 

C = {DL (R) : L c;:;; �* } .  

Prove that C is a finite set of languages. 
4.8-6 Use the Myhill-Nerode theorem to prove that the class of regular languages is closed under quotient by any language S. 
4 .8-7 Is the class of deterministic finite transductions closed under composition? 
4 .8-8 (a) Let R be a regular language. Construct a finite transduction T such that LT = LR for every language L. (b) What is LT- 1 ? Give an alternative constructive proof that the class of regular languages is closed under quotient. 
4.8-9 For strings x and y,  define the shuffle of x and y (denoted x -" y) to 



4 .8  Closu re Properties 2 9 1  

be the set of all strings formed by interleaving the characters of x 
and y any number at a time. Formally, 

X ... y = { X1Y i · · · XmYm : Xi · · · Xm = X and Y1 · · · Ym = y} ,  

where Xi , . . .  , Xm , Y i , . . .  , Ym denote strings of  any length, including 
0. We extend the shuffle operation to languages as follows: 

L ... R = u X ... y. 
xEL, yER If R is a regular language, construct a finite transduction T such 

that LT = L -" R for all languages L. Prove that the set of regular 
languages is closed under shuffle. 

Solution: We construct a transducer that copies the input string to 
the output while nondeterministically shuffling it with a string in R .  
Let P be an NFA that accepts the regular language R .  Standardize P 
so that it does not use the EOF test. At each step the transducer either 
(a) copies a character from its input to its output or else (b) simulates 
P for one step without scanning anything, writing a character that 
P might scan. To make the construction precise, replace each SCAN 
in P by WRITE (this takes care of (b)). For each control state q and 
each character c include the instruction ( q -----+ q, SCAN c, WRITEc) 
as well (this takes care of (a)). 

4.8- 10  For strings x and y of equal length, define the perfect shuffle of x 
and y (denoted x • y) to be the string formed by interleaving the 
characters of x and y one at a time. Formally, 

X • Y = X1Y i · · · XmYm 

where Xi · · · Xm = x, Y i · · · Ym = y, and Xi , . . .  , Xm , Y i , • . • , Ym de
note single characters. We extend the perfect shuffle operation to 
languages in the standard way: 

L . R = {x . y :  x E L , y  E R, and !xi = IY I } .  

If R is a regular language, construct a finite transduction T such 
that LT = L • R for all languages L. Prove that the set of regular 
languages is closed under perfect shuffle. 



292 F ini te Mach i nes and Regu lar Languages 

4.8-11 Let PREFIX(L) be the set of all prefixes of strings belonging to L. 
Prove that if L is regular then PREFIX(L) is regular. Your proof 
should be constructive. 

4.8-12 Prove that the set of all strings over { a, b, c} with equal numbers 
of b's and e 's is not regular. 

4 .8-13 A permutation of a set S is a one-one function from S to S. We define 
the PERM operation on strings and languages . If x = x 1 · · · Xn 

is a string of n characters, then PERM (x) = {xa( l ) · · · Xa(n) : 
O' is a permutation of { 1, . . .  , n }} .  That is, PERM ( x) is the set of 
all anagrams of the string x. If L is a language, then PERM(L) 
UxEL PERM(x) . For example, 

PERM( { aba, aa}) = { aab, aba, baa, aa} .  

Is the class of regular languages closed under PERM ? 

4.8-14 Recall from Exercise 4 .8-11 that if L is regular then PREFIX(L) is 
regular. Prove that if PREFIX (L) is regular then L is not necessarily 
regular. 

4.8-15 Recall that when a transducer blocks or runs forever, the compu
tation produces no result, although it may have performed some 
WRITE operations during its partial or infinite computation. This 
has been described quaintly as "reneging" on the characters already 
written . Let us define a reneging output device that has the ability 
to erase the entire string written so far and start writing again from 
scratch . Its operations are WRITEc for each c E � and ERASE. The 
ERASE operation is defined for all strings y by 

yERASE = A .  

(a) Prove that the reneging output device does not add any com
putational power to nondeterministic finite transducers. That 
is, prove that if T is any transduction computed by a nonde
terministic program for a machine [control, input, reneging 
output] , then T is computed by a nondeterministic program 
for a machine [control, input, output] . 



4.9 Pumping Theorems for Regu lar Languages 2 9 3  

(b) Prove that the reneging output device does add computational 
power to deterministic finite transducers . That is, construct a 
transduction that can be computed by a deterministic program 
for a machine [control, input, reneging output] but not by any 
deterministic program for a machine [control, input, output] . 

(c) A transduction computed by a deterministic program for a 
machine [control, input, reneging output] is called a Pratt transduction .  Let D be the class of languages accepted by de
terministic programs for a machine [control, input, d1 , • . .  , dk] .  
Prove that D is closed under the converses of Pratt transduc
tions . 

(d) Let D be the class of languages recognized by deterministic 
programs for a machine [control, input, d1 , • • •  , dk ] - Prove 
that D is closed under the converses of Pratt transductions. 

t (e) Prove a new closure property using Pratt transductions . 

4 . 9  PU MP ING  TH EOREMS FOR REG U LAR 
LANG UAG ES 

In Section 4.7, we showed how to use the Myhill-Nerode theorem in order 
to prove that certain languages are not regular. In this section we will 
develop handier tools for proving that certain languages are not regular. 

THEOREM 4.4 7 (Fi rst Pumping Theorem for Regular Languages). Let L be a regular language. There exists a natural number N (depending on L) such that if z E L and l z l  ;::: N, then there exist strings u, v, w satisfying the following conditions: 
• z = uvw 
• V i=  A 

• luvl S: N 
• /or al! i ;:::  0, uv;w E L 

N is informally called a pumping number for L.  



294 F in ite Mach i nes and Regu lar Languages 

FIGU RE 4.38: The control state q is repeated during the computation. u is 
the string scanned on the way from the initial control state to q. v is the string 
scanned on the way from q back to itself. w is the string scanned on the way from 
q to an accepting state. 

Proof: Since L is regular, there is a DFA P that accepts L. Let N be the 
number of control states of P. Let the input string z = z 1 • • • Zf! ,  where each 
Znz is a character and £ � N. Let (q,,z , Znz+ I · • • ze) be the configuration of P 
immediately after z 1 • • • z,,, has been scanned. By the pigeonhole principle 
two of the N+ 1 control statesq0 , • • •  , qN must be equal. That is, q1 = qk = q 
for some j and k with O � j < k � N. Let 

U Z1 • • · Zj , 

V Zj+ l · · • Zk , 

w Zk+ I • • •  ze . 

(This situation is depicted in Figure 4.38.) We assert that P accepts uv;w 
for all i � 0. After scanning u, P is in control state q. Each time it scans 
a copy of v, it proceeds from control state q back to q. When it scans w, it 
proceeds from q to an accepting state. Thus uv;w E L. ■ 

The proof of the first pumping theorem is illustrated with a concrete 
example in Figure 4.39.  

A language is informally called pumpable if it satisfies the conclusions of 
the first pumping theorem, i.e. ,  if it has a pumping number as defined in 
that theorem. The first pumping theorem says that every regular language 
is pumpable. Therefore, if we prove that a language is not pumpable, then 
we have a proof by contradiction that the language must not be regular. 



4 .9  Pumping Theorems for Regu lar Languages 295  

FIGURE 4.39: A concrete example o f  the loop guaranteed by the proof of the 
first pumping theorem. The DFA program accepts che language L consisting of 
all dyadic numerals whose value is congruent co 4 modulo 5. The number of 
control states, N, is 5 .  Consider the input sering 1 1 122 ,  whose length is exactly 
N. The edges followed when chat input sering is scanned have been drawn thicker. 
Observe the loop going from scare 1 to state 3 to scare 2 and back ro state 1 .  This 
loop can be repeated any nonnegative number of rimes ro obtain an accepting 
trace on any input of che form 1 (  1 12/2. 

EXAMPLE 4.48. Suppose, for the sake of contradiction, that the following language is regular: 

Then L has a pumping number N as in the first pumping theorem. Let z = aNbN _ Since z E L and lz l  2:: N, we can obtain u, v1 w satisfying the conclusions of Theorem 4.47 : z = uvw, v =/- A, luv l  :S N, and uJw E L  for all i 2:: 0. We do not gee co pick u and v, but however they are picked, both u and v must be substrings of aN because luv l  :S N. That is, u = a1 for some j 2:: 0 and v = ak for some k 2:: 1 (because v =f. A). Now uv0w = aN -kbN , which has fewer a's than b's, so uv0w � L. Taking i = 0, this contradicts the statement that uv'w E L for all i 2:: 0.  Therefore L must not be a regular language. (When we cake i = 0 in the pumping theorem, we say chat we are "pumping (the sering) down . "  We could also reach a contradiction by considering uv2w, which has more a's than b's. When we take some i > 1 ,  we say that we are "pumping up" i - 1 times. When we take i = 1 ,  we are just being silly.) ■ ■ ■ 



296 Fin ite Mach ines  and Regu lar Languages 
Caveat: When using the first pumping theorem, we choose z and i. We do not 

choose u, v, w, or N. 
EXAMPLE 4.49. Let L be the set of palindromes over { a, b } .  Suppose, for the sake of contradiction, that L is a regular language. Then L has a pumping number N as in the first pumping theorem. Let z = aNbaN and apply Theorem 4.47 . However u and v are picked, we have u = a1 for some 
j 2". 0 and v = ak for some k 2". 1 .  Pumping down, uv0w = aN-kbaN , which is not a palindrome. This contradicts Theorem 4.47 , so L must not be a regular language. ■ ■ ■ 
EXAMPLE 4. 50. Let L be the set {ww : w E {a, b } * } .  If L were regular, it would have a pumping number N as in the first pumping theorem. Let z = aNbaNb and apply Theorem 4.47 . However u and v are picked, we have 
u = a! and v = ak for some k 2". 1 .  Pumping down, uv0w = aN-kbaNb, which is not in L.  This contradicts Theorem 4.47 , so L must not be a regular language. ■ ■ ■  

Note that in applying Theorem 4.47 we pick the string z from L however we like, provided that l z l  2". N. If we chose z = a2N in the preceding example, we would not obtain a contradiction because v could be aa. Alternatively, if we chose z = abab, we would not obtain a contradiction because l z l  could be less than N. We must choose z so that z E L and l z l  2". N, and then we must obtain a contradiction for all possible choices of u, v, and w satisfying z = uvw, v -/- A, and luv l  � N. Note that we do not choose v; rather 
we must derive a contradiction for all legal choices of v. 

EXAMPLE 4.5 1 .  Let L be the set { a" : n is prime} . If L were regular, it would have a pumping number N as in the first pumping theorem. Let z = a!' where p is any prime greater than or equal to N, and apply Theorem 4.47 . However u, v, and w are picked, we have v = ai where i 2". 1 .  Pumping up p times, uvp+ 1 w = uvvP w = uvwvP = a!' aiP = aPCi+ 1 ) , which does not belong to L because p(i + 1 )  is not prime. This contradicts Theorem 4.47 , so L must not be a regular language. ■ ■ ■ 



4.9 Pumping Theorems for Regu lar Languages 2 9 7  

The reader may use the first pumping theorem to prove that the following languages are not regular (see Exercises 4 .9-5 and 4 .9-6): 
• { an : n is composite} 
• {w : w is the decimal representation of an integer squared} 
• { w : w is the decimal representation of a prime number} 
• { w : w contains more a's than b's} 

Closure properties can also be used in combination with pumping to prove nonregularity. 
EXAMPLE 4.52. Let L consist of all strings of the form a*bn cn U b*c*  where n :2". 0 ,  i .e . , 

Although we will show that L is not regular, the first pumping theorem will not prove it directly, because every nonempty string in L is pumpable, as we now show. If z is a nonempty string in L, we can let u = A, v = the first character of z, and w = the rest of z. Then utlw E L for all i :2". 0. For example, if z = ab 1 0c 10 , we take u = A, v = a, and w = b 10c 1 0 . Then utlw = aib 10c 10 E L for all i :2". 0.  We will prove a better pumping theorem later in this section, which will suffice to prove that L is not regular. But first let us use another technique, based on closure properties, which has widespread importance. We construct a finite transducer that accepts only strings of the form aw, where w E {b, c }  * ,  and maps them to w (Figure 4 .40). Let T be the transfer relation of that finite transducer. Then 

A second finite transduction (Figure 4.4 1 )  maps LT to { anbn : n :2". 0} ,  which we  proved nonregular earlier in  this section. Recall that the class of regular languages is closed under finite transductions. If L were regular, then { anbn : n :2". 0} would be regular, contradicting Example 4.48. Therefore L is not regular. • • •  



298  F in ite Machi nes and  Regu lar Languages 

FIGURE 4.40: A finite transducer that maps aw to w if w E {b,c}  * .  

FIGURE 4.4 1 : A finite transducer that replaces b's with a's and replaces e 's 
with b's. 

The first pumping theorem says that we can pump near the beginning 
of a string belonging to a regular language. The second pumping theorem 
gives us more control over which part of the string gets pumped. 

THEOREM 4.53 (Second Pumping Theorem for Regular Languages) Let L be a regular language. There exists a natural number N (depending on L) such that if x1 , x2 , and x3 are strings with X1 X2X3 E L and lx2 I 2". N, then there exist strings u, v, w satisfying the following conditions: 
■ X2 = UVW 

• V -1- A 

• luvl � N 
• for all i 2". 0, x1 utlwx3 E L 

N is informally called a pumping number for L. 



4 .9  Pumping Theorems for Regular Languages 299  

Proof: Since L is regular, there is  a DFA P that accepts L. Let N be 
the number of control states of P. Let the input string be x1 x2x3 , and let 
x2 = z 1 · · · zg , where each zm is a character and £ 2". N. Let (qm , Zm+l · · · zcxJ 
be the configuration of P immediately after x1 z 1 • • • Zm has been scanned. 
By the pigeonhole principle two of the N + 1 control states q0 , . . .  , qN must 
be equal. That is, q1 = qk = q for some j and k with O � j < k � N. Let 

U Z 1 • • • z1 , 
V Zj+ l · · · Zk , 
W Zk+ l · · · Zg. 

We assert that P accepts x1 utlwx3 for all i 2". 0. After scanning x1 u, P is in 
control state q. Each time it scans a copy of v, it proceeds from control state 
q back to q. When it scans wx3 , it proceeds from q to an accepting state. 

■ 

EXAMPLE 4.54. Let us apply this theorem to the language 

L = { aibJ ck : i = 0 or j = k} 

to prove that L is not regular. Let N be a pumping number for L as in 
the second pumping theorem. Let z = abN cN, x1 = a, x2 = bN, and 
x3 = cN. By the second pumping theorem, there exist u, v, w such that 
x2 = uvw, v # A ,  and auviwcN E L for all i 2". 0. Then v = bk for some 
k 2". 1. Pumping up once, auv2wcN = abN+k cN, which is not in L. This 
contradiction proves that L is not regular. ■ ■ ■  

4 .9 .  l Al and I zzy Pu m p  Stri ngs  
Two-player games are very helpful in understanding formulas with a large 
number of quantifiers , like the pumping theorem. (If you have not read 
Section 0.1 on quantifiers and two-player games, now might be a good 



300 Finite Mach ines and Regular Languages 

time.)  The first pumping theorem states that if L is a regular language, 
then 

:lN 
Vz E L such that l z l  2". N 
:lu, v, w such that uvw = z, l uvl :s; N, and l v l  > 0 
Vi 2". o uv'w E L. 

This statement contains four quantifiers. When we consider the equiva
lent two-player game, restrictions on the quantifiers reappear as restrictions 
on the choices made by Izzy and Al. Select a regular language L. The game 
for L is 

(i) Izzy chooses a natural number N. 

(ii) Al chooses z such that z E L and lz l  2". N. 

(ii i )  Izzy chooses u, v, and w such that uvw = z, l uv l  :s; N, and lv l  > 0.  

(iv) Al chooses i 2". 0,  trying to make uviw (/:. L. 

Let us present a strategy3 by which Izzy can win the game. This amounts 
to restating the proof of the first pumping theorem in terms of games, which 
will not be difficult. Let L be accepted by a DFA P. 

(i)  Izzy picks N = I Q I ,  where Q is the set of control states of P. 

(i i)  Al picks a string z such that lz l  2". N and z E L. (If there is no such 
string, then Al loses. In this case, the second quantifier says that all 
elements of the empty set have a certain property, which is clearly 
true no matter what the property is . )  

3 The reader may have observed that in all of our examples the winning player, either 
Izzy or Al, has an algorithm by which to make his choices. We do not require that the 
players' strategies be computable. For example, in a game corresponding to the first 
pumping theorem, one might select a Turing machine program known to recognize 
a regular language L. Not knowing a finite machine program that recognizes L, 
Izzy might have great difficulty computing a pumping number N. However, such a 
number N still exists, and Izzy has a winning strategy available. 



4.9 Pumping Theorems for Regular Languages 3 0 1  

(iii) Izzy finds the computation of P that accepts z. (Such a computation 
exists because z E L.) He notes the control state before and after 
reading each character of z. (Because l z l  2". N, there are at least N + 1 of these control states. But Q contains only N states, so some 
state must be repeated, by the pigeonhole principle.) Let q be the 
first repeated control state. Izzy breaks the computation into three 
pieces determined by the first two configurations with control state 
q. The computation looks like 

°' uvw f-----+ 

rr* 
f-----+ 

rr+ 
f-----+ 

rr* 
f-----+ 

w 
f-----+ 

( qstart '  UVW) 
(q, vw) 
(q, w) 
(qaccept , A) 
ACCEPT 

where u is the string scanned before first reaching the control state 
q, v is the string scanned after that time but before returning to q, 
and w is scanned during the remainder of the computation. uvw is 
equal to the input string z, luvl � N, and l vl > 0. ) Izzy chooses u, 
v, and w as so determined. 

(iv) Al picks any natural number i. The computation 

i °' uv w f-----+ 

rr* 
f-----+ 

(II+ )' 
f-----+ 

rr* 
f-----+ 

w 
f-----+ 

( qsrarr , UVi W) 
(q, viw) 
(q, w) 
( qaccept , A) 
ACCEPT 

is an accepting computation of P on input uviw, so uviw E L. Thus 
Al loses and Izzy wins. 

Ordinarily the pumping theorems are applied to prove by contradiction 
that a language L is not regular. (It is a common mistake to try to prove that 



302 Finite Mach ines and Regular Languages 

a language is regular via a pumping theorem. ) An outside party selects the 
language L,  which may or may not be regular, and play proceeds as above. 
Here again is the game for L: 

(i) Izzy chooses a natural number N. 

(ii) Al chooses z such that z E L and l z l  2': N. 

(iii) Izzy chooses u, v, and w such that uvw = z, luv l  � N, and lv l  > 0. 

(iv) Al chooses i 2': 0, trying to make uv'w (/:. L. 

If L is regular, then Izzy can use his general strategy to win the game. 
Thus Al can win with a particular L only if L is not regular. (Note that 
Al may have to lose anyway, even if L isn't regular. See Exercise 4.9-8(6).) 
Finding a winning strategy for Al in this game constitutes a proof that 
L is not regular. (However, finding a winning strategy for Izzy in this 
game proves nothing.) Now we present a slightly more general version of 
Example 4. 51, this time using the game paradigm. 

EXAMPLE 4.55.  We prove that if the language L consists of an infinite set 
of prime numbers in monadic (base 1) notation, then L is not regular. Let S 
be an infinite set containing only prime numbers, and let L = { 11 : j E S}. 
Here is a winning strategy for Al, no matter how Izzy plays. 

(i) Izzy chooses a natural number N. 

(ii) Al chooses a string z = 1P where p E S and p > N. (This is possible 
because S contains infinitely many primes. Since p E S, z E L. ) 

(iii) Izzy chooses u, v, and w such that uvw = z, l uvl � N, and lv l  > 0. 

(iv) Al chooses i = p + 1. Then 

Since p 2': 2 and 1 + I v ! 2': 2, p( l + I v ! )  is not prime; i.e., l uviwl is 
not prime. Therefore, uviw (/:. L, so Al wins. 

Because Al has a winning strategy no matter how Izzy plays, L must 
not be regular. ■ ■ ■ 



4 .9  Pu mping Theorems  for Regu lar Languages 3 0 3  

EXAMPLE 4. 56. Let L consist of an infinite set of strings whose lengths are 
perfect squares. We prove that L is not regular by presenting a winning 
strategy for Al no matter how Izzy plays. 

(i) Izzy chooses a natural number N. 

(ii) Al chooses a string z E L where lz I > N2
• (This is possible because L is infinite.)  

( i i i)  Izzy chooses u, v, and w such that uvw = z,  l uv l  ::; N, and lv l  > 0. 

(iv) Al chooses i = 2 .  Since z E L,  lz l  = m2 for some m. By Al's choice 
of z, m > N. We have O < I v !  :s; N. Let k denote lv l . Then 

m2 < m2 + k = l uv2wl :s; m2 + N < m2 + m < (m + 1 )2 . 

The length of uv2 w falls between two consecutive squares; therefore uv2w t/:. L,  so Al wins. 

Because Al has a winning strategy no matter how Izzy plays, L must 
not be regular. In particular, { a" : n is the square of an integer} is not 
regular. ■ ■ ■  

A general principle will remind you whether to identify with Al or 
with Izzy when working with theorems involving quantifiers: When using 
a theorem, you may specify values for the universally quantified variables, 
e.g . ,  z for (\lz) and i for (Vi) , but you must not specify values for the 
existentially quantified variables. In contrast, when proving a theorem you 
must specify values for the existentially quantified variables, but you may 
not specify values for the universally quantified variables. When using 
theorems you play Al's role; when proving theorems you play Izzy's role. 

Exerc i ses  

4 .9- 1  Let L be the regular language { ab}. Let z = ab, which belongs to 
L. Note that z cannot be written as uvw where v # A and uv* w � L. 
Why does this not contradict the first pumping theorem? 



304 Finite Machines and Regular Languages 

Solution: The reason is that every DFR that recognizes L has at 
least three states. In the terminology of the first pumping theorem, 
N = 3 .  However l z \  = 2 < N. 

4.9-2 The proof of the first pumping theorem shows that the number of 
control states in a DFA that accepts L can be used as a pumping 
number for L. 

(a) Prove that the number of control states in an NFA that accepts 
L is also a pumping number for L as in the first pumping 
theorem. 

(6) Prove that 1 plus the length of a regular expression that gener
ates L is also a pumping number for L as in the first pumping 
theorem. 

4.9-3 Prove the following variant of the first pumping theorem. If L i s  
regular, then there exists N such that for all strings z of length at 
least N 

4.9-4 

(::lu, v, w) [v # A, luv l  � N, z = uvw, and 

(Vi 2". 0) [ z E L <===;, utl w E L]] .  

(a) Let L be a regular language. Prove that there is a positive inte
ger N (depending on L) such that if z1 , . . .  , ZN are nonempty 
strings with the concatenation z1 · · · ZN E L, then there exist 
i and j with O � i < j � N satisfying 

(6) Use part (a) to prove Theorem 4.47 . 

4 .9-5 Use the first pumping theorem to prove that the following languages 
are not regular: 

(a) { an : n is composite} 
(6) {w E { a, b, c} * : w contains more a's than b's} .  

4 .9-6 Use closure properties and/or the pumping theorems to prove that 
the following languages are not regular: 



4.9 Pumping Theorems for Regular Languages 305  

(a) { w : w is the decimal representation of an integer squared}. 
Hint: Intersect with 1 (00) * 2 (00) * 1. 

*(b) { w : w is the decimal representation of a prime number} 

Solution: We will prove this for primes written in b-ary for 
any b 2". 2. The exercise is the special case b = 10. We will 
treat strings as equal to the b-ary number they represent. Here 
is Al's strategy: 

1. Izzy chooses N. 
1 1 .  Al chooses z to be the b-ary representation, without lead

ing zeroes, of a prime p greater than b such that z has 
at least N digits. (This is possible because there are in
finitely many primes.) 

111. Izzy chooses u, v, and w such that uvw = z and /vi > 0. 
1v. Al chooses i = p! + 1. (The number p! is the product 

p(p - 1) · · · 1.) We will show that uvP '+ 1w is an integer 
multiple of p. Since uvP'+ 1 w > p, uvP'+ 1 w is not prime, 
and Al wins. 

Now we prove that uvP'+ 1 w is a multiple of p. Let J;(z) = 
zy mod p. By b-ary arithmetic, 

zy = z . blYl + l + y, 

where · denotes multiplication and b iY l+ 1 denotes the num
ber b raised to the ( !Y I + 1 )st power. Therefore by modular 
arithmetic, if z 1 = z2 mod p, then z 1 w = z2 w mod p. Fur
thermore, because p is prime, the mapping /2 is one-one on 
{o, . . .  , P - 1 } ,  so it is a permutation of {o, . . .  , P  - l } .  
Hence J)P' ) ,  where j(m) denotes m-fold composition, is equal 
to the identity function. Therefore fv(p!+l ) (uv) = uv mod p, 
i.e., 

uv mod p, 
uvw mod p. 

(Here vP'+ 1 denotes the concatenation of p! + 1 copies of v.) 
Since uvw = z = p, uvP'+ 1 w is divisible by p, as promised. 



306 Finite Machines and Regular Languages 

(c) { w E { a, b, c }  * : w contains more a's than b's after the last c } .  

(d) { w : w i s  the decimal representation of a composite number} .  

4 .9-7 Let L = { aib' ck : j = k or i = 0 } .  Design a single finite transduc
tion T such that LT = { anbn : n 2: 0 } .  

4.9-8 (a) Pumping theorem partial converse. Let L be a subset of 
O * .  Prove that L is regular iff L has a pumping number 
as in the first pumping theorem. Thus the converse of the 
first pumping theorem is true for L a  subset of a 1 -character 
alphabet. 

(6) Let L = {x 1y1 · · · XnYn : n is composite and (Vi � n) 
[(xi E a+ ) and (Yi E b+ ) ] } .  (Less formally, L is the set of all 
strings of the form (a+b+ ) n such that n is composite). Prove 
that L is not regular, but that strings in L can be pumped 
even in the middle. That is, show that L has a pumping num
ber N as in the second pumping theorem. Do not forget the 
case i = 0, which permits pumping down. Conclude that 
the converse of the second pumping theorem is not true for 
general L. 

4.9-9 Call a language an n-state language if it is recognized by an n-state 
DFR. Find functions f and g such that the following are true: 

(a) An n-state language is empty if and only if it contains no 
strings of length � / (n ) .  Make f as small as possible. 

(6) An n-state language is infinite if and only if it contains a string 
of length 2: g(n) . Make g as small as possible. 

4 . 1 0  CHAPTER S U M MARY 

In this chapter we proved the equivalence of regular expressions, NFAs, 
and DFRs; i .e . , the regular languages, the NFA languages, and the DFR 
languages are all the same class; we also gave algorithms for converting from 
one representation of regular languages to another. Then we proved that 



4 . 1  0 Chapter Summary 307  

any DFR that recognizes a language L has at  least as many states as L has 
prefix equivalence classes; this idea is used in proofs of nonregularity and in a 
minimization algorithm for DFRs. The regular languages are closed under 
Boolean operations, regular operations, quotient by any language, and finite 
transductions. Closure properties are useful for direct proofs of regularity 
and for indirect proofs (by contradiction) of nonregularity. Furthermore, 
we proved that many machine-based language classes are closed under finite 
transductions . Finally, we proved pumping theorems, which are very useful 
tools for proving that certain languages are nonregular. 

Exerc ises 

4.10-1 Suppose that you are given a DFR P that you wish to simulate effi
ciently on a real computer in a high-level programming language. 
Each step of P should be simulated by a small fixed number of steps 
in the high-level program. Describe informally how to do this sim
ulation . (To simplify your job, you may assume that the input to 
your program is in fact a string over P's alphabet, rather than hav
ing your high-level program handle input characters that would be 
invalid for P . ) 

Solution: First, eliminate null instructions, EOF, and blocking from P.  Initialize an array NextState in the high-level program so that 
for every control state q and character c, NextState[q, c] is the unique 
control state r such that (q ---+ r, SCAN c) is an instruction in P, i .e., 

NextState[q, c] : = q( . 

Initialize an array Accepting to indicate whether each state is ac
cepting, i .e ., 

Accepting[q] { 
true 

false 

if q is an accepting state, 

otherwise. 



308 Finite Machines and Regular Languages 

The high-level program will do the following: 
state : = qstart ; while not eof do begin read( ch) ;  state :=  NewState [state,- ch] ; end; if Accepting [state] then write ( 'accept') else write( 'reject'). 

4. 1 0-2 Let p be a fixed string of length n. Let P be a minimal DFR that recognizes { x : p is a substring of x}. How many states does P have? 
4. 1 0-3 (a) We define FIRST-HALF (x) as follows: If x is a string of even length, let x = uv where lu l  = l v l ,  and let FIRST-HALF(x) = u; if x has odd length, then FIRST-HALF(x) is undefined. We extend FIRST-HALF ( )  to languages in the ordinary way: 

FIRST-HALF(L) 
= {FIRST-HALF(x) : x E L  and FIRST-HALF(x) is defined} .  
Prove that if R i s  regular then FIRST-HALF(R)  is regular. (6) Define SECOND-HALF( )  by analogy to part (a) and prove that if R is regular then SECOND-HALF(R) is regular. (c) We define MIDDLE-THIRD (x) as follows: If x is a string whose length is a multiple of 3 ,  let x = uvw where lu l  = l v l  = lwl , and let MIDDLE-TII IRD(x) = v; if the length of x is not a multiple of 3 then MIDDLE-THIRD (x) is undefined. Extend MIDDLE-THIRD ( )  to languages in the ordinary way. Prove that if R is regular, then MIDDLE-THIRD (R) is regular. 

4 . 1 0-4 Let x = x 1 • • • Xn - We say that a string y is a subsequence of x if there exist i 1 < h < · · · < ik such that y = xi, xi, · · · xiv Define 
SUBSEQ(x) SUBSEQ(L) {y : y is a subsequence of x} , 

U SUBSEQ(x) , 
xEL 



4. 1 0 Chapter Sum mary 309  

1 .e., SUB SEQ ( L) consists of all subsequences of all strings in 
L. For example, SUBSEQ (bab) = {A, a, b, ba, ab, bb, bab}, 
SUBSEQ(aa) {A, a, aa}, and SUBSEQ({bab, aa} ) 
{ A,  a, b, aa, ba, ab, bb, bab} .  Is the class of the regular languages 
closed under SUBSEQ( ) ?  

Solution: Yes. We define a nondeterministic finite transduction T 
that maps each string x to each subsequence of x by scanning char
acters and nondeterministically deciding whether to write them. 
Its unique control state is 0 (unique starting and accepting state 
as well). Its instructions consist of (0 ---+ 0, SCANc, WRITEc) and 
(0 ---+ 0, SCANc, NOOP) for each c in I:. Then LT = SUBSEQ(L) . 
Since the class of regular languages is closed under finite transduc
tions, it is closed under SUBSEQ ( ) .  

*4.10-5 Let L be any language and let A = SUBSEQ ( L ) .  In this exercise 
you will prove that A is regular. 

(a) Let us write x =:; y if x is a subsequence of y. We say that a 
string x is a minimal element of a set S if ( 1) x E S and (2) for 
all y E S, if y :s; x then y = x. Let M be the set of all minimal 
elements of A. Prove that y E A if and only if there exists x E M such that x is a subsequence of y. 

(b) If x is any string, prove that {y : x :s; y} is regular. 
(c) Call two strings x and y incomparable if x 1:. y and y 1:. x. 

Prove that if x and y are distinct strings in M, then x and y are 
incomparable. 

( d) Let S be a language over { a, b} .  Prove that if all strings in S 
are incomparable, then S is finite. Hint: Let x be any string 
and let £ = lx l - Prove that x :s; (baf Next, prove that if x 
and y are incomparable, then (ba)£ 'i. y. Let L2k = (a*b* )k 

and L2k+I = L2ka * . Prove that if x and y are incomparable, 
then y E Lu . Finally, prove, by induction on k, that if z E Lk, 
S � Lk, and all strings in S are incomparable, then S contains 
only finitely many strings y such that z 1:. y.  

(e) Let S be any language. Prove that if all strings in S are incom
parable, then S is finite. 

(f) Prove that M is finite. 



3 1  0 Finite Mach ines and Regular Languages 

(g) Prove that A is regular. 
(h) Prove that A is regular. 

4 . 1 0-6 Define 

HALF-SUBSEQ (x) = {y : y is a subsequence of x and IY I = ½ lx l } ,  

i .e . ,  y is obtained by deleting exactly half of the characters from x, 
and 

HALF-SUBSEQ (L) = U HALF-SUBSEQ(x) . 
xEL 

Is the class of regular languages closed under HALF-SUBSEQ( ) ?  

4 . 10-7 Prove that the following languages are regular: 
(a) the set of all strings representing decimal numbers that neither 

contain the digit 7 nor are divisible by the number 7 
(6) {xyxR : x, y E I: * }  
(c) {x : lxl = 0 (mod 3 ) }  
(d) { x : abba i s  not a subsequence of x} 

4 . 1 0-8 If x is a string, then a rotation of x is a string zy such that yz = x. 
Let rotation ( x) be the set consisting of all rotations of x and let 
rotation(L) be the set consisting of all rotations of strings in L, i .e . ,  

rotation (L) = {zy : (::lx E L) [yz = xl } .  

For example, 

rotation ( { abc ,  abab})  = { abc ,  bca, cab,  abab, baba} . 

Is the class of regular languages closed under rotation ( ) ? 

*4. 1 0-9 Let S be any subset of a* . Prove that s* is regular. Hint: Find a 
positive integer d and a finite set F such that s* = (ad ) * - F. 

4. 10- 1 0  w-FMs and w-regular w-languages. An infinite input device holds 
an infinite sequence of characters belonging to an alphabet I:. (In 
practical applications, the infinite input is provided by some external 



4 . 1  0 Chapter Summary 3 1 1 

source as needed, rather than stored. )  An w-language is a set of infinite sequences. (The last letter of the Greek alphabet, w, means infinite in this context. Try not to confuse it with a terminator.) An w-FM is a machine [control, infinite input] . A program for an w-FM has a unique initial control state and an instruction set that does not contain any null instructions. We need to define acceptance specially for w-FM programs because they never halt. Two definitions are in general use: An w-NFA has a set of accepting control states; it accepts an infinite sequence x iff it has an infinite trace on input x in which infinitely many of the configurations contain an accepting control state. (Historically w-NFAs have been called Biichi automata. )  An w-DFA has a set A of sets of  accepting control states, i .e. , A � 2Q; it accepts an infinite sequence x iff it has an infinite trace (which must be unique by determinism) in which the set of control states reached infinitely often is an element of A. (Historically w-DFAs have been called Muller automata. )  Recall that a language i s  a set of  finite strings. If  L i s  a language, we define L w to be the set of infinite sequences obtained by concatenating infinitely many elements of L. We define w-regular w-languages: 
L is w-regular if and only if there exist regular languages U 1 , • • • , Uk and nonempty regular languages V1 , • • •  , Vk such that 

L = LJ UNt-I S:.i9 
(a) Prove that an w-NFA P accepts an infinite sequence x iff P has an accepting control state q and an infinite trace on input x in which infinitely many of the configurations contain control state q. (6) Prove that every w-NFA w-language is w-regular. (c) Prove that the class of w-NFA w-languages is closed under union and intersection. Hint: Use a pairing construction. 



3 1 2  Finite Machines and Regular Languages 

(d) Prove that every w-regular w-language is an w-NFA wlanguage. (e) Prove that every w-DFA w-language is an w-NFA w-language. **(f) Prove that every w-NFA w-language is an w-DFA w-language. Conclude that the class of w-NFA w-languages, the class of w-DFA w-languages, and the class of w-regular w-languages are equal. (g) Prove that the class of w-regular w-languages is closed under complementation. (h) Prove that if R is a regular language and S is an w-regular w-language, then RS is w-regular. (i) We define projection as follows. Fix the alphabet I: = { 0 ,  1 }k . If C = (c1 ,  . . .  , Ck- I , ck ) E I:, then PROJ (c) = (c1 , . . .  , Ck_ i ) .  If x = ((x1 , x2 , . . .  )) , an infinite sequence over I: ,  then PROJ (x) = ((PROJ (x1 ) ,  PROJ (x2 ) ,  . • •  )) . If L is an wlanguage over I:, then PROJ (L) = {PROJ(x) : x E L} .  If L is an w-regular w-language over { 0 ,  1 }k , prove that PROJ(L) is an w-regular w-language over { 0 , 1 }k- I . (j ) Give an algorithm to determine whether an w-NFA accepts 0 .  (k) State and prove a pumping theorem for w-regular wlanguages. (1) Prove that { anb" cw : n 2'. 0} is not w-regular. 



5 

Context-Free 

Languages 

IN THIS CHAPTER we introduce context
free grammars, which are used in describing programming languages as 
well as certain aspects of natural human languages. Context-free grammars 
(CFGs) can express languages that are not expressed by any regular expres
sion. In this chapter we prove the equivalence of CFGs and NSAs, define 
key properties like ambiguity, and investigate closure properties. We also 
present several CFG standardizations and algorithms that are useful in con-

3 1 3 



3 1 4  Context-Free Languages 

structing compilers. In particular, there is an algorithm to test membership in context-free languages. 
5 . 1  DEF INING LANG UAGES AS SOLUTIONS TO 

EQUATIONS 

We saw in Chapter 4 that some languages may be defined by a formula built up from individual characters by the regular operations union, concatenation, and Kleene-closure, as in 
( 1  U 10) * ,  

i .e ,  by regular expressions. There are languages that cannot be defined by regular expressions but can be defined implicitly by an equation where the name of the language itself appears in the defining expression, as in 
X = # U aXa U bXb. 

(This is similar to a recursive definition. )  We call such equations, which allow union and concatenation on the right-hand side, regular equations. 1 The name of the unknown language being solved for is called a variable. Suppose that X = L is a solution of the equation above. The equation says that the language L contains the string # and all strings of the form axa and bxb where x is itself a string in L. If we call the members of L "pals," then 
L's defining equation can be paraphrased: A pal is #, or a followed by a pal followed by a, or b followed by a pal followed by b .  From this definition, we can find pals by a simple iteration: 
Length 1 :  # is a pal. 
Length 3 :  a#a and b#b are pals. 

1 Since we do not allow Kleene-closure (*)  in our regular equations, a more precise name 
might be "starless regular equations." The class of languages definable via regular 
equations including Kleene-closure is the same as the class of languages definable 
using starless regular equations (Exercise 5 .2-7(c)). Our convention of disallowing 
Kleene-closure follows the classical treatment of context-free grammars. 



5 . 1  Defining Lang uages as Sol utions to Equations 3 1 5  

Length 5 :  aa#aa, ba#ab, ab#ba, and bb#bb are pals. 
Length 7 :  aaa#aaa, baa#aab, . . .  , and bbb#bbb are pals. (And so on .) 

If we specify that the pals must be the least language satisfying the equation, 
then a straightforward structural induction shows that the pals consist of 
all symmetrical strings of a's, b's , and #'s with exactly one #, so "pal" is a 
synonym for "palindrome with central marker." An application of the first 
pumping theorem with z = aN#aN shows that L is not a regular language, 
so regular equations can define languages that regular expressions cannot 
define. 

We can go a step further and define several languages by simultaneous 
regular equations. Usually one of these is the language that we really want 
to define, and the others are useful auxiliary languages, like the set of noun 
phrases or predicates in English grammar. In Figure 5 . 1 ,  we give a vastly 
oversimplified system of equations for English . For another example, we 
present in Figure 5 .2 a simplified system of equations that define statements 
in the Pascal programming language. 

Below we present a system of equations defining a part of conventional 
mathematical notation, arithmetic expressions like ax (b+a) x c xb+c; 
these expressions often arise in programming languages. In these equations, 
V, F, T, and E denote languages over the alphabet { a, b, c, +, x ,  ( , ) } .  

V 

F -

T 

E 

a U b U c  
V U  (E) 
F U  TxF 

T U  E+T 

Paraphrasing, V(ariables) are a, b,  and c; F(actors) are variables and expres
sions with parentheses around them; T(erms) are factors and terms multiplied 
by factors; E( xpressions) are terms and expressions added to terms. (Although 
this is not the simplest system of equations for defining arithmetic expres
sions, it has the usual precedence rules built in, in a sense.) 

Let V = Lv , F = Lp , T = Ly , and E = LE be a solution of the 
equations, assuming a solution exists. From the defining equations, we can 
deduce that certain strings belong to Lv , Lp , Ly , or LE , i .e . ,  that they are 



3 1 6  Context-Free Lang uages 

(Sentence) (Subject) (Pronoun I )  (Noun-Phrase) (Article) (Simple-Noun-Phrase) (Predicate) (Object) (Pronoun2) 

(Subject) (Predicate) (Pronoun] ) U (Noun-Phrase) 
{I , we , you, he, she, it, they} 
(A U (Article) ) (Simple-Noun-Phrase) 
{ a, an, the} (Noun) U (Adjective) (Simple-Noun-Phrase) (Verb) (A U (Object) )  (Pronoun2) U (Noun-Phrase) 
{me, us , you, him, her, it , them} 

FIGURE 5. 1 :  A vastly oversimplified system of regular equations for English. 
Words in angle brackets denote variables. We have omitted the equations for 
(Noun) , (Verb) , and (Adjective) in order to save space. More seriously, we have 
omitted any notion of noun-verb agreement, tense, capitalization, or punctuation. 
Most seriously, we have omitted huge classes of interesting sentences. 

This system allows sentences like "She drives a shiny black convertible car," 
as well as silly sentences like "The elven mug flew a huge blue tasty stapler." 
Furthermore, it doesn't allow more complicated sentences like "When the van, 
driven by a passed-out drunk, went careening in the direction of her sports car, 
she skillful! y steered out of its path." 

Designing an adequate syntax for English is an important unsolved problem. 
Part of the difficulty is that a lot real-world knowledge appears necessary in order 
to resolve common ambiguities that people handle easily. For a classic example, 
compare the sentence "Time flies like an arrow" with "Fruit flies like a banana." 

variables, factors, terms, or expressions. For example, 

a, b ,  c E Lv C Lv U (LE ) Lp C Lp u LT XLp 

LT C LT u LE+LT 

so a, b, and c are variables, factors, terms, and expressions. In addition, we 
have 



5 . 1  Defin ing Lang uages as Solutions to Eq uations 3 1  7 

(Statement) A U (Simple-Statement) U (Compound-Statement) 

U (IfStatement) U (While-Statement) 

(Simple-Statement) 

(Compound-Statement) 

(Statement-List) 

(If-Statement) 

U (Repeat-Statement) U (For-Statement) 

(Procedure-Call) U (Assignment-Statement) 

begin (Statement-List) end 

(Statement) (A U  ; (Statement-List) )  

i f  (Condition) then (Statement) 

so 

(While-Statement) 

(Repeat-Statement) 

(For-Statement) 

(A U  else (Statement) )  

while (Condition) do (Statement) 

repeat (Statement-List) until  (Condition) 

f or (Assignment-Statement) t o  (Expression) 

do (Statement) 

FIGURE 5.2: A simplified system of regular equations for Pascal statements. 
The words in angle brackets denote variables. For simplicity, we have omitted 
defining equations for (Procedure-Call) , (Assignment-Statement) , (Condition) , and 
(Expression) . The observant reader may note that we have omitted some semantic 
restrictions on the for-loop index. 

and so on; thus products of several variables are terms and expressions. Some 
further examples are as follows: 

■ (axb+axbx c+a) xb 
Ly � LE . 

E C 



3 1  8 Context-Free Languages 

By such reasoning, any conventional formula built up from a, b, and c by 
parenthesizing, multiplication, and addition can be shown to belong to LE . 

A powerful shorthand for expressing such reasoning is the parse tree. The 
tree 

asserts that any string of the form txf, where t is a term and/ is a factor, is 
itself a term. If we attach subtrees to the leaves labeled T and F, showing 
that t E Ly and / E Lp , the resulting tree demonstrates that txf E LT . 
The parse tre : in Figure 5 . 3 demonstrates that axbx  ( a+b) is a term. Its 
subtrees show that a is a variable, a factor, and a term; b is a variable and a 
factor; axb is a term; etc. We say that the string obtained by reading the 
parse tree's leaves left to right, in this example axbx ( a+b) , is the yield 
of the parse tree. The process of finding a parse tree for a string is called 
parsing. 

A subtree of a parse tree is called a sub-parse tree. If a sub-parse tree's 
root is a variable, then the yield of the sub- parse tree is called a phrase.2 

The strings a, b, axb,  a+b, (a+b) , and axbx ( a+b) constitute all the 
phrases of the parse tree in Figure 5 . 3 .  Notice that b x  ( a+b) is not a phrase 
of that parse tree, although it could be a phrase in a parse tree for another 
expression. 

Observe that if two sub-parse trees overlap, then one must be contained 
in the other. Thus any two phrases in a parse tree are either disj oint or nested . 
For example, in Figure 5 . 3  the phrases axb and a+b are disj oint; the phrases 
a+b and ( a+b) are nested. 

Normally, defining equations will be designed so that the phrases in a 
parse tree constitute some kind of meaningful parts of the string yielded by 
the tree. The phrase structure of the parse tree in Figure 5 . 3  implies that 
axb is meaningful in the string, while bx  ( a+b) is not; that is, the first b 
is multiplied by the a on its left, not by the (a+b) on its right. Because 

2 It would be logically simpler to say that the yield of any sub-parse tree is a phrase. 
Although this would have li ttle effect on the theory, we would be uncomfortable 
calling " ( " a phrase. 



5 . 1  Defining Languages as Solutions to Equations 3 1 9 

FIGURE 5.3: A parse tree for a x b x  ( a+b) . It is in fact unique (Exercise 5 .9-1). 

the parse tree for axbx ( a+b) happens to be unique, there is no ambiguity 
about which parts are added or multiplied together. 

EXAMPLE 5. 1 .  Let us consider the language defined by solving the follow
ing equations for S: 

S AB U BA 

A a U CAC 

B b U CBC 

C a U b. 

Let S = Ls , A = LA , B = La , C = Le be a solution of the equations, 
assuming that a solution exists. Clearly Le = { a, b} . Then LA contains 
the set of all strings of the form { a, bf a{ a, bf for i 2'.: 0, and La contains 
the set of all strings of the form { a, b }1b{ a, b }1 for j 2'.: 0. Therefore Ls 



320  Context-Free Languages 

contains the set of all strings of the form 

where i ,j � 0. Equivalently, Ls contains the set of all strings of the form 

{a, b}'a{a, b}1 {a, b}'b{a, b}1 or {a, b};b{a, b}j{ a, bfa{a, b}j 

where i ,j  � 0. If we require that S = Ls , A = LA , B = L8 , C = Le be the 
least solution of the simultaneous equations, then the containments above 
become equalities. In particular, Ls is the set of all strings of the form wx 
where [w[  = [x i  and w -/=- x. ■ ■ ■ 

If we are going to define languages via systems of equations, then it is 
important to know whether a system has a unique solution. If we place 
no restrictions on the system of equations, then the system may have zero 
solutions or several solutions . For example, there is no solution to XU a = 0, 
and every language containing a is a solution to X = X U a. 

The following restrictions will lead to the existence of at least one 
solution: 

• The left-hand side of each equation consists of a single variable. 
• Each variable appears exactly once as the left-hand side of an equa

tion. 

Henceforth we consider only systems of regular equations satisfying those 
two restrictions. In Section 5 .  2, we will show that any system of regular 
equations has a unique least solution. In Section 5 .  3 ,  we will show how 
to standardize a system of regular equations; a particularly important stan
dardized form is called a context-free grammar. In Section 5 .4, we will 
prove that the least solution to a system of regular equations consists of all 
strings that have parse trees. It is customary to take this least solution to be 
the defined language. Because of the usefulness of parse trees in compiling 
(translating) programming languages, the languages defined by systems of 
regular equations have substantial importance. (In order to save time or 
avoid abstraction, the reader may wish to skip Sections 5 . 2  and 5 .4, stipu
lating instead that the language defined by a system of regular equations is 
the set of strings that have parse trees .) 



Exerc ises 

5 . 1  Defin ing Languages as Solutions to  Equations 3 2 1  

5 . 1 - 1  I n  English, quotations are surrounded by double quotation marks, 
as in 

I say "hello. " 
Nested quotations are surrounded by single quotation marks, as in 

The Beatles sang, "You say 'goodbye, '  and I say 'hello. ' " 
When quotations are nested more deeply than that, single and dou
ble quotation marks alternate, as in 

My textbook says, "The Beatles sang, 'You say "goodbye ,"  and 
I say "hello. " ' " 

In parts (a-c) below, assume that opening and closing quotation 
marks are represented by distinct characters, as in the examples 
above, so there are four distinct characters in all. For simplicity, 
assume that apostrophes are represented by yet another character. 

(a) Let L be the set of all sequences of single quotation and double 
quotation marks in correctly punctuated English sentences. 
Prove that L is a DCA language. 

(b) Prove that L is not a regular language. 
(c) Prove that the set of English sentences is  not a regular language 

in this representation. 
In parts (d-f), assume that opening and closing quotation marks 
are represented by the same character, as on a typewriter, e.g . ,  

The Beatles sang , "You say ' goodbye , '  and I say ' hello . 1 11 

Still assume that apostrophes are represented by yet another char
acter. 

(d) Let L' be the set of all sequences of si ngle and double quota
tion marks in correctly punctuated English sentences, where 
opening and closing quotation marks are represented by the 
same character. Prove that L' is a DCA language. 

(e) Prove that L' is not a regular language. 
(f) Prove that the set of English sentences is not a regular language 

in this representation. 



322  Context-Free Languages 

5 . 1 -2 Pascal does not permit a semicolon before the word "else" in ifthen-else statements. Modify the defining equations in Figure 5 . 2  i n  order to permit an optional semicolon before the word "else" in if-then-else statements. 
5 . 1 -3 Consider the language Ls defined in Example 5 . 1 .  Which strings in Ls have exactly one parse tree? 

'� 5 . 2  EXI STENCE OF  U N IQU E  M I N I MAL SOLUTIONS 

In this section we will prove that every system of regular equations has a unique least solution. We begin by proving that a single regular equation has a unique least solution. In the proof of this special case, let us write I\ to denote n, and --< to denote <;;;;; also, let us fix an alphabet � ,  write D to denote the set of all languages over �,  and write U to denote �* . (The operation /\ is called meet or greatest lower bound. The relation --< is called precedes . The language U is called an upper bound, because every language precedes it in the ordering --< . )  Later in this section we will redefine /\, --< ,  D, and U so as to obtain a proof of the general case. For the sake of generality, we will call languages sets. By convention, we call a set of sets a class of sets. (This section can be safely skipped, as discussed at the end of Section 5 . 1  _) We state some basic facts of set theory in terms of /\ and --< .  
PROPOSITION 5.2 

(i) Transitivity: !JV --< W and W --< X, then V --< X. 
(ii) Antisymmetry: !JV --< W and W --< V, then V = W. 

(iii) Maximum element: For all V E D, V --<  U. 

PROPOSITION 5.3 (Completeness). For any nonempty class T of sets, let I\ T denote /\wET W. (If T is empty, let I\ T = U. ) Then 
(i) (\fV E T) [/\ T --< V] . (The intersection of all the sets in a class is a subset of every set in that class. ) 



* 5 . 2  Existence of U nique M inimal Solutions 3 2 3  

(ii) ( (\fW E T) [V --< W] ) ⇒ V --< /\ T. (!J V is a subset of every set in a 
class, then V is a subset of the intersection of all sets in that class. ) ■ 

For example, if T consists of the three sets { aibi ddk : i,j, k � O}, 
{aiblddk : i ,j, k � O}, and {aibJckdk : i ,j, k � O}, then (\ T is equal to 
{anbncndn : n � O}. 

We say that a function/ from sets to sets is monotone if V --< W implies 
/(V) --< /(W) . 

EXAMPLE 5.4. Let min ( X) denote the least element of X if X is nonempty, 
and define the function 

{ 
X - {min (X) } 

/(X) = 

The function/ is monotone. 

if X has a least element , 

otherwise. 

• • •  
If f and g are monotone, then each of the functions called h below is 

also monotone: 

• h (X) = 0 
• h(X) = {A} 

■ h(X) = {c}, for some character c 

■ h(X) = X 

• h(X) = /(g(X) ) 

■ h(X) = /(X) U g(X) 

• h (X) = /(X) ® g(X) 

• h (X) = /(X) * 

The verification of these properties is left as an exercise. We summarize the 
last three properties by saying that regular operations preserve monotonicity. 

Suppose that we are looking for a solution to a single regular equation, 

X = /(X) . 



324 Context-Free Languages 

Then the function/ is monotone. If/ maps P to itself, i.e., if P = f(P) ,  we 
say that P is a fixed point off Thus solutions to X = /(X) are exactly the 
same as fixed points off 

Now we prove a special case of a classic theorem of mathematical logic, 
the Tarski-Knaster fixed-point theorem. Recall that D is the class of all 
languages over I:.  

THEOREM 5.5 (Tarski-Knaster Theorem). If f is a monotone function from 
D to D, then the inequality /(X) --< X has a unique least solution P. Furthermore, 
this P is also the unique least solution to the equality f(X) = X; i.e. , P is the 
unique least fixed point off 

Proof: We say that C is a contractor (off) if/( C) --< C. To prove that there is 
a least contractor, we will exhibit L satisfying the following two properties: 

( 1 )  L is a contractor. 

(2) If C is a contractor, then L --< C. 

To prove uniqueness, we will show that if L' also satisfies those two prop
erties, then L' = L. Finally, we will prove that /(L) = L, so L is in fact a 
fixed point. 

By Proposition 5.2(iii) /(U) --< U, so U is a contractor. Let L be the 
meet of all contractors, i.e., 

L = /\ { C :  C is a contractor} .  

Let C be any contractor. Then L --< C by Proposition 5. 3(i), so (2) is 
satisfied. Since L --<  C, monotonicity implies that /(L) --< /(C) --< C (the 
second inequality follows because C is a contractor). Since f(L) --< C for 
every contractor C, it follows from Proposition 5 .3(ii) that 

/(L) --< /\ { C : C is a contractor} = L, 

so (1)  is  satisfied. Thus L is a contractor; since L precedes every contractor, 
L must be a least contractor. 



" 5 . 2  Existence of Un ique M in imal Solut ions 3 2 5  

Suppose that L' is also a least contractor. Since L' is a contractor and 
L is a least contractor, L --< L' . Similarly, L' --< L. Therefore L' = L by 
Proposition 5. 2(ii). 

Since/(L) --< L, monotonicity implies that/(f(L) ) --< f(L) , sof(L) is 
also a contractor. Since L is the least contractor, it is necessary that L --< f ( L) . 
Combining the two inequalities, we obtain/(L) = L by Proposition 5.2(ii); 
i .e., L is a fixed point off Any fixed point of / must also be a contractor; 
since L precedes any contractor of /, it precedes any fixed point, so it must 
also be the unique least fixed point off ■ 

Recalling the definitions of --< and D, we obtain the following corollary: 

COROLLARY 5.6. If X = f ( X) is a regular equation, then it has a unique least 
solution, which is also the unique least solution of X :2 /(X). ■ 

We have seen that, when/ is a monotone function on D, the equation 
X = /(X) has a unique least solution, called the least fixed point off We 
say that a function/ from D x D to D is monotone if 

When we have simultaneous equations, all with monotone right sides, 

Y = g(Y, Z) } 
Z = h(Y, Z) (5. 1 )  

we again find a unique least solution. An easy way to see this is to transform 
(5. 1 )  into a single equation X = /(X) where X is the ordered pair (Y , Z) ,  
and we define ( Y, z )  --< (Y' ,  Z') to mean Y <; Y' and Z <; Z' .  

Define the two projection functions p, and h by 

p, (Y, Z) Y, h ( Y, Z) Z. 
It is easily verified that p 1 and h are monotone. Suppose that we are looking 
for a solution Y = A, Z = B to (5. 1 ). Let C denote (A , B) .  Let 

/(C) = (g(A , B) , h(A , B) )  = (g(p 1 (C) ,h (C) ) , h (p 1 (C) ,h (C) ) ) .  



3 2 6  Context-Free Languages 

Since f is a composition of monotone functions, f is monotone. Further
more, (A , B)  is a solution of (5 . 1) if and only if C is a solution of X = f (X) . 
We have already redefined --< as it applies to ordered pairs. We redefine /\, 
D, and U analogously. Let 

/\ r = ( n x, n y) , 
(X,Y) E] (X,Y)ET 

let D be the set of ordered pairs of languages over I:, and let U = I:* x I:* . 
The reader may easily verify that Propositions 5.2 and 5. 3 remain true for 
these definitions. Thus the Tarski-Knaster theorem applies to ordered pairs 
of languages as well. That is, there is a least solution to X = f(X) ; call 
it C = (A , B) .  Then Y = A ,  Z = B is the least simultaneous solution 
of (5 . l). 

The reader may easily extend this technique to k-tuples of languages 
and prove the following: 

COROLLARY 5 .7. Every system of regular equations has a unique least solution . 
• 

Hence we are justified in the following definition: 

DEFINITION 5.8. The sequence of languages defined by a system of regular equations is the least fixed point of the system. If a particular variable X in the 
system is distinguished, then the least solution for X is the language defined by the system. 

Exe rc i ses  

5.2- 1 Construct systems of simultaneous regular equations that define the 
following languages: 

(a) { aibl : j  = i} 
(b) { a;bl : j  = 2i} 
(c) { aibl : j = i or j = 2i} 
(d) { aibl : j =/- i} 
(e) { aibJ : j < i or j > 2i} 



* 5 .2 Existence of U nique Minimal Solutions 3 2 7  

(f) { aibi : i � j � 2i} 
(g) { aibJck : i = j or j = k or k = i} 
(h) {xy : JxJ = Jy J and y =/= x} 
(i) {xy : Jx l  = Jy J and y =J: x R} 
(j) the set of all balanced strings of parentheses and brackets, 

L () r J (recall the definition from Example 1 . 1 1 ) 
(k) {x#y ; y = x R} 
(1) {x#y : y =J= x R} 

(m) {bi ci : i 2': O} U {ab;c2; :  i 2': O} 

5.2-2 (a) Prove Proposition 5.2. 
(b) Prove Proposition 5 . 3 .  

5 . 2-3 Prove that the following functions of one or two sets are monotone: 
(a) union 
(b) intersection 
(c) concatenation 
(d) Kleene-closure 
(e) shuffle 
(f) perfect shuffle 

5.2-4 Prove that monotonicity is preserved under composition. 

5.2-5 Let / represent a system of equations using union, concatenation, 
Kleene-closure, and intersection, in which the left side of each equa
tion is a single variable, and each variable occurs as the left side of 
exactly one equation. Prove that/ has a least fixed point. 

+5 .2-6 Prove that if L 1 and L2 are defined by systems of regular equations, 
then so are L 1 U L2 and L 1L2 • 

+ 5.2-7 (a) Let A be any fixed language. Prove that X = L is a solution 
of the equation 

X =  A U X U AX ( 5 . 2 )  

i f  and only i f  there exists L0 such that L = A *  U A *  L0 . What 
is the least solution of (5.2)? Hint: One direction is easy. For 
the other direction, show that if X = L is a solution of (5 . 2), 
then L = A* U A* L. 



3 2 8  Context-Free Languages 

(b) Using part (a), prove that if L is defined by a system of regular 
equations, then so is L * .  

*(c) Using part (a), prove that if L is defined by a system of simul
taneous equations using all the regular operations, including 
Kleene-closure, then L can be defined by a set of simultaneous 
equations using only the operations union and concatenation. 

5 . 2-8 An equation is right-linear if it is of the form X1 = 0, X; = A, or 
X; = s 1X 1 U · · · U skXk, where s 1 , . . .  , sk are strings and X 1 , . . .  , Xk 

are variables. Prove that L is regular if and only if L can be defined 
by a system of right-linear equations. 

5 . 2-9 An equation is left-linear if it is of the form X; = 0, X; = A, or 
X; = X 1 s 1 U · · · U Xksk, where s 1 , . . .  , sk are strings and X 1 , . . .  , Xk 

are variables. Prove that L is regular if and only if L can be defined 
by a system of left-linear equations. 

5 .  2- 1 0  Recall that a partial order is a relation that satisfies Proposition 5 .  2(i, 
ii). A complete lower semi lattice ( S, --<, I\) is a set S together with a 
partial order --< and a meet operation /\ satisfying Proposition 5 . 3 .  
A partial order i s  called complete i f  i t  satisfies Proposition 5 .2(iii) as 
well. A complete lower semilattice with a complete partial order is 
called a TK-semilattice. 

(a) Prove that the Tarski-Knaster theorem applies to every TK
semilattice. 

(b) Let >-- denote the converse of --< ;  i .e . ,  x >-- y iffy --< x. We say 
that (s, --< ,  /\ ,  V) is a complete lattice if (s, --< , /\) and (s, >-- ,  V) 
are complete lower semilattices. (The V operation i s  called 
join or least upper bound.) If (S, --< ,  /\ ,  V) is a complete lattice, 
prove that (S , --< , /\ ) is a TK-semilattice. 

(c) Let [a , b] denote {x E R : a ::;:  x ::;:  b} .  Let x miny denote the 
lesser of x and y, and let x max y denote the greater of x and y. 
Prove that ( [a ,  b] , ::;: , min , max ) is a complete lattice. 

Solution: Every closed interval contains the least upper 
bound and greatest lower bound of every one of its subsets. 

(d) We say that a function on the reals is monotone if x ::;: y ⇒ 
f(x) ::;: J(y) . Let / be a monotone function on [O,  1 ] .  Prove 
that/ has a fixed point. 



5 . 3  CFCs and Thei r Standard izations 329  

(e) Construct a monotone function/ on [O , 1 )  that does not have 
a fixed point. Which property of TK-semilattices is violated? 

Solution: Let f(x) = ½ (x + 1 ). [O , 1 )  has no universal ele
ment U. 

(f) Construct a monotone function/ on ( 0, 1 ]  that does not have 
a fixed point. Which property of TK-semilattices is violated? 

(g) Let (S, --< , /\) be a complete lower semilattice. For T � S, let J(T) denote {f(x) : x E T}. We say that a function on S is continuous from above if /(/\ T) = /\J(T) for all T � S. Con
struct a function on [O , 1 ]  that is monotone but not continuous 
from above. 

Solution: Let f(x) = 0 if x = 0, 1 if x E (0, 1 ] .  Then/ is 
monotone. However, / is not continuous from above because 
/(/\ (o ,  1 ] )  = /(0) = 0, but /\/( (0, 1 ] )  = /\ { 1 }  = 1 .  

5 . 3  CFCS AND THEI R STANDARDIZATIONS 

In this section we present a scheme to standardize systems of regular equa
tions to a form we call context-free grammars. We continue standardizing 
to obtain a normal form due to Chomsky, which was used in the first effi
cient parsing algorithms. Our goal is to have a system of equations, each of 
which is in a particularly simple form. 

Distribute. Because concatenation distributes over union, the right side 
of a regular equation can be written as a union of concatenations. For 
example, consider the regular equation 

L = A U  a(A U La) U b(A U Lb) , 

which defines the language of palindromes over { a, b }. By distributivity, 
the equation can be rewritten as 

L = A U a U aLa U b U bLb. 

Replace = by -;;2. By the Tarski-Knaster theorem, least solutions are the 
same as least contractors, so we are justified in replacing = by -;;2. Continuing 



3 30 Context-Free Languages 

the example, we get 
L 2 A U a U aLa U b U bLb. 

Eliminate unions. To eliminate unions, we replace V 2 f U g by two containments, V 2 f and V 2 g, and iterate as needed. Continuing the example, we obtain the following :  
L :::::i A 
L :::) a 
L :::::i aLa 
L :::) b 
L :::) bLb. 

A system of regular containments in such a restricted form is called a context-free grammar (CFG) for L. We will typically be interested in solving a system of regular containments for only one of its variables, say S. This variable is called the start variable for the set of regular containments. In general, if G is a context-free grammar with start variable S, then we write L( G) to denote L(S) . L( G) is called the language generated by G. Strings in L(  G) are called sentences . If L is generated by a CFG, then we call L a context-free language (CFL). The class of CFLs is closed under regular operations (Exercises 5 . 2-6 and 5 . 2-7). When describing context-free grammars, containments are usually denoted by right arrows and called productions because we think of the variable on the left side of the containment as producing everything on the right side. 
EXAMPLE 5.9. The following is a CFG for the set of all palindromes over { a, b} :  

L - A 
L - a 
L - b 
L - aLa 
L - bLb. I I I 

The variable that appears to the left of the arrow is called the left side of the production. The string of variables and characters that appears to 



5 . 3  CFGs and Their Standard izations 3 3 1  

the right of the arrow is called the right side of the production . Productions 
of the form X - Y where Y is a variable are called unit productions, and 
productions of the form X - A are called A-productions. 

The remainder of this section is devoted to converting context-free 
grammars to a form called Chomsky normal form, which we will define 
later. The next standardization introduces new variables but does not affect 
the solutions for the old variables . 

Make the right side of each production either a character or a concate
nation of variables. For each character c, introduce a new variable V, 
and the production V, - c .  In each of the other productions, replace c by 
V,. Except for the new variables, this system has the same solutions as the 
original . Continuing the example, we obtain the following: 

L - A 
L - A 

L - ALA 

L - B 

L - BLB 

A - a 

B - b .  

Eliminate long right sides. Replace each production of the form 
X - Y1 Y2 • • • Yk , where k 2'. 3, by the following productions: 

Nk-3 - yk-2Nk-2 

Nk-2 - yk- 1 Yk , 

where N1 , • • •  , Nk_2 are new variables . Except for the new variables, this 
system has the same solutions as the original . Every production is now of 



3 32  Context-Free Languages 

the form X - A, X - c, X - Y, or X - YZ. Continuing the example, 
we obtain the following: 

L 
L 
L 

N1 
L 
L 

N2 
A 
B 

Eliminate A as much as possible. 
new variables: 

-

-

-

-

-

-

-

-

-

A 

A 
AN1 
LA 
B 
BN2 
LB 
a 
b. 

For each variable X we introduce two 

• X+ stands for the set of nonempty strings in X, i . e . ,  X - {A} . 

• XA stands for the set of empty strings in X, i . e . ,  X n {A} . (That 
is, XA is equal to {A} if X contains A; 0 otherwise .) 

We also introduce the productions X - X+ and X - XA . 
Replace each production of the form X - c by X+ - c. Replace each 

production of the form X - A by XA - A .  Replace each production of 
the form X - Y by X + - Y + and X A - YA . 

Replace each production of the form X - YZ by the following four 
productions: 

• X+ - Y+Z+ 



5 . 3  CFCs and Their Standard izations 3 3 3  

Except for the new variables, the system constructed so fa r  has the same 
solutions as the original system. Let L(V) denote the least solution for 
variable V. It is not hard to see the following for all X: 

• L(X+ ) cannot contain A.  

• L (XA) cannot contain any nonempty string. 

Therefore L(XA )  = L (X) n {A} and L(X+ ) = L(X) - {A} .  
Delete all of the original variables X except the start variable S. The 

only productions involving S are S - S+ and S - SA . 
For each variable determine, by an algorithm that we will specify, 

whether L (XA) is equal to {A} or 0 . If L(XA) = {A} , then replace 
XA by A on the right side of all productions; otherwise replace XA by 0 on 
the right side of all productions. Delete all productions that have XI\ on 
the left side. This system has the same solutions as the original, but A does 
not appear except for possibly the production S - A. Furthermore, S does 
not appear on the right side of any production. 

Continuing the example, we find the minimal solutions L (LA) = A, 
L(N 1A )  = 0, L (N2A )  = 0, L(AA)  = 0, and L(BA) = 0, and we substi
tute the corresponding values for these variables into the productions. For 
example, N2 - LB becomes four productions, 

which, upon substituting the values above, become 

The other two productions are deleted because their right sides are 0 . 



3 3 4 Context-Free Languages 

The full grammar is given below: 

L - A 
L - L+ 

L+ - A+ 

L+ - A+N1 + 

N1+ - L+A+ 

NH - A+ 

L+ - B+ 

L+ - B+N2+ 

N2+ - L+B+ 

N2+ - B+ 

A+ - a 
B+ - b .  

A s  promised, we present an algorithm to determine for every X whether 
L(XA) is equal to 0 or {A} .  Consider the productions that involve only 
variables of the form XA . We will find all solutions to these productions. 
Try both possible values for every XA (2k total possibilities, where k is the 
number of such variables), and see which ones satisfy the system. If there 
is a solution with XA = 0, then L(XA )  = 0 ;  otherwise L (XA) = {A} . A 
faster algorithm is described in Exercise 5 . 3 -3 .  

Eliminate unit productions. Recall that productions of the form A - B 
where B is a variable are called unit productions. 

Say that a variable A leads to a variable C if A = C or there exist pro
ductions A - B 1 , B 1 - B2 , • • •  , Bk- l - Bk , where Bk = C. Determine 
for all X0 , X 1 whether X0 leads to X 1 . (An algorithm for this is discussed 
in Exercise 5 . 3 -5 . )  

For each production of  the form X - c and each X0 such that X0 leads 
to X, introduce the production X0 - c. 

For each production of the form X - YZ, each X0 such that X0 leads 
to X, each Y 1 such that Y leads to Y 1 , and each Z 1 such that Z leads to Z 1 , 
introduce the production X0 - Y 1Z 1 . That, is we work backward from X 



5 . 3  CFCs and Their  Standard izations 3 3 5  

using a sequence of unic produccions, and we work forward from Y and Z 
using a sequence of unic productions. 

For example, the production L+ -, A+N i + yields the following four 
productions: 

L+ - A+Ni + 

L+ - A +A+ 

L - A+N1 + 
L - A+A+ · 

Finally, we delete all unit productions . This transformation does not 
affect the solution to the system . The resulting grammar for our example 
follows: 

L - J\ 
L+ - A+N1+ 
L+ - A+A+ 

L - A+N1+ 
L - A+A+ 

Ni+ - L+A+ 

N1+ - A+A+ 
N1 + - B+A+ 

L+ - B +N2+ 
L+ - B+B + 

L - B+N2+ 

L - B+B+ 

N2+ - L+B+ 

N2+ - A+B+ 
N2+ - B+B+ 

A+ - a 
L - a 

L+ - a 
Ni+ - a 



3 3 6 Context-Free Languages 

B+ -+ b 
L -+ b 

L+ -+ b 
N2+ -+ b. 

Now each production has the form X -+ c, X -+ YZ, or S -+ A, 
where S is the start variable and S does not appear on the right side of any 
production. If L (S) does not contain A, then each production has the form 
X -+ c or X -+ YZ. This normal form for grammars is called Chomsky 
normal form (CNF). The size of a context-free grammar (denoted JG J )  is 
the total number of characters in all of its productions. When we convert 
a context-free grammar G to a CNF grammar G' as described above, the 
resulting grammar is not much larger; i .e . ,  JG' I  = O( JG J ) .  

Exerc ises 

5. 3 - 1  Construct CFGs for the languages in Exercise 5.2- 1 .  

5 . 3 -2 Construct a context-free grammar G such that L(G) consists of all 
regular expressions over the alphabet { a, b} .  

Solution: We work directly from the recursive definition. G's al
phabet consists of a and b, and the symbols U, * , (, and ) . G's 
only variable (and start symbol) is R.  

R -+ 0 
R -+ A 
R -+ a 
R -+ b 
R -+ (R ) U (R) 

R -+ (R) (R) R -+ (R)  * . 



5 . 3  CFGs and Their Standardizations 3 3 7  

+ 5 _3_3  Design an algorithm to determine, for all variables V in a CFG, whether A E L(V) .  The running time of your algorithm should be linear in the size of the CFG. 
Solution: First we will sketch a solution; then we will present a detailed algorithm. A production depends on all the variables on its right side . A variable X depends on all of the productions of the form X - Y1 • • · Yk . A production is ready when all of the variables it depends on are ready; in particular, a production of the form X - A is ready immediately. A variable is ready when at least one of the productions it depends on is ready. An object is a variable or a production. We say that a production X - Y1 · • • Yk needs k objects. We say that a variable X needs only one object. When an object a becomes ready for the first time, we see what objects depend on a; their needs are reduced by 1 and a becomes done. If a variable is done, then it derives A. By processing this information in  the right order, we avoid processing any variable or production twice. 
For each object a, let dependents[a] contain a list of all objects that depend on a. The array dependents [ ]  can easily be computed in time linear in the size of the grammar. The remainder of the algorithm is shown in Figure 5 .4. A variable X derives A if and only if X E done. 
Notes: It is helpful to think of the objects as the nodes in a directed graph. There is an edge from a to (3 if (3 depends on a. Label variables "OR," label null productions "TRUE," and label all other productions "AND." The graph models a monotone circuit that may contain cycles. Assume that all AND- and OR-gates start in the state FALSE . The algorithm above determines the stable state attained by each gate. The algorithm can be extended to monotone circuits containing threshold gates that test whether at least t of their inputs are TRUE (by initializing NEEDS to t) or to general monotone threshold gates that test whether Li wixi 2': t (by subtracting wi from NEEDS when xi is processed). 



3 3 8  Context-Free Languages 

readyset := 0 ;  
done : = 0;  
for all variables X do NEEDS[ X] :=  1 ;  
for all productions P do begin 

end; 

NEEDS[P] : = the length of the right side of P; 
if NEEDS[P] :::; 0 then (* P is of the form X - A *) 

insert P in readyset; 

while readyset =/=- 0 do begin 

end; 

remove an object (* variable or production *) a from readyset; 
if a t/:. done then begin 

end; 

insert a in done; 
for each object (3 in dependents[a] do begin 

NEEDS[(]] := NEEDS[(]] - 1 ;  
if NEEDS [/3] :::; 0 then insert (3 in readyset; 

end; 

FIGU RE 5.4: An algorithm for testing which variables in a CFG derive A .  

5.3-4 Design an algorithm to determine, for context-free grammars G, 
whether L( G) = 0. Hint: Use Exercise 5 . 3 -3 .  

Solution: Construct a new grammar G' by replacing all characters 
by A in all of G's productions . Then L(  G) =/=- 0 if and only if 
A E L( G) ; an algorithm to answer the latter question is provided 
by Exercise 5 . 3 -3 .  

5 . 3 -5 (a) Present an algorithm for determining the reflexive, transitive 
closure of a relation . Hint: A relation R can be represented 
as a directed graph in which there is an edge from X to Y if 
and only if (X, Y) E R. Use the algorithm associated with 
Kleene's theorem in Section 4.4. 

(b) Present an algorithm for determining which variables in a 
CFG lead to which . 



,., 5 .4 PARS E TREES 

* 5 . 4  Parse Trees 3 39 

In Section 5 .2 we proved that every system of regular equations has a least 
solution. We also asserted that this least solution is equal to the set of 
strings that have parse trees . In this section we prove that assertion . (If you 
skipped Section 5 .2, then skip this section as well .) 

We give a recursive definition of parse trees. 

DEFINITION 5. 1 0  (Parse Trees). Let G be a context-free grammar. If A - B 1 · · · Bk is a production in G, then there is a parse tree whose 
root is A and whose subtrees are T1 , . . .  , Tk (in that order) where 

• T; consists of a single node labeled B;,  if B; is a character. 

• T; is a parse tree whose root is B; , if B; is a variable . 

(See Figure 5 .5 .) 

Observe that a parse tree's leaves are always labeled with characters, and its 
internal nodes are always labeled with variables. 

THEOREM 5. 1 1 . The least fixed point of a set of regular equations is equal to the set of strings that have parse trees in the corresponding grammar. 

FIGURE 5 .5 :  A parse tree starting with A ----> B 1 · · · Bk . In chis example, B 1 is 
a character; B2 , . • .  , Bk are variables. 



340 Context-Free Languages 

FIGURE 5.6: A parse tree for u = u 1 u2 · · · Uk -

Proof: Let the system of regular equations be Xi = f;(X 1 , . . .  , Xn ) for 
i = I ,  . . .  , n. Let /(X) = ((/1 (X) , . . .  Jn (X) )) ,  where X denotes 
((X 1 , . . .  , Xn )) . Form the associated grammar, and standardize it by elim
inating null and unit productions. This does not alter the set of strings 
having parse trees. 

Let P(V) denote the set of strings for which there is a parse tree rooted 
at V. We will show that ((P(X 1 ) ,  . . .  , P(Xn ) )) is the least contractor off; 
by Theorem 5. 5, it is also the least fixed point. 

We will prove by induction on the length of u that if u E 
/;(P(X 1 ) ,  . . .  , P(Xn ) ) ,  then u E P(Xi ) .  Suppose u E /;(P(X 1 ) ,  . . .  , P(Xn ) ) .  
Then there exists a production xi --t xi 1 ' " " xik 

such that U E 
P(Xi 1 ) · · · P(XiJ - Then Figure 5.6 is a parse tree for u rooted at Xi , 
so u E P(Xi ) - Thus, /;(P(X 1 ) ,  • . .  , P(Xn ) )  S: P(XJ ,  and this is true 
for every i. Therefore f (P(X i ) ,  . . .  , P(Xn) )  -< ((P(X 1 ) ,  • . .  , P(Xn ) )) , so 
((P(X 1 ) , . . .  , P(Xn ) )) is a contractor off 

Now we will prove that ((P(X 1 ) , . . .  , P(Xn ) )) is a least contractor of/ If 
u E P(Xi ) ,  then, roughly speaking, a parse tree for u embodies a proof that 
u E C for every contractor ((e 1 , . . .  , en)) of / To be precise, we will prove 
for every string u, every variable Xi , and every contractor (( e 1 , . . .  , en)) that 
u E P(Xi ) ⇒ u E C.  The proof is by induction on the size of u's parse tree. 

Let u be any string in P(Xi ) - Let ((e 1 , • • •  , C)) be any contractor of/ 
Suppose, inductively, that v E e1 for all v and j such that v is the yield of a 



'' 5 . 4  Parse Trees 34 l 

parse tree rooted at X1 that is smaller than u's parse tree. Since u E P(Xi ) ,  
there is a parse tree with root Xi whose y ield is u. Let the children of 
the root be Xi 1

, • • •  , Xi; ,  and let the y ields of their subtrees be u1 , . . .  , uk, 
respectively, again as in Figure 5 .6. The strings u 1 , • . .  , Uk are the y ields 
of parse trees that are smaller than u's parse tree (because they are subtrees 
of u's parse trees). Therefore, by the inductive hypothesis, u1 E C1 for 
J = I ,  . . .  , k. Now it follows that U = U1 · · " Uk E ei 1 · " "  C; - From the 
parse tree for u we know that there is a production Xi -----+ Xi 1 

• • · Xi, ,  so 
C1 · · · C; <;;;. j; (e 1 , • • · , en ) - Therefore, 

because ((e 1 , . . .  , en )) is a contractor of f Since u E C for ev
ery u E P(Xi ) ,  we have shown that P(Xi ) <;;;_ C. Therefore 
((P(X 1 ) ,  . . .  , P(Xn ) )) -< ((e 1 , . . .  , e,,)) for every contractor ((e 1 , . . .  , en )) . 
Thus ((P(X 1 ) ,  • • •  , P(Xn ) )) is a least contractor of f, as asserted. 

By Theorem 5 .  5 ,  the least contractor is unique and is equal to the least 
fixed point. Thus ((P(X 1 ) , . . .  , P(Xn ) )) is the least fixed point of f ■ 

Exerc i ses 

5 .4- 1 (a) In a fixed grammar, can there be infinitely many different parse 
trees with root A and y ield x? 

(6) Can you standardize each grammar so that for every A and x 
there are only finitely many different parse trees with root A 
and y ield x? 

5 .4-2 Let G be a CNF grammar and let x be a string in L( G) . 
(a) Prove that in every parse tree for x each node has either one 

terminal or two nonterminal characters as children. 
(6) Prove that every parse tree for x in G has exactly 2 lxl - 1 

internal nodes. 
(c) Prove that every parse tree for x in G has height at least 

Jlog2 ( lx l ) l + 1 .  

5 .4-3 Let G be any grammar without A-productions or unit productions, 
and let x be a string in L( G) . 



342 Context-Free Languages 

(a) Prove that every parse tree for x in G has at most 2 lx l  - 1 
internal nodes. 

(6) Construct a grammar in which a single string has unboundedly 
large parse trees. 

5 . 5  DERIVATIONS 

Consider a system of regular containments using alphabet E and variable 
set V; these are called defining containments. As much as possible, we use 
capital letters to denote variables, early lowercase letters (such as a, b, and c) to denote characters, late lowercase letters (such as x, y, and z) to denote 
strings over E, and lowercase Greek letters to denote strings over V U  E .  
For example, the right side of the production B ----t aBC i s  aBC, a string 
over V U E  that we might denote (3. 

Although the statement a � (3 has only one mathematical meaning, it  
has three nuances in the study of grammars. We have three different symbols 
to denote these nuances. A defining containment B � (3 is denoted by the 
production B ----t (3,  as we have already seen. An immediate consequence of 
that defining containment is that o:B1 � o:(31 for any o: ,  1 ; in this case, we 
say that o:B1 immediately derives o:(31, which is denoted o:B1 ⇒ o:(31. We 
say that the production B ----t (3 is applied to the variable B in o:B1 and that 
the variable B is rewritten. 

The reflexive transitive closure of ⇒ is denoted ⇒; if o: ⇒ (3 ⇒ · · · ⇒ (,  
we say that o: derives ( .  If A ⇒ u, then we can conclude A � { u} ,  so the 
string u E L(A ) whenever A = L(A) is part of a solution to the set of 
defining containments; in particular, u belongs to the least solution for A.  

We summarize the notation as follows: 

■ A ----t (3 denotes the defining containment A � (3.  
■ a ⇒ (3 denotes that a immediately derives (3.  
■ a ⇒ (3 denotes that a derives (3.  

Given an  immediate derivation, i f  we  know which variable was rewritten 
we can determine from context which production was applied. However, 
we may not always be able to determine which variable was rewritten. 



EXAMPLE 5 . 1 2 . Consider the following grammar: 

In this grammar, 

E ------+ 1 E ------+ E-E E ------+ E+E . 

5 . 5  Derivations 343 

E ⇒ E-E ⇒ E-E-E ⇒ 1-E-E ⇒ 1 - 1-E ⇒ 1 - 1 - 1 , 

so E ⇒ 1 - 1 - 1 .  We cannot tell whether the first E or the second E was 
rewritten at the second step. If the first, we would interpret the derived 
string to mean ( 1 - 1 )  - 1 = - 1 .  If the second, we would interpret it to 
mean 1 - ( 1 - 1 )  = 1 .  ■ ■ ■ 

A derivation of ( from o: consists of a sequence a ⇒ /3 ⇒ · · · ⇒ (,  
together with an indication of which variable was rewritten at each step. 
Typically the rewritten variable is underlined, e.g. , 

li ⇒ "fj_-E ⇒ li-E-E ⇒ 1-"fj_-E ⇒ 1 - 1 -"fj_ ⇒ 1 - 1- 1 .  

A derivation that starts with a variable and ends with a string over � is 
called a complete derivation. A derivation in which the leftmost variable is 
rewritten at every step is called a leftmost derivation. (If we are told that 
the derivation is leftmost, then there is no real need to mark which variable 
is rewritten.) For example, the derivation above is complete and leftmost .  
The derivation below is neither complete nor leftmost: 

!i ⇒ E-!i ⇒ E-E-E. 
Each step in a derivation rewrites a variable as a string of variables and 

characters. Because characters cannot be rewritten, they are called terminal characters or terminals. Because variables appear in strings, they are called nonterminal characters or nonterminals. 
If /31 · · · ( ⇒ o:' , then the rewritten variable occurs in one of the strings 

/3, 1, . . .  , or (. In the first case, a' = /3'1 · · · ( , where /3 ⇒ /3' ; in the 
second case, a' = /31' · · · ( ,  where 1 ⇒ 1

1
; in the last case, a' = /31 . . .  (' , 



344 Context-Free Languages 

where ( ⇒ (' . In any case, there exist /3' , 1
1

, • • •  , (' (all but one of them 
equal to the corresponding unprimed string) such that a' = /3' 11 • • • (' , 

/3 ⇒ /3' , 1 ⇒ 1
1

, • • • , and ( ⇒ (', where each derivation takes one step or 
zero. By a simple induction, we obtain the following lemma: 

LEMMA 5 . 1 3  (Decomposition). Let a0 = /30,o · · · (o, If 

then, for every i, there exist /Ji, ri, . . .  , ( with ai = /3iri · · · ( such that 
/Jo 

* /31 
* * 

/Jn ⇒ ⇒ ⇒ 
* * * ,o ⇒ /1 ⇒ ⇒ /n 

(o 
* 

(1 
* * (n , ⇒ ⇒ ⇒ 

where each derivation takes one step or zero. In particular, if /3010 . . .  (0 ⇒ x then 
(3 

* * * 
X = n/n . . .  (n where /Jo ⇒ f3m ,o ⇒ rn, and (o ⇒ (n- ■ 

Now we are ready to prove the equivalence of derivations and parse 
trees. 

THEOREM 5. 1 4  

( i) For every derivation A ⇒ x, there is a parse tree whose root is A and yield 
ts x. 

(ii) There is a one-one correspondence from parse trees with root A and yield x to leftmost derivations of A ⇒ x. 
P roof: (i) Our proof is by strong induction on the length of a derivation. 

Consider any derivation of A ⇒ x. The derivation must be
gin by applying a production to A ,  i.e. , A ⇒ /31 · · · /3k , where 
each /Ji is either a character or a variable. By the decomposition 
lemma, because /31 . . .  f3k ⇒ x, we can write x = x1 · · · Xk where 
/31 ⇒ x1 , . . .  , f3k ⇒ Xk - We make a tree whose root is A and whose 
children are /31 , . . .  , f3k , in that order (see Figure 5. 7). 



5 . 5  Derivations 345  

FIGURE 5. 7 :  The parse tree corresponding to a derivation A ⇒ ;31 • • · ;Jk ⇒ 
xi · · · Xk . In chis example /31 = x 1 . 

If (Ji E �, then (Ji = xi . Otherwise (Ji is a variable and there is a 
derivation of (Ji ⇒ xi ; this derivation is shorter than the derivation 
of A ⇒ x. By the inductive hypothesis, there is a parse tree with 
root (Ji and yield x; . Combine these trees to produce a parse tree 
with root A and yield x (Figure 5.7) .  

(ii) The one-one correspondence is defined recursively. Consider any 
parse tree with root A and yield x. Let the children of A be 
/31 , • • •  , (Jk , where each (Ji is either a character or a variable (Fig
ure S . 7) . Either (Ji is a character xi , or (Ji is the root of a sub-parse 
tree whose yield is some string x; . Then x1 · · · xk is the yield of A,  
SO X i · · ·  Xk = X. 

The leftmost derivation begins A ⇒ (31 • • • f3k - If the string 
(31 • • • f3k contains any variables, let f3e be the leftmost variable in 
the string. Then /31 · · • (31, = x1 · • · xp_ 1 (3pf3£+1 · · · f3k - Recursively 
find a leftmost derivation of f3e ⇒ xp, so we have 

As long as there are any variables left m that string, repeat the 



346 Context-Free Languages 

process of deriving, in leftmost fashion, a substring of x from the 
leftmost variable. 

The algorithm we just presented provides a mapping f from 
parse trees with root A and yield x to leftmost derivations of A ⇒ x. 
In part (i), we presented a mapping g from derivations to parse trees, 
which happens to be the right inverse of f; i .e . ,  f o g  = I, so f is 
one-one. ■ 

COROLLARY 5 . 1 5.  The least fixed point of a set of regular equations is equal to the set of strings that have derivations in the corresponding grammar. 
Note that parse trees avoid many repetitions found in derivations. 

Therefore they are superior to derivations as a data structure for representing 
the meaning of English sentences or real computer programs. 

Exerc i ses  

5.5-1 Let a0 = /3010 · · · (0 . Prove that if 

5. 5-2 

* * * 
O'.o ⇒ 0'.1 ⇒ " ' '  ⇒ O'.n , 

then, for every i, there exist (Ji , ri , . . .  , ( with ai = f3iri · · · ( such 
that 

f3o ⇒ f31 
* ⇒ 

* * 
/0 ⇒ /1 ⇒ 

(o 
* ⇒ * ⇒ 

⇒ (3,, 

* ⇒ In 

(a) Let G be a CNF grammar and let x be a string in L( G) . Prove 
that every derivation of x in G takes exactly 2 [x [  - 1 steps. 

(b) Let G be any grammar without A-productions or unit produc
tions, and let x be a string in L( G) . Prove that every derivation 
of x in G takes at most 2 [x[ - 1 steps. 



5 .6  CFLs Are the Same as NSA Languages 347  

5 . 6 CFLS ARE THE SAME AS NSA LANG UAGES 

In this section we show that every CFL is accepted by a nondeterministic 
stack acceptor (NSA). Then we show that the set of computations of an NSA 
is a CFL and that every NSA language is itself a CFL . Thus the class of NSA 
languages is equal to the class of context-free languages . 

TH EOREM 5 . 1 6. Every CPL is an NSA language. 
Proof: Let L be a CPL over an alphabet � - Then L is generated by a 
context-free grammar G whose set of variables is N and whose start variable 
is S. Each production has the form X ----t Y1 • · • Yk, where each Yi is either a 
character or a variable. We will design a program P for a machine [control, 
stack, input] . (We list the stack before the input, because the stack is the 
more important device in this proof.) P's control set consists of a start state 
qsran , an accepting state qaccepr , and all prefixes of right sides of productions. 
P's stack alphabet is � U N, the set of all characters and variables in the 
grammar G. 

The first instruction performed by P is (qsrarr ----t A,  PUSHS, NOOP) . 
The production X ----t Y1 • • • Yk is simulated by the instructions 

and 

, POPX , NOOP) 

(Yi · · · Yk ----t Yi · · · Yk- i , PUSH Yk , NOOP) 

(Yi · · · Yk- i ----t Yi · · ·  Yk-2 ,  PUSH Yk- i , NOOP) 

, PUSH Y1 , NOOP) , 

which remove X from the stack and replace it by Yk · · · Y1 . 
The generation of characters is simulated by the NSA instructions 

(A ----t A, POPc, SCANc) for each c E �; the accepting state can be reached 
by the instruction (A ----t qaccepr , EMPTY, EOF ) .  The details of a correctness 
proof are left to the reader. ■ 

It is worth noting that the number of control states in the NSA con
structed above is essentially equal to the size of the grammar. As an example 

georg
螢光標示



348 Context-Free Languages 

A 
A 
A 
E 
E 
E 

------, 

------, 

------, 

------, 

------, 

------, 

aA 

aE 

bAA 
A 
aEb 

EE. 

FIGU RE 5.8: A context-free grammar. 

of applying the construction, we convert the grammar shown in Figure 5 .8 
to an equivalent NSA, which is shown in  Figure 5 .9. 

As a corollary to the next theorem, we will show that every NSA lan
guage is a CFL. We have already seen how to standardize a nondeterministic 
program so that it does not use the EOF test (Section 4. 1 ). We have also 
seen how to standardize a stack machine program so that it never uses the 
empty test (Section 3 .3 .3). 

THEOREM 5. 1 7. Let P be an NSA that does not use the EOF test or the EMPTY test and that empties the stack before accepting. The set of accepting computations of P is a CPL. 
Proof: Let P be an NSA with control set Q, start state 0, final state f, and 
input alphabet I;. Let P run on a machine [control, stack, input] . Assume 
that P does not use the EOF test or the EMPTY test and that P empties the 
stack before accepting. 

Consider any sequence of input operations used by P.  Since P does not 
use the EOF test, that sequence contains only SCANs and NOOPs. Therefore 
the sequence of input operations is executable on one input string, namely 
c1 · · · cn , where the sequence of SCAN operations is SCAN c1 , . . .  , SCAN Cn . 

Consider any sequence o 1 , . . .  , ok of stack operations used by P that maps 
A to A, i.e., 

Ao1 · · · ok = A. 

We will show that o 1 · · · Ok has the same effect on the stack as a NOOP. 
Since P does not use the EMPTY test, the sequence o 1 , . . .  , ok contains only 



5 .6  CFLs Are the Same as NSA Languages 349 

FIGURE 5.9 :  An NSA equivalent to  the CFG in  Figure 5 .8 .  



3 5 0  Context-Free Languages 

PUSHes, POPs, and NOOPs. If we apply that sequence of operations to a 
stack that initially holds a nonempty string s, then the original top character 
cannot be popped off, for otherwise the sequence of operations would block 
when applied to A .  Therefore the effect of that sequence of stack operations 
does not depend on the original stack contents. Therefore, the sequence of 
stack operations maps each stack string s to s, i .e ., 

501 · · · Ok = S.  

Thus we have shown that any sequence of stack operations that maps A to 
A is equivalent to NOOP (the identity relation) on the stack. In particular, 
the sequence of stack operations in any computation of P is equivalent to 
NOOP.  

For each pair of control states i and j, let L i ,j be the set of computation 
fragments in which the sequence of control operations is equivalent to i ---+ j 
and the sequence of stack operations is equivalent to NOOP. Then the set 
of accepting computations of P is L0 ,1, so Lo ,1 will be the start variable of 
the grammar we construct. Any computation fragment belonging to L;,m 
must have one of the following forms: 

■ The computation fragment may be A if i = m. 

■ The computation fragment may begin with a PUSH, which must 
be matched by a POP of the same character. Suppose that the 
corresponding PUSH and POP instructions are (i ---+ j, PUSHc,fin ) 
and (k ---+ £, PO Pc, gin) .  Those instructions must be separated by 
a sequence of instructions that goes from control state j to k while 
performing NOOP on the stack, and they must be followed by a 
sequence of instructions that goes from control state R, to m while 
performing NOOP on the stack. That is, the computation fragment 
must have the form 

(i ---+ j, PUSHc,fin ) L1,k (k ---+ £, POPc, gin ) Le,m • 

■ The computation fragment may begin with an instruction that does 
not use the stack, in which case it is of the form 

(i ---+ j, NOOP ,fin ) Lj,m · 



5 . 6  CFLs Are the Same as NSA Languages 3 5 1  

No computation fragment in Li ,m may begin with a POP because the com
position of the sequence of stack operations would then be a strictly partial 
function instead of being NOOP. Thus we obtain the following context-free 
grammar: 

Li,i -----+ A for each control state i 

L;,m -----+ (i -----+ j, PUSHc,_/;0 ) L1,k (k -----+ £ ,  POPc, gin ) Le,rn 
for each i ,j ,  k, £, m, c,J;n , gin 

such that the instructions on the right side occur in P 

L;,m -----+ (i -----+ j, NOOP,_/;n ) Lj ,m 
for each i , j, m,_/;0 

such that the instruction on the right side occurs in P. 

The details of a correctness proof are left to the reader. 

COROLLARY 5. 1 8. Every NSA language is a CPL. 

■ 

Proof: Modify the grammar constructed in the preceding proof as follows: 
Replace each instruction by the character that it scans or by A if the instruc
tion does not scan anything, i .e. , if the instruction performs a NOOP on the 
input device. Instead of generating each computation, as in the preceding 
proof, this grammar generates the string scanned during each computation. 

■ 

The size of the CFG constructed above is O ( n3 ) , where n is the number 
of instructions in the NSA. 

EXAMPLE 5. 1 9. Figure 2 . 3  shows an NSA program that accepts palin
dromes with central marker. We construct a CFG for the set of computa
tions of that NSA. (Note that the order of the input and stack devices has 
been unreversed.) The start variable is L 1 ,2 . 

L 1 , 1 -----+ A 
L2,2 -----+ A 
L 1 , 1 -----+ ( 1  -----+ 1, SCAN a, PUSH a) L 1 ,2 (2 -----+ 2 ,  SCAN a, POP a) L2 , 1 



3 5 2  Context-Free Languages 

L1 , 1 ----+ 

L1 ,2 ----+ 

L1 ,2 ----+ 

L1 ,2 ----+ 

( 1 ----+ l , SCANb, PUSHb) L1 ,2 (2 ----+ 2, SCANb, POPb) L2, 1 

( 1  ----+ 1 ,  SCAN a, PUSHa) L1 ,2 (2 ----+ 2, SCAN a, POP a) L2,2 

(1 ----+ 1 , SCANb, PUSHb) L1 ,2 (2 ----+ 2, SCANb, POPb) L2,2 

( 1 ----+ 2, SCAN#, NOOP) L2,2 • 

We convert the grammar for the set of accepting computations into a gram
mar for the accepted language: 

L1 , 1 ----+ A 
L2,2 ----+ A 
L1 , 1 ----+ aL1 ,2 aL2 , 1  

L1 ,1 ----+ bL1 ,2bL2 , 1  

L1 ,2 ----+ aL 1 ,2aL2,2 

L1 ,2 ----+ bL 1 ,2bL2,2 
L1 ,2 ----+ #L2,2 • 

Since L 1 , 1 cannot be a descendant of L 1 , 2 in any parse tree, we may eliminate 
L1 , 1 's productions from the grammar. Since L2 ,2 generates only A, we may 
replace L2,2 by A everywhere. Thus we obtain the following simplified 
grammar, which should already be familiar: 

L1 ,2 ----+ aL1 ,2a 

L1 ,2 ----+ bL 1 ,2b 

L1 ,2 ----+ # .  

Beware: In many other examples the grammar does not turn out to be so 
simple. ■ ■ ■ 

EXAMPLE 5.20. We can also use Corollary 5. 18 to prove that certain lan
guages are context-free without actually constructing the grammar. For 
example, let 

L = { w : w contains an equal number of a's and b's} .  

A signed counter can keep track of the number of a's minus the number of 
b's in w, so L is accepted by a program for a machine [control, input, signed 



5 .6  CFLs Are the Same as NSA Languages 3 5 3  

counter] . Such a program is shown in Figure 1 . 12. A signed counter can be 
simulated by an unsigned counter, which can be simulated by a stack, so L 
is an NSA language. By Corollary 5. 18, L is a CFL. ■ ■ ■ 

We have shown that L is a CFL if and only if L is accepted by an 
NSA. If a CFL L is in fact accepted by a DSA, then L is called deterministic. 
The deterministic CFLs are called DCFLs for short. The syntax for most 
programming languages is essentially a DCFL (ignoring the customary 
syntactic requirement to declare identifiers before using them). 

Exe rc i ses  

5 .6- 1 Construct an NSA that is equivalent to the following grammar: 

A -----+ BC 

B -----+ CA 

C -----+ AB 

A -----+ a 
B -----+ b 

C -----+ C .  

5.6-2 Construct a CFG that is equivalent to the NSA in Figure 1.13 . 

5 .6-3 (a) Prove that every DCFL is generated by a grammar in which 
all productions have one of the following forms-

• A -----+  A 
• A -----+ b1 

-and for each variable A and character b there is at most one 
production of the second form. 

(b) Prove that the set of even-length palindromes over { a, b} is 
generated by a grammar of the form described in part (a). (In 
Section 6.4 we will prove that the set of palindromes over 
{ a, b} is not a DCFL.) 

**(c) Define a class of grammars that generate exactly the DCFLs. 



3 5 4  Context-Free Languages 

5.6-4 

Solution: The LR( l) grammars are such a class of grammars . 
We will not define them in this book. To learn about them, 
refer to a textbook on compiler design. 

(a) Give a constructive proof that the class of regular languages 
is closed under quotient with context-free languages. 

(b) Give a constructive proof that the class of regular languages 
is closed under derivative by context-free languages. (See Ex
ercise 4.8-5 for a definition.)  

* 5 . 7  THE CHOMSKY H IERARCHY 

In Section 5 .6, we saw that CFGs generate exactly the languages accepted 
by NSAs. There is a hierarchy of grammars that is related to the hierarchy 
of machines, although the correspondence is not exact. In this section we 
describe that hierarchy briefly. 

Special cases of context-free grammars are the right-linear grammars 
and the left-linear grammars. A grammar is right-linear if every production 
is of the form V ----+  A or V ----+  sW, where s is a string of terminal characters 
and W is a nonterminal. A grammar is left-linear if every production is of the 
form V ----+ A or V ----+ Ws, where s is a string of terminal characters and W 
is a nonterminal . The right-linear grammars generate exactly the regular 
languages (Exercise 5 .2-8) and so do the left-linear grammars (Exercise 
5 .2-9) . For this reason right-linear grammars and left-linear grammars are 
called regular grammars . Regular grammars generate exactly the languages 
accepted by NFAs. 

The context-free grammars are so-called because the rules for rewriting 
a symbol B ,  such as B ----+ /3, do not depend on the characters surrounding 
the variable B (its context) . Context-sensitive grammars (CSGs) are a gen
eralization of CFGs that allow a variable to be rewritten according to its 
context. 

In general, a production of the form a ----+ /3, where a and /3 are strings 
of terminals and nonterminals, means that the string a can be replaced by 
the string /3 in derivations. A context-sensitive grammar (CSG) is a system of 
productions of the form a ----+  /3 where 1/3 1 2 l a l ,  e .g . ,  ABA ----+ ACA and ABA ----+ CCCC are allowable productions in a CSG but ABA ----+ AA is not . 



* 5 . 7  The Chomsky Hierarchy 3 5 5  

The production S -----+ A is also allowed under the restrictions that S is the 
start variable and S does not appear on the right side of any production. The 
name "context-sensitive" comes from a normal form in which all productions 
have the form 

where /3 is nonempty. The languages generated by CSGs are called contextsensitive languages (CSLs); they are exactly the same as the languages that are 
accepted by nondeterministic Turing acceptors that use at most n+ 1 squares 
on each tape, where n is the length of the input. (For more information on 
space-bounded Turing machines, see Exercise 9 . 1 -5.) 

Unrestricted grammars may contain any production of the form a -----+ /3. 
These unrestricted grammars, also called semi-Thue systems, are discussed 
extensively in Section 7 . 10.  Unrestricted grammars generate exactly the 
languages accepted by NTAs. 

Right-linear grammars, context-free grammars, context-sensitive 
grammars, and unrestricted grammars form what is called Chomsky's hierarchy .  In this hierarchy, unrestricted grammars are called type O; context
sensitive, type 1 ;  context-free, type 2;  and right-linear, type 3 .  The Chom
sky hierarchy is strict, meaning that there exist languages of each type that 
do not belong to the next higher type (cf. Exercise 9.2-3(c), Example 5.22, 
and Example 4.26). 

Exe rc i ses  

5.7- 1  Show how to convert any right-linear grammar to one in which 
every production has the form V -----+ A or V -----+ cW, where c is a 
terminal character and W is a nonterminal. 

5. 7-2 Construct a right-linear grammar that generates the set of all strings 
over { a, b} with an odd number of a's. 

5.7-3 (a) Prove that every CSL is accepted by an NTA in which the tape 
heads do not leave the first Ix !+ 1 tape squares on input x. Hint: 
The NTA may copy x to the tape, then apply productions in 
reverse, nondeterministically guessing which production and 



3 56 Context-Free Languages 

where to use it. The tape string stays the same length or gets 
shorter each time a production is applied. 

*(b) Prove the converse of part (a). Hint: Without loss of general
ity, we assume that the NTA begins by copying the input x to 
one of its tapes. By using a larger alphabet, we may assume 
that the NTA has only one tape (cf. Section 7 . 1 . 1  ). Standard
ize it so that it halts in a fixed final state qaccepr with empty 
tape. Represent a configuration of the NTA by the string t1qt2 , 

where q is the control state, t 1 is the string to the left of the 
tape head, and t2 is the string to the right of the tape head. 
The behavior of the NTA at each step depends only on q and 
the characters next to the tape head; design a corresponding 
production. 

*5 .7-4 Show how to convert every context-sensitive grammar to a normal 
form in which every production has the form afry --+ a(31, where 
/3 /: A.  

5 . 8 PU M PING THEOREMS FOR CFLS 

In Chapter 4 we proved several pumping theorems for regular languages. 
Let us say that a language L is 1 -pumpable if there is a number N such that 
for every string x E L having length at least N, there exist u, v, and w such 
that v /: A and, for all i 2': 0, tttlw E L. Recall that our simplest pumping 
theorem says that all regular languages are 1 -pumpable. We are able to 
prove that certain languages are not regular by proving that they are not 
1 -pumpable. 

A similar theorem is desirable for context-free languages, so we can prove 
that certain languages are not context-free. We cannot hope that exactly 
the same pumping theorem applies to context-free languages, because we 
showed in Chapter 4 that several context-free languages, like { aibi : i 2': 0}, 
are not 1 -pumpable. Instead, we will define a pumping condition that allows 
a string to be pumped up in two places simultaneously. 

In this section we will prove three pumping theorems for context-free 
languages . The first of these is the weakest but the easiest to prove . The 
second theorem is a generalization of the first, and its proof builds on the 



5 . 8  Pumping Theorems for CFLs 3 5 7  

proof of the first. The third theorem is a simple corollary of the second. 
On an initial reading, we recommend that the reader try to understand the 
proof of the first theorem and the applications of the third theorem. 

THEOREM 5.2 1 (First Pumping Theorem for CFLs). Let L be a context-free language. There exists a natural number N (depending on L) such that, for all z E L with I z l  2 N, there exist strings u, v, w, x, y satisfying the following conditions: 
• z = uvwxy 
• v /. A or x /. A  
• l vwx l � N 
• for all i 2 0, uviw�y E L 

Proof: Let L - {A} be generated by a context-free grammar G without 
null productions or unit productions. Let G's variable set be V and G's 
terminal alphabet be I: .  Let r be the length of the longest right side of any 
production in G. If r < 2, let r = 2 .  Define N0 = r l V I + 1 and N = r l Vl + 1

. 

Let z be any string generated by G such that l z l  2 N 2 No. 
We will work with a parse tree for z .  Recall that the height of a node A, denoted height(A) , is the distance from A to its deepest descendant. 

We define the weight of a node A, denoted weight( A) ,  to be the number of 
leaves that are A's descendants; i.e. , the weight of a node is the length of 
the string it yields in the parse tree . 

Since r is the length of the longest right side of any production, each node 
in the parse tree has at most r children . By an easy induction, every node A 
in the parse tree satisfies weight(A) � rheighr (A ) _ Because l z l  2 N0 > r l V I ,  
the height of  the root must be greater than I V I ,  so the height of  the root i s  at 
least I V I  + 1. Therefore there is a path from the root to a leaf that contains 
at least fV I  + 1 edges and consequently at least f V I  + 1 internal nodes. 

We will be concerned only with the lowest fVI + 1 internal nodes on 
that path . By the pigeonhole principle, two of these nodes must be labeled 
with the same variable, say A. The situation is shown in Figure 5 . 10. 

Let w denote the yield of the lower A. The yield of the upper A must 
include w as a substring, so let the yield of the upper A be vwx. The string 



3 5 8  Context-Free Languages 

FIGU RE 5. 1 0: A path with two A's lets us decompose z into uvwxy. 

vwx must be a substring of z, so let z = uvwxy. Then we have the following 
derivations in G: 

Derivation (1) :  S ⇒ uAy Derivation (2): A ⇒ vAx Derivation (3):  A ⇒ w 
Since G contains no null productions or unit productions, v and x cannot 
both be the empty string (Exercise 5 .8-5 ) .  Since the height of the upper A 
is at most IV I  + 1 ,  its weight is at most r l V l + 1 , so l vwxl � r l V l + 1 = N. 

By applying derivation ( 1 )  once, then derivation (2) i times where i 2: 0, 
and finally derivation (3) once, we obtain 

■ 

We restate the first pumping theorem to highlight the sequence of 
quantifiers . Let L be a CFL . 

::lN 
Vz E L such that l z l  2: N 
::lu, v, w, x, y such that uvwxy = z, l vwxl � N, and l vx l  > 0 
Vi 2: o uv iwx iy E L . 



5 .8 Pumping Theorems for CFLs 3 5 9  

The Al-Izzy game can be played much as with regular languages (cf. Sec
tion 0 . 1  and Section 4 .9 . 1 ) .  Let L be a language. The game is played as 
follows: 

• Izzy picks a natural number N. 

• Al picks z E L such that l z l  � N. 
• Izzy picks u, v, w, x, y such that z = uvwxy, l vwxl � N, and v or x is 

nonempty. 

• Al picks i. 

If Al successfully picks i such that uv iwx iy � L, then Al wins . If Al can 
always win no matter how Izzy plays, then L is not context-free . If Al loses, 
sometimes or always, nothing can be validly deduced about L. 

EXAMPLE 5.22. Let L = { anbn en : n � 0 } .  We will use the first pumping 
theorem for CFLs to prove that L is not a CFL. 

For the sake of contradiction, suppose that L is a CFL. Let N be as in 
the first pumping theorem for CFLs, and let z = aNbN cN _ Then there exist 
strings u, v, w, x, y such that z = uvwxy, v or x is nonempty, and uilwx'y E L 
for every i � 0 .  If v contains a positive number of a's and a positive number 
of b's, then uv2wx2y contains a b  followed by an a, so uv2wx2y � a*b* c* 
and uv2wx2

y � L. (See Figure 5 . 1 1 . ) We obtain a similar contradiction 
if v contains any other pair of distinct characters or if x contains a pair of 
distinct characters . Therefore v and x each belong to a* , b* , or c* . Recall 
that v and x are not both empty. If v E a+ and x E b* , then uv2wx2y 

z uvwxy 
pumped z 

aa • • • a aab b • • · bbbc c • • · ccc �'-v--'�..__.,'-v--' 
It V u• X y 

aa · - • a aab aab b · · · bbbc c · · · c · · • ccc �'-v--''-v--''--,,.-'..__.,..__.,'-v--' 
u V V U' X X y 

FIGURE 5 . 1 1 :  If v contains a positive number of a's and a positive number of 
b's, then uv2wx2

y � a*b* c * ,  so uv2wx2
y � L. 



360 Context-Free Languages 

z uvwxy 
pumped z 

aa . . .  aa abb . . .  bb bee . . . C C C  ..__,_,�..__,__._,..__.,-,'-._,--' u V u· X y 
aa . . . aa . . .  aa abb . . .  bb bb bee . . . C C C  ..__,_,��..__,__._, ..__,_,..__,_, '-.,,--' 

II V w X X y 

FIGURE 5. 1 2 : If v E a+ and x E b* , then uv2wx2y contains more a's than e 's ,  
so  uv2wx2y � L. 

contains more a's than e's, so uv2wx2y � L. (See Figure 5. 12 . )  We obtain a 
similar contradiction no matter how v and x are chosen: Because vx contains 
at least one occurrence of a character d and possibly a second character e but 
no occurrence of the remaining character/, uv2wx2y must contain more d's 
thanf's and thus not belong to L. ■ ■ ■ 

EXAMPLE 5.23.  Let L = { aibic idJ : i ,j  � 0} . We show that L is not 
a CFL . Suppose, for the sake of contradiction, that L is a CFL .  Let N be 
a pumping number for L as in the first pumping theorem for CFLs, and 
let z = aNbN cN dN . By the first pumping theorem for CFLs, there exist u, v, w, x, y such that z = uvwxy, l vwxl � N, v or x is nonempty, and uv iwx iy E L for all i � 0 .  Because l vwxl � N, vwx must be of the form 
a*b* , b* c* , or c *d* . In any of these cases, pumping down results in a 
string not in L. (For example, if vwx E a *b * , then uwy contains fewer a's 
and b's than e's and d's .) This contradiction proves that L is not a CFL . ■ ■ ■ 

EXAMPLE 5.24. Let L = { aibick : i � j � k } .  We show that L is not 
a CFL . For the sake of contradiction, assume that L is context-free . Let N 
be as in the first pumping theorem for CFLs, and let z = aNbN cN . Then 
there exist strings u, v, w, x, y such that z = uvwxy, v or x is nonempty, 
and uv iwx iy E L for all i � 0 .  Then v and x must each belong to one of 
a* , b* , or c* , for otherwise uv 2wx2y would not belong to a*b* c* and 
therefore not to L.  Therefore vx cannot contain an a, a b, and also a c .  If vx 
contains at least one a but no b's, then uv 2wx2y contains more a's than b's, 
a contradiction . If vx contains at least one b but no a's, then uwy contains 
more a's than b's, a contradiction. We obtain a similar contradiction in the 
other four cases, because if vx contains at least one d but no e's, then uv 2wx2y 



5 . 8  Pumping Theorems for CFLs 3 6 1  

contains more d's than e's and uwy contains more e's than d's, so they cannot 
both belong to L .  ■ ■ ■ 

The first pumping theorem for CFLs differs in several ways from the 
pumping theorems for regular languages that we proved in Chapter 4. The 
most important difference is that strings in CFLs are pumped in two places, 
whereas strings in regular languages are pumped in only one place . As noted 
at the start of this section, that difference is inevitable and in fact desirable . 
If the same pumping theorem applied to regular languages and CFLs, then 
we could not have used it to prove that any CFLs were nonregular. 

A second difference is that some of the pumping theorems for regular 
languages allow us to localize part of a string for pumping . The first 
pumping theorem for CFLs does not localize the pumping at all; v and x 
could be located anywhere in the string z, subject to lvwxl � N. We will 
partially rectify that situation now. 

Ogden's pumping theorem lets us mark characters in a string . If z is a 
string in L that contains at least N marked characters, then z is pumpable 
and one of the pumped substrings, v or x, contains a marked character. 

We mark characters in a string by specifying their positions . For exam
ple, let z = aabbaa. We can mark the first two a's and the second b in z 
by specifying positions 1 ,  2, and 4 .  The weight of a substring of z is the 
number of marked characters it contains (think of the characters as marked 
with heavy paint) . For example, the weight of z is 3 .  If we write z = vwx 
where v = aa, w = bb, and x = aa, then the weight of v is 2, the weight of 
w is 1 ,  and the weight of x is 0 .  Keep in mind that the weight of a substring 
depends on where it appears in z; that is why v and x have different weights . 

Although our current motivation is to obtain a better pumping theorem 
for CFLs, we will state Ogden's pumping lemma for arbitrary CFGs, as he 
originally stated it . Because this lemma applies directly to derivations in 
any context-free grammar, Ogden was able to use it in proving that a certain 
CFL is inherently ambiguous; i . e . ,  all of its grammars are ambiguous .  We 
will do the same in the next section . 

LEMMA 5.2 5 (Ogden's Derivation-Pumping Lemma for CFGs). Let G be a CFG. There exists a natural number N (depending on G) such that for all 



362 Context-Free Languages 

z E L (  G),  if z is marked so that weight(z) 2:: N, then there exist a variable A and terminal strings u, v, w, x, y satisfying the following conditions: 
• z = uvwxy 
• weight(v) 2:: 1 or weight(x) 2:: 1 

• weight (vwx) � N 

• S ⇒G uAy 
• A ⇒G vAx 
• A ⇒c w  
• for all i 2:: 0, A ⇒G v iwx i 

Proof: Let L be generated by a context-free grammar G. Let G's variable 
set be V. Let r be the length of the longest right side of any production in G. If r < 2, let r = 2 .  Define N0 = r l V I + 1 and N = r l V l + 1

• Let z be any 
string generated by G such that weight(z) 2:: N 2:: N0 . 

We will work with a parse tree for z. We define the weight of a node A 
to be the number of leaves below A that are labeled with marked characters; 
i . e . ,  weight(A) is the weight of the string that A yields in the parse tree . 

We define the weight-branching height of a node A,  denoted wb-height(A) ,  
as though nodes of weight O were not present in the parse tree and as though 
an only child were identical to its parent . More precisely, wb-height(A) = 

0 

1 + max wb-height( C) 
C i s  a child of  A 

max wb-height( C) 
C is a child of  A 

if A is a leaf, 

if A has more than one child 
with positive weight,  

otherwise . 

In particular, since the weight of an internal node is the sum of the weights of 
its children, an internal node A has the same wb-height as one of its children 
C if and only if A has the same weight as C; otherwise A's wb-height is 1 
greater than the maximum wb-height of any of its children . 

Since r is the length of the longest right side of any production, each node 
in the parse tree has at most r children . By an easy induction, every node A 



5 . 8  Pumping Theorems for CFLs 363  

in  the parse tree satisfies weight(A) S: rwb-heighr (A ) .  Consequently, because 
weight( z) 2 N0 > r l VI , the weight-branching height of the root must be 
greater than I V I ,  so the weight-branching height of the root is at least I V I + 1 .  
Each node with positive weight-branching height has a descendant whose 
weight-branching height is exactly one smaller. Therefore there is a path 
from the root to a leaf that contains internal nodes whose weight-branching 
heights are wb-height(root) ,  wb-height(root) - 1 ,  . . .  , 1 .  

We will be concerned with the nodes on that path having weight
branching height I V I  + 1 ,  I V I ,  . . .  , 1 .  By the pigeonhole principle, two of 
those IV I  + 1 nodes must be labeled with the same variable, say A.  The 
situation is essentially the same as in Figure 5 . 10 .  

We define u ,  v ,  w, x ,  y as in the preceding proof. Because the upper A has greater weight-branching height than the lower A, weight(vwx) > 
weight(w) . Therefore weight(v) 2 1 or weight(x) 2 1 .  Since the weight
branching height of the upper A is at most IV I  + 1 ,  its weight is at most 
r l Vl + 1

, so weight(vwx) S: rl V l+ 1 = N. 
By the same reasoning as in the preceding proof, S ⇒G uAy, A ⇒G vAx, A ⇒G w, and A ⇒G viwx' for all i 2 0 .  ■ 

We have an immediate corollary for CFLs . 

THEOREM 5.26 (Ogden's Pumping Theorem for CFLs). Let L be a CFL. There exists a natural number N (depending on L) such that for all z E L, if z is marked so that weight(z) 2 N, there exist strings u, v, w, x, y satisfying the following conditions: 
• z = uvwxy 
• weight(v) 2 1 or weight(x) 2 1 

• weight(vwx) S: N 

• for all i 2 0., uv iwx iy E L  ■ 

Observe that the first pumping theorem for CFLs is the special case of 
Ogden's pumping theorem in which every character of z is marked. 

EXAMPLE S.2 7. Let L = {aibick : i /. j and j = k} .  The first pump
ing theorem for CFLs is not strong enough to prove that L is not a CFL 
(Exercise 5 .8-6). Instead, we use Ogden's pumping theorem for CFLs. 



364 Context-Free Languages 

For the sake of contradiction, assume that L is a CFL. Let N be as in 
Ogden's pumping theorem for CFLs. Let z = aN+N!bN cN . Mark all the b's, 
so z has weight N. Then there exist strings u, v, w, x, y such that z = uvwxy, 
weight(v) � 1 or weight(x) � 1 ,  and uv iwx iy E L  for all i � 0 .  v and x must each belong to a* , b* , or c* , for otherwise uv 2wx2y � 
a*b* c* . Because only the b's are marked, either v or x must be equal to b"' 

for some m between 1 and N. The other of v or x must be equal to cm , or else uv 2wx2y would contain different numbers of b's and e 's ,  a contradiction . 
Therefore v = b"' and x = cm . Let i = N!/m + 1 (pump up N!/m times). 
Then 

which has the same number of a's as b's, a contradiction . ■ ■ ■  

In many applications of Ogden's pumping theorem, the marked charac
ters are consecutive; i . e . ,  they form a substring of z. A very useful corollary 
of Ogden's pumping theorem lets us pump a substring of the marked sub
string. Recall that the first pumping theorem for CFLs gave us a bound 
on the length of vwx but no other control over the location of v or x inside 
z. The third pumping theorem, proved below, is a useful companion to 
the first pumping theorem. It will let us locate v or x inside a particular 
N-character substring of z but without any bound on l vwxl . For most ap
plications, either the first pumping theorem or the third pumping theorem 
for CFLs will suffice. Ogden's pumping theorem for CFLs is rarely needed. 

COROLLARY 5.28 (Third Pumping Theorem for CFLs). Let L be a CFL. There exists a natural number N (depending on L) such that for all z E L, if z = z 1 z2z3 where l z2 1 � N, there exist strings u, v, w, x, y satisfying the following conditions: 
• z = uvwxy 
• v or x is a nonempty substring of z2 

• for all i � 0, uv iwx iy E L 
Proof: (If we mark each character in z2 ,  Theorem 5 . 26 gives us u, v, w, x, y 
such that z = uvwxy, v or x overlaps z2 ,  and (Vi � 0)  [uv'wxiy E L] . A 
clever trick will guarantee that v or x is actually a substring of z2 . )  



5 .8 Pumping Theorems for CFLs 36 5  

Let # be a new character that <loes not belong to L's alphabet. Let 
L consist of all strings in L with exactly two #'s inserted anywhere; i .e . ,  
L = L " { ##} ,  the shuffle of L and { ##} . Given an NSA that accepts L,  
we can con�truct an NSA that accepts L by using an extra control to count 
#'s .  Thus L is a CFL. (In fact, we will see that the class of CFLs is closed 
under shuffle with regular languages by Exercise 6 . 1 - 5 . ) 

Let N be a pumping number for L, as in Ogden's pumping theorem. 
Suppose that z = z 1 z2z3 E L where l z2 1 :2: N. Let z = z 1 #z2#z3 , which 
belongs to L Mark all characters in z2 . By Ogden's pumping theorem, 
there exist u, v, w, x, y satisfying the following conditions: 

• z = uvwxy 
• weight(v) :2: 1 or weight(x) :2: 1 

• weight(vwx) � N 

• for all i 2 0, ui/wx iy E L 
Neither v nor x can contain a #, because then, pumping down, uwy would 
contain fewer than two #'s. Furthermore, v or x must contain a marked char
acter and therefore must be a nonempty substring of z2 . Obtain u, v, w, x, y 
by deleting all #'s from u, v, w, x, y, respectively. Then the following con
ditions are satisfied : 

• z = uvwxy 
• v or x is a nonempty substring of z2 

• for all i 2 0, uv'wxiy E L ■ 

In the next example, we could use either Ogden's pumping theorem 
or the third pumping theorem to prove that a language is not context 
free. We use the latter because it is easier to apply. (For an example 
where Ogden's pumping theorem cannot be applied directly but the third 
pumping theorem can be, see Exercise 5 . 8-8.) 

EXAMPLE 5.29. Let us apply this corollary to show that the language 
L = { a ib; ck : i -=/- j and j -=/- k} is not a CFL. Suppose, for the sake of 
contradiction, that L is a CFL. Let N be the number from Corollary 5 .28,  



366 Context-Free Languages 

and let z = aN+N!bN cN+N ' . Then z = z 1 z2z:, where z 1 = aN+N ' , z2 = bN , 
and z3 = cN+N ' . By Corollary 5.28 there exist strings u, v, w, x, y such that z = uvwxy , v or x is a nonempty string of b's, and uv iwx i

y E L for all i � 0. 
If v contains a b, then x cannot contain any a's; if x contains a b, then v 
cannot contain any e's. Let m be the total number of b's contained by v 
and x. Then 1 � m � N, so r = N!/m is an integer. Then uv r+ 1 wx r+ 1

y 

contains exactly N + N! b's, but it must also contain exactly N + N! a's or 
N + N! e's, so it does not belong to L. This contradiction proves that L is 
not a CFL. ■ ■ ■ 

Exerc i ses 

5.8- 1 (a) Prove that the first pumping theorem for CFLs remains true if 
we require that v be nonempty instead of just requiring that 
v or x be nonempty. 

(b) Does Ogden's pumping theorem for CFLs remain true if we 
require that v contain a marked character instead of just re
quiring that v or x contain one? 

5.8-2 Redo Example 5.29 using Ogden's pumping theorem for CFLs. 

5.8-3 Prove that the following are not CFLs: 
(a) { aibJck : i < j < k} 
(b) { aibJ ck : j < i = k} 
(c) { ai2 

: i � 0} 
(d) { ai : i is composite} .  Hint: Let p be the least prime number 

that is greater than ( N! + 1 )  ! + 1 ,  and show that in fact 
p > (N!+ l ) !+N!+ l .  Let i = p-N! and apply Theorem 5.2 1 .  

*(e) { w : w is the decimal representation of an integer squared} 
*(f) { w : w is the decimal representation of an integer cubed} 

*(g) { w : w is the decimal representation of a prime number} 
*(h) { w : w is the decimal representation of a composite number} 

5 .8-4 Let L be the set of syntactically correct Pascal programs (if you do not 
know Pascal, consider some other block-structured programming 
language in which variables must be declared before they are used). 
Prove that L is not a CFL. 



5 .8  Pumping Theorems for CFLs 367  

5 .8-5 Let G be a CFG without null productions or unit productions. Prove 
that if A ⇒ a, then a is either a single terminal character or else 
I a I > 1 .  If B is a nonterminal, conclude that it is not possible for A to derive B by a nonempty sequence of productions. 

5.8-6 Let L =  {aibJ ck : i -j= j and j = k} .  Although L is not a CFL by 
Example 5 .27, in this exercise you will prove that L satisfies the 
conclusions of Theorem 5 .2 1 .  

(a) Let N � 2. Let z = aN+N 'bN cN . Find u, v , w, x, y  such that z = uvwxy, l v l  � 1 or lx l  � 1 ,  l vwxl :S; N, and, for all i � 0, uviwxiy E L. 

Solution: Let v = a, y = aN+N '- l bN cN , and u = w = x = A. 
(b) Let N = 8.  Let z be any string in L such that l z l  � N. 

Show how to find u, v ,  w, x, y such that z = uvwxy, l v l  � 1 or 
lx l  � 1 ,  l vwx l S N, and, for all i � 0, uv'wx!y E L. 

Solution: Let z = aib1 d. We take three cases. • If i = j + 1 or i = j - 1 ,  let v = aa, y = ai-2b1 c1 , and u = w = x = A. 
• Ifi � }+2,  let v = a, y = ai- 1 b1 c1 , and u = w = x = A. • If i S j - 2, let v = b, x = c ,  u = aibJ- 1 , w = A, and 

y = c1- 1 _ 

5.8-7 Let L = {a ibJcidJ : i ,j  � 0} . Although L is not a CFL by Exam
ple 5.23, prove that L satisfies the conclusions of Corollary 5.28 . 

5.8-8 Let L = { aibcbdibcbei : i � 0} U { ai cd1bcbek : i ,j, k � 0} U 
{ aibcbd1 cek : i ,j, k � 0} U {x E { a, b, c ,  d, e}  * : x contains at 
least six b's} . 

(a) Prove that L satisfies the conclusions of Theorem 5 .26. 
(b) Use Corollary 5.28 directly to prove that L is not a CFL. 

Solution: Assume, for the sake of contradiction, that L is a 
CFL. Let N be a pumping number for L as in Corollary 5.28 , 
and let z = aNbcbdNbcbeN . Then z = z 1 z2z3 where z 1 = A, 



368 Context-Free Lang uages 

z2 = aN , and z3 = bcbdNbcbeN _ Apply Corollary 5.28 to 
obtain u, v, w, x, y  where v or x is a nonempty string of a's. 

Case 1 :  v is a nonempty string of a's . If x contains a c, then 
pumping down we obtain uwy, which contains at most one 
c and at most four b's, so uwy � L. Therefore x contains 
no e's. x cannot contain three or more b's, because then x 
would contain a c .  If x contains two b's, then x = bdNb; 
therefore uwy contains only two b's and no occurrence of the 
pattern bcb, so uwy � L. Therefore x does not contain two 
b's. If x contains one b, then uwy contains exactly three b's, so uwy � L. Therefore x does not contain one b. Consequently, 
x is a substring of aN , dN , or eN , so uwy E a*bcbd*bcbe* . If x is a substring of aN , then uwy contains more d's than a's, 
so uwy � L; if x is a substring of dN , then uwy contains more 
e 's than d's, so uwy � L; if x is a substring of eN , then uwy 
contains more a's than e's, so uwy � L. Thus any choice of x 
contradicts Corollary 5 .28. 

Case 2: x is a nonempty string of a's . Then v is a substring 
of aN _ Pumping down, we obtain uwy = ambcbdNbcbeN , 
where m < N, so uwy � L, contradicting Corollary 5 .28. 

In either case, we obtain a contradiction, so L must not be a 
CFL. 

5.8-9 In this exercise, you will prove an extension of Ogden's pumping 
theorem for CFLs. We mark a substring of z by specifying its first and 
last position. For example, to mark the second and third occurrences 
of abb in abbaabbaaabbb, we would specify the pairs ( 5 ,  7) and 
( 10,  12) . Let L be a CFL. Prove that there exists N (depending on 
L) such that for all z E L, if at least N nonoverlapping substrings 
of z are marked, then there exist u, v, w, x, y satisfying the following 
conditions: 

• z = uvwxy 
• v or x contains at least one marked substring 
• vwx overlaps with at most N marked substrings 
• for all i ;:::: 0, uviwxiy E L 



5 . 9  AMBIGU ITY 

5 . 9  Ambigu ity 369  

In typical applications of CFGs, sentences and phrases have meanings. Often 
the meaning of a sentence or phrase is determined from the meaning of its 
constituent phrases. If there is exactly one way to parse a string, i .e . ,  exactly 
one parse tree, then its meaning is uniquely determined. If there is more 
than one parse tree, a string might not have a unique meaning. For example, 
the arithmetic expression 7 - 3 - 2 could mean (7 - 3 )  - 2 or 7 - ( 3  - 2) , 
which have different numerical values. 

A string that can be parsed in more than one way-i.e . ,  a string that is 
yielded by more than one parse tree-is called ambiguous. Equivalently, by 
Theorem 5 . 1 4(ii), a string is ambiguous if and only if it has more than one 
leftmost derivation. (However, an unambiguous string will usually have 
several derivations that are not leftmost.) If a grammar provides multiple parse trees for some strings, the gram
mar itself is called ambiguous. If all grammars defining a particular language 
are ambiguous, so that no grammar provides a satisfactory framework for 
assigning unique meanings to strings, the language is called inherently am
biguous. A CFG is called unambiguous if it is not ambiguous; a CFL is called 
unambiguous if it is not inherently ambiguous. 

EXAMPLE 5.30. It is important that real programming languages be un
ambiguous so that programs will have unique meanings. Consider the 
grammar G given below: 

S -----+ if C then S 

S -----+ if C then s else S 
S -----+ statement 

C -----+ condit i on. 

(The words if ,  then, else,  statement , and condit ion are termi
nals in this grammar. In a real programming language, condition and 
statement might generate a variety of meaningful conditions and state
ments.) G is ambiguous because the string 

if condition then if condition then statement else statement 



3 70 Context-Free Languages 

FIGU RE 5. 1 3 : One way co parse 
if condition then if condition then statement else statement 

in the ambiguous grammar G. 

can be parsed as in Figure 5 . 30,  meaning 

if condition then 
if condit ion then 

statement 
else 

statement 

but it can also be parsed as in Figure 5 . 30, meaning 

if condition then 
if condit ion then 

statement 
else 

statement 

Note that the first interpretation of the program is equivalent to 

if c ondit ion then statement, 

whereas the second is equivalent to statement . This ambiguity, called 



FIGURE 5. 1 4: Another way to parse 

5 . 9  Ambigu ity 3 7 1  

if condition then if condition then statement else statement 

in the ambiguous grammar G. 

the dangling else, was present in the original specification for the Algol60 
language. 

This particular ambiguous grammar can be converted to an unambigu
ous CFG G' for the same language: 

T ---+ statement T ---+ if C then T else S 

S ---+ T 
S ---+ if C then S 

C ---+ condition. 

The new variable T generates plain statements and if-then-else statements 
but not if-then statements. In G' the string 

if condition then if condit ion then statement else statement 



3 72 Context-Free Languages 

FIG U RE 5 . 1  5: The only way to parse 

if condition then if condition then statement else statement 

in the unambiguous grammar G' . 

can only be parsed as in Figure 5. 30, meaning 

if condition then 
if condition then 

statement 
else 

statement ■ ■ ■ 

A substantial amount of effort goes into disambiguating CFGs for real 
programming languages, i .e . ,  converting them to unambiguous grammars 
for the same language. Not only does this guarantee that programs have 
well-defined meanings, but it also permits faster parsing (cf. Section S . 12). 

Unfortunately, some grammars cannot be disambiguated: 

THEOREM 5.3 1 .  There exists an inherently ambiguous context-free language. 
Proof: Such a language is 



5 . 9  Ambigu ity 373  

We will show that, no matter which grammar we use to generate L, there 
is a string of the form a111bmem that can be parsed in two different ways. 

Let G be any CFG for L, and let N be a pumping number for G as 
in Ogden's lemma . Without loss of generality, assume that N > 1 .  Let 
z = aNbN eN+N' . Mark all the b's. By Ogden's lemma, the grammar G 
contains a variable A such that the following conditions hold: 

• S ⇒ uAy 

• for all i 2:: 0, A ⇒ tlwx! 
The only way to pump is for z = uvwxy where v = ak , x = bk , and 
1 ::::; k :::; N. (Why? Each string v and x must contain only one character, 
possibly repeated, for otherwise pumping up produces a string that is not in 

*b* * Th . . h b f ' . b' a e . e stnng v must con tam t e same num er o as as x contams s, 
for otherwise pumping down produces a string with all different numbers 
of a's, b's, and e 's . )  

Letting i = N! / k + 1 ,  we see that A ⇒ aN '+kwbN!+k , so 

S ⇒ uAy 

⇒ uaN •+k
wbN '+k

y 
N 1 bN' ua vw xy 

aN+N 'bN+N ' eN+N ' . 

In particular, there is a derivation of aN+N 'bN+N! cN+N! in which aN 1+kwbN!+k 

is a phrase . 
Now apply the same argument to z = aN+N'bN eN to find a derivation 

of aN+N'bN+N • eN+N ' in which bN!+k' w' eN '+k' is a phrase .  
Each of the two phrases aN!+kwbN!+k and bN'+k' w' eN'+k' contains at ' ' 

least N! + 1 b's, but the string derived contains only N! + N b's . Since 
N! + 1 > ½ (N! + N) , each phrase contains more than half of all the b's that 
are derived. Therefore the two phrases overlap . 

The first phrase contains some a's but no e's, and the second phrase con
tains some e 's but no a's . Therefore neither phrase is a substring of the other. 

We know that two phrases in the same parse tree must be either disjoint 
or nested . Therefore the two phrases aN!+kwbN !+k and bN'+k' w' eN'+k' belong 



374 Context-Free Languages 

to different parse trees for the string aN+N'bN+N! cN+N ' , so aN+N!bN+N ' cN+N! 

is ambiguous. Therefore G is ambiguous. Since the argument above applies 
to every grammar for L, the language L is inherently ambiguous . ■ 

Exerc i ses  

5 .9-1 Prove that the grammar for arithmetical expressions given in Sec
tion 5 . 1  is unambiguous. 

5 .9-2 (a) Prove that the CPG constructed in the proof of Theorem 5. 1 7  
has exactly one parse tree per computation of the NSA. 

(b) Prove that the CPG constructed in the proof of Corollary 5 . 18 
has exactly one parse tree yielding x per computation of the 
NSA accepting x. 

(c) Prove that the NSA constructed in the proof of Theorem 5. 16  
has exactly one computation on input x per parse tree of the 
CPG yielding x. 

5.9-3 Prove that { aibiakbR : i = j or k = £} is an unambiguous CPL . 

Solution: We give an unambiguous grammar in which E gen
erates { aibi : i = j} , U generates { aibj : i =/=- j} , L generates 
{ aibi : i < j} , and G generates { aibi : i > j} : 

s ----+ EE U EU U UE 
E ----+ A U aEb 
u ----+ G U L  
G ----+ aE U aG 
L ----+ Eb U Lb. 

*5.9-4 Prove that { aibick : i = j or i = k} is inherently ambiguous . 

*5 .9-5 A CPG G is unboundedly ambiguous if for every m there is a string 
that can be parsed at least m different ways in G. A CPL L 
is inherently unboundedly ambiguous if every CPG for L is un-



*5 . 1 0  G reibach Normal Form 3 7 5  

boundedly ambiguous. Let L be the set of all strings of the form 
a;c{a, b} *ba;b{a, b} * , i .e . ,  

L = { a; cxba;by : x ,  y E { a, b} * and i 2:: 0} . 

Prove that L is inherently unboundedly ambiguous. 

* 5 .  l O G REI BACH NORMAL FORM 

A grammar is in Greibach normalform (GNF) i f  every production is of the form 
X -----+ cY 1 • • • Yk where c is a character, k 2:: 0, and Y1 , • • •  , Yk are variables . 
In the early 1 960s Kuno and Oettinger developed a parsing program called 
the Predictive Analyzer to assist with experiments on natural language; their 
program required a GNP grammar as input . Sheila Greibach first showed 
how to convert arbitrary context-free grammars into this form. The normal 
form is also useful because any GNP grammar can be readily converted to 
a real-time NSA for the same language . However, GNP is not needed for 
the parsing algorithms we will present in Sections S . 1 1  and 5 . 12 .  

I f  L is a CPL that does not contain A ,  then we will construct a GNP 
grammar for L. (If L does contain A,  then this is clearly impossible , be
cause no GNP grammar generates a language containing A .  However, see 
Exercise 5 . 10-l(a) for an extension of GNP that applies to every CPL .) 

We begin by eliminating A-productions and unit productions. A sim
ple, efficient way to accomplish this is by converting G to CNF. 3 Henceforth, 
assume that G is in CNF, so all of its productions are of the form A -----+ BC 
or A -----+  a. 

Let V be the set of variables in G. We define a new grammar G' that 
involves V and some new variables . For each pair X, Y of variables in G, we 
define a new variable that we denote formally as [X, Y] . It is our intention 
that [X, Y] denote the set of strings u such that X ⇒ Yu; i .e . ,  we want 

L( [X, Y] ) = {u : X ⇒ Yu} .  
3 I n  eliminating A-productions and unit productions, it would be sufficient to omit the 

first two steps of the CNF conversion; however, the last two steps run in time that 
is exponential in the length of the right side of the longest production. Therefore, 
efficiency dictates that we perform the first two steps as well. 



376 Context-Free Languages 

First, assume that X ----+ YZ is a production of G. If W ⇒ Xu, then W ⇒ YZu, so we need to ensure that 

L( [w, Y] )  :2 ZL( [w, x] ) . 

Therefore we make [W, Y] ----+ Z[W, X] a production in G'. 
Second, note that X ⇒ X = XA, so we want 

L( [x, x] ) :2 A.  

Therefore we make [X , X]  ----+ A a production in  G' . 
Third, assume that X ----+ c is a production of G. If W ⇒ Xu, then 

W ⇒ cu, so we want 

L(W) :2 cL( [w, x] ) .  

Therefore we make W ----+  c[W, X] a production in G'. 
To summarize, we define G' to be a grammar whose variables are 

V U  { [X, Y] : X E  V and Y E  V}; for each production in G, the corre
sponding productions in G' are shown in the table below. 

Production in G Productions in G' 

( 1 )  X ---->  YZ [w, Y] _, z[w, x] for all W E  V 

(2) X ---->  C W ----> c[W, X] for all W E  V 

(3) [X, X] ----> A  for all X E  V 

It will not be hard to convert G' to GNF. First, let us show that G' generates 
the same language as G. 

Assertion 1:  If X ⇒G u where u is a string of characters, then 
X ⇒G' u.  We prove this assertion by strong induction on the length of u. 
Suppose that X ⇒G u. Assume that the assertion is true for all variables X 
and for all strings shorter than u. 

Because G contains no A-productions, u must be nonempty. A leftmost 
derivation of X ⇒G u begins by applying productions to the first variable 



Derivation in G 
String Production 

X 

X ---->  Y1Z1 
Y1 Z1 

Y, ----> Y2Z2 
Y2Z2Z1 

Y2 ----> Y3Z3 

Y3Z3Z2Z1 

Y3 ----> Y4Z4 

Y4Z4Z3Z2Z1 

Y4 ----> c 
cZ4Z3Z2Z1 

'' 5 . 1 0  Grei bach Normal Form 377  

Derivation in G' 
String Production 

X 

X ---->  c[X, Y4] 

c[X, Y4] 

[X, Y4] ----> Z4 [X, Y3] 

,Z, [X, Y3] 

[X, Y3] ----> Z3 [X, Y2] 

1Z4Z3 [X, Y2] 

[X, Y2] ----> Z2 [X, Yi ] 

cZ4Z3Z2 [X, Yi] 

[X , Yi ] ----> Z1 [X, X] 

1Z4Z,Z2Z1 [X, X] 

[X, X] ----> A  

cZ4Z3Z2Z1  

TABLE 5.  1 : On the left side, we show the process of rewriting the first variable 
(five times) until it is finally replaced by a terminal character. This is a derivation 
of X *c cZ4Z3Z2Z1 . On the right side, we show a corresponding derivation 
of X *c' cZ,Z3Z2Z 1 • Whereas the derivation in G is leftmost, this portion of 
the derivation in G' is rightmost. The 1 st production on the left corresponds to 
the 5th production on the right; the 2nd production on the left corresponds to 
the 4th production on the right; and so on. 

(at least once) until it is a character. This initial portion of the leftmost 
derivation is a derivation of 

for some k 2:: 0 .  For concreteness assume that k = 4; this is illustrative of the 
general case. This initial portion of the derivation is shown on the left side 
of Table S . 1 .  The corresponding derivation in G' starts out rightmost. The 



3 78 Context-Free Languages 

corresponding initial portion of that derivation is shown on the right side 
of Table 5 .1, demonstrating that X ⇒G' cZ4Z 3Z 22 I .  (The corresponding 
parse trees are shown in Figures 5 .16 and 5 .1 7 .) In the general case, 

By the decomposition lemma, there exist strings Uk , uk- I , . . .  , u2 , and 
* * 

U I , such that U = cukuk- l · · · U2U I and zk ⇒G Uk, zk- I ⇒G Uk- I , . . .  , 
22 ⇒G u2 , and Z I ⇒G ui . By the inductive hypothesis, Zk ⇒G' uk , 

* * * * 
Zk- I ⇒G' uk- 1 , . . .  , Z2 ⇒G' u2 , and Z I ⇒G' uI . Therefore, X ⇒G' u, 
completing the induction . This proves assertion 1. ■ 

We digress momentarily from the proof because the conversion from 
G to G' may seem a bit mysterious. By repeatedly rewriting leftmost 
variables in the derivation X ⇒G cZ4Z 32 22 1 , we obtain a parse tree in G 
that branches to the left (Figure 5 .16). By repeatedly rewriting rightmost 



*5  . 1  0 G reibach Normal Form 3 79 

variables in the corresponding derivation X ⇒G' cZ4Z3Z2Z 1 , we obtain a 
parse tree in G' that branches to the right (Figure 5 .1 7). For this reason, 
the conversion from G to G' converts left-branching parse trees to right
branching parse trees. The net effect is that a derivation of X ⇒ cZ4Z 3Z 22 1 
in G that ends by rewriting a variable as a character is converted to a derivation 
of X ⇒ cZ4Z3Z2Z1 in G' that begins by rewriting a variable as a character 
followed by another variable. This is important because we want the right 
side of each production to begin with a character. Assertion 2 :  If X ⇒G' u where u is a string of characters, then 
X ⇒G u. Assume that X ⇒G' u .  Then the derivation must begin with 
a production from line (2) in the table on page 3 7 6, and by rewriting the 
rightmost variable until it is no longer a pair of the form [X, Y;] ,  we get a 
derivation of 

Again, the case k = 4 is illustrative of the general case. This is shown in 
Table 5.2. The productions in G' that we used in rewriting the rightmost 
variable imply the existence of corresponding productions in G, shown in 
the third column of Table 5 .2. By those productions, X derives the same 
string in G (for details see Table 5 .1 ). In general, 

Using the decomposition lemma and strong induction as in the proof of 
assertion 1, we may conclude that X ⇒G u. This proves assertion 2. ■ 

By assertions 1 and 2, for every variable X and string u, X ⇒G u if and 
only if X ⇒G' u. In particular, S ⇒G u if and only if S ⇒G' u, so G and G' 
generate the same language. 

We have now finished the hard part of the construction. Two easy 
manipulations will complete the conversion to GNF. We eliminate the A
productions [X, X] ----+ A from G'. Concretely, we combine the production 
[X, Y] ----+ Z [X, X] with [X, X] ----+ A to form [X, Y] ----+ Z, and we combine 



380 Context-Free Lang uages 

String Production in G' 

X 

X --+ c[X, Y4] 

c[X, Y4] 

[X, Y4] --+ Z4 [X, Y3] 
cZ4 [X, Y3] 

[X, Y3] --+ Z3 [X, Y2] 

cZ4Z3 [X, Y2] 

[X, Y2] --+ Z2 [X, Yi ] 

cZ4Z3Z2 [X, Y1]  

[x, Yi ] --+ z i [x, x] 

cZ4Z3Z2Z1 [X, X] 

[x, x] --+ A 

cZ4Z3Z2Z1 

From Production in G 

Y4 --+ c 

Y3 --+ Y4Z4 

Y2 --+ Y3Z3 

Y1 --+ Y2Z2 

X --+ Y1Z1  

TABLE 5.2:  In the first two columns, we show the process of  rewriting the last 
variable four times, until it is finally replaced by a variable in V. This is a deriva-
tion of X *c' cZ4Z3Z2Z 1 . In the third column, we show the corresponding 
productions in G. 

X ----+ c[X, X] with [X, X] ----+ A to form X ----+ c. Hence we obtain a grammar 
G" with the following productions. 

Production in G 

( 1 ) X --+ YZ 
( 1 ')  X --+ YZ 
(2) X --+ C 

(2') X --+ C 

Productions in G11 

[w, Y] --+ z[w, x] for all W E  V 

[X, Y] --+ Z 
w --+ c[w, x] for all W E  V 

X --+ C 

Now the right side of any production of G" starts either with a character 



* 5 . 1  0 Greibach Normal Form 3 8 1  

or with a variable Z in V. By substituting for Z, we obtain an equivalent 
grammar, again by the decomposition lemma. 

Productions in G" 

( la) [w, Y] __, z[w, x] 
( l b) [w, Y] __, z[w, x] 
( 1 1 a) [X, Y] --> Z 
( 1 1b) [X, Y] --> Z 
(2) W -->  c[W, X] 
(2') X -->  C 

Z -->  C 

Z --> c[Z, W'] 
Z -->  C 

Z -->  c[Z, W'] 

Productions in G111 

[w, Y] --> c[W, x] 
[W, Y] --> c[Z, W'] [W, X] 
[x, Y] __, c 
[X, Y] --> c[Z, W'] 
W -->  c[W, X] 
X -->  C 

This grammar G'" is in GNF. Thus we have proved the following theorem: 

THEOREM 5.32. Every CFL that does not contain A is generated by a GNF grammar. ■ 

Table 5.3 combines the separate steps in the GNF conversion. It shows 
how to convert G directly to GNF. 

Productions in G Productions in G'" 

( la) X -->  YZ Z -->  C [W, Y] --> c[W, X] for all W E  V 
( lb) X -->  YZ W' --> C [W, Y] --> c [Z, W'] [W, X] for all W E  V 
( 1 1 a) X -->  YZ Z -->  C [x, Y] __, c 
( 1 '  b) X -->  YZ W' --> C [x, Y] --> c[Z, W'] 
(2) X -->  C W -->  c [W, X] for all W E  V 
(2') X -->  C X -->  C 

TABLE 5.3:  Converting a grammar directly to GNF. In each line, one or two 
productions of G are replaced by one or !VI productions in G"' . 



382  Context-Free Languages 

Productions in G 

( la) B --+  CA A --+  a 

C --+  AB B --+  b 

( l b) A --+  BC A --+ a  

A --+  BC B --+  b 

B --+  CA A --+  a 

B --+  CA B --+  b 

C --+  AB A --+  a 

C --+  AB B --+  b 

Productions in G'" 

[A , C] --+ a[A , B] 
[B , C] --+ a[B , B] 
[C, c] --+ a[C, B] 
[A , A] --+ b [A, C] 
[B , A] --+ b [B, C] 
[C , A] --+ b[C, C] 
[A , B] --+ a[C, Al [A , A] 
[B , B] --+ a[C ,Al [B , A] 
[C, B] --+ a[C , Al [C, A] 
[A. , B] --+ b[C, Bl [A , /\.] 
[B , B] --+ b[C, Bl [B , A] 

[C , B] --+ b[C, Bl [C , A] 
[A , C] --+ a[A , Al [A , B] 
[B, C] --+ a[A , Al [B , B] 
[C, C] --+ a[A , Al [C, B] 
[A , C] --+ b[A ,  Bl [A , B] 
[B, C] --+ b [A,  Bl [B , B] 
[C, C] --+ b [A, Bl [C, B] 
[A , A] --+ a[B , Al [A , C] 
[B , A] --+ a[B ,Al [B, C] 
[C, A] --+ a[B , Al [C, C] 

[A , A] --+ b [B , Bl [A , C] 
[B , A] --+ b [B , Bl [B , C] 
[C, A] --+ b [B ,  Bl [C, C] 

TABLE 5.4: Converting the grammar A --+ BC, B --+ CA, C --+ AB, A --+ a, 
B --+ b to GNF. 



'' 5 . 1  0 G re ibach Normal Form 383 

Productions in G Productions in G111 

( 1 ' a) B --+  CA A --+  a [B , C] --+ a 

C --+  AB B --+  b [C, A] --+ b 

( l 'b) A --+  BC A --+  a [A , B] --+  a[C , A] 

A --+  BC B --+  b [A, B] --+ b [C, B] 

B --+  CA A --+  a [B , c] --+ a[A , A] 

B --+  CA B --+  b [B , C] --+ b [A,  B] 

C --+  AB A --+  a [C, A] --+ a[B, A] 

C --+  AB B --+  b [C , A] --+ b [B, B] 

(2) A --+  a A --+  a[A, A] 

B --+  a[B , A] 

C --+  a[C, A] 

B --+  b A --+  b [A , B] 

B --+ b [B ,  B] 

C --+  b [C, B] 

(2') A --+ a  A --+  a 

B --+  b B --+  b 

TABLE 5.4: (continued) 

EXAMPLE 5.33. Let us convert the following grammar to GNF: 

A ----+ BC 
B ----+ CA 
C ----+ AB 
A ----+ a 
B ----+ b.  

We apply the rules from Table 5.3 and present the resulting grammar in 
Table 5.4. ■ ■ ■ 



384 Context-Free Lang uages 

A program is called real-time if there is a bound on the number of 
consecutive instructions it can perform without scanning a character. If we 
convert a GNF grammar, constructed as above, to an equivalent NSA by 
the technique of Section 5 .6, we obtain an NSA that performs one POP and 
at most two PUSHes between consecutive SCANs. 

COROLLARY 5.34. Every CFL that does not contain A is accepted by a real-time NSA. In fact, every CFL that does not contain A is accepted by an NSA that scans a character among every three stack operations. 
Proof: Let L be a CFL. Construct a GNF grammar for L as described in 
this section. Observe that all productions are of the form X ---+ c, X ---+ cY, 
or X ---+ cYZ. An NSA can simulate such a production by popping an 
X, pushing zero, one, or two variables, depending on the right side of the 
production, and then scanning a c. ■ 

By handling A as a special case, an extension to general CFLs is possible. 
The proof is left as Exercise 5 . 1 0- 1  (b ). 

COROLLARY 5.3 5. Every CFL is accepted by a real-time NSA. In fact, every CF L is accepted by an NSA that scans a character among every three stack operations. 
■ 

The conversion from G to G' was the crucial step in constructing the 
GNF grammar. Because this transformation can seem mysterious, we de
scribe an alternative transformation. This method may be easier to remem
ber, because it corresponds to a natural transformation on NSAs. 

Recalling that G is in Chomsky normal form, let us convert G to an 
equivalent NSA program P, essentially as in Theorem 5 . 1 6  except that we 
convert productions of the form X ---+ c directly to a POP X followed by 
a SCAN c (see Figure 5 . 1 8). We call the control state A the base state. We 
assume, by modify ing w,  that the only accepting configuration of P occurs 
when the control state is A ,  the input device is empty, and the stack is 
empty. Thus there is no need to use the operations EOF or EMPTY. It is 
also convenient to assume, by modifying a,  that the start variable is initially 
on the stack rather than being explicitly pushed onto it. 



* 5 . 1  0 G reibach Normal Form 3 8 5  

FIGURE 5. 1 8: An NSA constructed from the CNF grammar A ---+ BC, B ---+ 
CA , C ---+ AB,  A ---+ a, B ---+ b (with start variable A). 

This NSA program P has two useful properties: 

■ Every instruction that goes from the base state is a POP instruction, 
and every POP instruction goes from the base state. 

■ Every instruction going to the base state is either a PUSH instruction 
or a SCAN instruction. 

A PUSH instruction immediately followed by a POP instruction is called 
an adjacent PUSH-POP pair. (Note that the intermediate state must be the 
base state.) We merge adjacent PUSH-POP pairs, forming null instructions 
that bypass the base state, and we eliminate all PUSH instructions going to 
the base state . Now the only instructions going to the base state are SCAN 



386 Context-Free Languages 

FIGURE 5.  1 9: The result of eliminating adjacent PUSH-POP pairs from Fig
ure 5 . 1 8.  

instructions, and the only instructions going from the base state are POP instructions (Figure 5 . 1 9) .  Call this new program P' . Since the base state is the unique start state and the unique accepting state of P' , each computation consists of a sequence of fragments that begin and end at the base state. Each such fragment consists of (a) an instruction of the form (A ----+ q, POPc, NOOP ) ,  followed by (b) a sequence of PUSH instructions, and then (c) an instruction of the form (r ----+ A ,  NOOP , SCAN d) . For a particular q and r above, let L ( q, r) denote the set of strings of variables that could be pushed in part (b). The language L(q, r) is regular; in fact , the productions of G' on line ( 1 )  of Table 5 . 1  make up right-linear grammars for these regular languages. (See Exercise 5 .2-8 for a definition of "right-linear. ") Alternatively, if we determine regular expressions for these sets, we can write down a system of regular containments (allowing 



'' 5 .  l O G reibach Normal Form 3 8 7  

Kleene-closure) directly from the program P' . We obtain 

A ___, (a U bC) (EAC) * 

E ___, (aEA U b) (CEA ) * 

C ___, (aE U bCE ) (ACE) * . 

We introduce new formal variables [BAC*] ,  [CEA *],  and [ACE*] corre
sponding to the starred expressions, along with productions 

[BAC*] ___, A U  EAC [EAC*] 

[CEA*] ___, A U  CEA [CEA*] 

[ACE*] ___, A U  ACE [ACE*] ,  

and we modify the original productions to use the new variables: 

A ___, (a U bC) [EAC*] E ___, (aBA U b) [CEA*] C ___, (aE U bCE ) [ACE*] .  

We substitute these productions into the leftmost occurrences of each vari
able on the right side of the productions for [EAC*] ,  [CEA*] ,  and [ACE*] ,  
obtaining the following: 

[EAC*] ___, A U  (aEA U b) [CEA *]AC [EAC*] 

[CEA*] ___, A U  (aE U bCE) [ACE*]EA [CEA*] 
[ACE*] ___, A U  (a U bC) [EAC*]CE [ACE*] .  

Next we eliminate A-productions as in Section 5 . 3 .  In that section, we 
wrote V + to denote the set of nonempty strings in L(V) .  For simplicity, 
we will write [EAC+] for [EAC*] + , [CEA+] for [CEA*] + , and [ACE+] 
for [ACE*] + ;  we will also retain the names A, E, and C for A+, E+ , 



388  Context-Free Languages 

and C+ , respectively. Eliminating A-productions results in the following 
productions: 

A ___, (a U bC) (A U [EAC+] ) 
E ___, (aBA U b) (A U [CEA+] ) 
C ___, (aB U bCE ) (A U [ACE+] ) 

[EAC+] ___, (aEA U b) (A U [CEA+] )AC(A U [EAC+] ) 
[CEA+] ___, (aB U bCE ) (A U [ACE+] )EA (A U [CEA+] ) 
[ACE+] ___, (a U bC) (A U [EAC+] )CE(A U [ACE+] ) .  

We expand the right sides by the distributive law, obtaining 

A ___, a U bC U a[EAC+] U bC[EAC+] 
E ___, aBA U b U aEA [CEA +] U b [CEA+] 
C ___, aE U bCE U aE [ACE+] U bCE [ACE+] 

[EAC+] ___, aBAEA U aEA [ACE+]EA U aEAEA [CEA+] U 
aEA [ACE+]EA [CEA+] U bEA U b [ACE+]EA U 
bEA [CEA+] U b[ACE+]EA [CEA+] 

[CEA+] ___, aEEA U aE [ACE+]EA U aBEA [CEA+] U 
aE [ACE+]EA [CEA+] U bCEEA U bCE [ACE+]EA U 
bCEEA [CEA+] U bCE [ACE+]EA [CEA+] 

[ACE+] ___, aCE U a[EAC+]CE U aCE [ACE+] U 
a[EAC+] CE [ACE+] U bCCE U bC[EAC+] CE U 
bCCE [ACE+] U bC [EAC+]CE [ACE+] . 

Finally, eliminate unions to obtain a GNF grammar. 

Exerc i ses  

+ 5 . 10-1  (a) If  L is any CFL, show that L is generated by a grammar in which 
all productions are of the form S ---, A or X ---, cY1 • • • Yk , 
where S does not occur on the right side of any production. 



5 . 1 1 CYK Pars ing Algorithm 389 

(b) Prove that every CFL is  accepted by a real-time NSA. 
(c) Present an algorithm for testing membership in a CFL. Hint: 

Consider all possible computations of a real-time NSA on 
input x. 

5 . 1 1 CYK PARS I NG ALGO RITH M 

In Exercise 5 .10-1 (c), we saw how to test whether a string s belongs to a 
CFL L by searching for a computation of a real-time NSA for L.  Because 
we must try exponentially many possibilities, that algorithm is very slow. 
In this section we will present a more efficient algorithm called the CY K 
algorithm.4 This algorithm can be readily modified to produce parse trees 
for strings in the language (Exercise 5 .11-2) . 

We can test whether a CFL contains A as in Exercise 5 . 3 -3 .  Without 
loss of generality, we assume that the CFL does not contain A,  so we can 
put its grammar G into Chomsky normal form. Let s = s 1 · · · sn be a string 
of length n, and let s;k denote s; · · · sk . The algorithm will determine for 
each i, k with O < i ::; k ::; n and each variable X whether X derives s;k 
We denote the answer to the question by T[i, k, X] . First consider the case 
when i = k, so s;k = s;; = c, a one-character string; then T[i ,  k, X] is true 
if and only if X ----+ c is a production in G. Next assume that k > i, so 
that js;k j 2: 2. Then T[i ,  k, X] is true if and only if there is a production 
X ----+ YZ, where Y derives some prefix of s and Z derives the remaining 
suffix of s. Formally, T[i, k, X] is true if and only if there exists a production 
X ----+ YZ and an integer j with i ::; j < k such that Y derives s;1 and Z 
derives si+ l ,k · This leads to the following recurrence: 

T[i , k , X] = 

true if i = k and there exists a production X ----+ s;; , 

true if i < k and there exists a production X ----+ YZ 
such that (::lj) [i ::::; j < k, T[i ,j, Y] , 

and T[j + 1, k, Z] ] ,  

false otherwise. 

4 CYK is an acronym of Cocke, Younger, and Kasami ,  who independently invented 
variants of the algorithm. 



390 Context-Free Languages 

n := Is l ; (* initialization *) for every variable X do begin for i : = 1 to n do 

end; 

for k := i to n do T[i, k ,  X] := false; for i := 1 to n do if X ----+ sii is a production then T[i, i, X] := true; 
for k := 2 to n do for i : = k - 1 down to 1 do for all productions of the form X ----+ YZ do for j := i to k - 1 do if T[i,j, Y] and T[j + 1 ,  k, z] then T[i, k ,  X] := true; 
FIGU RE 5.20: The CYK algorithm. The string s belongs to L( G) if and only 
if T[l , n, S] = true, where n = I s l  and S is G's start variable. 

This recurrence may be easily solved by using recursion. However, for efficiency, we will use the dynamic programming technique of Section 4.4. 1 .  We store the values of T in an array that is initialized to false everywhere. We need to go through the array in such an order that T[i ,j, Y] and T[j + 1 ,  k, Z] are evaluated before T[i, k ,  X] for i '.S j < k. One way to accomplish this is to go through the array for increasing values of k and, subject to that ,  decreasing values of i, as shown in Figure 5 .20. Thus we have proved the following theorem: 
THEOREM 5.36. There is an algorithm to test membership in CF Ls in time O (n3 ) . 

■ 

COROLLARY 5.3 7. There is an algorithm to determine whether a nondeterministic stack machine program halts on a particular input. 



*5 . 1 2 Earley's Pars ing  Algorith m 3 9 1  

Proof: Modify the NSM program P as follows: First, remove any output 
device, if present . Second, change all final states to accepting states. The 
resulting program P' is an NSA that accepts x if and only if P halts on x. 
Convert P' to an equivalent CFG G, and use the CYK algorithm to test 
whether x E L(G) .  ■ 

The CYK algorithm takes a grammar G and a string s as input, and it 
determines whether s E L(  G) . While we do not mean to say that there is 
a different algorithm for each grammar G, it may be instructive to see how 
the CY K algorithm works for a particular fixed grammar G like 

A ----+ BC B ----+ CA C ----+ AB A ----+ a B ----+ b 
with start symbol A.  With this particular grammar, the CY K algorithm 
specializes to the program in Figure 5 .21. 

Exerc i ses 

5 .11-1 If s = s 1 · · · s  let us define s = s + 1 · · • s ·  for ;· > i - 1 (By n ,  IJ 1 ] '  - • 

convention s;+ 1 · · · s; = A,  so s;; = A.) Though not the most 
obvious notation, this is usually the most convenient, because, for 
example, s;1s1k = s;k - Restate the CYK algorithm in this notation. 

5 .11-2 (a) Modify the CY K algorithm so that it produces a derivation of x if x E L (G) .  
(b) Modify the CY K algorithm so that it produces a parse tree for x ifx E L (G) .  

* 5 . 1 2 EARLEY'S PARS I N G  ALGORITH M 

In this section we present the most practical known algorithm for test
ing membership in general context-free languages. The CY K algorithm 



3 92 Context-Free Languages 

n : = Is l ; (* initialization *) 
for i : = 1 to n do 

for k : = i to n do 
T[i , k , A] := T[i , k , B] := T[i, k , C] : = false; 

for i : = 1 to n do begin 
if s;; = a then T[i, i, A] := true; 
if s;; = b then T[i ,  i, B] : = true; 

end; 

for k : = 2 to n do 
for i : = k - 1 down to 1 do 

for j :=  i to k - 1 do begin 

end; 

if T[i ,j, B] and T[j + 1, k, C] then T[i, k, A] : = true; 
if T[i, j, C] and T[j + 1, k , A] then T[i, k, B] := true; 
if T[i, j, A] and T[j + 1, k ,  B] then T[i, k ,  C] : = true; 

FIGURE 5.2 1 :  A special case of the CYK algorithm in which the grammar is 
A ---->  BC, B ---->  CA , C ---->  AB, A ---->  a, B ---->  b. The string s belongs to L(G) if 
and only if T[ 1, n, A] = true, where n = I s l . 

attempts, in a bottom-up fashion, to parse every substring of the input. In 
contrast, Barley's algorithm uses a top-down approach to generate goals; it 
only tries to parse those substrings that are potentially phrases in a derivation 
of the entire input. If there is a production A --+ BC, the CY K algorithm 
will attempt to derive from C a string that could start anywhere in the 
input. However, Barley's algorithm will try to derive from C a string that 
starts only where a string derived from B ends . 

Unlike the CY K algorithm, Barley's algorithm does not require the 
grammar to be in Chomsky normal form, only that A-productions and unit 
productions be eliminated . Barley's algorithm and CYK both run in time 
O(n" ) on general grammars. However, Barley's algorithm does much better 
on grammars of practical interest. Although we will not prove it, Barley's 
algorithm runs in time 0( n2 ) on unambiguous grammars and in time 0( n) 
on LR(l )  grammars . (We will not define LR(l )  grammars, but they are 



*5 . 1 2 Earley's Parsing Algorithm 393  

equivalent to DCFLs . Furthermore, the syntax of almost every program
ming language is essentially an LR( 1) grammar. For more information, see a 
textbook on compiler design .) In contrast, the CY K algorithm always takes 
time bounded above and below by multiples of n3 , regardless of the grammar. 

Let G be a grammar with start variable S .  Suppose we want to determine 
whether the input string x belongs to L( G) .  For convenience in describing 
the algorithm, let x[i] denote x's ith character and x[i . .j] the substring 
consisting of characters i through j. The input string will actually be read 
only once from left to right and need not be stored . 

The algorithm will produce records of the form (i,j, P,  a,  /3) ,  where i 
and j are integers and P ----+ 0:/3 is a production in the grammar G.  The 
record embodies an assertion and a goal. The assertion is that x[i + 1 . .  j] is 
derivable from a ,  i .e, a ⇒ x[i + 1 . .j] . The goal is to find all k such that 
/3 ⇒ x[j + 1 . .  k] . (We think of the assertion as ending at position j and the 
goal as beginning at position j + 1.) If we find such a k, then P ⇒ x[i+ 1 . .  k] , 
which is potentially a phrase in a complete derivation of x. 

For each j, the set RECORD[j] will hold all records produced by the 
algorithm of the form (i,j, P,  a, /3) .  

(Efficiency notes: The second field (j) of  each record need not be stored, 
because it is equal to the index into the array called RECORD . The string 
a need not be stored because it is not used by the algorithm. The string 
/3 need not be copied into the record; a pointer to the beginning of /3 is 
sufficient because the algorithm processes /3 from left to right .) 

We can test whether a CFL contains A as in Exercise 5 . 3-3 . Henceforth, 
assume that A � L(  G) and, without loss of generality, that G has been 
standardized so it contains no unit productions or null productions. Assume 
that G's start variable is S .  

Step 1 :  Initialization. (Establish goals to find each prefix of x derivable 
from S .  We really only want to find a derivation of the entire string x; the 
extra information is a by-product of the algorithm.) Let 

RECORD[0] = { (0,  0 , S, A,  /3) : S ----+  /3 is a production in G} . 

Let RECORD[j] = 0 for j = 1, . . .  , n .  Let j = 0 .  

Step 2 :  Closure. (Each goal that starts at position j + 1 is given 
its chance to contribute subgoals to RECORD[j] .) For each record 



394 Context-Free Languages 

(i ,j, P, a, Q1) in RECORD[}] and each production Q -----+ 8, create the record 
(j,j, Q, A, 8) and insert it in RECORD[}] . (Note that RECORD[}] is a set, 
so it does not contain duplicates.) This step must also be applied to entries 
that are newly inserted in RECORD[}] during this step. (If the elements 
of RECORD[}] are stored in a queue, it is easy to run through all of them, 
even while more are being inserted . Additional data structures are needed, 
though, to support the set operations .) 

Step 3: Advance. (Update assertions and goals based on the next 
input character. This is the only step where x[j + 1] is examined .) For each 
record (i,j, P, a , q) in RECORD[}] , where c is a terminal character and c = x[j + 1] (that is, c is equal to the next input character), create the record 
(i ,j + 1, P,  ac, 1) and insert it in RECORD[} + 1] . Let j = j + 1. 

Step 4: Completion.  (A record of the form (i ,j, P, a, A) asserts a 
complete derivation of x[i+ l . .  j] from P.  Update other records that have that 
derivation as a subgoal .) For each pair of records of the form (i,j, P ,  a ,  A) 
in RECORD[j] and (h ,  i, R,  1, P8) in RECORD[i] , create the new record 
(h,j ,  R ,  1P,  8) and insert it in RECORD[j] . Notice that if 8 = A, then 
the new record also asserts a complete derivation, so it must be processed 
in this step as well . 

Step 5 .  If j < n ,  go to step 2 .  

Step 6 .  (j = n ,  so the entire input has been processed .) If a record of 
the form (0 ,  n,  S, a,  A) is present in RECORD[n] then accept x, else reject. 

Correctness proof for Earley's algorithm: Because each record is 
constructed only if the derivation it asserts is known to be true, the algorithm 
can only accept strings that are derivable in the grammar G. To show that 
the algorithm accepts every string in the language L( G) ,  we must show 
that if a string x has a parse tree, then Barley's algorithm accepts x. We will 
sketch a proof by structural induction on sub-parse trees . 

Inductive hypothesis: Suppose that a parse tree for x contains a sub
parse tree whose root is Y and yield is x[a + 1 . .  d] . Suppose also that the 
records (a, a, Y, A ,  (3) , for all /3 such that Y -----+ (3, are produced by the 
algorithm. Then a record of the form (a , d, Y, /3, A) will eventually be 
produced; i . e . ,  the algorithm will produce the assertion Y ⇒ x[a + 1 . .d] . 



* 5 . 1 2  Earley's Pars ing  Algorithm 3 9 5  

FIGURE 5.22:  A sub-parse tree i n  a parse tree for x. 

Proof: Assume that the inductive hypothesis is true for all proper sub-parse 
trees of the sub-parse tree rooted at Y. For concreteness, let Y's children be 
variables Z 1 , 22 , Z 3 , as in Figure 5.22. (The general case is not significantly 
different. In particular, the case when some of Y's children are characters is 
left as an exercise.) Let x[a + l . .b] , x[b + l . .c] , x [c + l . .d] be the respective 
yields of Z 1 , Z 2 , Z 3 ; each of these strings is nonempty because we eliminated 
null productions. 

The closure step, when j = a, creates the record (a, a, Z 1 , A, (3) for 
every /3 such that Z 1 --+ /3. By the inductive hypothesis, a record of the 
form (a, b, 21 , (3, A) will be produced; i.e. , the algorithm will produce the 
assertion Z 1 ⇒ x[a + 1..b] . The completion step, when j = b, combines 
this with (a, a, Y, A ,  Z 1 Z2Z3 ) to produce (a, b, Y, Z1 ,  Z2Z,, ) .  

The closure step, when j = b, creates (b, b ,  Z2 , A, (3) for every (3 
such that 22 --+ (3. By the inductive hypothesis, a record of the form 
(b, c, Z2 , /3, A) will be produced. The completion step, when j = c, creates 
(a, c, Y, Z1Z2 , Z3 ). 

The closure step, when j = c, creates (c, c , Z3 , A, (3) for all (3 such 
that Z3 --+ (3. By the inductive hypothesis, a record of the form 



396 Context-Free Languages 

(c, d, Z3 , {3, A) will be produced. The completion step, whenj = d, creates 
(a , d, Y, 2 1 2223 , A) .  This completes the proof of the inductive hypothesis. 

■ 

Step 1 of Barley's algorithm produces the records ( 0, 0, S, A, {3) for every 
{3 such that S ----+ {3. Assume that x is in L(  G) so there is a parse tree for x. 
This tree is a sub-parse tree of itself. Applying the inductive hypothesis to 
the entire tree, we deduce that the algorithm will produce a record of the 
form ( 0, n, S, {3, A) .  Therefore , x will be accepted in step 6 .  ■ 

A noninductive proof may be more motivating. 

Alternative correctness proof in terms of fixed points :  Fix a grammar G with variables A 1 , . . .  , Ak , but do not fix a start variable. Recall that L(A )  denotes the set of strings derivable from A in G. We identify 
G with the corresponding system of regular containments. Recall that 
((L(A 1 ) ,  • • •  , L(Ak ) )) is the least contractor. 

Let E(A) denote the set of strings accepted by Barley's algorithm when A is the start variable. Because each record is constructed only if the deriva
tion it asserts is known to be true, E(A) contains only strings that are 
derivable from A ;  i .e . ,  E(A) � L(A) . Since that is true for every variable, 
((E(A 1 ) ,  • • •  , E(Ak) )) -< ((L (A 1 ) ,  • • •  , L(Ak) )) ; i .e . , ((E (A 1 ) ,  • • •  , E(Ak) )) 
is contained in the least contractor. To complete the correctness proof, we 
will show that ((E(A 1 ) ,  • • •  , E(Ak ) )) satisfies all the containments in G;  i . e . ,  
((E (A 1 ) , . . .  , E (Ak) )) is a contractor, so it must be the least contractor. Then E(A) = L(A )  for every A .  

Let y be a string and let Y be a variable. Observe that Barley's algorithm 
parses substrings in the same way it parses entire strings. By inspection of 
the algorithm, we find that the following conditions are equivalent: 

• y E E(Y) .  
• If y is the input string and the algorithm creates the records 

(0 ,  0 ,  Y, A,  {3) for all {3 such that Y ----+ {3 is a production, then 
the algorithm will create a record of the form ( 0, IY I ,  Y, (3, A) .  

• If y is a prefix of the input string and the algorithm creates the 
records ( 0, 0, Y, A, (3) for all (3 such that Y ----+ (3 is a production, 
then the algorithm will create a record of the form ( 0, IY I ,  Y, (3, A) . 



'' 5 . 1 2 Earley's Pars ing Algorithm 397  

• If x is the input string, y = x[i + l . .i + IY I ] ,  and the algorithm 
creates the records (i, i, Y, A, (3) for all /3 such that Y -----+ (3 is a 
production, then the algorithm will create a record of the form 
(i, i + IY I '  Y, (3, A) . 

For simplicity, we will give the proof for the special case that G is in 
CNF; i.e. , every production has the form X -----+ YZ or X -----+ c. The general 
case is not very different. Consider any production in G. 

Case 1: The production is of the form X -----+  YZ. We wish to show 
that E ( X) � E ( Y) E ( Z). Let y be any string in E ( Y), let z be any string 
in E(Z) , and let x = yz . We must show that x E E(X) . Consider the 
behavior of Barley's algorithm with input string x and start variable X. 
The initialization step creates the record (0, 0, X, A,  YZ) .  The closure 
step, when j = 0, creates ( 0, 0, Y, A , (3) for every (3 such that Y -----+ (3 
is one of G's productions. Because y E E(Y) and y is a prefix of x, the 
algorithm will create a record of the form (0, IY I ,  Y, /3, A).  The completion 
step, when j = IY I ,  combines this record with (0, 0, X, A ,  YZ) to create 
(o, IY l , X, Y, z). 

The closure step, whenj = IY I ,  creates ( IY I ,  IY I ,  Z ,  A,  /3)  for every /3 such 
that Z -----+  (3 is a production. Because z E E(Z) and z = x[ IY I + L lx l ] ,  the 
algorithm will create a record of the form ( IY I ,  lx l , Z, (3, A).  The completion 
step, when j = l x l ,  combines this record with ( 0, IY I ,  X,  Y, Z) to create 
(0, lx l , X, YZ, A). Therefore the algorithm accepts, so x E E(X) .  

Case 2 :  The production is  of the form X -----+ c. We wish to show 
that E(X) � {c } , i.e., that c E E(X) . Consider the behavior of Barley's 
algorithm with input string c and start variable X. The initialization step 
creates the record (0, 0, X, A ,  c) . The advance step, with j = 0, creates 
(0, 1, X, c, A).  Therefore the algorithm accepts, so c E E(X) . 

Thus ((E (A 1 ) ,  • • •  , E(Ak ) )) satisfies every one of the containments in G,  
completing the proof. • 

Let G be the grammar 

S -----+ T U S+T T -----+ F U  T*F F -----+ a U b U (S) . 



398  Context-Free Languages 

j x[j] 
0 

1 a 

2 + 

3 b 

4 * 

5 ( 

6 a 

7 + 

8 b 

9 ) 

Advance Initialization, Closure, and Completion 

S ---->  .T, 0 S ---->  .S+T, O T ---->  .F, 0 T ---->  .T*F, 0 

F ---->  .a,  0 F ---->  .b,  0 F ----> .  (S) , 0 

F ---->  a.,  0 T ---->  F. ,  0 S ---->  T., 0 T ---->  T. *F, 0 S ---->  S.+T, 0 

S ----> S+ .T, O T ---->  .F, 2 T ----> .T*F, 2 F ---->  .a, 2 F ---->  .b, 2 

F ----> . (S) , 2 

F ---->  b. ,  2 T ---->  F. ,  2 S ----> S+T. , O T ---->  T. *F, 2 

T ---->  T*.F, 2 F ---->  .a,  4 F ---->  .b,  4 F ----> .  (S) , 4 

F ---->  ( .S) , 4 S ---->  .T, 5 S ---->  .S+T, 5 T ---->  .F, 5 T ---->  .T*F, 5 

F ---->  .a,  5 F ---->  .b, 5 F ----> . (S) , 5 

F ---->  a. ,  5 T ---->  F. , 5 S ---->  T. , 5 T ---->  T.*F, 5 S ---->  S.+T, 5 

S ----> S+.T, 5 T ---->  .F, 7 T ----> .T*F, 7 F ---->  .a,  7 F ---->  .b,  7 

F ---->  . (S) , 7 

F ---->  b. , 7 T ---->  F. ,  7 T ---->  T.*F, 7 S ---->  S+T. , 5 F ---->  (S. ) ,  4 

S ---->  S.+T, 5 

F ---->  (S) . ,  4 T ---->  T*F. , 2 S ---->  S+T. , 0 T ---->  T.*F, 2 

TABLE 5 .5 :  The records produced by Earley's algorithm when parsing the string 
a+b* (a+b) for the grammar S ----> T U  S+T, T ---->  F U  T*F, F ----> a U b U (S) . 
The third and fourth columns show the sets RECORD[}] produced by Earley's 
algorithm. The results of step 3 (Advance) are shown in the third column, and 
the results of steps 1 ,  2 ,  and 4 are shown in the fourth column. 

We present an example using Barley's algorithm to parse the string 
a+b* (a+b) . When working examples by hand, it is often convenient 
to write P --+ a.(3, i to represent the record ( i ,j, P, a,  (3) . The period can 
be thought of as a pointer to the current position in processing the produc
tion P --+  a/3. Table 5.5 displays the behavior of Barley's algorithm on this 
example. 

Because the record S --+ S+T. , 0 is in RECORD[9] , the algorithm 
correctly accepts the input string. Each advance step produces only one 



'' 5 . 1 2 Earley's Pars ing Algorithm 399 

FIGURE 5 .23 :  A parse tree for a+b * ( a+b) . 

record because the grammar G is unambiguous. Notice that the algorithm can complete goals that it does not subsequently make use of. In particular, the record S ---+ S+T. , 0 in RBCORD[3] asserts that S ⇒ x[ l . . 3 ] ,  which is not part of any derivation of x. All other completed goals do, however, contribute to the complete derivation. A parse tree corresponding to this derivation is shown in Figure 5 .2 3 .  
Exe rc ises  

5 . 1 2 - 1  In  showing the correctness of Barley's algorithm, fill i n  the proof for the case when Z 1 , Z 2 , or Z3 is a character. 
5 . 1 2-2 (a) Modify Barley's algorithm so that it produces a derivation of 

X if X E  L(G) . (b) Modify Barley's algorithm so that it produces a parse tree for 
X if X E  L(G) . 



400 Context-Free Languages 

5 . 1 3 CHAPTER SUM MARY 

We defined context-free languages as least fixed points of systems of regular equations, which are equivalent to systems of regular containments. These containments are conventionally written as productions, and systems of them are called context-free grammars. The language defined by a system of productions is the same as the set of strings that have parse trees and the set of strings that have derivations. A useful normal form for CFGs is Chomsky normal form (CNF). Context-free languages are the same as NSA languages. We proved pumping theorems for CFLs; they provide useful techniques for proving that particular languages are not context-free. Pumping also helped us to prove that a particular language is inherently ambiguous. Then we developed Greibach normal form for CFLs, which is mainly of historical interest. Finally, we presented two algorithms for testing membership in CFLs. CYK is the simpler algorithm, although Barley's algorithm is faster on grammars that arise in practice. 
Exe rc ises  

5 . 1 3 - 1  Given a CFG that generates a language L and a finite transducer computing a transduction T show how to construct a CFG that generates LT. 

5 . 1 3-2 Assume that we are given a CFG G for a language L. (a) Given an NFA for a language R, show how to construct a CFG for L n R .  Your goal is to construct a small grammar. (b) Let s be a string. Using the method of part (a), construct a CFG G' for L n {s } .  How large is your grammar G'? Would a particular normal form for G make the size of G' more manageable? (c) By testing whether the grammar G' of part (b) gtnerates a nonempty language, we determine whether s E L. Compare this algorithm to the CYK algorithm. 



6 

Stack and 
Counter Machines 

A STACK MACHINE consists of a contro l ,  a stack, and possibly input and output. A counter machine consists of a control, a counter, and possibly input and output. To review our notational conventions , stack machines are called SMs and counter machines are called CMs. Nondeterministic acceptors that run on these machines are called NSAs and NCAs; deterministic acceptors are called DSAs and DCAs; recognizers (necessarily deterministic) are called DSRs and DCRs. 
40 1  



402 Stack and Counter Mach ines 

Counter machines are more powerful than finite machines, and stack 
machines are more powerful than counter machines. Although even stack 
machines are not as powerful as Turing machines, they are important be
cause the NSA languages are exactly the same as the context-free languages 
(cf. Section 5 .6). In this sense, stack machines are to context-free languages 
as finite machines are to regular languages . 

In this chapter we will develop closure properties of CFLs based on their 
characterization as NSAs. We will also compare the computing power of 
nondeterministic and deterministic stack and counter machines and consider 
the computing power of 2-counter machines. Surprisingly, two counters 
can simulate any number of counters and stacks. This fact will be very useful 
when we analyze the capabilities of more powerful machines in Chapter 7 .  

6 .  l CLOSURE PROPERTI ES 

Recall that closure properties are a very important tool in the study of 
languages. By using them directly, we can show that a language is accepted 
or recognized by some program for a certain machine type. By using them 
indirectly (in proofs by contradiction), we can show that a language is not 
accepted or recognized by any program for a certain machine type. 

From Theorem 4 .38 ,  it follows that the class of languages accepted by 
nondeterministic programs for any reasonable kind of machine is closed 
under finite transductions. In particular, we have 

COROLLARY 6. 1 

( i) The dass of CF Ls is dosed under finite transductions. 
(ii) The dass of N CA languages is dosed under finite transductions. 

Proof: The CFLs are the same as the NSA languages. Apply Theo
rem 4 .38(i) to a machine [control, input, stack] for part (i) and to a 
machine [control, input, unsigned counter] for part (ii). ■ 

Later we will see that the class of CFLs and the class of NCA languages 
are not closed under complementation. We summarize some important 
closure properties for CFLs: 



6 . 1  Closure Propert ies 403 

THEOREM 6.2. The class of context-free languages and the class of NCA languages are both closed under the following operations: 
• regular operations ( union, concatenation, and Kleene-closure) 
• reversal 
• finite transductions 
• intersection with a regular language 
• quotient by a regular language 

Proof: We prove the theorem for NSA languages. The proof for NCA 
languages is similar. The theorem follows immediately for CFLs because 
the class of NSA languages is equal to the class of CFLs. 

Suppose we are given an NSA. Standardize the program so that it emp
ties the stack before accepting (Section 3.4.5) and does not use the EOF test 
(Section 3.4.2). Then closure under regular operations is obtained as in the 
proof of Lemma 4. 16. Closure under reversal is obtained by replacing each 
non-input operation by its converse, i.e. , by reversing the direction of each 
edge in the program's digraph and interchanging PUSHc with POPc. Clo
sure under finite transductions is Corollary 6. 1 .  Closure under intersection 
with regular languages follows from Corollary 4.40(i). Closure under quo
tient by a regular language follows because quotient by a regular language 
is a finite transduction, as shown in Figure 4. 36. ■ 

Closure properties can be useful for proving that certain languages are 
not CFLs. 

EXAMPLE 6.3.  Let L = { anbanban : n 2: 0}. We prove that L is not a CPL. 
Suppose, for the sake of contradiction, that L is a CPL. It is easy to construct 
a finite transducer that will scan a group of a's while writing a's, then scan a 
b while writing nothing, then scan a second group of a's while writing b's ,  
then scan a second b while writing nothing, and finally scan a third group of 
a's while writing e 's. The finite transducer is depicted in Figure 6 . 1 .  Let T 
be that finite transducer's transfer relation. Then LT = { anbn en : n 2: 0} ,  
which must be a CPL, contradicting Example 5.22. ■ ■ ■ 



404 Stack and Counter Mach ines 

FIGURE 6. 1 :  A finite transducer that maps strings of the form a;bafbak to 
a'b1 ck (and does not accept any other strings). 

THEOREM 6.4. The dass of DSR languages and the dass of DCR languages are both dosed under the following operations: 
( i) complementation 

( ii) the converse of any deterministic finite transduction 
(iii) intersection with a regular language 
(iv) union with a regular language 

Proof: We prove the theorem only for DSRs. The proof for DCRs is similar. 
Closure under complementation is obtained by interchanging accepting and 
rejecting states. Closure under the converses of deterministic finite trans
ductions follows from Theorem 4. 38(iii). Let L be a DSR language. If R is a  
regular language, then R is recognized by a DFR. By replacing each SCAN c 
operation by SCANc/WRITEc in that DFR, we construct a deterministic 
finite transducer whose transfer relation T is the partial identity function IR 

(such a program is called a filter for R). Since T is a partial identity function, 
T is symmetric, so T = T- 1 . Thus L n R = LT = LT- 1

, which is a DSR 
language by (ii). By De Morgan's laws we have L U R = I n  R, which is a 
DSR language by (i) and (iii). ■ 

We can use these closure properties to prove that certain languages are 
DSR languages. 

EXAMPLE 6.5 .  Recall that the set of palindromes with central marker is 
a DSR language. The complement of that language is therefore a DSR 



6 . 1  Closure Properties 405  

language. Intersect with the regular language a*b*#b* a* to obtain the set of all strings of the form a;b1#bka£ such that i =J- I! or j =J- k, a DSR language. Let T be a deterministic finite transduction that copies characters until a c is scanned, writes #b, and then replaces the remaining e 's with b's and all d's with a's. Applying T- 1 to the previous DSR language, we obtain the set of all strings of the form aibi ckd£ such that k > 0 and (i =J- {! or j =/- k) , also a DSR language. ■ ■ ■ 
Additional closure properties for DSR languages will be proved in Section 6.4. These include closure under quotient by a regular language and under concatenation on the right with a regular language. 
Exerc i ses  

6.1 - 1  Use the pairing construction (Section 3.2. 1 )  to give alternate proofs that the class of DSR languages is closed under intersection with a regular language and under union with a regular language. 
6. 1 -2 Prove that the following are NCA languages: (a) { a;b1 : j = i or j = 2i} (b) { aibi : j < i or j > 2i} (c) { aibi : i � j � 2i} (d) { aibi ck : i = j or j = k or k = i} (e) {xy : lx l  = IY I and y =/- x} (f ) {xy : lx l  = IY I and y =/- x R } 
6.1 -3 Prove that the following language over alphabet { a, b} is an NCA language and a DSR language: { x#y : y =J- x R} .  
6. 1 -4 Prove that the fol lowing is a DCA language: {b;c; i > 0}  U {ab;c2; :  i 2 o} . 
6. 1 -5 Prove that the class of CFLs is closed under shuffle with a regular language (see Exercise 4.8-9 for a definition). 
6.1 -6 Prove that the class of CFLs is closed under SUBSEQ( · ) .  (See Exercise 4.1 0-4 for a definition. Do not use Exercise 4.10-5 .) 



406 Stack and Counter Mach ines 

6. 1 -7 Use closure properties to prove that the following languages are not CPLs: (a) {aiba1baiba1 : i ,j  2: O} 
(b) { ww : w E { a, b} * }  (c) the set of all strings x with #a (x) = #b (x) and #c (x) = #ct (x) . (Recall that #,(x) is the number of e's in the string x.) 

6. 1 -8 See Exercise 4.8- 13  for the definition of PERM ( · ) .  (a) Prove that none of the following classes i s  closed under PERM( · ) :  regular languages, DCA languages, NCA languages, DSR languages, and context-free languages. Hint: P ind a single regular language L such that PERM ( L) is not a CPL. 
Solution: Let L = (abe)*, which is regular. PERM(L) consists of all strings with equal numbers of a's, b's, and e 's. 

which is not a CPL. Because the class of CPLs is closed under intersection with regular languages, PERM (L) must not be a CPL either. 
*(b) If L is a regular language over a 2-character alphabet, prove that PERM(L) is an NCA language and therefore a CPL. 

6. 1 -9 Let L = {aibebdibebe; : i 2: O} U {a;ed1bebek : i ,j, k 2: O}  U {aibebd1eek : i ,j, k 2: O} U {x E {a, b , e , d , e}* : x contains at least 6 b's} .  Use closure properties to prove that L is not a CPL (cf. Exercise 5 .8-8). 
Solution: Assume for the sake of contradiction that L is a CPL. Construct a finite transducer that scans a group of a's while writing a's, scans beb while writing nothing, scans a group of d's while writing b 's, scans beb while writing nothing, and finally scans a group of e 's while writing e 's. Let T be the transfer relation of this finite transducer. Then LT = { a;b;d : i 2: O} ,  which must therefore be a CPL. However, by Example 5 . 22 ,  that language is not a CPL. This contradiction proves that L is not a CPL. 



*6.2 DSA Languages Are DSR Languages 407 

*6 . 2  DSA LANG UAGES ARE DSR LANG UAGES 

A general problem in the theory of computing is to convert deterministic acceptors to recognizers for the same language. For example, we have seen how to convert DFAs to DFRs. Two standardizations are necessary for such a conversion: eliminating blocking and eliminating infinite computations. Blocking is easy to eliminate, as shown in Section 3 .4.5 . Infinite computations are not as easy to eliminate. In Section 6 .2 .2  we will show how to eliminate infinite computations from DSAs; thus we will be able to convert them to DSRs. Consequently, every DCFL is recognized by a DSR. In contrast, it is not possible to convert DTAs to DTRs, as we shall see in Chapter 7. 
6 . 2 . 1  E l i m i nat i ng  PUSH-POP Pai rs from DSAs As a major step towards eliminating infinite computations, we will remove from the DSA certain instructions whose effects are always cancelled out. Consider a DSA that is in factored form, so that every non-null instruction operates on either the stack or the input but not both. Suppose that the program, in one of its computations, performs a PUSHc that is followed by a POPc without any intervening stack or input operations; i.e., the PUSHc is followed immediately by the matching PO Pc or is  separated from it only by null instructions. Such a pair of instructions is called a PUSH-POP pair. A program fragment containing a PUSH-POP pair is shown in the left half of Figure 6.2. Since the program is deterministic, that PUSH a must always be followed by the POP a. The PUS H a  operation is therefore unnecessary, because it will always be undone by the next non-null instruction. Hence we can combine the PUSH a and POP a instructions into a null instruction and delete the PUSH a (but not the POP a). The result of the transformation is shown in the right half of Figure 6.2. To eliminate all PUSH-POP pairs from a DSA, we eliminate them one at a time until there are none left. If desired, we can eliminate null instructions after all of the PUSH-POP pairs have been eliminated. It is not obvious that this standardization process will ever finish, because when we eliminate a PUSH-POP pair, we may create additional PUSH-POP pairs (see Figure 6.3). Thus it might appear that no progress is made. Fortunately, because the number of PUSH instructions in the DSA does 



408 Stack and Counter Mach ines 

FIGURE 6.2: Eliminating a PUSH-POP pair. (Imagine that there are additional 
instructions going to control states 1 through 3 as well as going from control 
states 2 and 3 . )  The instructions on the left, (1 --+ 2, NOOP, PUSHa) and 
(2 --+ 3 ,  NOOP, POP a), are combined into a single null instruction on the right, 
(1 --+ 3, NOOP, NOOP). The PUSH a instruction can be deleted, because it must 
always be followed by the POP a instruction in any deterministic program. The 
POPa instruction is retained, however, because other instructions (not shown) 
might go to control state 2; thus the POP a would not necessarily be used only 
in conjunction with the PUSH a that was deleted. 

decrease, we can prove that the process finishes by an easy induction on the number of PUSH instructions (Exercise 6 .2-2). Thus we can standardize DSAs so that no PUSHc is immediately followed by a POPc in any computation. We also note that s imilar techniques can be used in order to eliminate INC-DEC pairs from a DCA (Exercise 6.2-3) .  
Exerc i ses  

6.2-1  Eliminate PUSH-POP pairs from the deterministic program fragment shown below: 



*6 . 2  DSA Languages Are DSR Languages 409 

FIGURE 6.3:  Eliminating nested PCSH-POP pairs. The program fragment in 
part (a) contains a PUSH-POP pair. (Imagine that there are additional instructions 
going to control states O through 4 as well as going from control states 2 through 
4.) In part (b) the P USH-POP pair has been eliminated. This results in another 
PUSH-POP pair that surrounds the newly created null instruction. In part (c) 
that PUSH-POP pair has been eliminated. 

6 .2-2 Prove that this section's process for eliminating PUSH-POP pairs is 
guaranteed to finish. 

Solution: For the base case, a DSA with zero PUSH instructions 
has no PUSH-POP pairs, so the process finishes immediately. Let 
us assume, for some particular n, that the standardization process 
always finishes when started with a DSA that has exactly n PUSH 
instructions . Now consider a DSA with n + I PUSH instructions . 
If it has no PUSH-POP pairs, then the process finishes immediately. 
Otherwise, a PUSH-POP pair is eliminated and the process contin
ues with a program that has exactly n PUSH instructions . By the 
inductive hypothesis, the process finishes. 



4 1  0 Stack and Counter Mach ines 

6.2-3 Define INC-DEC pairs by analogy to P USH-POP pairs. Show how 
to eliminate INC-DEC pairs from a DCA . (Assume that the counter 
is unsigned . )  

6 . 2 . 2  Mak ing  DSAs Halt 
In this section, we show how to eliminate infinite computations from DSAs . 
We also show how to determine whether a DSM program halts on all inputs. 

Two general problems in the theory of computing are to determine 
whether a program halts on a particular input and to determine whether a 
program halts on all inputs . By Corollary 5 . 3  7, there is an algorithm to test 
whether an NSM program halts on a particular input .  The same algorithm 
works, of course, for DSM programs . In Chapter 7, we will prove that there 
is no algorithm to determine whether an NSM program halts on all inputs . 
However, we can solve that problem for DSMs: There is an algorithm to 
test whether a DSM program halts on all inputs. 

Let P be a DSA. We begin by standardizing P. Factor P so that each 
non-null instruction operates on the stack or the input but not both . Elim
inate dead states, so there is a path from each control state to an accepting 
state . Standardize the input so that P performs at most one EOF test . The 
control can also remember whether the most recent stack operation was an 
EMPTY test; thus we may standardize P so that it never performs two con
secutive EMPTY tests . E liminate PUSH-POP pairs and then eliminate null 
instructions; thus P never performs a PUSHc that is immediately followed 
by a POPc.  

Since the input has been standardized, P can perform at most lx l  SCANs 
on input x, followed by at most one EOF, i .e . ,  at most lx l + 1 input operations . 

The input instructions partition a computation (finite or infinite) into 
at most !x i  + 2 fragments : one fragment before the first input instruction, at 
most lx l  fragments between successive input instructions, and one fragment 
(possibly infinite) after the last input instruction. Since P has no null 
instructions, the only instructions that take place in a fragment are stack 
instructions . 

What can the sequence of stack operations in a fragment look like? In 
any program, a PUSHc cannot be followed immediately by POPc' for any 
c' =/- c. Because we eliminated PUSH-POP pairs, PUS He cannot be followed 
immediately by POPc either. Therefore all the POPs in the fragment must 



*6 . 2  DSA Languages Are DSR Languages 4 1 1 

occur before all the PUSHes .  In any program, an EMPTY cannot occur 
immediately after a PUSH or before a POP . Therefore if there are any 
EMPTY tests in the fragment, then they must occur after the sequence of 
POPs and before the sequence of PUSHes . Because we standardized the 
stack, there cannot be two consecutive EMPTY tests . Thus each fragment 
consists of a sequence of POPs, followed by at most one EMPTY, followed 
by a sequence of PUSH es . 

Let Q denote the set of control states in P. We assert that there are 
fewer than I Q I  consecutive PUSHes in any partial computation of P. Why? 
Suppose, by way of contradiction, that there were I Q I  consecutive pushes in 
some partial computation. During I Q / instructions, P must enter jQ j + 1 
control states (possibly repeated) . Since P has only I Q I  control states, one 
of them is necessarily repeated, by the pigeonhole principle; call that state 
q. Thus there is a nonempty sequence of PUSHes that leads from q back 
to q (which we call a PUSH-loop); since PUSHc is a total function and 
P is deterministic, there can be no instructions going out of this loop 
(Figure 6.4) . No state entered by the PUSH-loop can be final, because P is 
deterministic. Therefore there is no path from q to a final state, so q is a 
dead state. But P has no dead states, so this is a contradiction, establishing 
the assertion . 

We have shown that there are at most /Q / - 1 PUSHes in any fragment. 
Therefore, there are at most ( lx l  + 2 ) ( 1 Q I  - 1 )  PUSHes in any partial 
computation on input x. The number of POPs cannot exceed the number of 
PUSHes in any partial computation, so it is at most ( Ix / + 2 ) ( /Q /  - 1 )  also . 
There is at most one EMPTY per fragment, so the number of EMPTY's is 
at most lx l  + 2 .  Therefore, the total number of instructions in any partial 
computation is bounded by ( fx f  + 1 )  + ( Ix [ + 2) + 2 ( lx l  + 2 ) ( 1 Q f  - 1 )  = 
2 ( /x/ + 2 ) /Q /  - L Therefore, P has no infinite computations. 

We have shown that P has no infinite computations. By eliminating 
blocking, we convert P to a recognizer for L. Thus we have proved that 
every DSA language is a DSR language. 

THEOREM 6.6. The class of DCFLs is equal to the class of DSR languages. 
Proof: Every DCFL is a DSA language, which we just proved must be a 
DSR language. By changing rejecting states to nonfinal states, we see that 
every DSR language is a DSA language, which is a DCFL by definition. ■ 



4 1  2 Stack and Counter Mach ines 

COROLLARY 6.7.  The class of DCFLs is dosed under complementation. 
Proof: If L is a DCFL, then L is a DSR language by Theorem 6.6 .  We may interchange accepting and rejecting states in order to obtain a recognizer for L. Consequently, [ is a DSR language and therefore a DCFL by Theorem 6.6 . 

• 

COROLLARY 6.8. There is an algorithm to determine whether a DSM program halts on all inputs. 
Proof: Let P be a DSM program and let L be the set of strings that P halts on . We remove P's output device, if any, and replace all final states by 

FIGURE 6.4: In a deterministic program, no edge can leave a PUSH-loop. 



*6 . 2  DSA Languages Are DSR Languages 4 1  3 

accepting states to produce a DSA P' that accepts L. Using the construction 
implicit in the proof of Corollary 6. 7, we convert P' to a DSA P" that accepts 
I. Then, we convert P" to a CFG G for I and test whether L( G) = 0. ■ 

COROLLARY 6.9. There is an algorithm to determine whether a stack machine program is a DSR. 
Proof: Given a program P for a machine [control, input, stack] , we first 
check whether it is deterministic. If so, we eliminate infinite computations 
as above; this converts infinite computations to blocked computations. Call 
the resulting program P' . Finally, we check whether P' is nonblocking. P 
is a DSR if and only if P is deterministic and P' is nonblocking. ■ 

Similar standardizations are possible for DCM programs; i .e . ,  we 
can eliminate infinite computations, convert DCAs to DCRs, determine 
whether a DCM program halts on all inputs, and determine whether a CM 
program is a DCR (see Exercise 6.2-5). 

Exerc i ses  

6.2-4 Design a DCA that accepts { a, b} * - { anbn : n 2:: 1 } .  

6 .2-5 (a) Show how to eliminate infinite computations from a program 
for a machine [control, input, unsigned counter] . 

(b) Prove that the class of DCA languages is equal to the class of 
DCR languages. 

(c) Prove that the class of DCA languages is closed under com
plementation. 

(d) Give an algorithm to determine whether a DCM program 
halts on all inputs. 

(e) Give an algorithm to determine whether a program for a 
machine [control, input, unsigned counter] is a DCR. 



4 1 4  Stack and Counter Mach ines 

*6 . 3  UNAMB IGUOUS PROG RAMS 

An important property of deterministic programs is that there is at most 
one computation for each argument. This property is shared by certain 
nondeterministic programs. 

A program P is ambiguous if there exist x, y such that P has two or more 
computations with argument x and result y. A program P is unambiguous if P 
is not ambiguous, that is, if for every x, y there is at most one computation 
of P with argument x and result y. As a special case, an acceptor P is 
unambiguous if for every x there is at most one computation of P with 
argument x; i .e. , if x E L, then P has exactly one accepting computation on 
input x, and if x (/. L, then P has no accepting computations on input x. 

The issue of unambiguity arises in the study of natural languages and 
computer programming languages, as we observed in Section 5 .9 .  

When we convert an NSA to a CFG as in the proof of Corollary 5 . 18, 
each accepting computation of the NSA on input x is converted to exactly 
one parse tree of the CFG that yields x. When we convert a CFG to an 
NSA as in the proof of Theorem 5 .16, each parse tree of the CFG that yields x is converted to exactly one computation of the NSA on input x. (See 
Exercise 5.9-2.) Thus unambiguous NSAs are equivalent to unambiguous 
CFGs. 

THEOREM 6. 1 0. L is generated by an unambiguous CFG if and only if L is accepted by an unambiguous NSA. ■ 

Unambiguous programs are a useful tool for studying unambiguous 
grammars. For example, because every deterministic program is unam
biguous, every deterministic CFL is an unambiguous CFL. However, the set 
of palindromes is an unambiguous CFL (the obvious NSA is unambiguous) 
but not a deterministic CFL, as we will show in Section 6 .4. Thus, every 
deterministic CFL is an unambiguous CFL, but not conversely. 

We complete this section by proving some useful closure properties for 
unambiguous languages. 

THEOREM 6. 1 1 . Let T1 be the transfer relation of an unambiguous program P I for a machine [output, d1 ] ,  and let T2 be the transfer relation of an unambiguous program P2 for a machine [input, d2 ] .  Assume that P 1 has a well-behaved terminator, i. e. , 



''6 . 3  Unambiguous Prog rams 4 1 5 

that we can test whether d1 is in an accepting state. Assume either that T1 is a 
partial function or that T2 is one-one. Then T1 o T2 is the transfer relation of an 
unambiguous program P for a machine [control , d1 , d2 ] .  

Proof: As in  the proof o f  Lemma 4 .44, we construct a program P for a 
machine [control , d1 , d2 ] whose transfer relation is T1 o T2 • For each com
putation of P 1 that outputs some string y and each computation of P2 that 
inputs the same string y, there is exactly one computation of P. Suppose 
that x P-2; z. 

If T1 is a partial function, there is a unique y such that x A y. If T2 is 
one-one there is a unique y such that y r4 z. In either case, there is a unique 

h h T1 T2 

y sue t at x f-----+ y f-----+ z. 
Because P 1 is unambiguous, there is a unique computation C 1 of P 1 that 

maps x to y. Because P2 is unambiguous, there is a unique computation 
C2 of P2 that maps y to z. By the construction of P, there is a unique 
computation of P that maps x to z. Therefore P is unambiguous. ■ 

Theorem 6. 1 1  is particularly useful when the first program is a finite 
transducer and the second is an NSA. 

COROLLARY 6. 1 2. Let L be an unambiguous CPL and T be an unambiguous 
finite transduction. 

(i) If T is a partial function, then LT- 1 is an unambiguous CPL. 

(ii) If T is one-one then LT is an unambiguous CPL. 

Proof: Let P be an unambiguous NSA that accepts L, and let TL be the 
transfer relation of P. 

(i) By Theorem 6. 1 1 ,  there is an unambiguous stack machine program 
whose transfer relation is T o TL; as in the proof of Theorem 4 .38 ,  
that program accepts LT- 1

• Therefore LT- 1 is an unambiguous 
CFL. 

(ii) We assert that T- 1 is an unambiguous finite transduction. (Proof of 
assertion: Eliminate EOF from the finite transducer that computes 
T and then interchange SCAN and WRITE operations. )  Because T 



4 1 6  Stack and Counte r Machines 

is one-one, T- 1 is a partial function. LT = L(  T- 1 ) - 1 , which is an 
unambiguous CFL by part (i). ■ 

A proof based on generators may be more intuitive. 

Alternat ive proof of part ( i i ) :  Given an unambiguous NSA that accepts L, 
we replace each SCAN c by a WRITEc to obtain an unambiguous generator 
for L, i . e . ,  a stack machine program that writes each string belonging to 
L (one per computation). Let TJ, be the transfer relation of that generator. 
By Theorem 6. 1 1 , TL o T is the transfer relation of an unambiguous stack 
machine program. That program generates LT. By replacing each WRITEc 

by SCANc in that program, we construct an unambiguous NSA that accepts 
LT, so LT is an unambiguous CFL. ■ 

Because deterministic programs are unambiguous and compute partial 
functions, the class of unambiguous CFLs is closed under the converse of 
deterministic finite transductions. 

COROLLARY 6. 1 3. Let L be an unambiguous CPL and T be a deterministic finite 
transduction. 

(i) LT- 1 is an unambiguous CPL. 

( ii) If T is one-one, then LT is an unambiguous CPL as well. 

Proof 

(i) Because T is deterministic, T is unambiguous and a partial function . 
The conclusion follows from Corollary 6. l 2(i). 

(ii) Because T is deterministic, T is unambiguous. By assumption , T is 
one-one. The conclusion follows from Corollary 6 . 1 2(ii) . ■ 

EXAMPLE 6. 1 4. Let L = { aibi ck : i = 2j or k = 3j} .  We will prove 
that L is inherently ambiguous. Clearly L is a CFL. Suppose, for the sake of 
contradiction, that L is an unambiguous CFL. Let T be a deterministic finite 
transduction that replaces each aa by a, each b by b, and each ccc  by c. XT 
is undefined (i .e . ,  the transducer rejects) if the a's do not come in pairs or 



''6 . 3  Unambiguous Programs 4 1  7 

FIGU RE 6. 5: A deterministic finite transducer that replaces aa by a, replaces 
b by b, and replaces ccc  by c. (Ir rejects strings in which the a·s do not come in  
pairs or  the e 's do  not come in  triples.) In  particular, i t  maps a2ibi c3k to  aibi ck . 

the e 's do not come in triples . (The deterministic finite transducer is shown 
in Figure 6 . 5 .) For example, aaaabccc T = aabc and aaaaabc cc T is 
undefined. 

Observe that T is one-one . The language LT is { aibi ck : i = j or j = k},  
which must be unambiguous by Corollary 6.  l 3(ii) but was shown to be 
inherently ambiguous in the proof of Theorem 5 .3 1 .  This contradiction 
proves that L is inherently ambiguous . ■ ■ ■ 

EXAMPLE 6. 1 5. Let S be any nonempty language, let # be any character 
other than a, b, or c, and let 

We will prove that L is inherently ambiguous . Suppose, for the sake 
of contradiction, that L is an unambiguous CPL. A deterministic finite 
transduction that discards the # and everything after it would map L to 
{ aibick : i = j or j = k }; however, we have to be careful to obtain a trans
duction that is one-one. Let s be a fixed string belonging to S. Let T be 
a deterministic finite transduction that copies characters until it scans a #, 
does not copy the #, and then accepts if the rest of the input is equal to s. 
Then T maps aibi ck#s to aibj ck and is undefined on all inputs that are not 
of that form, so 



4 1 8 Stack and Cou nter Mach ines  

Furthermore T is one-one. By Corollary 6 .  l 3(ii), that language must be 
unambiguous, but it was shown to be inherently ambiguous in the proof 
of Theorem 5 . 3 1 .  This contradiction proves that L is inherently ambigu-
ous. • • •  

Exerc ises 

6.3-1 Prove that { aibJckdC : i = j or k = £} is an unambiguous CFL. 

6 . 3-2 Let L be any language. Using Corollary 6. 1 3(ii), prove that the 
following languages are inherently ambiguous: 

(a) { daibi ck : i = j or j = k} U eL 
(b) {dhaibick : h ?:  0 and (i = j orj = k)} U eL 

6 . 3-3 Let L be the set of all strings of the form aib{ a, b} *baib{ a, b} * ,  
i .e. , 

L = {a;bxba;by :  x, y E {a, b}* and i ?:  O} .  

Prove that L is inherently unboundedly ambiguous (defined in  Ex
ercise 5 .9-5). Hint: Use the result of that exercise. 

*6 .4  ON-LINE RECOGNITION 

Although every CFL is an NSA language, in this section we develop a useful 
technique for proving that certain CFLs are not DSR languages, i.e . ,  not 
DCFLs. In particular, we prove that the set of palindromes is not a DCFL. 

Consider a DSR P that has a well-behaved terminator and never uses 
the EOF test, and let L be the language recognized by P. We perform the 
following two standardizations: Because P's terminator is well-behaved, it 
can test whether its devices are in accepting or rejecting states; thus, we can 
modify its terminator so that it accepts if and only if the input is empty and 
the control state is accepting. In addition we factor P, so each control state 
is dedicated to a single device. 

Suppose that after scanning a prefix w of the input string x, P is in a 
control state q that is dedicated to the input device. Since P does not use 



*6.4 On-l ine Recognition 4 1 9  

the EOF test, P must terminate in control state q on input w. Therefore q 
is an accepting control state if and only if w belongs to L. Thus we may 
determine which prefixes of x belong to L by looking at the control states 
dedicated to the input device that are entered during P's computation on 
input x. Intuitively, P determines which prefixes of x belong to L as its 
computation proceeds, so we say that P recognizes L on line and that P is an on-line program. 

In this section we show how to eliminate the EOF test from a DSR. 
Then we use the fact that DSR languages can be recognized on line in order 
to prove that certain CFLs are not DSR languages. 

In the following lemma, we consider an NSM program P that has no 
input device, but instead starts with the argument held in its stack. P 
is in an accepting configuration if and only if the stack is empty and the 
control is in an accepting state. Every regular language is accepted by such 
an NSM program, because SCANc can be simulated by POPc, EOF can be 
simulated by EMPTY,  and the class of regular languages is closed under 
reversal. Surprisingly, the converse is true as well. 

LEMMA 6. 1 6. Let P be a program for a machine [control, stack] such that 
astack = Ir,* and Wstack = { (A , ACCEPT) }. Then P accepts a reg1-1lar language. Furthermore, if P has p states, then L(P) is accepted by a p-state NFA. 
Proof: Without loss of generality, assume that null instructions have been 
eliminated from P, and let L be the language accepted by P. We construct 
an NFA P' that accepts L R . The control states and the initial state of P' are 
the same as those of P. We construct the instructions of P and accepting 
states of P below. 

Let q be any control state of P and let c be any stack character. Suppose 
that P is in state q and that the stack holds xc for some string x. The possible 
behaviors of P up to and including the moment that c is removed from the 
stack depend only on q and c, but not on x, because the program cannot 
look at x without removing c from the stack first. 

The instructions of P' are determined by the following rule: 

Rule 1: If there is a sequence of instructions such that 

• the composition of those instructions is (q ----, q1 , POPc)
i.e. ,  the sequence of instructions goes from q to q1 and has the 



420 Stack and Cou nter Mach ines  

same net effect on the stack as popping the c that is  on top of 
the stack-and 

• the last instruction in the sequence performs POPc,  

then let ( q -----+ q1 , SCAN c) be an instruction of P' . 

The accepting states of P' are determined by the following rule: 

Rule 2:  If there is  a sequence of instructions such that 

• the composition of those instructions is (q -----+ q1 , NOOP )
i.e . ,  the sequence of instructions goes from q to q 1 and has no 
net effect on the stack-

■ and q1 is an accepting state of P,  

then let q be an  accepting state of P'. In  particular, every accepting 
state of P is an accepting state of the NFA P' . 

Now we prove informally that P' simulates P. Call a configuration of P 
a milestone if its stack height is lower than any previous stack height. Any 
computation of P can be decomposed at its milestones. Suppose that two 
consecutive milestones are (q, sc) and (q1 , s) .  The behavior between those 
two milestones is simulated by the instruction (q -----+ q 1 , SCANc) , which 
belongs to the NF A P' by rule 1 .  Let the last milestone be ( q, A) .  The 
remaining instructions in the computation go from q to an accepting state; 
by rule 2, q is an accepting state in P' . 

Conversely, given a computation of P', we can replace each instruction 
by a sequence of instructions of P according to rule 1 .  Concatenate these 
sequences and then the sequence given by rule 2 to obtain a computation 
of P. 

Because the characters are popped off the stack in the reverse of their 
natural order, P' accepts L R , so L R is regular. Because the class of regular 
languages is closed under reversal, L is regular. ■ 

The preceding proof is nonconstructive because we did not give an 
algorithm for applying rules 1 and 2; however, the proof can be made 
constructive (Exercise 6 .4- 1) .  



*6.4 On- l ine Recognit ion 42 1 

FIGURE 6.6: An NSM program for L chat scares with the argument on the 
stack. 

EXAMPLE 6. 1 7. In Figure 6.6 we show an NSM program that starts with 
its argument in the stack, and in Figure 6 . 1 7  we show an NFA that accepts 
the reverse of the NSM program's language. ■ ■ ■ 

THEOREM 6. 1 8. If L is a DSR language then L is recognized by an on-line DSR. 
Proof: Suppose that L is recognized by a deterministic program P for a 
machine [control, input, stack] . Without loss of generality, let the control 
set of P be Q = { 1 ,  . . .  , I Q I } .  For each q in Q, we define a regular language Rq to be the set of strings x such that P contains a sequence of instructions 
that lead from the configuration (q, A, x) to an accepting configuration. By 
Lemma 6. 1 6, Rq is  a regular language (apply the lemma to a program that 
is identical to P except that its starting control state is q). In fact, close 
analysis of the proof of Lemma 6. 1 6  plus the subset construction shows that Rq is recognized by a DFR Dq whose control set is 2Q and whose start state 
is {q} . 

We define a DSR P' that simulates P while at the same time simulating 
the behavior of Dq , for each q, on the stack contents. In order to do so, P' 
will store ( I Q I  + 1 ) -tuples on the stack. For i ::; I Q I ,  the ith element of 
the tuple is the control state of Dq upon scanning the stack contents of P; 



4 2 2  Stack a n d  Cou nter Mach ines 

FIGURE 6. 7: An NFA that accepts L R . The edge (2  ----> 1 ,  SCAN a)  in 
the NFA comes from (2 ----> 3, PUSH a) (3 ----> 4, POPa) (4 ----> 1 ,  POPa) 
in the NSM program. The edge ( 1  ----> 1 ,  SCANa) in the NFA comes from 
( 1  ----> 3 ,  PUSHb) (3 ----> 2, POPb) (2 ----> 3 ,  PUSH a) (3 ----> 4, POP a) (4 ----> 1 ,  POP a) 
in the NSM program. Each of the remaining edges labeled SCANc in the NFA 
comes from the corresponding edges labeled POPc in the NSM program. Control 
state 2 is an accepting state in the NFA because of the instruction sequence (2 ----> 3 ,  
PUSHa) (3 ----> 1 ,  POP a). 

the last element of the tuple is the character at the top of P's stack or a z to indicate that P's stack is empty. The details of the simulation follow. Suppose that P has start state q,ran · Then let P' have control set Q U { Vsrnn } ,  where v,,an is a new state, and let its start state be V,rnn . P' immediately executes the instruction (vs,an -+ qs,an ,  PUSH ( 1 ,  . . .  , I Q I ,  z )  ) . Then the top of the stack indicates that each of the programs Dq is in its start state q and that P's stack is empty. For each character c in P's stack alphabet, let t, be the function such that q1 t, is the unique state q2 such that ( q 1 -+ q2 , SCAN c) is an instruction of Dq - (Since each program Dq has the same instruction set, t, does not depend on q. Since Dq is a recognizer, t, is a total function.) We convert instructions of P into instructions of P' according to the following table, 



*6.4 On- l i ne  Recogn it ion 42 3 
where each qi ranges over all elements of Q and c ranges over all elements of f:  

Instruction of P 

(r ----> s, hn , P USHd) (r ----> v, hn 

lnstruction(s) of P' 

, TOP (q1 , . . .  , qlQ l , c) ) 
(v ----> s ,  NOOP, PUSH (q1 td, . . .  qlQl td , d)) 

(r -----+ s, fin , 

(r -----+ s, /in , 
POPd ) 

NOOP ) 

(r ----> s , fin 

(r ----> S , fin 

' POP (q1 , . . .  , %!I , d) ) 

NOOP ) 

A configuration of P' is accepting if the input is empty, the control is in an accepting state q of P, and the qth element of the tuple on the top of the stack is an accepting state of Dq -Finally, so that the terminator will depend only on the control and not the top stack character, we keep the top stack character in a separate buffer that is absorbed into the control. ■ 
An on-line program for a language L must determine, for each prefix of the input string, whether that prefix belongs to L. We can modify such a program to accept iff the string and a certain prefix both belong to L. Often the language recognized in this way will not be a CFL and hence not a DCFL; then we may conclude that the original language L must not be a DCFL. By making an on-line program check a string and a particular prefix for membership in L, we make it do "double duty. " This is formalized as a closure property. Let 

Double-Duty(L) = {x#y : x E L  and xy E L} ,  
where # i s  a fixed character that does not belong to L's alphabet. For example, 

Double-Duty( { a, ab, bb} )  = { a#b, a#, ab# ,  bb#} . 



424 Stack and Counter Mach ines 
COROLLARY 6. 1 9  (Double-Duty Corollary). Double-Duty(L) is a DCFL. If L is a DCFL, then 
Proof: Let L be a DCFL. Then there is an on-line DSR P that recognizes 
L. We construct a program P' that recognizes Double-Duty(L) as follows: Simulate P on input x#y until the # is scanned. If P rejects the string x scanned so far, then reject; otherwise continue simulating P on input xy. If 
P accepts xy as well, then accept; otherwise reject. ■ 

The Double-Duty corollary can be applied to prove that many CFLs are not DCFLs. 
EXAMPLE 6.20. We prove that the set of palindromes over { a, b} is not a DCFL. Let L be the set of palindromes over { a, b} ,  and assume, for the sake of contradiction, that L is a DCFL. Then Double-Duty(L) must be a DCFL as well. Let 

L' = Double-Duty(L) n (a*ba*#ba* ) ,  
which must be a DCFL, because the class of DCFLs is closed under intersection with regular languages. But aiba1#bak belongs to L' if and only if 
j = i and k = i. Therefore, 

which is not even a CFL, much less a DCFL. This contradiction proves that the set of palindromes over { a, b} is not a DCFL. ■ ■ ■ 
THEOREM 6.2 1 .  The class of deterministic CFLs is a proper subset of the class of unambiguous CFLs. 
Proof: By Example 6.20,  the set of palindromes over { a, b} is not a DCFL. However, the grammar 

S ---+ A U a U b U aSa U bSb 
is an unambiguous grammar for the language. ■ 



*6.4 On- l i ne Recogn ition 42 5 

EXAMPLE 6.22.  We show that L = { aibi : j = i or j = 2i} is not a DCFL. Suppose it is. Then Double-Duty(L) must be a DCFL. Let 
which must be a DCFL because the class of DCFLs is closed under intersection with regular languages. If i, j, and k are greater than 0, then a;b1#bk belongs to L' if and only if j = i and j + k = 2i. Therefore 
which is not even a CFL. This contradiction proves that L is not a DCFL. ■ ■ ■ 

Exerc i ses  

6.4-1 Present an algorithm to determine the instruction set and accepting states of the NFA P' in the proof of Lemma 6. 16 .  You may assume that the stack alphabet is { a, b} .  Hint: First, determine the regular set of paths from state i to state j. Ignoring everything but the stack operations, we obtain a regular expression R over {PUSH a, PUSHb, POP a, POPb } .  Construct a CFG G that generates the set of all sequences of stack operations whose composition is NOOP. Consider the CFLs R n  L(G) , R n  (L(G) ® POP a) ,  and R n  (L(G) ® POPb) . 
6.4-2 Prove that the following are not DCFLs: (a) {ww R : w E {a, b} * } (b) {aibi : 2i = 3j or 3i = 2j} (c) { aibj : j :S i  or j � 2i} (d) { aibj : j =/= i and j =/= 2i} (e) I, where L = { ww : w E { a, b} * } (f) I, where L = { (w#)' : w E { a, b }' } 
6 .4-3 Find a language L such that L and I are CFLs but L is not a DCFL. 

Solution: Let L be the set of palindromes over { a, b } .  
6.4-4 Find a regular language R and a DCR language L such that RL is not a DSR language. Conclude that the class ofDCR languages and the class of DSR languages are not closed under concatenation. 



426 Stack and Counter Mach i nes 

6.4-5 Prove that the class ofDCR languages and the class ofDSR languages are not closed under reversal. 
6.4-6 Prove that the class ofDCR languages and the class ofDSR languages are not closed under Kleene-closure. 

*6.4-7 Let S be a DCFL and let R be a regular language. (a) Prove that PREFIX(S) is a DCFL. 
Solution: Let P be a DSA that recognizes S. Let L be the set of strings s such that the program P, when started with s on the stack, accepts at least one input string y. We assert that 
L is regular. Proof: L is accepted by an NSM program that starts with its input string s on the stack, nondeterministically guesses y character by character, and simulates P as though y were read. By Lemma 6. 1 6, L is regular. PREFIX(S) is accepted by a DSA P' that simulates P on input x and accepts x iff the final stack contents belong to L. The latter can be checked as explained before Lemma 6. 16 .  

(b) Prove that S /R is a DCFL; i . e . ,  the class of DCFLs i s  closed under quotient with a regular language. Hint: Use Lemma 6 . 1 6 . (c) Let MAX(L) be the set of strings x in L such that x is not a proper prefix of any other string in L, i .e . ,  
MAX(L) = L - Lj'E,+ . 

For example, 
MAX( { a, ab, b} ) = { ab, b } .  

Prove that MAX(S) is a DCFL. Hint: Prove that S - S /R is a DCFL. 
6 .4-8 Fix an alphabet I;_ Let S be a DCFL. Let F be a finite set of strings. Let R be a regular language. (a) Define DEJAVU (L) to be the set of strings x in L such that some proper prefix of x is also in L, i .e . ,  

DEJAVU(L) = L n LI;+ . 



For example, 

6 . 5  Two Cou nte rs S imu late a Stack 427 

DEJAVU ( { a, ab, bb} )  = { ab} . 

Prove that DEJAVU(S) is a DCFL. 

Solution: Let P be an on-line DSR that recognizes S. Modify 
P to remember by means of an extra control whether a proper 
prefix of the input belongs to S. If one does and the entire 
string belongs to S, then accept; otherwise reject. 

(b) Let MIN ( L) be the set of strings x in L such that no proper 
prefix of x is also in L, i.e., 

MIN(L) = L - (LI:+ ) .  

For example, 

MIN({a, ab, bb})  = {a, bb} .  

Prove that MIN(S) is a DCFL. 
(c) Prove that SF is a DCFL. 
(d) Prove that SR is a DCFL, i .e., the class of DCFLs is closed 

under concatenation on the right with a regular language. 
(e) Prove that FS need not be a DCFL. 
(f) Prove that S R need not be a DCFL. 

6 .4-9 Prove that every DCR language is recognized by an on-line DCR. 
Hint: Use Exercise 4.4-8. 

6 . 5  TWO COUNTERS S I M U LATE A STACK 

Although counters may appear qualitatively much less powerful than stacks, 
two counters are actually more powerful than a stack. For now, we will 
show that two counters can at least simulate a stack. This simulation will 
be important when we characterize the power of Turing machines in terms 
of stacks and counters in Chapter 7. 



428 Stack and Counter Mach ines 

For simplicity we assume the stack alphabet is { 1, 2 }; however, the same techniques work for an arbitrary alphabet. The idea behind the simulation is to view the stack string as a dyadic numeral. Stack operations correspond to fairly simple arithmetic operations on this number. One counter will hold the number; the other counter will provide temporary storage in order to assist with operations on the number. (We have chosen dyadic numerals over binary because every number has a unique dyadic representation, whereas every number has infinitely many binary representations because of leading zeroes. )  Let P be a program for a machine [control, stack, other] , where the stack alphabet is { 1 ,  2} .  Assume that Cl'. initializes the stack to be empty, i .e . , 
O'.srack = X X {A} ,  where X is the set of possible arguments. Without loss of generality, assume that P is in factored form (cf. Section 3 .4 . 1 ). We will simulate P by a program P' for a machine [control, K l ,  K2, other] , where Kl and K2 are unsigned counters. Let O'.Kl = aK2 = X X  { 0 } ;  i .e. , the counters are initialized to 0 .  In  constructing P', we will ensure that if P has certain desirable properties like determinism, nonblocking, and the absence of infinite computations, then P' has those properties as well. Each configuration (q, s, x) of P is represented by the configuration 
(q, dyadic(s) , 0, x) of P' where dyadic(s) is the natural number whose dyadic representation is the string s. The dyadic numerals are convenient because appending 1 or 2 to such a numeral corresponds to a simple arithmetic operation-doubling and adding 1 or 2-on the represented number. To double the value in the first counter, we repeatedly subtract 1 from it while adding 2 to the second counter ; then we copy the result from the second counter back to the first. The following algorithm, started with Kl = n and K2 = b, finishes with Kl = 2n + b and K2 = 0:  

while Kl > 0 do Kl := Kl - 1 ;  K2 := K2 + 2 ;  ( * Now Kl = 0 and K2 = 2n + b. *) while K2 > O do Kl := Kl + 1 ;  K2 := K2 - 1 ;  ( * Now K l  = 2n + b and K2 = 0 .  *) 
Observe that we can add 2 to a counter by performing two INCs. Now we are ready to simulate PUSH operations using Kl and K2 . Suppose that 



6 . 5  Two Counters S imu late a Stack 429 

FIGURE 6.8 :  An instruction that uses the PUSH 1 operation. 

P contains the instruction 7r = (qi - q2 , PUSH 1 , NOOP) ,  as shown m 
Figure 6.8.  (The operation PUSH2 can be handled analogously. ) 

Then (q1 , s , x) � (q2 , s1 , x) . Let n = dyadic(s) ; then 2n + 1 
dyadic(s1 ) .  Correspondingly, we want histories of P' to go, via a subpro
gram, from (q1 , n , 0, x) to (q2 , 2n +  1 , 0 , x) .  The subprogram correspond
ing to 7r is shown in Figure 6.9. Computations of this subprogram have the 
following form: 

(q1 , n, 0, x) IT' (111 , n, 1 , x) � 
(IT' )2n 

(111 , 0 , 2n + 1 , x) 
IT' (113 , 0, 2n +  1 , x) � 

(IT')2,,+1 
(113 , 2n + l , 0 , x) 

IT' (q2 , 2n + l , 0, x) .  � 

A subprogram that simulates the instruction (qi - q2 , PUSH2 ,  NOOP) 
is shown in Figure 6 . 10 .  This subprogram works by adding 2 to the second 
counter, then adding 2n, and finally copying the number 2n + 2 back to the 
first counter. Computations of this subprogram have the form: 

(q1 , n, 0, x) 
IT' (110 , n, 1 ,  x) � 
IT' (u1 , n , 2 , x) � 

(IT' )2" 
(v1 , 0, 2n + 2, x) 

IT' ( 113 , 0, 2n + 2,  x) � 
(IT' )2,,+2 

(113 , 2n + 2 ,  0, x) 
IT' (q2 , 2n + 2, 0, x) . � 



430 Stack and Counter Machi nes 

FIGURE 6.9: Simulating the stack operation PUSH 1 with two counters. 

FIGURE 6. 1 0: Simulating the stack operation PUSH2 with two counters. 



6 .  5 Two Counters S imu late a Stack 43 1 

FIGURE 6. 1 1 :  An instruction that uses the EMPTY operation. 

FIGURE 6. 1 2 : Simulating the stack operation EMPTY with two counters. 

Since A denotes the number O in dyadic notanon, simulating the 
stack's EMPTY operation is easy : We test whether Kl = 0. Suppose 
that P contains the instruction (q ----+ q0 , EMPTY, NOOP) ,  as shown in 
Figure 6 . 1 1 .  Correspondingly, the program P' contains the instruction 
(q ----+ q0 , ZERO , NOOP, NOOP), as shown in Figure 6 . 12.  

We have simulated pushing a digit on the stack by doubling the value 
of Kl and adding the digit. Correspondingly, popping a digit may be 
simulated by subtracting the digit from Kl and dividing by 2, where the 
digit must be chosen to make the division exact. In order to preserve 
determinism, we simulate both operations POP 1 and POP 2 via a single 
subprogram that determines which of them is applicable. Suppose that P 
contains the instructions 

as shown in Figure 6. 1 3 .  

(q ----+ q i ,  POP 1 ,  NOOP) 

(q ----+ q2 , POP2 ,  NOOP) 



432  Stack and Counter Machines 

FIGU RE 6. 1 3 : A single control state with a POP 1 and a POP2 going from it. 

Correspondingly, P' contains the instructions shown in Figure 6 . 14, 
which operate on configurations as follows: 

(q, 2n + 1 ,  0, x) 
IT' (v1 , 2n , O , x) � 

(IT' )2" 
(v1 , 0 , n, x) 

IT' (v2 , 0 , n, x) � 
(IT' )" 

(v2 , n , O , x) 
IT' 

(q1 , n, 0, x) , � 

and similarly 

(q, 2n + 2, 0, x) IT' (v1 , 2n +  1 , 0, x) � 
(IT' )2" 

(v1 , l , n , x) 
IT' (v3 , 0 , n , x) � 
IT' (v4 , 0, n, x) � 

(IT')" 
(v4 , n, 0, x) 

IT' (q2 , n, 0, x) . � 



6 . 5  Two Counters Simu late a Stack 4 3 3  

FIGURE 6. 1 4 : Simulating the stack operations POP 1 and POP2 with two 
counters. 

FIGURE 6. 1 5: A DSA that accepts palindromes over { 1 ,2} with central marker. 

It will be observed that this simulation requires many steps of P' in 
order to simulate one step of P. 

EXAMPLE 6.23. Let P be the program shown in Figure 6.15 , which accepts 
palindromes of the form z#z R where z E { 1 ,  2}  * . The simulating program 
P' is shown in Figure 6.16 (we did not factor P although this is usually 
necessary in order to preserve determinism). Note that P is deterministic 
and has no infinite computations, but blocks on some inputs; P' also is 
deterministic and has no infinite computations, but blocks on exactly the 
same inputs as P. ■ ■ ■  



434 Stack and Counte r Mach ines 

FIGURE 6. 1 6 : A deterministic 2-counter acceptor that accepts palindromes 
over { 1 ,2} with central marker. 

Exerc i ses  

6.5-1 Informally show how two counters can simulate a stack with a k
character alphabet. 

6.5-2 In each part of this exercise , refer to the simulation in this section 
of an SM via a 2-UCM, and Uc.:.: the same relation of representation. 



6.6 Two Counters S imu late Any Numbe r  of Counters 4 3 5  

(a) Construct a single subprogram with five control states that simulates both of the following instructions: 
(qi -------+ qi , SCAN 1 ,  PUSH 1 )  

(qr -------+ qi , SCAN2,  PUSH 2 ) .  

(b) Using (a), simplify the program in Figure 6. 16 .  (c) Construct a single subprogram with seven control states that simulates both of the following instructions: 
(qr -------+ q3 ,  SCA N 1 ,  PUSH 1 )  

(q2 -------+ q3 , SCAN2,  PUSH 2 ) .  

Hint: The subprogram must have two initial control states. 
6 .5 -3  Show how to simulate two stacks directly using three counters. 
6 .6  TWO COU NTERS S I M U LATE ANY N U M BER OF 

COU NTERS 

In the previous section we showed that two counters can simulate a stack. Consequently, 2k counters can simulate k stacks. In this section we show that two counters can simulate any number of counters. Consequently, two counters can simulate any number of stacks. In Chapter 7 we will show that two stacks can simulate a RAM, so two counters can simulate a RAM. Thus a pair of counters is extremely powerful . We begin by showing how two counters can simulate three counters. Because we have seen that unsigned counters have the same computing power as signed counters, it suffices to prove the simulation for unsigned counters. Our treatment of simulation in this section will be fairly informal. Let P be a program for a machine [Kl ,  K2, K3, other] , where Kl ,  K2, and K3 are unsigned counters. We will simulate P by a program P' for a machine [control, C, temp, other] , where C and temp are two unsigned counters. We describe the simulation informally. The values of K l ,  K2, and K3 will be encoded in the value of C; that is, the configuration (k 1 , k2 , k3 , s) 



436 Stack and Counter Mach ines 

of P is represented by the configuration (0, 2k1 3k2 5ki ,  0, s) of P' . The 
operations on K l ,  K2 , and K3 are simulated by multiplying or dividing C 
by 2, 3 ,  or 5, using techniques we developed in the preceding section . 

Below we present subprograms to perform each operation on each 
counter. The value in the counter called temp will be 0 at the beginning 
and end of each subprogram. 

Increment K l :  Multiply C by 2 as follows: 

while C > 0 do begin 
C := C - 1; temp := temp + 2; 

end; 
while temp > 0 do begin 

C := C + 1; temp := temp - 1; 
end; 

Increment K2: Multiply C by 3 in similar fashion . 
Increment K3: Multiply C by 5 in similar fashion. 
Test whether Kl = 0: Test whether C is not divisible by 2 as follows: 

even := true; 
while C > 0 do begin 

end; 

C : = C - 1; temp : = temp + 1; 
if C = 0 then 

even := false 
else begin 

C := C - 1; temp := temp + 1; 
end; 

while temp > 0 do begin 
C : = C + 1; temp := temp - 1; 

end; 

If the variable even is true, then the test fails; otherwise it succeeds. 
Test whether K2 = 0: Test whether C is not divisible by 3 in similar 

fashion. 



*6. 7 Counter Languages and Prefix Equ ivalence 43 7 

Test whether K3 = 0: Test whether C is not divisible by 5 in similar fashion. 
Decrement K l :  Divide C by 2 as follows: 

test whether C is even as above; if C is even then begin 

end; 

while C > 0 do begin C := C - 2; temp := temp + 1 ;  end; while temp > 0 do begin C := C + 1 ;  temp := temp - 1 ;  end; 
If C is not even, then Kl  is 0, so Kl  cannot be decremented. 

Decrement K2: Divide C by 3 in similar fashion. 
Decrement K3: Divide C by 5 in similar fashion. This completes the simulation of three counters by two counters. It will be observed that this simulation requires many steps of P' in order to simulate one step of P. We have shown that two counters can simulate three counters. Therefore i counters can simulate i + 1 counters for any i � 2 .  Thus, two counters can simulate three counters, which can simulate four counters, and so on for any positive integer k. By transit ivity, two counters can simulate k counters. 
Exerc i ses  

6.6-1 Show how two counters can directly simulate k counters. Hint: There are infinitely many prime numbers. 
1< 6 .  7 COU NTER LANG UAG ES AN D PREF IX 

EQU IVALENCE  

In Chapter 4 we applied the idea of prefix equivalence classes in order to show that certain languages are not regular. In this section we develop 



4 3 8  Stack and Counter Mach ines 

similar tools, which we apply to show that certain languages are not NCA languages. This is a hard section. We begin with some properties of stack machines, which include counter machines as a special case. 
LEMMA 6.24. Let P be a program for a machine [stack] that starts with an empty stack. We say that P generates a string s if P terminates in a final state with s on the stack. Then P generates a regular language. Furthermore, if P has p states, then L(P) is accepted by a p-state NFA. 
Proof: Let L be the language generated by P. Replacing each stack operation by its converse, we convert P to an NSM program that accepts L R in the sense of Lemma 6. 16 .  By that lemma, L R is regular. Since the class of regular languages is closed under reversal, (L R ) R is regular, but that language is in fact L. ■ 
LEMMA 6.25.  Let P be a program for a machine [input, stack] that starts with an empty stack. Define x p s if there is a computation of P on input x that terminates in a final state with s on the stack. Then the class of regular languages is closed under p. Furthermore, if P has p states and R is accepted by an r-state NFA, then 
Rp is accepted by an O(rp ) -state NFA. 
Proof: Let R be a regular language. Compose a nondeterministic finite generator for R with the NSM program P according to the construction implicit in Theorem 4.45 .  Use a pairing construction to merge controls; this multiplies the buffer size (a constant) and the number of control states in the two programs. The resulting NSM program generates Rp, which must be regular by Lemma 6.24. ■ 

Note that p is not necessarily a finite transduction because p could map 
db1 to c i-J_ 
LEMMA 6.26. Let P be an NSA. Define x p s if there exist y and an accepting computation of P on input xy that includes a configuration in which the input holds y and the stack holds s. Then the class of regular languages is closed under p. Furthermore, if P has p states and R is accepted by an r-state NFA, then Rp is accepted by an O(rp2 ) -state NFA., 



*6.7 Counter Languages and Prefix Equ ivalence 4 39  

Proof: Let P's input alphabet be � ,  stack alphabet be  r, control set be  Q ,  
start state be qsrarr , unique accepting state be qaccepr , and sequel relation be 
II. Define a relation CJ from �* to r*Q by 

II* 
X (J sq {::=} (qstarr , x, A)  I-----+ (q, A, s) . 

Let 

II* 
S = {sq : (::ly) [ (q, y, s) 1-----+ (qaccepr , A ,  A)] }. 

Then Rp = (RCJ n s) /Q. 
The relation CJ is computed by an NSM program that holds the result on 

the stack; it simulates P until the input is empty, pushes P's control state on 
the stack, and then goes to a new accepting state. This NSM program has p + 1 control states. By Lemma 6.25, RCJ is an O(rp )-state NFA language. 

The language S is accepted by an NSM program that holds its argument 
on the stack; it starts in a new control state, pops one character to determine 
a control state of P, and then simulates P by guessing its input y. This NSM 
program has p + 1 control states. By Lemma 6.16 S is a (p + 1 )-state NFA 
language. 

By the pairing construction, RCJ n S is an O(rp2 ) -state NFA language. 
Since Rp = (RCJ n S)/Q, it is accepted by an NFA with the same number 
of control states. ■ 

DEFINITION 6.2 7 (Strong Prefix Equivalence). With respect to a lan
guage L, we say that strings x and y are strongly prefix inequivalent if (a) x and 
y belong to PREFIX(L) and (b) every string z that witnesses that x or y is in 
PREFIX(L) also witnesses that x and y are prefix inequivalent, i.e. , if both 
of the following conditions hold: 

• (::lz 1 ) [xz 1 E L] and (::iz2 ) [yz2 E L] 

• (\iz) [xz � L or yz � L] 

DEFINITION 6.28 (Internal Description). An internal description of a ma
chine consists of the states of all devices except input and output; in other 
words it is a configuration minus the states of the input and output devices. 



440 Stack and Counter Mach ines  
THEOREM 6.29. If L is an NCA language, then the number of strings of length n or less that are strongly prefix inequivalent with respect to L is O(n ) . 
Proof: A counter can be simulated by a stack with a 1-character alphabet. Therefore L is accepted by an NSA P with a 1 -character stack alphabet . Let 
Q be the control set of P. As in Lemma 6.26, define x p s iff there exists y such that there is an accepting computation of P on input xy that includes a configuration in which the input holds y and the stack holds s. Let x be a string of length n or less belonging to PREFIX(L) , and let 
R = { x} . Then R is accepted by a DFA with n + 1 states. By Lemma 6.26, 
Rp is accepted by an m-state NFA where m = O(n \Q \ 2 ) . Since x is a prefix of a string in L, Rp is not empty, so Rp contains an element whose length is less than m by Exercise 4.4-7 .  Now let M = m \Q \  + 1 ,  and assume that there are M strongly prefixinequivalent strings x 1 , . . .  , xM of length n or less. By the preceding paragraph, for each x; , there exists y; so that on input x;y; the program P has an accepting computation that reaches a configuration where the input device stores y; and the stack stores a string whose length is less than m. Since the stack has a 1 -character alphabet, there are at most m\Q \  internal descriptions corresponding to such configurations. By the pigeonhole principle, there exist strings x;y; and x1y1 in L that lead thus to identical internal descriptions after x; or x1 has been read. Then x;y1 is in L, so x; and x1 are not strongly prefix inequivalent. Therefore the number of strongly prefix-inequivalent strings of length n is at most M - 1 = O(n \Q \ 3 ) = O(n). ■ 
COROLLARY 6.30. { aibicidi : i,j � 0} is not an NCA language. 
Proof: Let L = { aibicidi : i ,j � 0} .  All strings of the form aibi are strongly prefix inequivalent with respect to L. There are at least n2 

/ 4 such strings of length n or less. Therefore, by Theorem 6.29, L is not an NCA language. ■ 
Exerc i ses  

6.7-1  Prove that L o [ J  i s  not an NCA language. 



6 .8  Chapter Summary 44 l 

6.  7-2 Prove that the set of palindromes over { a ,  b} with central marker is not an NCA language. Thus we have a language L such that L is a DSR language and [ is an NCA language, but L is not an NCA language. 6.7-3 Prove that {aibickdl'eme : i -=I n  and j -=/ m and k -=I £'} is not an NCA language. *6.7-4 Is { aibickdl' : i -=I £  and j -=I k} an NCA language? *6.  7 -5 Prove or disprove: If L is a DSR language and L and [ are NCA languages, then L is a DCR language. 6. 7-6 Prove that if L is a DCA language, then the number of strings of length n or less that are prefix inequivalent with respect to L is O ( n). 6. 7 -7 (a) Show how to compose nondeterministic programs as in Lemma 4.44 but without using an extra control. (b) Improve Lemma 6 .25 by showing that Rp is accepted by an rp-state NFA. (c) Improve Lemma 6.26 by showing that Rp is accepted by an r(p + 1 ) 2 -state NFA. 
6 . 8  CHAPTER SUM MARY 

In this chapter, we proved that the class of CFLs is closed under finite transductions; this provides useful techniques for proving that certain languages are CFLs and that certain other languages are not CFLs. Next we showed how to determine whether a DSM program halts on all inputs, how to tell whether an SM program is a DSR, and how to convert a DSA to a DSR; the same applies to counter machines as well. We proved that every DCFL (DSA language) is recognized by a DSR and, in fact , is recognized by an on-line DSR.  From that we deduced a variety of closure properties for DCFLs; we concluded that the set of palindromes, while an unambiguous CFL, is not a deterministic CFL. Therefore NSAs are more powerful than DSRs. Next we proved that two counters can simulate any number of stacks and counters. Finally, we generalized the notion of prefix equivalence and proved that NCAs are more powerful than DCRs, that NSAs are more powerful than NCAs, and that NCAs and DSRs have incomparable computing power. 



442 Stack and Counter Mach ines 

Exerc i ses  

6.8-1 Let M be a machine [control , signed counter, input] , where in addition to the ordinary operations of INC, DEC, ZERO, POS, and NEG, the signed counter is also equipped with the operation NONZERO, which tests whether the counter's value is different from zero. Let 
M' be a machine [control, signed counter, input] , where the signed counter is not equipped with the operation NONZERO. Show informally how M' can simulate M. 

6.8-2 Queues were defined in  Exercise 1 . 1 - 1 .  Show informally how a machine [control , stack, stack, input] can simulate a machine [control , queue, input] . 



7 

Computability 

RECALL THAT A Turing machine has a con
trol, a tape, and possibly input and output. 1 Turing defined his machines 
so as to model the capabilities of a human being working with pencil and 

1 Turing's original treatment differed in that he did not ever use separate devices for 
input or output as we do. Instead he used the tape for input and output as well as for 
memory. 

443 



444 Computabi l ity 

paper. Turing modeled his tape after an endless supply of sheets of paper, 
upon which a mathematician can write formulas. The mathematician has a 
finite amount of internal memory (the mathematician's brain, which corre
sponds to the Turing machine's control). Assuming that the mathematician 
has limited perception, there is a limited number of distinguishable things 
that she could write on a single sheet of paper. Thus each sheet of paper 
holds a single character in a very large alphabet. The mathematician keeps 
the sheets of paper in order (say, left to right), and when she runs out, she 
buys more. Hence her supply of paper can be modeled as a sequence of 
characters extending arbitrarily far to the right, i.e., as an infinite tape. The 
tape head keeps track of which page the mathematician's head is currently 
looking at. 

Recall that a RAM has a control , a random access memory, and input 
and output. We show that Turing machines have the same computational 
power as RAMs, as well as a number of other computational systems, such 
as rewriting systems and Herbrand-Godel programs. In fact, it is generally 
believed that a Turing machine program can simulate any physically real
izable computational process at all-including that of the most powerful 
digital computers or a human being . This belief is called Church's thesis.2 

Informally, an algorithm is a "computational process" that takes a prob
lem instance and in a finite amount of time produces a solution . In this 
book we have presented informal algorithms that solve numerous problems, 
e .g., converting a k-adic numeral to a decimal numeral, computing greatest 
common divisors, converting an NFA to a regular expression, converting an 
NFA to an equivalent DFA, minimizing a DFR, testing whether two DFRs 
recognize the same language, and testing whether a string belongs to a CPL . 
It is hard to make the definition of algorithm more precise except by saying 
that a computational process is anything that can be done by a program for 
a computing machine, and in that case one must accept that a human being 
with paper and pencil is a kind of computing machine. One interpretation 

2 Church's thesis is not a mathematical theorem or axiom. Rather it is a generalization 
about the limitations of all known computing machines. Computer scientists believe 
Church's thesis in the same way that physicists believe in the conservation of energy. 
The development of real computers contradicting Church's thesis would be as startling 
as the development of perpetual motion machines. 



7 . 1  Tapes and Tu ri ng Machi nes 445 

of Church's thesis is  that any algorithm at all can be implemented as a 
Turing machine program. 

In order to understand the capabilities of real digital computers, we 
investigate the capabilities of Turing machines. It is notable that DTAs are 
equivalent to NTAs (Section 7 .6); however, no efficient simulation ofNTAs 
by DTAs is known (Chapter 9) . 

In order to understand the limitations of real digital computers, we 
investigate the limitations of Turing machines and we present certain lan
guages that are provably not recognized by any Turing machine program. 
These languages formalize important problems that, assuming Church's 
thesis, cannot be solved by any algorithm. For example, there is no al
gorithm that determines which Turing machine programs halt or whether 
two Turing machine programs are equivalent; the same is true for computer 
programs in typical high-level languages, such as Pascal or LISP. There is 
no algorithm to determine whether a context-free grammar is ambiguous 
or whether two context-free languages are equal . There are also unsolvable 
problems outside of computer science . For example, there is no algorithm 
to determine whether a multivariate polynomial equation has an integer 
solution (Hilbert's tenth problem) . 

The study of computability also has applications to mathematical logic . 
By reasoning about computations, we will prove that there is no algorithm 
to determine whether a conclusion logically follows from a hypothesis in 
first-order logic. 

7 . 1 TAPES AND TUR ING  MACH I N ES 

Tapes and Turing machines were introduced in Chapter 1 .  We begin this 
section with a review. Then we prove by several important simulations the 
equivalence of multitape, 1 -tape, 2-stack, and 2-counter machines . 

A tape holds a finite string and a read/write head that is located upon 
the character currently being examined . An operation on a tape consists of 
examining the character under the head, overwriting that character with a 
new character, moving the head left or right on the tape, or testing whether 
the head is at the leftmost end of the tape . It is not possible to move off the 
left end of the tape, but it is possible to extend the tape string by moving 
off the right end . 



446 Com putability 

We write u to denote a particular character that we think of as being 
blank, like "space" on a standard keyboard. The tape alphabet is assumed 
to contain the character u .  When the head moves right from the right end 
of the tape, a blank is automatically concatenated to the right end of the 
tape string . 

If r is the tape alphabet then we define a new alphabet 

whose elements are assumed to be distinct from the elements of r. We 
write GJ to denote a c that is under the tape head. Thus we write xGJ y to 
denote that the tape holds the string xcy and that the c is under the head . 

Formally, a tape with alphabet r (containing u) consists of the following: 

realm: r* [Dr* 

usual initial state: � 

usual final states: r* [Dr* 

repertory: { SEEc : c E r}  U { PRINTc : c E r} U 

{ MOVEL, MOVER, ATHOME} 

The tape operation SEEb is a test defined as follows (x and y denote strings 
over r, and a and b denote elements of f): 

x� y S EEb 
if a =  b 

undefined otherwise . 

The tape operation PRINTb is defined as follows: 

x� y PRINTb x[E] y . 



7 . 1  Tapes and Tu ri ng Machines 447 

The tape operations MOVEL, MOVER, and ATHOME are defined as follows: 

X a � y  MOVEL x �  b y, 
0 y MOVEL is undefined. 

X � b y  MOVER x a [t]y, 
x �  MOVER X a [J. 
0 Y  ATHOME 0Y-

To simplify programs, it is customary to combine SEEa, PRINTb, and 
MOVED (where D indicates direction), in that order, into a single tape 
operation [SEEa, PRINTb, MOVED] , i .e . ,  

i s  abbreviated 

7. 1 . 1  One Tape S imu lates k Tapes 
A machine with k tapes i s  called a k-tape Turing machine. We show that k 
tapes can be simulated by one tape. 



448 Computab i l ity 

Let P be a k-tape TM program. We may replace each tape alphabet 
by the union of all k of them, so, without loss of generality, let us assume 
that each tape of P has the same alphabet r. We will design a 1 -tape TM 
program P' that simulates P. The tape alphabet of P' will be f' = (ru[lt 
The nth character on the tape of P' represents all the nth characters, with 
or without a tape head, on every tape of P. The blank character in P' is 
Li, and the tape of P' is initialized to contain �k, representing the initially 
blank tapes of P with their heads on the home squares. 

EXAMPLE 7. 1 .  If P is a 4-tape TM with alphabet { a, . . .  , z, u } ,  then the 
contents of the four tapes in P might be: 

a b I C IGJI e I f g 

h I i I j I k ICul m n 0 p 

q IGJI s I t I u I V w 

X I y I z IGJI 

For clarity we have drawn a square around each character on each tape (two 
squares if the head is present). On tapes 1 ,  3, and 4, we have shown part of 
the blank area that is imagined to be to the right of the last character on a 
tape. It is convenient to depict the elements of f' vertically. The contents 
of P's four tapes are represented on a single tape in P' as follows: 

a b C GJ e f g LJ LJ 

h i j k w m n 0 p 
q GJ s t u V w LJ LJ 

X y z G] LJ LJ LJ LJ LJ 



7 . 1  Tapes and Turing Mach ines 449 

For clarity, we have drawn a rectangle around each character on the single 
tape. The position of the tape head in P' is not shown . ■ ■ ■ 

To be precise, let P be a program for a machine [tape1 , . . .  , tapek , 
other] . (The other device might incorporate a control, input, and output, 
for example. )  Because we can factor P, we may assume that each instruction 
operates on at most one tape and possibly the other device . P will be 
simulated by a program P' for a machine [phase, tape, other] , where phase 
is a control whose purpose we will describe shortly. 

To simulate an instruction that uses tape i, we start at the left end of 
the tape in P' and move the head right in P' until we find the symbol 
corresponding to tape i's head in P. Then it is straightforward to simulate 
the instruction . To preserve determinism, the search for tape i's head is done 
simultaneously, using the same new states, for all instructions that use tape 
i. Finally, the tape head in P' is moved back to the home square, ready to 
simulate another instruction of P.  

To be more precise, let 7r = ( [SEEa, PRINTb, MOVED] ; ,/) , i . e . ,  an 
instruction in P that performs the operation [sEEa, PRINTb, MOVED] on 
tape i and performs/ on the other device. (The situation when 7r contains 
only zero, one, or two of the operations SEEa, PRINTb, MOVED is left as 
Exercise 7 .1-4 . )  When we begin the simulation of an instruction, the tape 
head of P' is in the home position . 7r is simulated by moving the tape 
head right until we find a symbol on the tape that contains � in the ith 
coordinate . That symbol is replaced by one with b in the ith coordinate, 
the head of P' moves in direction D, and the operation f is performed on 
the other device. After the head has moved, the symbol under the head 
is modified by replacing the character c in its ith coordinate by GJ, which 
represents P's new head position on tape i. Then the head of P' moves left 
to the home position, ready to simulate another instruction . 

That informal simulation operates in three phases: finding P's head 
position, moving P's head position according to D,  and returning home . 
We keep track of the phase by using the control called "phase,"  whose 
realm is {findhead, move, gohome } .  The control called phase is initialized 
to findhead . 

The detailed instructions for simulating ( [SEEa, PRINTb, MOVED]; ,/) 
are given below, where u takes on every value in (f U [TI) i- l , c takes on 



4 5 0  Computabil ity 

every value in r, and V takes on every value in (r u [B)k-i .  

(findhead __, findhead , [SEEucv, MOVER] , NOOP) , 

(findhead --, move , [SEEu�v, PRINTubv, MOVED] , / ) ,  

( move --, gohome , [SEEucv, PRINTuG]v] 

(gohome --, gohome , [MOVEL] 

(gohome --, findhead , [ATHOME] 

, NOOP) , 

, NOOP) , 

, NOOP) 

That completes the simulation . The proof of correctness is  left as an exercise . 
The simulation preserves determinacy. Although the simulation is not very 
efficient, observe that the number of steps spent in simulating a single 
instruction of P is bounded by twice the length of the tape string . We will 
use this fact when comparing the relative power of time-bounded machines 
in Chapter 9 .  

Because any positive number of tapes have the same computational 
power, usually k-tape Turing machines are simply called Turing machines 
or multitape Turing machines . 

Exe rc i ses  

7 .1-1 Imagine that Turing's mathematician has no eraser, so she cannot 
overwrite symbols the way an ordinary tape head can . Define a 
write-once tape on which only blank characters can be overwritten . 
Prove that a write-once tape can simulate an ordinary tape . 

7 .1-2 When we factor a k-tape TM program so that each operation uses 
at most one tape, the resulting program may run k times slower 
than the original . Describe in words how to simulate an unfactored 
k-tape TM program directly by a 1-tape TM. Preserve determinism. 

7 .1-3 A two-way infinite tape is like a one-way infinite tape, but it extends 
infinitely far to the left and right, and it has no ATHOME instruction . 

(a) Define the realm and repertory of a two-way infinite tape. 
(b) Show how a two-way infinite tape can simulate a one-way 

infinite tape in lockstep . 



7. 1 Tapes and Turing Machines 4 5 1  

(c) Show how a one-way infinite tape can simulate a two-way 
infinite tape in lockstep . 

7 .1-4 Refer to this section's simulation of k tapes by one tape . 
(a) If 7r operates only on the other device, how can 7r be simulated 

in P' ? 
(b) How would you simulate ( [SEEa] ; ,/) ? 
(c) How would you simulate ( [PRINTb] ; ,/) ? 
(d) How would you simulate ( [MOVED] ; ,/) ? 

7 .1-5 Prove the correctness of this section's simulation of k tapes by one 
tape . 

7 .1-6 A 2-dimensional tape (2-D tape) is a rectangular grid of tape squares 
extending infinitely far up and right .  The operations SEEc and 
PRINTc are defined as usual . The ATLEFT and ATBOTTOM opera
tions check that the tape head is on the left or bottom edge of the tape 
respectively. The MOVEL, MOVER, MOVED, and MOVED opera
tions move the tape head left, right, up, and down, respectively
except that it is not possible to move left or down past the edge of 
the tape . 

(a) Formally define the realm and repertory of a 2-D tape. What 
is a reasonable initial state for a 2-D tape? 

(b) Informally prove that a tape can simulate a 2-D tape . 

7. 1 . 2 Two Stacks S i m u late a Tape 
In this section we establish a fundamental relationship between stacks and 
tapes: Two stacks can simulate a tape . When we consider undecidabil
ity later in this chapter, this simulation will be the key to showing that 
many problems involving NSA languages, and consequently context-free 
languages, cannot be solved by any algorithm. As a corollary, we prove 
that two counters can simulate a tape .  We will use this fact in proving the 
undecidability of some very important problems in mathematics and logic. 

A tape will be simulated by two stacks and a control called "underhead . "  
The first stack contains the string to the left of the tape head, underhead 
contains the character under the tape head, and the second stack contains 
the string to the right of the tape head but in reverse order. 

EXAMPLE 7.2 .  The tape string abc@]ef ghij is represented by 
( abc ,  d, j ihgf e )  on stack1 , under head, and stack2 (see the left half of 



4 5 2  Computabi l ity 

w 

e 

f f 

g d g 

h C h 

i b i 

0 j a � j 

FIGURE 7. 1 :  Two stacks and a control represent a tape. On the left the repre
sented tape state is abc@Jefghij . On the right the represented tape state is 
the result of performing the operation MOVER, i.e., abcd�fghij . Observe 
that only the control state and the top character of each stack are modified. 

Figure 7 . 1 ) . The two characters adjacent to the tape head are stored at the 
tops of the two stacks so that characters can be transferred from one stack 
to the other while simulating the head's movement. ■ ■ ■ 

The SEE operation is simulated by testing the value stored in the con
trol called underhead. The PRINT operation is simulated by changing the 
value in underhead. The tape operation MOVER is simulated by pushing the 
value of underhead onto stack1 and popping the top of stack2 into underhead. 
Continuing the example above, when MOVER is performed the tape con
tents become abcd�fghij , which is represented by ( abed, e ,  j ihgf ) ,  
as depicted in the right half of Figure 7 . 1 .  The tape operation MOVEL is 
simulated by pushing the value of underhead onto stack2 and popping the 
top of stack1 into underhead. The tape operation ATHOME is simulated by 
testing whether the first stack is empty. 

Let P be a program for a machine [tape, other] with tape alphabet r. 
We will simulate P by a program P'  for a machine [stack1 , underhead, 
stack2 , other] , where each stack alphabet is r and where underhead is a 
control whose realm is r. The stacks are initialized to A and underhead is 
initialized to u. The details of the simulation are given in Table 7 . 1 .  

In Section 6 .5  we showed that two counters can simulate a stack. There
fore four counters can simulate two stacks. We also showed how two counters 
can simulate four counters. Therefore two counters can simulate two stacks. 



Instruction of P 

(SEEa ' I) 
(PRINTa ' /) 
(MOVER ' I) 
(MOVEL ' f) 
(ATHOME , f) 

7. 1 Tapes and Tu ring Machines 4 5 3  

Instruction of P' Remark 

(NOOP , a ---+  a ,  NOOP , f) 

(NOOP , c ---+ a , NOOP , /) for all C E  r 

(PUSHc ' C -----+  d '  POPd , f) for all c, d E f 
(POPb ' C -----+  b ' PUSHc , f) for all b, c E f 
(EMPTY , NOOP , NOOP , f) 

TABLE 7. 1 :  Simulating a machine [tape, other] by a machine [stack, control, 
stack, other] . 

Since two stacks can simulate one tape, two counters can simulate one tape .  
Since one tape can simulate k tapes, two counters can simulate k tapes . Thus 
we have the following corollary: 

COROLLARY 7.3. Any multi tape Turing machine can be simulated by a 2-counter machine. ■ 

Exe rc ises  

7 .1-1 Let P be a nondeterministic 1-TM program with no input or output 
device. Construct an NCA that accepts all strings that are not traces 
of P. 

7 .1-2 Let P be a deterministic 1-TM program with no input or output 
device . Prove that the set of all strings that are not computations 
of P is not necessarily a CFL . Hint: For simplicity, encode each 
instruction of P as a single character. 



4 5 4  Computab i lity 

7 . 2  PUTTING TH E ARG U MENT ON A TAPE, STACK, 
OR COUNTER 

A further standardization allows us to eliminate the input and output de
vices . This will simplify proofs later in this chapter and in Chapter 9, because 
it means fewer devices to simulate . To avoid encoding issues, assume that 
arguments and results are strings . We will describe how to eliminate I/0 
devices from 1-TMs, 2-SMs, 3-CMs, and 2-CMs . 

1 -TMs: We will simulate a 1-tape machine by a 1-tape machine without 
input or output .  First we simulate the 1-tape machine by a 3-
tape machine; then we combine these three tapes into one . Tape 1 
simulates the original 1 -TM's tape . Tape 2 is initialized to hold the 
argument, so SCANc is simulated by [SEEc, MOVE Rh, and EOF is 
simulated by [SEEuh . Tape 3 will hold the result; it is initialized 
to blank, and WRITEc is simulated by [PRINTc, MOVERh. 

Now we simulate these three tapes using one tape . The 
start state for the simulating program will be v0 • The argument 
starts on the tape . First, the program replaces each character 
c of the argument by the corresponding triple (u ,  c, u) . The in
structions for this are (v0 ---, v0 , [sEEc, PRINT(u ,  c, u) , MOVER] ) 
for each nonblank character, (v0 ___, v1 , [SEEu ,  PRIN T (u ,  u, u) ] ) ,  
(vi ---, Vi , [MOVEL] ) ,  and (v1 ---, qstarn ATHOME) . Then the pro
gram proceeds to simulate the 3-tape machine by a 1 -tape machine 
as in Section 7 .1 .1 .  Once that part of the simulation is complete, 
the triples on the tape are replaced by the corresponding characters 
of the result in an analogous fashion, and the tape head is moved 
to the home square . 

2-SMs: Now we simulate a machine [control, tape] that uses the tape to 
hold the argument and result by a machine [control, stack 1, un
derhead, stack 2] . The result will be held in reverse in stack 2 .  
The argument x 1 · · · xk starts on stack 1 .  First, the program 
moves the argument from stack 1 to stack 2 via the instruc
tions ( 11stan ___, Vstan , POPc, NOOP,  PUSHc) , reversing it in the 
process . Second, it pops the top character from stack 2 and 



7. 2 Putting the Argument on a Tape, Stack, or Counter 4 5 5  

stores it in a control called underhead . At this point the con
figuration is (qstan , A, x 1 , Xk · · · x2 ) .  Then the program proceeds 
to simulate the 1-tape machine by a 2-stack machine as in Sec
tion 7 .1 .2 .  Once that part of the simulation is complete, the 
configuration is (qaccepr , A , y 1 , yk · · · 12 ) ,  where y 1 · · · yk is the re
sult . We finish the simulation by moving the character y 1 from 
the control underhead to the top of stack 2 via the instructions 
( qaccept __, qaccept , NOOP, c __, A, PUSHc) , so stack 2 holds y k . . .  Y i . 

3-CMs: We will show how to simulate a 1-TM by a 3-counter machine 
with no input or output device . Assume that the input and output 
alphabets of the TM have at most k characters, which may be 
renamed as { 1, . . .  , k} . First, simulate the 1-TM by a 1-TM 
without input or output, as above . 

Second, we will simulate that 1-TM by a machine [control, 
stack, tape] where the stack alphabet is { 1} . The stack will initially 
hold 1 k-adic(x) , where x is the argument . The stack will end up 
holding 1 k-adic (y) , where y is the result . The program first copies the 
string from the stack to the tape; then, via some straightforward 
programming, it converts the value from monadic to k-adic . Now 
the input string is on the tape . The main part of the simulation 
is trivial, since the simulating machine has a tape . Once it is 
finished, the result is on the tape . The result is then converted 
from dyadic to monadic and moved to the stack . 

The machine [control, stack, tape] can be converted to a 3-
counter machine, because a counter can simulate a stack with a 
1-character alphabet, and two counters can simulate a tape . The 
initial value of the first counter is the number k-adic (x) and the final 
value is the number k-adic (y) . 

2-CMs: Finally, we can simulate a 1-TM by a 2-CM without input or 
output; however, arguments and results are not represented in 
the way you might expect .  First, simulate the 1 -TM by a 3-
CM without input or  output as  above . Recall from Section 6 .6  
that three counters can be simulated by two counters . In that 
simulation, the triple of counter values (c1 , c2 , c3 ) is represented 
by the pair of counter values ( 2'1 312 5c, , 0) . Because c1 holds the 



4 5 6  Computab i l ity 

argument and result for the simulated machine, the first counter 
in the simulating machine is initialized to hold 2k-adic(x) , where x 
is the argument;  it ends up holding 2k-adic(y) , where y is the result . 
Although this representation of arguments may seem inelegant, 
it is necessary. It is not possible to simulate a 1-TM by a 2-CM 
whose initializer is XO: = (qstart , k-adic (x) , o) .  

Exe rc i ses  

7.2-1 Show directly how a 1-TM program can be simulated by a 1-TM 
program that starts with its argument on the tape. Be informal . 

7 .2-2 Show directly how a 2-SM program can be simulated by a 2-SM 
program that starts with its argument on the first stack . Be informal . 

*7 .2-3 Prove that it is not possible to simulate a machine [control, input, 
output, tape] by a machine [control, output, unsigned counter, 
unsigned counter] whose initializer is xa = (qstarn dyadic(x) , 0 ) .  
(Hint: Prove that such a 2-CM cannot compute the function 
J(x) = 2x . ) Conclude that it is not possible to simulate a 
machine [control, input, output, tape] by a machine [control, 
unsigned counter, unsigned counter] whose initializer is xa = 
(qstarn dyadic(x) , 0) and terminator is (qstarn dyadic(y) , 0 )w = y. 

7 .2-4 Let P be a DTR.  Show how to construct an equivalent DTR P' that 
does not use the EOF test . 

7 . 3  RANDOM ACCESS MEMORY 

Recall that a RAM consists of a control, a random access memory, and 
possibly input and output devices. RAMs are like digital computers with 
limited repertories . We saw in Section 1.8 how to write RAM programs for 
some of the omitted operations like addition and multiplication . In fact, 
RAMs can be programmed to simulate any instruction currently available 
on digital computers . In this section, we prove that Turing machines can 
simulate RAMs; thus Turing machines are also as powerful as any real digital 
computer. 



7.3  Random Access Memory 4 5 7  

We show how a TM can simulate a RAM . The TM will have the fol
lowing: 

• several tapes, one to represent each of the RAM's registers 

• one tape to represent the array MEM[ ] 

• one "work" tape for intermediate calculations 

Numbers will be represented on the tapes in binary. 
The basic idea is to write Turing machine subroutines to simulate the 

RAM's register operations and to represent the RAM's memory as a list of 
ordered pairs (i , MEM[i] ) stored sequentially. Then the Turing machine 
can access MEM[i] by searching for the pattern " (i , "  on the tape . When 
MEM[i] changes, the ordered pairs to its right are copied over. 

Register operations The register operations +, - ,  and halve can be 
performed by standard grade school algorithms using the work tape to hold 
the result, which is then copied to the destination register. The Ra : = 0 
operation is performed by overwriting Ra 's tape with 0 .  The tests Ra > Rb 

and Ra = Rb are performed by subtracting and seeing whether the result 
is positive or zero respectively. Ra ODD and Ra EVEN are simulated by 
examining the low-order bit on Ra 's tape . 

Memory Location i in memory is represented as ( i ,  MEM[i] ) ,  where the 
two numbers i and MEM[i] are written in dyadic . The entire memory array 
is represented as a sequence of such ordered pairs, one pair for each memory 
location in which a value has been written . The sequence of pairs can be 
written in any order, i .e ,  

where i 1 , . . .  , ik are distinct natural numbers . 
Ra :=  MEM[i] is implemented by moving the memory tape's head 

home; copying i to the work tape; looking for the pattern " (i , "  on the 
memory tape; and, once a match is found, copying the next numeral to the 
tape representing Ra . Special case: If no match is found, then MEM[i] is 
uninitialized and so by convention is 0; therefore write ( i ,  0) at the right 
end of the memory tape and overwrite 0 onto the tape representing Ra . 



4 5 8  Computabi l ity 

MEM[i] : = Ra is simulated by finding ( i ,  MEM[i] on the memory tape, 
copying the remainder of the memory tape to the work tape for safekeeping, 
overwriting MEM[i] with the numeral on Ra 's tape, and then copying the 
remainder of the memory tape back from the work tape . Special case: If no 
match is found, then write (i , Ra ) at the end of the memory tape. 

Thus, we have shown how a tape can simulate a random access memory. 
Using modern compilers, it is possible to mechanically translate programs 
written in high-level languages like Pascal, C, Fortran, or LISP into pro
grams for a random access machine . (We will not give a formal proof of 
this fact .) Because it is tedious to write a TM or RAM program, we will 
henceforth describe algorithms using an informal high-level programming 
language . The reader will keep in mind that such informal algorithms can 
be translated by a competent programmer into high-level programs, which 
can in turn be simulated by TM programs . 

7 .4  UNIVERSAL TU RING MACH INE PROG RAM 

A universal Turing machine program is like a compiler or interpreter for 
deterministic Turing machine programs . It is a DTM program that solves 
the following problem: 

Problem name: DTM emulation 

Instance: a DTM program P and a string x 

Answer: the result of running P on input x if P halts on input x, undefined 
otherwise 

(Because a program has a fixed terminator, we actually need three differ
ent universal Turing machine programs: a universal DTR, a universal DTA, 
and a universal deterministic Turing transducer. The three programs are vir
tually identical, and they typically go by the same name . The construction 
below works equally well for all three .) 

Here is the basic idea: We write a RAM program R that reads a DTM 
program P and a string x and then emulates the DTM program step by step 
on input x. Many such programs have been written in high-level languages, 



7.4 Un iversal Tu ri ng Machine Prog ram 4 5 9  

which can be mechanically translated into RAM programs by ordinary 
compilers, so we will just sketch a description of the RAM program R .  
Then we convert R to an equivalent 1-tape DTM program. For simplicity, 
we will emulate only 1-tape DTM programs . 

As it scans its input, R stores the instructions of P in consecutive memory 
locations 1 ,  . . .  , m and then stores the characters of x in consecutive memory 
locations m + 1, . . .  , n .  Register 1 is a pointer indicating the location of the 
next input character in memory; at the start of the emulation, this register 
holds the number m + 1. Register 2 indicates the end of the input string in 
memory; it holds the number n .  Memory locations n + 1 and higher hold 
the sequence of characters on P's tape. Register 3 indicates the location of 
the tape head in memory. Register 4 holds P's control state . 

Based on the information in its registers and memory, R can easily 
determine the control state, the next input character or end of input, the 
character under P's tape head, and whether the head is at the left end of the 
tape . To emulate a single instruction of P, R looks through the entire list 
of P's instructions for one that is applicable and then updates the control 
state, input pointer, tape character, and tape location accordingly. If that 
instruction produces output, then R writes the same character on its output 
device . If none of P's instructions is applicable, then R blocks (as does P) . 
If P accepts or rejects, then R does likewise . 

That completes the description of the RAM program R that emulates 
DTM programs . Because DTMs simulate RAMs, such an emulator can be 
converted to an equivalent DTM program, which is thus a universal TM 
program, which we will call U. 

We have avoided one subtle issue in designing the universal TM pro
gram, namely, how to represent U's argument and result .  The argument 
to U consists of a program P that has arbitrary input, tape, and output 
alphabets, as well as a string x over P's input alphabet . However, U's input 
alphabet, output alphabet, and tape alphabet are fixed . We resolve this issue 
by encoding P's characters, control states, and instructions as strings over 
{O , 1 } .  Each of these strings can be represented as a single binary number 
by the RAM program R. 

Because control sets, input alphabets, output alphabets, and stack al
phabets are finite, we can assign an arbitrary order to their elements . The ith 
element of one of these finite sets will be represented by 1; 0 .  The other letters 



460 Computab i l ity 

that appear in instructions- parentheses, commas, arrows, and the letters 
that make up the operations' names-form a fixed finite set . We can encode 
those letters using any fixed-length binary code . For concreteness, we replace 
arrow (---,) by underscore (_) and use the ASCII code, which represents every 
character on the typewriter keyboard by an 8-bi t binary string . For example, 
( 3 ---,  5, SCAN c)  is encoded as 00101000 1 1 100 1 0 1 1 1 1 1 1 1 1 1 1000 10-
1 1000 10100 1 10 10000 1 1 0 100000 10100 1 1 10 1 1 1000 1 0 1 00 1 .  

We represent a set of instructions as a sequence of codes for each instruc
tion in the set . We represent a DTM program as the sequence of codes for 
its initial control state, its set of accepting control states, its set of rejecting 
control states, its set of nonfinal control states, and its instruction set . 

As they are read, the strings over { 0 ,  1 }  that represent characters, control 
states, and instructions can easily be translated into numbers by the RAM 
program R that emulates DTM programs . It is these numbers that are 
stored in R's registers and memory locations . 

The universal Turing machine program is used whenever an algorithm 
takes a DTM program P as input and then runs P. Because it is obvious 
that we can run programs, this use is typically implicit . 

EXAMPLE 7.4. For example, let 

Kxy = { (x, y) : DTM program x halts on input y} . 

We will construct a DTA that accepts Kxy · First, let us describe an informal 
algorithm that accepts Kxy : 

input (x, y) ; 
run DTM x on input y; 
accept; 

The statement "input (x, y ) "  means "scan the entire input, which is 
assumed to represent the pair ( x, y) , and store the strings x and y someplace 
useful . "  Observe that the informal algorithm accepts if and only if x halts 
on input y. 

We can convert that informal algorithm to a DTA that stores the strings 
x and y on a work tape and then uses a modified version of the universal 
TM that takes its input from an extra tape. In the rest of this chapter and 



*7 . 5  Herbrand-Godel Computab i l ity 4 6 1  

i n  Chapter 8,  we will describe algorithms in  this informal style for the sake 
of readability. Such algorithms can readily be converted to TM programs if 
desired . 

There is also a slick, unstructured way of producing a DTA that accepts Kxy - Start with the universal DTM program U. Produce a DTA P by 
converting all of U's final states to accepting states and removing U's output 
device . Then 

P accepts (x, y) <¢=:} U halts on (x, y) <¢=:} x halts on y <¢==} (x, y) E Kxy -

Exe rc ises  

7.4-1 Define and construct a universal NTM program. 

'� 7 . 5 HERBRAND-GODEL COM PUTAB I L ITY 

I I I 

Herbrand and Godel3 defined a recursive programming system. A 
Herbrand-Godel program (HG program, for short) consists of a set of func
tion symbols; a set of variables whose values are natural numbers; and a 
set of equations involving the function symbols, the variables, and natural 
numbers . Since strings can be encoded as natural numbers, HG programs 
may use strings; in particular, there is an HG program that concatenates a 
string x with a character c to form xc (see Exercise 7 .5-4) . 

The number O and the successor function s( n) = n + 1 are predefined in 
every HG program. By repeated application of s ( ·  ) ,  we obtain the positive 
integers s(O) = 1, s(s(O) ) = 2, s(s(s(O) ) )  = 3 ,  and so on . 

The letters u, v, w, x, y, z ,  possibly subscripted, denote variables . The 
letters /, g, h, possibly subscripted, denote function symbols . Words of 
two letters or more, possibly subscripted, denote functions as well . For 
example, pred and predc are function symbols . The number of arguments 
to a function is any fixed natural number. (A function of zero arguments 

3 Pronounced "GURD'l." 



462 Computabi l i ty 

is a constant.) Henceforth we will use the terms "function" and "function 
symbol" interchangeably. 

A variable x is a formula. If e1 , . . .  , ek are formulas and/ is a function of 
k arguments, then/ ( e1 , . . .  , ek ) is a formula. 

If e1 , . . .  , ek and e are formulas and / is a function of k arguments, then f(e 1 , • • •  , ek ) = e is a defining equation. By substituting numbers for the 
variables in the expressions e1 , . . .  , ek and e, we may determine the value of 
/ at one list of arguments. 

EXAMPLE 7.5.  Defining equations for addition are 

add(x, 0) 
add(x, s(y) ) 

X 

s(add(x, y) ) .  

Substituting 3 for x in add(x, 0) = x, we find add ( 3 ,  0 )  = 3 .  Substituting 
3 for x and O for y in add(x, s(y) ) = s(add(x, y) ) ,  we find add(3 ,  1 )  = 
s(add(3 ,  0) ) = s(3)  = 4. It is not hard to see that add(x, y) = x + y 
(Exercise 7 . 5 - l (a)). Henceforth we are justified in writing x + y to denote 
add(x, y) . ■ ■ ■ 

EXAMPLE 7.6. It is not hard to define the other arithmetic functions. 
Building on the previous example, we may write an HG program for mul
tiplication. The additional defining equations are 

mult(x, o) 
mult(x, y + 1 )  

0 
mult(x, y) + x. 

Henceforth we write x * y to denote mult(x, y) . The following equations 
define division (with truncation): 

divide(x, x + y + 1 )  
divide(x + y ,y) 

0 
divide(x, y) + 1 .  

Substituting 3 for x and 2 for y in divide(x + y , y) = divide(x, y) + 1 ,  we 
find divide ( S ,  2 )  = divide (3 ,  2 )  + 1 .  Substituting 1 for x and 2 for y in 
divide(x + y, y) = divide(x, y) + 1 ,  we find divide( 3 ,  2 )  = divide( 1 ,  2 )  + 1 .  
Substituting 1 for x and O for y in divide(x, x + y + 1 )  = 0 ,  we find 



*7 . 5  Herbrand-Godel Computabi l ity 463 

divide( l , 2 ) = 0. Therefore, divide(3 , 2 )  = O +  1 = 1 and divide(5, 2 )  = 
1 + 1 = 2 .  

The following equation defines subtraction: 

minus(x + y, y) = x. 

Note that minus(x, y) is undefined if x < y. The monus function extends 
subtraction to a total function that is O when x < y: 

monus(x + y ,y) x 

monus(x, x + y) 0. I I I 

HG programs compute the same partial functions as the most powerful 
realistic models of computations . (However, we do not not permit HG 
programs to compute multiple-valued functions, because expressions like 
monus(f(x) ,/(x) ) become confusing when/(x) is multiple-valued .) 

THEOREM 7.7. The Turing computable partial functions are the same as the Herbrand- Goael computable partial functions. 
Proof: Part 1: We show that every Turing computable partial function 
is Herbrand-Godel computable . Assume that / is a Turing computable 
partial function . Then/ is computed by a deterministic 2-counter machine 
program P. For concreteness, let P be a deterministic transducer that runs 
on a machine [control, input, output, K l ,  K2] where Kl and K2 are counters . 
Standardize P so that each instruction operates on the input or exactly one of 
the counters, P has a unique accepting control state, and P cleans up before 
accepting . To be specific, we may assume that there is a unique accepting 
state qaccept such that P accepts if and only if its configuration has the form 
(qaccero A ,y ,  0, 0) . For each state q of M, we will define a function/q - Our 
goal is that/q(x, k 1 , k2 ) should be the result of running program P starting 
from the configuration (q, x, A ,  k 1 , k2 ) rather than starting from the initial 
configuration determined by a .  

To each instruction in P there corresponds an equation in our Herbrand
Godel program H. Suppose, for example, that P contains the instruc
tion (q --, r, SCANc, NOOP,  NOOP,  NOOP) . If P reaches the configuration 
(q, cx, y ,  k 1 , k2 ) in a partial computation, P must next reach the config
uration (r, x, y, k 1 , k2 ) ,  because P is deterministic and that instruction is 



464 Computabi l ity 

Instruction of P 

(q ---+ r, SCANc, NOOP ' NOOP, NOOP) 

(q ---+ r, EOF , NOOP , NOOP, NOOP) 

(q ---+ r, NOOP , WRITEc, NOOP, NOOP) 

(q ---+ r, NOOP , NOOP , INC , NOOP) 

(q ---+ r, NOOP , NOOP , DEC , NOOP) 

(q ---+ r, NOOP , NOOP , ZERO , NOOP) 

(q ---+ r, NOOP , NOOP , NOOP, INC ) 
(q ---+ r, NOOP , NOOP , NOOP, DEC ) 
(q ---+ r, N OOP , NOOP , NOOP, ZERO ) 

Equation in H 

/q (cx, k1 , k2 ) = fr(x, k1 , k2) 

[q (A, k1 , k2) = fr(A, k1 , k2) 

/q (x, k1 , k2 ) = cfr (x, k1 , k2) 

[q (x, k1 , k2 ) = fr(x, k1 + 1, k2 ) 

/q (x, k 1  + l , k2 )  =fr(x, k1 , k2 )  

/q (x, 0 ,  k2 )  = fr(x, 0, k2) 

[q (x, k1 , k2 ) = fr(x, k 1 ,  k2 + 1 )  

[q (x, k1 , k2 + 1 )  =fr(x, k1 , k2 )  

/q (x, k1 , 0) =fr(x, k 1 , 0) 

TABLE 7.2 :  Converting a deterministic 2-CM program P to a Herbrand-Godel 
program H. 

applicable. Therefore /q (cx, k 1 , k2 ) = J,,(x, k 1 , k2 ) .  This explains the first 
Herbrand-Godel equation in Table 7 .2 .  The rest are similar. 

In addition we have an equation that corresponds to acceptance in P, 

/
q
,mp, (A,  o ,  o) = A,  

and the result of H i s  given by 

f (x) = fqsrnrc (x, 0, 0) . 

Suppose that there exists a computation fragment of P that starts in 
configuration (q, wx, y,  k 1 , k2 ) and ends in configuration (r, x, yz ,  k� , k� ) .  
We assert that the Herbrand-Godel program H derives 

This can be proved by induction on the length of the computation fragment 
(Exercise 7 .5-6(a)) . In particular, if there is a computation that starts in 



*7 . 5  Herbrand-Godel Computab i l ity 465  

configuration (qsrarr , w,  A, 0 ,  0 )  and ends in configuration (qaccerr , A ,  z, 0 ,  0) , 
then 

f (w) = + (w O o) = z+ (A O o) = zA = z-1 t/sr:art ' , :/ qaccepr: ' , ' 

i . e . ,  H derives/(w) = z. 
Conversely, suppose that the Herbrand- Godel program H derives 

We assert that for every y there exists a computation fragment of P that starts 
in configuration (q , wx, y ,  k 1 , k2 ) and ends in configuration (r, x, yz, k� , k� ) .  
This can be proved by induction on the length of the derivation (Exercise 
7 .5-6(6)) . If f(w) = z, then, in particular, 

/4,'"Jw, o, o) = J(w) = z = zfq,,,,p, (A,  o, o) , 

and so there is a computation of P that starts in the configuration 
(qstart ,  w, A ,  0, 0) and ends in configuration (qaccept , A, z, 0, 0) ; i .e . , P outputs 
z on input w. 

Part 2: We show that every Herbrand-Godel computable partial func
tion is Turing computable. Let H be a Herbrand-Godel program. It is easy 
to write a RAM program that tests whether a particular string is a derivation 
in H and whether the last line of the derivation is of the form/(w) = z for 
given / and w. In other words, a RAM program may determine whether 
a string is a derivation of J(w) = z in H. To evaluate f(w) , a nondeter
ministic RAM program may guess a string, halting with result z if that 
string is a derivation off(w) = z in H. That nondeterministic program can 
be simulated deterministically by trying all possible guess strings in order. 
Because TMs can simulate RAMs, there is a deterministic Turing machine 
program that computes/ .  ■ 

Exerc i ses 

7.5-1 In each part, refer to the defining equations given in this section . 
(a) Prove that the value of add(x, y) is x + y. 
(b) Prove that the value of mult(x, y) is x * y.  



466 Computabi lity 

(c) Prove that the value of divide(x, y) is lx/yj . 

7 .5-2 Write HG programs that compute the following functions: 
(a) fact(n) = n!  
(b) pow(x, y) = xY 

(c) modulo(x, y) = x mod y 

7 .  5-3 Let the constants false and true denote two distinct natural numbers . 
Write HG programs for the following functions: 

(a) greater( x, y) = true if x > y, false otherwise . 
(b) prime(x) = true if x is a prime number, false otherwise . 

7 .5-4 HG programs on strings. We can represent strings over � as 
natural numbers written in J � J -adic . 

(a) We define the total function s, (z) = zc. Write an HG program 
that computes s,. 

(b) Let pred, be the partial function that removes a c from the end 
of the string x. Write an HG program that computes predc . 

(c) Let concat(x, y) = xy, the concatenation of strings x and y . 
Write an HG program that computes concat . 

7 .5-5 By modifying the simulation of 2-counter machines, show directly 
how a Herbrand-Godel program can simulate a deterministic 2-
stack machine program. 

7 .  5-6 (a) Refer to part 1 of the proof of Theorem 7. 7 .  Suppose that there 
exists a computation fragment of P that starts in configuration 
(q, wx, y , k 1 , k2 ) and ends in configuration (r, x, yz, k; , k� ) .  
Prove that the Herbrand-Godel program H derives 

Hint: Prove it for single instructions and use induction . 
(b) Refer to part 2 of the proof of Theorem 7 .7 . Suppose that the 

Hcrbrand-Godcl program H derives 

Prove that for every y there exists a computation fragment 
of P that starts in configuration (q, wx, y , k 1 , k2 ) and ends in 
configuration (r, x, yz ,  k: , k� ) .  



7.6 Recursive and Recursively Enu merable Sets 467 

7 .6  RECURS IVE AND RECURS IVELY ENUMERABLE 
SETS 

In the early to middle 1900s several researchers, with varied motivations, 
defined what are now known as the recursive or computable functions. Tur
ing defined his functions to be the ones computable by Turing machines, 
and he called them computable. Herbrand and Godel defined their functions 
in a recursive language, and they also called them computable. Kleene defined 
his functions in a functional language, and he called them recursive. Thue de
fined his functions via rewriting systems . All of the definitions were shown 
to be equivalent, and the names "computable" and "recursive" continue to 
be used synonymously. Based on this evidence, Church hypothesized that 
the functions computable by algorithms are precisely those computable in 
the sense of Turing. This conjecture is known as Church's thesis. 

We call a function or partial function recursive or computable if it is com
puted by a DTM. If a total function is recursive, it is customarily called a total recursive function, rather than the more logical "recursive total function . "  
If a partial function is recursive, it is customarily called a partial recursive function; again, "recursive partial function" would be more logical, but his
torical usage prevails . The term recursive function is synonymous with "total 
recursive function" ;  however, we prefer the latter because it is more precise . 
Recall that every total function is a partial function, so every total recursive 
function is a partial recursive function . 

DEFINITION 7.8 (Recursive Functions) 

• A partial recursive function is a partial function computed by a DTM 
program. 

• A total recursive function is a total function computed by a DTM 
program. 

A language L is called recursive if L is recognized by a Turing machine or, 
equivalently, if L's characteristic function XL is total recursive. In referring 
to languages, the terms "recursive" and "decidable" are used interchange-



468 Computabi lity 

ably. Languages that are not recursive are called nonrecursive or undecidable. 
(The word "undecidable" has a different meaning in the field of mathe
matical logic . We will discuss mathematical logic and its connections to 
computability in Sections 7 . 12 and 8 . 3.) 

A language L is called recursively enumerable (abbreviated r.e .) if L is 
accepted by an NTA or, equivalently, if L is the domain of a partial recursive 
function (recall that the domain of a partial function / is the set of inputs 
x for which /(x) is defined) . In this section, we will prove that NTAs are 
equivalent to DTAs, yielding another characterization of the r.e. languages. 

We repeat the definitions of recursive and recursively enumerable lan
guages below: 

DEFINITION 7.9 (Recursive and Recursively Enumerable Languages). 

A language L is 

• recursive if L is recognized by a DTR. 

• recursively enumerable (r. e.) if L is accepted by an NTA. 
• co-r. e. if [ is accepted by an NTA or, equivalently, if [ is r.e. 

Equivalently, L is r.e. iff L is generated by an NTM program (see Ex
ercise 2.10-4(a) for a definition of generators); this motivates the word 
"enumerable" in the name. The terms "recursive" and "r.e." are applicable 
to sets of objects other than strings if we represent objects as strings in the 
standard way (cf. Section 2 . 1  ). For example, we can talk about r.e. sets of 
DTM programs, recursive sets of natural numbers, recursive sets of integers, 
or recursive sets of ordered pairs of strings. 

EXAMPLE 7. 1 O. Examples of recursive languages include the set of prime 
numbers, the set of composite numbers and the set of 4-colorable graphs 
(suitably encoded as strings), because we can write programs in high-level 
languages to recognize them. Another example is any CFL, because it is 
recognized by the CYK algorithm or Earley 's algorithm. 

Examples of recursively enumerable languages include the transfer re
lation of any particular NTM program and the set of programs for a 
machine [control, tape] that have at least one complete computation . ■ ■ ■ 



7.6 Recu rs ive and Recu rs ively Enumerable Sets 469 

EXAMPLE 7.1 1 (Kxy is r.e .). Recall that 

Kxy = { (x, y) : DTM program x halts on input y} . 

By Example 7.4, Kxy is accepted by an NTA. Therefore Kxy is r.e. ■ ■ ■ 

We end this section by proving five important properties of recursive 
and r.e. languages: 

• L is r.e. if and only if L is accepted by a DTA; i.e. , it does not matter 
whether we define recursive enumerability in terms of NTAs or 
DTAs. 

• L is r.e. if and only if there exists a recursive language R such that 

x E L  ¢=? (3y) [(x, y) E R] .  

• L is recursive if and only if L is r.e. and [ is r.e. 

• Let L be a nonempty set. L is r.e. if and only if L is the range of a 
total recursive function. 

• Let L be a nonempty set. L is recursive if and only if L is the range of 
a total recursive function that is nondecreasing. (Here we identify 
strings with natural numbers and use numerical order.) 

We are about to study problems about programs and computations. In 
order to do so in our framework, we will need to represent programs and 
computations as strings. A sequence of instructions is a string in a sense that we 
will make precise. Fix a machine M ,  and fix the realms and repertories of 
all of M's devices. Since each device has a finite repertory, there are a finite 
number of possible instructions for M. Let :E be this set of instructions. 
Any sequence of instructions for M is a string over :E. 

EXAMPLE 7. 1 2. Let M be a machine [control, input] with input alphabet 
{ a, b} and control set { 0, 1}. The set of all possible instructions for M is 

{o -----+ 0, 0 -----+  1 ,  1 -----+  0, 1 -----+  1 }  x {sCANa, SCANb, EOF, NOOP} 



470 Computabi l ity 

= { (o ---+ 0, SCAN a) , (o ---+ o, SCANb) , (o ---+ 0, EOF) , (o ---+ o, NOOP ) ,  
(o ---+ 1 ,  SCAN a) , (o ---+ 1 ,  SCANb) , (o ---+ 1 ,  EOF ) ,  (0 ---+  1 ,  NOOP) , 

(1 ---+ 0 , SCAN a) , ( 1 ---+ 0, SCANb) , (1 ---+ 0, EOF) , (1 ---+  0, NOOP ) ,  

(1 ---+  1, SCAN a) , (1 ---+ 1 ,  SCANb) , (1 ---+  1 ,  EOF ) ,  (1 ---+  1 ,  NOOP ) } ,  

a 16-element set that we call :E. An example of a 2-character string over :E 
is (0 ---+ 0, SCAN a) ( l  ---+ 1, EOF). ■ ■ ■ 

Recall that a computation is a sequence of instructions that lead from an 
initial configuration to a final configuration. Thus the set of computations of 
a program P on input x is a language, which we denote Cp (x). For historical 
reasons, computations are also called valid computations. 

EXAMPLE 7. 1 3. Continuing the example above, we write a program P for 
M that accepts all even-length strings over { a, b}. The initial state is 0, 
and the final state is 0. The instruction set of P is 

{ (0 ---+ 1, SCAN a) , (0 ---+ 1, SCANb) , (1 ---+ 0, SCAN a) , (1 ---+ 0, SCANb) }. 

One particular computation of P is 

(0 ---+ 1, SCAN a) ( l  ---+ 0, SCANb) (0 ---+ 1, SCAN a) ( l  ---+ 0, SCAN a) , 

which is a 4-character string over :E. ■ ■ ■  

If P is a program, we write C(P) to denote the set of valid computations 
of P, i.e. , 

C (P) = LJ Cp (x) . 
X 

EXAMPLE 7. 1 4. Then, continuing the preceding example, we have 

C(P) = ( ((o ---+ 1, SCAN a) U (o ---+ 1 , SCANb)) 

( (1 ---+  0, SCAN a) U (1 ---+ 0, SCANb) ) ) * 
I I I 

Next we show that if P is a suitably standardized program for a machine 
M, then the computations of P can be recognized by another program for 
M.  This is useful because it implies that a nondeterministic program for M 
can guess a computation of P character by character and check its validity. 



7 .6  Recu rs ive and Recu rsively Enumerable Sets 4 7 1  

LEMMA 7. 1 5. Let M be a machine [input, output, d1 , • • •  , dk] where each d; denotes a device other than input or output. Let P be a program for M whose input device has been standardized so that after EOF has been performed no instructions with input operations can be reached. (i) C(P) is recognized by a program for a machine [input, d1 , . . .  , dk] ,  
(ii) If x i s  a string, then Cp ( x) i s  recognized by a program for a machine 

[control , input, d1 , • • •  , dk ] ,  
Proof 

(i) The computation can be checked step by step. Formally, we treat 
each instruction in a computation as a single character. Then 
C ( P) is recognized by a program with the following instruction 
set: { (SCANi,/1 , . . .  ,Ji,) : i = (J;n ,fouu/1 , . . .  ,Ji,) for some J;n and 
/00, , and i is an instruction in P}. The initial and final states of each 
device are as in program P.  

(ii) The set of all sequences of instructions whose SCAN operations spell 
out x is a regular set (depending on x). The intersection of C (P) with 
this regular set is recognized by a program for a machine [ control, 
input, d1 , . . .  , dk] by Corollary 4.40(iii). ■ 

THEOREM 7. 1 6  ( i) Let P be an NT M program. The set of accepting computations of P is recursive. 
(ii) Let P be an NTM program and let x be a string. The set of accepting computations of P on input x is recursive. 

Proof: Change all nonaccepting final states of P to non final states. The 
set of computations of the resulting program is exactly the set of accepting 
computations of P. Now the result follows by Lemma 7 . 1 5. ■ 

As we just discussed, a sequence of instructions for a machine M is a 
string over a finite alphabet. If we number the characters in that alphabet 1 
through k, then each string corresponds to a unique k-adic number. We say 
that this k-adic number encodes the sequence of instructions. Observe that 
digits can be obtained effectively by taking remainders modulo k. We will 
use this observation in proving the equivalence of NTAs and DTAs. 



472 Computab i l ity 

LEMMA 7.1 7. L is r.e. ijf L is accepted by a DTA. 
Proof: If L is r.e. , then L is accepted by an NTA P. Testing whether P 
accepts x can be accomplished by searching for a sequence of instructions 
that happens to be an accepting computation of P with input x. We can try 
all such sequences by trying all nonnegative integers in increasing order, as 
follows: 

i := O; 
while i does not encode an accepting computation of P on input x do 

i := i + 1; 
accept; 

By Theorem 7 .16, we can determine whether a particular sequence of 
instructions is an accepting computation, so the algorithm above can be 
implemented as a deterministic RAM program, which can be simulated by 
a DTA. 

Conversely, every DTA language is an NTA language and hence r.e. ■ 

Furthermore, DTM programs compute the same partial functions as 
NTM programs (Exercise 7 .6-1). The r.e. languages can be obtained from 
the recursive languages by applying an existential quantifier. 

THEOREM 7. 1 8. L is r. e. if and only if there is a recursive language R such that for all x, 
x E L  {=;> (3y) [ (x, y) E R] .  

(Geometrically, every r.e. set is obtained by projecting a recursive set in the 
x-y plane onto the x-axis.) 

Proof: Let L be r.e. , so there is an NTA P that accepts L. Let 

R = { (x, C) : C is an accepting computation of P on input x}. 

Then R is recursive by Theorem 7. 16(ii), and x E L  {=;> (=ly) [(x, y) E R] .  



7.6 Recu rs ive and Recu rs ively Enumerable Sets 473  

Conversely, suppose that x E L {=} (::ly) [(x, y) E R] ,  where R 1s  a 
recursive language. Here is an NTA that accepts L: 

input x;4 

guess y;5 
if (x, y) E R  then accept. 

By definition, L is r.e. ■ 

The string y in the statement of Theorem 7 .18 is called a certificate or witness that x E L, because once y is found one can convince someone that 
x E L by testing whether ( x, y) belongs to the recursive language R .  In this 
sense, y embodies a "proof " that x E L. 
THEOREM 7. 1 9. L is recursive if and only if L is r. e. and co -r. e. 
Proof: If L is recursive then I is recursive. Therefore L and I are r.e. 

Conversely, suppose that L is r.e. and I is r.e. Then L is accepted by an 
NTA Py,s and I is accepted by an NTA Pno • Therefore L is recognized by 
the following algorithm, which tries all sequences of instructions until it 
finds a valid computation of Py,s or Pno · 

i := O; 
while i does not encode an accepting computation of Py,s or Pno on input x do 

i := i + 1; 
if i encodes an accepting computation of Py,s on input x 
then accept, else reject. 

(This algorithm is readily expressed as a DTM program.) Because x E L 
or x � L, either Py,s or Pno is guaranteed to have an accepting computation. 
Thus the while-loop in the algorithm above always finishes, and the resulting 
value of i encodes either a witness that x E L or a witness that x � L. ■ 

4 By "input x" we mean "scan the entire input sering, score it on the cape, and call it x ."  
5 By "guess y" we mean "nondeterministically write a seguence of characters on the cape 

and call the sering y." 



474 Computabi l ity 

Alternate Proof: Since this is an important theorem, we present a 
second proof. Assume that L and I are r.e. By Lemma 7 .1 7 ,  L is accepted 
by a DTM program Py,s and I is accepted by a DTM program Pno · Because x belongs to L or I, either Py,s or Pno must accept x; therefore the following 
algorithm terminates with either My,s or Mno in an accepting configuration. 

start Myes in the initial configuration of Py,s ;  
start Mno in the initial configuration of Pn0 ; 

repeat 
run Py,s for one step on Myes ;  
run Pno for one step on Mn0 ; 

until My,s or Mno is in an accepting configuration; 
if Myes is in an accepting configuration then accept, else reject. ■ 

The algorithm above is analogous to running two programs or two 
processes at once on a modern time-sharing system. When this is <lone on 
a Turing machine, it is called dovetailing. 

In the next theorem, we identify strings with natural numbers and use 
numerical order. 

THEOREM 7.20. Let L be a nonempty set of natural numbers. 
(i) L is r. e. if/L is the range of a total recursive function. 

(ii) L is recursive if/ L is the range of a total recursive function that is nondecreasing. 
Proof: Let L be a nonempty set. 

(i) Suppose that L is r.e. Since L is nonempty, we can let a be an 
arbitrary element of L.  Let P be a Turing machine program that 
accepts L. Let/( C) be the string scanned during the computation C 
if C is a computation of P, and let/(C) = a if C  is not a computation 
of P. Then/ is a total recursive function whose range is L. 



7.6 Recu rs ive and Recu rs ively Enumerable Sets 475  

Conversely, suppose that L is the range of a total recursive func
tion f. Then L is accepted by an NTA that behaves as follows: 

input x; 
guess y; 
if/(y) = x, then accept; 

Since L is accepted by an NTA, L is r.e. 

(ii) Suppose that L is recursive. Let/(0) be the least element of L. For x > 0, let f(x) = x if x E L, and let f(x) = /(x - 1) otherwise. 
Then / is a total recursive function that is nondecreasing, and L is 
the range of /. 

Conversely, suppose that L is the range of a total recursive func
tion/ that is nondecreasing. We consider two cases: 

Case 1 :  L is finite. Then L is recursive because every finite 
language is recursive. 

Case 2 :  L is infinite. Then / takes on arbitrarily large values. 
The following algorithm tests membership in L: 

input x; 
i := O; 
while/(i) < x do i := i + 1 ;  
if f (i) = x then accept else reject; 

Note that the algorithm must halt because f (i) is guaranteed 
to be at least x for some sufficiently large i. Since L is recognized 
by an algorithm, L is recursive. ■ 

Note that the proof above is nonconstructive. In the proof of part (i), we 
did not say how to find some a E L; we simply asserted that such an a exists, 
so there is some program that uses a correct value. In the proof of part (ii), 
we did not say how to find the least element of L; we simply asserted that 
the least element exists, so there is some program that uses the correct value. 
Also in the proof of part (ii), we did not say how to determine whether L 

is finite. If L is finite, we did not say how to determine which finite set L 



476 Computabi l ity 

1s. We simply asserted that there is a program for each possibility, so some 
program handles the correct possibility. 

Although only the reverse direction of part (i) is constructive as written, 
the reader may be reassured to know that the forward direction of parts (i) 
and (ii) can be made constructive (Exercise 7 .6-8). Nonconstructive proofs 
are sometimes simpler; keep in mind that a nonconstructive proof is just 
as valid as any constructive proof. Furthermore, the reverse direction of 
part (ii) cannot be made constructive (Exercise 7 .15-2); the nonconstructive 
proof is all there is. 

Exerc i ses 

7.6- 1 Let P be a nondeterministic program for a machine [control, input, 
output, tape] . If P computes a partial function, prove that P is 
simulated by a deterministic program for a machine [control, input, 
output, tape] . 

7 .6-2 (a) Prove that XL is a total recursive function if and only if L is 
recognized by a DTR. 

(b) Prove that L is the domain of a partial recursive function if 
and only if L is accepted by an NTA. 

+7 .6-3 Prove that every infinite recursive set is the range of a total recursive 
function that is strictly increasing. 

7 .6-4 Prove that every infinite r.e. language contains an infinite recursive 
subset. 

7 .6-5 Prove that L is r.e. if and only if there is a DTM program that runs 
forever, outputting a (possibly infinite) sequence consisting of the 
strings in L. 

7 .6-6 Prove that the class of r.e. languages is closed under the following 
operations: 

(a) un10n 
(b) concatenation 
(c) intersection 
( d) Kleene-closure 



(e) shuffle 

7.6 Recu rs ive and Recu rs ively Enu merable Sets 477 

(f ) perfect shuffle 

7 .6-7 Prove that the class of recursive languages is closed under the fol
lowing operations: 

7.6-8 

(a) complementation 
(b) un10n 
(c) concatenation 
(d) intersection 
(e) Kleene-closure 
(f ) shuffle 
(g) perfect shuffle 

(a) Give a constructive proof of the forward direction of Theo
rem 7 .20(i); i.e., present an algorithm that solves the following 
problem: 

Instance: a DTA P that accepts a nonempty language Answer: a DTM program P' such that Tp, is a total function 
and L(P) = Range( Tp, )  

The algorithm may give an incorrect answer or fail to halt if 
P accepts the empty language. 

(b) Give a constructive proof of the forward direction of Theo
rem 7 .20(ii); i.e. , present an algorithm that solves the follow
ing problem: 

Instance: a DTR P that recognizes a nonempty language Answer: a DTM program P' such that Tp, is a nondecreasing 
function and L(P) = Range( Tp' ) 

The algorithm may give an incorrect answer or fail to halt if 
P is not a DTR or if P accepts the empty language. 

7 .6-9 Assume that L 1 and L2 are r.e., L 1 U L2 is recursive, and L 1 n L2 is 
recursive. Prove that L 1 and L2 are recursive. 

7 .6- 10  Professor Cindy Simd has received a huge grant to design a com
puter that can run a single program on infinitely many inputs. You 
will solve her problem with a mere Turing machine, although less 
quickly than she would like. 



478 Computability 

(a) Design a Turing machine program that will take a DTM pro
gram P and produce the results of running P on all inputs. 
Your program's output should be a (possibly infinite) sequence 
consisting of all pairs (x, Tp (x) ) such that P halts on input x. 
Hint: Generalize the time-sharing/dovetailing idea. 

(b) Modify your program from part (a) so that its output is sorted 
according to the number of steps that P runs on input x. Hint: 
You may assume that P scans its entire input, so P runs for at 
least s steps on inputs of length s. 

7 . 7  THE HALTI NG  PROBLEM 

Recall that a program is said to halt on input x if it has a complete com
putation on input x. The halting problem is to determine whether a DTM 
program P halts on input x. We will see that this problem cannot be solved 
by any Turing machine program. By Church's thesis, the halting problem 
cannot be solved by any algorithm. In real life, this means that there is no 
general way to know whether a program is running forever or is merely tak
ing a long time to finish. We will use the halting problem in later sections 
to prove that many important problems cannot be solved by any algorithm. 

Problem name: the halting problem 

Instance: a DTM program P and a string x 

Question: Does P halt on input x? 
In this section, assume that programs are represented as strings over 

{ 0, 1 }  as in Section 7.4. 
Our first and most important undecidability theorem says that there is 

no algorithm that solves the halting problem. The proof of this theorem 
uses Georg Cantor's diagonalization technique, which is illustrated by a 
variant of Bertrand Russell's barber paradox: The barber in a certain town 
has a sign on the wall saying, "I shave those men, and only those, who do 



7 .7  The Halting Problem 479 

not shave themselves." Let x denote an arbitrary man. According to the 
barber's sign 

the barber shaves x {=:} -, ( x shaves x) . 

The barber cannot be equal to x, because one of them shaves x and the other 
one does not. Because that statement is true for every man x, the barber 
cannot be any man. Of course, the barber could be a woman or a robot, so the 
barber's paradox as stated above is not really paradoxical. Nonetheless, it is 
surprising that we can deduce that the barber is not a man from a seemingly 
innocuous sign. (See Exercise 7 .8- 1 1  for a more troublesome paradox.) 

THEOREM 7 .2 1 .  There is no algorithm that determines, for every DT M program 
P and string x, whether P halts on input x. 

Proof: We encode programs as strings. An encoded program may be the 
input string to another program, just as real programs are input strings 
to compilers, interpreters, and editors on real computers. In particular, a 
copy of a program may be passed to itself as input. Suppose that there is 
an algorithm to solve the halting problem, and use it as a subroutine to 
perform the if-test in the following algorithm, which can be implemented 
as a DTM program P: 

input x, which encodes a DTM program; 
if program x halts on input x then 

loop forever 
else 

halt; 

Observe that 

P halts on input x {=:} , (x halts on input x) . 

Then P must be different from every DTM program x, but P is a DTM pro
gram by construction. This contradiction proves that there is no algorithm 
that solves the halting problem. ■ 



480 Computabil ity 

Observe that we have proved something slightly stronger than just 
Theorem 7 .21 :  There is no algorithm that determines , for every program 
x, whether x halts on input x. In fact, such a statement is true for virtually 
every type of machine: There is no recognizer running on a machine of 
type M that determines, for all acceptors x running on machines of type M, 
whether x halts on input x (see Exercise 7 .8- 1 5  ). 

DEFINITION 7.22 

• Kxy = { (x, y) : DTM program x halts on input y} 

• Kdiag = { x : DTM program x halts on input x} 

• Kpos = { x : DTM program x halts on at least one input} 

• Kinatt = { x : DTM program x with no input device halts} 
(A Turing machine with no input device is called inattentive.) 

By the proof above of Theorem 7.2 1,  we actually have the following 
theorem. 

THEOREM 7.2 3. The languages Kxy and Kdiag are nonrecursive. ■ 

Many other languages will be proved nonrecursive by a technique called 
reducing the halting problem. In particular, we will prove that Kpos and 
Kinatt are nonrecursive in Section 7 .9. 

Exerc ises 

7 .  7 - 1  Is the universal Turing machine program used in the proof of The
orem 7 .2 1?  Justify your answer. 

Solution: No. The universal Turing machine is used only by algo
rithms that scan a program x and then run that program x. The 
algorithm used in the proof of Theorem 7 .2 1 does indeed scan a 
program x, but it never runs the program x; instead, it runs an 
algorithm that purportedly determines whether x halts on input 
x. That algorithm is not part of the input; rather, it is used as a 
subroutine. 



7 .8  DIAGONALIZATION 

7 .8 D iagonal ization 48 1 

Let us look again at the proof that the halting problem is undecidable. We 
considered all DTM programs, and, assuming that Kdiag was decidable, we 
constructed a DTM program that behaved differently from all of them. This 
contradiction-a DTM program that behaves differently from every DTM 
program, including itself-proved that Kdiag must be undecidable. 

Recall the correspondence between strings and natural numbers. Let us 
represent DTM programs and their inputs as natural numbers and envision 
a table whose entries indicate whether the DTM program x halts on input y.  
We will write l to denote halting and i to denote nonhalting. A portion 
of such a table is shown in Table 7 .  3 .  

I n  order for a sequence to differ from each row of the table, it is sufficient 
for it to differ from each row in just one place. It is particularly convenient 
to make it differ from the xth row in the xth position. That is, we construct 
a sequence that differs from the diagonal in every position. Thus, we write 
a program that halts on input 0, . . .  , halts on 900, runs forever on 901 ,  

0 

900 
X 

901 

902 

903 

904 

0 

i 

T 
1 
1 
T 
1 

. . . 

. . . 

. . . 

. . .  

. . . 

. . . 

. . .  

y 

900 901 

T T 

i T 
1 1 
T 1 
T 1 
T T 

902 903 

T T 

T 1 
1 1 
1 T 
1 1 
1 T 

904 

T 

T 
1 
T 
1 
i 

. . . 

. . . 

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

TABLE 7.3: Does DTM program x halt on inpucy? For illustration, the entries 
have been filled in more or less at random. 



482 Computabi l ity 

runs forever on 902, runs forever on 903,  halts on 904, and so on. If there 
is an algorithm to solve the halting problem, then this program can be 
implemented on a DTM, but this program behaves differently from every 
DTM program. 

*7 .8 .  1 The Real N u m be rs Are U ncou ntab le  
The nineteenth-century mathematician Georg Cantor first used the di
agonalization technique in his study of the size, or cardinality, of infi
nite sets. He said that two sets A and B have the same cardinality if 
there is a one-one correspondence from A to B .  (Recall that a one-one 
correspondence is a one-one, onto function.) Cantor's definition agrees 
with the usual definition of cardinality for finite sets. For example, 
I { 1 ,  2 ,  3 ,  4, 5 } I  = 1 {5 ,  10 ,  50, 100 ,  10 1  } I  and a one-one correspondence 
from { 1 ,  2, 3 , 4, 5} to {5 ,  10 ,  50, 100, 101 } is 

f(i) = the ith smallest element of {5 ,  10 ,  50, 100, 101 }. 

Cantor's definition has some surprising consequences. For example, 
even though N is a proper subset of Z, the sets N and Z have the same 
cardinality. A one-one correspondence from N to Z is 

{ ·;2 j(i) = I 

- (i + 1 ) /2 

if i is even, 

if i is odd. 

There are, therefore, exactly as many natural numbers as integers, even 
though there are infinitely many integers that are not natural numbers. An 
infinite set S is called countable if there is a one-one correspondence from N 
to S; an infinite set S is called uncountable otherwise. Because f is a one-one 
correspondence if and only if/� 1 is a one-one correspondence, an infinite set 
S is countable if and only if there is a one-one correspondence from S to N .  

For example, the language { 1 ,  2}  * is countable because dyadic(x) is 
a one-one correspondence from { 1 ,  2} * to N .  Thus there are exactly as 
many natural numbers as there are strings over { 1 ,  2}.  The same is true 
for any alphabet (Exercise 7 .8-5(a)). Because we can write rational numbers 
as strings, we make the surprising discovery that there are exactly as many 
natural numbers as rational numbers (Exercise 7 .8-5(6)). Now we might 



7.8 Diagonal ization 483  

start wondering i f  all infinite sets have the same cardinality, but in  fact there 
are more real numbers than natural numbers. 

THEOREM 7.24. The set of real numbers is uncountable; i. e. ,  if f is a mapping from N to R, then f is not onto . 
Proof: We will construct a real number x in [O, 1) such that for all i, f(i) i= x. For a real number r, let d; (r) denote the ith digit after the decimal 
point in the decimal representation of r (if r has two representations, choose 
the one that ends in all Os, rather than in all 9s). For example, d2 ( vf2) = d2 ( 1.4142 · · · )  = 1, ds ( 17 .13 5 79) = 9, and d6 ( 1 7.135 79 = O). 

We define a function h that takes a digit and returns a different digit 
but never returns O or 9, so we do not have to worry about numbers with 
two representations: 

{ 
2 if n = 1, 

h(n) = 
1 if n E  {0, 2, 3 , 4, 5, 6, 7 , 8, 9} .  

We will define a real number x i n  [O, 1) that i s  different from f(i) for 
each i E N .  Let the (i + 1 )st digit after the decimal point in x's decimal 
representation be h(d;+ 1 (/(i) ) ) .  Then x differs from f(i) in the (i + l ) st 
digit, so x has a different decimal representation from each of the numbers 
in the range off. Since the decimal representation of x does not end in all 
Os or all 9s, x has a unique decimal representation. Therefore x differs from 
every number in the range off, so f is not onto. ■ 

An example of the diagonalization is depicted in Figure 7 .2. 

Exerc i se s  

7 .8-1 Let A be any set. Prove that there is no one-one mapping from 2A 

to A .  (Recall that 2A is the set of all subsets of A.) 

+7 .8-2 Let � be any alphabet. 
(a) Prove that the set of all languages over � is uncountable. 
(b) Prove that the set of all strings over � is countable. 



484 Computabil ity 

/(0) 

/( 1 ) 
/(2) 

/(3 ) 

/(4) 

/(5) 

0 

0 

0 

0 

0 

0 

9 9 

7 0 

5 7 

5 0 

4 4 

1 6 

9 9 9 9 

7 1 0 6 

7 3 5 0 

0 0 0 0 

7 2 1 3 

6 6 6 6 

FIGURE 7.2: Using diagonalizacion to construct a real number that differs 
from/(i) for all i E N.  The diagonal number is 0.90701 6  • • · .  x is chosen to be 
0. 1 1 1 12 1  · · · , which differs from the diagonal number in every digit. Therefore 
x cannot be equal to f(i) for any i E N .  

(c) Prove that it is impossible to represent all languages over :E 
by strings over any alphabet. 

(d) Prove that the set of all recursive languages over :E is count
able and that the set of all nonrecursive languages over :E is 
uncountable. 

(e) Prove that the set of all r.e. languages over :E is countable and 
that the set of all non-r.e. languages over :E is uncountable. 

(f ) Prove that there is a language over :E that is neither r.e. nor 
co-r.e. 

7 .8-3 Prove that there are exactly as many even integers as integers. 

7 .8-4 Construct a one-one correspondence from { 0, i }  * to the set of pos
itive integers. 

Solution: Several solutions are possible. For example, let h(x) be 
the finite transduction that replaces i 's by 2 's and replaces O 's by i 's. 
The desired one-one correspondence is/(x) = dyadic(h(x) ) + 1. 
A simpler solution is/(x) = binary( lx). 



7 .8  Diagonal ization 485 

7 .8-5 In this exercise you will construct a one-one correspondence from 
the nonnegative rational numbers to the natural numbers. 

(a) Let :E be any alphabet. Prove that there are exactly as many 
strings over :E as natural numbers. 

Solution: Let b = l :E I ;  then b-adic(x) is a one-one correspon
dence from :E* to N .  

(b) Prove that there are exactly as many nonnegative rational num
bers as natural numbers. 

Solution: We define a one-one mapping m from nonnegative 
rational numbers to strings over { 1 ,  2 ,  / }  as follows: 

input r; 
determine n and d such that r = n / d and n and d are relatively 

prime; 
output the string NI D where N is the dyadic representation 

of n and D is the dyadic representation of d. 
Define a one-one correspondence g from { 1 ,  2 ,  / }  * to N as in 
part (a). Let h(r) = g( m(r) ) ,  so h is a one-one mapping from 
the nonnegative rational numbers to N . Order the rational 
numbers according to h(r) . Let f(r) be the rank of r in that 
ordering; i.e., /(r) is the maximum value i such that there 
exist rational numbers r1 , • • •  , r; satisfying h(r1 ) < h(r2 ) < 
· · · < h(r; ) < h(r) . f is the desired one-one correspondence. 

7 .8-6 A function/ is monotone if x :S y ==;, f ( x) :S f  (y) .  Prove that there 
is no monotone one-one correspondence from the set of rational 
numbers to N.  

7 .8-7 A submarine travels under the Euclidean plane with constant ve
locity (speed and direction). Every hour on the hour it passes under 
a lattice point, and every hour on the hour you can drop a depth 
charge at any point in the plane, destroying the submarine if it is 
there. You cannot see the submarine and you do not know its initial 
position or its velocity. Is there a strategy you can follow that is 
certain to destroy the submarine eventually?  

7 .8-8 Use diagonalization to construct an irrational real number. 

7 .8-9 Present a one-one correspondence from R X R to R. 



486 Com putabi l ity 

7 .8-10 Assume that there is a one-one mapping from A to B and another 
one-one mapping from B to A .  

(a) Assuming that A i s  countable, prove that there i s  a one-one 
correspondence from A to B.  

*(b) Schroder-Bernstein Theorem. Without any extra assump
tions, prove that there is a one-one correspondence from A to 
B.  Hint: Let / be a one-one mapping from A to B ,  and let 
g be a one-one mapping from B to A .  Rename elements so 
that A and B are disjoint. For x and y in A U B we say that x is an ancestor of y if y is obtained from x by applying the 
functions f and/or g a finite number of times. For example, x 
is an ancestor of/ (g(f ( x) ) ) .  Define a mapping h from A to B 
as follows: 

h(a) = 
f(a) 

if a has an odd number of ancestors 
other than a, 

if a has an even or infinite number 
of ancestors other than a.  

Prove that h is a one-one correspondence from A to B. 

7 .8-11 Russell's paradox. Prove that the following is  not a set: 

{S : S is a set and S � S} . 

7 . 8 . 2  Recu rsively I n separab le  Sets 
A common problem in computer science is to design programs that dis
tinguish between two different kinds of objects. For example, an artifi
cial intelligence program might assist in cancer therapy by distinguishing 
healthy cells from cancerous cells. Since cells may suffer from diseases other 
than cancer, this is not the same as recognizing healthy cells, nor is it the 
same as recognizing cancer cells. Another program might assist a banker 
by distinguishing high-risk loans from low-risk loans; the program might 
classify medium-risk loans arbitrarily. 

If S 1 and S 2 are disjoint sets and P is a recognizer, then we say that 
P distinguishes S 1 from S 2 if P accepts all strings in S 1 and P rejects all 
strings in S 2 • Sets S 1 and S 2 are recursively separable if there is a DTR P that 
distinguishes S1 from S2 •  



7.8 D iagonal ization 487 

EXAMPLE 7.2 5. Let 

S 1 { P : P has an odd number of control states and P E Knatt } ,  

S 2 { P : P has an even number of control states and P E Knatt }.  

S 1 and S2 are nonrecursive (Exercise 7.9-l(a,b)), but they are recursively 
separable, because they are distinguished by a program that accepts P iff P 
has an odd number of control states. ■ ■ ■ 

Two sets S 1 and S2 are recursively inseparable if S 1 and S2 are disjoint and 
S 1 and S 2 are not recursively separable. 

THEOREM 7.26. There exist a pair of r. e. languages that are recursively inseparable. 
Proof: Recall that Tp (x) is the result of program P on input x. Now define 

KACCEPT 

KRE}ECT 

{P : P is a DTM program and Tp (P) = ACCEPT} ,  
{P : P is a DTM program and Tp (P) = REJECT};  

i.e. , KAccEPT is the set of programs that accept themselves and KREJ
ECT is the 

set of programs that reject themselves. 
KAccEPT is r.e. because it is accepted by a DTA that runs P on input P 

and accepts if that computation accepts. KRE
J
EcT is r.e. for similar reasons. 

We prove by contradiction that KAccEPT and KRE
J
ECT are not recursively 

separable. Suppose that there is a DTR that distinguishes KAccEPT from 
KREJE<T . Interchange accepting and rejecting states to obtain a DTR P that 
accepts all strings in KREJ

EcT and rejects all strings in KAccEPT .  I f  P accepts P ,  then P E KAccEPT ' but P rejects all strings in KAccEPT ' so P 
does not accept P. If P rejects P, then P E KRE

J
ECT ' but P accepts all strings 

in KREJECT ' so P does not reject P. Thus P neither accepts P nor rejects P, so 
P cannot be a recognizer. This contradiction proves that KAccEPT and KRE

J
ECT 

are recursively inseparable. ■ 



488 Computabil ity 

Exe rc i ses  

7.8-12 Prove that S 1 and S2 are recursively separable i f  and only i f  S2 and 
S 1 are recursively separable. 

7 .8-13 Prove that S 1 and S 2 are recursively separable if and only if there 
exists a recursive language R such that S 1 � R and S 2 � R. 
Solution: Suppose that S 1 and S2 are recursively separable. Let P be 
a DTR that accepts all strings in S 1 and rejects all strings in S 2 • Let 
R = L(P) . Then S 1 � R and S2 � R. 
Conversely, suppose that there exists a recursive language R such 
that S 1 � R and S2 � R. Let P be a DTR that recognizes R .  Then 
S 1 and S2 are recursively separable via P. 

7.8-14 In contrast to Theorem 7.26, prove that if S 1 and S2 are disjoint co-r. e. languages, then S 1 and S 2 are recursively separable. 

7 .8-15 In this exercise you will prove that certain kinds of machines cannot 
solve their own halting problem. 

(a) Prove that a DFR cannot distinguish { x : x is a DFA that halts 
on x} from { x : x is a DFA that does not halt on x }. 

Solution: The proof is by contradiction. Assume that P is 
a DFR that distinguishes { x : x is an DFA that halts on x} 
from {x : x is an DFA that does not halt on x}. We con
struct a DFA P' that accepts whenever P rejects and that goes 
into an infinite loop whenever P accepts. This construction 
can be accomplished as follows: Let P' contain all of P's in
structions and control states. Let P' contain a new control 
state v as well and the instruction (v -----+ v, NOOP),  which is 
an infinite loop. Let each of P's rejecting states be accept
ing in P' , and let all other states of P' be nonfinal. For each 
accepting state q in P, include the instruction (q -----+ v, EOF) 
in P' . Let x be a DFA. Then P' halts on input x iff P re
jects x iff x does not halt on input x. Therefore P' is differ
ent from every DFA. This contradiction proves that there is 
no DFR P that distinguishes { x : x is a DFA that halts on x} 
from { x : x is a DFA that does not halt on x}. 



7.8 D iagonal ization 489 

(b) Prove that a DCR cannot distinguish {x : x is a DCA that 
halts on x} from { x : x is a DCA that does not halt on x}. 

(c) Prove that a DSR cannot distinguish { x : x is a DSA that halts 
on x} from {x : x is a DSA that does not halt on x} . 

*7 . 8 . 3  The Total Recu rs ive Fu nctions  Cannot Be En umerated 
Exact ly 

We say that a programming language "expresses" a function if it contains 
a program that computes that function. It would be very desirable to have 
a programming language that could express every total recursive function 
but not any partial functions. Programs written in such a language would 
be guaranteed to terminate. For comparison, most actual programming 
languages can express all partial recursive functions, not just the total ones. 
In this section we will show that it is impossible to find a programming 
language that expresses the total recursive functions and no partial functions. 

A programming language is allowable if it satisfies the following practical 
restrictions: 

Enumerability: The set of programs must be r.e. 

Interpreter: There must be a DTM program that takes a program P and 
an input x and computes the result of P on input x, if it halts. 

For example, the set of all DTM programs is recursive, and the set of all 
Pascal programs is recursive. Furthermore, there are interpreters for those 
two programming languages; those interpreters can be implemented as 
deterministic Turing machine programs. 

If an allowable programming language expresses only total functions 
and S is the r.e. set of programs in that programming language, then we 
will construct a total recursive function that is not computed by any program 
in S. 

THEOREM 7.2 7. Let S be the set of programs in an allowable programming language. There exists a total recursive function f that is not computed by any of the programs in S, i. e, 
(VP E S) [f -=/= Tp] .  



490 Computabi l ity 

Proof: If S is empty, then we can let f be any total recursive function. 
Henceforth, we may assume without loss of generality that S is nonempty. 
We represent programs as natural numbers and apply Theorem 7 .20(i). 
Because S is a nonempty r.e. language, S is the range of a total recursive 
function g. We diagonalize by letting 

/(x) = Tg(x) (x) + l .  

To compute /, we first compute P = g(x) , which is possible because g is 
totally recursive. Then, using the interpreter, we determine the result of 
program P on input x; this result exists because every program in S computes 
a total recursive function. Finally, we add one to the result. Thus f is total 
recursive. 

However, for every x,f is different from Tg(x) , because those two functions 
differ on input x. Because the range of g is S, the function / is different 
from Tp for every P in S. ■ 

7 .  9 MANY-ONE REDUCTIONS 

We say that a language A is reducible to a language B if A is recognized by an 
algorithm that uses the ability to test membership in B.  If A is reducible to 
B and B is recursive, then it is clear that A is recursive. The contrapositive
if A is reducible to B and A is nonrecursive then B is nonrecursive-can be 
used in practice to prove that certain languages are nonrecursive. 

It is all too easy to get the reduction principle backward. If A is reducible to B and B is nonrecursive, then we may conclude nothing of interest about A. Remember: Any fo ol can reduce an easy problem to a hard problem, but no one can reduce a hard problem to a truly easy problem. 
So far we have not specified how an algorithm may use the "ability 

to test membership in B. "  Depending on how we specify this, we obtain 
different definitions of "reduction. "  The many-one reduction, defined below, 
is quite useful: 

DEFINITION 7.28 (Many-one Reductions). A language A is many-one reducible to B (denoted A "5.m B) if there is a total recursive function/ (called 



7 .9  Many-One Reductions 4 9 1  

a many-one reduction from A to B) such that6 

x E A  {=;> /(x) E B. 

If / is a many-one reduction from A to B ,  we may say that A is many-one 
reducible to B via f. The term "many-one reducible" is often abbreviated 
"m-reducible. " If A "5.m B,  we think of B as being as hard as A or harder; A 
is as easy as B or easier. 

As a trivial example, let A be the set of all even integers, and let B be 
the set of all integers that are divisible by 6. Then 

x E A {=;> 3x E B ,  

so A "5.m B via the reduction /(x) = 3x. We will see some nontrivial 
reductions soon in this section, but first we state some simple properties of 
many-one reductions. 

PROPOSITION 7.29. 

(i) Reflexive. ('v'A ) [A "5.m A] .  

(ii) Transitive. If A "5.m B and B "5.m C, then A "5.m C. 

( iii) If A "5_,,, B and B is recursive, then A is recursive. 
(iv) If A "5.m B and B is r. e. ,  then A is r. e. 

Proof 

(i) The identity function is a reduction from A to A: x E A  {=;> x E A . 

(ii) Suppose that A "5_,,, B and B "5.m C, so that for all x we have 
x E A  {=;> /(x) E B and x E B {=;> g(x) E C .  Then for all x 
we have 

x E A  <¢===? f(x) E B  <¢===? gU(x) ) E C, 

so g o  f is a reduction from A to C .  

6 A i s  one-one reducible to B i f  there i s  a one-one total recursive function f such that 
x E A  {:::::::} /(x) E B. A many-one reduction need not be one-one, hence the name. 
We do not discuss one-one reductions further in this book. 



492 Computab i l ity 

(iii) Assume that for all x, x E A {=;> f(x) E B and that B is recog
nized by a DTR PB · The following is a deterministic algorithm to 
test membership in A :  

input x; 
Y : = f(x) ; 
run PB on input y; 
if PB accepts then accept, else reject. 

(iv) Assume that for all x, x E A � f ( x) E B and that B is accepted 
by an NTA PB - The following is a nondeterministic algorithm to 
test membership in A :  

input x; 
y : = f(x) ; 
run PB on input y;  
if PB accepts then accept. ■ 

Taking the contrapositive of part (iii), we have an important technique 
for proving undecidability: 

COROLLARY 7.30 If A �"' B and A is nonrecursive, then B is nonrecursive. 
EXAMPLE 7.3 1  (Kdiag �m Kxy ). Recall that Kxy is the set of pairs (x, y) 
such that DTM program x halts on input y, and Kdiag is the set of DTM 
programs that halt when given themselves as input . Let f(x) = (x, x). 
Then 

X E Kdiag {=;, (x, x) E Kxy , 

so Kdiag �m Kxy via/. I I I 

EXAMPLE 7.32 (Kxy �m K;natt>· Recall that K;natt is the set of DTM 
programs without input that halt . Let f(x, y) be the inattentive program 



7 .9  Many-One Reductions 493 

that runs program x on input y, i .e . ,  

J(x ,y)  = "Run DTM program x on input y." 

(The program f ( x, y) is obtained by hard-coding the string y into the pro
gram x. If you were programming in a high-level language, you would take 
the program x and set an internal constant equal toy instead of having x read 
y. You can accomplish the same thing with Turing machines by initializing 
an extra control to hold y. The input operation SCAN c is then simulated 
by the control operations cz --+ z for each of y's suffixes of the form cz . EOF 
is simulated by A --+ A.  Observe that the extra control always holds a 
suffix of y, so it has only IY I + 1 states, which is finite. The fact that you 
can hard-code a fixed input into a Turing machine program is quite useful . 
For historical reasons, this obvious programming principle is known by an 
arcane name: the s-m-n theorem.) Then 

(x, y) E Kxy {=;, f(x, y) E Kinatt , 

so Kxy �m Kinatt via/. I I I 

EXAMPLE 7.33 (Kinatt � m Kp05). Recall that Kpos is the set of DTM pro
grams that halt on at least one input. Let/(x) be the program that ignores 
its input and runs inattentive program x; i .e . ,  

Then 

so 

f(x) = "Input z ; run inattentive DTM program x." 

x E Kinatt ::::;,- J(x) halts on all inputs , 

x (/:. Kinatt ::::;,- J(x) halts on no inputs, 

x E Kinatt {=;> J(x) halts on at least one input {=;> J(x) E Kpos -

Thus Kinatt �m Kp0, via/. I I I 



494 Computabi l ity 
EXAMPLE 7.34 (Kpos �m Kdiag). Let f(x) be the program that ignores its input and searches for a complete computation of program x; i .e . ,  let 
J(x) = the program below: 

input z;  i := O; while i does not encode a computation of x do i : = i + l ; halt . 
Then 

x halts on at least one input {:=;> x has at least one complete computation 
{==;> J(x) halts on input z for arbitrary z 
{==;> J(x) halts on input/(x) 
{==;> f(x) E Kdiag , 

so Kpos �m Kdiar, via/. I I I 

THEOREM 7.35, Kinatt and Kpos are nonrecursive. 
Proof: By Theorem 7 . 23,  Kxy is nonrecursive . By Example 7 .32,  Kxy �m Kinatt · Therefore, by Corollary 7 .30,  Kinatt is nonrecursive. By Example 7 .33, Kinatt �"' Kp0, . Therefore, by Corollary 7 .30, Kpas is nonrecursive. 
THEOREM 7.36. Let K be any of the sets Kxy, Kdiar,, Kpos, and Kinatt· 

(i) K is r. e. 
(ii) K is not recursive. 

( iii) K is not co-r. e. 
(iv) K is no t r. e. 

■ 



7 .9  Many-One Reductions 495 

FIGURE 7,3 :  A (DTM) program that does not halt on  any input. 

Proof: (i) By Example 7 . 1 1 , Kxy is r.e .  By Examples 7 . 3 3, 7 . 34, and 7 . 3 1 , 

so by transitivity each of those sets is rn-reducible to Kxy - By Propo
sition 7 . 29(iv), each of those sets is r.e .  

(i i) By Theorems 7 . 2 3  and 7 . 35, K is not recursive. 

( i i i) Since K is r.e .  but not recursive, K must not be co-r.e. by Theo
rem 7 . 1 9 . 

(iv) Because K is not co-r.e . ,  K is not r.e .  ■ 

We note that 0 is reducible to K;natt by setting/(x) = the TM program 
in Figure 7 . 3, which does not halt on any input. Thus when A '5:.m Kinatt, we 
may not validly conclude that A is nonrecursive. In fact, every r.e. language 
(and, a fortiori, every recursive language) is rn-reducible to Kinatt · The proper 
conclusion when A '5:.m Kinatt is that A is as easy as the halting problem or easter. 
THEOREM 7.37. Let K denote Kdiag, Kxy, K;natt, or Kpus · A is r. e. if and only if A '5:.m K. 
Proof: Suppose that A is r.e .  We prove that A '5:.m Kxy - Let P be a DTA that 
accepts A .  Obtain P' by modifying P so that it goes into an infinite loop 
instead of ever blocking. Then P accepts x i ff P' halts on input x. Therefore 

x E A  {=;> (P', x) E Kxy , 



496 Computability 

so A '5::.m Kxy via/(x) = (P' , x) .  By Examples 7 . 32 through 7 . 34, 

so A is reducible to each of those sets by transitivity. 
Conversely, suppose that A '5::.m K. Then A �m Kxy by Examples 7 . 3 3, 

7 . 34, and 7 . 3 1 .  Kxy is r.e. by Example 7 . 1 1 .  Since A '5::.m Kxy , A is r.e .  by 
Proposition 7 .29(iv). ■ 

Since K is r.e. itself, K is thus a hardest r.e .  language. If C is an r.e. 
language like K, such that every r.e .  language is m-reducible to C, then 
C is called complete. In fact, K gets its name from the German word for 
"complete. "  

DEFINITION 7.38 

• Let K2_cM be the set of deterministic 2-counter machine programs 
that halt on at least one input. 

• Let K2_sM be the set of deterministic 2-stack machine programs that 
halt on at least one input. 

THEOREM 7.39. K2_cM and K2_5M are nonrecursive. 

Proof: By Corollary 7 . 3 ,  a deterministic 2-CM program can simulate a 
DTM program. Because this simulation is effective, there is a total recursive 
function / that maps a DTM program x to an equivalent deterministic 2-
CM program/(x) . Then x E Kpas � f(x) E K2-CM, so Kpos '5::_,,, K2-CM 
via/. Because Kpas is nonrecursive, K2_cM must be nonrecursive. There is a 
trivial reduction from K2_cM to K2_sM, so K2_sM is nonrecursive as well . ■ 

EXAMPLE 7.40. Many-one reductions can be used to prove that a language 
is not r.e. Let TOT be the set of DTM programs that halt on all inputs. We 
will show that Kinatt is m-reducible to TOT. If TOT were r.e., then Kinatt 

would be r.e .  as well by Proposition 7 .29(iv), contradicting Theorem 7 . 36;  
thus TOT must not be r.e .  



7 .9  Many-One Reductions 497 

Now we give the reduction. Let f(P) be a program that behaves as 
follows : 

input s; (* treat s as a natural number *) 
if P halts within s steps then 

go into an infinite loop 
else 

halt. 

If P halts, then f (P) doesn't halt for sufficiently large s, so f (P) � TOT. If P does not halt, then/(P) halts for all s, sof(P)  E TOT. Thus 

Kinatt 5:.r11 TOT, 
as asserted. 

Exe rc i ses 

7 .9- 1 Prove that the following languages are nonrecursive: 

■ ■ ■  

(a) { P : P has an odd number of control states and P E Kinatt } 
(b) {P : P has an even number of control states and P E Kinatt } 
(c) {P : P is a DTM program that halts on an odd number of 

inputs} 
(d) { P : P is a DTM program that halts on an even number of 

inputs} 
(e) { P : P is a DTM program that halts on all inputs} 
(f) { P : P is a DTA that accepts a recursive language} ,  i . e . ,  there 

is a DTR that recognizes the language that P accepts 

7 .9-2 Which of the following languages are recursive? Which are r.e . ?  
(a) {P : P is a DTA that accepts a finite language} 
(b) { P : P is a DTA that accepts a regular language} 
(c) {P : P is a DTA that accepts an r.e .  language} 
(d) {P : P is a DTA that accepts a co-r.e. language} 
(e) { P : P is a DTA that has at least 1 7 control states} 



498 Computabi l ity 

(f) 
(g) 
(h) 
(i) 

7 .9-3 (a) 
(b) 

{ P : P has at least 1 7 control states and P E Kinatt} 
{ P : P is a DTA that has a computation of length 1 7 or less} 
{ P : P is a DTM program that halts on fewer than 1 7  inputs} 
{ P : P is a DTM program that halts on fewer inputs than P 

has control states} 

Prove that { (P, Q) : P and Q are equivalent DTAs} is not r.e .  
Prove that there is no DTM program D that will take a pair 
of equivalent DTAs P and Q and produce a proof that they are 
equivalent. Make no assumption about D's behavior when its 
input consists of a pair of inequivalent DTAs. Hint: You may 
assume that there is an algorithm to verify proofs .  

,r 7 _  1 0  REWRITI NG SYSTEMS AND WORD PROBLEMS 

One theme in  the theory of  languages and machines i s  that language classes 
can either be defined in terms of grammars or in terms of programs.  In 
Chapter 4 we saw that regular expressions are equivalent to NFAs . In 
Chapter 5 we saw that context-free grammars are equivalent to NSAs. We 
complete this motif by defining rewriting systems and proving that they 
are equivalent to NTAs. 

Rewriting systems are a generalization of context-free grammars in 
which the left side of a production may contain more than one symbol. In 
this section we will consider semi-Thue and Thue7 systems. A semi-Thue 
system consists of productions (such as aSa -----+ S) that allow one string to 
be replaced with another string, much as a CFG's productions allow one 
variable to be replaced by a string . The word problem for a semi-Thue 
system is to determine whether x derives y via its productions . We will see 
that the word problem for semi-Thue systems is undecidable. 

A Thue system consists of a finite set offormal equalities between strings 
(such as aSa = S) that allow one string to be replaced by another and vice 
versa. The word problem for Thue systems is to determine whether its 
equalities imply x = y. We will see that the word problem for Thue 
systems is undecidable. 

7 Thue's name is pronounced "two way," running the syllables together. This is a useful 
mnemonic because the productions in a Thue system go in two directions, whereas 
the productions in a semi-Thue system go only one way. 



*7. 1 0  Rewrit ing Systems and Word Problems 499 

DEFINITION 7.4 1 . A semi-Thue"system consists of an alphabet � and a finite 
set of productions of the form x ---+ y where x and y are strings over �* . The 
set of ordered pairs { (x, y) : x ---+ y} is a relation, which we call G's production relation and denote by ---+ or Re. 

DEFINITION 7.42. Fix a semi-Thue system G.  Let s and t be strings over � -

• s immediately derives t (denoted s ::::;,- t or s  ::::;,-G t) if there is a produc
tion x ---+ y in G such that 

s = uxv and t = uyv. 
• The relation ⇒ (pronounced derives and also denoted ⇒c ) is the 

reflexive transitive closure of ::::;,- .  That is, ⇒ is the least relation 
such that 

EXAMPLE 7.43. The context-free grammar 

S ---+ aSb 
s ---+ A 

is a semi-Thue system with alphabet � = { a, b ,  S} .  In fact, if G is any CFG 
in standard form, then the productions of G constitute a semi-Thue system. 
There is no distinguished start symbol in a semi-Thue system. Nor is there 
a distinction between terminal and nonterminal characters . However, for 
a nonterminal character V and a terminal string x, V ⇒ x has the same 
meaning in a CFG as in the corresponding semi-Thue system. ■ ■ ■ 

EXAMPLE 7.44. Consider the semi-Thue system with alphabet { a, b, c , S} 
and productions 

S ---+ abcS 
s ---+ A 

ba ---+ ab 
cb ---+ be 
ca  ---+ ac . 



500 Computability 

In this semi-Thue system we have 

S ::::;,- abcS ::::;,- abcabcS ::::;,- abcabc ::::;,- abacbc ::::;,- aabcbc ::::;,- aabbc c,  

so S ⇒ aabbcc .  In fact, S derives all strings in which each prefix contains 
at least as many a's as b's and at least as many b's as e 's .  ■ ■ ■  

A Thue system is a symmetric version of a semi-Thue system in which 
the right sides of productions can be replaced by the left sides as well. 

DEFINITION 7.45. A Thui:" system consists of an alphabet � and a set of rules of the form x = y where x and y are strings over �* . 

Derivations are performed in Thue systems by replacing strings with 
equal strings . The rule x = y in a Thue system G is equivalent to the pair of 
productions x ---+ y and y ---+ x in a semi-Thue system. If Re is symmetric, 
then G is equivalent to the Thuc system obtained by replacing x ---+ y and 
y ---+ x with x = y .  

EXAMPLE 7.46. Consider the Thue system with alphabet { a ,  b ,  S} and 
rules 

S abcS 
s A 

ba ab 

cb be 

ca ac . 

In this rewriting system we have 

S = abcS = abc = bac = bca = cba 

because we can use the rule ba = ab to replace ab by ba, and so on . 
Therefore S = c ba. In fact, S is equal to every string consisting of equal 
numbers of a's, b's, and e 's .  ■ ■ ■  

DEFINITION 7.47. The word problem for a semi-Thue system G is to deter
mine whether x ⇒c y.  



*7 . 1 0  Rewrit ing Systems and Word Problems 5 0 1  

We will prove that semi-Thue systems can simulate NTM programs. 
Then we will prove that the word problem for semi-Thue systems is unde
cidable by reducing the halting problem to it .  

TH EOREM 7.48. There is an algorithm to convert an NTM program N to a semi-Thue"system G such that 
( i) If N is a transducer with transfer relation T, then 

x$ ⇒G #y 
( ii) If N is an acceptor, then 

(iii) If N is inattentive, then 

iff 

iff 

iff 

X I---+ y .  

N accepts x. 

N halts. 

In each part, # and $ are assumed to be characters that do not belong to N's input or output alphabet. 
Proof: Depending on whether N is a transducer, acceptor, or inattentive 
program, we proceed as in (i), (ii), or (iii) below. 

(i) We can convert a k-tape transducer N to an equivalent program for a 
machine [stack, control, stack] such that the first stack is initialized 
to hold the argument and the second stack holds the reverse of the 
result (see Section 7 .2) .  Factor the program and then eliminate 
null instructions so that each instruction operates on exactly one 
of the stacks. Eliminate the EMPTY test from each stack as in 
Section 3 .  3 .  3 .  By renaming symbols we may assume that the control 
set is disjoint from the stack alphabets and that none of these sets 
contains $ or #. Let qs,an be the initial control state, and let qaccep, be 
the unique accepting control state. Call the resulting program P. 

We will construct a semi-Thue system G such that 



502  Computab i l ity 

Instruction in P 

( PUSHc , q -----+ q' ,  NOOP ) 

( POPc , q -----+ q' , NOOP ) 

( NOOP q -----+ q' ' PUSHd ) 

( NOOP q -----+ q' , POPd ) 

Production in G 

q -----+ cq' 

cq -----+ I q 

q -----+ q'd 

qd -----+ q' 

TABLE 7.4: Converting an inattentive 2-SM program P to a semi-Thue sys
tem G. 

A configuration (s 1 , q, s2 ) of P will be represented by the string 
s 1 qsf . Each instruction of P affects only q and one of the two stack 
characters adjacent to it in that string; each instruction of P will be 
simulated by a production of G that indicates the effect on q and 
those two stack characters, as shown in Table 7 .4 .  

Referring to Table 7 .4 ,  we see that 

An easy induction shows that 

Therefore 

IT* * R 
X Tp y iff (x, qstarr , A) I---+ (A, qaccepr , Y) iff xqs,art ::::;,-G qacceptY 

Finally, replace qs,an by $ and replace qaccepr by # everywhere in the 
semi-Thue system G. Then 

X TN y iff X Tp y R iff xqs,art ⇒G qacceptJ iff x$ ⇒G #y · 

(ii) Because no output device is used, we can standardize both stacks 
in a 2-SM so that they are empty in all final configurations. Other 
than that, the construction is the same as in part (i) . 



*7 .  l O Rewriti ng Systems and Word Problems 503  

(iii) Because no  input or output device i s  used, we can standardize both 
stacks in a 2-SM program so that they are empty in all initial and 
final configurations. Change all final states to accepting states as 
well, and then standardize so that the accepting state is unique. 
Other than that, the construction is the same as in part (i) . ■ 

COROLLARY 7.49. The word problem for semi-Thue"systems is undecidable. 
Proof: Let /  be the total recursive function that converts P to G in Theo
rem 7 .48(iii). Then P E Kinatt iff $ ⇒/(P) #. Thus Kinatt is m-reducible to 
the word problem for semi-Thue systems. ■ 

We will show that a special case of the word problem, in which the 
derived string is A, is undecidable. Toward this end, we prove a version of 
Theorem 7 .48(ii) without #'s . 

THEOREM 7. 50. There is an algorithm to convert an NTA N to a semi-Thue" system G' such that 
x$ ⇒ G' A iff N accepts x. 

($ is assumed to be a character that does no t belong to N's input alphabet. ) 
Proof: Construct the semi-Thue system G as in the proof of Theorem 7 .48. 
Include one additional production, # ---+ A .  Call the resulting semi-Thue 
system G' . If N accepts x, then x$ ⇒c #, so 

Conversely, assume that x$ ⇒c' A. The right side of every production in 
G is a nonempty string. Therefore the last production used in deriving A 
cannot be a production of G. Therefore the last production used in deriving 
A must be # ---+ A. That production must have been applied to the string 
#. Therefore x$ ⇒G' #. If the production # ---+ A is used in a derivation u ⇒c, v, then v must contain fewer control states than u. Therefore the 
production # ---+ A could not be used in the derivation x$ ⇒G' #. Therefore x$ ⇒c #, so N accepts x. ■ 



5 04 Computability 

COROLLARY 7. 5 1 .  There is no algorithm to determine whether x ⇒c A in a semi-Thuifsystem G. ■ 

The language generated by a semi-Thue system G is defined by 

L(G) = {x : A ⇒c x} . 

COROLLARY 7. 52.  The class of languages generated by semi-T hue"systems is equal to the class of r. e. languages. 
Proof: First, let G be a semi-Thue system. We can test whether x E L( G) 
nondeterministically by guessing a derivation of A ⇒G x and checking the 
derivation. Therefore L(G) is r.e .  

Conversely, let A be r.e .  Then A i s  accepted by an  NTA. By Theo
rem 7 .50, there is a semi-Thue system G such that 

X E A iff X ⇒G A .  

Reverse each production in G ,  i .e ., replace u ---+ v by v ---+ u, to obtain a 
semi-Thue system G' such that 

X E A iff A ⇒G' x. 
Then A =  L(G' ) .  ■ 

Next we will prove that Thue systems are at least as powerful as deter
ministic TM programs, and the word problem for Thue systems is unde
cidable as well. 

THEOREM 7.53.  There is an algorithm to convert a DTM program D to a Thuif system G' such that 
( i) If D is a transducer with transfer relation T, then 

x$ =c, #y iff X I---+  y . 



*7 . 1 0 Rewriti ng Systems and Word Problems 505  

(ii) If D is an acceptor, then 
x$ =c, # 

(iii) If D is inattentive, then 
$ =c, # 

iff 

iff 

D accepts x. 

D halts . 

In each part, # and $ are assumed to be characters that do not belong to D's input or output alphabet. 
Proof: Construct P and the semi-Thue system G as in the proof of Theo
rem 7 .48. Note that P is deterministic .  Let IT be P's sequel relation . Let Re 
be G's production relation . Let G- 1 be a semi-Thue system with the same 
alphabet and with production relation Re 1 , the converse of G's production 
relation . Let G' be a semi-Thue system with the same alphabet and with 
production relation Re u Re 1 ' the symmetric closure of G's production 
relation . Since its production relation is symmetric, G' is equivalent to a 
Thue system . 

For convenience of exposition, we identify $ with qs,art and # with qaccept · 
We will prove that xqstart ⇒G qacceptY if and only if xqstart ⇒c, qacceptY ·  First, 
if xqs,art ⇒c qacceptJ,  then it must also be true that xqstart ⇒G' qacceptJ because 
every production of G is a production of G'. 

Conversely, suppose that xqs,an ⇒c, qaccep,J· Consider a shortest deriva
tion in G' of qaccep,J from xqs,arr - By a simple induction, all strings derived 
from xqs,art are of the form uqv where q is a control state and u and v are strings 
over P's stack alphabets. We assert that no step in this shortest derivation 
uses a production belonging to Re 1 . The proof is by contradiction . 

Consider the last step in the derivation to use a production in Re 1 . 
If this step is the last step in the derivation, then it must have the form 
uqv ⇒c- 1  qacceptY ·  By symmetry, qacceptY ⇒G uqv. Then (A, qaccepn Y R ) � 
(u, q, v R ) .  Since (A, q, y  R ) is an accepting configuration, this contradicts 
P's determinism. 

Otherwise this step is not the last in the derivation, so it is followed by 
a step using a production in Re . These two steps in the derivation have the 
form z0 ⇒c-1  z1 ⇒c z2 , so z1 ⇒c z0 and z1 ⇒c z2 . Let zi = uiqivi for i = 
0 , 1 , 2 . Then (u1 , q1 , vn � (u0 , qo , vt ) and (u1 , q1 , vn � (u2 , q2 , vf ) .  



5 06 Computabi l ity 

Since P is deterministic, the configurations (u0 , q0 , vt) and (u2 , q2 , vff) must 
be equal. Therefore z2 = z0 , so the derivation could be shortened by 
eliminating the superfluous steps z0 ==}c, z 1 ==}c, z0 . But we chose a 
shortest derivation. This final contradiction proves that xqs,art ⇒c qacceprY· 

Thus X Tp Y iff xqs,art ⇒G qacceptJ iff xqs,art ⇒G' qacceptJ· ■ 

Because the halting problem for deterministic TM programs is unde
cidable, we have the following analogue to Corollary 7.49: 

COROLLARY 7. 54. The word problem for Thue" systems is undecidable. ■ 

Exerc i ses 

7.10-1 Design a semi-Thue system in  which x ⇒ y if and only if x = y or 
x precedes y alphabetically. Use the alphabet {a ,  b ,  c } .  

7 . 10-2 Design a semi-Thue system in which S ⇒ x# if and only if x is of 
the form aibi d .  
Solution: We modify this section's example. The key point is to 
make sure that the string belongs to a*b* c * before we put a #  at 
the end of it. Imagine a special character 1 that can move right 
across a's, a special character 2 that can move right across b's, and a 
special character 3 that can move right across e 's .  A 1 can turn into 
a 2, a 2 can turn into a 3, and a 3 can turn into a #  at any time. The 
special character starts as a 1 at the left end of the string. The only 
way it can get to the right end is if the string belongs to a *b * c * . 

s ---+ Sabe 

s ---+ 1 
ba ---+ ab 
cb ---+ be 

ca ---+ ac 
l a  ---+ a l  

1 ---+ 2 
2b ---+ b2 



*7.  l O Rewriting Systems and Word Prob lems 507  

2 ---+ 3 

3c  ---+ c 3  

3 ---+ #. 

7 . 10-3 Prove that there is no algorithm to decide whether x = A in a 
Thue system G. Hint: Reduce the word problem for Thue systems. 
Suppose we want to determine whether x =c y. Let G' contain all of 
G's equalities and also [y] = A, where [ and ] are new characters. 
Prove that 

X =c J iff [x] =c, A .  

7 . 10-4 A group can be represented as a Thue system over an alphabet 
I: U {a- 1 : a E I:}  with the rules aa- 1 = A and a- 1a = A for all 
characters a and possibly (usually) some other rules. 

(a) Prove that the word problem (x = y?) for groups is m
reducible to the special case of determining whether x = A. 

**(b) Prove that the word problem for groups is undecidable . 

7 . 10-5 * *(a) Prove that the word problem is undecidable for Thue systems 
in which the right sides of all equalities are A .  

**(b) Prove that there is no algorithm to decide whether x = A in a 
Thue system G, even if the right sides of all equalities are A .  
Hint: Use part (a). 

7 . 10-6 Reduce Kinatt directly to the word problem for semi-Thue systems. 
Do not use 2-stack machines. Hint: Represent the configuration 
( q, x GJ y) of P by the string xqcy# where # is a new character. 

7 . 10-7 (a) Define parse graphs for rewriting systems by analogy to parse 
trees for CFGs. 

(b) Define leftmost derivations for rewriting systems. 
(c) Is there a one-one correspondence between parse graphs and 

leftmost derivations? 
(d) Define ambiguity for rewriting systems. 



508 Computability 

7 . 10-8 So far we have seen that regular expressions are equivalent to NF As, 
CFGs are equivalent to NSAs, and rewriting systems are equivalent 
to NTAs. Design a class of grammars that are equivalent to NCAs. 
(Your class of grammars need not be as elegant and natural as regular 
expressions, CFGs, and rewriting systems.) 

* 7 . 1 1 TH E POST CORRESPO N DENCE PROBLEM 

The Post correspondence problem (PCP) is usually described as follows: 
Given two lists, each containing the same number of strings, is some non
trivial concatenation of strings from the first list equal to the concatenation 
of the corresponding strings from the second list ? Repetitions are allowed. 
More precisely, given strings xi , . . .  , xn and Y i , . . .  , Yn, does there exist a 
nonempty sequence \(i i , . . .  , ik )) of numbers in { 1 ,  . . .  , n} such that 

To avoid double subscripts and to make our forthcoming reduction clearer, 
we treat the problem instance as a single set of ordered pairs rather than as 
two lists. The problem is stated below: 

Problem name: Post correspondence problem 

Instance: a set S of ordered pairs of strings 

Question: Does there exist a nonempty sequence \( (xi , Y i ) ,  . . .  , (xk , Jk) )) 
of pairs in S such that 

The sequence (( (Xi , y i ) ,  . . .  , ( Xk , y k) )) is called a solution to the PCP instance. 
The Post correspondence problem is named after its inventor, logician 

Emil Post. We will prove that PCP is undecidable. Of all undecidable 
problems, it is perhaps the simplest to describe to a layperson, because it 
involves no explicit math or computation. Historically PCP was an impor
tant tool for proving the undecidability of problems involving context-free 



*7. 1 1 The Post Correspondence Problem 509 

languages. PCP will not, however, be needed in our treatment of unde
cidability. Instead, in Section 7 . 1 3  we will reduce the halting problem for 
2-stack machine programs to most of the important undecidable questions 
involving context-free languages. The undecidability of PCP is nonetheless 
an interesting application of rewriting systems. 

EXAMPLE 7.55.  Consider the following instance of PCP: 

{ (ba, b) ,  (na, an) , ( s , as) } . 

It will be convenient to write the elements of an ordered pair one above the 
other. Thus we write the instance above as 

{
ba na 

� }  ' ' . b an as 

When we write a sequence of such pairs from left to right and omit the 
commas, the result has the appearance of concatenating the x's and the y's . 
Every sequence of the form 

is a solution, e.g., 

ba 
(

na
)

* s - - -
b an as 

ba na na s 
b an an as '  

in which top and bottom spell out bananas . 

EXAMPLE 7. 56. Consider another instance of PCP: 

The sequence 

{ 
A a utom ton

} - , - , -- , - - . 
au to ma n 

A a utom a ton 
au to ma to n 

■ ■ ■  

is a solution, because top and bottom spell out automaton. (Naturally, 
there is no requirement that the solution to a PCP instance spell out a real 
English word.) ■ ■ ■ 



5 1 0  Computabil ity 

Programs start in an initial configuration. Rewriting systems start with 
a given string. However, a solution to a PCP instance can start with any 
pair. If we are going to reduce a computational problem to PCP, it will be 
helpful if we can specify which pair comes first in a solution to the PCP 
instance. It will also be convenient to specify which pair comes last. Toward 
this end, we define a modified version of PCP. 

Problem name: modified Post correspondence problem (MPCP) 

Instance: a "starting" pair of strings (xs,arr , Ysrarr ) ,  a "final" pair of strings 
(xfinal , Yfina1 ) ,  and a set S of "internal" pairs of strings 

Question: Does there exist a sequence (( (x 1 , y 1 ) , . . .  , (xk , Yk ) )) of pairs in 
S such that 

By analogy to PCP, the sequence (( (xstart , Ystart) ,  (x1 , Y 1 ) ,  · . · , (xk , Yk) ,  
(xfinal , Yfina1 ) )) i s  called a solution to the MPCP instance. 

We will reduce MPCP to PCP; therefore, PCP is at least as hard as 
MPCP. Then we will reduce the problem of determining whether x ⇒ A 
in a semi-Thue system to MPCP. The former problem is undecidable by 
Corollary 7 .  5 1 ,  so MPCP is undecidable. Therefore PCP is undecidable as 
well. 

LEMMA 7. 5 7. MPCP �m PCP. 

Proof: If (x, y) is the first pair used in a solution to a PCP instance, then x 
is a prefix of y or y is a prefix of x; in particular, if x and y are nonempty, then 
x and y begin with the same character. If every pair of strings but one starts 
with different characters, then we know that that one must come first in 
any solution. Similarly, if every pair of strings but one ends with different 
characters, then we know that that one must come last in any solution. We 
will use these ideas in order to reduce MPCP to PCP. 

Consider an instance of MPCP with starting pair x,wt
' final pair Xfinal ' and 

Ystart Jfinal 

set of internal pairs S. Let #, [, and ] be new characters. In constructing 
our PCP instance, we will use [ to mark the start pair and ] to mark the 



*7. 1 1 The Post Correspondence Problem 5 1 1 

final pair. In order to rule out trivial solutions to the PCP instance, we will 
interleave the characters in each pair with # but in a staggered fashion. If 

let 

Xstart a1 · · · ap 

Ystart b i . . .  bq 
' 

[#a1 #a2 #  · · · #ap 

[#bi #b2 #  · · · #bq# 

For each other pair � in S, say 

let 

If 

let 

Xfinal e1 . • •  ep 

Yfinal /1 
• . • /4 ' 

x' #ei #e2 # · · · #ep#] final 

Y�nal /1 #/2# • • · #fq#] 
I I 

The PCP instance will consist of the pair x;,arr , the pair x�"'1 , and all pairs 
Ystart Yfinal 

X
1 

X 

, such that - E S. If 
)' )' 

Xstart Xi 

Ystart Y t Jk Jfinal 



5 1 2  Computabi l ity 

is a solution to the MPCP instance, then it is easy to see that 

I I I I 
x,,art XI • . • X k Xfinal 

is a solution to the PCP instance. 

I I 
Yk Yfinal 

Conversely, consider any solution to the PCP instance. The solution 
x' 

must start with the pair ;"'' because this is the only pair in which both 
Ystatt 

strings have the same first character. The solution must finish with the pair 
x' 

�
n

,i because this is the only pair in which both strings have the same last 
Ynnal 

character. In particular, the solution must contain the pair x7""1 • 
Yfinal 

I 

We assert that there cannot be a second occurrence of x;'"" before the 
Ystart 

first occurrence of x�n,i
. If there were, then the bottom string would contain 

Yanal 
the substring #[, but the top string can never contain this pattern. This 
proves the assertion. 

Thus the solution must have the form 
I I I I 

Xstart XI X k Xfinal - - - • · • - - - • • ·  

Y:tart Y
1
t Y� Y�nal 

x' 
where more pairs may appear after the pair � - However, because the 

Yanal 
I 

character ] appears only in the pair x7n•1
, the two ] 's in that pair must line 

Yfinal 
up. Therefore the prefix of that solution, 

is in fact a solution to the PCP instance. Consequently, 

Xstart X1 

Ystart Y t  

is  a solution to the MPCP instance. 

Yk Jfinal 

Thus we have shown that the MPCP instance has a solution iff the PCP 
instance we constructed has a solution, so 

MPCP � rn PCP. ■ 



*7 .  l l The Post Correspondence Problem 5 1 3 

Observe that in any solution 

Xscart Xi 

Yscart Yi 
Xk Xfinal 
Jk Yfinal 

to an instance of MPCP, it must be true for each i that one of the strings 
XscarcXi • • • x; and YscarcY i · · • y; is a prefix of the other. In our reduction to 
MPCP, it will always be the case that XscarcXi • • •  Xj is a prefix of YscarcY i • . • Yi· 
It is helpful to define the ith underhang of a sequence of pairs, denoted 

(Xscart Xi X; ) underhang - - - · · · - , 
Yscart Yi Y; 

to be the unique string h such that 

XstarcX i • • • X;h = YstarcY i • · • Yi 

if xs,anXi • • • X; is a prefix of YscarcY t • • • y;; the underhang is undefined other
wise. 

For example, rake the PCP in Example 7 .56,  call � the starting pair, 
ton h fi l and call ---;- t e na pair. Then 

and 

underhang (� �) = uto , 
au to 

( A a utom
) underhang - - -- = a. 

au to ma 

If M is an MPCP instance, we define underhang(M) to be the set of all strings 
h such that h is the underhang of some sequence consisting of M's starting 
pair followed by some of M's internal pairs (the final pair is not allowed). If 
M is the MPCP above, then 

underhang(M) = { au, uto,  a, to} .  

Overhangs can be defined analogously. When looking at solutions to an 
MPCP instance, it suffices to keep track of only the underhang or overhang, 
because all characters preceding the underhang or overhang are matched in 
the top and the bottom. 



5 1 4  Computab i l ity 

LEMMA 7. 58. MPCP is undecidable. 
Proof: Let G be a semi-Thue system. Let s be a string. We reduce the 
problem of determining whether s ⇒c A. 

We construct a corresponding instance of MPCP. Let # be a new 
character (distinct from the new characters used in reducing MPCP to PCP). 
The MPCP instance M will consist of the starting pair �, the final pair i , 
and a set containing the following internal pairs: 

u 
V 

C 

C 

# 

# 

for each production u ---+ v in G, 

for each character c in G's alphabet , 

Let us explain informally why this is a reduction to MPCP. Concatenating 
the pair ; to a sequence of pairs has the effect of applying the production 

• C # u ---+ v at the left end of the under hang. The pairs � and ti rotate the 
underhang so that v will be at the left end when we want to apply the 
next production. If we take a shortest solution to the MPCP instance and 
replace each # by ⇒, the top and bottom strings will spell out a derivation 
of s ⇒c A .  A formal correctness proof is given below. 

Observe that every underhang of M contains exactly one #, because the 
starting pair has one # fewer on the top than on the bottom and each internal 
pair has the same number of #'s (0 or 1) on the top and bottom. We wish 
to prove that 

* 
s ==;,-c t iff t# E underhang(M). 

The proof will be by induction, and it will be easier to prove something 
stronger. We assert that the following three statements are equivalent: 

(i) s ⇒c t  

(ii) t# E underhang(M) 



*7. 1 1 The Post Correspondence Problem 5 1  5 

The proof of the assertion is in three parts. 
(i) ⇒ (ii). Assume that s ⇒c t. We must prove that t# E 

underhang(M). The proof is by induction on the length of the derivation 
s ⇒c t. If the derivation is O steps long, then s = t. Since 

s# = underhang (� ) , 

the base case is established. 
Now we assume it for derivations of length i and prove it for derivations 

of length i + 1 .  Assume that s ⇒c t by a derivation of length i + 1 .  Then 
there is a string r such that 

and s ⇒c r by a derivation of length k. By the inductive hypothesis 
r# E underhang(M). Let 

( A  X1 X; ) 
r# = underhang - - · · · -

s# Yi Y; 

Let u ---+ v be the production by which r ==;,-c t. Then there exist strings 
r1 and r2 such that 

Let r1 = c1 · · · Cm and r2 = Cm+ t · · · Cn . Then 

Then 

(
A c1 Crn U Cm+ l en #

) t# underhang - - · · · - - - - · · · - -
r# Ct Cm V Cm+ l Cn # 

(
A x1 X; Ci Cm U Cm+ l en #

) underhang - - · · · - - · · · - - -- · · · - - , 
s# Yi y; Ct Cm V Cm+ l Cn # 



5 1 6  Computabi l ity 

establishing the inductive case . This completes the inductive proof that 
(i) ⇒ (ii). 

(ii) ⇒ (iii). Let ti = A and t2 = t. Then t = ti t2 and t2#ti = t# E 
underhang(M). 

(iii) ⇒ (i). Suppose that t2#ti E underhang(M). Then there is a 
sequence of pairs such that 

(
A Xi Xi

) t2#ti = underhang - - . . .  - . 
s# Y i Yi 

We must prove that s ⇒c ti t2 . The proof is by induction on i. If i = 0, 
then 

so t2 = s, ti = A, and t = ti t2 = s. Since s ⇒c s, the base case is 
established. Now we assume that it is true for i, and we prove it for i + 1 .  
Assume that 

Let 

(
A Xi Xi+ i

) t2#ti = underhang - - . . .  -- . 
s# Y i Yi+ i 

(
A X1 X; ) 

r2#ri = underhang - - . . .  - . 
s# Y i Yi 

Then, by the inductive hypothesis, 

By assumption, 

(
A X i Xi Xi+ i ) underhang - - . . .  - - -
s# Y i Yi Yi+ i 

( 
A xi+ i ) underhang --- - . 

r2#ri Yi+ i 



*7. 1 1 The Post Correspondence Problem 5 1  7 

We consider three cases, depending on what kind of pair xi+i is. 
Yi+ 1  

C xi+i u h . d . . Th ase 1 :  - = - w ere u ---+  v 1s a pro uction rn G. en 
Yi+! V 

so r1 v = t1 and thus r2 = ut2 . Therefore 

Since 

that completes case 1 .  
Case 2: xi

+
i = � where c is a character in G's alphabet. Then 

Y,+1 c 

that completes case 2. 
x,+1 # 

Case 3 :  -.- = ii · Then 
Y1+1 

that completes case 3 .  
Thus, in each of the three possible cases, the inductive step is established. 

This completes the proof by induction that (iii) ::::;,- (i). Because (i) ::::;,- (ii) 
::::;,- (iii) ::::;,- (i), statements (i-iii) are equivalent. In particular, 

s ⇒c A iff # E underhang(M) .  



5 1 8  Computabi l ity 

Therefore, if s ⇒c A, there exists a sequence of pairs such that 

so 

is a solution to M. 
Conversely, if 

(
A X i Xk ) # = underhang - - · · · - , 
s# Y i Yk 

A Xi Xk # - - · · · - -
s# Y i Yk A 

A Xi Xk # - - · · · - -
s# Y i Yk A 

is a solution to M, then 

so s ⇒G A. 

(
A Xi Xk

) underhang - - · · • -
s# Y i Yk 

= #, 

Thus s ⇒c A if and only if the MPCP instance M has a solution, so we 
have reduced the problem of determining whether s ⇒c A in a semi-Thue 
system to MPCP. Because the former problem is undecidable, MPCP is 
undecidable as well. ■ 

Because MPCP is both undecidable and m-reducible to PCP, PCP must 
be undecidable as well. 

THEOREM 7.59. PCP is undecidable. 

Exerc ises 

7 .11 - 1  Prove that the following problem is undecidable: 
Instance: a finite transducer with transfer relation T 
Question: Does there exist x such that xT = x? 

• 



*7 . 1 1 The Post Correspondence Problem 5 1 9  

7 . 1 1 -2 Consider the following modified version of PCP. 
Problem name: semimodified Post Correspondence Problem 

(SMPCP) 
Instance: a "starting" pair of strings (xs,arn Ys,an) and a set S of 

"other" pairs of strings 
Question: Does there exist a sequence (( (x 1 , y 1 ) ,  . . .  , (xk , Yk ) )) of 

pairs in S such that 

Prove that SMPCP is undecidable. 

7. 1 1 -3 In parts (a) and (b) we will consider points (x, y) E N  X N .  An a/fine 
transformation on N X N is a function t such that 

(x, y) t = (ax + by + c, dx + ey + f) 

for some fixed natural numbers a, b, c, d, e,f. 
(a) How would you represent an affine transformation? 
(b) Prove that the following problem is undecidable: 

Instance: a point (x0 , y0 ) E N X N and a finite set S of affine 
transformations on N X N 

Question: Is there a sequence of transformations in S that 
maps (x0 , y0 ) to a point on the line x = y, i .e . ,  do there 
exist a natural number x and a sequence of transformations 
t 1 , . . .  , tk in S such that 

Hint: Reduce SMPCP (Exercise 7 . 1 1 -2). Represent each 
string by a k-adic numeral. Observe that k-adic (ru) 
k lul k-adic (r) + k-adic(u) . 

(c) Prove that the following problem is undecidable: 
Instance: a point (x0 , y0 , z0 ) E N 3 and a finite set S of 3 X 3 

matrices over N 
Question: Are there a sequence of matrices M 1 , . . .  , Mk in S 

and a point (x, x, z) E N 3 such that 



5 2 0  Computability 

(d) Prove that the following problem is undecidable: 
Instance: a finite set S of 3 X 3 matrices over N 
Question: Is there a sequence of matrices M 1 , . . .  , Mk in S 

such that the product M 1 M2 · · · Mk contains equal num
bers in row 3, column 1 and in row 3, column 2? 

(e) Prove that the following problem is undecidable: 

Problem name: mortality 
Instance: a finite set S of 3 X 3 matrices over N and a pair of 

natural numbers i , j between 1 and 3 
Question: Is there a sequence of matrices M 1 ,  . . .  , Mk in S 

such that the product M 1 M2 · · · Mk contains a O in row 
i, column j? 

7 . 1 1 -4 In this exercise, you will give another proof that MPCP is undecid
able. 

(a) Recall the definition of a queue from Exercise 1 . 1 - 1 .  Show 
how a queue can simulate a tape. 

(b) Prove that the halting problem for queue machine programs 
is undecidable. 

(c) Reduce the halting problem for queue machines to MPCP. 
You need only sketch a proof that your reduction is correct. 
Conclude that MPCP is undecidable. (Historically queue ma
chines have been called Post machines.) 

7 . 1 2  U N DEC I DABI LITY O F  F I RST-ORDER LOG IC  

A major goal of mathematics is to determine which statements are theorems. 
In any reasonable logic, the set of theorems is recursively enumerable. How
ever, for any reasonably expressive logic the set of theorems is not recursive. 
In this section, we will prove an important special case, namely that there 
is no algorithm to determine which statements in first-order logic (defined 
below) are theorems. 

We will prove the undecidability of first-order logic by reducing the 
halting problem. But first, in order to state the result, we will need to 



7. 1 2  Undecidab i l ity of Fi rst-Order Log ic  5 2 1  

present a formal treatment of some aspects of logic. We will try not to be 
more formal than necessary. 

First-order logic consists of statements that involve constants, variables, 
functions, and Boolean predicates as well as the usual logical symbols A 
(and), V (or), , (not), 3x (there exists x), and Vx (for all x), where x denotes a 
variable. Additional logical operations like implication (⇒) can be defined 
in terms of those operations, i.e. ,  x ⇒ y means ( ,x) V y. In this section we 
consider a subset of first-order logic in which each function has at most two 
arguments and the quantifiers :3 and V are not allowed. We call this logic restricted first-order logic (RFOL for short). Rules of inference are the usual logical rules, e.g. ,  

• a V ,a 

• a ⇒ a V b  

• b ⇒ a V b  

• a l\ b ⇒ a  

• a l\ b ⇒ b 

• (a A (a ⇒ b) )  ⇒ b, 

where a and b denote any logical expressions. The last rule above is called modus ponens; its right side b is called the logical consequence of its left side 
a I\ (a ⇒ b) . A formal proof is a sequence of statements in which each 
statement is one of the following 

• a rule of inference 

• the conjunction (logical and) of some pair of preceding statements 

• the logical consequence of the directly preceding statement 

The last statement in a proof is called a theorem. 
If a statement is a theorem in first-order logic, then it is true no matter 

how its variables, functions, predicates, and constants are interpreted. (This 
property is called soundness; its proof is beyond the scope of this book.) 

EXAMPLE 7.60. Some examples of statements rn RFOL include 

p(j(x) )  A p(y) ⇒ p(j(x) ) , p(j(x) )  V p(y) ⇒ p(j(x) ) , and 



5 2 2  Computability 

(p(z) I\ (p(x) ::::;,- p(f(x) ) ) )  ::::;,- p(y) where x and y are variables, z is a con
stant, f is a function, and p is a Boolean predicate. Only the first of those 
three statements is a theorem; observe that it is true for all predicates p, all 
functions/, and all values of x and y. The second and third statements are 
easily seen to be false for particular interpretations of x, y,  z,f,p. ■ ■ ■ 

Observe that the set of theorems is recursively enumerable because we 
can nondeterministically guess a proof and verify it line by line. However, 
we will see that the set of theorems in RFOL is nonrecursive, because we 
can reduce the halting problem for inattentive nondeterministic 2-counter 
machines to it. 

Let P be a nondeterministic program for a machine [control, unsigned 
counter, unsigned counter] . By standardizations, we may assume that P has 
a unique final configuration ( qaccepn O ,  0) and that each instruction operates 
on exactly one of the counters. Let P's initial control state be qs,an· 

Let i and j be variables. For each control state q E Q, let fq ( · , · ) 
be a predicate with two arguments. fq (i ,j) will represent that (q, i ,j) is a 
configuration belonging to a partial computation of P. Let s( · )  be a function 
of one variable; s(i) will represent i + 1 .  Let z be a constant; z will represent 
0. Corresponding to P's initial configuration ( qs,arn O ,  0) is the statement, 

Corresponding to each instruction 7r we define a statement 'I/J1r as in Table 7. 5. 

We define a statement H to be the conjunction of all these statements, 
i .e., 

H = fq,rnJz,  z)  I\ (\ 'l/J1r -
1rEI 

Corresponding to P's final relation is the statement 

We assert that P halts if and only if the statement H ::::;,- /qamp, ( z, z) 1s a 
theorem, i.e., iff there is a proof of the statement 



7 . 1 2 Undecidabi lity of First-Order Logic 5 2 3  

Instruction 1r Statement 'l/J1r 

( q -+ r ,  INC , NOOP ) fq(i,j) =} fr(s(i) ,j) 

( q -+ r ,  DEC , NOOP ) fq(s(i) ,j) =} /r (i,j) 

( q -+ r ,  ZERO , NOOP ) fq (z,j) =} /,(z ,j) 
( q -+ r ,  NOOP , INC ) fq(i,j) =} /,(i, s(j)) 

( q -+ r ,  NOOP , DEC ) fq(i, s(j) ) =} f,(i,j) 

( q -+ r ,  NOOP , ZERO ) fq(i, z) =} fr(i, z) 

TABLE 7.5:  Converting an inattentive 2-CM program to a statement in re
stricted first-order logic. Suppose, for example, that P contains the instruction 
(q -+  r, INC, NOOP) . If P reaches the configuration (q, i ,j) in a partial compu
tation, then P reaches the configuration (r, i + l ,j) in a partial computation that 
applies that instruction. Therefore fq (i,j) =} fr (s(i) ,j) .  This explains the first 
statement in the table. The rest are similar. (The reader will notice a similarity 
to the HG equations constructed in Section 7 . 5 .) 

First, let us assume that P halts. We assert that if (qs,an , 0, 0) i!!! (q, i ,j) , 
then there is a proof that H ::::;,- fq (s(i) ( z ) ,  s(j) ( z ) )  where irn) denotes m-fold 
composition of s with itself. The proof is by induction on k. When k = 0, 
(q, i ,j) = (qs,an , 0, 0), and H ::::;,- fq,,"Jz,  z)  is a theorem by the fourth rule 
of inference, establishing the base case. Suppose that the assertion has been 
established for some k � 0. We establish it now for k +  1 .  Assume that 

rrH l  
(qs,am 0, 0) f---+ (q ,  i ,j) .  Then there are a configuration (r ,  m,  n) and an 
instruction 7r that precede (q, i ,j) in such a partial computation so that 

(qs,an , 0, 0) � (r, m, n) � (q, i ,j) . 

By the inductive hypothesis there is a proof that 

In addition, the statement 



524  Computability 

is a theorem by repeated application of the fourth and fifth rules of inference. 
Because of how 'l/J1r was defined, by substituting for its variables we can prove 
that 

Combining these proofs, we have a proof that 

completing the induction. 
If t is the number of steps in a halting computation of P, then 

rr t  (qstart , o, o) f--+ (qaccept , o, o) . 
By the preceding assertion, there is a proof that H ::::;,- fq,cccp, ( z, z ) .  

Conversely, suppose that there is a proof that H ::::;,- fq,"'P' ( z ,  z ) .  By 
the soundness of first-order logic, the statement must be true for every 
possible interpretation of the functions fq ( · ,  · ) ,  the function s( · ) ,  and the 
constant z. Interpret the statement/4(s(i) (z) )i) (z ) )  to mean that a partial 
computation of P reaches configuration (q, i,j) , interpret s(i) as i + 1 ,  and 
interpret z as 0. All the statements in H are true in that interpretation, so 
any statement deduced from H must be true in that interpretation as well. In 
particular,/q,mp, ( z, z) must be true in that interpretation, so there is a partial 
computation of P that reaches the configuration (qaccepr ,  O, 0 ) ; i.e., P halts. 

Thus we have reduced the halting problem to the problem of deciding 
which logical statements are theorems. Therefore the set of theorems in 
RFOL is undecidable. Consequently, the set of theorems in first-order logic 
is undecidable as well. 

THEOREM 7.6 1 .  The set of theorems in first-order logic is undecidable. 
EXAMPLE 7.62. Consider the partial function 

Collatz ( x) = 
0 

Collatz(x/2) 

if X = 1 ,  

if x is even, 

Collatz( 3x + 1 )  otherwise. 



7 . 1 2  Undecidabi l ity of Fi rst-Order Log ic 52 5 

FIGURE 7.4: An inaccencive 2-CM program char hales iff Collacz(k) = 0, where 

{ 

0 if k = I ,  

Coltacz(k) = Collacz(k/2) if k is even, 

Collarz(3k + 1 )  otherwise. 

Notice that Collatz(x) is either O or undefined. It is not known whether 
the Collatz function is total, although this question has generated a lot of 
interest. Let us fix a positive integer k. An inattentive 2-CM program 



5 2 6  Com putabi l ity 

(ro (z, z) 

I\ [fii (i ,j) ⇒ /1 (s(i) , j)] I\ [/1 (i , j) ⇒ h (s(i) , j)] 

I\ · · · I\ [./2- 1 (i ,j) ⇒ /k (s(i) ,j) ]  

I\ [/k (i, j) ⇒ /o(i, j)] I\ [J;, (s (i) , j) ⇒ fp(i , s (j) )] I\ [/p(z , s(j) )  ⇒ Jq (z ,j)] 

I\ [/p(s(i) , j) ⇒ f,.(i, s(j) )] I\ [J,.(z ,j) ⇒ J;(z ,j)] /\ [J; (i , s(j))  ⇒ J;, (s(i) , j)] 

I\ [fu (i , s(j)) ⇒ J; (i, j)] I\ [J; (i, z) ⇒ /o(i, z)] I\ [J,.(s(i) , j) ⇒ fv (i , s( j) )] 

I\ [fv (s(i) ,j) ⇒ f,.(i, s(j)) ]  I\ [/v (z, j) ⇒ fw (z ,j)] I\ [fw (i , s ( j) )  ⇒ fx (s (i) , j)] 

I\ [fx (i , j) ⇒ /y (s(i) , j)] I\ [/y (i, j) ⇒ /w (s(i) , j)] I\ [fw (i , z) ⇒ fo (s(i) ,  z)] ) 

⇒ /q (z , z) . 

FIGURE 7. 5: The statement in first-order logic corresponding to the program 
in Figure 7 .4. This statement is provable if and only if the 2-CM program hairs, 
i .e. , if and only if Collarz(k) = 0. Observe that it was not necessary to factor 
instructions or eliminate null instructions. 

that halts iff Collatz(k) = 0 is shown in Figure 7 .4. The corresponding 
first-order statement is shown in Figure 7 .  5. ■ ■ ■  

We finish this section with a theorem due to Godel, which we will not 
prove in this book. It is sometimes referred to as Godel's completeness 
theorem. 

THEOREM 7.63 (Completeness theorem for first-order logic). A statement in first-order logic is provable if and only if it is true for all interpretations of its function symbols and constants. 
Statements that are true in all interpretations are called valid, so Godel's 
completeness theorem can be restated as "provability is equivalent to validity 
in first-order logic." By Theorems 7 .61 and 7 .63 ,  we have 

COROLLARY 7.64. The set of valid statements in first-order logic is undecidable. 
■ 



7 . 1 3  Val id  and Inval id Com putat ions 5 2 7  

In contrast, in Section 8.3 we will examine Godel's incompleteness the
orem; it says that certain more complex systems of logic contain statements 
that are true for all interpretations of their function symbols and constants, 
but nonetheless are not provable. 

Exerc ises  

7 .12-1 Suppose that we restrict RFOL further by allowing only one Boolean 
predicate, but we allow the predicate to have three arguments. Prove 
that the set of theorems in this logic is undecidable. 

7 .12-2 By modifying this section's construction, show directly how to m
reduce K2_sM to the problem of provability in RFOL. Do not reduce 
K2-SM to K2-CM -

h . 12-3 Is the Collatz function total? 

7 . 1 3 VAL ID  AN D I NVAL ID  COMPUTATIONS 

Recall that a computation of a program may be represented as a string. 
Thus the set of computations of a program P is a language, which we denote 
C(P) . For historical reasons, computations are also called valid computations. 
The complement of C(P) , i .e. , C(P) , is called the set of invalid computations 
of program P, even though many of its elements are not computations at 
all, nor even sequences of instructions. 

Recall that K2_cM is the set of deterministic 2-counter machine pro
grams that halt on at least one input. A program halts on input x if and 
only if it has a valid computation on input x. Thus 

K2 _cM = {P : P is a deterministic 2-CM program and C(P)  =/= 0} .  

Since K2_cM is undecidable, there is no algorithm to decide whether C(P) 
is empty for deterministic 2-counter machine programs P. 

We will show that the set of valid computations of any particular 2-
counter machine program is the intersection of two DCR languages. By 
closure properties, the set of invalid computations of any particular 2-CM 



5 2 8  Computab i l ity 

program is an NCA language. These proofs are constructive; i.e. , there is an 
algorithm that takes a nondeterministic 2-CM program P and produces the 
appropriate DCRs or NCA. Thus these two properties of C (P) will allow 
us to prove that many properties of NCAs are undecidable. Since every 
NCA can be trivially converted to an NSA, the same properties of NSAs 
are undecidable. Since NSAs can be effectively converted to equivalent 
CFGs, we conclude that the same properties of context-free grammars are 
undecidable. 

The first problem we consider is whether the set of computations of a 
2-CM program is empty. Recall: 

DEFINITION 7.65. C (P) is the set of (valid) computations of the program P. 
We show that the problem "Is C(P)  empty?" is undecidable for 2-CM 

programs P. 
THEOREM 7.66. { P : P is a 2-CM program and C(P) = 0} is not recursive. 
Proof: Let L = {P : P is a 2-CM program and C(P) = 0} .  We reduce K2_cM to I, deducing that I (and hence L) is not recursive. We have P E K2_cM iff P is a deterministic 2-CM program and P halts on at least 
one input. The second conjunct is true iff P has at least one accepting 
computation, i.e. , C (P) =/= 0. Let p be some program that never halts. Let 

J(P) = 
{ Pp 

if P is deterministic, 

otherwise. 

Then P E  K2-CM {::===? j(P) E L. ■ 

Next we observe that the set of valid computations of a 2-CM program 
is the intersection of two DCR languages. In fact the proof is constructive, 
which is essential to obtaining certain further proofs of undecidability. 

LEMMA 7.6 7. There is an algorithm that takes a 2-CM program P and produces two DC R programs D 1 and D2 such that C ( P) is the intersection of the languages recognized by D 1 and D2. 



7 . 1 3  Valid and I nvalid Computations 529  

Proof: This is similar to the proof of Lemma 7 . 1 5. Let P be a 2-CM 
program with instruction set I. One may determine whether a string C is 
a computation of P by verifying that C is a sequence of instructions of P 
in which no SCAN follows an EOF and performing separately the sequence 
of control operations, the sequence of operations on the first counter, and 
the sequence of operations on the second counter. The set of sequences of 
instructions of P in which no SCAN follows an EOF is a regular language . 
One needs only device d in order to perform the sequence of operations 
on d starting in its initial state, accepting if d ends up in a final state and 
rejecting if the sequence of operations is not executable or if d ends up in 
a nonfinal state . Therefore verifying the last three conditions amounts to 
testing membership in a DFR language, a DCR language, and another DCR 
language. Therefore C ( P) is the intersection of two regular languages and 
two DCR languages. Since the intersection of a regular language with a 
DCR language is itself a DCR language, C(P) is the intersection of two DCR 
languages. Let D 1 and D2 be DCRs, readily constructed, that recognize 
those languages. ■ 

Thus there is no algorithm to determine whether the intersection of two 
DCR languages is nonempty. 

COROLLARY 7.68. The set S = { (Dr , D2 ) Dr and D2 are DC Rs and 
L(D 1 ) n L(D2 ) -::/- 0} is nonrecursive. 
Proof: We reduce the problem of determining whether C(P) -::/- 0 
to S .  Since the former is undecidable, S must be undecidable. Let 
f(P) = (D 1 , D2 ) as given by the preceding theorem. Then C(P) -::/- 0 
iff L(D 1 ) n L(D2 ) -::/- 0 iff /(P) E S. ■ 

Conventionally we represent context-free languages by CFGs or NSAs; 
it doesn't matter which because we have an algorithm to convert CFGs 
to NSAs and vice versa. Similarly, we represent DCR languages, NCA 
languages, and DSR languages by the corresponding programs. We say 
that a property of context-free languages, DCR languages, NCA languages, 
or DSR languages is undecidable if it is undecidable for the conventional 
representation of them. By trivial reductions we have 

COROLLARY 7.69. It is undecidable whether the intersection of two CF Ls, two DSR languages, two NCA languages, or two DCR languages is empty. 



5 30 Com putabi l ity 

Proof: By Corollary 7 .68 it is undecidable whether the intersection of 
two DCR languages is nonempty; therefore it is undecidable whether their 
intersection is empty. Because a DCR can be converted to an NCA, DSR, 
or CFG for the same language, it is undecidable whether the intersection of 
two NCA languages, two DSR languages , or two CFLs is empty. ■ 

For the remainder of this section, let � denote an alphabet containing 
at least two characters. Next we show that it is undecidable whether an 
NCA language is equal to �* . 

COROLLARY 7. 70. Theset {N : N is an NCA program such that L (N) -::/- �* } is nonrecursive. 
Proof: Given DCRs D 1 and D2 , interchange accepting and rejecting states 
to construct DCRs D� and v; that recognize L(D 1 ) and L(D2 ) ,  respectively. 
Then, as in the proof of closure under union, construct an NCA N = 
/(Dr , D2 ) such that 

Then L(D 1 ) n L(D2 ) = 0 iff L(N) = �* . ■ 

In contrast to the preceding theorem, it is possible to test whether L(N) = 0 when N is an NCA or even an NSA, because we can convert an 
NCA to an NSA, convert the NSA to a CFG G, and test whether L( G) = 0 
as in Exercise 5 . 3 -4 .  It is also possible to test whether a particular string 
belongs to an NCA language or an NSA language by applying CYK or 
Barley's membership algorithm to the corresponding CFG. For another 
contrast, it is possible to test whether a regular language is equal to �* . 

Since there is no algorithm to decide whether an NCA language is �* , 
there is no algorithm to solve the more general problem for NSA languages , 
i .e . ,  CFLs . 

COROLLARY 7. 7 1 . It is undecidable whether a CPL is equal to �* .  ■ 

As a consequence of Corollary 7 .7 1 ,  there is no algorithm that deter
mines whether (a) two CFLs are equal or (b) whether a CPL and a regular 
language are equal-because testing for equality to �* is a special case 



7 . 1 3  Val id  and I nval id Computat ions 5 3 1  

of those two problems.  As a practical consideration, if two compilers use 
different grammars, there is no general way to verify that they really imple
ment the same programming language. The moral is that compilers should 
use the published grammar for a language or else use a grammar obtained 
by transformations that are known to produce an equivalent grammar. 

Ambiguous CFGs are troublesome because they do not assign unique 
meanings to strings. An early example is the Algol60 language, which did 
not assign a unique meaning to the "dangling else" described in Section 5 .9 .  
This led to a search for algorithms that would determine in general whether 
a CFG is ambiguous. However, we will prove that such an algorithm is 
an impossibility. The moral is that programming languages should be 
designed in such a way that we know they are unambiguous from the start; 
there is no general way to test for ambiguity after the fact .  

COROLLARY 7. 72. It  is undecidable whether 
(i) a CFG is ambiguous. 

(ii) a CPL is inherently ambiguous. 
Proof: Let L denote the set { ( D 1 , D2 ) : D I and D2 are DSRs such that 
L(D 1 ) n L(D2 ) =/ 0} .  

(i) Let L 1 denote the set of  ambiguous NSAs. We begin by reducing L to L 1 . Let /(D 1 , D2 ) = P, where P is an NSA (constructed in 
the standard way) that accepts L(D 1 ) U L(D2 ) .  The number of 
accepting computations of P on input x is equal to the number 
of accepting computations of Dr on input x plus the number of 
accepting computations of D2 on input x. Since Dr and D2 are 
DSRs, each of them has at most one accepting computation per 
input . The program P will have exactly two accepting computations 
on each input belonging to L (D 1 ) n L (D2 ) ;  program P will have 
zero or one accepting computation on each other input . Thus P is 
ambiguous if and only if L(D 1 ) n L(D2 ) is nonempty, so 



5 3 2  Computabi l ity 

Thus L 1 "'5.m L. Since L is known to be nonrecursive, the set of 
ambiguous NSAs is nonrecursive. Because NSAs can be effectively 
converted to CFGs while preserving ambiguity or unambiguity, the 
set of ambiguous CFGs is nonrecursive . 

(ii) Recall that a CFL is inherently ambiguous iff every CFG that gen
erates it is ambiguous iff every NSA that accepts it is ambiguous . 
We reduce L to the set of NSAs that accept inherently ambiguous 
CFLs. Let f ( D 1 , D2 ) = P where P is an NSA (constructed in the 
standard way) that accepts all strings of the form 

aibic*#L(D 1 ) U a*bici#L(D2 ) .  

If L(D 1 ) n L(D2 ) -::/- 0, then there is some string s that belongs to 
L(D 1 ) n L(D2 ) -

As in the proof of Theorem 5 . 3 1 ,  it is readily verified 
that every grammar that generates L(P)  has two parse trees for 
aN+N 'bN+N' cN+N1 #s for all sufficiently large N, so L(P)  is inherently 
ambiguous. (Alternatively, we can use Corollary 6. l 3(i) . Assume 
that L(P)  is unambiguous. Define a deterministic finite transduc
tion T such that XT = x#s. Then 

L(p) - I { i1...i k . . . k} T = a 1J c : 1 = ; or ; = 

which is inherently ambiguous. This contradicts Corollary 6. l 3(i), 
so L(P)  must be inherently ambiguous . ) 

On the other hand, if L(D 1 ) n L(D2 ) = 0, then P is unam
biguous as in the proof of part (i), so the corresponding grammar 
for L(P) is unambiguous. ■ 

COROLLARY 7, 73 

(i) It is undecidable whether the intersection of two DCR languages is any of the following: 
• a CPL 
• a DSR language 
• a regular language 
• a finite language 



7. 1 3  Val id and Invalid Computations 5 3 3  

(ii) It is undecidable whether the intersection of two CPLs is 
• a CPL 
• a DSR language 
• a regular language 
• a finite language 

Proof 

(i) Let L be the language { (D1 , D2 ) : D 1 and D2 are DCRs such that 
L(D 1 ) n L(D2 ) = 0} .  Let f(D 1 , D2 ) = (D� , v; ) where D� is a 

. .  * DCR that accepts all strings of the form a'b1 c #L( D 1 ) and v; is 
a DCR that accepts all strings of the form a*bi d#L(D2 ) .  Then L(DD n L(D; ) consists of all strings of the form a;b;d#s where 
s E L(D 1 ) nL(D2 ) .  Thus, if L(D 1 ) nL(D2 ) is empty, L(DD nL(D; ) 
is also empty (hence a context-free language, a DSR language, a 
regular language, and a finite language). On the other hand, if 
L(D 1 ) nL(D2 ) is nonempty, then L(D� ) nL(D; ) is not a CPL (hence 
not a DSR language, a regular language, or a finite language either) . 
Thus f is a reduction from L to each of the following problems: 
determining whether the intersection of two DCR languages is a 
CPL, determining whether the intersection of two DCR languages 
is a DSR language, determining whether the intersection of two DCR languages is a regular language, and determining whether the 
intersection of two DCR languages is a finite language. Since L is 
nonrecursive, each of those problems must be undecidable. 

(ii) Because every DCR can be converted to a context-free grammar 
for the same language, the corresponding problems for CPLs are 
undecidable as well. ■ 

A language is a co-CPL if its complement is a CPL. 

COROLLARY 7. 74 (i) It is undecidable whether an NCA language is any of the following: 
• a co-CPL 
• a DSR language 



5 34  Computab i l ity 

• a regular language 
• a co-finite language 

(ii) It is undecidable whether a CPL is any of the following: 
• a co-CPL 
• a DSR language 
• a regular language 
• a co-finite language 

Proof 

(i) If D 1 and D2 are DCRs, construct an NCA N that accepts the -- --
language L(  D 1 ) U L(D2 ) . (Interchange accepting and rejecting 
states in the DCRs and then use the standard union construction for 
nondeterministic programs. )  Then, by De Morgan's law, L(N) = 
L(D 1 ) n L(D2 ) .  Then L(D 1 ) n L(D2 ) is a CPL, a DSR language, 
a regular language, or a finite language if and only if L(N) is a co
CFL, a DSR language, a regular language, or a co-finite language, 
respectively. Because it is undecidable whether the intersection of 
two DCR languages is any of the former, it is undecidable whether 
an NCA language is any of the latter. 

(ii) Because we can convert an NCA to a CFG for the same language, 
the same problems are undecidable for CFLs. ■ 

EXAMPLE 7. 7 5. We show that there i s  no algorithm to determine for an 
NSA N whether L(N) = ( aa U bb ) * . We reduce the problem of deter
mining for an NSA P whether L(P) = { a, b} * . Suppose that L is accepted 
by the NSA N. Let T be a finite transduction that replaces a with aa and 
b with bb . Then LT is an NSA language, for which we can construct an 
NSA. Let f(N ) be that NSA. Then 

L(N) = {a, b}* {:=:;> L(/(N))  = (aa U bb) * , 

completing the reduction. Consequently, there i s  no algorithm to determine 
whether an NSA accepts or a CFG generates ( aa U bb) * . ■ ■ ■ 

In contrast, for any string x there is an algorithm to determine whether 
L(G) = {x} (Exercise 7 . 1 3- l (f)) .  



Exerc i ses 

7 . 1 3 Val id  a n d  I nval id  Computations  5 3 5  

7 .13-1 Which of the following problems are undecidable? 
(a) Instance: CFGs G i and G2 

Question: Is PREFIX(L(G i ) )  = PREFIX(L(G2 ) ) ?  

Solution: Undecidable . We will reduce the problem of deter
mining whether L( H i ) = L( H 2 ) for CFGs H 1 and H 2 • Let # 
be a character that does not belong to the terminal alphabet of 
H 1 or H2 . Let L i = L(H i ) and L2 = L(H2 ) .  Let G 1 be a gram
mar for L i #, and let G2 be a grammar for L2 #. We assert that L i = L2 if and only if PREFIX(L i #) = PREFIX(L2# ) .  Proof 
of assertion: If L i = L2 , then PREFIX(L 1 #) = PREFIX(L2#) . 
Conversely, if PREFIX(L 1 #) = PREFIX(L2# ) ,  then 

(b) Instance: a CFG G and variables X and Y 

Question: Is L(X) = L(Y) ? 
(c) Instance: a CFG G with terminal alphabet � and variable 

set V, and variables X and Y 

Question: Is { u E �* : (::lv E v* ) [X ⇒ uv] } equal to 
{u E �* : (::lv E V* ) [Y ⇒ uv] } ?  

Solution: Undecidable . We will reduce the problem of de
termining whether PREFIX(L(G i ) )  = PREFIX(L(G2 ) )  for 
CFGs G 1 and G2 • Without loss of generality assume that G i 

and G2 have disjoint variable sets, X is the start variable of 
G 1 , and Y is the start variable of G2 . Standardize G 1 and G2 
so they are in CNF or GNP. A variable is useless if it derives 
no terminal strings or if it is unreachable from the start vari
able . Eliminate from G 1 and G2 all useless variables and all 



5 36 Computab i l ity 

productions involving them. Combine G 1 and G2 into a new 
grammar G. Then for each variable Z in G, 

{u E �* : (::lv E V* ) [z ⇒ uv] } = PREFIX(L(Z) ) .  

Therefore PREFIX(L(G 1 ) )  = PREFIX(L(G2 ) )  if and only if 
PREFIX(L(X) ) = PREFIX(L(Y))  if and only if {u E �* 

(::lv E V* ) [X ⇒ uv] } = {u E �* : (::lv E V* ) [Y ⇒ uv] } .  

(d) Instance: a CFG G 
Question: Is L( G) inherently unboundedly ambiguous? 

(e) Instance: a CFG G 
Question: Is L(G) = a* U b(a U b) * ? 

(f ) Instance: a CFG G and a string x 
Question: Is L(G) = {x}? 

Solution: Decidable. 

L(G) = {x} {=;> (L(G) - {x} = 0) /\ (L(G) n {x} =J 0 ) .  

CFGs for L( G)  - { x}  and L( G)  n { x}  may be readily con
structed because { x} is a regular language . Then those two 
languages can be tested for emptiness by Exercise 5 . 3-4. 

(g) Instance: a CFG G 
Question: Is IL(G) I = 1; i . e . ,  does G generate exactly one 

string? 
(h) Instance: a CFG G 

Question: Is L( G) finite? 

Solution: Decidable . Compute a pumping number N for G 
as in the proof of the first pumping theorem for CFLs. We 
assert that L( G) is infinite iff L( G) contains a string whose 
length is between N and 2N - 1. Proof: If L( G) contains 
such a string, then the string is pumpable, so L( G) is infinite . 
Conversely, if L( G) is infinite, then let x be the shortest string 



*7 .  l 4 Diophant ine and Exponential D iophant ine Equations  5 3 7 

in L(G) having length N or greater. lx l  < 2N because oth
erwise x could be pumped down yielding a shorter string in 
L( G) having length N or greater. 
The algorithm tests whether L(  G) n ( �N (AU�)M- 1 ) is empty. 

(i) Instance: a CFG with terminal alphabet { a, b} 
Question: Is L( G) � a* ? 

Solution: Decidable . Test whether L( G) - a* is empty. 

(j) Instance: a CFG G 

Question: Is L( G) = a* ? 

7 .13-2 (a) We say that an NSA for L is minimal if it has the small
est possible number of control states . Prove that there is no 
algorithm to minimize NSAs . 

(b) We say that a CFG for L is minimal if it has the smallest pos
sible number of productions . Prove that there is no algorithm 
to minimize CFGs . 

*7 . 1 4 D IOPHANTI N E  AN D EXPON ENTIAL 
D IOPHANTI N E  EQUATIONS  

Diophantus, a third-century Greek mathematician, was very interested in 
finding integer solutions to equations . A diophantine equation is a polyno
mial equation involving more than one variable in which the coefficients are 
integers and for which nonnegative integral solutions are sought . Examples 
are 3x - Sy = 1, which has the solution x = 2 , y  = 1, and one of Fermat's 
equations, ( x + I ) 3 + (y + 1 ) 3 = ( z + 1 ) 3 , which has no solution. Diffi
cult diophantine equations are not hard to concoct. For example, solving 
(x + 2 )(y  + 2 )  = n is as hard as factoring the number n.  

In 1 900 the mathematician David Hilbert, in a now-famous address 
to the International Mathematical Congress, challenged mathematicians of 
his day and mathematicians yet to come to solve a list of 2 3 problems or to 
prove that no solution existed . All but a few of those problems have been 



5 3 8  Computabi l ity 

solved since then. Hilbert's tenth problem was to find an algorithm to solve 
diophantine equations. 

Mathematicians at that time realized that such an algorithm would in 
principle resolve many open questions. For example, to answer Fermat's 
question "Do there exist x, y, z > 0 such that x" + yn = zn ?" for a particular 
n, it suffices to solve 

( ::lx, y ,  z) [ ( x + 1 Y ,  + (y + 1 f = ( z + 1 r] . 

To fully answer Fermat's question, one must determine whether the equation 
above has a solution with n > 2. Thus it suffices to solve 

(::lx, y , z, n) [(x + 1 y+3 + (y + 1 y+3 = (z + 1 y+31 ,  

which is not a diophantine equation but an exponential diophantine equa
tion because it involves exponentiation with nonconstant exponents, as 
well as addition and multiplication . Mathematicians in the early 1 900s 
expected that an algorithm would be found for solving diophantine equa
tions. Hilbert's tenth problem remained open until 1970, when it was 
proved that no such algorithm exists. In 1 993, Andrew Wiles proved that 
Fermat's equation has no solutions; his proof was being checked as this book 
went to press. 

It is notable that the solution to Hilbert's tenth problem did not come 
from the mainstream of mathematics. Logic and computability theory 
were not considered serious avenues of mathematical thought at the time, 
but they provided the first major progress towards a solution. This work 
was performed by two logicians, Martin Davis and Julia Robinson, and a 
philosopher, Hillary Putnam. The proof was later completed, using number 
theory, by a mathematician, Yuri Matijasevic . 

Although a complete proof of the undecidability of Hilbert's tenth prob
lem is beyond the scope of this book, we will present one of the important 
steps in its solution. Namely, we will show that there is no algorithm to 
solve exponential diophantine equations . 

DEFINITION 7. 76 (Exponential Diophantine Equations) 

(i) A function/ (x1 , . . .  , Xn ), where the variables X1 , . . .  , Xn range over 
the natural numbers, is an exponential polynomial if / is built up 



*7 .  l 4 Diophantine and Exponential Diophant ine Eq uations S 39 

from these variables and natural number constants by the operations 
of addition, g + h; subtraction, g - h; multiplication, gh; and 
exponentiation, l-

(ii) An equation f(x1 , . . .  , xm ) 
exponential polynomial. 

0 is exponential diophantine if f is an 

(iii) A set A � Nn is exponential diophantine if there exists an exponential 
polynomial f such that A satisfies 

If the operation of exponentiation is disallowed, then we obtain the ordinary diophantine equations . 
THEOREM 7. 7 7  (Davis-Putnam-Robinson Theorem). Every r. e. subset of 
Nn is exponential diophantine. 

We will prove this shortly. The proof is in two parts. In Section 7 . 1 4. 1 
we show that certain simple relations are exponential diophantine. In Sec
tion 7 . 14.2 we show how to express an accepting history of a 3-counter ma
chine program using the relations discussed in Section 7 .  14. 1 .  (Although 
it would be possible to directly represent the history of a TM program 
by an exponential diophantine equation, it is much easier to work with a 
3-counter machine program because counter operations involve only very 
simple arithmetic . )  The program has an accepting history on input a if and 
only if the corresponding exponential diophantine equation has a solution. 

COROLLARY 7. 78. There is no algorithm for determining whether an exponential diophantine equation has any solutions. 
Proof: Let A be any nonrecursive r.e .  subset of N .  By Theorem 7 .  77,  there 
exists an exponential polynomial f such that 

a E A  {==:;> (::lx1 , . . .  , xm ) [f(a, x1 , . . .  , xm ) = 0] 
{:=:;> (::lx1 , . . .  , xm ) [g(x 1 , . . .  , xm ) = o] , (7 .1) 



540 Computabil ity 

where g(x1 , . . .  , xm ) = f(a, x 1 , . • .  , xm ) .  The function/ is fixed, depending 
only on the set A ;8 thus the exponential polynomial g may be written down 
by an algorithm given only a. This constitutes an m-reduction from A to 
the problem of determining whether an exponential diophantine equation 
has any solutions . Since A is undecidable, the latter must be undecidable 
as well . ■ 

Exerc ises 

7 . 14-1 Prove that the set of numbers that are not powers of 2 is a diophantine 
set. 

7 .14-2 Prove that the set of composite numbers is a diophantine set .  

7 .  14-3 Suppose that 

A =  {a : (::lx1 , . . .  , xn ) [f(a, x 1 , . . .  , x,, ) = O] } , 

where f is a polynomial (or exponential polynomial) .  Construct a 
polynomial (or exponential polynomial) g such that A is the set of 
nonnegative values taken by g, i .e., 

7 . 14-4 In this exercise, we consider the relation between equations over Z 
and equations over N .  

(a) Suppose that 

A =  {a : (::lx1 , . . .  , x,, E Z) [/(a, x1 , . . .  , xn ) = O] } ,  

where f is a polynomial (or exponential polynomial) .  Con
struct a polynomial (or exponential polynomial) g such that 

A = {a : (::lx1 , . . .  , x11 E N) [g(a, x1 , . . .  , x11 ) = O] } . 

8 In fact , this step can be made constructive, since the proof of Theorem 7.77 is con
structive. 



*7 . 1 4  Diophantine and Exponential Diophantine Eq uations 5 4 1  

(6) Suppose that 

A =  {a : (::lx1 , . . . , xn E N ) [/(a, x1 , . . .  , xn ) = O] } ,  

where f i s  a polynomial (or exponential polynomial). Con
struct a polynomial (or exponential polynomial) g such that 

A =  {a : (::lx1 , . . .  , xn E Z) [g(a, x1 , . . . , xn ) = O] } .  

Hint: Use the fact from number theory that every nonnegative 
integer is the sum of four squares, i . e . ,  

(Vx E N) (::ly 1 , Y2 , Y3 , Y4 E N) [x = Yi + y� + y� + y�] -

(c) Prove that there is an algorithm for solving diophantine (or 
exponential diophantine) equations over N if and only if there 
is an algorithm for solving diophantine (or exponential dio
phantine) equations over Z .  

7 . 14-5 Present an algorithm for solving diophantine equations in a single 
variable. 

7 . 14-6 Diophantus was really interested in finding rational solutions to 
equations. However, he realized that it would be sufficient to find 
integer solutions. 

(a) Reduce the problem of finding rational solutions to polyno
mial equations to the problem of finding integer solutions to 
polynomial equations. 

t (6) Is there an algorithm to determine whether a polynomial equa
tion has a rational solution? 

7 . 1 4 . l Some D iophanti ne and Ex ponenti al D iophan ti ne  
Re lat ions  

In  this section we define some convenient notation and present some number 
theory needed for the proof of Theorem 7 .  77 .  All variables range over N .  

Without loss of generality, we may allow exponential polynomials other 
than O on the right side of an equality because 

R = S {=:} R - S = 0 . 



542  Computabil ity 

This principle will make many of our diophantine and exponential diophan
tine relations easier to state . 

A simple but important example of a diophantine relation is the less
than relation, <, on N:  

a < b {==:;> ( ::lx) [ a + x + I = b] . 

Similarly, 

a ::;  b {==:;> (::lx) [a + x = b] . 

The relation 2". is diophantine as well because 

a 2". b {:=:;> b ::; a,  

as is the exact integer division relation a = b / c (with no remainder) for 
c > 0 because 

a = b / c {==:;> ac = b .  

A disjunction or conjunction of equations can be combined into a single 
equivalent equation using 

R = O or S = O {:=:;> RS = 0,  

R = 0 and S = 0 {:=:;> R2 + S2 = O .  

The first of  these principles can be used to  show that arithmetic congruence 
is a diophantine relation: 

a =  b (mod c) {==:;> (::lx) [a = b + ex or b =  a +  ex] . 
Next we show that the binomial coefficient relation, m = (;) , is expo

nential diophantine. The proof depends on the binomial theorem 



''7 . 1 4 Diophantine and Exponential D iophantine Eq uations 543 

If B is larger than (;) for every k (say we take B > 2n), then the binomial 
coefficients are exactly the digits in the base B expansion of the number 
(B + 1)" .  For example, take B = 100 and n = 6. The binomial coefficients 
(�) , . . .  , (!) are 1 ,  6, 15, 20, 15, 6, and 1, and 

1016 = 1 061520 1 5060 1 . 

The digit relation, d = digit (N, k, B ) ,  is defined to be true iff d is the kth 
digit of N in base B .  The digit relation is exponential diophantine because 

d = digit(N, k ,  B )  

{=:} (::le, e) [N = cBk+ 1 + dBk + e and d < B and e < Bk] . 

It follows that the relation m = (:) is exponential diophantine because 

m = (:) {=:} (3B) [B = 211 + 1 and m = digit((B + 1)\ k ,  B) ]. 

Next we define the bitwise less-than relation, � '  on numbers written in 
binary. 

DEFINITION 7. 79. Let a = �O'.Si:Sn a;2 i and b = �o:Si'.Sn bi2\ where 0 '.S 
ai , b1 '.S 1 for all i. We define 

A nice lemma reduces the �-relation to the binomial coefficient relation. 

LEMMA 7.80. r � s {=:} (;) = 1 (mod 2 ). 

Proof: This follows immediately from Lucas's theorem (Exercise 7 . 1 4- 1 1  ), 
which states that 

(;) (::) · · · (;�) (mod p) , 

where p is a prime number, sn · · · s0 is the p-ary representation of s, and 
rn · · · r0 is the p-ary representation of r. Take p = 2 and note that when 
0 :S ri , s; '.S 1 ,  we have (�) = 1 if ri '.S si , 0 otherwise. ■ 



544 Computab i l ity 

Exerc i ses  

7 .14-7 Prove that the inequality relation, a -::/- b, is a diophantine relation. 

7 . 14-8 Prove that the remainder relation, a = b mod c, is a diophantine 
relation. 

7 .14-9 Prove the following properties of the bitwise less-than relation, � 
+(a) B is a power of 2 iff B � 2B - 1 .  

(b) a � b {=:} a & b = a, where a & b denotes the bitwise 
logical and of a and b, i .e . ,  a & b = 'Eo:s;;:s;n a;b;2i . 

(c) a & b = c {=:} c � b and b � a +  b - c. 
(d) Let B be a power of 2 such that a < B and b < B.  Then 

a � b and c :::S d {=:} a +  cB � b + dB . 

7 .14-10 (a) Prove that 

1 (mod p) 

0 (mod p) 

if i = 0 or i = pk , 

otherwise . 

(b) Conclude that ( 1  + x)P' = 1 + xi as polynomials with coef
ficients reduced modulo p. 

7 . 14-11 Prove Lucas's theorem that 

(:) (::) · · · (:::) (mod p) , 

where p is a prime number, sn · · · s0 is the p-ary representation of 
s, and rn · · · r0 is the p-ary representation of r. Hint: Consider the 
coefficient of x,. in the polynomial ( 1 + x}' . Write s = 'Ek skpk where 
0 :S sk < p, and use Exercise 7 . 1 4- 10(6) .  

7 . 14- 12 The degree of a term (product) in a polynomial is  the sum of the 
degrees of the variables that appear in it . The degree of a polynomial 
is the maximum degree of all of its terms . For example, the degree 
of xyz + x2 + y2 + 1 is 3 .  



*7 .  l 4 Diophantine and Exponential Diophantine Equations 545  

(a) Prove that there is an algorithm for solving diophantine equa
tions over N if and only if there is an algorithm for solving 
fourth-degree diophantine equations over N .  

Solution: If there is an algorithm for solving diophantine 
equations, then that algorithm works for fourth-degree dio
phantine equations as a special case. Conversely, we reduce 
the problem for general diophantine equations to the problem 
for fourth-degree diophantine equations. 
Consider any polynomial. By the distributive law, this poly
nomial can be written as a sum of terms where each term is 
the product of a bag of variables. For each bag S of variables 
introduce a new variable x5 , and replace the corresponding 
product by the single variable x5 . This creates a polynomial 
p of degree 1 ;  we have to make sure that p( · · · )  = 0 and that 
each new variable x5 is equal to the term that it represents . 
The least common multiple of all the terms is the product of 
a bag of variables, which we will call M. By a straightforward 
strong induction, it is enough that X{v} = v for each variable 
v and that Xsi±JT = x5xy whenever S l±! T � M .  Let r be equal 
to p2 plus the following expressions: 

(x{v} - v) 2 for each variable v 

(xst±JT - x5xy ) 2 for all bags S and T such that S l±! T � M .  

(b) A polynomial is called homogeneous if every term has the same 
degree. Prove that there is an algorithm for solving diophan
tine equations over N if and only if there is an algorithm for 
solving equations over N of the form p(x1 , . . .  , xn ) = 1 where 
p is homogeneous of degree 4 .  

Solution: If there is an algorithm for solving diophantine 
equations, then it works for the special case. Conversely, we 
reduce the general problem to the special case. Suppose we 
are given a polynomial q( · · · ) .  Convert q to an equivalent 
fourth-degree polynomial as in part (a) . By construction, this 
polynomial will always take nonnegative values. Let u be a new 



546 Computab i l ity 

variable. If any term has the form x 1 · · · xk where k < 4 then 
we replace it by x 1 · · · Xkff

4
-k _ Call the resulting polynomial, 

which is homogeneous of degree 4, r. Now it suffices to 
guarantee that r( · · · )  = 0 and that ff = 1. Because r( · · · )  and 
ff are nonnegative, this is ensured by the equation 

2r( · · · )  + ff
4 = 1 .  

Let p = 2r + ff
4 . 

7 . 1 4 . 2  Ari thmet ization of 3 -Cou nte r  Mac h i n e  Programs 
In  this section we convert from programs to diophantine equations using 
the tools of the preceding section. By definition, every r.e .  language is 
accepted by an NTA. In Section 7 .2 we showed how to simulate an NTA 
by a 3-counrer machine that initializes its first counter to hold the value 
k-adic(x) , where x is the argument. Thus, every r.e. set is accepted by a 
nondeterministic program for a machine [control, K l ,  K2, K3] , where K l ,  K2, and K3 are three unsigned counters and Kl  is initialized to hold the 
argument to the program. The counters K2 and K3 are initialized to 0. By 
standardizing this program, we may assume that it has a unique accepting 
configuration, in which all three counter values are 0.  

Fix such a program for such a 3-counter machine. Let the control set be 
Q.  Let start be the initial control state. Let accept be the unique accepting 
control state. Let the instruction set be I. 

Let x denote the argument, and let s be the number of steps in some 
computation on input x. We will use vectors of numbers v0 , . . .  , vs to 
encode the corresponding history. Using a number B as a base, where B is 
a sufficiently large power of 2,  we can encode a vector into a single number 

V =  L V1B 1 . 
o::;1::;s 

By Exercise 7 . 14-9(a), we can ensure that B is a power of 2 with 

B � 2B - 1 .  

It will be convenient to require 

B 2 4 .  

(7 .2) 

(7 . 3 ) 



*7. 1 4  Diophantine and Exponential D iophant ine  Equat ions  547 

We will specify additional lower bounds on B as necessary via our equations. 
Let kw,t denote the contents of Kw at time t for w = I ,  2, 3 and t = 

0, . . .  , s. Let qu,t be 1 if the control state is u at time t and 0 otherwise for 
u E Q and t = 0, . . .  , s. (Note that we represent the value of a counter 
differently from the value of the control. This is because the value of a 
counter is numerically meaningful, whereas the value of a control has no 
arithmetic significance.)  Let i1,1 be 1 if the instruction j is performed at time 
t and 0 otherwise for j E I and t = 0, . . .  , s - I . Let 

L kw,:Bt 

o:::;1:::;s 
for w = I ,  2, 3 ,  (7 .4) 

I 
J L ij,1B

1 

O::St::Ss- 1 

and all values kw,t , qu,t , i1,1 < B .  

for u E Q,  (7 . 5 )  
for j E I, (7 .6) 

(7 . 7) 

Equations (7 .4-7 .6) are not exponential diophantine because they in
volve unbounded sums of quantities that are not even expressed by expo
nential polynomials themselves. Those equations tell us what we want Kw, 
Qu , and 11 to represent. It is now necessary to write exponential diophan
tine equations or relations known to be exponential diophantine from the 
preceding section that force Kw , Qu, and 11 to represent what we want them 
to represent. For the purpose of designing those equations, we think of kw,t , 
qu ,t, and i1,1 as being defined in terms of Kw , Qu, 11,1 , and B rather than the 
other way around. 

It will be convenient to have a number that encodes a vector of all l s .  
Let T = I:o::::i::Ss B1

• By the formula for a geometric series, 

and T is uniquely specified by that equation . 

(7 . 8) 



548 Computabi l ity 

Since qu,t is either O or 1 for every t, we must force Qu to encode a vector 
of s + 1 Os and l s .  Since B is a power of 2, this is accomplished by 

(7 .9) 

Similarly, we force 11 to encode a vector of s Os and ls :  

( 7 . 1 0) 

Since the control must have exactly one state at each time t '.S s, we 
want to be sure that for every t there is exactly one u such that qu,t = 1 .  
This is accomplished by 

( 7 . 1 1 ) 

provided that there are no carries when the addition is performed in base B,  
so it suffices to require that 

I Q I < B .  (7 . 1 2 )  

Since exactly one instruction is executed at each time t, we want to be 
sure that for every t < s there is exactly one j such that i1,1 = 1. This is 
accomplished by 

" l· = T - BS 
� J  ' 

jE'I 
(7 . 1 3 )  

provided that there are no carries when the addition is performed in base B,  
so it suffices to require that 

III < B . ( 7 . 14) 

Now we write equations that enforce the initial and final relation on the 
control. Since the initial control state is start, we require that 

1 :::S Q,tart (7 . 1 5 )  



*7 .  1 4  Diophantine and Exponential Diophantine Equations 549 

Since the final control state in an accepting computation is  accept, we require 
that 

H' =5 Qaccept · ( 7 . 16) 

It is not hard to write equations that enforce the sequel relation on the 
control. Suppose that instruction j specifies the control operation u ---+ v. If instruction j is performed at time t, then the control state at time t must 
be u. That is, i1 ,1 = 1 ⇒ qu,r = 1 .  Because i1,1 and qu ,r are 0,1 -valued, that 
is the same as i1 ,1 =5 qu ,r, which can be enforced for all t by 

(7  . 1 7 )  

Similarly, if that instruction j is performed at time t ,  then the control state 
at time t + 1 must be v. That is, i1,1 = 1 ⇒ qv ,r+ i = 1 .  That is the same as 
i1,1 =5 qv,1+ 1 , which can be enforced for all t by 

(7 . 18) 

It is a bit trickier to enforce the sequel relation on the counter. Suppose 
that instruction j specifies the counter operation ZERO on Kw. If instruc
tion j is performed at time t, then Kw must hold the value 0 at time t. 
That is, i1,1 = 1 ⇒ kw,r = 0. As long as kw,r '.S B/2, that is equivalent 
to (B/2)i1,1 =5 (B/2) - kw,r · Instead of kw,r '.S B/2, we will impose the 
stronger condition that kw ,r < B/2, which is equivalent to kw ,r =5 B/2 - 1 .  
Because the numbers on each side of the ::5 are strictly less than B, that 
condition can be enforced for all t via 

Kw =5 ( B / 2 - 1 )  T. (7 . 1 9) 

Each side of the condition (B/2)i1,1 =5 (B/2) - kw ,r is also a number less 
than B.  Hence it can be enforced for all t via 

(B/2)11 =5 (B /2)T - Kw . (7 .20) 

Suppose that instruction j specifies the counter operation DEC on Kw. If instruction j is performed at time t, then Kw must hold a positive value 



5 50 Com putability 

at time t. That is ,  i1,1 = 1 ⇒ kw,r > 0 .  As long as kw,r :S: B/4, that is 
equivalent to (B/4)i;,1 ::5 B/2 - kw,r · Those two conditions are guaranteed 
for all t by these two equations: 

Kw -< (B/4 - l ) T, 

(B /4)11 -< (B /2 )T - Kw . 
(7 . 2 1 )  

(7 . 22) 

We still have to account for the actions of INC and DEC . Let INC(w) be 
the set of instructions that specify the INC operation on Kw. Let DEC(w) 
be the set of instructions that specify the DEC operation on Kw. Correct 
counter values are enforced by the equations 

K1 BK1 + I: B11 I: B11 + x, (7 .23 )  
jEINc(l )  jEDEc(l )  

Kw BKw + I: B11 I: B11 for w = 2 ,  3 .  (7 .24) 
jEINc(w) jEDEc(w) 

Note that equation (7 .23)  guarantees that the low-order digit of K1 is x to 
correspond to Kl 's initial value, and that the (t + 1 ) st digit is computed 
from the tth according to the whether Kl is incremented, decremented, or 
neither at time t. K2 and K3 are similar except that their low-order digit is 
0. It is important that the final value of each counter Kw be 0, for otherwise 
the number Kw would be infinite. 

Given an accepting computation, we may determine the values of s, 
kw,r , qu,r , and i1,1 for all w, u ,j, t. Then we may choose B to be larger than 
III and larger than kw,r for all w, t. The values of Kw , Qu , and 11 are given 
by equations (7.4-7 .6). The values so determined satisfy the simultaneous 
equations (7 . 2-7 . 3 ,7 .8-7 .24). 

Conversely, suppose we are given s, B , and Kw , Q,, , 11 (for all values of w, u ,j) satisfying the simultaneous equations (7 . 2-7 . 3 ,7 .8-7 .24). Then we 
may determine the values of kw, r , qu,r , and i1,1 for all t from (7.4-7 .7) .  These 
values determine an accepting computation on input x. 

The simultaneous equations (7 . 2-7 . 3 ,7 .8-7 .24) have a solution if and 
only if x is accepted. The conjunction of those equations can be expressed, via 
the techniques of the preceding section, as a single exponential diophantine 
equation, which has a solution iff x is accepted. This completes the proof 
of Theorem 7 .  77 .  ■ 



'' 7 .  1 4  D iophantine and Exponential Diophantine Equations 5 5 1  

LEMMA 7.8 1 .  The relation a = b' is diophantine. 
The proof of that lemma is beyond the scope of this book. 

THEOREM 7.82 (Matijasevic's Theorem). Every r. e. subset of Nn is diophantine. 
Proof: By Theorem 7 .  77 every r .e .  subset of N is exponential diophantine . 
The exponential equations may be replaced by diophantine equations by 
Lemma 7 .81 . ■ 

COROLLARY 7.83. There is no algorithm for determining whether a diophantine equation has a solution. ■ 

Exerc i ses 

7 . 14- 1 3  Show that equations (7  . 1 5) and (7  . 16) can be expressed using ari th
metic congruence instead of ::5 .  

7 . 14- 14 Prove that 2xl mod (2xy - x) = xY . 
Hint: Use 2xy = x (mod 2xy - x) . 

7 . 14- 15  An exponential diophantine equation is called unary exponential diophantine if the underlying exponential polynomial can be built up 
by addition, subtraction, and multiplication using only one-place 
exponentials, r, rather than two-place exponentials, yx . Prove that 
there is no algorithm for determining whether a unary exponen
tial diophantine equation has a solution . Do not use Matijasevic's 
theorem. Hint: Use Exercise 7 . 14- 14. 

7 . 14- 16 Using Matijasevic's theorem, prove that there exists a polynomial p 
such that {p(x1 , • . .  , xn ) : p(x1 , • . •  , xn ) > 0} is equal to the set of 
prime numbers . 

7 . 14- 1 7  Use Matijasevic's theorem to prove that there is no algorithm to de
termine the minimum value taken on by a multivariate polynomial, 
i .e ., minx x EN P(x1 , . . . , xn ) -1 , • • · ,  7/ 



5 5 2  Computabi l ity 

7 . 14-18  (a) Using Matijasevic's theorem, prove that there is no algorithm 
to determine whether there exists a solution to a system of 
equations in which each equation has one of the following five 
forms: 

X y 
X yz 
X y + z  
X 0 
X 1 ,  

where x, y ,  z are variables denoting integers. 
(b) Using part (a), prove that there is no algorithm to determine 

whether there exists a solution to a system of equations in 
which each equation has one of the following five forms: 

X Y U Z  
X Y x Z  

x Y n z  
IX I  < I Y I 

1x 1 I Y I , 

where X, Y, Z are variables denoting finite sets. 

Solution: We reduce the problem of part (a) . For each integer vari
able x we introduce a set variable X. Corresponding to the equation 
x = y,  we have the equation IXI  = I Y I . Corresponding to the 
equation x = yz, we have the equation IX I  = I Y x Z I .  We can 
express conditions like I V I = I V  X WI  as two equations: I V I = IT I  
and T = V X W. Such shortcuts will be implicit in our solution. 
We will need to express the condition that a set S is empty using the 
given types of set equations . Observe that IS i  = IS x S I  if and only 
if IS i  is O or 1 .  (By assumption, S is finite. )  Thus we can express the 
condition that S = 0 by the equations IS i  = IS x S I ,  IT I  = I T  x T l ,  
and I S i  < I T I .  As a bonus, we can express the condition that X is a 
singleton by the equation IX I  = I T I . 



7. 1 5 Chapter Summary 5 5 3  

Corresponding to the equation x = y + z, we have the equations 
1x 1 = I Y' u Z' I ,  I Y' I  = I Y I ,  IZ' I  = IZ I , and 0 = Y' n Z' . 
Corresponding to the equation x = 0, we have the equation X = 0 .  
Corresponding to the equation x = 1 ,  we have the condition that 
X is a singleton . 

7 . 1 5 CHAPTER SUM MARY 

We proved that Turing machines are equivalent to RAMs and several other 
computational models . We introduced the recursive or decidable languages, 
which are the languages recognized by DTRs, and the r .e .  languages, which 
are the languages accepted by NTAs or, equivalently, by DTAs . Complet
ing the machine-grammar equivalence paradigm, we proved that the r .e .  
languages are the same as the languages generated by semi-Thue systems . 
Using diagonalization we proved that the halting problem is not recursive . 
By reducing known nonrecursive languages to certain other languages, we 
proved that the other languages are not recursive either. In particular, the 
set of valid computations of a 2-CM program is nonrecursive . Applying 
this fact in Section 7 .13 ,  we proved the undecidability of a variety of formal 
language problems . As another application, we proved that the set of the
orems in first-order logic is not recursive . A famous undecidable problem 
is Hilbert's tenth problem: Does a multivariate polynomial equation have 
a solution in integers? We finished the chapter by proving that a closely 
related problem is undecidable . For more information about undecidabil
ity, we recommend the Handbook of Theoretical Computer Science (Elsevier and 
MIT Press) . 

Exe rc i ses 

7 .15-1 A language L is prefix-free if, for all distinct x and y in L, x is not a 
prefix of y. Throughout this problem, let P denote a DTR whose 
input device does not use the EOF test and whose final relation does 
not depend on the input device (i . e . ,  the input need not be empty 
for acceptance to occur) . 

(a) Prove that P recognizes a prefix-free language . 



5 54 Computability 

(b) Define Pr(x) = 2- lxl _ Prove that if L is prefix-free, then 
I:xEL Pr( x) ::::; 1.  

(c) Let L denote the language accepted by P, and let 1(P) = 
I:xEL Pr(x) . Let r denote a rational number. Prove that 
{ (P , r) : 1 (P) > r} is r .e .  

(d) Is { (P , r) : 1 (P) 2 r} r .e? 
(e) Let P be a particular program. Assume that {r : 1(P) > r} is 

recursive . Prove that P accepts a recursive language . 

7 .15-2 By Theorem 7 . 20(ii), if L is the range of a total recursive function 
that is nondecreasing, then L is recursive . Prove that there is no 
constructive proof of this fact; i . e., there is no algorithm to solve 
the following problem: Instance: a DTM program P that computes a total recursive func

tion that is nondecreasing Answer: a DTR that recognizes Range( Tp) 

Solution: Proof by contradiction . Suppose there is an algorithm 
that takes a DTM program P which computes a nondecreasing total 
recursive function and outputs a DTR P' that recognizes Range( Tp) .  

We solve the halting problem as follows: On input z ,  construct the 
following program P: 

input a natural number s; 
if z halts in s or fewer steps on input z then 

write 1 
else 

write 0. 

The program P computes a total recursive function that is nonde
creasing . Construct the program P' that recognizes Range( Tp ) .  P' 
accepts 1 if and only if z E K. 

7 .15-3 (a) Given two finite sets of strings U = {u 1 , . . .  , um } and 
V = { v 1 , . . .  , Vn } ,  construct an NCA that solves the following 
problem: 



Instance: a string x 
7. 1 5  Chapter Summary 5 5 5  

Question: Do there exist sequences of positive integers 
i 1 , • • •  , ik and j1 , • • •  , jk such that x = ui 1 . . .  uik = 
VJ1 · · · VJ/ 

(b) Prove that the following problem is decidable: 

Instance: two finite sets of strings U = { u 1 , . . .  , um } and 
V = {v1 , . . .  , vn} 

Question: Do there exist sequences of positive integers 
i 1 , . . .  , ik and j1 , . . .  , jk such that uii . . .  uik = VJ1 · · · VJ/ 

7 .15-4 Consider a deterministic 1-TM program P whose argument is an 
infinite sequence of characters that the tape is initialized to hold. 
Suppose that P halts on every argument. Prove that P uses only a 
bounded portion of its tape; i .e . ,  there is a natural number b such 
that P's head remains on the first b tape squares regardless of their 
initial contents . (Hint: Consider the infinite tree in which xc is a 
child of x for x E �* and c E � - Apply Exercise 0.6-29.) Conclude 
that there exists a finite set F of finite strings such that P accepts 
argument x if and only if x E p�w . (See Exercise 4. 10.10 for a 
definition of �w . ) 

7 .15-5 Is every r .e .  language the intersection of two CFLs? 

7 .15-6 Is there an algorithm to determine whether an NSM program halts 
on all inputs, i.e., has at least one complete computation on each 
input? 



8 

Recursion Theory 

IN THE PRECEDING chapter we studied the 
recursive functions and the recursive and r.e. languages with the goal of 
proving that certain important problems were undecidable. In this chapter 
we also study the recursive functions and the recursive and r.e. languages, 
but our goal this time is to find interesting general properties rather than 
to classify particular problems. 

We start by presenting Rice's theorem, which says that every nontriv
ial question about the partial function computed by a DTM program is 

5 5 7  



5 5 8  Recu rs ion Theory 

undecidable. Then we present the fixed-point and recursion theorems. As 
an application of the recursion theorem we will construct an arithmetic 
statement that is neither provable nor disprovable unless the axioms of 
arithmetic are inconsistent; this is Godel's celebrated incompleteness theo
rem. Finally, we define problems that are harder than the halting problem, 
and we examine the arithmetical hierarchy. 

Because DTAs accept the same sets that NTAs accept, it is conventional 
to concentrate on deterministic programs. The transfer relation of a DTM 
program is a partial function called its transfer function. Although we have 
been using Tp in general to denote P's transfer relation, the conventional 
notation for the transfer function of a DTM program P is !.pp. 1 

8 .  l R ICE'S THEOREM 

One can ask infinitely many questions about the transfer function of a 
DTM program P, e.g., "Is !.pp total ? " ,  "Is Dom(rpp)  empty?" ,  "Is Dom(rpp)  
infinite? ", "Is Range( rpp) infinite? ", "Is rpp ( ab) defined? " ,  or  "Is rpp ( a)  = 
b?"  All of those questions are undecidable. In fact, every nontrivial question 
one can ask about the transfer function of DTM programs is undecidable. 

A convenient way to formalize the notion that a question is about the 
transfer relation of a Turing machine program is in terms of index sets. 
A set S of DTM programs is a DTM-index set if every pair of equivalent 
DTM programs either both belong to S or both belong to S. We make this 
definition formal below: 

DEFINITION 8. 1 ( Index Sets). A set S of DTM programs is a DTM-index 
set2 if 

rpp = i.pp1 ⇒ Xs(P) = Xs (P' ) . 

1 The letter '-P, pronounced "fee," is Greek for/. Although '-PP = Tp, the use of the '-PP 
notation is intended to remind us through alliteration that the transfer relation of the 
DTM program P is a partial function. 

2 The word " index" generally means a number that indicates an element of a list; such 
indices are often denoted by subscripts. Historically, the DTM program P was repre
sented by a natural number, which was considered an index for the partial function '-PP· 



8. 1 Rice's Theorem 5 5 9  

For brevity, we will call DTM-index sets simply index sets. 

Suppose that S is an index set. If P and P' are equivalent programs, 
then either P and P' both belong to S or neither belongs to S. Thus P's 
membership in S depends only on rpp. For this reason, membership of a 
program in S is considered a property of the program's transfer function. In 
particular, membership in S does not depend on the syntax of the program. 

EXAMPLE 8.2. The following are index sets: 

• { P : P accepts the string 1 000 1 }  

• { P : P accepts the empty language} 

• { P : rpp is total} 

• { P : !.pp is one-one} 

• { P : !.pp is total or one-one} 

■ { P : f Dom( !.pp) f 2: 17 }, i .e . ,  the set of programs that halt on at 
least 1 7 inputs 

The following are not index sets: 

• { P : P has exactly four control states} 

• { P : P halts within 2 [xi steps on every input x} 

■ { P : P accepts more inputs than P has control states} ■ ■ ■ 

DEFINITION 8.3. An index set S is trivial if S is empty or S consists of 
all DTM programs. A trivial index set corresponds to either of two trivial 
questions about DTM programs: "Is P a DTM program?" and "Is P not a 
DTM program?"  

Throughout this chapter, let K denote Kdiag . 



560 Recu rs ion Theory 

THEOREM 8.4 (Rice's Theorem). Let S be a nontrivial index set. Then either 
• K � m S or 
• K �"' S. 

In any case, S is undecidable. 
Proof: Let S be a nontrivial index set. Let D be a program that runs forever 
on every input. 

Case 1 :  D (/: S. We will m-reduce K to S. Since S -::/- 0, we can let A 
be any element of S. For any DTM program P,  we define (but do not run) a 
DTM program P' that does the following: 

Step 1 :  run !.pp on input P; 

Step 2 :  input x; 
Step 3:  run A on input x.  
If  P E K, then step 1 runs to completion, so P' computes the same function 
that A computes, and therefore P' E S. If P (/: K, then step 1 does not halt, 
so P' runs forever on every input; i .e . ,  P' computes the same function that 
D computes and therefore P' (/: S. Thus 

P E K <===} P' E S .  

Since the program P' can be produced algorithmically from P, K �m S via 
the reduction/(P) = P'. 

Case 2: D E S. We will m-reduce K to S. Since S does not contain all 
DTM programs, we can let A be any DTM program that is not in S. For 
any DTM program P, we define a DTM program P' that does the following: 

Step 1 :  run rpp on input P; 

Step 2: input x; 
Step 3 :  run A on  input x. 



8. 1 Rice's Theorem 5 6 1  

If P E K, then step 1 runs to completion, so P' computes the same function 
that A computes and therefore P' (/: S. If P (/: K, then step 1 does not halt, 
so P' runs forever on every input; i .e . ,  P' computes the same function that 
D computes and therefore P' E S. Thus 

P (/: K {=:::} P' E S. 

Since the program P' can be produced algorithmically from P, K '5cm S via 
the reduction/(P) = P'. 

Since K is undecidable, S must be undecidable. ■ 

Exerc i ses  

8.1-1 Prove that the class of index sets is closed under complementation, 
union, and intersection. 

8.1-2 Professor Latella has assigned the following problem to her students: 
Write a program that will convert a Pascal program P to an equiv
alent C program P'. Her TA would like some automatic grading 
software that will test the students' programs for correctness. Prove 
that no such automatic grading software can be implemented on 
real computers as we know them. 

8.1-3 Prove that every nontrivial question about the transfer relation of NTM programs is undecidable. 

*8. 1 -4 Rice's theorem for r.e. OTA-index sets . OTA-index sets are 
defined by analogy to OTM-index sets. A set S of OTAs is a DTAindex set if 

L(P) = L(P') ⇒ Xs (P) = Xs (P') .  

Recall that L(P) denotes the language accepted by program P. 
Prove that a OTA-index set S is r.e. if and only if the following three 
statements are all true: 

(a) If P E S  and L(P) s;:; L(P') , then P' E S . 
(b) If P E S, then there exists P' E S such that L(P') s;:; L(P) and 

L(P') is finite. 



562 Recu rs ion Theory 

(c) Let us encode finite sets as strings. The following set is r.e . :  

F = {x : (=IP) [L (P) is  finite, P E  S,  and x encodes L(P) ] } .  

Solution: Assume that S is r.e. 
We show that condition (a) is necessary by contradiction. Suppose 
not. Then there exist P and P' such that P E S, L(P) � L(P' ) ,  
and P' (/: S .  We reduce K to S as follows. Let z be a string whose 
membership in K is to be decided. Consider the following high-level 
algorithm, which can be implemented as a DTA D(z) : 

Line 1 :  Input x. Line 2 :  If P accepts x, then accept. Line 3:  Run z on input z. Line 4: If P' accepts x, then accept. 

If z (/: K, then line 4 is never reached, so D(z) accepts L(P) . If 
z E K, then D(z) accepts L(P) U L(P') , which is equal to L(P') . 
Thus z E K <===} D(z) E S. Thus, K is m-reducible to an r.e. set, 
so K is r.e . ,  a contradiction. 
We show that condition (b) is necessary by contradiction. Suppose 
not. Then there exists P E S such that, for all P' E S, either 
L(P') g; L(P) or L(P') is infinite. We reduce K to S as follows. Let z be a string whose membership in K is to be decided. Consider 
the following high-level algorithm, which can be implemented as 
a DTA D(z) : 

Line 1 :  Input x. Line 2 :  Run z on input z for x steps (interpreting x as a natural 
number). If z has a complete computation on input z of x steps or fewer, then reject; otherwise, continue to the 
next line. Line 3: If P accepts x, then accept. 

If z (/: K, then D(z) accepts L(P) ,  so D(z) E S.  Otherwise, D(z) 
accepts a finite subset of L(P) ,  so D(z) (/: S. Thus, K is m-reducible 
to S, so K is r.e . ,  a contradiction. 
We prove directly that condition (c) is necessary. Let J(x) be the 
obvious program that accepts the finite set of strings encoded by x. 



8 .2  The Recu rs ion Theorem and the Fixed-Poi nt  Theorem 563  

Then x E F <¢==;> f(x) E S, so F is m-reducible to S.  Therefore F 
1s r.e . 
Conversely, assume that the three conditions are satisfied. Then we 
can test whether P E S as follows: Guess x encoding a finite set {x 1 , • • •  , xk} ;  check that each of x1 , . . .  , xk belongs to L(P) ;  check 
that x E F. Therefore S is r.e. 

*8.1-5 Rice's theorem for r.e. index sets. Say that a partial function / extends a partial function g (denoted/ =:i g) iff(x) = g(x) whenever g(x) is defined . 
Prove that an index set S is r.e. if and only if the following three 
statements are all true: 

(a) If e E S and cp; =:i cp, , then i E S .  
(b) If e E S ,  then there exists i E S such that rp, =:i cp; and 

Dom( rp;) is finite . 
(c) Let us encode functions with finite domain as strings: The 

following set is r.e . :  

{x : (=lP) [Dom(cpp) i s  finite, P E  S ,  and x encodes rpp] } . 

Hint: One approach is to mimic the proof for OTA-index sets . An 
alternative approach is to convert a DTM program with transfer 
function T to a DTA that accepts the set of all ordered pairs of the 
form (x, T (x) ) .  

8 .2  THE  REC U RS ION THEOREM AN D THE 
F IXED-PO I NT THEOREM 

Recall that we can represent programs as strings. Suppose that we want 
to write a program P such that P accepts a string x if and only if x = P.  
Most practical programming languages and operating systems allow P to 
read itself from disk and compare itself to the input x, so in practice this 
problem is easily solved . In general, if h is a partial recursive function, 
then we may use this trick on most practical computers in order to write a 
program P that computes the function g(x) = h(P, x) . 

It is not so clear, however, how to write such a program for a machine 
that does not have a built-in method to read its program. The recursion 



564 Recursion Theory 

theorem says that Turing machine programs can nonetheless simulate this 
kind of self-reference. This theorem has a central role in the theory of 
computability and complexity. 

The recursion theorem is equivalent to a fixed-point theorem3 for recur
sive functions, which we will state below. This fixed-point theorem has its 
roots in mathematical logic, where similar ideas were first used to construct 
a self-referential arithmetic sentence that cannot be proved or disproved 
using the axioms of arithmetic (this is discussed further in Section 8.3). 

TH EOREM 8.5 (Fixed·Point Theorem). Let f be a total recursive function that maps deterministic TM programs to deterministic TM programs. There exists a deterministic TM program P such that P and f ( P) compute the same partial recursive function. 
Before giving the proof of the fixed-point theorem, we will sketch the 

main ideas. Let us set the quixotic goal of finding P such that / ( P) = P. 
Of course this is impossible even for very simple functions like f (x) = x + 1; nonetheless, we will learn something useful from our certain failure. 
Because the fixed-point theorem is equivalent to the recursion theorem, 
which involves self-reference, we may guess that the desired fixed point P 
is obtained by running some program V on itself, where the program V 
is yet to be determined. That is, let us guess that P = cpv(V) . Recall 
that cp, denotes the partial function computed by the deterministic TM 
program e. Define D(e) to be the result of running program e on itself, i .e . ,  
D(e) = cpe (e) , so P = D(V) . We desire 

f(D(V) ) = D(V) = cpv (V) . 

Thus it suffices to take Cf?v = f oD, i . e . ,  let V be a program that computes the 
partial function/ o D. Then D(V) is the desired fixed point of/, provided 
that D(V) is defined. Unfortunately, there is no reason to expect that V 
halts on input V, so D(V) could be undefined. We can avoid this pitfall 
by defining d(e) to be a program that emulates program e on input e rather 
than the result of that emulation. This idea is used below in the proof of the 
fixed-point theorem. 

3 In other treatments, the fixed-point theorem goes by the name "recursion theorem," 
and the recursion theorem itself is nor formally stated. 



8.2 The Recursion Theorem and the Fixed-Point Theorem 565  

Proof: First we will define the total recursive function d,  called the diagonal 
function, which maps TM programs to TM programs so as to satisfy 

{ 
I.Pc.pe (e) lpJ(e) = 
the everywhere undefined function 

if cp,(e) is defined, 

otherwise. 

More precisely, d maps a program e to the following program, which we 
write in a high-level language to avoid the cumbersome details of TM 
programming: 

input x; 
let z be the result of running e on input e; 
run z on input x. 

Note that this is the output of d, not the algorithm for evaluating d. 
An algorithm for evaluating d would be: 

input e; 
print "input x; let z be the result of running e on input e; run z on input x. " 

In particular, d is a total recursive function, although it can map e to a 
program for a strictly partial function . 

Since / and d are total recursive functions, / o d is a total recursive 
function. Let v be a deterministic TM program that computes/ o d, i.e. , 

Let P = d(v) . Then 

I.Pv = f O d. 

lpp = I.Pd(v) = lpc_p, .(v) 

by the definition of d, since I.Pv is total. In fact, I.Pv (v) = (f o d) (v) by the 
definition of v, so 

I.Pc.p,.(v) = I.P(Jod) (v) · 



566 Recursion Theory 

Furthermore, 

i.p(jod) (v) = i.pJ(d(v)) = i.pJ(P) 

by the definition of P. By transitivity, 

i . e . ,  P and/(P) compute the same partial recursive function. ■ 

EXAMPLE 8.6. A deterministic program P for an inattentive machine is 
called self-actualized if it writes itself, i .e . ,  if the output of P is equal to 
P. We can use the fixed-point theorem to construct a self-actualized DTM 
program P. Let f ( e) be the inattentive program "output e ." That is, the 
program f(e) has no input and it writes the string e. By the fixed-point 
theorem, there exists a program P such that P and f(P) are programs for 
the same partial recursive function. By construction/(?) writes the string P. Therefore P writes the string P. ■ ■ ■ 

In the example above, we used the fixed-point theorem in order to give 
a program access to itself. This idea is generalized below by the recursion 
theorem. 

COROLLARY 8.7 (Recursion Theorem). Let h ( · ,  · )  be a partial recursive function of two variables. Then there exists a deterministic TM program P that computes the partial function h ( P, · ) ,  i. e. , on input x the program P outputs h ( P, x) . 
Proof: We will apply the fixed-point theorem to an appropriately defined 
mapping /. Let f(e) be the following program: "input x; output h(e, x) . "  
That is, on input x ,  the program f(e) outputs h(e, x) . By the fixed-point 
theorem, there exists P such that P and /(P) are programs for the same 
partial recursive function. By construction,f(P) is a program for the partial 
function h ( P, x) . Therefore P is a program for the partial function h ( P, x) . 

■ 

EXAMPLE 8.8. A recognizer P is called self-aware if it recognizes itself or, 
more precisely, if it recognizes the language { P} .  We use the recursion 
theorem to construct a self-aware DTM program P. Let h(P,  x) = ACCEPT 
if P = x, REJECT otherwise. By the recursion theorem there is a DTM 
program P whose transfer function is h ( P, · ) .  Thus P recognizes { P} . ■ ■ ■ 



8 .2  The Recu rs ion Theorem and the Fixed-Point  Theorem 567 

EXAMPLE 8.9. Let us give a different proof that the halting problem is un
decidable. Assume, for the sake of contradiction, that there is an algorithm 
for solving the halting problem. Then by the recursion theorem there exists 
a program P with no input that does the following: 

if P halts then go into an infinite loop, else halt. 

Observe that P halts if and only if P does not halt. This contradiction 
proves that there cannot be an algorithm for solving the halting prob
lem. ■ ■ ■ 

In Section 8.3 we will apply the recursion theorem to produce a state
ment that cannot be proved or disproved. For technical convenience we will 
want a version of the recursion theorem for 2-counter machines. 

COROLLARY 8. 1 0  (2-CM Recursion Theorem). Let h( · ,  · )  be a partial recursive function of two variables. Then there exists a deterministic 2-counter machine program P that computes the partial function h ( P, · ) ,  i. e. , on input x the program P outputs h (P , x). 
Proof: The proofs we gave for the fixed-point theorem and the recursion 
theorem work for any machine with the same power as a Turing machine. ■ 

Exerc ises 

8.2-1 Prove that the following languages are nonrecursive: 
(a) the set of self-actualized DTM programs 
(b) the set of self-aware DTM programs 
(c) the set of DTM programs P such that P halts on the same 

number of inputs as P has control states 

8.2-2 Dr. Lychenko purports to have written a DTM program P that solves 
the halting problem for inattentive DTM programs. Construct an 
input x on which P gives the wrong answer or doesn't halt. 

8.2-3 In this exercise we identify programs with natural numbers in the 



568 Recursion Theory 

usual way. A DTM program e is called the minimal program for a 
partial function/ if 

• cp, = f and 
• cp; = J ⇒ e ::::; i. 

(a) Let R be a recursive set that contains only minimal programs; 
i .e . ,  if e E R,  then there is a partial function / such that e is 
the minimal program for/. Prove that R is finite. 

Solution: The proof is by contradiction. Assume that R is an 
infinite recursive set. Then R is the range of a total recursive 
function h that is strictly increasing by Exercise 7 .6-3 . Let g(x) = h(x + 1 ) .  Then for all x, g(x) > x and g(x) E R. By 
the fixed-point theorem there exists n such that I.Pn = I.Pg(n) · 
But g(n) > n, so g(n) cannot be a minimal index. That is a 
contradiction. 

(b) Let R be an r.e. set that contains only minimal programs, i.e. , 
if e E R then there is a partial function / such that e is the 
minimal program for/. Prove that R is finite. 

Solution: Every infinite r.e. set contains an infinite recursive 
subset by Exercise 7 .6-4. The assertion follows from part (a). 

8.2-4 Let f be a partial recursive function that maps DTM programs to DTM programs. Prove that there exists P such that 

{ 
I.PJ(P) lpp = 
the everywhere undefined function 

if f(P) is defined, 

otherwise. 

8.2-5 Let f be a total recursive function that maps NTM programs to 
NTM programs. Prove that there exists P such that P and /(P) 
have the same transfer relation. 

8.2-6 Use the recursion theorem to prove the fixed-point theorem. 

8.2-7 The uniform recursion theorem 
(a) Let h i ( · ,  · ,  · )  and h2 ( · ,  · , · )  be total recursive functions whose 

first two arguments are programs. Prove that there exist pro
grams P i and P2 such that P i computes h 1 (P i , P2 , · )  and P2 

computes h2 (P1 , P2 , · ) .  



8 . 3  GODEL's Incompleteness Theorem 5 69 

(b) Let h 1 , . . .  , hk be (k+ 1 )-place total recursive functions whose 
first k arguments are programs. Prove that there exist pro
grams P 1 , · · · , Pk such that P; computes h;(P 1 , • • •  , Pk , · ) for 
each i. 

(c) Let h be a 3-place total recursive function whose first argument 
is a program. Prove that there exists a total recursive function 
u mapping natural numbers to deterministic TM programs 
such that, for all i, the program u(i) computes h(P, i, · )  where 
P is a program for 11. 

8 . 3  GODEL'S I NCOM PLETEN ESS THEOREM 

At one time mathematicians operated under the belief that every statement 
about the natural numbers or set theory is either provable or disprovable. 
(To avoid trivial counterexamples, statements with unquantified variables 
like x + y = 3 are not allowed. However (\Ix) (\iy) [x + y = 3] is a state
ment about the natural numbers. It can be disproved by observing that 
1 + 1 -::/- 3 .) Although no one had tried to prove that every statement 
is provable or disprovable, hardly anyone questioned the belief . Eventu
ally self-contradictory sentences like "This statement is false" were pointed 
out. As a response, logic was formalized to make clear exactly what consti
tuted a statement. Needless to say, explicitly self-referential sentences like 
"This statement is false" are not statements. Mathematicians went back to 
thinking that every statement is either provable or disprovable. 

In 1931 all that changed. Kurt Godel astounded the mathematical 
world (including himself) by constructing a true statement about the natural 
numbers that cannot be proved from the axioms of arithmetic4 unless those 
axioms are inconsistent. 

Godel's statement expresses the idea "There is no proof that this state
ment is true. " Because it is self-referential, it is not obvious how to state it in 
terms of arithmetic. Godel invented a version of the recursion theorem that 

4 More precisely, for each sound axiomatization AX of arithmetic, Godel constructed a 
true statement 1/J that cannot be proved from AX. Ir is necessary to fix AX once and 
for all before constructing 1/J, for otherwise 1/J could be made an axiom, and then 1/J 
would be provable. 



570 Recursion Theory 

allowed him to implicitly make such a self-referential statement. The recur
sion theorem and the fixed-point theorem that we saw in the preceding sec
tion were discovered later by Kleene, who carefully examined Godel's work. 

Let us define some terms from logic. We will assume that the reader has 
a sufficient, though possibly imprecise, understanding of the terms "true," 
"axiom," "statement," and "rule of inference. "  

DEFINITION 8. 1 1  

(i) A theory is a set of axioms. 

(ii) A proof (in a specified theory) is a sequence of statements, each of 
which either is an axiom or else follows from some of the preceding 
statements by a rule of inference. 

(iii) A statement 1/; is a theorem (in a specified theory) if there is a proof 
(in that theory) whose last statement is 1/; . 

(iv) ,1/J stands for the logical negation of the statement 1/; . 

(v) A theory is consistent if there is no statement 1/; such that 1/; 1s a 
theorem and ,1/J is also a theorem. 

(vi) A theory is sound if all theorems are true. 

(vii) A theory is complete if, for every statement 1/; , 1/J is a theorem or ,1/J 
is a theorem. 

By "the axioms of arithmetic," we mean any fixed recursive set of axioms 
for arithmetic with which the reader is comfortable, such as the Peano 
axioms. No matter which axioms you use, we prove that the axioms of 
arithmetic are either unsound or incomplete. 

THEOREM 8. 1 2  (Godel's Incompleteness Theorem). Assume that the axioms of arithmetic are sound. Then there is an arithmetic statement 1/J such that 
■ 1/J is true, 
• 1/J is not a theorem, and 
• ,1/J is not a theorem. 



8 . 3  GODEL's Incompleteness Theorem 5 7 1  

Proof: Because the axioms constitute a recursive set and the rules of infer
ence constitute a finite set, it is possible to check each statement in a proof 
mechanically, by checking each to see if it is an axiom or if it follows from 
preceding statements by one of the rules of inference . Thus an algorithm 
may determine whether a sequence of statements constitutes a proof, so 2-
counter machines can verify proofs .  Recall as well that the natural numbers 
can be used to encode all strings and hence all sequences of statements . 
Using the recursion theorem for 2-counter machines, we define a 2-CM 
program P that behaves as follows : 

for i : = 0 to oo do 
if i encodes a proof that P does not halt, then halt. 

Let 7/J be the statement "P does not halt ."  Because P is a 2-counter 
machine program, 7/J can be written as a statement in the language of 
arithmetic, as in the proof of Theorem 7 .6 1 .  By construction, P halts iff 
there is a proof that P does not halt. Therefore 

,7/J <===} there is a proof of 7/J .  ( 8 . 1 )  

If 7/J is false, then by (8 . 1 )  there is a proof of 7/J ,  which violates the 
soundness of arithmetic. Therefore 7/J is true . Since ,7/J is false , by soundness 
there must not be a proof of ,7/J.  Since ,7/J is false, by (8 . 1 ) there must not 
be a proof of 7/J .  ■ 

Soundness is a much stronger assumption than consistency. By mod
ifying Godel's construction, we can show that mere consistency implies 
incompleteness .  

THEOREM 8. 1 3  (Rosser's Version of Godel's Incompleteness Theorem) Assume that the axioms of arithmetic are consistent. Then there is an arithmetic statement 7/J such that 
• 7/J is true, 
• 7/J is not a theorem, and 
• ,7/J is not a theorem. 



572 Recursion Theory 

Proof: Using the recursion theorem for 2 -counter machines, we define a 
2-CM program P that behaves as follows : 

for i := 1 to oo do begin 
if i encodes a proof that P halts, then go into an infinite loop; 
if i encodes a proof that P does not halt, then halt; 

end. 

By construction P halts if and only if there is a proof i that P does not 
halt such that i is less than any proof that P does halt. Let 7/J be the statement 
"P does not halt . "  Therefore 

,7/J <===} there is a proof of 7/J that is less than any proof of ,7/J . ( 8 .  2 )  

Assume for the sake of  contradiction that there i s  a proof of  7/J or a proof of 
,7/J. Let the minimum such proof be i. We consider two cases . 

Case 1 :  i is a proof of 7/J .  Because i is minimal , 0 ,  . . .  , i - 1 are not proofs 
of ,7/J.  By definition of proof, i cannot prove more than one statement, so i 
is not a proof of ,7/J .  We can prove ,7/J from (8 .2) by mechanically verifying 
that i is a proof of 7/J and that 0, . . .  , i are not proofs of ,7/J.  But then ,7/J 
is provable, contradicting consistency. 

Case 2 :  i is a proof of ,7/J.  Because i is minimal , 0, . . .  , i - 1 are not 
proofs of 7/J. We can prove 7/J from (8 .2) by mechanically verifying that i 
is a proof of ,7/J and that 0 ,  . . .  , i - 1 are not proofs of 7/J .  But then 7/J is 
provable, contradicting consistency. 

In either case, we obtain a contradiction. Therefore there is no proof 
of 7/J and there is no proof of ,7/J.  Since there is no proof of 7/J ,  by (8.2) 7/J 
must be true . ■ 

Let Con be the statement that the axioms of arithmetic are consistent. 
It is not obvious how to express Con as an arithmetic statement, but it is 
possible (Exercise 8 . 3 -5 ) . Although the true but unprovable statements 
constructed for Theorems 8 . 1 2  and 8 . 1 3  were ad hoc, Con is a statement of 
natural interest. Con is the first example of a natural statement that is true 
if and only if it cannot be proved. 

COROLLARY 8. 1 4. Con is true if and only if Con is not a theorem. 



8 . 3  GODEL:s I ncompleteness Theorem 573  

Proof: First we will prove by contradiction that Con ::::;,- Con i s  not a 
theorem. Assume that Con is true and Con is a theorem. Let 7/J be as in 
Theorem 8. 1 3 .  By Theorem 8 . 1 3 , because Con is true, 7/J is not a theorem. 
By Theorem 8 . 1 3 ,  Con ::::;,- 7/J. Therefore , because Con is a theorem, 7/J is a 
theorem. This contradiction completes the proof. 

For the converse, assume that Con is false . Then arithmetic is inconsis-
tent, so all statements are theorems by Exercise 8 . 3 -2 .  ■ 

The proofs in  this section really apply to any theory that is capable of 
expressing arithmetic statements . Thus, the preceding corollary means that 
in any consistent theory T that is at least as expressive as arithmetic, there 
is no proof that T is consistent. 

Exerc i ses  

8 . 3 - 1  Let 7/J be as in Theorem 8. 1 2 .  Let x be any TM program. Prove the 
following :  

(a) If  x halts, then there i s  a proof in arithmetic that x halts . 

Solution : Convert x to an equivalent 2-CM program x'. If x halts then there is a computation of x'. The step-by-step 
verification of this computation can be written as a sequence 
of arithmetic statements, which constitute a proof that x' halts 
and therefore x halts . 

(b) If arithmetic is consistent, then 7/J is true. 

Solution: Assume for the sake of contradiction that 7/J is false. 
Then P halts. By (a) there is a proof that P halts. But by the 
construction of P there is a proof that P does not halt. This 
contradicts consistency, so 'ljJ must be true. 

(c) If arithmetic is consistent, then there is no proof in arithmetic 
of 7/J .  

Solution : By (b) 7/J 1s true. By (8 . 1 ) ,  there is no proof in 
arithmetic of 7/J .  

8 . 3 -2 Prove that a nonempty theory is consistent if and only if at least one 
statement is unprovable . 



574 Recursion Theory 

Solution: First, assume the theory is consistent. Let 7/J be any state
ment. One of the statements 7/J and ,7/J is unprovable. 
For the converse, assume the theory is inconsistent. Then there is 
a statement 7/J such that 7/J and ,7/J are both provable. Let y be any 
statement. Because " (  7/J /\ ,7/J) =} y" is a logical tautology, y is 
provable. Thus we have shown that every statement is provable. 

8.3-3  A theory is w-consistent if there is no predicate Q( · ) such that there 
exists a proof of (::lx) [Q(x)] as well as proofs of ,Q(c) for each 
constant c. (For example, a theory of arithmetic is w-consistent iff 
there is no predicate Q(  · )  such that there exists a proof of ( ::lx) [Q (x) ] 
as well as proofs of ,Q(O) , ,Q( l ) ,  ,Q (2 ) ,  . . . .  ) 

(a) Prove that if a theory is sound, then it is w-consistent. 
(b) Prove that if a theory is w-consistent, then it is consistent. 

8.3-4 Let 7/J be as in Theorem 8.12. Assume that arithmetic is w-consistent 
and prove the following : There is no proof in arithmetic of ,7/J. 

8.3-5 Let 7/J be as in the proof of Theorem 8.13. Prove 

Con -¢::::=} 7/J is not a theorem. 

How could you phrase Con as a statement in arithmetic ? 

8 . 4  ORACLES AN D TU RI N G  REDUCTIONS 

In this section we introduce new and powerful devices called oracles. The 
definition of these devices is motivated by the mythological Delphic or
acle and by special purpose chips that can be installed as add-ons to real 
computers. 

The mythological Delphic oracle5 could answer any question. The 
oracles we define will be limited in their omniscience. Let B be a language 
over an alphabet r . An oracle for B can hold a string, called the query string, 

'i According to Greek mythology, an oracle resided in the city of Delphi. The oracle 
would answer any question truthfully, but her answer could be ambiguous or even 
misleading, depending on the will of the gods or how well she was paid. 



8.4 Oracles and Tu ring Reductions 5 75 

and tell whether the query string belongs to the language B. The oracle for 
B has realm f* . Its initial state is A.  Its operations are APPENDc, which 
appends a c to the query string; INB,  which tests whether the query string 
belongs to B and then clears the query string; and NOT-IN B,  which tests 
whether the query string belongs to B and then clears the query string. We 
define the operations formally below: For all strings s, 

■ s APPENDc = sc. 

• s IN B = A if s E B but is undefined otherwise. 

• s NOT-IN B = A if s E B but is undefined otherwise. 

An oracle for B may also be called simply an "oracle B. "  
An oracle for B i s  like a read-only database that can answer membership 

queries for the language B. As an exercise, the reader may define oracles for 
functions; these are analogous to add-on chips that perform floating point 
or graphics calculations . 

A Turing machine with oracle B is a machine with a control, some 
number of tapes, and an oracle for the language B; as usual, it may have 
input and output as well .  A program can ask the oracle whether a string s 

belongs to B by copying s to the oracle string (using repeated APPENDs) 
and then performing either the IN B or NOT-IN B operation (whichever is 
applicable) . When the program asks the oracle whether some string belongs 
to B,  we call this querying the oracle . If s E B,  then the edge labeled IN B 
is followed and we say that the oracle answers yes; if s t/:. B, then the edge 
labeled NOT-IN B is followed and we say that the oracle answers no. For 
example, it is an easy matter for a program for a TM with oracle B to 
recognize the language B by querying the oracle about the input string , as 
in Figure 8 . 1 . 

EXAMPLE 8. 1 5 . If A -S:.m B, then a TM with oracle B can recognize A by 
making a single query, as shown below. Let f be a reduction from A to B. 

input x; 

Y := /(x) ; 
if y E B then accept, else reject. I I I 



576 Recurs ion Theory 

FIGURE 8. 1 : A program running on a TM with oracle B that recognizes B. 

EXAMPLE 8. 1 6. Let us now consider an example using an oracle for Kpos · 
A program for a Turing machine with an oracle for Kp0, can recognize the 
following language: { P : P halts on exactly one input} ,  as we will show. 
Let K-;,_2 be the set of DTM programs P that halt on at least two inputs. 
K-;,_2 is r.e . ,  because we can guess two strings and check that P halts on both 
of them. Then, by Theorem 7 .3 7 ,  K-;,_2 s_,,, Kpw Let f be a reduction from 
K-;,_2 to Kpos · The following algorithm determines whether program P halts 
on exactly one input: 

input P; 
if P � Kpor then reject; (* P halts on zero inputs *) 
y := f(P) ; 
if y E Kpos then reject; (* P halts on two or more inputs *) 
accept. 

DEFINITION 8. 1 7 (Turing reductions) 

I I I 

(i) A partial function/ is Turing-reducible to B (denoted / S.r B) if/ is 
computed by a program P for a DTM with oracle B.  (P is called a 
Turing reduction from / to B.) 

(ii) A language A is Turing-reducible to B (denoted A S.r B) if A is 
recognized by a DTR P with oracle B. (P is called a Turing reduction 
from A to B.) 



8.4 Oracles and Tu ring Red uctions 5 77 

By Example 8. 1 5, if A S.m B,  then A S.7 B. By Example 8. 16, 
{ P : P halts on exactly one input} is Turing-reducible to Kpos · 

Exerc ises 

8.4- 1 Prove that the following sets and partial functions are Turing-
reducible to Kpos : 

(a) A = { P : P halts on exactly 1 7 inputs} 

(b) A =  {P : P halts on between 1 and 100 inputs} 

(c) A =  {P : IC(P) I S. 100 and IC (P) I is odd} 

{ 
the least x such P halts on x if P E Kpos , 

(d) /(P) = 
undefined otherwise. 

(Identify input strings with natural numbers and use numerical 
order.) 

8.4-2 (a) Prove that S:. 7 is reflexive and transitive. 

(b) Is S:. 7 symmetric? 

(c) Prove that A S:. 7 0 if and only if A is recursive. 

(d) Prove that if A s_ 7 B and B is recursive, then A is recursive. 

8.4-3 In this section, we defined an oracle for a set B. How would you 
define an oracle for a function/? For a relation p? 

8.4-4 Recall that K is the halting problem. Prove that there is a function f S:. 7 K such that / has no fixed points, i.e . ,  

(\le) [�J(e) =/= �e] -

8.4 .  1 Representational  I s sues 
A subtlety arises when we represent programs for a DTM with oracle B.  

Because it is not possible to represent the language B as a string (see Exercise 
7.8-2(c)), we cannot represent the oracle operations INB and NOT-INB as 



5 78 Recursion Theory 

such. Instead, we represent the oracle operations I N B  and NOT- INB as IN 
and NOT- IN ,  respectively. Because such programs can be run on a TM with 
any oracle, they are called oracle TM programs; the behavior of the program 
depends on which oracle the machine has. If P is an oracle TM program, 
we write P8 to denote program P running on a TM with oracle B.  It is 
important to define determinism syntactically: An oracle TM program is deterministic if it is deterministic for every oracle. 

8 .4 . 2  Re lativizat ion 
As a rule of thumb, most true statements about programs for a TM have 
true analogues about programs for a TM with oracle B.  Because the analogy 
is an informal one, we describe it informally. 

EXAMPLE 8. 1 8. Consider the statement ( 1 )  "Every language accepted by 
an NTA is accepted by a DTA. " An analogous statement ( 18 ) is obtained 
by adding an oracle for B to all Turing machines in the original statement: 
"Every language accepted by an NTA with oracle B is accepted by a DTA 
with oracle B . "  That transformation on statements about Turing machines 
is called relativization. In addition to relativizing theorems about TMs, we 
can relativize their proofs .  Typically the relativized proof is, in fact, a proof 
of the relativized theorem. We illustrate this with statement ( 1) and the 
relativized statement ( 1 8 ) .  

Proof o f  statement ( 1 ) :  Let L be accepted by an NTA P .  The following 
DTA accepts L: 

input x; 
for i : = 1 to oo do 

if i encodes an accepting computation of P on input x, then accept; 

Observe that a DTR can run a computation of an NTA step by step, 
verifying that x is the string scanned and that the computation accepts, so 
it can check whether i encodes an accepting computation of P on input x. ■ 



8.4 Oracles and Tu ring  Reductions 5 79 

Proof of statement ( l  8) :  Let L be accepted by an NTA P with oracle B .  
The following DTA with oracle B accepts L: 

input x; 
for i := 1 to oo do 

if i encodes an accepting computation of P on input x, then accept; 

Observe that a DTR with oracle B can run a computation of an NTA 
with oracle B step by step, verifying that x is the string scanned and that 
the computation accepts, so it can check whether i encodes an accepting 
computation of P on input x. ■ 

It is convenient to relativize the definitions of "recursive" and "r.e. " We 
say that A is recursive in B if A is recognized by a DTR with oracle B .  We 
say that A is r.e. in B if A is accepted by an NTA with oracle B .  We say 
that a function/ is recursive in B if/ is computed by a DTM program with 
oracle B. 

EXAMPLE 8. 1 9. As shown above, A is r.e. in B if and only if A is accepted by 
a DTA with oracle B .  By relativizing the proofs for ordinary TM programs, 
we can prove many analogous theorems about oracle TM programs. For 
example: 

• There is a universal oracle TM program P such that, on input (x, y ) ,  
P8 emulates DTM program x on input y with oracle B.  

• L is recursive in B if  and only if  L and I are r.e. in B.  

• L is r.e. in B if and only i f  there exists a set R recursive in B such 
that x E L � (::ly) [ (x, y) E R] . 

• Let L be a nonempty set. L is r.e. in B if and only if L is the range 
of a total function that is recursive in B.  

• Let L be a nonempty set. L is recursive in B if and only i f  L is the 
range of a nondecreasing, total function that is recursive in B .  

• I f  S S::m T and T is recursive in B ,  then S is recursive in B.  

• I f  S S::m T and T is r.e. in B ,  then S is r.e. in B .  



5 80 Recu rs ion Theory 

Because the proofs reiterate previous ideas, they are left as exercises. ■ ■ ■ 

Caveat: Only statements about machines can be relativized. We are 
able to relativize statements about r.e. languages, for example, because they 
are defined in terms of NTAs. We can relativize problems like the halting 
problem because it is a problem about Turing machines. However, it is not possible to relativize statements about particular problems without first restating 
those problems in terms of machines. 

EXAMPLE 8.20. There is no natural way to relativize a rewriting system. 
The statement "No DTR can solve the word problem for semi-Thue systems" 
is true, but the statement "No DTR with oracle K can solve the word 
problem for semi-Thue systems" is false. ■ ■ ■ 

Exe rc i ses  

8.4-5 Prove each of the following statements by relativizing the corre
sponding statement for ordinary TMs: 

(a) L is recursive in B if and only if L and [ are r.e. in B.  
(b) L i s  r.e. in  B if and only if there exists a set R recursive in  B 

such that x E L  � (:3y) [(x, y) E R].  
(c) Let L be a nonempty set. L i s  r.e. in B if and only if L is the 

range of a total function that is recursive in B.  
(d) Let L be a nonempty set. L is recursive in  B if and only if L is 

the range of a nondecreasing, total function that is recursive 
in B.  

(e) If S :s;m T and T is recursive in  B ,  then S is recursive in B .  
(f) I f  S ::=;m T and T is r.e. i n  B ,  then S is r.e. i n  B.  

8 . 4 . 3  J u m ps 
Some undecidable problems are harder, i.e., more undecidable, than others. 
Recall that in Chapter 7 we proved that no DTR can solve the halting 
problem for DTM programs. A similar theorem is true for oracle TMs: No 
DTR with oracle B can solve the halting problem for DTM programs with 
oracle B . In particular, although a DTR with oracle K can solve the halting 
problem for ordinary DTM programs, it cannot solve the halting problem 
for DTM programs with oracle K. 



8.4 Oracles and Tu ring Reductions 5 8 1  

DEFINITION 8.2 1 (Jumps). The halting problem for DTM programs with oracle B (denoted KB or B1) is the following language: 

{ P : P is an oracle DTM program and pB halts on input P} . 

As the halting problem is undecidable, similarly KB is harder than B .  

THEOREM 8.22 

(i) A is r. e. in B if and only if A Sm KB . 

( ii) KB is not recursive in B. 
Proof 

(i) Relativize the proof of Theorem 7 . 37. 

(ii) Relativize the proof of Theorem 7 .2 1 .  

Thus, in particular, KK is not recursive in K .  

■ 

Because KB is strictly harder than B ,  KB is called the jump of B .  Using 
the jump operator, we can define a sequence of problems, each of which is 
more undecidable than the one before: 

We adopt the following notation: A (o) A" = KKA
, and A (3) = A"' = KKKA

. 
example, 0(3) = KKK0

. 

Exerc ises 

8.4- 1 (a) Prove that K(i) Sm 0(i+ l ) _  

(b) Prove that 0(i+ l ) S m  K(i) . 

= A A ( I ) = A' = KA A (2) = , , 

In general, A (i+ i ) = KAUl . For 



5 8 2  Recursion Theory 

8 . 5  ARITH METI CAL H IERARCHY 

Not only are some problems more undecidable than others, but there is an 
infinite hierarchy of more and more undecidable problems. In this section 
we describe a hierarchy of languages, with the recursive languages at the 
bottom, the r.e. and co-r.e. languages at the next level, and more highly 
undecidable languages at each higher level. Many natural problems about 
Turing machines fit neatly into this hierarchy. 

Recall that the r.e. languages are obtained by applying an existential 
quantifier to the recursive languages. Similarly, the co-r.e. languages can be 
obtained by applying a universal quantifier to the recursive languages. We 
generalize these ideas . Let C be a class of languages. We define two classes 
of languages, I;C and ITC, as follows: 

• L E I;C if and only if there exists R E C such that 

x E L  � (3y) [(x, y) E R] .  

• L E ITC if and only if there exists R E C such that 

x E L  � (\ly) [(x, y) E R] . 

(In this section, we will work with ordered pairs, n-tuples, and sequences. 
All of them will be represented as strings in the usual way. ) 

For example, if C is the class of recursive languages, then I;C is the class 
of r.e. languages by Theorem 7 .18 and ITC is the class of co-r.e. languages. 
By alternately applying the I; and II operators, we obtain larger classes of 
languages. 

DEFINITION 8.23 (Arithmetical Hierarchy). We define the language classes 
I;;, II;, and �; recursively. 

• I;0 = II0 = the class of recursive languages. 

• II;+ 1 = III;;. 

■ I; i+ l = I;II;. 

• �; = I;; n II; .  



8 .5  Arithmetical H ierarchy 5 8 3  

The arithmetical hierarchy consists of the classes I;i , IIi , D.; for all i � 0.6 
A language L is called arithmetical if L belongs to one of the classes in the 
arithmetical hierarchy, i.e., if L E U;;:_>o (I;; U II;). 

Observe that I; 1 is the class of r.e. languages and II 1 is the class of co-r.e. 
languages. Many important properties of the arithmetical hierarchy follow 
from simple quantifier manipulation. We begin with a normal form. 

LEMMA 8.24 (Normal Form) 

( i) Let i be even. A E I;; if and only if there exists a recursive language R such that 

( ii) Let i be odd. A E I;; if and only if there exists a recursive language R such that 

( iii) Let i be even. A E IT; if and only if there exists a recursive language R such that 

(iv) Let i be odd. A E IIi if and only if there exists a recursive language R such that 

Proof: We prove all parts simultaneously by induction on i. A E I;0 <===? 
A E II0 <===? A is recursive, so the base case is established. Now assume 
that the lemma is true for i - 1 .  We will prove it for i. Part (i) will follow 
from the inductive hypothesis for part (iv). Part (ii) will follow from the 

6 These classes are sometimes denoted I:�,  II� , .6.j> in order to distinguish them from the 
analytic hierarchy, in which the quantified variables are functions rather than strings. 



5 84 Recurs ion Theory 

inductive hypothesis for part (iii). Part (iii) will follow from the inductive 
hypothesis for part (ii). Part (iv) will follow from the inductive hypothesis 
for part (i). We give the proof only for part (i), where i is even and A is in 
I;; .  The other three parts are proved similarly. 

Because A E I;; , there exists B E II;_ 1 such that x E A {==} 
(:::ly) [ (x, y) E B]. By the inductive hypothesis in part (iv), there exists 
a recursive language S such that 

Therefore 

By renaming variables, 

x E A  {==} (:::ly1 ) ('vy2 ) (:::ly3 ) · · · (=ly;- 1 ) (\ly;) [( (x, y1 ) , y2 , . . .  , y; )  E S] 
{==} (=ly1 ) (Vy2 ) (:::ly3 ) · · · (=ly;- 1 ) (\ly;) [ (x, y1 , . . .  , y; )  E R] , 

where R is the recursive language {(x, y1 , . . .  , y;) :  ((x, y1 ) , Y2 , . . . , y; )  E S}. 
Conversely, let R be a recursive language, and assume that 

Let 

and let S = { ( (x, y1 ) , y2 , . . .  , y; ) : (x, y 1 , . . .  , y; )  E R } .  Then 

so B E II;_ 1 by the inductive hypothesis in part (iv). Since x E A ¢=? 
(3y 1 ) [ (x, y 1 ) E B] , therefore A E I;; . This establishes part (i) of the induc-
tive hypothesis. The remaining parts are similar. ■ 



8 . 5  Arithmetical H ierarchy 5 8 5  

W e  state the normal forms more succinctly by using a symbol Q to 
denote the last quantifier. 

• A E I;; if and only if there exists a recursive language R such that 

where Q is V if i is even, and Q is :3 if i is odd. 

• A E II; if and only if there exists a recursive language R such that 

where Q is :3 if i is even, and Q is V if i is odd. 

From this normal form it follows that L E I;; if and only if[ E II; .  (Re
call that co-C is the class of all languages whose complements belong to C . ) 
COROLLARY 8.2 5. I;; = co-II; . 

Proof: Let A E I;;. By the normal form lemma, there exists a recursive 
language R such that 

Therefore 

x E A  � -, (::Jy 1 ) ('vy2 ) · · · (Q y;) [ (x, y1 , . . .  , y; ) E R ] 

� (Vy 1 ) (::ly2 ) · · · (Q1y;) [ (x, y1 , . . .  , y; ) E R ] 

(where Q' is the opposite quantifier from Q, i .e. , Q' is :3 if Q is V, and Q' is 
V if Q is :3). Therefore A E II; , so A E co-II; . 

Conversely, let A E co-II; . Then A E II;, so there exists a recursive 
language R such that 

x E A  � ('vy 1 ) (::ly2 ) · · · (Qy; ) [ (x, y 1 , . . .  , y;) E R ] .  

Therefore 

x E A  � -,(\:Jy1 ) (::ly2 ) · · · (Q y;) [(x, y 1 ,  . . .  , y; ) E R ] 
� (:3y1 ) (Vy2 ) · · · (Q1y;) [ (x, y1 , . . .  , y; ) E R ] .  

Therefore A E I;; .  ■ 



5 86 Recurs ion Theory 

Many proofs will be simpler if we work with recursive predicates rather 
than recursive languages. 

DEFINITION 8.26. P( ·) is a recursive predicate if { x : P( x) } is a recursive 
language. 

Recursive languages and recursive predicates are virtually interchange
able. We restate the normal form lemma in terms of recursive predicates 
(the proof is left as Exercise 8.5-1 ): 

• A E I;; if and only if there exists a recursive predicate R such that 

x E A  � (::ly1 ) (\ly2 ) · · · (Qy;) [R (x, yi , . . . , y; ) ] , 

where Q is \I if i is even, and Q is :3 if i is odd. 

• A E II; if and only if there exists a recursive predicate R such that 

x E A  � (\ly1 ) (::ly2 ) · · · (Qy; ) [R (x, y1 , . . .  , y; ) ] , 

where Q is :3 if i is even, and Q is \I if i is odd. 

This normal form usually shortens proofs because in the last step we 
can simply note that the predicate in square brackets is recursive, without 
having to give it a name or convert it to a set of i-tuples. Let us use this 
normal form to prove that I;; and II; are closed under m-reductions. 

COROLLARY 8.2 7 

(i) If A Sm B and B E I;;, then A E I;;. 

(ii) If A Sm B and B E II;, then A E II; . 
Proof: We prove only part (i). The proof of part (ii) is similar. Let B E I;; . 
By the normal form lemma, there exists a recursive language R such that 

x E B  � (:3y1 ) (\112 ) · · · (Qy;) [ (x, y 1 , . . .  , y; )  E R] . 

Since A Sm B,  there is a total recursive function f such that x E A � 
f(x) E B. Thus 

x E A  � (::ly i ) (\112 ) · · · (Qy;) [(f(x) , y 1 , . . .  , y; )  E R] . 



8 . 5  Arithmetical H ierarchy 5 8 7  

Because (f(x) , y 1 , • • •  , y; ) E R  is a recursive predicate, A E I;; . ■ 

The next lemma says that applying a quantifier to a class in the arith
metical hierarchy yields a class that is at least as large. The reason for this 
is that we need never refer to the extra quantified variable. 

Proof: We prove only I;; � I;I;;. The other parts have similar proofs. 
Let A E I;;.  By the normal form lemma, there is a recursive set R such 

that 

x E A  � (=ly 1 ) (\ly2 )  · · · (Qy;) [ (x, y 1 , . . . , y; ) E R] 
� (=ly) (=ly1 ) (Vy2 ) · · · (Qy; ) [ (x, y 1 , . . .  , y;) E R] . 

Thus x E A  � (3y) [ (x, y) E B] ,  where 

B = { (x, y) : (=ly1 ) (V12 ) · · · (Qy;) [(x, y 1 , . . .  , y; ) E Rj } .  

Since (x, y 1 , . . .  , y;) E R  is a recursive predicate, B E  I;;, so A E I;I;; .  
Because we have proved this for every A E I;;, it follows that I; ;  � I;I;; .  ■ 

COROLLARY 8.29. I;; � II;+ 1 and IT; � I; i+ I · 

Proof: By Lemma 8.28, I;; � III;; = Il;+ 1  and II; � I;II; = I;;+ 1 . ■ 

Next we show that classes at the (i + 1 ) st level of the arithmetical 
hierarchy are at least as large as classes at the ith level. Later in this section 
we will prove that they are strictly larger. 

THEOREM 8.30. I;i � I;,+ 1 n II,+ ! and IT; � I;i+ l n II;+ ! · 

Proof: By Corollary 8.29, I;; � II;+ i and IT; � I;;+ 1 . Thus it suffices to 
show that I;; � I;;+ 1 and II; � II;+ 1 . We prove only I;; � I;i+ I ; the proof 
that IT; � II;+ 1  is similar. 

Let A E I;; . By the normal form lemma, there is a recursive language 
R such that 

x E A  � (=ly 1 ) (\ly2 )  · · · (Qy;) [(x, y 1 , . . .  , y; ) E R] 
� (=ly 1 ) (\ly2 )  · · · (Qy;) (Q1

y;+ 1 ) [ (x, y 1 , . . .  , y; ) E R] , 

where Q' is the opposite quantifier from Q. Because (x, y 1 , . . .  , y;) E R is a 
recursive predicate, A E I;i+ I  · ■ 



5 8 8  Recurs ion Theory 

The next lemma says that we can combine two adjacent 3 quantifiers 
or two adjacent V quantifiers. 

LEMMA 8.3 1  (Quantifier Contraction). Let i � 1 .  

(i) ��i = �i(ii) IIII; = II;. 
Proof: We prove only part (i). Part (ii) is similar. 

By Lemma 8.28, �; � ��; .  Now we prove that ��; � �; - Let A E 
��; .  Then there exists B E �; such that x E A  {=} (=ly) [ (x, y) E B] . 
Because B E �;, there exists a recursive language R such that 

(x, y) E B  {=} (=ly1 ) (V12) · · · (Qy; ) [ ( (x, y) , y i , . . .  , y; )  E R] . 

Therefore 

x E A  {=} (=ly) (=ly1 ) ('vy2 ) · · · (Qy;) [( (x, y) , Y i , . . .  , y; ) E R] 
{=} (=l (y , y 1 ) ) ('vy2 ) · · · (Qy; ) [ ( (x, y) , Y 1 , . . .  , y; )  E R] , 

Because ( (x, y) , y 1 , • • •  , y; )  E R is a  recursive predicate, A E �; .  Because 
we have proved this fact for every A E ��;, it follows that ��; � �; .  ■ 

By definition, �II; = �i+ I  and II�; = II;+ i • However, when the first 
quantified variable is restricted to a finite set, we obtain just II; and �;, 
which is one level lower in the hierarchy than one might have expected. 

LEMMA 8.32 (Bounded Quantification). Let f(x) be a total recursive function. 
(i) Let A E �; and let B = {x : (\:/k S f(x) ) [(x, k) E A] }. (Here we identify strings with natural numbers and use numerical order. ) Then 

B E �;-

(ii) Let A E IT; and let B = {x : (3k S f(x) ) [ (x, k) E A] }. Then 
B E  II;. 



8 . 5  Arithmetical H ierarchy 5 8 9  

Proof: We prove only part (i); the proof of part (ii) is similar. When i = 0, 
A is a recursive language, so B is a recursive language; i.e., B is in I;0 , 

Henceforth assume i � 1 .  
Let A E I;; and let B = {x : (\:/k S f(x) ) [ (x, k) E Al } .  By the 

definition of I;; , there exists a set R E IT;_ 1 such that x E A {==} 
(:::ly) [ (x, y) E R] .  

x E B  {==} (\:/k S /(x) ) (:::ly) [( (x, k) , y) E R] 
{==} (:::ly) [( (x, 0) , y) E R] /\ · · · /\ (3y) [( (x,J(x) ) , y) E R] . 

By renaming variables, 

x E B  {==} (:::lyo) [ ( (x, 0) , yo) E R] /\ · · · /\ 
(3YJ(x) ) [( (x,f(x) ) , YJ(x) ) E R] 

{==} (:::lyo) · · · (3YJ(x) ) [ ( (x, 0) , Yo ) E R  I\ · · ·  I\ 
( (x,J(x) ) , YJ(x) ) E R] 

{==} (:::l ((Yo , . . .  , YJ(x) )) ) (Vk S /(x) ) [ ( (x, k) , Yk ) E R] . 

If i = 0, then R is recursive so the predicate (V k S /(x) ) [ ( (x, k) , Yk ) E R] 
is recursive and therefore B E I; 1 . If i � 1, then B E I;; by quantifier 
contraction on (V k S f(x) ) and R 's first quantifier. ■ 

COROLLARY 8.33. I;; and II; are closed under union and intersection. 

Proof: We prove only that I;; is closed under intersection. The other three 
parts are proved similarly. Let A and B belong to I;;. By the normal form 
lemma, there exist recursive languages R and S such that the following 
conditions hold: 

x E A  {==} (:::ly 1 ) (V12 ) · · · (Qy; ) [ (x, y 1 , Y2 , . . .  , y; )  E R] . 
x E B  {==} (:::ly� ) (VA )  · · · (Qy'. ) [(x, y� , y; , . . .  , y; )  E S] . 

Therefore 

x E A n B {==} x E A  I\ x E B  

{==} (=ly1 ) (Vy2 ) · · · (Qy; ) [ (x, y 1 , Y2 , . . .  , y; )  E R] 

I\ (3y� ) (Vy; ) · · · (Qy'. ) [(x, y� , y; , . . . , y: ) E S] 
{==} (=ly1 ) (:::ly� ) (Vy2 ) (Vy; ) · · · (Qy; ) (Qy;) 

[ (x, y 1 , Y2 , . . .  , y; )  E R  I\ (x, y� , y; , . . .  , y'.) E S] .  



5 90 Recurs ion Theory 

Because R and S are recursive languages, 

(x, y 1 , J2 , . . .  , y; )  E R  I\ (x, y� , y; , . . .  , y: ) E S  

is a recursive predicate. By quantifier contraction, A n B E I;; .  ■ 

Next we look at hardest languages in each level of the arithmetical 
hierarchy. We say that a language L is hard for a class of languages C if 
every language A E C is m-reducible to L. We say that L is complete for C 
(or C-complete) if L E C and L is hard for C.  For example, a language is 
complete (defined in Section 7.9) if and only if it is complete for the class 
of r. e. languages. 

By iterating the jump operator, we obtain complete languages for each 
I;;. (Some fairly natural examples of complete languages are known for I;; 
when i is small . Later in this section, we will present natural examples of 
complete languages for I;2 . )  Recall that 0(;) is the language obtained by 
applying the jump operator i times to 0 .  

THEOREM 8.34. For all i � 1, 0 (i) is complete for I;; .  

Proof: The proof is  by induction on i. For the base case, take i = 1 .  
0 ( 1 ) = K0 . It is easy to see that K0 is r.e .  and K S.m K0 , so K0 is complete, 
hence complete for I; 1 • 

Now assume that the theorem has been proved for some i � 1 .  First we 
prove that 0(i+ i ) is in I;;+ i • Let B = 0(i) _  Let x be an oracle TM program. 
The program x belongs to KB iff there is a complete history H of program x 
with oracle B on input x. Furthermore, if y is a query string for which the 
oracle answers yes during that history H, then y E B ;  if n is a query string 
for which the oracle answers no during that history H, then n E B. Thus x E KB if and only if there exist H, y 1 , . . .  , Yk ,  n 1 , . . .  , n1 such that 

( 1 )  H is a complete history of program x with some oracle on input x. 
(2) y 1 , • • •  , Yk are the query strings for which the oracle answers yes 

during the history H. 

(3 ) n 1 , • • •  , n1 are the query strings for which the oracle answers no 
during the history H. 



(4) Y1 , . . .  , Yk belong to B . 

(5) n 1 , • • •  , n1 belong to B. 

8.5 Arith metical H ierarchy 5 9 1  

Conditions (2-5) guarantee that H is in fact a history of x with oracle B . 
For nz = 1, . . .  , 5 ,  let Rm be the set of all tuples (x, H, y 1 , . . .  , Jk , n 1 , . . .  , ni) 
satisfying condition (nz) above. Let R = R 1 n · · · n R5 . We will show that 
each Rm is in I;;+ 1 • R 1 is recursive because a history can be mechanically 
checked except for oracle answers; we also examine the oracle answers to 
make sure that each query is answered the same way each time it is asked. 
R2 and R3 are recursive, because the queries can be compared to those made 
in the history H. By the inductive hypothesis, B E I;;, so R4 E I;; by 
bounded quantification. Since B E I;;, B E IT; ;  therefore R5 E IT; by 
quantifier contraction. Thus each Rm is in I;;+ 1 • 

Therefore R is in I;;+ 1 because I;;+ 1 is closed under intersection. Then 
0(i+ i ) K8 E I;I;;+ 1  = I;;+ 1 by quantifier contraction. 

Now we show that 0(i+ i ) is hard for I;i+l · Let A E I;;+ 1 • Then there 
is a set B E IT; such that x E A {=} (:::ly) [ (x, y) E B] . Since B E IT;, 
B E  I;; . By the inductive hypothesis B S::m 0(i) _ Let / be an nz-reduction 
from B to 0(i) _ Then 

x E A  {=} (:::ly) [ (x, y ) i B] {=} (:::ly) [/(x, y) i 0(il ] .  

Then A is accepted by an NTA with oracle 0(i) as follows: Guess y; if 
J(x, y) i 0(i) then accept. Therefore A is r.e. in 0Ul ;  by Theorem 8.22(i), 
A S::m K0(,J = 0(i+ i ) . ■ 

In general, �;+ 1 is equal to the class of languages that are recursive in 
languages belonging to I;; . 

THEOREM 8.35 

A E �;+ 1 {=} (3B E I;;) [A Scr  B]  {=} (3B E IT; ) [A S:: T B] . 

Proof: First note that A S:: T B if and only if A S:: 7 B, so the last two 
conditions above are equivalent by Corollary 8.25. It remains to show that 
A E �;+ 1 {=} (3B E I;;) [A S:: T B] . 



5 9 2  Recu rs ion Theory 

Suppose that A E 6;+ 1 = I:;+ 1  n I1;+ 1  = I:;+ 1 n co-I:;+ 1 .  Then 
A and A are m-reducible to 0(i+l ) , which is equal to K0Ul . Therefore, by 
Theorem 8.22, A and A are both r.e. in 0(i) . By relativizing the proof of 
Theorem 7 . 19, it follows that A is recursive in 0(i) , which belongs to I:; .  

Conversely, assume that A S.r B, where B E I:;. Then A S.r 0(i) 
because 0(i) is complete for B;, so A is r.e .  in 0(i) and A is r.e. in 0(i) . 
Therefore A < K0 (,J = 0(i+ l ) and A < K0 (,) = 0(i+ l ) so A E I: and -m _m , 1+ 1 

A E I:;+ 1 . The latter implies A E I1;+ 1 , so A  E I:;+ 1  n II;+ 1  = 6;+ 1 • ■ 

Because 0(i+ l ) is harder than (ii(i) , we will prove that the classes in the 
arithmetical hierarchy are distinct. In the proof we will use an important 
operation that combines two sets into a set that is just as hard as both sets 
put together. 

A EB B = { (x, 0) : x E A} U { (x, 1 ) : x E B } .  

A EB B is called the join of A and B.  
LEMMA 8.36. A and B are both m-reducible to A EB B. 
Proof: x E A  {=} (x, 0) E A  EB B, so A S.m A EB B  via the m-reduction f(x) = (x, 0) . Similarly, B S.m A EB B  via the m-reduction/(x) = (x, 1 ) .  ■ 

In a sense, A EB B is an easiest set that A and B are both m-reducible to 
(Exercise 8.5-3(a)). 

COROLLARY 8.37 

(i) For all i � 1 ,  I:; -=J. II;. 

(ii) For all i � 1, I:; U II; C 6;+ 1 · 

(iii) For all i � 1, 6; C I:; and 6; C II;. 
Proof 

(i) Proof by contradiction. Assume I:; = IT; .  Then I:; = 6;, so every 
language in I:; is recursive in a language belonging to I:;_ 1 . There
fore 00) is recursive in a language belonging to I:;_ 1 . Because 0(i- l ) 
is complete for I:;_ 1 , it follows that 0(i) S.r 0(i- l ), contradicting 
Theorem 8.22(ii). 



8 . 5  Arith metical H ie rarchy 5 9 3  

(ii) By  Theorem 8.30, I; ;  and II; are subsets of  I:;;+ 1 and II;+ 1 , so 
I;i u II; � �i+ l n II;+ 1 = � i+ l .  Let A = 00) EB 0(i) , i . e . ,  

A =  { (x, 0) : x E 0(i) } U { (x, 1 ) :  x i 0(i) } .  

Then A is recursive in 0(i) , so A E �;+ 1 . We assert that A does 
not belong to I;; or IT; . Why? Observe that (ii(i) and (ii(i) are both 
m-reducible to A .  If A E I;;, then we have 0(i) E I;;; if A E II;, 
then 0(i) E II; .  In either case we would have I; i = II;, because 0(i) 
is complete for I;;, and that would contradict part (i). 

(iii) By definition, �; = I;; n II;, which is a subset of I;; and of II;. 
W hy are both containments proper? If I;; = I; i n IT;, then we have 
I;; � II; = co-I;;, so I;; = co-I;; = II;, contradicting part (i). We 
obtain a similar contradiction if II; = I;; n II; .  ■ 

Figure 8 .2 depicts the relationships among the classes in the arithmetical 
hierarchy. 

We can use the techniques developed in this section to pinpoint the 
exact location in the arithmetical hierarchy of certain particular languages. 
Recall that Dom( !_pp) is the set of inputs for which DTM program P has a 
complete computation, i . e . ,  the set of inputs on which P halts. 

DEFINITION 8.38 

• FIN = {P : Dom(rpp)  is finite} .  

• INF = { P : Dom( !_pp) i s  infinite} .  

• TOT = {P : rpp is total} .  

THEOREM 8.39. TOT is complete for II2 . 

Proof: First we show that TOT E II2 . 

x E TOT {=} ('v'y) [x halts on input y] 
{=} ('v'y ) [(x, y) E Kxy] .  

Because Kxy is r.e . ,  TOT E III:; 1 = II2 . 



5 94 Recursion Theory 

FIGURE 8.2: The relationships among the classes in the arithmetical hierarchy. 
If two classes are on the same level horizontally, then neither is a subset of the 
other; i .e . ,  they are incomparable under <;;; .  If one class is vertically lower than 
another, then the lower class is a proper subset of the higher one. Edges are drawn 
between classes at adjacent levels to indicate the proper containment. 



8 . 5  Arithmetical H ie rarchy 595  

Let A be any language in II2 . We m-reduce A to TOT. Since A E IT2 , there exists a recursive language R such that 
x E A  � (\ly) (:lz) [ (x, y , z) E R] .  

Let f(x) be the following DTM program: 
input y; for z : = 1 to oo do if (x, y, z) E R then halt; 

Then x E A � (\ly) (=lz ) [ (x, y ,  z) E R] � f(x) E TOT, so A �m TOT. ■ 
COROLLARY 8.40. INF is complete for II2 and FIN is complete for I:2 . 
Proof: First we show that INF E II2 : 

x E INF � ('v'y) (:lz) [z > y and x halts on input z] � ('v'y) (:lz) [(x, y , z) E SJ , 
where S = { (x, y ,  z) : z > y and x halts on input z} . Since S is r.e . ,  INF E III:I:1 = II2 . We reduce TOT to INF. Let f(x) be the following DTM program: 

input y; for z : = 1 to y do emulate program x on input z; 

If x E TOT, then f(x) E TOT S: INF. If x (/:. TOT, then there exists z such that x does not halt on z; the program f(x) will not halt on any y 2: z, so f(x) (/:. INF. Therefore x E TOT � f(x) E INF, so TOT �111 INF. Hence INF is IIrcomplete. Because FIN = INF, FIN is complete for co-II2 = I:2 . ■ 



5 96 Recursion Theory 
Exerc i ses  

8 . 5 - 1  (a) Let Q 1 , . . .  , Qi b e  any sequence of existential and universal quantifiers. Prove that there is a recursive language R such that 
if and only if there is a recursive predicate R' such that 

(b) Prove that A E I:i if and only if there exists a recursive predicate R such that 
where Q is V if i is even, and Q is :l if i is odd. (c) Prove that A E IIi if and only if there exists a recursive predicate R such that 
where Q is :l if i is even, and Q is V if i is odd. 8 . 5-2 Let AH be the class of all arithmetical languages, 1 . e . ,  AH 

ui�O I;i ·  (a) Prove that AH is closed under m-reductions. (b) Prove that there is no complete language for AH. (c) Prove that the set of nonarithmetical languages is uncountable. (d) Let 0(w) = { (x, i) : x E 0(i) } .  Prove that 0(w) is not arith-metical. *(e) Let L be the set of inattentive NTM programs that have an infinite computation that enters an accepting control state infinitely often .  Prove that 0(w) � m L and therefore L is not arithmetical . Hint: To reduce 0(i) to L, write an NTM program that guesses a complete computation of a program with oracle 0(i- l ) ,  verifies the yes answers using nonaccepting 



8 . 5  Arith metical H ierarchy 597  

states, and dovetails the no answers using accepting states and halting if any no answer actually halts. 
8 . 5 - 3  (a) Let C be  any set such that A � 111 C and B � m C.  Prove that 

A EB B  �m C.  (b) Prove that I:i and IIi are closed under join. 
8 . 5 -4 Prove that { (x, y) : cpx = cpy} is IIrcomplete. 
8 . 5 - 5  Prove that { (x, y) : Dom( cpx) = Dom( cpy ) }  is IIrcomplete. 
8 . 5-6 Let L be the set of inattentive NTM programs that have at least one infinite computation. Prove that L is complete for II 1 . Hint: Use Konig's lemma (Exercise 0 .6-29). 
8 .  5 -7 (a) Let COP = { P : Dom ( cpp) is co-finite} .  Prove that COP E I:3 . *(b) Prove that COP is I:rcomplete. (c) Let REC = { P : Dom ( cpp) is a recursive language} .  Prove that REC E I:3 . (d) Prove that REC is I:3 -complete. Hint: Reduce COP. 

Solution: We m-reduce COP to REC. Given a program P, we construct a program P' that does the following: 
input (x, y) ; if x 2: y then halt; for i := 0 to oo do begin if i encodes a computation of x on input x then halt; if i encodes a computation of P on input y then halt; end; 

If P E COP, then P halts for all y > some y0 • Then P' halts whenever y > Yo or x 2: Yo so P' E COP � REC. If P ¢:. COP, then we assert that 
x E K  ¢=? ('v'y) [ (x, y) E Dom( cpp, ) j .  

Why? If x E K ,  then clearly P' halts for all pairs (x, y). If x ¢:. K, then choose y > x such that P does not halt on y (such a y exists because P ¢:. COP). Then P' does not halt on input 



5 98 Recu rs ion Theory 

(x, y) . Thus we have proved that K is co-r.e. in Dom( 'PP' ). If 
Dom( 'PP' ) were recursive, then K would be co-r.e. ,  which it is 
not. Therefore Dom( 'PP' ) is not recursive, so P' ¢:. REC. 
Thus we have shown that P E COP {=:::::} P' E REC, so 
COP �m REC via /(P) = P' . COP is E3-complete by part 
(b), so REC is E3-hard. REC E E3 by part (c), so REC is 
Ercomplete. 

(e) Let/ and g denote partial functions. We say that/ extends g if J(x) = g(x) for all x E Dom(g). Let 

E XT = {x : (:ly) [cpy is total and 'Py extends cpx] }. 

Prove that E XT E I:3. 
*(f) Prove that E XT is E3 -complete. 
(g) Let SEP = { (x, y) : Dom(cpx ) and Dom(cpy ) are recursively 

separable} (cf. Section 7.8.2). Prove that SEP E E3. 
*(h) Prove that SEP is E3 -complete. 

(i) Recall that a set is complete iff it is complete for E 1 under 
many-one reductions. Let 

MCOMP = {x : Dom(cpx ) is complete}. 

Prove that MCOMP is in E3. 
*(j) Prove that MCOMP is Ercomplete. 
(k) A language is called Turing-complete if it is complete for E 1 

under Turing reductions. Let 

COMP = {x : Dom(cpx ) is Turing-complete}. 

Prove that COMP is in I:4. 
(1) Prove that COMP is E3 -hard. 

**(m) Prove that COMP is E4-complete. 

8 .6  CHAPTER S U M MARY 

In this chapter we proved several important general theorems about recur
sive functions, recursive languages, and r.e. languages. The first of these 



8 .6  Chapter Summary 599 

is  Rice's theorem, which states that every nontrivial property of a DTM 
program's transfer function is undecidable. The recursion theorem says 
that programs for partial recursive functions can be self-referential, i.e. , a 
program can read its own code. The recursion theorem is the key to a con
structive proof of Godel's incompleteness theorem: Using self-reference, 
we constructed a particular true statement that is neither provable nor 
disprovable. Next we defined oracles, computation relative to an oracle, 
and Turing reductions, which are the most general computable reductions 
between problems. Because virtually every proof in recursion theory is in
dependent of the precise machine model, virtually every theorem "about" 
Turing machines applies as well to oracle Turing machines (however, see the 
caveat at the end of Section 8.4.2). Next we defined the jump of a set A ,  
which is the halting problem relative to A.  Jumps provide an  infinite hi
erarchy of successively harder problems, each being more undecidable than 
its predecessors. Finally, we defined the arithmetical hierarchy by applying 
quantifiers to recursive languages or, equivalently, to recursive predicates. 
This hierarchy helps us to classify undecidable problems, because many nat
ural problems concerning Turing machines are complete for some class in 
the arithmetical hierarchy. For more information about recursion theory we 
recommend Rogers' Theory of Recursive Functions and Effective Computability, 
Soare's Recursively Enumerable Sets and Degrees, or the Handbook of Theoretical Computer Science (Elsevier and MIT Press). 

Exerc i ses  

8.6- 1 Professors Curly, Moe, and Larry report discovering an algorithm 
with the following marvelous property : On input of a deterministic 
TM program P, it outputs a deterministic TM program P' such 
that P and P' are guaranteed to compute different partial functions. 
Duplicate their feat, or prove that it is impossible. 



600 



Feasible and 
Infeasible 
Problems 

THE AMOUNT OF time it takes a program 
to run to completion can be of the utmost importance in real-world appli
cations. Most banks run programs to process checks and update accounts; 
these programs must finish overnight. Some investors run programs to 
detect inconsistent pricing in the market, e .g . ,  in currency exchange rates; 
these programs must run fast enough so that the investor can correct or ex
ploit these pricing anomalies before someone else does. Some automobiles 

60 1 



602 Feas ib le  and Infeas ib le  Problems 

contain programs that control automatic braking systems; these programs must run virtually instantaneously. 
9 . 1 TI M E-BO U N DED COM PUTATION :  P AND N P  

In this section we define a formal measure of the running time for programs. The length of a computation \\ 7r 1 , . . .  , 7rr )) is t, the length of the sequence of instructions; this is also referred to as the number of steps in the computation. Nondeterministic programs may have zero, one, or more than one computation with the same input. We define the running time of a program 
P on input x to be the length of its shortest computation with input x; the running time on x is undefined if there is no computation of P with input x. In particular, if P is deterministic and always halts, then the running time of P on input x is the length of P's unique computation with input x. Because we expect programs to take more time on longer inputs, the running time of a program is described as a function of the input length. We usually reserve x to denote the input and n to denote lx l , the length of the input. We say that a program P runs in time bounded by t( n)  if for every x the running time of P on input x is defined and is less than or equal to t ( lx l ) .  We say that P runs in time O(t(n) )  if there exists a function / such that P runs in time bounded by f(n) , where /(n) = O(t(n) ) .  (If you have not read Section 0.5 on the O( · )  notation, now might be a good time to do so.) Observe that t( · ) is a function of input length rather than of the argument; for this reason, the method of encoding arguments can have a significant effect on running time. By convention, numbers will be encoded in binary without leading zeroes unless otherwise specified. As a rule of thumb, most real-world RAM programs that are practical for long inputs, e.g., programs for sorting and matrix multiplication, run in time bounded by l0n 1. s .  However, there are many problems for which no practical solution is known for long inputs; for most such problems the best available algorithms take 2vn steps or more on inputs of length n (for example, the traveling salesman problem and the equipartition problem). For purposes of comparison, suppose n is 104. Current computers typically perform between one million and one billion instructions per second. At a conservative rate of one million steps per second, l0nl.S ( 1 07 ) instructions could be executed within 10  seconds but, even at a currently unattainable 



9 . 1 Time-Bounded Computation : P and NP 603 

rate of one trillion steps per second, 2vn (more than 1 030 ) instructions would require over 10 1 8  seconds, which is greater than the age of the universe. Theoretical computer scientists often draw the line between efficient programs and inefficient programs according to a criterion called polynomial time. We say that a program P runs in polynomial time if there exists a positive integer k such that P runs in time O(nk ) .  Equivalently, P runs in polynomial time if and only if there exists a polynomial p such that P runs in time bounded by p(n) (Exercise 9. 1 -3 ). Although a program with a running time of 1 00n 1 7  would not be considered fast in practice, empirically most problems that can be solved in polynomial time at all can be solved in time 
ank for small values of a and k. It is also worth noting that for modest values of n, like one million, 100n 1 7  is much smaller than 2vn. Polynomial time is a theoretically attractive criterion of feasibility because its definition is rather robust with respect to the model of computation. If a program P runs in polynomial time on a RAM, a 1 -TM, a k-TM, or a 2-SM, then P can be simulated by a program that runs in polynomial time on any of those machines (Exercise 9 . 1 - 1  ). In particular, a problem can be solved in polynomial time on a Turing machine if and only if it can be solved in polynomial time on a RAM. Informally, that means that polynomial time on a Turing machine is the same as polynomial time on any general-purpose computer currently in use. (However, there exist certain problems that are solvable in polynomial time on a deterministic TM but not on a deterministic 2-CM. See Exercise 9. 1 -4.) We define three important classes of languages in terms of programs that run in time bounded by a polynomial in the input length. 
DEFINITION 9. 1 (P and NP) 

■ P is the class of languages that are recognized by DTM programs running in polynomial time. 
■ NP is the class of languages that are accepted by NTM programs running in polynomial time. 
■ co-NP is the class of languages L such that L belongs to NP, i.e., co-NP consists of the complements of all NP languages. 

By the previous remarks, P is also equal to the class of languages that 



604 Feas ib le  and I nfeasib le Problems 

are recognized by deterministic RAM programs running in polynomial time, and NP is also equal to the class of languages that are accepted by nondeterministic RAM programs running in polynomial time. For example, all context-free languages belong to P, because the CYK algorithm runs in time O (n3 ) .  The next two problems belong to NP; it is not known whether they belong to P. 
EXAMPLE 9,2 Problem name: subset sum 1 Instance: a bag S of positive integers and a positive integer g (bags are discussed in Section 0 .2 . 5 )  
Question: Does there exist a sub-bag of S whose elements add up to g? The subset sum problem is in NP because in polynomial time we can nondeterministically guess a sub-bag of S, compute its sum, and accept if this sum is equal to g. It is not known whether subset sum is in P. ■ ■ ■ 

EXAMPLE 9.3 

Problem name: compositeness 
Instance: a positive integer k 
Question: Does there exist an integer i such that 1 < t < k and k is divisible by i? The compositeness problem is in NP because in polynomial time we can guess a number i between 2 and k - 1 ,  divide k by i, and accept if the remainder is 0 .  However, i t  is not known whether the set of  composite numbers written in binary is in P. (Recall the representation conventions from Section 2 . 1 .) The obvious algorithm is 

input x; (* the binary representation of the argument k *) for i := 2 to v'k do if k is divisible by i then accept and halt; reject. 
1 It would be logical to call this problem sub-bag sum, but historical usage prevails. 



9. 1 Time-Bounded Computation: P and NP 60 5 

Clearly the algorithm runs for more than v'k steps when k is prime. But the input length is at most log k + 1 .2 Thus t(n) > 2 ½ (n- i ) ,  which is not polynomial bounded. However, if the argument is represented in monadic, then the obvious algorithm becomes 
input x; (* the monadic representation of the argument k *) compute the binary representation of k; for i := 2 to v'k do if k is divisible by i then accept and halt; reject. 

The conversion to binary can be performed in O(k) steps and so can the for-loop. Now the input length is k, so the running time is O(n) .  Typically numbers will be represented in base 2 ;  thus the set of composite numbers, as typically represented, is not known to belong to P. • • •  

Although it is usually impractical, we can solve any problem in NP by brute force in exponential time. 
THEOREM 9.4. If L E NP, then L can be recognized deterministically m . 2no( 1 ) time 
Proof: Suppose that L E NP. Then L is accepted by an NTA N that runs in time ank for some a and k. Let x have length n. Then there are at most ank configurations in any computation of N on input x. We can check every string of length ank < IIlan

k in all) to see if it is an accepting computation of N on input x. Each potential computation can be checked in polynomial time, so the total running time is a polynomial times IIl ank

, which is 2no( i ) . 
■ 

The class P is the polynomial-time-bounded analogue of the class of recursive languages. The class NP is the polynomial-time-bounded analogue of the class of r.e. languages. The class co-NP is the polynomial-timebounded analogue of the class of co-r.e. languages. The following theorem is analogous to Theorem 7 . 18  for unbounded time computation. 
2 In this chapter all logarithms use the base 2 .  



606 Feas ible and I nfeas ib le Prob lems 
THEOREM 9.5.  L belongs to NP if and only if there exist a language R in P and 
a polynomial p such that, for all strings x, 

x E L  � (=ly) [ IY I :S p( lx l ) and (x, y) E R] .  
That is, elements of L have short witnesses. 

P roof: Assume that L E NP, so L is accepted by an NTA N running in time p(n) for some polynomial p. Because N has a fixed instruction set, each instruction can be encoded as a single character in the alphabet I. Let 
R = { (x, C) : C is an accepting computation of N on input x} . 

Because computations may be checked step by step, R is in P. If x E L,  then N has an accepting computation that consists of at most p( lx l ) instructions, i .e . ,  (::lC) [ IC I  :S p( lx l ) and (x, C) E R] . If x r/:- L, then no accepting computation of any length exists, i .e . ,  --i (::lC) [ (x, C) E R] . Therefore, 
x E L  � (::JC) [ IC I  :S P( lx l ) and (x, C) E R] . 

Conversely, let R be any language in P, and let p be a polynomial. Assume that 
x E L  � (::ly) [ IY I :S p( lxl )  and (x, y) E R] . 

Then the following high-level nondeterministic program accepts L: 

input x; guess a string y having length p(  !x i ) or less; if (x, y) E R  then accept. 
This program runs in polynomial time and can be readily implemented on an NTA; therefore L E NP. ■ 

Exe rc ises  

9. 1 - 1  I n  each part, make sure that your simulations preserve determinism. (a) Let P be a RAM program that runs in time bounded by t( n) .  



9. 1 Time-Bounded Computation: P and NP 607 

Recall that RAMs have built-in addition and subtraction op
erations but not multiplication or division. Prove that , on 
arguments of length n, P uses at most t( n) different memory 
locations and stores no value larger than 21(n) �l  into mem
ory. Prove that P can be simulated by a multitape machine 
program that runs in time O( (t(n) ) 3 ). 

(6) Let P be a multitape machine program that runs in time 
bounded by t(n) . Prove that on arguments of length n, P's 
tape head never leaves the leftmost t( n) tape squares. Prove 
that P can be simulated by a 1-tape machine program that 
runs in time O( (t(n) ) 2 ) . 

(c) Let P be a 1-tape machine program that runs in time bounded 
by t( n) . Prove that P can be simulated by a 2-stack machine 
program that runs in time t( n) . 

(d) Let P be a RAM program that runs in time bounded by t (  n) . 
Prove that P can be simulated by a 1-tape machine program 
that runs in time O( (t(n) )6 ). Prove that P can be simulated 
by a 2-stack machine program that runs in time O( (t(n) ) 6 ) . 

(e) Let P be a 2-stack machine program that runs in time bounded 
by t( n) . Prove that P can be simulated by a RAM program 
that runs in time O(t( n) ) .  

9. 1-2 You will show that the simulation in Exercise 9. 1- l(b) is essentially 
as fast as possible. 

(a) Prove that the set of palindromes is recognized by a determin
istic 2-TM program that runs in time O(n) .  

*(b) Let P be a deterministic 1-TM program that recognizes the set 
of palindromes and runs in time t( n) . Prove that there exist 
a rational number c and an integer N0 (depending on P) such 
that t( n) 2: cn2 for all n 2: N0 • 

9. 1-3 Recall the definition of polynomial from Exercise 0.5- 1. Prove 
that a program P runs in polynomial time if and only if there is a 
polynomial p such that P runs in time bounded by p( n) .  

Solution: If  P runs in polynomial time, then there exists some pos
itive integer k such that P runs in time O(nk) ;  i.e., there exists t(n) 
such that P runs in time bounded by t(n) and t(n) = O(nk ) .  Then 
there exists c > 0 such that t( n) � cnk + c. Therefore P runs in time 
bounded by cnk + c, which is a polynomial. 



608 Feasible and I nfeas ible Prob lems 

Conversely, suppose P runs in time bounded by p(n) for some poly
nomial p. By Exercise 0 . 5 - l (a), there exists k such that p( n) = O(nk ) ,  
so P runs in polynomial time. 

9. 1 -4 Let L = {w#w R : w E {a, b}* } .  
(a) Prove that there i s  a multi tape DTM program that recognizes 

L in time n. 
(b) An internal description (id) consists of the states of all devices 

except for the input. Let P be any deterministic program that 
recognizes L. For every n, prove that there are at least 2n 

different id's that are reached on arguments of length 2n + 1 .  
(c) Let P be a deterministic k-counter machine program with 

control set Q that recognizes L. Prove that in t steps at most 
(t + 1 ) k l Q I  distinct id's can be reached by the k-CM program. 

(d) Let P be a deterministic multicounter machine program that 
recognizes L. Prove that there are constants a and b such that 
the running time of P is at least 2n/a / b. 

(e) Let P be a nondeterministic multicounter machine program 
that accepts L. Prove that there are constants a and b such 
that the running time of P is at least 2n/a / b. 

+9_  l - 5  Let P be  a program for a machine whose devices are some number of 
inputs, outputs, controls, stacks, and tapes. Define the space used by 
a computation C of P to be the length of the longest string stored 
on a stack or tape in any configuration of C. We define the space 
used by program P on argument x to be the least space used by any 
computation of P with argument x. 
Define the space used by a RAM computation to be the larger of the 
following two values: 

• the number of different memory addresses accessed during the 
computation 

■ pog ( v + 1 )  l ,  where v is the largest value stored in any mem-
ory location during the computation. 

Define the space used by a RAM program P on argument x to be the 
least space used by any of P's computations with argument x. We 
say that a simulating program uses a polynomially related amount of 
space if there is a polynomial p such that, whenever the simulated 



9. 1 Time-Bounded Computation: P and NP 609 

program uses space bounded by s, the simulating program uses space bounded by p(s) . (a) Prove that every program for a RAM is simulated by a program for a k-tape Turing machine that uses a polynomially related amount of space. (b) Prove that every program for a k-tape machine is simulated by a program for a 1 -tape machine that uses the same amount of space. (c) Prove that every program for a 1 -tape machine is simulated by a program for a 2-stack machine that uses the same amount of space. (d) Let P be a program for a k-tape or k-stack machine. Prove that if P runs in time t on argument x, then P runs in space t on argument x. (e) Let P be a program for a k-tape or k-stack machine. Find a constant c (depending on P) such that for all x, if P runs in space s on argument x, then P runs in time cs+ 1 on argument x. (f) Let s(x) be a total recursive function and let P be a deterministic TM program such that for every x and every partial computation with argument x, the tape head remains in the leftmost 
s(x) squares. Prove that P accepts a recursive language. 

(a) The reachability problem for a directed graph G and vertices s and t is to determine whether there is a directed path from s 
to t in G. Show how to solve the reachability problem using space 0( (log n )2 ). (b) Savitch's theorem. Let DSPACE(s(n) ) be the set of languages recognized by a DTR using space O(s(n) ) .  Let NSPACE(s(n) ) be the set of languages accepted by an NTA using space 
O(s (n) ) .  Prove that NSPACE(s (n) ) � DSPACE( (s (n) ) 2 ) .  Hint: Let N be an NTA using space s(  n) . Call N's sequel relation II. Consider a directed graph whose nodes are all possible configurations of N. Make an edge from C 1 to C 2 iff C 1 II C2 . Because this graph has size 2° (s(n) ) ,  do not store it explicitly. Show how to solve the reachability problem in this graph deterministically using space 0( (s(n) ) 2 ) .  (c) Let PSPACE be the set of languages recognized by a DTR 



6 1 0  Feasible and I nfeasible Problems 

using polynomial space. Let NPSPACE be the set of languages accepted by an NTA using polynomial space. Prove that PSPACE = NPSPACE. 
9 . 1 -7 Recall that a context-sensitive language is generated by a rewriting system in which the right side of each production is at least as long as the left side. (a) Prove that if L is a CSL, then L is accepted by an NTA using space O(n) . *(b) Prove that if L is accepted by an NTA using space 0( n) , then L is a CSL. * *(c) Immerman-Szelepcsenyi theorem. Prove that L is a CSL if and only if [ is a CSL. Hint: Let N be an NTA that accepts L. Fix a string x. Consider a graph G whose vertices are configurations of N. There is an edge from C to C' iff C Jl C' . Don't actually store G in memory because it contains 2° (n) vertices; recompute edges as they are needed. N accepts x iff there is a path from the initial configuration C0 to an accepting configuration in G. Find a nondeterministic linear space algorithm to test whether there is a path of length d from C0 to C. Let J(d) be the number of configurations at distance d from C0 • Give a nondeterministic recursive algorithm to compute f(d) . One can then prove that there is no path of length d from C0 to C by finding/(d) other configurations at distance d from C0 . 

9. 1-8 Let PRIMES denote the set of positive prime numbers written in binary. Prove that PRIMES E co-NP. 
*9 . 1 -9 Pratt's theorem: PRIMES E NP. Let z; denote the group { 1 ,  . . .  , P  - 1 }  under multiplication modulo p. An element a has order m in a group if am = 1 and, for every j such that O < j < m, ai :/:- 1 .  (a) Prove that p is prime iff z; contains an element whose order is p - 1 .  (b) Prove that a has order m in z; iff am = 1 and for every j such that O < j < m and j is a divisor of m, a1 :/:- 1 .  



9 .2  NP-Completeness 6 1  l 

(c) Prove that a has order m in z; iff a"' = 1 and for every prime 
q such that q divides m, a"'/q :/:- l.  

(d) Prove that PRIMES E NP. Hint: Recursively guess and 
check the prime factorization of p - 1. 

9 .1-10 Suppose that we define the running time of a nondeterministic 
program to be the length of the longest computation, and we define 
NP accordingly. Prove that we obtain the same class NP as in 
Definition 9.1. 

9 . 2  N P-COM PLETEN ESS 

A traveling salesman tries to find a short route that visits each city in his terri
tory exactly once and then returns him to his home. Before heading out, the 
salesman tries to pack his odd-sized merchandise into a small number of suit
cases. While on the road, he is robbed of his merchandise by a pair of high
waymen who then try to divide their booty into two piles having equal value. 

The problems solved by the salesman and the highwaymen have two 
things in common: First, all of those problems have short solutions that can 
be verified efficiently ; i.e. , the salesman may check that a proposed route 
visits every city exactly once and that the route's length is less than or equal 
to some particular number; he may also verify that a proposed packing fits his 
merchandise into his suitcases and that the total number of suitcases is less 
than or equal to some particular number; the highwaymen may verify that 
two piles of booty have the same value. Second, despite decades of study by 
mathematicians, computer scientists, operations researchers, businessmen, 
and economists, no one has discovered an efficient way to find a solution 
to any of those problems. Decision problems closely related to those three 
problems belong to NP, but no one knows whether those decision problems 
are in P. We state the three decision problems below: 

Problem name: traveling salesman problem 

Instance: a graph G = (V, E) with nonnegative integral edge weights, 
and an integer C 



6 1  2 Feas i ble  and I nfeas ible  Problems 

Question: Does G contain a cycle that has weighted length C or less and 
includes each vertex in V exactly once? 

Problem name: bin packing 

Instance: a bag S of positive integers, a positive integer B,  and a positive 
integer k (this might be a good moment to review Section 0.2.5 on 
bags) 

Question: Is it possible to partition S into k bags such that the elements 
of each bag add up to at most B?  

Problem name: partition 

Instance: a bag S of positive integers 

Question: Is it possible to partition S into two bags such that the elements 
of the first bag add up to the same total as the elements of the second 
bag? 

As we said, the problems above are in NP but not known to be in P. 
Those problems and thousands (yes, thousands) like them have a third thing 
in common: They are, in a sense that we will formalize below, among the 
hardest problems in NP. 

In Section 7 .9 we introduced m-reducibility in order to prove that certain 
problems are undecidable. Now we introduce a time-bounded version of 
m-reducibility in order to prove that certain decidable problems are hard. 

DEFINITION 9.6 (Polynomial-Time Reductions) 

■ A language A is polynomial-time m-reducible to a language B (denoted 
A �� B and abbreviated �� -reducible) if there is a polynomial-time 
computable function/ such that for all x 

x E A  � f(x) E B. 

Such a function f is called a polynomial-time m-reduction from A to B.  



9.2 NP-Completeness 6 1  3 

• A function/ is polynomial-time Turing-reducible to a language B (de
noted / .c:;J B and abbreviated ::;?-reducible) if there is a Turing 
reduction from/ to B that runs in polynomial time (recall Defini
tion 8.17). 

• A language A is polynomial-time Turing-reducible to a language B 
(denoted A :s;? B and abbreviated ::;?-reducible) if there is a Tur
ing reduction from A to B that runs in polynomial time. Such a 
reduction is called a polynomial-time Turing reduction from A to B. 

Informally, if A :S:!, B or A :s;? B, then A is "about" as easy to solve 
as B or easier, where the word "about" allows for a polynomial expansion of 
running time. Of these two types of reduction, polynomial-time m-reduc
tions are the most commonly used. In fact, there are very few interesting 
problems A and B in NP for which we know a ::;?-reduction from A to 
B but don't know an :S:!,-reduction from A to B .  Two useful facts about 
:S:!,-reducibility follow: 

PROPOSITION 9. 7 

(i) If A :S:!, B and B E P, then A E P. 

(ii) If A :S:!, B and A 1 P, then B 1 P. 

Observe that part (i) of this proposition 1s analogous to Proposi
tion 7 .29(iii). 

P roof: Assume that A <P B. 
- m  

(i) If B E P, then the following polynomial-time algorithm tests mem
bership in A:  

input x; 
y := f(x) ; 
if y E B then accept else reject; 

The algorithm is correct because/ is an m-reduction. Suppose 
that / is computable in time p( n) and membership in B can be 
tested deterministically in time q( n) where p and q are polynomials. 



6 1 4  Feasible and Infeasible Problems 

Then the running time of the algorithm above is bounded by n 
steps to scan the input, plus p(n) steps to compute y, plus q(p(n) ) 
steps to test whether y E B, because the length of y is bounded by 
the number of steps to compute y. Thus the running time of the 
algorithm is at most n + p(n) + q(p(n) ) ,  which is a polynomial. 

(ii) Let A r/:. P. For the sake of contradiction, assume that B E P. Then 
A E P by part (i), a contradiction. ■ 

The reader may verify that ::;�,-reducibility, like m-reducibility, is re
flexive and transitive (Exercise 9.2-4). 

Next we define what it means to be a hardest language in a class of 
languages. 

DEFINITION 9.8 

(i) A language B is ::;�
1
-hard for a class C if every language A E C 

satisfies A <P B .  - 111 

(ii) A language B is ::;�,-complete for a class C if B E C and B is =:;t-hard 
for C. 0 

A language L is called NP-hard if L is =:;t-hard for the class NP. A 
language L is called NP-complete if L is =:;t-complete for the class NP.4 The 
following proposition, which is analogous to Corollary 7 . 30, follows from 
the definition of NP-hardness and the transitivity of ::;�,-reducibility. 

PROPOSITION 9.9. If A ::;�, B and A is NP-hard, then B is NP-hard ■ 

All NP-complete problems have virtually the same difficulty in the sense 
that if one NP-complete problem is in P, then they all are. Since no one 
has ever found a polynomial-time (or even subexponential-time) algorithm 
to solve any NP-complete problem despite decades of effort, many people 
believe that no NP-complete problem is in P, i.e. , that P -::/- NP (see 
Exercise 9.2-2). 

3 Different notions of hardness and completeness correspond to different reductions, 
e .g. ,  �j-hardness and �j-completeness. See Exercise 9 .2-5 . 

4 Some authors define NP-hardness in terms of polynomial-time Turing reductions, but 
everyone defines NP-completeness in terms of polynomial-time m-reductions. 



9.2 N P-Completeness 61 5 

When we know a problem is in NP, we know it can be solved in exponential time. If we prove that it is NP-complete, we make it plausible that the problem cannot be solved in less than exponential time; i.e., a problem's NP-completeness is circumstantial evidence that it cannot be solved efficiently. This evidence is not as satisfying as an undecidability proof or even as satisfying as a proof that the language is not in P. However, when your employer asks you to write an efficient program to solve an NP-complete problem, it is unlikely that you will be able to comply. You can, however, point out that brilliant minds have worked for decades on equivalent problems without finding efficient algorithms. If you are clever, you will reconsider the real-world problem facing your company. Perhaps an approximate solution is sufficient in practice. Perhaps the real-world problem is only a special case of the originally posed NP-complete problem; then you can look for an efficient algorithm to solve the special case . The study of general algorithms and approximation algorithms is, however, beyond the scope of this book. In Section 9.3 we examine the connection among optimization, search, and decision problems. Sections 9.4 through 9.9 are devoted to techniques for proving that specific problems are NP-complete. 
Exe rc ises 

9.2- 1 Prove that every language in NP is recursive. 9.2-2 Prove that the following three statements are equivalent: • P = NP 
9.2-3 

■ at least one NP-complete language is in P • every NP-complete language is in P (a) If L is recognized by a DTR that runs in time bounded by 
t(n ) , prove that there are infinitely many DTRs that recognize L and run in time bounded by t( n ) .  (b) Construct a language that is not in P but is recognized by a DTR that runs in time bounded by 2n . Hint: Use diagonalization. Design a DTR that does the following on input x: Spend 2 lxl steps total using the universal Turing machine to emulate DTR program x on input x; accept if and only if 



6 1 6  Feasible and Infeas ib le Problems 

the emulation finishes within the allotted time and program x rejects input x. You may assume that there is a polynomial p such that the universal Turing machine can emulate the first 
s steps of a DTM program within O(p(s) ) steps . You may also use Exercise 0 . 5 - 1(6). (c) Construct a recursive language that is not in PSPACE. (See Exercises 9. 1 - 5  and 9 . 1 -6 for definitions.) (d) Let EXP denote the class of languages that are recognized by a DTM program in time 2nk for some positive integer k. What does it mean for a set to be ::;!,-hard for EXP? Prove that if A is ::;!,-hard for EXP, then A is not in P. 

9. 2-4 Prove that :s;!, is reflexive and transitive . Is :s;!, symmetric? 
9. 2-5 B is ::;1;,-hard for C if every language A E C satisfies A :s;1;, B. B is ::;�-complete for C if B E C  and B is ::;�-hard for C.  (a) Prove that :s;� is reflexive and transitive. (b) Is :s;� symmetric? (c) Prove that A :s;� 0 if and only if A E P. (d) Prove that if A :s;� B and B E P, then A E P. (e) Prove that if A is ::;!,-hard for C, then A is ::;�-hard for C.  (f) Prove that if A is ::;!,-hard for co-NP, then A is ::;1;,-hard for NP. 
9 . 3  SEARCH AND OPTIM I ZATION VS . DEC IS ION 

We are not usually satisfied in knowing that a solution exists; we want to find it. For example, recall that the traveling salesman problem is to determine whether a weighted graph contains a cycle whose weighted length is C or less and which includes each vertex exactly once . In practice , one typically wants to determine the minimum such C and find a cycle that has this minimum weighted length . For clarity, let us call the traveling salesman problem the "TSP decision" problem; the other two versions are called "TSP cost" and "TSP search. "  All three are stated formally below: 



9 .3  Search and Optim ization vs . Decis ion 6 1 7 

Problem name: TSP decision 

Instance: a graph G = (V, E) with nonnegative integral edge weights 
and an integer C 

Question: Does G contain a cycle that has weighted length C or less and 
includes each vertex in V exactly once? 

Problem name: TSP cost 

Instance: a graph G = (V, E) with nonnegative integral edge weights 

Answer: the minimum number C such that G contains a cycle that has 
weighted length C and includes each vertex in V exactly once, or 
oo if no cycle includes each vertex exactly once 

Problem name: TSP search 

Instance: a graph G = (V, E)  with nonnegative integral edge weights 

Answer: a cycle that has minimum weighted length and includes each 
vertex in V exactly once, or A if no cycle includes each vertex exactly 
once 

If we can solve the TSP search problem, then by performing a simple 
addition we can solve the TSP cost problem. If we can solve the TSP cost 
problem, then by performing a simple comparison we can solve the TSP 
decision problem. Thus TSP search is at least as hard as TSP cost, which is 
at least as hard as TSP decision. In fact, the reverse is true as well . 

In Figure 9.1, we show how to reduce TSP cost to TSP decision in 
polynomial time by performing a binary search. We use a polynomial-time 
Turing reduction; i.e., we query several instances of TSP decision in order 
to solve one instance of TSP cost. 

In Figure 9.2, we show how to reduce TSP search to TSP cost and TSP 
decision in polynomial time by a judicious process of elimination. We use 
a polynomial-time Turing reduction; i.e., we query several instances of TSP 
cost and TSP decision in order to solve one instance of TSP search. 



6 1 8  Feas ible and I nfeasible Problems 

input G; 
let U be the sum of all edge weights in G;  (* an upper bound *) 
let L : = O; (* a lower bound *) 
if TSP-decision(G, U) = no then 

output oo (* no solution *) 
else begin 

end; 

repeat 
let M : = l ½ (U  + L)j ;  (* the average *) 
if TSP-decision(G, M) = yes then 

let U : = M 
else 

let L : = M + 1 
until U = L; 
output L; 

FIGU RE 9. 1 :  Using binary search to  Turing-reduce TSP cost to  TSP decision 
in polynomial time. TSP-decision( · , · )  is an oracle for the TSP decision problem. 

We have seen that the optimization, search, and decision versions of the 
traveling salesman problem are all polynomial-time interreducible. The 
phenomenon of optimization, search, and decision being equally difficult is 
a common one. Additional examples are discussed in the exercises. In fact , 
this phenomenon is seen for a very general class of NP-complete optimiza
tion problems (Exercise 9. 3-3 ). 

Exe rc ises  

9.3-1 (a) Define decision, cost, and search versions of bin packing. 
(b) Give a polynomial-time Turing reduction from bin-packing 

cost to bin-packing decision. 
(c) Give a polynomial-time Turing reduction from bin-packing 

search to bin-packing cost and bin-packing decision. 



input G; 

9 . 3  Search and Optim ization vs. Dec is ion 6 1 9 

let C = TSP-cost(  G) ; 
if C = oo then 

output A (* no solution *) 
else begin 

for each edge e in G do begin 
delete e from G; 
if TSP-decision(G, C) = no then 

replace e in G; (* e is needed for the min-cost cycle *) 
end; 
output G; (* all unneeded edges have been deleted *) 

end; 

FIGU RE 9.2: Using a judicious process of elimination to Turing-reduce TSP 
search to TSP cost and TSP decision in polynomial time. TSP_-cost ( - )  and TSP
decision( · ,  · )  are oracles for the TSP cost and decision problems, respectively. 

*9.3-2 The graph-coloring problem is to assign the minimum number of 
colors to the graph's vertices in such a way that adjacent vertices 
have different colors. Repeat Exercise 9. 3-1 for the graph-coloring 
problem. 

9. 3-3 For most optimization problems, we can define a two-place valuation 
function v that takes a problem instance and a solution and assigns 
a value to that solution. Let p be a polynomial, and let v be a 
polynomial-time computable partial function from I;* X I:* to N 
such that v( x, y) is defined if and only if IY I _::; p( lx l ) .  Based on the 
valuation function v, we define three problems: v-Decision, v-Cost, 
and v-Search. v-Decision is the problem of deciding whether there 
is a solution to instance x having cost _::; c. v-Cost outputs the 
minimum cost of a solution for x. v-Search outputs any solution for x having minimum cost. More precisely, 

■ v-Decision = { (x, c) : (::ly) [v(x, y) _::; cl }. 

■ v-Cost(x) = miny v(x, y) . 



620 Feas i ble and I nfeas ible Problems 

■ v-Search(x) = any y such that v(x, y) = v-Cost(x) . 
(a) Prove that v-Cost �j v-Decision. 
(b) Prove that v-Search �� v-Cost. 
(c) Prove that v-Decision �� v-Search. 

9.3-4 Consider the reduction we presented from TSP cost to TSP decision. Let s denote the sum of the edge weights in G. Let C denote the 
actual TSP cost. The reduction queries pog (s + 1) l + 1 instances 
of TSP decision in the worst case, e.g. , when C = 0. 

(a) Describe a reduction that queries only one instance of TSP 
decision when C = oo, two instances when C = 0, and 
2 pog (C + l ) l  + 1 instances when O < C < oo. Hint: 
Start by determining c such that c � C < 2c. 
Solution: First query TSP-decision( G, s)  to determine 
whether there is any Hamiltonian path at all; then perform 
the following doubling search: 

C : =  1 
while C 2: c do 

C :=  2c; 

(Note that C 2: c iff TSP-decision( G, C - 1) = false.) 
If C = 0, the search determines that fact with one addi
tional query. If C > 0, the search determines c such that 
c/2 � C < c while making pog (C + 1)1 + 1 queries. Fi
nally, the exact value of C can be determined via binary 
search on the interval [c / 2, c) by querying an additional 
log (c/2) = !1og (C + l ) l  - 1 instances. 

(b) Describe a reduction that queries only log C + O(log log C) 
instances of TSP decision when C is finite. Hint: Use the 
method of part (a) to determine llog CJ with O(log log C) 
queries. Then use binary search to  determine C exactly. 

(c) Describe a reduction that queries only log C + log log C + 
O (log log log C)  instances of TSP decision wher: C is finite. 
Hint: Use the method of part (b) to determine llog CJ ; then 
use binary search. 

(d) Generalize. 



9.4 Canonical NP-Complete Prob lems 62 1 

9. 3-5 Consider variants of the traveling salesman problem in which the 
graph G has rational edge weights. Call them rational TSP decision, 
rational TSP cost, and rational TSP search. 

(a) How would you represent the edge weights? 

(b) Prove that rational TSP decision is in NP. 

(c) Prove that TSP decision is <P -reducible to rational TSP de-
- m  

ClSlOn. 

(d) Give a polynomial-time reduction from rational TSP search 
to rational TSP cost. 

(e) Give a polynomial-time reduction from rational TSP cost to 
rational TSP decision. 

9 .4  CANON ICAL N P-COM PLETE PROBLEMS 

We can prove a problem is NP-complete by showing how to efficiently 
reduce each individual NP language to it . This kind of reduction is called a generic reduction. In this section we define two canonical NP-complete lan
guages, which essentially encode the problem "Does NP program P accept 
input string x?" (They are analogous to the halting problem Kxy, which is at 
least as hard as any r.e. set .) Provided that the encoding is polynomial-time 
computable, the NP-completeness of such languages follows immediately 
from the definition. 

Generic reductions are not typical NP-completeness proofs. Once we 
have proved that some languages are NP-complete, we can prove that a 
language L in NP is NP-complete by reducing a known NP-complete 
language to L, thanks to Proposition 9.9. (This is analogous to the way 
we proved a language L nonrecursive in Chapter 7 by reducing a known 
nonrecursive language to L.) 

In the next section, we will prove that a language called SSS is NP
complete by reducing a canonical NP-complete language to SSS. For tech
nical reasons, this is substantially easier than reducing every NP language 
to SSS. In later sections we will prove that various problems of practical 
interest are NP-complete, in some cases by reducing SSS to them. 



622  Feas ib le and I nfeas ible Problems 

In defining a canonical NP-complete language and proving that it is NP-complete , we have to deal with two technical issues: 

Let 

• The canonical language must be accepted in a fixed polynomial running time, but it must encode the acceptance problem for arbitrary 
NP programs, whose running time may be a much larger polynomial. We will deal with this by padding input strings with trailing zeros. Since this increases input length without substantially affecting running time, the running time becomes a smaller function of input length. 

• The canonical language must be over a fixed alphabet, but it must encode the acceptance problem for arbitrary NP programs, whose devices may use arbitrarily large alphabets. We will deal with this by encoding inputs and programs as strings over { O ,  1 }. 
We encode programs as strings over { 0 ,  1 }  as described in Section 7 .4. 

{ P#x#05 
: P is an NTM program, x E { 0, 1 }  * , and P has an accepting computation s steps or shorter on input x }. 

Ki ,NP is a time-bounded analogue to Kxy - Ki ,NP is as hard as any set in 
NP for much the same reason that Kxy is as hard as any r.e. set. 
THEOREM 9. 1 0. K1 ,NP is NP-complete. 
Proof: Ki ,NP E NP because we may decode the program P character by character, nondeterministically guess an accepting computation of P having length s or less, and check that computation step by step in time that is polynomial in s ,  lx l , and IP I . Let A be any language over { 0, 1 }  belonging to NP. We give a generic reduction from A to K1 ,NP · The language A is accepted by an NTM program 



9.4 Canonical NP-Complete Problems 6 2 3  
that runs i n  polynomial time. Let P encode that program, and let p( n )  bound its running time. Then 

X E  A <;===;> P#x#oP( lxl ) E K1 ,NP , 
so A �!, Ki ,NP · The proof is complete except for one detail. Let I: be any alphabet {c1 , . . . , ck } ,  and let CJ (c1) = 1;0. We extend CJ to strings: If x is a string x1 • · · Xn over I:, let CJ (x) = CJ(x1 ) • • · CJ(xn ) ,  which is computable in polynomial time. (For example, if I: =  { a, b , c , d} , then CJ(abcba) = 1 0 1 1 0 1 1 10 1 1010.) Extending this operation to languages over I:, we define CJ(B)  = {CJ(x) : x E B } ,  and we have x E B <;===;> CJ(x) E CJ(B ) .  Thus B �!, CJ(B) via CJ. Similarly, CJ(B)  �!, B via CJ- 1 • Assume B E  NP. Then CJ (B)  E NP. Since CJ(B)  � {0 ,  1 }*, CJ(B)  �!, Ki ,NP , as shown above. By transitivity, B �!, Ki ,NP · Since this is true for every B E NP, the language Ki ,NP is NP-complete. ■ 

A closely related language is 
K2,NP = { P#x#0s : P is an NTM program, x E { 0, 1 }  * , and P has an accepting computation exactly s steps long on input x}. 

By a simple reduction from Ki ,NP , we see that K2 ,Nr is NP-complete as well. 
THEOREM 9. 1 1 . K2 ,Nr is NP-complete. 
Proof: K2 ,NP E NP because we can guess an accepting computation exactly s steps long and check it in time polynomial in s ,  lx l , and IP I . If P is any NTM program, we construct a program P' by adding null instructions that loop from each accepting state back to itself. Then P accepts x in s steps or fewer if and only if P' accepts x in exactly s steps. Therefore, 

P#x#0' E K1 ,NP <;==:::;> P'#x#0' E K2 ,NP · 
Since P' is computable from P in polynomial time, 

K <P K l ,NP -m 2,NP ·  
Since Ki,NP is NP-complete, K2 ,NP is NP-complete as well. ■ 



624 Feasible and Infeas ib le Prob lems 
Exe rc i ses  

9.4- 1 Representing the ith character in an alphabet by 1;0 is not very efficient. Describe more compact binary representations of characters. Be sure that you can decode strings represented in your code. 
9.4-2 Construct a PSPACE-complete language. (See Exercise 9 . 1 -6 for a definition of PSPACE.) 
9 . 5  SYM BO L  SYSTEMS 

In  this section we define an important NP-complete problem that does not explicitly involve Turing machines. We present an example before proceeding to the formal definition . Consider the system of inequalities involving the variables x, y, z, and 
w shown in Figure 9 . 3 .  Each inequality is called a constraint. Observe that each constraint involves at most three of the variables; we call 3 the locality of the system. We allow each variable to take on the value 0, 1 ,  or 2 .  The set {O ,  1 ,  2} is called the system's alphabet. Consider the function A : {x, y, z , w} ---+ {O , 1 , 2} defined byA (x) = 1 ,  A (y) = 1 ,  A ( z )  = 2, A ( w) = 1 .  The function A i s  called an assignment to the variables. Observe that 2 > 1, 1 :/- 0, and 1 + 1 2: 2. Because 

z > w, 
w :/:- 0, 

X + J > Z. 

FIGU RE 9.3: A symbol system with alphabet r = {O, 1, 2 } ,  locality 3, variable 
set V = {x, y , z, w} , and three constraints. In expressing the constraints , + , > ,  
and 2 denote the usual operations o n  natural numbers. The symbol system has six 
distinct satisfying assignments. One of them is A (x) = 1 , A (y) = 1 , A (z) = 2, A(w) = 1 .  



9 . 5  Symbol Systems 6 2 5  

the assignment A to the variables satisfies all of the constraints, we call A a 
satisfying assignment. 

Now we present the formal definition of symbol systems. Let r denote 
an alphabet and k a positive integer. A (k, f )-symbol system consists of a 
finite set V of variables over r and a set of local constraints on the variables. 
A focal constraint is a predicate on a set consisting of k or fewer elements of 
V. For that reason, k is called the locality of the system. The set of variables 
in a constraint is called a constrained set. We typically denote variables by w, x, y, or z, possibly with subscripts. We typically denote their values by a, 
b, or c, possibly subscripted. 

In the preceding example, we have the alphabet r = {O ,  1 ,  2} ,  the 
variable set V = { w, x, y ,  z} ,  and the locality k = 3 .  One of the local 
constraints is x + y 2- z; its constrained set is {x, y ,  z}. 

A mapping A : V ---+ r is called an assignment. An example of an 
assignment is 

A'(w) = 1 , A'(x) = O, A' (y)  = O , A' (z) = 2.  

We say that an assignment A satisfies a constraint C (x1 , . . .  , x; )  if 
C(A (x1 ) ,  . . .  , A (x; ) )  = true. For example, the assignment A' given above 
satisfies the constraint w :/:- 0 because " 1  :/- O"  is a true statement. How
ever, the assignment A' does not satisfy the constraint x + y 2- z, because 
"O  + 0 2- 2"  is not a true statement. 

We say that an assignment satisfies a symbol system if it satisfies all the con
straints. Such assignments are called satisfying assignments. The assignment 
A defined on page 624 is a satisfying assignment for the symbol system in 
our example, but the assignment A' is not a satisfying assignment. 

A mapping from a constrained set to r is called a focal assignment to 
the constraint. Observe that a local assignment does not specify val
ues for all variables, but only for the variables involved in the specific 
constraint. A local assignment A satisfies a constraint C(x 1 , • • •  , x;) if C(A (x1 ) ,  • • •  , A (x;) )  = true. 

In proofs and informal discussions, we write constraints in whatever 
form is convenient and clear to humans. However, inputs to programs 
must be represented in a fixed language. For that reason, we represent a 
constraint as the constrained subset, followed by the set oflocal assignments 
that satisfy the constraint. The number of distinct local assignments is at 



626 Feasible and  I nfeasib le Problems 

most Ir lk , and each can be represented by a string of length k or less over 
r. Thus a constraint can be represented by a string of length k ( i f  l k + 1 )  or 
less over V U  r. Although this formula is exponential in k, recall that k is 
a constant independent of the size of the problem instance, so the length of 
constraints is bounded by a constant. In the example shown in Figure 9.3, 
the local constraint z > w is represented as ((wz, 0 1 ,  02, 12)) ,  and the local 
constraint w :/:- 0 is represented as ((w, 1 ,  2)) .  

We can check deterministically in polynomial time whether a particular 
assignment satisfies a given symbol system, because we can easily check 
whether the assignment satisfies each constraint. No one has found a de
terministic polynomial-time algorithm for determining whether there exists 
an assignment that satisfies a given symbol system. We call this the (k , f)
symbol-system satisfiability problem, or (k , f)-SSS for short (or simply SSS, 
when k and r are understood). 

Problem name: (k, f)-SSS 

Instance: a finite set of variables over r and a finite set of constraints 
having locality k 

Question: Is there an assignment that satisfies all the constraints? 

Another symbol system example is given in Figure 9.4. 
Because solutions may be verified in polynomial time, (k , f)-SSS is in 

NP. Because there are l f i lVI possible assignments to IV I  variables, the ob
vious brute force, deterministic approach to finding a satisfying assignment 

(w :/:- z) V (x :/:- a A y :/:- b) ,  

wxy = xyz. 
FIGU RE 9.4: A symbol system with alphabet r = { a, b, c }, locality 4, variable 
set V = {x, y, z, w} ,  and two constraints. In expressing the first constraint, we 
used the logical operations AND (;\) and OR (V). In expressing the second 
constraint we used concatenation. The symbol system has exactly one satisfying 
assignment: A(x) = c, A(y) = c, A(z) = c, A (w) = c .  



9 . 5  Symbol Systems 627  

takes exponential time; furthermore, no one knows how to solve the symbol
system satisfiability problem in less than exponential time. We show that 
this is no accident. 

LEMMA 9. 1 2. If L is a language in NP, then there exist k and f such that L ::;t, (k, f) -SSS. 

Proof: Since L E NP, there is an NTM program P that accepts L. Let f0 

denote P's tape alphabet, let Q denote P's control set, and let qsrarr denote P's 
initial control state. Let p(n) be a polynomial upper bound on P's running 
time. Without loss of generality, we make the following assumptions: 

• p(n) :2 n. 
• The tape of P is initialized to hold the argument x padded to length 

p( !x i ) ,  i.e. , the string xJ( lxlHxl . (The NTM does not have an input 
device. )  

■ P has a unique accepting state, with a null instruction looping back 
to it, so that if P accepts at time t, then P accepts at all times greater 
than t. 

Let k = 8 and r = f0 U [sJ U Q. Let V consist of the variables m;,1 , 

and q1 for O ::; i ::;  p(n) + 1 and O ::; t ::; p(n). The variable m;,1 represents 
the ith character on the tape at time t, and q1 represents the control state 
at time t. These variables suffice to represent an entire trace (sequence of 
configurations) of P (cf. Figures 9 .5 and 9.6). 

Next we define the local constraints. Some constraints correspond to 
the initial relation of P with input x1 • • • x11 • These are 

qo qstart 
m1 ,o [;] 
m;,o X t for 2 ::; i ::; n 
m;,o - LJ for n < i 'S_ p(n). 

Other constraints enforce convenient boundary conditions: 

mo,1 u 

mp(n)+ l ,t - LJ 

for O 'S_ t ::; p(n) 
for O 'S_ t 'S_ p(n). 



qo 

q1 

mo,o m1 ,o 

mo,1 m 1 , 1  

mp(n)+l ,O 

mp(n)+1 , 1  

q,rarr I I  U B X2 • · · Xn U · · · U 

q1 [ [ U  u 

1 u �  a b a b a u  u 

1 u a �  b a b a u  u 

1 u a a �  a b a u  u 

1 u a a b � b a u u  

2 u a a b a � a u u 
qp(n) \\ mo,p(n) m1 ,p(n) · · · mp(n)+l ,p(n) qp(n) [ [ U u 

3 u a a b a � a u u 

3 u a a b a � a u u 

FIGURE 9. 5 :  When representing an accepting trace via Boolean variables, it is con
venient to arrange the variables in the rows of a tableau. The ith row in each tableau 
represents the configuration at time i. The first two tableaus depict the general case. The 
third tableau depicts an accepting trace of the fairly trivial NTA program in Figure 9.6 
on input aababa. 

01 N 00 

"T'1 
I'!) � 
V> 

0-

1'!) 

� 
::J c.. 
::J 

� 
V> 

0-

1'!) 

"'tJ ..... 0 
0-

1'!) 

V> 



FIGURE 9.6 :  An NTA that accepts r;*abr:*. 

9 . 5  Symbol Systems 629 

Additional constraints ensure that the control state and the tape contents 
change at time t in accordance with an instruction of P. Because the tape 
head moves only one character at a time, individual constraints need only 
involve three adjacent tape squares and the control. (This locality of a TM's 
reference to its tape is crucial to the proof.) The first set of these constraints 
represent the fact that tape squares do not change except near the head: 

for 1 ::; i ::;  p(n) , 0 ::;  t < p(n) . 

The next set of constraints represent the fact that the behavior near the 
tape head is governed by an instruction of P :  

for 1 ::;  i ::; p(n) , 0 ::;  t < p(n) . 
A final constraint ensures that the program accepts: 

qp(n) = qaccept ·  

All of  these constraints can be written down in polynomial time using simple 
iteration, i .e . ,  for-loops. It remains to show that they form a reduction from 
L to (k, f)-SSS. 

If P accepts x, then it has an accepting trace (the sequence of configura
tions reached during an accepting computation). Then the symbol system 
above has a satisfying assignment in which qt is the control state in that 



630 Feas ib le  and Infeas ib le  Problems 

trace at time t and rn;,t is the ith tape character at time t. Conversely, if the 
symbol system above has a satisfying assignment, then P has an accepting 
trace ((Co , . . . , Cp(n ) )) on input x in which Ct = (qt , rn 1 ,t · · · rrtp( lx l ) ,J Thus 
x E L iff the symbol system constructed above is satisfiable. ■ 

Observe that Lemma 9. 1 2  does not by itself say that (k, f)-SSS is NP
complete for any particular k and r,  because it leaves open the possibility 
that a different k and r are required for each L in NP. However, this defect 
is easily rectified. 

THEOREM 9. 1 3. There exist k and f such that (k, f)-SSS is NP-complete. 
Proof: Recall that Ki ,NP is NP-complete by Theorem 9. 1 0. By 
Lemma 9. 1 2 ,  there exist k and r such that Ki ,NP ��' (k, f) -SSS . By 
Proposition 9.9, (k, f)-SSS must be NP-hard. Because (k, f)-SSS is also 
in NP, (k, f)-SSS is NP-complete. ■ 

Because we have shown that (k, f)-SSS is NP-complete for at least one 
choice of k and r,  if we want to prove that a language L is NP-complete, 
it is certainly sufficient to reduce (k , f)-SSS to L for all k and r. Many 
reductions from symbol-system satisfiability will take this general form. 

Other reductions will use restricted versions of symbol-system satisfi
ability that we will introduce and prove NP-complete in the next section. 
Although the constraints in the proof of Lemma 9 . 1 2  are easy to state, they 
involve up to eight symbols each and are written in a fairly general form. 
Some improvements are mentioned in the exercises. Moreover, in the next 
section we will see that a special form of constraint, involving only three 
variables over a 2-character alphabet, is sufficient. 

Exerc i ses  

9 . 5 - 1  (a) Show how to simulate an input device initialized to hold the 
argument x by using a stack initialized to hold x R . 

(b) Working directly with machines that have three stacks, where 
one of the stacks holds the argument but there is no input 
device per se, give another proof of Lemma 9. 1 2 . 



9 .6  Boolean Formula Satisfiabi l ity 63 1 

9.5-2 Is it possible to prove Lemma 9. 1 2  by working directly with nonde
terministic 2-counter machines and using our simulation of Turing 
machines by 2-counter machines? 

Solution: No. 2-CM programs may require exponential time to 
simulate polynomial-time Turing machine programs. 

9 .5-3 Show how to decrease the number of constraints in the proof of 
Lemma 9 .12 by approximate! y a factor of 2 .  

9 .5-4 Give a polynomial-time m-reduction from (k, f)-SSS to ( 2 ,  fk ) -SSS. 
Conclude that there exists r such that ( 2 ,  f) -SSS is NP-complete . 

9 .5-5 In the proof of Lemma 9.12 we always have k = 8. Why did we 
need to prove Theorem 9.13 separately ? 

Solution: Because, in the proof of Lemma 9.12, r is not fixed but 
depends on the program that accepts L .  

9 . 6  BOOLEAN FORM U LA SATI SF IABI LITY 

Variables whose values are either true or false are called Boolean. Consider a 
constraint like 

u V v V  w, 
which is the logical-or of some variables (u, w) and negations of some vari
ables (v) . Such a constraint is called a clause. An assignment satisfies this 
particular clause if and only if it assigns true to u or w or assigns false to v. 
A system of clauses, such as 

u V v V w  
w V x  
u V v V x  



6 3 2  Feasible and Infeasible Problems 

can be expressed in a single formula as 

(u V v V w) I\ (w V x) I\ (u V v V x) ,  
where /\ denotes logical-and. An assignment satisfies such a formula if and 
only if it satisfies each clause. 

Formally, let V = {xi , . . .  , xn } be a set of variables over {true, false} .  
The literals are x; and :X; , where x; denotes the logical negation of x; for i = 1 ,  . . .  , n. Recall that "disjunction" means "logical-or. " A clause is a 
disjunction of literals, e.g. , 

Xi V X3 V Xg . 
A local assignment is a mapping from the variables in a clause to { true, false} .  
A clause is true iff at least one of its literals is true, so a clause rules out 
exactly one local assignment (the one that makes all of its literals false). 

The word "conjunction" means "logical-and." A conjunctive-normal-form formula (CNF formula) F(xi , . . .  , xn ) is a conjunction of clauses , e.g. , 

A conjunction is true iff all of its clauses are true, so a conjunction rules out 
many assignments (any that make one of its clauses false). 

An assignment to the variables of a Boolean formula is a function from {xi , . . .  , Xn} to { true, false} . An assignment A satisfies a formula F if F(A(xi ) ,  . . .  , A (xn ) )  = true. For example, the assignment 

A (xi ) = false, A(x2 ) = true, A (x3 ) = true, A (x4) = true, A (x5 ) = true 

satisfies the formula F given above. The CNF-satisfiability problem is to de
termine for a CNF formula whether there exists an assignment that satisfies 
it . This problem is commonly called SAT. Next we will reduce SSS to SAT. 

THEOREM 9. 1 4  (Cook-Levin Theorem). SAT is NP-complete. 
Proof: SAT is in NP because we can guess an assignment and easily verify 
(in polynomial time) that it satisfies F.  

Let k be a positive integer and r be an alphabet . We reduce SSS to SAT. 
Let S be a (k, f)-symbol system with variable set V. We will construct a 
CNF formula F whose variables are [A (x)=c] for each x E V and each c E r. 



9 .6  Boolean Formula Satisfiab i l ity 6 3 3  

The variable [A (x)=c] in F will represent the condition that x is assigned 
the value c in S. The clauses of F are of two kinds . 

First, we write a conjunction of jV j  clauses that ensure, for each x, that 
x is assigned a value, i .e . ,  that at least one of the Boolean variables [A (x) =c] 
is true: 

An assignment to these Boolean variables yields, in the obvious way, an 
assignment A to the variables of S (if [A (x) =ci ] and [A (x) =c2 ] are both 
true, then we can choose either of those two values for A(x)). 

Second, we write a conjunction of clauses that ensure that the assignment A so determined does not violate any of the constraints in S .  For each 
constraint C let V( C) denote the constrained set of C, and let invalid( C) 
denote the set of local assignments that do not satisfy C. The constraint C 
is logically equivalent to 

which is equivalent to a conjunction of I invalid ( C) I clauses: 

/\ ( V [A (x) =l(x)] ) . /Einvalid(C) xEV(C) 
(Observe that if there are distinct c1 and c2 such that [A (x) =c1 ] and [A (x ) =c2 ] 
are both true, this only makes it more likely that one of these clauses is 
unsatisfied . For this reason we do not need separate constraints to ensure 
for each x that at most one variable of the form [A (x ) =c] is true.) 

Thus the symbol system S is equivalent to 

which is a conjunction of clauses, i .e . , a CNF formula. The symbol system 
S is satisfiable if and only if the formula F is satisfiable, so SSS :::::!, SAT. 
Since SSS is NP-complete, SAT is NP-complete as well. ■ 



634 Feasible and  Infeas ib le Problems 

We demonstrate this reduction in Figure 9.  7 .  
Although the satisfiability problem for formulas in conjunctive normal 

form is NP-complete, the satisfiability problem for formulas in disjunctive 
normal form is in P (Exercise 9.6-4). 

Next we define a special form of CNF formula in which the clauses 
involve only a bounded number of variables. Such formulas are special cases 
of symbol systems in which clauses are local constraints and the alphabet 
is { true, false} .  We say that a CNF formula is in k-CNF if each clause in
volves exactly k literals. The k-satisfiability problem (k-SAT) is to determine 
whether a given k-CNF formula is satisfiable. 

THEOREM 9. 1 5.  3-SAT is NP-complete. 

Proof: 3-SAT is in NP because we can guess an assignment and verify it 
in polynomial time. 

We reduce SAT to 3-SAT. Let F be a CNF formula, and let 
C = t\ V · · · V R,k be any of its clauses with three or more literals . First , we 
define a formula F' that is satisfiable if and only if F is satisfiable, and in 
which every clause contains three literals or fewer. Corresponding to C, it 
contains the conjunction C' defined as follows: 

where y 1 , • • •  , Yk� !  are new variables and we use a different set of new 
variables for each clause. (For motivation, think of Yi as the logical-or of all 
the literals with indices greater than i .) We define F' to be the conjunction 
of all the conjunctions C', so F' is indeed a CNF formula with at most three 
literals per clause, which can easily be produced in polynomial time. Now 
we show that F' is satisfiable if and only if F is satisfiable. 

If A is an assignment to the variables, extend A by defining A (x) = --,A (x) , so A is defined on all literals. Suppose that A satisfies F. Then A 
satisfies every clause C in F. Let C = £1 V · · · V fk . We will define an 
extension A' that satisfies every clause of C' :  Let A' ( £;) = A ( £;) for all i ,  
and let 



9.6 Boolean Formula Satisfiabi l ity 635  

( [A (x)=O] V [A (x)=1] V [A (x)=2] )  /\ 

( [A (y)=O] V [A (y)=1] V [A (y)=2] )  /\ 

( [A(z)=O] V [A (z)=1] V [A (z)=2] ) /\ 

( [A (w)=O] V [A (w)=1] V [A (w)=2] ) /\ 

( [A (z)=O] V [A (w)=O] )  /\ 

( [A (z)=O] V [A (w)=1 ] )  /\ 

( [A(z)=O] V [A (w)=2] ) /\ 

( [A (z)=1 ] V [A (w)=1 ] )  /\ 

( [A (z)=1] V [A (w)=2] ) /\ 

( [A (z)=2] V [A (w)=2] ) /\ 

( [A (w)=1 ] )  /\ 

( [A(w)=2] )  /\ 

( [A(x)=O] V [A (y)=O] V [A (z)=1 ] )  /\ 

( [A(x)=O] V [A (y)=O] V [A (z)=2] ) /\ 

( [A (x)=O] V [A (y)=1] V [A (z)=2] ) /\ 

( [A (x)= 1] V [A (y)=O] V [A (z)=2] ) .  

FIGURE 9. 7: A n  example of reducing SSS to SAT: a Boolean formula that is 
satisfiable if and only if the symbol system 

z > UJ 

UJ =I 0 

x + y  � z 

is satisfiable. The Boolean formula's 1 2  variables are [A (x) =O] ,  [A (x)=1] , 
[A (x) =2] , [A(y) =O] , [A (y)=1] , [A (y) =2] , [A (z)=O] , [A (z)=1] , [A (z)=2] , 
[A (w) =O] , [A(w) =1] , and [A (w) =2] . 



636  Feasible and Infeasible Problems 

A' satisfies P1 V y  because A satisfies C; A' satisfies the other clauses by 
logical tautologies . Thus A' satisfies C' . Since the y/s are different for each 
clause, if A satisfies all clauses C of F, then we can define A' on all the y; 's 
so all clauses C' of F' are satisfied . 

Conversely, suppose that some assignment A' satisfies F1
• Then A' 

satisfies every C' .  We prove by contradiction that there exists i such that 
A'(P;) = true. Assume not. Then A' (Pi) = false for all i. We assert that 
A'(y; )  = true for all i. The proof is by induction. The base case (i = 1) is 
established because the clause £1 V y 1 is satisfied and A' ( P 1 ) = false. Assume 
the assertion is true for some i. Since A'(yi) = true, A'(P;+ 1 ) = false, and A' 
satisfiesyi V P;+ 1 VJi+ 1 , it is necessary that A1 (J;+ 1 ) = true. This completes 
the inductive proof. In particular, A'(yk- i )  = true. Since A' satisfies the 
clause Yk- l V Pk and A'(Pk ) = false, it is necessary that A'(yk- i )  = false. 
This contradiction implies that there must exist i such that A' ( P;) = true. 
Let A be the restriction of A' to the literals of F, i.e. , let A (P;) = A' (PJ 
Then A satisfies C. Since this is true for every C, A satisfies F. 

Thus we have shown that F' is satisfiable if and only if F is satisfiable . 
Next we convert F' to an equivalent formula F11 containing exactly three 
literals per clause. Let z 1 , z2 , and z3 be three new variables. The following 
conjunction of six clauses ensures that z 1 and z2 are both assigned the value 
false in any satisfying assignment: 

(z1 V :Z2 V z3 ) /\ (z1 V :Z2 V z3 ) /\ (z1 V Zz V z3 ) /\ (z 1 V :Z2 V z\ ) 
/\ (z 1 V :Z2 V z3 ) /\ (z 1 V z2 V z3 ) .  

(The reader may easily verify this by noting which local assignment is  ruled 
out by each clause.) We conjoin those six clauses to F' ; additionally, we 
replace any clause of the form P by P V z1 V z2 , and we replace any clause of 
the form £1 V £2 by £1 V £2 V z 1 . Clearly F' is satisfiable if and only if F" is 
satisfiable. Furthermore, F11 can be written down in polynomial time. 

Since F11 is in 3-CNF and can be constructed in polynomial time, 
SAT 5:,fn 3-SAT. Therefore 3-SAT is NP-complete. ■ 

EXAMPLE 9. 1 6. Consider the CNF formula 

(u V v V w V x) I\ (u V v V w V x) . 



An equivalent 3-CNF formula is 

9.6 Boolean Formula Satisfiabi l ity 6 3 7  

(11 V y 1 V zi )  /\ (J1 V v V y2 ) /\ (y
2 

V w V y3 ) /\ (y3 V x V z 1 ) 

/\ (u V y4 V z 1 ) /\ (y4 V v V y5 ) /\ (y5 V w V y6) /\ (y6 V x V z 1 ) 

/\ (z 1 V Zz V z3 ) I\ (z1 V z2 V z3 ) /\ (z1 V z2 V z3 ) /\ (z 1 V Zz V z3 ) 

/\ (z 1 V z2 V z3 ) /\ (z 1 V z2 V z3 ) .  

The assignment A(u) = false, A(v) = true, A (w) = false, A(x) = false 
satisfies the original formula. The corresponding assignment A' (u) = false, 
A' (v) = true, A' (w) = false , A'(x) = false, A' (y 1 ) = true, A'(y2 ) = false, 
A' (y3 ) = false , A' (y4 ) = true, A'(y5 ) = true, A'(y6 ) = true, A'(z 1 ) = false, 
A' ( z2 ) = false, A' (z3 ) = false satisfies the 3-CNF formula produced by the 
reduction. 

COROLLARY 9.1 7. ( 3 ,  { a, b} ) -SSS is NP-complete. 

■ ■ ■  

Proof: Let a denote true and b denote false . Then every 3-CNF formula is 
a ( 3 ,  { a, b} ) -symbol system. ■ 

One may wonder if the last two results can be improved. The 2-
satisfiability problem is in P (Exercise 9 .6-6), so 2-SAT is not NP-complete 
unless P = NP. (2, { a, b} ) -SSS is in P as well (Exercise 9.6-7) by re
duction to 2-SAT. On the other hand, ( 2 ,  { a, b, c} )-SSS is NP-complete 
(Exercise 9.6-S(c)). This is dual to the fact that (3 ,  { a, b} ) -SSS is NP
complete. If k = 1 or / r l  = 1 ,  then (k, f) -SSS is in P for trivial reasons. 
Therefore (k, f) -SSS is in P if k = 1 ,  if !f l  = 1 ,  or if k = !f l  = 2; and 
(k, f)-SSS is NP-complete otherwise. 

Exerc i ses 

9.6-1 In the proof of Theorem 9. 14  we did not need to guarantee that for 
every x at most one variable of the form [A (x) =c] is true. But we 
could have guaranteed this if we wanted to. Write clauses that do so . 



638  Feasib le and I nfeasib le Prob lems 

Solution 

I\ I\ ([A (x)=ci] V [A(x)=c2] )  
xEV q c/=c2 

9.6-2 Let k 2: 3. Prove that k-SAT is NP-complete. 
9.6- 3 A reduction between two problems is called parsimonious5 if it pre

serves the number of solutions. 
(a) Prove that parsimonious ::;�1-reducibility is transitive. 
(b) Find a parsimonious ::;�1-reduction from SAT to 

( 3 ,  { true, false} )-SSS. 
Solution: Modify the reduction from SAT to 3-SAT to use the 
constraint Yi = ( £ i+ 1 V Yi+ 1 ) in place of the clause yi V fi+ 1 V Yi+ 1 
and the constraint Yk = fk in place of Yk-l V fk , The values 
of y 1 , • • •  , Yk- l  in a satisfying assignment are then completely 
determined by the values of £ 1 , . . .  , fk . Do not use z 1 , z2 , z3 . 
Then the number of satisfying assignments is preserved. 

(c) Find a parsimonious :=;�1-reduction from ( 3 ,  { true, false} )-SSS 
to 3-SAT. 

(d) Find a parsimonious :=;�1-reduction from (k, { true, false} )-SSS 
to k-SAT. 

9 .6-4 A formula is in disjunctive normal form (DNF) if it is an OR of ANDs, 
i .e . ,  disjunction of conjunct'ions. For example, the formula 

(x /\ y /\ z) V (w /\ x /\ z) V (x /\ y /\ z) V (w /\ y /\ z) 

is in disjunctive normal form. 
(a) Prove that the set of satisfiable DNF formulas is in P .  
(b) A symbol system or Boolean formula is called tautological or 

a tautology if all assignments satisfy it. Prove that the set of 
tautological (k, r)-symbol systems is in P .  

(c) Prove that the set of tautological CNF formulas is in P. 
(d) Prove that the set of tautological DNF formulas is co-NP

complete . 

5 The dictionary meaning of "parsimonious" is "miserly." 



9 .7  NP-Complete Graph Problems 639 

9 .6-5 A clause is called monotone if it consists entirely of variables or entirely 
of the negations of variables. For example, x V y  V z is monotone 
and x V y  V z is monotone, but x V y  V z is not monotone. 

(a) MONOTONE-SAT is the set of satisfiable CNF formulas in 
which every clause is monotone. Prove that MONOTONE
SAT is NP-complete. Hint: Look carefully at the reduction 
from SAT to 3-SAT. Alternative hint: Replace x by x' . Intro
duce two new clauses (x V x') and (x V x') .  

(b) MONOTONE-3-SAT i s  the set of satisfiable 3-CNF formulas 
in which every clause is monotone. Prove that MONOTONE-
3-SAT is NP-complete. 

9.6-6 Prove that 2-SAT is in P. Hint: Let F be a formula with literals 
1\ , . . .  , £rn . Rewrite each clause £; V £

1 
as the logically equivalent 

implications £; =} £
1 

and £
1 

=} £; . Prove that F is unsatisfiable if 
and only if there is a literal £ and a sequence of implications such 
that £ =} · · · =} £ =} · · · =} f. Represent implications as edges in 
a directed graph. 

9.6-7 Prove that (2 , { a, b} )-SSS is in P. Hint: Reduce to 2-SAT. 
9.6-8 (a) Prove that if f is an 8-character alphabet, then (2 ,  f)-SSS is 

NP-complete. Hint: Reduce 3-SAT, letting each variable 
in the symbol system represent three variables of the 3-CNF 
formula. 

(b) Prove that if r is a 4-character alphabet, then (2 ,  f)-SSS is 
NP-complete. 

*(c) Prove that if f is a 3-character alphabet, then (2 , f)-SSS is 
NP-complete. 

9.6-9 Give a generic reduction to prove that SAT is NP-complete. 

9. 7 NP-COM PLETE GRAPH PROBLEMS 

Some of the most important problems facing computer scientists, operations 
researchers, and managers can be modeled in terms of graphs. Recall from 
Section 0.4 that a directed graph (V, E) consists of a vertex set V and an edge 
relation E � V X V. An undirected graph is a digraph in which E is sym-



640 Feas ible and Infeas ib le  Problems 

metric. Graphs can be represented in three different ways , as described in 
Section 2 . 1 .  Some representations will permit faster algorithms than others. 
However, it is possible to convert among these representations in polynomial 
time, so for the purposes of this chapter it does not matter which represen
tation is used. We proceed to consider some specific graph problems. 

A clique is a set of vertices K � V such that every vertex in K is connected 
by an edge to every other vertex in K, i .e . ,  

( V i  E K I\ V2 E K I\ Vi -=I Vz ) =} ( Vi , Vz) E E.  

For example, let V be the set of students at a particular school. Let E be the 
"like each other" relation, i .e. , (vi , v2 ) E E if Vi likes v2 and v2 likes Vi - A 
clique in this graph is a set of students at the school all of whom like each 
other. 

A k-clique is a clique consisting of exactly k vertices. The clique problem 
is to determine for a given undirected graph G and a given number k whether 
G contains a k-clique. 

Problem name: clique 
Instance: an undirected graph G and a positive integer k 
Question: Does G contain a clique of size k? 

Observe that a clique of size k contains cliques of size 1 ,  2 ,  . . .  , k - 1 ;  
therefore a graph containing a clique of size k also contains cliques of all 
smaller sizes . 

In time O ( G) ( '� 1 ) )  we can try every set of k vertices, so we can test 
whether a graph has a clique of size k. This is polynomial bounded if k is 
fixed but not if k grows as a function of n. In fact if k = IVI / 2 ,  then this  
time bound is bigger than 2 iVI . This is no accident. 

THEOREM 9. 1 8. Clique is NP-complete. 

Proof: We will reduce SSS to CLIQUE. Let k :::: 1 ,  let r be an alphabet, 
and let S be a (k , f)-symbol system with c constraints in all. Recall that if 
{ x1 , . . .  , Xk } is a constrained subset in the symbol system, then a mapping 
A ; { X 1 , . . .  , Xk} - f is called a local assignment. A is called a satisfying 
local assignment to C if { x1 , . . .  , Xk} is the subset constrained by C and 



9 .7  N P-Complete G raph Prob lems 64 l 

C(A (x 1 ) ,  • • •  , A(xk ) )  = true. We will construct an undirected graph (V, E) 
that contains a c-clique if and only if S is satisfiable. 

For each constraint C in S and each satisfying local assignment A to the 
constrained variables of C, we place a vertex [ C, A] in G. Since there are 
at most l f lk local assignments to a single constrained subset, ! V I  :S cl f l k . 
Each vertex can be constructed in polynomial time; the total number of 
vertices is linear because I f !  and k are constants. 

We say that two local assignments A 1 and A 2 to constraints are consistent 
if A 1 (x) = A2 (x) for all x on which A 1 and A 2 are both defined. (Note 
that distinct local assignments to a single constrained subset cannot be 
consistent.) Let E consist of all pairs of vertices corresponding to consistent 
satisfying local assignments. Each edge can be constructed in polynomial 
time; the total number of edges is O(n2 ) because the number of vertices is 
O(n) .  This completes the reduction. 

We assert that S is satisfiable if and only if the graph (V, E) contains 
a clique of size c. Suppose first that S is satisfiable. Let A be a satisfying 
assignment to the variables of S. Restricting A to the individual constraints 
in S, we obtain consistent satisfying local assignments to each constraint. 
The corresponding vertices in G form a clique of size c. Conversely, suppose 
that G contains a clique of size c. As noted above, all vertices in this clique 
must correspond to consistent satisfying local assignments to distinct con
straints. Since there are c vertices in the clique, these vertices correspond 
to consistent satisfying local assignments to all constraints of S. By com
bining these local assignments, we obtain a satisfying assignment to S. 

■ 

EXAMPLE 9. 1 9. Consider the following ( 3 ,  { a, b} )-symbol system with 
variable set {w, x, y , z} : 

z / x  I\ z / y ( C1 ) z = w V z = x  ( C2 ) 
z = a =} w =  b. ( C3 ) 

For compactness, let us represent a local assignment A by the string A(w)A (x)A (y)A(z) ,  where we write X to denote that A (v) is undefined. 
The satisfying local assignments to C 1 are Xaab and Xbba. The sat

isfying local assignments to C 2 are aaXa, abXa, abXb, baXa, baXb, and 



642 Feas ib le  and Infeasib le Prob lems 

FIGURE 9.8:  An instance of the clique problem corresponding to the symbol 
system 

z =/- x  I\ z =J. y (c 1 )  

z = w V z = x  (C2 ) z = a  ⇒ w = b. ( C3) 
The symbol system's unique satisfying assignment baab corresponds to the 
graph's unique 3 -clique (triangle) [C 1 , Xaab] - [C2 , baXb] - [C3 , bXXb] . 

bbXb. The satisfying local assignments to C 3 are aXXb, bXXa, and bXXb. The corresponding undirected graph is shown in Figure 9 .8 .  ■ ■ ■  

A Hamiltonian path in a directed graph G is a path that includes each vertex exactly once. A Hamiltonian cycle in a directed graph G is a path that starts and ends at some vertex v (i .e . , a cycle) and includes every other vertex exactly once. 
Problem name: Hamiltonian cycle 
Instance: a directed graph G 

Question: Does G contain a Hamiltonian cycle? 



9 .7  NP-Complete G raph Problems 643 

THEOREM 9.20. Hamiltonian cycle i s  NP-complete. 
Proof: We reduce 3 -SAT to Hamiltonian cycle. Let F be a CNF formula with variables x 1 , . . .  , Xn · Call the clauses C 1 , . . .  , Ck . We construct a corresponding graph G. The graph is organized into parts called gadgets that we describe below: 
Variable gadget: For each variable x, G contains a gadget that we call x's gadget . The gadget for variable x contains 4k + 2 vertices, which are labeled and connected as in Figure 9.9.  
Clause gadget: For each clause C, G contains a gadget that we call C's gadget . Let C contain the literals u, v, and w, i .e . ,  C = (u V v V w) . The gadget for clause C contains six vertices, which are labeled and connected as in Figure 9 . 10 .  

In  addition to the edges that stay entirely inside a gadget, there are edges that connect vertices in distinct gadgets. 
Variable-clause edges: For each clause C, for each literal P, in C, there is an edge from vertex [£ to C] to (£ to C) and an edge from [C to £] to ( C to £) . (These edges are indicated by the dashed lines in Figure 9 . 1 1 .) 
Variable-variable edges: For 1 ::; i ::; n - 1 there is an edge from gadget vertex [x; out] to gadget vertex [x;+ 1 in] . There is also an edge from [xn out] to [x1 in] , as shown in Figure 9 . 1 1 .  

This completes the reduction. Now we prove that G contains a Hamiltonian path if and only if F is satisfiable. First, assume that G contains a Hamiltonian cycle, which we will call H. We will show that H travels from [x 1 in] through x 1 's gadget, then x/s gadget , . . .  , then xn 's gadget, and back to [x1 in] , visiting each clause's gadget at least once along the way. We will construct a satisfying assignment based on H's behavior in each variable's gadget. 



644 Feas ible and I nfeas ible Prob lems 

FIGURE 9.9: A gadget for the variable x. 

FIGURE 9.1 0: A gadget for the clause C, where C = (u V v V w) . 



9 . 7  NP-Complete Graph Prob lems 645 

FIGURE 9. 1 1 :  The reduction from SAT to  Hamiltonian cycle. x1 ' s  gadget, xz 's 
gadget, . . .  , and xn 's gadget are arranged in a directed cycle. In addition, for each 
variable in a clause, there is a pair of directed edges between the corresponding 
variable gadget and clause gadget. Let £ denote a literal, either x or x for some 
variable x. If £ is a literal in the clause C, then there is an edge from the vertex 
labeled [£ to C] (in x's gadget) to the vertex labeled (£ to C) (in C's gadget), as 
well as an edge going back from (C to £) to [C to £] . Details of the vertex and 
clause gadgets are shown in Figures 9.9 and 9. 10 .  

Call vertex u a predecessor of vertex v and v a successor of u if there is an edge from u to v in G. If we cut a Hamiltonian cycle by removing the edge from u to v, then we obtain a Hamiltonian path that starts at v and ends at u. Consider any Hamiltonian path, recalling that it visits each vertex exactly once. Because the path is directed, we may think of the vertices as being visited in temporal order. Three simple principles will help us to pin down H's behavior. 



646 Feas ib le and Infeasi ble Problems 

No-choice principle: If v is the only successor of u that is not visited 
before u, then v must be visited immediately after u. 

Last-chance principle: If u is the last of v's predecessors to be visited and 
v is not visited before u, then v must be visited immediately after u. 

Dead-end principle: If all of u's successors are visited before u, then u 
must be the last vertex on the Hamiltonian path. 

Consider any particular clause C. The Hamiltonian cycle H may enter 
C's gadget one, two, or three times. Let us consider the behavior of H from 
a time when it enters C's gadget until it next exits C's gadget. Assertion: If H enters a clause gadget at the vertex ( £ to C) , then it 
next leaves that gadget at vertex ( C to £) . Proof of assertion :  By symmetry, 
we may assume that £ = u, i .e . ,  that the path enters C's gadget at (u to C) . 
By cutting H before (u to C) , we obtain a Hamiltonian path that starts 
at (u to C) and ends at [u to C] . From (u to C) , the path may proceed to 
( v to C) or ( C to u) . If the latter, it must leave C's gadget in order to avoid 
dead-ending (w to C) . If the former, it may proceed to (w to C) or (C to v) . 
If the latter, it must proceed to (C to u) by the last-chance principle and 
then leave C's gadget in order to avoid dead-ending ( w to C) . If the former, 
then it must proceed to (C to w) by the no-choice principle. From there 
it must proceed to (C to v) and then (C to u) by two applications of the 
last-chance principle. Finally, it must exit C's gadget from (C to u) by the 
no-choice principle. ■ 

Let £ denote the literal x or x. The portion of a path that goes from a 
vertex [£ to C] in x's gadget, travels inside C's gadget, and then returns to 
[C to £] in x's gadget is called a side trip from £ to C. 

For any particular variable x, let us consider the behavior of H from the 
time it enters x's gadget at [x in] until it exits x's gadget from [x out] . Cut H to obtain a Hamiltonian path that starts at [x in] . From the vertex [x in] 
the path must go either left or right. For concreteness, assume it goes left 
to the vertex [x to C i ] .  The next edge must go right, to [x to C1 ] ,  by the 
last-chance principle. 

There is now a choice between going directly down to [C 1 to x] or (if x 
is a literal in C 1 ) making a side trip from x to C 1 , which finishes at [C1 to x] 
by the assertion. In either case, the path reaches [C 1 to x] . In principle, the 



9. 7 NP-Comp lete Graph Problems 647 

vertex [C 1 to x] could be reached later at the end of a side trip from x to C 1 ; however, by the assertion, that side trip would have to start at [x to C] , 
which has already been visited. Therefore, if [C 1 to x] is to ever be reached, 
the path must proceed immediately to it .  

Next the path must proceed to [x to C 2 ] by the no-choice principle and 
then to [x to C 2] by the last-chance principle. Then there may be an optional 
side trip from x to C 2 ; whether or not the side trip is taken, the path then 
proceeds to [C 2 to x] . From there the same kind of pattern repeats, snaking 
down x's gadget, with optional side trips only to clauses containing x. 

Observe that if the first edge had gone right, then by symmetry the 
path would snake down x's gadget with optional side trips only to clauses 
containing x. 

Now we construct a satisfying assignment for the formula F. For each 
variable x, let A (x) = true if the Hamiltonian cycle H takes the edge labeled (x) in the x gadget and false otherwise. Because H visits every vertex, every 
clause gadget C is visited on a side trip from x's gadget for some x. If the 
path through x's gadget starts leftward, then C contains the literal x and A ( x) = true, so C is satisfied. If the path through the x gadget starts 
rightward, then C contains the literal x and A (x) = false, so C is satisfied. 
Thus A satisfies every clause. 

Conversely, suppose that A is a satisfying assignment for F. We con
struct a Hamiltonian cycle in G. The cycle traverses x1 's gadget, then x/s 
gadget, and so on, then x/s gadget, finally returning to [x1 in] . For each 
variable x, if A (x) = true then we start the path through x's gadget leftward; 
otherwise we start it rightward. This completely determines the snakelike 
path that visits each of the variable gadget's vertices-except for side trips 
to clause gadgets. From each clause C, choose the first literal /i, such that A ( /i,) = true and take a side trip from /i, to C (this is possible because of 
how the topmost edge in each variable gadget was selected), visiting all the 
vertices in C's gadget. Thus every clause vertex is visited exactly once, so 
the cycle constructed in this way is Hamiltonian. 

COROLLARY 9.2 1 .  The traveling salesman problem is NP-complete. 
■ 

Proof: Observe that the traveling salesman problem is to determine 
whether a graph has a Hamiltonian cycle whose cost is c or less. We reduce 
Hamiltonian cycle to traveling salesman. Given a graph G, we construct 



648 Feas ib le and Infeas ib le Prob lems 

a complete graph G' with the same vertex set . An edge e i s  given weight 
0 in G' if e is an edge in G; otherwise e is given weight 1 in G'. There i s  
a Hamiltonian cycle in G i f  and only if  there i s  a Hamiltonian cycle in  G' 
whose cost i s  O or less . ■ 

Exerc i ses 

*9 .7-1  Modify the reduction from 3-SAT to Hamiltonian cycle as follows: 
First delete all clauses in F that contain both literals x and x for 
any variable x. In addition, replace each clause gadget with a single 
vertex. Prove that F is satisfiable if and only if the resulting graph 
contains a Hamiltonian cycle. 

*9. 7-2 Find a parsimonious reduction from 3-SAT to Hamiltonian cycle. 

9 .7-3 Let G1 = (V1 , E1 ) and G2 = (V2 , E2 ) .  G1 i s  isomorphic to G2 if  
there exists a one-one, onto mapping g from V1 to V2 such that 
(u, v) E E 1 if and only i f (g(u) , g(v) ) E E2 • Such a function g is 
called an isomorphism from G 1 to G2 . 

(a) Give a polynomial-time Turing reduction from the problem of 
finding an i somorphism from one graph to another to the prob
lem of determining whether two graphs are i somorphic .  (It is 
not known whether the graph i somorphism problem i s  NP
complete .) 

(b) A graph G 1 = (V1 , E 1 ) is a subgraph ofa graph G2 = (V2 , E2 ) 
if V1 <;;;; V2 and E 1 <;;;; E2 • Prove that the following problem is 
NP-complete. 

Problem name: subgraph isomorphism 

Instance: undirected graphs G and H 
Question: Does G contain a subgraph i somorphic to H? 

9. 7-4 A weighted graph satisfies the triangle inequality if for every three 
vertices u, v, w the weight of the edge (u, w) is less than or equal 
to the weight of (u, v) plus the weight of (v, w) . Prove that the 
following problem is NP-complete: 



9 . 7  NP-Complete Graph Prob lems 649 

Problem name: TSP with triangle inequality Instance: a weighted graph G and a natural number c Question: Does G satisfy the triangle inequality and also have a 
Hamiltonian cycle whose weighted path length is c or less. 

9. 7 -5 An independent set in an undirected graph is a set of vertices, no two of 
which are connected by an edge. In other words, I is an independent 
set in G = (V, E) if I <;;;; V and (I x I) n E = 0. Prove that the 
following problem is NP-complete. Problem name: independent set Instance: an undirected graph G and a positive integer k Question: Does there exist an independent set in G consisting of 

k vertices? 

9. 7 -6 A vertex cover in an undirected graph is a set C of vertices that contains 
at least one endpoint from each edge. (Think of C as a  set of vertices 
that covers the edges of the graph. )  In other words, C is a vertex 
cover for G = (V, E) if C <;;;; V and, for all edges (u, v) in E, u E C 
or v E C. 

(a) Let G = (V, E) . Prove that C is a vertex cover for G if and 
only if V - C is an independent set in G. 

(b) Consider the following problem: Problem name: vertex cover Instance: an undirected graph G and a positive integer k Question: Does there exist a vertex cover for G consisting of 
k vertices? 

Show how to solve the vertex cover problem in time 
O ( IE I  + k lV l k+ l ) .  

(c) How large i s  O ( I E I  +k lV IH l ) as a function of the input length? 

Solution: The number k can be represented by O(log k) bits. 
Therefore, in principle k could be as large as 2n , where n is the 
input length. Thus 

I E I  + k l V lk+ l  = O(n + 2nn2" ) = 0(2nn2" ) . 

In practice, the size of a vertex cover is at most I V I , and we 
could modify the algorithm to immediately output yes if k > 
I V I - The modified algorithm runs in time O(nn+2 ) .  



650  Feasi b le and Infeas i b le Problems 

(d) Suppose that we restrict the allowable values of k in the vertex 
cover problem. For what values of k is O ( I E I  + k lV l k+l )  a 
polynomial-bounded function of the input length? 

(e) Surprisingly, it is possible to solve the vertex cover problem 
in time o ( IE I  + I V I  + k2 (�) ) . Give an algorithm to do so. 
Hint: Prove that if G has a vertex cover consisting of k vertices , 
then that cover must contain every vertex having degree k + 1 
or higher. 

(f) How large is O ( I E I  + IV I  + k2 (k:) ) as a function of the input 
length? 

(g) Suppose that we restrict the allowable values of k in the vertex 
cover problem. For what values of k is O ( IE I  + I V I + k2 (k:) ) 
a polynomial-bounded function of the input length? 

(h) Prove that the vertex cover problem is NP-complete. 

9. 7-7 A dominating set in an undirected graph is a set D of vertices such 
that each of the graph's vertices belongs to D or is adjacent to a 
vertex in D.  In other words, D is a dominating set for G = (V, E)  
if  D <;;;; V and , for all v in V, 

v E D  or  (:3u E D) [(u, v) E E] . 

(a) Prove that the following problem is NP-complete: 

Problem name: dominating set 

Instance: an undirected graph G and a positive integer k 

Question: Does there exist a dominating set for G consisting 
of k vertices? 

Hint: Reduce SAT or vertex cover. 
(b) An undirected graph (V,  E) is called bipartite if there exists 

a partition of V into sets T and U such that all edges in E 
go between T and U. In other words (V, E) is bipartite if 
there exist T and U such that T n U = 0, T U  U = V, and (x, y) E E =}  (x E T  � y E U) .  
Prove that a graph G is bipartite if and only i f  every cycle in  
G has even length. 

(c) Prove that the following problem is NP-complete: 



9. 7 NP-Complete Graph Prob lems 65 1 

Problem name: bipartite dominating set 
Instance: an undirected bipartite graph G and a positive in

teger k 
Question: Does there exist a dominating set for G consisting 

of k vertices? 

9.7-8 Reduce SAT directly to clique. 

9.7-9 Prove that the following problems are NP-complete: 

(a) Problem name: Hamiltonian path 
Instance: a directed graph G 
Question: Does G contain a Hamiltonian path? 
Hint: Reduce Hamiltonian cycle. Pick an arbitrary vertex v 
in G and replace it by a pair of vertices Vin and Vaur ·  

(b) Problem name: Hamiltonian s-t path 
Instance: a directed graph G and distinct vertices s and t 
Question: Does G contain a Hamiltonian path that starts at 

s and ends at t? 
(c) Problem name: undirected Hamiltonian cycle 

Instance: an undirected graph G 
Question: Does G contain a Hamiltonian cycle? 
Hint: Reduce (directed) Hamiltonian cycle. Replace each 
vertex v by three vertices Vin , Vmid , and Vour connected by a pair 
of edges as shown below: 

9.7-10 A k-coloring of an undirected graph G is a mapping c from V (the 
vertices) to { 1, . . .  , k} (the set of colors) such that 

(u, v) E E =}  c(u) -I- c(v) , 

i.e., adjacent vertices are given distinct colors. Consider the follow
ing problem: 
Problem name: k-colorability 
Instance: an undirected graph G = (V, E) 
Question: Is there a k-coloring of G? 



6 5 2  Feas ib le and Infeasi b le Problems 

FIGURE 9. 1 2 : A gadget that ensures that if c(u) = c( v) , then c(t) = c(u) = c( v) 
in any 3 -coloring, while not excluding any other possible colorings for t, u, and v. 

In this exercise, you will prove that 3 -colorability is NP-complete. 
Let F be a 3 -CNF formula with variables x1 , . . .  , Xn . 

(a) Consider the graph in Figure 9 .12.  Prove that, in any 3-
coloring c of this graph, if c( u) = c( v)  then c(t) = c( u) = c( v) ; 
i.e. , if u and v are colored the same, then t, u, and v are all 
colored the same. 

(b) Consider the graph in Figure 9 .12.  Suppose that u and v are 
given distinct colors and t is given an arbitrary color. Show 
how to color the remaining two vertices using exactly three 
colors in all. 

(c) By parts (a) and (b), the graph in Figure 9 .12 ensures that 
c(u) = c(v) ⇒ c(t) = c(u) = c(v) , but it does not rule 
out any other possibilities for c(t ) ,  c( u ) ,  and c( v) . Construct 
a graph that ensures that if u, v, and w are colored the same, 
then t, u, v, and w are all colored the same, while not excluding 
any other possible colorings for t, u, v, and w. 

(d) Construct a graph with vertices named True, False, Other; 
x 1 , . . .  , xn ; and x1 , . . .  , Xn. Your graph should ensure the fol
lowing while not excluding any other possible colorings. 

• True, False, and Other are all colored differently. 

■ For each i, either x; is colored c(True) and X; is colored 
c(False ) ,  or else x; is colored c(False) and X; is colored 
c(True ) . 



9.8 NP-Complete Problems Involving Sets , Vectors, and Numbers 6 5 3  

Each coloring of the graph you construct will correspond to 
an assignment, where 

A (x) = true ¢::::::} c(x) = c(True) ¢::::::} c(x) = c(False) , 

A (x) = false ¢::::::} c(x) = c(False) ¢::::::} c(x) = c(True) .  

(e) Consider three literals P 1 , P2 , and /i,3 . Using part (c), construct 
a graph that ensures that /i, 1 , P2 , and /i,3 are not all colored 
c(False). 

(f) Combining the graph from part (d) and the graphs from 
part (e), one for each clause, construct a graph that is 3 -
colorable if and only if F is satisfiable. 

9 .7-11 Let k > 3. Prove that k-colorability is NP-complete. 

Solution: k-colorability is in NP because we may guess a k-coloring 
and verify its correctness in polynomial time. We reduce 3-
colorability. Let G be an instance of 3-colorability. Construct G' by 
inserting a clique of k - 3 new nodes into G and connecting each 
of these new nodes to every node in G. Then G is 3 -colorable if and 
only if G' is k-colorable. 

9 .8  NP-COMPLETE PROBLEMS INVOLVING SETS , 
VECTORS, AND N U M BERS 

In this section we consider the set cover, vector sum, and subset sum prob
lems. The subset sum problem models a kind of change-making problem: 
Given a bag of coins, does it contain a sub-bag whose sum is a desired 
total? (This would be a good time to review Section 0.2 .5  on bags.) By 
reducing subset sum, it can be shown that several important problems in 
operations research are NP-complete (Exercises 9 .8-2 and 9 .8-3 ). Recall 
that by convention numbers are represented in binary. 

In principle, we could prove that the subset sum problem is NP
complete by reducing SAT to it directly, but this would be complicated. 
Instead, we introduce set cover and vector sum in order to divide the proof 
into manageable pieces. This makes it easier to isolate and understand the 
key steps. 



654 Feas ib le and Infeas ib le Problems 

Consider the following problem: 

Problem name: set cover 

Instance: a set S, subsets S 1 , . . .  , S111 of S, and a natural number k 

Question: Do there exist k natural numbers i 1 , . . .  , ik such that 

s = S; I u . . .  u S;) 

THEOREM 9.22. The set cover problem is NP-complete. 
Proof: The set cover problem is in NP because we may guess i 1 , . . .  , ik and 
verify in polynomial time that S = S; 1 U · · · U S;k . We reduce SAT to set 
cover. 

Let F be a Boolean formula with variables x1 , . . .  , xk . Let 

S = { C : C is a clause of F} U { x 1 , . . .  , xk} .  

Let m = 2k, and for j = 1 ,  . . .  , k let 

S2j- l 
S21 

{ C : C is a clause of F containing the literal x1 } U { x1} 

{ C : C is a clause of F containing the literal x1 } U { x1 } .  

The number k and the sets S ,  S 1 , . . .  , Sm can be written down easily in 
polynomial time. We complete the proof that set cover is NP-complete by 
showing that F is satisfiable if and only if there exist i 1 , . . .  , ik such that 
s = S; I u . . .  u S;k . 

Assume that F is satisfiable via an assignment A.  Let 

lj = { 2j - 1 

2j 

if A (x1) = true , 

otherwise. 

Let C be any clause of F. Because A satisfies C, A (£') must be true for some 
literal £' appearing in C. If £' = x1, then C E S21_ 1 = S;1 ; if £' = x1 , then 
C E  S21 = S;r 



9 .8  NP-Com plete Problems Involving Sets, Vectors , and Numbers 6 5 5  

Let x1 be any variable of F .  Then x1 E S21_ 1 and x1 E S21 , so x1 E S;r 
Since every clause C of F is contained in S; 1 U · · · U S;p and every variable 

x of F is contained in S U · · · U S J I i  lk ' 

But S; S: S for every i, so 

Therefore 

Conversely, suppose that there exist i1 < i2 < · · · < ik such that 
S = S;, U · · · U S;k . Since x1 E S, 2j - 1 or 2j must belong to the set 
{i 1 , . . .  , h} for j = 1, . . .  , k. This observation accounts for k elements 
of the set {i1 , . . .  , ik } .  The numbers 2j - 1 and 2j cannot both belong to 
{i 1 , . . .  , ik } ,  because then {i 1 , • . .  , ik } would contain at least k +  1 elements. 
Therefore i; is equal to 2j - 1 or 2j. Let 

{ 
true A (x1) = 
false 

if ij = 2j - 1, 

otherwise. 

Let C be any clause of F. Because C E S = S; 1 U · · · U S;k ' C must belong 
to S;

1 
for some j. If i1 = 2j - 1, then x1 is a literal of C and A (x1 ) = true; if i1 = 2j, then x1 is a literal of C and A (x1 ) = false. In either case A satisfies 

C. Since that is true for every C, A satisfies F. ■ 

EXAMPLE 9.23. To illustrate the reduction from SAT to set cover, consider 
the Boolean formula F with clauses 

C1 Xj V X2 V X3 
C2 X1 V X2 V X3 C3 x1 V "x2 V x3 
C4 X2 V X3 . 



656 Feas ib le and Infeas ib le Problems 

The reduction maps F to the following instance of set cover: 

k 3 
s { C 1 , C2 , C3 , C4 , x1 , x2 , x3 } 

S1 {C1 , C3 , xi } 
S2 {C2 , xi } 
S3 { C i ,  C2 , x2 } 
S4 { C3 , C4 , x2 } 
Ss {C1 , C2 , C4 , x3 } 

s6 { C3 , x3 } .  

A satisfying assignment ofF is A (xi )  = false, A (x2 ) = false, A (x3 ) = true. 
In correspondence, we have 

I I I 

Next we consider an NP-complete problem involving vectors. A vector 
over N is a finite sequence of elements of N .  The sum of two equal-length 
vectors is defined by extending the addition operation from components to 
vectors, i .e . ,  

For example, (( 1 ,  2 , 3 )) + ((4, 5 , 6)) = ((5 , 7, 9)) . 
Consider the following problem: 

Problem name: vector sum 

Instance: a bag V of "resource" vectors over N and a "goal" vector g over N 
Question: Does there exists a sub-bag of resource vectors whose sum is 

__, . g, i . e . ,  

(=lu <:;;; v) [L u = i] ?  
iiEU 



9.8 NP-Complete Prob lems Involving Sets , Vectors , and Numbers 657  

The 0 ,  I -valued vector sum problem is a special case of  the vector sum 
problem in which all components of all vectors in V must be 0 or 1. (No 
restriction is placed on the goal vector g.) 

THEOREM 9.24. The 0, I -valued vector sum problem is NP-complete. 
Proof: The 0,1-valued vector sum problem is in NP because it is easy to 
guess a bag of resource vectors and verify that their sum is g in polynomial 
time. We reduce set cover to 0,1-valued vector sum. 

Let S, S 1 , . . .  , Sm , k be an instance of the set cover problem with S = 
{x1 , . . .  , x, } .  

Let gbe the vector whose first t components are k + 1 and whose ( t+ 1 )st 
component is k, i .e . ,  

g =  ((k + 1 , . . .  , k + 1 , k)) . 

For i = 1, . . .  , m let 

That is, the jth component ofv; is 1 if xi E S; and 0 otherwise for i = 1, . . .  , t; 
the (t + 1 )st component of v; is 1. Observe that S = S; 1 U · · · U S;, if and 
only if S <:;;: S; 1 U · · · U S;k if and only if the vector V; 1 + · · · + V;k is at least 
one in each of the first t components . For j = 1, . . .  , t let P; be a vector of 
length t + 1 with a 1 in the jth component and Os elsewhere. 

Let V be the bag containing one copy of the vector v; for i = 1, . . .  , m 
and k copies of the vector Pi for j = 1, . . .  , t. We will show that the set 
cover instance (S, ((S 1 , . . .  , Sm )) , k) has a solution if and only if the vector 
sum instance (V, g) has a solution. 

Assume that s = S;l u . . .  u s,k . Let w = {v; I ' . . .  ' v,J ,  and let 
w = V; 1 + · · · + v;k . Let wi be the jth component of w for j = 1, . . .  , t. 
Because S = S; 1 U · · · U S;k , we have w1 2: 1 for j = 1, . . .  , t. Because the 
(t + l )st component of each V; is 1, w1+ 1 = k. Let P be the bag containing 
k - wi + 1 copies of the vector Pi for j = 1, . . .  , t. Let U = W l±J P. Then 

� --- __, � u = g. 
uEU 



658  Feasi ble and Infeasi ble Problems 

Conversely, suppose that there exists U <:;;; V such that "I:uEV u = g. 
Since the last component of g is k, the set U must contain exactly k of the 
v;'s; call them V;\ '  . . .  ' V;k . The set u may contain some of the p/s,  but their 
sum is at most k in each component, so V;1 + · · · + v;k must be at least 1 in 
each of the first t components. Therefore S <:;;; S;1 U · · · U S;k . ■ 

EXAMPLE 9.2 5. To illustrate the reduction from set cover to vector sum, 
consider the following instance of the set cover problem: 

s {A , B, C, D, E, F, G} 
S1 {A , C , E} 
S2 {B, E} 
S3 {A , B , F} 
S4 {C, D, F} 
S5 {A , B , D, G} 
s6 {C, G} 
k 3 

The reduction maps this to the following instance of vector sum where V 
contains one copy of v; for i = 1, . . .  , 6 and three copies of PJ for j = 1, . . .  , 7 
(we have omitted punctuation in vectors for the sake of readability) 

_, 1 0 1 0 1 0 0 1 VJ 
_, 0 1 0 0 1 0 0 1 V2 
_, 1 1 0 0 0 1 0 1 V3 
_, 0 0 1 1 0 1 0 1 V4 
_, 1 1 0 1 0 0 1 1 V5 
_, 0 0 1 0 0 0 1 1 V6 
_, 

Pi 1 0 0 0 0 0 0 0 
_, 

h 0 1 0 0 0 0 0 0 

P3 0 0 1 0 0 0 0 0 

p4 0 0 0 1 0 0 0 0 
_, 
Ps 0 0 0 0 1 0 0 0 

P6 0 0 0 0 0 1 0 0 

p7 0 0 0 0 0 0 1 0 
_, 4 4 4 4 4 4 4 3 g 



9 . 8  N P-Com plete Prob lems Involving Sets,  Vectors, and Numbers 6 5 9  

A solution to the instance of set cover is 

A corresponding solution to the instance of 0,1-valued vector sum is 

Recall the subset sum problem: 

Problem name: subset sum 

Instance: a bag S of positive integers and a positive integer g 

Question: Does there exist a sub-bag of S whose elements add up to g, i .e ., 

(::Ju c:;;; s) [L u = g] ?  
uE U 

THEOREM 9.26. The subset sum problem is NP-complete. 
Proof: The subset sum problem is in NP because we can easily guess a 
sub-bag U of S and verify in polynomial time that I:uE U u = g. We reduce 
0,1-valued vector sum to subset sum. 

Let (V, g )  be an instance of the 0, 1-valued vector sum problem. Let 
B = /V I  + 1. Each vector v can be treated as a number x in base B by 
treating the jth component of v as the jth digit of x. Let X; be the number 
corresponding to v, .  Let S = {x1 : v, E V} . Let g be the binary number 
corresponding to g. This reduction can easily be carried out in polynomial 
time. 

Furthermore, the base B was chosen large enough so that there are no 
carries when adding elements of S. Therefore 

L V; = g ¢==? L X; = g. ■ 



660 Feas ib le and Infeas ib le Problems 

EXAMPLE 9.2 7. To illustrate the reduction from 0, 1 -valued vector sum to subset sum, consider the following instance of the 0 , 1 -valued vector sum problem: 
__, 1 0 1 0 1 0 0 1 V) 

__, 0 1 0 0 1 0 0 1 V2 

__, 1 1 0 0 0 1 0 1 V3 
__, 0 0 1 1 0 1 0 1 V4 
__, 1 1 0 1 0 0 1 1 V5 

__, 0 0 1 0 0 0 1 1 V6 

__, 0 0 1 0 1 0 1 0 V7 
__, 1 1 1 1 1 0 1 0 Vs 

__, 1 0 1 0 1 0 1 0 V9 

__, 1 2 1 2 1 1 1 3 g 
The reduction maps this to the following instance of subset sum, where we have written the numbers in base 10 :  

X1 1 0 1 0 1 00 1  
X2 100 1001 
X3 1 1000 1 0 1  
X4 1 10 1 0 1  
X5 1 10 1 00 1 1  
X6 1000 1 1 
X7 1 0 1 0 1 0  
Xg 1 1 1 1 1 0 1 0  
X9 1 0 1 0 1 0 1 0  g 1 2 1 2 1 1 1 3 



9 .8  NP-Complete Problems Involving Sets , Vectors, and Numbers 66 1 

A solution to the instance of 0 ,  1-valued vector sum is 

The corresponding solution to the instance of subset sum is 

Exerc i ses  

9 .8-1 Problem name: equipartition6 

Instance: a bag S of positive integers 

I I I 

Question: Do there exist bags T and U such that T l±J U = S and 

Prove that equipartition is NP-complete. 

Solution: Obviously equipartition is in NP . We reduce subset sum. 
Consider an instance (S, g) of the subset sum problem. Let s = 
I:xES x. Let S' = S U  {s - 2g} .  This reduction can be performed 
in polynomial time. We prove that the reduction is correct . Note 
that I:xES' x = s + (s - 2g) = 2s - 2g. 

Suppose that there is a solution to the subset sum instance (S, g ) ,  
i . e . ,  there exists T <:;;; S such that I:xET x = g. Let T' = Ti±J {s - 2g} . 
Then T' <:;;; S and 

1 L x = s - 2g + L x = s - g = - L x . 
2 xET' xET xES' 

Let U' = S' - T' , so T' and U' form an equipartition of S' . 

Conversely, suppose that T' and U' form an equipartition of S' . 

6 The equipartition problem is also known as the parti tion problem. 



662 Feasible and I nfeasib le Problems 

Then T' or U' contains s - 2g; without loss of generality, assume 
that s - 2g E T' . Let T = T' - {s - 2g} .  Then 

I:> 
xET 

1 L x - (s - 2g) = - L x - (s - 2g) 
xET' 2 xES' 

1 
2 
( 2s - 2g) - ( s - 2g) = g,  

so T is a solution to the subset sum instance (S, g) . 

9 .8-2 Problem name: bin packing 
Instance: a bag of positive integers S (the sizes of the items to 

be packed), a positive integer B (a bin size), and a positive 
integer k (a number of bins) 

Question: Do there exist bags S 1 , • • •  , S k such that S 1 l±J · · · l±JS k = S 
and I:xES, x S B for i = 1, . . .  , k? (Is it possible to pack all 
the items whose sizes are given by S into k bins of size B ?) 

Prove that bin packing is NP-complete. 

9 .8-3 Problem name: knapsack 
Instance: a bag S of ordered pairs ( v; , w;) of positive integers (inter

preted as the value and weight,  respectively, of the ith object), 
a positive integer c (the capacity of the knapsack), and a posi
tive integer g (the goal) . 

Question: Does there exist T S: S such that the sum of the weights 
of the objects in T is at most c and the sum of the values of 
the objects in T is at least g? 

Prove that knapsack is NP-complete . 

9 .8-4 Reduce the vector sum problem for vectors over N to the subset sum 
problem. (Do not use the fact that subset sum is NP-complete .) 

9 .8-5 (a) Prove that the vector sum problem is NP-complete even if 
the elements of the goal vector g are represented in monadic 
notation (base 1 ). 

(b) A string x is an anagram of a string y if x E PERM (y ), i . e . ,  if x 
can be obtained by permuting the characters of y. Prove that 
the following problem is NP-complete . 



9.8 N P-Com plete Prob lems Involving Sets,  Vectors , and Numbers 663 

Instance: a bag of strings B and a goal string g 
Question: Does there exist a sub-bag {s1 , . . .  , sm} � B such 

that s 1 · · · Sm is an anagram of g? 
9 .8-6 **(a) Prove that the bin-packing problem remains NP-complete 

even if the sizes of the objects and bins are represented in 
monadic (base 1) . 

(b) Prove that the following problem is NP-complete . 
Instance: a bag of strings B and a goal string g 
Question: Does there exist an ordering ((s 1 , . . .  , sm )) such 

that {s 1 , . . . , sm} = B and S1 · · · Sm = g? 
*9 .8-7 The 3-dimensional matching problem is a kind of marriage problem 

for species with three genders, which we will call 8-male, E-male, 
and ¢-male . Suppose that a set X consists of k 8-males, Y consists 
of k E-males, and Z consists of k ¢-males. A set C consists of all 
triples (x, y , z) such that x, y, and z are compatible for marriage . 
Informally, the 3-dimensional matching problem amounts to find
ing k compatible triples that do not overlap so that each creature is 
involved in exactly one three-way marriage . 
Formally, if we are given three sets X, Y, and Z such that IX I  = 
I Y I  = IZ I  = k and a fourth set C � X x Y x Z,  a 3-dimensional 
matching for X, Y, Z, C is a set M � C such that IM I  = k and 
distinct elements of M disagree coordinatewise, i .e . ,  

Prove that the following problem is NP-complete: 
Problem name: 3-dimensional matching 
Instance: three sets X, Y, and Z such that IX I  = I Y I  = IZ I  and a 

fourth set C � X x Y x Z 
Question: Does there exist a 3-dimensional matching for X, Y, 

Z, C? 
Hint: Reduce set cover. 

9 .8-8 In the proof of Theorem 9 .24 the set V has cardinality m+tk.  Modify 
the proof to use a set V having cardinality m + t jlog ( k + 1) l - Hint: 
Use powers of 2 in defining the p's. 



664 Feas ib le and Infeas ib le  Problems 

��9 .  9 AN N P-COMPLETE PROBLEM ABOUT DFRS 

In this section we apply the theory of NP-completeness to the study of finite 
machines . We consider the problem of constructing a small DFR whose 
transfer relation is consistent with some given data. The problem originally 
arose in learning theory. Suppose that a student is trying to learn a language. 
A teacher presents a finite set S of positive examples, i . e . ,  strings that belong 
to the language, and a finite set T of negative examples, i .e . ,  strings that do 
not belong to the language . The student tries to find some kind of simple 
rule that is consistent with the examples, hoping that it will be consistent 
with further examples . To be concrete, assume that the language to be 
learned is regular. A rule may be expressed as a DFR, and one measure of 
a DFR's simplicity is the number of states. Thus the student tries to solve 
the following optimization problem: 

Problem name: minimum separation by DFRs 

Instance: two finite sets of strings S and T 

Answer: the least k such that there is a k-state DFR that accepts all strings 
in S and rejects all strings in T (it may accept or reject strings in 
S U  T) 

The corresponding decision problem is 

Problem name: separation by DFRs 

Instance: two finite sets of strings S and T and a natural number k 

Question: Does there exist a k-state DFR that accepts all strings in S and 
rejects all strings in T (it may accept or reject strings in S U  T)? 

The language recognized by the sought-after DFR is said to separate S 
from T. 

THEOREM 9.28. Separation by DFRs is NP-complete. 
Proof: We see that separation by DFRs is in NP, because in polynomial 
time we may easily guess a k-state DFA and then check that it accepts each 
string in S and rejects each string in T. 



*9.9 An N P-Com plete Prob lem about DFRs 665 

We reduce SAT to separation by DFRs . Let F be a Boolean formula with 
m clauses and v variables . Call F's clauses C0 , . . .  , Cm- I , and call F's variables 
x0 , . . .  , Xv- I . For convenience, let the literals x0 , . . .  , Xv- I , x0 , . . .  , Xv- I be 
denoted by £0 , . . .  , P2v- l ,  respectively. Let k = m + 2v, i .e . ,  the number of 
clauses plus literals .  

We will construct sets S and T such that any k-state DFR P that accepts 
all strings in S and rejects all strings in T must encode a satisfying assignment 
to F. 

We begin by specifying subsets S 1 <:;;; S and T1 <:;;; T that will ensure 
that the control states of P form a cycle connected by edges labeled a .  Let 

S1 {A, ak} 
T 1 { a; : O < i < k} . 

Assume that P is a k-state DFR that accepts all strings in S 1 and rejects 
all strings in T1 . We will give convenient names to the control states 
of P.  For i = 0, . . .  , k - 1, let q; denote the state of program P after 
scanning the input string a; . If O :S i < j < k, then states q; and q1 
are distinguished (cf. Section 4 .7) by ak-J, so q; -=/ q1 . Since P has only 
k control states, q0 , . . .  , qk- 1 comprise all the states of P, and q0 is P's 
unique accepting state . For convenience, we will label states q0 , . . .  , qk- 1 

by Co ,  . . .  , Cm- 1 , xo , . . .  , xv- 1 , xo , . . .  , xv- 1 , respectively (Figure 9 .13) .  In 
this notation, C0 is P's unique accepting state; all other states are rejecting 
states . 

Next we construct a subset T 2 <:;;; T that will ensure that the edge labeled 
b that goes from C; goes to a literal of C; . Let 

T2 = { a;ba1 : 0 :S i <  m and O :S j < k} - {a1ba2v- j : £1 is a literal of C;} . 

Assume that P rejects all strings in T2 as well . If the edge from C; labeled 
b goes to £1, then there is a path from C0 to £1 labeled a;b .  There is also a 
path from P1 to C0 labeled a2v-J, so a;ba2v - J is accepted . Therefore P1 is a 
literal of C0 , as promised . 

We ensure that the edge labeled b that goes from £1 goes to either x0 or 
C0 by constructing the following set T3 <:;;; T. Let 

T3 = {am+ibah : 0 :S J < 2v, 0 < h < k ,  and h -=/  v)} .  

For convenience, we will label the state C0 by true and the state x0 by false . 



666 Feas ible and Infeas ib le Problems 

FIGURE 9. 1 3 : States and edges necessary in any k-srate DFR that separates S1 
from T1 . All states except C0 are rejecting. 

Say that £1 is "vrai" (from the French for "true") if there is an edge labeled 
b from £1 to C0 . Next we construct a subset T4 s;;:; T that will ensure that 
x1 and x1 are not both vrai. Let 

Finally, by constructing S5 s;;:; S, we ensure that the edge labeled b that 
goes from C; goes to a vrai variable. Let 



*9.9 An NP-Complete Problem about DFRs 667 

If P is indeed a k-state DFR that accepts all strings in S and rejects all 
strings in T, then we construct a satisfying assignment A that assigns true 
to the vrai literals, i.e. , 

A (xi) = { true 

false 

if (x1 ----+ true, SCANb) E I, 

otherwise, 

where I denotes the instruction set of P. 
Conversely, assume that A is a satisfying assignment of F. Let w( C;) 

denote the first literal £ in C; such that A ( £) = true. We construct a DFR 
P with the control set, start state, and accepting state named above. P's 
instruction set is 

(q; ----+ %+ t)modk , SCAN a) for o :s; i < k 

for O _:s; i < m 

for O _:s; j < 2v. 
(C; ----+ w(C;) , SCANb) 

(£1 ----+ A (£1) , SCANb) 

It is easily verified that P accepts all strings in S and rejects all strings in T. 
Thus we have shown that F is satisfiable if and only if there exists a 

k-state DFR that accepts all strings in S and rejects all strings in T. (In fact, 
more careful analysis of our construction shows that F is satisfiable if and 
only if there exists a k-state NFA that accepts all strings in S and accepts no 
strings in T. See Exercise 9.9-2.) 

Because k, S, and T can easily be constructed in polynomial time, SAT 
is :::;�-reducible to separation by DFRs, as asserted. Therefore separation by 
DFRs is NP-complete . ■ 

EXAMPLE 9.29. Let us demonstrate the reduction on the Boolean formula 
F with five variables x0 , • . .  , x4 and the following six clauses: 

Co x0 V x2 V x3 

C1 x 1 V :X3 V x4 

C2 x0 V :X 1 V x4 

C3 :X1 V :X2 V x4 

C4 X2 V X3 V X4 

Cs x0 V :X1 V x2 . 



668 Feasible and Infeasible Problems 

Then m = 6 and v = 5, so k 
T = Ti U T2 U T3 U T4 , where 

S i {A, ai 6 } 
Ti {a, a2 , . . . , a i s } 

m + 2v 

{ ba1 : j = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 

1 6. S S i U Ss and 

9,  1 1 ,  12 ,  1 3 ,  14 ,  1 5 }  

U { aba1 : j = 0,  3 , 4, 5 , 6, 7 , 8 ,  10 , 1 1 , 1 2 , 1 3 , 14 , 1 5 }  

U { a 2ba1 : j = 0 1 ,  2 ,  3 ,  5 ,  7 ,  8 ,  9 ,  1 1 ,  12 ,  1 3 , 14 ,  1 5 }  

U {a3ba1 : j  = 0,  2 ,  5 , 6, 7 , 8 , 9, 10 ,  1 1 ,  12 ,  1 3 ,  14 ,  1 5 }  

U {a4ba1 : j = 0, 2 , 3 , 4 , 5 , 6 , 9 , 10 ,  1 1 , 1 2 , 1 3 , 14 ,  1 5 }  

U {a5ba1 : j  = 0 ,  1 ,  2 ,  3 ,  6 ,  7 ,  9 ,  1 0 ,  1 1 ,  1 2 ,  1 3 ,  1 4 ,  1 5 }  

{ a1ba" : j = 6 ,  . . . , 1 5  and h = 1 ,  . . .  , 4 ,  6 ,  . . .  , 1 5 }  
{a6bai ib a7bai 2b a8bai 3b a9ba i4b ai0bai 5b} ' ' ' ' 
{bb, abb, a2bb, a3bb, a4bb, a5bb } .  

A satisfying assignment for F is 

A (x0 ) false 
A (x i ) true 
A (x2 ) false 
A (x3 ) true 
A (x4 ) true. 

The corresponding DFR is presented in Figure 9 . 14. 

Exerc i ses  

■ ■ ■  

9.9- 1 Verify that the program P constructed in the proof of Theorem 9.28 
rejects all strings in T 4 . 



9.9-2 

*9.9 An NP-Complete Problem about DFRs 669 

FIGURE 9. 1 4: The DFR corresponding to a satisfying assignment. All states 
except C0 are rejecting. 

(a) By analyzing our construction more carefully, show that if 
there exists a k-state NFA that accepts all strings in S and 
accepts no strings in T, then F is satisfiable. 

(b) Prove that the problem of determining whether there is a k
state NFA that accepts all strings in S and accepts no strings 
in T is NP-complete. 

9 .9-3 The reduction from SAT to separation by DFRs does not guarantee 
that at least one of x1 and x1 is vrai if F is satisfiable. Why was 
this property not needed in proving that separation by DFRs is 
NP-complete? 



670 Feasib le and Infeasib le Problems 

*9 . 1 0 COMPLEXITY OF SOME PROBLEMS I NVOLVI NG  
REG U LAR LANG UAGES 

Two important problems are testing membership in a language and de
termining whether two languages are equal. The membership problem for 
regular languages and even context-free languages is in P. However, we saw 
in Section 7 . 1 3  that there is no algorithm at all for testing whether two CFLs 
are equal. In this section we will consider the time and space complexity 
of testing whether two regular languages are equal. (See Exercises 9 . 1 -5 
and 9 . 1 -6 for definitions and important theorems about space. )  

Suppose that we are given a string x and a DFA P, and we wish to 
determine whether x is accepted by P. Using a RAM, we could simulate 
a single step of P by table lookup in time O(log IP I ) ,  where IP I denotes 
the length of the string that represents the program P.  Thus we could 
simulate P on input x in time O( IP I  + lx l log I P I ) ,  so this problem is solvable 
deterministically in polynomial time. 

In particular, every DFA language is in P. Because every NFA language 
is a DFA language, every NFA language is in P as well. However, that 
statement says nothing about the running time of a program that takes a 
string x and an NFA program P as input and determines whether P accepts x. It is not efficient to convert P to a DFA using the subset construction 
(see Chapter 3 ), because the conversion takes time that is exponential in 
the size of the program P; the total time for conversion plus simulation is 
0(2 IPI + lx l lP I ) .  

Fortunately, there is a more efficient way to test whether x i s  accepted 
by an NFA P. We use the idea behind the subset construction, but we do 
not construct a DFA. We simulate P by keeping track of the set of possible 
control states of P. Thus simulating a single step takes time O ( IP I  log IP I ) ,  
so the total time for the simulation is O( lx l lP I  log IP I ) ,  which is bounded 
by a polynomial . 

Now suppose that we are given a string x and a regular expression r, 
and we wish to determine whether x is generated by r. We can efficiently 
convert r to an NFA program P whose size is O(r) . Then we use the same 
algorithm as in the preceding paragraph, so this problem is in P as well. 

Thus we have proved the following result: 

PROPOSITION 9. 30. Let us represent regular languages by DFAs, NFAs, or 



*9 . 1 0  Complexity of Some Prob lems Involving Regular Languages 67 1  

regular expressions. There is a deterministic algorithm for testing whether a string x belongs to a regular language L that runs in time bounded by a polynomial in the length of x and the length of L's representation. ■ 

Next we consider the equivalence problem for regular languages, i .e . ,  
"How hard is it to determine whether two regular languages are equal?"  
Unlike the membership problem, the difficulty of this problem seems to 
depend strongly on how the regular languages are represented. 

If the regular languages are given by DFRs, then the equivalence prob
lem is in P via the algorithm of Theorem 4 .32 .  However, if the regular 
languages are given by regular expressions , then the equivalence problem 
is ::=;t-complete for PSPACE (defined in Exercise 9 . 1 -6). Before proving 
that, we will consider a restricted kind of regular expression for which the 
equivalence problem is co-NP-complete. (Recall that a language is co-NP
complete if and only if its complement is NP-complete.) 

Two regular expressions are called equivalent if they generate the same 
language and inequivalent if they generate different languages. A regu
lar expression is called star-free if it does not contain the Kleene-closure 
(* ) operation. The problem of determining whether two star-free regular 
expressions are inequivalent is called the inequivalence problem for star-free 
regular languages. 

Problem name: inequivalence of star-free regular languages 

Instance: two star-free regular expressions r1 and r2 

Question: Is L (ri ) =/= L h ) ?  

The problem i s  the same as testing membership i n  the language 

{ (r1 , r2 ) : r1 and r2 are star-free regular expressions and L (ri ) =/= L h ) } .  

Observe that a star-free regular expression cannot generate strings that are 
longer than it is; thus every star-free regular expression generates a finite 



672 Feasible and Infeasible Problems 

language. Although not as general as the equivalence problem for general 
regular expressions, the equivalence problem for star-free regular expressions 
appears quite hard. 

A seemingly simpler problem, stated formally below, is to determine 
whether L (r) -=J. { 0 , 1 }n . This is a special case of the inequivalence problem 
for star-free regular expressions taking r1 = r and r2 = ( 0 U 1 )n . 

Problem name: non universality of star-free regular expressions 

Instance: a star-free regular expression r and a natural number n 

Question: Is L (r) -=J. {O ,  1 }n ? 

THEOREM 9.3 1 .  Nonuniversality of star-free regular expressions is NP-complete. 
Proof: First we show that non universality of star-free regular expressions is 
in NP. Note that a star-free regular expression r cannot generate any string x such that [x [  > [ r [ .  We present a nondeterministic algorithm to test 
whether r generates a language different from �n : If [r [  < n then accept; 
otherwise guess a string x such that [x[ = n; if x does not belong to L (r) , 
then accept; next guess a string x such that [x [  :::; [r [  and [x [  -=J. n; if x belongs 
to L(r) , then accept. Thus nonuniversality of star-free regular expressions 
is in NP. 

Next we reduce SAT to non universality of regular expressions. Let F be 
a CNF formula with variables x1 , . . .  , Xn and clauses C 1 , . . .  , Ck . For each 
clause C; we write a star-free regular expression R; = Yil · · · Jin ,  where 

Jij = 
0 if x1 belongs to C; ,  

1 if x1 belongs to C; ,  

( 0 U 1 )  otherwise . 

Note that an assignment A fails to satisfy C; if and only if A (x 1 ) · · · A (xn ) 
E L(R;) . An assignment fails to satisfy a formula if and only if it fails 
to satisfy one of the clauses; therefore A fails to satisfy F if and only if 
A (x 1 ) · · · A (xn ) E L(R 1 U · · · U Rk) .  Let r = R 1 U · · · U Rk . F is satisfiable 
if and only if L (r) -=J. {0, 1 }n . ■ 



*9 . 1  0 Complexity of Some Problems Involving Regu lar Languages 6 73 

COROLLARY 9.32.  lnequivalence of star-free regular expressions i s  NP-complete. 
Proof: We show that inequivalence of star-free regular expressions is in NP. 
Note that a star-free regular expression r cannot generate any string x such 
that lxl > Ir ! . We present a nondeterministic algorithm to test whether r1 

and r2 are inequivalent: Guess a string x such that lx l :::; max ( h I ,  h I ) ;  
determine whether x belongs to L(r1 ) ,  and determine whether x belongs to L (r2 ) ;  if x belongs to exactly one of them, then accept. Thus inequivalence 
of star-free regular expressions is in NP. 

Nonuniversality of star-free regular expressions is :::;!,-reducible to in
equivalence of star-free regular expressions by the reduction f(r, n) = 
(r, ( 0 U 1 t) if Ir !  2:: n, ( 0 ,  1 )  otherwise. Since the nonuniversality problem 
is NP-complete by Theorem 9. 3 1 ,  the inequivalence problem is NP
complete as well. ■ 

EXAMPLE 9.33. To illustrate the reduction from SAT to nonuniversality of 
star-free regular-expressions, consider the Boolean formula F with clauses 

Cr X1 V X2 V X3 

C2 x\ v x2 v x3 
C3 X1 V x'2 V X3 
C4 X2 V X3 . 

The reduction maps the Boolean formula F to the star-free regular-expression r = 000 U 100 U 0 1 1  U (0 U 1 ) 10 .  A satisfying assignment of F is A (x 1 ) = false, A (x2 ) = false, A (x3 ) = true. Correspondingly, r does not 
generate the string 001 .  • • •  

Having seen that the inequivalence problem for star-free regular expres
sions is NP-complete, let us now consider general regular expressions, which 
may include the Kleene-closure operation. Their inequivalence problem is 
apparently harder. 

THEOREM 9.34. The problem of determining whether a regular expression generates a language different from { 0 ,  1 } * is ?SPACE-complete. 



6 74 Feasi b le and Infeasible Problems 

Proof: Let � be the regular expression ( 0 U 1) and let 

A = { R : R is a regular expression and L(R) -=J. �* } .  

The nondeterministic polynomial-space algorithm given below recognizes 
A by mimicking the subset construction (Section 4.6): 7 

convert R to an equivalent NFA P; 
eliminate null instructions from P and call the new program P'; 
let qsrarr be the start state of P' and I the instruction set of P' ; 
S := {qstarr } ; (* X : = A *) 
while S contains an accepting state do begin (* while x is accepted by P' *) 

nondeterministically choose a character c in � ;  

end; 

S' := {q' ; (:3q) [q E S  A (q --+ q' , SCANc) E I] } ; (* S' := Ste *) 
s := S' ; (* X := XC *) 

accept; (* because x was not accepted by P' *) 

This program uses only a linear amount of space in order to store S and 
S' plus a negligible amount for other variables. Thus L is accepted by an 
NTM program using space n. By Savitch's theorem (Exercise 9. 1 -6) L is 
recognized by a DTM program using space O (n2 ) ,  so L E PSPACE.  

We will prove that A i s  PSPACE-complete by a generic reduction. 
The set of invalid traces of a TM program is the complement of the set of 
accepting traces. Our key idea is that the set of invalid traces of a polynomial 
space-bounded Turing machine program on input x is generated by a regular 
expression whose length is bounded by a polynomial in x. We will show 
how to determine such a regular expression in polynomial time. 

Let B = nk and let P be a DTM program that uses space bounded by B.  
Without loss of generality, assume that P has no  input; instead, the input i s  
initially stored on  P's tape. Thus P is a program for a machine [control, tape] . 
Let the control set be Q, the tape alphabet be r, and the instruction set be 

7 The polynomial-space-bounded NTA we construct for A does not halt if the input is 
not in A . But a space-bounded algorithm can be made time bounded as well, if we 
wish, by Exercise 9 . 1 -5 .  In either case, Savitch's theorem (Exercise 9 . 1 -6) is applicable. 



*9 . 1 0 Complexity of Some Problems Involving Regu lar Languages 6 75 

I. Let x be a string of length n. A trace of M can be represented as 

for some m 2:'. 0, where q1 is the control state at time t and s1 is the tape 
state at time t, padded with blanks so that js1 j = B + 1 for all t. In this 
representation, we assert that the set of invalid traces of P on input x is a 
regular set . In fact we will show that it is generated by a regular expression 
that we can write down in polynomial time. Let T = r u [[l, and let � = Q U T U {#} .  A string C over � represents 
a valid trace of M on input x if and only if all of the following conditions 
are true. For each condition, we write regular expressions that generate all 
strings C which do not satisfy the condition. 

(i) C must end with #.  
The set of strings that do not satisfy this condition is Ro , where 

Ro = �* (Q U T) .  

(ii) C must have exactly B + 3 characters between consecutive #s. 
The set of strings that do not satisfy this condition is R 1 U R2 , 

where 

(iii) The second character in C after a # must be a u (or nonexistent). 
The set of strings that do not satisfy this condition is R3 , where 

R3 = LJ �*#�c�* 
cfu 

(iv) Let x = x1 • • • x,, . Let z 
must be a prefix of C. 

# [l B+ l-n Th · qour:!.f2 · · · Xn u . e strmg z 

Define z1 by z 1 • • • zs+4 = z. The set of strings that do not 
satisfy this condition is R4,  where 

R4 = LJ LJ �
i
-

1 (A U c�* ) .  
19.<:::\z\ cfz, 



6 76 Feasib le and Infeasib le Problems 

(v) If the tape head is not on one of three adjacent squares at time t, 
then it must not be on the middle one at time t + 1 and the middle 
one must not change between time t and t + 1 .  

The set of strings that do not satisfy this condition is R 5 , where 

Rs  = LJ LJ �* abc�8+4adc�* . 
a,b,cEr dfb 

(vi) If the tape head is on square j at time t, then the surrounding squares 
and the control state must be updated according to an instruction 
of P at time t + 1 .  

The set of strings that do not satisfy this condition i s  R6 , where 

u 
II �[(q,abc)>---+(q1,a1 b1 c1 )] 

(vii) qm must be an accepting control state. 
The set of strings that do not satisfy this condition is R 7 , where 

u 
q a nonaccepting control state 

Let R = Ro U · · · U R7 . Then L(R) is the set of invalid traces of P on input x. 
P accepts x if and only if L(R)  -=J. �* . ■ 

Exerc i ses 

9. 1 0- 1  In each of the exercises below, state the problem formally in  terms 
of languages and prove that the problem is in P, is NP-complete, is 
co-NP-complete, or is PSPACE-complete. 

(a) Determine for DFRs P i and P2 whether L (P i ) � L (P2 ) .  

Solution: Let L = { (P i , P2 ) : P i and P2 are DFRs such that 
L (P i ) � L (P2 ) } .  L is in P. Let P3 be a DFR for L (P i ) UL(P2 ) 
(obtained by the pairing construction), and test in polynomial 
time whether L (P2 ) = L (P3 ) .  



*9 . 1 0  Complexity of Some Prob lems Involving Reg u lar Languages 6 77  

(6) Determine for DFRs P 1 and P2 whether L (P 1 ) C L(P2 ) .  

(c) Determine for star-free regular expressions r1 and r2 whether L (ri ) � L h ) .  

Solution: Let L = { (r1 , r2 ) : r1 and r2 are star-free regular 
expressions such that L(ri ) � L h ) } .  L is co-NP-complete. 
We can nondeterministically test membership in I by guess
ing a string x with [x[ :S: h [ and checking in polynomial 
time that x is in L (ri ) but not in L h ) .  Thus I E NP, so 
L E  co-NP. 
L is co-NP-hard because the special case with r1 = �n is 
co-NP-hard by Theorem 9 . 3 1 .  

(d) Determine for regular expressions r1 and r2 whether 
L (ri ) � L h ) .  

Solution: Let L = { (r1 , r2 ) : r1 and r2 are regular expressions 
such that L(ri ) � L h ) } .  L is PSPACE-complete. L is in 
PSPACE by the following algorithm: Let r3 = r1 U r2 , and 
test whether L h )  = L h ) .  L is PSPACE-hard because the 
special case with r1 = I:* is PSPACE-hard. 

(e) Determine for regular expressions r1 and r2 whether L(ri ) C L h ) .  

9 . 1 0-2 Let L = { (r1 , r2 ) : r1 and r2 are star-free regular expressions such 
that L(ri ) c L h ) } .  Prove that L is NP-hard and co-NP-hard. 

Solution: L is NP-hard because the special case with r2 = �n is NP
hard. To see that L is co-NP-hard, note that determining whether 
L (ri ) � L h )  is co-NP-complete by Exercise 9 . 10-l (c). For the 
reduction, note that L(ri ) � L h )  if and only if L (ri ) C Lh U #) 
where # is some character that does not belong to the alphabet of r1 . 

9 . 1 0-3  Say that control states q 1 and q2 are equivalent in an FM program P if 
P accepts the same strings when started in state q 1 as when started 
in state q2 • How hard is it to determine for an FM program P and 



678 Feas ib le and Infeas ib le Problems 

control states q 1 , q2 whether q 1 and q2 are equivalent in P? 
(a) Assume that P is a DFR. 
(6) Assume that P is an NFA. 

9 . 1 0-4 We say that an NFA is an acyclic NFA if its state graph is acyclic 
(contains no cycles). 

(a) Prove that L is generated by a star-free regular expression if 
and only if L is accepted by an acyclic  NFA. 

(6) How hard is it to determine whether two acyclic NFAs accept 
different languages? 

9 . 1 0-5 (a) Is there a deterministic polynomial-time algorithm for deter
mining whether a string x is generated by a CNF grammar G? 

(6) Using part (a), present a deterministic polynomial-time algo
rithm for determining whether a string x is accepted by an 
NFA P. Do not use the algorithm presented in this section. 

Solution: Eliminate null instructions and the EOF test from 
P. We construct a right-linear grammar G that generates the 
language accepted by P. The variables of G are the states 
of P. The start variable of G is the start state of P. For each 
instruction (i --+ j, SCAN c) , G contains the production i --+ cj. 
For each accepting state q and each instruction (i --+ q, SCAN c) 
in P, G also contains the production i --+ c. The right-linear 
grammar G is converted to CNF by introducing new variables 
Ve for each character c as in Section 5 . 3 .  Then we apply part (a). 

(c) Using part (6), present a deterministic polynomial-time algo
rithm for determining whether a string x is generated by a 
regular expression r. Do not use the algorithm presented in 
this section. 

9 . 1 0-6 Suppose that we represent regular languages by Turing machine 
programs that accept them. If we use this representation, how hard 
is it to test whether a string x belongs to a regular language L?  

Solution: Undecidable. We reduce from K.  Given a string z, we 
construct a program Pz that does the following on input x: If z E K, 
then accept, else reject. Pz accepts a language L (Pz ) ,  which is either 



9 . 1 1 Chapter Summary 679 

0 or I:*, and hence regular. Any string x belongs to L (Pz) if and 
only if z belongs to K. 

9 . 10-7 Consider the problem of determining whether two CFGs generate 
the same language. 

(a) Prove that the problem is NP-hard. 

Solution: Reduce the halting problem, which is NP-hard 
and more. 

(6) Is the problem NP-complete? 

Solution : No. It is not in NP because it is undecidable. 

9 . 1 0-8 (a) Let P be a space-bounded Turing machine program. Prove 
that the set of invalid traces of P is a regular set. 

(6) Let P be a space-bounded Turing machine program. Prove 
that the set of valid traces of P is a regular set . 

(c) Let P be a time-bounded Turing machine program. Prove that 
the set of invalid traces of P is a regular set. 

9 . 1 1 CHAPTER S U M MARY 

Polynomial time (P) is the class of decision problems that are efficiently 
solvable from a theoretical point of view. Nondeterministic polynomial time (NP) is an apparently larger class, to which a frustratingly large number 
of important decision problems are known to belong. We defined :S:t
reductions, a polynomial-time-bounded version of Chapter 7 's m-reductions. 
The hardest problems in NP, under :S:!,-reductions, are called NP-complete. 
P = NP iff all NP-complete problems are in P iff at least one NP-complete 
problem is in P. Although we cannot say for sure whether NP-complete 
problems can be solved efficiently, it is safe to say that they cannot be solved 
efficiently by currently available techniques. 

We can prove that many particular problems are NP-complete by re
ducing any known NP-complete problems to them. For such reductions, 
the most important NP-complete problem is 3-SAT, which is a special case 
of Boolean satisfiability, which in turn is a special case of symbol-system 
satisfiability. We proved many problems to be NP-complete in the text. 



680 Feas i ble and Infeasib le Prob lems 

More are presented as exercises. Certain among them, like clique, ver
tex cover, Hamiltonian cycle, k-colorability, and equipartition, are widely 
used in reductions to other problems. For a more extensive treatment of 
NP-completeness, the reader should refer to the classic Computers and Intractability by Garey and Johnson. 

To learn efficient deterministic methods for solving specific problems, 
the reader should refer to any textbook on the design and analysis of algo
rithms. The theory of probabilistic algorithms is also very important; e.g . ,  
primality can be solved probabilistically in polynomial time. 



1 0 

Appendix 

1 0 . 1 GREEK SYMBOLS 

We summarize the most important usages for various Greek letters. 

o: (alpha) The initializer of a program (Chapters 2-4, 6, 7 ) .  A string of 
characters and variables in a CFG (Chapter 5 ). 

68 1 



682 Appendix 

ad (alpha-sub-d) The initializer of the device d (Chapters 2-4, 6) . 

/3 (beta) A string of characters and variables in a CFG (Chapter 5 ) .  

1 (gamma) A string of characters and variables in a CFG (Chapter 5) . 

r (Gamma) The alphabet of a non-I/O device (Chapters 2, 3, 6) . The 
alphabet for a symbol system (Chapter 9) . 

� (Delta) T he output alphabet (Chapter 2) . 

�; (Delta-sub-i) One of the classes in the ith level of the arithmetical 
hierarchy (Chapter 8) . 

( (zeta) A string of characters and variables in a CFG (Chapter 5) . 

A (empty string) The empty string (Chapters 0-9). Not called by its 
Greek name, lambda . 

v (nu) A new control state in a simulation via subprograms (Chapter 3 ) .  

7r (pi) An instruction (Chapters 2 ,  3 ,  7 ,  9). 

II (Pi) The sequel relation of a program (Chapters 2-4, 7, 9). An operator 
used in defining the arithmetical hierarchy (Chapter 8) . 

II; (Pi-sub-i) One of the classes in the ith level of the arithmetical hierarchy 
(Chapter 8) . 

p (rho) An arbitrary relation (Chapters 0, 6) . A relation of representation 
(Chapter 3 ) .  

(j (sigma) A n  arbitrary relation (Chapter 0) . 

I: (Sigma) An alphabet, especially the input alphabet (Chapters 0-8) . An 
operator used in defining the arithmetical hierarchy (Chapter 8) . 

I:; (Sigma-sub-i) One of the classes in the ith level of the arithmetical 
hierarchy (Chapter 8) . 

7 (tau) The transfer relation of a program (Chapters 2-8) . 

cpp (phi-sub-P) The transfer function of the deterministic program P 
(Chapter 8) . 



1 O. 1 G reek Symbols 683 

XA (chi-sub-A) The characteristic function of the set or bag A (Chapters 0,  
7-9) . 

w (omega) The terminator of a program (Chapters 2-4, 6, 7) .  

wd (omega-sub-cl) The terminator of the device d (Chapters 2-4, 6) . 



684 Appendix 

1 0 . 2  G LOSSARY 

We summarize some important definitions. Historical names for similar, 
but not necessarily identical , concepts are given in parentheses. 

Block To enter a configuration to which no instruction is applicable. 

Co-Finite S is a co-finite set if and only if S is a finite set. 

Computation The sequence of instructions executed by a program when 
it is run to completion. 

Configuration The states of all of a machine's devices. 

Counter machine A machine with a control, a counter, and possibly input 
and/ or output. The counter may be signed or unsigned, but is 
usually unsigned. 

Deterministic A program is deterministic if there is at most one instruc
tion that can be applied to each configuration and no instruction 
that can be applied to a final configuration. This condition must 
hold for all configurations, whether actually entered on some input 
or not. 

Final configuration A configuration in which all states are final, i.e. , a 
configuration that is in the domain of the terminator. 

Finite machine A machine with a control and possibly input and/ or out
put. (Historically, a finite automaton.) 

Finite transducer A transducer running on a machine [control, input, 
output] . (Historically, a gsm.) 

Finite transduction The relation computed by a finite transducer, usually 
treated as a multiple-valued function. (Historically, a gsm map.) 

Halt To enter a final configuration and stay there. 

History The argument, initializer, sequence of configurations entered and 
instructions performed, terminator, and result of a program when 
it is run to completion. 



Inattentive Having no input device . 

1 0 .2  G lossary 685  

Initial configuration The configuration a program starts in . 

Initializer A partial function that maps an argument to a program's initial 
configuration or a device's initial state . 

Instruction A tuple consisting of an operation for each device . By apply
ing an instruction to a configuration of a machine, we obtain a new 
configuration of the machine . 

Machine A tuple of devices . 

Nondeterministic Not necessarily deterministic . Permitted to choose 
among instructions at each step and to choose between halting and 
continuing execution . 

Operation A partial function on the realm of a device . By applying an 
operation to a device's state, we obtain a new state for the device . 

Program An initializer, terminator, and set of instructions . 

Reachable A control state is reachable if there is a path from the initial 
control state to it in the program's digraph . It need not actually be 
entered when the program is run on any argument . 

Realm The set of states that a device can hold . 

Recursive Computed or recognized by a deterministic Turing machine 
program. 

Recursively enumerable Accepted by a nondeterministic Turing accep
tor. 

Repertory The set of operations that a device is capable of performing . 

Sequel relation For a particular program, this is the relation that maps a 
configuration to a next configuration . 

Stack machine A machine with a control, a stack, and possibly input 
and/or output . (Historically, a pushdown automaton .) 

Tape machine A machine with a control, a tape, and possibly input and/ or 
output . 



686 Appendix 

Terminator A partial function that maps a final configuration of a program 
to the result . A relation that maps a state of a device to a result . 

Trace The sequence of configurations entered by a program when it is run 
to completion . 

Transfer function A transfer relation that happens to be a partial function . 

Transfer relation The relation that maps a program's argument to a result . 

Turing machine A machine with a control, one or more tapes, and possi-
bly input and/ or output . 

2-Counter machine A machine with a control, two counters, and possibly 
input and/ or output . The counters may be signed or unsigned but 
are usually unsigned . 

2-Stack machine A machine with a control, two stacks, and possibly input 
and/or output . 

k-Tape machine A machine with a control, k tapes, and possibly input 
and/or output . 



1 0 . 3  COM MON ACRONYMS 

1 0 . 3  Common Acronyms 687 

In this section we list the most important acronyms . Historical names for 
similar, but not necessarily identical, objects are given in parentheses . 

CFG Context-Free Grammar. A grammar consisting of a start variable 
and a set of productions of the form A --+ /3, where A is a variable 
and /3 is a string of variables and terminal characters . 

CFL Context-Free Language . A language generated by a CFG . 

CM Counter Machine . A machine with a control, a counter, and possibly 
input and/or output . 

CNF Chomsky Normal Form. A normal form for CFGs in which every 
production has the form A --+ c or A --+ BC where A,  B ,  and C 
denote variables and c denotes a terminal character. 

co-NP co-Nondeterministic Polynomial time . The class of all languages 
whose complement belongs to NP. 

co-NP = {L : I E  NP} . 

co-r.e. language co-recursively enumerable language . A language whose 
complement is recursively enumerable . L is co-r .e .  if and only if I 
is r .e .  

CYK Cocke-Younger-Kasami . A particular algorithm, using dynamic 
programming, that tests membership in CFLs . 

DCA Deterministic Counter Acceptor. A deterministic acceptor running 
on a counter machine . The counter may be signed or unsigned . 
Assume that the counter is unsigned if not specified . 

DCFL Deterministic Context-Free Language . A language accepted by a 
DSA . 

DCM program Deterministic Counter Machine program. A determinis
tic program for a counter machine . 

OCR Deterministic Counter Recognizer. A recognizer running on a 



688 Appendix 

machine [control, input, counter] . The counter may be signed or 
unsigned. Assume that the counter is unsigned if not specified. 

DFA Deterministic Finite Acceptor. A deterministic acceptor running on 
a machine [control, input] . 

DFM program Deterministic Finite Machine program. A deterministic 
program for a finite machine. 

DFR Deterministic Finite Recognizer. A recognizer runnrng on a 
machine [control, input] . (Historically, a DFA.) 

DSA Deterministic Stack Acceptor. A deterministic acceptor running on 
a machine [control, input, stack] . (Historically, a DPDA.) 

DSM program Deterministic Stack Machine program. A deterministic 
program for a stack machine. 

DSR Deterministic Stack Recognizer. A recognizer running on a 
machine [control, input, stack] . (Historically, a DPDA.) 

OTA Deterministic Tape Acceptor or Deterministic Turing Acceptor. A 
deterministic acceptor running on a machine [control, input, tape] . 

DTM program Deterministic Turing Machine program. A determinis
tic program for a machine with a control, one or more tapes, and 
possibly input and/ or output. 

DTR Deterministic Turing Recognizer. A recognizer running on a ma
chine consisting of a control, an input, and one or more tapes. 

FM Finite Machine. A machine with a control and possibly input and/ or 
output. 

GNF Greibach Normal Form. A normal form for CFGs in which every 
production has the form A ._ b1 where A is a variable, b is a terminal 
character, and I is a string of terminal characters and variables. 

NCA Nondeterministic Counter Acceptor. A nondeterministic acceptor 
running on a machine [control , input, counter] . The counter may 
be signed or unsigned. Assume that the counter is unsigned if not 
specified. 



1 0 . 3  Common Acronyms 689 

NCM program Nondeterministic Counter Machine program. A nonde
terministic program for a counter machine. 

NFA Nondeterministic Finite Acceptor. A nondeterministic acceptor run
ning on a machine [control, input] . 

NFM program Nondeterministic Finite Machine program. A nondeter
ministic program for a finite machine. 

NP Nondeterministic Polynomial time. The class of languages accepted 
by NTAs in polynomial time. 

NSA Nondeterministic Stack Acceptor. A nondeterministic acceptor run
ning on a machine [control, input, stack] . (Historically, a PDA.) 

NSM program Nondeterministic Stack Machine program. A nondeter
ministic program for a stack machine. 

NTA Nondeterministic Turing Acceptor. A nondeterministic acceptor 
running on a machine consisting of a control, an input, and one or 
more tapes. 

NTM program Nondeterministic Turing Machine program. A nondeter
ministic program for a machine with a control, one or more tapes, 
and possibly input and/ or output. 

P Polynomial time. The class of languages recognized by DTRs in poly
nomial time. 

RAM Random Access Memory or Random Access Machine. ( 1 )  A device 
consisting of a finite number of registers and an unbounded random 
access memory array. (2) A machine with a control, a random access 
memory, and possibly input and/or output. 

r.e. language recursively enumerable language. A language accepted by 
an NTA. 

SM Stack Machine. A machine with a control, a tape, and possibly input 
and/or output. 

TM Turing Machine. A machine with a control, one or more tapes, and 
possibly input and/ or output. 



690 Appendix 

1 0 .4  PROG RAM AND G RAM MAR EQUIVALENCES 

In the first column of the table, we list the most important kinds of programs 
for testing membership in languages, in approximately increasing order of 
their computational power. There is one exception: DSAs and DSRs cannot 
in general simulate NCAs, nor can NCAs simulate DSAs and DSRs. In 
order to save space, we have used some atypical abbreviations: DRR, DRA, 
and NRA refer to programs for a machine [control, input, RAM] ; 2-DCR, 
2-DCA, 2-NCA, 2-DSR, 2-DSA, and 2-NSA refer to two-counter and two
stack machine programs. Programs with equivalent computing power are 
grouped together; order within a group is not important . Note, however, 
that 2-CM programs require exponential time in order to simulate the other 
programs in their group. 

In the second column we list grammars and other models that are equiv
alent to the programs in the first column. Order within a group is not 
important. In the third column we give the typical name for the class of 
languages accepted or recognized by programs in the first column. 



Program 

DFR 
DFA 
NFA 

DCA 
DCR 
NCA* 

DSA* 
DSR* 

NSA 

2-DCRt 
2-DSR 
DTR 
DRR 

2-DCAt 
2-NCAt 
2-DSA 
2-NSA 
DTA 
NTA 
DRA 
NRA 

1 0 .4 Program and G rammar Equ ivalences 6 9 1  

Grammar Language 

regular expression regular language 
left-linear grammar 
right-linear grammar 

DCR language 

NCA language 
LR(l)  grammar deterministic context-free language (DCFL) 

context-free grammar context-free language (CFL) 
recursive language 

semi-Thue system recursively enumerable (r.e.) language 
Thue system 
HG-program 

*Starred programs in different groups have incomparable computing power. 
tThese programs require exponential time to simulate the others in their group. 



692 Appendix 

1 0 . 5  H IERARCHY OF PARTIAL FUNCTIONS 

In the first column of the table, we list the most important kinds of programs 
for computing partial functions and functions. To save space, we use atypical 
notation. The letter "T" in DFT, NFT, etc ., stands for "transducer"; 2-DCT, 
2-NCT, 2-DST, and 2-NST refer to two-counter and two-stack transducers. 

Note that nondeterministic programs are not guaranteed to compute 
partial functions; however, we have included them in the table with the 
understanding that only partial functions are allowed. Programs with 
equivalent computing power are grouped together. Note that 2-CM pro
grams require exponential time in order to simulate the other programs in 
their group . As much as possible, the programs increase in computational 
power from top to bottom in the table. However, NFTs and DSTs have 
incomparable computing power (Exercise 4.6-2); NFTs and DCTs also have 
incomparable computing power, as do NCTs and DSTs. 

In the second column we list grammars and other models equivalent 
to the programs in the first column. Order within a group is unimpor
tant. In the third column we give the typical name for functions or partial 
functions computed by the programs in the first column. Note that finite 
transductions may in general be multiple-valued. Note also that none of 
these programs is guaranteed to compute a total function. 



Program 

DFT 

NFT* 

DCT* 

NCT* 

DST* 

NST 

2-DCTt 
2-NCTt 
2-DST 
2-NST 
DTT 
NTT 
DRT 
NRT 

Grammar 

1 0 . 5  Hierarchy of Partial Functions 693 

Partial Function 

deterministic finite transduction 

finite transduction 

semi-Thue system partial recursive function 
Thue system recursive function 
HG-program 

* Some of these programs have incomparable computing power. 
tThese programs require exponential time to simulate the others in 
their group. 



694 Appendix 

1 0 .6  H I ERARCHY OF RELATIONS 

I n  the first column of the table, we list the most important kinds of programs 
for computing relations. To save space, we use atypical notation. The letter 
"T" in NFT, NCT, etc., stands for "transducer"; 2-NCT and 2-NST refer 
to nondeterministic two-counter and two-stack transducers, respectively. 
Programs with equivalent computing power are grouped together. Note 
that 2-CM programs require exponential time in order to simulate the other 
programs in their group. The programs increase in computational power 
from top to bottom in the table. 

In the second column we list grammars and other models equivalent to 
the programs in the first column . In the third column we give the typical 
name for relations computed by the programs in the first column. 

Program Grammar Relation 

NFT finite transduction 

NCT 

NST 

2-NCTt semi-Thue system 
2-NST 
NTT 
NRT 

t This program requires exponential time to simulate 
the others in its group. 



1 0 .7  Closu re Properties for Language C lasses 695 

l 0 . 7  CLOSU RE PROPERTIES FOR LANGUAGE 
CLASSES 

In the table below we list important closure properties for important lan
guage classes. Many other closure properties are considered in the text. We 
mention only the most significant here. L, L 1 , and L2 represent languages in 
the class. 7 represents any finite transduction. Observe that finite transduc
tions include many closure properties: intersection with arbitrary regular 
languages, shuffle with arbitrary regular languages, perfect-shuffle with 
arbitrary regular languages, and quotient by arbitrary regular languages. 

Language/ Operation Lr U L2 L1 n L2 [ L1 L2 L* LR LT 

regular yes yes yes yes yes yes yes 

DCFL no no yes no no no no 

CFL yes no no yes yes yes yes 

recursive yes yes yes yes yes yes no 

r.e. yes yes no yes yes yes yes 



696 Appendix 

1 0 . 8  DECIS ION PROBLEMS FOR LAN G UAGE 
CLASSES 

In the table below we indicate whether certain important decision prob
lems are solvable for important classes of languages . Many other decision 
problems are considered in the text; we mention only the most significant 
here . L, L 1 , and L2 denote languages in the class . I: denotes an alphabet 
with at least two characters . 

Language/ Problem x E L  L = 0  L = I;* Li = L2 L1 n L2 = 0 

regular yes yes yes yes yes 

DCFL yes yes yes unknown no 

CFL yes yes no no no 

recursive yes no no no no 

r.e. no no no no no 



I N DEX 

ACCEPT, 142 
accept a language, 143 
accept a string, 69, 134 

by AFM program, 257 
by nondeterministic program, 101 ,  134-

135,  143 
accepting computation, 135  
accepting control state, 69 
accepting history, 134 
accepting trace, 135  
acceptor, 73 , 143, 1 50 
acyclic NFA, 678 
adjacent nodes in a tree, 63 
adjacent PUSH-POP pair, 385 
agree in a position (two strings), 104 
Algol60, 5 3 1  
alphabet, 30 
alternating finite machine program, 256-257 
ambiguous GFG, 369-372 
ambiguous program, 414 
ambiguous string, 369 
anagram, 292, 662 
analytic hierarchy, 583 
answer, 1 12 
antisymmetric relation, 24 
apply an instruction, 1 19-120 
apply a production, 342 
arithmetical hierarchy, 582-597 
assignment, 625 

Boolean, 632 
associative operation, 12  
at least as powerful, 1 5  5 

bag, 16-18 
balanced parentheses, 84-86 
balanced parentheses and brackets, 88 
barber paradox, 478--479 
base state, 384-386 
beginning-of-line, 226-227 
binary notation, 34 
binary tree, 64-65 
bin packing problem, 612,  662 
bipartite dominating set problem, 65 1 
bipartite graph, 650 
bit-vector representation, 1 1 3  
bitwise less-than relation, 543 
blocked configuration, 135 ,  141  
blocked program, 74 
blocking program, 141 

Boolean variable, 63 1 
Biichi automaton, 3 1 1  
buffer, 200-203 

canonical NP-complete problem, 621-623, 
630 

cardinality 
of bags, 17  
of  sets, 7 
infinite, 482--486 

Cartesian product, 7, 167 
catenation, 229 
certificate 

for membership in an NP language, 606 
for membership in an r.e. language, 473 

CFG (see context-free grammar) 
CFL (see context-free language) 
character, 30 
characteristic function 

of a bag, 16  
of a set, 6 

child, 6 1  
Chomsky normal form, 33 1-336, 3 75 ,  389 

definition of, 336 
Chomsky's hierarchy, 354-355 

definition of, 355 
Church's thesis, 444--445 ,  467, 478 
classifier, 27 6, 279 
class of languages, 3 1  
clause, 632 
cleaning up, 2 12  
cleanup subprogram, 2 12, 2 1 3  
clique, 640 
clique problem, 640 
closed under an operation, 10 
closure of a set, 12  

under concatenation 32  
closure property, 279-293, 402--406 

table, 695 
under Boolean operations, 256, 280, 289, 

290, 3 1 1 ,  3 12, 327, 403, 404, 405, 
425, 426, 476, 477, 494 

under complementation, 256, 280, 3 12, 
404, 477, 494 

under composition, 288, 290 
under concatenation, 280, 327, 330, 403, 

425 , 476, 477 

697 



698 Index 

with a finite language, 427 
with a regular language, 427 

under converse, 282 
under converse of deterministic finite trans

ductions, 282, 288-289, 404, 416  
under converse of unambiguous finite trans

ductions, 415  
under DEJAVU, 426----427 
under derivative, 290 

by regular language, 290 
under deterministic finite transductions, 

282, 288, 416 
under difference 280, 289 
under Double-Duty, 424 
under finite transductions, 281-284, 288-

289, 400, 402, 403 
under FIRST-HALF, 308 
under HALF-SUBSEQ, 310  
under intersection, 280, 289, 290, 3 1 1 , 476, 

477 
with regular language, 283, 400, 403-

405 
under Kleene-closure, 280, 328, 330, 403 , 

426, 476, 477 
under MAX, 426 
under MIN, 427 
under perfect shuffle, 291 , 477 
under PERM, 292, 406 
under Pratt transductions, 292-293 
under PREFIX, 292, 426 
under quotient, 280, 290 

with regular language, 283, 403 , 426 
under regular operations, 280, 289, 290, 

3 1 1 , 327, 328, 330, 403 , 405, 476, 
477 

under reversal, 280, 290, 403 , 426, 427 
under rotation, 3 10  
under shuffle, 290-29 1 , 477 

with regular language, 405 
under SUBSEQ, 308-3 10, 405 
under symmetric difference, 280, 289 
under unambiguous finite transductions, 

4 1 5  
under union, 280, 289, 290, 3 1 1 , 327, 330, 

403, 476, 477 
with regular language, 404, 405 

used in proving a language is a DCFL, 404-
405 

used in proving a language is not a DCFL, 
424--425 

used in proving inherent ambiguity, 4 16-
418 

used in proving non-context-freeness, 403 , 
406 

used in proving nonregularity, 284, 297, 
304-306, 321  

used in proving regularity, 280, 292 
CNF formula (see conjunctive normal form) 
CNF grammar (see Chomsky normal form) 
co-, 3 1  
co-finite, 3 1 ,  534 
co-r.e., 468, 473, 488, 494 
COF, 597-598 
Collatz function, 524-526 
coloring, 39--43, 50-5 1 ,  65 1-653 
commutative diagram, 1 58-165, 168-169, 

176, 178-180 
COMP, 598 
complement of a set, 7 
complete computation, 135  
complete derivation, 343 
complete digraph, 235 
complete history, 134 
complete induction (see strong induction) 
complete language, 496 

for a class, 590, 614 
for NP, 614 
for I;; ,  590 

complete lattice, 328 
complete lower semilattice, 328 
complete theory, 570 
complete trace, 135  
compositeness problem, 604 
composite number, 8 
computable function (see recursive function) 
computation, 1 35 

of a subprogram, 177 
computationally equivalent programs, 1 5 5  
concatenation 

of languages, 3 1-32 
of sequences, 1 5-16 
of strings, 31 

configuration, 1 18 
congruence modulo m, 23 
conjunctive normal form, 632 
consistent theory, 569-574 

definition of, 570 
consistent local assignments, 641 
constrained set, 625 
constraint, 624 
context-free grammar, 3 1 3--400, 414 

ambiguity, 369-372, 374, 414 
as rewriting system, 499 
decidable problems about, 534, 536, 537 



definition of, 330 
for English (oversimplified), 3 16 
for Pascal, 3 1  7 
standardizations, 329-338, 3 75-389 
testing emptiness, 338 
resting membership, 389--400 
undecidable problems about, 527-537 

context-free language, 3 1 3--400, 401--406, 
414--418, 424, 425, 440--44 1, 554-
555 

belong co P, 604 
decidable problems about, 534, 5 36, 537 
definition of, 330 
inherent ambiguity, 369, 372-375, 414-

418  
pumping theorems, 356-368 
resting emptiness, 338 
testing membership, 389--400 
unambiguity, 369-3 7 5, 4 14--4 18 
undecidable problems about, 527-5 37 

context-sensitive grammar, 354 
context-sensitive language, 355 
contiguous regions, 39 
continuous from above, 329 
concraccor, 324 
control, 69, 80-82, 166-174 

definition of, 80 
control set, 69, 80-82, 1 15 

definition of, 69, 1 15 
control state, 69, 80-82 
converse of a relation, 2 1  
cost of a path, 3 7 
countable set, 482--486 
course-of-values induction (see strong induc-

tion) 
CSG (see context-sensitive grammar) 
CYK algorithm, 389-391  

dangling else, 369-372 
Davis-Putnam-Robinson theorem, 539 
DCA (see deterministc counter acceptor) 
DCPL (see deterministic CPL) 
DCR (see deterministic counter recognizer) 
dead state, 204-205 
decidable problem, 467 
decision problem, 1 1 2  

cable, 696 
dedicated co a device, 195 
defining equation, 462 
DEJAVU, 426--427 
depth in a tree, 64 
derivation (CPG), 342-346 

definition of, 343 
derivative, 290 
derives a sering 

in a CPG, 342 

Index 699 

in a semi-Thue system, 499 
descendant in a tree, 65 
destination 

of an edge, 36 
of a path, 37 

deterministic CPL, 353-354, 404--4 13,  418-
427, 44 1, 528-529, 532-534 

deterministic counter acceptor, 82-87 
deterministic counter recognizer, 146, 528-

534 
deterministic finite acceptor, 80-81 ,  2 18, 

250-253 
definition of, 143 
for pattern matching, 75-80 

deterministic finite recognizer, 146, 2 18-2 19, 
253, 67 1 , 676-677 

minimizing, 258-279 
testing membership in language recognized 

by, 307-308 
deterministic finite transducer 147, 2 18, 282-

283, 290, 404-405, 416-418 
deterministic program, 99, 139 

for oracle TM, 578 
deterministic stack acceptor, 73-74, 87-89 

definition of, 143 
deterministic stack recognizer, 68-73, 404-

413 ,  418-427, 441 
definition of, 146 

deterministic Turing acceptor, 9 1-96 
definition of, 14 3 

deterministic Turing recognizer, 146 
deterministic vs. nondeterministic, 104-106 
device, 1 1 6  

simulation of, 167 
DPA (see deterministic finite acceptor) 
DPR (see determinsicic finite recognizer) 
diagonalization, 478--490, 6 1 5-616  
difference of  sets, 7 
digit relation, 543 
digraph (see graph) 
diophantine equation, 53 7-553 
directed graph (see graph) 
disjoint sets, 7 
disjoint union of bags, 17 
disjoint union of secs, 7 
disjunctive normal form, 638 
distinguish two control states, 262 
distinguish cwo languages, 486 



700 I ndex 

DNF (see disjunctive normal form) 
domain of a relation, 20 
dominating set problem, 650 
dovetailing, 474, 477--478 
drinking game, 3 1 0  DSA (see deterministic stack acceptor) 
DSR (see deterministic stack recognizer) 
DTA (see deterministic Turing acceptor) 
OTA-index set, 561  
DTM-index set, 558-563 
DTR (see deterministic Turing recognizer) 
dyadic notation, 34 
dynamic programming, 232-23 7, 389-391 

easy as a language, 491 
edge in a graph, 36 
egrep, 225-229 
element of a bag, 16 
element of a set, 6 
empty sequence, 1 5  
empty set, 6 
empty string, 30, 3 1  

elimination of, from CFG, 332-334 
encoding as a number, 47 1 
end-of-line, 227 
enter a configuration, 132-133 
equipartition problem, 61 1-612, 661-662 
equivalence class, 23-24, 259-279 
equivalence closure, 29 
equivalence relation, 22-24, 28, 29 
equivalent control states, 258-259, 677-678 
equivalent programs, 1 55  
equivalent regular expressions, 67 1 
execute an instruction, 133 
exponential blowup, 264, 266-267 
exponential diophancine equation, 537-553  

definition of, 5 38  
exponential polynomial, 538-539 
EXT, 598 
extend an operation to sets, 9 
extend a partial function, 563, 598 

FA, 80 
factored form, 195-204 

definition of, 196 
fgrep, 225 
filter, 149-15 1 ,  283, 404 
FIN, 593, 595 
final configuration, 125 
final state, 1 2 1  
final subprogram, 176 
finite automaton, 80 

finite machine, 80, 1 18 
finite set, 3 1  
finite state machine, 80 
finite transducer, 147- 1 5 1 ,  281-284, 288-

292, 297-298, 403, 5 1 8  
(see also deterministic finite transducer) 

finite-branching tree, 65-66 
FIRST-HALF, 308 
fixed point, 322-329 

definition of, 324 
fixed-point theorem, 564-566, 568 

Tarski-Knascer, 322-329 
FM (see finite machine) 
\IFA, 257-258 
formal definition, 18 
formal language, 30 
FSM, 80 
full binary tree, 64-65 
function, 24-27 

generalized sequential machine, 281 
generate a language 

by a CFG, 330 
by a program, 1 52, 289, 438 
by a regular expression, 22 1-222 

generator, 15 2, 289 
generic reduction, 62 1-624 
GNF (see Greibach normal form) 
Godel's completeness theorem, 526 
Godel's incompleteness theorem, 569-574 
go from/to a control state, 195 
grammar 

context-free (see context-free grammar) 
context-sensitive, 354 
left-linear, 354 
regular, 354 
right-linear, 3 54 
type i (i = 0, 1 ,  2 , 3), 355  
unrestricted, 3 5 5 

grammar-program equivalences, 690-691 
graph, 36-3 7 

Kleene's theorem for, 229-250 
NP-complete problems for, 639-653 
planar, 50-5 1 
representation of, 1 13-1 14 

greatest common divisor, 53-54 
greatest lower bound, 322 
Greek letters, 68 1-683 
Greibach normal form, 375-389 
grep, 225 
gsm map, 28 1 
guess nondecerminiscically, 10 1 , 473 



HALF·SUBSEQ, 3 10  
hale, 134 
halting problem, 478--480 

for DSM programs, 412--413  
foe oracle TM programs, 581  

Hamiltonian cycle, 642 
Hamiltonian cycle problem, 642-648 

undirected, 65 1 
Hamiltonian path, 642 
Hamiltonian path problem, 65 1 
Hamiltonian s-t path problem, 65 1 
hard as a language, 491 
hard for a class, 590, 614 
hardest r.e. language, 496 
head, 9 1  
height of a node, 65 
height of a tree, 65 
Herbrand--Godel program, 461--466 
Hilbert's tenth problem, 537-55 3  
history, 134 

immediately derives 
in a CFG, 342 
in a semi-Thue system, 499 

lmmerman-Szelepcsenyi theorem, 610 
inapplicable instruction, 120 
inattentive program, 1 1  7,  480 
independent set problem, 649 
index set, 558-569 
induction, 39-66 
inductive hypothesis, 44 
inequivalence problem 

for regular languages, 673--676 
for star-free regular languages, 67 1-673 

inequivalent regular expressions, 671  
INF, 593 ,  595 
infinite branch, 66 
infinite computation, 1 38 
infinite history, 136 
infinite input, 3 10-3 1 1  
infinite sec, 3 1  
infinite trace, 138-139 
infinite tree, 65-66 
infix equivalence relation, 265-266 
inherently ambiguous CFL, 369, 372-375,  

414--418 
inherently unboundedly ambiguous CFL, 3 74-

375 
initial configuration, 124 
initial state, 12 1  
initial subprogram, 1 76  
initializer for a device, 120-126 

cable, 123 

I ndex 70 1 

initializer for a machine, 124-126 
nonstandard, 127-128 

input alphabet, 1 1 5  
input x, 473 
instance of a problem, 1 12 
instruction, 1 1 8-120 

definition of, 1 19 
internal description, 439, 608 
internal node of a ccee, 62 
intersection of bags, 1 7 
intersection of secs, 6 
invalid computation, 527-528 
invalid trace, 674 
isomorphism of graphs, 648 

join (in a lattice), 328 
join of two languages, 592 
jump of a language, 580-581 

k-CNF, 634 
k-colorabilicy problem, 65 1--653 
k-SAT, 634 
k-satisfiabiliry problem, 634 
k-cape Turing machine, 447--45 1 
(k, r)-SSS (see SSS) 
(k, r)-symbol system (see symbol system) 
Kleene closure, 32, 220, 327-328 
knapsack problem, 662 
Konig's tree lemma, 65-66 

labeled digraph, 3 7 
representation of, 1 14 

A-production, 331  
elimination of, 332-334 

language, 30-3 1 
defined by a system of regular equations, 326 
(see also context-free language; context

sensitive language; r.e. language; re
cursive language; regular language) 

latency of an infinite sequence, 58 
lattice point, 56  
leads to  a variable, 3 34 

algorithm for determining, 338 
leaf in a tree, 62 
least-element principle, 60 
least fixed point, 324-329 
least set with a particular property, 1 1-12 
least upper bound, 328 
left side of a production, 3 30 
left-linear equation, 328 
left-linear grammar, 354 



702 Index 

leftmost derivation, 343-346 
length of a computation, 602 
length of a path, 3 7 

weighted, 3 7 
length of a sequence, 1 5  
literal , 632 
live state, 204-208 
local assignment, 625, 632, 640-641 
local constraint, 625 
locality, 624-625 

definition of, 625 
lockstep simulation, 1 56-174 

three conditions of, 16 1  
LR( l) grammar, 353-354, 392-393 

m-reducible, 491 
machine, 1 17-1 18 
machine type, 1 17-1 18 
many-one reduction, 490--498 

polynomial-time bounded, 6 1 2-616, 62 1-
679 

map (by a partial function), 25 
mark characters for Ogden's lemma, 361 
match a pattern, 75-80 
match a regular expression, 226 
Mari jasevic's theorem, 5 5 1  
MCOMP, 598 
meet (in a lattice), 322 
meet at a control state, 176 
MIDDLE-THIRD, 308 
milestone, 420 
MIN, 427 
minimal DFR, 258-279 
minimal DTM program, 567-568 
minimum separation by DFRs, 664 
modulo a number, 23 
modus ponens, 5 2 1  
monochromatic set, 5 0  
monotone clause, 639 
monotone function, 323, 327-329 
multiple-valued function, 24 
multiset, 16 
Myhill-Nerode theorem, 261 

used in proving nonregularity, 264 

N (natural number), 6 
N (new control states), 176 
NCA (see nondeterministic counter acceptor) 
NFA (see nondeterministic finite acceptor) 
node in a graph, 36 
node in a tree, 61 
nonblocking program, 141 

nondetermi nistic counter acceptor, 102, 104-
107, 440--44 1 ,  527-530, 533-5 34, 
554-5 55 

definition of, 143 
nondeterministic finite acceptor, 102-103,  

2 19, 238-258, 264, 266-267 , 280 
definition of, 143 

nondeterministic program, 99-107 
nondeterministic stack acceptor, 10 1-102, 

106, 347-354, 384-387, 389, 402-
403, 438 

definition of, 143 
nondeterministic Turing acceptor, 468, 469, 

47 1--473, 475, 476 
definition of, 143 

nondeterministic vs. deterministic, 104-106 
nonrecursive language, 468, 478--480, 490-

553 ,  555 ,  558-561 
nonterminal character, 343 
nonuniversality 

of regular expressions, 673-676 
of star-free regular expressions, 672 

NP, 603-606 
NP-complete language, 61 1-673, 676-679 

definition of, 614 
NP-hard language, 614 
NSA (see nondeterministic stack acceptor) 
NTA (see nondeterministic Turing acceptor) 
null instruction, 202, 208-2 12  

w-consistent, 574 
w-DFA, 3 1 0-3 12  
w-language, 3 10-3 12 
w-NFA, 3 1 0-3 12  
w-regular w-language, 3 10-3 12 
on-line recognition, 418--427 
one-one correspondence, 26-27 
one-one function, 25-26 
one-one reducible, 491 
onto function, 26 
operation, 1 16 

table, 108 
oracle, 574-58 1 
oracle TM program, 578 
ordinary subprogram, 176 
origin of an edge, 36 
origin of a path, 3 7 
output alphabet, 1 1 5 

P, 603-606 
padding a TM program, 6 1 5  
padding input strings, 622 



palindromes, 33 
not a DCFL, 424 
NSA for, 10 1-102 

palindromes with central marker, 68 
DSA for, 73 
DSR for, 68-70 

parent in a tree, 61 
parse tree, 3 18-3 19, 320, 339-342, 344-346, 

369-375 
parsimonious reduction, 638 
partial computation, 1 35  
partial function, 24-26 

hierarchy of, 692-693 
partial history, 133-1 34 
partial match, 75 
partial order, 2 4 
partial recursive function,467, 557-561 ,  564-

569, 597-598 
partial trace, 135  
partition problem (see equipartition problem) 
partition a bag, 1 7 
partition a set, 7, 23-24 
partitioning tests, 196-199 
path in a digraph, 3 7 
perfect shuffle of two languages, 291  
periodic sequence, 58 
PERM, 292, 406 
permutation, 292 
phrase, 3 18 
planar DFA, 250 
planar graph, 50-5 1  
planar NFA, 250 
polynomial, 39 
polynomial time, 603-604 
polynomial-time m-reduction, 6 1 2-616, 621-

679 
polynomial-time Turing reduction, 613 ,  616-

62 1 ,  648 
polynomially related resource bound, 608-609 
Post correspondence problem, 508-520 
postfix notation (for functions), 25  
power set, 8 
Pratt's theorem, 610-6 1 1  
precede (in a lattice), 322 
predicate, 2 
PREFIX, 292, 426 
prefix notation (for functions), 25 
prefix of a sering, 33 
prefix-equivalent strings, 260 
prefix-free language, 553-554 
primality problem, 1 12, 610-61 1 
prime factorization, 5 5 

prime number, 8 
production (in a CFG), 330 

Index 703 

production ( in a rewriting system), 499 
program, 126 
program-grammar equivalences, 690-69 1 
PROJ, 312  
projection of a language in  P,  606 
projection of an w-regular w-language, 3 12 
projection of a recursive language, 472 
proof(in a logical theory), 570 
proper subset, 7 
pumpable language, 294, 297, 367-368 
pumping down, 295 
pumping number, 293, 298 
pumping theorem, 293, 298, 357, 361-362, 

363, 364 
partial converse, 306 

pumping up, 295 

query an oracle, 5 75 
queue, 78, 520 
quotient, 280, 290 

with a regular language, 283, 403, 426 

r.e. language, 467-478, 487, 489-490, 491 ,  
494, 539, 5 5 1 , 555  

in an oracle, 579-580, 581  
RAM (see random access machine; random ac-

cess memory) 
random access machine, 96-99, 456-458 
random access memory, 96 
range of a relation, 20 
rational TSP, 62 1 
reachability problem, 246 
reachable state, 206-208 

determining, 246 
real-time NSA, 384, 389 
real-time program, 384 
realm of a device, 1 1 5 

table, 123 
REC, 597-598 
recognizer, 73 ,  144-146, 1 50 

definition of, 144 
recursion theorem, 563-569 
recursive function (see partial recursive func

tion; total recursive function) 
recursive language, 467-478, 597-598 

in an oracle, 579-580, 591  
recursive predicate, 586 
recursively enumerable language (see r.e. lan

guage) 
recursively inseparable sets, 486-489 



704 Index 

recursively separable sets, 486-489, 598 
reduction, 490 

many-one, 490-553  
polynomial-time, 612-613  
Turing, 576  

reduction principle, 490 
reflexive relation, 2 1  
reflexive transitive closure, 2 1-22 

algorithm for, 338 
regular equation, 3 14-330 
regular expression, 22 1-229, 238-247 
regular grammar (see left-linear grammar; 

right-linear grammar) 
regular language, 2 1 7-3 12 

definition of, 220-221  
regular operations, 3 1-32, 220 

on paths, 231  
regular set of  paths, 229-24 7 
reject a string, 69 
rejecting control state, 69 
relate :,c co y, 18  
relation, 18-24 

hierarchy of, 694 
of representation, 158 

relativizacion, 578-580 
reneg, 292 
repertory of a device, 1 16 

cable, 123 
represent a configuration, 158 
restricted first-order logic, 52 1  
rewrite a variable, 342 
rewriting system, 498-508 
RFOL (see restricted first-ordec logic) 
Rice's theorem, 558-563 
right side of a production, 330-33 1  
right-linear grammar, 328, 354, 355 
root of a tree, 6 1  
Rosser's incompleteness theorem, 5 7 1-5 72  
rotation, 3 10  
rule (in a Thue system) 500 
rule of inference, 5 2 1  
run a program, 132-133 
running time, 602 

SAT, 63 1-639 
reducing, 654-656, 665-668, 672 

satisfy a Boolean formula, 632 
satisfy a constraint, 625 
satisfy a symbol system, 625 
satisfying assignment, 625 
satisfying local assignment, 640 
Savitch's theorem, 609 

Schroder-Bernstein theorem, 486 
SCM (see signed-counter machine) 
SECOND-HALF, 308 
self-actualized program, 566 
self-aware program, 566 
self-loop, 36 
semantics, 1 39, 204 
semi-Thue system, 498-508 
SEP, 598 
separation by DFRs, 664-669 
sequel, 135  
sequel relation, 13  5 
sequence, 15-16 
set cover problem, 654-659 
shortest path problem, 246-247 
shuffle of two languages, 290-291 ,  405 
signed counter, 86 
signed counter machine, 86 
simulate a collection of devices, 167, 174 
simulation, 1 53-194 

lockstep, 1 56-174 
three conditions of, 161 

via subprograms, 174-194 
three conditions of, 177 

size of a CFG, 336 
s-m-n theorem, 493 
sound theocy, 5 70 
soundness of first-order logic, 52 1  
source of a relation, 18  
space, 608-610, 673-676 
sss, 624-63 1 

reducing, 632-633, 635, 640-642 
stack, 68 , 87 -88 
stack machine, 87-89, 1 1 8 
standardization, 194-2 14 
star-free regular expression, 67 1-673 
starless regular equation, 3 14 
start variable of a CFG, 330 
state of a device, 1 1 5  
strictly partial function, 24 
string, 29-36 

definition of, 30 
strong induction, 5 1-5 5 
strongly prefix-equivalent strings, 439 
structural induction, 60-66 

definition of, 6 1  
sub-bag, 16  
subgraph, 648 
subgraph isomorphism problem, 648 
sub-parse tree, 3 18  
subprogram, 174 

definition of, 1 76 



SUBSEQ, 308-310, 405 
subsequence, 308 
subset, 7 
subset construction, 25 1-254 
subset sum problem, 604, 659-661 
substring, 33, 75 
subtree, 63 
suffix of a string, 3 3 
symbol system, 625-626 
symmetric relation, 22 
syntactic property, 139, 204 

tape, 91-96, 445--453 
target of a relation, 18 
Tarski-Knaster fixed-point theorem, 322-329 
tautology, 638 
terminal character, 343 
terminator for a device, 121  

table, 123 
terminator for a machine, 124-126 

nonstandard, 126-128 
test, 75, 1 1 6  
theorem, 5 2 1 ,  570 
theory, 5 70 
3-dimensional matching problem, 663 
3-SAT, 634-637 

reducing, 643-647 
(3x + 1)-function, 524-526 
Thue system, 498-508 
TM (see Turing machine) 
cop of stack, 72 
TOT, 593, 595 
total function, 24 
total recursive function, 467, 469, 474, 489-

49 1 
trace, 135  
transducer, 146-15 1  
transfer function, 5 58 
transfer relation, 13 5 
transitive closure, 2 1  
transitive relation, 2 1  
traveling salesman problem, 61 1-612, 616-

62 1 ,  647-648 
tree, 61-66 
triangle inequality, 648 
trivial final subprogram, 1 76-177  
trivial index set, 559  
trivial initial subprogram, 176  
TSP cost, 616-62 1 
TSP decision, 6 16-62 1 
TSP search, 616-62 1 
TSP with triangle inequality, 648-649 

Turing-complete, 598 

Index 705 

Turing machine, 9 1-96, 443--447, 486-506, 
557-569, 590-59 1 

halting problem for, 478--480 
highly undecidable problems for, 593-598 
k-tape simulation, 447--45 1 
RAM simulation, 456-461 
used in defining canonical NP-complete 

problem, 62 1-624 
used in defining computability, 467--478 
used in defining time-bounded computa

tion, 603, 605-6 1 1  
used i n  generic reduction to nonuniversality 

of regular expressions, 674-676 
used in generic reduction to SSS, 627-630 
with oracle, 574-581  

Turing reduction, 576 
polynomial-time, 613 

Turing tape (see tape) 
2-dimensional tape, 4 5 1  
type i grammar (i = 0, 1 , 2 , 3), 355  

UCM (see unsigned counter machine) 
unambiguous CFG, 369-375 
unambiguous CFL, 369-3 75 
unambiguous NSA, 414--418 
unary exponential diophantine equation, 5 5 1  
unary notation, 34 
unboundedly ambiguous CFG, 374-375 
uncountable set, 482--486 
undecidable language (see nonrecursive lan-

guage) 
under the tape head, 9 1  
underhang, 5 1 3  
undirected graph, 50, 639-640 (see also graph) 
undirected Hamiltonian cycle problem, 65 1 
union of bags, 17  
union of sets, 6 
unit production, 33 1  

elimination of, from CFG, 334-336 
universal Turing machine program, 458--461 
unreachable state, 206-208 
unsigned counter machine, 82-86 
use a control state, 176 
useless variable, 5 3 5 

vacuously true statement, 52 
valid computation, 470, 527-534 
valid statement, 526 
variable in a CFG, 3 14  
variable in a regular equation, 3 14 
vector sum problem, 656-661 



706 Index 

vertex cover problem, 649-650 
vertex in a digraph, 36 

weighted digraph, 3 7 
representing, 1 14 

weighted length of a path, 3 7 
well-behaved terminator, 285 
Wiles-Fermat theorem, 538 

witness 
for membership in an NP language, 606 
for membership in an r.e. language, 473 

word problem 
for a group, 507 
for a semi-Thue system, 500, 503 
for a Thue system, 506, 507 

yield of a parse tree, 3 18 



THE LANGUAGE OF 
MACHINES 

Rn Introduction to Computabilitq and Formal �anouaoes 
Robert W Floyd, Stanford University 

Richard Reigel, Yale University 
In The Language of Machines, Robert Floyd and Richard Beige! revolu

tionize the teaching of comput3:pility and languages. They propose noth
ing less than redefinition of the building blocks of automata theory: their 
unified model of computation clarifies the subject as never before . Floyd 
and Beigel's single model encompasses all the traditional types of com
puting machines and even "real world" electronic computers . 

Using an approach that has been successfully class tested at Stanford, 
Yale, and Johns Hopkins, Floyd and Beige! offer valuable innovations: 

Unified dennitions that yield insight into the capabilities of a wide variety 
of machines 

The pe rfect combination of simpl icitq and ri oor-their new approach 
makes formerly obscure results accessible 

Ideas and examples from practical computer science bring theory to life 

A mechanism to combine proornms. akin to pipes in UNIX™ 

The first formal dennition of simulation that permits modularized pr:)OfS 

R oenernl sqstem of standardization of proornms, which streamlines proofa 

Floyd and Beigel's bold reformulation of computability and formal Ian-, 
guage theory provides a firm foundation on which students can build a 
rich and enduring body of knowledge. 

Cover photo courtesy of the Museum of American Heritage 

Computer Science Press 
An imprint ofW. H. freeman and Company The book publishing arm of Scic::ntific American 
41 Madison Avenue, New York, NY 10010 
20 Bcaumunt Street, Oxford, OXl ,  2NQ, England 

ISBN □ - 7 1 6 7 - 8266 - 9  

I 
9 7807 1 6  782667 


	The Language of Machines: An Introduction to Computability and Formal Languages
	Library of Congress Cataloging-in -Publication Data
	CONTENTS
	PREFACE
	ACKNOWLEDGMENTS
	ABOUT THE AUTHORS
	0 Mathematical Preliminaries
	0.1 QUANTIFIERS AND TWO - PLAYER GAMES
	Exercises

	0.2 SETS , BAGS, RELATIONS , FUNCTIONS, AND SEQUENCES
	0.2.1 Sets
	0.2.2 Set Extensions and Closures
	0.2.3 Tuples
	0.2.4 Sequences
	0.2.5 Bags
	0.2.6 Relations
	0.2.7 Functions
	Exercises

	0.3 STRINGS
	0.3.1 Regular Operations
	0.3.2 Miscellaneous String Operations and Relations
	0.3.3 b-ary and b-adic Number Representations
	Exercises

	0.4 GRAPHS
	0.5 BIG-O NOTATION
	0.6 INDUCTION
	Exercises
	0.6.1 Strong Induction
	Exercises
	0.6.2 Pigeonhole Principle
	Exercises
	0.6.3 Recursive Definitions
	Exercises


	1 Introduction to Machines
	1.1 PROGRAMS
	Exercises

	1.2 CONTROLS
	Exercises

	1.3 UNSIGNED COUNTERS
	Exercises

	1.4 SIGNED COUNTERS
	Exercises

	1.5 STACKS
	Exercises

	1.6 TWO-COUNTER MACHINES
	Exercises

	1.7 TURING MACHINES
	Exercises

	1.8 RANDOM ACCESS MACHINES
	Exercises

	1.9 DETERMINISM AND NONDETERMINISM
	Exercises

	1.10 CHAPTER SUMMARY
	Exercises


	2 Devices, Machines,  and Programs
	2.1 REPRESENTING PROBLEMS
	Exercises

	2.2 DEVICES
	Exercises

	2.3 MACHINES
	2.4 INSTRUCTIONS
	Exercises

	2.5 INITIALIZERS AND TERMINATORS
	2.6 PROGRAMS
	Exercises

	2.7 RUNNING A PROGRAM
	2.7.1 Computations, Traces, and Histories
	Exercises

	2.7.2 Infinite Computations, Traces, and Histories
	Exercises


	2.8 DETERMINISM AND BLOCKING
	Exercises

	2.9 THREE IMPORTANT KINDS OF PROGRAMS
	2.9.1 Acceptors
	Exercises

	2.9.2 Recognizers
	Exercises

	2.9.3 Transducers
	Exercises


	2.10 CHAPTER SUMMARY
	Exercises


	3 Simulation
	3.1 SIMULATION OF PROGRAMS
	3.2 LOCKSTEP SIMULATION
	Exercises
	3.2.1 One Control Simulates Two Controls (Pairing Construction)
	Exercises


	3.3 SIMULATION VIA SUB PROGRAMS
	3.3.1 Eliminating the NONZERO Test from an Unsigned Counter
	Exercises

	3.3.2 An Unsigned Counter Simulates a Signed Counter
	Exercises

	3.3.3 Eliminating the EMPTY Test from a Stack
	Exercises


	3.4 STANDARDIZATION
	3.4.1 Factoring Programs
	Exercises

	3.4.2 Eliminating the New Operations and Redundant Tests
	Exercises

	3.4.3 Eliminating Dead States and Unreachable States
	Exercises

	3.4.4 Eliminating Null Instructions
	Exercises

	3.4.5 Cleaning Up and Eliminating Blocking
	Exercises


	3.5 CHAPTER SUMMARY
	Exercises


	4 Finite Machines and Regular Languages
	4.1 STANDARDIZING FINITE MACHINE PROGRAMS
	Exercises

	4.2 REGULAR EXPRESSIONS AND LANGUAGES
	Exercises

	4.3 REGULAR EXPRESSIONS IN THE REAL WORLD: EGREP
	Exercises

	4.4 KLEENE'S THEOREM
	4.4.1 Algorithms for Computing  Regular Sets of Paths
	4.4.2 NFA Languages Are Regular Languages
	Exercises
	4.4.3 Pencil-and-Paper Algorithm
	Exercises

	4.5 NFA LANGUAGES ARE THE SAME AS REGULAR LANGUAGES
	Exercises

	4.6 EQUIVALENCE OF NFAs AND DFAs
	Exercises

	4.7 MINIMIZING DFRs
	Exercises
	4.7.1 Determining Equivalent States
	Exercises

	4.8 CLOSURE PROPERTIES
	Exercises
	4.8.1 Closure under Finite Transductions
	4.8.2 Composition Theorem
	Exercises

	4.9 PUMPING THEOREMS FOR REGULAR LANGUAGES
	4.9.1 Al and Izzy Pump Strings
	Exercises

	4.10 CHAPTER SUMMARY
	Exercises


	5 Context-Free Languages
	5.1 DEFINING LANGUAGES AS SOLUTIONS TO EQUATIONS
	Exercises

	5.2 EXISTENCE OF UNIQUE MINIMAL SOLUTIONS
	Exercises

	5.3 CFGS AND THEIR STANDARDIZATIONS
	Exercises

	5.4 PARSE TREES
	Exercises

	5.5 DERIVATIONS
	Exercises

	5.6 CFLS ARE THE SAME AS NSA LANGUAGES
	Exercises

	5.7 THE CHOMSKY HIERARCHY
	Exercises

	5.8 PUMPING THEOREMS FOR CFLS
	Exercises

	5.9 AMBIGUITY
	Exercises

	5.10 GREIBACH NORMAL FORM
	Exercises

	5.11 CYK PARSING ALGORITHM
	Exercises

	5.12 EARLEY'S PARSING ALGORITHM
	Exercises

	5.13 CHAPTER SUMMARY
	Exercises


	6 Stack and Counter Machines
	6.1 CLOSURE PROPERTIES
	Exercises

	6.2 DSA LANGUAGES ARE DSR LANGUAGES
	6.2.1 Eliminating PUSH-POP Pairs from DSAs
	Exercises

	6.2.2 Making DSAs Halt
	Exercises


	6.3 UNAMBIGUOUS PROGRAMS
	Exercises

	6.4 ON-LINE RECOGNITION
	Exercises

	6.5 TWO COUNTERS SIMULATE A STACK
	Exercises

	6.6 TWO COUNTERS SIMULATE ANY NUMBER OF COUNTERS
	Exercises

	6.7 COUNTER LANGUAGES AND PREFIX EQUIVALENCE
	Exercises

	6.8 CHAPTER SUMMARY
	Exercises


	7 Computability
	7.1 TAPES AND TURING MACHINES
	7.1.1 One Tape Simulates k Tapes
	Exercises

	7.1.2 Two Stacks Simulate a Tape
	Exercises


	7.2 PUTTING THE ARGUMENT ON A TAPE, STACK, OR COUNTER
	Exercises

	7.3 RANDOM ACCESS MEMORY
	7.4 UNIVERSAL TURING MACHINE PROGRAM
	Exercises

	7.5 HERBRAND-GODEL COMPUTABILITY
	Exercises

	7.6 RECURSIVE AND RECURSIVELY ENUMERABLE SETS
	Exercises

	7.7 THE HALTING PROBLEM
	Exercises

	7.8 DIAGONALIZATION
	7.8.1 The Real Numbers Are Uncountable
	Exercises

	7.8.2  Recursively Inseparable Sets
	Exercises

	7.8.3 The Total Recursive Functions Cannot Be Enumerated Exactly

	7.9 MANY-ONE REDUCTIONS
	Exercises

	7.10 REWRITING SYSTEMS AND WORD PROBLEMS
	Exercises

	7.11 THE POST CORRESPONDENCE PROBLEM
	Exercises

	7.12 UNDECIDABILITY OF FIRST-ORDER LOGIC
	Exercises

	7.13 VALID AND INVALID COMPUTATIONS
	Exercises

	7.14 DIOPHANTINE AND EXPONENTIAL DIOPHANTINE EQUATIONS
	Exercises
	7.14.1 Some Diophantine and Exponential Diophantine Relations
	Exercises

	7.14.2 Arithmetization of 3-Counter Machine Programs
	Exercises


	7.15 CHAPTER SUMMARY
	Exercises


	8 Recursion Theory
	8.1 RICE'S THEOREM
	Exercises

	8.2 THE RECURSION THEOREM AND THE FIXED-POINT THEOREM
	Exercises

	8.3 GODEL'S INCOMPLETENESS THEOREM
	Exercises

	8.4 ORACLES AND TURING REDUCTIONS
	Exercises
	8.4.1 Representational  Issues
	8.4.2 Relativization
	Exercises

	8.4.3 Jumps
	Exercises


	8.5 ARITHMETICAL HIERARCHY
	Exercises

	8.6 CHAPTER SUMMARY
	Exercises


	9 Feasible and Infeasible Problems
	9.1 TIME-BOUNDED COMPUTATION: P AND NP
	Exercises

	9.2 NP-COMPLETENESS
	Exercises

	9.3 SEARCH AND OPTIMIZATION VS . DECISION
	Exercises

	9.4 CANONICAL NP-COMPLETE PROBLEMS
	Exercises

	9.5 SYMBOL SYSTEMS
	Exercises

	9.6 BOOLEAN FORMULA SATISFIABILITY
	Exercises

	9.7 NP-COMPLETE GRAPH PROBLEMS
	Exercises

	9.8 NP-COMPLETE PROBLEMS INVOLVING SETS, VECTORS, AND NUMBERS
	Exercises

	9.9 AN NP-COMPLETE PROBLEM ABOUT DFRS
	Exercises

	9.10 COMPLEXITY OF SOME PROBLEMS INVOLVING REGULAR LANGUAGES
	Exercises

	9.11 CHAPTER SUMMARY

	10 Appendix
	10.1 GREEK SYMBOLS
	10.2 GLOSSARY
	10.3 COMMON ACRONYMS
	10.4 PROGRAM AND GRAMMAR EQUIVALENCES
	10.5 HIERARCHY OF PARTIAL FUNCTIONS
	10.6 HIERARCHY OF RELATIONS
	10.7 CLOSURE PROPERTIES FOR LANGUAGE CLASSES
	10.8 DECISION PROBLEMS FOR LANGUAGE CLASSES

	INDEX



