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Preface and
Acknowledgments

Thisthird edition of Modern Epidemiology arrives more than 20 years after the first edition, which
was a much smaller single-authored volume that outlined the concepts and methods of a rapidly
growing discipline. The second edition, published 12 years later, was a major transition, as the
book grew along with the field. It saw the addition of a second author and an expansion of topics
contributed by invited experts in a range of subdisciplines. Now, with the help of a third author,
this new edition encompasses a comprehensive revision of the content and the introduction of new
topics that 21st century epidemiologists will find essential.

This edition retains the basic organization of the second edition, with the book divided into four
parts. Part | (Basic Concepts) now comprises five chapters rather than four, with the relocation
of Chapter 5, “Concepts of Interaction,” which was Chapter 18 in the second edition. The topic
of interaction rightly belongs with Basic Concepts, although a reader aiming to accrue a working
understanding of epidemiologic principles could defer reading it until after Part 11, “ Study Design
and Conduct.” We have added a new chapter on causal diagrams, which we debated putting into
Part |, asit does involve basic issues in the conceptualization of relations between study variables.
On the other hand, this material invokes concepts that seemed more closely linked to data analysis,
and assumes knowledge of study design, so we have placed it at the beginning of Part 11, “Data
Analysis” Those with basic epidemiologic background could read Chapter 12 in tandem with
Chapters 2 and 4 to get a thorough grounding in the concepts surrounding causal and non-causal
relations among variables. Another important addition isachapter in Part 111 titled, “ Introduction to
Bayesian Statistics,” which we hope will stimulate epidemiologiststo consider and apply Bayesian
methods to epidemiologic settings. The former chapter on sensitivity analysis, now entitled “Bias
Analysis,” has been substantially revised and expanded to include probabilistic methods that have
entered epidemiology from thefields of risk and policy analysis. Therigid application of frequentist
statistical interpretationsto data has plagued biomedical research (and many other sciencesaswell).
We hope that the new chaptersin Part 111 will assist in liberating epidemiol ogists from the shackles
of frequentist statistics, and open them to moreflexible, realistic, and deeper approachesto analysis
and inference.

Asbefore, Part IV comprises additional topicsthat are more specialized than those considered in
thefirst three parts of the book. Although field methods still have wide application in epidemiologic
research, there has been a surge in epidemiologic research based on existing data sources, such as
registries and medical claims data. Thus, we have moved the chapter on field methods from Part |1
into Part IV, and we have added a chapter entitled, “Using Secondary Data” Another addition is
a chapter on social epidemiology, and coverage on molecular epidemiology has been added to the
chapter on genetic epidemiology. Many of these chapters may be of interest mainly to thosewho are
focused on aparticular area, such asreproductive epidemiol ogy or infectious disease epidemiol ogy,
which have distinctive methodol ogic concerns, although theissuesrai sed arewell worth considering
for any epidemiologist who wishes to master the field. Topics such as ecologic studies and meta-
analysisretain abroad interest that cuts across subject matter subdisciplines. Screening had itsown
chapter in the second edition; its content has been incorporated into the revised chapter on clinical
epidemiology.

The scope of epidemiology has become too great for asingle text to cover it al in depth. In this
book, we hope to acquaint those who wish to understand the concepts and methods of epidemiology
with the issues that are central to the discipline, and to point the way to key references for further
study. Although previous editions of the book have been used asacourse text in many epidemiology

vii



viii Preface and Acknowledgments

teaching programs, it is not written as a text for a specific course, nor does it contain exercises or
review questions as many course texts do. Some readers may find it most valuable as a reference
or supplementary-reading book for use alongside shorter textbooks such as Kelsey et a. (1996),
Szklo and Nieto (2000), Savitz (2001), Koepsell and Weiss (2003), or Checkoway et a. (2004).
Nonetheless, there are subsets of chapters that could form the textbook material for epidemiologic
methods courses. For example, a course in epidemiologic theory and methods could be based on
Chapters 1 through 12, with amore abbreviated course based on Chapters 1 through 4 and 6 through
11. A short course on the foundations of epidemiologic theory could be based on Chapters 1 through
5 and Chapter 12. Presuming abackground in basic epidemiol ogy, an introduction to epidemiol ogic
data analysis could use Chapters 9, 10, and 12 through 19, while a more advanced course detailing
causal and regression analysis could be based on Chapters 2 through 5, 9, 10, and 12 through 21.
Many of the other chapters would also fit into such suggested chapter collections, depending on the
program and the curriculum.

Many topics are discussed in various sections of the text because they pertain to more than one
aspect of the science. To facilitate access to all relevant sections of the book that relate to a given
topic, we have indexed the text thoroughly. We thus recommend that the index be consulted by
those wishing to read our complete discussion of specific topics.

We hope that this new edition provides a resource for teachers, students, and practitioners
of epidemiology. We have attempted to be as accurate as possible, but we recognize that any
work of this scope will contain mistakes and omissions. We are grateful to readers of earlier
editions who have brought such items to our attention. We intend to continue our past practice
of posting such corrections on an internet page, as well as incorporating such corrections into
subsequent printings. Please consult <http://www.lww.com/M odernEpi demiology>tofind the | atest
information on errata.

We are also grateful to many colleagues who have reviewed sections of the current text and
provided useful feedback. Although we cannot mention everyone who helped in that regard, we
give specia thanks to Onyebuchi Arah, Matthew Fox, Jamie Gradus, Jennifer Hill, Katherine
Hoggatt, Marshal Joffe, Ari Lipsky, James Robins, Federico Soldani, Henrik Toft Sgrensen, Soe
Soe Thwin and Tyler VanderWeele. An earlier version of Chapter 18 appeared in the Interna-
tional Journal of Epidemiology (2006;35:765—778), reproduced with permission of Oxford Uni-
versity Press. Finaly, we thank Mary Anne Armstrong, Alan Dyer, Gary Friedman, Ulrik Gerdes,
Paul Sorlie, and Katsuhiko Yano for providing unpublished information used in the examples of
Chapter 33.

Kenneth J. Rothman
Sander Greenland
Timothy L. Lash
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CHAPTER 1

Introduction

Kenneth J. Rothman, Sander Greenland, and
Timothy L. Lash

l \ Ithough some excellent epidemiologic investigations were conducted before the 20th cen-
tury, asystematized body of principles by which to design and eval uate epidemiol ogy studies began
to form only in the second half of the 20th century. These principles evolved in conjunction with
an explosion of epidemiologic research, and their evolution continues today.

Several large-scal e epidemiologic studiesinitiated in the 1940s have had far-reaching influences
on health. For example, the community-intervention trials of fluoride supplementation in water that
were started during the 1940s have led to widespread primary prevention of dental caries (Ast,
1965). The Framingham Heart Study, initiated in 1949, is notable among several long-term follow-
up studies of cardiovascular disease that have contributed importantly to understanding the causes
of this enormous public health problem (Dawber et al., 1957; Kannel et al., 1961, 1970; McKee
etal., 1971). Thisremarkable study continuesto produce valuable findings more than 60 years after
it was begun (Kannel and Abbott, 1984; Sytkowski et al., 1990; Fox et al., 2004; Elias et al., 2004;
www.nhlbi.nih.gov/about/framingham). Knowledge from this and similar epidemiologic studies
has helped stem the modern epidemic of cardiovascular mortality in the United States, which
peaked in the mid-1960s (Stallones, 1980). The largest formal human experiment ever conducted
was the Salk vaccine field trial in 1954, with several hundred thousand school children as subjects
(Francis et a., 1957). This study provided the first practical basis for the prevention of paraytic
poliomyelitis.

The same era saw the publication of many epidemiologic studies on the effects of tobacco
use. These studies led eventualy to the landmark report, Smoking and Health, issued by the
Surgeon General (United States Department of Health, Education and Welfare, 1964), the first
among many reports on the adverse effects of tobacco use on health issued by the Surgeon General
(www.cdc.gov/Tobacco/sgr/index.htm). Since that first report, epidemiol ogic research has steadily
attracted public attention. The news media, boosted by arising tide of social concern about health
and environmental issues, have vaulted many epidemiologic studies to prominence. Some of these
studies were controversial. A few of the biggest attention-getters were studies related to

* Avian influenza

e Severe acute respiratory syndrome (SARS)

* Hormone replacement therapy and heart disease

e Carbohydrate intake and health

* Vaccination and autism

e Tampons and toxic-shock syndrome

* Bendectin and birth defects

* Passive smoking and health

e Acquired immune deficiency syndrome (AIDS)

» The effect of diethylstilbestrol (DES) on offspring


http://www.nhlbi.nih.gov/about/framingham
http://www.cdc.gov/Tobacco/sgr/index.htm

2 Chapter 1 e Introduction

Disagreement about basic conceptual and methodol ogic pointsled in someinstancesto profound
differences in the interpretation of data. In 1978, a controversy erupted about whether exogenous
estrogens are carcinogenic to the endometrium: Several case-control studies had reported an ex-
tremely strong association, with up to al15-fold increaseinrisk (Smith et a., 1975; Ziel and Finkle,
1975; Mack et ., 1976). One group argued that a sel ection bias accounted for most of the observed
association (Horwitz and Feinstein, 1978), whereas others argued that the alternative design pro-
posed by Horwitz and Feinstein introduced adownward selection biasfar stronger than any upward
bias it removed (Hutchison and Rothman, 1978; Jick et a., 1979; Greenland and Neutra, 1981).
Such disagreements about fundamental concepts suggest that the methodol ogic foundations of the
science had not yet been established, and that epidemiology remained young in conceptual terms.

The last third of the 20th century saw rapid growth in the understanding and synthesis of epi-
demiologic concepts. The main stimulus for this conceptual growth seems to have been practice
and controversy. The explosion of epidemiologic activity accentuated the need to improve under-
standing of the theoretical underpinnings. For example, early studies on smoking and lung cancer
(e.g., Wynder and Graham, 1950; Doll and Hill, 1952) were scientifically noteworthy not only for
their substantive findings, but also because they demonstrated the efficacy and great efficiency of
the case-control study. Controversies about proper case-control design led to recognition of the
importance of relating such studies to an underlying source population (Sheehe, 1962; Miettinen,
1976a; Cole, 1979; see Chapter 8). Likewise, analysis of data from the Framingham Heart Study
stimulated the devel opment of the most popular modeling method in epidemiology today, multiple
logistic regression (Cornfield, 1962; Truett et al., 1967; see Chapter 20).

Despite the surge of epidemiologic activity in the late 20th century, the evidence indicates that
epidemiology remainsin an early stage of development (Pearce and Merletti, 2006). In recent years
epidemiologic concepts have continued to evolve rapidly, perhaps because the scope, activity, and
influence of epidemiology continuetoincrease. Thisrisein epidemiologic activity and influence has
been accompanied by growing pains, largely reflecting concern about the validity of the methods
used in epidemiologic research and the reliability of the results. The disparity between the results
of randomized (Writing Group for the Woman’s Health Initiative Investigators, 2002) and nonran-
domized (Stampfer and Colditz, 1991) studies of the association between hormone replacement
therapy and cardiovascular disease provides one of the most recent and high-profile examples of
hypotheses supposedly established by observational epidemiology and subsequently contradicted
(Davey Smith, 2004; Prentice et al., 2005).

Epidemiology is often in the public eye, making it a magnet for criticism. The criticism has
occasionally broadened to adistrust of the methods of epidemiology itself, going beyond skepticism
of specific findings to genera criticism of epidemiologic investigation (Taubes, 1995, 2007). These
criticisms, though hard to accept, should neverthel ess be welcomed by scientists. We all learn best
from our mistakes, and there is much that epidemiologists can do to increase the reliability and
utility of their findings. Providing readersthebasisfor achieving that goal isthe aim of thistextbook.
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CAUSALITY

A rudimentary understanding of cause and effect seemsto be acquired by most people on their own
much earlier than it could have been taught to them by someone else. Even before they can speak,
many youngsters understand the relation between crying and the appearance of a parent or other
adult, and the relation between that appearance and getting held, or fed. A little later, they will
develop theories about what happens when a glass containing milk is dropped or turned over, and
what happenswhen aswitch onthewall is pushed from one of itsresting positionsto another. While
theories such as these are being formul ated, amore general causal theory isalso being formed. The
more general theory positsthat some eventsor states of nature are causes of specific effects. Without
a general theory of causation, there would be no skeleton on which to hang the substance of the
many specific causal theories that one needs to survive.

Nonetheless, the concepts of causation that are established early in life are too primitive to
serve well asthe basisfor scientific theories. This shortcoming may be especialy truein the health
and social sciences, in which typical causes are neither necessary nor sufficient to bring about
effects of interest. Hence, as has long been recognized in epidemiology, thereis a need to develop
a more refined conceptual model that can serve as a starting point in discussions of causation.
In particular, such a model should address problems of multifactorial causation, confounding,
interdependence of effects, direct and indirect effects, levels of causation, and systems or webs of
causation (MacMahon and Pugh, 1967; Susser, 1973). This chapter describes one starting point,
the sufficient-component cause model (or sufficient-cause model), which has proven useful in
elucidating certain conceptsin individual mechanismsof causation. Chapter 4 introducesthewidely
used potential-outcome or counterfactual model of causation, whichisuseful for relatingindividual -
level to population-level causation, whereas Chapter 12 introduces graphical causal models (causal
diagrams), which are especially useful for modeling causal systems.



6 Section| e Basic Concepts

Except where specified otherwise (in particul ar, in Chapter 27, oninfectiousdisease), throughout
the book we will assumethat diseaserefersto anonrecurrent event, such asdeath or first occurrence
of adisease, and that the outcome of each individual or unit of study (e.g., agroup of persons) is not
affected by the exposures and outcomes of other individual s or units. Although this assumption will
greatly simplify our discussion andisreasonablein many applications, it doesnot apply to contagious
phenomena, such astransmissible behaviors and diseases. Nonetheless, all the definitions and most
of the points we make (especially regarding validity) apply more generally. It is also essentia to
understand simpler situations before tackling the complexities created by causal interdependence
of individuals or units.

A MODEL OF SUFFICIENT CAUSE AND COMPONENT CAUSES

To begin, we need to define cause. One definition of the cause of a specific disease occurrenceisan
antecedent event, condition, or characteristic that was necessary for the occurrence of the disease
at the moment it occurred, given that other conditions are fixed. In other words, a cause of a disease
occurrence is an event, condition, or characteristic that preceded the disease onset and that, had
the event, condition, or characteristic been different in a specified way, the disease either would
not have occurred at al or would not have occurred until some later time. Under this definition,
if someone walking along an icy path falls and breaks a hip, there may be along list of causes.
These causes might include the weather on the day of the incident, the fact that the path was not
cleared for pedestrians, the choice of footgear for the victim, the lack of a handrail, and so forth.
The constellation of causes required for this particular person to break her hip at this particular
time can be depicted with the sufficient cause diagrammed in Figure 2—-1. By sufficient cause we
mean a compl ete causal mechanism, a minimal set of conditions and events that are sufficient for
the outcome to occur. The circle in the figure comprises five segments, each of which represents a
causal component that must be present or have occured in order for the person to break her hip at that
instant. The first component, labeled A, represents poor weather. The second component, 1abeled
B, represents an uncleared path for pedestrians. The third component, labeled C, represents a poor
choice of footgear. The fourth component, labeled D, represents the lack of a handrail. The final
component, labeled U, represents all of the other unspecified events, conditions, and characteristics
that must be present or have occured at theinstance of thefall that led to abroken hip. For etiologic
effects such as the causation of disease, many and possibly all of the components of a sufficient
cause may be unknown (Rothman, 1976a). We usually include one component cause, labeled U, to
represent the set of unknown factors.

All of the component causes in the sufficient cause are required and must be present or have
occured at the instance of the fall for the person to break a hip. None is superfluous, which means
that blocking the contribution of any component cause prevents the sufficient cause from acting.
For many people, early causal thinking persists in attempts to find single causes as explanations
for observed phenomena. But experience and reasoning show that the causal mechanism for any
effect must consist of a constellation of components that act in concert (Mill, 1862; Mackie, 1965).
In disease etiology, a sufficient cause is a set of conditions sufficient to ensure that the outcome
will occur. Therefore, completing a sufficient cause is tantamount to the onset of disease. Onset
here may refer to the onset of the earliest stage of the disease process or to any transition from one
well-defined and readily characterized stage to the next, such as the onset of signs or symptoms.

FIGURE 2-1 e Depiction of the constellation of component
causes that constitute a sufficient cause for hip fracture for a particular
person at a particular time. In the diagram, A represents poor weather,
B represents an uncleared path for pedestrians, C represents a poor
choice of footgear, D represents the lack of a handrail, and U
represents all of the other unspecified events, conditions, and
characteristics that must be present or must have occured at the
instance of the fall that led to a broken hip.
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Consider again the role of the handrail in causing hip fracture. The absence of such a handrail
may play acausal rolein some sufficient causes but not in others, depending on circumstances such
asthe weather, the level of inebriation of the pedestrian, and countless other factors. Our definition
linksthe lack of ahandrail with this one broken hip and does not imply that the lack of this handrail
by itself was sufficient for that hip fracture to occur. With this definition of cause, no specific event,
condition, or characteristic is sufficient by itself to produce disease. The definition does not describe
a complete causal mechanism, but only a component of it. To say that the absence of a handrail is
a component cause of a broken hip does not, however, imply that every person walking down the
path will break a hip. Nor does it imply that if a handrail is installed with properties sufficient to
prevent that broken hip, that no onewill break ahip on that same path. There may be other sufficient
causes by which a person could suffer a hip fracture. Each such sufficient cause would be depicted
by its own diagram similar to Figure 2—1. The first of these sufficient causes to be completed by
simultaneous accumulation of all of itscomponent causeswill bethe onethat depictsthe mechanism
by which the hip fracture occurs for a particular person. If no sufficient cause is completed while a
person passes along the path, then no hip fracture will occur over the course of that walk.

As noted above, a characteristic of the naive concept of causation is the assumption of a one-
to-one correspondence between the observed cause and effect. Under this view, each cause is seen
as “necessary” and “sufficient” in itself to produce the effect, particularly when the cause is an
observable action or event that takes place near in time to the effect. Thus, the flick of a switch
appears to be the singular cause that makes an electric light go on. There are less evident causes,
however, that also operate to produce the effect: a working bulb in the light fixture, intact wiring
from the switch to the bulb, and voltage to produce a current when the circuit is closed. To achieve
the effect of turning on the light, each of these components is as important as moving the switch,
because changing any of these components of the causal constellation will prevent the effect. The
term necessary cause is therefore reserved for a particular type of component cause under the
sufficient-cause model. If any of the component causes appears in every sufficient cause, then that
component cause is called a “necessary” component cause. For the disease to occur, any and all
necessary component causes must be present or must have occurred. For example, one could |abel
a component cause with the requirement that one must have a hip to suffer a hip fracture. Every
sufficient cause that leads to hip fracture must have that component cause present, because in order
to fracture a hip, one must have a hip to fracture.

The concept of complementary component causes will be useful in applications to epidemiol -
ogy that follow. For each component cause in a sufficient cause, the set of the other component
causes in that sufficient cause comprises the complementary component causes. For example, in
Figure 2—1, component cause A (poor weather) has as its complementary component causes the
componentslabeled B, C, D, and U. Component cause B (an uncleared path for pedestrians) has as
its complementary component causes the components labeled A, C, D, and U.

THE NEED FOR A SPECIFIC REFERENCE CONDITION

Component causes must be defined with respect to a clearly specified aternative or reference
condition (often called areferent). Consider again the lack of ahandrail along the path. To say that
this condition is a component cause of the broken hip, we have to specify an aternative condition
against which to contrast the cause. The mere presence of a handrail would not suffice. After al,
the hip fracture might still have occurred in the presence of a handrail, if the handrail was too short
or if it was old and made of rotten wood. We might need to specify the presence of a handrail
sufficiently tall and sturdy to break the fall for the absence of that handrail to be acomponent cause
of the broken hip.

To see the necessity of specifying the alternative event, condition, or characteristic aswell asthe
causal one, consider an example of a man who took high doses of ibuprofen for several years and
developed agastric ulcer. Did the man’s use of ibuprofen cause his ulcer? One might at first assume
that the natural contrast would be with what would have happened had he taken nothing instead
of ibuprofen. Given a strong reason to take the ibuprofen, however, that alternative may not make
sense. If the specified aternative to taking ibuprofen isto take acetaminophen, a different drug that
might have been indicated for hisproblem, and if hewould not have devel oped the ul cer had he used
acetaminophen, then we can say that using ibuprofen caused the ulcer. But ibuprofen did not cause
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his ulcer if the specified alternative is taking aspirin and, had he taken aspirin, he still would have
developed the ulcer. The need to specify the alternative to a preventiveisillustrated by a newspaper
headline that read: “Rare Meat Cuts Colon Cancer Risk.” Was this a story of an epidemiologic
study comparing the colon cancer rate of a group of people who ate rare red meat with theratein
agroup of vegetarians? No, the study compared persons who ate rare red meat with persons who
ate highly cooked red meat. The same exposure, regular consumption of rare red meat, might have
a preventive effect when contrasted against highly cooked red meat and a causative effect or no
effect in contrast to a vegetarian diet. An event, condition, or characteristic is not a cause by itself
asanintrinsic property it possesses in isolation, but as part of a causal contrast with an aternative
event, condition, or characteristic (Lewis, 1973; Rubin, 1974; Greenland et al., 1999a; Maldonado
and Greenland, 2002; see Chapter 4).

APPLICATION OF THE SUFFICIENT-CAUSE MODEL
TO EPIDEMIOLOGY

The preceding introduction to concepts of sufficient causes and component causes provides the
lexicon for application of the model to epidemiology. For example, tobacco smoking is a cause of
lung cancer, but by itself it isnot asufficient cause, asdemonstrated by the fact that most smokersdo
not get lung cancer. First, the term smoking istoo imprecise to be useful beyond casual description.
One must specify the type of smoke (e.g., cigarette, cigar, pipe, or environmental), whether it is
filtered or unfiltered, the manner and frequency of inhalation, the age at initiation of smoking,
and the duration of smoking. And, however smoking is defined, its alternative needs to be defined
as well. Is it smoking nothing at all, smoking less, smoking something else? Equally important,
even if smoking and its aternative are both defined explicitly, smoking will not cause cancer in
everyone. So who is susceptible to this smoking effect? Or, to put it in other terms, what are the
other components of the causal constellation that act with smoking to produce lung cancer in this
contrast?

Figure 2-2 provides a schematic diagram of three sufficient causes that could be completed
during the follow-up of an individual. The three conditions or events—A, B, and E—have been
defined as binary variables, so they can only take on values of 0 or 1. With the coding of A used
inthe figure, itsreference level, A = 0, is sometimes causative, but itsindex level, A = 1, isnever
causative. This situation arises because two sufficient causes contain a component cause labeled
“A =0, but no sufficient cause contains a component cause labeled “A = 1.” An example of a
condition or event of this sort might be A = 1 for taking a daily multivitamin supplement and
A = Ofor taking no vitamin supplement. With the coding of B and E used in the example depicted
by Figure 2-2, their index levels, B = 1 and E = 1, are sometimes causative, but their reference
levels, B = 0and C = 0, are never causative. For each variable, the index and reference levels may
represent only two alternative states or events out of many possibilities. Thus, the coding of B might
be B = 1 for smoking 20 cigarettes per day for 40 years and B = 0 for smoking 20 cigarettes per
day for 20 years, followed by 20 years of not smoking. E might be coded E = 1 for living in an
urban neighborhood with low average income and high income inequality, and E = O for living in
an urban neighborhood with high average income and low income inequality.

A =0,B=1,andE = 1areindividua component causes of the sufficient causesin Figure 2-2.
Ui, Uz, and U3 represent sets of component causes. U, for example, is the set of all components
other than A = 0 and B = 1 required to complete the first sufficient cause in Figure 2-2. If we
decided not to specify B = 1, then B = 1 would become part of the set of components that are
causally complementary to A = 0; in other words, B = 1 would then be absorbed into U;.

Each of the three sufficient causes represented in Figure 2—2 is minimally sufficient to produce
the disease in the individual. That is, only one of these mechanisms needs to be completed for

-0lB=1 A=0lE=1 B=1lE= FIGURE 2—2 ® Three classes of sufficient
causes of a disease (sufficient causes |, Il, and lll
from left to right).
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disease to occur (sufficiency), and there is no superfluous component cause in any mechanism
(minimality)—each component is a required part of that specific causal mechanism. A specific
component cause may play arolein one, several, or al of the causal mechanisms. As noted earlier,
a component cause that appearsin all sufficient causesis called a necessary cause of the outcome.
As an example, infection with HIV is a component of every sufficient cause of acquired immune
deficiency syndrome (AIDS) and hence is a necessary cause of AIDS. It has been suggested that
such causes be called “universally necessary,” in recognition that every component of a sufficient
cause is necessary for that sufficient cause (mechanism) to operate (Poole 20013).

Figure 2—2 does not depict aspects of the causal process such as sequence or timing of action of
the component causes, dose, or other complexities. These can be specified in the description of the
contrast of index and reference conditions that defines each component cause. Thus, if the outcome
is lung cancer and the factor B represents cigarette smoking, it might be defined more explicitly
assmoking at least 20 cigarettes aday of unfiltered cigarettesfor at least 40 years beginning at age
20yearsor earlier (B = 1), or smoking 20 cigarettes aday of unfiltered cigarettes, beginning at age
20 years or earlier, and then smoking no cigarettes for the next 20 years (B = 0).

In specifying a component cause, the two sides of the causal contrast of which it is composed
should be defined with an eye to realistic choices or options. If prescribing a placebo is not a
realistic therapeutic option, a causal contrast between a new treatment and a placebo in aclinical
trial may be questioned for its dubious relevance to medical practice. In a similar fashion, before
saying that oral contraceptives increase the risk of death over 10 years (e.g., through myocardial
infarction or stroke), we must consider the aternative to taking oral contraceptives. If it involves
getting pregnant, then the risk of death attendant to childbirth might be greater than the risk from
oral contraceptives, making oral contraceptives a preventive rather than a cause. If the aternative
is an equally effective contraceptive without serious side effects, then oral contraceptives may be
described as a cause of death.

To understand prevention in the sufficient-component cause framework, we posit that the a-
ternative condition (in which a component cause is absent) prevents the outcome relative to the
presence of the component cause. Thus, a preventive effect of afactor is represented by specifying
its causative alternative as a component cause. An exampleisthe presence of A = 0 asacomponent
cause in the first two sufficient causes shown in Figure 2—2. Another example would be to define a
variable, F (not depicted in Fig. 2-2), as*“vaccination (F = 1) or no vaccination (F = 0)”. Prevention
of the disease by getting vaccinated (F = 1) would be expressed in the sufficient-component cause
model as causation of the disease by not getting vaccinated (F = 0). This depiction is unproblem-
atic because, once both sides of a causal contrast have been specified, causation and prevention are
merely two sides of the same coin.

Sheps (1958) once asked, “Shall we count the living or the dead?’ Death is an event, but
survival is not. Hence, to use the sufficient-component cause model, we must count the dead. This
model restriction can have substantive implications. For instance, some measures and formulas
approximate others only when the outcomeisrare. When survival israre, death is common. In that
case, use of the sufficient-component cause model to inform the analysiswill prevent usfrom taking
advantage of the rare-outcome approximations.

Similarly, etiol ogies of adverse health outcomesthat are conditions or states, but not events, must
be depicted under the sufficient-cause model by reversing the coding of the outcome. Consider spina
bifida, whichisthefailure of the neural tubeto closefully during gestation. Thereisno pointintime
at which spina bifida may be said to have occurred. It would be awkward to define the “incidence
time” of spinabifidaasthe gestational age at which complete neural tube closure ordinarily occurs.
The sufficient-component cause model would be better suited in this case to defining the event of
compl ete closure (no spinabifida) asthe outcome and to view conditions, events, and characteristics
that prevent this beneficial event as the causes of the adverse condition of spinabifida.

PROBABILITY, RISK, AND CAUSES

In everyday language, “risk” is often used as a synonym for probability. It is aso commonly used
as a synonym for “hazard,” asin, “Living near a nuclear power plant is arisk you should avoid.”
Unfortunately, in epidemiologic parlance, even in the scholarly literature, “risk” is frequently used
for many distinct concepts: rate, rate ratio, risk ratio, incidence odds, prevalence, etc. The more
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specific, and therefore more useful, definition of risk is“probability of an event during a specified
period of time.”

The term probability has multiple meanings. Oneisthat it is the relative frequency of an event.
Another is that probability is the tendency, or propensity, of an entity to produce an event. A third
meaning is that probability measures someone's degree of certainty that an event will occur. When
one says “the probability of death in vehicular accidents when traveling >120 km/h is high,” one
means that the proportion of accidents that end with deaths is higher when they involve vehicles
traveling >120 km/h than when they involve vehicles traveling at lower speeds (frequency usage),
that high-speed accidents have a greater tendency than lower-speed accidents to result in deaths
(propensity usage), or that the speaker ismore certain that adeath will occur in ahigh-speed accident
than in alower-speed accident (certainty usage).

The frequency usage of “probability” and “risk,” unlike the propensity and certainty usages,
admits no meaning to the notion of “risk” for an individual beyond the relative frequency of 100%
if the event occurs and 0% if it does not. This restriction of individual risksto 0 or 1 can only be
relaxed to alow values in between by reinterpreting such statements as the frequency with which
the outcome would be seen upon random sampling from a very large population of individuals
deemed to be “like” the individual in some way (e.g., of the same age, sex, and smoking history).
If one accepts this interpretation, whether any actual sampling has been conducted or not, the
notion of individual risk is replaced by the notion of the frequency of the event in question in the
large population from which the individual was sampled. With this view of risk, arisk will change
according to how we group individuals together to evaluate frequencies. Subjective judgment will
inevitably enter into the picture in deciding which characteristics to use for grouping. For instance,
should tomato consumption be taken into account in defining the class of men who are “like’ a
given man for purposes of determining his risk of adiagnosis of prostate cancer between his 60th
and 70th birthdays? If so, which study or meta-analysis should be used to factor in this piece of
information?

Unless we have found a set of conditions and events in which the disease does not occur at al,
it is always areasonable working hypothesis that, no matter how much is known about the etiology
of a disease, some causal components remain unknown. We may be inclined to assign an equal
risk to al individuals whose status for some components is known and identical. We may say, for
example, that men who are heavy cigarette smokers have approximately a 10% lifetime risk of
developing lung cancer. Some interpret this statement to mean that all men would be subject to a
10% probability of lung cancer if they were to become heavy smokers, asif the occurrence of lung
cancer, aside from smoking, were purely a matter of chance. Thisview is untenable. A probability
may be 10% conditional on one piece of information and higher or lower than 10% if we condition
on other relevant information as well. For instance, men who are heavy cigarette smokers and who
worked for many yearsin occupationswith historically high levels of exposure to airborne asbestos
fibers would be said to have alifetime lung cancer risk appreciably higher than 10%.

Regardless of whether we interpret probability as relative frequency or degree of certainty, the
assignment of equal risks merely reflects the particular grouping. In our ignorance, the best we can
doin assessing risk is to classify people according to measured risk indicators and then assign the
average risk observed within a class to persons within the class. As knowledge or specification of
additional risk indicators expands, the risk estimates assigned to people will depart from average
according to the presence or absence of other factors that predict the outcome.

STRENGTH OF EFFECTS

The causal model exemplified by Figure 2—2 can facilitate an understanding of some key concepts
such as strength of effect and interaction. Asan illustration of strength of effect, Table 2—1 displays
the frequency of the eight possible patterns for exposure to A, B, and E in two hypothetical popu-
lations. Now the pie chartsin Figure 2—2 depict classes of mechanisms. Thefirst one, for instance,
represents all sufficient causes that, no matter what other component causes they may contain, have
in common the fact that they contain A = 0 and B = 1. The constituents of U; may, and ordinarily
would, differ from individual to individual. For simplification, we shall suppose, rather unrealisti-
caly, that Uy, Uy, and U3 are always present or have always occured for everyone and Figure 2-2
represents all the sufficient causes.
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Exposure Frequencies and Individual Risks in Two Hypothetical Populations
According to the Possible Combinations of the Three Specified Component
Causes in Fig. 2-1

Exposures Frequency of Exposure Pattern
A B E Sufficient Cause Completed Risk Population 1 Population 2
1 1 1 1 1 900 100
1 1 0 None 0 900 100
1 0 1 None 0 100 900
1 0 0 None 0 100 900
0 1 1 I, 1I, or Il 1 100 900
0 1 0 | 1 100 900
0 0 1 I 1 900 100
0 0 0 none 0 900 100

Under these assumptions, the response of each individual to the exposure pattern in agiven row
can be found in the response column. The response here is the risk of developing a disease over a
specified time period that is the same for all individuals. For simplification, a deterministic model
of risk is employed, such that individual risks can equal only the value 0 or 1, and no valuesin
between. A stochastic model of individual risk would relax this restriction and allow individual
risksto lie between 0 and 1.

The proportion getting disease, or incidence proportion, in any subpopulationin Table 2—1 can be
found by summing the number of persons at each exposure pattern with an individual risk of 1 and
dividing thistotal by the subpopulation size. For example, if exposure A isnot considered (e.g., if it
werenot measured), the pattern of incidence proportionsin popul ation 1 would bethosein Table 2—2.

As an example of how the proportions in Table 2-2 were calculated, let us review how the
incidence proportion among persons in population 1 with B = 1 and E = 0 was calculated: There
were 900 personswith A = 1, B = 1, and E = 0, none of whom became cases because there are no
sufficient causesthat can culminate in the occurrence of the disease over the study period in persons
with this combination of exposure conditions. (There are two sufficient causes that contain B = 1
as a component cause, but one of them contains the component cause A = 0 and the other contains
the component cause E = 1. The presence of A = 1 or E = 0 blocks these etiologic mechanisms.)
There were 100 personswith A = 0, B = 1, and E = 0, all of whom became cases because they
all had U4, the set of causal complements for the class of sufficient causes containing A = 0 and

Incidence Proportions (IP) for Combinations of Component
Causes B and E in Hypothetical Population 1, Assuming That
Component Cause A Is Unmeasured

B=1E=1 B=1E=0 B=0,E=1 B=0,E=0

Cases 1,000 100 900 0
Total 1,000 1,000 1,000 1,000
IP 1.00 0.10 0.90 0.00
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Incidence Proportions (IP) for Combinations of Component
Causes B and E in Hypothetical Population 2, Assuming That
Component Cause A Is Unmeasured

Cases 1,000 900 100 0
Total 1,000 1,000 1,000 1,000
IP 1.00 0.90 0.10 0.00

B = 1. Thus, among all 1,000 personswith B = 1 and E = 0, there were 100 cases, for an incidence
proportion of 0.10.

If we were to measure strength of effect by the difference of the incidence proportions, it is
evident from Table 2-2 that for population 1, E = 1 hasamuch stronger effect than B = 1, because
E = 1increases the incidence proportion by 0.9 (in both levels of B), whereas B = 1 increases the
incidence proportion by only 0.1 (in both levels of E). Table 2-3 shows the analogous results for
population 2. Although the members of this population have exactly the same causal mechanisms
operating within them as do the members of population 1, the relative strengths of causative factors
E = 1 and B = 1 are reversed, again using the incidence proportion difference as the measure of
strength. B = 1 now has a much stronger effect on the incidence proportion than E = 1, despite
the fact that A, B, and E have no association with one another in either population, and their index
levels(A = 1,B = 1and E = 1) and reference levels (A = 0, B = 0, and E = 0) are each present
or have occured in exactly half of each population.

The overall difference of incidence proportions contrasting E = 1 with E = 0is(1,900/2,000) —
(100/2,000) = 0.9 in population 1 and (1,100/2,000) — (900/2,000) = 0.1 in population 2. The
key difference between populations 1 and 2 is the difference in the prevalence of the conditions
under which E = 1 acts to increase risk: that is, the presence of A = 0 or B = 1, but not both.
(WhenA =0andB =1, E =1 completes al three sufficient causes in Figure 2-2; it thus does not
increase anyone'srisk, although it may well shorten the time to the outcome.) The prevalence of the
condition, “A = 0 or B = 1 but not both” is 1,800/2,000 = 90% in both levels of E in population 1.
In population 2, this prevalence is only 200/2,000 = 10% in both levels of E. This difference in
the prevalence of the conditions sufficient for E = 1 to increase risk explains the difference in the
strength of the effect of E = 1 as measured by the difference in incidence proportions.

As noted above, the set of all other component causes in all sufficient causes in which a causal
factor participates is called the causal complement of the factor. Thus, A = 0, B = 1, U, and U3
make up the causal complement of E = 1intheabove example. Thisexample showsthat the strength
of afactor’seffect onthe occurrence of adiseasein apopulation, measured asthe absol ute difference
inincidence proportions, depends on the prevalence of its causal complement. This dependence has
nothing to do with the etiologic mechanism of the component’s action, because the component is
an equal partner in each mechanism in which it appears. Neverthel ess, afactor will appear to have
a strong effect, as measured by the difference of proportions getting disease, if its causal comple-
ment is common. Conversely, a factor with arare causal complement will appear to have a weak
effect.

If strength of effect is measured by the ratio of proportions getting disease, as opposed to
the difference, then strength depends on more than a factor’s causal complement. In particular, it
depends additionally on how common or rare the components are of sufficient causesin which the
specified causal factor does not play arole. In this example, given the ubiquity of U, the effect of
E = 1 measured in ratio terms depends on the prevalence of E = 1's causal complement and on the
prevalence of the conjunction of A = 0 and B = 1. If many people have both A = 0and B = 1,
the “baseling” incidence proportion (i.e., the proportion of not-E or “unexposed” persons getting
disease) will be high and the proportion getting disease due to E will be comparatively low. If few
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people have both A = 0 and B = 1, the baseline incidence proportion will below and the proportion
getting disease due to E = 1 will be comparatively high. Thus, strength of effect measured by the
incidence proportion ratio depends on more conditions than does strength of effect measured by
the incidence proportion difference.

Regardless of how strength of a causal factor’s effect is measured, the public health significance
of that effect doesnot imply acorresponding degree of etiol ogi ¢ significance. Each component cause
in a given sufficient cause has the same etiol ogic significance. Given a specific causal mechanism,
any of the component causes can have strong or weak effects using either the difference or ratio
measure. The actual identities of the components of a sufficient cause are part of the mechanics of
causation, whereas the strength of a factor’s effect depends on the time-specific distribution of its
causal complement (if strengthismeasuredin absol uteterms) plusthedistribution of thecomponents
of al sufficient causes in which the factor does not play arole (if strength is measured in relative
terms). Over a span of time, the strength of the effect of a given factor on disease occurrence may
change because the prevalence of its causal complement in various mechanisms may also change,
even if the causal mechanismsin which the factor and its cofactors act remain unchanged.

INTERACTION AMONG CAUSES

Two component causes acting in the same sufficient cause may be defined as interacting causally
to produce disease. This definition leaves open many possible mechanisms for the interaction,
including those in which two components interact in adirect physical fashion (e.g., two drugs that
react to form atoxic by-product) and those in which one component (the initiator of the pair) alters
a substrate so that the other component (the promoter of the pair) can act. Nonetheless, it excludes
any situation in which one component E is merely a cause of another component F, with no effect
of E on disease except through the component F it causes.

Acting in the same sufficient cause is not the same as one component cause acting to produce a
second component cause, and then the second component going on to produce the disease (Robins
and Greenland 1992, Kaufman et al., 2004). As an example of the distinction, if cigarette smoking
(vs. never smoking) isacomponent cause of atherosclerosis, and atherosclerosis (vs. no atheroscle-
rosis) causes myocardial infarction, both smoking and atherosclerosis would be component causes
(cofactors) in certain sufficient causes of myocardial infarction. They would not necessarily appear
in the same sufficient cause. Rather, for a sufficient cause involving atherosclerosis as acomponent
cause, there would be another sufficient cause in which the atherosclerosis component cause was
replaced by all the component causes that brought about the atherosclerosis, including smoking.
Thus, a sequential causal relation between smoking and atherosclerosis would not be enough for
them to interact synergistically in the etiology of myocardial infarction, in the sufficient-cause
sense. Instead, the causal sequence means that smoking can act indirectly, through atherosclerosis,
to bring about myocardia infarction.

Now suppose that, perhaps in addition to the above mechanism, smoking reduces clotting time
and thus causesthrombi that block the coronary arteriesif they are narrowed by atherosclerosis. This
mechanism would be represented by a sufficient cause containing both smoking and atherosclerosis
as components and thus would constitute a synergistic interaction between smoking and atheroscle-
rosis in causing myocardial infarction. The presence of this sufficient cause would not, however,
tell us whether smoking also contributed to the myocardia infarction by causing the atheroscle-
rosis. Thus, the basic sufficient-cause model does not alert us to indirect effects (effects of some
component causes mediated by other component causes in the model). Chapters 4 and 12 intro-
duce potential-outcome and graphical models better suited to displaying indirect effects and more
general sequential mechanisms, whereas Chapter 5 discusses in detail interaction as defined in the
potential-outcome framework and itsrelation to interaction as defined in the sufficient-cause model.

PROPORTION OF DISEASE DUE TO SPECIFIC CAUSES

In Figure 22, assuming that the three sufficient causesin the diagram are the only ones operating,
what fraction of disease is caused by E = 1?7 E = 1 is a component cause of disease in two of the
sufficient-causemechanisms, I and I11, so all diseasearising through either of thesetwo mechanisms
isattributableto E = 1. Notethat in personswith the exposure pattern A =0, B = 1, E= 1, all three
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sufficient causes would be completed. The first of the three mechanisms to be completed would
be the one that actually produces a given case. If the first one completed is mechanism |1 or I,
the case would be causally attributable to E = 1. If mechanism | is the first one to be completed,
however, E = 1 would not be part of the sufficient cause producing that case. Without knowing the
completion times of the three mechanisms, among persons with the exposure pattern A = 0, B =
1, E = 1 we cannot tell how many of the 100 cases in population 1 or the 900 cases in population
2 are etiologically attributable to E = 1.

Each of the cases that is etiologically attributable to E = 1 can also be attributed to the other
component causes in the causal mechanismsin which E = 1 acts. Each component cause interacts
with its complementary factorsto produce disease, so each case of disease can be attributed to every
component cause in the completed sufficient cause. Note, though, that the attributable fractions
added across component causes of the same disease do not sum to 1, although there is a mistaken
tendency to think that they do. To illustrate the mistake in this tendency, note that a necessary
component cause appears in every completed sufficient cause of disease, and so by itself has an
attributable fraction of 1, without counting the attributable fractions for other component causes.
Because every case of disease can be attributed to every component cause in its causal mechanism,
attributable fractions for different component causes will generally sum to more than 1, and there
isno upper limit for this sum.

A recent debate regarding the proportion of risk factors for coronary heart disease attributable
to particular component causes illustrates the type of errors in inference that can arise when the
sum is thought to be restricted to 1. The debate centers around whether the proportion of coronary
heart disease attributable to high blood cholesterol, high blood pressure, and cigarette smoking
equals 75% or “only 50%" (Magnus and Beaglehole, 2001). If the former, then some have argued
that the search for additional causes would be of limited utility (Beaglehole and Magnus, 2002),
because only 25% of cases “remain to be explained.” By assuming that the proportion explained
by yet unknown component causes cannot exceed 25%, those who support this contention fail to
recognize that cases caused by a sufficient cause that contains any subset of the three named causes
might also contain unknown component causes. Cases stemming from sufficient causes with this
overlapping set of component causes could be prevented by interventions targeting the three named
causes, or by interventions targeting the yet unknown causes when they become known. The latter
interventions could reduce the disease burden by much more than 25%.

Asanother example, in acohort of cigarette smokers exposed to arsenic by working in asmelter,
an estimated 75% of the lung cancer rate was attributabl e to their work environment and an estimated
65% was attributable to their smoking (Pinto et al., 1978; Hertz-Picciotto et al., 1992). There is
no problem with such figures, which merely reflect the multifactorial etiology of disease. So, too,
with coronary heart disease; if 75% of that disease is attributable to high blood cholesterol, high
blood pressure, and cigarette smoking, 100% of it can still be attributable to other causes, known,
suspected, and yet to be discovered. Some of these causes will participate in the same causal
mechanisms as high blood cholesterol, high blood pressure, and cigarette smoking. Beaglehole and
Magnus were correct in thinking that if the three specified component causes combine to explain
75% of cardiovascular disease (CVD) and we somehow eliminated them, there would be only 25%
of CVD casesremaining. But until that 75% is eliminated, any newly discovered component could
cause up to 100% of the CVD we currently have.

The notion that interventionstargeting high blood cholesterol, high blood pressure, and cigarette
smoking could eliminate 75% of coronary heart disease is unrealistic given currently available
intervention strategies. Although progress can be made to reduce the effect of these risk factors, it
is unlikely that any of them could be completely eradicated from any large population in the near
term. Estimates of the public health effect of eliminating diseases themselves as causes of death
(Murray et al., 2002) are even further removed from reality, because they fail to account for all the
effects of interventions required to achieve the disease elimination, including unanticipated side
effects (Greenland, 2002a, 20053).

The debate about coronary heart disease attribution to component causes is reminiscent of an
earlier debate regarding causes of cancer. Intheir widely cited work, The Causes of Cancer, Doll and
Peto (1981, Table 20) created atable giving their estimates of the fraction of all cancers caused by
various agents. Thefractions summed to nearly 100%. Although the authors acknowledged that any
case could be caused by morethan one agent (which meansthat, given enough agents, the attributable
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fractions would sum to far more than 100%), they referred to this situation as a “difficulty” and
an “anomaly” that they chose to ignore. Subsequently, one of the authors acknowledged that the
attributable fraction could sum to greater than 100% (Peto, 1985). It is neither a difficulty nor an
anomaly nor something we can safely ignore, but simply a consequence of the fact that no event
has a single agent as the cause. The fraction of disease that can be attributed to known causes will
grow without bound as more causes are discovered. Only the fraction of disease attributable to a
single component cause cannot exceed 100%.

In a similar vein, much publicity attended the pronouncement in 1960 that as much as 90%
of cancer is environmentally caused (Higginson, 1960). Here, “environment” was thought of as
representing all nongenetic component causes, and thusincluded not only the physical environment,
but also the socia environment and all individual human behavior that isnot genetically determined.
Hence, environmental component causes must be present to some extent in every sufficient cause
of adisease. Thus, Higginson's estimate of 90% was an underestimate.

One can a'so show that 100% of any disease is inherited, even when environmental factors are
component causes. MacM ahon (1968) cited the example given by Hogben (1933) of yellow shanks,
atrait occurring in certain genetic strains of fowl fed on yellow corn. Both aparticular set of genes
and a yellow-corn diet are necessary to produce yellow shanks. A farmer with severa strains of
fowl who feeds them all only yellow corn would consider yellow shanks to be a genetic condition,
because only onestrain would get yellow shanks, despiteall strainsgetting the samediet. A different
farmer who owned only the strain liable to get yellow shanks but who fed some of the birds yellow
corn and others white corn would consider yellow shanks to be an environmentally determined
condition because it depends on diet. In humans, the mental retardation caused by phenylketonuria
isconsidered by many to be purely genetic. Thisretardation can, however, be successfully prevented
by dietary intervention, which demonstrates the presence of an environmental cause. In reality,
yellow shanks, phenylketonuria, and other diseases and conditions are determined by an interaction
of genes and environment. It makes no sense to alocate a portion of the causation to either genes
or environment separately when both may act together in sufficient causes.

Nonetheless, many researchers have compared disease occurrence in identical and nonidentical
twins to estimate the fraction of disease that is inherited. These twin-study and other heritability
indices assess only the relative role of environmental and genetic causes of disease in a particular
setting. For example, somegenetic causes may benecessary componentsof every causal mechanism.
If everyonein apopulation has anidentical set of the genesthat cause disease, however, their effect
is not included in heritability indices, despite the fact that the genes are causes of the disease.
The two farmers in the preceding example would offer very different values for the heritability
of yellow shanks, despite the fact that the condition is always 100% dependent on having certain
genes.

Every case of every disease has some environmental and some genetic component causes, and
therefore every case can be attributed both to genes and to environment. No paradox exists aslong
as it is understood that the fractions of disease attributable to genes and to environment overlap
with one another. Thus, debates over what proportion of all occurrences of a disease are genetic
and what proportion are environmental, inasmuch as these debates assume that the shares must add
up to 100%, are fallacious and distracting from more worthwhile pursuits.

On an even more genera level, the question of whether a given disease does or does not have
a “multifactorial etiology” can be answered once and for al in the affirmative. All diseases have
multifactorial etiologies. It is therefore completely unremarkable for a given disease to have such
an etiology, and no time or money should be spent on research trying to answer the question of
whether aparticular disease does or does not have amultifactorial etiology. They al do. The job of
etiologic research isto identify components of those etiologies.

INDUCTION PERIOD

Pie-chart diagrams of sufficient causes and their components such as those in Figure 2-2 are not
well suited to provide a model for conceptualizing the induction period, which may be defined as
the period of time from causal action until disease initiation. There is no way to tell from a pie-
chart diagram of a sufficient cause which components affect each other, which components must
come before or after others, for which components the temporal order isirrelevant, etc. The crucial
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information on temporal ordering must come in a separate description of the interrelations among
the components of a sufficient cause.

If, in sufficient cause |, the sequence of action of the specified component causes must be A =
0, B = 1 and we are studying the effect of A = 0, which (let us assume) acts at a narrowly defined
point intime, we do not observe the occurrence of disease immediately after A = 0 occurs. Disease
occursonly after the sequenceis completed, so therewill beadelay while B = 1 occurs (along with
components of the set U; that are not present or that have not occured when A = 0 occurs). When
B =1 acts, if it isthe last of all the component causes (including those in the set of unspecified
conditions and events represented by U;), disease occurs. The interval between the action of B =
1 and the disease occurrence is the induction time for the effect of B = 1 in sufficient cause I.

In the example given earlier of an equilibrium disorder leading to alater fall and hip injury, the
induction time between the start of the equilibrium disorder and the later hip injury might be long,
if the equilibrium disorder is caused by an old head injury, or short, if the disorder is caused by
inebriation. Inthelatter case, it could even be instantaneous, if we defineit as blood alcohol greater
than acertain level. Thislatter possibility illustrates an important general point: Component causes
that do not change with time, as opposed to events, al have induction times of zero.

Defining an induction period of interest is tantamount to specifying the characteristics of the
component causesof interest. A clear exampleof alengthy inductiontimeisthe cause—effect relation
between exposure of a female fetus to diethylstilbestrol (DES) and the subsequent development
of adenocarcinoma of the vagina. The cancer is usually diagnosed between ages 15 and 30 years.
Because the causal exposure to DES occurs early in pregnancy, there is an induction time of about
15 to 30 years for the carcinogenic action of DES. During this time, other causes presumably are
operating; some evidence suggests that hormonal action during adolescence may be part of the
mechanism (Rothman, 1981).

It isincorrect to characterize a disease itself as having alengthy or brief induction period. The
induction time can be conceptualized only in relation to a specific component cause operating in a
specific sufficient cause. Thus, we say that the induction time relating DES to clear-cell carcinoma
of the vaginais 15 to 30 years, but we should not say that 15 to 30 yearsis the induction time for
clear-cell carcinoma in general. Because each component cause in any causal mechanism can act
at atime different from the other component causes, each can have its own induction time. For
the component cause that acts last, the induction time equals zero. If another component cause of
clear-cell carcinomaof the vaginathat acts during adolescencewereidentified, it would have amuch
shorter induction time for its carcinogenic action than DES. Thus, induction time characterizes a
specific cause—effect pair rather than just the effect.

In carcinogenesis, the terms initiator and promotor have been used to refer to some of the com-
ponent causes of cancer that act early and late, respectively, in the causal mechanism. Cancer itself
has often been characterized as a disease process with along induction time. This characterization
is a misconception, however, because any late-acting component in the causal process, such as a
promotor, will have a short induction time. Indeed, by definition, the induction time will always be
zerofor at least one component cause, the last to act. The mistaken view that diseases, as opposed to
cause—disease relationships, have long or short induction periods can have important implications
for research. For instance, the view of adult cancers as*“ diseases of long latency” may induce some
researchers to ignore evidence of etiologic effects occurring relatively late in the processes that
culminatein clinically diagnosed cancers. At the other extreme, the routine disregard for exposures
occurring in the first decade or two in studies of occupational carcinogenesis, as amajor example,
may well have inhibited the discovery of occupational causes with very long induction periods.

Disease, once initiated, will not necessarily be apparent. The time interval between irreversible
disease occurrence and detection has been termed the latent period (Rothman, 1981), athough
others have used this term interchangeably with induction period. Still others use latent period to
mean thetotal time between causal action and disease detection. We useinduction period to describe
thetimefrom causal actiontoirreversibledisease occurrence and latent period to mean thetimefrom
disease occurrence to disease detection. The latent period can sometimes be reduced by improved
methods of disease detection. The induction period, on the other hand, cannot be reduced by early
detection of disease, because disease occurrence marks the end of the induction period. Earlier
detection of disease, however, may reduce the apparent induction period (the time between causal
action and disease detection), because the time when disease is detected, as a practical matter, is
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usually used to mark the time of disease occurrence. Thus, diseases such as slow-growing cancers
may appear to have long induction periods with respect to many causes because they have long
latent periods. The latent period, unlike the induction period, is a characteristic of the disease and
the detection effort applied to the person with the disease.

Although it is not possible to reduce the induction period proper by earlier detection of disease,
it may be possible to observe intermediate stages of a causal mechanism. The increased interest in
biomarkers such as DNA adducts is an example of attempting to focus on causes more proximal
to the disease occurrence or on effects more proximal to cause occurrence. Such biomarkers may
nonethel ess reflect the effects of earlier-acting agents on the person.

Some agents may have acausal action by shortening the induction time of other agents. Suppose
that exposure to factor X = 1 leads to epilepsy after an interval of 10 years, on average. It may be
that exposureto adrug, Z = 1, would shorten thisinterval to 2 years. IsZ = 1 acting asacatalyst, or
asacause, of epilepsy? The answer isboth: A catalyst isacause. Without Z = 1, the occurrence of
epilepsy comes 8 years|ater than it comeswith Z = 1, so we can say that Z = 1 causes the onset of
the early epilepsy. It is not sufficient to argue that the epilepsy would have occurred anyway. First,
it would not have occurred at that time, and the time of occurrence is part of our definition of an
event. Second, epilepsy will occur later only if the individual survives an additional 8 years, which
isnot certain. Not only does agent Z = 1 determine when the epilepsy occurs, it can aso determine
whether it occurs. Thus, we should call any agent that acts as a catalyst of a causal mechanism,
speeding up an induction period for other agents, a causein its own right. Similarly, any agent that
postpones the onset of an event, drawing out the induction period for another agent, isapreventive.
It should not be too surprising to equate postponement to prevention: We routinely use such an
equation when we employ the euphemism that we “prevent” death, which actually can only be
postponed. What we prevent is death at a given time, in favor of death at alater time.

SCOPE OF THE MODEL

Themain utility of thismodel of sufficient causesand their componentsliesinitsability to providea
general but practical conceptual framework for causal problems. The attempt to makethe proportion
of disease attributable to various component causes add to 100% is an example of afallacy that
is exposed by the model (although MacMahon and others were able to invoke yellow shanks
and phenylketonuria to expose that fallacy long before the sufficient-component cause model was
formally described [MacMahon and Pugh, 1967, 1970]). The model makesit clear that, because of
interactions, there is no upper limit to the sum of these proportions. As we shall see in Chapter 5,
the epidemiologic evaluation of interactions themselves can be clarified, to some extent, with the
help of the model.

Although the model appearsto deal qualitatively with the action of component causes, it can be
extended to account for dose dependence by postulating a set of sufficient causes, each of which
contains as a component a different dose of the agent in question. Small doses might require a
larger or rarer set of complementary causes to complete a sufficient cause than that required by
large doses (Rothman, 19764), in which caseit is particularly important to specify both sides of the
causal contrast. Inthisway, themodel can account for the phenomenon of ashorter induction period
accompanying larger doses of exposure, because asmaller set of complementary componentswould
be needed to complete the sufficient cause.

Those who believe that chance must play arole in any complex mechanism might object to the
intricacy of thisseemingly deterministic model. A probabilistic (stochastic) model could beinvoked
to describe a dose—response relation, for example, without the need for a multitude of different
causal mechanisms. The model would simply relate the dose of the exposure to the probability
of the effect occurring. For those who believe that virtualy all events contain some element of
chance, deterministic causal models may seem to misrepresent the indeterminism of the real world.
However, the deterministic model presented here can accommodate “ chance”; one way might beto
view chance, or at | east some part of thevariability that wecall “ chance,” astheresult of deterministic
events that are beyond the current limits of knowledge or observability.

For example, the outcome of aflip of a coin is usually considered a chance event. In classical
mechanics, however, the outcome can in theory be determined completely by the application of
physical laws and a sufficient description of the starting conditions. To put it in terms more familiar
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to epidemiologists, consider the explanation for why an individual gets lung cancer. One hundred
years ago, when little was known about the etiology of lung cancer; a scientist might have said
that it was a matter of chance. Nowadays, we might say that the risk depends on how much the
individual smokes, how much asbestos and radon the individual has been exposed to, and so on.
Nonethel ess, recognizing this dependence movesthe line of ignorance; it does not eliminateit. One
can still ask what determines whether an individual who has smoked a specific amount and has a
specified amount of exposure to al the other known risk factors will get lung cancer. Some will
get lung cancer and some will not, and if al known risk factors are already taken into account,
what isleft we might still describe as chance. True, we can explain much more of the variability in
lung cancer occurrence nowadays than we formerly could by taking into account factors known to
causeit, but at thelimits of our knowledge, we still ascribe the remaining variability to what we call
chance. In thisview, chance is seen as a catchall term for our ignorance about causal explanations.

We have so far ignored more subtle considerations of sources of unpredictability in events, such
as chaotic behavior (in which even the slightest uncertainty about initial conditions leads to vast
uncertainty about outcomes) and quantum-mechanical uncertainty. In each of these situations, a
random (stochastic) model component may be essential for any useful modeling effort. Such com-
ponents can also be introduced in the above conceptual model by treating unmeasured component
causes in the model as random events, so that the causal model based on components of sufficient
causes can have random elements. An exampleistreatment assignment in randomized clinical trials
(Poole 20014).

OTHER MODELS OF CAUSATION

The sufficient-component cause model is only one of several models of causation that may be use-
ful for gaining insight about epidemiologic concepts (Greenland and Brumback, 2002; Greenland,
2004a). It portrays qualitative causal mechanismswithin members of apopulation, soitsfundamen-
tal unit of analysisisthe causal mechanism rather than a person. Many different sets of mechanisms
can lead to the same pattern of disease within apopulation, so the sufficient-component cause model
involves specification of details that are beyond the scope of epidemiologic data. Also, it does not
incorporate elements reflecting population distributions of factors or causal sequences, which are
crucial to understanding confounding and other biases.

Other models of causation, such as potential-outcome (counterfactual) models and graphical
models, provide direct representations of epidemiologic concepts such as confounding and other
biases, and can be applied at mechanistic, individual, or population levels of analysis. Potential-
outcomemodels(Chapters4 and 5) specify in detail what would happentoindividual sor populations
under alternative possible patterns of interventions or exposures, and also bring to the fore prob-
lemsin operationally defining causes (Greenland, 2002a, 2005a; Hernan, 2005). Graphical models
(Chapter 12) display broad qualitative assumptions about causal directions and independencies.
Both types of model have close relationships to the structural-equations models that are popular in
the social sciences (Pearl, 2000; Greenland and Brumback, 2002), and both can be subsumed under
agenera theory of longitudinal causality (Robins, 1997).

PHILOSOPHY OF SCIENTIFIC INFERENCE

Causal inference may beviewed asaspecial case of themoregeneral process of scientific reasoning.
Theliteratureonthistopicistoovast for usto review thoroughly, but wewill provideabrief overview
of certain points relevant to epidemiology, at the risk of some oversimplification.

INDUCTIVISM

M odern science began to emerge around the 16th and 17th centuries, when the knowledge demands
of emerging technologies (such as artillery and transoceanic navigation) stimulated inquiry into the
origins of knowledge. An early codification of the scientific method was Francis Bacon's Novum
Organum, which, in 1620, presented an inductivist view of science. In this philosophy, scientific
reasoning is said to depend on making generalizations, or inductions, from observations to general
laws of nature; the observations are said to induce the formulation of a natural law in the mind of
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the scientist. Thus, an inductivist would have said that Jenner’s observation of lack of smallpox
among milkmaids induced in Jenner’s mind the theory that cowpox (common among milkmaids)
conferred immunity to smallpox. Inductivist philosophy reached a pinnacle of sorts in the canons
of John Stuart Mill (1862), which evolved into inferential criteriathat are still in use today.

Inductivist philosophy was a great step forward from the medieval scholasticism that preceded
it, for at least it demanded that a scientist make careful observations of people and nature rather than
appeal tofaith, ancient texts, or authorities. Nonethel ess, in the 18th century the Scottish phil osopher
David Hume described a disturbing deficiency in inductivism. An inductive argument carried no
logical force; instead, such an argument represented nothing more than an assumption that certain
eventswould in thefuturefollow the same pattern asthey had in the past. Thus, to argue that cowpox
caused immunity to smallpox because no one got smallpox after having cowpox corresponded to an
unjustified assumption that the pattern observed to date (no smallpox after cowpox) would continue
into the future. Hume pointed out that, even for the most reasonable-sounding of such assumptions,
there was no logical necessity behind the inductive argument.

Of central concern to Hume (1739) was the issue of causal inference and failure of induction to
provide afoundation for it:

Thus not only our reason fails usin the discovery of the ultimate connexion of causes and effects,
but even after experience hasinform’d us of their constant conjunction, 'tisimpossible for usto
satisfy ourselves by our reason, why we shou’d extend that experience beyond those particular
instances, which have fallen under our observation. \We suppose, but are never able to prove, that
there must be a resemblance betwixt those objects, of which we have had experience, and those
which lie beyond the reach of our discovery.

Inother words, no number of repetitionsof aparticul ar sequence of events, such astheappearance
of alight after flipping a switch, can prove a causal connection between the action of the switch
and the turning on of the light. No matter how many times the light comes on after the switch has
been pressed, the possibility of coincidental occurrence cannot be ruled out. Hume pointed out that
observers cannot perceive causal connections, but only a series of events. Bertrand Russell (1945)
illustrated this point with the example of two accurate clocks that perpetually chime on the hour,
with one keeping time slightly ahead of the other. Although one invariably chimes before the other,
there is no direct causal connection from one to the other. Thus, assigning a causal interpretation
to the pattern of events cannot be alogical extension of our observations alone, because the events
might be occurring together only because of a shared earlier cause, or because of some systematic
error in the observations.

Causal inference based on mere association of events constitutes alogical fallacy known as post
hoc ergo propter hoc (Latin for “after thistherefore on account of this”). Thisfallacy isexemplified
by the inference that the crowing of a rooster is necessary for the sun to rise because sunrise is
always preceded by the crowing.

The post hoc fallacy is a special case of a more general logical fallacy known as the fallacy of
affirming the consequent. Thisfallacy of confirmation takes the following general form: “We know
that if H istrue, B must betrue; and we know that B istrue; therefore H must betrue.” Thisfallacy is
used routinely by scientistsininterpreting data. It isused, for example, when one argues asfollows:
“1f sewer service causes heart disease, then heart disease rates shoul d be highest where sewer service
isavailable; heart disease rates areindeed highest where sewer serviceisavailable; therefore, sewer
service causes heart disease.” Here, H isthe hypothesis “ sewer service causes heart disease” and B
is the observation “ heart disease rates are highest where sewer serviceis available” The argument
is logically unsound, as demonstrated by the fact that we can imagine many ways in which the
premises could be true but the conclusion false; for example, economic development could lead to
both sewer service and elevated heart disease rates, without any effect of sewer service on heart
disease. In this case, however, we also know that one of the premises is not true—specifically, the
premise, “If H istrue, B must be true” This particular form of the fallacy exemplifies the problem
of confounding, which we will discussin detail in later chapters.

Bertrand Russell (1945) satirized the fallacy this way:

‘If p, then g; now qistrue; therefore pistrue’ E.g., ‘If pigs have wings, then some winged animals
are good to eat; now some winged animals are good to eat; therefore pigs have wings.” This form of
inferenceis called ‘ scientific method.
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REFUTATIONISM

Russell was not alonein hislament of theillogicality of scientific reasoning as ordinarily practiced.
Many philosophers and scientists from Hume's time forward attempted to set out a firm logical
basis for scientific reasoning.

In the 1920s, most notable among these was the school of logical positivists, who sought alogic
for science that could lead inevitably to correct scientific conclusions, in much the way rigorous
logic can lead inevitably to correct conclusions in mathematics. Other philosophers and scientists,
however, had started to suspect that scientific hypotheses can never be proven or established astrue
in any logical sense. For example, a number of philosophers noted that scientific statements can
only be found to be consistent with observation, but cannot be proven or disprovenin any “airtight”
logical or mathematical sense (Duhem, 1906, transl. 1954; Popper 1934, transl. 1959; Quine, 1951).
This fact is sometimes called the problem of nonidentification or underdetermination of theories
by observations (Curd and Cover, 1998). In particular, available observations are always consistent
with several hypotheses that themselves are mutually inconsistent, which explains why (as Hume
noted) scientific theories cannot belogically proven. In particular, consistency between ahypothesis
and observationsisno proof of the hypothesis, because we can alwaysinvent alternative hypotheses
that are just as consistent with the observations.

In contrast, avalid observation that isinconsistent with a hypothesisimplies that the hypothesis
as stated is false and so refutes the hypothesis. If you wring the rooster’s neck before it crows and
the sun still rises, you have disproved that the rooster’s crowing is a necessary cause of sunrise.
Or consider a hypothetical research program to learn the boiling point of water (Magee, 1985). A
scientist who boils water in an open flask and repeatedly measures the boiling point at 100°C will
never, no matter how many confirmatory repetitions are involved, prove that 100°C is aways the
boiling point. On the other hand, merely one attempt to boil the water in a closed flask or at high
atitude will refute the proposition that water always boils at 100°C.

According to Popper, science advances by a process of elimination that he called “conjecture
and refutation.” Scientists form hypotheses based on intuition, conjecture, and previous experience.
Good scientists use deductivelogictoinfer predictionsfrom the hypothesisand then compare obser-
vations with the predictions. Hypotheses whose predictions agree with observations are confirmed
(Popper used the term “corroborated”) only in the sense that they can continue to be used as expla-
nations of natural phenomena. At any time, however, they may be refuted by further observations
and might be replaced by other hypothesesthat are more consistent with the observations. Thisview
of scientific inference is sometimes called refutationism or falsificationism. Refutationists consider
induction to be a psychologic crutch: Repeated observations did not in fact induce the formulation
of anatural law, but only the belief that such alaw has been found. For a refutationist, only the
psychologic comfort provided by induction explains why it still has advocates.

One way to rescue the concept of induction from the stigma of pure delusion is to resurrect it
as a psychologic phenomenon, as Hume and Popper claimed it was, but one that plays alegitimate
role in hypothesis formation. The philosophy of conjecture and refutation places no constraints on
the origin of conjectures. Even delusions are permitted as hypotheses, and therefore inductively
inspired hypotheses, however psychologic, are valid starting points for scientific evaluation. This
concession does not admit a logical role for induction in confirming scientific hypotheses, but it
allows the process of induction to play a part, along with imagination, in the scientific cycle of
conjecture and refutation.

The philosophy of conjecture and refutation has profound implications for the methodology of
science. The popular concept of ascientist doggedly assembling evidenceto support afavoritethesis
is objectionable from the standpoint of refutationist philosophy because it encourages scientists to
consider their own pet theories astheir intellectua property, to be confirmed, proven, and, when all
the evidence isin, cast in stone and defended as natural law. Such attitudes hinder critical evalua-
tion, interchange, and progress. The approach of conjecture and refutation, in contrast, encourages
scientists to consider multiple hypotheses and to seek crucial tests that decide between competing
hypotheses by falsifying one of them. Because fa sification of one or more theoriesisthe goal, there
isincentive to depersonalize the theories. Criticism leveled at atheory need not be seen as criticism
of the person who proposed it. It has been suggested that the reason why certain fields of science
advance rapidly while otherslanguish isthat the rapidly advancing fields are propelled by scientists



Chapter2 e Causation and Causal Inference 21

who are busy constructing and testing competing hypotheses; the other fields, in contrast, “are sick
by comparison, because they have forgotten the necessity for aternative hypotheses and disproof”
(Platt, 1964).

The refutationist model of science has a number of valuable lessons for research conduct,
especialy of the need to seek alternative explanations for observations, rather than focus on the
chimera of seeking scientific “proof” for some favored theory. Nonetheless, it is vulnerable to
criticisms that observations (or some would say their interpretations) are themselves laden with
theory (sometimes called the Duhem-Quine thesis; Curd and Cover, 1998). Thus, observations
can never provide the sort of definitive refutations that are the hallmark of popular accounts of
refutationism. For example, there may be uncontrolled and even unimagined biases that have made
our refutational observationsinvalid; to claim refutation is to assume as true the unprovable theory
that no such bias exists. In other words, not only are theories underdetermined by observations,
so are refutations, which are themselves theory-laden. The net result is that logical certainty about
either the truth or falsity of an internally consistent theory isimpossible (Quine, 1951).

CONSENSUS AND NATURALISM

Some 20th-century philosophers of science, most notably Thomas Kuhn (1962), emphasized the
role of the scientific community in judging the validity of scientific theories. These critics of the
conjecture-and-refutation model suggested that the refutation of atheory involves making achoice.
Every observation is itself dependent on theories. For example, observing the moons of Jupiter
through atelescope seems to us like a direct observation, but only because the theory of optics on
which the telescope is based is so well accepted. When confronted with a refuting observation, a
scientist facesthe choice of rejecting either thevalidity of thetheory being tested or thevalidity of the
refuting observation, whichitself must be premised on scientific theoriesthat are not certain (Haack,
2003). Observationsthat are falsifying instances of theories may at times be treated as“anomalies,”
tolerated without falsifying the theory in the hope that the anomalies may eventually be explained.
An epidemiologic exampleisthe observation that shallow-inhaling smokers had higher lung cancer
rates than deep-inhaling smokers. This anomaly was eventually explained when it was noted that
lung tissue higher in the lung is more susceptible to smoking-associated lung tumors, and shallowly
inhaled smoke tars tend to be deposited higher in the lung (Wald, 1985).

In other instances, anomalies may lead eventually to the overthrow of current scientific doctrine,
just as Newtonian mechanics was displaced (remaining only as a first-order approximation) by
relativity theory. Kuhn asserted that in every branch of science the prevailing scientific viewpoint,
which he termed “normal science,” occasionally undergoes major shifts that amount to scientific
revolutions. These revolutions signal adecision of the scientific community to discard the scientific
infrastructure rather than to falsify anew hypothesisthat cannot be easily grafted onto it. Kuhn and
others have argued that the consensus of the scientific community determines what is considered
accepted and what is considered refuted.

Kuhn’s critics characterized this description of science asone of anirrational process, “amatter
for mob psychology” (Lakatos, 1970). Thosewho believein arational structure for science consider
Kuhn'svision to be aregrettably real description of much of what passes for scientific activity, but
not prescriptivefor any good science. Although many modern philosophersreject rigid demarcations
and formulationsfor science such asrefutati onism, they nonethel ess maintain that scienceisfounded
on reason, abeit possibly informal common sense (Haack, 2003). Others go beyond Kuhn and
maintain that attempts to impose a singular rational structure or methodology on science hobbles
the imagination and is a prescription for the same sort of authoritarian repression of ideas that
scientists have had to face throughout history (Feyerabend, 1975 and 1993).

The philosophic debate about Kuhn's description of science hinges on whether Kuhn meant to
describe only what has happened historically in science or instead what ought to happen, an issue
about which Kuhn (1970) has not been completely clear:

Are Kuhn’s[my] remarks about scientific development. . . to be read as descriptions or
prescriptions? The answer, of course, is that they should be read in both ways at once. If | have a
theory of how and why science works, it must necessarily have implications for the way in which
scientists should behave if their enterpriseis to flourish.
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Theideathat scienceis asociologic process, whether considered descriptive or normative, isan
interesting thesis, as is the idea that from observing how scientists work we can learn about how
scientists ought to work. The latter idea has led to the development of naturalistic philosophy of
science, or “science studies,” which examines scientific developments for clues about what sort
of methods scientists need and develop for successful discovery and invention (Callebaut, 1993;
Giere, 1999).

Regardless of philosophical developments, we suspect that most epidemiologists (and most
scientists) will continue to function asiif the following classical view is correct: The ultimate goal
of scientific inference isto capture some objective truths about the material world in which welive,
and any theory of inference should ideally be evaluated by how well it leads usto these truths. This
ideal isimpossible to operationalize, however, for if we ever find any ultimate truths, we will have
no way of knowing that for certain. Thus, those holding the view that scientific truth is not arbitrary
neverthel ess concede that our knowledge of these truths will always be tentative. For refutationists,
this tentativeness has an asymmetric quality, but that asymmetry isless marked for others. We may
believe that we know atheory is false because it consistently fails the tests we put it through, but
our tests could be faulty, given that they involve imperfect reasoning and sense perception. Neither
can we know that a theory is true, even if it passes every test we can devise, for it may fail atest
that is as yet undevised.

Few, if any, would disagree that a theory of inference should be evaluated at least in part by
how well it leads us to detect errorsin our hypotheses and observations. There are, however, many
other inferential activities besides evaluation of hypotheses, such as prediction or forecasting of
events, and subsequent attempts to control events (which of course requires causal information).
Statisticians rather than philosophers have more often confronted these problems in practice, so it
should not be surprising that the major philosophies concerned with these problems emerged from
statistics rather than philosophy.

BAYESIANISM

Thereis another philosophy of inference that, like most, holds an objective view of scientific truth
and a view of knowledge as tentative or uncertain, but that focuses on evaluation of knowledge
rather than truth. Like refutationism, the modern form of this philosophy evolved from the writings
of 18th-century thinkers. The focal arguments first appeared in a pivotal essay by the Reverend
Thomas Bayes (1764), and hence the philosophy is usualy referred to as Bayesianism (Howson
and Urbach, 1993), and it was the renowned French mathematician and scientist Pierre Simon de
Laplace who first gave it an applied statistical format. Nonetheless, it did not reach a complete
expression until after World War 1, most notably in the writings of Ramsey (1931) and DeFinetti
(1937); and, like refutationism, it did not begin to appear in epidemiology until the 1970s (e.g.,
Cornfield, 1976).

The central problem addressed by Bayesianism is the following: In classical logic, a deductive
argument can provide no information about the truth or falsity of a scientific hypothesis unlessyou
can be 100% certain about the truth of the premises of the argument. Consider the logical argument
called modus tollens: “If H implies B, and B is false, then H must be false” This argument is
logically valid, but the conclusion follows only on the assumptions that the premises “H implies B”
and “B isfalse” aretrue statements. If these premises are statements about the physical world, we
cannot possibly know them to be correct with 100% certainty, because all observations are subject
to error. Furthermore, the claim that “H implies B” will often depend onitsown chain of deductions,
each with its own premises of which we cannot be certain.

For example, if H is* Television viewing causeshomicides’ and B is*“Homicideratesare highest
where televisions are most common,” the first premise used in modus tollens to test the hypothesis
that television viewing causes homicideswill be: “If television viewing causes homicides, homicide
rates are highest where televisions are most common.” The validity of this premise is doubtful—
after all, even if television does cause homicides, homicide rates may be low where televisions are
common because of socioeconomic advantages in those areas.

Continuing to reason in this fashion, we could arrive at a more pessimistic state than even
Hume imagined. Not only isinduction without logical foundation, deduction has limited scientific
utility because we cannot ensure the truth of all the premises, even if alogical argument is valid.
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The Bayesian answer to this problem is partial in that it makes a severe demand on the scientist
and puts a severe limitation on the results. It says roughly this: If you can assign a degree of
certainty, or personal probability, to the premises of your valid argument, you may use any and all
the rules of probability theory to derive a certainty for the conclusion, and this certainty will be a
logically valid consequence of your original certainties. Aninescapable fact isthat your concluding
certainty, or posterior probability, may depend heavily on what you used as initial certainties, or
prior probabilities. If thoseinitial certaintiesare not the same asthose of acolleague, that colleague
may very well assign a certainty to the conclusion different from the one you derived. With the
accumulation of consistent evidence, however, the data can usually force even extremely disparate
priors to converge into similar posterior probabilities.

Because the posterior probabilities emanating from a Bayesian inference depend on the person
supplying the initial certainties and so may vary across individuas, the inferences are said to be
subjective. This subjectivity of Bayesian inference is often mistaken for a subjective treatment of
truth. Not only is such a view of Bayesianism incorrect, it is diametrically opposed to Bayesian
philosophy. The Bayesian approach represents a constructive attempt to deal with the dilemmathat
scientific laws and facts should not be treated as known with certainty, whereas classic deductive
logic yields conclusions only when some law, fact, or connection is asserted with 100% certainty.

A common criticism of Bayesian philosophy is that it diverts attention away from the classic
goals of science, such as the discovery of how the world works, toward psychologic states of mind
called “certainties,” “ subjective probahilities,” or “ degrees of belief” (Popper, 1959). Thiscriticism,
however, failsto recognize theimportance of ascientist’s state of mind in determining what theories
to test and what teststo apply, the consequent influence of those states on the store of dataavailable
for inference, and the influence of the data on the states of mind.

Another reply tothiscriticismisthat scientistsalready usedatatoinfluencetheir degreesof belief,
and they are not shy about expressing those degrees of certainty. The problemisthat the conventional
processisinformal, intuitive, and ineffable, and therefore not subject to critical scrutiny; at itsworst,
it often amounts to nothing more than the experts announcing that they have seen the evidence and
here is how certain they are. How they reached this certainty is left unclear, or, put another way,
is not “transparent.” The problem is that no one, even an expert, is very good at informally and
intuitively formulating certainties that predict facts and future events well (Kahneman et a., 1982;
Gilovich, 1993; Piattelli-Palmarini, 1994; Gilovich et al., 2002). Onereason for this problem isthat
biases and prior prejudices can easily creep into expert judgments. Bayesian methods force experts
to “put their cards on the table” and specify explicitly the strength of their prior beliefs and why
they have such beliefs, defend those specifications against arguments and evidence, and update their
degrees of certainty with new evidence in ways that do not violate probability logic.

In any research context, there will be an unlimited number of hypotheses that could explain
an observed phenomenon. Some argue that progress is best aided by severely testing (empirically
challenging) those explanations that seem most probable in light of past research, so that short-
comings of currently “received” theories can be most rapidly discovered. Indeed, much researchin
certain fields takes this form, as when theoretical predictions of particle mass are put to ever more
precise tests in physics experiments. This process does not involve mere improved repetition of
past studies. Rather, it involvestests of previously untested but important predictions of the theory.
Moreover, thereis an imperative to make the basisfor prior beliefs criticizable and defensible. That
prior probabilities can differ among persons does not mean that all such beliefs are based on the
same information, nor that all are equally tenable.

Probabilitiesof auxiliary hypothesesarea soimportant in study design and interpretation. Failure
of a theory to pass a test can lead to rejection of the theory more rapidly when the auxiliary
hypotheses on which the test depends possess high probability. Thisobservation providesarationale
for preferring “nested” case-control studies (in which controls are selected from a roster of the
source population for the cases) to “hospital-based” case-control studies (in which the controls
are “selected” by the occurrence or diagnosis of one or more diseases other than the case-defining
disease), because the former have fewer mechanisms for biased subject selection and hence are
given a higher probability of unbiased subject selection.

Even if one disputes the above arguments, most epidemiol ogists desire some way of expressing
the varying degrees of certainty about possible values of an effect measure in light of available
data. Such expressions must inevitably be derived in the face of considerable uncertainty about
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methodologic details and various events that led to the available data and can be extremely sensi-
tive to the reasoning used in its derivation. For example, as we shall discuss at greater length in
Chapter 19, conventiona confidence intervals quantify only random error under often question-
able assumptions and so should not be interpreted as measures of total uncertainty, particularly
for nonexperimental studies. As noted earlier, most people, including scientists, reason poorly in
the face of uncertainty. At the very least, subjective Bayesian philosophy provides a methodol ogy
for sound reasoning under uncertainty and, in particular, provides many warnings against being
overly certain about one's conclusions (Greenland 1998a, 1988b, 2006a; see aso Chapters 18
and 19).

Such warnings are echoed in refutationist philosophy. As Peter Medawar (1979) put it, “1 cannot
give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis
istrue has no bearing on whether it is true or not.” We would add two points. First, the intensity of
conviction that a hypothesisis false has no bearing on whether it is false or not. Second, Bayesian
methods do not mistake beliefs for evidence. They use evidence to modify beliefs, which scientists
routinely do in any event, but often in implicit, intuitive, and incoherent ways.

IMPOSSIBILITY OF SCIENTIFIC PROOF

Vigorous debate is a characteristic of modern scientific philosophy, no lessin epidemiology thanin
other areas (Rothman, 1988). Can divergent philosophies of science be reconciled? Haack (2003)
suggested that the scientific enterpriseisakin to solving avast, collective crossword puzzle. In areas
inwhich theevidenceistightly interlocking, thereismorereason to place confidencein the answers,
but in areas with scant information, the theories may be little better than informed guesses. Of the
scientific method, Haack (2003) said that “thereislessto the‘ scientific method’ than meetsthe eye.
Is scientific inquiry categorically different from other kinds? No. Scientific inquiry is continuous
with everyday empirical inquiry—only more so.”

Perhaps the most important common thread that emerges from the debated philosophiesis that
proof isimpossible in empirical science. This simple fact is especially important to observational
epidemiologists, who often face the criticism that proof is impossible in epidemiology, with the
implication that it is possible in other scientific disciplines. Such criticism may stem from aview
that experiments are the definitive source of scientific knowledge. That view is mistaken on at |east
two counts. First, the nonexperimental nature of a science does not preclude impressive scientific
discoveries; the myriad examples include plate tectonics, the evolution of species, planets orbiting
other stars, and the effects of cigarette smoking on human health. Even when they are possible,
experiments (including randomized trials) do not provide anything approaching proof and in fact
may be controversial, contradictory, or nonreproducible. If randomized clinical trials provided
proof, we would never need to do more than one of them on a given hypothesis. Neither physical
nor experimental science is immune to such problems, as demonstrated by episodes such as the
experimental “discovery” (later refuted) of cold fusion (Taubes, 1993).

Some experimental scientists hold that epidemiologic relations are only suggestive and believe
that detailed laboratory study of mechanisms within single individuals can reveal cause—effect
relations with certainty. This view overlooks the fact that all relations are suggestive in exactly the
manner discussed by Hume. Even the most careful and detail ed mechanistic dissection of individual
events cannot provide morethan associations, albeit at afiner level. Laboratory studiesofteninvolve
a degree of observer control that cannot be approached in epidemiology; it is only this control, not
thelevel of observation, that can strengthen the inferences from laboratory studies. And again, such
control is no guarantee against error. In addition, neither scientists nor decision makers are often
highly persuaded when only mechanistic evidence from the laboratory is available.

All of thefruits of scientific work, in epidemiology or other disciplines, are at best only tentative
formulations of a description of nature, even when the work itself is carried out without mistakes.
The tentativeness of our knowledge does not prevent practical applications, but it should keep us
skeptical and critical, not only of everyone else’swork, but of our own aswell. Sometimes etiologic
hypotheses enjoy an extremely high, universally or aimost universally shared, degree of certainty.
The hypothesisthat cigarette smoking causes |ung cancer isone of the best-known examples. These
hypotheses rise above “tentative” acceptance and are the closest we can come to “ proof.” But even
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these hypotheses are not “proved” with the degree of absolute certainty that accompanies the proof
of amathematical theorem.

CAUSAL INFERENCE IN EPIDEMIOLOGY

Etiologic knowledge about epidemiologic hypothesesis often scant, making the hypotheses them-
selvesat timeslittlemorethan vague statements of causal associ ation between exposure and disease,
such as “smoking causes cardiovascular disease.” These vague hypotheses have only vague con-
sequences that can be difficult to test. To cope with this vagueness, epidemiologists usualy focus
on testing the negation of the causal hypothesis, that is, the null hypothesis that the exposure does
not have a causal relation to disease. Then, any observed association can potentially refute the
hypothesis, subject to the assumption (auxiliary hypothesis) that biases and chance fluctuations are
not solely responsible for the observation.

TESTS OF COMPETING EPIDEMIOLOGIC THEORIES

If the causal mechanism is stated specifically enough, epidemiologic observations can provide
crucial tests of competing, non-null causal hypotheses. For example, when toxic-shock syndrome
wasfirst studied, thereweretwo competing hy pothesesabout the causal agent. Under one hypothesis,
it was a chemical in the tampon, so that women using tampons were exposed to the agent directly
fromthetampon. Under the other hypothesis, thetampon acted asaculturemediumfor staphylococci
that produced atoxin. Both hypotheses explained the relation of toxic-shock occurrence to tampon
use. The two hypotheses, however, led to opposite predictions about the relation between the
frequency of changing tampons and the rate of toxic shock. Under the hypothesis of a chemical
agent, more frequent changing of the tampon would |ead to more exposure to the agent and possible
absorption of agreater overall dose. This hypothesis predicted that women who changed tampons
more frequently would have a higher rate than women who changed tampons infrequently. The
culture-medium hypothesis predicts that women who change tampons frequently would have a
lower rate than those who change tampons less frequently, because a short duration of use for
each tampon would prevent the staphylococci from multiplying enough to produce a damaging
dose of toxin. Thus, epidemiologic research, by showing that infrequent changing of tampons was
associated with ahigher rate of toxic shock, refuted the chemical theory intheform presented. There
was, however, athird hypothesis that a chemical in some tampons (e.g., 0xygen content) improved
their performance as culture media. This chemical-promotor hypothesis made the same prediction
about the association with frequency of changing tampons as the microbial toxin hypothesis (Lanes
and Rothman, 1990).

Ancther example of a theory that can be easily tested by epidemiologic data relates to the
observation that women who took replacement estrogen therapy had a considerably elevated rate
of endometrial cancer. Horwitz and Feinstein (1978) conjectured a competing theory to explain the
association: They proposed that women taking estrogen experienced symptoms such as bleeding
that induced them to consult a physician. The resulting diagnostic workup led to the detection of
endometrial cancer at an earlier stagein thesewomen, ascompared with women who werenot taking
estrogens. Horwitz and Feinstein argued that the association arose from this detection bias, claiming
that without the bleeding-induced workup, many of these cancers would not have been detected
at all. Many epidemiologic observations were used to evaluate these competing hypotheses. The
detection-bias theory predicted that women who had used estrogens for only a short time would
have the greatest elevation in their rate, as the symptoms related to estrogen use that led to the
medical consultation tended to appear soon after use began. Because the association of recent
estrogen use and endometrial cancer was the same in both long- and short-term estrogen users,
the detection-bias theory was refuted as an explanation for al but a small fraction of endometrial
cancer cases occurring after estrogen use. Refutation of the detection-bias theory & so depended on
many other observations. Especially important was the theory’s implication that there must be a
huge reservoir of undetected endometrial cancer in the typical population of women to account for
the much greater rate observed in estrogen users, an implication that was not borne out by further
observations (Hutchison and Rothman, 1978).
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Theendometrial cancer exampleillustratesacritical point in understanding the process of causal
inference in epidemiologic studies: Many of the hypotheses being evaluated in the interpretation
of epidemiologic studies are auxiliary hypotheses in the sense that they are independent of the
presence, absence, or direction of any causal connection between the study exposure and the dis-
ease. For example, explanations of how specific types of bias could have distorted an association
between exposure and disease are the usual alternatives to the primary study hypothesis. Much of
the interpretation of epidemiologic studies amountsto the testing of such auxiliary explanationsfor
observed associations.

CAUSAL CRITERIA

In practice, how do epidemiologists separate causal from noncausal explanations? Despite philo-
sophic criticismsof inductiveinference, inductively oriented considerationsare often used ascriteria
for making such inferences (Weed and Gorelic, 1996). If a set of necessary and sufficient causal
criteria could be used to distinguish causal from noncausal relations in epidemiologic studies, the
job of the scientist would be eased considerably. With such criteria, all the concerns about the logic
or lack thereof in causal inference could be subsumed: It would only be necessary to consult the
checklist of criteriato seeif arelation were causal. We know from the philosophy reviewed earlier
that a set of sufficient criteriadoes not exist. Nevertheless, lists of causal criteria have become pop-
ular, possibly because they seem to provide aroad map through complicated territory, and perhaps
because they suggest hypotheses to be evaluated in a given problem.

A commonly used set of criteriawasbased onalist of considerationsor “ viewpoints’ proposed by
Sir Austin Bradford Hill (1965). Hill’slist was an expansion of alist offered previously in the land-
mark U.S. Surgeon General’s report Smoking and Health (1964), which in turn was anticipated by
the inductive canons of John Stuart Mill (1862) and the rules given by Hume (1739). Subsequently,
others, especially Susser, have further developed causal considerations (Kaufman and Poole,
2000).

Hill suggested that the following considerations in attempting to distinguish causal from non-
causal associationsthat werealready “ perfectly clear-cut and beyond what wewould careto attribute
tothe play of chance”: (1) strength, (2) consistency, (3) specificity, (4) temporality, (5) biologic gra-
dient, (6) plausibility, (7) coherence, (8) experimental evidence, and (9) analogy. Hill emphasized
that causal inferences cannot be based on a set of rules, condemned emphasis on statistical signif-
icance testing, and recognized the importance of many other factors in decision making (Phillips
and Goodman, 2004). Nonethel ess, the misguided but popular view that his considerations should
be used as criteriafor causal inference makes it necessary to examine them in detail.

Strength

Hill argued that strong associationsare particularly compelling because, for weaker associations, itis
“easier” to imagine what today we would call an unmeasured confounder that might be responsible
for the association. Several years earlier, Cornfield et a. (1959) drew similar conclusions. They
concentrated on asingle hypothetical confounder that, by itself, would explain entirely an observed
association. They expressed a strong preference for ratio measures of strength, as opposed to
difference measures, and focused on how the observed estimate of arisk ratio provides a minimum
for the association that a completely explanatory confounder must have with the exposure (rather
than a minimum for the confounder—disease association). Of special importance, Cornfield et al.
acknowledged that having only aweak association does not rule out a causal connection (Rothman
and Poole, 1988). Today, some associations, such as those between smoking and cardiovascular
disease or between environmental tobacco smoke and lung cancer, are accepted by most as causal
even though the associations are considered weak.

Counterexamples of strong but noncausal associations are also not hard to find; any study with
strong confounding illustrates the phenomenon. For example, consider the strong relation between
Down syndrome and birth rank, which is confounded by the relation between Down syndrome and
maternal age. Of course, once the confounding factor isidentified, the association is diminished by
controlling for the factor.

These examples remind usthat a strong association is neither necessary nor sufficient for causal-
ity, and that weaknessisneither necessary nor sufficient for absenceof causality. A strong association
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bears only on hypotheses that the association isentirely or partially dueto unmeasured confounders
or other source of modest hias.

Consistency

To most observers, consistency refers to the repeated observation of an association in different
populations under different circumstances. Lack of consistency, however, does not rule out a causal
association, because some effects are produced by their causes only under unusual circumstances.
More precisely, the effect of a causal agent cannot occur unless the complementary component
causes act or have already acted to complete a sufficient cause. These conditions will not always
be met. Thus, transfusions can cause infection with the human immunodeficiency virus, but they
do not always do so: The virus must also be present. Tampon use can cause toxic-shock syndrome,
but only rarely, when certain other, perhaps unknown, conditions are met. Consistency is appar-
ent only after all the relevant details of a causal mechanism are understood, which is to say very
seldom. Furthermore, even studies of exactly the same phenomena can be expected to yield dif-
ferent results simply because they differ in their methods and random errors. Consistency serves
only to rule out hypotheses that the association is attributable to some factor that varies across
studies.

One mistake in implementing the consistency criterion is so common that it deserves special
mention. It is sometimes claimed that a literature or set of results is inconsistent simply because
some results are “statistically significant” and some are not. This sort of evaluation is completely
fallacious even if one accepts the use of significance testing methods. The results (effect estimates)
from a set of studies could all be identical even if many were significant and many were not, the
difference in significance arising solely because of differencesin the standard errors or sizes of the
studies. Conversely, the results could be significantly in conflict even if al were all were nonsignif-
icant individually, simply because in aggregate an effect could be apparent in some subgroups but
not others (see Chapter 33). Thefallacy of judging consistency by comparing P-values or statistical
significanceisnot eliminated by “ standardizing” estimates (i.e., dividing them by the standard devi-
ation of the outcome, multiplying them by the standard deviation of the exposure, or both); infactitis
worsened, as such standardization can create differenceswhere none exists, or mask true differences
(Greenland et al., 1986, 1991; see Chapters 21 and 33).

Specificity

The criterion of specificity hastwo variants. Oneisthat a cause leadsto asingle effect, not multiple
effects. The other isthat an effect has one cause, not multiple causes. Hill mentioned both of them.
Theformer criterion, specificity of effects, wasused asan argument infavor of acausal interpretation
of the association between smoking and lung cancer and, in an act of circular reasoning, in favor of
ratio comparisons and not differences as the appropriate measures of strength. When ratio measures
were examined, the association of smoking to diseases looked “quantitatively specific” to lung
cancer. When difference measures were examined, the association appeared to be nonspecific, with
several diseases (other cancers, coronary heart disease, etc.) being at least as strongly associated
with smoking aslung cancer was. Today we know that smoking affectstherisk of many diseasesand
that the difference comparisons were accurately portraying this lack of specificity. Unfortunately,
however, the historical episode of the debate over smoking and hedlth is often cited today as
justification for the specificity criterion and for using ratio comparisons to measure strength of
association. The proper lessons to learn from that episode should be just the opposite.

Weiss (2002) argued that specificity can be used to distinguish some causal hypotheses from
noncausal hypotheses, when the causal hypothesis predicts a relation with one outcome but no
relationwith another outcome. Hisargument ispersuasivewhen, in addition to the causal hypothesis,
one has an alternative noncausal hypothesis that predicts a nonspecific association. Weiss offered
the example of screening sigmoidoscopy, which was associated in case-control studies with a 50%
to 70% reduction in mortality from distal tumors of the rectum and tumorsof thedistal colon, within
the reach of the sigmoidoscope, but no reduction in mortality from tumors elsewhere in the colon.
If the effect of screening sigmoidoscopy were not specific to the distal colon tumors, it would lend
support not to al noncausal theories to explain the association, as Weiss suggested, but only to
those noncausal theories that would have predicted a nonspecific association. Thus, specificity can
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come into play when it can be logically deduced from the causal hypothesis in question and when
nonspecificity can be logically deduced from one or more noncausal hypotheses.

Temporality

Temporality refers to the necessity that the cause precede the effect in time. This criterion is
inarguable, insofar as any claimed observation of causation must involve the putative cause C
preceding the putative effect D. It does not, however, follow that a reverse time order is evidence
against the hypothesis that C can cause D. Rather, observations in which C followed D merely
show that C could not have caused D in these instances; they provide no evidence for or against the
hypothesis that C can cause D in those instances in which it precedes D. Only if it is found that C
cannot precede D can we dispense with the causal hypothesisthat C could cause D.

Biologic Gradient

Biologic gradient refers to the presence of a dose—response or exposure-response curve with an
expected shape. Although Hill referred to a*“linear” gradient, without specifying the scale, alinear
gradient on one scale, such astherisk, can be distinctly nonlinear on another scale, such asthelog
risk, the odds, or the log odds. We might relax the expectation from linear to strictly monotonic
(steadily increasing or decreasing) or even further merely to monotonic (a gradient that never
changes direction). For example, more smoking means more carcinogen exposure and more tissue
damage, hence more opportunity for carcinogenesis. Some causal associations, however, show
a rapid increase in response (an approximate threshold effect) rather than a strictly monotonic
trend. An example is the association between DES and adenocarcinoma of the vagina. A possible
explanationisthat the doses of DESthat were administered wereall sufficiently great to produce the
maximum effect from DES. Under this hypothesis, for al those exposed to DES, the development
of disease would depend entirely on other component causes.

The somewhat controversia topic of alcohol consumption and mortality is another example.
Death rates are higher among nondrinkers than among moderate drinkers, but they ascend to the
highest levels for heavy drinkers. There is considerable debate about which parts of the J-shaped
dose-response curve are causally related to alcohol consumption and which parts are noncausal
artifacts stemming from confounding or other biases. Some studies appear to find only an in-
creasing relation between alcohol consumption and mortality, possibly because the categories of
alcohol consumption are too broad to distinguish different rates among moderate drinkers and
nondrinkers, or possibly because they have less confounding at the lower end of the consumption
scale.

Associations that do show a monotonic trend in disease frequency with increasing levels of
exposure are not necessarily causal. Confounding can result in a monotonic relation between a
noncausal risk factor and disease if the confounding factor itself demonstrates a biologic gradient
initsrelation with disease. The relation between birth rank and Down syndrome mentioned earlier
shows a strong biologic gradient that merely reflects the progressive relation between maternal age
and occurrence of Down syndrome.

Theseissuesimply that the exi stence of amonotoni c associ ationisneither necessary nor sufficient
for acausal relation. A nonmonotonic relation only refutes those causal hypotheses specific enough
to predict a monotonic dose—response curve.

Plausibility

Plausibility refersto the scientific plausibility of an association. More than any other criterion, this
one shows how narrowly systems of causal criteriaare focused on epidemiology. The starting point
is an epidemiologic association. In asking whether it is causal or not, one of the considerations
we take into account is its plausibility. From aless parochial perspective, the entire enterprise of
causal inference would be viewed as the act of determining how plausible a causal hypothesisis.
One of the considerations we would take into account would be epidemiol ogic associations, if they
are available. Often they are not, but causal inference must be done nevertheless, with inputs from
toxicology, pharmacology, basic biology, and other sciences.

Just as epidemiology is not essential for causal inference, plausibility can change with the
times. Sartwell (1960) emphasized this point, citing remarks of Cheever in 1861, who had been
commenting on the etiology of typhus before its mode of transmission (viabody lice) was known:
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It could be no more ridiculous for the stranger who passed the night in the steerage of an emigrant
ship to ascribe the typhus, which he there contracted, to the vermin with which bodies of the sick
might be infested. An adequate cause, one reasonable in itself, must correct the coincidences of
simple experience.

What wasto Cheever animplausible explanation turned out to be the correct explanation, because
it was indeed the vermin that caused the typhus infection. Such is the problem with plausibility:
It is too often based not on logic or data, but only on prior beliefs. Thisis not to say that biologic
knowledge should be discounted when a new hypothesis is being evaluated, but only to point out
the difficulty in applying that knowledge.

The Bayesian approach to inference attempts to deal with this problem by requiring that one
guantify, on a probability (0 to 1) scale, the certainty that one has in prior beliefs, as well asin
new hypotheses. This quantification displays the dogmatism or open-mindedness of the analyst in
apublic fashion, with certainty values near 1 or O betraying a strong commitment of the analyst for
or against a hypothesis. It can also provide a means of testing those quantified beliefs against new
evidence (Howson and Urbach, 1993). Nevertheless, no approach can transform plausibility into
an objective causal criterion.

Coherence

Taken from the U.S. Surgeon General’s Smoking and Health (1964), the term coherence implies
that a cause-and-effect interpretation for an association does not conflict with what is known of
the natural history and biology of the disease. The examples Hill gave for coherence, such as
the histopathologic effect of smoking on bronchial epithelium (in reference to the association
between smoking and lung cancer) or the difference in lung cancer incidence by sex, could rea-
sonably be considered examples of plausibility, as well as coherence; the distinction appears to
be a fine one. Hill emphasized that the absence of coherent information, as distinguished, appar-
ently, from the presence of conflicting information, should not be taken as evidence against an
association being considered causal. On the other hand, the presence of conflicting information
may indeed refute a hypothesis, but one must always remember that the conflicting information
may be mistaken or misinterpreted. An example mentioned earlier is the “inhalation anomaly” in
smoking and lung cancer, the fact that the excess of lung cancers seen among smokers seemed
to be concentrated at sites in the upper airways of the lung. Several observers interpreted this
anomaly as evidence that cigarettes were not responsible for the excess. Other observations, how-
ever, suggested that cigarette-borne carcinogens were deposited preferentially where the excess
was observed, and so the anomaly was in fact consistent with a causal role for cigarettes (Wald,
1985).

Experimental Evidence

To different observers, experimental evidence can refer to clinical trials, to laboratory experiments
with rodents or other nonhuman organisms, or to both. Evidence from human experiments, however,
is seldom available for epidemiologic research questions, and animal evidence relates to different
species and usually to levels of exposure very different from those that humans experience. Un-
certainty in extrapolations from animals to humans often dominates the uncertainty of quantitative
risk assessments (Freedman and Zeisel, 1988; Crouch et al., 1997).

To Hill, however, experimental evidence meant something else: the “experimental, or semi-
experimental evidence” obtained from reducing or eliminating a putatively harmful exposure and
seeing if the frequency of disease subsequently declines. He called this the strongest possible
evidence of causality that can be obtained. It can be faulty, however, as the “semi-experimental”
approach is nothing more than a “ before-and-after” time trend analysis, which can be confounded
or otherwise biased by a host of concomitant secular changes. Moreover, even if the removal of
exposure does causally reduce the frequency of disease, it might not be for the etiologic reason
hypothesized. The draining of a swamp near a city, for instance, would predictably and causally
reduce the rate of yellow fever or malaria in that city the following summer. But it would be a
mistake to call this observation the strongest possible evidence of a causal role of miasmas (Poole,
1999).
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Analogy

Whatever insight might be derived from analogy is handicapped by the inventive imagination of
scientists who can find anal ogies everywhere. At best, analogy provides a source of more elaborate
hypotheses about the associations under study; absence of such analogies reflects only lack of
imagination or experience, not falsity of the hypothesis.

We might find naive Hill’s examples in which reasoning by analogy from the thalidomide and
rubella tragedies made it more likely to him that other medicines and infections might cause other
birth defects. But such reasoning is common; we suspect most people find it more credible that
smoking might cause, say, stomach cancer, because of its associations, some widely accepted as
causal, with cancers in other internal and gastrointestinal organs. Here we see how the analogy
criterion can be at odds with either of the two specificity criteria. The more apt the analogy, the less
specific are the effects of a cause or the less specific the causes of an effect.

Summary

Asisevident, the standards of epidemiologic evidence offered by Hill are saddled with reservations
and exceptions. Hill himself was ambivalent about their utility. He did not use the word criteriain
the speech. He called them “viewpoints’ or “perspectives.” On the one hand, he asked, “In what
circumstances can we pass from this observed association to a verdict of causation?’ (emphasis
in original). Yet, despite speaking of verdicts on causation, he disagreed that any “hard-and-fast
rules of evidence” existed by which to judge causation: “None of my nine viewpoints can bring
indisputable evidence for or against the cause-and-effect hypothesis and none can be required as a
sinequanon” (Hill, 1965).

Actually, as noted above, the fourth viewpoint, temporality, is a sine qua non for causal expla-
nations of observed associations. Nonetheless, it does not bear on the hypothesis that an exposure
is capable of causing a disease in situations as yet unobserved (whether in the past or the future).
For suppose every exposed case of disease ever reported had received the exposure after devel oping
the disease. This reversed temporal relation would imply that exposure had not caused disease
among these reported cases, and thus would refute the hypothesisthat it had. Nonetheless, it would
not refute the hypothesis that the exposure is capable of causing the disease, or that it had caused
the disease in unobserved cases. It would mean only that we have no worthwhile epidemiologic
evidence relevant to that hypothesis, for we had not yet seen what became of those exposed before
disease occurred relative to those unexposed. Furthermore, what appears to be a causal sequence
could represent reverse causation if preclinical symptoms of the disease |ead to exposure, and then
overt disease follows, as when patients in pain take analgesics, which may be the result of disease
that is later diagnosed, rather than a cause.

Other than temporality, there is no necessary or sufficient criterion for determining whether an
observed association is causal. Only when a causal hypothesisis elaborated to the extent that one
can predict from it a particular form of consistency, specificity, biologic gradient, and so forth, can
“causal criteria” come into play in evaluating causal hypotheses, and even then they do not come
into play in evaluating the general hypothesis per se, but only some specific causal hypotheses,
leaving others untested.

This conclusion accords with the views of Hume and many others that causal inferences cannot
attain the certainty of logical deductions. Although some scientists continue to develop causal con-
siderationsasaidsto inference (Susser, 1991), othersarguethat it isdetrimental to cloud theinferen-
tial processby considering checklist criteria (Lanesand Poole, 1984). Anintermediate, refutationist
approach seeks to transform proposed criteria into deductive tests of causal hypotheses (Maclure,
1985; Weed, 1986). Such an approach helps avoid the temptation to use causal criteria simply to
buttress pet theories at hand, and instead allows epidemiologists to focus on evaluating competing
causal theories using crucial observations. Although this refutationist approach to causal inference
may seem at odds with the common implementation of Hill’sviewpoints, it actually seeksto answer
thefundamental question posed by Hill, and the ultimate purpose of the viewpoints he promul gated:

What [the nine viewpoints] can do, with greater or less strength, is to help us to make up our minds
on the fundamental question—is there any other way of explaining the set of facts before us, isthere
any other answer equally, or more, likely than cause and effect? (Hill, 1965)
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The crucial phrase “equally or more likely than cause and effect” suggests to us a subjective
assessment of the certainty, or probability of the causal hypothesis at issue relative to another
hypothesis. Although Hill wrote at atime when expressing uncertainty as a probability was unpop-
ular in statistics, it appears from his statement that, for him, causal inference is a subjective matter
of degree of personal belief, certainty, or conviction. In any event, this view is precisely that of
subjective Bayesian statistics (Chapter 18).

[tisunsurprising that case studies(e.g., Weed and Gorelick, 1996) and surveysof epidemiologists
(Holman et al., 2001) show, contrary to the rhetoric that often attends invocations of causal criteria,
that epidemiologists have not agreed on a set of causal criteria or on how to apply them. In one
study in which epidemiologists were asked to employ causal criteria to fictional summaries of
epidemiologic literatures, the agreement was only dightly greater than would have been expected
by chance (Holman et a., 2001). The typical use of causal criteriaisto make a case for a position
for or against causality that has been arrived at by other, unstated means. Authors pick and choose
among the criteria they deploy, and define and weight them in ad hoc ways that depend only on
the exigencies of the discussion at hand. In this sense, causal criteria appear to function less like
standards or principlesand more like values (Poole, 2001b), which vary acrossindividual scientists
and evenvary withinthework of asinglescientist, depending on the context and time. Thusuniversal
and objective causal criteria, if they exist, have yet to be identified.
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I n this chapter, we begin to address the basic elements, concepts, and tools of epidemiology. A

good starting point is to define epidemiology. Unfortunately, there seem to be more definitions of
epidemiology than there are epidemiol ogists. Some have defined it in terms of itsmethods. Although
the methods of epidemiology may be distinctive, it is more typical to define abranch of sciencein
terms of its subject matter rather than its tools. MacMahon and Pugh (1970) gave a widely cited
definition, which we update slightly: Epidemiology isthe study of the distribution and determinants
of disease frequency in human populations. A similar subject-matter definition has been attributed
to Gaylord Anderson (Cole, 1979), who defined epidemiol ogy simply asthe study of the occurrence
of illness. Although reasonable distinctions can be made between the terms disease and illness, we
shall treat them as synonyms here.

Recognizing the broad scope of epidemiology today, we may define epidemiology as the study
of the distribution of health-related states and events in populations. With this definition we intend
to capture not only disease and illness, but physiologic states such as blood pressure, psychologic
measures such as depression score, and positive outcomes such as disease immunity. Other sci-
ences, such as clinical medicine, are also directed toward the study of health and disease, but in
epidemiology the focusis on population distributions.

The objective of much epidemiologic research is to obtain a valid and precise estimate of the
effect of apotential cause on the occurrence of disease, which is often abinary (either/or) outcome

32



Chapter 3 e Measures of Occurrence 33

such as “dead/alive” To achieve this objective, an epidemiologist must be able to measure the
frequency of disease occurrence, either in absolute or in relative terms. We will focus on four basic
mesasures of disease frequency. Incidence times are simply the times, after a common reference
event, at which new cases of disease occur among population members. Incidence rate measures
the occurrence of new cases of disease per unit of person-time. Incidence proportion measures the
proportion of people who develop new disease during a specified period of time. Prevalence, a
measure of status rather than of newly occurring disease, measures the proportion of people who
have disease at a specific time. We will also discuss how these measures generalize to outcomes
measured on a more complex scale than a dichotomy, such as lung function, lymphocyte count,
or antibody titer. Finally, we will describe how measures can be standardized or averaged over
population distributions of health-related factors to obtain summary occurrence measures.

INCIDENCE TIMES

In the attempt to measure the frequency of disease occurrence in a population, it is insufficient
merely to record the number of people or the proportion of the population that is affected. It isalso
necessary to take into account the time elapsed before disease occurs, as well as the period of time
during which eventsare counted. Consider the frequency of death. Because all people are eventually
affected, the time from birth to death becomes the determining factor in the rate of occurrence of
death. If, on average, death comes earlier to the members of one population than to members of
another population, it is natural to say that the first population has a higher death rate than the
second. Time is the factor that differentiates between the two situations shown in Figure 3-1.

In an epidemiologic study, we may measure the time of eventsin a person’s life relative to any
one of several reference events. Using age, for example, the reference event is birth, but we might
instead use the start of a treatment or the start of an exposure as the reference event. The reference
event may occur at atime that is unique to each person, asis the case with birth, but it could also
be set to acommon value, such as aday chosen from the calendar. The time of the reference event
determines the time origin or zero time for measuring the timing of events.

Given an outcome event or “incident” of interest, a person’s incidence time for this outcomeis
defined as the time span from zero time to the time at which the outcome event occurs, if it occurs.
Synonyms for incidence time include event time, failure time, and occurrence time. A man who
experienced his first myocardial infarction in 2000 at age 50 years has an incidence time of 2000
in (Western) calendar time and an incidence time of 50 in age time. A person’s incidence timeis
undefined if that person never experiences the outcome event. There is a convention that classifies
such aperson as having an incidence timethat is not specified exactly but isknown to exceed thelast
time that the person could have experienced the outcome event. Under this convention, a woman
who had a hysterectomy at age 45 years without ever having had endometrial cancer is classified as
having an endometrial cancer incidence time that is unspecified but greater than age 45. It is then
said that the hysterectomy censored the woman’s endometrial cancer incidence at age 45 years.

FIGURE 3-1 e Two different patterns of ~ Time y Time —
mortality. D=death D=death
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There are many ways to summarize the distribution of incidence timesin populationsif thereis
no censoring. For example, one could look at the mean time, median time, and other summaries.
Such approaches are commonly used with time to death, for which the average, or life expectancy,
isapopular measure for comparing the health status of populations. If there is censoring, however,
the summarization task becomes more complicated, and epidemiologists have traditionally turned
to the concepts involving person-time at risk to deal with this situation.

The term average age at death deserves special attention, asit is sometimes used to denote life
expectancy but isoften used to denote an entirely different quantity, namely, the average age of those
dying at a particular point in time. The latter quantity is more precisely termed the cross-sectional
average age at death. The two quantities can be very far apart. Comparisons of cross-sectional
average age at an event (such as death) can be quite misleading when attempting to infer causes of
the event. We shall discuss these problems later on in this chapter.

INCIDENCE RATES
PERSON-TIME AND POPULATION TIME

Epidemiologists often study outcome events that are not inevitable or that may not occur during
the period of observation. In such situations, the set of incidence times for a specific event in a
population will not all be precisely defined or observed. One way to deal with this complicationis
to devel op measures that account for the length of time each individual wasin the population at risk
for the event, that is, the period of time during which the event was a possibility and would have
been counted as an event in the population, had it occurred. This length or span of time is called
the person-time contribution of the individual.

The sum of these person-times over al population members is called the total person-time at
risk or the population-time at risk. This total person-time should be distinguished from clock time
inthat it isasummation of time that occurs simultaneously for many people, whereas clock timeis
not. Thetotal person-time at risk merely representsthe total of all time during which disease onsets
could occur and would be considered events occurring in the population of interest.

POPULATION AND INDIVIDUAL RATES

We define the incidence rate of the population as the number of new cases of disease (incident
number) divided by the person-time over the period:

. number of disease onsets
Incidence rate =

> time spent in population

persons

Thisrate has a so been called the person-time rate, incidence density, force of morbidity (or force of
mortality in reference to deaths), hazard rate, and disease intensity, although the latter three terms
are more commonly used to refer to the theoretical limit approached by an incidence rate as the unit
of time measure approaches zero.

When the risk period is of fixed length At, the proportion of the period that a person spendsin
the population at risk is their amount of person-time divided by At. It follows that the average size
of the population over the period is

— time spent in population
N — Z sp pop
At

persons

Hence, the total person-time at risk over the period is equa to the product of the average size
of the population over the period, N, and the fixed length of the risk period, At. If we denote
the incident number by A, it follows that the incidence rate equals A/(W~ At). This formulation
showsthat theincidence rate has units of inversetime (per year, per month, per day, etc.). The units
attached to an incidence rate can thus be written as year~*, month~, or day 2.

The only outcome events eligible to be counted in the numerator of an incidence rate are those
that occur to persons who are contributing time to the denominator of the incidence rate at the time
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that the disease onset occurs. Likewise, only time contributed by persons eligible to be counted in
the numerator if they suffer such an event should be counted in the denominator.

Another way of expressing apopulationincidencerateisasatime-weighted averageof individual
rates. An individua rate is either O/(time spent in population) = O, if the individual does not
experience the event, or else 1/(time spent in the population) if the individual does experience the
event. We then have that the number of disease onsets A is

A= Z (time spent in poplation) (individual rate)

persons

and so

Incidence rate = Z (time spent in population) (individual rate)

persons

>~ time spent in population

persons

This formulation shows that the incidence rate ignores the distinction between individuals who
do not contribute to the incident number A because they were in the population only briefly, and
those who do not contribute because they werein the popul ation along time but never got the disease
(e.g., immune individuals). In this sense, the incidence rate deals with the censoring problem by
ignoring potentially important distinctions among those who do not get the disease.

Although the notion of an incidence rate is a central one in epidemiology, the preceding formu-
lation shows it cannot capture all aspects of disease occurrence. This limitation is also shown by
noting that arate of 1 case/(100 years) = 0.01 year—* could be obtained by following 100 peoplefor
an average of 1 year and observing one case, but it could also be obtained by following two people
for 50 years and observing one case, avery different scenario. To distinguish these situations, more
detailed measures of occurrence are aso needed, such as incidence time.

PROPER INTERPRETATION OF INCIDENCE RATES

Apart from insensitivity to important distinctions, incidence rates have interpretational difficulties
insofar as they are often confused with risks (probabilities). This confusion arises when one fails
to account for the dependence of the numeric portion of arate on the units used for its expression.

The numeric portion of an incidence rate has alower bound of zero and no upper bound, which
is the range for the ratio of a non-negative quantity to a positive quantity. The two quantities are
the number of eventsin the numerator and the person-timein the denominator. It may be surprising
that an incidence rate can exceed the value of 1, which would seem to indicate that more than 100%
of apopulation is affected. It istrue that at most 100% of personsin a population can get a disease,
but the incidence rate does not measure the proportion of a population that gets disease, and in fact
itisnot aproportion at all. Recall that incidence rate is measured in units of the reciprocal of time.
Among 100 people, no more than 100 deaths can occur, but those 100 deaths can occur in 10,000
person-years, in 1,000 person-years, in 100 person-years, or in 1 person-year (if the 100 deaths
occur after an average of 3.65 days each, as in a military engagement). An incidence rate of 100
cases (or deaths) per 1 person-year might be expressed as

100 2
person-year
It might also be expressed as
cases
person-century
cases
person-month
cases
person-week
7 cases
person-day

10,000

8.33

192
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The numeric value of an incidencerate in itself has no interpretability because it depends on the
selection of thetime unit. It isthus essential in presenting incidence rates to give the time unit used
to calculate the numeric portion. That unit is usually chosen to ensure that the minimum rate has
at least one digit to the left of the decimal place. For example, a table of incidence rates of 0.15,
0.04, and 0.009 cases per person-year might be multiplied by 1,000 to be displayed as 150, 40,
and 9 cases per 1,000 person-years. One can use aunit aslarge as 1,000 person-years regardless of
whether the observations were collected over 1 year of time, over 1 week of time, or over adecade,
just as one can measure the speed of avehicle in terms of kilometers per hour even if the speed is
measured for only afew seconds.

RATES OF RECURRENT EVENTS

Incidence rates often include only the first occurrence of disease onset as an eligible event for the
numerator of the rate. For the many diseases that are irreversible states, such as multiple sclerosis,
cirrhosis, or death, thereisat most only one onset that aperson can experience. For somediseasesthat
dorecur, such asrhinitis, wemay simply wish to measure theincidence of “first” occurrence, or first
occurrence after a prespecified disease-free period, even though the disease can occur repeatedly.
For other diseases, such as cancer or heart disease, thefirst occurrenceis often of greater interest for
etiologic study than subsequent occurrences in the same person, because the first occurrence or its
medical therapies affect the rate of subsequent occurrences. Therefore, it istypical that the events
in the numerator of an incidence rate correspond to the first occurrence of a particular disease,
even in those instances in which it is possible for a person to have more than one occurrence. In
this book, we will assume we are dealing with first occurrences, except when stated otherwise. As
explained later on, the approaches for first occurrences extend naturally to subsequent occurrences
by restricting the population at risk based on past occurrence.

When the eventstallied inthe numerator of anincidencerate arefirst occurrences of disease, then
thetime contributed by each person in whom the disease devel ops shoul d terminate with the onset of
disease. Thereasonisthat the personisno longer eligibleto experiencetheevent (thefirst occurrence
canoccur only once per person), so thereisno moreinformation about first occurrenceto obtain from
continued observation of that person. Thus, each person who experiences the outcome event should
contribute time to the denominator until the occurrence of the event, but not afterward. Furthermore,
for the study of first occurrences, the number of disease onsets in the numerator of the incidence
rate is also a count of people experiencing the event, because only one event can occur per person.

An epidemiologist who wishes to study both first and subsequent occurrences of disease may
decide not to distinguish between first and later occurrences and simply count all the events that
occur among the population under observation. If so, then the time accumulated in the denominator
of the rate would not cease with the occurrence of the outcome event, because an additional event
might occur in the same person. Usually, however, there is enough of abiologic distinction between
first and subsequent occurrences to warrant measuring them separately. One approach is to define
the “population at risk” differently for each occurrence of the event: The population at risk for the
first event would consist of persons who have not experienced the disease before; the population
at risk for the second event (which is the first recurrence) would be limited to those who have
experienced the event once and only once, etc. Thus, studies of second cancers are restricted to the
population of those who survived their first cancer. A given person should contribute time to the
denominator of the incidence rate for first events only until the time that the disease first occurs.
At that point, the person should cease contributing time to the denominator of that rate and should
now begin to contribute time to the denominator of the rate measuring the second occurrence. If
and when there is a second event, the person should stop contributing time to the rate measuring
the second occurrence and begin contributing to the denominator of the rate measuring the third
occurrence, and so forth.

TYPES OF POPULATIONS
CLOSED POPULATIONS

Given a particular time scale for displaying incidence, we may distinguish populations according
to whether they are closed or open on that scale. A closed population adds no new members over
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FIGURE 3-2 e Size of a closed population of 1,000 people, by time.

time and loses members only to death, whereas an open population may gain members over time,
throughimmigration or birth, or lose memberswho are still alivethrough emigration, or both. (Some
demographers and ecologists use a broader definition of a closed population in which births, but
not immigration or emigration, are allowed.) Members of the population can leave this population
only by dying.

Suppose we graph the survival experience of a closed population that starts with 1,000 people.
Because death eventually claims everyone, after a period of sufficient time the original 1,000 will
have dwindled to zero. A graph of the size of the population with time might approximate that in
Figure 3-2. The curve slopes downward because as the 1,000 persons in the population die, the
population at risk of death isreduced. The populationisclosed in the sense that we consider the fate
of only the 1,000 persons present at time zero. The person-time experience of these 1,000 persons
is represented by the area under the curve in the diagram. As each person dies, the curve notches
downward; that person no longer contributesto the person-time denominator of the death (mortality)
rate. Each person’s contribution is exactly equal to the length of time that person is followed from
start to finish. In this example, because the entire population isfollowed until death, thefinishisthe
person’s death. In other instances, the contribution to the person-time experience would continue
until either theonset of disease or somearbitrary cutoff timefor observation, whichever came sooner.

Suppose we added up the total person-time experience of this closed population of 1,000 and
obtained atotal of 75,000 person-years. The death rate would be (1,000/75,000) x year~!, because
the 75,000 person-years represent the experience of all 1,000 people until their deaths. Furthermore,
if timeis measured from start of follow-up, the average death timein this closed popul ation would
be 75,000 person-years/1,000 persons = 75 years, which isthe inverse of the death rate.

A closed population experiencing a constant death rate over time would declinein size exponen-
tially (which iswhat is meant by the term exponential decay). In practice, however, death rates for
a closed population change with time, because the population is aging as time progresses. Conse-
guently, the decay curve of aclosed human population is never exponential. Life-table methodol ogy
is a procedure by which the death rate (or disease rate) of a closed population is evaluated within
successive small age or time intervals, so that the age or time dependence of mortality can be
elucidated. With any method, however, it isimportant to distinguish age-related effects from those
related to other time axes, because each person’s age increases directly with an increase along any
other time axis. For example, a person’s age increases with increasing duration of employment,
increasing calendar time, and increasing time from start of follow-up.
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OPEN POPULATIONS

An open population differs from a closed population in that the population at risk is open to new
members who did not qualify for the population initially. An example of an open population is the
population of a country. People can enter an open population through various mechanisms. Some
may bebornintoit; othersmay migrateinto it. For an open population of peoplewho have attained a
specific age, persons can become eligible to enter the population by aging into it. Similarly, persons
can exit by dying, aging out of a defined age group, emigrating, or becoming diseased (the latter
method of exiting applies only if first bouts of a disease are being studied). Persons may also exit
from an open popul ation and then re-enter, for example by emigrating from the geographic areain
which the population is located, and later moving back to that area.

The distinction between closed and open populations depends in part on the time axis used to
describe the population, as well as on how membership is defined. All persons who ever used a
particular drug would constitute aclosed population if timeismeasured from start of their use of the
drug. These persons would, however, constitute an open population in calendar time, because new
users might accumulate over a period of time. If, asin this example, membership in the population
always starts with an event such asiinitiation of treatment and never ends thereafter, the population
is closed along the time axis that marks this event as zero time for each member, because all new
members enter only when they experience this event. The same population will, however, be open
along most other time axes. If membership can be terminated by later events other than death, the
population is an open one along any time axis.

By the above definitions, any study population with loss to follow-up is open. For example,
membership in a study population might be defined in part by being under active surveillance for
disease; in that case, memberswho arelost to follow-up have by definition left the population, even
if they are still alive and would otherwise be considered eligible for study. It iscommon practice to
analyze such populations using time from start of observation, an axis aong which no immigration
can occur (by definition, time zero is when the person enters the study). Such populations may be
said to be“closed on theleft,” and are often called “fixed cohorts,” athough the term cohort is often
used to refer to a different concept, which we discuss in the following.

POPULATIONS VERSUS COHORTS

Theterm population asweuseit here hasanintrinsically temporal and potentially dynamic element:
Onecan beamember at onetime, not amember at alater time, amember again, and so on. Thisusage
isthe most common sense of population, aswith the popul ation of atown or country. Theterm cohort
issometimes used to describe any study popul ation, but wereserveit for amore narrow concept, that
of agroup of persons for whom membership is defined in a permanent fashion, or a population in
which membership is determined entirely by asingle defining event and so becomes permanent. An
exampleof acohort would bethe membersof the graduating class of aschool inagivenyear. Thelist
of cohort membersisfixed at the time of graduation, and will not increase. Other examplesinclude
the cohort of all persons who ever used a drug, and the cohort of persons recruited for afollow-up
study. In the latter case, the study popul ation may begin with all the cohort members but may grad-
ually dwindleto asmall subset of that cohort asthoseinitially recruited arelost to follow-up. Those
lost to follow-up remain members of theinitial-recruitment cohort, even though they areno longer in
the study population. With this definition, the members of any cohort constitute a closed population
along the time axis in which the defining event (e.g., birth with Down syndrome, or study recruit-
ment) istaken as zero time. A birth cohort isthe cohort defined in part by being born at a particular
time, e.g., al persons born in Ethiopiain 1990 constitute the Ethiopian birth cohort for 1990.

STEADY STATE

If the number of people entering a population is balanced by the number exiting the population in
any period of time within levels of age, sex, and other determinants of risk, the populationissaid to
be stationary, or in asteady state. Steady state isa property that can occur only in open populations,
not closed populations. It is, however, possible to have a population in steady state in which no
immigration or emigration is occurring; this situation would require that births perfectly balance
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deaths in the population. The graph of the size of an open population in steady state is simply a
horizontal line. People are continually entering and leaving the population in away that might be
diagrammed as shown in Figure 3-3.

In the diagram, the symbol > represents a person entering the population, aline segment repre-
sents his or her person-time experience, and the termination of aline segment represents the end of
his or her experience. A terminal D indicates that the experience ended because of disease onset,
and aterminal C indicates that the experience ended for other reasons. In theory, any time interval
will provide a good estimate of the incidence rate in a stationary population.

RELATION OF INCIDENCE RATES TO INCIDENCE TIMES
IN SPECIAL POPULATIONS

The reciprocal of time is an awkward concept that does not provide an intuitive grasp of an inci-
dence rate. The measure does, however, have a close connection to more interpretable measures of
occurrencein closed populations. Referring to Figure 3—2, one can see that the area under the curve
isequal to N x T, where N isthe number of people starting out in the closed populationand T is
the average time until death. The time-averaged death rateisthen N/(N x T) = 1/T; that is, the
death rate equals the reciprocal of the average time until death.

In a stationary population with no migration, the crude incidence rate of an inevitable outcome
such as death will equal the reciprocal of the average time spent in the population until the outcome
occurs (Morrison, 1979). Thus, in a stationary population with no migration, a death rate of 0.04
year~! would transl ate to an average time from entry until death of 25 years. Similarly, in stationary
population with no migration, the cross-sectional average age at death will equal thelife expectancy.
The time spent in the population until the outcome occurs is sometimes referred to as the waiting
time until the event occurs, and it corresponds to the incidence time when time is measured from
entry into the population.

If the outcome of interest is not death but either disease onset or death from a specific cause, the
average-time interpretation must be modified to account for competing risks, which are events that
“compete” with the outcome of interest to remove persons from the population at risk. Evenif there
is no competing risk, the interpretation of incidence rates as the inverse of the average waiting time
will usualy not be valid if there is migration (such as loss to follow up), and average age at death
will no longer equal the life expectancy. For example, the death rate for the United States in 1977
was 0.0088 year—. In a steady state, this rate would correspond to a mean lifespan, or expectation
of life, of 114 years. Other analyses, however, indicate that the actual expectation of life in 1977
was 73 years (Alho, 1992). The discrepancy is a result of immigration and to the lack of a steady
state. Note that the no-migration assumption cannot hold within specific age groups, for people are
always “migrating” in and out of age groups as they age.

OTHER TYPES OF RATES

In addition to numbers of cases per unit of person-time, it is sometimes useful to examine numbers
of events per other unit. In health services and infectious-disease epidemiology, epidemic curves
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are often depicted in terms of the number of cases per unit time, also called the absolute rate,

no. of disease onsets
time span of observation

or A/At. Becausethe person-timerateissimply this absolute rate divided by the average size of the
population over the time span, or A/(N - At), the person-time rate has been called therelative rate
(Elandt-Johnson, 1975); it is the absolute rate relative to or “adjusted for” the average population
size.

Sometimesit isuseful to express event ratesin unitsthat do not involvetimedirectly. A common
example isthe expression of fatalities by travel modality in terms of passenger-miles, whereby the
safety of commercial train and air travel can be compared. Here, person-miles replace person-time
in the denominator of the rate. Like rates with time in the denominator, the numerical portion of
such ratesis completely dependent on the choice of measurement units; arate of 1.6 deaths per 10°
passenger-miles equals a rate of 1 death per 10° passenger-kilometers.

The concept central to precise usage of the term incidence rate is that of expressing the change
in incident number relative to the change in another quantity, so that the incidence rate always has
adimension. Thus, a person-time rate expresses the increase in the incident number we expect per
unit increase in person-time. An absol ute rate expresses the increase in incident number we expect
per unit increase in clock time, and a passenger-mile rate expresses the increase in incident number
we expect per unit increase in passenger miles.

INCIDENCE PROPORTIONS AND SURVIVAL PROPORTIONS

Within agiven interval of time, we can aso express the incident number of casesin relation to the
size of the population at risk. If we measure population size at the start of atimeinterval and no one
enters the population (immigrates) or leaves alive (emigrates) after the start of the interval, such
a rate becomes the proportion of people who become cases among those in the population at the
start of the interval. We call this quantity the incidence proportion, which may also be defined as
the proportion of a closed population at risk that becomes diseased within a given period of time.
This quantity is sometimes called the cumulative incidence, but that term is also used for another
quantity we will discuss later. A more traditional term for incidence proportion is attack rate, but
we reserve the term rate for person-time incidence rates.

If risk is defined as the probability that disease develops in a person within a specified time
interval, thenincidence proportionisameasure, or estimate, of averagerisk. Although thisconcept of
risk appliestoindividua swhereasincidence proportion appliesto popul ations, incidence proportion
is sometimes called risk. This usage is consistent with the view that individua risks merely refer
to the relative frequency of diseasein agroup of individuals like the one under discussion. Average
risk isamore accurate synonym, one that we will sometimes use.

Another way of expressing the incidence proportion is as a simple average of the individual
proportions. The latter is either O for those who do not have the event or 1 for those who do have
the event. The number of disease onsets A isthen asum of theindividual proportions,

A= )" individua proportions

persons
and so

> individual proportions

persons

Incidence proportion = ——— — =
prop initial size of the population

A/N

If one calls the individual proportions the “individual risks,” this formulation shows another sense
in which the incidence proportion is also an “average risk.” It also makes clear that the incidence
proportion ignores the amount of person-time contributed by individuals and so ignores even more
information than does the incidence rate, although it has a more intuitive interpretation.

Likeany proportion, thevalue of anincidence proportion rangesfrom0to 1 andisdimensionless.
It is not interpretable, however, without specification of the time period to which it applies. An
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incidence proportion of death of 3% means something very different when it refers to a 40-year
period than when it refers to a 40-day period.

A useful complementary measure to the incidence proportion is the survival proportion, which
may be defined as the proportion of aclosed population at risk that does not become diseased within
agiven period of time. If R and S denote the incidence and survival proportions, then S=1 — R.
Another measurethat iscommonly usedistheincidenceodds, definedas R/S = R/(l — R), theratio
of the proportion getting the disease to the proportion not getting the disease. If Rissmall, S~ 1
and R/S~ R; that is, the incidence odds will approximate the incidence proportion when both
guantitiesare small. Otherwise, because S<1, theincidence odds will be greater than theincidence
proportion and, unlike the latter, it may exceed 1.

For sufficiently short timeintervals, thereisavery simplerelation between the incidence propor-
tion and the incidence rate of anonrecurring event. Consider a closed population over an interval to
toty, and let At =t; — to be the length of the interval. If Nisthe size of the population at to and A
is the number of disease onsets over the interval, then the incidence and survival proportions over
theinterval are R = A/Nand S= (N — A)/N. Now suppose the timeinterval is short enough that
the size of the population at risk declines only slightly over theinterval. Then, N — A~ N, S~ 1,
and so R/S~ R. Furthermore, the average size of the population at risk will be approximately N,
so the total person-time at risk over the interval will be approximately NAt. Thus, the incidence
rate (1) over the interval will be approximately A/NAt, and we obtain

R= A/N = (A/NAt)At ~ [At and R~ R/S

In words, the incidence proportion, incidence odds, and the quantity | At will al approximate
one another if the population at risk declines only slightly over the interval. We can make this
approximation holdtowithinan accuracy of 1/ N by making At so short that no morethan oneperson
leaves the population at risk over the interval. Thus, given a sufficiently short time interval, one can
simply multiply the incidence rate by the time period to approximate the incidence proportion. This
approximation offers another interpretation for the incidence rate: It can be viewed as the limiting
value of theratio of the average risk to the duration of time at risk as the latter duration approaches
zero.

A specific type of incidence proportion is the case fatality rate, or case fatality ratio, which is
the incidence proportion of death among those in whom an illness develops (it is therefore not a
rate in our sense, but a proportion). The time period for measuring the case fatality rate is often
unstated, but it is always better to specify it.

RELATIONS AMONG INCIDENCE MEASURES

Disease occurrence in a population reflects two aspects of individual experiences: the amount of
time the individual is at risk in the population, and whether the individual actualy has the focal
event (e.g., getsdisease) during that time. Different incidence measures summarize different aspects
of the distribution of these experiences. Average incidence time is the average time until an event
and incidence proportion is the average “risk” of the event (where “risk” is 1 or 0 according to
whether or not the event occurred in the risk period). Each is easy to grasp intuitively, but they are
often not easy to estimate or even to define. In contrast, the incidence rate can be applied to the
common situation in which the time at risk and the occurrence of the event can be unambiguously
determined for everyone. Unfortunately, it can be difficult to comprehend correctly what the rate
istelling us about the different dimensions of event distributions, and so it is helpful to understand
its relation to incidence times and incidence proportions. These relations are a central component
of the topics of survival analysis and failure-time analysis in statistics (Kalbfleisch and Prentice,
2002; Cox and Oakes, 1984).

There are relatively simple relations between the incidence proportion of an inevitable, nonre-
curring event (such as death) and the incidence rate in a closed population. To illustrate them, we
will consider the small closed population shown in Figure 3—4. The time at risk (risk history) of
each member is graphed in order from the shortest on top to the longest at the bottom. Each history
either ends with a D, indicating the occurrence of the event of interest, or ends at the end of the
follow-up, at ts = 19. The starting time is denoted tp and is here equal to 0. Each time that one or
more events occur ismarked by avertical dashed line, the unique event times are denoted by t; (the
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FIGURE 3-4 o Exampleof a
small closed population with end of
follow-up at 19 years.

earliest) to t4, and the end of follow-up is denoted by ts. We denote the number of events at time ty
by Ay, the total number of persons at risk at time ty (including the Ay people who experience the
event) by Ny, and the number of people alive at the end of follow-up by Ns.

PRODUCT-LIMIT FORMULA

Table 3—1 shows the history of the population over the 20-year follow-up period in Figure 34, in
terms of tx, Ak, and Ni. Note that because the population is closed and the event is inevitable, the
number remaining at risk after tx, Nx.1, isequal to Ny — Ay, which is the number at risk up to tg
minus the number experiencing the event at t,. The proportion of the population remaining at risk
up to ty that also remains at risk after ty isthus

N — Ac  Niga
S< = = —
N Nk
We can now see that the proportion of the origina population that remains at risk at the end of
follow-up is

S= N5/Ng = (N5/N4)(Na/N3)(N3/N2)(N2/N1) = 5483981
which for Table 3-1 yields
S=(4/5)(5/6)(6/8)(8/9) = 4/9

Event Times and Intervals for the Closed Population in Figure 3-4

Start Outcome Event Times (t;) End
0 2 4 8 14 19
Index (k) 0 1 2 3 4 5
No. of outcome events (4;) 0 1 2 1 1 0
No. at risk (Nj) 9 9 8 6 5 4
Proportion surviving (Sx) 8/9 6/8 5/6 4/5 4/4
Length of interval (Aty) 2 2 4 6 5
Person-time (N Aty) 20

1
Incidence rate (Iy) 118 2/16  1/24 1/30 0/20
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This multiplication formula says that the survival proportion over the whole time interval in
Figure 34 isjust the product of the survival proportionsfor every subinterval ty_; to ty. Initsmore
general form,

5
N — A
S= 3-1
L[l Ne (3-1]

This multiplication formula is called the Kaplan-Meier or product-limit formula (Kalbfleisch
and Prentice, 2002; Cox and Oakes, 1984).

EXPONENTIAL FORMULA

Now let Ty bethetotal person-time at risk in the popul ation over the subinterval fromt_; totk, and
let Aty = tx — tx_1 be the length of the subinterval. Because the population is of constant size N
over this subinterval and everyone still present contributes Aty person-time units at risk, the total
person-time at risk in the interval is Ng Atg, so that the incidence rate in the time following t,_; up
through (but not beyond) ty is

Ax
I =
Ny Aty

But theincidence proportion over the same subinterval isequal to Iy Aty, so the survival propor-
tion over the subinterval is

S =1— IgAty

Thus, we can substitute 1 — I¢Atx for s¢ in the earlier equation for S, the overal survival
proportion, to get

S=(1- IsAts)(1 — LsAt) (L — 13At)(1 — LAL)(L— 11AL)
= [1-(0)3][1 — (1/30)6][1 — (1/24)4][1 — (2/16)2][1 — (1/18)2]
— 4/9

as before.
If each of the subinterval incidence proportions Iy Aty is small (<0.10 or so), we can simplify
the last formula by using the fact that, for small x,

1— x ~ exp(—x)
Taking x = I Aty in this approximation formula, we get 1 — It ~ exp(—IxAty), and so
S~ exp(—IsAts) exp(—14Ats) - - - exp(—11At)
= exp(—IsAts — [4At, — - - — [1AL)

5
= exp(— Z |kAtk>
k=1
which for Table 3-1 yields
exp[—0(5) — (1/30)6 — (1/24)4 — (2/16)2 — (1/18)2] = 0.483

nottoofar fromtheearlier valueof 4/9 = 0.444. Finaly, weusethefact that theincidence proportion
for thewhole period is1 — Sto get

5
R=1-S~ 1—exp(—ZIkAtk> [3-2]
k=1

Thelast formulais cited in many textbooks and is sometimes called the exponential formula for
relating rates and incidence proportions. The sum in the exponent, 3 I\ Aty, is sometimes called
K
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the cumulative incidence (Breslow and Day, 1980) or cumulative hazard (Kalbfleisch and Prentice,
2002; Cox and Oakes, 1984). Confusingly, the term cumulative incidence is more often used to
denote the incidence proportion. The cumulative hazard, although unitless, is not a proportion and
will exceed 1.0 when the incidence proportion exceeds 1 — e~ = 0.632.

We wish to emphasize the assumptions we used to derive the exponential formula in equa-
tion 3-2:

1. The population is closed.

2. The event under study isinevitable (thereis no competing risk).

3. The number of events Ay at each event time ty isasmall proportion of the number at risk N at
that time (i.e., Ax/Ny isaways small).

If the populationisnot very small, we can almost alwaysforce assumption 3to hold by measuring
time so finely that every event occurs at its own unique time (so that only one event occurs at each
tk). In Table 31, the discrepancy between the true R of 5/9 = 0.555 and the exponential formula
value of 1 — 0.483 = 0.517 is rather small considering that A,/Nx gets as large as 2/8 = 0.25
(at tp).

Assumptions 1 and 2 were also used to derive the product-limit formulain equation 3-1. These
assumptionsarerarely satisfied, yet they are often overlooked in presentationsand applicationsof the
formulas. Some form of the closed-population assumption (no. 1) isessentia because theincidence
proportion is defined only with reference to closed populations. A major use of the product-limit
and exponential formulas is, however, in translating incidence-rate estimates from open popula-
tions into incidence-proportion estimates for a closed population of interest. By assuming that the
incidence rates in the two populations are the same at each time, one can justify substituting
the survival proportions (Nx — Ax)/ N or the incidence rates observed in the open population into
the product-limit formula or the exponential formula. This assumption is often plausible when the
open population one observesis a subset of the closed population of interest, asin a cohort study
with losses to follow-up that are unrelated to risk.

APPLICATIONS WITH COMPETING RISKS

When competing risks remove persons from the population at risk, application of the product-limit
and exponential formulas requires new concepts and assumptions. Consider the subinterval-specific
incidenceratesfor our closed population of interest. When competing risks are present, the product-
limit formulain equation 3—1 for the survival proportion Sno longer holds, because competing risks
may remove additional people between disease onset times, in which case N1 will be smaller
than Ny — Ax. Also, when competing risks occur between ty_; and tx, the population size will not
be constant over the subinterval. Consequently, the person-time in interval k will not equal Ny Aty
and I At will not equal Ax/Nk. Thus, the exponential formula of equation 3-2 will not hold if
competing risks occur. The amount of error will depend on the frequency of the events that are the
competing risks.

We can, however, ask the following question: What would the incidence proportion over the
total interval have been if no competing risk had occurred? This quantity is sometimes called
the conditional risk of the outcome (conditioned on removal of competing risks). One minus the
product-limit formulaof equation 3—1 givesan estimate of thisquantity under the assumption that the
subinterval-specific incidence rates would not change if no competing risk occurred (independent
competing risks). One minus the exponential formula of equation 3—2 remains an approximation
toitif Ax/Ng isaways small. The assumption that the rates would not change if competing risks
were removed is made by almost all survival-analysis methods for estimating conditional risks, but
it requires careful scrutiny. Under conditions that would eliminate competing risks, the incidence
rates of the outcome under study may be likely to change. Suppose, for example, that the outcome
of interest is colon cancer. Competing risks would include deaths from any causes other than colon
cancer. Removal of so many risks would be virtually impossible, but an attempt to minimize them
might involve dietary interventions to prevent deaths from other cancers and from heart disease.
If these interventions were effective, they might also lower colon cancer rates, thus violating the
assumption that the specific rates would not change if no competing risk occurred.
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Because of the impracticality of removing competing risks without altering rates of the study
disease, many authors caution against interpreting survival estimates based on statistical removal of
competing risksastheincidencethat would actually occur upon removal of competing risks(Cox and
Oakes, 1984; Prentice and Kalbfleisch, 1988; Pepe and Mori, 1993; Kalbfleisch and Prentice, 2002;
Greenland, 20023, 2005a; Alberti et al ., 2003). Anarguably morepractical approachistofocusonthe
risk (probability) of the outcome without removing competing risks, sometimescalled the“ uncondi-
tional risk.” Thisquantity isestimablewith no assumption about competing-risk removal (Benichou
and Gail, 1990a; Pepe and Mori, 1993; Gooley et al., 1999; Kalbfleisch and Prentice, 2002).

A more defensible use of the product-limit formula is to estimate survival proportions in the
presence of censoring (e.g., loss to follow-up); see Chapter 16 for details. For this usage, the
assumption is made that the censoring is random (e.g., the experience of lost subjects differs only
randomly from that of subjectsnot lost). Thisassumption is often questionable but isaddressablein
the design and analysis of astudy viameasurement and adjustment for factors that affect censoring
and the outcome event (Kalbfleisch and Prentice, 2002).

RELATION OF SURVIVAL PROPORTION TO
AVERAGE INCIDENCE TIME

Returning now to the simpl er situation of aninevitable nonrecurring outcomein aclosed population,
we will derive an equation relating survival proportions to average incidence time. First, we may
write the total person-time at risk over thetotal interval in Figure 34 as

5
NiAt + ...+ NsAts = Y NxAte = 18 + 16 + 24+ 30 + 20 = 108 person-years
k=1

Thus, the average time at risk contributed by population members over the interval is
1L >,/ Ny 1
— Nk Aty = — Aty = <108 = 12 years

Notethat Nk /No isjust the proportion who remain at risk up to ty, that is, the survival proportion
from to to tx. If we denote this proportion Nx/No by Sk (to distinguish it from the subinterval-
specific proportions s¢), the average time at risk can be written

5
9 8 6 5 4
Aty=1=)2 —)12+(=)4+(=)6 — | 5=12years
2 Sl (5)2+(5)2+(5) 4+ (5)e+ (5)s=22v
as before. Now suppose that the interval is extended forward in time until the entire population
has experienced the outcome of interest, asin Figure 3-2. The average time at risk will then equal
the average incidence time, so the average incidence time will be computable from the survival

proportions using the last formula. The survival proportions may in turn be computed from the
subinterval-specific incidence rates, as described above.

SUMMARY

The three broad types of measures of disease frequency—incidence time, incidence rate, and inci-
dence (and survival) proportion—are al linked by simple mathematical formulas that apply when
one considers an inevitable nonrecurring event in a closed population followed until everyone
has experienced the event. The mathematical relations become more complex when one considers
events with competing risks, open populations, or truncated risk periods. Interpretations become
particularly problematic when competing risks are present.

LIMITATIONS AND GENERALIZATIONS OF
BASIC OCCURRENCE MEASURES

All the above measures can be viewed as types of arithmetic means, with possible weighting.
Consequently, it is straightforward to extend these measures to outcomes that are more detailed
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than all-or-none. Consider, for example, antibody titer following vaccination of persons with no
antibody for the target. We might examine the mean number of days until thetiter reachesany given
level L, or the proportion that reach L within a given number of days. We might also examine the
rate at which personsreach L. To account for the fact that atiter has many possible levels, we could
examine these measures for different values of L.

Means cannot capture all relevant aspects of a distribution and can even be misleading, except
for some special distributions. For example, we have illustrated how—by itself—an incidence rate
failsto distinguish among many people followed over a short period and afew people followed for
along period. Similarly, an incidence proportion of (say) 0.30 over 10 yearsfailsto tell uswhether
the 30% of persons who had the event all had it within 2 years, or only after 8 years, or had events
spread over the whole period. An average incidence time of 2 months among 101 people fails to
tell uswhether this average was derived from all 101 people having the event at 2 months, or from
100 people having the event at 1 month and 1 person having the event at 102 months, or something
between these extremes.

Oneway to cope with theseissues without making assumptions about the popul ation distribution
isto focus on how the distribution of the outcome event changes over time. We introduced thisidea
earlier by constructing survival proportions and incidence rates within time intervals (strata). By
using short enoughtimeinterval's, wecould seeclearly how eventsare spread over time. For example,
we could see whether our overall event rate reflects many people having the event early and a few
people having it very late, or few having it early and many having it late, or anything between. We
can also describe the distribution of event recurrences, such as asthma attacks.

We may generalize our notion of event to represent any transition from one state to another—not
just from “no disease” to “diseased,” but from (say) a diastolic blood pressure of 90 mm Hg in
one time interval to 100 mm Hg in the next. We can examine these transitions on a scale as fine
as our measurements alow, e.g., in studying the evolution of CD4 lymphocyte counts over time,
we can imagine the rate of transitions from count x to count y per unit time for every sensible
combination of x and y. Of course, this generalized viewpoint entails amuch more complex picture
of the population. Studying this complexity is the topic of longitudinal data analysis. Aside from
some brief commentsin Chapter 21, we will not discuss thisimportant and vast field further. There
are many textbooks devoted to different aspects of the topic; for example, Manton and Stallard
(1988) provide a popul ation-dynamics (demographic) approach, whereas Diggle et a. (2002) cover
approaches based on statistical analysisof study cohorts, and van der Laan and Robins (2003) focus
on longitudinal causal modeling.

PREVALENCE

Unlike incidence measures, which focus on new events or changes in health states, prevalence
focuses on existing states. Prevalence of a state at a point in time may be defined as the proportion
of a population in that state at that time; thus prevalence of a disease is the proportion of the
population with the disease at the specified time. The terms point preval ence, prevalence proportion,
and prevalence rate are sometimes used as synonyms. Prevalence generalizes to health states with
multiplelevels. For example, in considering cardiovascular health we could examinethe prevalence
of different levels of diastolic and systolic resting blood pressure; that is, we could examine the
entire blood-pressure distribution, not just prevalence of being above certain clinical cutpoints.

The prevalence pool is the subset of the population in the given state. A person who dies with
or from the state (e.g., from the disease under consideration) is removed from the prevalence pool;
consequently, death decreases prevalence. People may also exit the prevalence pool by recovering
from the state or emigrating from the population. Diseases with high incidence rates may have low
prevalenceif they arerapidly fatal or quickly cured. Conversely, diseases with very low incidence
rates may have substantial prevalenceif they are nonfatal but incurable.

USE OF PREVALENCE IN ETIOLOGIC RESEARCH

Seldom is prevalence of direct interest in etiologic applications of epidemiologic research. Because
prevalencerefl ectsboth theincidencerate and the duration of disease, studiesof prevalenceor studies
based on preval ent casesyield associationsthat reflect both the determinants of survival with disease
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and the causes of disease. The study of prevalence can be misleading in the paradoxical situationin
which better survival from adisease and therefore ahigher prevalence follow from the action of pre-
ventive agents that mitigate the disease once it occurs. In such a situation, the preventive agent may
be positively associated with the prevalence of disease and so be misconstrued as a causative agent.

Nevertheless, for at least one class of diseases, namely, congenital malformations, prevalenceis
the measure usually employed. The proportion of babies born with some malformation is a preval-
ence proportion, not an incidence rate. The incidence of malformations refers to the occurrence of
themalformations among the susceptibl e popul ations of embryos. Many malformationslead to early
embryonic or fetal death that isclassified, if recognized, asamiscarriage and not asabirth, whether
malformed or not. Thus, malformed babies at birth represent only those fetuses who survived long
enough with their malformations to be recorded as births. The frequency of such infants among all
births is indeed a prevalence measure, the reference point in time being the moment of birth. The
measure classifies the population of newborns as to their disease status, malformed or not, at the
time of birth. This example illustrates that the reference time for prevalence need not be apoint in
calendar time; it can be a point on another time scale, such as age or time since treatment.

To study causes, it would be more useful to measure the incidence than the prevalence of con-
genital malformations. Unfortunately, it is seldom possible to measure the incidence rate of mal-
formations, because the population at risk—young embryos—is difficult to ascertain, and learning
of the occurrence and timing of the malformations among the embryos is equally problematic.
Consequently, in thisarea of research, incident cases are not usually studied, and most investigators
settle for the theoretically less desirable but much more practical study of prevalence at birth.

Prevalence is sometimes used to measure the occurrence of degenerative diseases with no clear
moment of onset. It is also used in seroprevalence studies of the incidence of infection, especialy
when theinfection hasalong asymptomatic (silent) phasethat can only be detected by serumtesting.
Human immunodeficiency virus (HIV) infection is a prime example (Brookmeyer and Gail, 1994).
Here, incidence of infection may be back-calculated from incidence of symptom onset (acquired
immune deficiency syndrome, or AIDS) and prevalence of infection using assumptions and data
about the duration of the asymptomatic phase. Of course, in epidemiologic applications outside of
etiologic research, such as planning for health resources and facilities, prevalence may be a more
relevant measure than incidence.

PREVALENCE, INCIDENCE, AND MEAN DURATION

Often, the study of prevalencein place of incidenceisrationalized on the basis of the simplerelation
between the two measures that obtains under certain very special conditions. Wewill examinethese
conditions carefully, with the objective of explaining why they rarely if ever provide a secure basis
for studying prevalence as a proxy for incidence.

Recall that a stationary population has an equal number of people entering and exiting during
any unit of time. Suppose that both the population at risk and the prevalence pool are stationary and
that everyoneiseither at risk or has the disease. Then the number of people entering the prevalence
pool in any time period will be balanced by the number exiting from it:

Inflow (to prevalence pool) = outflow (from prevalence pool)

People can enter the prevalence pool from the nondiseased popul ation and by immigration from
another population while diseased. Suppose there is no immigration into or emigration from the
prevalence pool, so that no one enters or leaves the pool except by disease onset, death, or recovery.
If the size of the population is N and the size of the prevalence pool is P, then the size of the
population at risk that feeds the prevalence pool will be N — P. Also, during any time interval of
length At, the number of people who enter the prevalence pool will be

[ (N — P)At
where | isthe incidence rate, and the outflow from the prevalence pool will be
I 'PAt

where |’ represents the incidence rate of exiting from the prevalence pool, that is, the number who
exit divided by the person-time experience of thosein the prevalence pool. Therefore, in the absence
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of migration, the reciprocal of 1’ will equal the mean duration of the disease, D, which isthe mean
time until death or recovery. It follows that

Inflow = I (N — P)At = outflow = (1/D)PAt

which yields
P J—
N—-P
P/(N — P) is the ratio of diseased to nondiseased people in the population or, equivaently,
the ratio of the prevalence proportion to the nondiseased proportion. (We could call those who are
nondiseased healthy except that we mean they do not have a specific illness, which does not imply

an absence of all illness.)

Theratio P/(N — P)iscalled theprevalence odds; itistheratio of the proportion of apopulation
that has a disease to the proportion that does not have the disease. As shown above, the prevalence

odds equals the incidence rate times the mean duration of illness. If the prevalence is small, say
<0.1, then

|-D

Prevalence proportion ~ | - D

because the preval ence proportion will approximate the prevalence odds for small values of preva-
lence. Under the assumption of stationarity and no migration in or out of the prevalence pool
(Freeman and Hutchison, 1980),

Prevalence proportion = ——
1+1-D
which can be obtained from the above expression for the prevalence odds, P/(N — P).

Liketheincidence proportion, the prevalence proportion isdimensionless, with arange of 0to 1.
The above equations are in accord with these requirements, because in each of them the incidence
rate, with adimensionality of the reciprocal of time, is multiplied by the mean duration of illness,
which has the dimensionality of time, giving a dimensionless product. Furthermore, the product
| - D hastherange of 0 to infinity, which corresponds to the range of prevalence odds, whereas the
expression

|-D

1+1-D

isawaysin the range O to 1, corresponding to the range of a proportion.

Unfortunately, the above formulas have limited practical utility because of the no-migration
assumption and because they do not apply to age-specific prevalence (Miettinen, 1976a). If we
consider the prevalence pool of, say, diabeticswho are 60 to 64 years of age, we can seethat thispool
experiences considerableimmigration from younger diabetics aging into the pool, and considerable
emigration from members aging out of the pool. More generally, because of the very strong relation
of age to most diseases, we almost always need to consider age-specific subpopulations when
studying patterns of occurrence. Under such conditions, proper analysis requires more elaborate
formulasthat give prevalence as afunction of age-specific incidence, duration, and other population
parameters (Preston, 1987; Manton and Stallard, 1988; Keiding, 1991; Alho, 1992).

AVERAGE AGE AT EVENT

Life expectancy isusually taken to refer to the mean age at death of a cohort or a closed population
defined by a cohort, such as all persons born in a particular year. As such, life expectancy can
only unfold over atime interval from cohort inception until the death of the final surviving cohort
member (which may be more than a century). In contrast, average age at death usually refersto the
average age of personsdyingin aparticular narrow timeinterval. For example, average age at death
among people living in Vietnam as of 2010 represents experiences of persons born from roughly
1900 all the way up to 2010. It is heavily influenced by the size of the population in years that
contribute to the calculation and by changesin life expectancy across the birth cohorts contributing
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toit. Thus, like prevalence, it is a cross-sectional (single-time point) attribute of a population, and
the population may be open.

Had the population been in steady state for over a century and continued that way for another
century or more, the life expectancy of those born today might resemble the average age at death
today. Thereality in many locales, however, isthat the number of births per year increased dramat-
ically over the 20th century, and thus the proportion in younger age groups increased. That change
alone pulled the average age at death downward as it became more weighted by the increased
number of deaths from younger age groups. Changes in actua life expectancy would exert other
effects, possibly in the opposite direction. The net consequence is that the average age at death can
differ considerably from life expectancy in any year.

These same forces and other similar forces also affect the average age of occurrence of other
events, such as the occurrence of a particular disease. Comparisons among such cross-sectional
averages mix the forces that affect the rate of disease occurrence with demographic changes that
affect the age structure of the population. Such comparisons are therefore inherently biased as
estimates of causal associations.

STANDARDIZATION

The notion of standardization is central to many analytic techniques in epidemiology, including
techniques for control of confounding (Chapters 4 and 15) and for summarization of occurrence
and effects (Chapters 20 and 21). Thus, standardized ratesand proportionswill ariseat several points
in this book, where they will be described in more detail. Standardization of occurrence measures
is nothing more than weighted averaging of those measures. Proper use of the idea nonetheless
requires careful attention to issues of causal ordering, which we will return to in later discussions.
We also note that the term standardization has an entirely different definition in some branches of
statistics, where it means re-expressing quantities in standard deviation units, a practice that can
lead to severe distortions of effect estimates (Greenland et al., 1986, 1991; see Chapter 33).

To illustrate the basic idea of standardization, suppose we are given a distribution of person-
time specific to a series of variables, for example, the person-years at risk experienced within age
categories 50 to 59 years, 60 to 69 years, and 70 to 74 years, for men and women in Quebec in 2000.
Let Ty, Ty, ..., Tg bethedistribution of person-yearsin the six age-sex categoriesin this example.
Suppose also that we are given the six age—sex specificincidencerates I, 1o, . .., I corresponding
to the age—sex specific strata. From this distribution and set of rates, we can compute a weighted
average of the rates with weights from the distribution,

_ |1T1+"'+|6T6_kz

T T4+ Te

6
[ Tk
=1
6
> Tk
k=1

Thenumerator of |5 may be recognized asthe number of cases onewould seein apopulation that
had the person-time distribution Ty, To, ..., T and these stratum-specific rates. The denominator
of |5 is the total person-time in such a population. Therefore, I is the rate one would see in a
population with distribution Ty, T, ..., Tg and specificrates 14, I, ..., ls.

Isistraditionally called astandardizedrate, and Ty, To, . . ., Tgiscalled the standard distribution
on which | is based. | represents the overall rate that would be observed in a population whose
person-time follows the standard distribution and whose specific ratesare 14, 1o, .. ., lg.

The standardization process can aso be conducted with incidence or prevalence proportions.
Suppose, for example, we have adistribution N1, N, . .., Ng of persons rather than person-time at
risk and a corresponding set of stratum-specific incidence proportions Ry, Ry, ..., Rs. From this
distribution and set of proportions, we can compute the weighted average risk

RNk
R — R1N1+---+R5Ne_k¥1
= =
Ni+---+N 6
1+---+ Ng 3 N

k=1
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which is a standardized risk based on the standard distribution Ni, No, ..., Ne. Standardization
can aso be applied using other measures (such as mean incidence times or mean blood pressures)
in place of the rates or proportions.

Becausetheratesthat apply to apopulation can affect the person-time distribution, the standard-
ized rate is not necessarily the rate that would describe what would happen to a population with the
standard distribution Ty, ..., Tg if the specific rates 14, I, ..., I¢ were applied to it. An analogous
discrepancy can arise for standardized odds. This problem can distort inferences based on compar-
ing standardized rates and odds, and will be discussed further in the next chapter. The problem does
not arise when considering standardized risks because the initial distribution Ny, . .., Ng cannot be
affected by the subsequent risks Ry, ..., Rs.
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S uppose we wish to estimate the effect of an exposure on the occurrence of adisease. For reasons
explained below, we cannot observe or even estimate this effect directly. Instead, we observe an
association between the exposure and disease among study subjects, which estimates a population
association. The observed association will be a poor substitute for the desired effect if it is a poor
estimate of the population association, or if the population association is not itself close to the
effect of interest. Chapters 9 through 12 address specific problems that arise in connecting observed
associations to effects. The present chapter defines effects and associations in populations, and the
basic concepts needed to connect them.

MEASURES OF EFFECT

Epidemiologists use the term effect in two senses. In one sense, any case of a given disease may be
the effect of a given cause. Effect is used in this way to mean the endpoint of a causal mechanism,
identifying the type of outcome that a cause produces. For example, we may say that human
immunodeficiency virus (HIV) infection is an effect of sharing needles for drug use. This use of the
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term effect merely identifies HIV infection as one consequence of the activity of sharing needles.
Other effects of the exposure, such as hepatitis B infection, are also possible.

In a more epidemiologic sense, an effect of a factor is a change in a population characteristic
that is caused by the factor being at one level versus another. The population characteristics of
traditional focus in epidemiology are disease-frequency measures, as described in Chapter 3. If
disease frequency is measured in terms of incidence rate or proportion, then the effect is the change
in incidence rate or proportion brought about by a particular factor. We might say that for drug
users, the effect of sharing needles compared with not sharing needles is to increase the average risk
of HIV infection from 0.001 in 1 year to 0.01 in 1 year. Although it is customary to use the definite
article in referring to this second type of effect (the effect of sharing needles), it is not meant to
imply that this is the only effect of sharing needles. Anincrease in risk for hepatitis or other diseases
remains possible, and the increase in risk of HIV infection may differ across populations and time.

In epidemiology, it is customary to refer to potential causal characteristics as exposures. Thus, ex-
posure can refer to a behavior (e.g., needle sharing), a treatment or other intervention (e.g., an educa-
tional program about hazards of needle sharing), atrait (e.g., a genotype), an exposure in the ordinary
sense (e.g., an injection of contaminated blood), or even a disease (e.g., diabetes as a cause of death).

Population effects are most commonly expressed as effects on incidence rates or incidence
proportions, but other measures based on incidence times or prevalences may also be used. Epi-
demiologic analyses that focus on survival time until death or recurrence of disease are examples
of analyses that measure effects on incidence times. Absolute effect measures are differences in oc-
currence measures, and relative effect measures are ratios of occurrence measures. Other measures
divide absolute effects by an occurrence measure.

For simplicity, our basic descriptions will be of effects in cohorts, which are groups of individuals.
As mentioned in Chapter 3, each cohort defines a closed population starting at the time the group
is defined. Among the measures we will consider, only those involving incidence rates generalize
straightforwardly to open populations.

DIFFERENCE MEASURES

Consider a cohort followed over a specific time or age interval—say, from 2000 to 2005 or from
ages 50 to 69 years. If we can imagine the experience of this cohort over the same interval under two
different conditions—say, exposed and unexposed—then we can ask what the incidence rate of any
outcome would be under the two conditions. Thus, we might consider a cohort of smokers and an
exposure that consisted of mailing to each cohort member a brochure of current smoking-cessation
programs in the cohort member’s county of residence. We could then ask what the lung cancer
incidence rate would be in this cohort if we carry out this treatment and what it would be if we do not
carry out this treatment. These treatment histories represent mutually exclusive alternative histories
for the cohort. The two incidence rates thus represent alternative potential outcomes for the cohort.

The difference between the two rates we call the absolute effect of our mailing program on the
incidence rate, or the causal rate difference. To be brief, we might refer to the causal rate difference
as the excess rate due to the program (which would be negative if the program prevented some
lung cancers).

In a parallel manner, we might ask what the incidence proportion would be if we carry out this
treatment and what it would be if we do not carry out this treatment. The difference between the
two proportions we call the absolute effect of our treatment on the incidence proportion, or causal
risk difference, or excess risk for short. Also in a parallel fashion, the difference in the average lung
cancer—free years of life lived over the interval under the treated and untreated conditions is another
absolute effect of treatment.

To illustrate the above measures in symbolic form, suppose we have a cohort of size N defined
at the start of a fixed time interval and that anyone alive without the disease is at risk of the disease.
Further, suppose that if every member of the cohort is exposed throughout the interval, A; cases
will occur and the total time at risk will be Ty, but if no member of the same cohort is exposed
during the interval, A cases will occur and the total time at risk will be Ty. Then the causal rate
difference will be

At Ao

T To
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the causal risk difference will be
AL A

N N
and the causal difference in average disease-free time will be
Tt To Ti—To

N N N
When the outcome is death, the negative of the average time difference, To/N — T1/N, is often
called the years of life lost as a result of exposure. Each of these measures compares disease
occurrence by taking differences, so they are called difference measures, or absolute measures.
They are expressed in units of their component measures: cases per unit person-time for the rate
difference, cases per person starting follow-up for the risk difference, and time units for the average-
time difference.

RATIO MEASURES

Most commonly, effect measures are calculated by taking ratios. Examples of such ratio (or relative)
measures are the causal rate ratio,

A
Ao/To o
where |j = A;j/T; isthe incidence rate under condition j (1 = exposed, 0 = unexposed); the causal

risk ratio,
Ai/N  Ah R

AN~ As Ro

where R; = A;/N is the incidence proportion (average risk) under condition j; and the causal ratio
of disease-free time,

/N T
To/N  To

In contrast to difference measures, ratio measures are dimensionless because the units cancel
out upon division.

The rate ratio and risk ratio are often called relative risks. Sometimes this term is applied to odds
ratios as well, although we would discourage such usage. “Relative risk” may be the most common
term in epidemiology. Its usage is so broad that one must often look closely at the details of study
design and analysis to discern which ratio measure is being estimated or discussed.

The three ratio measures are related by the formula

R1 RiN Ax 11Ty

Ro RN Ag  IoTo

which follows from the fact that the number of cases equals the disease rate times the time at risk.
A fourth relative measure can be constructed from the incidence odds. If we write S; =1 — R; and
Sp = 1 — Ry, the causal odds ratio is then

Ri/S1 A1/(N — Ay)

Ro/So Ao/(N — Ag)

RELATIVE EXCESS MEASURES

When a relative risk is greater than 1, reflecting an average effect that is causal, it is sometimes
expressed as an excess relative risk, which may refer to the excess causal rate ratio,
I1—1o

[
R-1=-*_1=
lo lo
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where IR = 11/l is the causal rate ratio. Similarly, the excess causal risk ratio is

R Ri—R
RR—1=-+-1=-+_"0
Ro Ro
where RR = R1 /Ry is the causal risk ratio. These formulas show how excess relative risks equal
the rate or risk difference divided by (relative to) the unexposed rate or risk (Ip or Rp), and so are
sometimes called relative difference or relative excess measures.
More often, the excess rate is expressed relative to 11, as
li—1lo  li/lo—1 IR—1 4 1

L 1L/l IR~ IR

where IR = 11/l is the causal rate ratio. Similarly, the excess risk is often expressed relative
to Ry, as

Ri—Rp Ri/Rp—1 RR-1 1 1

R = Ry/Ry = RR RR

where RR = R; /Ry is the causal risk ratio. In both these measures the excess rate or risk attributable
to exposure is expressed as a fraction of the total rate or risk under exposure; hence, (IR — 1)/IR
may be called the rate fraction and (RR — 1)/RR the risk fraction. Both these measures are often
called attributable fractions.

A number of other measures are also referred to as attributable fractions. Especially, the rate and
risk fractions just defined are often confused with a distinct quantity called the etiologic fraction,
which cannot be expressed as a simple function of the rates or risks. We will discuss these problems
in detail later, where yet another relative excess measure will arise.

Relative excess measures were intended for use with exposures that have a net causal effect.
They become negative and hence difficult to interpret with a net preventive effect. One expedient
modification for dealing with preventive exposures is to interchange the exposed and unexposed
quantities in the measures. The measures that arise from interchanging I; with Iy and Ry with R in
attributable fractions have been called preventable fractions and are easily interpreted. For example,
(Ro — R1)/Ro =1 — R1/Ro = 1 — RR is the fraction of the risk under nonexposure that could be
prevented by exposure. In vaccine studies this measure is also known as the vaccine efficacy.

DEPENDENCE OF THE NULL STATE ON THE EFFECT MEASURE

If the occurrence measures being compared do not vary with exposure, the measure of effect will
equal 0 if it is a difference or relative difference measure and will equal 1 if it is a ratio measure.
In this case we say that the effect is null and that the exposure has no effect on the occurrence
measure. This null state does not depend on the way in which the occurrence measure is compared
(difference, ratio, etc.), but it may depend on the occurrence measure. For example, the 150-year
average risk of death is always 100%, and so the 150-year causal risk difference is always 0 for any
known exposure; nothing has been discovered that prevents death by age 150. Nonetheless, many
exposures (such as tobacco use) will change the risk of death by age 60 relative to nonexposure, and
so will have a nonzero 60-year causal risk difference; those exposures will also change the death
rate and the average death time.

THE THEORETICAL NATURE OF EFFECT MEASURES

The definitions of effect measures given above are sometimes called counterfactual or potential-
outcome definitions. Such definitions may be traced back to the writings of Hume in the 18th century.
Although they received little explication until the latter third of the 20th century, they were being
used by scientists (including epidemiologists and statisticians) long before; see Lewis (1973), Rubin
(1990a), Greenland (2000a, 2004a), and Greenland and Morgenstern (2001) for early references.
They are called counterfactual measures because at least one of the two conditions in the defi-
nitions of the effect measures must be contrary to fact. The cohort may be exposed or treated (e.g.,
every member sent a mailing) or untreated (no one sent a mailing). If the cohort is treated, then the
untreated condition will be counterfactual, and if it is untreated, then the treated condition will be
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counterfactual. Both conditions may be counterfactual, as would occur if only part of the cohort is
sent the mailing. The outcomes of the conditions (e.g., 11 and lg, or Ry and Rg, or Ty/N and To/N)
remain potentialities until a treatment is applied to the cohort (Rubin, 1974, 1990a; Greenland,
2000a, 2004a).

One important feature of counterfactually defined effect measures is that they involve two distinct
conditions: an index condition, which usually involves some exposure or treatment, and a reference
condition—such as no treatment—against which this exposure or treatment will be evaluated. To
ask for the effect of exposure is meaningless without reference to some other condition. In the
preceding example, the effect of one mailing is defined only in reference to no mailing. We could
have asked instead about the effect of one mailing relative to four mailings; this comparison is very
different from one versus no mailing.

Another important feature of effect measures is that they are never observed separately from
some component measure of occurrence. If in the mailing example we send the entire population
one mailing, the rate difference comparing the outcome to no mailing, I, — lg, is not observed
directly; we observe only Iy, which is the sum of that effect measure and the (counterfactual) rate
under no mailing, lp: Iy = (13 — lo) + lo. Therefore the researcher faces the problem of separating
the effect measure 1; — I from the unexposed rate 1o upon having observed only their sum, I;.

DEFINING EXPOSURE IN EFFECT MEASURES

Because we have defined effects with reference to a single cohort under two distinct conditions, one
must be able to describe meaningfully each condition for the one cohort (Rubin, 1990a; Greenland,
2002a, 2005a; Hernéan, 2005; Maldonado and Greenland, 2002). Consider, for example, the effect
of sex (male vs. female) on heart disease. For these words to have content, we must be able to
imagine a cohort of men, their heart disease incidence, and what their incidence would have been
had the very same men been women instead. The apparent ludicrousness of this demand reveals the
vague meaning of sex effect. To reach a reasonable level of scientific precision, sex effect could be
replaced by more precise mechanistic concepts, such as hormonal effects, discrimination effects,
and effects of other sex-associated factors, which explain the association of sex with incidence.
With such concepts, we can imagine what it means for the men to have their exposure changed:
hormone treatments, sex-change operations, and so on.

The preceding considerations underscore the need to define the index and reference conditions
in substantial detail to aid interpretability of results. For example, in a study of smoking effects,
a detailed definition of the index condition for a current smoker might account for frequency of
smoking (cigarettes per day), the duration of smoking (years), and the age at which smoking began.
Similarly, definition of the absence of exposure for the reference condition—with regard to dose,
duration, and induction period—ought to receive as much attention as the definition of the presence
of exposure. While itis common to define all persons who fail to satisfy the current-smoker definition
as unexposed, such a definition might dilute the effect by including former and occasional smokers
in the reference group.

Whether the definitions of the index and reference conditions are sufficiently precise depends
in part on the outcome under study. For example, a study of the effect of current smoking on
lung cancer occurrence would set minimums for the frequency, duration, and induction period of
cigarette smoking to define the exposed group and would set maximums (perhaps zero) for these
same characteristics to define the unexposed group. Former smokers would not meet either the index
or reference conditions. In contrast, a study of the effect of current smoking on the occurrence of
injuries in a residential fire might allow any current smoking habit to define the exposed group
and any current nonsmoking habit to define the unexposed group, even if the latter group includes
former smokers (presuming that ex-smokers and never-smokers have the same household fire risk).

EFFECTS MEDIATED BY COMPETING RISKS

As discussed in Chapter 3, the presence of competing risks leads to several complications when
interpreting incidence measures. The complexities carry over to interpreting effect measures. In
particular, the interpretation of simple comparisons of incidence proportions must be tempered by
the fact that they reflect exposure effects on competing risks as well as individual occurrences of
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the study disease. One consequence of these effects is that exposure can affect time at risk for the
study disease. To take an extreme example, suppose that exposure was an antismoking treatment
and the “disease” was being hit by a drunk driver. If the antismoking treatment was even moderately
effective in reducing tobacco use, it would likely lead to a reduction in deaths, thus leading to more
time alive, which would increase the opportunity to be struck by a drunk driver. The result would
be more hits from drunk drivers for those exposed and hence higher risk under exposure.

This elevated risk of getting hit by a drunk driver is a genuine effect of the antismoking treat-
ment, albeit an indirect and unintended one. The same sort of effect arises from any exposure
that changes time at risk of other outcomes. Thus, smoking can reduce the average risk of acci-
dental death simply by reducing the time at risk for an accident. Similarly, and quite apart from
any direct biologic effect, smoking could reduce the average risk of Alzheimer’s disease, Parkin-
son’s disease, and other diseases of the elderly, simply by reducing the chance of living long
enough to get these diseases. This indirect effect occurs even if we look at a narrow time inter-
val, such as 2-year risk rather than lifetime risk: Even within a 2-year interval, smoking could
cause some deaths and thus reduce the population time at risk, leading to fewer cases of these
diseases.

Although the effects just described are real exposure effects, investigators typically want to
remove or adjust away these effects and focus on more direct effects of exposure on disease. Rate
measures account for the changes in time at risk produced by exposure in a simple fashion, by
measuring number of disease events relative to time at risk. Indeed, if there is no trend in the disease
rate over time and the only effect of the exposure on disease occurrence is to alter time at risk, the
rate ratio and difference will be null (1 and 0, respectively). If, however, there are time trends in
disease, then even rate measures will incorporate some exposure effects on time at risk; when this
happens, time-stratified rate comparisons (survival analysis; see Chapter 16) are needed to account
for these effects.

Typical risk estimates attempt to “adjust” for competing risks, using methods that estimate the
counterfactual risk of the study disease if the competing risks were removed. As mentioned in
Chapter 3, one objection to these methods is that the counterfactual condition is not clear: How
are the competing risks to be removed? The incidence of the study disease would depend heavily
on the answer. The problems here parallel problems of defining exposure in effect measures: How
is the exposure to be changed to nonexposure, or vice versa? Most methods make the implausible
assumptions that the exposure could be completely removed without affecting the rate of competing
risks, and that competing risks could be removed without affecting the rate of the study disease.
These assumptions are rarely if ever justified. A more general approach treats the study disease
and the competing risks as parts of a multivariate or multidimensional outcome. This approach
can reduce the dependence on implausible assumptions; it also responds to the argument that an
exposure should not be considered in isolation, especially when effects of exposure and competing
risks entail very different costs and benefits (Greenland, 2002a, 2005a).

Owing to the complexities that ensue from taking a more general approach, we will not delve
further into issues of competing risks. Nonetheless, readers should be alert to the problems that can
arise when the exposure may have strong effects on diseases other than the one under study.

ASSOCIATION AND CONFOUNDING

Because the single population in an effect definition can only be observed under one of the two
conditions in the definition (and sometimes neither), we face a special problem in effect estimation:
We must predict accurately the magnitude of disease occurrence under conditions that did not or will
not in fact occur. In other words, we must predict certain outcomes under what are or will become
counterfactual conditions. For example, we may observe |; = 50 deaths per 100,000 person-years
in a target cohort of smokers over a 10-year follow-up and ask what rate reduction would have been
achieved had these smokers quit at the start of follow-up. Here, we observe 11, and need I, (the rate
that would have occurred under complete smoking cessation) to complete 13 — lo.

Because Iy is not observed, we must predict what it would have been. To do so, we would need
to refer to data on the outcomes of nonexposed persons, such as data from a cohort that was not
exposed. From these data, we would construct a prediction of 1. Neither these data nor the prediction
derived from them is part of the effect measure; they are only ingredients in our estimation process.
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We use them to construct a measure of association that we hope will equal the effect measure of
interest.

MEASURES OF ASSOCIATION

Consider a situation in which we contrast a measure of occurrence in two different populations. For
example, we could take the ratio of cancer incidence rates among males and females in Canada. This
cancer rate ratio comparing the male and female subpopulations is not an effect measure because its
two component rates refer to different groups of people. In this situation, we say that the rate ratio
is a measure of association; in this example, it is a measure of the association of sex with cancer
incidence in Canada.

As another example, we could contrast the incidence rate of dental caries in children within
a community in the year before and in the third year after the introduction of fluoridation of the
water supply. If we take the difference of the rates in these before and after periods, this difference
is not an effect measure because its two component rates refer to two different subpopulations,
one before fluoridation and one after. There may be considerable or even complete overlap among
the children present in the before and after periods. Nonetheless, the experiences compared refer
to different time periods, so we say that the rate difference is a measure of association. In this
example, it is a measure of the association between fluoridation and dental caries incidence in the
community.

We can summarize the distinction between measures of effect and measures of association as
follows: A measure of effect compares what would happen to one population under two possible
but distinct life courses or conditions, of which at most only one can occur (e.g., a ban on all
tobacco advertising vs. a ban on television advertising only). It is a theoretical (some would say
“metaphysical™) concept insofar as it is logically impossible to observe the population under both
conditions, and hence it is logically impossible to see directly the size of the effect (Maldonado
and Greenland, 2002). In contrast, a measure of association compares what happens in two distinct
populations, although the two distinct populations may correspond to one population in different
time periods. Subject to physical and social limitations, we can observe both populations and so
can directly observe an association.

CONFOUNDING

Given the observable nature of association measures, it is tempting to substitute them for effect
measures (perhaps after making some adjustments). It is even more natural to give causal expla-
nations for observed associations in terms of obvious differences between the populations being
compared. In the preceding example of dental caries, it is tempting to ascribe a decline in incidence
following fluoridation to the act of fluoridation itself. Let us analyze in detail how such an inference
translates into measures of effect and association.

The effect we wish to measure is that which fluoridation had on the rate. To measure this
effect, we must contrast the actual rate under fluoridation with the rate that would have occurred
in the same time period had fluoridation not been introduced. We cannot observe the latter rate, for
fluoridation was introduced, and so the nonfluoridation rate in that time period is counterfactual.
Thus, we substitute in its place, or exchange, the rate in the time period before fluoridation. In
doing so, we substitute a measure of association (the rate difference before and after fluoridation)
for what we are really interested in: the difference between the rate with fluoridation and what that
rate would have been without fluoridation in the one postfluoridation time period.

This substitution will be misleading to the extent that the rate before fluoridation does not equal—
so should not be exchanged with—the counterfactual rate (i.e., the rate that would have occurred in
the postfluoridation period if fluoridation had not been introduced). If the two are not equal, then
the measure of association will not equal the measure of effect for which it is substituted. In such
a circumstance, we say that the measure of association is confounded (for our desired measure of
effect). Other ways of expressing the same idea is that the before—after rate difference is confounded
for the causal rate difference or that confounding is present in the before—after difference (Greenland
and Robins, 1986; Greenland et al., 1999b; Greenland and Morgenstern, 2001). On the other hand,
if the rate before fluoridation does equal the postfluoridation counterfactual rate, then the measure
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of association equals our desired measure of effect, and we say that the before—after difference is
unconfounded or that no confounding is present in this difference.

The preceding definitions apply to ratios as well as differences. Because ratios and differences
contrast the same underlying quantities, confounding of a ratio measure implies confounding of
the corresponding difference measure and vice versa. If the value substituted for the counterfactual
rate or risk does not equal that rate or risk, both the ratio and difference will be confounded.

The above definitions also extend immediately to situations in which the contrasted quantities
are average risks, incidence times, odds, or prevalences. For example, one might wish to estimate
the effect of fluoridation on caries prevalence 3 years after fluoridation began. Here, the needed but
unobserved counterfactual is what the caries prevalence would have been 3 years after fluoridation
began, had fluoridation not in fact begun. We might substitute for that counterfactual the prevalence
of caries at the time fluoridation began. It is possible (though perhaps rare in practice) for one
effect measure to be confounded but not another, if the two effect measures derive from different
underlying measures of disease frequency (Greenland et al., 1999b). For example, there could in
theory be confounding of the rate ratio but not the risk ratio, or of the 5-year risk ratio but not the
10-year risk ratio.

One point of confusion in the literature is the failure to recognize that incidence odds are
risk-based measures, and hence incidence odds ratios will be confounded under exactly the same
circumstances as risk ratios (Miettinen and Cook, 1981; Greenland and Robins, 1986; Greenland,
1987a; Greenland et al., 1999b). The confusion arises because of the peculiarity that the causal odds
ratio for a whole cohort can be closer to the null than any stratum-specific causal odds ratio. Such
noncollapsibility of the causal odds ratio is sometimes confused with confounding, even though it
has nothing to do with the latter phenomenon; it will be discussed further in a later section.

CONFOUNDERS

Consider again the fluoridation example. Suppose that within the year after fluoridation began,
dental-hygiene education programs were implemented in some of the schools in the community.
If these programs were effective, then (other things being equal) some reduction in caries inci-
dence would have occurred as a consequence of the programs. Thus, even if fluoridation had not
begun, the caries incidence would have declined in the postfluoridation time period. In other words,
the programs alone would have caused the counterfactual rate in our effect measure to be
lower than the prefluoridation rate that substitutes for it. As a result, the measure of association
(which is the before—after rate difference) must be larger than the desired measure of effect
(the causal rate difference). In this situation, we say the programs confounded the measure
of association or that the program effects are confounded with the fluoridation effect in the mea-
sure of association. We also say that the programs are confounders of the association and that the
association is confounded by the programs.

Confounders are factors (exposures, interventions, treatments, etc.) that explain or produce all
or part of the difference between the measure of association and the measure of effect that would
be obtained with a counterfactual ideal. In the present example, the programs explain why the
before—after association overstates the fluoridation effect: The before—after difference or ratio in-
cludes the effects of programs as well as the effects of fluoridation. For a factor to explain this
discrepancy and thus confound, the factor must affect or at least predict the risk or rate in the
unexposed (reference) group, and not be affected by the exposure or the disease. In the preced-
ing example, we assumed that the presence of the dental hygiene programs in the years after
fluoridation entirely accounted for the discrepancy between the prefluoridation rate and the (coun-
terfactual) rate that would have occurred 3 years after fluoridation, if fluoridation had not been
introduced.

A large portion of epidemiologic methods are concerned with avoiding or adjusting (controlling)
for confounding. Such methods inevitably rely on the gathering and proper use of confounder
measurements. We will return repeatedly to this topic. For now, we simply note that the most
fundamental adjustment methods rely on the notion of stratification on confounders. If we make
our comparisons within appropriate levels of a confounder, that confounder cannot confound the
comparisons. For example, we could limit our before—after fluoridation comparisons to schools in
states in which no dental hygiene program was introduced. In such schools, program introductions
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could not have had an effect (because no program was present), so effects of programs in those
schools could not explain any decline following fluoridation.

A SIMPLE MODEL THAT DISTINGUISHES CAUSATION
FROM ASSOCIATION

We can clarify the difference between measures of effect and measures of association, as well as the
role of confounding and confounders, by examining risk measures under a simple potential-outcome
model for a cohort of individuals (Greenland and Robins, 1986).

Table 4-1 presents the composition of two cohorts, cohort 1 and cohort 0. Suppose that cohort 1
is uniformly exposed to some agent of interest, such as one mailing of smoking-cessation material,
and that cohort 0 is not exposed, that is, receives no such mailing. Individuals in the cohorts are
classified by their outcomes when exposed and when unexposed:

1. Type 1 or “doomed” persons, for whom exposure is irrelevant because disease occurs with or
without exposure

2. Type 2 or “causal” persons, for whom disease occurs if and only if they are exposed

3. Type 3 or “preventive” persons, for whom disease occurs if and only if they are unexposed

4. Type 4 or “immune” persons, for whom exposure is again irrelevant because disease does not
occur, with or without exposure

Among the exposed, only type 1 and type 2 persons get the disease, so the incidence proportion
incohort 1 is p; + p2. If, however, exposure had been absent from this cohort, only type 1 and type
3 persons would have gotten the disease, so the incidence proportion would have been p; + ps.
Therefore, the absolute change in the incidence proportion in cohort 1 caused by exposure, or the
causal risk difference, is (p1 + p2) — (pP1 + ps) = P2 — ps, while the relative change, or causal
risk ratio, is (p1 + p2)/(p1 + ps). Similarly, the incidence odds is (p1 + p2)/[1 — (p1 + p2)] =

(P1 + P2)/(ps + pa) but would have been (py + ps)/[1 — (P + p3)] = (p1 + Ps)/(p2 + pa) if
exposure had been absent; hence the relative change in the incidence odds (the causal odds ratio) is

(P1 + P2)/(P3 + Pa)
(P2 + p3)/(P2 + Pa)
Equal numbers of causal types (type 2) and preventive types (type 3) in cohort 1 correspond
to p2 = ps. Equality of p, and p3 implies that the causal risk difference p, — ps will be 0, and

the causal risk and odds ratios will be 1. Thus, these values of the causal effect measures do not
correspond to no effect, but instead correspond to a balance between causal and preventive effects.

An Elementary Model of Causal Types and Their Distribution in
Two Distinct Cohorts

Proportion of types in

Response? under Cohort 1 Cohort 0
Type Exposure Nonexposure Description (Exposed) (Unexposed)
1 1 1 Doomed 1 ol
2 1 0 Exposure is causal P2 0P}
3 0 1 Exposure is preventive P3 3
4 0 0 Immune N Q4

1, gets disease; 0, does not get disease.
Source: Reprinted from Greenland S, Robins JM. Identifiability, exchangeability and epidemiological confounding. Int J Epidemiol.
1986;15:413-419.
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The hypothesis of no effect at all is sometimes called the sharp null hypothesis, and here corresponds
to p2 = ps3 = 0. The sharp null is a special case of the usual null hypothesis that the risk difference
is zero or the risk ratio is 1, which corresponds to causal and preventive effects balancing one
another to produce p, = psz. Only if we can be sure that one direction of effect does not happen
(either p, = 0 or p3 = 0) can we say that a risk difference of 0 or a risk ratio of 1 corresponds to
no effect; otherwise we can only say that those values correspond to no net effect. More generally,
population effect measures correspond only to net effects: A risk difference represents only the net
change in the average risk produced by the exposure.

Among the unexposed, only type 1 and type 3 persons get the disease, so the incidence proportion
in cohort 0 is ;1 + g3 and the incidence odds is (01 + g3)/(d2 + d4). Therefore, the difference and
ratio of the incidence proportions in the cohorts are (p1 + p2) — (A1 + q3) and (p1 + p2)/(d1 + G3),
while the ratio of incidence odds is

(P1 + p2)/(P3 + pa)
(91 +93)/(g2 + da)

These measures compare two different cohorts, the exposed and the unexposed, and so are
associational rather than causal measures. They equal their causal counterparts only if q; + g3 =
p1 + ps, that is, only if the incidence proportion for cohort 0 equals what cohort 1 would have
experienced if exposure were absent. If q; + g3 # p1 + ps, then the quantity g; + gz is not a valid
substitute for p; + ps. In that case, the associational risk difference, risk ratio, and odds ratio are
confounded by the discrepancy between q; + gz and p; + ps, So we say that confounding is present
in the risk comparisons.

Confounding corresponds to the difference between the desired counterfactual quantity p; + ps3
and the observed substitute q; + g3. This difference arises from differences between the exposed and
unexposed cohorts with respect to other factors that affect disease risk, the confounders. Control
of confounding would be achieved if we could stratify the cohorts on a sufficient set of these
confounders, or on factors associated with them, to produce strata within which the counterfactual
and its substitute were equal, i.e., within which no confounding occurs.

Confounding depends on the cohort for which we are estimating effects. Suppose we are in-
terested in the relative effect that exposure would have on risk in cohort 0. This effect would
be measured by the causal ratio for cohort 0: (g + d2)/(01 + 03). Because cohort O is not ex-
posed, we do not observe q; + gz, the average risk it would have if exposed; that is, q; + 0
is counterfactual. If we substitute the actual average risk from cohort 1, p; + p», for this coun-
terfactual average risk in cohort 0, we obtain the same associational risk ratio used before:
(p1 + p2)/(91 + g3). Even if this associational ratio equals the causal risk ratio for cohort 1
(which occurs only if p; + ps = 1 + gs), it will not equal the causal risk ratio for cohort 0 un-
less p1 + p2 = q1 + 2. To see this, suppose p; = p2 = ps =0y = g3 = 0.1 and g, = 0.3. Then
P1+ p3=0s +0s = 0.2, but p; + p2 = 0.2 # g1 + g2 = 0.4. Thus, there is no confounding in
using the associational ratio (p1 + p2)/(01 + g3) = 0.2/0.2 = 1 for the causal ratio in cohort 1,
(p1+ p2)/(p1 + ps) = 0.2/0.2 = 1, yet there is confounding in using the associational ratio for
the causal ratio in cohort 0, for the latter is (g1 + 02)/(01 + g3) = 0.4/0.2 = 2. This example shows
that the presence of confounding can depend on the population chosen as the target of inference (the
target population), as well as on the population chosen to provide a substitute for a counterfactual
quantity in the target (the reference population). It may also depend on the time period in question.

Causal diagrams (graphical models) provide visual models for distinguishing causation from
association, and thus for defining and detecting confounding (Pearl, 1995, 2000; Greenland et al.,
1999a; Chapter 12). Potential-outcome models and graphical models can be linked via a third class
of causal models, called structural equations, and lead to the same operational criteria for detection
and control of confounding (Greenland et al., 1999a; Pearl, 2000; Greenland and Brumback, 2002).

RELATIONS AMONG MEASURES OF EFFECT
RELATIONS AMONG RELATIVE RISKS

Recall from Chapter 3 that in a closed population over an interval of length At, the incidence
proportion R, the rate I, and the odds R/S (where S = 1 — R) will be related by R ~ IAt =~ R/S
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if the size of the population at risk declines only slightly over the interval (which implies that R must
be smalland S = 1 — R ~ 1). Suppose now we contrast the experience of the population over the
interval under two conditions, exposure and no exposure, and that the size of the population at risk
would decline only slightly under either condition. Then, the preceding approximation implies that

Ri /At I Ri/S
Ry lo/At 1o Ro/So

where S; =1 — Ry and Sp = 1 — Ry. In other words, the ratios of the risks, rates, and odds will
be approximately equal under suitable conditions. The condition that both R; and R are small is
sufficient to ensure that both S; and Sy are close to 1, in which case the odds ratio will approximate
the risk ratio (Cornfield, 1951). For the rate ratio to approximate the risk ratio, we must have
R1/Ro ~ 11 T1/10To = 11/ 1o, which requires that exposure only negligibly affects the person-time
at risk (i.e., that Ty ~ Tp). Both conditions are satisfied if the size of the population at risk would
decline by no more than a few percent over the interval, regardless of exposure status.

The order of the three ratios (risk, rate, and odds) in relation to the null is predictable. When
R;1 > Rop,wehave S; =1— R; <1— Ry = Sg, so that Sp/S; > 1 and

Ri RiSy Ri/S;
< — < ——= =

Ro  RoS: Ro/So
On the other hand, when R; < R, we have S; > Sp, so that Sp/S; < 1 and
Rt  Ri:So Ri/S;

> > —— =

Ro RoS:t Ro/So

Thus, when exposure affects average risk, the risk ratio will be closer to the null (1) than the
odds ratio.

Now suppose that, as we would ordinarily expect, the effect of exposure on the person-time
at risk is in the opposite direction of its effect on risk, so that T; < Tp if Ry > Rgand Ty > Ty if
R1 < Ro. Then, if Ry > Rg, we have T;/To < 1 and so

Rt LT Iy
a1
Ro  loTo o
and if Ry < Rg, we have T;/ Ty > 1 and so
Rt KT Iy

> — = — > —
Ro  loTo o
Thus, when exposure affects average risk, we would ordinarily expect the risk ratio to be closer
to the null than the rate ratio. Under further conditions, the rate ratio will be closer to the null than
the odds ratio (Greenland and Thomas, 1982). Thus, we would usually expect the risk ratio to be
nearest to the null, the odds ratio to be furthest from the null, and the rate ratio to fall between the
risk ratio and the odds ratio.

1

1

1

EFFECT-MEASURE MODIFICATION (HETEROGENEITY)

Suppose we divide our population into two or more categories or strata. In each stratum, we can
calculate an effect measure of our choosing. These stratum-specific effect measures may or may not
equal one another. Rarely would we have any reason to suppose that they would equal one another.
If they are not equal, we say that the effect measure is heterogeneous or modified or varies across
strata. If they are equal, we say that the measure is homogeneous, constant, or uniform across strata.

A major point about effect-measure modification is that, if effects are present, it will usually
be the case that no more than one of the effect measures discussed above will be uniform across
strata. In fact, if the exposure has any effect on an occurrence measure, at most one of the ratio or
difference measures of effect can be uniform across strata. As an example, suppose that among men
the average risk would be 0.50 if exposure was present but 0.20 if exposure was absent, whereas
among women the average risk would be 0.10 if exposure was present but 0.04 if exposure was
absent. Then the causal risk difference for men is 0.50 — 0.20 = 0.30, five times the difference
for women of 0.10 — 0.04 = 0.06. In contrast, for both men and women, the causal risk ratio is
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0.50/0.20 = 0.10/0.04 = 2.5. Now suppose we change this example to make the risk differences
uniform, say, by making the exposed male risk 0.26 instead of 0.50. Then, both risk differences
would be 0.06, but the male risk ratio would be 0.26/0.20 = 1.3, much less than the female risk
ratio of 2.5. Finally, if we change the example by making the exposed male risk 0.32 instead of
0.50, the male risk difference would be 0.12, double the female risk difference of 0.06, but the male
ratio would be 1.6, less than two thirds the female ratio of 2.5. Thus, the presence, direction, and
size of effect-measure modification can be dependent on the choice of measure (Berkson, 1958;
Brumback and Berg, 2008).

RELATION OF STRATUM-SPECIFIC MEASURES TO
OVERALL MEASURES

The relation of stratum-specific effect measures to the effect measure for an entire cohort can be
subtle. For causal risk differences and ratios, the measure for the entire cohort must fall somewhere
in the midst of the stratum-specific measures. For the odds ratio, however, the causal odds ratio
for the entire cohort can be closer to the null than any of the causal odds ratios for the strata
(Miettinen and Cook, 1981; Greenland, 1987a; Geenland et al., 1999b). This bizarre phenomenon
is sometimes referred to as noncollapsibility of the causal odds ratio. The phenomenon has led some
authors to criticize the odds ratio as a measure of effect, except as an approximation to risk and
rate ratios (Miettinen and Cook, 1981; Greenland, 1987a; Greenland et al., 1999b; Greenland and
Morgenstern, 2001).

As an example, suppose we have a cohort that is 50% men, and among men the average risk
would be 0.50 if exposure was present but 0.20 if exposure was absent, whereas among women
the average risk would be 0.08 if exposure was present but 0.02 if exposure was absent. Then the
causal odds ratios are

0.50/(1 — 0.50) 0.08/(1 — 0.08)
S0/(1=0.50) _, o4 d o2
0.20/(1 — 0.20) ormen and 502 /(1= 0.02)

For the total cohort, the average risk if exposure was present would be just the average of the male
and female average risks, 0.5(0.50) + 0.5(0.08) = 0.29; similarly, the average risk exposure was
absent would be 0.5(0.20) + 0.5(0.02) = 0.11. Thus, the causal odds ratio for the total cohort is

0.29/(1—0.29)
0.11/(1 —0.11)

which is less than both the male and female odds ratios. This noncollapsibility can occur because, un-
like the risk difference and ratio, the causal odds ratio for the total cohort is not a weighted average of
the stratum-specific causal odds ratios (Greenland, 1987a). It should not be confused with the pheno-
menon of confounding (Greenland et al., 1999b), which was discussed earlier. Causal rate ratios
and rate differences can also display noncollapsibility without confounding (Greenland, 1996a).
In particular, the causal rate ratio for a total cohort can be closer to the null than all of the
stratum-specific causal rate ratios. To show this, we extend the preceding example as follows.
Suppose that the risk period in the example was the year from January 1, 2000, to December 31,
2000, that all persons falling ill would do so on January 1, and that no one else was removed from
risk during the year. Then the rates would be proportional to the odds, because none of the cases
would contribute a meaningful amount of person-time. As a result, the causal rate ratios for men and
women would be 4.0 and 4.3, whereas the causal rate ratio for the total cohort would be only 3.3.

As discussed earlier, risk, rate, and odds ratios will approximate one another if the population at
risk would decline only slightly in size over the risk period, regardless of exposure. If this condition
holds in all strata, the rate ratio and odds ratio will approximate the risk ratio in the strata, and hence
both measures will be approximately collapsible when the risk ratio is collapsible.

= 4.3 for women

3.3

ATTRIBUTABLE FRACTIONS

One often sees measures that attempt to assess the public health impact of an exposure by measuring
its contribution to the total incidence under exposure. For convenience, we will refer to the entire
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family of such fractional measures as attributable fractions. The terms attributable risk percent or
just attributable risk are often used as synonyms, although “attributable risk” is also used to denote
the risk difference (MacMahon and Pugh, 1970; Szklo and Nieto, 2000; Koepsell and Weiss, 2003).
Such fractions may be divided into two broad classes, which we shall term excess fractions and
etiologic fractions.

A fundamental difficulty is that the two classes are usually confused, yet excess fractions can be
much smaller than etiologic fractions, even if the disease is rare or other reasonable conditions are
met. Another difficulty is that etiologic fractions are not estimable from epidemiologic studies alone,
even if those studies are perfectly valid: Assumptions about the underlying biologic mechanism
must be introduced to estimate etiologic fractions, and the estimates will be very sensitive to those
assumptions.

EXCESS FRACTIONS

One family of attributable fractions is based on recalculating an incidence difference as a proportion
or fraction of the total incidence under exposure. One such measure is (A; — Ag)/ A1, the excess
caseload due to exposure, which has been called the excess fraction (Greenland and Robins, 1988).
In a cohort, the fraction of the exposed incidence proportion R; = A;/N that is attributable to
exposure is exactly equal to the excess fraction:

Ri—Ro  Ai/N—-Ag/N A —Ag
Ri A1/N A

where Ry = Ag/N is what the incidence proportion would be with no exposure. Comparing this
formula to the earlier formula for the risk fraction (R; — Rp)/R1 = (RR — 1)/RR, we see that in a
cohort the excess caseload and the risk fraction are equal.

Therate fraction (I, — 1p)/11 = (IR — 1)/IR is often mistakenly equated with the excess fraction
(A1 — Ap)/A;. To see that the two are not equal, let Ty and T, represent the total time at risk that
would be experienced by the cohort under exposure and nonexposure during the interval of interest.
The rate fraction then equals

A1/T1— Ao/ To
A1/Ty

If exposure has any effect and the disease removes people from further risk (as when the disease
is irreversible), then Ty will be less than Ty. Thus, the last expression cannot equal the excess fraction
(A1 — Ap)/A; because Ty # Ty, although if the exposure effect on total time at risk is small, Ty will
be close to Ty and so the rate fraction will approximate the excess fraction.

ETIOLOGIC FRACTIONS

Suppose that all sufficient causes of a particular disease were divided into two sets, those that contain
exposure and those that do not, and that the exposure is never preventive. This situation is summa-
rized in Figure 4-1. C and C’ may represent many different combinations of causal components.
Each of the two sets of sufficient causes represents a theoretically large variety of causal mechanisms
for disease, perhaps as many as one distinct mechanism for every case that occurs. Disease can
occur either with or without E, the exposure of interest. The causal mechanisms are grouped in the
diagram according to whether or not they contain the exposure. We say that exposure can cause dis-
ease if exposure will cause disease under at least some set of conditions C. We say that the exposure
E caused disease if a sufficient cause that contains E is the first sufficient cause to be completed.
At first, it seems a simple matter to ask what fraction of cases was caused by exposure. \We
will call this fraction the etiologic fraction. Because we can estimate the total number of cases,

FIGURE 4-1 e Two types of sufficient causes of a disease.
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we could estimate the etiologic fraction if we could estimate the number of cases that were caused
by E. Unfortunately, this number is not estimable from ordinary incidence data, because the ob-
servation of an exposed case does not reveal the mechanism that caused the case. In particular,
people who have the exposure can develop the disease from a mechanism that does not include
the exposure. For example, a smoker may develop lung cancer through some mechanism that
does not involve smoking (e.g., one involving asbestos or radiation exposure, with no contribution
from smoking). For such lung cancer cases, smoking was incidental; it did not contribute to the
cancer causation. There is no general way to tell which factors are responsible for a given case.
Therefore, exposed cases include some cases of disease caused by the exposure, if the exposure is
indeed a cause, and some cases of disease that occur through mechanisms that do not involve the
exposure.

The observed incidence rate or proportion among the exposed reflects the incidence of cases in
both sets of sufficient causes represented in Figure 4—1. The incidence of sufficient causes containing
E could be found by subtracting the incidence of the sufficient causes that lack E. The latter incidence
cannot be estimated if we cannot distinguish cases for which exposure played an etiologic role from
cases for which exposure was irrelevant (Greenland and Robins, 1988; Greenland, 1999a). Thus,
if 15 is the incidence rate of disease in a population when exposure is present and g is the rate in
that population when exposure is absent, the rate difference I; — 1o does not necessarily equal the
rate of disease arising from sufficient causes with the exposure as a component cause, and need not
even be close to that rate.

To see the source of this difficulty, imagine a cohort in which, for every member, the causal
complement of exposure, C, will be completed before the sufficient cause C’ is completed. If the
cohort is unexposed, every case of disease must be attributable to the cause C’. But if the cohort
is exposed from start of follow-up, every case of disease occurs when C is completed (E being
already present), so every case of disease must be attributable to the sufficient cause containing
C and E. Thus, the incidence rate of cases caused by exposure is I; when exposure is present,
not I, — lo, and thus the fraction of cases caused by exposure is 1, or 100%, even though the rate
fraction (I, — 1p)/1; may be very small.

Excess fractions and rate fractions are often incorrectly interpreted as etiologic fractions. The
preceding example shows that these fractions can be far less than the etiologic fraction: In the
example, the rate fraction will be close to 0 if the rate difference is small relative to Iy, but
the etiologic fraction will remain 1, regardless of Ag or lp. Robins and Greenland (1989a, 1989b)
and Beyea and Greenland (1999) give conditions under which the rate fraction and etiologic frac-
tion are equal, but these conditions are not testable with epidemiologic data and rarely have any
supporting evidence or genuine plausibility (Robins and Greenland, 1989a, 1989b). One condition
sometimes cited is that exposure acts independently of background causes, which will be examined
further in a later section. Without such assumptions, however, the most we can say is that the excess
fraction provides a lower bound on the etiologic fraction.

One condition that is irrelevant yet is sometimes given is that the disease is rare. To see that this
condition is irrelevant, note that the above example made no use of the absolute frequency of the
disease; the excess and rate fractions could still be near 0 even if the etiologic fraction was near 1.
Disease rarity only brings the case and rate fractions closer to one another, in the same way as it
brings the risk and rate ratios close together (assuming exposure does not have a large effect on the
person-time); it does not bring the rate fraction close to the etiologic fraction.

PROBABILITY OF CAUSATION AND SUSCEPTIBILITY TO EXPOSURE

To further illustrate the difference between excess and etiologic fractions, suppose that at a given
time ina cohort, a fraction Fof completions of C" was preceded by completions of C. Again, no case
can be attributable to exposure if the cohort is unexposed. But if the cohort is exposed, a fraction
Fof the Aq cases that would have occurred without exposure will now be caused by exposure. In
addition, there may be cases caused by exposure for whom disease would never have occurred. Let
Ao and A; be the numbers of cases that would occur over a given interval when exposure is absent
and present, respectively. A fraction 1 — F of Ap cases would be unaffected by exposure; for these
cases, completions of C’ precede completions of C. The product Aq(1 — F) is the number of cases
unaffected by exposure. Subtracting this product from A; gives A; — Ag(1 — F) for the number
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of cases in which exposure played an etiologic role. The fraction of A; cases attributable to C
(a sufficient cause with exposure) is thus

Ar—A(l-F)
A a

If we randomly sample one case, this etiologic fraction formula equals the probability that
exposure caused that case, or the probability of causation for the case. Although itis of great biologic
and legal interest, this probability cannot be epidemiologically estimated if nothing is known about
the fraction F (Greenland and Robins, 1988, 2000; Greenland, 1999a; Beyea and Greenland, 1999;
Robins and Greenland, 1989a, 1989b). This problem is discussed further in Chapter 16 under the
topic of attributable-fraction estimation.

For preventive exposures, let F now be the fraction of exposed cases A; for whom disease
would have been caused by a mechanism requiring absence of exposure (i.e., nonexposure, or not-
E), had exposure been absent. Then the product A;(1 — F) is the number of cases unaffected by
exposure; subtracting this product from Ag gives Ag — A;(1 — F) for the number of cases in which
exposure would play a preventive role. The fraction of the Ag unexposed cases that were caused by
nonexposure (i.e., attributable to a sufficient cause with nonexposure) is thus

[Ao — Ai(1 - F)]/Ac=1—-RR(1 - F)

1-(1-F)/RR [4-1]

As with the etiologic fraction, this fraction cannot be estimated if nothing is known about F.

Returning to a causal exposure, it is commonly assumed, often without statement or supporting
evidence, that completion of C and C’ occur independently in the cohort, so that the probability
of “susceptibility” to exposure, Pr(C), can be derived by the ordinary laws of probability for
independent events. Now Pr(C’) = Ag/N = Ryg; thus, under independence,

Pr(CorC’) = A;/N =Ry
= Pr(C) + Pr(C’) — Pr(C)Pr(C’)
= Pr(C) + Ro — Pr(C)Ry [4-2]
Rearrangement yields
A1/N — Ag/N — Ri1—Ro
1— Ag/N 1—Ro

The right-hand expression is the causal risk difference divided by the proportion surviving under
nonexposure. Hence the equation can be rewritten

Pr(C) = (Rt — Ro)/So = (So — S1)/So =1 —S1/So

Pr(C) =

[4-3]

This measure was first derived by Sheps (1958), who referred to it as the relative difference;
it was later proposed as an index of susceptibility to exposure effects by Khoury et al. (1989a)
based on the independence assumption. But as with the independence condition, one cannot ver-
ify equation 4-3 from epidemiologic data alone, and it is rarely if ever plausible on biologic
grounds.

A NOTE ON TERMINOLOGY

More than with other concepts, there is profoundly inconsistent and confusing terminology across
the literature on attributable fractions. Levin (1953) used the term attributable proportion for his
original measure of population disease impact, which in our terms is an excess fraction or risk
fraction. Many epidemiologic texts thereafter used the term attributable risk to refer to the risk
difference R; — R and called Levin’s measure an attributable risk percent (e.g., MacMahon and
Pugh, 1970; Koepsell and Weiss, 2003). By the 1970s, however, portions of the biostatistics literature
began calling Levin’s measure an attributable risk (e.g., Walter, 1976; Breslow and Day, 1980), and
unfortunately, part of the epidemiologic literature followed suit. Some epidemiologists struggled to
keep the distinction by introducing the term attributable fraction for Levin’s concept (Ouellet et al.,
1979; Deubner et al., 1980); others adopted the term etiologic fraction for the same concept and thus
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confused it with the fraction of cases caused by exposure. The term attributable risk continues to be
used for completely different concepts, such as the risk difference, the risk fraction, the rate fraction,
and the etiologic fraction. Because of this confusion we recommend that the term attributable risk
be avoided entirely, and that the term etiologic fraction not be used for relative excess measures.

GENERALIZING DEFINITIONS OF EFFECT

For convenience, we have given the above definitions for the situation in which we can imagine the
cohort of interest subject to either of two distinct conditions, treatments, interventions, or exposure
levels over (or at the start of) the time interval of interest. We ordinarily think of these exposures
as applying separately to each cohort member. But to study public health interventions, we must
generalize our concept of exposure to general populations, and allow variation in exposure effects
across individuals and subgroups. We will henceforth consider the “exposure” of a population as
referring to the pattern of exposure (or treatment) among the individuals in the population. That
is, we will consider the subscripts 1 and 0 to denote different distributions of exposure across the
population. With this view, effect measures refer to comparisons of outcome distributions under
different pairs of exposure patterns across the population of interest (Greenland, 2002a; Maldonado
and Greenland, 2002).

To illustrate this general epidemiologic concept of effect, suppose our population comprises just
three members at the start of a 5-year interval, each of whom smokes one pack of cigarettes a day
at the start of the interval. Let us give these people identifying numbers, 1, 2, and 3, respectively.
Suppose we are concerned with the effect of different distributions (patterns) of mailed antismoking
literature on the mortality experience of this population during the interval. One possible exposure
pattern is

Person 1: Mailing at start of interval and quarterly thereafter
Person 2: Mailing at start of interval and yearly thereafter
Person 3: No mailing

Call this pattern O, or the reference pattern. Another possible exposure pattern is

Person 1: No mailing
Person 2: Mailing at start of interval and yearly thereafter
Person 3: Mailing at start of interval and quarterly thereafter

Call this exposure pattern 1, or the index pattern; it differs from pattern 0 only in that the treatment
of persons 1 and 3 are interchanged.

Under both patterns, one third of the population receives yearly mailings, one third receives
quarterly mailings, and one third receives no mailing. Yet it is perfectly reasonable that pattern O
may produce a different outcome from pattern 1. For example, suppose person 1 would simply
discard the mailings unopened, and so under either pattern would continue smoking and die at year
4 of a smoking-related cancer. Person 2 receives the same treatment under either pattern; suppose
that under either pattern person 2 dies at year 1 of a myocardial infarction. But suppose person 3
would continue smoking under pattern O, until at year 3 she dies from a smoking-related stroke,
whereas under pattern 1 she would read the mailings, successfully quit smoking by year 2, and as
a consequence suffer no stroke or other cause of death before the end of follow-up.

The total deaths and time lived under exposure pattern 0 would be Ay = 3 (all die) and Ty =
4 + 1 + 3 = 8 years, whereas the total deaths and time lived under exposure pattern 1 would be
A; =2and Ty =44 1+ 5 = 10 years. The effects of pattern 1 versus pattern 0 on this population
would thus be to decrease the incidence rate from 3/8 = 0.38 per year to 2/10 = 0.20 per year,
a causal rate difference of 0.20 — 0.38 = —0.18 per year and a causal rate ratio of 0.20/0.38 =
0.53; to decrease the incidence proportion from 3/3 = 1.00 to 2/3 = 0.67, a causal risk difference
0f 0.67 — 1.00 = —0.33 and a causal risk ratio of 0.67/1.00 = 0.67; and to increase the total years
of life lived from 8 to 10. The fraction of deaths under pattern 0 that is preventable by pattern 1 is
(3 — 2)/3 = 0.33, which equals the fraction of deaths under pattern 0 for whom change to pattern
1 would have etiologic relevance. In contrast, the fraction of the rate “prevented” (removed) by
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pattern 1 relative to pattern 0 is (0.38 — 0.20)/0.38 = 1 — 0.53 = 0.47 and represents only the rate
reduction under pattern 1; it does not equal an etiologic fraction.

This example illustrates two key points that epidemiologists should bear in mind when inter-
preting effect measures:

1. Effects on incidence rates are not the same as effects on incidence proportions (average risks).
Common terminology, such as “relative risk,” invites confusion among effect measures. Unless
the outcome is uncommon for all exposure patterns under study during the interval of interest,
the type of relative risk must be kept distinct. In the preceding example, the rate ratio was 0.53,
whereas the risk ratio was 0.67. Likewise, the type of attributable fraction must be kept distinct.
In the preceding example, the preventable fraction of deaths was 0.33, whereas the preventable
fraction of the rate was 0.47.

2. Notall individuals respond alike to exposures or treatments. Therefore, it is not always sufficient
to distinguish exposure patterns by simple summaries, such as “80% exposed” versus “20%
exposed.” In the preceding example, both exposure patterns had one third of the population
given quarterly mailings and one third given yearly mailings, so the patterns were indistinguish-
able based on exposure prevalence. The effects were produced entirely by the differences in
responsiveness of the persons treated.

POPULATION-ATTRIBUTABLE FRACTIONS AND
IMPACT FRACTIONS

One often sees population-attributable risk percent or population-attributable fraction defined as
the reduction in incidence that would be achieved if the population had been entirely unexposed,
compared with its current (actual) exposure pattern. This concept, due to Levin (1953, who called
it an attributable proportion), is a special case of the definition of attributable fraction based on
exposure pattern. In particular, it is a comparison of the incidence (either rate or number of cases,
which must be kept distinct) under the observed pattern of exposure with the incidence under a
counterfactual pattern in which exposure or treatment is entirely absent from the population.

Complete removal of an exposure is often very unrealistic, as with smoking and with air pollution;
even with legal restrictions and cessation or clean-up programs, many people will continue to
expose themselves or to be exposed. A measure that allows for these realities is the impact fraction
(Morgenstern and Bursic, 1982), which is a comparison of incidence under the observed exposure
pattern with incidence under a counterfactual pattern in which exposure is only partially removed
from the population. Again, this is a special case of our definition of attributable fraction based on
exposure pattern.

STANDARDIZED MEASURES OF ASSOCIATION AND EFFECT

Consider again the concept of standardization as introduced at the end of Chapter 3. Given a

standard distribution Ty, ..., Tx of person-times across K categories or strata defined by one
or more variables and a schedule |4, ..., Ik of incidence rates in those categories, we have the
standardized rate
K
Ti I
I, = k=1
K
> T
k=1
which is the average of the I, weighted by the Ty. If 11*, ..., Ix* represents another schedule of
rates for the same categories, and
K
> Tel*
=

Is

K
> Tk
k=1



68 Section| e Basic Concepts

is the standardized rate for this schedule, then

IR, = I'—S =3 Tl / YTk
S

is called a standardized rate ratio. The defining feature of this ratio is that the same standard
distribution is used to weight the numerator and denominator rate. Similarly,

IDs = ZTklk - ZTk|k* = ZTk(lk - k)

is called the standardized rate difference; note that it is not only a difference of standardized rates,
but is also a weighted average of the stratum-specific rate differences Iy — I* using the same
weights as were used for the standardization (the T).

Suppose that 1y, ..., Ik represent the rates observed or predicted for strata of a given target
population if it is exposed to some cause or preventive of disease, Ty, ..., Tk are the observed
person-time in strata of that population, and I1*, ..., Ix* represent the rates predicted or observed
for strata of the population if it is not exposed. The presumption is then that IRy = Is/Is* and
ID; are the effects of exposure on this population, comparing the overall (crude) rates that would
occur under distinct exposure conditions. This interpretation assumes, however, that the relative
distribution of person-times would be unaffected by exposure.

If 11, ..., Ix* represent counterfactual rather than actual rates, say, because the population was
actually exposed, then Is* need not represent the overall rate that would occur in the population
if exposure were removed. For instance, the change in rates from the Iy to the I * could shift the
person-time distribution Ty, ..., Tk to T1*, ..., Tk *. In addition, as discussed earlier, the exposure
could affect competing risks, and this effect could also shift the person-time distribution. If this
shift is large, the standardized rate ratio and difference will not properly reflect the actual effect of
exposure on the rate of disease (Greenland, 1996a).

There are a few special conditions under which the effect of exposure on person-time will not
affect the standardized rate ratio. If the stratum-specific ratios I/l * are constant across categories,
the standardized rate ratio will equal this constant stratum-specific ratio. If the exposure has only a
small effect on person-time, then, regardless of the person-time distribution used as the standard,
the difference between a standardized ratio and the actual effect will also be small. In general,
however, one should be alert to the fact that a special assumption is needed to allow one to interpret
a standardized rate ratio as an effect measure, even if there is no methodologic problem with the
observations. Analogously, the standardized rate difference will not be an effect measure except
when exposure does not affect the person-time distribution or when other special conditions exist,
such as constant rate differences Iy — Ix* across categories.

Incidence proportions have denominators N, ..., Nk that are not affected by changing rates
or competing risks. Thus, if these denominators are used to create standardized risk ratios and
differences, the resulting measures may be interpreted as effect measures without the need for the
special assumptions required to interpret standardized rate ratios and differences.

STANDARDIZED MORBIDITY RATIOS (SMRs)

When the distribution of exposed person-time provides the standard, the standardized rate ratio
takes on a simplified form. Suppose Ty, ..., Tk are the exposed person time, Ay, ..., Ak are the
number of cases in the exposed, |1, ..., Ik are the rates in the exposed, and 1;*, ..., Ix* are the
rates that would have occurred in the exposed had they not been exposed. Then in each stratum we
have Ty lx = A, and so the standardized rate ratio becomes

ZTk|k/ZTk|k* = ZAk/ZTkh(*

The numerator of this ratio is just the total number of exposed cases occurring in the population.
The denominator is the number of cases that would be expected to occur in the absence of exposure
if the exposure did not affect the distribution of person-time. This ratio of observed to expected
cases is called the standardized morbidity ratio (SMR), standardized incidence ratio (SIR), or, when
death is the outcome, the standardized mortality ratio. When incidence proportions are used in place
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of incidence rates, the same sort of simplification occurs upon taking the exposed distribution of
persons as the standard: The standardized risk ratio reduces to a ratio of observed to expected cases.

Many occupational and environmental studies that examine populations of exposed workers
attempt to estimate SMRs by using age-sex—race categories as strata, and then use age—sex—race
specific rates from the general population in place of the desired counterfactual rates I1*, ..., k™.
A major problem with this practice is that of residual confounding. There will usually be many
other differences between the exposed population and the general population besides their age, sex,
and race distributions (differences in smoking, health care, etc.), and some of these differences will
confound the resulting standardized ratio. This problem is an example of the more common problem
of residual confounding in observational epidemiology, to which we will return in later chapters.

SMRs estimated across exposure categories or different populations are sometimes compared
directly with one another to assess a dose—response trend, for example. Such comparisons are usually
not fully standardized because each exposure category’s SMR is weighted by the distribution of
that category’s person-time or persons, and these weights are not necessarily comparable across the
exposure categories. The result is residual confounding by the variables used to create the strata as
well as by unmeasured variables (Yule, 1934; Breslow and Day, 1987; Greenland, 1987¢). There
are, however, several circumstances under which this difference in weights will not lead to important
confounding (beyond the residual confounding problem discussed earlier).

One circumstance is when the compared populations differ little in their distribution of person-
time across strata (e.g., when they have similar age—sex—race distributions). Another circumstance is
when the stratification factors have little effect on the outcome under study (which is unusual; age and
sex are strongly related to most outcomes). Yet another circumstance is when the stratum-specific
ratios are nearly constant across strata (no modification of the ratio by the standardization variables)
(Breslow and Day, 1987). Although none of these circumstances may hold exactly, the first and last
are often together roughly approximated; when this is so, the lack of mutual standardization among
compared SMRs will lead to little distortion. Attention can then turn to the many other validity
problems that plague SMR studies, such as residual confounding, missing data, and measurement
error (see Chapters 9 and 19). If, however, one cannot be confident that the bias due to comparing
SMRs directly is small, estimates should be based on a single common standard applied to the
risks in all groups, or on a regression model that accounts for the differences among the compared
populations and the effects of exposure on person-time (Chapter 20).

PREVALENCE RATIOS

In Chapter 3 we showed that the crude prevalence odds, PO, equals the crude incidence rate, I,
times the average disease duration, D, when both the population at risk and the prevalence pool are
stationary and there is no migration in or out of the prevalence pool. Restating this relation sepa-
rately for a single population under exposure and nonexposure, or one exposed and one unexposed
population, we have

Pol = |151 and POO = |050 [4_5]

where the subscripts 1 and O refer to exposed and unexposed, respectively. If the average disease
duration is the same regardless of exposure, i.e., if D; = Dy, the crude prevalence odds ratio, POR,
will equal the crude incidence rate ratio IR:
PO, It
POR= —=—==1IR 4-6
POy g [4-6]
Unfortunately, if exposure affects mortality, it will also alter the age distribution of the population.
Thus, because older people tend to die sooner, exposure will indirectly affect average duration, so
that D; will not equal Dy. In that, case equation 4—6 will not hold exactly, although it may still
hold approximately (Newman, 1988).

OTHER MEASURES

The measures that we have discussed are by no means exhaustive of all those that have been
proposed. Not all proposed measures of effect meet our definition of effect measure—that is, not
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all are a contrast of the outcome of a single population under two different conditions. Examples of
measures that are not effect measures by our definition include correlation coefficients and related
variance-reduction measures (Greenland et al., 1986, 1991). Examples of measures that are effect
measures by our definition, but not discussed in detail here, include expected years of life lost
(Murray et al., 2002), as well as risk and rate advancement periods (Brenner et al., 1993).

Years of life lost, To/N — T1/N, and the corresponding ratio measure, To/ T1, have some note-
worthy advantages over conventional rate and risk-based effect measures. They are not subject to
the problems of inestimability that arise for etiologic fractions (Robins and Greenland, 1991), nor
are they subject to concerns about exposure effects on time at risk. In fact, they represent the expo-
sure effect on time at risk. They are, however, more difficult to estimate statistically from typical
epidemiologic data, especially when only case-control data (Chapter 8) are available, which may
in part explain their limited popularity thus far (Boshuizen and Greenland, 1997).
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I he concept of interaction centers on the idea that the effect of an exposure, compared with a
reference unexposed condition, may depend on the presence of one or more other conditions. A
well-known example concerns the effect of occupational exposure to asbestos dust on lung cancer
risk, which depends on smoking status (Berry and Liddell, 2004). As a hypothetical illustration,
suppose we examine the average 10-year risk of lung cancer in an occupational setting and find
that, among nonsmoking male asbestos workers, this risk is 3/1,000, and the corresponding risk
is1/1,000 in comparable nonsmoking men who did not work with asbestos. Suppose a so that the
risk is20/1,000 among mal e asbestos workers who smoked, and it is 10/1,000 in comparable men
who smoked and did not work with asbestos. The risk ratio associating asbestos work with lung
cancer risk isthen 3/1 = 3 in nonsmokers, greater than the risk ratio of 20/10 = 2 in smokers. In
contrast, the risk difference is 3 — 1 = 2/1,000 among nonsmokers, less than the risk difference
of 20 — 10 = 10/1,000 among smokers. Thus, when using the ratio measure, it appears that the
association between asbestos exposure and lung cancer risk is greater in nonsmokers than smokers.
When using the difference measure, however, it appears that the association is considerably lessfor
nonsmokers than for smokers.

The potential scale dependence of an assessment of interaction illustrates the kind of issue
that complicates understanding of the concept. Indeed, the concept of interaction generated much
debate when it first became afocus for epidemiologists, as seen in Rothman (1974, 1976a, 1976b),
Koopman (1977), Kupper and Hogan (1978), Walter and Holford (1978), and Siemiatycki and
Thomas (1981). The ensuing literature identified a number of distinctions and concepts whose
delineation has helped shed light on the earlier disagreements and has pointed the way to further
elaboration of conceptsof interaction; for examples, see Blot and Day (1979), Rothman et al. (1980),
Saracci (1980), Koopman (1981), Walker (1981), Miettinen (1982b), Weinberg (1986), Greenland
and Poole (1988), Weed et al. (1988), Thompson (1991), Greenland (1993b), Darroch and Borkent
(1994), Darroch (1997), and VanderWeel e and Robins (20073, 2008a).

/Al
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In addition to scale dependence, another problem isthe ambiguity of the term interaction, which
has been used for a number of distinct statistical, biologic, and public health concepts. Failure
to distinguish between these concepts was responsible for much of the early controversy (Blot
and Day, 1979; Saracci, 1980; Rothman et a., 1980). Once these distinctions are made, there
remains the question of what can be learned about i nteraction from epidemiol ogic data (Thompson,
1991).

The present chapter provides definitions and makes distinctions among concepts of interaction.
Chapter 16 describes how stratified analysis methods can be used to study interactions and the
limitations of such methods. We begin by discussing statistical interaction, a concept that refers
to associations, whether causal or not. Statistical interaction is scale-dependent. When no biasis
present, so that observed associationsvalidly estimate causal effectsof interest, statistical interaction
corresponds to effect-measure modification. After discussing the relation of statistical interaction
to effect modification, we discuss models for biologic interaction. We show that when effects
are measured by causa risk differences and biologic interaction is defined as modification of
potential-response types, biologic interaction is implied by departures from additivity of effects.
We also show that biologic interaction may be present even if there is additivity of effects, when
there are opposing types of interaction that cancel one another, leaving the net effect additive. We
then contrast this potential-outcome model of biologic interaction to that based on the sufficient-
component cause model introduced in Chapter 2. We conclude with a discussion of public health
interaction.

STATISTICAL INTERACTION AND
EFFECT-MEASURE MODIFICATION

When no bias is present, the definition of interaction that is often used in statistics books and
software programs (particularly for analysis of variance) islogically equivaent to the definition of
effect-measure modification or heterogeneity of effect. It isfrequently described as*departure from
additivity of effects on the chosen outcome scale” Thus, methods for analyzing statistical interac-
tions can be viewed as methods for analyzing effect-measure modification under the assumption
that al bias has been adequately controlled (see Chapter 15).

As seen in the above example of asbestos and smoking effects, the presence or absence of
statistical interaction between two factors X and Z depends on the scale with which one chooses to
mesasure their association. Suppose that both X and Z have effects, and the risk difference for one
remains constant across levels of the other, so that there is no modification of the risk differences
(i.e., there is homogeneity of the risk differences). If there is no bias (so that associations equal
effects), this state of affairs corresponds to no statistical interaction on the risk-difference scale for
the effect, because the combined effect of X and Z on risk can be computed simply by adding
together the separate risk differencesfor X and Z. In the example of interaction between asbestos
exposure and smoking, there was effect-measure modification, or statistical interaction, on the
difference scale, because risk added by asbestos exposure was greater among smokers than among
nonsmokers. Therewasal so effect-measure modification, or statistical interaction, between asbestos
and smoking on the risk-ratio scale for the effect, because the amount that asbestos multiplied the
risk was less among smokers than among nonsmokers.

SCALE DEPENDENCE OF EFFECT-MEASURE MODIFICATION

Asexplained in Chapter 4, if both X and Z have effects and thereis no modification (heterogeneity)
of the risk differences for one factor by the other factor, there has to be modification of the risk
ratios. Conversely, if X and Z have effects and there is no maodification of the risk ratios, there has
to be modification of the risk differences. Commonly, both the risk differences and risk ratios for
one factor are heterogeneous across categories of the other. In that case, they may be modified in
opposite directions, as seen in the example for asbestos and smoking.

To explain why homogeneity of the effect measure on one scale requires heterogeneity of the
effect measure on the other scale when both factors have effects, we will first examine the casein
which risk differences are homogeneous and risk ratios are heterogeneous. We will then examine
the opposite case.
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Notation for Risks with Two Binary(1, 0) Exposure Variables

Z=1 Z=0 Risk Difference Risk Ratio
X=1 Ry R1o Rt — Rio Ri1/R1o
X=0 Ros Roo Rot — Roo Ro1/Rao
Risk difference Ry — Ro Rio — Roo
Risk ratio RH/Rm R10/Roo

To begin, write R;j for the average risk (incidence proportion) when X =i and Z = j, asin
Table 5-1. Suppose the risk difference for X = 1 versus X = 0 when Z = 0 (whichis Ryp — Ryo)
equalstherisk differencefor X = 1 versus X = 0when Z = 1 (whichis Ry;— Ro):

R11 — Ro1 = Rio — Roo [5-1]
By subtracting Ry from each side and rearranging, we can rewrite this equation as
R11 — Roo = (Rio — Roo) + (Ro1 — Roo) [5-2]

This equation shows that the risk difference for changing the exposure status from X = Z = 0to
X = Z =1 can be found by simply adding the risk difference for X = 1 versus X = 0when Z =
0 to the risk difference for Z = 1 versus Z = 0 when X = 0. If we divide both sides of equation
5-1 by Ry (therisk when X = 0, Z = 0), we get

Ru R Ruwo

o Po_ Mo 5-3
Ro Rw R [5-3]

By subtracting 1 from each side and rearranging, we can rewrite this equation in terms of the excess

risk ratios:
Ri1 Rio Ro1
g (D0 q) (D 5-4

Roo (Roo >+<Roo ) [>-4

If both X and Z have effects, the additivity of the excessrisk ratio in equation 5—4 implies that
Ri1/Ro1 # Rio/Roo; that is, therisk ratio for X = 1 versus X = 0 when Z = 1(Ry1/Ro1) cannot
equal therisk ratiofor X = 1versus X = 0when Z = 0(Ryo/ Roo). Wereach thisconclusion because
the equality

Ri11/Ro1 = Rio/Roo [5-5]
implies multiplicativity of the risk ratios:
R11/Roo = (Ru1/Ro1)(Ro1/ Roo) = (Rio/ Roo)(Ro1/Roo) [5-6]

which contradicts equation 5—4 unless Ryp/Roo = 1 or Ryy/Roo = 1. Neither of these risk ratios
can equal 1, however, when X and Z both affect risk.

To show that homogeneity of the risk ratio requires heterogeneity of the risk difference, begin
by assuming no modification of the risk ratio, so that equation 5-5 does hold. Then equation 5—-6
must also hold, and we can take the logarithm of both sides to get the equation

IN(Ry1/Roo) = IN(Rio/ Roo) + IN(Roz/ Roo) [5-7]
or
IN(R11) — IN(Roo) = IN(Ry0) — IN(Roo) + IN(Ro1) — IN(Roo) [5-8]

Equation 5—7 shows that the log risk ratio for changing the exposure status from X = Z = 0 to
X = Z = 1 canbefound by smply adding thelog risk ratio for X = 1 versus X =0when Z = 0to
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thelogrisk ratio for Z = 1 versus Z = O when X = 0. Thus, homogeneity (no modification) of the
risk ratio corresponds to additivity (no statistical interaction) on the log-risk scale for the outcome
(eguation 5-8). Combined effects are simply the sum of effects on the log-risk scale. Furthermore,
if both X and Z have nonzero effects and these effects are additive on the log-risk scale, the effects
cannot be additive on the risk scale. That is, the absence of statistical interaction on the log-risk
scale (equation 5-7) implies the presence of statistical interaction on the risk-difference scale, if
both factors have effects and there is no bias.

Because the additive log-risk equation 5—7 is equivalent to the multiplicative risk-ratio equation
5-6, log risk-ratio additivity corresponds to risk-ratio multiplicativity. Thus, “no multiplicative
interaction” is often described as “no statistical interaction on the log-risk ratio scale” Unfortu-
nately, because most epidemiologic statistics are based on multiplicative models, there has devel -
oped a bad habit of dropping the word multiplicative and claiming that there is “no interaction”
whenever one believes that the data are consistent with equation 55 or 5—6. Such loose usage
invites confusion with other concepts of interaction. To avoid such confusion, we strongly advise
that one should refer to the scale or measure that one is examining with more precise phrases,
such as “no risk-ratio heterogeneity was evident,” “no risk-difference heterogeneity was evident,”
“no departure from risk-ratio multiplicativity was evident,” or “no departure from risk-difference
additivity was evident,” as appropriate. The term effect modification is aso ambiguous, and we
again advise more precise terms such as risk-difference modification or risk-ratio modification, as
appropriate.

Another source of ambiguity isthefact that equations5—1 through 5—-8 can al berewritten using
adifferent type of outcome measure, such as rates, odds, prevalences, means, or other measuresin
place of risks R;j. Each outcome measure leads to a different scale for statistical interaction and a
corresponding concept of effect-measure modification and heterogeneity of effect. Thus, when both
factors have effects, absence of statistical interaction on any particular scale necessarily implies
presence of statistical interaction on many other scales.

Consider now relative measures of risk: risk ratios, rateratios, and oddsratios. If the disease risk
islow at all levels of the study variables (i.e., less than about 0.1), absence of statistical interaction
for one of these ratio measuresimplies absence of statistical interaction for the other two measures.
For larger risks, however, absence of statistical interaction for one ratio measure implies that there
must be some modification of the other two ratio measures when both factors have effects. For
example, the absence of modification of the odds ratio,

Ri1/(1— Rui1) ~ Ruo/(1— Rio)

Roi(1 - Ro1)  Roo/(1— Roo)
is equivalent to no multiplicative interaction on the odds scale. But, if X and Z have effects, then
equation 5—-9 implies that there must be modification of the risk ratio, so that equations 5—6
through 5—8 cannot hold unlessall therisksarelow. In asimilar fashion, equation 5—9 also implies
modification of the rate ratio. Parallel results apply for difference measures: If the disease risk
is aways low, absence of statistical interaction for one of the risk difference, rate difference, or
odds difference implies absence of statistical interaction for the other two. Conversely, if disease
risk is high, absence of statistical interaction for one difference measure implies that there must be
some modification of the other two difference measures when both factors have effects.

The preceding examples and algebra demonstrate that statistical interaction is a phenomenon
whose presence or absence, as well as magnitude, is usually determined by the scale chosen for
measuring departures from additivity of effects. To avoid ambiguity, one must specify precisely the
scale on which one is measuring such interactions. In doing so, it is undesirable to use a term as
vague asinteraction, because more preci se phrases can always be substituted by using the equivalent
concept of effect-measure modification or heterogeneity of the effect measure.

(5-9]

BIOLOGIC INTERACTIONS

There are two major approaches to the topic of biologic (causal) interaction. One approach is
based on delineating specific mechanisms of interaction. The concept of mechanistic interaction
is rarely given a precise definition, but it is meant to encompass the notion of direct physical or
chemical reactionsamong exposures, their metabolites, or their reaction productswithin individuals
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or vectorsof exposure transmission. Examplesinclude theinhibition of gastric nitrosation of dietary
amines and amides by ascorbic acid and the quenching of free radicalsin tissues by miscellaneous
antioxidants.

Description of a mechanism whereby such interactions take place does not lead immediately to
precise predictions about epidemiologic observations. One reason isthat rarely, if ever, isamech-
anism proposed that can account for all observed cases of disease, or al effects of al risk factors,
measured and unmeasured. Background noise, in the form of unaccounted-for effects and biologic
interactionswith other factors, can easily obliterate any pattern sought by theinvestigator. Nonethe-
less, efforts have been made to test hypotheses about biologic mechanisms and interactions using
simplified abstract models. Such efforts have been concentrated largely in cancer epidemiology;
for example, see Moolgavkar (1986, 2004).

A key limitation of these and other biologic modeling efforts is that any given data pattern
can be predicted from a number of dissimilar mechanisms or models for disease development
(Siemiatycki and Thomas, 1981; Thompson, 1991), even if no biasis present. In response to this
limitation, a number of authors define biologic interactions within the context of a genera causal
model, so that it does not depend on any specific mechanistic model for the disease process. We
describe two such definitions. The first definition, based on the potential-outcome or counterfac-
tual causal model described in Chapter 4, has along history in pharmacology (at least back to the
1920s) and i s sometimes called the dependent-acti on definition of interaction. The second definition,
based on the sufficient-cause model described in Chapter 2, has been more common in epidemi-
ology. After providing these definitions, we will describe how they are logically related to one
another.

POTENTIAL OUTCOMES FOR TWO VARIABLES

Consider the following example. Suppose we wish to study the effects of two fixed variables X and
Z on 10-year mortality D inaclosed cohort. If X and Z arebinary indicators, there are four possible
exposure combinations that each person in the cohort could have: X = Z =0, X =1and Z = 0,
X=0andZ =1, or X = Z=1. Furthermore, every person has one of two possible outcomes under
each of the four combinations: They either survive the 10 years (D = 0) or they do not (D = 1).
Thismeansthat thereare 2. 2. 2. 2 = 2* = 16 possible types of person in the cohort, according to
how the person would respond to each of the four exposure combinations.

These 16 types of people are shown in Table 5—2. Columns 2 through 5 of the table show the
outcome (Y = 1 if disease develops, 0 if not) for the type of person in the row under the exposure
combination shown in the column heading. For each type, we can define the risk for that type under
each combination of X and Z as the outcome Y under that combination. Thus for a given response
type, Ri1 is1or 0 according to whether Y is1 or Owhen X = 1and Z = 1, and so on for the other
combinations of X and Z. We can then define various risk differences for each type. For example,
R11 — Ror and Ryo — Ry give the effects of changing from X = 0to X = 1, and Ry; — Ry and
Ro1 — Roo for the effects of changing from Z = 0to Z = 1. These differences may be 1, 0, or —1,
which correspond to causal effect, no effect, and preventive effect of the change.

Wecan also definethedifference between theserisk differences. A useful fact isthat thedifference
of the risk differences for changing X is equal to the difference of the risk differences in chang-
ing Z:

(Ri1 — Ro1) — (Rio — Roo) = (Ru1 — Rio) — (Roz — Roo) [5-10]

This equation tells us that the change in the effect of X when we move across levels of Z isthe
same as the change in the effect of Z when we move across levels of X. The equation holds for
every response type. We will hereafter call the difference of risk differencesin equation [5-10] the
interaction contrast, or IC.

Notefirst that equation [5—10] and hencetheinteraction contrast equals Ry — Rig — Ro1 + Roo-
Thefinal column of Table 5—2 provides thisinteraction contrast for each response type, along with
phrases describing the causal process leading to the outcome (disease or no disease) in each type
of person. For six types—types 1, 4, 6, 11, 13, 16—at least one factor never has an effect, and so
there can be no interaction, because both factors must have an effect for there to be an interaction.
The interaction contrast equals O for these six types. The other 10 types (marked with an asterisk)
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Possible Response Types (Potential Outcomes) for Two Binary Exposure
Variables X and Z and a Binary Outcome Variable Y

Outcome (Risk) Y when

Exposure Combination Is Interaction Contrast (Difference in Risk Differences)

X=1 X=0 X=1 X=0 IC= Ry — Ry — Ro1 + Roo and Description of
Type Z=1 Z=1 Z=0 2Z=0 CausalType
1 1 1 1 1 0 no effect (doomed)
2* 1 1 1 0 —1 single plus joint causationby X = 1Tand Z =1
3* 1 1 0 1 1 Z =1blocks X = 1 effect (preventive antagonism)
4 1 1 0 0 0 X =1 ineffective, Z =1 causal
5* 1 0 1 1 T X =1blocks Z = 1 effect (preventive antagonism)
6 1 0 1 0 0 X =1causal, Z = 1 ineffective
7* 1 0 0 1 2 mutual blockage (preventive antagonism)
8* 1 0 0 0 T X = 1plus Z = 1 causal (causal synergism)
9* 0 1 1 1 —1 X =1plus Z =1 preventive (preventive synergism)
10* 0 1 1 0 —2 mutual blockage (causal antagonism)
" 0 1 0 1 0 X =1preventive, Z = 1 ineffective
12% 0 1 0 0 —1 X =1blocks Z = 1 effect (causal antagonism)
13 0 0 1 1 0 X = 1ineffective, Z = 1 preventive
14* 0 0 1 0 —1 Z =1blocks X =1 effect (causal antagonism)
15* 0 0 0 1 1 single plus joint preventionby X = 1and Z =1
16 0 0 0 0 0 no effect (immune)

*Defined as interaction response type in present discussion (types with a nonzero interaction contrast).

can be viewed as exhibiting some type of interaction (or interdependence) of the effects of the two
factors (X and Z); for these 10 types, the interaction contrast is not 0.

The defining feature of these 10 interaction types is that we cannot say what the effect of X
will be (to cause, prevent, or have no effect on disease) unless we know that person’s value for
Z (and conversely, we cannot know the effect of Z without knowing that person’s value of X).
In other words, for an interaction type, the effect of one factor depends on the person’s status for
the other factor. An equally apt description is to say that each factor modifies the effect of the
other. Unfortunately, the term effect modification has often been used as a contraction of the term
effect-measure modification, which we have showed is equivalent to statistical interaction and is
scale-dependent, in contrast to the 10 interaction typesin Table 5-2.

Some of the response typesin Table 5—2 are easily recognized as interactions. For type 8, each
factor causes the diseaseif and only if the other factor is present; thus both factors must be present
for disease to occur. Hence, thistypeis said to represent synergistic effects. For type 10, each factor
causes the disease if and only if the other factor is absent; thus each factor blocks the effect of the
other. Hence, thistypeis said to represent mutually antagonistic effects.

Other interaction types are not always recognized as exhibiting interdependent effects. For ex-
ample, type 2 has been described simply as one for which both factors can have an effect (Miettinen,
1982h). Note, however, that the presence of both factors can lead to acompetitive interaction: For a
type 2 person, each factor will cause disease when the other is absent, but neither factor can have an
effect on the outcome under study (D = 0 or 1) once the other is present. Thus each factor affects
the outcome under study only in the absence of the other, and so the two factors can be said to
interact antagonistically for this outcome (Greenland and Poole, 1988).
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RELATION OF RESPONSE-TYPE DISTRIBUTIONS TO AVERAGE RISKS

A cohort of more than a few people is inevitably a mix of different response types. To examine
cohorts, wewill returnto using Ry1, Rio, Ro1, Roo to denotethe averagerisks (incidence proportions)
in a cohort; these risks represent averages of the outcomes (risks) over the response types in the
population under discussion. The risks shown in Table 5—-2 can be thought of as special casesin
which the cohort has just one member.

To compute the average risks, let px be the proportion of type k persons in the cohort (k =
1,...,16). A useful feature of Table 5-2 is that we can compute the average risk of the cohort
under any of the four listed combinations of exposure to X and Z by adding up the px for which
thereisa“1” in the column of interest. We thus obtain the following general formulas:

Ry; = averageriskif X and Z are 1
= P11+ P2+ P3+ Ps+ Ps+ P+ P7 + Ps

Ro; = averageriskif X isOand Z is 1
= P1+ P2+ P3s+ Pa+ Po + P10+ P11+ P12

Rio = averageriskif X island Z is0O
= pr+ P2+ Ps+ P+ Po + P10+ P13 + Paa

Roo = averagerisk if X and Z are 0
= P1+ P34+ Ps+ P7 + Po + P11 + P13 + P15

For acohort in which none of the 10 interaction typesis present, the additive-risk relation (equation
5-2) emerges among the average risks (incidence proportions) that would be observed under
different exposure patterns (Greenland and Poole, 1988). With no interaction types, only pi1, pa, Pe,
P11, P13, and pie are nonzero. In this situation, the incidence proportions under the four exposure
patterns will be as follows:

Ry = averageriskif X and Z are 1 = p; + ps + Ps
Ro1 = averageriskif X isOand Zisl= p;1+ ps+ pu
Rio = averageriskif X island Z isO= p1 + ps + P13
Roo = averagerisk if X and Z are 0 = p; + p11 + P13

Then the separate risk differences for the effects of X = 1 adone and Z = 1 alone (relative to
X = Z = 0) add to the risk difference for the effect of X = 1 and Z = 1 together:

Ri1 — Roo = Pa + ps — (P11 + P13)

Rearranging the right side of the equation, we have

R11 — Roo = (Ps — P13) + (Pa — p11)

Adding ps3 to the left parenthetical and subtracting it from the right, and subtracting p1; from the
left parenthetical and adding it to the right, we obtain

Ri1 — Roo = (Ps + P13 — P11 — P13) + (Pa + P11 — P11 — P13) [5-11]

Substituting from the definitions of incidence proportions with only noninteraction types, we have
R11 — Roo = (Rio — Roo) + (Roz — Roo)

Thisequation isidentical to equation 5—2 and so is equivalent to equation 5—1, which corresponds
to no modification of the risk differences. Thereisacrucia difference in interpretation, however:
Equation 5-2 is descriptive of the differences in risk among different study cohorts; in contrast,
equation 5-10 is a causal relation among risks, because it refers to risks that would be observed
in the same study cohort under different exposure conditions. The same cohort cannot be observed
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under different exposure conditions, so we must use the descriptive equation 5—2 as a substitute
for the causal equation 5—11. This usage requires absence of confounding, or else standardization
of the risks to adjust for confounding. The remainder of the present discussion will concern only
the causal equation 5—11 and thus involves no concern regarding confounding or other bias. The
discussion also applies to situations involving equation 5—2 in which either bias is absent or has
been completely controlled (e.g., all confounding has been removed via standardization).

Four important points deserve emphasis. First, the preceding al gebra showsthat departures from
causal additivity (equation 5—11) can occur only if interaction causal typesare present in the cohort.
Thus, observation of nonadditivity of risk differences (departures from equation 5—2) will imply
the presence of interaction typesin acohort, provided the observed descriptive rel ations unbiasedly
represent the causal relations in the cohort. Second, interaction types may be present and yet both
the additive relations (equations 5—11 and 5—2) can still hold. This circumstance can occur because
different interaction types could counterbal ance each other’seffect on the averagerisk. For example,
suppose that, in addition to the noninteraction types, there were type 2 and type 8 personsin exactly
equal proportions (p, = pg > 0). Then

Ri1 — Roo = P2+ Pa+ Ps + Ps — (P11 + Pas)

By rearranging, adding p13 to the left parenthetical and subtracting it from the right parenthetical,
and adding p1; to the right parenthetical and subtracting it from the left parenthetical, we have

Ri1 — Roo = (Pg + Ps + P13 — P11 — P13) + (P2 + Pa + P11 — P11 — P13)
= (Ri0 — Roo) + (Roz — Roo)

We may summarize these two points as follows: Departures from additivity imply the presence of
interaction types, but additivity does not imply absence of interaction types.

The third point is that departure from risk additivity implies the presence of interaction types
whether we are studying causal or preventive factors (Greenland and Poole, 1988). To seethis, note
that the preceding arguments made no assumptions about the absence of causal types (types 4 and
6 in the absence of interaction) or preventive types (types 11 and 13 in the absence of interaction).
Thispoint standsin contrast to earlier treatments, in which preventive interactions had to be studied
using multiplicative models (Rothman, 1974; Walter and Holford, 1978).

Thefourth point isthat the definitions of response types (and henceinteractions) given above are
specific to the particular outcome under study. If, in our example, we switched to 5-year mortality,
it is possible that many persons who would die within 10 years under some exposure combination
(and so would be among types 1 through 15 in Table 5—2) would not diewithin 5 years. For instance,
aperson who was atype 8 when considering 10-year mortality could be atype 16 when considering
5-year mortality. In asimilar fashion, it is possible that a person who would die within 10 years if
and only if exposed to either factor would die within 5 yearsif and only if exposed to both factors.
Such a person would be atype 2 (competitive action) for 10-year mortality but atype 8 (synergistic
action) for 5-year mortality. To avoid the dependence of response type on follow-up time, one can
base the definitions of response type on incidence time rather than risk (Greenland, 1993b).

RELATION OF RESPONSE-TYPE DISTRIBUTIONS TO ADDITIVITY

The interaction contrast IC = Ry; — Rip — Ro1 + Roo corresponds to departure of the risk dif-
ference contrasting X = 1and Z = 1to X = 0 and Z = 0 from what would be expected if no
interaction types were present (i.e., if the risk difference for X = Z = 1 versus X = Z = O was
just the sum of therisk differencefor X = 1 versus X = 0 and therisk differencefor Z = 1 versus
Z = 0). In agebraic terms, we have

IC = (Ru — Roo) — (Rio — Roo) — (Roz — Roo) [5-12]

Substituting the proportions of response types for the risks in this formula and simplifying, we
get

IC = (ps+ ps +2p7 + pg + P1s) — (P2 + Po + 2P10 + P12 + P14) [5-13]
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IC is thus composed of proportions of all 10 interaction types, and it will be zero if no interaction
type is present. The proportions of types 7 and 10 weigh twice as heavily as the proportions of
the other interaction types because they correspond to the types for which the effects of X reverse
across strata of Z. Equation 5-13 illustrates the first two points above: Departure from additivity
(IC #£ 0) implies the presence of interaction types, because IC # 0 requires some interaction types
to be present; but additivity (IC = 0) does not imply absence of interaction types, because the IC
can be zero even when some proportions within it are not zero. This phenomenon occurs when
negative contributions to the | C from some interaction types balance out the positive contributions
from other interaction types.

Departures from additivity may be separated into two classes. Superadditivity (also termed
transadditivity) is defined as a*“ positive” departure, which for risks correspondsto IC > 0, or

Ri1 — Roo > (Rio — Roo) + (Roz — Roo)
Subadditivity isa*“negative” departure, which for risks correspondsto IC <0, or

Ri1 — Roo < (Rio — Roo) + (Roz — Roo)

Departures from risk additivity have specia implications when we can assume that neither fac-
tor is ever preventive (neither factor will be preventive in the presence or absence of the other,
which excludes types 3, 5, 7, and 9 through 15). Under this assumption, the interaction contrast
simplifiesto

IC=pg—p2

Superadditivity (IC > 0) plus no prevention then implies that pg > p.. Because p, > 0, su-
peradditivity plus no prevention implies that synergistic responders (type 8 persons) must be
present (ps > 0). The converse is false, however; that is, the presence of synergistic responders
does not imply superadditivity, because we could have p, > ps > 0, in which case subadditivity
would hold. Subadditivity plus no prevention impliesthat pg < p,. Because pg > 0, subadditivity
(IC < 0) plus no prevention implies that competitive responders (type 2 persons) must be present
(p2 > 0). Nonetheless, the converse is again false: The presence of competitive responders does
not imply subadditivity, because we could have pg > p. > 0, in which case superadditivity would
hold.

THE NONIDENTIFIABILTY OF INTERACTION RESPONSE TYPES

Epidemiologic data on risks or rates, even if perfectly valid, cannot alone determine the particular
response types that are present or absent. In particular, one can never infer that a particular type
of interaction in Table 5-2 is absent, and inference of presence must make untestable assump-
tions about absence of other response types. As a result, inferences about the presence of partic-
ular response types must depend on very restrictive assumptions about absence of other response
types.

One cannot infer the presence of a particular response type even when qualitative statistical
interactions are present among the actual effect measures, that is, when the actual effect of one
factor entirely reverses direction across levels of another factor. Such reversals can arise from
entirely distinct combinations of interaction types. Qualitative interaction demonstrates only that
interaction types must be present.

Consider the example of the two cohorts shown in Table 5-3, for which the proportions of
response types are different. In both cohorts, the risks at various combinations of X and Z are
identical, and hence so are all the effect measures. For example, the risk difference for X when
Z = 1(Ry; — Ro1) equals0.2andwhen Z = 0 (Ryp — Roo) equals —0.2, aqualitative statistical in-
teraction. Thus, thesetwo completely different cohorts produceidentical interaction contrasts (IC =
0.4). In the first cohort, the two interaction types are those for whom X only has an effect in the
presence of Z and this effect is causal (type 8) and those for whom X only has an effect in the
absence of Z and this effect is preventive (type 15). In the second cohort, the only interaction type
present isthat in which the effect of X iscausal when Z is present and preventive when Z is absent
(type 7). In other words, even if we saw the actual effects, free of any bias or error, we could not
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Example of Two Cohorts with Different Proportions of Response Types that
Yield the Same Interaction Contrast

Cohort #1 Cohort #2
Response Response
Type Proportion R1y Ry Ror  Roo Type Proportion R4y Ry Roi  Roo
1 0.1 01 01 01 01 1 0.1 01 01 01 01
7 0 - = = = 7 0.2 02 — — 02
8 0.2 02 — - - 8 0 - - = =
15 0.2 - —  — 02 15 0 - - = =
16 0.5 - = = = 16 0.7 - - = =
Total 1.0 03 01 01 03 Total 1.0 03 01 01 03

distinguish whether the qualitative statistical interaction arose because different peopl e are affected
by X indifferent Z strata(ps = pis = 0.2, p1s = 0.5), or because the same people are affected but
in these individuals the X effectsreverse across Z strata (p7 = 0.2, pis = 0.7).

INTERACTIONS UNDER THE SUFFICIENT-CAUSE MODEL

In Chapter 2 we defined biol ogic interaction among two or more component causes to mean that the
causes participatein the same sufficient cause. Here, acomponent causefor anindividual isidentical
to acausal risk factor, or level of variable, the occurrence of which contributes to completion of a
sufficient cause. Different causal mechanisms correspond to different sufficient causes of disease. If
two component causes act to produce disease in a common sufficient cause, some cases of disease
may arise for which the two component causes share in the causal responsibility. In the absence
of either of the components, these cases would not occur. Under the sufficient-cause model, this
coparticipation in a sufficient cause is defined as synergistic interaction between the components,
causal coaction, or synergism.

There may aso be mechanisms that require absence of one factor and presence of the other to
produce disease. These correspond to asufficient cause in which absence of one factor and presence
of another are both component causes. Failure of disease to occur because both factors were present
may be defined as an antagonistic interaction between the components, or antagonism.

If two factors never participate jointly in the same sufficient cause by synergism or antagonism,
then no case of disease can be attributed to their coaction. Absence of biologic interaction, or
independence of effects of two factors, thus means that no case of disease was caused or prevented
by the joint presence of the factors.

We emphasize that two component causes can participate in the same causal mechanism without
acting at the same time. Expanding an example from Chapter 2, contracting a viral infection can
cause a person to have a permanent equilibrium disturbance. Years later, during icy weather, the
person may slip and fracture a hip while walking along a path because the equilibrium disturbance
has made balancing more difficult. The viral infection years before has interacted with the icy
weather (and the choice of type of shoe, the lack of ahandrail, etc.) to cause the fractured hip. Both
theviral infection and the icy weather are component causesin the same causal mechanism, despite
their actions being separated by many years.

We have said that two factors can “interact” by competing to cause disease, even if neither they
nor their absence share a sufficient cause, because only one complete sufficient cause is required
for disease to occur, and thus all sufficient causes compete to cause disease. Consider causes of
death: Driving without seat belts can be a component cause of afatal injury (the first completed
sufficient cause), which preventsdeath from all other sufficient causes (such asfatal lung cancer) and
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their components (such as smoking). Driving without seat belts thus prevents deaths from smoking
because it kills some people who would otherwise go on to die of smoking-related disease.

RELATION BETWEEN THE POTENTIAL-OUTCOME AND
SUFFICIENT-CAUSE MODELS OF INTERACTION

Thereisadirect logical connection between the two definitions of biologic interaction discussed
thusfar, which can be exploited to provide alink between the sufficient-cause model (Chapter 2) and
measures of incidence (Greenland and Poole, 1988). To build this connection, Figure 5-1 displays
the nine sufficient causes possible when we can distinguish only two binary variables X and Z. The
U, ineach circlerepresents all component causes (otherthan X = 1or X =0and Z = 1or X =0)
that are necessary to complete the sufficient cause. We say a personis at risk of, or susceptible to,
sufficient causek (k = A, B,C, D, E, F, G, H, 1) if Ucispresent for that person, that is, if sufficient
cause k is complete except for any necessary contribution from X or Z. Note that a person may

Sufficient-cause-type Description

>

@ @ @ ) €9 €9 € 69 (&)

X and Z irrelevant

X =1 necessary, Z irrelevant

Z =1 necessary, X irrelevant

X =0 necessary, Z irrelevant

Z = 0 necessary, X irrelevant

X=1and Z=1 necessary

X=1and Z=0 necessary

X=0and Z=1 necessary

Cal

X=0and Z=0 necessary

U = all other components of the sutficient cause

FIGURE 5-1 Enumeration of the nine types of sufficient causes for two
dichotomous exposure variables.
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be at risk of none, one, or several sufficient causes. Of the nine types of sufficient causesin Figure
5-1, four (F, G, H, |) are examples of causal coaction (biologic interaction in the sufficient-cause
Sense).

We can deduce the causal responsetypeof any individual given hisor her risk statusfor sufficient
causes. In other words, we can deduce the row in Table 5—2 to which an individua belongs if we
know the sufficient causesfor which he or sheisat risk. For example, any person at risk of sufficient
cause A is doomed to disease, regardiess of the presence of X or Z, so that person is of response
type 1in Table 5-2. Also, a person at risk of sufficient causes B and C, but no other, will get the
diseaseunless X = Z =0, soisof type 2. Similarly, aperson at risk of sufficient causes F, G, and
H, but no other, will also get the disease unless X = Z = 0, so must be response type 2.

Several other combinations of sufficient causeswill yield atype 2 person. In general, completely
different combinations of susceptibilities to sufficient causes may produce the same response type,
so that the sufficient-cause model is a “finer” or more detailed model than the potential -outcome
(response-type) model of the effects of the same variables (Greenland and Poole, 1988; Greenland
and Brumback, 2002; VanderWeele and Hernén, 2006; VanderWeele and Robins, 2007a). In other
words, for every response typein apotential -outcome model we can construct at |east one and often
several sufficient-cause model sthat producetheresponsetype. Nonethel ess, thereareafew response
types that correspond to a unique sufficient cause. One example is the synergistic response type
(type 8in Table 5—2), for whom disease resultsif and only if X = 1and Z = 1. The susceptibility
pattern that results in such synergistic response is the one in which the person is at risk of only
sufficient cause F . Sufficient cause F correspondsexactly to synergistic causation or causal coaction
of X =1and Z = 1 in the sufficient-cause model. Thus, the presence of synergistic responders
(type 8 in Table 5—2) corresponds to the presence of synergistic action (cause F in Fig. 5-1).

Vander\Weeleand Robins (2007a) show that the presence of interaction responsetype7, 8, 10, 12,
14, or 15 impliesthe presence of causal coaction, i.e., the presence of a sufficient cause of the form
F, G, H,or | (whichthey take astheir definition of biologic interaction). In contrast, the other four
response types defined as interactions above (2, 3, 5, 9) do not imply causal coaction, i.e., response
types 2, 3, 5, and 9 can occur even if no causal coaction is present. For this reason, VanderWeele
and Robins (2007a) define only types 7, 8, 10, 12, 14, and 15 as reflecting interdependent action,
in order to induce a correspondence with coaction in the sufficient-cause model. The four types
that they exclude (types 2, 3, 5, and 9) are the types for which disease occurs under 3 out of the 4
combinations of possible X and Z values.

Asshown earlier, we caninfer that synergistic response types are present from superadditivity of
the causal risk differencesif we assumethat neither factor is ever preventive. Because no preventive
action means that neither X = 0 nor Z = 0 actsin a sufficient cause, we can infer the presence of
synergistic action (sufficient cause F) from superadditivity if we assume that sufficient causes D,
E, G, H, and | are absent (these are the sufficient causes that contain X = 0 or Z = 0). Without
assuming no preventiveaction, VanderWeel e and Robins (2007a) show that if Rj1 — Rog — Rig > 0
(astronger condition than superadditivity), then the sufficient cause F must be present—that is, there
must be synergism between X = 1 and Z = 1. They aso give analogous conditions for inferring
the presence of sufficient causes G, H, and |.

Interaction analysis is described further in Chapter 16.

BIOLOGIC VERSUS STATISTICAL INTERACTION

Some authors have argued that factors that act in distinct stages of amultistage model are examples
of independent actionswith multiplicative effect (Siemiatycki and Thomas, 1981). By the definitions
we use, however, actions at different stages of a multistage model are interacting with one another,
despite their action at different stages, just as the viral infection and the slippery walk interacted
in the example to produce a fractured hip. Thus, we would not call these actions independent.
Furthermore, we do not consider risk-difference additivity to be a natural relation between effects
that occur. Although complete absence of interactionsimpliesrisk additivity, wewould rarely expect
to observe risk-difference additivity because we would rarely expect factors to act independently
inall people.

More generally, we reiterate that statistical interaction—effect-measure modification—should
not be confused with biologic interaction. Most important, when two factors have effects, risk-ratio
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homogeneity—though often misinterpreted as indicating absence of biologic interaction—implies
just the opposite, that is, presence of biologic interactions. This conclusion follows because, as
shown earlier, homogeneity of aratio measure implies heterogeneity (and hence nonadditivity) of
the corresponding difference measure. This nonadditivity in turn impliesthe presence of sometype
of biologic interaction.

PUBLIC HEALTH INTERACTIONS

Assuming that costsor benefitsof exposuresor interventionsare measured by the excessor reduction
in case load they produce, several authors have proposed that departures from additivity of case
loads (incident numbers) or incidences correspond to public health interaction (Blot and Day, 1979;
Rothman et al., 1980; Saracci, 1980). The rationale is that, if the excess case loads produced by
each factor are not additive, one must know the levels of all the factorsin order to predict the public
health impact of removing or introducing any one of them (Hoffman et a., 2006).

Asanexample, wecanreturn to theinteraction between smoking and asbestosexposure examined
at the beginning of the chapter. Recall that in the hypothetical examplethe average 10-year mortality
risk in a cohort of asbestos-exposed smokers was 0.020, but it would have been 0.003 if all cohort
members quit smoking at the start of follow-up, it would have been 0.010 if only the asbestos
exposure had been prevented, and it would have declined to 0.001 if everyone quit smoking and
the asbestos exposure had been prevented. These effects are nonadditive, because

Rus — Roo = 0.020 — 0.001 = 0.019 > (Rio — Ruo) + (Ror — Roo)
— (0.003 — 0.001) + (0.010 — 0.001) = 0.011

If there were 10,000 exposed workers, prevention of asbestos exposure would have reduced the case
load from (0.020)10,000 = 200 to (0.010)10,000 = 100 if smoking habits did not change, but it
would have reduced the case load from 0.003(10,000) = 30 to 0.001(10,000) = 20 if everyone aso
quit smoking at the start of follow-up. Thus, the benefit of preventing asbestos exposure (in terms
of mortality reduction) would have been five times greater if no one quit smoking than if everyone
quit. Only if therisk differences were additive would the mortality reduction be the same regardless
of smoking. Otherwise, the smoking habits of the cohort cannot be ignored when estimating the
benefit of preventing asbestos exposure. As discussed in Chapter 2, complete removal of exposure
isusually infeasible, but the same point appliesto partial removal of exposure. The benefit of partial
removal of onefactor may be very sensitiveto the distribution of other factorsamong thosein whom
the factor is removed, as well as being sensitive to the means of removal.

If public health benefits are not measured using case-load reduction, but instead are measured
using some other benefit measure (for example, expected years of life gained or health care cost
reduction), then public health interaction would correspond to nonadditivity for that measure,
rather than for case load or risk differences. The general concept is that public health interactions
correspond to a situation in which public health costs or benefits from altering one factor must
take into account the prevalence of other factors. Because the presence and extent of public health
interactions can vary with the benefit measure, the concept parallels algebraically certain types of
statistical interaction or effect-measure modification, and so statistical methods for studying the
latter phenomenon can also be used to study public health interaction. The study of public health
interaction differs, however, inthat the choi ce of the measureisdictated by the public health context,
rather than by statistical convenience or biologic assumptions.
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Epi demiologic study designs comprise both experimental and nonexperimental studies. The

experiment is emblematic of scientific activity. But what constitutes an experiment? In common
parlance, an experiment refers to any trial or test. For example, a professor might introduce new
teaching methods as an experiment. For many scientists, however, the term has a more specific
meaning: An experiment is a set of observations, conducted under controlled circumstances, in
which the scientist mani pul ates the conditionsto ascertain what effect, if any, such manipulation has
on the observations. Some might enlarge this definition to include controlled observations without
manipulation of the conditions. Thus, the astronomical observations during the solar eclipse of 1919
that corroborated Einstein’sgeneral theory of relativity have often beenreferred to asan experiment.
For epidemiologists, however, theword experiment usually impliesthat theinvestigator manipul ates
the exposure assigned to participants in the study. Experimental epidemiology is therefore limited
by definition to topics for which the exposure condition can be manipulated. Because the subjects
of these manipulations are human, experimental epidemiology isfurther limited ethically to studies
inwhich all exposure assignments are expected to cause no harm.

When epidemiologic experiments meet minimal standards of feasibility and ethics, their design
is guided by the objectives of reducing variation in the outcome attributable to extraneous factors
and accounting accurately for the remaining extraneous variation. There are generally two or more
forms of the intervention. Intervention assignments are ordinarily determined by the researcher by
applying a randomized allocation scheme. The purpose of random allocation is to create groups
that differ only randomly at the time of allocation with regard to subsequent occurrence of the study
outcome. Epidemiologic experiments include clinical trials (with patients as subjects), field trials
(withinterventions assigned to individual community members), and community intervention trials
(with interventions assigned to whole communities).

When experiments are infeasible or unethical, epidemiologists design nonexperimental (also
known as observational) studies in an attempt to simulate what might have been learned had an
experiment been conducted. In nonexperimental studies, the researcher is an observer rather than
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an agent who assignsinterventions. The four main types of nonexperimental epidemiologic studies
are cohort studies—in which all subjects in a source population are classified according to their
exposure status and followed over time to ascertain disease incidence; case-control studies—in
which cases arising from a source population and a sample of the source population are classified
according to their exposure history; cross-sectional studies, including preval ence studies—inwhich
one ascertains exposure and disease status as of a particular time; and ecologic studies—in which
the units of observation are groups of people.

EXPERIMENTAL STUDIES

A typica experiment on human subjects creates experimental groups that are exposed to different
treatmentsor agents. In asimpletwo-group experiment, one group receivesatreatment and the other
doesnot. Ideally, the experimental groups are identical with respect to extraneous factorsthat affect
the outcome of interest, so that if the treatment had no effect, identical outcomeswould be observed
across the groups. This objective could be achieved if one could control al the relevant conditions
that might affect the outcome under study. I n the biol ogic sciences, however, the conditions affecting
most outcomes are so complex and extensive that they are mostly unknown and thus cannot be made
uniform. Hence there will be variation in the outcome, even in the absence of a treatment effect.
This“biologic variation” reflects variation in the set of conditions that produces the effect.

Thus, in biologic experimentation, one cannot create groups across which only the study treat-
ment varies. Instead, the experimenter may settle for creating groups in which the net effect of
extraneous factors is expected to be small. For example, it may be impossible to make all animals
in an experiment eat exactly the same amount of food. Variation in food consumption could pose
aproblem if it affected the outcome under study. If this variation could be kept small, however, it
might contribute little to variation in the outcome across the groups.

Theinvestigator would usually be satisfied if the net effect of extraneousfactorsacrossthe groups
were substantially less than the expected effect of the study treatment. Often not even that can be
achieved, however. In that case, the experiment must be designed so that the variation in outcome
due to extraneous factors can be measured accurately and thus accounted for in comparisons across
the treatment groups.

RANDOMIZATION

Intheearly 20th century, R. A. Fisher and othersdevel oped apractical basisfor experimental designs
that accounts accurately for extraneous variability across experimental units (whether the units are
objects, animals, people, or communities). Thisbasisiscalled randomization (random all ocation) of
treatments or exposuresamong the units: Each unit isassigned treatment using arandom assignment
mechanism such as a coin toss. Such a mechanism is unrelated to the extraneous factors that affect
the outcome, so any association between the treatment allocation it produces and those extraneous
factors will be random. The variation in the outcome across treatment groups that is not due to
treatment effects can thus be ascribed to these random associations and hence can be justifiably
called chance variation.

A hypothesis about the size of the treatment effect, such asthe null hypothesis, correspondsto a
specific probability distribution for the potential outcomes under that hypothesis. This probability
distribution can be compared with the observed association between treatment and outcomes. The
comparison links statistics and inference, which explains why many statistical methods, such as
analysisof variance, estimate random outcome variation within and acrosstreatment groups. A study
with random assignment of the treatment allows one to compute the probability of the observed
association under various hypotheses about how treatment assignment affectsoutcome. In particul ar,
if assignment israndom and has no effect on the outcome except through treatment, any systematic
(nonrandom) variation in outcome with assignment must be attributable to a treatment effect.

Scientists conducted experiments for centuries before the idea of random allocation crystallized,
and experiments that have little extraneous outcome variation (as often occur in physical sciences)
have no need of the method. Nonetheless, some social scientists and epidemiologists identify the
term experiment with arandomized experiment only. Sometimes the term quasi-experiment is used



Chapter 6 e Types of Epidemiologic Studies 89

to refer to controlled studies in which exposure was assigned by the investigator without using
randomization (Cook and Campbell, 1979).

VALIDITY VERSUS ETHICAL CONSIDERATIONS IN EXPERIMENTS
ON HUMAN SUBIJECTS

In an experiment, those who are exposed to an experimental treatment are exposed only because the
investigator has assigned the exposure to the subject. In a purely scientific experiment, the reason
for assigning the specific exposure to the particular subject is only to maximize the validity of
the study. The steps considered necessary to reach this goal are usually operationalized in a study
protocol. The only reason for the assignment is to conform to the protocol rather than to meet the
needs of the subject.

For example, suppose that a physician treating headache had prescribed a patented drug to her
wealthy patients and a generic counterpart to her indigent patients, because the presumed greater
reliability of the patented version was in her judgment not worth the greater cost for those of
modest means. Should the physician want to compare the effects of the two medications among her
patients, she could not consider herself to be conducting avalid experiment, despite the fact that the
investigator herself had assigned the exposures. Because assignment was based in part on factors
that could affect the outcome, such as wealth, one would expect there to be differences among
the treatment groups even if the medications had the same effect on the outcome, i.e., one would
expect there to be confounding (see Chapter 4). To conduct a valid experiment, she would have to
assign the drugs according to a protocol that would not lead to systematic imbal ance of extraneous
causes of headache across the treatment groups. The assignment of exposure in experiments is
designed to help the study rather than the individual subject. If it is done to help the subject, then
anonexperimental study is still possible, but it would not be considered an experiment because of
the confounding that the treatment-assignment criterion might induce.

Becausethegoal sof thestudy, rather than the subject’ sneeds, determinethe exposureassignment,
ethical constraintslimit severely the circumstancesin which valid experiments on humans are feasi-
ble. Experiments on human subjects are ethically permissible only when adherence to the scientific
protocol does not conflict with the subject’s best interests. Specifically, there should be reasonable
assurancethat thereis no known and feasible way a participating subject could be treated better than
with the treatment possibilities that the protocol provides. From this requirement comes the con-
straint that any exposures or treatments given to subjects should be limited to potential preventives
of disease. This limitation alone confines most etiologic research to the nonexperimental variety.

Among the more specific ethical implications is that subjects admitted to the study should not
be thereby deprived of some preferable form of treatment or preventive that is not included in the
study. Thisrequirement impliesthat best available therapy should beincluded to provide areference
(comparison) for any new treatment. Another ethical requirement, known as equipoise, states that
the treatment possibilitiesincluded in thetrial must be equally acceptable given current knowledge.
Equipoise severely restricts use of placebos. The Declaration of Helsinki statesthat it isunethical to
include aplacebo therapy asone of thearmsof aclinical trial if an accepted remedy or preventive of
the outcome already exists (World Medical Association, www.wma.net/e/policy/b3.htm; Rothman
and Michels, 2002).

Even with these limitations, many epidemiologic experiments are conducted (some of which
unfortunately ignore ethical principles such as equipoise). Most are clinical trials, which are epi-
demiologic studies evaluating treatments for patients who aready have acquired disease (trial is
used as a synonym for experiment). Epidemiologic experiments that aim to evaluate primary pre-
ventives (agents intended to prevent disease onset in the first place) are less common than clinical
trids; these studies are either field trials or community intervention trials.

CLINICAL TRIALS

A clinical trial is an experiment with patients as subjects. The goal of most clinical trialsis either
to evaluate a potential cure for a disease or to find a preventive of disease sequelae such as death,
disability, or adeclineinthe quality of life. The exposuresin such trialsare not primary preventives,
because they do not prevent occurrence of theinitial disease or condition, but they are preventives of
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thesequelaeof theinitial diseaseor condition. For example, amodified diet after anindividual suffers
amyocardial infarction may prevent a second infarction and subsequent death, chemotherapeutic
agents given to cancer patients may prevent recurrence of cancer, and immunosuppressive drugs
given to transplant patients may prevent transplant rejection.

Subjects in clinical trials of sequelae prevention must be diagnosed as having the disease in
question and shoul d be admitted to the study soon enough following diagnosisto permit thetreatment
assignment to occur in atimely fashion. Subjectswhoseillnessistoo mild or too severeto permit the
form of treatment or alternative treatment being studied must be excluded. Treatment assignment
should be designed to minimize differences between treatment groups with respect to extraneous
factorsthat might affect the comparison. For example, if some physicians participating in the study
favored the new therapy, they could conceivably influence the assignment of , say, their own patients
or perhaps the more seriously afflicted patients to the new treatment. If the more seriously afflicted
patients tended to get the new treatment, then confounding (see Chapter 4) would result and valid
evaluation of the new treatment would be compromised.

To avoid this and related problems, it is desirable to assign treatments in clinica trials in a
way that allows one to account for possible differences among treatment groups with respect to
unmeasured “baseling” characteristics. Aspart of thisgoal, the assignment mechanism should deter
manipulation of assignments that is not part of the protocal. It is almost universally agreed that
randomization is the best way to deal with concerns about confounding by unmeasured baseline
characteristicsand by personnel manipulation of treatment assignment (Byar et a., 1976; Petoet dl .,
1976; Gelman et a., 2003). The validity of the trial depends strongly on the extent to which the
random assignment protocol isthe sole determinant of the treatments received. When this condition
is satisfied, confounding due to unmeasured factors can be regarded as random, is accounted for
by standard statistical procedures, and diminishes in likely magnitude as the number randomized
increases (Greenland and Robins, 1986; Greenland, 1990). When the condition is not satisfied,
however, unmeasured confounders may bias the statistics, just as in observational studies. Even
when the condition is satisfied, the generalizability of trial results may be affected by selective
enrollment. Trial participants do not often reflect the distribution of sex, age, race, and ethnicity
of the target patient population (Murthy et al., 2004; Heiat et al., 2002). For reasons explained
in Chapter 8, representative study populations are seldom scientifically optimal. When treatment
efficacy is modified by sex, age, race, ethnicity, or other factors, however, and the study population
differs from the population that would be receiving the treatment with respect to these variables,
then the average study effect will differ from the average effect among those who would receive
treatment. In these circumstances, extrapolation of the study resultsis tenuous or unwarranted, and
one may haveto restrict theinferencesto specific subgroups, if the size of those subgroups permits.

Given that treatment depends on random allocation, rather than patient and physician treatment
decision making, patients’ enrollment into a tria requires their informed consent. At a minimum,
informed consent requires that participants understand (a) that they are participating in a research
study of a stated duration, (b) the purpose of the research, the procedures that will be followed,
and which procedures are experimental, (c) that their participation is voluntary and that they can
withdraw at any time, and (d) the potential risks and benefits associated with their participation.

Although randomization methods often assign subjects to treatments in approximately equal
proportions, this equality is not always optimal. True equipoise provides a rationale for equal as-
signment proportions, but often one treatment is hypothesized to be more effective based on a
biologic rationale, earlier studies, or even preliminary data from the same study. In these circum-
stances, equal assignment probabilities may be a barrier to enrollment. Adaptive randomization
(Armitage, 1985) or imbalanced assignment (Avins, 1998) alows more subjects in the tria to
receive the treatment expected to be more effective with little reduction in power.

Whenever feasible, clinical trials should attempt to empl oy blinding with respect to the treatment
assignment. Ideally, the individual who makes the assignment, the patient, and the assessor of the
outcome should al be ignorant of the treatment assignment. Blinding prevents certain biases that
could affect assignment, assessment, or compliance. Most important is to keep the assessor blind,
especidly if the outcome assessment is subjective, as with a clinical diagnosis. (Some outcomes,
such asdeath, will berelatively insusceptible to biasin assessment.) Patient knowledge of treatment
assignment can affect adherence to the treatment regime and can bias perceptions of symptomsthat
might affect the outcome assessment. Studies in which both the assessor and the patient are blinded
as to the treatment assignment are known as double-blind studies. A study in which the individual
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who makes the assignment is unaware which treatment is which (such as might occur if the
treatments are coded pillsand the assigner does not know the code) may be described astriple-blind,
though this term is used more often to imply that the data analyst (in addition to the patient and
the assessor) does not know which group of patientsin the analysis received which treatment.

Depending onthe nature of theintervention, it may not be possibleor practical to keep knowledge
of the assignment from all of these parties. For example, a treatment may have well-known side
effectsthat allow the patients to identify the treatment. The investigator needs to be aware of and to
report these possibilities, so that readers can assess whether all or part of any reported association
might be attributable to the lack of blinding.

If there is no accepted treatment for the condition being studied, it may be useful to employ a
placebo asthe comparison treatment, when ethical constraintsallow it. Placebosareinert treatments
intended to have no effect other than the psychologic benefit of receiving a treatment, which itself
can have a powerful effect. This psychologic benefit is called a placebo response, even if it occurs
among patients receiving active treatment. By employing a placebo, an investigator may be able
to control for the psychologic component of receiving treatment and study the nonpsychologic
benefits of a new intervention. In addition, employing a placebo facilitates blinding if there would
otherwise be no comparison treatment. These benefits may be incomplete, however, if noticeable
side effects of the active treatment enhance the placebo response (the psychologic component of
treatment) among those receiving the active treatment.

Placebosare not necessary when the objective of thetrial issolely to comparedifferent treatments
with one another. Nevertheless, even without placebos, one should be alert to the possibility of a
placebo effect, or of adherence differences, due to differences in noticeable side effects among the
active treatments that are assigned.

Nonadherence to or noncompliance with assigned treatment results in a discrepancy between
treatment assigned and actual treatment received by trial participants. Standard practice bases all
comparisons on treatment assignment rather than on treatment received. This practice is called
the intent-to-treat principle, because the analysis is based on the intended treatment, not the re-
ceived treatment. Although this principle helps preserve the validity of tests for treatment effects,
it tends to produce biased estimates of treatment effects; hence aternatives have been devel oped
(Goetghebeur et al., 1998). Adherence may sometimes be measured by querying subjects directly
about their compliance, by obtaining relevant data (e.g., by asking that unused pills be returned), or
by biochemical measurements. These adherence measures can then be used to adjust estimates of
treatment effects using special methods in which randomization plays the role of an instrumental
variable (Sommer and Zeger, 1991; Angrist et a., 1996; Greenland, 2000b; Chapter 12).

Most trials are monitored while they are being conducted by a Data and Safety Monitoring
Committee or Board (DSMB). The primary objective of these committeesisto ensure the safety of
thetrial participants (Wilhelmsen, 2002). The committee reviews study results, including estimates
of the main treatment effects and the occurrence of adverse events, to determine whether the trial
ought to be stopped before its scheduled completion. The rationale for early stopping might be (a)
the appearance of an effect favoring one treatment that is so strong that it would no longer be ethical
to randomize new patients to the aternative treatment or to deny enrolled patients access to the
favored treatment, (b) the occurrence of adverse events at rates considered to be unacceptable, given
the expected benefit of the treatment or trial results, or (c) the determination that the reasonably
expected resultsareno longer of sufficient valueto continuethetrial. Thedeliberationsof theDSMB
involve weighing issues of medicine, ethics, law, statistics, and costs to arrive at a decision about
whether to continue atrial. Given the complexity of the issues, the membership of the DSMB must
compriseadiverserange of training and experiences, and thus oftenincludesclinicians, statisticians,
and ethicists, none of whom have a material interest in the trial’s resullt.

The frequentist statistical rules commonly used by DSMB to determine whether to stop atrial
were developed to ensure that the chance of Type | error (incorrect rejection of the main null
hypothesis of no treatment effect; see Chapter 10) would not exceed a prespecified level (the apha
level) during the planned interim analyses (Armitage et a., 1969). Despite these goals, DSMB
members may misinterpret interim results (George et a., 2004), and strict adherence to these
stopping rules may yield spurious results (Wheatley and Clayton, 2003). Stopping a tria early
because of the appearance of an effect favoring one treatment will often result in an overestimate of
thetruebenefit of thetreatment (Pocock and Hughes, 1989). Furthermore, trial sthat are stopped early
may not allow sufficient follow-up to observe adverse events associated with the favored treatment
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(Cannistra, 2004), particularly if those events are chronic sequel ae. Bayesian alternatives have been
suggested to ameliorate many of these shortcomings (Berry, 1993; Carlin and Sargent, 1996).

FIELD TRIALS

Field trials differ from clinical trialsin that their subjects are not defined by presence of disease or
by presentationfor clinical care; instead, the focusison theinitial occurrence of disease. Patientsin
aclinical trial may face the complications of their disease with high probability during arelatively
short time. In contrast, the risk of incident disease among free-living subjects is typically much
lower. Consequently, field trialsusually require amuch larger number of subjectsthan clinical trials
and are usually much more expensive. Furthermore, because the subjects are not under active health
care and thus do not come to a central location for treatment, a field trial often requires visiting
subjects at work, home, or school, or establishing centers from which the study can be conducted
and to which subjects are urged to report. These design features add to the cost.

Theexpense of field trialslimitstheir useto the study of preventives of either extremely common
or extremely serious diseases. Several field trials were conducted to determine the efficacy of large
doses of vitamin Cin preventing the common cold (Karlowski et al., 1975; Dykesand Meier, 1975).
Paralytic poliomyelitis, arare but serious iliness, was a sufficient public health concern to warrant
what may have been the largest formal human experiment ever attempted, the Salk vaccine trial,
in which the vaccine or a placebo was administered to hundreds of thousands of school children
(Franciset a., 1955). When the disease outcome occursrarely, it is more efficient to study subjects
thought to be at higher risk. Thus, the trial of hepatitis B vaccine was carried out in a population
of New York City male homosexuals, among whom hepatitis B infection occurs with much greater
frequency than isusual among New Yorkers (Szmuness, 1980). Similarly, the effect of cessation of
vaginal douching on therisk of pelvic inflammatory disease was studied in women with a history of
recent sexually transmitted disease, a strong risk factor for pelvic inflammatory disease (Rothman
et a., 2003).

Analogous reasoning is often applied to the design of clinical trials, which may concentrate
on patients at high risk of adverse outcomes. Because patients who had aready experienced a
myocardial infarction are at high risk for a second infarction, several clinical trials of the effect
of lowering serum cholesterol levels on the risk of myocardial infarction were undertaken on such
patients (Leren, 1966; Detre and Shaw, 1974). It is much more costly to conduct a trial designed
to study the effect of lowering serum cholesterol on the first occurrence of amyocardia infarction,
because many more subjects must be included to provide a reasonable number of outcome events
to study. The Multiple Risk Factor Intervention Trial (MRFIT) was afield trial of several primary
preventives of myocardial infarction, including diet. Although it admitted only high-risk individuals
and endeavored to reducerisk through several simultaneousinterventions, the study involved 12,866
subjects and cost $115 million (more than half a billion 2006 dollars) (Kolata, 1982).

As in clinical trias, exposures in field trials should be assigned according to a protocol that
minimizes extraneous variation across the groups, e.g., by removing any discretion in assignment
from the study’s staff. A random assignment scheme is again an ideal choice, but the difficulties of
implementing such aschemein alarge-scale field trial can outweigh the advantages. For example,
it may be convenient to distribute vaccinations to groups in batches that are handled identically,
especidly if storage and transport of the vaccineis difficult. Such practicalities may dictate use of
modified randomization protocols such as cluster randomization (explained later). Because such
modifications can seriously affect the informativeness and interpretation of experimental findings,
the advantages and disadvantages need to be weighed carefully.

COMMUNITY INTERVENTION AND CLUSTER RANDOMIZED TRIALS

The community intervention trial is an extension of the field tria that involves intervention on a
community-wide basis. Conceptually, the distinction hinges on whether or not the intervention is
implemented separately for each individual. Whereas avaccineis ordinarily administered singly to
individual people, water fluoridation to prevent dental cariesisordinarily administered to individual
water supplies. Consequently, water fluoridation was evaluated by community intervention trials
in which entire communities were selected and exposure (water treatment) was assigned on a
community basis. Other examples of preventivesthat might be implemented on acommunity-wide
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basisinclude fast-response emergency resuscitation programs and educational programs conducted
using mass media, such as Project Burn Prevention in Massachusetts (M acK ay and Rothman, 1982).

Some interventions are implemented most conveniently with groups of subjects that are smaller
than entire communities. Dietary intervention may be made most conveniently by family or house-
hold. Environmental interventions may affect an entire office, factory, or residential building. Pro-
tective sports equipment may have to be assigned to an entire team or league. Intervention groups
may be army units, classrooms, vehicle occupants, or any other group whose members are exposed
to the intervention simultaneously. The scientific foundation of experiments using such interven-
tions is identical to that of community intervention trials. What sets all these studies apart from
field trialsisthat the interventions are assigned to groups rather than to individuals.

Field trials in which the treatment is assigned randomly to groups of participants are said to be
cluster randomized. Thelarger the size of the group to be randomized relative to the total study size,
the less is accomplished by random assignment. If only two communities are involved in a study,
one of which will receive theintervention and the other of which will not, such asin the Newburgh—
Kingston water fluoridation trial (Ast et a., 1956), it cannot matter whether the community that
receivesthefluorideisassigned randomly or not. Differencesin baseline (extraneous) characteristics
will have the same magnitude and the same effect whatever the method of assignment—only the
direction of the differences will be affected. It is only when the numbers of groups randomized to
each intervention are large that randomization is likely to produce similar distributions of baseline
characteristics among the intervention groups. Analysis of cluster randomized trials should thus
involve methodsthat take account of the clustering (Omar and Thompson, 2000; Turner et al ., 2001,
Spiegel halter, 2001), which are essential to estimate properly the amount of variability introduced
by the randomization (given a hypothesis about the size of the treatment effects).

NONEXPERIMENTAL STUDIES

Thelimitationsimposed by ethicsand costsrestrict most epidemiol ogic research to nonexperimental
studies. Althoughit isunethical for aninvestigator to expose aperson to apotential cause of disease
simply to learn about etiology, people often willingly or unwillingly expose themselves to many
potentially harmful factors. Consider the example of cigarettes (MacMahon, 1979):

[People] choose a broad range of dosages of avariety of potentially toxic substances. Consider the
cigarette habit to which hundreds of millions of persons have exposed themselves at levels ranging
from amost zero (for those exposed only through smoking by others) to the addict’s three or four
cigarettes per waking hour, and the consequent two million or more deaths from lung cancer in the
last half century in this country alone.

Beyond tobacco, people in industrialized nations expose themselves, among other things, to a
range of exercise regimens from sedentary to grueling, to diets ranging from vegan to those derived
amost entirely from animal sources, and to medical interventions for diverse conditions. Each
of these exposures may have intended and unintended consequences that can be investigated by
observational epidemiology.

Ideally, we would want the strength of evidence from nonexperimental research to be as high
as that obtainable from a well-designed experiment, had one been possible. In an experiment,
however, the investigator has the power to assign exposures in away that enhances the validity of
the study, whereasin nonexperimental research theinvestigator cannot control the circumstances of
exposure. If those who happen to be exposed have a greater or lesser risk for the disease than those
who are not exposed, a simple comparison between exposed and unexposed will be confounded by
this difference and thus not reflect validly the sole effect of the exposure. The comparison will be
confounded by the extraneous differences in risk across the exposure groups (i.e., differences that
are not attributable to the exposure contrast under study).

Lack of randomization calls into question the standard practice of analyzing nonexperimental
datawith statistical methods devel oped for randomized studies. Without randomi zation, systematic
variation is acomposite of all uncontrolled sources of variation—including any treatment effect—
but also including confounding factors and other sources of systematic error. Asaresult, in studies
without randomization, the systematic variation estimated by standard statistical methods is not
readily attributable to treatment effects, nor can it be reliably compared with the variation expected
to occur by chance. Separation of treatment effects from the mixture of uncontrolled systematic
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variation in nonrandomized studies (or in randomized studies with noncompliance) requires addi-
tional hypothesesabout the sourcesof systematic error. In nonexperimental studies, thesehhypotheses
are usually no more than speculations, athough they can be incorporated into the analysis as prior
distributions in Bayesian analysis or as parameter settings in a bias analysis (Chapters 18 and 19).
In this sense, causa inference in the absence of randomization is largely speculative. The valid-
ity of such inference depends on how well the speculations about the effect of systematic errors
correspond with their true effect.

Because the investigator cannot assign exposure in nonexperimental studies, he or she must rely
heavily on the primary source of discretion that remains: the selection of subjects. If the paradigm
of scientific observation is the experiment, then the paradigm of nonexperimental epidemiologic
researchisthe*natural experiment,” in which nature emul atesthe sort of experiment theinvestigator
might have conducted, but for ethical and cost constraints. By far the most renowned exampleisthe
elegant study of cholerain London conducted by John Snow. In London during the mid-19th century,
there were several water companies that piped drinking water to residents, and these companies
often competed side by side, serving similar clientele within city districts. Snow took advantage of
this natural experiment by comparing the choleramortality ratesfor residents subscribing to two of
the major water companies: the Southwark and Vauxhall Company, which piped impure Thames
River water contaminated with sewage, and the Lambeth Company, which in 1852 changed its
collection point from opposite Hungerford Market to Thames Ditton, thus obtaining a supply of
water that was free of the sewage of London. As Snow (1855) described it,

... theintermixing of the water supply of the Southwark and Vauxhall Company with that of the
Lambeth Company, over an extensive part of London, admitted of the subject being sifted in such a
way asto yield the most incontrovertible proof on one side or the other. In the subdistricts. . .
supplied by both companies, the mixing of the supply is of the most intimate kind. The pipes of each
company go down all the streets, and into nearly all the courts and alleys. A few houses are supplied
by one company and afew by the other, according to the decision of the owner or occupier at the
time when the Water Companies were in active competition. In many cases a single house has a
supply different from that on either side. Each company supplies both rich and poor, both large
houses and small; there is no differencein either the condition or occupation of the persons receiving
the water of the different companies. . . it is obvious that no experiment could have been devised
which would more thoroughly test the effect of water supply on the progress of cholerathan this.

The experiment, too, was on the grandest scale. No fewer than three hundred thousand people of
both sexes, of every age and occupation, and of every rank and station, from gentle folks down to the
very poor, were divided into two groups without their choice, and, in most cases, without their
knowledge; one group being supplied with water containing the sewage of London, and amongst it,
whatever might have come from the cholera patients, the other group having water quite free from
impurity.

To turn this experiment to account, all that was required was to learn the supply of water to each
individual house where afatal attack of choleramight occur. . . .

There are two primary types of nonexperimental studies in epidemiology. The first, the cohort
study (also called the follow-up study or incidence study), is a direct analog of the experiment.
Different exposure groups are compared, but (as in Snow’s study) the investigator only selects
subjectsto observe, and only classifiesthese subjects by exposure status, rather than assigning them
to exposure groups. The second, the incident case-control study, or simply the case-control study,
employs an extra step of sampling from the source population for cases: Whereas a cohort study
would include al persons in the population giving rise to the study cases, a case-control study
selects only a sample of those persons and chooses who to include in part based on their disease
status. This extra sampling step can make a case-control study much more efficient than a cohort
study of the same population, but it introduces a number of subtleties and avenues for bias that are
absent in typical cohort studies.

More detailed discussions of both cohort and case-control studiesand their variants, with specific
examples, are presented in Chapters 7 and 8. We provide here brief overviews of the designs.

COHORT STUDIES

In the paradigmatic cohort study, the investigator definestwo or more groups of peoplethat are free
of disease and that differ according to the extent of their exposure to a potential cause of disease.
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These groups are referred to as the study cohorts. When two groups are studied, one is usualy
thought of as the exposed or index cohort—those individuals who have experienced the putative
causal event or condition—and the other is then thought of as the unexposed, or reference cohort.
There may be more than just two cohorts, but each cohort would represent a group with a different
level or type of exposure. For example, an occupational cohort study of chemical workers might
comprise cohorts of workers in a plant who work in different departments of the plant, with each
cohort being exposed to a different set of chemicals. The investigator measures the incidence times
and rates of disease in each of the study cohorts, and compares these occurrence measures.

In Snow’s natural experiment, the study cohorts were residents of London who consumed water
from either the Lambeth Company or the Southwark and Vauxhall Company and who lived in
districts where the pipes of the two water companies were intermixed. Snow was able to estimate
the frequency of choleradeaths, using households as the denominator, separately for peoplein each
of the two cohorts (Snow, 1855):

According to areturn which was made to Parliament, the Southwark and Vauxhall Company
supplied 40,046 houses from January 1 to December 31, 1853, and the Lambeth Company supplied
26,107 houses during the same period; consequently, as 286 fatal attacks of choleratook place, in
the first four weeks of the epidemic, in houses supplied by the former company, and only 14 in
houses supplied by the latter, the proportion of fatal attacks to each 10,000 houses was as follows:
Southwark and Vauxhall 71, Lambeth 5. The cholera was therefore fourteen times as fatal at this
period, amongst persons having the impure water of the Southwark and Vauxhall Company, as
amongst those having the purer water from Thames Ditton.

Many cohort studies begin with but asingle cohort that is heterogeneous with respect to exposure
history. Comparisons of disease experience are made within the cohort across subgroups defined
by one or more exposures. Examples include studies of cohorts defined from membership lists
of administrative or social units, such as cohorts of doctors or nurses, or cohorts defined from
employment records, such as cohorts of factory workers.

CASE-CONTROL STUDIES

Case-control studies are best understood and conducted by defining a source population at the
outset, which represents a hypothetical study population in which a cohort study might have been
conducted, and by identifying a single disease of interest. If a cohort study were undertaken, the
primary taskswould betoidentify the exposed and unexposed denominator experience, measuredin
person-time units of experience or asthe number of peoplein each study cohort, and then to identify
the number of cases occurring in each person-time category or study cohort. In acase-control study,
these same cases are identified and their exposure status is determined just as in a cohort study, but
denominators from which rates could be calculated are not measured. Instead, a control group of
study subjects is sampled from the entire source population that gave rise to the cases.

The purpose of this control group isto determine the relative size of the exposed and unexposed
denominatorswithin the source population. Just aswe can attempt to measure either risksor ratesin
acohort, the denominatorsthat the control seriesrepresentsin acase-control study may reflect either
the number of peoplein the exposed and unexposed subsets of the source popul ation, or the amount
of person-timein the exposed and unexposed subsets of the source population (Chapter 8). From the
relative size of these denominators, the relative size of the incidence rates or incidence proportions
can then be estimated. Thus, case-control studiesyield direct estimates of relative effect measures.
Because the control group is used to estimate the distribution of exposure in the source population,
the cardinal requirement of control selection is that the controls must be sampled independently of
their exposure status.

PROSPECTIVE VERSUS RETROSPECTIVE STUDIES

Studies can be classified further as either prospective or retrospective, although several definitions
have been used for these terms. Early writers defined prospective and retrospective studiesto denote
cohort and case-control studies, respectively. Using the terms prospective and retrospective in this
way conveys no additional information and fails to highlight other important aspects of a study for
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which the description prospective or retrospective might be illuminating, and therefore a different
usage devel oped.

A central feature of study design that can be highlighted by the distinction between prospective
and retrospective is the order in time of the recording of exposure information and the occurrence
of disease. In some studies, in particular, those in which the exposure is measured by asking
people about their history of exposure, it is possible that the occurrence of disease could influence
the recording of exposure and bias the study results, for example, by influencing recall. A study
based on such recall is one that merits the label retrospective, at |east with respect to the recording
of exposure information, and perhaps for the study as a whole. Assessing exposure by recall after
disease has occurred isafeature of many case-control studies, which may explain why case-control
studies are often labeled retrospective. A study with retrospective measurement in this sense is
subject to the concern that disease occurrence or diagnosis has affected exposure eval uation.

Nevertheless, not all case-control studies involve recall. For example, case-control studies that
evaluate drug exposures have prospective measurement if theinformation on the exposuresand other
risk factorsis taken from medical records or exposure registries that predate disease devel opment.
These case-control studiesmay be more appropriately described as prospective, at least with respect
to exposure measurement.

Not all study variables need be measured simultaneously. Some studiesmay combine prospective
measurement of some variables with retrospective measurement of other variables. Such studies
might be viewed as being a mixture of prospective and retrospective measurements. A reasonable
rule might be to describe a study as prospective if the exposure measurement could not be influ-
enced by the disease, and retrospective otherwise. This rule could lead to a study with a mixture
of prospectively and retrospectively measured variables being described differently for different
analyses, and appropriately so.

The access to data may affect study validity as much as the recording of the data. Historical
ascertainment has implications for selection and missing-data bias insofar as records or data may
be missing in a systematic fashion. For example, preserving exposure information that has been
recorded in the past (that is, prospectively) may depend on disease occurrence, as might be the case
if occupational records were destroyed except for workers who have submitted disability claims.
Thus, prospectively recorded information might have a retrospective component to itsinclusion in
a study, if inclusion depends on disease occurrence. In determining whether the information in a
study is prospectively or retrospectively obtained, the possibility that disease could influence either
the recording of the data or its entry path into the study should be considered.

The terms prospective and retrospective have also been used to refer to the timing of the accu-
mulated person-time with respect to the study’s conduct. Under this usage, when the person-time
accumul ates before the study is conducted, it said to be a retrospective study, even if the exposure
status was recorded before the disease occurred. When the person-time accumul ates after the study
begins, it is said to be a prospective study; in this situation, exposure status is ordinarily recorded
before disease occurrence, although there are exceptions. For example, job status might be recorded
for an occupational cohort at the study’s inception and as workers enter the cohort, but an industrial
hygienist might assign exposure levels to the job categories only after the study is completed and
therefore after all cases of disease have occurred. The potential then exists for disease to influence
the industrial hygienist’s assignment.

Additional nuances can similarly complicate the classification of studies as retrospective or
prospective with respect to study conduct. For example, cohort studies can be conducted by mea-
suring disease events after the study begins, by defining cohorts as of some time in the past and
measuring the occurrence of disease in the time before the study begins, or a combination of the
two. Similarly, case-control studies can be based on disease eventsthat occur after the study begins,
or events that have occurred before the study begins, or acombination. Thus, either cohort or case-
control studies can ascertain events either prospectively or retrospectively from the point of view of
the time that the study begins. According to this usage, prospective and retrospective describe the
timing of the events under study in relation to the time the study begins or ends: Prospective refers
to events concurrent with the study, and retrospective refersto use of historical events.

These considerations demonstrate that the classification of studiesas prospective or retrospective
is not straightforward, and that these terms do not readily convey a clear message about the study.
The most important study feature that these terms might illuminate would be whether the disease



Chapter 6 e Types of Epidemiologic Studies 97

could influence the exposure information in the study, and this is the usage that we recommend.
Prospective and retrospective will then be terms that could each describe some cohort studies
and some case-control studies. Under the alternative definitions, studies |abeled as “ retrospective’
might actually use methods that preclude the possibility that exposure information could have been
influenced by disease, and studies |abeled as “ prospective” might actually use methods that do not
exclude that possibility. Because the term retrospective often connotes an inherently less reliable
design and the term prospective often connotes an inherently more reliable design, assignment of
the classification under the alternative definitions does not always convey accurately the strengths or
weaknesses of the design. Chapter 9 discusses further the advantages and drawbacks of concurrent
and historical dataand of prospective and retrospective measurement.

CROSS-SECTIONAL STUDIES

A study that includes as subjects al persons in the population at the time of ascertainment or a
representative sample of all such persons, selected without regard to exposure or disease status,
is usualy referred to as a cross-sectional study. A cross-sectional study conducted to estimate
prevalence is called a prevalence study. Usually, exposure is ascertained simultaneously with the
disease, and different exposure subpopul ationsare compared with respect to their disease preval ence.
Such studies need not have etiologic objectives. For example, delivery of health services often
requires knowledge only of how many items will be needed (such as number of hospital beds),
without reference to the causes of the disease. Nevertheless, cross-sectional data are so often used
for etiologic inferences that a thorough understanding of their limitationsis essential.

One problem is that such studies often have difficulty determining the time order of events
(Flanders et al., 1992). Another problem, often called length-biased sampling (Simon, 1980a), is
that the cases identified in a cross-sectional study will overrepresent cases with long duration and
underrepresent those with short duration of illness. To see this, consider two extreme situations
involving adisease with ahighly variable duration. A person contracting this disease at age 20 and
living until age 70 can be included in any cross-sectional study during the person’s 50 years of
disease. A person contracting the disease at age 40 and dying within a day has aimost no chance
of inclusion. Thus, if the exposure does not alter disease risk but causes the disease to be mild and
prolonged when contracted (so that exposure is positively associated with duration), the prevalence
of exposure will be elevated among cases. As aresult, a positive exposure—disease association will
be observed in a cross-sectional study, even though exposure has no effect on disease risk and
would be beneficial if disease occurs. If exposure does not alter disease risk but causes the disease
to be rapidly fatal if it is contracted (so that exposure is negatively associated with duration), then
prevalence of exposure will be very low among cases. As aresult, the exposure—di sease association
observed inthe cross-sectional study will be negative, even though exposure has no effect on disease
risk and would be detrimental if disease occurs. There are analytic methods for dealing with the
potential relation of exposure to duration (e.g., Simon, 1980a). These methods require either the
diagnosis dates of the study cases or information on the distribution of durations for the study
disease at different exposure levels; such information may be available from medical databases.

Cross-sectional studies may involve sampling subjects differentially with respect to disease
status to increase the number of cases in the sample. Such studies are sometimes called prevalent
case-control studies, because their design is much like that of incident case-control studies, except
that the case series comprises prevalent rather than incident cases (M orgenstern and Thomas, 1993).

PROPORTIONAL MORTALITY STUDIES

A proportional mortality study includesonly dead subjects. The proportionsof dead exposed subjects
assigned to index causes of death are compared with the proportions of dead unexposed subjects
assigned to the index causes. The resulting proportional mortality ratio (abbreviated PMR) is the
traditional measure of the effect of the exposure on the index causes of death. Superficially, the
comparison of proportions of subjects dying from a specific cause for an exposed and an unexposed
group resembles a cohort study measuring incidence. The resemblance is deceiving, however,
because a proportional mortality study does not involve the identification and follow-up of cohorts.
All subjects are dead at the time of entry into the study.
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Thepremiseof aproportional mortality study isthat if the exposure causes (or prevents) aspecific
fatal illness, there should be proportionately more (or fewer) deaths from that illness among dead
people who had been exposed than among dead people who had not been exposed. This reasoning
sufferstwo important flaws. First, aPM R comparison cannot di stingui sh whether exposureincreases
the occurrence of the index causes of death, prevents the occurrence of other causes of death, or
some mixture of these effects (McDowall, 1983). For example, aproportional mortality study could
find a proportional excess of cancer deaths among heavy aspirin users compared with nonusers
of aspirin, but this finding might be attributable to a preventive effect of aspirin on cardiovascular
deaths, which compose the great majority of noncancer deaths. Thus, an implicit assumption of a
proportional mortality study of etiology is that the overall death rate for categories other than the
index is not related to the exposure.

The second major problem in mortality comparisons is that they cannot determine the extent
to which exposure causes the index causes of death or worsens the prognosis of the illnesses
corresponding to the index causes. For example, an association of aspirin use with stroke deaths
among al deaths could be due to an aspirin effect on the incidence of strokes, an aspirin effect on
the severity of strokes, or some combination of these effects.

The ambiguities in interpreting a PMR are not necessarily a fatal flaw, because the mea-
sure will often provide insights worth pursuing about causal relations. In many situations, there
may be only one or a few narrow causes of death that are of interest, and it may be judged
implausible that an exposure would substantially affect either the prognosis or occurrence of
any nonindex deaths. Nonetheless, many of the difficulties in interpreting proportional mortal-
ity studies can be mitigated by considering a proportional mortality study as a variant of the
case-control study. To do so requires conceptualizing a combined population of exposed and un-
exposed individuals in which the cases occurred. The cases are those deaths, both exposed and
unexposed, in the index category or categories, the controls are other deaths (Miettinen and Wang,
1981).

The principle of control series selection isto choose individuals who represent the source pop-
ulation from which the cases arose, to learn the distribution of exposure within that population.
Instead of sampling controls directly from the source population, we can sample deaths occurring
in the source population, provided that the exposure distribution among the deaths sampled is the
same as the distribution in the source population; that is, the exposure should not be related to the
causes of death among controls (McLaughlin et a., 1985). If we keep the objectives of control
selection in mind, it becomes clear that we are not bound to select as controls al deaths other
than index cases. We can instead select as controls a limited set of reference causes of death,
selected on the basis of a presumed lack of association with the exposure. In this way, other
causes of death for which arelation with exposure is known, suspected, or merely plausible can be
excluded.

The principle behind selecting the control causes of death for inclusion in the study isidentical
to the principle of selecting a control series for any case-control study: The control series should
be selected independently of exposure, with the aim of estimating the proportion of the source
population experience that is exposed, as in density case-control studies (Chapter 8). Deaths from
causes that are not included as part of the control series may be excluded from the study or may be
studied as alternative case groups.

Treating a proportional mortality study as a case-control study can thus enhance study validity.
It also provides abasisfor estimating the usual epidemiol ogic measures of effect that can be derived
from such studies (Wang and Miettinen, 1982). Largely for these reasons, proportional mortality
studies are increasingly described and conducted as case-control studies. The same type of design
and analysis has reappeared in the context of analyzing spontaneously reported adverse eventsin
connection with pharmaceutical use. The U.S. Food and Drug Administration maintains a database
of spontaneous reports, the Adverse Event Reporting System (AERS) (Rodriguez et al., 2001),
which has been a data source for studies designed to screen for associations between drugs and
previously unidentified adverse eff ectsusing empirical Bayestechniques(DuMouchel, 1999). Evans
et a. (2001) proposed that these data should be analyzed in the same way that mortality data had
been analyzed in proportional mortality studies, using a measure that they called the proportional
reporting ratio, or PRR, which was analogous to the PMR in proportional mortality studies. This
approach, however, is subject to the same problems that accompanied the PMR. Aswith the PMR,
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these problems can be mitigated by applying the principles of case-control studies to the task of
surveillance of spontaneous report data (Rothman et al., 2004).

ECOLOGIC STUDIES

All the study types described thus far share the characteristic that the observations made pertain
to individuals. It is possible, and sometimes necessary, to conduct research in which the unit of
observation is a group of people rather than an individual. Such studies are called ecologic or
aggregate studies. The groups may be classesin aschool, factories, cities, counties, or nations. The
only requirement isthat information on the populations studied is avail able to measure the exposure
and disease distributionsin each group. Incidence or mortality rates are commonly used to quantify
disease occurrence in groups. Exposure is a'so measured by an overall index; for example, county
alcohol consumption may be estimated from al cohol tax data, information on socioeconomic status
is available for census tracts from the decennia census, and environmental data (temperature, air
quality, etc.) may be available locally or regionally. These environmental data are examples of
exposures that are measured by necessity at the level of a group, because individual-level data are
usually unavailable and impractical to gather.

When exposure varies across individuals within the ecologic groups, the degree of associa
tion between exposure and disease need not reflect individual-level associations (Firebaugh, 1978;
Morgenstern, 1982; Richardson et al., 1987; Piantadosi et a., 1988; Greenland and Robins, 1994;
Greenland, 20014, 2002b; Chapter 25). In addition, use of proxy measuresfor exposure (e.g., alcohol
tax data rather than consumption data) and disease (mortality rather than incidence) further distort
the associations (Brenner et a., 1992b). Finally, ecologic studies usually suffer from unavailability
of datanecessary for adequate control of confoundingin the analysis (Greenland and Robins, 1994).
Even if the research goal is to estimate effects of group-level exposures on group-level outcomes,
problems of datainadequacy aswell as of inappropriate grouping can severely bias estimates from
ecologic studies (Greenland, 2001a, 2002b, 20044). All of these problems can combine to pro-
duce results of questionable validity on any level. Despite such problems, ecologic studies can be
useful for detecting associations of exposure distributions with disease occurrence, because such
associations may signal the presence of effects that are worthy of further investigation. A detailed
discussion of ecologic studiesis presented in Chapter 25.

HYPOTHESIS GENERATION VERSUS HYPOTHESIS SCREENING

Studiesin which validity isless secure have sometimes been referred to as “ hypothesis-generating”
studies to distinguish them from “analytic studies,” in which validity may be better. Ecologic
studies have often been considered as hypothesis-generating studies because of concern about
various biases. The distinction, however, between hypothesis-generating and analytic studies is
not conceptually accurate. It is the investigator, not the study, that generates hypotheses, and any
type of data may be used to test hypotheses. For example, international comparisons indicate that
Japanese women have a much lower breast cancer rate than women in the United States. These
data are ecologic and subject to the usual concerns about the many differences that exist between
cultures. Nevertheless, the finding corroborates a number of hypotheses, including the theories
that early menarche, high-fat diets, and large breast size (all more frequent among U.S. women
than Japanese women) may be important determinants of breast cancer risk (e.g., see Trichopou-
los and Lipman, 1992). The international difference in breast cancer rates is neither hypothesis-
generating nor analytic, for the hypotheses arose independently of thisfinding. Thus, the distinction
between hypothesis-generating and analytic studiesis one that is best replaced by a more accurate
distinction.

A proposal that weview favorably istorefer to preliminary studiesof limited validity or precision
as hypothesis-screening studies. In analogy with screening of individuals for disease, such studies
represent arelatively easy and inexpensive test for the presence of an association between exposure
and disease. If such an association is detected, it is subject to more rigorous and costly tests using
a more valid study design, which may be called a confirmatory study. Although the screening
analogy should not be taken to an extreme, it does better describe the progression of studies than
the hypothesis-generating/analytic study distinction.
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I he goal of acohort study isto measure and usually to compare the incidence of diseasein one
or more study cohorts. As discussed in Chapter 3, the word cohort designates a group of people
who share a common experience or condition. For example, a birth cohort shares the same year
or period of birth, a cohort of smokers has the experience of smoking in common, and a cohort
of vegetarians share their dietary habit. Often, if there are two cohorts in the study, one of them is
described as the exposed cohort—those individuals who have experienced a putative causal event
or condition—and the other is thought of as the unexposed, or reference, cohort. If there are more
than two cohorts, each may be characterized by a different level or type of exposure.

The present chapter focuses on basic elements for the design and conduct of cohort studies.
Further considerations for the design of cohort studies are given in Chapters 9 through 11, whereas
analysis methods applicable to cohort studies are given in Chapters 14 through 21. Many special
aspects of exposure assessment that are not covered here can be found in Armstrong et al. (1992).

DEFINITION OF COHORTS AND EXPOSURE GROUPS

Inprinciple, acohort study could be used to estimate averagerisks, rates, or occurrencetimes. Except
in certain situations, however, average risks and occurrence times cannot be measured directly from
the experience of a cohort. Observation of average risks or times of specific eventsrequiresthat the
whole cohort remain at risk and under observation for the entire follow-up period. Loss of subjects
during the study period prevents direct measurements of these averages, because the outcome of
lost subjects is unknown. Subjects who die from competing risks (outcomes other than the one
of interest) likewise prevent the investigator from estimating conditional risks (risk of a specific
outcome conditional on not getting other outcomes) directly. Thus, the only situation in which it
is feasible to measure average risks and occurrence times directly is in a cohort study, in which
thereislittle or no lossto follow-up and little competing risk. Although some clinical trials provide
these conditions, many epidemiologic studies do not. When losses and competing risks do occur,
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one may still estimate the incidence rate directly, whereas average risk and occurrence time must
be estimated using survival (life-table) methods (see Chapters 3 and 16).

Unlike average risks, which are measured with individuals as the unit in the denominator, inci-
dencerateshave person-timeasthe unit of measure. Theaccumulation of timerather thanindividuals
in the denominator of rates allows flexibility in the analysis of cohort studies. Whereas studies that
estimate risk directly are tied conceptually to the identification of specific cohorts of individuals,
studies that measure incidence rates can, with certain assumptions, define the comparison groups
in terms of person-time units that do not correspond to specific cohorts of individuas. A given
individual can contribute person-time to one, two, or more exposure groups in a given study, be-
cause each unit of person-time contributed to follow-up by a given individual possesses its own
classification with respect to exposure. Thus, an individual whose exposure experience changes
with time can, depending on details of the study hypothesis, contribute follow-up time to severa
different exposure-specific rates. In such astudy, the definition of each exposure group corresponds
to the definition of person-time eligibility for each level of exposure.

Asaresult of thisfocus on person-time, it does not always make senseto refer to the members of
an exposure group within acohort study asif the same set of individualswere exposed at al pointsin
time. The terms open popul ation or dynamic population describe a population in which the person-
time experience can accrue from a changing roster of individuals (see Chapter 3). (Sometimes the
term open cohort or dynamic cohort is used, but this usage conflicts with other usage in which
a cohort is a fixed roster of individuals.) For example, the incidence rates of cancer reported by
the Connecticut Cancer Registry come from the experience of an open population. Because the
population of residents of Connecticut is always changing, the individuals who contribute to these
rates are not a specific set of people who are followed through time.

When the exposure groups in a cohort study are defined at the start of follow-up, with no
movement of individuals between exposure groups during the follow-up, the groups are sometimes
called fixed cohorts. The groups defined by treatment allocation in clinical trials are examples of
fixed cohorts. If the follow-up of fixed cohorts suffers from losses to follow-up or competing risks,
incidence rates can still be measured directly and used to estimate averagerisks and incidencetimes.
If no losses occur from afixed cohort, the cohort satisfies the definition of a closed population (see
Chapter 3) and is often called a closed cohort. In such cohorts, unconditional risks (which include
the effect of competing risks) and average survival times can be estimated directly.

Inthe simplest cohort study, the exposurewould be apermanent and easily identifiable condition,
making thejob of assigning subjectsto exposed and unexposed cohortsasimpletask. Unfortunately,
exposures of interest to epidemiol ogists are seldom constant and are often difficult to measure. Con-
sider as an example the problems of identifying for study a cohort of users of a specific prescription
drug. To identify the usersrequiresamethod for locating those who receive or who fill prescriptions
for the drug. Without a record-keeping system of prescriptions, it becomes a daunting task. Even
with arecord system, the identification of those who receive or even those who fill a prescription
is not equivalent to the identification of those who actually use the drug. Furthermore, those who
are users of this drug today may not be users tomorrow, and vice versa. The definition of drug use
must be tied to time because exposure can change with time. Finally, the effect of the drug that is
being studied may be one that involves a considerable induction period. In that case, the exposure
status at agiven timewill relate to a possibleincrease or decrease in disease risk only at some later
time. Thus, someone who began to take the drug today might experience adrug-related effect in 10
years, but there might be no possibility of any drug-related effect for thefirst 5 years after exposure.

Itistempting to think of theidentification of study cohortsas simply aprocess of identifying and
classifying individuals asto their exposure status. The process can be complicated, however, by the
need to classify the experience of a single individual in different exposure categories at different
times. If the exposure can vary over time, at a minimum the investigator needs to alow for the
time experienced by each study subject in each category of exposure in the definition of the study
cohorts. The sequence or timing of exposure could also be important. If there can be many possible
exposure sequences, each individual could have a unique sequence of exposure levels and so define
a unique exposure cohort containing only that individual.

A simplifying assumption that is common in epidemiologic analysis is that the only aspect of
exposurethat determines current risk is some simple numeric summary of exposure history. Typical
summaries include current level of exposure, average exposure, and cumulative exposure, that is,
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the sum of each exposure level multiplied by the time spent at that level. Often, exposureislagged
in the summary, which means that only exposure at or up to some specified time before the current
time is counted. Although one has enormous flexibility in defining exposure summaries, methods
based on assuming that only a single summary is relevant can be severely biased under certain
conditions (Robins, 1987). For now, we will assume that a single summary is an adequate measure
of exposure. With this assumption, cohort studies may be analyzed by defining the cohorts based
on person-time rather than on persons, so that a person may be a member of different exposure
cohorts at different times. We nevertheless caution the reader to bear in mind the single-summary
assumption when interpreting such analyses.

Thetimethat an individual contributes to the denominator of one or more of the incidence rates
inacohort study is sometimes called thetimeat risk, in the sense of being at risk for devel opment of
the disease. Some people and, consequently, all their person-time are not at risk for a given disease
because they are immune or they lack the target organ for the study disease. For example, women
who have had a hysterectomy and all men are by definition not at risk for uterine cancer, because
they have no uterus.

CLASSIFYING PERSON-TIME

The main guideto the classification of personsor person-timeisthe study hypothesis, which should
be defined in as much detail as possible. If the study addresses the question of the extent to which
eating carrots will reduce the subseguent risk of lung cancer, the study hypothesis is best stated
in terms of what quantity of carrots consumed over what period of time will prevent lung cancer.
Furthermore, the study hypothesis should specify an induction time between the consumption of a
given amount of carrots and the subsequent effect: The effect of the carrot consumption could take
placeimmediately, begin gradually, or begin only after adelay, and it could extend beyond thetime
that an individual might cease eating carrots (Rothman, 1981).

In studies with chronic exposures (i.e., exposures that persist over an extended period of time),
it iseasy to confuse the time during which exposure occurs with the time at risk of exposure effects.
For example, in occupationa studies, time of employment is sometimes confused with time at
risk for exposure effects. The time of employment is a time during which exposure accumulates.
In contrast, the time at risk for exposure effects must logically come after the accumulation of a
specific amount of exposure, because only after that time can disease be caused or prevented by
that amount of exposure. The lengths of these two time periods have no constant relation to one
another. The time at risk of effects might well extend beyond the end of employment. It isonly the
time at risk of effects that should be tallied in the denominator of incidence rates for that amount
of exposure.

The distinction between time of exposure accrual and thetime at risk of exposure effectsiseasier
to see by considering an example in which exposure is very brief. In studies of the delayed effects
of exposure to radiation emitted from the atomic bomb, the exposure was nearly instantaneous, but
the risk period during which the exposure has had an effect has been very long, perhaps lifelong,
although therisk for certain diseases did not increase immediately after exposure. Cancer risk after
the radiation exposureincreased only after aminimum induction period of several years, depending
on the cancer. The incidence rates of cancer among those exposed to high doses of radiation from
the bomb can be cal culated separately for different timesfollowing exposure, so that one may detect
elevations specific to the induction period addressed by the study hypothesis. Without stratification
by time since exposure, the incidence rate measured among those exposed to the bomb would be
an average rate reflecting periods of exposure effect and periods with no effect, because they would
include in the denominator some experience of the exposed cohort that correspondsto timeinwhich
there was no increased risk from the radiation.

How should the investigator study hypotheses that do not specify induction times? For these,
the appropriate time periods on which to stratify the incidence rates are unclear. Thereisno way to
estimate exposure effects, however, without making some assumption, implicitly or explicitly, about
theinduction time. Thedecision about what timetoincludefor agivenindividual in the denominator
of the rate corresponds to the assumption about induction time. If in a study of delayed effectsin
survivors of the atomic bombs in Japan, the denominator of the rate included time experienced
by study subjects beginning on the day after the exposure, the rate would provide a diluted effect
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estimate unless the induction period (including the “latent” period) had a minimum of only 1 day.
It might be more appropriate to alow for a minimum induction time of some months or years after
the bomb explosion.

What if the investigator does not have any basis for hypothesizing a specific induction period?
It is possible to learn about the period by estimating effects according to categories of time since
exposure. For example, the incidence rate of leukemia among atomic bomb survivors relative to
that among those who were distant from the bomb at the time of the explosion can be examined
according to years since the explosion. In an unbiased study, we would expect the effect estimates
to rise above the null value when the minimum induction period has passed. This procedure works
best when the exposure itself occurs at a point or narrow interval of time, but it can be used even
if the exposure is chronic, as long as there is a model to describe the amount of time that must
pass before a given accumulation of exposure would begin to have an effect. More sophisticated
approaches for analyzing induction time are discussed in Chapter 16.

CHRONIC EXPOSURES

The definition of chronic exposure based on anticipated effects is more complicated than when
exposure occurs only at a point in time. We may conceptualize a period during which the exposure
accumulates to a sufficient extent to trigger a step in the causal process. This accumulation of
exposure experience may be a complex function of the intensity of the exposure and time. The
induction period begins only after the exposure has reached this hypothetical triggering point, and
that point will likely vary across individuals. Occupational epidemiologists have often measured
the induction time for occupational exposure from the time of first exposure, but this procedure
involves the extreme assumption that the first contact with the exposure can be sufficient to produce
disease. Whatever assumption is adopted, it should be made an explicit part of the definition of the
cohort and the period of follow-up.

Let us consider the steps to take to identify study cohorts when exposure is chronic. First, the
investigator must determine how many exposure groupswill be studied and determinethe definitions
for each of the exposure categories. The definition of exposurelevel could be based on the maximum
intensity of exposure experienced, the average intensity over a period of time, or some cumulative
amount of exposure. A familiar measure of cigarette smoking isthe measure “pack-years,” whichis
the product of the number of packs smoked per day and the number of years smoked. This measure
indexes the cumulative number of cigarettes smoked, with one pack-year equal to the product
of 20 cigarettes per pack and 365 days, or 7,300 cigarettes. Cumulative indices of exposure and
time-weighted measures of average intensity of exposure are both popular methods for measuring
exposure in occupational studies. These exposure definitions should be linked to the time period of
an exposure effect, according to the study hypothesis, by explicitly taking into account theinduction
period.

In employing cumulative or average exposure measures, one should recognize the composite
nature of themeasuresand, if possible, separately analyzethe components. For example, pack-years
isacomposite of duration and intensity of smoking: 20 pack-years might represent half apack aday
for 40 years, one pack aday for 20 years, or two packs aday for 10 years, as well asinnumerable
other combinations. If the biologic effects of these combinations differ to an important degree, use
of pack-years would conceal these differences and perhaps even present a misleading impression
of dose-response patterns (Lubin and Caporaso, 2006). Supplemental analyses of smoking as two
exposure variables, duration (years smoked) and intensity (packs smoked per day), would provide
a safeguard against inadequacies of the pack-years analysis. Other exposure variables that are not
accounted for by duration and intensity, such asage at start of exposure, age at cessation of exposure,
and timing of exposure relative to disease (induction or lag period), may also warrant separation in
the analyses.

Let us look at a simplified example. Suppose the study hypothesis is that smoking increases
therisk for lung cancer with a minimum induction time of 5 years. For a given smoking level, the
time experienced by a subject is not “exposed” person-time until the individual has reached that
level and then an additional 5 years have passed. Only then is the lung cancer experience of that
individual related to smoking according to the study hypothesis. The definition of the study co-
hort with 20 pack-years of smoking will be the person-time experience of exposed individuals
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beginning 5 years after they have smoked 20 pack-years. Note that if the cohort study measures
incidence rates, which means that it alocates the person-time of the individual study subjects,
exposure groups are defined by person-time allocation rather than by rosters of individual subjects.
Analysis of these rates depends on the assumption that only “current” exposure, defined as having
smoked 20 pack-years as of 5 years ago, is relevant and that other aspects of exposure history, such
as amount smoked after 5 years ago, are irrelevant.

UNEXPOSED TIME IN EXPOSED SUBJECTS

What happens to the time experienced by exposed subjects that does not meet the definition of time
at risk of exposure effects according to the study hypothesis? Specifically, what happensto thetime
after the exposed subjects become exposed and before the minimum induction has el apsed, or after a
maxi mum induction time has passed? Two choi ces are reasonabl e for handling this experience. One
possibility isto consider any timethat is not related to exposure as unexposed time and to apportion
that timeto the study cohort that represents no exposure. Possible objectionsto this approach would
be that the study hypothesis may be based on guesses about the threshold for exposure effects and
the induction period and that time during the exposure accumulation or induction periods may in
fact be at risk of exposure effects. To treat the latter experience as not at risk of exposure effects
may then lead to an underestimate of the effect of exposure (see Chapter 8 for a discussion of
misclassification of exposure). Alternatively, one may simply omit from the study the experience
of exposed subjects that is not at risk of exposure effects according to the study hypothesis. For
this alternative to be practical, there must be a reasonably large number of cases observed among
subjects with no exposure.

For example, suppose a 10-year minimum induction time is hypothesized. For individuals fol-
lowed from start of exposure, thishypothesisimpliesthat no exposure effect can occur withinthefirst
10yearsof follow-up. Only after thefirst 10 years of follow-up can anindividual experience disease
dueto exposure. Therefore, under the hypothesis, only person-time occurring after 10 years of expo-
sure should contribute to the denominator of the rate among exposed. If the hypothesiswere correct,
we should assign thefirst 10 years of follow-up to the denominator of the unexposed rate. Suppose,
however, that the hypothesis were wrong and exposure could produce cases in less than 10 years.
Then, if the cases and person-time from thefirst 10 years of follow-up were added to the unexposed
casesand person-time, theresulting ratewoul d be biased toward theratein theexposed, thusreducing
the apparent differences between the exposed and unexposed rates. If computation of the unexposed
rate were limited to truly unexposed cases and person-time, this problem would be avoided.

The price of avoidance, however, would be reduced precision in estimating the rate among the
unexposed. In some studies, the number of truly unexposed cases is too small to produce a stable
comparison, and thus the early experience of exposed personsistoo valuable to discard. In general,
the best procedure in a given situation would depend on the decrease in precision produced by
excluding the early experience of exposed persons and the amount of bias that is introduced by
treating the early experience of exposed persons as if it were equivalent to that of people who
were never exposed. An dternative that attempts to address both problemsis to treat the induction
time as a continuous variable rather than afixed time, and model exposure effects as depending on
thetimes of exposure (Thomas, 1983, 1988). Thisapproach isarguably more realistic insofar asthe
induction time varies across individuals.

Similar issuesariseif the exposure status can change from exposed to unexposed. If the exposure
ceases but the effects of exposure are thought to continue, it would not make sense to put the
experience of a formerly exposed individua in the unexposed category. On the other hand, if
exposureeffectsarethought to be approximately contemporaneouswith theexposure, whichisto say
that the induction period is near zero, then changesin exposure status should lead to corresponding
changesin how the accumulating experience is classified with respect to exposure. For example, if
individualstaking anonsteroidal anti-inflammatory drug are at an increased risk for gastrointestinal
bleeding only during the period that they take the drug, then only the time during exposure is
equivalent to thetimeat risk for gastrointestinal bleeding asaresult of the drug. When an individual
stops using the drug, the bleeding events and person-time experienced by that individual should
be reclassified from exposed to unexposed. Here, the induction time is zero and the definition of
exposure does not involve exposure history.
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CATEGORIZING EXPOSURE

Another problem to consider is that the study hypothesis may not provide reasonable guidance on
where to draw the boundary between exposed and unexposed. If the exposure is continuous, it is
not necessary to draw boundaries at all. Instead one may use the quantitative information from
each individual fully either by using some type of smoothing method, such as moving averages
(see Chapter 17), or by putting the exposure variable into a regression model as a continuous term
(see Chapters 20 and 21). Of course, the latter approach depends on the validity of the model
used for estimation. Specia care must be taken with models of repeatedly measured exposures and
confounders, which are sometimes called longitudinal -data models (see Chapter 21).

The simpler approach of calculating rates directly will require a reasonably sized population
within categories of exposure if it isto provide a statistically stable result. To get incidence rates,
then, we need to group the experience of individuas into relatively large categories for which
we can calculate the incidence rates. In principle, it should be possible to form several cohorts
that correspond to various levels of exposure. For a cumulative measure of exposure, however,
categorization may introduce additional difficulties for the cohort definition. An individual who
passes through one level of exposure along the way to a higher level would later have time at risk
for disease that theoretically might meet the definition for more than one category of exposure.

For example, suppose we define moderate smoking as having smoked 50,000 cigarettes (equiv-
alent to about 7 pack-years), and we define heavy smoking as having smoked 150,000 cigarettes
(about 21 pack-years). Suppose a man smoked his 50,000th cigarette in 1970 and his 150,000th
in 1980. After alowing for a 5-year minimum induction period, we would classify his time as
moderate smoking beginning in 1975. By 1980 he has become a heavy smoker, but the 5-year
induction period for heavy smoking has not elapsed. Thus, from 1980 to 1985, his experience is
still classified as moderate smoking, but from 1985 onward his experience is classified as heavy
smoking (Figure 7-1). Usually, the timeis allocated only to the highest category of exposure that
applies. This example illustrates the complexity of the cohort definition with a hypothesis that
takes into account both the cumulative amount of exposure and a minimum induction time. Other
apportionment schemes could be devised based on other hypotheses about exposure action, includ-
ing hypotheses that alowed induction time to vary with exposure history.

Oneinvalid all ocation scheme would apportion to the denominator of the exposed incidencerate
the unexposed experience of an individual who eventually became exposed. For example, suppose
that in an occupational study exposure is categorized according to duration of employment in a
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FIGURE 7-1 Timeline showing how a smoker moves into higher categories of cumulative smoking

exposure and how the time at risk that corresponds to these categories is apportioned to take into account a
5-year minimum induction period.
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particular job, with the highest-exposure category being at least 20 years of employment. Suppose
aworker is employed at that job for 30 years. It is a mistake to assign the 30 years of experience
for that employee to the exposure category of 20 or more years of employment. The worker only
reached that category of exposure after 20 years on the job, and only the last 10 years of his or her
experience is relevant to the highest category of exposure. Note that if the worker had died after
10 years of employment, the death could not have been assigned to the 20-years-of-employment
category, because the worker would have only had 10 years of employment.

A useful rule to remember is that the event and the person-time that is being accumulated at
the moment of the event should both be assigned to the same category of exposure. Thus, once the
person-time spent at each category of exposure has been determined for each study subject, the
classification of the disease events (cases) follows the same rules. The exposure category to which
an event is assigned is the same exposure category in which the person-time for that individual
was accruing at the instant in which the event occurred. The same rule—that the classification of
the event follows the classification of the person-time—also applies with respect to other study
variables that may be used to stratify the data (see Chapter 15). For example, person-time will be
allocated into different age categories as an individual ages. The age category to which an event is
assigned should be the same age category in which the individual’s person-time was accumul ating
at the time of the event.

AVERAGE INTENSITY AND ALTERNATIVES

One can also define current exposure according to the average (arithmetic or geometric mean)
intensity or level of exposure up to the current time, rather than by a cumulative measure. In the
occupational setting, the average concentration of an agent in the ambient air would be an example
of exposure intensity, although one might also have to take into account any protective gear that
affectstheindividual’sexposureto the agent. Intensity of exposureisaconcept that appliesto apoint
in time, and intensity typically will vary over time. Studies that measure exposure intensity might
use atime-weighted average of intensity, which would require multiple measurements of exposure
over time. The amount of time that an individua is exposed to each intensity would provide its
weight in the computation of the average.

Analternativetotheaverageintensity isto classify exposure according to the maximum intensity,
median intensity, minimum intensity, or some other function of the exposure history. Thefollow-up
time that an individual spends at a given exposure intensity could begin to accumulate as soon as
that level of intensity is reached. Induction time must also be taken into account. Idedlly, the study
hypothesis will specify a minimum induction time for exposure effects, which in turn will imply
an appropriate lag period to be used in classifying individual experience.

Cumulative and average exposure-assignment schemasuffer apotential probleminthat they may
make it impossible to disentangle exposure effects from the effects of time-varying confounders
(Robins 1986, 1987). Methods that treat exposures and confounders in one period as distinct from
exposure and confounders in other periods are necessary to avoid this problem (Robinset al., 1992;
see Chapter 21).

IMMORTAL PERSON-TIME

Occasionally, a cohort’s definition will require that everyone meeting the definition must have
survived for a specified period. Typically, this period of immortality comes about because one of
the entry criteria into the cohort is dependent on survival. For example, an occupational cohort
might be defined as all workers who have been employed at a specific factory for at least 5 years.
There are certain problems with such an entry criterion, among them that it will guarantee that the
study will miss effects among short-term workers who may be assigned more highly exposed jobs
than regular long-term employees, may include persons more susceptible to exposure effects, and
may quit early because of those effects. Let us assume, however, that only long-term workers are
of interest for the study and that all relevant exposures (including those during the initia 5 years of
employment) are taken into account in the analysis.

The 5-year entry criterion will guarantee that all of the workers in the study cohort survived
their first 5 years of employment, because those who died would never meet the entry criterion and
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so would be excluded. It follows that mortality analysis of such workers should exclude the first
5 years of employment for each worker. This period of timeisreferred to asimmortal person-time.
The workers at the factory were not immortal during thistime, of course, because they could have
died. The subset of workersthat satisfy the cohort definition, however, isidentified after the fact as
those who have survived this period.

The correct approach to handling immortal person-time in a study is to exclude it from any
denominator, even if the analysis does not focus on mortality. This approach is correct because
including immortal person-time will downwardly bias estimated disease rates and, consequently,
bias effect estimates obtained from internal comparisons. As an example, suppose that an occu-
pational mortality study includes only workers who worked for 5 years at a factory, that 1,000
exposed and 1,000 unexposed workers meet this entry criterion, and that after the criterion is
met we observe 200 deaths among 5,000 exposed person-years and 90 deaths among 6,000 unex-
posed person-years. The correct rate ratio and difference comparing the exposed and unexposed
are then (200/5,000)/(90/6,000) = 2.7 and 200/5,000 — 90/6,000 = 25/1,000 year—*. If, how-
ever, we incorrectly include the 5,000 exposed and 5,000 unexposed immortal person-yearsin the
denominators, we get a biased ratio of (200/10,000)/(90/11,000) = 2.4 and a biased difference
of 200/10,000 — 90/11,000 = 12/1,000 year—?. To avoid this bias, if a study has a criterion for
a minimum amount of time before a subject is eligible to be in a study, the time during which
the eligibility criterion is met should be excluded from the calculation of incidence rates. More
generaly, the follow-up time allocated to a specific exposure category should exclude time during
which the exposure-category definition is being met.

POSTEXPOSURE EVENTS

Allocation of follow-up time to specific categories should not depend on events that occur after the
follow-up time in question has accrued. For example, consider astudy in which agroup of smokers
is advised to quit smoking, with the objective of estimating the effect on mortality rates of quitting
versus continuing to smoke. For a subject who smokes for a while after the advice is given and
then quits later, the follow-up time as a quitter should only begin at the time of quitting, not at the
time of giving the advice, because it is the effect of quitting that is being studied, not the effect of
advice (were the effect of advice under study, follow-up time would begin with the advice). But
how should a subject be treated who quits for a while and then later takes up smoking again?

When this question arose in an actual study of this problem, the investigators excluded anyone
from the study who switched back to smoking. Their decision waswrong, becauseif the subject had
died before switching back to smoking, the death would have counted in the study and the subject
would not have been excluded. A subject’sfollow-up timewasexcluded if the subject switched back
to smoking, something that occurred only after the subject had accrued time in the quit-smoking
cohort. A proper analysis should include the experience of those who switched back to smoking
up until the time that they switched back. If the propensity to switch back was unassociated with
risk, their experience subsequent to switching back could be excluded without introducing bias.
The incidence rate among the person-years while having quit could then be compared with the rate
among those who continued to smoke over the same period.

As another example, suppose that the investigators wanted to examine the effect of being an
ex-smoker for at least 5 years, relative to being an ongoing smoker. Then, anyone who returned
to smoking within 5 years of quitting would be excluded. The person-time experience for each
subject during thefirst 5 years after quitting should also be excluded, because it would be immortal
person-time.

TIMING OF OUTCOME EVENTS

As may be apparent from earlier discussion, the time at which an outcome event occurs can be a
major determinant of the amount of person-time contributed by a subject to each exposure category.
It is therefore important to define and determine the time of the event as unambiguously and
precisely as possible. For some events, such as death, neither task presents any difficulty. For other
outcomes, such as human immunodeficiency virus (HIV) seroconversion, the time of the event can
be defined in areasonably precise manner (the appearance of HIV antibodies in the bloodstream),
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but measurement of the time is difficult. For others, such as multiple sclerosis and atherosclerosis,
the very definition of the onset time can be ambiguous, even when the presence of the disease can
be determined unambiguously. Likewise, time of loss to follow-up and other censoring events can
be difficult to define and determine. Determining whether an event occurred by a given timeisa
special case of determining when an event occurred, because knowing that the event occurred by
the given time requires knowing that the time it occurred was before the given time.

Addressing the aforementioned problems depends heavily on the details of available data and
the current state of knowledge about the study outcome. We therefore will offer only afew genera
remarksonissuesof outcometiming. Inall situations, we recommend that one start with at least one
written protocol to classify subjects based on available information. For example, seroconversion
time may be measured as the midpoint between time of last negative and first positive test. For
unambiguously defined events, any deviation of actua times from the protocol determination can
be viewed as measurement error (which is discussed further in Chapter 9). Ambiguously timed
diseases, such as cancers or vascular conditions, are often taken as occurring at diagnosistime, but
the use of aminimum lag period is advisable whenever along latent (undiagnosed or prodromal)
period is inevitable. It may sometimes be possible to interview cases about the earliest onset of
symptoms, but such recollections and symptoms can be subject to considerable error and between-
person variability.

Someambiguously timed eventsaredealt with by standard, if somewhat arbitrary, definitions. For
example, in 1993, acquired immunodeficiency syndrome (A1DS) onset was redefined as occurrence
of any AIDS-defining illnesses or clinical event (e.g., CD4 count <200/uL). Asasecond example,
time of loss to follow-up is conventionally taken as midway between the last successful attempt to
contact and the first unsuccessful attempt to contact. Any difficulty in determining an arbitrarily
defined time of an event is then treated as a measurement problem, which can be addressed by
the methods described in Chapter 19. One should recognize, however, that the arbitrariness of the
definition for the time of an event represents another source of measurement error, with potential
bias consequences that will be discussed in Chapter 9.

EXPENSE

Cohort studies are usually large enterprises. Most diseases affect only a small proportion of a
population, evenif the populationisfollowed for many years. To obtain stable estimates of incidence
requires a substantial number of cases of disease, and therefore the person-time giving rise to the
cases must also be substantial. Sufficient person-time can be accumulated by following cohorts
for a long span of time. Some cohorts with specia exposures (e.g., Japanese victims of atomic
bombs [Beebe, 1979]) or with detailed medical and persona histories (e.g., the Framingham,
Massachusetts, study cohort [Kannel and Abbott, 1984]) have indeed been followed for decades.
If a study is intended to provide more timely results, however, the requisite person-time can be
attained by increasing the size of the cohorts. Of course, lengthy studies of large populations are
expensive. It isnot uncommon for cohort studies to cost millions of dollars, and expensesin excess
of $100 million have occurred. Most of the expense derives from the need to establish a continuing
system for monitoring disease occurrence in alarge population.

The expense of cohort studies often limits feasibility. The lower the disease incidence, the
poorer the feasibility of a cohort study, unless public resources devoted to health registries can be
productively employed (see Chapter 23). Feasibility is further handicapped by a long induction
period between the hypothesized cause and its effect. A long induction time contributes to a low
overall incidence because of the additional follow-up timerequired to obtain exposure-rel ated cases.
To detect any effect, the study must span an interval at least aslong as, and in practice considerably
longer than, the minimum induction period. Cohort studies are poorly suited to study the effect of
exposures that are hypothesized to cause rare diseases with long induction periods. Such cohort
studies are expensive in relation to the amount of information returned, which is to say that they
are not efficient.

The expense of cohort studies can be reduced in a variety of ways. One way is to use an
existing system for monitoring disease occurrence (see Chapter 23). For example, aregional cancer
registry may be used to ascertain cancer occurrence among cohort members. If the expense of case
ascertainment is aready being borne by the registry, the study will be considerably cheaper.
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Another way to reduce cost is to rely on historical cohorts. Rather than identifying cohort
members concurrently with the initiation of the study and planning to have the follow-up period
occur during the study, the investigator may choose to identify cohort members based on records of
previous exposure. The follow-up period until the occurrence of disease may be wholly or partially
inthe past. To ascertain casesoccurring in the past, theinvestigatorsmust rely on recordsto ascertain
disease in cohort members. If the follow-up period begins before the period during which the study
is conducted but extends into the study period, then active surveillance or anew monitoring system
to ascertain new cases of disease can be devised.

To the extent that subject selection occurs after the follow-up period under observation (some-
times called retrospective cohort selection; see Chapter 6), the study will generally cost lessthan an
equivalent study in which subject selection occurs before the follow-up period (sometimes called
prospective). A drawback of retrospective cohort studiesistheir dependence on records, which may
suffer from missing or poorly recorded information. Another drawback isthat entire subject records
may be missing. When such “missingness’ is related to the variables under study, the study may
suffer from selection biases similar to those that can occur in case-control studies (see Chapter 8).
For example, if records are systematically deleted upon the death of a cohort member, then all of
the retrospective person-time will be immortal, and should therefore be excluded.

A third way to reduce cost is to replace one of the cohorts, specifically the unexposed cohort,
with general population information. Rather than collecting new information on alarge unexposed
population, existing dataon ageneral population isused for comparison. This procedure has several
drawbacks. For one, it isreasonable only if there is some assurance that only a small proportion of
the general population is exposed to the agent under study, as is often the case with occupational
exposures. Totheextent that part of the general popul ationisexposed, thereismisclassification error
that will introduce abiasinto the comparison, whichisordinarily in thedirection of underestimating
the effect (see Chapter 9). Another problem isthat information obtained for the exposed cohort may
differ in quality from the existing data for the genera population. If mortality data are used, the
death certificate is often the only source of information for the general population. If additional
medical information were used to classify deathsin an exposed cohort, the datathus obtained woul d
not be comparable with the general population data. This noncomparability may reduce or increase
bias in the resulting comparisons (Greenland and Robins, 1985a). Finally, the exposed cohort is
likely to differ from the general population in many ways that are not measured, thus leading to
uncontrollable confounding in the comparison. Theclassical “healthy worker effect” isone example
of this problem, in which confounding arises because workers must meet a minimal criterion of
health (they must be able to work) that the general population does not.

A fourth way to reduce the cost of a cohort study isto conduct a case-control study within the
cohort, rather than including the entire cohort population in the study (Chapter 8). Such “nested”
case-control studies can often be conducted at afraction of the cost of acohort study and yet produce
the same findings with nearly the same precision.

TRACING OF SUBJECTS

Cohort studies that span many years present logistic problems that can adversely affect validity.
Whether the study is retrospective or prospective, it is often difficult to locate people or their
records many years after they have been enrolled into study cohorts. In prospective studies, it may
be possible to maintain periodic contact with study subjects and thereby keep current information
on their location. Such tracking adds to the costs of prospective cohort studies, yet the increasing
mobility of society warrants stronger effortsto trace subjects. A substantial number of subjects|ost
to follow-up can rai se serious doubts about the validity of the study. Follow-ups that trace less than
about 60% of subjects are generally regarded with skepticism, but even follow-up of 70% or 80%
or more can be too low to provide sufficient assurance against bias if thereis reason to believe that
loss to follow-up may be associated with both exposure and disease (Greenland, 1977).

SPECIAL-EXPOSURE AND GENERAL-POPULATION COHORTS

An attractive feature of cohort studies is the capability they provide to study a range of possible
health effects stemming from a single exposure. A mortality follow-up can be accomplished just as
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easily for all causes of death as for any specific cause. Health surveillance for one disease endpoint
can sometimes be expanded to include many or al endpoints without much additional work. A
cohort study can provide acomprehensive picture of the health effect of agiven exposure. Attempts
to derive such comprehensive information about exposures motivate the identification of “ special-
exposure” cohorts, which are identifiable groups with exposure to agents of interest. Examples
of such special-exposure cohorts include occupational cohorts exposed to workplace exposures,
studies of fishermen or farmers exposed chronically to solar radiation, atomic bomb victimsand the
population around Chernoby! exposed to ionizing radiation, the population around Seveso, Italy,
exposed to environmental dioxin contamination, Seventh-day Adventists who are “exposed” to
vegetarian diets, and populations who are exposed to stress through calamities such as earthquakes
and terrorist attacks. These exposures are not common and require the identification of exposed
cohorts to provide enough information for study.

Common exposures are sometimes studied through cohort studies that survey a segment of the
population that is identified without regard to exposure status. Such “general-population” cohorts
have been used to study the effects of smoking, oral contraceptives, diet, and hypertension. It is
most efficient to limit a general-population cohort study to exposures that a substantial proportion
of people have experienced; otherwise, the unexposed cohort will be inefficiently large relative
to the exposed cohort. A surveyed population can be classified according to smoking, acoholic
beverage consumption, diet, drug use, medical history, and many other factors of potential interest.
A disadvantage is that the exposure information usually must be obtained by interviews with each
subject, as opposed to obtaining information from records, as is often done with special-exposure
cohorts.



CHAPTER 8

Case-Control Studies

Kenneth J. Rothman, Sander Greenland, and
Timothy L. Lash

Common Elements of Case-Control Variants of the Case-Control Design 122
Studies 113 Nested Case-Control Studies 122
Pseudo-frequencies and the Odds Case-Cohort Studies 123
Ratio 113 Density Case-Control Studies 124
Defining the Source Population 114 Cumulative (“Epidemic”) Case-Control
Case Selection 115 Studies 125
Control Selection 115 Case-Only, Case-Specular, and Case-Crossover
Common Fallacies in Control Studies 125
Selection 117 Two-Stage Sampling 127
Sources for Control Series 117 Proportional Mortality Studies 127
Other Considerations for Subject Case-Control Studies with Prevalent
Selection 120 Cases 127

I he use and understanding of case-control studies is one of the most important methodologic
developments of modern epidemiology. Conceptually, there are clear links from randomized exper-
iments to nonrandomized cohort studies, and from nonrandomized cohort studies to case-control
studies. Case-control studies nevertheless differ enough from the scientific paradigm of experi-
mentation that a casual approach to their conduct and interpretation invites misconception. In this
chapter we review case-control study designs and contrast their advantages and disadvantages with
cohort designs. We a'so consider variants of the basic case-control study design.

Conventional wisdom about case-control studies is that they do not yield estimates of effect
that are as valid as measures obtained from cohort studies. This thinking may reflect common
misunderstandings in conceptualizing case-control studies, which will be clarified later. It may
also reflect concern about biased exposure information and selection in case-control studies. For
example, if exposure information comes from interviews, cases will usually have reported the
exposureinformation after learning of their diagnosis. Diagnosismay affect reporting inanumber of
ways, for example, by improving memory, thus enhancing sensitivity among cases, or by provoking
more false memory of exposure, thus reducing specificity among cases. Furthermore, the disease
may itself cloud memory and thus reduce sensitivity. These phenomenaare examples of recall bias.
Disease cannot affect exposure information collected before the disease occurred, however. Thus
exposure information taken from records created before the disease occurs will not be subject to
recall bias, regardless of whether the study is a cohort or a case-control design.

Conversely, cohort studies are not immune from problems often thought to be particular to
case-control studies. For example, while a cohort study may gather information on exposure for an
entire source population at the outset of the study, it still requires tracing of subjects to ascertain
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exposure variation and outcomes. If the success of this tracing is related to the exposure and the
outcome, the resulting selection bias will behave analogously to that often raised as a concern in
case-control studies (Greenland, 1977; Chapter 12). Similarly, cohort studies sometimes use recall
to reconstruct or impute exposure history (retrospective evaluation) and are vulnerable to recall
bias if this reconstruction is done after disease occurrence. Thus, athough more opportunity for
recall and selection bias may arisein typical case-control studies than in typical prospective cohort
studies, each study must be considered in detail to evaluate its vulnerability to bias, regardless of
its design.

Conventional wisdom also holds that cohort studies are useful for evaluating the range of effects
related to a single exposure, whereas case-control studies provide information only about the one
disease that afflicts the cases. This thinking conflicts with the idea that case-control studies can
be viewed simply as more efficient cohort studies. Just as one can choose to measure more than
one disease outcome in a cohort study, it is possible to conduct a set of case-control studies nested
within the same population using several disease outcomes asthe case series. The case-cohort study
(see below) is particularly well suited to thistask, allowing one control group to be compared with
several series of cases. Whether or not the case-cohort design isthe form of case-control study that
is used, case-control studies do not have to be characterized as being limited with respect to the
number of disease outcomes that can be studied.

For diseasesthat are sufficiently rare, cohort studies becomeimpractical and case-control studies
become the only useful aternative. On the other hand, if exposure is rare, ordinary case-control
studiesareinefficient, and one must use methodsthat sel ectively recruit additional exposed subjects,
such as special cohort studies or two-stage designs. If both the exposure and the outcome are rare,
two-stage designs may bethe only informative option, asthey employ oversampling of both exposed
and diseased subjects.

Asunderstanding of the principles of case-control studies has progressed, the reputation of case-
control studies has also improved. Formerly, it was common to hear case-control studiesreferred to
disparagingly as“retrospective” studies, aterm that should apply to only some case-control studies
and appliesaswell to some cohort studies (see Chapter 6). Although case-control studiesdo present
more opportunities for bias and mistaken inference than cohort studies, these opportunities come
as a result of the relative ease with which a case-control study can be mounted. Because it need
not be extremely expensive or time-consuming to conduct a case-control study, many studies have
been conducted by naive investigators who do not understand or implement the basic principles of
valid case-control design. Occasionally, such haphazard research can produce valuable results, but
often the results are wrong because basic principles have been violated. The bad reputation once
suffered by case-control studies stems more from instances of poor conduct and overinterpretation
of results than from any inherent weakness in the approach.

Ideally, acase-control study can be conceptualized asamore efficient version of acorresponding
cohort study. Under this conceptualization, the cases in the case-control study are the same cases
as would ordinarily be included in the cohort study. Rather than including all of the experience of
the source popul ation that gave rise to the cases (the study base), as would be the usual practicein
acohort design, controls are selected from the source population. Wacholder (1996) describes this
paradigm of the case-control study as a cohort study with data missing at random and by design.
The sampling of controls from the population that gave rise to the cases affords the efficiency
gain of acase-control design over acohort design. The controlsprovide an estimate of the prevalence
of the exposure and covariates in the source population. When controls are selected from members
of the population who were at risk for disease at the beginning of the study’s follow-up period,
the case-control odds ratio estimates the risk ratio that would be obtained from a cohort design.
When controls are selected from members of the population who were noncases at the times that
each case occurs, or otherwise in proportion to the person-time accumulated by the cohort, the
case-control oddsratio estimatestherate ratio that would be obtained from a cohort design. Finally,
when controls are selected from members of the population who were noncases at the end of the
study’sfollow-up period, the case-control oddsratio estimatestheincidence oddsratio that would be
obtained from acohort design. With each control-sel ection strategy, the odds-ratio calculation isthe
same, but the measure of effect estimated by the odds ratio differs. Study designs that implement
each of these control selection paradigms will be discussed after topics that are common to all
designs.
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COMMON ELEMENTS OF CASE-CONTROL STUDIES

In acohort study, the numerator and denominator of each disease frequency (incidence proportion,
incidence rate, or incidence odds) are measured, which requires enumerating the entire population
and keeping it under surveillance—or using an existing registry—to identify cases over the follow-
up period. A valid case-control study observes the population more efficiently by using a control
seriesin place of complete assessment of the denominators of the disease frequencies. The casesin
a case-control study should be the same people who would be considered cases in a cohort study
of the same population.

PSEUDO-FREQUENCIES AND THE ODDS RATIO

The primary goal for control selection is that the exposure distribution among controls be the same
as it isin the source population of cases. The rationale for this goal is that, if it is met, we can
use the control seriesin place of the denominator information in measures of disease frequency to
determine the ratio of the disease frequency in exposed people relative to that among unexposed
people. This goal will be met if we can sample controls from the source population such that the
ratio of the number of exposed controls (B;) to thetotal exposed experience of the source population
isthe same astheratio of the number of unexposed controls (Byp) to the unexposed experience of the
source population, apart from sampling error. For most purposes, this goal need only be followed
within strata of factors that will be used for stratification in the analysis, such as factors used for
restriction or matching (Chapters 11, 15, 16, and 21).

Using person-time to illustrate, the goal requires that B; has the same ratio to the amount of
exposed person-time (T;) as By has to the amount of unexposed person-time (Tp), apart from
sampling error:
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Here B,/ T, and By/ Ty are the control sampling rates—that is, the number of controls selected per

unit of person-time. Suppose that A; exposed cases and Ao unexposed cases occur over the study
period. The exposed and unexposed rates are then
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We can use the frequencies of exposed and unexposed controls as substitutes for the actual
denominators of the rates to obtain exposure-specific case-control ratios, or pseudo-rates:

I1 and lo

A
Pseudo-rate; = ~
B

and

Pseudo-ratey = @
Bo
These pseudo-rates have no epidemiol ogic interpretation by themselves. Suppose, however, that
the control sampling rates B;/ T; and By/ Ty are equal to the same value r, as would be expected
if controls are selected independently of exposure. If this common sampling rate r is known, the
actual incidence rates can be calculated by simple algebra because, apart from sampling error,
B;/r should equal the amount of exposed person-time in the source population and By/r should
equal the amount of unexposed person-time in the source population: By/r = B1/(B1/T1) =Ty
and By/r = Bpy/(Bo/To) = To. To get the incidence rates, we need only multiply each pseudo-rate
by the common sampling rate, r.
If the common sampling rate is not known, which is often the case, we can still compare the
sizes of the pseudo-rates by division. Specifically, if we divide the pseudo-rate for exposed by the
pseudo-rate for unexposed, we obtain

Pseudo-rate; _ Ai/B1 _ Au/[(By/T)Ti] _ Ay/(r-Th) _ A/Th
Pseudo-ratey  Ao/Bo  Ao/[(Bo/To)Tol  Ao/(r-To)  Ao/To
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In other words, the ratio of the pseudo-rates for the exposed and unexposed is an estimate of
the ratio of the incidence rates in the source population, provided that the control sampling rateis
independent of exposure. Thus, using the case-control study design, one can estimate theincidence
rate ratio in a population without obtaining information on every subject in the population. Similar
derivations in the following section on variants of case-control designs show that one can estimate
the risk ratio by sampling controls from those at risk for disease at the beginning of the follow-
up period (case-cohort design) and that one can estimate the incidence odds ratio by sampling
controls from the noncases at the end of the follow-up period (cumulative case-control design).
With these designs, the pseudo-frequencies correspond to the incidence proportions and incidence
odds, respectively, multiplied by common sampling rates.

There is a statistical penalty for using a sample of the denominators rather than measuring
the person-time experience for the entire source population: The precision of the estimates of the
incidence rate ratio from a case-control study is less than the precision from a cohort study of
the entire population that gave rise to the cases (the source population). Nevertheless, the loss of
precision that stems from sampling controls will be small if the number of controls selected per
case is large (usually four or more). Furthermore, the loss is balanced by the cost savings of not
having to obtain information on everyone in the source population. The cost savings might allow
the epidemiologist to enlarge the source population and so obtain more cases, resulting in a better
overall estimate of the incidence-rateratio, statistically and otherwise, than would be possible using
the same expenditures to conduct a cohort study.

The ratio of the two pseudo-rates in a case-control study is usually written as A; Bp/ AgB1 and
is sometimes called the cross-product ratio. The cross-product ratio in a case-control study can be
viewed as the ratio of cases to controls among the exposed subjects (A;/Bs), divided by the ratio
of cases to controls among the unexposed subjects (Ao/ Bp). This ratio can also be viewed as the
odds of being exposed among cases (A;/ Ao) divided by the odds of being exposed among controls
(B1/By), in which case it is termed the exposure odds ratio. While either interpretation will give
the same result, viewing this odds ratio as the ratio of case-control ratios shows more directly how
the control group substitutes for the denominator information in a cohort study and how the ratio of
pseudo-frequencies gives the same result as the ratio of the incidence rates, incidence proportion,
or incidence odds in the source population, if sampling isindependent of exposure.

One point that we wish to emphasize is that nowhere in the preceding discussion did we have to
assume that the disease under study is“rare.” In general, the rare-disease assumption is not needed
in case-control studies. Just as for cohort studies, however, neither the incidence odds ratio nor the
rate ratio should be expected to be agood approximation to the risk ratio or to be collapsible across
strata of arisk factor (even if the factor is not a confounder) unless the incidence proportion isless
than about 0.1 for every combination of the exposure and the factor (Chapter 4).

DEFINING THE SOURCE POPULATION

If the casesarearepresentative sampleof all casesinaprecisely defined andidentified popul ationand
the controls are sampled directly from this source population, the study is said to be population-
based or a primary base study. For a population-based case-control study, random sampling of
controls may be feasible if apopulation registry exists or can be compiled. When random sampling
from the source population of casesisfeasible, it is usually the most desirable option.

Random sampling of controls does not necessarily mean that every person should have an equal
probability of being selected to be a control. As explained earlier, if the aim is to estimate the
incidence-rate ratio, then we would employ longitudinal (density) sampling, in which a person’s
control selection probability is proportional to the person’s time at risk. For example, in a case-
control study nested within an occupational cohort, workers on an employee roster will have been
followed for varying lengths of time, and a random sampling scheme should reflect this varying
time to estimate the incidence-rate ratio.

When it is not possible to identify the source population explicitly, ssmple random sampling is
not feasible and other methods of control selection must be used. Such studies are sometimes called
studies of secondary bases, because the source population is identified secondarily to the definition
of a case-finding mechanism. A secondary source population or “secondary base’ is therefore a
source population that is defined from (secondary to) a given case series.



Chapter 8 e Case-Control Studies 115

Consider a case-control study in which the cases are patients treated for severe psoriasis at the
Mayo Clinic. These patients come to the Mayo Clinic from al corners of the world. What is the
specific source population that gives rise to these cases? To answer this question, we would have to
know exactly whowould gototheMayo Clinicif heor shehad severepsoriasis. We cannot enumerate
this source population, because many peoplein it do not know themselves that they would go to the
Mayo Clinic for severe psoriasis, unless they actually developed severe psoriasis. This secondary
source might be defined as a population spread around the world that constitutes those people who
would go to the Mayo Clinic if they developed severe psoriasis. It is this secondary source from
which the control series for the study would ideally be drawn. The challenge to the investigator is
to apply eligibility criteriato the cases and controls so that there is good correspondence between
the controls and this source population. For example, cases of severe psoriasis and controls might
be restricted to those in counties within a certain distance of the Mayo Clinic, so that at least a
geographic correspondence between the controls and the secondary source population could be
assured. This restriction, however, might leave very few cases for study.

Unfortunately, the concept of a secondary base is often tenuously connected to underlying
realities, and it can be highly ambiguous. For the psoriasis example, whether a person would go
to the Mayo Clinic depends on many factors that vary over time, such as whether the person is
encouraged to go by his regular physician and whether the person can afford to go. It is not clear,
then, how or even whether one could precisely define, let alone sample from, the secondary base,
and thus it is not clear that one could ensure that controls were members of the base at the time
of sampling. We therefore prefer to conceptualize and conduct case-control studies as starting with
a well-defined source population and then identify and recruit cases and controls to represent the
disease and exposure experience of that population. When one instead takes a case series as a
starting point, it isincumbent upon the investigator to demonstrate that a source population can be
operationally defined to allow the study to be recast and evaluated relative to this source. Similar
considerations apply when one takes a control series as a starting point, as is sometimes done
(Greenland, 19853).

CASE SELECTION

Ideally, case selection will amount to adirect sampling of cases within a source population. There-
fore, apart from random sampling, al people in the source population who develop the disease of
interest are presumed to be included as cases in the case-control study. It is not aways necessary,
however, to include all cases from the source population. Cases, like controls, can be randomly
sampled for inclusion in the case-control study, so long as this sampling is independent of the
exposure under study within strata of factors that will be used for stratification in the analysis. To
seethis, suppose wetake only afraction, f, of all cases. If thisfraction is constant across exposure,
and A; exposed cases and Ao unexposed cases occur in the source population, then, apart from
sampling error, the study odds ratio will be

A/Br  fAY(T)  AYTh

Ao/Bo  fAG/(r-To)  Ao/To
as before. Of course, if fewer than all cases are sampled (f < 1), the study precision will be lower
in proportionto f.

The cases identified in a single clinic or treated by a single medical practitioner are possible
case series for case-control studies. The corresponding source population for the cases treated in
aclinic is all people who would attend that clinic and be recorded with the diagnosis of interest
if they had the disease in question. It is important to specify “if they had the disease in question”
because clinics serve different popul ationsfor different diseases, depending on referral patterns and
the reputation of the clinic in specific specialty areas. As noted above, without a precisely identified
source population, it may be difficult or impossible to select controlsin an unbiased fashion.

CONTROL SELECTION

The definition of the source population determines the population from which controls are sampled.
Ideally, selection will involve direct sampling of controls from the source population. Based on the
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principles explained earlier regarding the role of the control series, many general rules for control
selection can be formulated. Two basic rules are that:

1. Controls should be selected from the same popul ation—the source population—that gives rise
to the study cases. If this rule cannot be followed, there needs to be solid evidence that the
population supplying controls has an exposure distribution identical to that of the population
that is the source of cases, which isavery stringent demand that is rarely demonstrable.

2. Within strata of factors that will be used for stratification in the analysis, controls should be
selected independently of their exposure status, in that the sampling rate for controls (r in the
previous discussion) should not vary with exposure.

If these rules and the corresponding case rules are met, then the ratio of pseudo-frequencies
will, apart from sampling error, equal the ratio of the corresponding measure of disease frequency
in the source population. If the sampling rate is known, then the actual measures of disease fre-
quency can also be calculated. (If the sampling rates differ for exposed and unexposed cases or
controls, but are known, the measures of disease frequency and their ratios can still be calcu-
lated using special correction formulas; see Chapters 15 and 19.) For a more detailed discussion
of the principles of control selection in case-control studies, see Wacholder et al. (1992a, 1992b,
1992c).

When one wishes controls to represent person-time, sampling of the person-time should be
constant across exposure levels. This requirement implies that the sampling probability of any
person as a control should be proportional to the amount of person-time that person spends at risk
of disease in the source population. For example, if in the source population one person contributes
twice as much person-time during the study period as another person, the first person should have
twice the probability of the second of being selected as a control. This difference in probability of
selection isautomatically induced by sampling controlsat asteady rate per unit time over the period
inwhich cases are sampled (longitudinal or density sampling), rather than by sampling all controls
at apoint in time (such as the start or end of the follow-up period). With longitudinal sampling of
controls, a population member present for twice as long as another will have twice the chance of
being selected.

If the objective of the study is to estimate arisk or rate ratio, it should be possible for a person
to be selected as a control and yet remain eligible to become a case, so that person might appear in
the study as both a control and a case. This possibility may sound paradoxical or wrong, but it is
nevertheless correct. It corresponds to the fact that in a cohort study, a case contributes to both the
numerator and the denominator of the estimated incidence.

Suppose the follow-up period spans 3 years, and a person free of disease in year 1 is selected
as a potentia control at year 1. This person should in principle remain eligible to become a case.
Suppose this control now develops the disease at year 2 and now becomes a case in the study.
How should such a person be treated in the analysis? Because the person did develop disease
during the study period, many investigators would count the person as a case but not as a control.
I the objective is to have the case-control odds ratio estimate the incidence odds ratio, then this
decision would be appropriate. Recall, however, that if a follow-up study were being conducted,
each person who devel ops disease would contribute not only to the numerator of the disease risk or
rate but al so to the persons or person-time tallied in the denominator. We want the control group to
provide estimates of the relative size of the denominators of the incidence proportions or incidence
rates for the compared groups. These denominators include all people who later become cases.
Therefore, each case in a case-control study should be eligible to be a control before the time of
disease onset, each control should be €ligible to become a case as of the time of selection as a
control, and a person selected as a control who later does develop the disease and is selected as
a case should be included in the study both as a control and as a case (Sheehe, 1962; Miettinen,
1976a; Greenland and Thomas, 1982; Lubin and Gail, 1984; Robins et al., 19864). If the controls
are intended to represent person time and are selected longitudinally, similar arguments show that
a person selected as a control should remain eligible to be selected as a control again, and thus
might be included in the analysis repeatedly as a control (Lubin and Gail, 1984; Robins et al.,
19864).
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COMMON FALLACIES IN CONTROL SELECTION

In cohort studies, the study population is restricted to people at risk for the disease. Some authors
have viewed case-control studies as if they were cohort studies done backwards, even going so
far as to describe them as “trohoc” studies (Feinstein, 1973). Under this view, the argument was
advanced that case-control studies ought to be restricted to those at risk for exposure (i.e., those with
exposure opportunity). Excluding sterile women from a case-control study of an adverse effect of
oral contraceptivesand matching for duration of employment in an occupational study are examples
of attempts to control for exposure opportunity. If the factor used for restriction (e.g., sterility) is
unrelated to the disease, it will not be a confounder, and hence the restriction will yield no benefit
to the validity of the estimate of effect. Furthermore, if the restriction reduces the study size, the
precision of the estimate of effect will be reduced (Poole, 1986).

Another principle sometimes used in cohort studies is that the study cohort should be “ clean” at
start of follow-up, including only people who have never had the disease. Misapplying thisprinciple
to case-control design suggeststhat the control group ought to be*“ clean,” including only peoplewho
arehealthy, for example. llInessarising after the start of thefollow-up period isnot reason to exclude
subjects from a cohort analysis, and such exclusion can lead to bias; similarly controls with illness
that arose after exposure should not be removed from the control series. Nonetheless, in studies
of the relation between cigarette smoking and colorectal cancer, certain authors recommended that
the control group should exclude people with colon polyps, because colon polyps are associated
with smoking and are precursors of colorectal cancer (Terry and Neugut, 1998). Such an exclusion
actually reduces the prevalence of the exposure in the controls below that in the source population
of cases and hence biases the effect estimates upward (Poole, 1999).

SOURCES FOR CONTROL SERIES

Thefollowing methods for control sampling apply when the source population cannot be explicitly
enumerated, so random selection isnot possible. All of these methods should only be implemented
subject to the reservations about secondary bases described earlier.

Neighborhood Controls

If the source population cannot be enumerated, it may be possibleto select control sthrough sampling
of residences. This method is not straightforward. Usually, a geographic roster of residencesis not
available, so a scheme must be devised to sample residences without enumerating them all. For
convenience, investigators may sample controls who are individually matched to cases from the
same neighborhood. That is, after a case is identified, one or more controls residing in the same
neighborhood as that case are identified and recruited into the study. If neighborhood is related to
exposure, the matching should be taken into account in the analysis (see Chapter 16).

Neighborhood controls are often used when the cases are recruited from a convenient source,
such as aclinic or hospital. Such usage can introduce bias, however, for the neighbors selected as
controls may not be in the source population of the cases. For example, if the cases are from a
particular hospital, neighborhood controls may include people who would not have been treated
at the same hospital had they developed the disease. If being treated at the hospital from which
cases are identified isrelated to the exposure under study, then using neighborhood controls would
introduce a bias. As an extreme example, suppose the hospital in question were a U.S. Veterans
Administration hospital. Patients at these hospital stend to differ from their neighborsin many ways.
One obviousway isin regard to service history. Most patients at Veterans Administration hospitals
have served in the U.S. military, whereas only aminority of their neighborswill have done so. This
differenceinlifehistory canlead to differencesin exposure histories(e.g., exposures associated with
combat or weapons handling). For any given study, the suitability of using neighborhood controls
needs to be evaluated with regard to the study variables on which the research focuses.

Random-Digit Dialing

Sampling of households based on random selection of telephone numbers is intended to simulate
sampling randomly from the source population. Random-digit dialing, as this method has been
called (Waksberg, 1978), offers the advantage of approaching all households in a designated area,
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even those with unlisted telephone numbers, through a simple telephone call. The method requires
considerable attention to details, however, and carries no guarantee of unbiased selection.

First, case eligibility should include residence in a house that has a telephone, so that cases and
controls come from the same source population. Second, even if the investigator can implement a
sampling method so that every telephone has the same probability of being called, there will not
necessarily be the same probability of contacting each eligible control subject, because househol ds
vary in the number of people who reside in them, the amount of time someoneis at home, and the
number of operating phones. Third, making contact with a household may require many calls at
various times of day and various days of the week, demanding considerable |abor; many dozens of
telephone callsmay berequired to obtain acontrol subject meeting specific eligibility characteristics
(Wacholder et al., 1992b). Fourth, some households use answering machines, voicemail, or caller
identification to screen calls and may not answer or return unsolicited calls. Fifth, the substitution
of mobile telephones for land lines by some households further undermines the assumption that
popul ation members can be sel ected randomly by random-digit dialing. Finally, it may beimpossible
to distinguish accurately business from residential telephone numbers, a distinction required to
calculate the proportion of nonresponders.

Random-digit-dialing controls are usually matched to cases on area code (in the United States,
the first three digits of the telephone number) and exchange (the three digits following the area
code). In the past, area code and prefix were related to residence location and tel ephone type (land
line or mobile service). Thus, if geographic location or participation in mobile telephone plans was
likely related to exposure, then the matching should be taken into account in the analysis. More
recently, telephone companies in the United States have assigned overlaying area codes and have
allowed subscribers to retain their telephone number when they move within the region, so the
correspondence between assigned tel ephone numbers and geographic location has diminished.

Hospital- or Clinic-Based Controls

As noted above, the source population for hospital- or clinic-based case-control studies is not
often identifiable, because it represents a group of people who would be treated in a given clinic
or hospital if they developed the disease in question. In such situations, a random sample of the
general population will not necessarily correspond to arandom sample of the source population. If
the hospitals or clinics that provide the cases for the study treat only a small proportion of cases
in the geographic area, then referral patterns to the hospital or clinic are important to take into
account in the sampling of controls. For these studies, a control series comprising patients from
the same hospitals or clinics as the cases may provide aless biased estimate of effect than general-
population controls (such as those obtained from case neighborhoods or by random-digit dialing).
The source population does not correspond to the population of the geographic area, but only to the
people who would seek treatment at the hospital or clinic were they to develop the disease under
study. Although the latter population may be difficult or impossible to enumerate or even define
very clearly, it seems reasonable to expect that other hospital or clinic patients will represent this
source popul ation better than general -popul ation controls. The major problem with any nonrandom
sampling of controls is the possibility that they are not selected independently of exposure in
the source population. Patients who are hospitalized with other diseases, for example, may be
unrepresentative of the exposure distribution in the source population, either because exposure is
associated with hospitalization, or because the exposure is associated with the other diseases, or
both. For example, suppose the study aims to evaluate the relation between tobacco smoking and
leukemiausing hospitalized cases. If controls are peoplewho are hospitalized with other conditions,
many of them will have been hospitalized for conditions associated with smoking. A variety of other
cancers, as well as cardiovascular diseases and respiratory diseases, are related to smoking. Thus,
a control series of people hospitalized for diseases other than leukemia would include a higher
proportion of smokers than would the source population of the leukemia cases.

Limiting the diagnoses for controls to conditions for which there is no prior indication of an
association with the exposure improves the control series. For example, in astudy of smoking and
hospitalized leukemiacases, one could exclude from the control seriesanyonewho was hospitalized
with a disease known to be related to smoking. Such an exclusion policy may exclude most of the
potential controls, because cardiovascular disease by itself would represent a large proportion of
hospitalized patients. Nevertheless, even a few common diagnostic categories should suffice to
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find enough control subjects, so that the exclusions will not harm the study by limiting the size of
the control series. Indeed, in limiting the scope of eligibility criteria, it is reasonable to exclude
categories of potential controls even on the suspicion that a given category might be related to the
exposure. If wrong, the cost of the exclusion isthat the control series becomes more homogeneous
with respect to diagnosis and perhaps alittle smaller. But if right, then the exclusion is important
to the ultimate validity of the study.

On the other hand, an investigator can rarely be sure that an exposure is not related to a disease
or to hospitalization for a specific diagnosis. Consequently, it would be imprudent to use only a
single diagnostic category as a source of controls. Using a variety of diagnoses has the advantage
of potentially diluting the biasing effects of including a specific diagnostic group that is related to
the exposure, and alows examination of the effect of excluding certain diagnoses.

Excluding a diagnostic category from the list of eligibility criteria for identifying controls is
intended simply to improve the representativeness of the control series with respect to the source
population. Such an exclusion criterion does not imply that there should be exclusions based on
disease history (Lubin and Hartge, 1984). For example, in a case-control study of smoking and
hospitalized leukemia patients, one might use hospitalized controls but exclude any who are hospi-
talized because of cardiovascular disease. This exclusion criterion for controls does not imply that
leukemia cases who have had cardiovascular disease should be excluded; only if the cardiovascular
disease was a cause of the hospitalization should the case be excluded. For controls, the exclusion
criterion should apply only to the cause of the hospitalization used to identify the study subject. A
person who was hospitalized because of a traumatic injury and who is thus eligible to be a control
would not be excluded if he or she had previously been hospitalized for cardiovascular disease.
The source population includes people who have had cardiovascular disease, and they should bein-
cluded inthe control series. Excluding such peoplewould |ead to an underrepresentation of smoking
relative to the source population and produce an upward bias in the effect estimates.

If exposure directly affects hospitalization (for example, if the decision to hospitalizeisin part
based on exposure history), the resulting bias cannot be remedied without knowing the hospitaliza-
tion rates, even if the exposureis unrelated to the study disease or the control diseases. Thisproblem
wasin fact one of thefirst problems of hospital-based studiesto receive detailed analysis (Berkson,
1946), and is often called Berksonian bias; it is discussed further under the topics of selection bias
(Chapter 9) and collider bias (Chapter 12).

Other Diseases

In many settings, especially in populations with established disease registries or insurance-claims
databases, it may be most convenient to choose controls from people who are diagnosed with other
diseases. The considerations needed for valid control selection from other diagnoses parallel those
just discussed for hospital controls. It is essential to exclude any diagnoses known or suspected to
be related to exposure, and better still to include only diagnoses for which there is some evidence
indicating that they are unrelated to exposure. These exclusion and inclusion criteria apply only to
the diagnosisthat brought the person into the registry or database from which controls are sel ected.
The history of an exposure-related disease should not be a basis for exclusion. If, however, the
exposure directly affects the chance of entering the registry or database, the study will be subject
to the Berksonian bias mentioned earlier for hospital studies.

Friend Controls

Choosing friends of cases as controls, like using neighborhood controls, is adesign that inherently
usesindividual matching and needsto be eval uated with regard to the advantages and di sadvantages
of such matching (discussed in Chapter 11).

Aside from the complications of individual matching, there are further concerns stemming from
use of friend controls. First, being named as a friend by the case may be related to the exposure
status of the potential control (Flanders and Austin, 1986). For example, cases might preferentially
name as friends their acquaintances with whom they engage in specific activities that might relate
to the exposure. Physical activity, acoholic beverage consumption, and sun exposure are examples
of such exposures. People who are more reclusive may be less likely to be named as friends, so
their exposure patternswill be underrepresented among a control series of friends. Exposures more
common to extroverted people may become overrepresented among friend controls. This type of
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bias was suspected in a study of insulin-dependent diabetes mellitus in which the parents of cases
identified the controls. The cases had fewer friends than controls, had more learning problems, and
weremore likely to dislike school. Using friend controls could explain these findings (Siemiatycki,
1989).

A second problem isthat, unlike other methods of control selection, choosing friends as controls
cedes much of the decision making about the choice of control subjectsto the cases or their proxies
(e.g., parents). The investigator who uses friend controls will usually ask for alist of friends and
chooserandomly fromthelist, but for the creation of thelist, theinvestigator iscompletely dependent
on the cases or their proxies. This dependence adds a potential source of bias to the use of friend
controls that does not exist for other sources of controls.

A third problem isthat using friend controls can introduce a bias that stems from the overlapping
nature of friendship groups (Austinet a ., 1989; Robinsand Pike, 1990). The problem arises because
different cases name groups of friendsthat are not mutually exclusive. Asaresult, people with many
friends become overrepresented in the control series, and any exposures associ ated with such people
become overrepresented as well (see Chapter 11).

In principle, matching categories should form a mutually exclusive and collectively exhaustive
partition with respect to al factors, such as neighborhood and age. For example, if matching on
age, bias due to overlapping matching groups can arise from caliper matching, aterm that refersto
choosing controls who have a value for the matching factor within a specified range of the case’'s
value. Thus, if the case is 69 years old, one might choose controls who are within 2 years of age
69. Overlap bias can be avoided if one uses nonoverlapping age categories for matching. Thus, if
the case is 69 years old, one might choose controls from within the age category 65 to 69 years.
In practice, however, bias due to overlapping age and neighborhood categories is probably minor
(Robins and Pike, 1990).

Dead Controls

A dead control cannot be a member of the source population for cases, because death precludes
the occurrence of any new disease. Suppose, however, that the cases are dead. Does the need
for comparability argue in favor of using dead controls? Although certain types of comparability
are important, choosing dead controls will misrepresent the exposure distribution in the source
population if the exposure causes or prevents death in a substantial proportion of people or if it
is associated with an uncontrolled factor that does. If interviews are needed and some cases are
dead, it will be necessary to use proxy respondents for the dead cases. To enhance comparability
of information while avoiding the problems of taking dead controls, proxy respondents can also
be used for those live controls matched to dead cases (Wacholder et al., 1992b). The advantage of
comparable information for cases and controls is often overstated, however, as will be addressed
later. The main justification for using dead controlsis convenience, such asin studies based entirely
on deaths (see the discussion of proportional mortality studies below and in Chapter 6).

OTHER CONSIDERATIONS FOR SUBJECT SELECTION

Representativeness

Some textbooks have stressed the need for representativenessin the selection of cases and controls.
Theadvicehasbeenthat casesshould berepresentative of all peoplewith thedisease and that controls
should be representative of the entire nondiseased population. Such advice can be misleading. A
case-control study may be restricted to any type of case that may be of interest: female cases, old
cases, severely ill cases, casesthat died soon after disease onset, mild cases, casesfrom Philadel phia,
casesamong factory workers, and so on. In none of these exampl eswoul d the cases be representative
of all peoplewith the disease, yet perfectly valid case-control studiesare possiblein each one (Cole,
1979). The definition of a case can be quite specific as long as it has a sound rationale. The main
concern is clear delineation of the population that gave rise to the cases.

Ordinarily, controls should represent the source population for cases (within categories of strat-
ification variables), rather than the entire nondiseased population. The latter may differ vastly from
the source popul ation for the cases by age, race, sex (e.g., if the cases come from a Veterans Admin-
istration hospital), socioeconomic status, occupation, and so on—including the exposure of interest.
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One of the reasons for emphasizing the similarities rather than the differences between cohort and
case-control studiesis that numerous principles apply to both types of study but are more evident
in the context of cohort studies. In particular, many principles relating to subject selection apply
identically to both types of study. For example, it is widely appreciated that cohort studies can be
based on special cohorts rather than on the general population. It follows that case-control studies
can be conducted by sampling cases and controls from within those special cohorts. The resulting
controls should represent the distribution of exposure across those cohorts, rather than the general
population, reflecting the more general rule that controls should represent the source population of
the cases in the study, not the general population.

Comparability of Information Accuracy

Some authors have recommended that information obtained about cases and controls should be
of comparable or equal accuracy, to ensure nondifferentiality (equal distribution) of measurement
errors (Miettinen, 1985a; Wacholder et a., 1992a; MacMahon and Trichopoulos, 1996). The ra-
tionale for this principle is the notion that nondifferential measurement error biases the observed
association toward the null, and so will not generate a spurious association, and that biasin studies
with nondifferential error is more predictable than in studies with differential error.

The comparability-of-information (equal-accuracy) principle is often used to guide selection of
controls and collection of data. For example, it is the basis for using proxy respondents instead of
direct interviewsfor living controlswhenever caseinformation is obtained from proxy respondents.
In most settings, however, the arguments for the principle are logically inadequate. One problem,
discussed at length in Chapter 9, is that nondifferentiality of exposure measurement error is far
from sufficient to guarantee that bias will be toward the null. Such guarantees require that the
exposure errors also be independent of errorsin other variables, including disease and confounders
(Chavance et a., 1992; Kristensen, 1992), a condition that is not always plausible (Lash and
Fink, 2003b). For example, it seems likely that people who concea heavy acohol use will aso
tend to understate other socially disapproved behaviors such as heavy smoking, illicit drug use,
and so on.

Another problemisthat theeffortsto ensureequal accuracy of exposureinformationwill alsotend
to produce equal accuracy of information on other variables. The direction of overall bias produced
by the resulting nondifferential errors in confounders and effect modifiers can be larger than the
bias produced by differential error from unequal accuracy of exposure information from cases
and controls (Greenland, 1980; Brenner, 1993; Marshall and Hastrup, 1996; Marshall et al., 1999,
Fewell et al., 2007). In addition, unless the exposure is binary, even independent nondifferential
error in exposure measurement is not guaranteed to produce bias toward the null (Dosemeci et al.,
1990). Finally, even when the bias produced by forcing equal measurement accuracy is toward the
null, there is no guarantee that the bias is |less than the bias that would have resulted from using a
measurement with differential error (Greenland and Robins, 1985a; Drews and Greenland, 1990;
Wacholder et a., 1992a). For example, in a study that used proxy respondents for cases, use of
proxy respondents for the controls might lead to greater bias than use of direct interviews with
controls, even if the latter results in greater accuracy of control measurements.

The comparability-of-information (equal accuracy) principle is therefore applicable only under
very limited conditions. In particular, it would seem to be useful only when confounders and effect
modifiers are measured with negligible error and when measurement error is reduced by using
equally accurate sources of information. Otherwise, the bias from forcing cases and controls to
have equal measurement accuracy may be as unpredictable as the effect of not doing so and risking
differential error (unequal accuracy).

Number of Control Groups

Situations arise in which the investigator may face a choice between two or more possible control
groups. Usually, there will be advantages for one group that are missing in the other, and vice
versa. Consider, for example, a case-control study based on a hospitalized series of cases. Because
they are hospitalized, hospital controls would be unrepresentative of the source population to the
extent that exposure isrelated to hospitalization for the control conditions. Neighborhood controls
would not suffer this problem, but might be unrepresentative of persons who would go to the
hospital if they had the study disease. So which control group is better? In such situations, some
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have argued that more than one control group should be used, in an attempt to address the biases
from each group (Ibrahim and Spitzer, 1979). For example, Gutensohn et al. (1975), in a case-
control study of Hodgkin disease, used a control group of spouses to control for environmental
influences during adult life but also used a control group of siblings to control for childhood
environment and sex. Both control groups are attempting to represent the same source population
of cases, but have different vulnerabilities to selection biases and match on different potential
confounders.

Use of multiple control groups may involve considerable labor, so is more the exception than
the rule in case-control research. Often, one available control source is superior to al practical
alternatives. In such settings, effort should not be wasted on collecting controls from sources likely
to be biased. Interpretation of the resultswill aso be more complicated unless the different control
groupsyield similar results. If the two groups produced different results, onewould face the problem
of explaining the differences and attempting to infer which estimatewas morevalid. Logically, then,
the value of using more than one control group is quite limited. The control groups can and should
be compared, but alack of difference between the groups shows only that both groups incorporate
similar net bias. A difference shows only that at |east one is biased, but does not indicate which is
best or which is worst. Only external information could help evaluate the likely extent of biasin
the estimates from different control groups, and that same external information might have favored
selection of only one of the control groups at the design stage of the study.

Timing of Classification and Diagnosis

Chapter 7 discussed at |ength some basic principlesfor classifying persons, cases, and person-time
unitsin cohort studies according to exposure status. The same principles apply to cases and controls
in case-control studies. If the controls areintended to represent person-time (rather than persons) in
the source popul ation, one should apply principles for classifying person-time to the classification
of controls. In particular, principles of person-time classification lead to the rule that control s should
be classified by their exposure status as of their selection time. Exposures accrued after that time
should be ignored. The rule necessitates that information (such as exposure history) be obtained in
amanner that allows one to ignore exposures accrued after the selection time. In a similar manner,
cases should be classified as of time of diagnosis or disease onset, accounting for any built-in lag
periods or induction-period hypotheses. Determining the time of diagnosis or disease onset can
involve al the problems and ambiguities discussed in the previous chapter for cohort studies and
needs to be resolved by study protocol before classifications can be made.

Asan example, consider astudy of alcohol use and laryngeal cancer that al so examined smoking
asaconfounder and possi bl e effect modifier, used i nterviewer-admini stered questionnairesto collect
data, and used neighborhood controls. To examinethe effect of al cohol and smoking while assuming
a 1-year lag period (a 1-year minimum induction time), the questionnaire would have to allow
determination of drinking and smoking habits up to 1 year before diagnosis (for cases) or selection
(for controls).

Selection time need not refer to the investigator’s identification of the control, but instead may
refer to an event analogous to the occurrence time for the case. For example, the selection time
for controls who are cases of other diseases can be taken as time of diagnosis for that disease; the
selection time of hospital controls might be taken as time of hospitalization. For other types of
controls, there may be no such natural event analogous to the case diagnosis time, and the actual
time of selection will have to be used.

In most studies, selection timewill precedethetime dataare gathered. For example, ininterview-
based studies, controls may be identified and then a delay of weeks or months may occur before
the interview is conducted. To avoid complicating the interview questions, this distinction is often
ignored and controls are questioned about habits in periods dating back from the interview.

VARIANTS OF THE CASE-CONTROL DESIGN
NESTED CASE-CONTROL STUDIES

Epidemiologists sometimesrefer to specific case-control studiesas nested case-control studieswhen
the populationwithin which the study isconducted isafully enumerated cohort, which allowsformal
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random sampling of cases and controls to be carried out. The term is usually used in reference to
a case-control study conducted within a cohort study, in which further information (perhaps from
expensive tests) is obtained on most or al cases, but for economy is obtained from only afraction
of the remaining cohort members (the controls). Nonetheless, many popul ation-based case-control
studies can be thought of as nested within an enumerated source population. For example, when
there is a population-based disease registry and a census enumeration of the population served by
the registry, it may be possible to use the census data to sample controls randomly.

CASE-COHORT STUDIES

The case-cohort study isacase-control study in which the source population is acohort and (within
sampling or matching strata) every person in this cohort has an equal chance of being included in
the study as a control, regardless of how much time that person has contributed to the person-time
experience of the cohort or whether the person devel oped the study disease. Thisdesignisalogical
way to conduct a case-control study when the effect measure of interest is the ratio of incidence
proportionsrather than arateratio, asiscommonin perinatal studies. The averagerisk (or incidence
proportion) of falling ill during a specified period may be written

for the exposed subcohort and

for the unexposed subcohort, where R; and Ry are the incidence proportions among the exposed
and unexposed, respectively, and N; and Np are the initial sizes of the exposed and unexposed
subcohorts. (This discussion applies equally well to exposure variables with several levels, but for
simplicity wewill consider only adichotomous exposure.) Controls should be selected such that the
exposure distribution among them will estimate without bias the exposure distribution in the source
population. In acase-cohort study, the distribution wewish to estimateisamong the N1 + No cohort
members, not among their person-time experience (Thomas, 1972; Kupper et a., 1975; Miettinen,
1982a).

The objective is to select controls from the source cohort such that the ratio of the number of
exposed controls (B;) to the number of exposed cohort members (N;) isthe same astheratio of the
number of unexposed controls (By) to the number of unexposed cohort members (No), apart from
sampling error:

Bi B
N: ~ No

Here, B;/N; and By/Ng are the control sampling fractions (the number of controls selected per
cohort member). Apart from random error, these sampling fractions will be equal if controls have
been selected independently of exposure.

We can use the frequencies of exposed and unexposed controls as substitutes for the actual
denominators of the incidence proportions to obtain “ pseudo-risks’:

Pseudo-risk; = ﬁ
By
and

Pseudo-riskg = %

These pseudo-risks have no epidemiol ogic interpretation by themselves. Suppose, however, that
the control sampling fractions are equal to the same fraction, f. Then, apart from sampling error,
B,/ f should equal N, the size of the exposed subcohort; and By / f should equal Ny, the size of the
unexposed subcohort: By /f = By/(B1/N1) = Ny and By/f = Bo/(Bo/No) = Nop. Thus, to get the
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incidence proportions, we need only multiply each pseudo-risk by the common sampling fraction,
f. If thisfraction is not known, we can still compare the sizes of the pseudo-risks by division:

Pseudo-risky  Ai/Br A/[(Bi/NNi] — A/fNi Ay/Ny

Pseudo-risko ~ Ao/Bo  Ao/[(Bo/No)No] ~ Ao/fNo — Ao/No

In other words, the ratio of pseudo-risksisan estimate of the ratio of incidence proportions (risk
ratio) in the source cohort if control sampling isindependent of exposure. Thus, using a case-cohort
design, one can estimate the risk ratio in a cohort without obtaining information on every cohort
member.

Thus far, we have implicitly assumed that there is no loss to follow-up or competing risks in
the underlying cohort. If there are such problems, it is still possible to estimate risk or rate ratios
from a case-cohort study, provided that we have data on the time spent at risk by the sampled
subjects or we use certain sampling modifications (Flanders et a ., 1990). These proceduresrequire
the usual assumptions for rate-ratio estimation in cohort studies, namely, that loss-to-follow-up
and competing risks either are not associated with exposure or are not associated with disease
risk.

An advantage of the case-cohort design is that it facilitates conduct of a set of case-control
studies from a single cohort, all of which use the same control group. As a sample from the cohort
at enrollment, the control group can be compared with any number of case groups. If matched
controls are selected from people at risk at the time a case occurs (asin risk-set sampling, which is
described later), the control series must betail ored to aspecific group of cases. If common outcomes
are to be studied and one wishes to use a single control group for each outcome, another sampling
scheme must be used. The case-cohort approach is a good choice in such a situation.

Case-cohort designs have other advantages as well as disadvantages relative to alternative case-
control designs (Wacholder, 1991). One disadvantage isthat, because of the overlap of membership
in the case and control groups (controls who are selected may also develop disease and enter the
study as cases), one will need to select more controls in a case-cohort study than in an ordinary
case-control study with the same number of cases, if oneisto achieve the same amount of statistical
precision. Extracontrolsare needed becausethe statistical precision of astudy isstrongly determined
by the numbers of distinct cases and noncases. Thus, if 20% of the source cohort members will
become cases, and all caseswill beincluded in the study, onewill haveto select 1.25 times as many
controls as cases in a case-cohort study to ensure that there will be as many controls who never
become cases in the study. On average, only 80% of the controls in such a situation will remain
noncases, the other 20% will become cases. Of course, if the disease is uncommon, the number of
extra controls needed for a case-cohort study will be small.

DENSITY CASE-CONTROL STUDIES

Earlier, we described how case-control odds ratios will estimate rate ratios if the control seriesis
selected so that the ratio of the person-time denominators T1/ Tp isvalidly estimated by the ratio of
exposed to unexposed controls By /By. That is, to estimate rate ratios, controls should be selected
so that the exposure distribution among them is, apart from random error, the same as it is among
the person-time in the source population or within strata of the source population. Such control
selection is called density sampling becauseit providesfor estimation of relations among incidence
rates, which have been called incidence densities.

If asubject’s exposure may vary over time, then a case's exposure history is evaluated up to the
time the disease occurred. A control’s exposure history is evaluated up to an analogousindex time,
usually taken as the time of sampling; exposure after the time of selection must be ignored. This
rule helps ensure that the number of exposed and unexposed controls will be in proportion to the
amount of exposed and unexposed person-time in the source population.

The time during which a subject is eligible to be a control should be the time in which that
person is also eligible to become a case, if the disease should occur. Thus, a person in whom the
disease has aready developed or who has died is no longer eligible to be selected as a control.
Thisrule corresponds to the treatment of subjectsin cohort studies. Every case that istallied in the
numerator of a cohort study contributes to the denominator of the rate until the time that the person
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becomes a case, when the contribution to the denominator ceases. One way to implement thisrule
is to choose controls from the set of people in the source population who are at risk of becoming
a case at the time that the case is diagnosed. This set is sometimes referred to as the risk set for
the case, and thistype of control sampling is sometimes called risk-set sampling. Controls sampled
in this manner are matched to the case with respect to sampling time; thus, if time is related to
exposure, the resulting data should be analyzed as matched data (Greenland and Thomas, 1982). It
isalso possible to conduct unmatched density sampling using probability sampling methods if one
knowsthetimeinterval at risk for each population member. One then selects a control by sampling
memberswith probability proportional to time at risk and then randomly samplesatimeto measure
exposure within the interval at risk.

Asmentioned earlier, a person selected as a control who remainsin the study population at risk
after selection should remain eligible to be selected once again as a control. Thus, athough it is
unlikely intypical studies, the same person may appear in the control group two or moretimes. Note,
however, that including the same person at different times does not necessarily lead to exposure
(or confounder) information being repeated, because this information may change with time. For
example, in acase-control study of an acute epidemic of intestinal illness, one might ask about food
ingested within the previous day or days. If a contaminated food item was a cause of the illness for
some cases, then the exposure status of a case or control chosen 5 days into the study might well
differ from what it would have been 2 days into the study.

CUMULATIVE (“EPIDEMIC") CASE-CONTROL STUDIES

In some research settings, case-control studies may addressarisk that ends before subject selection
begins. For example, a case-control study of an epidemic of diarrheal illness after asocial gathering
may begin after al the potential cases have occurred (because the maximum induction time has
elapsed). In such asituation, an investigator might select controlsfrom that portion of the population
that remains after eliminating the accumulated cases; that is, one selects controls from among
noncases (those who remain noncases at the end of the epidemic follow-up).

Supposethat the source popul ationisacohort and that afraction f of both exposed and unexposed
noncases is selected to be controls. Then the ratio of pseudo-frequencieswill be

A1/Br  Ai/f(Ni— A1) A/(Ni— A

Ao/Bo  Ao/f(No— Ao)  Ao/(No— Ao)

which istheincidence odds ratio for the cohort. Thisratio will provide areasonable approximation
to the rate ratio, provided that the proportions falling ill in each exposure group during the risk
period arelow, that is, less than about 20%, and that the preval ence of exposure remains reasonably
steady during the study period (see Chapter 4). If the investigator prefers to estimate the risk ratio
rather than the incidence rate ratio, the study odds ratio can still be used (Cornfield, 1951), but the
accuracy of this approximation is only about half as good as that of the odds-ratio approximation
to the rate ratio (Greenland, 1987a). The use of this approximation in the cumulative design is the
primary basisfor the mistaken teaching that a rare-disease assumption is needed to estimate effects
from case-control studies.

Before the 1970s, the standard conceptualization of case-control studiesinvolved the cumulative
design, in which controls are selected from noncases at the end of afollow-up period. As discussed
by numerous authors (Sheehe, 1962; Miettinen, 1976a; Greenland and Thomas, 1982), density
designs and case-cohort designs have several advantages outside of the acute epidemic setting,
including potentially much less sensitivity to bias from exposure-related | oss-to-follow-up.

CASE-ONLY, CASE-SPECULAR, AND CASE-CROSSOVER STUDIES

There are a number of situations in which cases are the only subjects used to estimate or test
hypotheses about effects. For example, it issometimes possibleto employ theoretical considerations
to construct a prior distribution of exposure in the source population and use this distribution in
place of an observed control series. Such situations arise naturally in genetic studies, in which basic
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laws of inheritance may be combined with certain assumptions to derive a population or parental-
specific distribution of genotypes (Self et al., 1991). It is aso possible to study certain aspects
of joint effects (interactions) of genetic and environmental factors without using control subjects
(Khoury and Flanders, 1996); see Chapter 28 for details.

When the exposure under study is defined by proximity to an environmental source (e.g., apower
line), it may be possible to construct a specular (hypothetical) control for each case by conducting
a “thought experiment.” Either the case or the exposure source is imaginarily moved to another
location that would be equally likely were there no exposure effect; the case exposure level under
this hypothetical configuration is then treated as the (matched) “control” exposure for the case
(zaffanella et a., 1998). When the specular control arises by examining the exposure experience
of the case outside of the time in which exposure could be related to disease occurrence, the result
is called a case-crossover study.

The classic crossover study is a type of experiment in which two (or more) treatments are
compared, asin any experimenta study. In a crossover study, however, each subject receives both
treatments, with one following the other. Preferably, the order in which the two treatments are
applied is randomly chosen for each subject. Enough time should be allocated between the two
administrations so that the effect of each treatment can be measured and can subside before the
other treatment is given. A persistent effect of the first intervention is called a carryover effect. A
crossover study is only valid to study treatments for which effects occur within a short induction
period and do not persist, i.e., carryover effects must be absent, so that the effect of the second
intervention is not intermingled with the effect of the first.

The case-crossover study is a case-control analog of the crossover study (Maclure, 1991). For
each case, one or more predisease or postdisease time periods are selected as matched “control”
periodsfor the case. The exposure status of the case at the time of the disease onset is compared with
the distribution of exposure status for that same person in the control periods. Such a comparison
depends on the assumption that neither exposure nor confounders are changing over time in a
systematic way.

Only alimited set of research topics are amenable to the case-crossover design. The exposure
must vary over timewithinindividual srather than stay constant. Eyecolor or blood type, for example,
could not be studied with a case-crossover design because both are constant. If the exposure does
not vary within a person, then there is no basis for comparing exposed and unexposed time periods
of risk within the person. Like the crossover study, the exposure must also have a short induction
time and a transient effect; otherwise, exposures in the distant past could be the cause of a recent
disease onset (a carryover effect).

Maclure (1991) used the case-crossover design to study the effect of sexual activity on incident
myocardial infarction. This topic is well suited to a case-crossover design because the exposure
is intermittent and is presumed to have a short induction period for the hypothesized effect. Any
increase in risk for a myocardia infarction from sexual activity is presumed to be confined to
a short time following the activity. A myocardia infarction is an outcome that is well suited to
this type of study because it is thought to be triggered by events close in time. Other possible
causes of amyocardial infarction that might be studied by a case-crossover study would be caffeine
consumption, a cohol consumption, carbon monoxide exposure, drug exposures, and heavy physical
exertion (Mittleman et al., 1993), al of which occur intermittently.

Each caseanditscontrol in acase-crossover study isautomatically matched onall characteristics
(e.g., sex and birth date) that do not change within individuals. Matched analysis of case-crossover
data controls for al such fixed confounders, whether or not they are measured. Subject to special
assumptions, control for measured time-varying confounders may be possible using modeling
methods for matched data (see Chapter 21). It is also possible to adjust case-crossover estimates
for bias due to time trends in exposure through use of longitudinal data from a nondiseased control
group (case-time controls) (Suissa, 1995). Nonethel ess, these trend adj ustments themsel ves depend
on additional no-confounding assumptions and may introduce biasif those assumptions are not met
(Greenland, 1996b).

There are many possible variants of the case-crossover design, depending on how control time
periods are selected. These variants offer trade-offs among potential for bias, inefficiency, and diffi-
culty of analysis; see Lumley and Levy (2000), Vines and Farrington (2001), Navidi and Weinhandl
(2002), and Janes et a. (2004, 2005) for further discussion.



Chapter 8 e Case-Control Studies 127

TWO-STAGE SAMPLING

Another variant of the case-control study uses two-stage or two-phase sampling (Walker, 19824,
White, 1982b). In thistype of study, the control seriescomprisesarelatively large number of people
(possibly everyone in the source population), from whom exposure information or perhaps some
limited amount of information on other relevant variablesis obtained. Then, for only asubsampl e of
the controls, more detailed information i s obtained on exposure or on other study variables that may
need to be controlled in the analysis. More detailed information may also be limited to a subsample
of cases. This two-stage approach is useful when it is relatively inexpensive to obtain the exposure
information (e.g., by telephoneinterview), but the covariateinformation ismore expensiveto obtain
(say, by laboratory analysis). It isalso useful when exposure information already has been collected
on the entire population (e.g., job histories for an occupational cohort), but covariate information is
needed (e.g., genotype). This situation arises in cohort studies when more information is required
than was gathered at baseline. Aswill be discussed in Chapter 15, thistype of study requires special
analytic methods to take full advantage of the information collected at both stages.

PROPORTIONAL MORTALITY STUDIES

Proportional mortality studies were discussed in Chapter 6, where the point was made that the
validity of such studies can be improved if they are designed and analyzed as case-control studies.
The cases are deaths occurring within the source popul ation. Control s are not selected directly from
the source population, which consists of living people, but are taken from other deaths within the
source population. This control series is acceptable if the exposure distribution within this group
issimilar to that of the source population. Consequently, the control series should be restricted to
categories of death that are not related to the exposure. See Chapter 6 for amore detailed discussion.

CASE-CONTROL STUDIES WITH PREVALENT CASES

Case-control studies are sometimes based on prevalent cases rather than incident cases. Whenitis
impractical to include only incident cases, it may still be possible to select existing cases of illness
at apoint intime. If the prevalence odds ratio in the population is equal to the incidence-rate ratio,
then the odds ratio from a case-control study based on prevalent cases can unbiasedly estimate the
rate ratio. As noted in Chapter 4, however, the conditions required for the prevalence odds ratio
to equal the rate ratio are very strong, and a simple general relation does not exist for age-specific
ratios. |f exposure is associated with duration of illness or migration out of the prevalence pool,
then a case-control study based on prevalent cases cannot by itself distinguish exposure effects
on disease incidence from the exposure association with disease duration or migration, unless the
strengths of the | atter associations are known. If the size of the exposed or the unexposed population
changes with time or there is migration into the prevalence pool, the prevalence odds ratio may be
further removed from the rate ratio. Consequently, it is always preferable to select incident rather
than prevalent cases when studying disease etiology.

Asdiscussed in Chapter 3, prevalent cases are usually drawn in studies of congenital malforma-
tions. In such studies, cases ascertained at birth are prevalent because they have survived with the
malformation from the time of its occurrence until birth. It would be etiologically more useful to as-
certain all incident cases, including affected abortuses that do not survive until birth. Many of these,
however, do not survive until ascertainment is feasible, and thus it is virtually inevitable that case-
control studiesof congenital malformations are based on prevalent cases. In thisexample, the source
population comprises all conceptuses, and miscarriage and induced abortion represent emigration
before the ascertainment date. Although an exposure will not affect duration of a malformation, it
may very well affect risks of miscarriage and abortion.

Other situations in which prevalent cases are commonly used are studies of chronic conditions
with ill-defined onset times and limited effects on mortality, such as obesity, Parkinson’s disease,
and multiple sclerosis, and studies of health services utilization.
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VALIDITY OF ESTIMATION

An epidemiologic estimate is the end product of the study design, the study conduct, and the data
analysis. We will call the entire process|eading to an estimate (study design, conduct, and analysis)
the estimation process. The overall goal of an epidemiologic study can then usualy be viewed as
accuracy in estimation. More specifically, as described in previous chapters, the objective of an
epidemiologic study isto obtain avalid and precise estimate of the frequency of a disease or of the
effect of an exposure on the occurrence of a disease in the source population of the study. Inherent
in this objective is the view that epidemiologic research is an exercise in measurement. Often, a
further objective is to obtain an estimate that is generalizable to relevant target populations; this
objective involves selecting a source population for study that either is atarget or can be argued to
experience effects similar to the targets.

Accuracy in estimation implies that the value of the parameter that is the object of measure-
ment is estimated with little error. Errorsin estimation are traditionally classified as either random
or systematic. Although random errors in the sampling and measurement of subjects can lead to
systematic errors in the fina estimates, important principles of study design emerge from sepa-
rate consideration of sources of random and systematic errors. Systematic errors in estimates are
commonly referred to as biases; the opposite of bias is validity, so that an estimate that has little
systematic error may be described as valid. Analogously, the opposite of random error is precision,
and an estimate with little random error may be described as precise. Validity and precision are
both components of accuracy.

The validity of astudy is usually separated into two components: the validity of the inferences
drawn asthey pertain to the members of the source population (internal validity) and the validity of
theinferencesasthey pertainto peopl e outsidethat popul ation (external validity or generalizability).
Internal validity impliesvalidity of inference for the source population of study subjects. In studies
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of causation, it corresponds to accurate measurement of effects apart from random variation. Under
such ascheme, internal validity is considered a prerequisite for external validity.

Most violations of internal validity can be classified into three general categories: confounding,
selection bias, and information bias, where the latter is bias arising from mismeasurement of study
variables. Confounding was described in general terms in Chapter 4, while specific selection bias
and measurement problems were described in Chapters 7 and 8. The present chapter describes the
general forms of these problemsin epidemiol ogic studies. Chapter 10 describes how to measure and
limit random error, Chapter 11 addresses optionsin study design that can improve overall accuracy,
and Chapter 12 shows how biases can be described and identified using causal diagrams. After
an introduction to statistics in Chapters 13 and 14, Chapters 15 and 16 provide basic methods to
adjust for measured confounders, while Chapter 19 introduces methods to adjust for unmeasured
confounders, selection bias, and misclassification.

The dichotomization of validity into internal and external components might suggest that gener-
alizationissimply amatter of extending inferences about a source population to atarget population.
The final section of this chapter provides a different view of generalizability, in which the essence
of scientific generalization is the formulation of abstract (usually causal) theories that relate the
study variablesto one another. Thetheories are abstract in the sense that they are not tied to specific
populations; instead, they apply to amore general set of circumstances than the specific populations
under study. Internal validity in astudy is still a prerequisite for the study to contribute usefully to
this process of abstraction, but the generalization process is otherwise separate from the concerns
of internal validity and the mechanics of the study design.

CONFOUNDING

The concept of confounding was introduced in Chapter 4. Although confounding occurs in experi-
mental research, it is a considerably more important issue in observational studies. Therefore, we
will here review the concepts of confounding and confounders and then discuss further issuesin
defining and identifying confounders. As in Chapter 4, in this section we will presume that the
objectiveisto estimate the effect that exposure had on those exposed in the source population. This
effect isthe actual (or realized) effect of exposure. We will indicate only briefly how the discussion
should be modified when estimating counterfactual (or potential) exposure effects, such asthe effect
exposure might have on the unexposed. Chapter 12 examines confounding within the context of
causal diagrams, which do not make these distinctions explicit.

CONFOUNDING AS MIXING OF EFFECTS

On the simplest level, confounding may be considered a confusion of effects. Specifically, the
apparent effect of the exposure of interest is distorted because the effect of extraneous factors
is mistaken for—or mixed with—the actual exposure effect (which may be null). The distortion
introduced by a confounding factor can be large, and it can lead to overestimation or underes-
timation of an effect, depending on the direction of the associations that the confounding fac-
tor has with exposure and disease. Confounding can even change the apparent direction of an
effect.

A more precise definition of confounding begins by considering the manner in which effectsare
estimated. Suppose we wish to estimate the degree to which exposure has changed the frequency of
disease in an exposed cohort. To do so, we must estimate what the frequency of disease would have
been in this cohort had exposure been absent and compare this estimate to the observed frequency
under exposure. Because the cohort was exposed, this absence of exposure is counterfactual (con-
trary to the facts) and so the desired unexposed comparison frequency is unobservable. Thus, as a
substitute, we observe the disease frequency in an unexposed cohort. But rarely can we take this
unexposed frequency as fairly representing what the frequency would have been in the exposed
cohort had exposure been absent, because the unexposed cohort may differ from the exposed cohort
on many factors that affect disease frequency besides exposure. To express this problem, we say
that the use of the unexposed as the referent for the exposed is confounded, because the disease
frequency in the exposed differs from that in the unexposed as a result of a mixture of two or more
effects, one of which isthe effect of exposure.
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CONFOUNDERS AND SURROGATE CONFOUNDERS

The extraneous factorsthat are responsible for differencein disease frequency between the exposed
and unexposed are called confounders. In addition, factors associated with these extraneous causal
factorsthat can serve assurrogatesfor thesefactorsare a so commonly called confounders. The most
extreme example of such asurrogateis chronologic age. Increasing ageis strongly associated with
aging—the accumulation of cell mutations and tissue damage that |eads to disease—but increasing
age doesnot itself cause most such pathogenic changes (Kirkland, 1992), becauseitisjust ameasure
of how much time has passed since birth.

Regardless of whether aconfounder isacause of the study disease or merely asurrogate for such
acause, one primary characteristic isthat if it is perfectly measured it will be predictive of disease
frequency within the unexposed (reference) cohort. Otherwise, the confounder cannot explain why
the unexposed cohort fails to represent properly the disease frequency the exposed cohort would
experience in the absence of exposure. For example, suppose that all the exposed were men and
all the unexposed were women. If unexposed men have the same incidence as unexposed women,
the fact that all the unexposed were women rather than men could not account for any confounding
that is present.

In the simple view, confounding occurs only if extraneous effects become mixed with the
effect under study. Note, however, that confounding can occur even if the factor under study
has no effect. Thus, “mixing of effects’ should not be taken to imply that the exposure under
study has an effect. The mixing of the effects comes about from an association between the expo-
sure and extraneous factors, regardless of whether the exposure has an effect.

Asanother example, consider astudy to determine whether al cohol drinkers experience agreater
incidence of oral cancer than nondrinkers. Smoking is an extraneous factor that is related to the
disease among the unexposed (smoking has an effect on oral cancer incidence among alcohol
abstainers). Smoking is also associated with a cohol drinking, because there are many people who
are general “abstainers,” refraining from alcohol consumption, smoking, and perhaps other habits.
Consequently, alcohol drinkersinclude among them a greater proportion of smokers than would be
found among nondrinkers. Because smoking increasestheincidence of oral cancer, alcohol drinkers
will have a greater incidence than nondrinkers, quite apart from any influence of alcohol drinking
itself, simply as a consequence of the greater amount of smoking among alcohol drinkers. Thus,
the apparent effect of alcohol drinking is distorted by the effect of smoking; the effect of smoking
becomes mixed with the effect of alcohol in the comparison of acohol drinkers with nondrinkers.
The degree of bias or distortion depends on the magnitude of the smoking effect, the strength of
association between alcohol and smoking, and the prevalence of smoking among nondrinkers who
do not have ora cancer. Either absence of a smoking effect on oral cancer incidence or absence
of an association between smoking and alcohol would lead to no confounding. Smoking must be
associated with both oral cancer and alcohol drinking for it to be a confounding factor.

PROPERTIES OF A CONFOUNDER

In general, avariable must be associated with both the exposure under study and the disease under
study to be a confounder. These associations do not, however, define a confounder, for a variable
may possess these associ ations and yet not be aconfounder. There are severa waysthis can happen.
The most common way occurs when the exposure under study has an effect. In this situation, any
correlate of that exposure will also tend to be associated with the disease as a consequence of
its association with exposure. For example, suppose that frequent beer consumption is associated
with the consumption of pizza, and suppose that frequent beer consumption is a risk factor for
rectal cancer. Would consumption of pizza be aconfounding factor? At first, it might seem that the
answer is yes, because consumption of pizzais associated both with beer drinking and with rectal
cancer. But if pizzaconsumption isassociated with rectal cancer only because of itsassociation with
beer consumption, it would not be confounding; in fact, the association of pizza consumption with
colorectal cancer would then be due entirely to confounding by beer consumption. A confounding
factor must be associated with disease occurrence apart from its association with exposure. In
particular, as explained earlier, the potentially confounding variate must be associated with disease
among unexposed (reference) individuas. If consumption of pizza were associated with rectal
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cancer among nondrinkers of beer, then it could confound. Otherwise, if it were associated with
rectal cancer only because of its association with beer drinking, it could not confound.

Analogous with this restriction on the association between a potential confounder and disease,
the potential confounder must be associated with the exposure among the source population for
cases, for this association with exposure is how the effects of the potential confounder become
mixed with the effects of the exposure. In this regard, it should be noted that a risk factor that is
independent of exposure in the source population can (and usually will) become associated with
exposure among the cases; hence one cannot take the association among cases as a valid estimate
of the association in the source population.

CONFOUNDERS AS EXTRANEOUS RISK FACTORS

Itis also important to clarify what we mean by the term extraneous in the phrase “extraneous risk
factor.” This term means that the factor’s association with disease arises from a causal pathway
other than the one under study. Specifically, consider the causal diagram

Smoking —> €elevated blood pressure —> heart disease

wherethearrowsrepresent causation. | selevated blood pressure aconfounding factor?Itiscertainly
arisk factor for disease, and it isaso correlated with exposure, because it can result from smoking.
It iseven arisk factor for disease among unexposed individuals, because elevated blood pressure
can result from causes other than smoking. Nevertheless, it cannot be considered a confounding
factor, because the effect of smoking is mediated through the effect of blood pressure. Any factor
that represents a step in the causal chain between exposure and disease should not be treated as
an extraneous confounding factor, but instead requires special treatment as an intermediate factor
(Greenland and Neutra, 1980; Robins, 1989; see Chapter 12).

Finally, a variable may satisfy all of the preceding conditions but may not do so after control
for some other confounding variable, and so may no longer be a confounder within strata of the
second confounder. For example, it may happen that either (a) the first confounder is no longer
associated with disease within strata of the second confounder, or (b) the first confounder is no
longer associated with exposure within strata of the second confounder. In either case, the first
confounder is only a surrogate for the second confounder. More generally, the status of a variable
as a confounder may depend on which other variables are controlled when the evaluation is made;
in other words, being a confounder is conditional on what elseis controlled.

JUDGING THE CAUSAL ROLE OF A POTENTIAL CONFOUNDER

Consider the smple but common case of a binary exposure variable, with interest focused on the
effect of exposure on aparticul ar exposed population, relative to what would have happened had this
population not been exposed. Suppose that an unexposed popul ation is selected as the comparison
(reference) group. A potential confounder is then a factor that is associated with disease among
the unexposed, and is not affected by exposure or disease. We can verify the latter requirement
if we know that the factor precedes the exposure and disease. Association with disease among
the unexposed is amore difficult criterion to decide. Apart from simple and now obvious potential
confounders such asage, sex, and tobacco use, the avail abl e epi demi ol ogic dataare often ambiguous
asto predictiveness even when they do establish time order. Simply deciding whether predictiveness
holdson the basisof astatistical testisusually far too insensitive to detect all important confounders
and asaresult may produce highly confounded estimates, asreal examples demonstrate (Greenland
and Neutra, 1980).

One answer to the ambiguity and insensitivity of epidemiologic methods to detect confounders
isto call on other evidence regarding the effect of the potential confounder on disease, including
nonepidemiologic (e.g., clinical or social) data and perhaps mechanistic theories about the possible
effects of the potential confounders. Uncertainties about the evidence or mechanism can justify the
handling of a potential confounding factor as both confounding and not confounding in different
analyses. For example, in evaluating the effect of coffee on heart disease, it isunclear how to treat
serum cholesterol levels. Elevated levels are arisk factor for heart disease and may be associated
with coffee use, but serum cholesterol may mediate the action of coffee use on heart disease risk.
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That is, elevated cholesterol may be an intermediate factor in the etiologic sequence under study. If
the time ordering of coffee use and cholesterol elevation cannot be determined, one might conduct
two analyses, one in which serum cholesterol is controlled (which would be appropriate if coffee
does not affect serum cholesterol) and one in which it is either not controlled or is treated as
an intermediate (which would be more appropriate if coffee affects serum cholesterol and is not
associated with uncontrolled determinants of serum cholesterol). The interpretation of the results
would depend on which of the theories about serum cholesterol were correct. Causal graphs provide
a useful means for depicting these multivariable relations and, as will be explained in Chapter 12,
allow identification of confounders for control from the structure of the graph.

CRITERIA FOR A CONFOUNDING FACTOR

We can summarize thus far with the observation that for avariable to be a confounder, it must have
three necessary (but not sufficient or defining) characteristics, which we will discussin detail. We
will then point out some limitations of these characteristicsin defining and identifying confounding.

1. A confounding factor must be an extraneous risk factor for the disease.

Asmentioned earlier, apotential confounding factor need not be an actual cause of the disease,
but if it is not, it must be a surrogate for an actual cause of the disease other than exposure. This
condition implies that the association between the potential confounder and the disease must occur
within levels of the study exposure. In particular, a potentially confounding factor must be a risk
factor within the reference level of the exposure under study. The data may serve as a guide to
the relation between the potential confounder and the disease, but it is the actual relation between
the potentially confounding factor and disease, not the apparent relation observed in the data, that
determines whether confounding can occur. In large studies, which are subject to less sampling
error, we expect the data to reflect more closely the underlying relation, but in small studies the
data are a less reliable guide, and one must consider other, external evidence (“prior knowledge”)
regarding the relation of the factor to the disease.

The following example illustrates the role that prior knowledge can play in evaluating con-
founding. Suppose that in a cohort study of airborne glass fibers and lung cancer, the data show
more smoking and more cancers among the heavily exposed but no relation between smoking and
lung cancer within exposure levels. The latter absence of a relation does not mean that an effect
of smoking was not confounded (mixed) with the estimated effect of glass fibers: It may be that
some or all of the excess cancers in the heavily exposed were produced solely by smoking, and
that the lack of a smoking—cancer association in the study cohort was produced by an unmeasured
confounder of that association in this cohort, or by random error.

As a converse example, suppose that we conduct a cohort study of sunlight exposure and
melanoma. Our best current information indicates that, after controlling for age and geographic
area of residence, there is no relation between Socia Security number and melanoma occurrence.
Thus, wewould not consider Socia Security number aconfounder, regardless of itsassociation with
melanoma in the reference exposure cohort, because we think it is not arisk factor for melanoma
in this cohort, given age and geographic area (i.e., we think Socia Security numbers do not affect
melanomarates and are not markersfor some melanomarisk factor other than ageand area). Even if
control of Social Security number would change the effect estimate, the resulting estimate of effect
would be less accurate than one that ignores Socia Security number, given our prior information
about the lack of real confounding by socia security number.

Nevertheless, because external information is usually limited, investigators often rely on their
datato infer therelation of potential confoundersto the disease. Thisreliance can berationalized if
one has good reason to suspect that the external information is not very relevant to one’'s own study.
For example, a cause of disease in one population will be causally unrelated to disease in another
population that lacks complementary component causes (i.e., susceptibility factors; see Chapter 2).
A discordance between the data and external information about a suspected or known risk factor
may therefore signal an inadequacy in the detail of information about interacting factors rather than
an error in the data. Such an explanation may be less credible for variables such as age, sex, and
smoking, whose joint relation to disease are often thought to be fairly stable across populations. In
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aparallel fashion, external information about the absence of an effect for apossible risk factor may
be considered inadequate, if the external information is based on studies that had a considerable
bias toward the null.

2. A confounding factor must be associated with the exposure under study in the source population
(the population at risk from which the cases are derived).

To produce confounding, the associ ation between apotential confounding factor and theexposure
must be in the source population of the study cases. In a cohort study, the source population
corresponds to the study cohort and so this proviso implies only that the association between a
confounding factor and the exposure exists among subjects that compose the cohort. Thus, in
cohort studies, the exposure—confounder association can be determined from the study data alone
and does not even theoretically depend on prior knowledge if no measurement error is present.

When the exposure under study has been randomly assigned, it is sometimes mistakenly thought
that confounding cannot occur because randomization guarantees exposure will be independent of
(unassociated with) other factors. Unfortunately, this independence guarantee is only on average
across repetitions of the randomization procedure. In amost any given single randomization (allo-
cation), including those in actual studies, there will be random associations of the exposure with
extraneous risk factors. As a consequence, confounding can and does occur in randomized trials.
Although thisrandom confounding tendsto be small inlarge randomized trias, it will often belarge
within small trials and within small subgroups of large trials (Rothman, 1977). Furthermore, heavy
nonadherence or noncompliance (failure to follow the assigned treatment protocol) or drop-out can
result in considerable nonrandom confounding, even in large randomized trials (see Chapter 12,
especidly Fig. 12-5).

In acase-control study, the association of exposure and the potential confounder must be present
in the source population that gave rise to the cases. If the control series is large and there is
no selection bias or measurement error, the controls will provide a reasonable estimate of the
association between the potential confounding variable and the exposure in the source population
and can be checked with the study data. In general, however, the controls may not adequately
estimate the degree of association between the potential confounder and the exposure in the source
population that produced the study cases. If information is available on this population association,
it can be used to adjust findings from the control series. Unfortunately, reliable external information
about the associations among risk factors in the source population is seldom available. Thus, in
case-control studies, concerns about the control group will have to be considered in estimating
the association between the exposure and the potentially confounding factor, for example, viabias
analysis (Chapter 19).

Consider a nested case-control study of occupational exposure to airborne glass fibers and the
occurrence of lung cancer that randomly sampled cases and controls from cases and persons at
risk in an occupational cohort. Suppose that we knew the association of exposure and smoking in
the full cohort, as we might if this information were recorded for the entire cohort. We could then
use the discrepancy between the true association and the exposure—smoking association observed in
thecontrolsasameasure of the extent to which random sampling had failed to produce representative
controls. Regardless of the size of this discrepancy, if there were no association between smoking
and exposure in the source cohort, smoking would not be a true confounder (even if it appeared to
be one in the case-control data), and the unadjusted estimate would be the best available estimate
(Robins and Morgenstern, 1987). More generally, we could use any information on the entire
cohort to make adjustments to the case-control estimate, in afashion analogous to two-stage studies
(Chapters 8 and 15).

3. A confounding factor must not be affected by the exposure or the disease. In particular, it cannot
be an intermediate step in the causal path between the exposure and the disease.

This criterion is automatically satisfied if the factor precedes exposure and disease. Otherwise,
the criterion requires information outside the data. The investigator must consider evidence or
theories that bear on whether the exposure or disease might affect the factor. If the factor is an
intermediate step between exposure and disease, it should not be treated as simply a confounding
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factor; instead, a more detailed analysis that takes account of its intermediate nature is required
(Robins, 1989; Robins and Greenland, 1992; Robins et al., 2000).

Although the above three characteristics of confounders are sometimes taken to define a con-
founder, it is a mistake to do so for both conceptual and technical reasons. Confounding is the
confusion or mixing of extraneous effects with the effect of interest. The first two characteristics
aresimply logical consequences of the basic definition, propertiesthat afactor must satisfy in order
to confound. Thethird property excludes situationsin which the effects cannot be disentangled in a
straightforward manner (except in special cases). Technically, itispossiblefor afactor to possessall
three characteristics and yet not have its effects mixed with the exposure, in the sense that a factor
may produce no spurious excess or deficit of disease among the exposed, despite its association
with exposure and its effect on disease. This result can occur, for example, when the factor is only
one of several potential confounders and the excess of incidence produced by the factor among the
exposed is perfectly balanced by the excessincidence produced by another factor in the unexposed.

The above discussion omits a number of subtleties that arise in qualitative determination of
which variables are sufficient to control in order to eliminate confounding. These qualitative issues
will be discussed using causal diagramsin Chapter 12. It isimportant to remember, however, that
the degree of confounding is of much greater concern than its mere presence or absence. In one
study, arate ratio of 5 may become 4.6 after control of age, whereas in another study a rate ratio
of 5 may change to 1.2 after control of age. Although age is confounding in both studies, in the
former the amount of confounding is comparatively unimportant, whereasin thelatter confounding
accounts for nearly al of the crude association. Methods to evaluate confounding quantitatively
will be described in Chapters 15 and 19.

SELECTION BIAS

Selection biases are distortions that result from procedures used to select subjects and from factors
that influence study participation. The common element of such biasesis that the relation between
exposure and disease is different for those who participate and for al those who should have been
theoretically eligible for study, including those who do not participate. Because estimates of effect
are conditioned on participation, the associations observed in a study represent amix of forces that
determine participation and forces that determine disease occurrence.

Chapter 12 examines selection bias within the context of causal diagrams. These diagrams show
that it is sometimes (but not always) possible to disentangle the effects of participation from those
of disease determinants using standard methods for the control of confounding. To employ such
analytic control requires, among other things, that the determinants of participation be measured
accurately and not be affected by both exposure and disease. However, if those determinants are
affected by the study factors, analytic control of those determinants will not correct the bias and
may even make it worse.

Some generic forms of selection biasin case-control studies were described in Chapter 8. Those
include use of incorrect control groups (e.g., controls composed of patients with diseases that are
affected by the study exposure). We consider here some further types.

SELF-SELECTION BIAS

A common source of selection biasis self-selection. When the Centers for Disease Control investi-
gated leukemiaincidence among troops who had been present at the Smoky Atomic Test in Nevada
(Caldwell et d., 1980), 76% of thetroopsidentified asmembers of that cohort had known outcomes.
Of this 76%, 82% were traced by the investigators, but the other 18% contacted the investigators
on their own initiative in response to publicity about the investigation. This self-referral of subjects
isordinarily considered athreat to validity, because the reasons for self-referral may be associated
with the outcome under study (Criqui et al., 1979).

In the Smoky Atomic Test study, there were four leukemia cases among the 0.18 x 0.76 = 14%
of cohort members who referred themselves and four among the 0.82 x 0.76 = 62% of cohort
members traced by the investigators, for a total of eight cases among the 76% of the cohort with
known outcomes. These data indicate that self-selection bias was a small but real problem in the
Smoky study. If the 24% of the cohort with unknown outcomes had a leukemiaincidence like that
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of the subjects traced by the investigators, we should expect that only 4(24/62) = 1.5 or about one
or two cases occurred among this 24%, for a total of only nine or 10 cases in the entire cohort.
If instead we assume that the 24% with unknown outcomes had a leukemia incidence like that of
subjects with known outcomes, we would cal culate that 8(24/76) = 2.5 or about two or three cases
occurred among this 24%, for atotal of 10 or 11 cases in the entire cohort. It might be, however,
that all cases among the 38% (= 24% + 14%) of the cohort that was untraced were among the
self-reported, leaving no case among those with unknown outcome. The total number of casesin
the entire cohort would then be only 8.

Self-selection can also occur before subjects are identified for study. For example, it is routine
to find that the mortality of active workers is less than that of the population as a whole (Fox
and Callier, 1976; McMichael, 1976). This “heathy-worker effect” presumably derives from a
screening process, perhaps largely self-selection, that allows relatively healthy people to become
or remain workers, whereas those who remain unemployed, retired, disabled, or otherwise out of
the active worker population are as a group less healthy (McMichael, 1976; Wang and Miettinen,
1982). While the healthy-worker effect has traditionally been classified as a selection bias, one can
see that it does not reflect a bias created by conditioning on participation in the study, but rather
from the effect of another factor that influences both worker status and some measure of health. As
such, the healthy-worker effect is an example of confounding rather than selection bias (Hernan
et al, 2004), as explained further below.

BERKSONIAN BIAS

A type of selection bias that was first described by Berkson (1946) (although not in the context of
a case-control study), which came to be known as Berkson’s bias or Berksonian bias, occurs when
both the exposure and the disease affect selection and specifically because they affect selection. It
is paradoxical because it can generate a downward bias when both the exposure and the disease
increase the chance of selection; this downward bias can induce a negative association in the study
if the association in the source population is positive but not as large as the bias.

A dramatic example of Berksonian bias arose in the early controversy about the role of exoge-
nous estrogens in causing endometrial cancer. Several case-control studies had reported a strong
association, with about a10-fold increasein risk for women taking estrogensregularly for anumber
of years (Smith et a., 1975; Ziel and Finkle, 1975; Mack et a., 1976; Antunes et a., 1979). Most
investigatorsinterpreted thisincreasein risk asacausal relation, but others suggested that estrogens
were merely causing the cancersto be diagnosed rather than to occur (Horwitz and Feinstein, 1978).
Their argument rested on the fact that estrogensinduce uterine bleeding. Therefore, the administra-
tion of estrogens would presumably lead women to seek medical attention, thus causing a variety
of gynecologic conditions to be detected. The resulting bias was referred to as detection bias.

The remedy for detection bias that Horwitz and Feinstein proposed was to use a control series
of women with benign gynecologic diseases. These investigators reasoned that benign conditions
would also be subject to detection bias, and therefore using acontrol series comprising women with
benign conditions would be preferable to using a control series of women with other malignant
disease, nongynecol ogic disease, or no disease, asearlier studieshad done. Theflaw inthisreasoning
was theincorrect assumption that estrogens caused a substantial proportion of endometrial cancers
to be diagnosed that would otherwise have remained undiagnosed. Even if the administration of
estrogens advances the date of diagnosis for endometrial cancer, such an advance in the time
of diagnosis need not in itself lead to any substantial bias (Greenland, 19914). Possibly, a small
proportion of pre-existing endometrial cancer cases that otherwise would not have been diagnosed
did come to attention, but it is reasonable to suppose that endometrial cancer that is not in situ
(Horwitz and Feinstein excluded in situ cases) usually progresses to cause symptoms leading to
diagnosis (Hutchison and Rothman, 1978). Although a permanent, nonprogressive early stage of
endometria cancer isapossibility, the studies that excluded such in situ cases from the case series
still found a strong association between estrogen administration and endometrial cancer risk (e.g.,
Antunes et a., 1979).

The proposed aternative control group comprised women with benign gynecologic conditions
that were presumed not to cause symptoms leading to diagnosis. Such a group would provide an
overestimate of the proportion of the source population of cases exposed to estrogens, because
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administration of estrogens would indeed cause the diagnosis of a substantial proportion of the
benign conditions. The use of a control series with benign gynecologic conditions would thus
produce abiasthat severely underestimated the effect of exogenous estrogens on risk of endometrial
cancer. Another remedy that Horwitz and Feinstein proposed was to examine the association within
women who had presented with vaginal bleeding or had undergone treatment for such bleeding.
Because both the exposure (exogenous estrogens) and the disease (endometrial cancer) strongly
increase bleeding risk, restriction to women with bleeding or treatment for bleeding results in
a Berksonian bias so severe that it could easily diminish the observed relative risk by fivefold
(Greenland and Neutra, 1981).

A major lesson to be learned from this controversy is the importance of considering selection
biases quantitatively rather than qualitatively. Without appreciation for the magnitude of potential
selection biases, the choice of acontrol group can result in abias so great that a strong association
is occluded; aternatively, a negligible association could as easily be exaggerated. Methods for
quantitative consideration of biases are discussed in Chapter 19. Another lesson isthat one runsthe
risk of inducing or worsening selection bias whenever one uses selection criteria (e.g., requiring the
presence or absence of certain conditions) that are influenced by the exposure under study. If those
criteria are also related to the study disease, severe Berksonian biasislikely to ensue.

DISTINGUISHING SELECTION BIAS FROM CONFOUNDING

Selection biasand confounding are two conceptsthat, depending on terminol ogy, often overlap. For
example, in cohort studies, biasesresulting from differential selection at start of follow-up are often
called selection bias, but in our terminology they are examples of confounding. Consider a cohort
study comparing mortality from cardiovascular diseases among longshoremen and office workers.
If physically fit individuals self-select into longshoreman work, we should expect longshoremen to
have lower cardiovascular mortality than that of office workers, even if working as alongshoreman
has no effect on cardiovascular mortality. As a consequence, the crude estimate from such a study
could not be considered avalid estimate of the effect of longshoreman work relative to office work
on cardiovascular mortality.

Suppose, however, that thefitness of anindividua who becomesalumberjack could be measured
and compared with the fitness of the office workers. If such ameasurement were done accurately on
all subjects, the difference in fitness could be controlled in the analysis. Thus, the selection effect
would beremoved by control of the confounders responsible for the bias. Although the bias results
from selection of persons for the cohorts, it isin fact aform of confounding.

Because measurements on fitness at entry into an occupation are generally not available, the
investigator’s efforts in such a situation would be focused on the choice of a reference group that
would experience the same selection forces as the target occupation. For example, Paffenbarger
and Hale (1975) conducted a study in which they compared cardiovascular mortality among groups
of longshoremen who engaged in different levels of physical activity on the job. Paffenbarger and
Hale presumed that the sel ection factors for entering the occupation were similar for the subgroups
engaged intasksdemanding high or low activity, becausework assignmentswere madeafter entering
the profession. Thisdesign would reduce or eliminate the association between fitness and becoming
alongshoreman. By comparing groups with different intensities of exposure within an occupation
(internal comparison), occupational epidemiologists reduce the difference in selection forces that
accompanies comparisons across occupational groups, and thus reduce the risk of confounding.

Unfortunately, not all selection bias in cohort studies can be dealt with as confounding. For
example, if exposure affects loss to follow-up and the latter affects risk, selection bias occurs
because the analysis is conditioned on a common conseguence (remaining under follow-up is
related to both the exposure and the outcome). This bias could arise in an occupational mortality
study if exposure caused people to leave the occupation early (e.g., move from an active job to a
desk job or retirement) and that in turn led both to lossto follow-up and to an increased risk of death.
Here, there is no baseline covariate (confounder) creating differencesin risk between exposed and
unexposed groups, rather, exposureitself is generating the bias. Such a bias would be irremediable
without further information on the selection effects, and even with that information the bias could
not be removed by simple covariate control. This possibility underscores the need for thorough
follow-up in cohort studies, usually requiring a system for outcome surveillance in the cohort. If
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no such system isin place (e.g., an insurance claims system), the study will have to implement its
own system, which can be expensive.

In case-control studies, the concerns about choice of a control group focus on factors that
might affect selection and recruitment into the study. Although confounding factors also must be
considered, they can be controlled in the analysis if they are measured. If selection factors that
affect case and control selection are themselves not affected by exposure (e.g., sex), any selection
bias they produce can also be controlled by controlling these factorsin the analysis. The key, then,
to avoiding confounding and selection bias due to pre-exposure covariatesisto identify in advance
and measure as many confounders and selection factors as is practical. Doing so requires good
subject-matter knowledge.

In case-control studies, however, subjects are often selected after exposure and outcome occurs,
and hence there is an elevated potential for bias due to combined exposure and disease effects
on selection, as occurred in the estrogen and endometrial cancer studies that restricted subjects
to patients with bleeding (or to patients receiving specific medical procedures to treat bleeding).
As will be shown using causal graphs (Chaper 12), bias from such joint selection effects usually
cannot be dealt with by basic covariate control. Thishbias can also arisein cohort studiesand evenin
randomized trialsin which subjects arelost to follow-up. For example, in an occupational mortality
study, exposure could cause people to leave the occupation early and that in turn could produce
both a failure to locate the person (and hence exclusion from the study) and an increased risk of
death. Theseforceswould result in areduced chance of selection among the exposed, with ahigher
reduction among cases.

In this example, there is no baseline covariate (confounder) creating differencesin risk between
exposed and unexposed groups; rather, exposure itself is helping to generate the bias. Such a bias
would be irremediable without further information on the selection effects, and even with that
information could not be removed by simple covariate control. This possibility underscores the
need for thorough ascertainment of the outcome in the source population in case-control studies; if
no ascertainment system isin place (e.g., atumor registry for a cancer study), the study will have
to implement its own system.

Because many types of selection bias cannot be controlled inthe analysis, prevention of selection
bias by appropriate control selection can be critical. The usua strategy for this prevention involves
trying to select a control group that is subject to the same selective forces as the case group,
in the hopes that the biases introduced by control selection will cancel the biases introduced by
case selection in the final estimates. Meeting this goal even approximately can rarely be assured,
nonetheless, it is often the only strategy available to address concerns about selection bias. This
strategy and other aspects of control selection were discussed in Chapter 8.

To summarize, differential selection that occurs before exposure and disease |eads to confound-
ing, and can thusbe controlled by adjustmentsfor thefactorsresponsiblefor the sel ection differences
(see, for example, the adjustment methods described in Chapter 15). In contrast, selection bias as
usually described in epidemiology (as well as the experimental-design literature) arises from se-
lection affected by the exposure under study, and may be beyond any practical adjustment. Among
these selection biases, we can further distinguish Berksonian bias in which both the exposure and
the disease affect selection.

Some authors (e.g., Hernan et al., 2004) attempt to use graphs to provide a formal basis for
separating selection bias from confounding by equating selection bias with a phenomenon termed
collider bias, ageneralization of Berksonian bias (Greenland, 2003a; Chapter 12). Our terminology
ismorein accord with traditional designationsin which bias from pre-exposure selection is treated
as aform of confounding. These distinctions are discussed further in Chapter 12.

INFORMATION BIAS
MEASUREMENT ERROR, MISCLASSIFICATION, AND BIAS

Once the subjects to be compared have been identified, one must obtain the information about
them to use in the analysis. Bias in estimating an effect can be caused by measurement errors in
the needed information. Such bias is often called information bias. The direction and magnitude
depends heavily on whether the distribution of errors for one variable (e.g., exposure or disease)
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depends on the actual value of the variable, the actual values of other variables, or the errorsin
measuring other variables.

For discrete variables (variables with only a countable number of possible values, such as
indicators for sex), measurement error is usualy called classification error or misclassification.
Classification error that depends on the actual values of other variables is called differential mis-
classification. Classification error that does not depend on the actual values of other variables is
called nondifferential misclassification. Classification error that depends on the errorsin measuring
or classifying other variables is called dependent error; otherwise the error is called independent
or nondependent error. Correlated error is sometimes used as a synonym for dependent error, but
technically it refers to dependent errors that have a nonzero correlation coefficient.

Much of the ensuing discussion will concern misclassification of binary variables. In thisspecial
situation, the sensitivity of an exposure measurement method is the probability that someone who
istruly exposed will be classified as exposed by the method. The false-negative probability of the
method is the probability that someone who is truly exposed will be classified as unexposed; it
equals 1 minus the sensitivity. The specificity of the method is the probability that someone who
istruly unexposed will be classified as unexposed. The false-positive probability is the probability
that someone who istruly unexposed will be classified as exposed; it equals 1 minusthe specificity.
The predictive value positive is the probability that someone who is classified as exposed is truly
exposed. Finally, the predictive value negative is the probability that someone who is classified as
unexposed is truly unexposed. All these terms can also be applied to descriptions of the methods
for classifying disease or classifying a potential confounder or modifier.

DIFFERENTIAL MISCLASSIFICATION

Suppose acohort study isundertaken to compareincidence rates of emphysemaamong smokersand
nonsmokers. Emphysemais a disease that may go undiagnosed without special medical attention.
If smokers, because of concern about health-related effects of smoking or as aconsequence of other
health effects of smoking (e.g., bronchitis), seek medical attentionto agreater degreethan nonsmok-
ers, then emphysema might be diagnosed more frequently among smokers than among nonsmokers
simply as a consequence of the greater medical attention. Smoking does cause emphysema, but
unless steps were taken to ensure comparable follow-up, this effect would be overestimated: A
portion of the excess of emphysemaincidence would not be abiologic effect of smoking, but would
instead be an effect of smoking on detection of emphysema. This is an example of differential
misclassification, because underdiagnosis of emphysema (failure to detect true cases), which is a
classification error, occurs more frequently for nonsmokers than for smokers.

In case-control studies of congenital malformations, information is sometimes obtained from
interview of mothers. The case mothers have recently given birth to a malformed baby, whereas the
vast magjority of control mothers have recently given birth to an apparently healthy baby. Another
variety of differential misclassification, referred to asrecall bias, can result if the mothers of mal-
formed infantsrecall or report true exposures differently than mothers of healthy infants (enhanced
sensitivity of exposure recall among cases), or more frequently recall or report exposure that did
not actually occur (reduced specificity of exposure recall among cases). It is supposed that the birth
of amalformed infant serves as a stimulus to amother to recall and report all eventsthat might have
played some role in the unfortunate outcome. Presumably, such women will remember and report
exposures such as infectious disease, trauma, and drugs more frequently than mothers of healthy
infants, who have not had a comparable stimulus. An association unrelated to any biologic effect
will result from this recall bias.

Recall biasis apossibility in any case-control study that relies on subject memory, because the
cases and controls are by definition people who differ with respect to their disease experience at
the time of their recall, and this difference may affect recall and reporting. Klemetti and Saxen
(1967) found that the amount of time lapsed between the exposure and the recall was an important
indicator of the accuracy of recall; studies in which the average time since exposure was different
for interviewed cases and controls could thus suffer a differential misclassification.

Thebias caused by differential misclassification can either exaggerate or underestimate an effect.
In each of the examples above, the misclassification ordinarily exaggerates the effects under study,
but examples to the contrary can also be found.
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NONDIFFERENTIAL MISCLASSIFICATION

Nondifferential exposure misclassification occurs when the proportion of subjects misclassified on
exposure does not depend on the status of the subject with respect to other variablesin the analysis,
including disease. Nondifferential disease misclassification occurs when the proportion of subjects
misclassified on disease does not depend on the status of the subject with respect to other variables
in the analysis, including exposure.

Biasintroduced by independent nondifferential misclassification of abinary exposure or disease
is predictable in direction, namely, toward the null value (Newell, 1962; Keys and Kihlberg, 1963;
Gullen et al., 1968; Copeland et al., 1977). Because of the relatively unpredictable effects of
differential misclassification, someinvestigators go through elaborate procedures to ensure that the
misclassification will be nondifferential, such as blinding of exposure evaluations with respect to
outcome status, in the belief that this will guarantee a bias toward the null. Unfortunately, evenin
situations when blinding is accomplished or in cohort studies in which disease outcomes have not
yet occurred, collapsing continuous or categorical exposure data into fewer categories can change
nondifferential error to differential misclassification (Flegal et al., 1991; Wacholder et a., 1991).
Even when nondifferential misclassification is achieved, it may come at the expense of increased
total bias (Greenland and Robins, 1985a; Drews and Greenland, 1990).

Finally, as will be discussed, nondifferentiality alone does not guarantee bias toward the null.
Contrary to popul ar misconceptions, nondifferential exposureor disease misclassification can some-
times produce bias away from the null if the exposure or disease variable has more than two levels
(Walker and Blettner, 1985; Dosemeci et al., 1990) or if the classification errors depend on errors
made in other variables (Chavance et al., 1992; Kristensen, 1992).

Nondifferential Misclassification of Exposure

Asan exampleof nondifferential misclassification, consider acohort study comparing theincidence
of laryngeal cancer among drinkers of alcohol with the incidence among nondrinkers. Assume that
drinkers actually have an incidence rate of 0.00050 year—*, whereas nondrinkers have an incidence
rate of 0.00010 year—*, only one-fifth as great. Assume also that two thirds of the study population
consists of drinkers, but only 50% of them acknowledge it. The result is a population in which one
third of subjects are identified (correctly) as drinkers and have an incidence of disease of 0.00050
year~1, but the remaining two thirds of the population consists of equal numbers of drinkers and
nondrinkers, all of whom are classified as nondrinkers, and among whom the average incidence
would be 0.00030 year—? rather than 0.00010 year— (Table 9-1). The rate difference has been

Effect of Nondifferential Misclassification of Alcohol Consumption on
Estimation of the Incidence-Rate Difference and Incidence-Rate Ratio
for Laryngeal Cancer (Hypothetical Data)

Incidence Rate  Rate Difference

(x10°y) (x10°y) Rate Ratio
No misclassification
1,000,000 drinkers 50 40 5.0
500,000 nondrinkers 10
Half of drinkers classed with nondrinkers
500,000 drinkers 50 20 1.7
1,000,000 “nondrinkers” (50% are actually drinkers) 30

Half of drinkers classed with nondrinkers and one-third of
nondrinkers classed with drinkers
666,667 "drinkers” (25% are actually nondrinkers) 40 6 1.2
833,333 "nondrinkers"” (60% are actually drinkers) 34
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reduced by misclassification from 0.00040 year—* to 0.00020 year—1, while the rate ratio has been
reduced from 5to 1.7. This bias toward the null value results from nondifferential misclassification
of some alcohol drinkers as nondrinkers.

Misclassification can occur simultaneously in both directions; for example, nondrinkers might
also be incorrectly classified as drinkers. Suppose that in addition to half of the drinkers being
misclassified as nondrinkers, one third of the nondrinkers were also misclassified as drinkers. The
resulting incidence rates would be 0.00040 year—! for those classified as drinkers and 0.00034
year—! for those classified as nondrinkers. The additional misclassification thus almost completely
obscures the difference between the groups.

This example shows how bias produced by nondifferential misclassification of a dichotomous
exposurewill betoward the null value (of no relation) if the misclassification isindependent of other
errors. If the misclassification is severe enough, the bias can completely obliterate an association
and even reverse the direction of association (although reversal will occur only if the classification
method is worse than randomly classifying people as “exposed” or “unexposed”).

Consider as an example Table 9-2. The top panel of the table shows the expected data from a
hypothetical case-control study, with the exposure measured as adichotomy. The oddsratio is 3.0.
Now suppose that the exposure is measured by an instrument (e.g., a questionnaire) that resultsin
an exposure measure that has 100% specificity but only 80% sensitivity. In other words, all thetruly

Nondifferential Misclassification with Two
Exposure Categories

Exposed Unexposed
Correct data
Cases 240 200
Controls 240 600
OR=3.0
Sensitivity = 0.8
Specificity = 1.0
Cases 192 248
Controls 192 648
OR=26
Sensitivity = 0.8
Specificity = 0.8
Cases 232 208
Controls 312 528
OR=19
Sensitivity = 0.4
Specificity = 0.6
Cases 176 264
Controls 336 504
OR=10
Sensitivity = 0.0
Specificity = 0.0
Cases 200 240
Controls 600 240
OR =033

OR, odds ratio.
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unexposed subjects are correctly classified as unexposed, but there is only an 80% chance that an
exposed subject is correctly classified as exposed, and thus a 20% chance an exposed subject will be
incorrectly classified as unexposed. We assume that the misclassification is nondifferential, which
means for this example that the sensitivity and specificity of the exposure measurement method
is the same for cases and controls. We aso assume that there is no error in measuring disease,
from which it automatically follows that the exposure errors are independent of disease errors. The
resulting data are given in the second panel of the table. With the reduced sensitivity in measuring
exposure, the odds ratio is biased in that its approximate expected value decreases from 3.0 to 2.6.

In the third panel, the specificity of the exposure measure is assumed to be 80%, so that there
is a 20% chance that someone who is actually unexposed will be incorrectly classified as exposed.
The resulting data produce an odds ratio of 1.9 instead of 3.0. In absolute terms, more than half of
the effect has been obliterated by the misclassification in the third panel: the excess odds ratio is
3.0—1=2.0,whereasitis1.9 —1 = 0.9 based on the datawith 80% sensitivity and 80% specificity
in the third panel.

The fourth panel of Table 9-2 illustrates that when the sensitivity and specificity sum to 1, the
resulting expected estimate will be null, regardless of the magnitude of the effect. If the sum of the
sensitivity and specificity islessthan 1, then the resulting expected estimate will bein the opposite
direction of the actual effect. The last panel of the table shows the result when both sensitivity and
specificity are zero. This situation is tantamount to labeling all exposed subjects as unexposed and
vice versa. It leads to an expected odds ratio that is the inverse of the correct value. Such drastic
misclassification would occur if the coding of exposure categories were reversed during computer
programming.

As seen in these examples, the direction of bias produced by independent nondifferential mis-
classification of a dichotomous exposure is toward the null value, and if the misclassification is
extreme, the misclassification can go beyond the null value and reverse direction. With an exposure
that is measured by dividing it into more than two categories, however, an exaggeration of an asso-
ciation can occur as aresult of independent nondifferential misclassification (Walker and Blettner,
1985; Dosemeci et a., 1990). This phenomenon isillustrated in Table 9-3.

The correctly classified expected data in Table 9-3 show an odds ratio of 2 for low exposure
and 6 for high exposure, relative to no exposure. Now suppose that there is a 40% chance that a
person with high exposure is incorrectly classified into the low exposure category. If this is the
only misclassification and it is nondifferential, the expected data would be those seen in the bottom
panel of Table 9-3. Notethat only the estimate for |ow exposure changes; it now contains amixture
of people who have low exposure and people who have high exposure but who have incorrectly
been assigned to low exposure. Because the people with high exposure carry with them the greater

Nondifferential Misclassification with Three Exposure Categories

Unexposed Low Exposure High Exposure
Correct data
Cases 100 200 600
Controls 100 100 100
OR=2 OR=6
40% of high exposure — 4 low exposure
Cases 100 440 360
Controls 100 140 60
OR=3.1 OR=6

OR, odds ratio.
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risk of disease that comes with high exposure, the resulting effect estimate for low exposure is
biased upward. If some low-exposureindividuals had incorrectly been classified as having had high
exposure, then the estimate of the effect of exposure for the high-exposure category would be biased
downward.

This example illustrates that when the exposure has more than two categories, the bias from
nondifferential misclassification of exposure for a given comparison may be away from the null
value. When exposure is polytomous (i.e., has more than two categories) and there is nondiffer-
ential misclassification between two of the categories and no others, the effect estimates for those
two categories will be biased toward one another (Walker and Blettner, 1985; Birkett, 1992). For
example, the bias in the effect estimate for the low-exposure category in Table 9-3 is toward that
of the high-exposure category and away from the null value. It is also possible for independent
nondifferential misclassification to bias trend estimates away from the null or to reverse a trend
(Dosemeci et a., 1990). Such examples are unusual, however, because trend reversal cannot occur
if the mean exposure measurement increases with true exposure (Weinberg et al., 1994d).

It is important to note that the present discussion concerns expected results under a particular
type of measurement method. In a given study, random fluctuations in the errors produced by a
method may lead to estimates that are further from the null than what they would beif no error were
present, even if the method satisfies all the conditions that guarantee bias toward the null (Thomeas,
1995; Weinberg et al., 1995; Jurek at al., 2005). Bias refers only to expected direction; if we do
not know what the errors were in the study, at best we can say only that the observed odds ratio is
probably closer to the null than what it would beif the errors were absent. As study size increases,
the probability decreases that a particular result will deviate substantially from its expectation.

Nondifferential Misclassification of Disease

The effects of nondifferential misclassification of disease resemble those of nondifferential mis-
classification of exposure. In most situations, nondifferential misclassification of a binary disease
outcome will produce bias toward the null, provided that the misclassification is independent of
other errors. There are, however, some specia cases in which such misclassification produces no
biasintherisk ratio. In addition, the biasin therisk differenceisasimplefunction of the sensitivity
and specificity.

Consider a cohort study in which 40 cases actually occur among 100 exposed subjects and
20 cases actually occur among 200 unexposed subjects. Then, the actual risk ratio is (40/100)/
(20/200) = 4, and the actual risk difference is 40/100 — 20/200 = 0.30. Suppose that specificity
of disease detection is perfect (there are no false positives), but sensitivity is only 70% in both
exposure groups (that is, sensitivity of disease detection is nondifferential and does not depend on
errors in classification of exposure). The expected numbers detected will then be 0.70(40) = 28
exposed cases and 0.70(20) = 14 unexposed cases, which yield an expected risk-ratio estimate of
(28/100)/(14/200) = 4 and an expected risk-difference estimate of 28/100 — 14/200 = 0.21. Thus,
the disease misclassification produced no bias in the risk ratio, but the expected risk-difference
estimate is only 0.21/0.30 = 70% of the actual risk difference.

This example illustrates how independent nondifferential disease misclassification with perfect
specificity will not bias the risk-ratio estimate, but will downwardly bias the absolute magnitude
of the risk-difference estimate by a factor equal to the false-negative probability (Rodgers and
MacMahon, 1995). With this type of misclassification, the odds ratio and the rate ratio will remain
biased toward the null, although the bias will be small when the risk of disease is low (<10%) in
both exposure groups. This approximation is a consequence of the relation of the odds ratio and the
rate ratio to the risk ratio when the disease risk is low in all exposure groups (see Chapter 4).

Consider next the same cohort study, but now with perfect sensitivity of disease detection
(no false negatives) and imperfect specificity of 80%. The expected number of apparent cases
will then be 40 + (1 — 0.80)(100 — 40) = 52 among the exposed and 20 + (1 — 0.80)(200 —
20) = 56 among the unexposed. Under thisformulation, the numeratorsyield an expected risk-ratio
estimate of (52/100)/(56/200) = 1.9 and an expected risk-difference estimate of 52/100 — 56/200 =
0.24. Both measures are biased toward the null, with the expected risk-difference estimate equal to
0.24/0.30 = 80% of the actual value. This exampleillustrates how independent nondifferential dis-
ease misclassification with perfect sensitivity will bias both measures, with the absol ute magnitude
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of the risk-difference estimate downwardly biased by afactor equal to the fal se-positive probability
(Rodgers and MacMahon, 1995).

Withimperfect sensitivity and specificity, the biasin the absol ute magnitude of therisk difference
produced by nondifferential disease misclassification that isindependent of other errorswill equal
the sum of the false-negative and fal se-positive probabilities (Rodgers and MacMahon, 1995). The
biasesin relative effect measures do not have asimple form in this case.

We wish to emphasize that when both exposure and disease are nondifferentially misclassified
but the classification errors are dependent, it i s possible to obtain substantial bias away from the null
(Chavance et a., 1992; Kristensen, 1992), and the simple bias relations just given will no longer
apply. Dependent errors can arise easily in many situations, such as in studies in which exposure
and disease status are both determined from interviews.

Pervasiveness of Misinterpretation of Nondifferential
Misclassification Effects

The biasfrom independent nondifferential misclassification of adichotomous exposureisawaysin
the direction of the null value, so one would expect to see alarger estimate if misclassification were
absent. As aresult, many researchers are satisfied with achieving nondifferential misclassification
in lieu of accurate classification. This stance may occur in part because some researchers consider
it more acceptable to misreport an association as absent when it in fact exists than to misreport an
association as present when it in fact does not exist, and regard nondifferential misclassification
as favoring the first type of misreporting over the latter. Other researchers write as if positive
results affected by nondifferential misclassification provide stronger evidence for an association
than indicated by uncorrected statistics. There are severa flawsin such interpretations, however.

First, many researchersforget that more than nondifferentiality isrequired to ensure bias toward
the null. One al so needsindependence and some other constraints, such asthe variable being binary.
Second, few researchers seem to be aware that categorization of continuous variables (e.g., using
quintilesinstead of actual quantities of food or nutrients) can change nondifferential to differential
error (Flegal et al., 1991; Wacholder et al., 1991), or that failure to control factors related to
measurement can do the same even if those factors are not confounders.

Even if the misclassification satisfies al the conditions to produce a bias toward the null in the
point estimate, it does not necessarily produce a corresponding upward bias in the P-value for the
null hypothesis (Bross, 1954; Greenland and Gustafson, 2006). As a consequence, establishing that
thebias (if any) wastoward the null would not increase the evidence that anon-null association was
present. Furthermore, biastoward the null (like bias away from the null) is still adistortion, and one
that will vary across studies. In particular, it can produce serious distortions in literature reviews
and meta-analyses, mask true differences among studies, exaggerate differences, or create spurious
differences. These consequences can occur because differences in secondary study characteristics
such as exposure prevalence will affect the degree to which misclassification produces bias in
estimates from different strata or studies, even if the sensitivity and specificity of the classification
do not vary across the strata or studies (Greenland, 1980). Typical situations are worsened by the
fact that sensitivity and specificity as well as exposure prevalence will vary across studies (Begg,
1987).

Often, these differences in measurement performance arise from seemingly innocuous differ-
ences in the way variables are assessed or categorized, with worse performance arising from over-
simplified or crude categorizations of exposure. For example, suppose that taking aspirin transiently
reduces risk of myocardial infarction. The word “transiently” implies abrief induction period, with
no preventive effect outside that period. For agiven point in time or person-time unit in the history
of asubject, theideal classification of that time as exposed or unexposed to aspirin would be based
on whether aspirin had been used before that time but within the induction period for its effect.
By this standard, a myocardial infarction following aspirin use within the induction period would
be properly classified as an aspirin-exposed case. On the other hand, if no aspirin was used within
the induction period, the case would be properly classified as unexposed, even if the case had used
aspirin at earlier or later times.

These ideal classifications reflect the fact that use outside the induction period is causaly ir-
relevant. Many studies, however, focus on ever use (use at any time during an individual’s life) or
on any use over a span of severa years. Such cumulative indices over along time span augment
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possibly relevant exposure with irrelevant exposure, and can thus introduce a bias (usually toward
the null) that parallels bias due to nondifferential misclassification.

Similar bias can arise from overly broad definition of the outcome. In particular, unwarranted
assurances of alack of any effect can easily emerge from studies in which awide range of etiolog-
ically unrelated outcomes are grouped. In cohort studiesin which there are disease categories with
few subjects, investigators are occasionally tempted to combine outcome categoriesto increase the
number of subjects in each analysis, thereby gaining precision. This collapsing of categories can
obscure effects on more narrowly defined disease categories. For example, Smithells and Shepard
(1978) investigated the teratogenicity of the drug Bendectin, a drug indicated for nausea of preg-
nancy. Because only 35 babiesin their cohort study were born with a malformation, their analysis
was focused on the single outcome, “malformation.” But no teratogen causes all malformations;
if such an analysis fails to find an effect, the failure may simply be the result of the grouping of
many malformations not related to Bendectin with those that are. In fact, despite the authors' claim
that “their study provides substantial evidence that Bendectin is not teratogenic in man,” their data
indicated a strong (though imprecise) relation between Bendectin and cardiac malformations.

Misclassification that has arguably produced bias toward the null is a greater concern in inter-
preting studies that seem to indicate the absence of an effect. Consequently, in studies that indicate
little or no effect, it iscrucia for the researchers to attempt to establish the direction of the biasto
determinewhether areal effect might have been obscured. Occasionally, critics of astudy will argue
that poor exposure data or poor disease classification invalidate the results. This argument isincor-
rect, however, if the resultsindicate anonzero association and one can be sure that the classification
errors produced bias toward the null, because the bias will be in the direction of underestimating
the association. In this situation the major task will instead be in establishing that the classification
errors were indeed of the sort that would produce bias toward the null.

Conversely, misclassification that has arguably produced bias away from the null is a greater
concernininterpreting studiesthat seemtoindicate an effect. The picturein thisdirectionisclouded
by the fact that forces that lead to differentia error and bias away from the null (e.g., recall bias)
are counterbalanced to an unknown extent (possibly entirely) by forces that lead to bias toward
the null (e.g., smple memory deterioration over time). Even with only binary variables, a detailed
guantitative analysis of differential recall may be needed to gain any idea of the direction of bias
(Drews and Greenland, 1990), and even with internal validation data the direction of net bias may
rarely be clear. We discuss analytic methods for assessing these problems in Chapter 19.

The importance of appreciating the likely direction of bias wasillustrated by the interpretation
of a study on spermicides and birth defects (Jick et al., 1981a, 1981b). This study reported an
increased prevalence of several types of congenital disorders among women who were identified as
having filled aprescription for spermicides during aspecified interval beforethebirth. The exposure
informationwasonly arough correlate of theactual useof spermicidesduring atheoretically relevant
time period, but the misclassification that resulted was likely to be nondifferential and independent
of errorsin outcome ascertainment, because prescription information was recorded on a computer
log beforethe outcomewasknown. Oneof thecriticismsraised about the study wasthat inaccuracies
in the exposure information cast doubt on the validity of the findings (Felarca et a., 1981; Oakley,
1982). These criticisms did not, however, address the direction of the resulting bias, and so are
inappropriate if the structure of the misclassification indicates that the bias is downward, for then
that bias could not explain the observed association (Jick et a., 1981b).

Asan example, it isincorrect to dismiss a study reporting an association simply because there
is independent nondifferential misclassification of a binary exposure, because without the mis-
classification the observed association would probably be even larger. Thus, the implications of
independent nondifferential misclassification depend heavily on whether the study is perceived as
“positive” or “negative” Emphasis on quantitative assessment instead of on a qualitative descrip-
tion of study resultslessensthe likelihood for misinterpretation, hence we will explore methods for
quantitative assessment of biasin Chapter 19.

MISCLASSIFICATION OF CONFOUNDERS

If a confounding variable is misclassified, the ability to control confounding in the analysis is
hampered (Greenland, 1980; Kupper, 1984; Brenner, 1993; Marshall and Hastrup, 1996; Marshall
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etal.,1999; Fewell etal ., 2007). Independent nondifferential misclassification of adichotomouscon-
founding variablewill reduce the degree to which the confounder can be controlled, and thus causes
abiasin the direction of the confounding by the variable. The expected result will lie between the
unadjusted association and the correctly adjusted association (i.e., the one that would have obtained
if the confounder had not been misclassified). This problem may be viewed as one of residual con-
founding (i.e., confounding left after control of the available confounder measurements). Thedegree
of residual confounding left within strata of the misclassified confounder will usually differ across
thosestrata, which will distort the apparent degree of heterogeneity (effect modification) acrossstrata
(Greenland, 1980). Independent nondifferential misclassification of either the confounder or expo-
sure can therefore give rise to the appearance of effect-measure modification (statistical interaction)
when in fact there is none, or mask the appearance of such modification when in fact it is present.

If the misclassification is differential or dependent, the resulting adjusted association may not
even fall between the crude and the correct adjusted associations. The problem then becomes not
only one of residual confounding, but of additional distortion produced by differential selection of
subjects into different analysis strata. Unfortunately, dependent errors among exposure variables
are common, especially in questionnaire-based studies. For example, in epidemiologic studies of
nutrients and disease, nutrient intakes are calculated from food intakes, and any errorsin assessing
the food intakes will translate into dependent errors among nutrients found in the same foods.
Similarly, in epidemiologic studies of occupations and disease, chemical exposures are usually
calculated from job histories, and errors in assessing these histories will translate into dependent
errors among exposures found in the same jobs.

If the confounding is strong and the exposure—disease relation isweak or zero, misclassification
of the confounder can produce extremely misleading results, evenif the misclassificationisindepen-
dent and nondifferential. For example, given acausal relation between smoking and bladder cancer,
an association between smoking and coffee drinking would make smoking a confounder of the
relation between coffee drinking and bladder cancer. Because the control of confounding by smok-
ing depends on accurate smoking information and because some misclassification of the relevant
smoking information isinevitable no matter how smoking is measured, someresidual confounding
by smoking isinevitable (Morrison et a., 1982). The problem of residual confounding will be even
worse if the only available information on smoking is a simple dichotomy such as “ever smoked”
versus “never smoked,” because the lack of detailed specification of smoking prohibits adequate
control of confounding. The resulting residual confounding is especially troublesome because to
many investigatorsand readersit may appear that confounding by smoking hasbeenfully controlled.

THE COMPLEXITIES OF SIMULTANEOUS MISCLASSIFICATION

Continuing the preceding example, consider misclassification of coffee use aswell as smoking. On
the one hand, if coffee misclassification were nondifferential with respect to smoking and indepen-
dent of smoking errors, the likely effect would be to diminish further the observed smoking—coffee
association and so further reduce the efficacy of adjustment for smoking. The result would be even
more upward residua confounding than when smoking a one were misclassified. On the other hand,
if the measurements were from questionnaires, the coffee and smoking errors might be positively
associated rather than independent, potentially counteracting the af orementioned phenomenonto an
unknown degree. Also, if the coffee errors were nondifferential with respect to bladder cancer and
independent of diagnostic errors, they would most likely produce a downward biasin the observed
association.

Nonetheless, if the measurements were from a questionnaire administered after diagnosis, the
nondifferentiality of both smoking or coffee errors with respect to bladder cancer would become
questionable. If controls tended to underreport these habits more than did cases, the resulting dif-
ferentiality would likely act in an upward direction for both the coffee and the smoking associations
with cancer, partially canceling both the downward bias from the coffee misclassification and the
upward bias from residual smoking confounding; but if cases tended to underreport these habits
more than did controls, the differentiality would likely aggravate the downward bias from coffee
misclassification and the upward bias from residual smoking confounding.

The net result of al these effects would be almost impossible to predict given the usual lack of
accurate information on the misclassification rates. We emphasi ze that this unpredictability is over
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and above that of the random error assumed by conventional statistical methods; it is therefore not
reflected in conventional confidence intervals, because the latter address only random variation in
subject selection and actual exposure, and assume that errors in coffee and smoking measurement
are absent.

GENERALIZABILITY

Physicists operate on the assumption that the laws of nature are the same everywhere, and therefore
that what they learn about nature has universal applicability. In biomedical research, it sometimes
seemsasif weassumetheopposite, that is, that thefindings of our research apply only to popul ations
that closely resemble those we study. This view stemsfrom the experience that biologic effects can
and do differ across different populations and subgroups. The cautious investigator is thusinclined
to refrain from generalizing results beyond the circumstances that describe the study setting.

Asaresult, many epidemiologic studies are designed to sample subjects from atarget population
of particular interest, so that the study population is “representative” of the target population, in
the sense of being a probability sample from that population. Inference to this target might also be
obtained by oversampling some subgroups and then standardizing or reweighting the study datato
match the target population distribution. Two-stage designs (Chapter 8 and 15) are simple examples
of such a strategy.

Taken to an extreme, however, the pursuit of representativeness can defeat the goal of validly
identifying causal relations. If the generalization of study resultsis literally limited to the charac-
teristics of those studied, then causal inferences cannot be generalized beyond those subjects who
have been studied and the time period during which they have been studied. On the other hand, even
physicists acknowledge that what we consider to be universal physical laws could vary over time or
under boundary conditions and therefore may not be truly universal. The process of generalization
in science involves making assumptions about the domain in which the study results apply.

The heavy emphasis on sample representativeness in epidemiologic research probably derives
from early experience with surveys, for which the inferential goal was only description of the
surveyed population. Social scientistsoften perform and rely on probability-sample surveysbecause
decisions about what is relevant for generalization are more difficult in the socia sciences. In
addition, the questions of interest to social scientists may concern only a particular population
(e.g., votersin one country at one point in time), and populations are considerably more diversein
sociologic phenomena than in biologic phenomena.

In biologic laboratory sciences, however, it is routine for investigators to conduct experiments
using animal s with characteristics selected to enhance the validity of the experimental work rather
than to represent a target population. For example, laboratory scientists conducting experiments
with hamsters will more often prefer to study genetically identical hamsters than a representative
sample of the world’s hamsters, in order to minimize concerns about genetic variation affecting
results. These restrictions may lead to concerns about generalizability, but this concern becomes
important only after it has been accepted that the study results are valid for the restricted group that
was studied.

Similarly, epidemiologic study designs are usually stronger if subject selection is guided by the
need to make a valid comparison, which may call for severe restriction of admissible subjects to
a narrow range of characteristics, rather than by an attempt to make the subjects representative,
in a survey-sampling sense, of the potential target populations. Selection of study groups that are
representative of larger populationsin the statistical sense will often make it more difficult to make
internally valid inferences, for example, by making it more difficult to control for confounding
by factors that vary within those populations, more difficult to ensure uniformly high levels of
cooperation, and more difficult to ensure uniformly accurate measurements.

To minimize the validity threats we have discussed, one would want to select study groups
for homogeneity with respect to important confounders, for highly cooperative behavior, and for
availability of accurateinformation, rather than attempt to be representative of anatural population.
Classic examples include the British Physicians' Study of smoking and health and the Nurses
Health Study, neither of which were remotely representative of the general population with respect
to sociodemographic factors. Their nonrepresentativeness was presumed to be unrelated to most of
the effects studied. If there were doubts about this assumption, they would only become important
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once it was clear that the associations observed were valid estimates of effect within the studies
themselves.

Once the nature and at least the order of magnitude of an effect are established by studies
designed to maximize validity, generalization to other, unstudied groups becomes simpler. This
generaization is in large measure a question of whether the factors that distinguish these other
groups from studied groups somehow modify the effect in question. In answering this question,
epidemiologic data will be of help and may be essential, but other sources of information such as
basic pathophysiology may play an even larger role. For example, although most of the decisive
data connecting smoking to lung cancer was derived from observations on men, no one doubted
that the strong effects observed would carry over at |east approximately to women, for the lungs of
men and women appear to be similar if not identical in physiologic detail. On the other hand, given
the huge sex differencesin iron loss, it would seem unwise to generalize freely to men about the
effects of iron supplementation observed in premenopausal women.

Such contrasting examples suggest that, perhaps even more than with (internal) inference about
restricted popul ations, valid generalization must bring into play knowledge from diverse branches of
science. Aswe have emphasized, representativenessis often a hindrance to executing an internally
valid study, and considerations from allied science show that it is not always necessary for valid
generalization. We thus caution that blind pursuit of representativeness will often lead to awaste of
precious study resources.
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l \ sdescribed in Chapter 9, two types of error, systematic and random, detract from accuracy.
Chapter 9 focused on understanding sources of systematic error. In this chapter we discuss methods
to measure, limit, and account for random error in an epidemiol ogic study, and how to interpret these
methods properly. In Chapter 11, we address optionsin study design that can reduce the amount of
random error (i.e., improve precision) of a study within given cost and feasibility constraints.

RANDOM ERROR AND STATISTICAL PRECISION

What is random error? It is often equated with chance or random variation, which itself is rarely
well defined. Many people believe that chance plays a fundamental role in al physical and, by
implication, biologic phenomena. For some, the belief in chance is so dominant that it vaults
random occurrences into an important role as component causes of all we experience. Others
believe that causality may be viewed as deterministic, meaning that afull elaboration of the relevant
factorsin a given set of circumstances will lead unwaveringly, on sufficient analysis, to a perfect
prediction of effectsresulting from these causes. Under thelatter view, all experienceis predestined
to unravel in a theoretically predictable way that follows inexorably from the previous pattern of
actions. Even with this extreme deterministic view, however, one must face the fact that no one can
acquire sufficient knowledge to predict effects perfectly for any but trivial cause—effect patterns.
The resulting incomplete predictability of determined outcomes makes their residual variability
indi stinguishable from random occurrences.

A unifying description of incomplete predictability can thus be forged that equates random
variation with ignorance about causes of our study outcomes, an ignorancethat isinevitablewhether
or not physical chance is among the causes. For example, predicting the outcome of atossed coin
represents a physical problem, the solution of which isfeasible through the application of physical
laws. Whether the sources of variation that we cannot explain are actually chance phenomenamakes
little difference: We treat such variation as being random until we can explainit, and thereby reduce
it, by relating it to known factors.

In an epidemiologic study, random variation has many components, but amajor contributor isthe
process of selecting the specific study subjects. This processis usualy referred to as sampling; the
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attendant random variation is known as sampling variation or sampling error. Case-control studies
often involve a physical sampling process, whereas cohort studies often do not. Nevertheless, it is
standard practice to treat all epidemiologic studies, including cohort studies, as having sampling
error. In this view, the subjects in a study, whether physically sampled or not, are viewed as a
figurative sample of possible people who could have been included in the study or of the different
possible experiences the study subjects could have had. Even if al the individuals in a population
were included in a study, the study subjects are viewed as a sample of the potential biologic
experience of an even broader conceptual population. With this view, the statistical dictum that
there is no sampling error if an entire population (as opposed to a sample of it) is studied does not
apply to epidemiologic studies, even if an entire population isincluded in the study. Conceptualy,
the actual subjects are always considered a sample of a broader experience of interest—although
they seldom actually satisfy the definition of a random sample that underpins the statistical tools
ordinarily used to measure random variation (Greenland, 1990, 2005b).

Sampling is only one source of random error that contributes to unpredictable inaccuracies in
epidemiologic studies. Another source is the unexplained variation in occurrence measures, such
as observed incidence rates or prevalence proportions. For example, when exposure status is not
randomly assigned, confounding (Chapter 4) may lead to deviations of estimated associationsfrom
target effectsthat far exceed what standard statistical models assume probable. Mismeasurement of
key study variablesal so contributesto the overall inaccuracy, in both random andin systematic ways.
Asaresult of these extrasources of variation, and because of the weak theoretical underpinningsfor
conceptualizing study subjects as a sample of a broader experience, the usual statistical tools that
we use to measure random variation at best provide minimum estimates of the actual uncertainty
we should have about the object of estimation (Greenland, 1990, 2005b). One elementary way
to improve the quantification of our uncertainty is through bias analysis, which we discuss in
Chapter 19.

A common measureof random variationin ameasurement or estimation processisthevariance of
the process, which isdiscussed in Chapter 13. The statistical precision of (or statistical information
in) a measurement or process is often taken to be the inverse of the variance of the measurements
or estimates that the process produces. In this sense, precision is the opposite of random error.
Precision of estimation can be improved (which is to say, variance can be reduced) by increasing
thesize of the study. Precision can also beimproved by modifying the design of the study to decrease
the variance given afixed total number of subjects; this processis called improving the statistical
efficiency of the study. It will be introduced here and discussed more fully in Chapter 13. Perhaps
the most common epidemiologic example of such design improvement is the use of a case-control
study rather than a cohort study, because for afixed study size the variance of an effect estimate is
heavily dependent on the proportion of subjectsin the study that are cases.

STUDY SIZE

A common way to reduce random error in, or increase precision of, an epidemiologic estimate isto
enlarge the size of the study. Practical constraints on resources inevitably limit study size, so one
must plan accordingly. One method that is used to plan the size of astudy isto calculate study size
based on conventional statistical “sample-size” formulas (e.g., see Schlesselman, 1974; Rothman
and Boice, 1982; Greenland, 1985b, 1988a). These formulas relate the size of a study to the study
design, study population, and the desired power or precision.

Study-size formulas, being purely mathematical, do not account for anything that is not included
asavariablein the formula At best they serve only to provide rough guidelines, and in some situ-
ations they may be misleading from a broader perspective. For example, conventional formulas do
not weigh the value of theinformation obtained from astudy against its use of resources. Yet afocal
problem in planning the study size is determining how to balance the value of greater precision
in study results against the greater cost. Solving the problem thus involves a cost—benefit analysis
of expending greater effort or funds to gain greater precision. Greater precision has a value to the
beneficiaries of the research, but the value is indeterminate because it is always uncertain how
many beneficiaries there will be. Furthermore, the potential benefits of the study involve intrica-
cies of many social, political, and biologic factors that are aimost never quantified. Consequently,
only informal guesses as to a cost-efficient size for an epidemiologic study are feasible. Although
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study-size determination can be aided by conventional formulas, the final choice must also incor-
porate unquantified practical constraints and implications of various study sizes.

STUDY EFFICIENCY

Another way to reduce random error, or increase precision, in an epidemiol ogic estimateisto modify
the design of the study. One feature that can often be manipulated by design is apportionment of
subjects into study groups. When the study factor has no effect and no adjustment is needed, equal
apportionment into exposure groupsisthe most efficient cohort design (Walter, 1977). For example,
inthe absence of an effect or confounding, a cohort study of 2,000 personswill be most efficient if it
selects 1,000 exposed and 1,000 unexposed persons for study. Similarly, in acase-control study, in
the absence of an effect or confounding it will be most statistically efficient to have an equal number
of cases and contrals. In the presence of an effect, the apportionment that is optimal for statistical
efficiency differsfrom equal apportionment by an amount that is a function of the parameter being
estimated (Walter, 1977). When (as is amost always the case) adjustments for confounding are
needed, however, these results no longer apply strictly. Furthermore, these results assume that no
effect is present—which is of course not known to be true in any real application (otherwise there
would be no need for the study). Thus, these results should not be taken as anything more than
rough guidelines for design.

PRECISION AND STRATIFICATION

In many epidemiologic analyses, the crude data are divided into strata to examine effects in sub-
categories of another variable or to control confounding. The efficiency of a study can be affected
dramatically by stratifying the data. A study that has an overall apportionment ratio that is fa-
vorable for precision (which will be a ratio of 1.0 if there is no effect and no confounding) may
nevertheless have apportionment ratios within strata that vary severely from low to high values.
It is not uncommon to see some strata with the extreme apportionment ratios of 0 and infinity
(e.g., no cases in some strata and no controls in others). The smaller the numbers within strata,
the more extreme the variation in the apportionment ratio across stratais likely to be. The extreme
values result from zero subjects or person-time units for one group in a stratum. Small numbers
within strata result from having too few subjects relative to the number of strata created. This
sparse-data problem can devel op even with large studies, because the number of strata required in
the analysis increases geometrically with the number of variables used for stratification. Indeed,
sparse data are amajor limitation of stratified analysis, although the same problem negatively af-
fects regression modeling as well. Methods for dealing with sparsity are described in Chapters 15
and 21.

When comparisons within stratawill be essential and much variation in the apportionment ratio
is expected across strata, then matching on the stratification variables (Chapter 11) is one way to
maintain an efficient apportionment ratio within strata and to reduce sparsity problems without
increasing study size. When matching on all stratification variables is not feasible, increasing the
overall number of subjectswill at |east reduce data sparsity and improve precision, even if only one
group (e.g., the controls) can be expanded.

APPROACHES TO RANDOM ERROR

Statisticsand itsrolein dataanalysishave undergone agradual but profound transformationin recent
times. There is an essential distinction between a qualitative study objective (to answer a question
“yes’ or “no”) and a quantitative one (to measure something). The recent transformation reflects a
growing preference for the latter objective and for statistical methods consistent with it. Until the
1970s, most applications of statistics in epidemiology focused on deciding whether “chance” or
“random error” could be solely responsible for an observed association. The methods used for this
decision were those of classical significance testing, predominant in British applications, and those
of Neyman-Pearson hypothesis testing, predominant in American applications (Goodman, 1993;
Gigerenzer, 2004). Because of their similarities, the term significance testing is often applied to
both collections of methods.
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These testing applications, which were subject to some early criticism (Boring, 1919; Berkson,
1938, 1942; Hogben, 1957), came under growing criticism by epidemiologists and statisticians
throughout the 1970s and 1980s. The critics pointed out that most, if not all, epidemiologic appli-
cations need more than a decision as to whether chance alone could have produced an association.
More important is estimation of the magnitude of the association, including an assessment of the
precision of the estimation method. The estimation tool used by most authorsis the confidence in-
terval, which provides arange of values for the association, under the hypothesis that only random
variation has created discrepancies between the true value of the association under study and the
value observed in the data (Altman et al., 2000; see Chapters 13 through 16). Other authors, while
favoring the move toward interval estimation, point out that confidence intervals suffer from some
of the flaws associated with significance testing and favor other approaches to interval estimation
(Goodman and Royall, 1988; Berger and Berry, 1988; Royall, 1997; Greenland, 2006a; Chapter 18).

SIGNIFICANCE TESTING AND HYPOTHESIS TESTING
Nearly 70 years ago, Berkson (1942) wrote:

Itishardly an exaggeration to say that statistics, asit is taught at present in the dominant school,
consists almost entirely of tests of significance, though not always presented as such, some
comparatively simple and forthright, others elaborate and abstruse.

Theubiquitoususe of P-valuesand referencesto “ statistically significant” findingsin the current
medical literature demonstratesthe dominant rolethat statistical hypothesistesting still playsin data
analysis in some branches of biomedical sciences. Many researchers still believe that it would be
fruitlessto submit for publication any paper that lacks statistical tests of significance. Their belief is
not entirely ill-founded, because many journal editors and referees till rely on tests of significance
as indicators of sophisticated and meaningful statistical analysis as well as the primary means of
assessing sampling variability in a study. Statistical significance is usualy based on the P-value
(described below): results are considered “significant” or “not significant” according to whether the
P-valueislessthan or greater than an arbitrary cutoff value, usually 0.05, which is called the alpha
level of the test.

The preoccupation with significance testing derives from the research interests of the statisti-
cians who pioneered the development of statistical theory in the early 20th century. Their research
problemswere primarily industrial and agricultural, and they typically involved randomized experi-
ments or random-sample surveysthat formed the basis for a choice between two or more aternative
courses of action. Such studies were designed to produce results that would enable a decision to
be made, and the statistical methods employed were intended to facilitate decision making. The
conceptsthat grew out of this heritage are today applied in clinical and epidemiologic research, and
they strongly reflect this background of decision making.

Statistical significance testing of associations usually focuses on the null hypothesis, which is
usually formulated asahypothesi s of no association between two variablesin asuper popul ation, the
population from which the observed study groups were purportedly sampled in a random fashion.
For example, one may test the hypothesis that the risk difference in the superpopulation is O or,
equivalently, that therisk ratiois 1. Note that this hypothesisis about the superpopulation, not about
the observed study groups. Testing may aternatively focus on any other specific hypothesis, e.g.,
that therisk differenceis0.1 or therisk ratio is 2. For non-null hypotheses, tests about one measure
(e.g., arisk difference) are not usually equivalent to tests about another measure (e.g., arisk ratio),
S0 one must choose a measure of interest to perform a non-null test.

A common misinterpretation of significance testsisto claim that there is no difference between
two observed groups because the null test is not statistically significant, in that P is greater than
the cutoff for declaring statistical significance (again, usualy 0.05). This interpretation confuses a
descriptiveissue (whether the two observed groups differ) with an inference about the superpopula-
tion. Thesignificancetest refersonly to the superpopulation, not the observed groups. To say that the
differenceisnot statistically significant meansonly that one cannot reject the null hypothesisthat the
superpopul ation groups are different; it does not imply that the two observed groups are the same.

One need only look at the two observed groups to see whether they are different. Significance
testing concerns instead whether the observed difference should lead one to infer that there is
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a difference between the corresponding groups in the superpopulation. Furthermore, even if the
observed differenceisnot statistically significant, the superpopul ation groups may be different (i.e.,
the result does not imply that the null is correct). Rather, the nonsignificant observed difference
means only that one should not rule out the null hypothesisif one accepts the statistical model used
to construct the test.

Conversely, it is a misinterpretation to claim that an association exists in the superpopulation
because the observed difference is statistically significant. First, the test may be significant only
because the model used to compute it is wrong (e.g., there may be many sources of uncontrolled
bias). Second, the test may be significant because of chance alone; for example, even under perfect
conditions, atest using a 0.05 alphalevel will yield a statistically significant difference 5% of the
timeif the null hypothesisis correct.

As we emphasize, the alpha cutoff point is an arbitrary and questionable convention; it can be
dispensed with simply by reporting the actual P-value from thetest, which we now discussin detail.
We will then further explore and criticize the theory that led to widespread use of arbitrary testing
cutoffsin research.

P-Values

There are two major types of P-values: one-tailed and two-tailed. Further, there are two types of
one-tailed P-values: upper and lower. Accurate definitions and interpretations of these statisticsare
subtle and thusarerarely provided in epidemiologic texts. Asaresult, misinterpretation of P-values
are common in epidemiology, as well asin other fields. We will thus devote much of this chapter
and Chapter 13 to discussion of these statistics.

An upper one-tailed P-valueisthe probability that a corresponding quantity computed from the
data, known as the test statistic (such as a t-statistic or a chi-sguare statistic), will be greater than
or equal to its observed value, assuming that (a) the test hypothesis is correct and (b) there is no
source of biasin the data collection or analysis processes. Similarly, alower one-tailed P-valueis
the probability that the corresponding test statistic will be less than or equal to its observed value,
again assuming that (a) the test hypothesis is correct and (b) there is no source of biasin the data
collection or analysis processes (sometimes described by saying that the underlying statistical model
is correct). The two-tailed P-value is usually defined as twice the smaller of the upper and lower
P-values, although more complicated definitions have been used. Being a probability, a one-tailed
P-value must fall between 0 and 1; the two-tailed P-value asjust defined, however, may exceed 1.
The following comments apply to al types of P-values. Some authors refer to P-values as “levels
of significance” (Cox and Hinkley, 1974), but the latter term is best avoided because it has been
used by other authorsto refer to alphalevels.

In classical significance testing, small P-values are supposed to indicate that at |east one of the
assumptions used to derive it isincorrect, that is, either or both the test hypothesis (assumption 1)
or the statistical model (assumption 2) isincorrect. All too often, the statistical model istaken asa
given, so that asmall P-valueistaken asindicating alow degree of compatibility between the test
hypothesis and the observed data. This incompatibility derives from the fact that a small P-value
represents alow probability of getting atest statistic as extreme or more extreme than the observed
statisticif thetest hypothesisistrueand no biasisoperative. Small P-values, therefore, are supposed
to indicate that the test hypothesisis not an acceptable explanation for the association observed in
the data. This common interpretation has been extensively criticized because it does not account for
alternative explanations and their acceptability (or lack thereof); for example, see Berkson (1942)
and later epidemiologic criticisms by Goodman and Royall (1988), Greenland (1990), Goodman
(1993), and Gigerenzer (2004). A less hypothetical and more cautious interpretation is then that a
small P-value indicates that there is a problem with the test hypothesis or with the study, or with
both (Fisher, 1943).

One of themost common naive misinterpretationsof P-valuesisthat they represent probabilities
of test hypotheses. In many situations, one can compute a Bayesian probability, or credibility
(see Chapter 18), for the test hypothesis, but it will amost always be far from the two-tailed
P-value (Berger and Delampady, 1987; Berger and Sellke, 1987). A one-tailed P-value can be used
to put a lower bound on the Bayesian probability of certain compound hypotheses (Casella and
Berger, 1987), and under certain conditionswill approximate the Bayesian probability that the true
association isthe opposite of the direction observed (Greenland and Gustafson, 2006). Nonethel ess,
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a P-value for a simple test hypothesis (for example, that exposure and disease are unassociated)
isnot a probability of that hypothesis: That P-value is usually much smaller than such a Bayesian
probability and so can easily mislead one into inappropriately rejecting the test hypothesis (Berger
and Sellke, 1987; Goodman and Royall, 1988).

A common and blatantly incorrect interpretation is that the P-value is the probability of the
observed data under the test hypothesis. This probability is known as the likelihood of the test
hypothesis; see Goodman and Royall (1988), Royall (1997), Edwards (1992), and the following
discussion. The likelihood of a hypothesis is usualy much smaller than the P-value for the hy-
pothesis, because the P-value includes not only the probability of the observed data under the test
hypothesis, but also the probabilities for all other possible data configurations in which the test
statistic was more extreme than that observed.

A subtle and common misinterpretation of a P-value for testing the null hypothesis is that it
represents the probability that the data would show as strong an association as observed or stronger
if the null hypothesis were correct. This misinterpretation can be found in many methodologic
articlesand textbooks. The nature of the misinterpretation can be seen in astudy of arisk difference
RD. The study might produce an estimate of RD of 0.33 with an estimated standard deviation of
0.20, which (from formulas in Chapter 14) would produce a standard normal test statistic of z =
0.33/0.20 = 1.65and atwo-tailed P = 0.10. The same study, however, might haveinstead estimated
aRD of 0.30 and standard deviation of 0.15, which would produce a standard normal test statistic
of z=0.30/0.15 = 2.00 and P = 0.05. The result with the association nearer the null would then
produceasmaller P-value. The point isthat the P-value refersto the size of the test statistic (which
in this case is the estimate divided by its estimated standard deviation), not to the strength or size
of the estimated association.

Itiscrucial to remember that P-values are cal culated from statistical models, which are assump-
tions about the form of study-to-study data variation. Every P-value, even “nonparametric” and
“exact” P-values, depends on a statistical model; it is only the strength of the model assumptions
that differ (Freedman, 1985; Freedman et al., 2007). A major problem with the P-values and tests
in common use (including all commercial software) isthat the assumed models make no allowance
for sources of bias, apart from confounding by controlled covariates.

Neyman-Pearson Hypothesis Tests

A P-valueis a continuous measure of the compatibility between a hypothesis and data. Although
its utility as such a measure can be disputed (Goodman and Royall, 1988; Royall, 1997), a worse
problem is that it is often used to force a qualitative decision about rejection of a hypothesis. As
introduced earlier, afixed cutoff point or alphalevel, often denoted by the Greek letter o (alpha),
is selected as a criterion by which to judge the P-value. This point is then used to classify the
observation either as“significant at level « " if P < «, inwhich case the test hypothesisisrejected,
or “not significant at level «” if P > «, in which case the test hypothesis is accepted (or, at least,
not rejected).

The use of afixed cutoff « is ahallmark of the Neyman-Pearson form of statistical hypothesis
testing. Both the alphalevel (Lehmann, 1986) and the P-value (Goodman, 1992, 1993) have been
called the “significance level” of the test. This usage has led to misinterpretation of the P-value as
the aphalevel of astatistical hypothesistest. To avoid the error, one should recall that the P-value
is a quantity computed from the data, whereas the alphalevel is afixed cutoff (usually 0.05) that
can be specified without even seeing the data. (As atechnical aside, Neyman and Pearson actually
avoided use of P-values in their formulation of hypothesis tests, and instead defined their tests
based on whether the value of the test statistic fell within a*“rejection region” for the test.)

An incorrect rejection is called a Type | error, or alpha error. A hypothesis testing procedure
is said to be valid if, whenever the test hypothesis is true, the probability of rejection (i.e., the
probability that P < «) does not exceed the alpha level (provided there is no bias and all test
assumptions are satisfied). For example, avalid test with o = 0.01 (a1% aphalevel) will lead to a
Type | error with no more than 1% probability, provided thereis no bias or incorrect assumption.

If the test hypothesisis false but is not rejected, the incorrect decision not to reject is called a
Type I1, or beta error. If the test hypothesis is false, so that rejection is the correct decision, the
probability (over repetitions of the study) that the test hypothesisis rejected is called the power of
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thetest. The probability of aTypell error isrelated to the power by the equation Pr (Typell error) =
1— power.

There is a trade-off between the probabilities of a Type | and a Type Il error. This trade-off
depends on the chosen apha level. Reducing the Type | error when the test hypothesis is true
requires asmaller aphalevel, for with asmaller aphalevel a smaller P-value will be required to
reject the test hypothesis. Unfortunately, alower aphalevel increases the probability of a Type I
error if thetest hypothesisisfalse. Conversely, increasing the alphalevel reduces the probability of
Type Il error when the test hypothesis is false, but increases the probability of Type | error if itis
true.

The concepts of alpha level, Type | error, Type Il error, and power stem from a paradigm in
which data are used to decide whether to reject the test hypothesis, and therefore follow from a
qualitative study objective. The extent to which decision making dominates research thinking is
reflected in the frequency with which the P-value, a continuous measure, isreported or interpreted
only asaninequality (suchas P < 0.050r P > 0.05) or else not at al, with the evaluation focusing
instead on “statistical significance” or its absence.

When a single study forms the sole basis for a choice between two aternative actions, as in
industrial quality-control activities, a decision-making mode of analysis may be justifiable. Even
then, however, a rational recommendation about which of two actions is preferable will require
consideration of the costs and benefits of each action. These considerations are rarely incorporated
into statistical tests. In most scientific and public health settings, it is presumptuousif not absurd for
aninvestigator to act asif theresults of hisor her study will form the sole basisfor adecision. Such
decisions areinevitably based on results from acollection of studies, and proper combination of the
information from the studies requires more than just a classification of each study into “ significant”
or “not significant” (see Chapter 33). Thus, degradation of information about an effect into asimple
dichotomy is counterproductive, even for decision making, and can be misleading.

In a classic review of 71 clinical trials that reported no “significant” difference between the
compared treatments, Freiman et al. (1978) found that in the great majority of such trials the data
either indicated or at least were consistent with a moderate or even reasonably strong effect of the
new treatment (Fig. 10-1). In al of these trids, the origina investigators interpreted their data as
indicative of no effect because the P-valuefor the null hypothesiswas not “ statistically significant.”
The misinterpretations arose because the investigators relied solely on hypothesis testing for their
statistical analysisrather than on estimation. Onfailing toreject thenull hypothesis, theinvestigators
in these 71 trials inappropriately accepted the null hypothesis as correct, which probably resulted
in Typell error for many of these so-called negative studies.

Typell errorsresult when the magnitude of an effect, biases, and random variability combine to
give results that are insufficiently inconsistent with the null hypothesis to reject it. This failure to
reject the null hypothesis can occur because the effect issmall, the observations are too few, or both,
aswell asfrom biases. More to the point, however, is that Type | and Type Il errors arise because
the investigator has attempted to dichotomize the results of a study into the categories “significant”
or “not significant.” Because this degradation of the study information is unnecessary, an “error”
that results from an incorrect classification of the study result is al'so unnecessary.

Why has such an unsound practi ce asNeyman-Pearson (dichotomous) hypothesi stesting become
so ingrained in scientific research? Undoubtedly, much of the popularity of hypothesistesting stems
from the apparent objectivity and definitiveness of the pronouncement of significance. Declarations
of significance or its absence can supplant the need for more refined interpretations of data; the
declarations can serve as amechanical substitute for thought, promulgated by theinertia of training
and common practice. The neatness of an apparent clear-cut result may appear more gratifying to
investigators, editors, and readers than a finding that cannot be immediately pigeonholed.

The unbridied authority given to statistical significance in the social sciences has also been
attributed to the apparent objectivity that the pronouncement of significance can convey (Atkins
and Jarrett, 1979):

‘Let’'slook and see what's significant’ is not too far from the approach of some researchers, and
when the data involve perhaps several hundred variables the practical temptations to use a
ready-made decision rule are enormous. . . . [T]he pressure to decide, in situations where the very
use of probability models admits the uncertainty of the inference, has certain consequences for the
presentation of knowledge. The significance test appears to guarantee the objectivity of the
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researcher’s conclusions, and may even be presented as providing crucial support for the whole
theory in which the research hypothesis was put forward. As we have seen, tests of significance
cannot do either of these things—but it is not in the interests of anyone involved to admit this too
openly.

The origin of the nearly universal acceptance of the 5% cutoff point for significant findings
is tied to the abridged form in which the chi-square table was originally published (Freedman
et al., 2007). Before computers and calculators could easily give quick approximations to the chi-
square distribution, tables were used routinely. Because there is a different chi-square distribution
corresponding to every possible value for the degrees of freedom, the tables could not give many
points for any one distribution. The tables typically included values at 1%, 5%, and a few other
levels, encouraging the practice of checking the chi-squared statistic calculated from one’s data to
see if it exceeded the cutoff levelsin the table. In Neyman and Pearson’s original formulation of
hypothesis testing, the alpha level was supposed to be determined from contextual considerations,
especialy the cost of Type | and Type Il errors. This thoughtful aspect of their theory was rapidly
lost when the theory entered common scientific use.

The Alternative Hypothesis

Another hallmark of Neyman-Pearson hypothesistesting, and perhaps one that most distinguishesit
from earlier significance-testing paradigms, isthat if thetest hypothesisisrejected, it issupposed to
bergected in favor of some aternative hypothesis. The alternative hypothesis may be very specific,
but more often it isimplicit and very broad. For example, if the test hypothesis postul ates that there
isno association, then the usual (implicit) alternative hypothesisisthat thereisan association. Such
nonspecific alternatives lead to nondirectional tests based on comparing atwo-tailed P-value from
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adirectional test statistic against the alphalevel. Because this P-valueis sensitive to violations of
the test hypothesisin either direction, it is often called atwo-sided P-value.

Nonetheless, the test and alternative hypotheses can instead be one-sided (directional). For
example, the test hypothesis could state that an association is not positive (that is, either null or
negative). The aternative is then that the association is positive. Such an aternative leads to use of
aone-sided test based on comparing an upper-tailed P-value from adirectional test statistic against
alpha. Because this one-tailed P-value is sensitive to violations of the test hypothesisin only one
direction, it is often called a one-sided P-value. An analogous one-sided test that the association
was not negative would employ the lower-tailed P-value; the alternative for this test is that the
association is negative.

Another form of the alternative hypothesis is a finite interval of “equivalence” about the null,
for example, that the risk difference RD is between —0.1 and +0.1. This alternative is found
in comparisons of two treatments (so that the “exposed” are those given one treatment and the
“unexposed” are those given another treatment). The bounds of the interval are selected so that
any value within theinterval is considered close enough to the null for practical purposes. The test
hypothesis is then that the two treatments are not equivalent (RD is outside the interval), and is
rejected if P is less than alpha for al values outside the interval of equivalence. This approach
is called equivalence testing, and it corresponds to rejecting the test hypothesis when the 1 — «
confidence interval falls entirely within the equivalence interval (Blackwelder, 1998).

Note that the aternative hypothesis in al these examples comprises a range of values. For
a two-sided test, the alternative comprises every possible value except the one being tested. For
epidemiologic effect measures, thistwo-sided alternative hypothesiswill range from absurdly large
preventive effects to absurdly large causal effects, and include everything in between except the
test hypothesis. This hypothesis will be compatible with any observed data. The test hypothesis,
on the other hand, corresponds to a single value of effect and therefore is readily consistent with a
much narrower range of possible outcomes for the data. Statistical hypothesis testing amounts to
an attempt to falsify the test hypothesis. It is natural to focus on atest hypothesisthat is as specific
as possible because it is easier to marshal evidence against a specific hypothesis than a broad one.
The equivalence-testing example shows, however, that in some cases the aternative may be more
specific than the test hypothesis, and the test hypothesis may range from absurdly large preventive
effectsto absurdly large causal effects.

A major defect in the way al the above aternatives are usually formulated is that they assume
the statistical model is correct. Because the model is never exactly correct and is often grossly
incorrect, a scientifically more sound formulation of the alternative to the null hypothesis (for
example) would be “either the null is false or else the statistical model is wrong” (Fisher, 1943).
By adding the warning “or else the statistical model iswrong” to the alternative, we allow for the
possihility that uncontrolled systematic errors were responsible for the rejection.

STATISTICAL ESTIMATION

If Neyman-Pearson hypothesis testing is misleading, how should results be interpreted and pre-
sented? In keeping with the view that science is based on measurement—which leads in turn
to quantitative study objectives—the analysis of epidemiologic data can be conceptualized as a
measurement problem rather than as a problem in decision making. Measurement requires more
detailed statistics than the simple dichotomy produced by statistical hypothesis testing. Whatever
the parameter that is the target of inference in an epidemiologic study—usually an effect mea-
sure, such asaratio of rates or risks, but it can aso be an incidence rate or any other epidemiologic
measure—it will be measured on a continuous scale, with atheoretically infinite number of possible
values.

The data from a study can be used to generate an estimate of the target parameter. An esti-
mate may be presented as a single value on the measurement scale of the parameter; this value
is referred to as a point estimate. A point estimate may be viewed as a measure of the extent of
the association, or (in causal analyses) the magnitude of effect under study. There will be many
forces that will determine the final data values, such as confounding, measurement error, selection
biases, and “random” error. It is thus extremely unlikely that the point estimate will equal the true
parameter.
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Confidence Intervals and Confidence Limits

One way to account for random error in the estimation process is to compute P-values for a broad
range of possible parameter values (in addition to the null value). If the range is broad enough,
we will be able to identify an interval of parameter values for which the test P-value exceeds a
specified alphalevel (typically 0.05). All parameter valueswithin the range are compatible with the
dataunder the standard interpretation of significancetests. Therange of valuesiscalled aconfidence
interval, and the endpoints of that interval are called confidence limits. The process of calculating
the confidence interval is an example of the process of interval estimation.

The width of a confidence interval depends on the amount of random variability inherent in the
data-collection process (as estimated from the underlying statistical model and the data). It also
depends on an arbitrarily selected alphalevel that specifiesthe degree of compatibility between the
limits of the interval and the data. One minus this alphalevel (0.95 if alphais 0.05) is called the
confidence level of the interval and is usually expressed as a percentage.

If the underlying statistical model is correct and there is no bias, a confidence interval derived
from a valid test will, over unlimited repetitions of the study, contain the true parameter with
a frequency no less than its confidence level. This definition specifies the coverage property of
the method used to generate the interval, not the probability that the true parameter value lies
within the interval. For example, if the confidence level of a valid confidence interval is 90%,
the frequency with which the interval will contain the true parameter will be at least 90%, if
there is no bias. Consequently, under the assumed model for random variability (e.g., a binomial
model, as described in Chapter 14) and with no bias, we should expect the confidence interval to
include the true parameter valuein at least 90% of replications of the process of obtaining the data.
Unfortunately, this interpretation for the confidence interval is based on probability models and
sampling propertiesthat are seldom realized in epidemiol ogic studies; consequently, it ispreferable
to view the confidence limits as only a rough estimate of the uncertainty in an epidemiologic
result due to random error alone. Even with this limited interpretation, the estimate depends on
the correctness of the statistical model, which may be incorrect in many epidemiologic settings
(Greenland, 1990).

Relation of Confidence Intervals to Significance Tests and Hypothesis Tests

Consider now the relation between the confidence level and the alphalevel of hypothesis testing.
The confidencelevel equals 1 minusthe alphalevel (1 — «) of thetest used to construct theinterval.
To understand thisrelation, consider the diagram in Figure 10—2. Suppose that we performed atest
of the null hypothesis with « = 0.10. The fact that the 90% confidence interval does not include
the null point indicates that the null hypothesis would be rejected for « = 0.10. On the other hand,
the fact that the 95% confidence interval includes the null point indicates that the null hypothesis
would not be rejected for @ = 0.05. Because the 95% interval includes the null point and the 90%
interval doesnot, it can beinferred that the two-sided P-valuefor the null hypothesisisgreater than
0.05 and less than 0.10.

The point of the preceding example is not to suggest that confidence limits should be used as
surrogate tests of significance. Although they can be and often are used thisway, doing so defeatsall
theadvantagesthat confidenceinterval shave over hypothesistests. Aninterval-estimation procedure

95% confidence interval
90% confidence nterva\\

FIGURE 10-2 e Two nested Null P9mt Large .
confidence intervals, with the wider point estimate effects
one including the null hypothesis. (zero effect)
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Hypothetical Data from a Cohort Study,
Corresponding to the P-Value Function

in Figure 10-3
Exposure
Yes No
Cases 9 2
Person-years 186 128

does much more than assess the extent to which ahypothesisis compatible with the data. It provides
simultaneously an idea of the likely direction and magnitude of the underlying association and the
random variability of the point estimate. The two-sided P-value, on the other hand, indicates only
the degree of consistency between the data and a single hypothesis, and thus reveal s nothing about
the magnitude or even the direction of the association, or therandom variability of the point estimate
(Bandt and Boen, 1972).

For example, consider the data in Table 10—1. An exact test of the null hypothesis that the
exposureis not associated with the disease gives atwo-sided P-value of 0.14. (The methods used to
calculate this P-value are described in Chapter 14.) This result might be reported in several ways.
The least informative way is to report that the observed association is not significant. Somewhat
more information can be given by reporting the actual P-value; to express the P-value as an
inequality such as P > 0.05 isnot much better than reporting the results as not significant, whereas
reporting P = 0.14 at |east gives the P-value explicitly rather than degrading it into a dichotomy.
An additional improvement is to report P, = 0.14, denoting the use of a two-sided rather than a
one-sided P-value.

Any one P-value, no matter how explicit, fails to convey the descriptive finding that exposed
individuals had about three times the rate of disease as unexposed subjects. Furthermore, exact
95% confidence limits for the true rate ratio are 0.7—13. The fact that the null value (which, for the
rate ratio, is 1.0) is within the interval tells us the outcome of the significance test: The estimate
would not be statistically significant at the 1 — 0.95 = 0.05 alpha level. The confidence limits,
however, indicate that these data, although statistically compatible with no association, are even
more compatible with a strong association—assuming that the statistical model used to construct
the limits is correct. Stating the latter assumption is important because confidence intervals, like
P-values, do nothing to address biases that may be present.

P-Value Functions

Although a single confidence interval can be much more informative than a single P-value, it is
subject to the misinterpretation that values inside the interval are equally compatible with the data,
and al valuesoutsideit are equally incompatible. Likethe aphalevel of atest, however, the specific
level of confidence used in constructing a confidence interval is arbitrary; values of 95% or, less
often, 90% are those most frequently used.

A given confidenceinterval isonly one of an infinite number of ranges nested within one another.
Points nearer the center of these ranges are more compatible with the data than points farther
away from the center. To see the entire set of possible confidence intervals, one can construct a
P-value function (Birnbaum, 1961; Miettinen, 1985b; Poole, 1987a). This function, also known as
a consonance function (Folks, 1981) or confidence-interval function (Sullivan and Foster, 1990),
reflects the connection between the definition of atwo-sided P-value and the definition of a two-
sided confidence interval (i.e., a two-sided confidence interval comprises al points for which the
two-sided P-value exceeds the alphalevel of the interval).

The P-value function gives the two-sided P-value for the null hypothesis, as well as every a-
ternative to the null hypothesis for the parameter. A P-vaue function from the datain Table 10-1
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FIGURE 10-3 o P-value function, from which one can find all confidence
limits, for a hypothetical study with a rate ratio estimate of 3.1 (see Table 10-1).

isshownin Figure 10—3. Figure 10—3 also provides confidence level s on the right, and so indicates
all possible confidence limits for the estimate. The point at which the curve reaches its peak corre-
spondsto the point estimate for the rateratio, 3.1. The 95% confidenceinterval can be read directly
from the graph asthe function valueswhere the right-hand ordinate is 0.95, and the 90% confidence
interval can beread from the graph asthe values where the right-hand ordinateis 0.90. The P-value
for any value of the parameter can be found from the left-hand ordinate corresponding to that value.
For example, the null two-sided P-value can be found from the left-hand ordinate corresponding
to the height where the vertical line drawn at the hypothesized rateratio = 1 intersects the P-value
function.

A P-value function offers a visual display that neatly summarizes the two key components of
the estimation process. The peak of the curve indicates the point estimate, and the concentration
of the curve around the point estimate indicates the precision of the estimate. A narrow P-value
function would result from a large study with high precision, and a broad P-value function would
result from asmall study that had low precision.

A confidenceinterval representsonly one possible horizontal slicethrough the P-value function,
but thesinglesliceisenoughto convey thetwo essential messages: Confidencelimitsusually provide
enough information to locate the point estimate and to indicate the precision of the estimate. In
large-sample epidemiologic statistics, the point estimate will usually be either the arithmetic or
geometric mean of the lower and upper limits. The distance between the lower and upper limits
indicates the spread of the full P-value function.

The message of Figure 10—-3 is that the example data are more compatible with a moderate
to strong association than with no association, assuming the statistical model used to construct
the function is correct. The confidence limits, when taken as indicative of the P-value function,
summarize the size and precision of the estimate (Poole, 1987b, Poole, 2001c). A single P-value,
on the other hand, gives no indication of either the size or precision of the estimate, and, if it isused
merely as a hypothesis test, might result in a Type Il error if there indeed is an association between
exposure and disease.

Evidence of Absence of Effect

Confidencelimitsand P-valuefunctionsconvey information about size and precision of the estimate
simultaneously, keeping these two features of measurement in the foreground. The use of asingle
P-value—or (worse) dichotomization of the P-value into significant or not significant—obscures
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these features so that the focus on measurement is lost. A study cannot be reassuring about the
safety of an exposure or treatment if only a statistical test of the null hypothesisis reported. Aswe
have already seen, results that are not significant may be compatible with substantial effects. Lack
of significance alone provides no evidence against such effects (Altman and Bland, 1995).

Standard statistical advice statesthat when the dataindicate alack of significance, it isimportant
to consider the power of the study to detect as significant a specific alternative hypothesis. The
power of atest, however, is only an indirect indicator of precision, and it requires an assumption
about the magnitude of the effect. In planning astudy, it is reasonable to make conjectures about the
magnitude of an effect to compute study-size requirements or power. In analyzing data, however,
it is dways preferable to use the information in the data about the effect to estimate it directly,
rather than to speculate about it with study-size or power calculations (Smith and Bates, 1992;
Goodman and Berlin, 1994; Hoenig and Heisey, 2001). Confidence limits and (even more so) P-
value functions convey much more of the essential information by indicating the range of values
that are reasonably compatible with the observations (albeit at a somewhat arbitrary alpha level),
assuming the statistical model is correct. They can also show that the data do not contain the
information necessary for reassurance about an absence of effect.

Intheir reanalysisof the 71 negativeclinical trials, Freiman et al. (1978) used confidencelimitsfor
therisk differencesto reinterpret the findings from these studies. These confidence limitsindicated
that probably many of the treatments under study were indeed beneficial, as seen in Figure 10-1.
The inappropriate interpretations of the authors in most of these trials could have been avoided by
focusing their attention on the confidence limits rather than on the results of a statistical test.

For a study to provide evidence of lack of an effect, the confidence limits must be near the null
value and the statistical model must be correct (or, if wrong, only in ways expected to bias the
interval away from the null). In equivalence-testing terms, the entire confidence interval must lie
within the zone about the null that would be considered practically equivalent to the null. Consider
Figure 10—4, which depicts the P-value function from Figure 10—3 on an expanded scale, along
with another P-value function from astudy with a point estimate of 1.05 and 95% confidence limits
of 1.01 and 1.10.

The study yielding the narrow P-value function must have been large to generate such precision.
The precision enables one to infer that, absent any strong biases or other serious problems with the
statistical model, the study provides evidence against a strong effect. The upper confidence limit
(with any reasonable level of confidence) is near the null value, indicating that the data are not
readily compatible with large or even moderate effects. Or, as seen from the P-value function, the

FIGURE 10-4 o A P-value function from a precise study with a relative
risk estimate of 1.05 and the P-value function from Figure 10-3.
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curveis anarrow spike close to the null point. The spike is not centered exactly on the null point,
however, but slightly aboveit. In fact, the datafrom thislarge study would be judged as statistically
significant by conventional criteria, because the (two-sided) P-value testing the null hypothesisis
about 0.03. In contrast, the other P-value function in Figure 10—4 depicts data that, as we have
seen, are readily compatible with large effects but are not statistically significant by conventional
criteria

Figure 10—4 illustrates the dangers of using statistical significance as the primary basis for
inference. Even if one assumes no bias is present (i.e., that the studies and analyses are perfectly
valid), the two sets of results differ in that one result indicates there may be alarge effect, while the
other offers evidence against alarge effect. Theirony isthat it isthe statistically significant finding
that offers evidence against a large effect, while it is the finding that is not statistically significant
that raises concern about a possibly large effect. In these examples, statistical significance gives
a message that is opposite of the appropriate interpretation. Focusing on interval estimation and
proper interpretation of the confidence limits avoids this problem.

Numerous real-world examples demonstrate the problem of relying on statistical significance
for inference. One such example occurred in the interpretation of a large randomized trial of
androgen blockade combined with the drug flutamide in the treatment of advanced prostate cancer
(Eisenberger et al., 1998). This trial had been preceded by 10 similar trials, which in aggregate
had found a small survival advantage for patients given flutamide, with the pooled results for
the 10 studies producing a summary odds ratio of 0.88, with a 95% confidence interval of 0.76—
1.02 (Rothman et al., 1999; Prostate Cancer Trialists' Collaborative Group, 1995). In their study,
Eisenberger et a. reported that flutamide was ineffective, thus contradicting the results of the 10
earlier studies, despite their finding an odds ratio of 0.87 (equivalent in their study to a mortality
rate ratio of 0.91), a result not very different from that of the earlier 10 studies. The P-value for
their finding was above their predetermined cutoff for ‘significance’, which is the reason that the
authors concluded that flutamide was an ineffective therapy. But the 95% confidence interval of
0.70-1.10 for their odds ratio showed that their data were readily compatible with a meaningful
benefit for patients receiving flutamide. Furthermore, their results were similar to those from the
summary of the 10 earlier studies. The P-value functions for the summary of the 10 earlier studies,
and the study by Eisenberger et a., are shown in Figure 10-5. Thefigure shows how the findings of
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FIGURE 10-5 o P-value functions based on 10 earlier trials of flutamide
(solid line) and the trial by Eisenberger et al. (dashed line), showing the similarity of
results, and revealing the fallacy of relying on statistical significance to conclude, as
did Eisenberger et al., that flutamide has no meaningful effect.
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FIGURE 10-6 o P-value functions for moderate and heavier drinkers of
alcohol showing essentially identical negative associations with decline in
cognitive function. The authors incorrectly reported that there was an
association with moderate drinking, but not with heavier drinking, because
only the finding for moderate drinking was statistically significant (Reproduced
with permission from Stampfer MJ, Kang JH, Chen J, et al. Effects of moderate
alcohol consumption on cognitive function in women. N Engl J Med.
2005;352:245-253.)

Eisenberger et al. reinforce rather than refute the earlier studies. They misinterpreted their findings
because of their focus on statistical significance.

Another examplewasaheadline-generating study reporting that women who consumed moderate
amounts of alcohol retained better cognitive function than nondrinkers (Stampfer et a., 2005). For
moderate drinkers (up to 15 g of acohol per day), the authors reported a risk ratio for impaired
cognition of 0.81 with 95% confidence limits of 0.70 and 0.93, indicating that moderate drinking
was associated with abenefit with respect to cognition. In contrast, the authors reported that “ There
were no significant associations between higher levels of drinking (15 to 30 g per day) and the
risk of cognitive impairment or decline,” implying no benefit for heavy drinkers, an interpretation
repeated in widespread news reports. Nevertheless, the finding for women who consumed larger
amounts of alcohol was essentialy identical to the finding for moderate drinkers, with arisk-ratio
estimate of 0.82 instead of 0.81. It had a broader confidence interval, however, with limits of 0.59
and 1.13. Figure 10—6 demonstrates how precision, rather than different effect size, accounted for
the differencein statistical significance for the two groups. From the data, thereis no basisto infer
that the effect size differs for moderate and heavy drinkers; in fact, the hypothesis that is most
compatible with the data is that the effect is about the same in both groups. Furthermore, the lower
95% confidence limit for the ratio of the risk ratio in the heavy drinkers to the risk ratio in the
moderate drinkersis0.71, implying that the data are al so quite compatible with amuch lower (more
protective) risk ratio in the heavy drinkers than in the moderate drinkers.

Guidelines for Practice

Good data analysis does not demand that P-value functions be calculated routinely. It is usually
sufficient to use conventional confidence limits to generate the proper mental visualization for the
underlying P-value function. In fact, for large studies, only one pair of limits and their confidence
level is needed to sketch the entire function, and one can easily learn to visualize the function
that corresponds to any particular pair of limits. If, however, one uses the limits only to determine
whether the null point lies inside or outside the confidence interval, one is only performing a
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significance test. It is lamentable to go to the trouble to calculate confidence limits and then use
them for nothing more than classifying the study finding as statistically significant or not. One
should instead remember that the precise locations of confidence limits are not important for proper
interpretation. Rather, the limits should serveto give one amental picture of the location and spread
of the entire P-value function.

Themain thrust of the preceding sections has been to argue the inadequacy of statistical signifi-
cancetesting. Theview that estimation is preferableto testing has been argued by many scientistsin
avariety of disciplines, including, for example, economics, social sciences, environmental science,
and accident research. There has been a particularly heated and welcome debate in psychology. In
the overall scientific literature, hundreds of publications have addressed the concerns about statis-
tical hypothesis testing. Some selected references include Rozeboom (1960), Morrison and Henkel
(1970), Wulff (1973), Cox and Hinkley (1974), Rothman (1978a), Salsburg (1985), Simon and
Wittes (1985), Langman (1986), Gardner and Altman (1986), Walker (1986), Oakes (1990), Ware
et a. (1986), Pocock et al. (1987), Poole (1987a, 1987b), Thompson (1987), Evans et al. (1988),
Anscombe (1990), Oakes (1990), Cohen (1994), ), Hauer (2003), Gigerenzer (2004), Ziliak and
McCloskey (2004), Batterham and Hopkins (2006), and Marshall (2006). To quote Atkins and
Jarrett (1979):

Methods of estimation share many of the problems of significance tests—being likewise based on
probability model assumptions and requiring “arbitrary” limits of precision. But at least they do not
requireirrelevant null hypotheses to be set up nor do they force a decision about “significance” to be
made—the estimates can be presented and evaluated by statistical and other criterig, by the
researcher or the reader. In addition the estimates of one investigation can be compared with others.
Whileit is often the case that different measurements or methods of investigation or theoretical
approaches lead to “different” results, thisis not a disadvantage; these differences reflect important
theoretical differences about the meaning of the research and the conclusions to be drawn from it.
And it is precisely those differences which are obscured by simply reporting the significance level of
the results.

Indeed, because statistical hypothesis testing promotes so much misinterpretation, we recom-
mend avoiding its usein epidemiol ogic presentations and research reports. Such avoidance requires
that P-values (when used) be presented without reference to alpha levels or “statistical signifi-
cance,” and that careful attention be paid to the confidence interval, especialy its width and its
endpoints (the confidence limits) (Altman et al., 2000; Poole, 2001c).

Problems with Confidence Intervals

Because they can be derived from P-values, confidence intervals and P-value functions are them-
selves subject to some of the same criticisms as significance tests (Goodman and Royall, 1988;
Greenland, 1990, 2006a). One problem that confidence intervals and P-value functions share with
statistical hypothesistestsistheir very indirect interpretations, which depend on the concept of “ rep-
etition of the study in amanner identical in all respects except for random error.” I nterpretations of
statistics that appeal to such a concept are called repeated-sampling or frequentist interpretations,
becausethey refer to the frequency of certain events (rejection by atest, or coverage by aconfidence
interval) in a series of repeated experiments.

An astute investigator may properly ask what frequency interpretations have to do with the
single study under analysis. It is al very well to say that an interval estimation procedure will,
in 95% of repetitions, produce limits that contain the true parameter. But in analyzing a given
study, the relevant scientific question is this: Does the single pair of limits produced from this one
study contain the true parameter? The ordinary (frequentist) theory of confidence intervals does not
answer this question. The question is so important that many (perhaps most) users of confidence
intervals mistakenly interpret the confidence level of the interval as the probability that the answer
to the question is “yes.” It is quite tempting to say that the 95% confidence limits computed from
a study contain the true parameter with 95% probability. Unfortunately, this interpretation can be
correct only for Bayesian interval estimates (discussed later and in Chapter 18), which often diverge
from ordinary confidence intervals.

There are several alternative types of interval estimation that attempt to address these problems.
We will discuss two of these alternatives in the next two subsections.
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Likelihood Intervals

To avoid interpretational problems, afew authors prefer to replace confidence intervals with like-
lihood intervals, also known as support intervals (Goodman and Royall, 1988; Edwards, 1992;
Royall, 1997). In ordinary English, “likelihood” is just a synonym for “probability.” In likelihood
theory, however, amore specialized definition isused: Thelikelihood of a specified parameter value
given observed datais defined as the probability of the observed data given that the true parameter
equal s the specified parameter value. This concept is covered in depth in many statistics textbooks;
for example, see Berger and Wolpert (1988), Clayton and Hills (1993), Edwards (1992), and Royall
(1997). Here, we will describe the basic definitions of likelihood theory; more details are given in
Chapter 13.

To illustrate the definition of likelihood, consider again the population in Table 10—1, in which
186/(186 + 128) = 59% of person-years were exposed. Under standard assumptions, it can be
shown that, if thereisno biasand the truerateratio is 10, there will be a0.125 chance of observing
nine exposed cases given 11 total cases and 59% exposed person-years. (The calculation of this
probability is beyond the present discussion.) Thus, by definition, 0.125 is the likelihood for arate
ratio of 10 given the data in Table 10—1. Similarly, if there are no biases and the true ratio is 1,
there will be a 0.082 chance of observing nine exposed cases given 11 total and 59% exposed
person-years; thus, by definition, 0.082 is the likelihood for arate ratio of 1 given Table 10—1.

When one parameter val ue makes the observed data more probabl e than another value and hence
has a higher likelihood, it is sometimes said that this parameter value has higher support from the
data than the other value (Edwards, 1992; Royall, 1997). For example, in this specia sense, arate
ratio of 10 has higher support from the datain Table 10-1 than arateratio of 1, because those data
have a greater chance of occurring if therateratio is 10 than if itis 1.

For most data, therewill be at |east one possi ble parameter val ue that makes the chance of getting
those data highest under the assumed statistical model. In other words, there will be a parameter
value whose likelihood is at least as high as that of any other parameter value, and so has the
maximum possible likelihood (or maximum support) under the assumed model. Such a parameter
vaue is caled a maximum-likelihood estimate (MLE) under the assumed model. For the data in
Table 10-1, there is just one such value, and it is the observed rate ratio (9/186)/(2/128) = 3.1.
If there are no biases and the true rate ratio is 3.1, there will be a 0.299 chance of observing nine
exposed cases given 11 total and 59% exposed person-years, so 0.299 is the likelihood for a rate
ratio of 3.1 given Table 10—1. No other value for the rate ratio will make the chance of these results
higher than 0.299, and so 3.1 isthe MLE. Thus, in the specia likelihood sense, a rate ratio of 3.1
has the highest possible support from the data.

As has been noted, Table 101 yields a likelihood of 0.125 for a rate ratio of 10; this value
(0.125) is 42% of the likelihood (of 0.299) for 3.1. Similarly, Table 10—1 yields a likelihood of
0.082 for arate ratio of 1; this value (0.082) is 27% of the likelihood for 3.1. Overdl, arate ratio
of 3.1 maximizes the chance of observing the data in Table 10—1. Although rate ratios of 10 and 1
have less support (lower likelihood) than 3.1, they are still among values that likelihoodists regard
as having enough support to warrant further consideration; these valuestypically include al values
with alikelihood above one-seventh of the maximum (Goodman and Royall, 1988; Edwards, 1992;
Royall, 1997). Under anormal model for random errors, such one-seventh likelihood intervals are
approximately equal to 95% confidence intervals (Royall, 1997).

The maximum of thelikelihood isthe height of the likelihood function at the MLE. A likelihood
interval for aparameter (here, therateratio) isthe collection of all possible valueswhose likelihood
is no less than some specified fraction of this maximum. Thus, for Table 101, the collection of
all rate ratio values with a likelihood no less than 0.299/7 = 0.043 (one-seventh of the highest
likelihood) is alikelihood interval based on those data. Upon computing thisinterval, we find that
all rate ratios between 0.79 and 20 imply a probability for the observed data at least one-seventh
of the probability of the data when therateratio is 3.1 (the MLE). Because the likelihoods for rate
ratios of 1 and 10 exceed 0.299/7 = 0.043, 1 and 10 are within thisinterval.

Analogousto confidence limits, one can graph the collection of likelihood limitsfor al fractions
of the maximum (1/2, 1/4, 1/7, 1/20, etc.). The resulting graph has the same shape as one would
obtain from simply graphing the likelihood for each possible parameter value. The latter graph is
caled the likelihood function for the data. Figure 10—7 gives the likelihood function for the data
in Table 10-1, with the ordinate scaled to make the maximum (peak) at 3.1 equal to 1 rather than
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FIGURE 10-7 e Relative likelihood function based on Table 10-1.

0.299 (this is done by dividing al the likelihoods by the maximum, 0.299). Thus, Figure 10—6
provides all possible likelihood limits within the range of the figure.
The function in Figure 10—7 is proportional to
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wherelRisthe hypothesized incidencerateratio (the abscissa). Notethat thisfunctionisbroader and
less sharply peaked than the P-value function in Figure 10—3, reflecting the fact that, by likelihood
standards, P-values and confidence intervals tend to give the impression that the data provide more
evidence against the test hypothesis than they actually do (Goodman and Royall, 1988). For larger
data sets, however, thereis a simple approximate rel ation between confidence limits and likelihood
limits, which we discuss in Chapter 13.

Some authors prefer to use the natural logarithm of the likelihood function, or log-likelihood
function, to compare the support given to competing hypotheses by the data (Goodman and Royall,
1988; Edwards, 1992; Royall, 1997). These authors sometimesrefer to thelog-likelihood function as
the support function generated by the data. Althoughwefind log-likelihoodslesseasily interpretable
than likelihoods, log-likelihoods can be useful in constructing confidence intervals (Chapter 13).

Bayesian Intervals

Aswith confidencelimits, theinterpretation of likelihood limitsisindirect, in that it does not answer
the question: “Is the true value between these limits?’ Unless the true value is aready known (in
which case there is no point in gathering data), it can be argued that the only rational answer to the
question must be a subjective probability statement, such as“l am 95% sure that the true value is
betweentheselimits” (DeFinetti, 1974; Howson and Urbach, 1993; see Chapter 18). Such subjective
probability assessments, or certainties, are common in everyday life, as when aweather forecaster
predicts 80% chance of rain tomorrow, or when oneis delayed while traveling and thinks that there
isa90% chance of arriving between 1 and 2 hours after the scheduled arrival time. If oneissurethat
the true arrival time will be between these limits, this sureness represents a subjective assessment
of 100% probability (complete certainty) that arrival will be 1 to 2 hours late. In reality, however,
there is always a chance (however small) that one will be delayed longer or may never arrive, so
complete certainty is never warranted.
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Subjective Bayesian analysisis concerned with producing realistic and rationally coherent prob-
ability assessments, and it is especially concerned with updating these assessments as data become
available. Rationally coherent means only that assessments are free of logical contradictions and
do not contradict the axioms of probability theory (which are also used as axioms for frequentist
probability calculations) (Savage, 1972; DeFinetti, 1974; Howson and Urbach, 1993; Greenland,
1998b).

All statistical methods require a model for data probabilities. Bayesian analysis additionally
requires a prior probability distribution. In theory, this means that one must have a probability
assessment available for every relevant interval; for example, when trying to study a rate ratio,
before seeing the data one must be able to specify one’s certainty that the rate ratio is between 1
and 2, and between /> and 4, and so on. This prior-specification requirement demands that one has
aprobability distribution for the rate ratio that is similar in shape to Figure 10—3 before seeing the
data. This is a daunting demand, and it was enough to have impeded the use and acceptance of
Bayesian methods for most of the 20th century.

Suppose, however, that one succeedsin specifyingin advanceaprior probability distribution that
givesprespecified certaintiesfor thetarget parameter. Bayesian analysisthen proceeds by combining
this prior distribution with the likelihood function (such asin Fig. 10—7) to produce a new, updated
set of certainties, called the posterior probability distribution for the target parameter based on the
given prior distribution and likelihood function. This posterior distribution in turn yields posterior
probability intervals (posterior certainty intervals). Suppose, for example, one accepts the prior
distribution as agood summary of previous information about the parameter, and similarly accepts
the likelihood function as a good summary of the data probabilities given various possible values
for the parameter. The resulting 95% posterior interval is then arange of numbers that one can be
95% certain contains the true parameter.

The technical details of computing exact posterior distributions can be quite involved and
were also an obstacle to widespread adoption of Bayesian methods. Modern computing advances
have all but eliminated this obstacle as a serious problem; also, the same approximations used
to compute conventional frequentist statistics (Chapters 14 through 17) can be used to compute
approximate Bayesian statistics (see Chapter 18).

Another obstacle to Bayesian methods has been that the intervals produced by a Bayesian anal-
ysis refer to subjective probabilities rather than objective frequencies. Some argue that, because
subjective probabilities are just one person’s opinion, they should be of no interest to objective
scientists. Unfortunately, in nonexperimental studies there is (by definition) no identified random
mechanism to generate objective frequencies over study repetitions; thus, in such studies, so-called
objective frequentist methods (such as significance tests and confidenceinterval s) lack the objective
repeated-sampling properties usually attributed to them (Freedman, 1985, 1987; Greenland, 1990,
1998hb, 2005b, 2006a; Freedman et al., 2007). Furthermore, scientists do routinely offer their opin-
ions and are interested in the opinions of colleagues. Therefore, it can be argued that arational (if
subjective) certainty assessment may be the only reasonabl e inference we can get out of a statistical
analysis of observational epidemiologic data. Some argue that this conclusion applies even to per-
fect randomized experiments (Berger and Berry, 1988; Howson and Urbach, 1993; Spiegelhalter
et al., 2004).

At the very least, Bayesian statistics provide a probabilistic answer to questions as “Does the
true rate ratio lie between 1 and 47" (to which one possible Bayesian answer is “In light of the
data and my current prior information, | can be 90% certain that it does.”). A more general argu-
ment for the use of Bayesian methods is that they can provide point and interval estimates that
have better objective frequency (repeated-sampling) properties than ordinary frequentist estimates.
These calibrated Bayesian statistics include Bayesian confidence intervals that are narrower (more
precise) than ordinary confidence intervals with the same confidence level. Because the advantages
of procedures with Bayesian justification can be so dramatic, some authors argue that only meth-
ods with a clear Bayesian justification should be used, even though repeated-sampling (objective
frequency) properties are also desirable (such as proper coverage frequency for interval estimates)
(Rubin, 1984, 1991; Gelman et a., 2003).

In addition to providing improved analysis methods, Bayesian theory can be used to evaluate
established or newly proposed statistical methods. For example, if a new confidence interval is
proposed, we may ask: “What prior distribution do we need to get thisnew interval asour Bayesian
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posterior probability interval?’ It is often the case that the prior distribution one would need to
justify a conventional confidence interval is patently absurd; for example, it would assign equal
probabilities to rate ratios of 1 and 1,000,000 (Greenland, 1992a, 1998b, 2006a; Chapter 18). In
such casesit can be argued that one should reject the proposed interval because it will not properly
reflect any rational opinionabout the parameter after acareful dataanalysis(Rubin, 1984; Greenland,
20063).

Under certain conditions, ordinary (frequentist) confidenceintervalsand one-sided P-valuescan
be interpreted as approximate posterior (Bayesian) probability intervals (Cox and Hinkley, 1974;
Greenland and Gustafson, 2006). These conditions typically arise when little is known about the
associations under study. Frequentist intervals cease to have Bayesian utility when much is already
known or the dataunder analysisare too limited to yield even modestly precise estimates. Thelatter
situation arises not only in small studies, but also inlarge studiesthat must deal with many variables
at once, or that fail to measure key variables with sufficient accuracy.

Chapter 18 provides further discussion of these issues, and shows how to do basic Bayesian
analysisof categorical (tabular) datausing ordinary frequentist software. Similar Bayesian methods
for epidemiologic regression analysis are given by Greenland (2007ab).

CONCLUSION

Statistics can be viewed as having a number of rolesin epidemiology. Data descriptionisonerole,
and statistical inferenceisanother. Thetwo are sometimes mixed, to the detriment of both activities,
and are best distinguished from the outset of an analysis.

Different schools of statistics view statistical inference as having different roles in data analy-
sis. The hypothesis-testing approach treats statistics as chiefly a collection of methods for making
decisions, such as whether an association is present in a source population or “superpopulation”
from which the data are randomly drawn. This approach has been declining in the face of criti-
cisms that estimation, not decision making, is the proper role for statistical inference in science.
Within the latter view, frequentist approaches derive estimates by using probabilities of data (either
P-values or likelihoods) as measures of compatibility between dataand hypotheses, or as measures
of the relative support that data provide hypotheses. In contrast, the Bayesian approach uses data
to improve existing (prior) estimatesin light of new data. Different approaches can be used in the
course of an analysis. Nonetheless, proper use of any approach requires more careful interpretation
of statistics than has been common in the past.
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I his chapter covers anumber of topics specific to the design of cohort and case-control studies.
Thesetopics pertain to the overlapping goal s of efficient control of confounding and efficient subject
selection. We use efficiency to refer to both the statistical precision and the cost-effectiveness of the
study design.

DESIGN OPTIONS TO CONTROL CONFOUNDING

Various methods are used to help control confounding in the design of epidemiologic studies. One,
randomization, is applicable only in experiments. In contrast, restriction is applicable to al study
designs. Matching is often treated as another option for control of confounding, but this view is not
accurate. The primary benefits of matching (when they arise) are more in the realm of improved
efficiency in confounder control—that is, an increase in the precision of the confounder-adjusted
estimate, for a given study size. Matching is therefore covered in its own section.

EXPERIMENTS AND RANDOMIZATION

When it is practical and ethical to assign exposure to subjects, one can in theory create study
cohorts that would have equal incidences of disease in the absence of the assigned exposure and
so eliminate the possibility of confounding. If only a few factors determine incidence and if the
investigator knows of thesefactors, anideal plan might call for exposure assignment that would lead
to identical, balanced distributions of these causes of disease in each group. In studies of human
disease, however, there are always unmeasured (and unknown) causes of disease that cannot be
forced into balance among treatment groups. Randomization is a method that allows one to limit
confounding by unmeasured factors probabilistically and to account quantitatively for the potential
residual confounding produced by these unmeasured factors.

Asmentioned in Chapter 6, randomization does not lead to identical distributions of all factors,
but only to distributions that tend, on repeated trials, to be similar for factors that are not affected

168
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by treatment. The tendency increases as the sizes of the study groups increase. Thus, randomiza-
tion works very well to prevent substantial confounding in large studies but is less effective for
smaller studies (Rothman, 1977). In the extreme case in which only one randomization unit is
included in each group (as in the community fluoridation trial described in Chapters 4 and 6, in
which there was only one community in each group), randomization is completely ineffective in
preventing confounding. As compensation for its unreliability in small studies, randomization has
the advantage of providing afirm basisfor calculating confidence limits that allow for confounding
by unmeasured, and hence uncontrollable, factors. Because successful randomization allows one
to account quantitatively for uncontrollable confounding, randomization is a powerful technique to
help ensure valid causal inferences from studies, large or small (Greenland, 1990). Its drawback of
being unreliable in small studies can be mitigated by measuring known risk factors before random
assignment and then making the random assignments within levels of these factors. Such a process
is known as matched randomization or stratified randomization.

RESTRICTION

A variable cannot produce confounding if it is prohibited from varying. Restricting the admissibility
criteriafor subjectsto beincluded inastudy istherefore an extremely effective method of preventing
confounding. If the potentially confounding variable is measured on a nominal scale, such as race
or sex, restriction is accomplished by admitting into the study as subjects only those who fall into
specified categories (usually just a single category) of each variable of interest. If the potentially
confounding variable is measured on a continuous scale such as age, restriction is achieved by
defining a range of the variable that is narrow enough to limit confounding by the variable. Only
individuals within the range are admitted into the study as subjects. If the variable has little effect
within the admissible range, then the variable cannot be an important confounder in the study. Even
if the variable has a non-negligible effect in the range, the degree of confounding it produces will
be reduced by the restriction, and this remaining confounding can be controlled analytically.

Restriction is an excellent technique for preventing or at least reducing confounding by known
factors, because it is not only extremely effective but also inexpensive, and therefore it is very
efficient if it does not hamper subject recruitment. The decision about whether to admit a given
individual to the study can be made quickly and without reference to other study subjects (as
is required for matching). The main disadvantage is that restriction of admissibility criteria can
shrink the pool of available subjects below the desired level. When potential subjects are plentiful,
restriction can be employed extensively, because it improves validity at low cost. When potential
subjects are less plentiful, the advantages of restriction must be weighed against the disadvantages
of adiminished study group.

Asisthe case with restriction based on risk or exposure, one may be concerned that restriction
to a homogeneous category of a potential confounder will provide a poor basis for generalization
of study results. This concern is valid if one suspects that the effect under study will vary in an
important fashion acrossthe categories of the variablesused for restriction. Nonethel ess, studiesthat
try to encompassa‘ representative” and thus heterogeneous sample of ageneral popul ation are often
unableto addressthis concern in an adequate fashion, becausein studies based on a* representative”
sample, the number of subjects within each subgroup may be too small to allow estimation of the
effect within these categories. Depending on the size of the subgroups, a representative sample
often yields unstable and hence ambiguous or even conflicting estimates across categories, and
hence provides unambiguous information only about the average effect across all subgroups. If
important variation (modification) of the effect exists, one or more studies that focus on different
subgroups may be more effective in describing it than studies based on representative samples.

APPORTIONMENT RATIOS TO IMPROVE STUDY EFFICIENCY

Asmentionedin Chapter 10, one can often apportion subjectsinto study groups by design to enhance
study efficiency. Consider, for example, a cohort study of 100,000 men to determine the magnitude
of the reduction in cardiovascular mortality resulting from daily aspirin consumption. A study this
large might be thought to have good precision. The frequency of exposure, however, playsacrucia
role in precision: If only 100 of the men take aspirin daily, the estimates of effect from the study
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will be imprecise because very few cases will likely occur in the mere 100 exposed subjects. A
much more precise estimate could be obtained if, instead of 100 exposed and 99,900 unexposed
subjects, 50,000 exposed and 50,000 unexposed subjects could be recruited instead.

The frequency of the outcomeisequally crucial. Suppose the study had 50,000 aspirin users and
50,000 nonusers, but al the men in the study were between the ages of 30 and 39 years. Whereas
the balanced exposure all ocation enhances precision, men of this age seldom die of cardiovascular
disease. Thus, few events would occur in either of the exposure groups, and as a result, effect
estimates would be imprecise. A much more precise study would use a cohort at much higher risk,
such as one comprising older men. Theresulting study would not have the sameimplications unless
it was accepted that the effect measure of interest changed little with age. This concern relates not
to precision, but to generalizability, which we discussed in Chapter 9.

Consideration of exposure and outcome frequency must aso take account of other factors in
the analysis. If aspirin users were all 40 to 49 years old but nonusers were all over age 50, the
age discrepancy might severely handicap the study, depending on how these nonoverlapping age
distributions were handled in the analysis. For example, if one attempted to stratify by decade of
age to control for possible age confounding, there would be no information at al about the effect
of aspirin in the data, because no age stratum would have information on both users and nonusers.

Thus, we can see that a variety of design aspects affect study efficiency and in turn affect the
precision of study results. These factors include the proportion of subjects exposed, the disease
risk of these subjects, and the relation of these study variables to other analysis variables, such as
confounders or effect modifiers.

Study efficiency can bejudged on various scales. One scal e relates the total information content
of the data to the total number of subjects (or amount of person-time experience) in the study. One
valid design is said to be more statistically efficient than another if the design yields more precise
estimates than the other when both are performed with the same number of subjects or person-time
(assuming proper study conduct).

Another scale relates the total information content to the costs of acquiring that information.
Some options in study design, such as individual matching, may increase the information content
per subject studied, but only at an increased cost. Cost efficiency relates the precision of a study to
the cost of the study, regardiess of the number of subjects in the study. Often the cost of acquiring
subjects and obtaining data differs across study groups. For example, retrospective cohort studies
often use areference series from population data because such data can be acquired for a price that
is orders of magnitude less than the information on the exposed cohort. Similarly, in case-control
studies, eligible cases may be scarce in the source population, whereas those eligible to be controls
may be plentiful. In such situations, more precision might be obtained per unit cost by including
all eligible cases and then expanding the size of the reference series rather than by expanding the
source population to obtain more cases. The success of this strategy depends on the relative costs
of acquiring information on cases versus controls and the cost of expanding the source population
to obtain more cases—the latter strategy may be very expensive if the study cannot draw on an
existing case-ascertainment system (such as aregistry).

In the absence of an effect and if no adjustment is needed, the most cost-efficient apportionment
ratio is approximately equal to the reciprocal of the square root of the cost ratio (Miettinen, 1969).
Thus, if C; isthecost of each caseand Cy i sthe cost of each control, the most cost-efficient apportion-
ment ratio of controlsto casesis (C1/Co)Y/2. For example, if casescost four timesasmuch ascontrols
and there is no effect and no need for adjustments, the most cost-efficient design would include two
times as many controls as cases. The square-root ruleis applicable only for small or null effects. A
more general approach to improving cost efficiency takesinto account the conjectured magnitude of
theeffect and thetype of data (M orgenstern and Winn, 1983). Theseformul asenabletheinvestigator
to improve the precision of the estimator of effect in a study for a fixed amount of resources.

Occasionally, one of the comparison groups cannot be expanded, usualy because practical
constraints limit the feasibility of extending the study period or area. For such a group, the cost
of acquiring additional subjectsisessentialy infinite, and the only available strategy for acquiring
more information is to expand the other group. As the size of one group increases relative to the
other group, statistical efficiency doesnot increase proportionally. For example, if there arem cases,
no effect, and no need to stratify on any factor, the proportion of the maximum achievable precision
that can be obtained by using a control group of size nisn/(m + n), often given asr/(r + 1), where
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r = n/m. Thisrelation impliesthat, if only 100 cases were available in a case-control study and no
stratification was needed, adesign with 400 controls could achieve 400/(100 + 400) = 80% of the
maximum possible efficiency.

Unfortunately, the formulas we have just described are misleading when comparisons across
strata of other factors are needed or when there is an effect. In either case, expansion of just one
group may greatly improve efficiency (Breslow et al., 1983). Furthermore, study design formulas
that incorporate cost constraints usually treat the costs per subject as fixed within study groups
(Meydrech and Kupper, 1978; Thompson et a., 1982). Nonetheless, the cost per subject may
change as the number increases; for example, there may be areduction in cost if the collection time
can be expanded and there is no need to train additional interviewers, or there may be an increase
in cost if more interviewers need to be trained.

MATCHING

Matching refers to the selection of a reference series—unexposed subjects in a cohort study or
controls in a case-control study—that isidentical, or nearly so, to the index series with respect to
the distribution of one or more potentially confounding factors. Early intuitions about matching
were derived from thinking about experiments (in which exposure is assigned by the investigator).
In epidemiology, however, matching is applied chiefly in case-control studies, whereit represents a
very different process from matching in experiments. There are a so important differences between
matching in experiments and matching in nonexperimental cohort studies.

Matching may be performed subject by subject, which is known as individual matching, or for
groups of subjects, which is known as frequency matching. Individual matching involves selection
of one or more reference subjects with matching-factor values equal to those of the index subject.
In acohort study, theindex subject is exposed, and one or more unexposed subjects are matched to
each exposed subject. In a case-control study, the index subject is a case, and one or more controls
are matched to each case. Frequency matching involves selection of an entire stratum of reference
subjects with matching-factor values equal to that of a stratum of index subjects. For example, ina
case-control study matched on sex, astratum of male controlswould be selected for the male cases,
and, separately, astratum of female controls would be selected for the female cases.

One general observation appliesto all matched studies: Matching on afactor may necessitateits
control in the analysis. This observation is especialy important for case-control studies, in which
failure to control a matching factor can lead to biased effect estimates. With individual matching,
often each matched set istreated asadistinct stratum if astratified analysisis conducted. When two
or more matched sets have identical values for al matching factors, however, the sets can and for
efficiency should be coalesced into a single stratum in the analysis (Chapter 16). Given that strata
corresponding to individually matched sets can be coalesced in the analysis, there is no important
difference in the proper analysis of individually matched and frequency-matched data.

PURPOSE AND EFFECT OF MATCHING

To appreciate the different implications of matching for cohort and case-control studies, consider
the hypothetical target population of 2 million individuals given in Table 11-1. Both the exposure
and male sex are risk factors for the disease: Within sex, exposed have 10 times the risk of the
unexposed, and within exposure levels, men have five times the risk of women. There is aso
substantial confounding, because 90% of the exposed individuals are male and only 10% of the
unexposed aremale. Thecruderisk ratio in thetarget popul ation comparing exposed with unexposed
is 33, considerably different from the sex-specific value of 10.

Suppose that a cohort study draws an exposed cohort from the exposed target population and
matchesthe unexposed cohort to the exposed cohort on sex. If 10% of the exposed target population
is included in the cohort study and these subjects are selected independently of sex, we have
approximately 90,000 men and 10,000 women in the exposed cohort. If a comparison group of
unexposed subjects is drawn from the 1 million unexposed individuas in the target population
independently of sex, the cohort study will have the same confounding as exists in the target
population (apart from sampling variability), becausethe cohort study i sthen asimple 10% sampl e of
thetarget population. It ispossible, however, to assembl e the unexposed cohort so that its proportion
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Hypothetical Target Population of 2 Million People, in Which
Exposure Increases the Risk 10-Fold, Men Have Five Times the
Risk of Women, and Exposure Is Strongly Associated with

Being Male
Men Women
Exposed Unexposed Exposed Unexposed
No. of casesin 1y 4,500 50 100 90
Total 900,000 100,000 100,000 900,000
1-y risk 0.005 0.0005 0.001 0.001

(4,500 4 100) /1,000,000

Crude risk ratio = -
rude risk ratio (50 + 90) /1,000,000

of men matches that in the exposed cohort. This matching of the unexposed to the exposed by sex
will prevent an association of sex and exposure in the study cohort. Of the 100,000 unexposed men
in the target population, suppose that 90,000 are selected to form a matched comparison group for
the 90,000 exposed men in the study, and of the 900,000 unexposed women, suppose that 10,000
are selected to match the 10,000 exposed women.

Table 11-2 presents the expected results (if thereis no sampling error) from the matched cohort
study we have described. The expected risk ratio in the study population is 10 for men and 10 for
women and isalso 10 in the crude datafor the study. The matching has apparently accomplished its
purpose: The point estimateisnot confounded by sex because matching has prevented an association
between sex and exposure in the study cohort.

Thesituation differsconsiderably, however, if acase-control study isconducted instead. Consider
acase-control study of all 4,740 casesthat occur inthesource populationin Table 11-1 during 1 year.
Of these cases, 4,550 are men. Suppose that 4,740 control s are sampled from the source popul ation,
matched to the cases by sex, so that 4,550 of the controls are men. Of the 4,740 cases, we expect

Expected Results of a Matched 1-Year Cohort Study of 100,000
Exposed and 100,000 Unexposed Subjects Drawn from the
Target Population Described in Table 10-1

Men Women
Exposed Unexposed Exposed Unexposed
Cases 450 45 10 1
Total 90,000 90,000 10,000 10,000
Approximate expected RR =10 RR=10

(450 + 10) /100,000

Crude risk ratio = =1
rude risk ratio (45 + 1) /100,000

RR, risk ratio.
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Expected Results of Case-Control Study
with 4,740 Controls Matched on Sex
When the Source Population Is
Distributed as in Table 10-1

Exposed Unexposed
Cases 4,600 140
Controls 4114 626
| 4,600 (626)
A "= 2imaa0 =
pproximate expected crude O 4114 (140) >0

OR, odds ratio.

4,500 + 100 = 4,600 to be exposed and 4,740 — 4,600 = 140 to be unexposed. Of the 4,550 male
controls, we expect about 90%, or 4,095, to be exposed, because 90% of the men in the target
population are exposed. Of the 4,740 — 4,550 = 190 female controls, we expect about 10%, or 19,
to be exposed, because 10% of the women in the target population are exposed. Hence, we expect
4,095 + 19 = 4,114 controlsto be exposed and 4,740 — 4,114 = 626 to be unexposed. The expected
distribution of casesand controlsisshownin Table 11-3. Thecrudeoddsratio (OR) ismuch lessthan
the true risk ratio (RR) for exposure effect. Table 11-4 shows, however, that the case-control data
givethe correct result, RR = 10, when stratified by sex. Thus, unlike the cohort matching, the case-
control matching has not eliminated confounding by sex in the crude point estimate of therisk ratio.

The discrepancy between the crude results in Table 11-3 and the stratum-specific results in
Table 11-4 results from a bias that is introduced by selecting controls according to a factor that
isrelated to exposure, namely, the matching factor. The bias behaves like confounding, in that the
crude estimate of effect is biased but stratification removes the bias. This bias, however, is not a
reflection of the original confounding by sex in the source population; indeed, it differsin direction
from that bias.

The examplesin Tables 11-1 through 11—-4 illustrate the following principles: In a cohort study
without competing risks or losses to follow-up, no additional action is required in the analysis to
control for confounding of the point estimate by the matching factors, because matching unexposed
to exposed prevents an associ ation between exposure and the matching factors. (Aswewill discuss

Expected Results of a Case Control Study of 4,740 Cases and
4,740 Matched Controls When the Source of Subjects Is the
Target Population Described in Table 10-1 and Sampling Is
Random within Sex

Men Women
Exposed Unexposed Exposed Unexposed
Cases 4,500 50 100 90
Controls 4,095 455 19 171
Approximate expected OR=10 OR=10

OR, odds ratio.
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later, however, competing risks or losses to follow-up may necessitate control of the matching
factors.) Incontrast, if thematching factorsare associ ated with theexposurein the source popul ation,
matching in a case-control study requires control by matching factors in the analysis, even if the
matching factors are not risk factors for the disease.

What accounts for this discrepancy? In a cohort study, matching is of unexposed to exposed
on characteristics ascertained at the start of follow-up, so is undertaken without regard to events
that occur during follow-up, including disease occurrence. By changing the distribution of the
matching variables in the unexposed population, the matching shifts the risk in this group toward
what would have occurred among the actual exposed population if they had been unexposed. In
contrast, matching in a case-control study involves matching nondiseased to diseased, an entirely
different process from matching unexposed to exposed. By selecting controls according to matching
factors that are associated with exposure, the selection process will be differential with respect to
both exposure and disease, thereby resulting in a selection bias that has no counterpart in matched
cohort studies. The next sections, on matching in cohort and case-control designs, explore these
phenomenain more detail.

MATCHING IN COHORT STUDIES

In cohort studies, matching unexposed to exposed subjectsin aconstant ratio can prevent confound-
ing of the crude risk difference and ratio by the matched factors because such matching prevents
an association between exposure and the matching factors among the study subjects at the start of
follow-up. Despite this benefit, matched cohort studies are uncommon. Perhaps the main reason is
the great expense of matching large cohorts. Cohort studies ordinarily require many more subjects
than case-control studies, and matching is usually a time-consuming process. One exception is
when registry data or other database information is used as a data source. In database studies, an
unexposed cohort may be matched to an exposed cohort within the data source relatively easily
and inexpensively. It also is possible to improve the poor cost efficiency in matched cohort studies
by limiting collection of data on unmatched confounders to those matched sets in which an event
occurs (Walker, 1982b), but this approach is rare in practice.

Another reason that matched cohort studies are rare may be that cohort matching does not
necessarily eliminate the need to control the matching factors. If the exposure and the matching
factors affect disease risk or censoring (competing risks and loss to follow-up), the original balance
produced by the matching will not extend to the persons and person-time available for the analysis.
That is, matching prevents an exposure-matching-factor association only among the original counts
of persons at the start of follow-up; the effects of exposure and matching factors may produce
an association of exposure and matching factors among the remaining persons and the observed
person-time as the cohort is followed over time. Even if only pure-count data and risks are to be
examined and no censoring occurs, control of any risk factors used for matching will be necessary to
obtain valid standard-deviation estimates for the risk-difference and risk-ratio estimates (Weinberg,
1985; Greenland and Robins, 1985b).

Matching and Efficiency in Cohort Studies

Although matching can oftenimprovestatistical efficiency incohort studiesby reducing the standard
deviation of effect estimates, such abenefit is not assured if exposureis not randomized (Greenland
and Morgenstern, 1990). To understand this difference between nonexperimental and randomized
cohort studies, | et uscontrast the matching protocol sin each design. In randomi zed studies, matching
is a type of blocking, which is a protocol for randomizing treatment assignment within groups
(blocks). In pairwise blocking, a pair of subjects with the same values on the matching (blocking)
factors is randomized, one to the study treatment and the other to the control treatment. Such a
protocol amost invariably produces a statistically more precise (efficient) effect estimate than the
corresponding unblocked design, although exceptions can occur (Youkeles, 1963).

In nonexperimental cohort studies, matching refers to a family of protocols for subject selec-
tion rather than for treatment assignment. In perhaps the most common cohort-matching protocol,
unexposed subjectsare selected so that their distribution of matching factorsisidentical to the distri-
bution in the exposed cohort. This protocol may be carried out by individual or frequency matching.
For example, suppose that the investigators have identified an exposed cohort for follow-up, and
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they tally the age and sex distribution of this cohort. Then, within each age-sex stratum, they may
select for follow-up an equal number of unexposed subjects.

In summary, although matching of nonexperimental cohorts may be straightforward, its im-
plications for efficiency are not. Classical arguments from the theory of randomized experiments
suggest that matched randomization (blocking) on arisk factor will improve the precision of effect
estimation when the outcome under study is continuous; effects are measured as differences of
means, and random variation in the outcome can be represented by addition of an independent
error term to the outcome. These arguments do not carry over to epidemiologic cohort studies,
however, primarily because matched selection alters the covariate distribution of the entire study
cohort, whereas matched randomization does not (Greenland and Morgenstern, 1990). Classical
arguments also break down when the outcome is discrete, because in that case the variance of the
outcome depends on the mean (expected) value of the outcome within each exposurelevel. Thus, in
nonexperimental cohort studies, matching can sometimes harm efficiency, eventhough it introduces
no bias.

MATCHING IN CASE-CONTROL STUDIES

In case-control studies, the selection bias introduced by the matching process can occur whether or
not thereis confounding by the matched factorsin the source population (the population fromwhich
thecasesarose). If thereisconfounding in the source population, astherewasin the earlier example,
the process of matching will superimpose a selection bias over the initial confounding. This bias
is generally in the direction of the null value of effect, whatever the nature of the confounding
in the source population, because matching selects controls who are more like cases with respect
to exposure than would be controls selected at random from the source population. In the earlier
example, the strong confounding away from the null in the source population was overwhelmed by
stronger bias toward the null in the matched case-control data.

Let us consider more closely why matching in a case-control study introduces bias. The purpose
of the control seriesin acase-control study isto provide an estimate of the distribution of exposurein
the source population. If controlsare sel ected to match the caseson afactor that iscorrelated with the
exposure, then the crude exposurefrequency in controlswill bedistorted in thedirection of similarity
to that of the cases. Matched controls are identical to cases with respect to the matching factor.
Thus, if the matching factor were perfectly correlated with the exposure, the exposure distribution
of controls would be identical to that of cases, and hence the crude odds ratio would be 1.0.

The bias of the effect estimate toward the null value does not depend on the direction of the
association between the exposure and the matching factor; as long as there is an association,
positive or negative, the crude exposure distribution among controls will be biased in the direction
of similarity to that of cases. A perfect negative correlation between the matching factor and the
exposure will still lead to identical exposure distributions for cases and controls and a crude odds
ratio of 1.0, because each control is matched to the identical value of the matching factor of the
case, guaranteeing identity for the exposure variable as well.

If the matching factor is not associated with the exposure, then matching will not influence the
exposuredistribution of thecontrols, and thereforeno biasisintroduced by matching. If thematching
factor isindeed a confounder, however, the matching factor and the exposure will be associated. (If
there were no association, the matching factor could not be a confounder, because a confounding
factor must be associated with both the exposure and the disease in the source population.)

Thus, although matching is usually intended to control confounding, it does not attain that
objective in case-control studies. Instead, it superimposes over the confounding a selection bias.
This selection bias behaves like confounding, because it can be controlled in the analysis by the
methods used to control for confounding. In fact, matching can introduce biaswhen none previously
existed: If the matching factor is unrelated to disease in the source population, it would not be a
confounder; if it is associated with the exposure, however, matching for it in a case-control study
will introduce a controllable selection bias.

Thissituationisillustrated in Table 11-5, in which the exposure effect correspondsto arisk ratio
of 5 and there is no confounding in the source population. Nonetheless, if the cases are selected
for a case-control study, and a control series is matched to the cases by sex, the expected value
for the crude estimate of effect from the case-control study is 2 rather than the correct value of 5.
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Source Population with No Confounding by Sex and a
Case-Control Study Drawn from the Source Population,
lllustrating the Bias Introduced by Matching on Sex

Men Women
Exposed Unexposed Exposed Unexposed
A. Source Population
Disease 450 10 50 90
Total 90,000 10,000 10,000 90,000
RR=5 RR=5
(450 +50) /100,000

Crude risk ratio = T 2/ TR
e TS a0 = 0 1) 90,100,000

B. Case-Control Study Drawn from Source Population and Matched on Sex
Cases 450 10 50 90
Controls 414 46 14 126

OR=5 OR=5

4 4 12
Approximate expected crude OR = (( 1500_:_ 950(;)// (2 164_:_ 146)) =20

RR = risk ratio; OR, odds ratio.

In the source population, sex is not arisk factor because the incidence proportion is 0.001 in both
unexposed men and unexposed women. Nevertheless, despite the absence of association between
sex and disease within exposure levels in the source population, an association between sex and
disease within exposure levels is introduced into the case-control data by matching. The result is
that the crude estimate of effect seriously underestimates the correct value.

The biasintroduced by matching in a case-control study is by no meansirremediable. In Tables
11-4 and 11-5, the stratum-specific estimates of effect are valid; thus, both the selection bias
introduced by matching and the original confounding can be dealt with by treating the matching
variableasaconfounder inthedataanalysis. Table 11-5 illustratesthat, once case-control matching
isundertaken, it may prove necessary to stratify on the matching factors, evenif the matching factors
were not confounders in the source population. Chapter 16 discusses guidelines and methods for
control of matching factors.

Matching and Efficiency in Case-Control Studies

It is reasonable to ask why one might consider matching at al in case-control studies. After al,
it does not prevent confounding and often introduces a bias. The utility of matching derives not
from an ability to prevent confounding, but from the enhanced efficiency that it sometimes affords
for the control of confounding. Suppose that one anticipates that age will confound the exposure—
disease relation in a given case-control study and that stratification in the analysis will be needed.
Suppose further that the age distribution for cases is shifted strongly toward older ages, compared
with the age distribution of the entire source population. As aresult, without matching, there may
be some age strata with many cases and few controls, and others with few cases and many controls.
If controls are matched to cases by age, the ratio of controls to cases will instead be constant over
age strata.

Suppose how that a certain fixed case series has been or can be obtained for the study and that the
remaining resources permit selection of acertain fixed number of controls. Thereisamost efficient
(“optimal™) distribution for the controls acrossthe strata, in that selecting controls according to this



Chapter 11 e Design Strategies to Improve Study Accuracy 177

distribution will maximize statistical efficiency, in the narrow sense of minimizing the variance of
a common odds-ratio estimator (such as those discussed in Chapter 15). This “optimal” control
distribution depends on the case distribution across strata. Unfortunately, it also depends on the
unknown stratum-specific exposure preval ences among cases and noncasesin the source population.
Thus, this“optimal” distribution cannot be known in advance and used for control selection. Also,
it may not be the scientifically most relevant choice; for example, this distribution assumes that the
ratio measure is constant across strata, which is never known to be true and may often be false (in
which case afocus on estimating acommon ratio measureis questionable). Furthermore, if theratio
mesasure varies across strata, the most efficient distribution for estimating that variation in the effect
measure may be far from the most efficient distribution for estimating a uniform (homogeneous)
ratio measure.

Regardless of the estimation goal, however, extreme inefficiency occurs when controls are se-
lected that are in strata that have no case (infinite control/case ratio) or when no control is selected
in strata with one or more cases (zero control/case ratio). Strata without cases or controls are es-
sentially discarded by stratified analysis methods. Even in a study in which &l strata have both
cases and contrals, efficiency can be considerably harmed if the subject-selection strategy leadsto a
case-control distribution across stratathat isfar from the one that is most efficient for the estimation
goal.

Matching forcesthe controlsto have the same distribution of matching factorsacrossstrataasthe
cases, and hence prevents extreme departures from what would be the optimal control distribution
for estimating auniformratio measure. Thus, given afixed case seriesand afixed number of controls,
matching often improves the efficiency of a stratified analysis. There are exceptions, however. For
example, the study in Table 11-4 yields a less efficient analysis for estimating a uniform ratio
than an unmatched study with the same number of controls, because the matched study leadsto an
expected cell count in the table for women of only 19 exposed controls, whereas in an unmatched
study no expected cell count is smaller than 50. This example is atypical because it involves only
two strata and large numbers within the cells. In studies that require fine stratification whether
matched or not, and so yield sparse data (expected cell sizes that are small, so that zero cells are
common within strata), matching will usually result in higher efficiency than what can be achieved
without matching.

In summary, matching in case-control studies can be considered a means of providing a more
efficient stratified analysis, rather than adirect means of preventing confounding. Stratification (or
an equivalent regression approach; see Chapter 21) may still be necessary to control the selection
bias and any confounding left after matching, but matching will often make the stratification more
efficient. One should always bear in mind, however, that case-control matching on anonconfounder
will usually harm efficiency, for then the more efficient strategy will usually be neither to match
nor to stratify on the factor.

If there is some flexibility in selecting cases as well as controls, efficiency can be improved
by atering the case distribution, as well as the control distribution, to approach a more efficient
case-control distribution across strata. In some instances in which a uniform ratio is assumed, it
may turn out that the most efficient approach is restriction of all subjects to one stratum (rather
than matching across multiple strata). Nonetheless, in these and similar situations, certain study
objectives may weigh against use of the most efficient design for estimating a uniform effect. For
example, inastudy of the effect of occupational exposureson lung cancer risk, theinvestigators may
wish to ensure that there are sufficient numbers of men and women to provide reasonably precise
sex-specific estimates of these effects. Because most lung cancer cases in industrialized countries
occur in men and most high-risk occupations are held by men, a design with equal numbers of
men and women cases would probably be less efficient for estimating summary effects than other
designs, such as one that matched controls to a nonselective series of cases.

Partial or incomplete matching, in which the distribution of the matching factor or factorsis
altered from that in the source population part way toward that of the cases, can sometimesimprove
efficiency over no matching and thus can be worthwhile when complete matching cannot be done
(Greenland, 1986a). In some situations, partial matching can even yield more efficient estimates
than complete matching (Stiirmer and Brenner, 2001). Thereareanumber of more complex schemes
for control sampling to improve efficiency beyond that achievable by ordinary matching, such as
countermatching; see citations at the end of this section.
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Costs of Matching in Case-Control Studies

The statistical efficiency that matching provides in the analysis of case-control data often comes
at asubstantial cost. One part of the cost is a research limitation: If a factor has been matched in
a case-control study, it is no longer possible to estimate the effect of that factor from the stratified
data alone, because matching distorts the relation of the factor to the disease. It is still possible to
study the factor as a modifier of relative risk (by seeing how the odds ratio varies across strata). If
certain population data are available, it may also be possible to estimate the effect of the matching
factor (Greenland, 1981; Benichou and Wacholder, 1994).

A further cost involved with individual matching is the possible expense entailed in the process
of choosing control subjectswith the same distribution of matching factorsfound in the case series.
If several factors are being matched, it may be necessary to examine data on many potential control
subjectsto find one that has the same characteristics as the case. Whereas this process may lead to
adtatistically efficient analysis, the statistical gain may not be worth the cost in time and money.

If the efficiency of a study is judged from the point of view of the amount of information per
subject studied (size efficiency), matching can be viewed as an attempt to improve study efficiency.
Alternatively, if efficiency is judged as the amount of information per unit of cost involved in
obtaining that information (cost efficiency), matching may paradoxically have the opposite effect of
decreasing study efficiency, because the effort expended in finding matched subjects might be spent
instead simply in gathering information for agreater number of unmatched subjects. With matching,
a stratified analysis would be more size efficient, but without it the resources for data collection
can increase the number of subjects, thereby improving cost efficiency. Because cost efficiency is
a more fundamental concern to an investigator than size efficiency, the apparent efficiency gains
from matching are sometimes illusory.

The cost objections to matching apply to cohort study (exposed/unexposed) matching aswell as
to case-control matching. Ingeneral, then, abeneficial effect of matching on overall study efficiency,
whichisthe primary reason for employing matching, isnot guaranteed. I ndeed, the decisionto match
subjects can result in less overall information, as measured by the expected width of the confidence
interval for the effect measure, than could be obtained without matching, especialy if the expense
of matching reduces the total number of study subjects. A wider appreciation for the costs that
matching imposes and the often meager advantages it offers would presumably reduce the use of
matching and the number of variables on which matching is performed.

Another underappreciated drawback of case-control matching is its potential to increase bias
due to misclassification. This problem can be especially severe if one forms unique pair matches
on avariable associated only with exposure and the exposure is misclassified (Greenland, 1982a).

Benefits of Matching in Case-Control Studies

There are some situations in which matching is desirable or even necessary. If the process of ob-
taining exposure and confounder information from the study subjectsis expensive, it may be more
efficient to maximize the amount of information obtained per subject than to increase the number
of subjects. For example, if exposure information in a case-control study involves an expensive
laboratory test run on blood samples, the money spent on individual matching of subjects may
provide more information overall than could be obtained by spending the same money on finding
more subjects. If no confounding is anticipated, of course, there is no need to match; for example,
restriction of both series might prevent confounding without the need for stratification or matching.
If confounding is likely, however, matching will ensure that control of confounding in the analysis
will not lose information that has been expensive to obtain.

Sometimes one cannot control confounding efficiently unless matching has prepared the way
to do so. Imagine a potential confounding factor that is measured on a nominal scale with many
categories; examples are variables such as neighborhood, sibship, referring physician, and occu-
pation. Efficient control of sibship isimpossible unless sibling controls have been selected for the
cases; that is, matching on sibship is a necessary prerequisite to obtain an estimate that is both
unconfounded and reasonably precise. These variables are distinguished from other nominal-scale
variables such as ethnicity by the inherently small number of potential subjects available for each
category. Thissituation is called a sparse-data problem: Although many subjects may be available,
any given category has little chance of showing up in an unmatched sample. Without matching,
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most strata in a stratified analysis will have only one subject, either a case or a control, and thus
will supply no information about the effect when using elementary stratification methods (Chapters
15 and 16). Matching does not prevent the data from being sparse, but it does ensure that, after
stratification by the matched factor, each stratum will have both cases and controls.

Although continuous variables such as age have a multitude of values, their values are either
easily combined by grouping or they may be controlled directly as continuous variables, avoiding
the sparse-data problem. Grouping may |leaveresidual confounding, however, whereasdirect control
requires the use of explicit modeling methods. Thus, although matching is not essential for control
of such variables, it does facilitate their control by more elementary stratification methods.

A fundamental problem with stratified analysis is the difficulty of controlling confounding by
several factors simultaneously. Control of each additional factor involves spreading the existing
data over a new dimension; the total number of strata required becomes exponentially large as the
number of stratification variablesincreases. For studieswith many confounding factors, the number
of strata in a stratified analysis that controls al factors simultaneously may be so large that the
situation mimics one in which there is a nominal-scale confounder with a multitude of categories:
There may be no case or no control in many strata, and hardly any comparative information about
the effect in any stratum. Consequently, if a large number of confounding factors is anticipated,
matching may be desirable to ensure that an elementary stratified analysis is informative. But, as
pointed out earlier, attempting to match on many variables may render the study very expensive
or make it impossible to find matched subjects. Thus, the most practical option is often to match
only on age, sex, and perhaps one or afew nominal-scale confounders, especially those with alarge
number of possible values. Any remaining confounders can be controlled along with the matching
factors by stratification or regression methods.

We can summarize the utility of matching asfollows: Matching isauseful meansfor improving
study efficiency in terms of the amount of information per subject studied, in some but not all
situations. Case-control matching is helpful for known confounders that are measured on anominal
scale, especially those with many categories. The ensuing analysisis best carried out in a manner
that controlsfor both the matching variables and unmatched confounders. Wewill discuss principles
for control of matching variablesin Chapter 16.

OVERMATCHING

A term that is often used with reference to matched studies is overmatching. There are at least
three forms of overmatching. The first refers to matching that harms statistical efficiency, such as
case-control matching on a variable associated with exposure but not disease. The second refersto
matching that harms validity, such as matching on an intermediate between exposure and disease.
The third refers to matching that harms cost efficiency.

Overmatching and Statistical Efficiency

Asillustratedin Table 115, case-control matching on anonconfounder associated with exposurebut
not disease can cause thefactor to behavelike aconfounder: control of thefactor will be necessary if
matching is performed, whereas no control would have been needed if it had not been matched. The
introduction of such avariable into the stratification ordinarily reduces the efficiency relative to an
unmatched design in which no control of the factor would be needed (Kupper et a ., 1981; Smith and
Day, 1981; Thomas and Greenland, 1983). To explore thistype of overmatching further, consider a
matched case-control study of abinary exposure, with one control matched to each case on one or
more nonconfounders. Each stratum in the analysis will consist of one case and one control unless
some strata can be combined. If the case and its matched control are either both exposed or both
unexposed, one margin of the 2 x 2 table will be 0. As one may verify from the Mantel-Haenszel
odds-ratio formulain Chapter 15, such a pair of subjects will not contribute any information to the
anaysis. If one stratifies on correlates of exposure, one will increase the chance that such tables
will occur and thus tend to increase the information lost in a stratified analysis. This information
loss detracts from study efficiency, reducing both information per subject studied and information
per dollar spent. Thus, by forcing one to stratify on a nonconfounder, matching can detract from
study efficiency. Because the matching was not necessary in the first place and has the effect of
impairing study efficiency, matching in this situation can properly be described as overmatching.
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This first type of overmatching can thus be understood to be matching that causes a loss of
information in the analysis because the resulting stratified analysis would have been unnecessary
without matching. The extent to which information is lost by matching depends on the degree of
correlation between the matching factor and the exposure. A strong correlate of exposure that has
no relation to disease is the worst candidate for matching, because it will lead to relatively few
informative strata in the analysis with no offsetting gain. Consider, for example, a study of the
relation between coffee drinking and bladder cancer. Suppose that matching for consumption of
cream substitutesis considered along with matching for a set of other factors. Because thisfactor is
strongly associated with coffee consumption, many of theindividual stratain the matched analysis
will be completely concordant for coffee drinking and will not contribute to the analysis; that is,
for many of the cases, controls matched to that case will be classified identically to the case with
regard to coffee drinking simply because of matching for consumption of cream substitutes. If cream
substitutes have no relation to bladder cancer, nothing is accomplished by the matching except to
burden the analysis with the need to control for use of cream substitutes. This problem corresponds
to the unnecessary analysis burden that can be produced by attempting to control for factorsthat are
related only to exposure or exposure opportunity (Poole, 1986), which isaform of overadjustment
(Chapter 15).

These considerations suggest a practical rule for matching: Do not match on a factor that is
associated only with exposure. It should be noted, however, that unusual examplescan be constructed
inwhich case-control matching on afactor that isassociated only with exposure improves efficiency
(Kalish, 1986). Moreimportant, in many situations the potential matching factor will have at least a
weak relation to the disease, and so it will be unclear whether the factor needs to be controlled as a
confounder and whether matching on the factor will benefit statistical efficiency. In such situations,
considerations of cost efficiency and misclassification may predominate.

When matched and unmatched controls have equal cost and the potential matching factor is to
be treated purely as a confounder, with only summarization (pooling) across the matching strata
desired, we recommend that one avoid matching on the factor unless the factor is expected to be a
strong disease risk factor with at least some association with exposure (Smith and Day, 1981; Howe
and Choi, 1983; Thomas and Greenland, 1983). When costs of matched and unmatched controls
differ, efficiency calculations that take account of the cost differences can be performed and used
to choose a design strategy (Thompson et a., 1982). When the primary interest in the factor is as
an effect modifier rather than confounder, the aforementioned guidelines are not directly relevant.
Nonetheless, certain studies have indicated that matching can have a greater effect on efficiency
(both positive and negative) when the matching factors are to be studied as effect modifiers, rather
than treated as pure confounders (Smith and Day, 1984; Thomas and Greenland, 1985).

Overmatching and Bias

Matching on factors that are affected by the study exposure or disease is amost never warranted
and is potentially capable of biasing study results beyond any hope of repair. It is therefore crucial
to understand the nature of such overmatching and why it needs to be avoided.

Case-control matching on a factor that is affected by exposure but is unrelated to disease in
any way (except possibly through its association with exposure) will typically reduce statistical
efficiency. It corresponds to matching on afactor that is associated only with exposure, which was
discussed at length earlier, and is the most benign possibility of those that involve matching for a
factor that is affected by exposure. If, however, the potential matching factor is affected by exposure
and thefactor inturn affectsdisease (i.e., isan intermediate variable), or isaffected by both exposure
and disease, then matching on the factor will bias both the crude and the adjusted effect estimates
(Greenland and Neutra, 1981). In these situations, case-control matching is nothing more than an
irreparable form of selection bias (see Chapters 8 and 12).

To see how this bias arises, consider asituation in which the crude estimate from an unmatched
study is unbiased. If exposure affects the potential matching factor and this factor affects or is
affected by disease, the factor will be associated with both exposure and disease in the source
population. As a result, in al but some exceptiona situations, the associations of exposure with
disease within the strata of the factor will differ from the crude association. Because the crude
association is unbiased, it follows that the stratum-specific associations must be biased for the true
exposure effect.



Chapter 11 e Design Strategies to Improve Study Accuracy 181

Thelatter biaswill pose no problem if we do not match our study subjects on the factor, because
then we need only ignore the factor and use the crude estimate of effect (which is unbiased in this
example). If we (inappropriately) adjust for the factor, we will bias our estimate (sometimes called
overadjustment bias; see Chapter 15), but we can avoid this bias simply by not adjusting for the
factor. If, however, we match on the factor, we will shift the exposure preval ence among noncases
toward that of the cases, thereby driving the crude effect estimate toward the null. The stratified
estimates will remain biased. With matching, then, both the crude and stratum-specific estimates
will be biased, and we will be unable to obtain an unbiased effect estimate from the study data
alone.

It follows that, if (as usual) interest is in estimating the net effect of exposure on disease, one
should never match on factors that are affected by exposure or disease, such as symptoms or signs
of the exposure or the disease, because such matching can irreparably bias the study data. The only
exceptionsarewhen therel ative sel ection probabilitiesfor the subjects under thematched design are
known and can be used to adjust the estimates back to their expected unmatched form (Chapter 19).

Overmatching and Cost Efficiency

Some methods for obtaining controls automatically entail matching. Examples include neighbor-
hood controls, sibling controls, and friend controls (Chapter 8). One should consider the potential
consequences of the matching that results from the use of such controls. As an example, in a case-
control study it is sometimes very economical to recruit controls by asking each case to provide
the names of several friends who might serve as controls, and to recruit one or more of these
friendsto serve as controls. Asdiscussed in Chapter 8, use of friend controls may induce bias under
ordinary circumstances. Even when this bias is negligible, however, friendship may be related to
exposure (e.g., through lifestyle factors), but not to disease. As aresult, use of such friend controls
could entail a statistical efficiency loss because such use corresponds to matching on a factor that
isrelated only to exposure. More generaly, the decision to use convenient controls should weigh
any cost savings against any efficiency loss and biasrelative to the viable aternatives (e.g., general
population controls). Ordinarily, one would prefer the strategy that has the lowest total cost among
strategies that are expected to have the least bias.

Theproblem of choiceof strategy can bereformulated for situationsinwhich thenumber of cases
can be varied and situations in which the numbers of cases and controls are both fixed (Thompson
et a., 1982). Unfortunately, onerarely knowsin advance the key quantities needed to make the best
choice with certainty, such as cost per control with each strategy, the number of subjects that will
be needed with each strategy, and the biases that might ensue with each strategy. The choice will
be easy when the same bias is expected regardliess of strategy, and the statistically most efficient
strategy is aso the cheapest per subject: One should simply use that strategy. But in other settings,
one may be able to do no better than conduct a few rough, speculative calculations to guide the
choice of strategy.

MATCHING ON INDICATORS OF INFORMATION ACCURACY

Matching issometimes employed to achieve comparability in the accuracy of information collected.
A typical situation in which such matching might be undertaken is a case-control study in which
some or al of the cases have already died and surrogates must be interviewed for exposure and
confounder information. Theoretically, controlsfor dead cases should be living, because the source
population that gave rise to the cases contains only living persons. In practice, because surrogate
interview data may differ in accuracy from interview data obtained directly from the subject, some
investigators prefer to match dead controls to dead cases.

Matching on information accuracy is not necessarily beneficial, however. Whereas using dead
controls can bejustified in proportional mortality studies, essentially as a convenience (see Chapter
6), matching on information accuracy does not always reduce overall bias (see Chapter 8). Some
of the assumptions about the accuracy of surrogate data, for example, are unproved (Gordis, 1982).
Furthermore, comparability of information accuracy still alows bias from nondifferential misclas-
sification, which can be more severe in matched than in unmatched studies (Greenland, 1982a), and
more severethan the biasresulting from differential misclassification arising from noncomparability
(Greenland and Robins, 1985a; Drews and Greenland, 1990).
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ALTERNATIVES TO TRADITIONAL MATCHED DESIGNS

Conventional matched and unmatched designs represent only two points on a broad spectrum of
matching strategies. Among potentially advantageous alternatives are partial and marginal match-
ing (Greenland, 1986a), countermatching (Langholz and Clayton, 1994; Cologne et al., 2004), and
other matching strategies for improving efficiency (Stuirmer and Brenner, 2002). Some of these ap-
proachescan be more convenient, aswell asmoreefficient, than conventional matched or unmatched
designs. For example, partial matching allows selection of matched controls for some subjects, un-
matched controls for others, and the use of different matching factors for different subjects, where
the “controls’ may be either the unexposed in a cohort study or the noncases in a case-control
study. Marginal matching is a form of frequency matching in which only the marginal (separate)
distributions of the matching factors are forced to be alike, rather than the joint distribution. For
example, one may select controls so that they have the same age and sex distributions as cases,
without forcing them to have the same age—sex distribution (e.g., the proportion of men could be
the same in cases and controls, even though the proportion of 60- to 64-year-old men might be
different).

For both partial and marginal matching, theresulting datacan beanalyzed by treating all matching
factors as stratification variables and following the guidelines for matched-data analysis given in
Chapter 16. An advantage of partial and marginal matching is that one need not struggle to find a
perfect matched control for each case (in a case-control study) or for each exposed subject (in a
cohort study). Thus partial matching may save considerable effort in searching for suitable controls.
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INTRODUCTION

Diagrams of causal pathways have long been used to visually summarize hypothetical relations
among variables of interest. Modern causal diagrams, or causal graphs, were more recently devel-
oped from a merger of graphical probability theory with path diagrams. The resulting theory provides
a powerful yet intuitive device for deducing the statistical associations implied by causal relations.
Conversely, given a set of observed statistical relations, a researcher armed with causal graph theory
can systematically characterize all causal structures compatible with the observations. The theory
also provides a visual representation of key concepts in the more general theory of longitudinal
causality of Robins (1997); see Chapter 21 for further discussion and references on the latter topic.

The graphical rules linking causal relations to statistical associations are grounded in mathe-
matics. Hence, one way to think of causal diagrams is that they allow nonmathematicians to draw
logically sound conclusions about certain types of statistical relations. Learning the rules for reading
statistical associations from causal diagrams may take a little time and practice. Once these rules
are mastered, though, they facilitate many tasks, such as understanding confounding and selection
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bias, choosing covariates for adjustment and for regression analyses, understanding analyses of di-
rect effects and instrumental-variable analyses, and assessing “natural experiments.” In particular,
diagrams help researchers recognize and avoid common mistakes in causal analysis.

This chapter begins with the basic definitions and assumptions used in causal graph theory. It
then describes construction of causal diagrams and the graphical separation rules linking the causal
assumptions encoded in a diagram to the statistical relations implied by the diagram. The chapter
concludes by presenting some examples of applications. Some readers may prefer to begin with
the examples and refer back to the definitions and rules for causal diagrams as needed. The section
on Graphical Models, however, is essential to understanding the examples. Full technical details
of causal diagrams and their relation to causal inference can be found in Pearl (2000) and Spirtes
et al. (2001), while Greenland and Pearl (2008) provide a short technical review. Less technical
articles geared toward health scientists include Greenland et al. (1999a), Robins (2001), Greenland
and Brumback (2002), Hernan et al. (2002), Jewell (2004), and Glymour (2006b).

PRELIMINARIES FOR CAUSAL GRAPHS

Consider two variables X and Y for which we wish to represent a causal connection from X to Y,
often phrased as “X causes Y” or “X affects Y.” Causal diagrams may be constructed with almost
any definition of cause and effect in mind. Nonetheless, as emphasized in Chapter 4, it is crucial
to distinguish causation from mere association. For this purpose we use the potential-outcome
(counterfactual) concept of causation. We say that X affects Y in a population of units (which may
be people, families, neighborhoods, etc.) if and only if there is at least one unit for which changing
(intervening on) X will change Y (Chapter 4).

STATISTICAL INDEPENDENCE

Association of X and Y corresponds to statistical dependence of Y and X, whereby the distribution
of Y differs across population strata defined by levels of X. When the distribution of Y does not
differ across strata of X, we say that X and Y are statistically independent, or unassociated. If
X and Y are unassociated (independent), knowing the value of X gives us no information about
the value of Y. Association refers to differences in Y between units with different X values. Such
between-unit differences do not necessarily imply that changing the value of X for any single unit
will result in a change in Y (which is causation).

It is helpful to rephrase the above ideas more formally. Let Pr(Y = y) be the expected proportion
of people in the population who have y for the value of Y; this expected proportion is more often
called the probability that Y = y. If we examine the proportion who have Y = y within levels or
strata of a second variable X, we say that we are examining the probability of Y given or conditional
on X.We use a vertical line “|” to denote “given” or “conditional on.” For example, Pr(Y = y| X = x)
denotes the proportion with Y =y in the subpopulation with X = x. Independence of X and Y
then corresponds to saying that for any pair of values x and y for X and Y,

Pr(Y = y[X =x) =Pr(Y =) [12-1]

which means that the distribution of Y values does not differ across different subpopulations defined
by the X values. In other words, the equation says that the distribution of Y given (or conditional on)
a particular value of X always equals the total population (marginal or unconditional) distribution
of Y. As stated earlier, if X and Y are independent, knowing the value of X and nothing more about
a unit provides no information about the Y value of the unit.

Equation 12-1 involves no variable other than X and Y, and is the definition of marginal inde-
pendence of X and Y. When we examine the relations between two variables within levels of a third
variable—for example, the relation between income and mortality within levels of education—we
say that we are examining the conditional relation. We examine conditional relationships in many
contexts in epidemiology. We may intentionally condition on a variable(s) through features of study
design such as restriction or matching, or analytic decisions, such as stratification or regression
modeling. Conditioning may arise inadvertently as well, for example due to refusal to participate or
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loss to follow-up. These events essentially force conditioning on variables that determine participa-
tion and ascertainment. Informally, it is sometimes said that conditioning on a variable is “holding
the variable constant,” but this phrase is misleading because it suggests we are actively intervening
on the value of the variable, when all we are doing is separating the data into groups based on
observed values of the variable and estimating the effects within these groups (and then, in some
cases, averaging these estimates over the groups, see Chapter 15).

To say that X and Y are independent given Z means that for any values x, y, z for X, Y, and Z,

PrlY =y|X=X%X,Z=2)=Pr(Y = y|Z =2 [12-2]

which says that, within any stratum of Z, the distribution of Y does not vary with X. In other words,
within any stratum defined in terms of Z alone, we should see no association between X and Y. If
X and Y are independent given Z, then once one knows the Z value of a unit, finding out the value
of X provides no further information about the value of .

CAUSATION AND ASSOCIATION

As explained in Chapter 4, causation and association are qualitatively different concepts. Causal
relations are directed; associations are undirected (symmetric). Sample associations are directly
observable, but causation is not. Nonetheless, our intuition tells us that associations are the result of
causal forces. Most obviously, if X causes Y, this will generally result in an association between X
and Y. The catch, of course, is that even if we observe X and Y without error, many other forces (such
as confounding and selection) may also affect the distribution of Y and thus induce an association
between X and Y that is not due to X causing Y. Furthermore, unlike causation, association is
symmetric in time (nondirectional), e.g., an association of X and Y could reflect Y causing X rather
than X causing Y.

A study of causation must describe plausible explanations for observed associations in terms
of causal structures, assess the logical and statistical compatibility of these structures with the
observations, and (in some cases) develop probabilities for those structures. Causal graphs provide
schematic diagrams of causal structures, and the independencies predicted by a graph provide a
means to assess the compatibility of each causal structure with the observations.

More specifically, when we see an association of X and Y, we will seek sound explanations for
this observation. For example, logically, if X always precedes Y, we know that Y cannot be causing
X. Given that X precedes Y, obvious explanations for the association are that X causes Y, that X
and Y share a common cause (confounding), or some combination of the two (which can also lead
to no association even though X affects Y). Collider bias is a third type of explanation that seems
much less intuitive but is easily illustrated with graphs. We will first discuss focus on collider bias
because it arises frequently in epidemiology.

COLLIDER BIAS

As described in Chapter 9, a potentially large source of bias in assessing the effect of X on Y
arises when selection into the population under study or into the study sample itself is affected by
both X and Y. Such selection is a source of bias even if X and Y are independent before selection.
This phenomenon was first described by Joseph Berkson in 1938 (published in Berkson [1946]).
Berksonian bias is an example of the more general phenomenon called collider bias, in which
the association of two variables X and Y changes upon conditioning on a third variable Z if Z is
affected by both X and Y. The effects of X and Y are said to “collide” somewhere along the way to
producing Z.

As an example, suppose that X and Y are marginally independent and Z =Y — X so Z is
completely determined by X and Y. Then X and Y will exhibit perfect dependence given Z: If
Z = z,then Y = X 4 z. As amore concrete example, body mass index (BMI) is defined as (weight
in kg)/(height in meters)? and so is strongly affected by both height and weight. Height and weight
are associated in any natural population, but not perfectly: We could not exactly tell a person’s
weight from his or her height. Suppose, however, we learn that the person has BMI = 25 kg/m?;
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then, upon being told (say) that the person is 2 m tall, we can compute his weight exactly, as
BMI(height?) = 25(4) = 100 kg.

Collider bias occurs even when the causal dependency of the collider Z on X and Y is not
perfect, and when there are several intermediates between X and the collider or between Y and the
collider. It can also be induced when X and Z (or Y and Z) are associated due to a common cause
rather than because X influences Z.

Collider bias can result from sample selection, stratification, or covariate adjustment if X and
Y affect selection or the stratifying covariates. It can be just as severe as confounding, as shown in
the classic example in which X, Y, and Z were exogenous estrogen use, endometrial cancer, and
uterine bleeding (Chapter 9). As discussed later, it can also can induce confounding.

SUMMARY

Four distinct causal structures can contribute to an association between X and Y: (a) X may cause
Y; (b) Y may cause X; (c) X and Y may share a common cause that we have failed to condition
on (confounding); or (d) we have conditioned or selected on a variable affected by X and Y, factors
influenced by such a variable, or a variable that shares causes with X and Y (collider bias). Of course,
the observed association may also have been affected by purely random events. As described in Part
111 of this book, conventional statistics focus on accounting for the resulting random variation. The
remainder of this chapter focuses on the representation of causal structures via graphical models,
and on the insights that these representations provide. Throughout, we focus on the causal structures
underlying our observations, ignoring random influences.

GRAPHICAL MODELS
TERMINOLOGY

Causal diagrams visually encode an investigator’s assumptions about causal relations among the
exposure, outcomes, and covariates. We say that a variable X affects a variable Y directly (relative
to the other variables in the diagram) if there is an arrow from X to Y. We say that X affects Y
indirectly if there is a head-to-tail sequence of arrows (or “one-way street”) from X to Y; such a
sequence is called a directed path or causal path. Any variable along a causal path from X to Y
is called an intermediate variable between X and Y. X may affect Y both directly and indirectly.
In Figure 12-1, X affects Y directly and Z indirectly. The absence of a directed path between two
variables represents the assumption that neither affects the other; in Figure 12-1, U and X do not
affect each other.

Children of a variable X are variables that are affected directly by X (have an arrow pointing to
them from X); conversely, parents of X are variables that directly affect X (have an arrow pointing
from them to X). More generally, the descendants of a variable X are variables affected, either
directly or indirectly, by X; conversely, the ancestorsof X are all the variables that affect X directly
or indirectly. In Figure 12-1, Y has parents U and X, and a child Z; X has one child (Y) and two
descendants (Y and Z); and Z has a parent Y and three ancestors, Y, U, and X.

It is not necessary to include all causes of variables in the diagram. If two or more variables
in a graph share a cause, however, then this cause must also be shown in the graph as an ancestor
of those variables, or else the graph is not considered a causal graph. A variable with no parents
in a causal graph is said to be exogenous in the graph; otherwise it is endogenous. Thus, all

Y —>» 7

U

FIGURE 12-1 e A causal diagram with no confounding.
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exogenous variables in the graph are assumed to share no cause with other variables in the graph. If
unknown common causes of two variables may exist, a casual graph must show them; they may be
represented as unspecified variables with arrows to the variables they are thought to influence. In a
slight modification of these rules, some authors (e.g., Pearl, 2000) use a two-headed arrow between
two variables as a shorthand to indicate that there is at least one unknown exogenous common cause
of the two variables (e.g., X <> Z means that there is at least one unknown exogenous variable U
suchthat X < U — Z). We assume in the remainder of this chapter that unknown common causes
are represented explicitly in causal diagrams, so there is no need for two-headed arrows.

All the graphs we will consider are acyclic, which means that they contain no feedback loops;
this means that no variable is an ancestor or descendant of itself, so if X causes Y, Y cannot also
cause X at the same moment. If a prior value of Y affects X, and then X affects a subsequent value
of Y, these must each be shown as separate variables (e.g., Yo — X1 — Y) (for discussions of
extensions to causal structures including feedback, see Spirtes [1995], Pearl and Dechter [1996],
and Lauritzen and Richardson [2002]). In most causal graphs the only connectors between variables
are one-headed arrows (—), although some graphs use an undirected dashed line (- - -) to indicate
associations induced by collider bias. Connectors, whether arrows or dashed lines, are also known as
edges, and variables are often called nodes or vertices of the graph. Two variables joined by a
connector are said to be adjacent or neighbors. If the only connectors in the graph are one-headed
arrows, the graph is called directed. A directed acyclic graph or DAG is thus a graph with only
arrows between variables and with no feedback loops. The remainder of our discussion applies to
DAGs and graphs that result from conditioning on variables in DAGs.

A path between X and Y is any noncrossing and nonrepeating sequence traced out along connec-
tors (also called edges) starting with X and ending with Y, regardless of the direction of arrowheads.
A variable along the path from X to Y is said to intercept the path. Directed paths are the special
case in which all the connectors in the path flow head to tail. Any other path is an undirected path.
In Figure 12-1, U — Y <« X is an undirected path from U to X, and Y intercepts the path.

When tracing out a path, a variable on the path where two arrowheads meet is called a collider
on that path. In Figure 12-1, Y is a collider on the pathU — Y <« X from U to X. Thus, a collider
on a path is a direct effect (child) of both the variable just before it and the variable just after
it on the path. A directed path cannot contain a collider. If a variable on a path has neighbors on
both sides but is not a collider, then the variable must be either an intermediate (X — Y — Z or
X «Y « Z)oracause (X < Y — Z) of its immediate neighbors on the path.

Being a collider is specific to a path. In the same DAG, a variable may be a collider on one path
but an intermediate on another path; e.g., in Figure 12-1, Y is an intermediate rather than a collider
onthe path X — Y — Z. Nonetheless, a variable with two or more parents (direct causes) is called
a collider in the graph, to indicate that it is a collider on at least one path. As we will see, paths with
colliders can turn out to be sources of confounding and selection bias.

RULES LINKING ABSENCE OF OPEN PATHS TO
STATISTICAL INDEPENDENCIES

Given a causal diagram, we can apply the d-separation criteria (or directed-graph separation rules)
to deduce independencies implied by the diagram. We first focus on rules for determining whether
two variables are d-separated unconditionally, and then examine how conditioning on variables
may d-separate or d-connect other variables in the graph. We emphasize that the deduced relations
apply only “in expectation,” meaning that they apply to the expected data distribution if the causal
structure represented by the graph is correct. They do not describe the associations that may arise
as a result of purely random events, such as those produced by randomization or random sampling.

Unconditional d-Separation

A path is said to be open or unblocked or active unconditionally if there is no collider on the path.
Otherwise, if there is a collider on the path, it is said to be closed or blocked or inactive, and we say
that the collider blocks the path. By definition a directed path has no collider, so every directed path
is open, although not every open path is directed. Two variables X and Y are said to be d-separated
if there is no open path between them; otherwise they are d-connected. In Figure 12-2, the only
path from X to Y is open at Z; and Z, but closed at W, and hence it is closed overall; thus X and Y



188 Section Il e Study Design and Conduct

Z,: Mother’s genetic
Z,: Family income diabetes risk
during childhood

W: Mother
had diabetes

X: Low Y: Diabetes
education

FIGURE 12-2 e A DAG under which traditional confounder-identification rules fail (an “M diagram”).

are d-separated. When using these terms we will usually drop the “d-" prefix and just say that they
are separated or connected as appropriate.

If X and Y are separated in a causal graph, then the causal assumptions encoded by the graph
imply that X and Y will be unassociated. Thus, if every path from X to Y is closed, the graph
predicts that X and Y will be marginally independent; i.e., for any values x and y of X and
Y, Pr(Y = y|X = x) = Pr(Y = y). More generally and informally we can say this: In a causal
graph, the only sources of marginal association between variables are the open paths between them.
Consider Table 12-1, which lists the causal assumptions represented by the diagram of Figure 12-1,
and the associations implied by those causal assumptions. For example, the causal diagram implies
that U and X are marginally independent because the only path between them passes through a
collider, Y. This idea is formalized later when we define compatibility.

Conditional d-Separation

We also need the concept of graphical conditioning. Consider first conditioning on a noncollider Z
on a path. Because it is a noncollider, Z must either be an intermediate between its neighbors on the
path (X — Z — Y or X < Z < Y) or acause of its neighbors (X < Z — Y). In these cases the
path is open at Z, but conditioning on Z closes the path and removes Z as a source of association
between X and Y. These phenomena reflect the first criterion for blocking paths by conditioning on
covariates:

 Conditioning on a noncollider Z on a path blocks the path at Z.

In contrast, conditioning on a collider requires reverse reasoning. If two variables X and Y are
marginally independent, we expect them to become associated upon conditioning (stratifying) on a
shared effect W. In particular, suppose we are tracing a path from X to Y and reach a segment on
the path with a collider, X — W <« Y. The path is blocked at W, so no association between X and
Y passes through W. Nonetheless, conditioning on W or any descendant of W opens the path at W.
In other words, we expect conditioning on W or any descendant to create an X-Y association via
W. We thus come to the second criterion for blocking paths by conditioning on covariates:

e Conditioning on a collider W on a path, or any descendant of W, or any combination of W or its
descendants, opens the path at W.

Combining these criteria, we see that conditioning on a variable reverses its status on a path:
Conditioning closes noncolliders (which are open unconditionally) but opens colliders (which are
closed unconditionally).

We say that a set of variables S blocks a path from X to Y if, after conditioning on S, the path
is closed (regardless of whether it was closed or open to begin with). Conversely, we say that a set
of variables Sunblocks a path if, after conditioning on S, the path is open (regardless of whether it
was closed or open to begin with). The criteria for a set of variables to block or unblock a path are
summarized in Table 12-2.
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Assumptions Represented in the Directed Acyclic Graph in Figure 12-1, and
Statistical Implications of These Assumptions

Marginal Associations
Expected under

Conditional Associations
Expected under

Causal Assumptions Independencies Figure 12-1 Figure 12-1
Represented in Implied by (Assuming (Assuming
Figure 12-1 Figure 12-1 Faithfulness) Faithfulness)
e X and U are each o X andU are ® X and Y are ® X and U are associated
direct causes of Y independent (the only associated. conditional on Y
(direct with respect to path between them e U and VY are (conditioning on a
other variables in the is blocked by the associated. collider unblocks the
diagram). collider Y). ® YandZ are path).
® Yisadirectcauseof Z. @ X and Z are associated. ® X and U are associated
¢ X isnota direct cause independent ® X and Z are conditionalon Z (Z isa
of Z,but X isan conditional on Y associated. descendant of the
indirect cause of Z (conditioning on Y e U and Z are collider Y).
via'Y. blocks the path associated.
® X isnota cause between X and Z).
of U and U isnota ® ( and Z are
cause of X. independent

U is not a direct cause
of Z,butU isan
indirect cause of Z
viaY.

No two variables in the
diagram (X, U, Y, or
Z ) share a prior cause
not shown in the
diagram, e.g., no
variable causes both
X and Y, or both

X and U.

conditional on Y.

If Sblocks every path from X to Y, we say that X and Y are d-separated by S, or that S separates
X and Y. This definition of d-separation includes situations in which there was no open path before
conditioning on S. For example, a set S may be sufficient to separate X and Y even if Sincludes no
variables: if there is no open path between X and Y to begin with, the empty set separates them.

d-Separation and Statistical Independence

We have now specified the d-separation criteria and explained how to apply them to determine
whether two variables in a graph are d-separated or d-connected, either marginally or conditionally.
These concepts provide a link between the causal structure depicted in a DAG and the statistical
associations we expect in data generated from that causal structure. The following two rules specify
the relation between d-separation and statistical independence; these rules underlie the applications
we will present.

Rule 1 (compatibility). Suppose that two variables X and Y in a causal graph are separated by a
set of variables S. Then if the graph is correct, X and Y will be unassociated given S. In other
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Criteria for Determining Whether a Path is Blocked or Unblocked
Conditional on a Set of Variables S

The Path from X to Y is Blocked The Path from X to Y is Unblocked
Conditional on S if Either: Conditional on S if Both:
A noncollider Z on the path is in S (because S contains no noncollider on the path (so
the path will be blocked by S at Z) conditioning on § blocks no noncollider)
OR AND

There is a collider W on the path that is not Every collider on the path is either in § or
in S and has no descendant in S (because W has a descendant in S (because conditioning
still blocks the path after conditioning on §). on S opens every collider).

words, if S separates X from Y, we will have Pr(Y = y|X =x,S=8) =Pr(Y = y|S=S) for
every possible value x, y, Sof X, Y, S.

Rule 2 (weak faithfulness). Suppose that Sdoes not separate X and Y. Then, if the graph is correct,
X and Y may be associated given S. In other words, if X and Y are connected given S, then
without further information we should not assume that X and Y are independent given S.

Asan illustration, consider again Figure 12—-1. U and X are unassociated. Because Y isa collider,
however, we expect U and X to become associated after conditioning on Y or Z or both (that is, S
unblocks the path whether S= {Y}, S={Z}, or S={Y, Z}). In contrast, X and Z are marginally
associated, but become independent after conditioningon Y or S= {U, Y}.

ASSUMPTIONS AND INTUITIONS UNDERLYING THE RULES

Although informal diagrams of causal paths go back at least to the 1920s, the mathematical theory of
graphs (including DAGS) developed separately and did not at first involve causal inference. By the
1980s, however, graphs were being used to represent the structure of joint probability distributions,
with d-separation being used to encode “stable” conditional independence relations (Pearl, 1988).
One feature of this use of graphs is that a given distribution will have more than one graph that
encodes these relations. In other words, graphical representations of probability distributions are
not unique. For example, in probabilistic (associational) terms, A — B and B — A have the same
implication, that A and B are dependent. By the 1990s, however, several research groups had
adapted these probability graphs to causal inference by letting the arrows represent cause—effect
relations, as they had in path diagrams. Many graphical representations that are probabilistically
equivalent are not causally equivalent. For example, if A precedes B temporally, then B — A can
be ruled out as a representation for the relation of A and B.

The compatibility and faithfulness rules define what we mean when we say that a causal
model for a set of variables is consistent with a probability model for the distribution of those
variables. In practice, the rules are used to identify causal graphs consistent with the observed
probability distributions of the graphed variables, and, conversely, to identify distributions that
are consistent with a given causal graph. When the arrows in probability graphs represent causal
processes, the compatibility rule above (rule 1) is equivalent to the causal Markov assumption
(CMA), which formalizes the idea that (apart from chance) all unconditional associations arise
from ancestral causal relations. Causal explanations of an association between two variables invoke
some combination of shared common causes, collider bias, and one of the variables affecting the
other. These relations form the basis for Rule 1.

Specifically, the CMA states that for any variable X, conditional upon its direct causes (parents),
X is independent of all other variables that it does not affect (its nondescendants). This condition
asserts that if we can hold constant the direct causes of X, then X will be independent of any other
variable that is not itself affected by X. Thus, assuming X precedes Y temporally, in a DAG without
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conditioning there are only two sources of association between X and Y: Effects of X on'Y (directed
paths from X to Y), or common causes (shared ancestors) of X and Y, which introduce confounding.
We will make use of this fact when we discuss control of bias.

The d-separation rule (Rule 1) and equivalent conditions such as the CMA codify common intu-
itions about how probabilistic relations (associations) arise from causal relations. We rely implicitly
on these conditions in drawing causal inferences and predicting everyday events—ranging from
assessments of whether a drug in a randomized trial was effective to predictions about whether flip-
ping a switch on the wall will suffuse a room with light. In any sequence of events, holding constant
both intermediate events and confounding events (common causes) will interrupt the causal cas-
cades that produce associations. In both our intuition and in causal graph theory, this act of “holding
constant” renders the downstream events independent of the upstream events. Conditioning on a
set that d-separates upstream from downstream events corresponds to this act. This correspondence
is the rationale for deducing the conditional independencies (features of a probability distribution)
implied by a given causal graph from the d-separation rule.

The intuition behind Rule 2 is this: If, after conditioning on S, there is an open path between
two variables, then there must be some causal relation linking the variables, and so they ought to be
associated given S, apart from certain exceptions or special cases. An example of an exception occurs
when associations transmitted along different open paths perfectly cancel each other, resulting in
no association overall. Other exceptions can also occur. Rule 2 says only that we should not count
on such special cases to occur, so that, in general, when we see an open path between two variables,
we expect them to be associated, or at least we are not surprised if they are associated.

Some authors go beyond Rule 2 and assume that an open path between two variables means that
they must be associated. This stronger assumption is called faithfulnessor stability and says that if S
does not d-separate X and Y, then X and Y will be associated given S. Faithfulness is thus the logical
converse of compatibility (Rule 1). Compatibility says that if two variables are d-separated, then
they must be independent; faithfulness says that if two variables are independent, then they must be
d-separated. When both compatibility and faithfulness hold, we have perfect compatibility, which
says that X and Y are independent given Sif and only if S d-separates X and Y; faithfulness adds
the “only if” part. For any given pattern of associations, the assumption of perfect compatibility
rules out a number of possible causal structures (Spirtes et al., 2001). Therefore, when it is credible,
perfect compatibility can help identify causal structures underlying observed data.

Nonetheless, because there are real examples of near-cancellation (e.g., when confounding
obscures a real effect in a study) and other exceptions, faithfulness is controversial as a routine
assumption, as are algorithms for inferring causal structure from observational data; see Robins
(1997, section 11), Korb and Wallace (1997), Freedman and Humphreys (1999), Glymour et al.
(1999), Robins and Wasserman (1999), and Robins et al. (2003). Because of this controversy, we
discuss only uses of graphical models that do not rely on the assumption of faithfulness. Instead,
we use Rule 2, which weakens the faithfulness condition by saying that the presence of open paths
alerts us to the possibility of association, and so we should allow for that possibility.

The rules and assumptions just discussed should be clearly distinguished from the content-
specific causal assumptions encoded in a diagram, which relate to the substantive question at hand.
These rules serve only to link the assumed causal structure (which is ideally based on sound and
complete contextual information) to the associations that we observe. In this fashion, they allow
testing of those assumptions and estimation of the effects implied by the graph.

GRAPHICAL REPRESENTATION OF BIAS AND ITS CONTROL

A major use of causal graphs is to identify sources of bias in studies and proposed analyses, including
biases resulting from confounding, selection, or overadjustment. Given a causal graph, we can use
the definitions and rules we have provided to determine whether a set of measured variables Sis
sufficient to allow us to identify (validly estimate) the causal effect of X on Y.

Suppose that X precedes Y temporally and that the objective of a study is to estimate a measure
of the effect of X on Y. We will call an undirected open path between X and Y a biasing path for the
effect because such paths do not represent effects of X on Y, yet can contribute to the association
of X and Y. The association of X and Y is unconditionally unbiased or marginally unbiased for the
effect of X on Y if the only open paths from X to Y are the directed paths.
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SUFFICIENT AND MINIMALLY SUFFICIENT CONDITIONING SETS

When there are biasing paths between X and Y, it may be possible to close these paths by conditioning
on other variables. Consider a set of variables S. The association of X and Y is unbiased given S
if, after conditioning on S, the open paths between X and Y are exactly (only and all) the directed
paths from X to Y. In such a case we say that S is sufficient to control bias in the association of X
and Y. Because control of colliders can open biasing paths, it is possible for a set Sto be sufficient,
and yet a larger set containing Sand such colliders may be insufficient.

A sufficient set Sis minimally sufficient to identify the effect of X on Y if no proper subset of
Sis sufficient (i.e., if removing any set of variables from S leaves an insufficient set). In practice,
there may be several distinct sufficient sets and even several distinct minimally sufficient sets for
bias control. Investigators may sometimes wish to adjust for more variables than are included in
what appears as a minimally sufficient set in a graph (e.g., to allow for uncertainty about possible
confounding paths). Identifying minimally sufficient sets can be valuable nonetheless, because
adjusting for more variables than necessary risks introducing biases and reducing precision, and
measuring extra variables is often difficult or expensive.

For example, the set of all parents of X is always sufficient to eliminate bias when estimating the
effects of X inanunconditional DAG. Nonetheless, the set of parents of X may be far from minimally
sufficient. Whenever X and Y share no ancestor and there is no conditioning or measurement error,
the only open paths from X to Y are directed paths. In this case, there is no bias and hence no need for
conditioning to prevent bias in estimating the effect of X on'Y, no matter how many parents of X exist.

CHOOSING CONDITIONING SETS TO IDENTIFY CAUSAL EFFECTS

There are several reasons to avoid (where possible) including descendants of X in a set S of
conditioning variables. First, conditioning on descendants of X that are intermediates will block
directed (causal) paths that are part of the effect of interest, and thus create bias. Second, conditioning
on descendants of X can unblock or create paths that are not part of the effect of X on Y and thus
introduce another source of bias. For example, biasing paths can be created when one conditions on
a descendant Z of both X and Y. The resulting bias is the Berksonian bias described earlier. Third,
even when inclusion of a particular descendant of X induces no bias, it may still reduce precision
in effect estimation.

Undirected paths from X to Y are termed back-door (relative to X) if they start with an arrow
pointing into X (i.e., it leaves X from a “back door”). In Figure 12-2, the one path from X to Y is
back-door because it starts with the back-step X <« Z;. Before conditioning, all biasing paths in a
DAG are open back-door paths, and all open back-door paths are biasing paths. Thus, to identify
the causal effect of X on Y all the back-door paths between the two variables must be blocked. A set
S satisfies the back-door criterion for identifying the effect of X on Y if S contains no descendant
of X and there is no open back-door path from X to Y after conditioning on S If S satisfies the
back-door criterion, then conditioning on S alone is sufficient to control bias in the DAG, and we
say that the effect of X on Y is identified or estimable given Salone. We emphasize again, however,
that further conditioning may introduce bias: Conditioning on a collider may create new biasing
paths, and conditioning on an intermediate will block paths that are part of the effect under study.

CONFOUNDING AND SELECTION BIAS

The terms confounding and selection bias have varying and overlapping usage in different disci-
plines. The traditional epidemiologic concepts of confounding and selection bias both correspond
to biasing paths between X and Y. The distinction between the two concepts is not consistent
across the literature, however, and many phenomena can be reasonably described as both con-
founding and selection bias. We emphasize that the d-separation criteria are sufficient to identify
structural sources of bias, and thus there is no need to categorize each biasing path as a confounding
or selection-bias path. Nonetheless, the discussion below may help illustrate the correspondence
between conventional epidemiologic terms and sources of bias in causal diagrams.

Traditionally, confounding is thought of as a source of bias arising from causes of Y that are
associated with but not affected by X (Chapter 9). Thus we say that a biasing path from X to Y is
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FIGURE 12-3 e A causal diagram with confounding of the X-Y
association by U but not by Z.

a confounding path if it ends with an arrow into Y. Bias arising from a common cause of X and Y
(and thus present in the unconditional graph, e.g., U in Figure 12-3) is sometimes called “classical
confounding” (Greenland, 2003a) to distinguish it from confounding that arises from conditioning
on a collider. Variables that intercept confounding paths between X and Y are confounders.

Often, only indirect measures of the variables that intercept a confounding path are available
(e.g., W in Figure 12-3). In this case, adjusting for such surrogates or markers of proper con-
founders may help remediate bias (Greenland and Pearl, 2008). Such surrogates are often referred
to informally as confounders. Caution is needed whenever adjusting for a surrogate in an effort
to block a confounding path. To the extent that the surrogate is imperfectly related to the actual
confounder, the path will remain partially open. Furthermore, if variables other than the actual
confounder itself influence the surrogate, conditioning on the surrogate may open new paths and
introduce collider bias. More generally, adjusting for an imperfect surrogate may increase bias under
certain circumstances. Related issues will be discussed in the section on residual confounding.

If a confounding path is present, we say that the dependence of Y on X is confounded, and if no
confounding path is present we say that the dependence is unconfounded. Note that an unconfounded
dependency may still be biased because of biasing paths that are not confounding paths (e.g., if
Berksonian bias is present). Thus, S may be sufficient for confounding control (in that it blocks
all confounding paths), and yet may be insufficient to control other bias (such as Berksonian bias,
which is often uncontrollable).

If W is a variable representing selection into the study sample (e.g., due to intentional selection,
self-selection, or survival), all analyses are conditioned on W. Selection bias is thus sometimes
defined as the collider bias that arises from conditioning on selection W. For example, in Figure 124,
we would say that, before conditioning on W, the relation between X and Y is confounded by the path
X — Z; — W — Y. Conditioning on W alone opens the confounding path X — Z; — W — Z, —Y;;
the bias that results is a collider bias because the bias arises from conditioning on W, a common

Z,: Mother’s genetic
Z,: Family income diabetes risk
during childhood

W: Mother

had diabetes \
X: Low Y: Diabetes

education

FIGURE 12-4 o A diagram under which control of W alone might
increase bias even though W is a confounder.
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effect of causes of X and Y. But it can also be called confounding, because the bias arises from a
path that ends with an arrow into Y.

Econometricians and others frequently use “selection bias” to refer to any form of confounding.
The motivation for this terminology is that some causes of Y also influence “selection for treatment,”
that is, selection of the level of X one receives, rather than selection into the study sample. This
terminology is especially common in discussions of confounding that arises from self-selection, e.g.,
choosing to take hormone-replacement therapy. Other writers call any bias created by conditioning a
“selection bias,” thus using the term “selection bias” for what we have called collider bias (Hernan
et al., 2004); they then limit their use of “confounding” to what we have defined as “classical
confounding” (confounding from a common cause of X and Y).

Regardless of terminology, it is helpful to identify the potential sources of bias to guide both
design and analysis decisions. Our examples show how bias can arise in estimating the effect of X
on Y if selection is influenced either by X or by factors that influence X, and is also influenced by
Y or factors that influence Y. Thus, to control the resulting bias, one will need good data on either
the factors that influence both selection and X or the factors that influence both selection and Y.
We will illustrate these concepts in several later examples, and provide further structure to describe
biases due to measurement error, missing data, and model-form misspecification.

SOME APPLICATIONS

Causal diagrams help us answer causal queries under various assumed causal structures, or causal
models. Consider Figure 12-3. If we are interested in estimating the effect of X on'Y, it is evident
that, under the model shown in the figure, our analysis should condition on U: There is a confounding
path from X to Y, and U is the only variable on the path. On the other hand, suppose that we are
interested in estimating the effect of Z on Y. Under the diagram in Figure 12-3, we need not
condition on U, because the relation of Z to Y is unconfounded (as is the relation of X to Z), that
is, there is no confounding path from Z to Y. Because Figure 12-3 is a DAG, we can rephrase these
conditions by saying that there is an open back-door path from X to Y, but not from Z to Y.

We now turn to examples in which causal diagrams can be used to clarify methodologic issues.
In some cases the diagrams simply provide a convenient way to express well-understood concepts.
In other examples they illuminate points of confusion regarding the biases introduced by proposed
analyses or study designs. In all these cases, the findings can be shown mathematically or seen by
various informal arguments. The advantage of diagrams is that they provide flexible visual expla-
nations of the problems, and the explanations correspond to logical relations under the definitions
and rules given earlier.

WHY CONVENTIONAL RULES FOR CONFOUNDING
ARE NOT ALWAYS RELIABLE

In both intuition and application, the graphical and conventional criteria for confounding overlap
substantially. For example, in Chapter 9, confounding was informally described as a distortion in the
estimated exposure effect that results from differences in risk between the exposed and unexposed
that are not due to exposure. Similarly, Hennekens and Buring (1987, p. 35) say that confounding
occurs when *“an observed association. . . . is in fact due to a mixing of effects between the exposure,
the disease, and a third factor. .. .”

Variations on the following specific criteria for identifying confounders are frequently suggested,
although, as noted in Chapter 9, these criteria do not define a confounder:

1. A confounder must be associated with the exposure under study in the source population.

2. A confounder must be a “risk factor” for the outcome (i.e., it must predict who will develop
disease), though it need not actually cause the outcome.

3. The confounding factor must not be affected by the exposure or the outcome.

These traditional criteria usually agree with graphical criteria; that is, one would choose the same
set of covariates for adjustment using either set of criteria. For example, in Figure 12-3, both
the graphical and intuitive criteria indicate that one should condition on U to derive an unbiased
estimate of the effect of X on Y. Under the graphical criteria, U satisfies the back-door criterion
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for identifying the effect of X on Y: U is not an effect of X, and the only path between X and Y
that contains an arrow into X can be blocked by conditioning on U. It fulfills the three traditional
criteria because U and X will be associated, U will also predict Y, and U is not affected by X or Y.

Nonetheless, there are cases in which the criteria disagree, and when they diverge, it is the
conventional criteria (1-3) that fail. Suppose that we are interested in whether educational attainment
affects risk of type 1l diabetes. Figure 12-2 then depicts a situation under the causal null hypothesis
in which education (X) has no effect on subject’s diabetes (Y). Suppose that we have measured
maternal diabetes status (W), but we do not have measures of family income during childhood (Z;)
or whether the mother had any genes that would increase risk of diabetes (Z;). Should we adjust
for W, maternal diabetes?

Figure 12-2 reflects the assumption that family income during childhood affects both educational
attainment and maternal diabetes. The reasoning is that if a subject was poor as a child, his or her
mother was poor as an adult, and this poverty also increased the mother’s risk of developing diabetes
(Robbinsetal., 2005). Maternal diabetes will thus be associated with the subject’s education, because
under these assumptions they share a cause, family income. In Figure 12-2, this association is due
entirely to confounding of the X-W (education-maternal diabetes) association. Figure 12-2 also
reflects the assumption that a maternal genetic factor affects risk of both maternal diabetes and the
subject’s diabetes. Maternal diabetes will thus be associated with the subject’s diabetes, because
under these assumptions they share a cause, the genetic factor. In Figure 12-2, this association is
purely confounding of the W-Y (maternal diabetes-subject’s diabetes) association.

In Figure 12—2, maternal diabetes W is not affected by the subject’s education level X or diabetes
status Y. Thus, the mother’s diabetes meets the three traditional criteria for a confounder, so these
criteria could lead one to adjust for mother’s diabetic status. Note, however, that both the associations
on which the latter decision is based (traditional criteria 1 and 2) arise from confounding.

Turning to the graphical criteria, note first that there is only one undirected path between low
education X and diabetes Y, and mother’s diabetes W is a collider on that path. Thus this path is
blocked at W and transmits no association between X and Y — that is, it introduces no bias. This
structure means that we get an unbiased estimate if we do not adjust for the mother’s diabetes.
Because maternal diabetes is a collider, however, adjusting for it opens this undirected path, thus
introducing a potential spurious association between low education and diabetes. The path opened
by conditioning on Wcould be blocked by conditioning on either Z; or Z,, but there is no need to
condition on W in the first place. Therefore, under Figure 12-2, the graphical criteria show that one
should not adjust for maternal diabetes, lest one introduce bias where none was present to begin
with. In this sense, adjustment for W would be one form of overadjustment (Chapter 15), and the
traditional criteria were mistaken to identify W as a confounder.

Figure 12-2 illustrates why in Chapter 9 it was said that the traditional criteria do not define
a confounder: While every confounder will satisfy them, Figure 12-2 shows that some noncon-
founders satisfy them as well. In some cases, adjusting for such nonconfounders is harmless, but
in others, as in the example here, it introduces a bias. This bias may, however, be removed by
adjustment for another variable on the newly opened path.

The situation in Figure 12-2 is analogous to Berksonian bias if we focus on the part of the graph
(subgraph) in which Z; — W <« Z,: Conditioning on the collider W connects its parents Z; and
Z,, and thus connects X to Y. Another way to describe the problem is that we have a spurious
appearance of confounding by W if we do not condition on Z; or Z,, for then W is associated
with X and Y. Because W temporally precedes X and Y, these associations may deceive one into
thinking that W is a confounder. Nonetheless, the association between W and X is due solely to
the effects of Z; on W and X, and the association between W and Y is due solely to the effects of
Z, on W and Y. There is no common cause of X and Y, however, and hence no confounding if we
do not condition on W.

To eliminate this sort of problem, traditional criterion 2 (here, that W is a “risk factor” for Y) is
sometimes replaced by

2. The variable must affect the outcome under study.

This substitution addresses the difficulty in examples like Figure 12-2 (for W will fail this revised
criterion). Nonetheless, it fails to address the more general problem that conditioning may introduce
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bias. To see this failing, draw an arrow from W to Y in Figure 12-2, which yields Figure 12—4.
W now affects the outcome, Y, and thus satisfies criterion 2’. This change is quite plausible, because
having a mother with diabetes might lead some subjects to be more careful about their weight and
diet, thus lowering their own diabetes risk. W is now a confounder: Failing to adjust for it leaves
open a confounding path (X < Z; — W — Y) that is closed by adjusting for W. But adjusting for
W will open an undirected (and hence biasing) path from XtoY (X < Z; - W « Z; — Y), as
just discussed. The only ways to block both biasing paths at once is to adjust for Z; (alone or in
combination with any other variable) or both Z, and W together.

If neither Z; nor Z, is measured, then under Figure 12—4, we face a dilemma not addressed by
the traditional criteria. As with Figure 12—2, if we adjust for W, we introduce confounding via Z;
and Z; yet, unlike Figure 12—-2, under Figure 12—4 we are left with confounding by W if we do not
adjust for W. The question is, then, which undirected path is more biasing, that with adjustment for
W or that without? Both paths are modulated by the same X-W connection (X <« Z; — W), so
we may focus on whether the connection of W to Y with adjustment (W <« Z, — Y) is stronger
than the connection without adjustment (W — Y). If so, then we would ordinarily expect less bias
when we don’t adjust for W; if not, then we would ordinarily expect less bias if we adjust. The final
answer will depend on the strength of the effect represented by each arrow, which is context-specific.
Assessments of the likely relative biases (as well as their direction) thus depend on subject-matter
information.

In typical epidemiologic examples with noncontagious events, the strength of association trans-
mitted by a path attenuates rapidly as the number of variables through which it passes increases.
More precisely, the longer the path, the more we would expect attenuation of the association trans-
mitted by the path (Greenland, 2003a). In Figure 12—4, this means that the effects of Z, on W and
Z, on'Y would both have to be much stronger than the effect of W on Y in order for the unadjusted
X-Y association to be less biased than the W-adjusted X-Y association. However, if the proposed
analysis calls for stratifying or restricting on W (instead of adjusting for W), the bias within a single
stratum of W can be larger than the bias when adjusting for W (which averages across all strata).

To summarize, expressing assumptions in a DAG provides a flexible and general way to identify
“sufficient” sets under a range of causal structures, using the d-separation rules. For example, if we
changed the structure in Fig 12—-2 only slightly by reversing the direction of the relationship between
Z; and W (so we have X < Z; < W <« Z, — Y), then conditioning on W would be desirable,
and any of Z;, W, or Z, would provide a sufficient set for identifying the effect of X on Y. Modified
versions of the conventional criteria for confounder identification have been developed that alleviate
their deficiencies and allow them to identify sufficient sets, consistent with the graphical criteria
(Greenland et al., 1999a). We do not present these here because they are rarely used and, in general,
it is simpler to apply the graphical criteria.

GRAPHICAL ANALYSES OF SELECTION BIAS

Selection forces in astudy may be part of the design (e.g., enroliment criteria, or hospitalization status
inahospital-based case-control study) or may be unintended (e.g., loss to follow-up in a cohort study,
or refusals in any study). Selection forces can of course compromise generalizability (e.g., results
for white men may mislead about risk factors in black women). As shown by the above examples
and discussed in Chapters 7 through 9, they can also compromise the internal validity of a study.

Causal diagrams provide a unifying framework for thinking about well-known sources of bias
and also illustrate how some intentional selection and analysis strategies result in bias in more subtle
situations. To see these problems, we represent selection into a study as a variable, and then note
that all analyses of a sample are conditioned on this variable. That is, we conceptualize selection
as a variable with two values, 0 = not selected and 1 = selected; analyses are thus restricted to
observations where selection = 1. Selection bias may occur if this selection variable (that is, entry
into the study) depends on the exposure, the outcome, or their causes (whether shared or not).

BIAS FROM INTENTIONAL SELECTION

Even seemingly innocuous choices in dataset construction can induce severe selection bias. To take
an extreme example, imagine a study of education (X) and Alzheimer’s disease (Y) conducted
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FIGURE 12-5 e A diagram with a selection indicator S.

by pooling two datasets, one consisting only of persons with college education (X = high), the
other consisting only of persons diagnosed with impaired memory (I = 1). Within this pooled
study, everyone without college education (X = low) has memory impairment (I = 1), which
in turn is strongly associated with Alzheimer’s disease because impairment is often a symptom
of early, undiagnosed Alzheimer’s disease (in fact, it is a precursor or prodrome). Likewise, any
subject with no impairment (I = 0) has college education (X = high). Thus, in this study, college
education is almost certainly negatively associated with Alzheimer’s disease. This association would
be completely spurious, induced by defining selection as an effect of both education (X) and memory
impairment (1) as a result of pooling the two datasets. Graphing the relations in Figure 12-5, this
association can be viewed as Berksonian bias: Selection Sis strongly affected by both the exposure
X and an independent cause of the outcome Y, hence is a collider between them. All analyses are
conditioned on selection and the resulting collider bias will be large, greatly misrepresenting the
population association between education and Alzheimer’s disease.

This example parallels Berksonian bias in clinic-based and hospital-based studies, because
selection was affected directly by exposure and outcome. Selection is often only indirectly related
to exposure and outcome, however. Suppose we study how education affects risk for Alzheimer’s
disease in a study with selection based on membership in a high-prestige occupation. Achievement of
high-prestige occupations is likely to be influenced by both education and intellect. Of course, many
people obtain prestigious jobs by virtue of other advantages besides education or intelligence, but to
keep our example simple, we will assume here that none of these other factors influence Alzheimer’s
disease.

There is evidence that intelligence protects against diagnosis of Alzheimer’s disease (Schmand
et al., 1997). Consider Figure 12-5 (relabeling the variables from the previous example), in which
selection S (based on occupation) is influenced by education (X) and intellect (1), where the latter
affects Alzheimer’s disease (Y). Among the high-prestige job holders, people with less education
(X = lower) are more likely to have high intellect (I = high), whereas those with lesser intellect
(I = lower) are more likely to have advanced education (X = high), because most individuals had
to have some advantage (at least one of X = high or | = high) to get their high-prestige job. In
effect, X and | are compensatory, in that having more of one compensates somewhat for having
less of the other, even if everyone in the study is above average on both.

The selection process thus biases the education—intellect association away from the association
in the population as a whole. The strength of the spurious association will depend on the details
of the selection process, that is, how strongly education and intellect each affect occupation and
whether they interact in any way to determine occupation. Note, however, that if high-education
subjects are less likely to have high intellect than low-education subjects, and high intellect protects
against Alzheimer’s disease, then high-education subjects will exhibit excess risk of Alzheimer’s
disease relative to low-education subjects even if education has no effect. In other words, whatever
the true causal relation between education and Alzheimer’s disease, in a study of high-prestige job
holders, the association in the study will be biased downward, unless one can adjust for the effect
of intellect on Alzheimer’s disease.

Telling this story in words is complicated and prone to generating confusion, but analyzing a
corresponding diagram is straightforward. In Figure 12-5, we can see that Sis a collider between X
and |, and so we should expect X and | to be associated conditional on S. Thus, conditional on S,
we expect X and Y to be associated, even if X does not affect Y. Whether selection exacerbates or
reduces bias in estimating a specific causal effect depends crucially on the causal relations among
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variables determining selection. If we added an arrow from | to X in Figure 12-5 (i.e. if intellect
directly affects education), | would be a confounder and the X-Y association would be biased
before selection. If the confounding produced by | were upward, the bias produced by selection on
S might counteract it enough to lessen the overall (net) bias in the X-Y association.

SURVIVOR BIAS

Survivor bias, and more generally bias due to differential competing risks or loss to follow-up, can
be thought of as a special case of selection bias. In life-course research on early life exposures
and health in old age, a large fraction of the exposed are likely to die before reaching old age, so
survivor bias could be large. Effect estimates for early life exposures often decline with age (Elo and
Preston, 1996; Tate et al., 1998). An example is the black—white mortality crossover: Mortality is
greater for blacks and other disadvantaged groups relative to whites at younger ages, but the pattern
reverses at the oldest ages (Corti et al., 1999; Thornton, 2004). Do such phenomena indicate that the
early life exposures become less important with age? Not necessarily. Selective survival can result
in attenuated associations among survivors at older ages, even though the effects are undiminished
(Vaupel and Yashin, 1985; Howard and Goff, 1998; Mohtashemi and Levins, 2002). The apparent
diminution of the magnitude of effects can occur due to confounding by unobserved factors that
conferred a survival advantage.

Apart from some special cases, such confounding should be expected whenever both the exposure
under study and unmeasured risk factors for the outcome influence survival—even if the exposure
and factors were unassociated at the start of life (and thus the factors are not initially confounders).
Essentially, if exposure presents a disadvantage for survival, then exposed survivors will tend to
have some other characteristic that helped them to survive. If that protective characteristic also
influences the outcome, it creates a spurious association between exposure and the outcome. This
result follows immediately from a causal diagram like Figure 12-5, interpreted as showing survival
(S) affected by early exposure (X) and also by an unmeasured risk factor (1) that also affects the
study outcome (Y).

RESIDUAL CONFOUNDING AND BIAS QUANTIFICATION

Ideally, to block a back-door path between X and Y by conditioning on a variable or set of variables
Z, we would have sufficient data to create a separate analysis stratum for every observed value
of Z and thus avoid making any assumptions about the form of the relation of Z to X or Y. Such
complete stratification may be practical if Z has few observed values (e.g., sex). In most situations,
however, Z has many levels (e.g., Z represents a set of several variables, including some, such
as age, that are nearly continuous), and as a result we obtain cells with no or few persons if we
stratify on every level of Z. The standard solutions compensate for small cell counts using statistical
modeling assumptions (Robins and Greenland, 1986). Typically, these assumptions are collected
in the convenient form of a regression model, as described in Chapter 20. The form of the model
will rarely be perfectly correct, and to the extent that it is in error, the model-based analysis will
not completely block confounding paths. The bias that remains as a result is an example of residual
confounding, i.e., the confounding still present after adjustment.

Causal diagrams are nonparametric in that they make no assumption about the functional form of
relationships among variables. For example, the presence of open paths between two variables leads
us to expect they are associated in some fashion, but a diagram does not say how. The association
between the variables could be linear, U-shaped, involve a threshold, or an infinitude of other forms.
Thus the graphical models we have described provide no guidance on the form to use to adjust for
covariates.

One aspect of the residual confounding problem, however, can be represented in a causal diagram,
and that is the form in which the covariates appear in a stratified analysis or a regression model.
Suppose Z isa covariate, that when uncontrolled induces a positive bias in the estimated relationship
between the exposure and outcome of interest. Stratification or regression adjustment for a particular
form of Z, say g(Z), may eliminate bias; for example, there might be no bias if Z is entered in the
analysis as its natural logarithm, In(Z). But there might be considerable bias left if we enter Z in
a different form f(2), e.g., as quartile categories, which in the lowest category combines persons
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f(Z): Parental poverty
(dichotomous)

Z: Parental income
(continuous)

» Y: Diabetes risk

X: Birth weight

FIGURE 12-6 e Diagram with residual confounding of the X-Y association
after control of f(Z) alone.

with very different values of In(Z). Similarly, use of measures f (Z) of Z that suffer from substantial
error could make it impossible to adjust accurately for Z.

“Blocking the path at Z” involves complete stratification on the variables in a sufficient set, or
anything equivalent, even if the resulting estimate is too statistically unstable for practical use. We
can thus represent our problem by adding to the diagram the possibly inferior functional form or
measurement f(Z) as a separate variable. This representation shows that, even if Z is sufficient to
control confounding, f(Z) may be insufficient.

To illustrate, suppose that we are interested in estimating the effect of birth weight on adult
diabetes risk, and that Figure 12—6 shows the true causal structure. We understand that parental
income Z is a potential confounder of the relationship between birth weight and diabetes risk
because it affects both variables. Suppose further that this relationship is continuously increasing
(more income is better even for parents who are well above the poverty line), but, unfortunately,
our data set includes no measure of income. Instead, we have only an indicator f(Z) for whether
or not the parents were in poverty (a dichotomous variable); that is, f(Z) is an indicator of very
low income—e.g., f(Z) = 1 if Z < poverty level, f(Z) = 0 otherwise. Poverty is an imperfect
surrogate for income. Then the association between birth weight and diabetes may be confounded by
parental income even conditional on f(Z), because f (Z) fails to completely block the confounding
path between parental income and diabetes. The same phenomena will occur using a direct measure
of income that incorporates substantial random error. In both cases, residual confounding results
from inadequate control of income.

BIAS FROM USE OF MISSING-DATA CATEGORIES OR INDICATORS

Many methods for handling missing data are available, most of which are unbiased under some
assumptions but biased under alternative scenarios (Robins et al., 1994; Greenland and Finkle,
1995; Little and Rubin, 2002; see Chapter 13). In handling missing data, researchers usually want
to retain as many data records as possible to preserve study size and avoid analytic complexity.
Thus, a popular approach to handling missing data on a variable Z is to treat “missing” as if it were
just another value for Z. The idea is often implemented by adding a stratum for Z = “missing,”
which in questionnaires includes responses such as “unknown” and “refused.” The same idea is
implemented by adding an indicator variable for missingness to a regression model: We set Z to 0
when it is missing, and add an indicator Mz = 0 if Z is observed, Mz = 1 if Z is missing.

Missing indicators allow one to retain every subject in the analysis and are easy to implement,
but they may introduce bias. This bias can arise even under the best-case scenario, that the data are
missing completely at random (MCAR). MCAR means that missingness of a subject’s value for Z
is independent of every variable in the analysis, including Z. For example, if Z is sexual orientation,
MCAR assumes that whether someone skips the question or refuses to answer has nothing to do with
the person’s age, sex, or actual preference. Thus MCAR is an exceedingly optimistic assumption,
but it is often used to justify certain techniques.

Next, suppose that Figure 12—7 represents our study. We are interested in the effect of X on
Y, and we recognize that it is important to adjust for the confounder Z. If Z is missing for some
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FIGURE 12-7 o Diagram with a missing-data indicator M.

subjects, we add to the analysis the missing indicator Mz. If Z is never zero, we also define a
new variable, Z*, that equals Z whenever Z is observed and equals 0 whenever Z is missing,
that is, Z* = Z(1 — Mgz). There are no arrows pointing into Mz in the diagram, implying that Z
is unconditionally MCAR, but Z* is determined by both Z and Mz. Using the missing-indicator
method, we enter both Z* and Mz in the regression model, and thus we condition on them both.

In Figure 12-7, the set {Z*, Mz} does not block the back-door path from X to Y via Z, so
control of Z* and Mz does not fully control the confounding by Z (and we expect this residual
confounding to increase as the fraction with Z missing increases). Similarly, it should be clear
from Figure 12-7 that conditioning only on Z* also fails to block the back-door path from X to
Y. Now consider a complete-subject analysis, which uses only observations with Z observed—in
other words, we condition on (restrict to) Mz = 0. From Figure 12—7 we see that this conditioning
creates no bias. Because we have Z on everyone with Mz = 0, we can further condition on Z and
eliminate all confounding by Z. So we see that instead of the biased missing-indicator approach,
we have an unbiased (and even simpler) alternative: an analysis limited to subjects with complete
data. The diagram can be extended to consider alternative assumptions about the determinants of
missingness. Note, however, that more efficient and more broadly unbiased alternatives to complete-
subject analysis (such as multiple imputation or inverse probability weighting) are available, and
some of these methods are automated in commercial software packages.

ADJUSTING FOR AN INTERMEDIATE DOES NOT NECESSARILY
ESTIMATE A DIRECT EFFECT

Once an effect has been established, attention often turns to questions of mediation. Is the effect of
sex on depression mediated by hormonal differences between men and women or by differences in
social conditions? Is the effect of prepregnancy body mass index on pre-eclampsia risk mediated
by inflammation? Is the apparent effect of occupational status on heart disease attributable to psy-
chologic consequences of low occupational status or to material consequences of low-paying jobs?

In considering exposure X and outcome Y with an intermediate (mediator) Z, a direct effect
of X on Y (relative to Z) is an X effect on Y that is not mediated by Z. In a causal diagram,
effects of X on Y mediated by Z, or “indirect effects,” are those directed paths from X to Y that
pass through Z. Direct effects are then represented by directed paths from X to Y that do not pass
through Z. Nonetheless, because Z may modify the magnitude of a direct effect, the total effect of
X on Y cannot necessarily be partitioned into nonoverlapping direct and indirect effects (Robins
and Greenland, 1992).

The term direct effect may refer to either of two types of effects. The first type is the effect of X
on Y in an experiment in which each individual’s Z is held constant at the same value z. This has
been termed the controlled direct effect because the intermediate is controlled. The magnitude of
this direct effect may differ across each possible value of Z; thus there is a controlled direct effect
defined for every possible value of Z. The second type is called a pure or natural direct effect and
is the effect of X on Y when Z takes on the value it would “naturally” have under a single reference
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FIGURE 12-8 e Diagram with an unconfounded direct effect and no
indirect effect of X on Y.

value x for X. Thus there is one of these effects for each possible value of X. For each direct effect
of X on Y, we can also define a contrast between the total effect of X on Y and that direct effect.
This contrast is sometimes referred to as the “indirect effect of X on Y relative to the chosen direct
effect. There will be one of these contrasts for every controlled direct effect (i.e., for every level of
Z) and one for every pure direct effect (i.e., for every level of X).

A causal diagram can reveal pitfalls in naive estimation procedures, as well as additional data
and assumptions needed to estimate direct effects validly. For example, a standard method of direct-
effect estimation is to adjust for (condition on) Z in the analysis—e.g., by entering it in a regression
of Y on X. The Z-adjusted estimate of the X coefficient is taken as an estimate of “the” direct effect
of X on Y (without being clear about which direct effect is being estimated). The difference in the
X coefficients with and without adjustment for Z is then taken as the estimate of the indirect effect
of X on'Y (with respect to Z).

The diagram in Figure 12-8 shows no confounding of the total effect of X on Y, and no effect
of Z on Y at all, so no indirect effect of X on Y via Z (all the X effect on Y is direct). Z is,
however, a collider on the closed path from X to Y via U; thus, if we adjust for Z, we will open this
path and introduce bias. Consequently, upon adjusting for Z, we will see the X association with Y
change, misleading us into thinking that the direct and total effects differ. This change, however,
only reflects the bias we have created by adjusting for Z.

This bias arises because we have an uncontrolled variable U that confounds the Z-Y association,
and that confounds the X-Y association upon adjustment for Z. The bias could be removed by
conditioning on U. This example is like that in Figure 12-3, in which adjusting for a seeming
confounder introduced confounding that was not there originally. After adjustment for the collider,
the only remedy is to obtain and adjust for more covariates. Here, the new confounders may have
been unassociated with X to begin with, as we would expect if (say) X were randomized, and so
are not confounders of the total effect. Nonetheless, if they confound the association of Z with Y,
they will confound any conventionally adjusted estimate of the direct effect of X on Y.

As an illustration of bias arising from adjustment for intermediates, suppose that we are inter-
ested in knowing whether the effect of education on systolic blood pressure (SBP) is mediated by
adult wealth (say, at age 60). Unfortunately, we do not have any measure of occupational charac-
teristics, and it turns out that having a high-autonomy job promotes the accumulation of wealth
and also lowers SBP (perhaps because of diminished stress). Returning to Figure 12-8, now X
represents education, Y represents SBP, Z represents wealth at age 60, and U represents job au-
tonomy. To estimate the effect of education on SBP that is not mediated by wealth, we need to
compare the SBP in people with high and low education if the value of wealth were not allowed
to change in response to education. Thus we might ask, if we gave someone high education but
intervened to hold her wealth to what she would have accumulated had she had low education (but
changed no other characteristic), how would SBP change compared with giving the person less
education?

We cannot conduct such an intervention. The naive direct-effect (mediation) analysis described
above instead compares the SBP of people with high versus low education who happened to have
the same level of adult wealth. On average, persons with high education tend to be wealthier than
persons with low education. A high-education person with the same wealth as a low-education
person is likely to have accumulated less wealth than expected for some other reason, such as a
low-autonomy job. Thus, the mediation analysis will compare people with high education but low
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job autonomy to people with low education and average job autonomy. If job autonomy affects
SBP, the high-education people will appear to be worse off than they would have been if they had
average job autonomy, resulting in underestimation of the direct effect of education on SBP and
hence overestimation of the indirect (wealth-mediated) effect.

The complications in estimating direct effects are a concern whether one is interested in mediator-
controlled or pure (natural) direct effects. With a causal diagram, one can see that adjusting for a
confounded intermediate will induce confounding of the primary exposure and outcome—even if
that exposure is randomized. Thus confounders of the effect of the intermediate on the outcome
must be measured and controlled. Further restrictions (e.g., no confounding of the X effect on Z)
are required to estimate pure direct effects. For more discussion of estimation of direct effects,
see Robins and Greenland (1992, 1994), Blakely (2002), Cole and Hernéan (2002), Kaufman et al.
(2004, 2005), Peterson et al. (2006), Peterson and van der Laan (2008), and Chapter 26.

INSTRUMENTAL VARIABLES

Observational studies are under constant suspicion of uncontrolled confounding and selection bias,
prompting many to prefer evidence from randomized experiments. When noncompliance (nonad-
herence) and losses are frequent, however, randomized trials may themselves suffer considerable
confounding and selection bias. Figure 12-9 illustrates both phenomena. In an observational study,
U represents unmeasured confounders of the X-Y association. In a randomized trial, U represents
variables that affect adherence to treatment assignment and thus influence received treatment X.
In Figure 12-9, Z is called an instrumental variable (or instrument) for estimating the effect of X
onY.

Valid instruments for the effect of X on Y can be used to test the null hypothesis that X has
no effect on Y. With additional assumptions, instrumental variable analyses can be exploited to
estimate the magnitude of this effect within specific population subgroups. We will first review
the assumptions under which a valid instrument can be used to test a null hypothesis of no causal
effect, and then describe examples of additional assumptions under which an instrumental variable
analysis identifies a specific causal parameter.

Under the assumptions in the DAG in Figure 12-9, assignment Z can be associated with Y only
if Z affects X and X in turn affects Y, because the only open path from ZtoYis Z - X — Y. In
other words, Z can be associated with Y only if the null hypothesis (that X does not affect Y) is
false. Thus, if one rejects the null hypothesis for the Z-Y association, one must also reject the null
hypothesis that X does not affect Y. This logical requirement means that, under Figure 12-9, a test
of the Z-Y association will be a valid test of the X-Y null hypothesis, even if the X-Y association
is confounded. The unconfoundedness of the Z-Y test, called the intent-to-treat test, is considered
a “gold standard” in randomized trials: If Z represents the assigned treatment, Figure 12-9 holds if
Z is truly randomized, even if the treatment received (X) is influenced by unmeasured factors that
also affect the outcome Y.

In a DAG, a variable Z is an unconditionally valid instrument for the effect of X on Y if:

1. Z affects X (i.e., Z is an ancestor of X).
2. Z affects the outcome Y only through X (i.e., all directed paths from Z to Y pass through X).
3. Z and Y share no common causes.

z X—>» Y

U
FIGURE 12-9 e Diagram with valid instruments Z, W for the X-Y effect.
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FIGURE 12-10 e Diagram for a confounded trial in which treatment
assignment directly affects the outcome.
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These assumptions are met in a well-conducted randomized trial in which Z is the randomized
treatment-assignment variable. In Figure 12-10, assumption 2 is violated, and in Figure 12-11,
assumption 3 is violated, and no unconditionally valid instrument is available in either case.

Most methods can be extended to allow use of certain descendants of Z (such as W in Figure
12-9) instead of Z itself to test whether X affects Y. Some authors extend the definition of instru-
mental variables to include such descendants. Note first that assumptions 2 and 3 imply that every
open path from Z to Y includes an arrow pointing into X. This is a special case of a more general
definition that W is an unconditional instrument for the X — Y effect in a DAG if (a) there is an
open path from W to X, and (b) every open path from W to Y includes an arrow pointing into X.
This definition extends to conditioning on a set of variables S that are unaffected by X: W is an
instrument given Sif, after conditioning on S, (a) there is an open path from W to X, and (b) every
open path from W to Y includes an arrow pointing into X (Pearl, 2000, section 7.4). For example,
if W and Y share a common cause such as U, in Figure 12-11, but this common cause is included
in S, then W is a valid instrument for the effect of X on Y conditional on S.

The assumptions for a valid instrument imply that, after conditioning on S, the instrument—
outcome association is mediated entirely through the X effect on Y. These assumptions require that
S blocks all paths from W to Y not mediated by X. For example, conditioning on M in Figure
12-10 would render Z a valid instrument. Nonetheless, if S contains a descendant of W, there is
a risk that conditioning on S may induce a W-Y association via collider bias, thus violating the
conditional instrumental assumption (b). This collider bias might even result in an unconditionally
valid instrument becoming conditionally invalid. Hence many authors exclude descendants of W
(or Z) as well as descendants of X from S,

Consider now a randomized trial represented by Figure 12-9. Although an association between
Z and Y is evidence that X affects Y, the corresponding Z-Y (intent to treat or ITT) association
will not equal the effect of X on Y if compliance is imperfect (i.e., if X does not always equal Z).
In particular, the ITT (Z-Y) association will usually be attenuated relative to the desired X — Y
effect because of the extra Z — X step. When combined with additional assumptions, however, the
instrument Z may be used to estimate the effect of X on Y via special instrumental-variable (IV)
estimation methods (Zohoori and Savitz, 1997; Newhouse and McClellan, 1998; Greenland, 2000b;
Angrist and Krueger, 2001; Hernan and Robins, 2006; Martens et al., 2006) or related g-estimation
methods (Robins and Tsiatis, 1991; Mark and Robins, 1993ab; White et al., 2002; Cole and Chu,
2005; Greenland et al., 2008; see also Chapter 21).
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FIGURE 12-11 e Diagram

for a confounded trial in which Uy
an unmeasured cause U, affects

both treatment assignment Z

and outcome Y. U,
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Simple 1V estimates are based on scaling up the Z-Y association in proportion to the Z-X
association. An example of an assumption underlying these methods is monotonicity of the Z — X
effect: For every member of the population, Z can affect X in only one direction (e.g., if increasing
Z increases X for some people, then it cannot decrease X for anyone). Under monotonicity, 1V
estimates can be interpreted as the effect receiving the treatment had on those individuals who
received treatment (got X = 1) precisely because they were assigned to do so (i.e., because they
got Z = 1). Some methods use further assumptions, usually in the form of parametric models.

The causal structure in Figure 12—-9 might apply even if the researcher did not assign Z. Thus,
with this diagram in mind, a researcher might search for variables (such as Z or W) that are valid
instruments and use these variables to calculate IV effect estimates (Angrist et al., 1996; Angrist
and Krueger, 2001; Glymour, 2006a). Although it can be challenging to identify a convincing
instrument, genetic studies (Chapter 28) and “natural experiments” may supply them:

e Day of symptom onset may determine the quality of hospital care received, but there is rarely
another reason for day of onset to influence a health outcome. Day of symptom onset then provides
a natural instrument for the effect of quality of hospital care on the outcome.

* Hour of birth may serve as an instrument for studying postpartum length of stay in relation to
maternal and neonatal outcomes (Malkin et al., 2000).

* Mothers who deliver in hospitals with lactation counseling may be more likely to breast-feed. If
being born in such a hospital has no other effect on child health, then hospital counseling (yes/no)
provides an instrument for the effect of breastfeeding on child health.

e Women with relatives who had breast cancer may be unlikely to receive perimenopausal hor-
mone therapy. If having relatives with breast cancer has no other connection to cardiovascular
risk, having relatives with breast cancer is an instrument for the effect of hormone therapy on
cardiovascular disease.

These examples highlight the core criteria for assessing proposed instruments (e.g., day of symptom
onset, hour of birth). After control of measured confounders the instrument must have no association
with the outcome except via the exposure of interest. In other words, if the exposure has no effect,
the controlled confounders separate the instrument from the outcome.

A skeptical reader can find reason to doubt the validity of each of the above proposed instruments,
which highlights the greatest challenge for instrumental variables analyses with observational data:
finding a convincing instrument. Causal diagrams provide a clear summary of the hypothesized
situation, enabling one to check the instrumental assumptions. When the instrument is not random-
ized, those assumptions (like common no-residual-confounding assumptions) are always open to
question. For example, suppose we suspect that hospitals with lactation counseling tend to provide
better care in other respects. Then the association of hospital counseling with child’s outcome is in
part not via breastfeeding, and counseling is not a valid instrument.

IV methods for confounding control are paralleled by IV methods for correcting measurement
error in X. The latter methods, however, require only associational rather than causal assumptions,
because they need not remove confounding (Carroll et al., 2006). For example, if Z is affected by
X and is unassociated with Y given X, then Z may serve as an instrument to remove bias due to
measurement error, even though Z will not be a valid instrument for confounding control.

BIAS FROM CONDITIONING ON A DESCENDANT OF THE OUTCOME

For various reasons, it may be appealing to examine relations between X and Y conditioning on
a function or descendant Y* of Y. For example, one might suspect that the outcome measurement
available becomes increasingly unreliable at high values and therefore wish to exclude high-scoring
respondents from the analysis. Such conditioning can produce bias, as illustrated in Figure 12-12.
Although U affects Y, U is unassociated with X and so the X-Y association is unconfounded. If
we examine the relation between X and Y conditional on Y*, we open the U — Y <« X path, thus
allowing a U-X association and confounding of the X-Y association by U.

Consider the effect of education on mental status, measuring the latter with the Mini-Mental
Status Exam (MMSE). The MMSE ranges from 0 to 30, with a score below 24 indicating impairment
(Folstein et al., 1975). Suppose we ask whether the effect of education on MMSE is the same for
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FIGURE 12-12 e Diagram illustrating effect of conditioning on an outcome variable.

respondents with MMSE > 24 as for respondents with MMSE <24. If education does indeed affect
MMSE score, we can apply Figure 12-12 with X = education, Y = MMSE score, and Y* an
indicator of MMSE score >24. U now represents unmeasured factors that affect MMSE score
but do not confound the X-Y association. We should then expect to underestimate the association
between education and MMSE score in both strata of Y*. Among high-MMSE subjects, those with
low education are more likely to have factors that raise MMSE scores, whereas among low-MMSE
scorers, those with high education are less likely to have such factors. Thus, even if these unmeasured
factors are not confounders to start, they will be negatively associated with education within strata
of their shared effect, MMSE score.

This bias also occurs when there is an artificial boundary (ceiling or floor) on the measurement
of Y and one deletes observations with these boundary values. It also can arise from deleting
observations with extreme values of Y (outliers), although many might have to be deleted for the
bias to become large. Such exclusions will condition the analysis on the value of Y and can thus
introduce bias.

If X has no effect on Y, conditioning on Y* will not openthe U — Y <« X path in Figure 12-12.
Thus, if there is no confounding of the X-Y relation and no effect of X on Y, the estimated effect
of X on 'Y will remain unbiased after conditioning on Y* (although precision of the estimate may
be drastically reduced).

SELECTION BIAS AND MATCHING IN CASE-CONTROL STUDIES

Case-control studies are especially vulnerable to selection bias. By definition, case-control studies
involve conditioning on a descendant of Y, specifically, the selection variable S. If we compute effect
estimates from the case-control data as if there were no effect of Y on S—e.g., arisk difference—it
will be severely biased. As discussed in Chapter 8, however, the bias produced by this conditioning
will cancel out of the odds ratio from the study, provided Sis associated with exposure only through
Y (i.e., if Y separates Sfrom X).

Suppose, however, that the situation is as in Figure 12-13. Here, W is not a confounder of the
X-Y association if there is no conditioning, because it has no association with Y except through X.
A case-control study, however, conditions on selection S. Because W is associated with exposure
and affects selection, this conditioning results in a new association of W with Y via S. Thus
X <« W — S« Y isopened at Sand so becomes a biasing path. To identify the effect of X on
Y, this path must be blocked, for example, by conditioning on W. The same conclusion applies if
Figure 12-13 is modified so that W is associated with X via a variable U with (say) X <~ U — W.

As discussed in Chapter 11, case-control matching on W means that W affects selection, and
so Figure 12-13 can be taken to represent the situation in a case-control study matched on a
nonconfounder associated with the exposure. Here, we see that the matching generated the W-S
connection and thus necessitates control of W when no control would have been needed without
matching. Thus, the figure illustrates a type of overmatching (Chapter 11).

w

N/

X >

S

FIGURE 12-13 e Diagram showing potential selection bias in a case-control
study with a cause of the exposure influencing selection into the study.
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HOW ADJUSTING FOR BASELINE VALUES CAN BIAS
ANALYSES OF CHANGE

Research often focuses on identifying determinants of change in a dynamic outcome, such as blood
pressure, or depressive symptoms measured at start and end of follow-up, indicated by Y; and Ya.
Suppose we wish to estimate how much an exposure X, that was measured at baseline and preceded
Y1, affects the change in the outcome variable between times 1 and 2, measured with the change
score AY =Y, — Y1. An important issue is whether to adjust for (condition on) the baseline variable
Y; when attempting to estimate the effect of X on change in the outcome. This conditioning may
take the form of restriction or stratification on Y1, or inclusion of Y; as a covariate in a regression of
AYon X. Typically, X and Y; are associated. Indeed, this cross-sectional association may prompt
researchers to investigate whether X similarly affects changes in Y.

A common rationale for baseline adjustment is that baseline “acts like a confounder” under the
traditional confounder criteria: It is associated with X and likely affects the dependent variable
(AY). This intuition can be misleading, however, in the common situation in which Y; and Y, are
subject to measurement error (Glymour et al., 2005).

Suppose that our research question is whether graduating from college with honors affects
changes in depressive symptoms after graduation. In a cohort of new college graduates, depressive
symptoms are assessed with the Centers for Epidemiologic Studies—Depression scale at baseline
(CES-D;) and again after 5 years of follow-up (CES-D;). The CES-D scale ranges from 0 to 60,
with higher scores indicating worse depressive symptoms (Radloff, 1977). The dependent variable
of interest is change in depressive symptoms, which we measure in our data using the CES-D
change score ACES-D = CES-D, — CES-D;. The CES-D is a common measure of depressive
symptoms, but it is known to have considerable measurement error. In other words, the CES-D
score is influenced both by actual underlying depression and by randomly fluctuating events such
as the weather and the interviewer’s rapport with the subject. In a causal diagram, we represent
this by showing arrows into CES-D score from underlying depression and from a summary “error”
variable. The error is not measured directly but is defined as the difference between the CES-D
score and the latent variable “Depression,” so that

CES-D = Depression + Error

Bear in mind that we are actually interested in change in Depression (ADepression), rather than
change in CES-D (ACES-D).

Now suppose that, at baseline, graduating with honors (X) is associated with lower CES-D
scores, that is, there is an inverse association between X and Yi, perhaps because graduating
with honors improves mood, at least temporarily. These assumptions are shown in a DAG in Figure
12-14. Inthis figure, there isan arrow from Error; to ACES-D. This arrow represents a deterministic
(inverse) relationship between ACES-D and Error;, because

ACES-D = CES-D, — CES-D;
= Depression, + Error, — (Depression; + Errory)
= Depression, — Depression, + Error, — Errory

= ADepression + Error, — Error;

Another assumption in Figure 12-14 is that Error; and Error, are independent. Positive as-
sociation of these errors reduces the magnitude of the bias we will discuss, but this bias is not
eliminated unless the errors are identical (and so cancel out). Under the conditions of Figure 12-14,
honors degree has no effect on change in depression. Correspondingly, honors degree and ACES-D
are unconditionally independent under the null hypothesis because the only path in the diagram
connecting honors degree and change score is blocked by the collider CES-D;. Thus, when not
adjusting for CES-D;, we obtain an unbiased estimate of the overall (i.e., total) effect of honors
degree on change in depression.

Conditional on CES-D1, however, honors degree and ACES-D are associated, because condi-
tioning on CES-D; unblocks the path. This result can be explained as follows. Anyone with a high
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FIGURE 12-14 o An example in which baseline adjustment biases
analyses of change.

CES-D; has either high Depressiong, or large positive measurement Errory, or both. A nondepressed
person with high CES-D; must have a positive Errory, and a depressed person with low CES-D;
must have a negative Error;. Thus, within levels of CES-D;, Depression; and Error; are inversely
associated, and honors degree and Error; are therefore positively associated. Because Error; con-
tributes negatively to ACES-D, ACES-D and Error; are negatively associated (this is an example of
regression to the mean). Hence, conditional on CES-D;, honors degree and ACES-D are inversely
associated. Therefore the baseline-adjusted honors-degree association is inverse, making it appear
that honors degrees predict declines in depression, even when receiving an honors degree does not
affect changes in depression. The bias in the association is proportional to the error in the CES-D
scores and the strength of the honors degree—Depression; association (Yanez et al., 1998).

To summarize the example, the unadjusted association of honors degree and ACES-D correctly
reflects the effect of honors degree on change in actual depression (ADepression), whereas adjust-
ment for baseline CES-D; biases the association downward in the direction of the cross-sectional
association between CES-D; and honors degree.

Now consider baseline adjustment in a slightly different research question, in which we wish to
estimate how much a baseline exposure X affects the change score AY over the follow-up period. In
this case, we ignore measurement error and focus on identifying determinants of changes in CES-D
score. We return to our example of the effect of graduating college with honors (X) and CES-D
change scores. Figure 12—-15 provides one model of the situation. There are confounding paths from
X to AY via U and Y;, which we can block by conditioning on baseline score Yi. Thus, if U is
unmeasured, it appears from this model that we ought to control for baseline score. This model for
AY is fatally oversimplified, however, because there will always be other unmeasured factors that
affect CES-D; (such as genetic risk factors), which influence both CES-D; and the rate of change.

If we expand Figure 12-15 to include such a factor, B, and B is unassociated with X, we obtain
Figure 12-16. B does not appear to be a confounder, but it is a collider on a path between X and
AY. Conditioning on baseline Y; opens the confounding path X <~ U — Y; < B — AY. Thus,
adjusting for baseline is insufficient to eliminate bias in assessing the relation of X to the change
score AY; after such adjustment, to ensure unbiasedness we would have to adjust for all shared
causes of earlier and later scores—a daunting task to say the least.

X: Honors AY: Change in CES-D
Y,: CES-D
degree ! L7 TimeltoTime2

FIGURE 12-15 e An example in which baseline adjustment eliminates
bias in analyses of change.
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X: Honors AY: Change in CES-D
Degree Time 1to Time 2

B

FIGURE 12-16 ® An example in which baseline adjustment does not
eliminate bias in analyses of change.

CAVEATS AND EXTENSIONS

For many if not most epidemiologic research questions, the data available or feasible to obtain are
simply not adequate to identify the “right” answer. Given this reality, every method will be biased
under conditions that we cannot rule out. Thus it is rarely enough to know that a particular approach
is biased; we will want to estimate how biased it may be, especially relative to alternatives. Graphs
alone, however, are silent with respect to the magnitude of likely biases.

Graphs can be augmented with signs on each arrow to indicate directions of effects, as is
common with structural equation models (Duncan, 1975). Under the assumption of monotonic
effects (causal monotonicity), the directions of associations and biases can be computed from
these signs (VanderWeele and Robins, 2008b). More detail can be added to causal diagrams to
indicate mechanism types under the sufficient-component cause model described in Chapters 2 and
5 (VanderWeele and Robins, 2007b). Nonetheless, causal diagrams as currently developed do not
convey information about important aspects of causal relations and biases, such as the magnitudes
or functional forms of the relations (e.g., effect size or effect-measure modification).

The g-computation algorithm or g-formula (Robins, 1986, 1987, 1997) can be used to quantify
the size of effects and predict the consequences of interventions under an assumed causal struc-
ture (Pearl and Robins, 1995). The formula simplifies to ordinary standardization (Chapters 3 and
4) when the intervention variable is a fixed baseline characteristic (as opposed to a time-varying
exposure) (Robins, 1987; Pearl, 1995, 2000). Applying the g-computation algorithm is often im-
practical, for the same reason that stratified analysis methods (Chapter 15) can be impractical with
many covariates: There will rarely be enough observations for every combination of covariate lev-
els. This problem is addressed by assuming parametric models for some or all of the relations
among the covariates. This approach has a long history in the structural-equations literature (Dun-
can, 1975; Pearl, 2000). In the structural-equations model for a graph, each variable is represented
as a function of its parents and a random error that represents effects of forces not shown in the
graph. More advanced approaches such as g-estimation and marginal structural modeling estimate
parameters using structural models only for the effect of interest, and use associational models to
control confounding; see Chapter 21 for further description and references.

Modeling approaches allow comparison of bias magnitudes under various scenarios about causal
relations. For example, assuming logistic models, Greenland (2003a) compared the bias left by
failing to adjust for a variable that is both a collider and confounder, versus the bias introduced by
adjusting for it, and found evidence that when the causal structure is unknown, adjustment is more
likely to result in less bias than no adjustment. In many (if not most) situations, however, there will
be insufficient information to identify the best strategy. In these situations, analyses under different
assumptions (involving different diagrams or different structural equations under the same diagram)
will be essential to get a sense of reasonable possibilities. For example, we can perform analyses in
which a variable is not controlled because it is assumed to be an intermediate, and perform others
in which it is treated as a confounder (Greenland and Neutra, 1980); and, in the latter case, we can
vary the equations that relate the variable to exposure and disease. Such sensitivity analyses are
described in Chapter 19.
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A related difficulty is deciding whether a dubious causal relationship ought to be represented
in a DAG. In typical epidemiologic examples, very weak relationships are unlikely to introduce
large biases. Thus one heuristic for drawing DAGs would take the absence of an arrow between two
variables to indicate that the direct causal relation between the variables is negligible. While such
a heuristic can provide a useful perspective, we recommend starting with a DAG that shows all the
arrows that cannot be ruled out based on available data or logic (like time order), to determine what
assumptions are required in order to identify with certainty the causal parameter of interest with
the available data.

CONCLUSION

Causal diagrams show how causal relations translate into associations. They provide a simple,
flexible tool for understanding and discovering many problems, all using just a few basic rules.
Rather than considering each type of bias as a new problem and struggling for the “right” answer,
diagrams provide a unified framework for evaluating design and analysis strategies for any causal
question under any set of causal assumptions. Nonetheless, drawing a diagram that adequately
describes contextually plausible assumptions can be a challenge. To the extent that using diagrams
forces greater clarity about assumptions, accepting the challenge can be beneficial. Although we
may never know the “true” diagram, to the extent that we can specify the diagram, we will be able
to identify key sources of bias and uncertainty in our observations and inferences.






Section Il

Data Analysis






CHAPTER 13

Fundamentals of
Epidemiologic Data Analysis

Sander Greenland and Kenneth J. Rothman

Approximate Statistics: The Score Method 225
Approximate Statistics: The Wald Method 226
Likelihood Functions 227

Elements of Data Analysis 213
Data Editing 214

Data Description and Summarization 216
Data Tabulation 216
Choice of Categories 217
Classification of Subjects and
Person-Time 218
Handling of Missing Values 219

Methods of Testing and Estimation 219
Test Statistics and P-Values 220
Median-Unbiased Estimates 221
Sensitivity and Influence Analysis 221
Probability Distributions and Exact

Statistics 222

Approximate Statistics: The Likelihood-Ratio
Method 229

Likelihoods in Bayesian Analysis 230

Choice of Test Statistics 231

Continuity Corrections and Mid-P-Values 231

Computation and Interpretation of Two-Sided
P-Values 234

Multiple Comparisons 234

Joint Confidence Regions 235

Problems with Conventional Approaches 236

Summary 237

ELEMENTS OF DATA ANALYSIS

In Chapter 9 we emphasized that a study may be thought of as a measurement exercise, in which the
overall goal is accuracy in estimation. Data analysis is the step in this exercise in which the raw data
are checked for accuracy, and estimates are then computed from the data, based on assumptions
about the forces that led to those data. This chapter describes considerations in data preparation
and then reviews the statistical theory that underpins conventional statistical methods, covering in
more detail several of the topics introduced in Chapter 10.

By “conventional methods,” we mean methods that assume all systematic errors are known and
accounted for by the underlying statistical model. Such methods focus on accounting for random
errors by familiar means such as standard deviations, P-values, confidence intervals, and hypothesis
tests. These methods became the standard of analysis in the early to mid 20th century, in parallel with
the ascendance of random sampling and randomization as the “gold standard” of study design. Be-
cause they remain the standard of presentation in the health and social science literature, Chapters 14
through 17 provide details of conventional methods for epidemiologic data analysis, and Chapter 18
presents their Bayesian analogs. Chapter 19 provides an introduction to methods that address the
key shortcomings of conventional methods by examining the possible role of systematic errors (bias
sources) in generating the observations.

A good data analysis has several distinct stages. In the first stage, the investigator should review
the recorded data for accuracy, consistency, and completeness. This process is often referred to as
data editing. Next, the investigator should summarize the data in a concise form for descriptive
analysis, such as contingency tables that classify the observations according to key factors. This
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stage of the analysis is referred to as data reduction or data summarization. Finally, the summarized
data are used to estimate the epidemiologic measures of interest, typically one or more measures of
occurrence or effect (such as risk or relative-risk estimates), with appropriate confidence intervals.
This estimation stage is usually based on smoothing or modeling the data, which can lead to many
philosophical as well as technical issues (Greenland, 1993c); see Chapters 17-21.

The estimation stage of analysis usually includes statistical hypothesis testing. Chapter 10 ex-
plained why statistical hypothesis testing is undesirable in most epidemiologic situations. Nonethe-
less, because the statistical theory and methods of confidence intervals parallel those of statistical
hypothesis testing, it is useful to study the theory and methods of statistical hypothesis testing as
part of the foundation for understanding the estimation step of data analysis.

The final step of analysis involves properly interpreting the results from the summarization and
estimation steps. This step requires consideration of unmeasured factors that may have influenced
subject selection, measurement, and risk, as well as issues in statistical inference. These considera-
tions are usually nothing more than description of possible factors, along with qualitative judgments
about their possible importance. Chapter 19 describes ways in which these considerations can be
given a more quantitative form.

DATA EDITING

The essential first task of data analysis is careful scrutiny of the raw data for errors and correction
of such errors whenever possible (Chapter 24). Errors find their way into data in a variety of ways;
some errors are detectable in editing and some are not.

The data in an epidemiologic study usually come from self-administered or interviewer-
administered questionnaires, from existing records that are transcribed for research, or from elec-
tronic databases collected for purposes other than research (such as disease surveillance registries
or administrative medical databases). The data from these sources may be transcribed from this
primary form to a code form for machine entry, or they may be electronically loaded directly from
one database to a research database. Coding of responses is often necessary. For example, occu-
pational data obtained from interviews need to be classified into a manageable code, as does drug
information, medical history, and many other types of data.

Data on continuous variables such as age, although often grouped into broad categories for
reporting purposes, should be recorded in a precise form rather than grouped, because the actual
values will allow greater flexibility later in the analysis. For example, different groupings may be
necessary for comparisons with other studies. Year of birth may be preferable to age, because it
tends to be reported more accurately and does not change with time.

Some nominal-scale variables that have only a limited number of possible values can be pre-
coded on the primary forms by checking a designated box corresponding to the appropriate category.
For nominal-scale variables with many possible categories, however, such as country of birth or
occupation, precoded questions may not be practical if full detail is desired. If all data items can be
precoded, it may be feasible to collect the data in a primary form that can be read directly by a ma-
chine, for example, by optical scanning. Otherwise, it will be necessary to translate the information
on the primary data form before it is stored in a computer or in machine-readable form. Such trans-
lation may introduce errors, but it also provides an opportunity to check for errors on the primary
form. Alternatively, respondents can be asked to answer questionnaires made available to them on
a computer or via the Internet. These data will still need to be edited to code open-response items.

It is desirable to avoid rewriting the data onto a secondary data form during the coding process,
which may generate additional transcription errors. The number of errors may be reduced by coding
the data as part of the computer entry process. A computer program can be devised to prompt data
entry item by item, displaying category codes on a terminal screen to assist in coding. If the data are
coded and rewritten by hand, they will often require key entry anyway, unless they are coded onto
optical-scanning sheets; consequently, direct data entry during coding reduces both costs and errors.

Whenever possible, data entry and data coding should be kept separate. Data entry should follow
the original collection form as closely as possible. Computer algorithms should be used to code data
from the entries, rather than relying on data-entry personnel to perform the coding. For example, if
age information is collected as date of birth, it should be entered as date of birth and then age at the
study date can be calculated by the computer. Similarly, with fewer rewriting operations between
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the primary record and the machine-stored version, fewer errors are likely to occur. If rewriting
is unavoidable, it is useful to assess the extent of coding errors in the rewritten form by coding a
proportion of the data forms twice, by two independent individuals. The information thus obtained
can be used to judge the magnitude of bias introduced by misclassification from coding errors.

Basic editing of the data involves checking each variable for impossible or unusual values. For
example, gender may be coded 1 for male and 2 for female, in which case any other recorded
value for gender will represent an error or an unknown value. Usually a separate value, such as
—1or9,is used to designate an unknown value. It is preferable not to use a code of O if it can be
avoided, because non-numeric codes (such as special missing-value codes) may be interpreted by
some programs as a 0. Not assigning 0 as a specific code, not even for unknown information, makes
it easier to detect data errors and missing information. Any inadmissible values should be checked
against the primary data forms. Unusual values such as unknown gender or unusual age or birth
year should also be checked. A good data-entry program will provide for detection of such values.

The entire distribution of each variable should also be examined to see if it appears reasonable.
In a typical residential population, one expects about half of the subjects to be male; if the subjects
have, say, lung cancer, one might expect about 70% to be male; and if the subjects are a typical
group of nurses, one might expect a few percent to be male. Deviations from expectations may
signal important problems that might not otherwise come to light. For example, a programming
error could shift all the data in each electronic record by one or more characters, thereby producing
meaningless codes that might not be detected without direct visual inspection of data values. The
potential for such errors heightens the need to check carefully the distribution of each variable
during the editing of the data.

The editing checks described so far relate to each variable in the data taken singly. In addition to
such basic editing, it is usually desirable to check the consistency of codes for related variables. It is
not impossible, but it is unusual that a person who is 16 years of age will have three children. Men
should not have been hospitalized for hysterectomy. People over 2 meters tall are unlikely to weigh
less than 50 kg. Thorough editing will involve many such consistency and logic checks and is best
accomplished by computer programs designed to flag such errors (MacLaughlin, 1980), although
it can also be done by inspecting cross-tabulations. Occasionally, an apparently inconsistent result
may appear upon checking to be correct, but many errors will turn up through such editing.

It is important, also, to check the consistency of various distributions. If exactly 84 women
in a study are coded as “no menopause” for the variable “type of menopause” (“no menopause,”
surgical, drug-induced, natural), then it is reassuring that exactly 84 are likewise coded as having
no menopause for the variable “age at menopause” (for such a variable, the code “no menopause”
should take a different code number from that assigned to unknown—e.g., —1 for no menopause
and —9 for unknown).

An important advantage of coding and entering data through a computer program is the ability to
require all data forms to be entered twice. The data entered in the second pass are compared with the
data entered on the first pass, and inconsistencies are flagged and resolved in real time. Double data
entry reduces keystroke errors and other data-entry errors that affect data quality. A second advantage
of entering data through a computer program is the ability to edit the data automatically during
the entry process. Inadmissible or unusual values can be screened as they are entered. Inadmissible
values can be rejected and corrected on the spot by programming the machine to display an error
message on the screen and give an audible message as well to alert the operator about the error.
Unlikely but possible values can be brought to the operator’s attention in the same way.

A sophisticated data-entry program can also check for consistency between variables and can
eliminate some potential inconsistencies by automatically supplying appropriate codes. For exam-
ple, if a subject is premenopausal, the program can automatically supply the correct code for “age
at menopause” and skip the question. On the other hand, it is safer to use the redundancy of the
second question to guard against an error in the first. Nonetheless, even with sophisticated editing
during data entry, it is still important to check the stored data for completeness and reasonableness
of the distribution of each variable.

Even the most meticulous data-collection efforts can suffer from errors that are detectable during
careful editing. If editing is planned as a routine part of handling the data, such errors need not
cause serious problems. If editing is neglected, however, data errors may undermine subsequent
analyses.
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DATA DESCRIPTION AND SUMMARIZATION

Data analysis should begin with careful examination of the data distributions of the analysis vari-
ables (exposures, diseases, confounders, effect-measure modifiers). This examination can be done
with tables, histograms, scatterplots, and any other visual aid. We wish to emphasize strongly,
however, that these data descriptors do not include P-values, confidence intervals, or any other
statistics designed for making inferences beyond the data. Unfortunately, many statistical packages
automatically generate such inferential statistics with all descriptive statistics. This automation is
hazardous for a number of reasons, not the least of which is that it invites one to treat inferential
statistics as descriptions of one’s data.

With few exceptions, inferential statistics should not be treated as data descriptors, because useful
and correct interpretations of such statistics require some assumption or model about the relation of
the data to some population or theoretical structure beyond the data. For example, interpretations
of significance tests and confidence intervals refer to the true value of the association under study;
this value does not exist in the data, but in some target population or some theoretical model
relating disease to exposure. There are a few statistics that can be useful in both descriptive and
inferential analyses; an example is the proportion getting disease in an observed cohort, which
is both descriptive of the cohort and is also an estimate of the average risk of disease in cohorts
exchangeable with the observed cohort. Nonetheless, attempts to claim a descriptive role for analytic
statistics such as P-values and standard errors appear to be contrived and unnecessary.

If descriptive statistics are not for inference beyond the data, what are they for? First, they can
help one spot data errors. There may be nothing unusual about having both women under age 40 and
menopausal women in one’s data, but if one sees a cross-tabulation of age and menopausal status
(premenopausal, natural, surgical) in which there are women under age 40 who have had natural
menopause, it behooves one to check the correctness of the age and menopausal status data.

Second, descriptive statistics can help one anticipate violations of assumptions required by infer-
ential statistics. In epidemiology, most inferential statistics are large-sample (asymptotic) statistics,
meaning that they require certain numbers of subjects to be “large” (where “large” may mean only
“five or more”). For example, validity of the ordinary (Pearson) chi-square (x?) test of association
for two categorical variables is usually said to require expected values of at least four or five per
cell. Suppose, upon examining the observed data, one sees that there are fewer than eight subjects
in some categories of an exposure. One should then immediately know that, in a complete table of
exposure and disease, some cells will have fewer than four expected subjects and so will not have
sufficiently large expected values for the Pearson x? test to be valid. For such checking purposes,
one will often want to return to the descriptive summaries after one has moved on to inferential
statistics.

DATA TABULATION

In many fields, means, medians, and other continuous measures are common data summaries. In
epidemiology, however, the most useful summaries are usually contingency tables in which the
frequency of subjects (or units of observation) with specific combinations of variable values is
tabulated for the key variables of interest. Such a table may contain essentially all the relevant
information in the data. If so, the contingency table will be all the investigator needs for estimation.

Even if the table does not contain all relevant information, it can directly display relations among
the main study variables. For variables (such as age and diastolic blood pressure) that are measured
on continuous scales, scatterplots and other exploratory visual displays can provide further insights
(Tukey, 1977).

Analysis of data in the form of a contingency table essentially assumes that there is at most only
a small number of variables that might be confounders or effect-measure modifiers. If one must
adjust simultaneously for a large number of variables, an analysis based on regression modeling may
be necessary. Examination of contingency tables and scatterplots can reveal whether the number
of subjects is adequate for certain types of regression models, and can also serve as a check on
the validity of the regression analysis. Indeed, proceeding with an abridged analysis based on the
contingency table data is essential even if one is certain that the final analysis will be based on a
regression model.
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CHOICE OF CATEGORIES

Collapsing the edited data into categories for the contingency table may necessitate some decision
making. The process can be straightforward for nominal-scale variables such as religion or ethnicity,
which are already categorized. Some categories may be collapsed together when data are sparse,
provided these combinations do not merge groups that are very disparate with respect to the phe-
nomena under study. For continuous variables, the investigator must decide how many categories to
make and where the category boundaries should be. The number of categories will usually depend
on the amount of data available. If the data are abundant, it is nearly always preferable to divide a
variable into many categories. On the other hand, the purpose of data summarization is to present
the data concisely and conveniently; creating too many categories will defeat this purpose.

For adequate control of confounding, about five categories may often suffice (Cochran, 1968),
provided the boundaries are well chosen to reflect the size of the confounder effects expected across
and within categories. As discussed later in this chapter and in Chapter 15, use of percentiles to
create confounder categories (e.g., using quintiles as boundaries to create five equal-sized cate-
gories) may fail to control confounding adequately if the variable is a strong confounder and is
unevenly distributed (highly nonuniform) across its range. In that case, one or a few of the resulting
confounder-percentile categories are likely to be overly broad, resulting in large confounder effects
within those categories (where they will be uncontrolled), and leaving the exposure-effect estimates
seriously confounded within those categories.

Similarly, if an exposure variable is categorized to examine effect estimates for various levels of
exposure, again about five categories may often suffice, provided the boundaries are well chosen to
reflect the size of the effects expected across the range of exposure. As discussed later in this chapter
and in Chapter 17, use of percentiles to create the exposure categories may fail to capture exposure
effects adequately if the exposure distribution is quite uneven. In that case, one or a few of the
resulting exposure-percentile categories are likely to be overly broad, resulting in exposure effects
aggregated within those categories (where they may go undetected), and diminished estimates of
exposure effects across categories.

All too often the data are so sparse that it will be impractical to use as many as five categories for
a given variable. When the observations are stretched over too many categories, the numbers within
categories become so small that patterns cannot be easily discerned in the resulting cross-tabulation.
Even if the number of categories per variable is only two or three, a large body of data can be spread
too thin if the contingency table involves many dimensions, that is, if many variables are used to
classify the subjects.

Suppose that we create a separate two-way table (or stratum) of exposure and disease for each
possible combination of levels for potentially confounding variables. With three confounders of
three categories each, there will be 3% = 27 strata, for a total of 27 x 4 = 108 table cells if both
exposure and disease are dichotomous. With an additional two confounders of three categories each,
there will be 3% = 243 strata, for a total of 243 x 4 = 972 cells; this is enough to stretch even a
considerable body of data quite thinly, because a study of 1,000 people will average only about one
subject per cell of the multidimensional table. If five categories are used for the five confounders,
there will be 5° = 3,125 strata, for a total of 3,125 x 4 = 12,500 cells.

There is no generally accepted method to decide where to draw the boundary between categories.
A frequently expressed concern is that boundaries might be “gerrymandered,” that is, shifted after
a preliminary examination of the effect estimates in such a way that the estimates are altered in
a desired direction. Gerrymandering can occur even when the analyst is attempting to be honest,
simply through failure to understand the problems it may engender. For example, conventional
statistical methods assume that boundaries were chosen independently of the outcome. Nonethe-
less, there are legitimate reasons for inspecting the variable distributions when selecting category
boundaries. For example, when the cells are large but the data patterns are sensitive to a small shift
in the category boundaries, this sensitivity is a finding of potential interest, indicating some special
feature of the data distribution. There may be natural categories if the distribution has more than
one mode. Nonetheless, it is best to select exposure and outcome categories without regard to the
resulting estimates and test statistics; otherwise, the estimates and P-values will be biased.

If meaningful category boundaries are inherent in the variable, these should be used when-
ever possible. For example, in categorizing subjects according to analgesic consumption, relevant
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categories will contrast the various therapeutic indications for analgesic use, for which the recom-
mended doses can be specified in advance. It is often desirable, especially for an exposure variable,
to retain extreme categories in the analysis without merging these with neighboring categories, be-
cause the extreme categories are often those that permit the most biologically informative contrasts,
provided enough subjects fall into these categories.

As mentioned earlier, one common method for creating category boundaries is to set the bound-
aries at fixed percentiles (quantiles) of the variable. For example, quintile categories have boundaries
at the 20th, 40th, 60th, and 80th percentiles of the variable distribution. Although this categorization
is sometimes adequate, such an automatic procedure can lead to very misleading results in many
situations. For example, for many occupational and environmental exposures, such as to electro-
magnetic fields, most people—over 90%—are exposed in a very narrow range. When this is so,
there may be almost no difference in exposure among the first four of the five quintiles, and the fifth
high-exposure quintile may itself contain many persons with exposure little different from the lower
quintiles. As a result, a comparison of risk will reveal no effect across the first four quintiles, and
a diluted effect comparing the fifth quintile to the fourth. The apparent absence of trend produced
by such a quintile analysis may be taken as evidence against an effect, when in reality it is only an
artifact of using quintiles rather than biologically or physically meaningful categories.

In a parallel fashion, use of percentiles to create confounder categories can leave serious residual
confounding when most of the confounder distribution is concentrated in a very narrow range, but
the confounder effect is considerable across its entire range. In that case, there might be almost
no difference in the confounder across all but one of the categories, while the remaining category
may contain persons with vastly different confounder values. As a consequence, that category may
yield a highly confounded estimate of exposure effect and produce bias in any summary estimate
of exposure effect.

Another problem in creating categories is how to deal with the ends of the scale. Open-ended
categories can provide an opportunity for considerable residual confounding, especially if there are
no theoretical bounds for the variable. For example, age categories such as 65+, with no upper limit,
allow a considerable range of variability within which the desired homogeneity of exposure or risk
may not be achieved. Another example is the study of the effects of alcohol consumption on the risk
of oral cancer. Control of tobacco use is essential; within the highest category of tobacco use, it is
likely that the heaviest alcohol users will also be the heaviest smokers (Rothman and Keller, 1972).
When residual confounding from open-ended categories is considered likely, we recommend that
one place strict boundaries on every category, including those at the extremes of the scale; if sparse
categories result, one should use sparse-data analysis methods, such as Mantel-Haenszel methods
(see Chapter 15) or modeling (Chapters 20-21).

A convenient method of assembling the final categories is to categorize the data initially much
more finely than is necessary. A fine categorization will facilitate review of the distribution for
each variable; fewer categories for subsequent analyses can then be created by combining adjacent
categories. Combining adjacent strata of a confounding variable can be justified if no confounding
is introduced by merging the categories. The advantage of starting with more categories than will
ultimately be necessary is that the data can be used to help identify which mergings will not introduce
confounding. Merging will generally not introduce confounding if the exposure distribution does not
vary across strata of the study cohort (in a cohort study) or source population (in a case-control study).
It will also not introduce confounding if average risk among the unexposed is constant across strata.

CLASSIFICATION OF SUBJECTS AND PERSON-TIME

Classification of subjects or person-time into categories of exposure and other covariates is rarely
straightforward if the covariate is a time-varying subject characteristic such as an occupational
exposure or medication. At the very least, the person-time experience classified as “exposed” needs
to be defined according to a plausible model for induction time (see Chapters 7 and 16). Before a
person becomes exposed, all of that person’s time at risk is, naturally, unexposed person-time. If
exposure occurs ata point in time and the induction-time model being evaluated calls for a minimum
induction time of 5 years, then all the time at risk up to 5 years after the point of exposure for each
individual should likewise be treated as unexposed person-time experience rather than exposed. The
reason that this time following exposure should be treated as unexposed time is that, according to
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the induction-time model, any disease that occurs during the period just following exposure relates
back to a period of time when exposure was absent.

Tallying persons or person-time units (time at risk) into the appropriate exposure categories
must be done subject by subject. The assignment into categories may involve complicated rules if
the exposure may vary. Incident cases are tallied into the same category to which the concurrent
person-time units are being added. For example, if the induction-time model specified a minimum
induction time of 5 years, an incident case occurring 4 years after exposure would not be tallied as
an “exposed” case because the person-time for that individual at the time of diagnosis would not
be contributing toward “exposed” person-time.

HANDLING OF MISSING VALUES

Frequently, some subject records in a data file are incomplete, in that values are missing from that
record for some but not all values of study variables. A common way of dealing with such records is
simply to delete them from any analyses that involve variables for which the records have missing
values. This approach is called complete-subject analysis. It has the advantage of being easy to
implement, and it is easy to understand when it is a valid approach. It will be valid (within the limits
of the study) whenever subjects with complete data have been, in effect, been randomly sampled
from all the subjects in the study; the missing data are then “missing completely at random.” It will
also be valid if these subjects are randomly sampled within levels of complete variables that are
used for stratification (Little and Rubin, 2002).

A drawback of the complete-subject approach is that it is valid only under limited conditions
compared with certain more complex approaches. It can also be very inefficient if many subjects have
missing values, because it discards so much recorded data (it discards all the data in a record, even
if only one study variable in the record has a missing value). For these reasons, many alternatives to
complete-subject analysis have been developed, as can be found in more advanced statistics books
(e.g., Allison, 2001; Little and Rubin, 2002; Tsiatis, 2006).

Most missing-data methods fall into one of two classes. Imputation methods predict and fill in
the missing values based on the observed data and the missing-data pattern (the pattern of missing
values seen among all records); multiple imputation is a common example (Little and Rubin, 2002).
Inverse-probability weighted methods analyze directly only the complete records but assign special
weights to those records based on estimated probabilities of completeness (Robins et al., 1994).
All of these methods can be especially valuable when a high proportion of subjects are missing
data on a study exposure or a strong confounder. Nonetheless, they assume that the probability that
a variable is missing depends only on the observed portion of the data. This “missing at random”
condition is weaker than the “missing completely at random” condition, but should not be assumed
automatically, especially when the missing data are responses to sensitive personal questions.

Unfortunately, there are some methods commonly used in epidemiology that can be invalid even
if data are missing completely at random. One such technique creates a special missing category for
a variable with missing values, and then uses this category in the analysis as if it were just a special
level of the variable. In reality, such a category is a mix of actual levels of the variable. As a result,
the category can yield completely confounded results if the variable is a confounder (Vach and
Blettner, 1991) and can thus lead to biased estimates of the overall effect of the study exposure. An
equivalent method, sometimes recommended for regression analyses, is to create a special “missing-
value” indicator variable for each variable with missing values. This variable equals 1 for subjects
whose values are missing and 0 otherwise. This missing-indicator approach is just as biased as the
“missing-category” approach (Greenland and Finkle, 1995). For handling ordinary missing-data
problems, both the missing-category and missing-indicator approaches should be avoided in favor
of other methods; even the complete-subject method is usually preferable, despite its limitations.

METHODS OF TESTING AND ESTIMATION

As indicated in Chapter 10, there is considerable controversy regarding what are the best or even
proper approaches to statistical analysis. Most techniques currently used in epidemiology, how-
ever, can be derived from fairly standard methods of significance testing and interval estimation.
All such methods require that the analyst (or, by default, the analyst’s computer program) make
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assumptions about the probabilities of observing different data configurations. This is so even if
one adopts a “nonparametric” or “distribution-free” approach to data analysis. “Distribution-free”
methods involve assumptions (models) about data probabilities just as do other methods; they are
distinguished only in that they require weaker assumptions than other methods to be valid. Because
these weaker assumptions amount to assuming that sampling was random or exposure was random-
ized, and these assumptions are questionable in observational studies, analysis of epidemiologic
data always requires critical examination of the models and assumptions underlying the statistical
methods (Greenland, 1990; Chapter 19).

Two broad classes of methods can be distinguished. One comprises small-sample (or exact) meth-
ods, which are based on direct computation of data probabilities; the other comprises large-sample
(or asymptotic) methods, which are based on approximations whose accuracy depends directly on
the amount of data available. Approximate methods are used because exact methods can become
computationally impractical when the analysis involves many subjects or many variables, and be-
cause exact methods are not available for all epidemiologic measures. These different approaches
will be illustrated later in this chapter, but in most of this book we focus almost exclusively on
simpler large-sample methods.

TEST STATISTICS AND P-VALUES

Recall from Chapter 10 that significance tests begin with a test statistic. Examples include the
familiar Pearson or Mantel-Haenszel x? statistic computed from a contingency table. Another
common type of test statistic is the Wald statistic, which is the estimate of interest (such as an
estimated rate difference, or estimated log rate ratio) divided by its estimated standard deviation;
this statistic is also known as a Z-ratio or Z-value. Another common test statistic is the total number
of exposed cases observed in the study, which is used in exact tests. A x? statistic reflects only the
absolute distance of the actual observations from the observation one would expect under the test
hypothesis; it does not reflect direction of departure. In contrast, both the Z-ratio and the number
of exposed cases reflect the direction of departure of the actual observations from the observation
one would expect under the test hypothesis. For example, Wald statistics of —1.9 and 1.9 would
represent equal but opposite departures of the actual observations from their expectations under
the test hypothesis. One can compute an absolute (nondirectional) statistic by squaring or taking
the absolute value of a directional statistic, provided the latter is O when the actual observations
perfectly conform to what would be expected under the test hypothesis (as with Wald statistics).

To test a hypothesis with a given statistic, one must be able to compute the probability (fre-
quency) distribution of the statistic over repetitions of the study when the test hypothesis is true.
Such computations ordinarily assume the following validity conditions: (a) only chance produces
differences between repetitions, (b) no biases are operating, and (c) the statistical model used to
derive the distribution is correct. The upper one-tailed P-value for the observed test statistic is the
probability that the statistic would be as high as observed or higher if the test hypothesis and validity
conditions were correct; the lower one-tailed P-value for the statistic is the probability that the test
statistic would be as low as observed or lower if the test hypothesis and validity conditions were
correct. In the remainder of this chapter, we will refer to these P-values simply as upper and lower.

To interpret lower and upper P-values correctly, one must distinguish between absolute and
directional test statistics. Consider an ordinary x? statistic for a contingency table (Chapter 17).
This absolute statistic ranges from 0 to extreme positive values. A very high value means that the
observations are far from what would be expected under the test hypothesis, and a small upper
P-value means the observations are unusually far from this expectation if the test hypothesis and
validity conditions are correct. In contrast, a very low value is close to 0 and means that the
observations are close to this expectation. A small lower P-value thus means the observations are
unusually close to this expectation if the test hypothesis and validity conditions are correct.

Now consider an ordinary Wald statistic, or Z-score, computed from a point estimate and its
standard error. This directional statistic ranges from extreme negative to extreme positive values.
A very high value still means that the observations are far from this expectation, but in a positive
direction. Now, however, a very low value is very negative, and means that the observations are far
from what would be expected under the test hypothesis. A small lower P-value thus means that the
observations are unusually far from this expectation if the test hypothesis and validity conditions are
correct. Thus the meaning of a lower P-value is very different for absolute and directional statistics.
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A questionable dual tradition regarding P-values and tests has become firmly established in
statistical practice. First, it is traditional to use P-values that refer to absolute departures, regardless
of whether the actual scientific, medical, or policy context would dictate concern with only one
direction of departure (e.g., a positive direction). This practice is bad enough on contextual grounds.
For example, in the legal arena it has led to use of absolute statistics to determine whether evidence
of harm is “significant,” even though by the very statement of the problem, the only concern is with
a harmful direction of effect.

Suppose now, whether from context or tradition, one wishes to use an absolute test. Such a test
logically dictates use of an absolute statistic. In a rather strange second tradition, however, it has
become common first to compute a directional statistic, and from that to compute a nondirectional
two-sided P-value for the test. This two-sided P-value is usually defined as twice the smaller of the
upper and lower P-values. There is, however, a logical problem with two-sided P-values defined
in this manner: Unlike one-tailed P-values, they are not necessarily probabilities, as can be seen
by noting that they may exceed 1 (as will be shown in a later section). Several different proposals
have been made to overcome this problem, one of which (mid-P-values) we discuss later. For now,
we use the most common definitions of P-values, in which a one-tailed P-value is always a true
probability, but a two-sided P-value is simply twice the smaller of two probabilities and so is not
necessarily a probability.

These traditions have implications for interpreting confidence intervals. Recall that a two-sided
90% confidence interval is the set of all values for the measure of interest that have a two-sided
P-value of at least 0.10. It follows that a point is inside the two-sided 90% confidence interval if
and only if both its lower and upper P-values are greater than 0.10/2 = 0.05. Similarly, a point is
inside the two-sided 95% confidence interval if and only if both its lower and upper P-values are
greater than 0.05/2 = 0.025. Indeed, these conditions are equivalent to the definitions of 90% and
95% confidence intervals.

MEDIAN-UNBIASED ESTIMATES

An exact two-sided P-value reaches its maximum at the point where the lower and upper P-values
are equal (the peak of the exact P-value function). This point may be taken as a point estimate
of the measure of interest and is called the median-unbiased estimate. The name median unbiased
suggests that the estimate has equal probability of being above the true value as below it. The
median-unbiased estimate does not exactly satisfy this condition; rather, it is the point for which
the test statistic would have equal probability of being above and below its observed value over
repetitions of the study, as well as the peak (maximum) of the exact two-sided P-value function.

Under “large-sample” conditions that will be discussed later, the median-unbiased estimate tends
to differ little from the far more common maximum-likelihood estimate, also discussed later. We
thus focus on the latter estimate in the ensuing chapters of this book.

SENSITIVITY AND INFLUENCE ANALYSIS

Inferential statistics such as P-values and confidence limits must themselves be subjected to scrutiny
to complete the statistical portion of the data analysis. Two broad components of this scrutiny are
sensitivity and influence analysis.

As mentioned earlier, all statistical techniques, even so-called nonparametric or distribution-free
methods, are based on assumptions that often cannot be checked with available data. For exam-
ple, one may be concerned that the observed association (or lack thereof) was a consequence of
an unmeasured confounder, or misclassification, or an undetected violation of the model used for
analysis. One way to deal with the issue of possible assumption violations is to conduct a sensitivity
analysis, in which the statistical analysis is systematically repeated, using different assumptions
each time, to see how sensitive the statistics are to changes in the analysis assumptions. In sensi-
tivity analysis, one may repeat the analysis with different adjustments for uncontrolled confound-
ing, measurement errors, and selection bias, and with different statistical models for computing
P-values and confidence limits. Chapter 19 provides an introduction to sensitivity analysis.

It is possible for analysis results to hinge on data from only one or a few key subjects, even
when many subjects are observed. Influence analysis is a search for such problems. For example,
the analysis may be repeated deleting each subject one at a time, or deleting each of several special
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subgroups of subjects, to see if the statistics change to an important extent upon such deletions.
Statistical quantities that change little in response to such deletions are sometimes said to be resistant
to the deletions. When the key estimates of interest are found to be strongly influenced by deletions, it
will be necessary to report the influential observations and their degree of influence on the estimates.

PROBABILITY DISTRIBUTIONS AND EXACT STATISTICS

We will illustrate basic concepts in the context of a prevalence survey for human immunodeficiency
virus (HIV). Suppose that we take as our test statistic the number of HIV-positive subjects observed
in the sample. It is possible that among 1,000 sampled subjects, 10 would test positive; it is also
possible that four would test positive; it may also be possible that 100 would test positive. If, however,
our sample of 1,000 was drawn randomly from all U.S. Army enlistees, getting 100 positives would
be highly improbable (in the sense that we would expect that result to occur very rarely), whereas
getting four positives would not. The reasons are that the U.S. Army will not knowingly enlist
high-risk or HI\-positive persons (so such persons tend to avoid enlistment), and HIV prevalence
in the general U.S. population is less than a few percent.

A probability distribution for a test statistic is just a rule, model, or function that tells us the
probability of each possible value for our test statistic. For the present example, our test statistic
for testing hypotheses about HIV prevalence in the sampled population will be Y = the number
of HIV-positive sample subjects. Suppose that the survey sample is a simple random sample of
the population, the true prevalence of HIV in the population is 0.004, and the sample size is no
more than a fraction of a percent of the population size. Then the probability of getting Y = 2 (two
positives) among 1,000 surveyed is given by

Pr(Y = 2| HIV prev. = 0.004) = 0.146

or about one chance in seven.

We can derive the preceding probability (of 0.146) as follows. Suppose the subjects are to be
selected in sequence, from the first to the 1,000th subject. With our assumptions, the HIV status of
each subject is approximately independent of the status of any other subject. Thus, the probability
that the first and second subject are HIV-positive and the others are not is

0.004%(1 — 0.004)1-000—-2

We obtain the same number for the probability that any two distinct subjects (e.g., first and third,
or second and fourth) are positive and the others are not.

To find the total probability that exactly two subjects are positive, we must multiply the preceding
number by the number of combinations (ways) in which exactly two of the 1,000 subjects are
positive. To find this number of combinations, note that there are 1,000 - 1,000 pairs of orders of
subjects (first, first), (first, second), (second, first), etc. However, in 1,000 of these pairs of orders
the first and second entries are the same and so do not contain two subjects, i.e., the pairs (first,
first), (second, second), and so on. Removing these one-subject pairs leaves

1,000 -1,000 — 1,000 = 1,000(1,000 — 1) = 1,000 - 999

two-subject pairs of orders. However, each of these two-subject pairs has a companion pair that
contains the same two subjects in reverse order, e.g., the pair (first, second) represents the same
two subjects as (second, first). Therefore, the total number of unique combinations of two subjects
among the 1,000 is 1,000 - 999/2. To finish, we multiply this number by the probability that a given
pair is positive and the remaining subjects are not:

(1,000 - 999/2)0.0042(1 — 0.004)1:00-2 — 0.146

which is the probability that exactly two subjects are HIV-positive.

The preceding paragraph is an example of a combinatorial argument. Such arguments are often
used to find sample probabilities when random sampling or randomization has been employed
in selecting subjects for study. Such arguments also form the foundation of most small-sample
statistical methods. The number of unique possible combinations of y subjects taken from N total
is given by the formula N!/y!(N — y)!. (The exclamation point ! following a number y is read
“factorial” and indicates that one should take the product of all numbers from 1 to y; that is,
yl=1.2..... y; by definition, 0! is set equal to 1.)
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The number of combinations is so important in probability that it is usually expressed with a

special notation defined by
(N) NI
y/)  yUN —y)!

The number of combinations (y) is often read “N choose y” and is sometimes called the combi-

natorial coefficient or binomial coefficient. The latter term arises from the fact that (’;) appears in
the general formula for the binomial distribution (see later). In the above example of finding the
number of combinations of two subjects out of 1,000, we get

1,000\ 1,000! _1,000-999-998 - ... - 2.1
2 )7 21(1,000—2)! © 2-.1(998-997 - - - 2.1)
which is what we deduced earlier.

Under the above assumptions, the probability of getting Y = y (y positives) out of 1,000 subjects,
given an HIV prevalence of 0.004, is

= 1,000 -999/2

Pr(Y =y | HIV prevalence = 0.004) = (1’0;)0> 0.004Y(1 — 0.004)1000-y [13-1]

Equation 13—1 is an example of a probability distribution. Specifically, it is an example of a binomial
distribution with a probability parameter of 0.004 and a sample size of 1,000.

Now suppose that we carry out the random-sample survey and observe only one positive among
1,000 sampled persons. From formula 13-1, we can compute the probability of observing Y <1
(one or fewer positives) under the test hypothesis that the HIV prevalence is 0.004 in the sampled
population. Because only Y =0and Y = 1 correspond to one or fewer positives, the probability of
one or fewer positives is

Pr(Y < 1|HIV prevalence = 0.004)
= Pr(Y = 0| HIV prevalence = 0.004)
-+ Pr(Y = 1| HIV prevalence = 0.004)
_ (1’%(’0) 0.004%(1 — 0.004)-0% (1’300> 0.0041(1 — 0.004)%
= (1 — 0.004)%%% 1 1,000(0.004)(1 — 0.004)%%*
=0.091

This probability is Piower, the traditional (Fisher) lower-tailed exact P-value for the test hypothesis.
Here, the number of positives Y serves as the test statistic, and we compute the P-value directly
from the exact distribution of Y as given by formula 13-1.

If we repeat our calculation under the test hypothesis that the HIV prevalence is 0.005, we have
to use the following probability distribution to get P-values:

Pr(Y = y | HIV prevalence = 0.005)
_ (1'°y00> 0.005Y (1 — 0.005)%000- [13-2]

The differences between formulas 13-1 and 13-2 illustrate how the probability distribution for the
test statistic changes when the test hypothesis is changed, even though the test statistic Y does not.
Formula 13-2 yields a lower P-value of

Piower = Pr(Y < 1| HIV prevalence = 0.005)
= Pr(Y = 0| HIV prevalence = 0.005) + Pr(Y = 1| HIV prevalence = 0.005)
= (1 —0.005)%%° 4 1,000(0.005)(1 — 0.005)**° = 0.040

By doubling the above P-values, we get two-sided P-values of 0.18 under the hypothesis that
the HIV prevalence is 0.004, and 0.08 under the hypothesis that the HIV prevalence is 0.005. To
illustrate, recall that a two-sided 90% confidence interval derived from a test comprises all points
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for which the two-sided P-value from the test is at least 0.10, and the 90% confidence limits are
the two points at which the two-sided P-value is 0.10. Because a prevalence of 0.0040 yielded a
two-sided P-value greater than 0.10, it must be inside the 90% interval. Because a prevalence of
0.0050 yielded a two-sided P-value less than 0.10, it must be outside the 90% interval. We can
interpolate that the upper 90% limit must be roughly (0.10 — 0.08)/(0.18 — 0.08) = one fifth of
the way from 0.005 to 0.004, which corresponds to a prevalence of 0.0048. One way to check this
interpolation is to compute the lower exact P-value for 0.0048:

Piower = (1 — 0.0048)°% 4+ 1,000(0.0048)(1 — 0.0048)°*° = 0.0474

Doubling this lower exact P-value yields a two-sided P-value of 0.095. Because this P-value is
just under 0.10, we may conclude that a prevalence of 0.0048 is just outside the 90% interval, and
that the upper 90% confidence limit is a little under 0.0048 (the limit is in fact closer to 0.0047).

To obtain a point estimate of the HIV prevalence, we must find the test hypothesis at which the
lower P-value and upper P-value equal one another. We must therefore also calculate the upper
exact P-value, Pypper, Which is the probability that Y is at least as big as the observed value of 1.
It is often easier to work with 1 minus this probability, which is the probability that Y is less than
its observed value. For example, if we wish to test the hypothesis that the HIV prevalence is 0.001,
we use the relation

Pupper = Pr(Y > 1| HIV prevalence = 0.001)
=1—Pr(Y < 1|HIV prevalence = 0.001)
Because 0 is the only possible Y value of less than 1, we have
Pupper = 1 — Pr(Y = 0| HIV prevalence = 0.001)
=1—(1-0.001)*°0 =063
The lower P-value for the same test hypothesis is
Piower = Pr(Y < 1|HIV prevalence = 0.001)
= (1 —0.001)%%° 4+ 1,000(0.001)(1 — 0.001)°** = 0.74

Thus Pygper < Piower for an HIV prevalence of 0.001. If, however, we increase the test hypothesis
t0 0.0011 and recompute the P-values, we get

F)upper =1-(1- 0.0011)1’000 = 0.67
and this equals
Plower = (1 — 0.0011)%% + 1,000(0.0011)(1 — 0.0011)** = 0.67

Thus, 0.0011 is the median-unbiased estimate of the HIV prevalence. Note that this estimate is not
quite equal to the sample prevalence of 1/1,000 = 0.0010. The sample prevalence, however, is not
an ideal estimate in very small samples (Bishop et al., 1975; Chapter 12; Greenland, 2006b).

This process of repeated P -value computation typifies many computational approaches for exact
analysis, as well as for various approximate methods such as g-estimation (Chapter 21). For the
preceding simple example, there are formulas that give the exact limits in just one step, but for more
complicated data one must turn to iterative computations (and hence computers) to get exact results.

In the preceding example, the most crucial statistical assumption underlying the applications of
the binomial distribution was the assumption that the sampling of 1,000 participants from the target
population was random. If the sampling was not random, then the above statistical analysis (and
any inference based on it) would be open to question. Even if the sampling was random, further
assumptions would be needed to make valid inferences about HIV prevalence in the sampled
population, among them that the measurement technique (here, the test for HIV) used by the survey
is error-free. Such an assumption is of course not realistic, but it could be assessed via sensitivity
analysis (Chapter 19).

By computing P-values for many different test hypotheses, we are in effect drawing out the
P-value function. Returning to the preceding example, we may continue to draw out the P-value
function for the HIV prevalence based on our random-sampling model by writing a general form
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for the probability distributions. If we let the Greek letter 7z (pi) stand for the HIV prevalence in
the sampled population, we can write the probability distribution for the number of HIV positives
in our sample of 1,000 as

Pr(Y = y | HIV prevalence = ) = (1’300) Y (1 — )t00-y

The earlier distributions are special cases of this formula, with 7= hypothesized to equal 0.004, 0.005,
0.0048, 0.001, and 0.0011, respectively. The number 7 in this formula is called a parameter of the
distribution, because each different value for 7 produces a different probability distribution. In our
example, 7 represents the true prevalence of HIV in the sampled population; in other examples, =
will represent risk of disease or death.

We can be even more general by letting N represent the size of our random sample; then the last
equation becomes

(D‘)ny(l—n)'\"y [13-3]

Given a fixed sample size N and parameter 7z, any probability distribution of this form is called a
binomial distribution. Equations 13—1 and 13-2 are examples with N = 1,000 and = = 0.004 and
0.005, respectively.

APPROXIMATE STATISTICS: THE SCORE METHOD

Exact distributions such as the binomial can be unwieldy to work with if N is very large. This
difficulty has led to extensive development of approximations to such distributions, which allow
calculation of approximate P-values and estimates.

Some approximations to the binomial distribution are very accurate. Rather than display the
most accurate, we focus on two approximate methods, the score method and the Wald method, that
are simpler and are special cases of the most common methods. We present many examples of score
and Wald statistics in later chapters. The reader has probably encountered examples in past reading,
for most epidemiologic statistics are of one of these two types.

Suppose that we have a test statistic Y and formulas E(Y |) and V (Y |7r) that give us the exact
mean and variance of Y when the true parameter value is 7. We may then construct approximate
tests of the parameter by treating Y as if it were normal with mean and variance computed from the
formulas. In the HIV example, Y is binomial, and the formulas for its mean and variance are N
and N (1 — ). We then test values of & by treating Y as if it were normal with mean Nz and
standard deviation (SD) [N (1 — 7)]*2. This procedure implies that the score statistic, given by

Xscore = (Y — Nm)/[N7 (1 — 7)]"/? [13-4]

has a “standard” normal distribution (that is, a normal distribution with a mean of 0 and a SD of 1).
Thus, to find an approximate lower P-value when Y =y, we merely look up the probability that
a standard normal variate would be less than or equal to xscore With y substituted for Y. To find an
approximate upper P-value, we look up the probability that a standard normal deviate would be
greater than or equal to xscore With y substituted for Y.

To illustrate this process, suppose that, in the HIV example, the test hypothesis is that the HIV
prevalence 7 is 0.004. Because N = 1,000 subjects were observed and only Y = 1 was HIV-
positive, we get

3 1 — 1,000(0.004)
Xseore = 11/000(0.004)(1 — 0.004)]%/2

To get the lower P-value based on this statistic, we need only use a table of the standard normal
distribution to find the probability that a standard normal variate would be less than or equal to
—1.503; it is 0.067. This value is not particularly close to the exact lower P-value of 0.091 that
we obtained earlier. The discrepancy is not surprising, considering that the approximation depends
on both Nz and N (1 — =) being “large” (5 or more), and that Nz is here only 1,000(0.004) = 4.
If, however, we next test w = 0.005, we get Nz = 5, a score statistic of xscore = —1.793, and an
approximate lower P-value of 0.036, practically the same as the exact lower P-value of 0.040 for

= —1.503
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7 = 0.005. As before, to get a two-sided P-value, we would just double the smaller of the upper
and lower P-values.

This example illustrates that some care is needed when using approximate formulas such as
formula 13-4. The criteria for valid approximation are usually summarized by saying that the
sample size N must be “large.” Unfortunately, a truly large sample is neither necessary nor sufficient
for a close approximation. For example, a sample size of 10 can yield a useful approximation if
7 = 0.5, for then Nz = N(1 — &) = 5. In contrast, a sample size of 100,000 is not big enough to
test approximately an hypothesized prevalence of 0.00002, for then Nz is only 2.

We could, if we wished, find approximate 90% confidence limits for the HIV prevalence  justas
before, by trying different hypothesized prevalences  in the score statistic until we found the pair
of prevalences with approximate two-sided P-values of 0.10. From a table of the standard normal
distribution, we can see that this pair of prevalences must be the pair that yields score statistics
(xscore) Of —1.645 and 1.645, because a standard normal deviate has a 5% chance of falling below
—1.645 and a 5% chance of falling above 1.645. For 95% limits, we would need to find the pair
of prevalences that yield score statistics of —1.96 and 1.96. From trying different values for r in
formula 13-4 with N = 1,000, we can see that a prevalence of 0.0045 yields a score statistic xscore
of —1.645. Thus, 0.0045 must be the approximate (upper) 90% confidence limit based on the score
statistic given above. This value is not far from the exact limit of 0.0047, which we could have
anticipated from the fact that 1,000(0.0045) = 4.5 is close to 5.

The approximate point estimate corresponding to the score statistic is easy to find: The approx-
imate upper and lower P-values can be equal only for the prevalence 7 that makes xscore = 0. The
latter can happen only if the numerator of yscore iS zero, so that

Y _N7 =0

Solving for 7 yields the approximate estimator 7 = Y /N . This result shows that the score estimate
equals the observed sample proportion. In our example, 7 = 1/1,000 = 0.0010, corresponding to
an HIV prevalence of 0.10%. This approximate estimate is remarkably close to the median-unbiased
estimate of 0.0011, considering that the informal large-sample criterion N7 equals 1,000(0.0010) =
1, and so is nowhere near “large.”

Summarizing and generalizing the above discussion, the score method is based on taking a test
statistic Y for which we can compute the exact mean and variance E(Y |) and V (Y |x), and creating
from these quantities a score statistic

Y — E(Y]|n)
Xscore = W

Approximate P-values are found by treating this score statistic as normal with a mean of 0 and a
SD of 1. An approximate point estimate may be found by solving the score equation

Y —E(Y|r)=0

to obtain the 7 that has a score statistic of 0 (and hence a two-sided score P-value of 1, the largest
possible value).

Under the most commonly used probability models (such as those that assume the observed
outcomes are independent and have a binomial, Poisson, or normal distribution), the point estimate
7 obtained from the score equation turns out to equal the maximum-likelihood estimate (see later).
This equivalence arises because the numerator of the score statistic equals the derivative of the
log-likelihood function produced by those models. A score statistic obtained by differentiating the
log-likelihood function is sometimes called the efficient score statistic under the assumed probability
model (Cox and Hinkley, 1974). Some statistics books drop the word efficient and use the term score
statistic to refer only to the score statistic derived from the log-likelihood function.

[13-5]

APPROXIMATE STATISTICS: THE WALD METHOD

Although score statistics are much easier to use than exact statistics, they still require some modest
computing to find confidence limits. This computational requirement arises because the SD in the
denominator of a score statistic changes for each test hypothesis (prevalence). A simpler approxi-
mation, called the Wald method, replaces the SD in the score statistic (formula 13-5) by a single
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unchanging value, the SD when 7 = 7, the approximate point estimate. This substitution yields
the Wald statistic based on Y,

Y —E(Y |7
KXwag = V(Y |7 i;%)l)/z [13-6]
In the HIV example, 7= Y/N, so
_ Y —Nnm
o IR A
Y~ Nm [13-7]

T [Y(N = Y)/NJ2

If we replace y,,,, by the value that a desired upper confidence limit zy, would yield, we could solve
the resulting equation for this . For example, to get the upper limit of a two-sided 90% interval,
we need to find the prevalence my that solves

y — Nmy

Tows = TN —yy N2 T 04

Solving for my, we get
my=Y/N+1.645[Y(N —Y)/N]?/N
In our HIV example,
7y = 1/1,000 + 1.645[1(999)/1,000]*/2/1,000
= 0.0026

This approximation is poor compared with the score limit. The score statistic yielded an upper limit
of 0.0045, whereas the exact upper limit was 0.0047. Unfortunately, this result is typical: Simpler
formulas usually yield poorer approximations.

In general, P-values and hence intervals from the Wald method are less accurate than those
from the score method, because the Wald method is itself an approximation to the score method (in
the above example, it replaces the varying denominator of the score statistic xscore, Which depends
on s, with a single standard deviation). Because the score method is also an approximation, the
Wald method is an approximation to an approximation, and so requires criteria more stringent—
for binomial distributions, larger Nz and N(1 — z)—than those required for the score method
to be accurate. Nonetheless, because it is so simple, the Wald method is the most widely used
approximation. Its accuracy can be improved by applying it to a function of the proportion, such as
the logit transform, instead of to the proportion itself (see Chapter 14).

LIKELIHOOD FUNCTIONS

Likelihood functions play a central role in modern statistical theory. Consider again the general
formula 13-3 for the binomial distribution with sample size N, number of observed cases y, and
probability parameter =. Let us substitute into this formula the data values for N and y from our
hypothetical HIV survey, 1,000 and 1. We get

<1,0100) 211 — 7)1 — 10007 (1 — )% [13-8]

Note carefully the following crucial point: Once we replace the data variables in the general binomial
probability formula, equation 13-3, with actual data numbers, we are left with a formula, equation
13-38, that has only one variable, 7z, which is the unknown prevalence parameter that we are trying
to estimate.

We can view equation 13—8 as representing a simple mathematical function of the parameter 7.
This function is called the likelihood function for 7 and is denoted by L (). That is,

L(r) = 1,0007 (1 — 7)%° [13-9]
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is the likelihood function for = given the hypothetical data in our example. This function has a
number of applications in statistical analysis. First, it can be used to measure directly the relative
support the data provide to various hypotheses. Second, it can supply approximate tests and estimates
that have reasonable accuracy in large samples. Third, it can be used to compute Bayesian statistics.

The first two applications begin by finding the value for 7, the unknown parameter, that makes
the likelihood function L(ir) as large as it can be. In other words, we find the value of = that brings
L () to its maximum value. For example, with calculus we can show that the maximum of formula
13-9 occurs when 7 is 1/1,000 = 0.001. This value for 7 is called the maximum-likelihood estimate
(MLE) of =r. More generally, with calculus we can show that the maximum-likelihood estimate for
a binomial parameter 7 is equal to the number of cases divided by the number sampled, y/N. We
denote this estimate by ﬁm. to distinguish it from the median-unbiased estimate, which was 0.0011
in our example.

Next, consider the maximum value of the likelihood function,

= L(7m) = L(0.001)
= 1,000(0.001)(1 — 0.001)**° = 0.3681
Suppose that we are interested in testing a particular hypothesized value for s, say 0.005. One

way to do so would be to take the ratio of the likelihood function at 7 = 0.005 to the function at
Zm = 0.001. We have

L(0.005) = 1,000(0.005)(1 — 0.005)**° = 0.0334

which is 0.0334,/0.3681 = 0.0908 (about 9%) of the maximum value. Some authors suggest using
this likelihood ratio or its logarithm to measure directly the degree to which the data support the
hypothesized value for = (Edwards, 1992; Goodman and Royall, 1988). Such direct use of likelihood
ratios is sometimes called “pure likelihood inference.”

In general terms, if we are given a hypothesized (test) value , then we may measure the relative
support the data give 7 by the likelihood ratio

LR(7) = L(w)/L(Tm) [13-10]

or its natural logarithm In[LR(:x)] (Goodman and Royall, 1988; Royall, 1997). In our example, if
the test value is 0.005, then the likelihood ratio is

LR(0.005) = 0.0334/0.3681 = 0.0908
If the test value is 0.004, the likelihood ratio is

LR(0.004) = L(0.004)/L (7 )
= 1,000(0.004)(1 — 0.004)°*° /0.3681 = 0.0730,/0.3681 = 0.198

or about 20%, more than twice the likelihood ratio for 0.005. Thus, in pure likelihood terms, we
could say that a prevalence of 0.004 has twice as much relative support from the data as 0.005.

In likelihood theory, all support is measured relative to the maximum-likelihood estimate. Conse-
quently, the maximum-likelihood estimate 77, (0.001 in our example) always has the 100% relative
support, because

LR mi) = L(Tm)/L(Tm) = 1.00

Although there are no firm guidelines, it is sometimes implied that test values for the study parameter
7 that have likelihood ratios below e 2 = 0.135 (13.5% or about 1/7) of the maximum are not well
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supported by the data (Edwards, 1992). In our example, the upper-score 90% confidence limit of
0.0045 determined earlier has a likelihood ratio of

LR(0.0045) = 1,000(0.0045)(1 — 0.0045)°*° /0.3681 = 0.135

and so by the 13.5% criterion is on the boundary in terms of relative support. The value 0.0045 is
thus an example of a pure likelihood limit at the 13.5% relative support level. It is an upper limit,
as can be seen from the fact that 0.004 has more relative support and 0.005 has less.

APPROXIMATE STATISTICS: THE LIKELIHOOD-RATIO METHOD

Although pure likelihood limits are not conceptually the same as confidence limits, 13.5% likelihood
limits and 95% confidence limits tend to be close in value in large samples. The two types of limits
are guaranteed to be close if the confidence limits are approximate ones calculated by the likelihood-
ratio method, which we now describe.

As before, suppose that 7 is the test value of the parameter of interest. Then —2 times the natural
log of the likelihood ratio,

Xig = —2-In[LR(7)] [13-11]

will have an approximately x? distribution with one degree of freedom if = is the true value of
the parameter (i.e., if the test hypothesis is true), provided all the usual validity conditions hold
(absence of bias and the correct probability model is used to construct the likelihood function)
and the sample is “large” in the sense described earlier (N7 and N(1 — x) both greater than 5)
(Lehmann, 1986; Cox and Hinkley, 1974). The test statistic le_R in formula 13-11 is called the
likelihood-ratio statistic or deviance statistic for testing the hypotheses that  is the true value, and
the test of 7= based on it is called the likelihood-ratio test or deviance test.

Unlike the score and Wald statistics, the likelihood-ratio statistic bears no resemblance to the
ordinary test statistics of elementary courses. It requires some calculus (specifically, the use of a
Taylor-series expansion) to show the rather remarkable fact that 2., the score x2 based on taking
the number of cases as the test statistic (formula 13-5), will approximate x3 ., the likelihood-ratio
statistic (formula 13—11), if the sample size is large enough and the test value has reasonably high
support (Cox and Hinkley, 1974). Because the P-value from x2_,. is two-sided, we can see that
the P-value derived from x3 5 must also be two-sided.

How good are the likelihood-ratio statistics in our example? Because there is only one case among
the 1,000 persons sampled, they appear very poor relative to the exact statistics. The likelihood ratio
for an HIV prevalence of 0.004 was found earlier to be 0.198, so the likelihood-ratio statistic for
this prevalence is —2 - In(0.198) = 3.24. From a one-degree-of-freedom »? table, we see that this
statistic yields a two-sided P-value of 0.072. Contrast this result with the corresponding two-sided
exact P-value of 2(0.091) = 0.18, or the two-sided score P-value of 2(0.067) = 0.13. Only the
two-sided Wald P-value looks less accurate than the likelihood-ratio result in this example. The
Wald statistic is

1 — 1,000(0.004)
[1,000(0.001)(1 — 0.001)]*/2

which yields a two-sided P-value of 0.003.

In this example, the large disparities among the statistics are due chiefly to the fact that the
maximum-likelihood estimate of the expected number of cases is very far from the large-sample
criterion: N7y = 1,000(0.001) = 1 in this example. If 7y, Nz, N(1 — ), and N(1 — x)
were all at least 5, we would expect the likelihood-ratio statistic to be much closer to the score
statistic.

Likelihood-ratio confidence limits are computed by finding the two parameter values that have
likelihood-ratio P-values equal to 1 minus the confidence level. This calculation is equivalent to
finding the two limits that have likelihood-ratio statistics equal to the desired percentile of a one-
degree-of-freedom y? distribution. Thus, to find 90% likelihood-ratio confidence limits, we find the
two parameter values ;. and sy that solve the equation

—2.In[LR(7)] = 2.71 [13-12]

= —-3.00
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because 2.71 is the 90th percentile of a x? distribution with one degree of freedom. In the HIV
example, we find the limits by solving

—2-1n[1,0007 (1 — 7)%%°/0.3681] = 2.71

The solution for the upper limit zy is 0.0036. This limit is not close to the exact limit of 0.0047
or the score limit of 0.0045, but it is still better than the Wald limit of 0.0030. Again, with more
cases, the likelihood-ratio result would be much closer to the score result, and all the results would
converge to one another.

If we had desired 95% limits instead, we would solve

—2.In[LR(x)] = 3.84 [13-13]

because 3.84 is the 95th percentile of a x? distribution with one degree of freedom. This equation
yields an upper 95% limit for 7 of 0.0044, very close to the 13.5% upper pure likelihood limit
found earlier. This is no coincidence. Recall that the pure likelihood limit was the upper value for
7 such that LR(r) = e~2. If we solve the confidence-limit equation 13—13 for the likelihood ratio
LR(r), we get

LR(7r) = exp[—1/»(3.84)] = e 1% = 0.147

Thus, the pure-likelihood equation for 13.5% limits and the likelihood-ratio equations for 95%
confidence limits are almost the same, and so should yield almost the same interval estimates
for .

For more thorough discussions of the uses of likelihood functions in testing and estimation, and
their relation to the score and Wald methods, see Clayton and Hills (1993) for a basic treatment
oriented toward epidemiologic applications. Cox and Hinkley (1974) provide a classic treatment
oriented toward general conceptual issues as well as mathematical details (the latter authors refer
to the Wald statistic as the “maximum-likelihood test statistic™).

LIKELIHOODS IN BAYESIAN ANALYSIS

Thethird application of likelihood ratios is in computing Bayesian statistics, which may be illustrated
in its simplest form by combining likelihood ratios with prior odds of hypotheses to find posterior
odds of hypotheses. Returning to the HIV survey, suppose that, before seeing the data, we think
it twice as probable that the prevalence r is 0.004 as opposed to 0.005. That is, we would bet in
favor of 0.004 over 0.005 with two-to-one (2/1) odds (perhaps because of previous survey results).
How should we revise these betting odds upon seeing the data? More generally, given a prior odds
(odds before seeing the data) for parameter value 71 versus parameter value o, what should be the
posterior odds (odds after seeing the data)?
The answer can be computed from elementary probability theory to be
likelihood for 7rq

Odds after data = m odds before data

or

L
Posterior odds = (1) prior odds [13-14]

L (o)
Unlike the earlier applications, the likelihood ratio in formula 13—14 does not involve the maximum-
likelihood estimate (the latter is often unnecessary for a Bayesian analysis). In our example, 73 =
0.004, 7o = 0.005, and our prior odds were 2/1 =2, so L(r;) = L(0.004) = 0.0730, L(m) =
L (0.005) = 0.0334, and

007302 0.1460 4.36
0.03341 00334 1
Thus, if we started out 2/1 in favor of = = 0.004 over = = 0.005, after seeing the data we should
be 4.36/1 in favor of 0.004 over 0.005.

One must take care to note that the last answer applies only to the stated pair of hypotheses,
1 = 0.004 and mo = 0.005. Even though we may favor 0.004 over 0.005 by a wide margin, it

Posterior odds =
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does not mean that 0.004 should be our most favored or 0.005 our least favored hypothesis when
considering other hypotheses. Calculation of other posterior odds for other pairs of values for =
would be needed to broaden the scope of our analysis.

Bayesian philosophy and elementary Bayesian methods will be covered in Chapter 18. There
it is shown how Bayesian statistics can be computed from ordinary frequentist programs via the
device of “prior data.” There are now many books that give comprehensive treatments of Bayesian
theory and methods for applied researchers, such as Gelman et al. (2003).

CHOICE OF TEST STATISTICS

So far, we have given no indication of how one should go about choosing a statistic Y on which to base
testing and estimation. Inany analysis there will be many possibilities. In the survey example we took
the number of positives (cases) as our test statistic Y. If we let A stand for the number of cases, we
can say we took Y = A. But we could have taken Y = In(A) or Y = logit(A/N) = In[A/(N — A)]
as test statistics for normal approximation, to name only two of many possibilities. Why choose Y
to be the number of cases?

This is a subtle issue, and we can only outline certain aspects of it here. Statisticians have
used various criteria to choose test statistics in a given problem. The primary criterion, confi-
dence validity, requires that the chosen statistic yield approximate confidence intervals with proper
coverage: For reasonably sized samples and reasonable parameter values, an approximate inter-
val should contain (cover) the true parameter with a frequency no less than its stated (nominal)
confidence level (Rubin, 1996). For example, an approximate 95% confidence interval is valid
if it will contain the true parameter with a frequency no less than 95% over study repetitions.
To choose among valid approximate intervals, we may further impose a second criterion, which
is precision. For reasonable-sized samples and reasonable parameter values, a valid and precise
interval has an average width over the repetitions that is no greater than other valid intervals.
Taken together, the two criteria of validity and precision are sometimes referred to as accuracy
criteria.

Although we have stated these two criteria qualitatively, it is more practical to use them quanti-
tatively and note the trade-off between validity and precision. For example, in a given setting, one
approximate 95% confidence interval might cover 94% of the time while another might cover 95%
of the time, but if the second interval were always 30% wider than the first, we should prefer the
first interval for precision, even though it is not quite as valid as the second.

A third criterion in choosing a statistic Y is the ease or availability of computational formulas
for its mean and variance. For most choices of Y, including logit(A/N) in the preceding example,
one must use approximate means and variances. Worse, approximate intervals that use In(A) or
logit(A/N) directly as test statistics tend to be less valid than those based on Y = A, with little
or no precision or computation advantage. On the other hand, taking Y = arcsine[(A/N)¥?] can
produce more valid intervals than taking Y = A, but it also requires use of approximations to its
mean and variance that become unwieldy in stratified analyses. We thus might view the choice
Y = A, the number of cases, as representing a compromise between accuracy and simplicity. The
choice Y = A can also be derived from consideration of score statistics and likelihood functions
(Gart and Tarone, 1983).

CONTINUITY CORRECTIONS AND MID-P-VALUES

As we saw in earlier sections, there can be some discrepancies between exact and approximate
results. There are two major philosophies for dealing with these discrepancies, each with corre-
sponding methods.

The traditional philosophy is based on the fact that only traditional exact confidence intervals
are conservatively calibrated: If the underlying assumptions are correct, a traditional exact 90%
interval is guaranteed to cover (contain) the true measure of occurrence or effect with a frequency
no less than 90%. Parallel statements apply for other confidence levels. We emphasize the phrase
“no less than 90%” because, although in some situations the actual frequency will be 90%, in others
the traditional exact 90% interval will cover the true measure with a greater frequency—as much
as 100% in some extreme examples.
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The traditional philosophy maintains that overcoverage (coverage frequency above the stated
confidence level) is always preferable to undercoverage (coverage frequency below the confidence
level). Thus, because traditional exact intervals never suffer from undercoverage, the traditional
philosophy would have us adjust our approximation methods so that our approximate P -values and
intervals come close to the traditional exact P-values and intervals. In other words, it would have
us take traditional exact results as the “gold standard.”

Perhaps the simplest way to implement this philosophy is to adopt what are known as continuity
corrections for approximate statistics (Yates, 1934). The score approximation uses a normal curve
whose mean and SD are E(Y |) and V (Y |)2. In the preceding example, the lower P-value was
taken as the area under the normal curve to the left of the observed Y value. A better approximation
is obtained by taking the area under the normal curve to the left of the point midway between the
observed Y and the next largest Y. That is, to get a better approximation to the traditional exact lower
P-value, we should replace Y by Y + 1/ in the score statistic xscore (€quation 13-5). Similarly, to
get a better approximation to the traditional exact upper P-value, we should replace Y by Y — 14 in
the score statistic.

The factors 1/ for Piower and —1/ for Pyyper are examples of continuity corrections, and the
statistics obtained when using them are said to be continuity corrected. In the HIV survey example,
the continuity-corrected score statistic for getting a lower P-value to test a prevalence of 0.004 is

1+1/2 —1,000(0.004)

— ~1.253
[1,000(0.004)(1 — 0.004)]/2

This statistic yields a continuity-corrected lower P-value of 0.105, which (as desired) is closer to
the traditional exact value of 0.091 than the uncorrected value of 0.067 found earlier.

A second, alternative philosophy rejects the notions that traditional exact P-values should be
taken as the “gold standard” and that overcoverage is always preferable to undercoverage. Instead,
it maintains that we should seek procedures that produce the narrowest confidence intervals whose
coverage is (in some average sense) as close as possible to the stated confidence level. In this view,
a confidence interval with a stated confidence level of 90% that sometimes covered the truth with
only 88% frequency would be preferable to a much wider interval that always covered with at least
90% frequency. In other words, some risk of moderate undercoverage is acceptable if worthwhile
precision gains can be obtained.

One way of implementing this alternative philosophy is to replace traditional exact P-values
with mid-P-values (Lancaster, 1949, 1961; Berry and Armitage, 1995). The lower mid-P-value
is defined as the probability under the test hypothesis that the test statistic Y is less than its ob-
served value, plus half the probability that Y equals its observed value. Thus, for the HIV survey
example,

mid-Piower = Pr(Y < 1| HIV prevalence = 0.004) + Pr(Y = 1| HIV prevalence = 0.004)/2
= (1 —0.004)%%% 4 1,000(0.004)(1 — 0.004)°*°/2 = 0.055

This mid-P-value is notably less than the traditional exact P-value of 0.091. For an HIV prevalence
of 0.0041, the lower mid-P-value is 0.050, so 0.0041 is the upper mid-P 90% confidence limit for
the HIV prevalence. This limit is notably less than the traditional exact upper limit of 0.0047, so it
more precisely bounds the HIV prevalence.

To approximate the lower mid-P-value using a normal distribution, we should take the area
under the normal curve to the left of the observed Y value. It follows that, if we wish to approximate
the results from mid-P-values, we should not use continuity corrections (Miettinen, 1974a). This
conclusion is very apparent in the HIV survey example, in which the mid-P-value and the uncor-
rected score P-value for a prevalence of 0.004 are 0.055 and 0.067, while the continuity corrected
score P-value is 0.105.

Upper mid-P -values are defined analogously to lower mid-P-values: The upper mid-P-value is
the probability under the test hypothesis that the test statistic Y is greater than its observed value,
plus half the probability that Y equals its observed value. The two-sided mid-P-value is then just
twice the smaller of the upper and lower mid-P-values. One pleasant property of the two-sided
mid-P-value is that (unlike the traditional two-sided P-value) it cannot exceed 1. To see this, note
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that the upper and lower mid-P-values always sum to 1:

mMid-Power + Mid-Pypper = Pr(Y less than observed | test hypothesis)
+ Pr(Y equals observed | test hypothesis)/2
+ Pr(Y greater than observed | test hypothesis)
+ Pr(Y equals observed | test hypothesis)/2
= Pr(Y less than observed | test hypothesis)
+ Pr(Y equals observed | test hypothesis)
+ Pr(Y greater than observed | test hypothesis)
=1

This result implies that the smaller of mid-Piguer and mid-Pygper must be 12 or less, so twice this
smaller value (the two-sided mid-P-value) cannot exceed 1.

The median-unbiased point estimate was earlier defined as the point for which the upper and
lower traditional exact P-values are equal. This estimate is also the point for which the upper and
lower mid-P-values are equal. Thus, use of mid-P-values in place of traditional exact P-values
does not change the point estimate.

Mid-P-values are always smaller than traditional exact P-values. As a result, for a given confi-
dence level, fewer points will fall inside the confidence interval produced from mid-P-values than
the traditional exact interval; in other words, the mid-P interval will always be narrower than the
traditional exact interval.

These advantages of mid-P-values do have a price. For example, in some situations involving
small observed numbers, mid-P intervals can suffer from notable undercoverage, as can intervals
based on normal approximations. Thus mid-P intervals, like the approximate intervals, are not
guaranteed to perform well when the observed numbers are very small. They do, however, perform
as well as or better than approximate methods such as the score or Wald method.

Another disadvantage of mid-P-values is that they cannot be interpreted as exact probabilities.
Whereas upper and lower (but not two-sided) traditional exact P-values are exact frequency proba-
bilities of certain events, mid- P -values have no such straightforward frequency interpretation. They
do have useful Bayesian probability interpretations (Nurminen and Mutanen, 1987), but these are
beyond our present discussion. In any case, it can be argued that this interpretational disadvantage
of mid-P-values is of no practical concern if the P-values are used only to construct confidence
intervals.

In sum, one position is that traditional exact P-values are the “gold standard” because confidence
intervals based on them have coverage frequencies no less than the stated (nominal) confidence level
(e.g., 95%). If one accepts this position, one should use continuity corrections with approximate
statistics. The alternative position is that one should not ignore precision concerns, but instead seek
the narrowest interval that is consistent with keeping coverage close to the stated confidence level
of the interval. In particular, some risk of moderate undercoverage is tolerable. If one accepts this
position, one should use mid-P-values in place of traditional exact P-values, and not use continuity
corrections with approximate statistics.

Neither position is completely logically compelling, nor is either position dominant in statistics
today. It may also be argued that the choice is of little practical importance, because any data set
in which the choice makes a large numerical difference must have very little information on the
measure of interest. It can be shown that, when the sample size is large, all the methods (traditional,
mid-P, approximate with or without correction) will give similar results. The difference among
them is marked only when the results are so statistically unstable that most inferences from the data
are unwarranted, even in the absence of biases. For example, in the HIV survey example, the mid-P
confidence limits are not close to the traditional exact limits, because only one case was observed
and hence the results are imprecise.

For simplicity, in the remainder of this book we limit our discussion of approximate statistics to
those without continuity corrections.
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COMPUTATION AND INTERPRETATION OF TWO-SIDED P-VALUES

As we have mentioned, only traditional one-tailed P-values can be interpreted as probabilities in
all circumstances (this is because they are defined as probabilities). Mid-P-values and two-sided
P-values do not share this property except in special circumstances. Nonetheless, if the sample
numbers are large enough so that the traditional, approximate, and mid-P-values are all nearly
equal, the two-sided P-values will have an approximate probability interpretation. Specifically, in
this situation the two-sided P-values will approximately equal the probability that the square of the
score statistic is greater than or equal to its observed value.

For example, if Y has a binomial distribution (as in the HIV example), the square of the score
statistic yscore fOr testing 7 is

, (Y —=Nn)?

=— 13-15
Xscore Nﬂ(l _ T() [ ]

In most of the statistics literature, x2, rather than xscore is called the score statistic. If both N
and N (1 —) are more than 5 or so, all the two-sided P-values discussed above (traditional, score,
Wald, and mid-P) will approximate the probability that 2., is greater than or equal to its observed
value. In this large-sample situation, xscore has approximately a normal distribution with a mean of
0and aSD of 1, and so x2,,, will have approximately a x? distribution with one degree of freedom.
Thus, if we are interested only in the two-sided P-value, we can simply compute xZ,. and look
up the probability that a x? variate with one degree of freedom is this large or larger. Tables and
functions for this purpose are widely available in statistics books and software.

A common misinterpretation of the two-sided P-value is that it represents the probability that
the point estimate would be as far or farther from the test value as was observed. This interpretation
is not even approximately correct for many epidemiologic estimates, particularly risk differences,
because a P-value refers to the distribution of a test statistic, not a point estimate. As an example,
consider again the HIV survey, this time taking the sample proportion of HIV-positives (which was
0.001) as the test statistic. Suppose our test hypothesis is that the HIV prevalence is 0.005. The
distance between the observed sample proportion of 0.001 and the test value of 0.005 is 0.004. For
the sample proportion to be as far or farther from the test value of 0.005 as was observed, it would
have to be either less than or equal to 0.005 — 0.004 = 0.001 or greater than or equal to 0.005 +
0.004 = 0.009. If the true prevalence is 0.005, the probability of the sample proportion being less
than 0.001 or more than 0.009 is 0.11. This probability is more than the traditional two-sided
P-value of 0.080 computed earlier and more than twice the size of the two-sided mid-P-value of
0.047.

Again, the preceding interpretational obstacles need not concern us if we use two-sided P-values
only to find confidence limits, rather than attempting to interpret them directly. This advantage is yet
another reason to focus on confidence intervals and their coverage interpretation when analyzing
data.

MULTIPLE COMPARISONS

Consider the following problem: We conduct a study in which we examine every exposure—disease
association among 10 exposures and 10 diseases, for a total of 10 x10 = 100 associations (expo-
sure—disease pairs). To analyze each association, we use a “perfect” method to set 95% confidence
limits—i.e., one that produces intervals containing the true association with exactly 95% frequency.
If the coverage of each interval is independent of the coverage of every other interval, how many
of the 100 resulting confidence intervals should we expect to contain their respective true value?

The answer to this question is simply 95% of the 100, or 95. This means that of the 100
independent confidence intervals we are to examine, we should expect five to miss their target (the
corresponding true value). Of course, anywhere from 0 to 100 may actually miss their target, and
five represents only an average over hypothetical repetitions of the study. But the point is that we
should expect several of these intervals to miss their target, even if we use a perfectly valid 95%
confidence-interval method.

Furthermore, we cannot identify the intervals that missed their targets. Suppose we are very
uncomfortable with the idea of reporting five intervals that miss their targets completely, even if
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the other 95 intervals cover their targets. One alternative is to increase the confidence level of our
intervals. For example, if we increase our confidence level to 99% we can then expect only one of
the 100 intervals to miss their targets. Although this will widen every interval by a considerable
factor (for Wald intervals, the factor will be 2.576/1.960 — 1, or 31%), the widening is an inevitable
price of reducing the 5% miss rate to 1%.

The trade-off we have just described, between the width and the miss rate of the confidence
interval, in no way affects the P-values computed for each association; we simply choose a lower
alpha level and hence a lower slice through the P-value functions to get our interval estimates. There
is, however, another perspective, which leads to an entirely different P-value function from the data.
It is the result of a multiple-comparisons analysis, also known as simultaneous testing, joint testing,
or multiple inference. In this view, we do not treat the 100 associations as 100 separate parameters
to be estimated. Instead, we treat them as composing a single entity with 100 components, called
the joint parameter or vector parameter for the associations. Here we provide an example for a
conceptual introduction and discuss the issues further in Chapter 17.

Suppose that the true values of the 100 associations correspond to 100 risk ratios of 3.0, 2.1, 4.2,
0.6, 1.0, 1.5, and so on (up to 100 values). Then the single vector parameter representing these 100
true values is the ordered list of the values:

(3.0,2.1,4.2,0.6,1.0,15,...)

where the ellipsis represents the list of the remaining 94 risk ratios. Each number in this ordered
list (vector) corresponds to one of the 100 associations of interest and is called a component of the
list. In other words, every single association is only one component of the entire list.

With this simultaneous view of the 100 associations, we can formulate a joint hypothesis that
the entire list of true associations equals a particular list of 100 specified numbers. Most commonly,
this hypothesized list is a list of nothing but null values; for risk ratios this list would comprise
100 ones,

(1,1,1,1,1,1,...)

where the ellipsis represents 94 more ones. This null list or null vector corresponds to the joint null
hypothesis that there is no association among all 100 exposure—disease pairs. It is also possible to
test other joint hypotheses, for example, that all 100 risk ratios are equal to 2, or that the first 50 in
the list equal 1 and the remaining 50 in the list equal 0.5.

For any joint hypothesis we can imagine, it is possible to construct a statistic for testing that the
hypothesis is true, which yields a P-value and test for that hypothesis. Such a P-value and test are
called a joint P-value and joint test (or simultaneous test) for the associations. In particular, we can
perform a simultaneous test of the joint null hypothesis (that no exposure is associated with any
disease). If the joint test is valid and the joint null hypothesis is correct—so that there really are no
associations at all—there will be no more than a 5% chance that the joint P-value from the test will
fall below 0.05.

JOINT CONFIDENCE REGIONS

We can consider the joint P-values for all possible vectors of values for the 100 associations. This
collection of P-values is the multiple-comparisons analog of the P-value function. The collection
of all vectors that have a joint P-value of at least 0.05 is called a 95% joint confidence region for
the vector of parameter values. A 95% confidence region constructed from a valid testing method
has the useful property that it will include the true parameter vector with a frequency no less than
95%, provided there is no bias and all assumptions underlying the method are satisfied.

How is this joint confidence region for the vector of 100 associations related to the 100 single-
association confidence intervals that we usually compute? If the joint null hypothesis is indeed
correct and single-association intervals are independent of one another, then on average we should
expect about five of the single-association intervals to miss their target, which in every case is
the null value (a risk ratio of 1). We should also expect a valid joint confidence region to include
the null vector 95% of the time, because there is at least a 95% chance that P > 0.05 when the joint
null hypothesis is correct. Thus, if there are no associations, we have this apparently paradoxical
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result: The joint confidence region will probably contain the null vector, apparently saying that
the joint null hypothesis is compatible with the data; yet it is also probable that at least a few
of the single 95% confidence intervals will miss the null, apparently saying that at least a few
single null hypotheses are not compatible with the data. In other words, we expect the joint confi-
dence region to indicate that every association may be null, and the single intervals to indicate that
some associations are not null. In fact, if all the null hypotheses are correct, the single-interval cover-
age probabilities are exactly 95%, and the intervals are independent, then the probability that at least
two of the single intervals will miss the null is 1 minus the binomial probability that only none or
one of the intervals misses the null:

1 —0.95% _— 100(0.05)0.95%®° = 0.96

or 96%.

This apparent paradox has been the source of much confusion. Its resolution comes about by
recognizing that the joint confidence region and the 100 single intervals are all addressing different
questions and have different objectives. A single 95% interval addresses the question, “What is the
value of this parameter?,” where “this” means just one of the 100, ignoring the other 99. Its objective
is to miss the correct value of that one parameter no more than 5% of the time, without regard to
whether any of the other intervals miss or not. Thus, each single interval addresses only one of
100 distinct single-association questions and has only one of 100 distinct objectives. In contrast,
the joint confidence region addresses the question, “What is the vector of parameter values?”; its
objective is to miss the true vector of all 100 associations no more than 5% of the time.

If we are indeed trying to meet the latter objective, we must recognize that some misses by
the single intervals are very likely to occur by chance even if no association is present. Thus,
to meet the objective of joint estimation, we cannot naively combine the results from the single
intervals. For example, suppose that we take as our confidence region the set of all vectors for
which the first component (i.e., the first association in the list) falls within the single 95% interval
for the first association, the second component falls within the single 95% interval for the second
association, and so on for all 1200 components. The chance that such a combined region will contain
the true vector of associations is equal to the chance that all the single intervals will contain the
corresponding components. If all the exposures and diseases are independent of one another, this
probability will be 0.95%, which is only 0.6%! These issues are discussed further in Chapter 17.

PROBLEMS WITH CONVENTIONAL APPROACHES

The preceding example illustrates how the tasks of joint testing and estimation are much more
stringent than those of single one-at-a-time testing and estimation. One awful response to this
stringency is to construct the single confidence intervals to have a confidence level that guarantees the
naive combination method just described will yield a valid joint confidence region. This procedure is
called the Bonferroni method for “adjusting for multiple comparisons.” If we want a 95% confidence
region from overlapping the single intervals, in the preceding example we will need a single-interval
alpha level that is one-hundredth the desired joint alpha level. This value is« = 0.05/100 = 0.0005,
which corresponds to a single-interval confidence level of 1 — 0.0005 = 99.95%. This choice yields
a 0.99951% — 959% chance that a naive combination of all the single 99.95% confidence intervals
will produce a confidence region that includes the true vector of associations. Thus the Bonferroni
method is valid, but the single intervals it produces are much too wide (conservative) for use
in single-association estimation (e.g., Wald intervals have to be 70% wider to get a 95% joint
Bonferroni region when there are 100 associations). Also, the joint Bonferroni confidence region
is typically much larger (more imprecise) than it needs to be; that is, the Bonferroni region is also
unnecessarily imprecise for joint estimation purposes. For hypothesis testing, a procedure that is
equivalent to the Bonferroni adjustment, and equally bad, is to use a 0.05 alpha level but multiply
all the single-association P-values by the number of associations before comparing them to the
alpha level.

A deeper problem in the multiple-comparisons literature is that joint confidence regions have
been recommended in situations in which the scientific objectives of the study call for single
intervals. Typically, the different associations in a study are of interest on a purely one-at-a-time
basis, often to different investigators with different interests. For example, a large health survey
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or cohort study may collect data pertaining to many possible associations, including data on diet
and cancer, on exercise and heart disease, and perhaps many other distinct topics. A researcher
can legitimately deny interest in any joint hypothesis regarding all of these diverse topics, instead
wanting to focus on those few (or even one) pertinent to his or her specialties. In such situations,
multiple-inference procedures such as we have outlined are irrelevant, inappropriate, and wasteful
of information (because they will produce improperly imprecise single intervals) (Rothman, 1990g;
Savitz and Olshan, 1995, 1998; Mayo and Cox, 2006).

Nevertheless, it is important to recognize that investigators frequently conduct data searches or
“data dredging” in which joint hypotheses are of genuine interest (Greenland and Robins, 1991,
Thompson, 1998a, 1998b). Such searches are usually done with multiple single-inference proce-
dures, when special multiple-inference procedures should be used instead. Classic examples of such
misuse of single-inference procedures involve selecting for further analysis only those associations
or interactions that are “statistically significant.” This approach is commonly used in attempts to
identify harmful exposures, high-risk population subgroups, or subgroups that are selectively af-
fected by study exposures. Such attempts represent multiple-inference problems, because the study
question and objectives concern the vector of all the tested associations. For example, central ques-
tions that drive searches for harmful exposures may include “Which (if any) of these associations
is positive?” or “Which of these associations is important in magnitude?”

Unfortunately, conventional approaches to multiple-inference questions (such as Bonferroni
adjustments and stepwise regression) are poor choices for answering such questions, in part be-
cause they have low efficiency or poor accuracy (Greenland, 1993a). More modern procedures,
such as hierarchical (empirical-Bayes) modeling, can offer dramatic performance advantages over
conventional approaches and are well suited to epidemiologic data searches (Thomas et al., 1985;
Greenland and Robins, 1991; Greenland, 1992a; Greenland and Poole, 1994; Steenland et al., 2000;
Greenland, 2000c). We briefly describe these methods in Chapter 21.

SUMMARY

In any analysis involving testing or estimation of multiple parameters, it is important to clarify
the research questions to discern whether multiple-inference procedures will be needed. Multiple-
inference procedures will be needed if and only if joint hypotheses are of interest. Even if one is
interested in a joint hypothesis, conventional or classical multiple-inference procedures will usually
provide poor results, and many better procedures are now available.

When in doubt about the best strategy to pursue, most audiences will find acceptable a presenta-
tion of the results of all single-inference procedures (e.g., confidence intervals for all associations
examined). When this is not possible, and one must select associations to present based on statistical
criteria, one should at least take care to note the number and nature of the associations examined,
and the probable effect of such selection on the final results (for example, the high probability that
at least a few intervals have missed their target).

Chapter 17 provides further discussion of multiple-comparisons procedures, and a graphical
illustration of the distinction between single- and multiple-comparison procedures.



CHAPTER 14

Introduction to
Categorical Statistics

Sander Greenland and Kenneth J. Rothman

Sample-Size Considerations 239 Relations among the Ratio Measures 250

Independence of Outcomes 239 Case-Control Data 250

Homogeneity Assumptions 239 Case-Cohort Data 252

Classification of Analysis Methods 240 SDmtaII-Sa;rgsple Statistics for Person-Time
ata

Person-Time Data: Large-Sample
Methods 240
Single Study Group 240
Two Study Groups 243
Pure Count Data: Large-Sample
Methods 245
Single Study Group: Large-Sample
Methods 245
Two Study Groups: Large-Sample
Methods 247

Single Study Group 253
Two Study Groups 254

Small-Sample Statistics for Pure Count
Data 255
Single Study Group 255
Two Study Groups 256
Application of Exact 2 x 2 Programs to
Person-Time Data and Single-Group
Data 257

I n Chapter 13wediscussed thefundamental sof epidemiol ogic dataanalysis, focusing on methods
used to estimate the proportion of apopulation with adisease. In this chapter weturn to comparisons
of diseaseproportions, odds, or ratesin two groupsof people. Wetherefore present the basic structure
of statistical techniques for cross-tabulations of person-counts and person-time. To do so, we focus
amost exclusively on methods for unstratified (crude) data and then, in Chapter 15, extend these
methods to stratified data. We also discuss only differences and ratios of risks, rates, and odds, and
defer discussion of attributable fractions and survival-time comparisons until Chapter 16. Finally,
welimit the present chapter to datawith a dichotomized exposure and outcome variable. In Chapter
17, the methods given here and in Chapter 15 are extended to exposures and outcomes with multiple
levels. Chapter 18 provides Bayesian analogs of the basic methods given here and in Chapter 15.

Inorder to discourage the use of confidenceinterval sas0.05-level significancetests, weoften use
90% or 99% intervals rather than the conventional 95% intervalsin our examples. A large-sample
90% interval has the small technical advantage of more closely approximating the corresponding
exact interval. The present chapter provides both approximate and exact intervals, so that the reader
can obtain afeel for the difference between the two. In any event, the formulas allow one to choose
one's own confidence level.

Althoughitisusually necessary to takeinto account factors beyond the exposure and the disease
of interest, it is not unusual to see data analyzed and presented in crude form. Narrow restrictions
on covariates in subject selection to prevent confounding can sometimes obviate the need for
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stratification. Results of large randomized trials may often be summarized adequately in unstratified
form.

As is usualy done in basic statistical presentations, we assume throughout this chapter that
there is no source of bias in the study—no measurement error, selection bias, follow-up bias, or
confounding. Confounding and some forms of selection bias due to measured covariates can be
handled by stratification. Chapter 19 discusses analysis of confounding by unmeasured covariates,
general selection bias, and misclassification. Several other statistical assumptions will be used
in most of what we present: sufficiency of sample size, independence of subject outcomes, and
homogeneity of risk within levels of exposure and stratification variables. Throughout, we point
out the sample-size limitations of the large-sample methods.

SAMPLE-SIZE CONSIDERATIONS

For most applications, computation of small-sample statistics (such as exact and mid- P-values and
confidence limits) are practical only if one has computer software that provides them, whereas
for unstratified data one can quickly compute large-sample (approximate) statistics with a hand
calculator. Therefore, we focus on large-sample methods. In the final sections of this chapter we
present small-sample methods for unstratified data, without computational details. The formulas
we present are intended only to illustrate the concepts underlying small-sample statistics. Good
statistical programs employ more general and more efficient formulas; hence, we expect and rec-
ommend that users will obtain small-sample statistics from packaged software. After introducing
exact methods for count data, we illustrate how to trick programs written to do exact analysis of
2 x 2 tables (which are used to compare two cohorts) into providing the corresponding analyses
of single cohorts and of person-time data. Rothman and Boice (1982), Rothman (1986), and Hirji
(2006) provide more formulas for small-sample analysis.

INDEPENDENCE OF OUTCOMES

Most of the methods discussed in thisbook assume that the outcomes of study subjects are indepen-
dent, inthefollowing narrow sense: Once you know therisk of agroup (such asthe exposed group),
discovering the outcome status of one group member will tell you nothing about the outcome status
of any other group member. This assumption has subtleties and is often misunderstood or over-
looked. A straightforward practical consequence of thisassumption, however, isthat all the P-value
and confidence-interval methods we present will usually not give valid results when the disease is
contagious, or when the subjects under study can contribute multiple disease eventsto thetotal case
count (asin studies of recurrent outcomes). A simple solution in the latter caseis to count only the
first event contributed by each subject, although this simplification will limit generalizability.

When dependence is present, many phenomena can arise that require specia analytic attention.
At thevery least, the standard deviations (SDs) of conventional estimates are likely to be underesti-
mated by conventional techniques, thusleading to underestimation of the uncertainty in the results.
Therefore, we frequently remind the reader that conventional models implicitly assume indepen-
dence. The independence assumption is plausible in most studies of first occurrences of chronic
diseases (e.g., carcinomas, myocardia infarction) but is implausible in studies of contagious dis-
eases. Note, however, that neither dependence nor contagiousness is synonymous with the disease
having an infectious agent among its causes. First, someinfectious diseases (such as Lyme disease)
may have no transmission among humans. Second, some noninfectious conditions, such as drug
use and other health-related behaviors may be transmitted socially among humans.

HOMOGENEITY ASSUMPTIONS

Implicit in comparisons of observed incidence rates is the concept that a given amount of person-
time, say 100 person-years, can be derived from observing many people for a short time or few
peoplefor along time. That is, the experience of 100 personsfor 1 year, 200 persons for 6 months,
50 persons for 2 years, or 1 person for 100 years are assumed to be equivalent. Most statistical
methods assume that, within each analysis subgroup defined by exposure and confounder levels,
the probability (risk) of an outcome event arising within a unit of person-time is identical for al
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person-time units in the stratum. For example, the methods based on the Poisson distribution that
we present are based on this homogeneity assumption. Because risk almost inevitably changes over
time, the homogeneity assumption is only an unmet idealization. Although the assumption may be
a useful approximation in many applications, it is inadvisable in extreme situations. For example,
observing one individual for 50 years to obtain 50 person-years would rarely approximate the
assumption, whereas observing 100 similar people for an average of 6 months each may sometimes
do so. Usually the units of person-time in the denominator of arate are restricted by age and the
amount of calendar time over which person-time has been observed, which together prevent the
within-stratum heterogeneity that aging could produce.

Inasimilar fashion, most statistical methodsfor pure count dataassumethat, withineach analysis
subgroup, subjectshaveidentical risks. Another way of stating thisassumption isthat the probability
of experiencing an outcome event is identical for al persons in a given subgroup. For example,
the methods based on the binomia and hypergeometric distributions presented in this chapter are
based on this homogeneity assumption.

For both person-time and pure-count data, heterogeneity of risk (violation of the homogeneity
assumption) will invalidate the standard-deviation formulas based on that assumption, and so will
lead to erroneous uncertainty assessments.

CLASSIFICATION OF ANALYSIS METHODS

Epidemiologists often group basic types of epidemiologic studies into cohort, case-control, or
cross-sectional studies (Chapter 6). Classification according to the probability model underlying
the statistics |eads to a different categorization, according to whether or not the datainclude person-
time (time-at-risk) measurementsamong the basi ¢ observations. Although person-time observations
pertain only to cohort studies, not all analyses of cohorts make use of such data. If thereisno | oss-to-
follow-up or late entry in any study group, the study groups form closed populations (Chapter 3). It
may then be convenient to present the datain terms of proportions experiencing the outcome, that is,
incidence proportions (which serve asrisk estimates). For these closed-cohort studies, the number
of cases can be measured relative to person counts (cohort sizes), aswell asrelative to person-time
experience. Clinical trials are often presented in this manner. Person-count cohort data are also
common in perinatal research, for example, in studies in which neonatal dezath is the outcome.

It can be shown that, under conventional assumptions of independence and identical risk of
personswithin exposurelevel sand analysisstrata(al ong with absence of bias), many of the statistical
methodsdevel oped for cohort datacan al so be applied to analysisof case-control dataand prevalence
(cross-sectional) data (Anderson, 1972; Mantel, 1973; Prentice and Breslow, 1978; Farewell, 1979;
Prentice and Pyke, 1979; Thomas, 1981b; Greenland, 1981; Weinberg and Wacholder, 1993). As
discussed in Chapter 15, relatively minor modifications are required for basic analyses of two-stage
data. These facts greatly reduce the number of analytic methods needed in epidemiology. Slightly
more complicated methods are needed for estimating risk ratios from case-cohort data.

In studiesthat involve extended follow-up, some subjects may |eave observation before the study
disease occurs or the risk period of interest ends (e.g., because of loss to follow-up or competing
risks). For such studies, methods that stratify on follow-up time will be needed; these methods are
given in Chapter 16.

PERSON-TIME DATA: LARGE-SAMPLE METHODS
SINGLE STUDY GROUP

The simplest statistics arise when the data represent incidence in a single study group. Examples
are common in occupational and environmental epidemiology, especialy in the initial analysis of
excess morbidity or mortality in asingle workplace, community, or neighborhood. In such studies,
the analysis proceedsin two steps: First, an expected number of cases, E, is calculated; second, the
number of cases observed in the study group, A, is compared with this expected number.

Usually, E is calculated by applying stratum-specific incidence rates obtained from a large
reference population (such as vital statistics data for a state or country) to the stratum-specific
person-time experience of the study group. The process by which this is done is an example of
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standardization, which in this situation invol ves taking aweighted sum of the referencerates, using
the stratum-specific person-time from the study group as weights (see Chapter 3). For example,
if we are studying the stomach cancer rates in a group consisting of persons aged 51 to 75 years
divided into three age categories (ages 51 to 60 years, 61 to 70 years, 71 to 75 years), two Sexes,
and two ethnicity categories, there are atotal of 3(2)2 = 12 possible age—sex—ethnicity categories.
Supposethat the person-times observed in each subgroup are Ty, Ty, . . ., T12, and the corresponding
age-sex—ethnicity specific rates in the reference population are known to be 14, . . ., l12. Then,
for a cohort that had the same age—sex—ethnicity specific rates as the reference population and the
same person-time distribution as that observed in the study group, the number of cases we should
expect is

E=Tili+ Talo+ -+ Tr2lp2

The quantity E isgenerally not precisely equal to the number of cases one should expect in the
study group if it had experienced the rates of the reference population (Keiding and Vaeth, 1986).
Thisinequality arises because an ateration of the person-time ratesin the study group will usually
alter the distribution of person-time in the study group (see Chapters 3 and 4). Nonetheless, the
quantity E has several valid statistical uses, which involve comparing A with E.

Theratio A/E is sometimes called the standardized morbidity ratio (or standardized mortality
ratio, if the outcomeisdeath), usually abbreviated as SMR. Let T bethetotal person-time observed
in the study group; that is, T = X Tx. Then A/ T is the observed crude rate in the study group,

and E/T istherate that would bekexpected in a population with the specific rates of the reference
population and the person-time distribution of the study group. Theratio of these ratesis

A/T A
E/T E

which shows that the SMR is arate ratio.

Boice and Monson (1977) reported A = 41 breast cancer cases out of 28,010 person-years at
risk in acohort of women treated for tubercul osiswith x-ray fluoroscopy. Only E = 23.3 caseswere
expected based on the age-year specific rates among women in Connecticut, so A/E = 41/23.3 =
1.76 is the ratio of the rate observed in the treated women to that expected in a population with
the age-year speific rates of Connecticut women and the person-time distribution observed in the
treated women.

To account for unknown sources of variation in the single observed rate A/ T, we must specify
a probability model for the random variability in the observed number of cases A. If the outcome
under study is not contagious, the conventional probability model for a single observed number of
cases A isthe Poisson distribution. Define | to be the average rate we would observe if we could
repeat the study over and over again under the same conditionswith the same amount of person-time
T observed each time (the latter condition could beimposed by ending follow-up upon reaching T
units). The Poisson model specifiesthat the probability of observing A = a (that is, the probability
that the number of cases observed equals a), given that T person-time units were observed in the
study group, is

Pr(A=a) = exp(—I - T)(I - T)?/al [14-1]

The Poisson model arises as a distribution for the number of cases occurring in a stationary
population of size N followed for afixed time span T/N. It also arises as an approximation to the
binomial distribution (see Chapter 13) when N isvery largeand risk isvery low (Clayton and Hills,
1993). The latter view of the Poisson distribution reveals that underlying use of this distribution
are assumptions of homogeneity of risk and independence of outcomes described earlier, because
these assumptions are needed to derive the binomial distribution.

In data analysis, the average rate | is an unknown quantity called the rate parameter, whereas
Aand T are known quantities. The function of | that results when the observed number of cases
and person-time units are put into equation 14—1 is called the Poisson likelihood for | based on the
data.
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We state without proof the following facts. Under the Poisson model (equation 14-1),

1. A/T isthe maximum-likelihood estimator (MLE) of | (for adiscussion of maximum-likelihood
estimation, see Chapter 13).

2. | - T isthe average value of A that we would observe over study repetitionsin which T person-
time unitswere observed, and so | - T/E isthe average value of the SMR over those repetitions
(I - T/E is sometimes called the SMR parameter); | - T is aso the variance of A over those
repetitions.

It follows from the second fact that a large-sample statistic for testing the null hypothesis that the
unknown rate parameter | equals the expected rate E/ T isthe score statistic

A—E
Xscore = W

becauseif | = E/T, the mean and variance of A areboth (E/T)T = E.
For the Boice and Monson (1977) study of breast cancer, the Poisson likelihood is

exp(—1 -28,010)(I - 28,010)*Y/41!,

the MLE of | is41/28,010 = 146 cases/100,000 person-years, and the score statistic for testing
whether | = 23.3/28,010 = 83 cases/100,000 person-yearsis

A—E 41-233
Asore = "E172” T T332

From a standard normal table, thisyields an upper-tailed P-value of 0.0001. Thus a score statistic
as large or larger than that observed would be very improbable under the Poisson model if no bias
was present and the specific rates in the cohort were equal to the Connecticut rates.

Let IR betheratio of the rate parameter of the study group | and the expected rate based on the
referencegroup E/ T:

= 3.67

IR= ——
E/T
Because A/ T isthe MLE of |,
-~ AT A
IR= —— = —
E/T E

isthe MLE of IR. To set approximate Wald confidencelimitsfor IR, wefirst set limitsfor the natural
logarithm of IR, In(IR), and then take the antilogs of these limits to get limits for IR. To do so, we
use the fact that an estimate of the approximate SD of In(IR) is

D[In(IR)] = i

Let y be the desired confidence percentage for interval estimation, and let Z,, be the number such
that the chance that a standard normal variable falls between —Z, and Z,, is y% (for example,
Zgo = 1.65, Zgs = 1.96, and Zgg = 2.58). Then y% Wald confidence limits for IR are given by

IR, TR = exp[In(IR) + Z,(1/AY?)]
For the Boice and Monson (1977) comparison, the 90% and 95% limits are
IR, TR = exp[In(41/23.3) + 1.65(1/41%?)] = 1.36, 2.28
and
IR, TR = exp[In(41/23.3) + 1.96(1/41%?)] = 1.30, 2.39

These results suggest that, if the Poisson model is correct, if the variability in E is negligible,
and if there is no bias, there is a nonrandom excess of breast cancers among fluoroscoped women
relative to the Connecticut women, but do not indicate very precisely just how large this excess
might be.
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Format for Unstratified Data with
Person-Time Denominators

Exposed  Unexposed  Total

Cases A Ao M
Person-time T To T

Under the Poisson model (equation 14-1), the score statistic provides an adequate approximate
P-value when E exceeds 5, whereas the Wald limits will be adequateif IR - E and IR - E exceed 5.
If these criteria are not met, then, asillustrated later in this chapter, one can compute small-sample
statistics directly from the Poisson distribution.

TWO STUDY GROUPS

Now suppose that we wish to compare observations from two study groups, which we shall refer
to as “exposed” and “unexposed” groups. The crude data can be displayed in the format shown in
Table 14-1.

Unlike the notation in Chapter 4, A; and Ay now represent cases from two distinct populations.
Asfor asingle group, if the outcome is not contagious, one conventional probability model for the
observed numbers of cases A; and Ag isthe Poisson model. If 11 and | are the rate parameters for
the exposed and unexposed groups, this model specifies that the probability of observing Ay = a;
and Ag = ap is

Pr(Ay = a1, Ao = &) = Pr(A; = &) Pr(Ao = ao)
(11 Ty)™ (loTo)®
exp(—IloT
al p(—10To) 2!
which isjust the product of the probabilities for the two single groups (exposed and unexposed).

In data analysis, I; and | are unknown parameters, whereas A;, T1, Ag, and Ty are observed

guantities. The function of 1; and Iy that results when the observed data numbers are put into

equation 14-2 is called the Poisson likelihood for 11 and 1o, based on the data.
Under the Poisson model (equation 14-2):

1. A;/Ti and Ag/ Tp are the maximum-likelihood estimates (MLES) of I; and |o.
2. The MLE of therateratioIR=11/lgis

A
R 1/ T
Ao/ To
3. The MLE of therate difference ID = |1 — Ig islD = A1/ T1 — Ao/ To.
4. Suppose that I; = |y (no difference in the rates). Then E = M1 T/ T is the average number
of exposed cases A; one would observe over study repetitions in which M; total cases were

observed out of T; exposed and Ty unexposed person-time totals. Also, the variance of A; over
the same repetitions would be

= exp(—11T1) [14-2]

V= ETo _ MiTiTo
T T?
It followsfromthelast fact that alarge-samplestatistic for testing thenull hypothesis 11 = 1o (which
isthe same hypothesisasIR=1and ID = Q) is
A — E
Xscore = ViZ

(Oleinick and Mantel, 1970).
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Breast Cancer Cases and Person-Years of
Observation for Women with Tuberculosis
Who Are Repeatedly Exposed to Multiple
x-Ray Fluoroscopies, and Unexposed Women
with Tuberculosis

Radiation Exposure

Yes No Total
Breast cancer cases 41 15 56
Person-years 28,010 19,017 47,027

From Boice JD, Monson RR. Breast cancer in women after repeated fluoroscopic
examinations of the chest. J Natl Cancer Inst. 1977;59:823-832.

Table 14-2 gives both study groups from the Boice and Monson (1977) study of breast cancer
and x-ray fluoroscopy among women with tuberculosis. For these data, we have

_ 41/28,010

R= 1~ 1
15/19,017 8
D - 41 15 _ 68
T 28010y 19,017y = 100,000y
56(28,010)
= o047~ 33.35
_ 33.35(19,017) _ 13.49
47,047
and
41 — 33.35
=208

Xscore = W

which, from a standard normal table, corresponds to an upper-tailed P-value of 0.02. The rate
ratio is similar to the value of 1.76 found using Connecticut women as a reference group, and it is
improbable that as large a score statistic or larger would be observed (under the Poisson model) if
no bias were present and exposure had no effect on incidence.

To set approximate confidence intervals for the rate ratio IR and the rate difference ID, we use
the facts that an estimate of the approximate SD of In(IR) is

1/2
§M®h{%+%>

and an estimate of the SD of ID is
1/2
D(ID) = (% + %;)
We obtain y% Wald limits for In(IR) and then take antilogs to get limits for IR:
IR TR = exp{In(IR) = Z, D[In(IR)]}
We obtain Wald limits for ID directly:
ID,ID=1D + Z,D(ID)
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From the data of Table 14—2 we get

1/2
D[IN(IR)] = (i + i) = 0.302

41 ' 15
and
PN 41 15 12 31
D(D) = -
(i) [(28,010 y)2 + (19,017 y)Z} 100,000 y

Hence, 90% Wald limitsfor IRand ID are
IR, IR = exp[In(1.86) & 1.645(0.302)] = 1.13, 3.06

and

_ 68 31 5
ID, 1D = 106,000y +1.645 <100,000y> =17,119 per 10°y
The corresponding 95% limitsare 1.03, 3.35for IR, and 7.5, 128 per 10° yearsfor ID. Thus, athough
the results suggest anonrandom excess of breast cancers among fluoroscoped women, they are very
imprecise about just how large this excess might be.

Under the two-Poisson model, the score statistic should provide an adequate approximate
P-value when both E and M; — E exceed 5, whereas the Wald limits for IR will be adequate
if both

M1 To M1(IR)To
(IRT1+To (IR)TL +To

exceed 5. These numbers are the expected values for the Ag cell and the A; cell assuming that
IR=1TRand IR = IR, respectively. For the above 95% limits, these numbers are
56(19,017) —94 and 56(1.03)28,010 _ ;g8
3.35(28,010) + 19,017 1.03(28,010) + 19,017
both well above 5.

If the preceding criteria are not met, small-sample methods are recommended. The last section
of thischapter illustrates how programsthat do exact analysisof 2 x 2 tables can be used to compute
small-sample P-values and rate-ratio confidence limitsfrom person-time datain the format of Table
14-1. Unfortunately, at this time there is no widely distributed small-sample method for the rate
difference, 1D, although approximationsbetter than the Wald limitshave been devel oped (Miettinen,
1985).

PURE COUNT DATA: LARGE-SAMPLE METHODS

Most cohort studies suffer from losses of subjects to follow-up and to competing risks. Studiesin
which these losses are not negligible should be analyzed using survival methods. Such methods in
effect stratify on follow-up time, so they are properly viewed as stratified analysis methods. They
are discussed in Chapter 16. Here we assume that we have cohort data with no loss to follow-up
and no competing risk. Such data can be analyzed as pure count data, with denominators consisting
of the number of persons at risk in the study, rather than person-time. They can also be analyzed
using person-time if times of events are available and relevant.

SINGLE STUDY GROUP: LARGE-SAMPLE METHODS

It is sometimes necessary to analyze an incidence proportion arising from a single occupational,
geographic, or patient group, such as the proportion of infants born with malformations among
women living near atoxic waste site, or the proportion of patients who go into anaphylactic shock
when treated with a particular drug. If A cases are observed out of N persons at risk and the
outcome is not contagious, the conventional model used to analyze the incidence proportion A/N
isthe binomia distribution (introduced in Chapter 13).
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Define R as the probability that a subject will experience the outcome. If we assume that
this probability is the same for all the subjects, and that the subject outcomes are independent, we
obtain the binomial model, which specifies that the probability of observing A = a cases out of N
personsis

N
a

Pr(A=a) = < ) RA(1— RN [14-3]
In dataanalysis, R isan unknown quantity called the risk parameter, whereas A and N are known
quantities. The function of R that results when the observed data numbers are put into equation
14-3iscalled the binomial likelihood for R, based on the data.

Under the binomial model (equation 14-3):

1. R= A/N isthe maximum-likelihood estimator (MLE) of R.
2. N . Risthe average value of A that we would observe over study repetitions, and N - R(1 — R)
isthe variance of A over the repetitions.

It followsfrom the last fact that alarge-sample statistic for testing the null hypothesisthat R equals
some expected risk Rg isthe score statistic
A—E
Hooe = [E(N — E)/N]*72
where E = N - Re isthe expected number of cases.

It is common practice to use the Wald method to set approximate confidence limits for the logit
of R (the natural logarithm of the odds):

L = logit(R) = In( R )

1-R

One then transforms the limits L, L for the logit back to the risk scale by means of the logistic
transform, which is defined by

et _ 1
l+el  14et

R = expit(L) =

Wald limits use the fact that an estimate of the approximate SD of Iogit(ﬁ) is
D[logit(R)] = (1/A+ 1/B)Y/2
where B = N— A isthe number of noncases. Approximate y % limits for R are then
R. R = expit{logit(R) + Z, D[logit(R)]}

If wewant % limits for the risk ratio RR = R/Rg, we use R/Re, R/Re.

Lancaster (1987) observed six infants with neural tube defectsin a cohort of 1,694 live births
conceived through in vitro fertilization, an incidence proportion of R = 6/1,694 = 0.00354. He
cited a general population risk of 1.2 per 1,000, so Rg = 0.0012. This risk yields an expected
number of cases of 0.0012(1,694) = 2.0, and a score statistic of

B 6—2.0
Xseore = 15 0(1,694 — 2.0),1,694]1/2

=283

which, from astandard normal table, yields an upper-tailed P-value of 0.002. Also, SD[logit( ﬁa)] =
(1/6 + 1/1,688)Y/? = 0.409, so the 90% limits for the risk R based on the Wald method are

R, R = expit[logit(0.00354) - 1.645(0.409)] = 0.0018, 0.0070

which yield 90% limits for the risk ratio RR of RR, RR = R/0.0012, R/0.0012 = 1.5, 5.8. The
corresponding 95% limits are 1.3, 6.6. The results suggest that if the binomial model is correct,
either abiasis present or there is an elevated rate of defectsin the study cohort, but the magnitude
of elevation isvery imprecisely estimated.
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Notation for a Crude 2 x 2 Table

Exposed Unexposed Total

Cases Ay Ao M
Noncases B By My
Total Ny No N

Another concern is that the study size is probably too small for these approximate statistics to
be accurate. As with the person-time statistics, the score statistic will be adequate when E and
N — E exceed 5, and the Wald limits will be adequate when both NR and N(1 — R) exceed 5. In
the Lancaster study, E isonly 2 and NR = 1,694(0.0016) = 2.7, so exact methods are needed.

TWO STUDY GROUPS: LARGE-SAMPLE METHODS

When comparing two study groups, the data can be displayed in a 2 x 2 table of counts. The
four cells of the table are the numbers of subjects classified into each combination of presence or
absence of exposure and occurrence or nonoccurrenceof disease. Thenotationwewill useisgivenin
Table 14-3.

Superficially, Table 14-3 resembles Table 14—1 except for the addition of a row for noncases.
The denominatorsin Table 14-3, however, are frequencies (counts) of subjects rather than person-
time accumulations. Conveniently, crude data from a case-control study has a form identical to
Table 143 and can be analyzed using the same probability model as used for pure-count cohort
data.

For a noncontagious outcome, one conventional probability model for the observed numbers
of cases A; and Ay is the binomial model. If R; and Ry are the risk parameters for exposed and
unexposed cohorts, this model specifies that the probability of observing A; = a; and Ag = ap is

Pr(Ay = a1, Ao = &) = Pr(Ay = a1) Pr(Ay = &)

= (M) rRea- Ry (R R RYS (144
a1 Qo
which isjust the product of the probabilities for the two cohorts.

In data analysis, R; and Ry are unknown parameters, whereas Az, N1, Ag, and Ng are known
quantities. The function of the unknowns R; and Ry obtained when actual data values are put into
equation 14—4 is called the binomial likelihood of R; and Ry, based on the data.

Under the two-binomial model (equation 14—4):

1. A;/N; and Ag/Np are the maximum-likelihood estimators of R; and Rp.
2. The MLE of therisk ratioRR= R; /Ry is

—~ A

RR= ~1/MN1

Ao/No

3. The MLE of therisk difference RD = R; — Ry is
- At Ao
RD=-—— —
N:  Np

4. The MLE of the risk-odds ratio
R/(1- R
OR — 1/( 1)

~ Ro/(1-Ro)
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Diarrhea During a 10-Day Follow-Up Period in 30
Breast-Fed Infants Colonized with Vibrio cholerae
01, According to Antipolysaccharide Antibody
Titers in the Mother’s Breast Milk

Antibody Level
Low High Total
Diarrhea 12 7 19
No diarrhea 2 9 11
Totals 14 16 30

From Glass RI, Svennerholm AM, Stoll BJ, et al. Protection against cholera in breast-fed
children by antibiotics in breast milk. N Engl J/ Med. 1983;308:1389-1392.

is the observed incidence-odds ratio
6R — A/B1 _ AdBo
Ao/Bo  AoBy
5. If Ry = Ry (nodifferenceinrisk), E = M1N;/N isthe average number of exposed cases A, that

one would observe over the subset of study repetitions in which M; total cases were observed,
and

_ EMoNo  MiN;iMoNo
TN(N—=1) N2(N-1)
isthe variance of A; over the same subset of repetitions.

It follows from the last fact that alarge-sample statistic for testing the null hypothesis R; = Ry (the
same hypothesisasRR=1,RD = 0,and OR=1) is
A —E
Xscore = W
This score statistic has the same form as the score statistic for person-time data. Nonetheless, the
formulafor V, thevariance of A;, hastheadditional multiplier Mg/(N — 1). Thismultiplier reflects
the fact that we are using a different probability model for variationin A;.

Table 14—4 presents data from a cohort study of diarrhea in breast-fed infants colonized with
Vibrio cholerae 01, classified by level of antibody titersin their mother’s breast milk (Glass et dl.,
1983). A low titer confers an elevated risk and so is taken as the first column of Table 14—4. From
these data, we obtain

RR = (12/14)/(7/16) = 1.96
RD = 12/14— 7/16 = 0.42
OR = 12(9)/7(2) = 7.71
E = 19(14)/30 = 8.87
V = 8.87(11)16/30(30 — 1) = 1.79

and

12 — 8.87
Xscore = W =234

The latter yields an upper-tailed P-value of 0.01. Thus a score statistic as large or larger than that
observed has low probability in the absence of bias or an antibody effect.
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There are at least two cautions to consider in interpreting the statistics just given. First, infant
diarrheaisusually infectiousinorigin, and causative agents could be transmitted between subjectsif
there were contact between theinfants or their mothers. Such phenomenawould invalidate the score
test given above. Second, there are only two low-antibody noncases, raising the possibility that the
large-sample statistics (RR, OR, xscore) are not adequate. We expect xscore to be adequate when all
four expected cells, E, M; — E, N; — E, and My — N1 4+ E exceed 5; RR to be adequate when
N; R; and Ng Ry exceed 5; and ORtobe adequate when N1 Ry, NoRg, N1(1 — Ry), and No(I—Ro) al
exceed 5. In the diarrhea example, the smallest of the expected cellsis N; — E = 5.13, just above
the criterion. Because B, isan estimate of N1(1 — Ry) and isonly 2, OR seems less trustworthy.

Turning now to interval estimation, a SD estimate for RDis

A1By AoBo ]1/2
NZ2(Ny —1)  NZ(No — 1)

which yields the y % Wald confidence limits

D(RD) = [

RD + 7, SD(RD)

Thisformulacan produce quiteinaccurate limitswhen the expected cell sizesaresmall, asevidenced
by limits that may fall below —1 or above 1. Improved approximate confidence limits for the risk
difference can be found from

— et —d

RD, RD =
— ets +d

where
. 2zy§5@)
1-RD?
and
g— 1RO
1+RD
(Zou and Donner, 2004). When RD = 1 or —1 thisformulafails, but then the upper limit should be

sttolifRD=1,0rto-1ifRD=-1.
Approximate SD estimates for In(RR) and In(OR) are

- 1 1 1 1\%
DI = (5~ * 3~ %)

and
1/2
D[IN(OR)] = (Ail + Bil + % + Bi())
which yield y % Wald limits of
RR, RR = exp{In(RR) = Z, D[IN(RR)]}
and
OR, OR = exp{In(OR) + Z, D[In(OR)]}
For the data of Table 14—4,

2@) | 79
14213 ' 16215

P 1/2
D(RD) = [ } —0.161

P 1 1 1 1\
D[In(RR)] = (5_171+?_E> = 0.304
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and

- 1 1 1 1\
SD[In(OR)]:(E+§+7+§> =0.915

which yield 90% Wald limits of
RD, RD = 0.42 4+ 1.645(0.161) = 0.16, 0.68

RR, RR = exp[In(1.96) + 1.645(0.304)] = 1.2, 3.2
and
OR, OR = exp[In(7.71) & 1.645(0.915)] = 1.7, 35

The improved approximate 90% limits for RD are 0.13, 0.65, which are slightly shifted toward the
null compared with the smple Wald limits. The simple 95% Wald limitsare 0.10, 0.73 for RD, 1.1,
3.6 for RR, and 1.3, 46 for OR. Thus, athough the data show a positive association, the measures
areimprecisely estimated, especially the odds ratio.

Under the two-binomial model, we expect the Wald limits for the risk difference and ratio to
be adequate when the limits for the odds ratio are adequate. The Wald limits for the odds ratio
should be adequate when al four cell expectations given the lower odds-ratio limit and all four cell
expectations given the upper odds-ratio limit exceed 5. This rather unwieldy criterion takes much
labor to apply, however. Instead, we recommend that, if thereisany doubt about the adequacy of the
study size for Wald methods, one should turn to more accurate methods. There are more accurate
large-sampl e approximations than the Wald method for setting confidence limits (see Chapter 13),
but only the odds ratios have widely available small-sample methods; these methods are described
at the end of this chapter.

RELATIONS AMONG THE RATIO MEASURES

As discussed in Chapter 4, OR is always further from the null value of 1 than RR. In a parallel
fashion, ORis always further from 1 than RR in an unstratified study; therefore, use of OR from a
cohort study as an estimate for RR tends to produce estimates that are too far from 1. The disparity
between OR and RR increases with both the size of the risks R; and Ry /a\nd the giength of the as-
sociation (as measured by OR or RR). A paralel relation holds for OR and RR. The disparity
increases as both the size of the incidence proportions A;/N; and Ag/Ng and the strength of the
observed association increases. For Table 14—4, RR= 2.0 and OR = 7.7 arefar apart because both
observed proportions exceed 40% and the association is strong.

One often sees statements that the odds ratio approximates the risk ratio when the disease is
“rare” This statement can be made more precise in astudy of aclosed population: If both risk odds
R1/(1 —Ry) and Ry/(1 —Ryp) are under 10%, then the disparity between OR and RR will also be
under 10% (Greenland, 19874a). In a parallel fashion, if the observed incidence odds A;/B; and
Ao/ By are under 10%, then the disparity between OR and RR will be under 10%.

The relation of the odds ratio and risk ratio to the rate ratio IR is more complex. Nonethel ess,
if the incidence rates change only slightly across small subintervals of the actual follow-up period
(i.e., the incidence rates are nearly constant across small time strata), IR will be further from the
null than RR and closer to the null than OR (Greenland and Thomas, 1982). It follows that, given
constant incidence rates over time, OR as an estimate of IR tends to be too far from the nul |, and
IR as an estimate of RR tends to be too far from the null. Again, however, the disparity among the
three measures will be small when the incidence islow.

CASE-CONTROL DATA

Assuming that the underlying source cohort is closed, the odds-ratio estimates given earlier can
be applied directly to cumulative case-control data. Table 14-5 provides data from a case-control
study of chlordiazepoxide usein early pregnancy and congenital heart defects. For testing OR = 1
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History of Chlordiazepoxide Use in Early Pregnancy
for Mothers of Children Born with Congenital Heart
Defects and Mothers of Normal Children

Chlordiazepoxide Use

Yes No Total
Case mothers 4 386 390
Control mothers 4 1,250 1,254
Totals 8 1,636 1,644

From Rothman KJ, Fyler DC, Goldblatt A, et al. Exogenous hormones and other drug exposures of
children with congenital heart disease. Am J Epidemiol. 1979;109:433-439.

(no association), we have

390(8)
E=—"=190
1,644
V- 1.90(1,254)(1,636) 14
1,644(1,643)
and
4—1.90 _175

Xscore = 14412
which yields an upper-tailed P-value of 0.04. Also,

G 41.250) _
4(386)

3.24
and

DU 1 1 1 1 \?
SD[In(OR)] = <Z + Z + % + @) =0.710

which yield 90% Wald limits of
exp[In(3.24) + 1.65(0.710)] = 1.00, 10.5

and 95% Wald limits of 0.81, 13. Thus, the data exhibit a positive association but do so with little
precision, indicating that, even in the absence of bias, the data are reasonably compatible with
effects ranging from little or nothing up through more than a 10-fold increase in risk.

If the exposure prevalence does not change over the sampling period, the above odds-ratio
formulas can also be used to estimate rate ratios from case-control studies done with density
sampling (see Chapter 8). Because controls in such studies represent person-time, persons may at
different times be sampled more than once as controls, and may be sampled as a case after being
sampled as a control. Data from such a person must be entered repeatedly, just as if the person had
been a different person at each sampling time. If a person’s exposure changes over time, the data
entered for the person at each sampling time will differ. For example, in a study of smoking, it
is conceivable (though extremely unlikely in practice) that a single person could first be sampled
as a smoking control, then later be sampled as a nonsmoking control (if the person quit between
the sampling times); if the person then fell ill, he or she could be sampled a third time as a case
(smoking or nonsmoking, depending on whether the person resumed or not between the second and
third sampling times).
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Notation for Crude Case-Cohort Data When
All Cases in the Cohort Are Selected

Exposed Unexposed Total

Case but not control A Aot M
Case and control Ao Ao Mo
Noncase control B; Bo Mo
Total N No N

The repeated-use rule may at first appear odd, but it is no more odd than the use of multiple
person-time units from the same person in a cohort study. One caution should be borne in mind,
however: If exposure prevalence changes over the course of subject selection, and risk changes
over time or subjects are matched on sampling time, one should treat sampling time as a potential
confounder and thus stratify on it (see Chapters 15 and 16) (Greenland and Thomas, 1982). With
fine enough time strata, no person will appear twicein the sametime stratum. Such fine stratification
should also be used if one desires a small-sample (exact) analysis of density-sampled data.

CASE-COHORT DATA

Case-cohort data differ from cumulative case-control datain that some of the controls may also be
cases, because controls in case-cohort data are a sample of the entire cohort, whereas controls in
cumulative case-control data are a sample of noncases only. We limit our discussion of methods to
the common special case in which every case in the source cohort is ascertained and selected for
study. We further stipulate that the source cohort is closed and that the cohort sample was selected
by simple random sampling. We may then use the notation given in Table 14—6 for case-cohort
data.

Table 146 resembles Table 14—3 except that the cases are now split into cases that were not
also selected as controls and cases that were. Data in the form of Table 14—6 can be collapsed into
the form of Table 14-3 by adding together the first two rows, so that

Ar=Ai+Ap Ac=An+ Ap Mi= M+ My

With the data collapsed in this fashion, the odds ratio can be tested and estimated using the same
large- and small-sample methods as given in previous sectionsfor case-control data. In other words,
we can obtain P-valuesfrom the score statistic or from the hypergeometric formulabel ow (equation
14-8), and Wald-type limits for OR as before. Asin cohort studies and in case-control studies of a
cohort, if the source cohort for the case-cohort study suffers meaningful lossesto follow-up or from
competing risks, it will beimportant to analyze the datawith stratification on time (see Chapter 16).

One can estimate the risk ratio directly from the case-cohort data using large-sample formulas
that generalize the risk-ratio methods for full-cohort data. To describe the maximum-likelihood
estimator of the risk ratio in case-cohort data (Sato, 1992a), we first must define the “pseudo-
denominators”

A1Myo
N = B
1 Ml 1
and
M
NG = AoM1go LBy
My

Mio is the number of cases among the controls, M is the total number of cases, and M1/ My is
the proportion of cases that are controls. The ratio N; /Ng is a more stable estimate of the ratio
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of exposed to unexposed in the source cohort than the intuitive estimate (Ao + B1)/(Aw + Bo)
obtained from the controls alone. Thus we take as our case-cohort risk-ratio estimate

AN A A
Ao/Ng  Ni/Ng

The approximate variance of In(RR) is estimated as

VIIn(RR)] =

1 1 My — M 1 1 1 1 1 1\2 /MpyM
e () o)~ ) G ) ()
A Ay M Ny NG A Ay NP TNG M?

so that 95% confidence limits for the risk ratio can be computed from

RR, RR = exp[In(RR) = 1.96 D]

where D is the square root of V[In(RR)].
If the disease is so uncommon that no case appearsin the control sample, then Mg = 0, My; =
My, Nf = By, Ng = By, and so

o Al BO —
RR = =O0OR
AgBy

and
A — 1 1 1 1
V[In(RR =(—+—+—+—>
[IN(RR)] AT A TE TR

which areidentical to the odds-ratio point and variance estimatesfor case-control data. On the other
hand, if every cohort member is selected as a control, then M1; = 0 and these formulas become
identical to the risk-ratio formulas for closed cohort data.

SMALL-SAMPLE STATISTICS FOR PERSON-TIME DATA
SINGLE STUDY GROUP

Consider again a study in which A cases occur in observation of T person-time units, and E cases
would be expected if reference-population rates applied. The mean value of A, whichis| - T inthe
Poisson distribution (equation 14-1), isequal to IR E:

r[o](§) 7o

Using this relation, we can compute the mid- P-value functions for IR directly from the Poisson
distribution with IR« E inplaceof | - T:

Fﬁower:%F"r(A:a)-l-Pr(A<a)

a—1
= % exp(—IR- E)(IR- E)*/al + > exp(~IR- E)(IR- E)*/K!
k=0

—1— Pupperzl—[%Pr(Aza)+Pr(A>a)]

To get the median-unbiased estimate of IRwefind that value of IR for which Ployer = Pupper (Which
existsonly if A > 0) (Birnbaum, 1964). This value of IR will have lower and upper mid- P-values
equal to 0.5. To get atwo-sided (1 — «)-level mid-P confidence interval for IR, we take the lower
limit to be the value IR for IR for which Pypper = /2, and take the upper limit to be the value IR
for IR for which Piower = /2. To get limitsfor |, we multiply IRand TRby E/T.
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Waxweiler et a. (1976) observed A = 7 deaths from liver and biliary cancer in a cohort of
workers who were exposed for at least 15 years to vinyl chloride. Only E = 0.436 deaths were
expected based on general population rates. The mid- P-value functions are given by

HUN&:%Pr(A:7)+Pr(A<7)

6
% exp[—IR(0.436)|[IR(0.436)]"/7! + > exp|—~IR(0.436)][IR(0.436)]"/ k!
k=0

1— Pupperzl[%Pr(A:7)+Pr(A>7)]

The lower mid-P-value for the hypothesis IR = 1 is under 0.00001. The value of IR for which
Plower = Pupper = 0.5 is 16.4, which is the median-unbiased estimate. The value of IR for which
Piower =0.10/2=0.05isIR= 8.1, thelower limit of the1 — 0.10 = 90% mid- P confidenceinterval.
The value of IR for which Pypper = 0.10/2 = 0.05 isTR = 29, the upper limit of the 90% mid-P
confidenceinterval. The 95% limits are 6.9 and 32, and the 99% limits are 5.1 and 38. The number
of cases observed isclearly far greater than we would expect under the Poisson model with IR= 1.
Thusit appears that this null model iswrong, as would occur if biases are present or thereis arate
elevation in the study cohort (IR > 1).

For comparison, the MLE of IR in this example is IR = 7/0.436 = 16.1, the score statistic is
(7 — 0.436)/0.436%2 = 9.94, the upper P-value less than 0.00001, the 90% Wald limits are

IR, TR = exp[In(7/0.436) + 1.65(1/7%?)] = 8.6, 30

and the 95% and 99% Wald limitsare 7.7, 34 and 6.1, 43. As may be apparent, the 90% Wald limits
provide better approximations than the 95% limits, and the 95% provide better approximations than
the 99% limits.

The simple examples we have given illustrate the basic principles of small-sample analysis:
Compute the upper and lower P-value functions directly from the chosen probability model, and
then use these functions to create equations for point and interval estimates, as well as to compute
P-values.

TWO STUDY GROUPS

Consider again a study in which A; cases occur in observation of T; exposed person-time, and Ag
cases occur in observation of T unexposed person-time. The expectation E and variance V for the
exposed-case cell A; in the score statistic were computed only for study repetitions in which the
total number of cases M1 was equd to its observed value. Another way of putting this restriction
isthat M; was treated as fixed in the computation of E and V. In more technical and general terms,
we say that computation of E and V was done conditional on M, the observed case margin.

The philosophy behind fixing M; is based on a statistical concept called conditionality (Cox
and Hinkley, 1974; Little, 1989). One useful consequence of this step is that it greatly ssimplifies
small-sample statistics. By treating M; asfixed, we can compute exact and mid- P-valuesand limits
for the incidence rate ratio IR using the following binomial probability model for the number of
exposed cases, A, given the total number of cases observed, M;:

Pr(A; = ay|M; = my) = (g‘ll> SH(L— g)ma [14-5]

where s is the probability that a randomly sampled case is exposed. It turns out that s isasimple
function of theincidence rate ratio IR and the observed person-time:
. average number of exposed cases
"~ averagetotal number of cases
b (/)T IR-Ty
11Ty + 1oTo (11/10)T1 + To IR-T1+To

[14-6]
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where the averages are over repetitions of the study (keeping T, and Ty fixed). We can set small-
sample confidence limits s, S for s by computing directly from the binomial egquation 14-5. We
can then convert these limits to rate-ratio limits IR, IR by solving equation 14—6 for IR and then
substituting s and S into the resulting formula,

(Rothman and Boice, 1982). Computing di