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Preface and
Acknowledgments

This third edition of Modern Epidemiology arrives more than 20 years after the first edition, which
was a much smaller single-authored volume that outlined the concepts and methods of a rapidly
growing discipline. The second edition, published 12 years later, was a major transition, as the
book grew along with the field. It saw the addition of a second author and an expansion of topics
contributed by invited experts in a range of subdisciplines. Now, with the help of a third author,
this new edition encompasses a comprehensive revision of the content and the introduction of new
topics that 21st century epidemiologists will find essential.

This edition retains the basic organization of the second edition, with the book divided into four
parts. Part I (Basic Concepts) now comprises five chapters rather than four, with the relocation
of Chapter 5, “Concepts of Interaction,” which was Chapter 18 in the second edition. The topic
of interaction rightly belongs with Basic Concepts, although a reader aiming to accrue a working
understanding of epidemiologic principles could defer reading it until after Part II, “Study Design
and Conduct.” We have added a new chapter on causal diagrams, which we debated putting into
Part I, as it does involve basic issues in the conceptualization of relations between study variables.
On the other hand, this material invokes concepts that seemed more closely linked to data analysis,
and assumes knowledge of study design, so we have placed it at the beginning of Part III, “Data
Analysis.” Those with basic epidemiologic background could read Chapter 12 in tandem with
Chapters 2 and 4 to get a thorough grounding in the concepts surrounding causal and non-causal
relations among variables. Another important addition is a chapter in Part III titled, “Introduction to
Bayesian Statistics,” which we hope will stimulate epidemiologists to consider and apply Bayesian
methods to epidemiologic settings. The former chapter on sensitivity analysis, now entitled “Bias
Analysis,” has been substantially revised and expanded to include probabilistic methods that have
entered epidemiology from the fields of risk and policy analysis. The rigid application of frequentist
statistical interpretations to data has plagued biomedical research (and many other sciences as well).
We hope that the new chapters in Part III will assist in liberating epidemiologists from the shackles
of frequentist statistics, and open them to more flexible, realistic, and deeper approaches to analysis
and inference.

As before, Part IV comprises additional topics that are more specialized than those considered in
the first three parts of the book. Although field methods still have wide application in epidemiologic
research, there has been a surge in epidemiologic research based on existing data sources, such as
registries and medical claims data. Thus, we have moved the chapter on field methods from Part II
into Part IV, and we have added a chapter entitled, “Using Secondary Data.” Another addition is
a chapter on social epidemiology, and coverage on molecular epidemiology has been added to the
chapter on genetic epidemiology. Many of these chapters may be of interest mainly to those who are
focused on a particular area, such as reproductive epidemiology or infectious disease epidemiology,
which have distinctive methodologic concerns, although the issues raised are well worth considering
for any epidemiologist who wishes to master the field. Topics such as ecologic studies and meta-
analysis retain a broad interest that cuts across subject matter subdisciplines. Screening had its own
chapter in the second edition; its content has been incorporated into the revised chapter on clinical
epidemiology.

The scope of epidemiology has become too great for a single text to cover it all in depth. In this
book, we hope to acquaint those who wish to understand the concepts and methods of epidemiology
with the issues that are central to the discipline, and to point the way to key references for further
study. Although previous editions of the book have been used as a course text in many epidemiology

vii
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viii Preface and Acknowledgments

teaching programs, it is not written as a text for a specific course, nor does it contain exercises or
review questions as many course texts do. Some readers may find it most valuable as a reference
or supplementary-reading book for use alongside shorter textbooks such as Kelsey et al. (1996),
Szklo and Nieto (2000), Savitz (2001), Koepsell and Weiss (2003), or Checkoway et al. (2004).
Nonetheless, there are subsets of chapters that could form the textbook material for epidemiologic
methods courses. For example, a course in epidemiologic theory and methods could be based on
Chapters 1 through 12, with a more abbreviated course based on Chapters 1 through 4 and 6 through
11. A short course on the foundations of epidemiologic theory could be based on Chapters 1 through
5 and Chapter 12. Presuming a background in basic epidemiology, an introduction to epidemiologic
data analysis could use Chapters 9, 10, and 12 through 19, while a more advanced course detailing
causal and regression analysis could be based on Chapters 2 through 5, 9, 10, and 12 through 21.
Many of the other chapters would also fit into such suggested chapter collections, depending on the
program and the curriculum.

Many topics are discussed in various sections of the text because they pertain to more than one
aspect of the science. To facilitate access to all relevant sections of the book that relate to a given
topic, we have indexed the text thoroughly. We thus recommend that the index be consulted by
those wishing to read our complete discussion of specific topics.

We hope that this new edition provides a resource for teachers, students, and practitioners
of epidemiology. We have attempted to be as accurate as possible, but we recognize that any
work of this scope will contain mistakes and omissions. We are grateful to readers of earlier
editions who have brought such items to our attention. We intend to continue our past practice
of posting such corrections on an internet page, as well as incorporating such corrections into
subsequent printings. Please consult <http://www.lww.com/ModernEpidemiology> to find the latest
information on errata.

We are also grateful to many colleagues who have reviewed sections of the current text and
provided useful feedback. Although we cannot mention everyone who helped in that regard, we
give special thanks to Onyebuchi Arah, Matthew Fox, Jamie Gradus, Jennifer Hill, Katherine
Hoggatt, Marshal Joffe, Ari Lipsky, James Robins, Federico Soldani, Henrik Toft Sørensen, Soe
Soe Thwin and Tyler VanderWeele. An earlier version of Chapter 18 appeared in the Interna-
tional Journal of Epidemiology (2006;35:765–778), reproduced with permission of Oxford Uni-
versity Press. Finally, we thank Mary Anne Armstrong, Alan Dyer, Gary Friedman, Ulrik Gerdes,
Paul Sorlie, and Katsuhiko Yano for providing unpublished information used in the examples of
Chapter 33.

Kenneth J. Rothman
Sander Greenland

Timothy L. Lash

http://www.lww.com/ModernEpidemiology


P1: IML/OTB P2: IML/OTB QC: IML/OTB T1: IML Printer: RRD

GRBT241-FM GRBT241-v4.cls February 5, 2008 11:43

Contributors

James W. Buehler
Research Professor
Department of Epidemiology
Rollins School of Public Health
Emory University
Atlanta, Georgia

Jack Cahill
Vice President
Department of Health Studies Sector
Westat, Inc.
Rockville, Maryland

Sander Greenland
Professor of Epidemiology and

Statistics
University of California
Los Angeles, California

M. Maria Glymour
Robert Wood Johnson Foundation Health

and Society Scholar
Department of Epidemiology
Mailman School of Public Health
Columbia University
New York, New York
Department of Society, Human Development

and Health
Harvard School of Public Health
Boston, Massachusetts

Marta Gwinn
Associate Director
Department of Epidemiology
National Office of Public Health

Genomics
Centers for Disease Control and

Prevention
Atlanta, Georgia

Patricia Hartge
Deputy Director
Department of Epidemiology and

Biostatistics Program
Division of Cancer Epidemiology and Genetics
National Cancer Institute,

National Institutes of Health
Rockville, Maryland

Irva Hertz-Picciotto
Professor
Department of Public Health
University of California, Davis
Davis, California

C. Robert Horsburgh, Jr.
Professor of Epidemiology,

Biostatistics and Medicine
Department Epidemiology
Boston University School of Public Health
Boston, Massachusetts

Jay S. Kaufman
Associate Professor
Department of Epidemiology
University of North Carolina at Chapel Hill,

School of Public Health
Chapel Hill, North Carolina

Muin J. Khoury
Director
National Office of Public Health Genomics
Centers for Disease Control and Prevention
Atlanta, Georgia

Timothy L. Lash
Associate Professor of Epidemiology

and Medicine
Boston University
Boston, Massachusetts

ix



P1: IML/OTB P2: IML/OTB QC: IML/OTB T1: IML Printer: RRD

GRBT241-FM GRBT241-v4.cls February 5, 2008 11:43

x Contributors

Barbara E. Mahon
Assistant Professor
Department of Epidemiology and Pediatrics
Boston University
Novartis Vaccines and Diagnostics
Boston, Massachusetts

Robert C. Millikan
Professor
Department of Epidemiology
University of North Carolina at Chapel Hill,
School of Public Health
Chapel Hill, North Carolina

Hal Morgenstern
Professor and Chair
Department of Epidemiology
University of Michigan School of

Public Health
Ann Arbor, Michigan

Jørn Olsen
Professor and Chair
Department of Epidemiology
UCLA School of Public Health
Los Angeles, California

Keith O’Rourke
Visiting Assistant Professor
Department of Statistical Science
Duke University
Durham, North Carolina
Adjunct Professor
Department of Epidemiology and

Community Medicine
University of Ottawa
Ottawa, Ontario
Canada

Charles Poole
Associate Professor
Department of Epidemiology
University of North Carolina at Chapel Hill,

School of Public Health
Chapel Hill, North Carolina

Kenneth J. Rothman
Vice President, Epidemiology Research
RTI Health Solutions
Professor of Epidemiology and Medicine
Boston University
Boston, Massachusetts

Clarice R. Weinberg
National Institute of Environmental

Health Sciences
Biostatistics Branch
Research Triangle Park, North Carolina

Noel S. Weiss
Professor
Department of Epidemiology
University of Washington
Seattle, Washington

Allen J. Wilcox
Senior Investigator
Epidemiology Branch
National Institute of Environmental

Health Sciences/NIH
Durham, North Carolina

Walter C. Willett
Professor and Chair
Department of Nutrition
Harvard School of Public Health
Boston, Massachusetts



P1: TNL/OVY P2: SCF/OVY QC: SCF/OVY T1: SCF Printer: RRD

GRBT241-1 GRBT241-v4.cls October 24, 2007 23:26

CHAPTER 1

Introduction
Kenneth J. Rothman, Sander Greenland, and

Timothy L. Lash

Although some excellent epidemiologic investigations were conducted before the 20th cen-
tury, a systematized body of principles by which to design and evaluate epidemiology studies began
to form only in the second half of the 20th century. These principles evolved in conjunction with
an explosion of epidemiologic research, and their evolution continues today.

Several large-scale epidemiologic studies initiated in the 1940s have had far-reaching influences
on health. For example, the community-intervention trials of fluoride supplementation in water that
were started during the 1940s have led to widespread primary prevention of dental caries (Ast,
1965). The Framingham Heart Study, initiated in 1949, is notable among several long-term follow-
up studies of cardiovascular disease that have contributed importantly to understanding the causes
of this enormous public health problem (Dawber et al., 1957; Kannel et al., 1961, 1970; McKee
et al., 1971). This remarkable study continues to produce valuable findings more than 60 years after
it was begun (Kannel and Abbott, 1984; Sytkowski et al., 1990; Fox et al., 2004; Elias et al., 2004;
www.nhlbi.nih.gov/about/framingham). Knowledge from this and similar epidemiologic studies
has helped stem the modern epidemic of cardiovascular mortality in the United States, which
peaked in the mid-1960s (Stallones, 1980). The largest formal human experiment ever conducted
was the Salk vaccine field trial in 1954, with several hundred thousand school children as subjects
(Francis et al., 1957). This study provided the first practical basis for the prevention of paralytic
poliomyelitis.

The same era saw the publication of many epidemiologic studies on the effects of tobacco
use. These studies led eventually to the landmark report, Smoking and Health, issued by the
Surgeon General (United States Department of Health, Education and Welfare, 1964), the first
among many reports on the adverse effects of tobacco use on health issued by the Surgeon General
(www.cdc.gov/Tobacco/sgr/index.htm). Since that first report, epidemiologic research has steadily
attracted public attention. The news media, boosted by a rising tide of social concern about health
and environmental issues, have vaulted many epidemiologic studies to prominence. Some of these
studies were controversial. A few of the biggest attention-getters were studies related to

• Avian influenza
• Severe acute respiratory syndrome (SARS)
• Hormone replacement therapy and heart disease
• Carbohydrate intake and health
• Vaccination and autism
• Tampons and toxic-shock syndrome
• Bendectin and birth defects
• Passive smoking and health
• Acquired immune deficiency syndrome (AIDS)
• The effect of diethylstilbestrol (DES) on offspring

1
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2 Chapter 1 ● Introduction

Disagreement about basic conceptual and methodologic points led in some instances to profound
differences in the interpretation of data. In 1978, a controversy erupted about whether exogenous
estrogens are carcinogenic to the endometrium: Several case-control studies had reported an ex-
tremely strong association, with up to a 15-fold increase in risk (Smith et al., 1975; Ziel and Finkle,
1975; Mack et al., 1976). One group argued that a selection bias accounted for most of the observed
association (Horwitz and Feinstein, 1978), whereas others argued that the alternative design pro-
posed by Horwitz and Feinstein introduced a downward selection bias far stronger than any upward
bias it removed (Hutchison and Rothman, 1978; Jick et al., 1979; Greenland and Neutra, 1981).
Such disagreements about fundamental concepts suggest that the methodologic foundations of the
science had not yet been established, and that epidemiology remained young in conceptual terms.

The last third of the 20th century saw rapid growth in the understanding and synthesis of epi-
demiologic concepts. The main stimulus for this conceptual growth seems to have been practice
and controversy. The explosion of epidemiologic activity accentuated the need to improve under-
standing of the theoretical underpinnings. For example, early studies on smoking and lung cancer
(e.g., Wynder and Graham, 1950; Doll and Hill, 1952) were scientifically noteworthy not only for
their substantive findings, but also because they demonstrated the efficacy and great efficiency of
the case-control study. Controversies about proper case-control design led to recognition of the
importance of relating such studies to an underlying source population (Sheehe, 1962; Miettinen,
1976a; Cole, 1979; see Chapter 8). Likewise, analysis of data from the Framingham Heart Study
stimulated the development of the most popular modeling method in epidemiology today, multiple
logistic regression (Cornfield, 1962; Truett et al., 1967; see Chapter 20).

Despite the surge of epidemiologic activity in the late 20th century, the evidence indicates that
epidemiology remains in an early stage of development (Pearce and Merletti, 2006). In recent years
epidemiologic concepts have continued to evolve rapidly, perhaps because the scope, activity, and
influence of epidemiology continue to increase. This rise in epidemiologic activity and influence has
been accompanied by growing pains, largely reflecting concern about the validity of the methods
used in epidemiologic research and the reliability of the results. The disparity between the results
of randomized (Writing Group for the Woman’s Health Initiative Investigators, 2002) and nonran-
domized (Stampfer and Colditz, 1991) studies of the association between hormone replacement
therapy and cardiovascular disease provides one of the most recent and high-profile examples of
hypotheses supposedly established by observational epidemiology and subsequently contradicted
(Davey Smith, 2004; Prentice et al., 2005).

Epidemiology is often in the public eye, making it a magnet for criticism. The criticism has
occasionally broadened to a distrust of the methods of epidemiology itself, going beyond skepticism
of specific findings to general criticism of epidemiologic investigation (Taubes, 1995, 2007). These
criticisms, though hard to accept, should nevertheless be welcomed by scientists. We all learn best
from our mistakes, and there is much that epidemiologists can do to increase the reliability and
utility of their findings. Providing readers the basis for achieving that goal is the aim of this textbook.
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CHAPTER 2

Causation and Causal
Inference

Kenneth J. Rothman, Sander Greenland,
Charles Poole, and Timothy L. Lash
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Causal Inference in Epidemiology 25
Tests of Competing Epidemiologic Theories 25
Causal Criteria 26

CAUSALITY

A rudimentary understanding of cause and effect seems to be acquired by most people on their own
much earlier than it could have been taught to them by someone else. Even before they can speak,
many youngsters understand the relation between crying and the appearance of a parent or other
adult, and the relation between that appearance and getting held, or fed. A little later, they will
develop theories about what happens when a glass containing milk is dropped or turned over, and
what happens when a switch on the wall is pushed from one of its resting positions to another. While
theories such as these are being formulated, a more general causal theory is also being formed. The
more general theory posits that some events or states of nature are causes of specific effects. Without
a general theory of causation, there would be no skeleton on which to hang the substance of the
many specific causal theories that one needs to survive.

Nonetheless, the concepts of causation that are established early in life are too primitive to
serve well as the basis for scientific theories. This shortcoming may be especially true in the health
and social sciences, in which typical causes are neither necessary nor sufficient to bring about
effects of interest. Hence, as has long been recognized in epidemiology, there is a need to develop
a more refined conceptual model that can serve as a starting point in discussions of causation.
In particular, such a model should address problems of multifactorial causation, confounding,
interdependence of effects, direct and indirect effects, levels of causation, and systems or webs of
causation (MacMahon and Pugh, 1967; Susser, 1973). This chapter describes one starting point,
the sufficient-component cause model (or sufficient-cause model), which has proven useful in
elucidating certain concepts in individual mechanisms of causation. Chapter 4 introduces the widely
used potential-outcome or counterfactual model of causation, which is useful for relating individual-
level to population-level causation, whereas Chapter 12 introduces graphical causal models (causal
diagrams), which are especially useful for modeling causal systems.

5
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6 Section I ● Basic Concepts

Except where specified otherwise (in particular, in Chapter 27, on infectious disease), throughout
the book we will assume that disease refers to a nonrecurrent event, such as death or first occurrence
of a disease, and that the outcome of each individual or unit of study (e.g., a group of persons) is not
affected by the exposures and outcomes of other individuals or units. Although this assumption will
greatly simplify our discussion and is reasonable in many applications, it does not apply to contagious
phenomena, such as transmissible behaviors and diseases. Nonetheless, all the definitions and most
of the points we make (especially regarding validity) apply more generally. It is also essential to
understand simpler situations before tackling the complexities created by causal interdependence
of individuals or units.

A MODEL OF SUFFICIENT CAUSE AND COMPONENT CAUSES

To begin, we need to define cause. One definition of the cause of a specific disease occurrence is an
antecedent event, condition, or characteristic that was necessary for the occurrence of the disease
at the moment it occurred, given that other conditions are fixed. In other words, a cause of a disease
occurrence is an event, condition, or characteristic that preceded the disease onset and that, had
the event, condition, or characteristic been different in a specified way, the disease either would
not have occurred at all or would not have occurred until some later time. Under this definition,
if someone walking along an icy path falls and breaks a hip, there may be a long list of causes.
These causes might include the weather on the day of the incident, the fact that the path was not
cleared for pedestrians, the choice of footgear for the victim, the lack of a handrail, and so forth.
The constellation of causes required for this particular person to break her hip at this particular
time can be depicted with the sufficient cause diagrammed in Figure 2–1. By sufficient cause we
mean a complete causal mechanism, a minimal set of conditions and events that are sufficient for
the outcome to occur. The circle in the figure comprises five segments, each of which represents a
causal component that must be present or have occured in order for the person to break her hip at that
instant. The first component, labeled A, represents poor weather. The second component, labeled
B, represents an uncleared path for pedestrians. The third component, labeled C, represents a poor
choice of footgear. The fourth component, labeled D, represents the lack of a handrail. The final
component, labeled U, represents all of the other unspecified events, conditions, and characteristics
that must be present or have occured at the instance of the fall that led to a broken hip. For etiologic
effects such as the causation of disease, many and possibly all of the components of a sufficient
cause may be unknown (Rothman, 1976a). We usually include one component cause, labeled U, to
represent the set of unknown factors.

All of the component causes in the sufficient cause are required and must be present or have
occured at the instance of the fall for the person to break a hip. None is superfluous, which means
that blocking the contribution of any component cause prevents the sufficient cause from acting.
For many people, early causal thinking persists in attempts to find single causes as explanations
for observed phenomena. But experience and reasoning show that the causal mechanism for any
effect must consist of a constellation of components that act in concert (Mill, 1862; Mackie, 1965).
In disease etiology, a sufficient cause is a set of conditions sufficient to ensure that the outcome
will occur. Therefore, completing a sufficient cause is tantamount to the onset of disease. Onset
here may refer to the onset of the earliest stage of the disease process or to any transition from one
well-defined and readily characterized stage to the next, such as the onset of signs or symptoms.

A

B

C

D

U
FIGURE 2–1 ● Depiction of the constellation of component
causes that constitute a sufficient cause for hip fracture for a particular
person at a particular time. In the diagram, A represents poor weather,
B represents an uncleared path for pedestrians, C represents a poor
choice of footgear, D represents the lack of a handrail, and U
represents all of the other unspecified events, conditions, and
characteristics that must be present or must have occured at the
instance of the fall that led to a broken hip.
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Chapter 2 ● Causation and Causal Inference 7

Consider again the role of the handrail in causing hip fracture. The absence of such a handrail
may play a causal role in some sufficient causes but not in others, depending on circumstances such
as the weather, the level of inebriation of the pedestrian, and countless other factors. Our definition
links the lack of a handrail with this one broken hip and does not imply that the lack of this handrail
by itself was sufficient for that hip fracture to occur. With this definition of cause, no specific event,
condition, or characteristic is sufficient by itself to produce disease. The definition does not describe
a complete causal mechanism, but only a component of it. To say that the absence of a handrail is
a component cause of a broken hip does not, however, imply that every person walking down the
path will break a hip. Nor does it imply that if a handrail is installed with properties sufficient to
prevent that broken hip, that no one will break a hip on that same path. There may be other sufficient
causes by which a person could suffer a hip fracture. Each such sufficient cause would be depicted
by its own diagram similar to Figure 2–1. The first of these sufficient causes to be completed by
simultaneous accumulation of all of its component causes will be the one that depicts the mechanism
by which the hip fracture occurs for a particular person. If no sufficient cause is completed while a
person passes along the path, then no hip fracture will occur over the course of that walk.

As noted above, a characteristic of the naive concept of causation is the assumption of a one-
to-one correspondence between the observed cause and effect. Under this view, each cause is seen
as “necessary” and “sufficient” in itself to produce the effect, particularly when the cause is an
observable action or event that takes place near in time to the effect. Thus, the flick of a switch
appears to be the singular cause that makes an electric light go on. There are less evident causes,
however, that also operate to produce the effect: a working bulb in the light fixture, intact wiring
from the switch to the bulb, and voltage to produce a current when the circuit is closed. To achieve
the effect of turning on the light, each of these components is as important as moving the switch,
because changing any of these components of the causal constellation will prevent the effect. The
term necessary cause is therefore reserved for a particular type of component cause under the
sufficient-cause model. If any of the component causes appears in every sufficient cause, then that
component cause is called a “necessary” component cause. For the disease to occur, any and all
necessary component causes must be present or must have occurred. For example, one could label
a component cause with the requirement that one must have a hip to suffer a hip fracture. Every
sufficient cause that leads to hip fracture must have that component cause present, because in order
to fracture a hip, one must have a hip to fracture.

The concept of complementary component causes will be useful in applications to epidemiol-
ogy that follow. For each component cause in a sufficient cause, the set of the other component
causes in that sufficient cause comprises the complementary component causes. For example, in
Figure 2–1, component cause A (poor weather) has as its complementary component causes the
components labeled B, C, D, and U. Component cause B (an uncleared path for pedestrians) has as
its complementary component causes the components labeled A, C, D, and U.

THE NEED FOR A SPECIFIC REFERENCE CONDITION

Component causes must be defined with respect to a clearly specified alternative or reference
condition (often called a referent). Consider again the lack of a handrail along the path. To say that
this condition is a component cause of the broken hip, we have to specify an alternative condition
against which to contrast the cause. The mere presence of a handrail would not suffice. After all,
the hip fracture might still have occurred in the presence of a handrail, if the handrail was too short
or if it was old and made of rotten wood. We might need to specify the presence of a handrail
sufficiently tall and sturdy to break the fall for the absence of that handrail to be a component cause
of the broken hip.

To see the necessity of specifying the alternative event, condition, or characteristic as well as the
causal one, consider an example of a man who took high doses of ibuprofen for several years and
developed a gastric ulcer. Did the man’s use of ibuprofen cause his ulcer? One might at first assume
that the natural contrast would be with what would have happened had he taken nothing instead
of ibuprofen. Given a strong reason to take the ibuprofen, however, that alternative may not make
sense. If the specified alternative to taking ibuprofen is to take acetaminophen, a different drug that
might have been indicated for his problem, and if he would not have developed the ulcer had he used
acetaminophen, then we can say that using ibuprofen caused the ulcer. But ibuprofen did not cause
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his ulcer if the specified alternative is taking aspirin and, had he taken aspirin, he still would have
developed the ulcer. The need to specify the alternative to a preventive is illustrated by a newspaper
headline that read: “Rare Meat Cuts Colon Cancer Risk.” Was this a story of an epidemiologic
study comparing the colon cancer rate of a group of people who ate rare red meat with the rate in
a group of vegetarians? No, the study compared persons who ate rare red meat with persons who
ate highly cooked red meat. The same exposure, regular consumption of rare red meat, might have
a preventive effect when contrasted against highly cooked red meat and a causative effect or no
effect in contrast to a vegetarian diet. An event, condition, or characteristic is not a cause by itself
as an intrinsic property it possesses in isolation, but as part of a causal contrast with an alternative
event, condition, or characteristic (Lewis, 1973; Rubin, 1974; Greenland et al., 1999a; Maldonado
and Greenland, 2002; see Chapter 4).

APPLICATION OF THE SUFFICIENT-CAUSE MODEL
TO EPIDEMIOLOGY

The preceding introduction to concepts of sufficient causes and component causes provides the
lexicon for application of the model to epidemiology. For example, tobacco smoking is a cause of
lung cancer, but by itself it is not a sufficient cause, as demonstrated by the fact that most smokers do
not get lung cancer. First, the term smoking is too imprecise to be useful beyond casual description.
One must specify the type of smoke (e.g., cigarette, cigar, pipe, or environmental), whether it is
filtered or unfiltered, the manner and frequency of inhalation, the age at initiation of smoking,
and the duration of smoking. And, however smoking is defined, its alternative needs to be defined
as well. Is it smoking nothing at all, smoking less, smoking something else? Equally important,
even if smoking and its alternative are both defined explicitly, smoking will not cause cancer in
everyone. So who is susceptible to this smoking effect? Or, to put it in other terms, what are the
other components of the causal constellation that act with smoking to produce lung cancer in this
contrast?

Figure 2–2 provides a schematic diagram of three sufficient causes that could be completed
during the follow-up of an individual. The three conditions or events—A, B, and E—have been
defined as binary variables, so they can only take on values of 0 or 1. With the coding of A used
in the figure, its reference level, A = 0, is sometimes causative, but its index level, A = 1, is never
causative. This situation arises because two sufficient causes contain a component cause labeled
“A = 0,” but no sufficient cause contains a component cause labeled “A = 1.” An example of a
condition or event of this sort might be A = 1 for taking a daily multivitamin supplement and
A = 0 for taking no vitamin supplement. With the coding of B and E used in the example depicted
by Figure 2–2, their index levels, B = 1 and E = 1, are sometimes causative, but their reference
levels, B = 0 and C = 0, are never causative. For each variable, the index and reference levels may
represent only two alternative states or events out of many possibilities. Thus, the coding of B might
be B = 1 for smoking 20 cigarettes per day for 40 years and B = 0 for smoking 20 cigarettes per
day for 20 years, followed by 20 years of not smoking. E might be coded E = 1 for living in an
urban neighborhood with low average income and high income inequality, and E = 0 for living in
an urban neighborhood with high average income and low income inequality.

A = 0, B = 1, and E = 1 are individual component causes of the sufficient causes in Figure 2–2.
U1, U2, and U3 represent sets of component causes. U1, for example, is the set of all components
other than A = 0 and B = 1 required to complete the first sufficient cause in Figure 2–2. If we
decided not to specify B = 1, then B = 1 would become part of the set of components that are
causally complementary to A = 0; in other words, B = 1 would then be absorbed into U1.

Each of the three sufficient causes represented in Figure 2–2 is minimally sufficient to produce
the disease in the individual. That is, only one of these mechanisms needs to be completed for

U1

A = 0 B = 1

U2

A = 0 E = 1

U3

B = 1 E = 1 FIGURE 2–2 ● Three classes of sufficient
causes of a disease (sufficient causes I, II, and III
from left to right).
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disease to occur (sufficiency), and there is no superfluous component cause in any mechanism
(minimality)—each component is a required part of that specific causal mechanism. A specific
component cause may play a role in one, several, or all of the causal mechanisms. As noted earlier,
a component cause that appears in all sufficient causes is called a necessary cause of the outcome.
As an example, infection with HIV is a component of every sufficient cause of acquired immune
deficiency syndrome (AIDS) and hence is a necessary cause of AIDS. It has been suggested that
such causes be called “universally necessary,” in recognition that every component of a sufficient
cause is necessary for that sufficient cause (mechanism) to operate (Poole 2001a).

Figure 2–2 does not depict aspects of the causal process such as sequence or timing of action of
the component causes, dose, or other complexities. These can be specified in the description of the
contrast of index and reference conditions that defines each component cause. Thus, if the outcome
is lung cancer and the factor B represents cigarette smoking, it might be defined more explicitly
as smoking at least 20 cigarettes a day of unfiltered cigarettes for at least 40 years beginning at age
20 years or earlier (B = 1), or smoking 20 cigarettes a day of unfiltered cigarettes, beginning at age
20 years or earlier, and then smoking no cigarettes for the next 20 years (B = 0).

In specifying a component cause, the two sides of the causal contrast of which it is composed
should be defined with an eye to realistic choices or options. If prescribing a placebo is not a
realistic therapeutic option, a causal contrast between a new treatment and a placebo in a clinical
trial may be questioned for its dubious relevance to medical practice. In a similar fashion, before
saying that oral contraceptives increase the risk of death over 10 years (e.g., through myocardial
infarction or stroke), we must consider the alternative to taking oral contraceptives. If it involves
getting pregnant, then the risk of death attendant to childbirth might be greater than the risk from
oral contraceptives, making oral contraceptives a preventive rather than a cause. If the alternative
is an equally effective contraceptive without serious side effects, then oral contraceptives may be
described as a cause of death.

To understand prevention in the sufficient-component cause framework, we posit that the al-
ternative condition (in which a component cause is absent) prevents the outcome relative to the
presence of the component cause. Thus, a preventive effect of a factor is represented by specifying
its causative alternative as a component cause. An example is the presence of A = 0 as a component
cause in the first two sufficient causes shown in Figure 2–2. Another example would be to define a
variable, F (not depicted in Fig. 2–2), as “vaccination (F = 1) or no vaccination (F = 0)”. Prevention
of the disease by getting vaccinated (F = 1) would be expressed in the sufficient-component cause
model as causation of the disease by not getting vaccinated (F = 0). This depiction is unproblem-
atic because, once both sides of a causal contrast have been specified, causation and prevention are
merely two sides of the same coin.

Sheps (1958) once asked, “Shall we count the living or the dead?” Death is an event, but
survival is not. Hence, to use the sufficient-component cause model, we must count the dead. This
model restriction can have substantive implications. For instance, some measures and formulas
approximate others only when the outcome is rare. When survival is rare, death is common. In that
case, use of the sufficient-component cause model to inform the analysis will prevent us from taking
advantage of the rare-outcome approximations.

Similarly, etiologies of adverse health outcomes that are conditions or states, but not events, must
be depicted under the sufficient-cause model by reversing the coding of the outcome. Consider spina
bifida, which is the failure of the neural tube to close fully during gestation. There is no point in time
at which spina bifida may be said to have occurred. It would be awkward to define the “incidence
time” of spina bifida as the gestational age at which complete neural tube closure ordinarily occurs.
The sufficient-component cause model would be better suited in this case to defining the event of
complete closure (no spina bifida) as the outcome and to view conditions, events, and characteristics
that prevent this beneficial event as the causes of the adverse condition of spina bifida.

PROBABILITY, RISK, AND CAUSES

In everyday language, “risk” is often used as a synonym for probability. It is also commonly used
as a synonym for “hazard,” as in, “Living near a nuclear power plant is a risk you should avoid.”
Unfortunately, in epidemiologic parlance, even in the scholarly literature, “risk” is frequently used
for many distinct concepts: rate, rate ratio, risk ratio, incidence odds, prevalence, etc. The more
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specific, and therefore more useful, definition of risk is “probability of an event during a specified
period of time.”

The term probability has multiple meanings. One is that it is the relative frequency of an event.
Another is that probability is the tendency, or propensity, of an entity to produce an event. A third
meaning is that probability measures someone’s degree of certainty that an event will occur. When
one says “the probability of death in vehicular accidents when traveling >120 km/h is high,” one
means that the proportion of accidents that end with deaths is higher when they involve vehicles
traveling >120 km/h than when they involve vehicles traveling at lower speeds (frequency usage),
that high-speed accidents have a greater tendency than lower-speed accidents to result in deaths
(propensity usage), or that the speaker is more certain that a death will occur in a high-speed accident
than in a lower-speed accident (certainty usage).

The frequency usage of “probability” and “risk,” unlike the propensity and certainty usages,
admits no meaning to the notion of “risk” for an individual beyond the relative frequency of 100%
if the event occurs and 0% if it does not. This restriction of individual risks to 0 or 1 can only be
relaxed to allow values in between by reinterpreting such statements as the frequency with which
the outcome would be seen upon random sampling from a very large population of individuals
deemed to be “like” the individual in some way (e.g., of the same age, sex, and smoking history).
If one accepts this interpretation, whether any actual sampling has been conducted or not, the
notion of individual risk is replaced by the notion of the frequency of the event in question in the
large population from which the individual was sampled. With this view of risk, a risk will change
according to how we group individuals together to evaluate frequencies. Subjective judgment will
inevitably enter into the picture in deciding which characteristics to use for grouping. For instance,
should tomato consumption be taken into account in defining the class of men who are “like” a
given man for purposes of determining his risk of a diagnosis of prostate cancer between his 60th
and 70th birthdays? If so, which study or meta-analysis should be used to factor in this piece of
information?

Unless we have found a set of conditions and events in which the disease does not occur at all,
it is always a reasonable working hypothesis that, no matter how much is known about the etiology
of a disease, some causal components remain unknown. We may be inclined to assign an equal
risk to all individuals whose status for some components is known and identical. We may say, for
example, that men who are heavy cigarette smokers have approximately a 10% lifetime risk of
developing lung cancer. Some interpret this statement to mean that all men would be subject to a
10% probability of lung cancer if they were to become heavy smokers, as if the occurrence of lung
cancer, aside from smoking, were purely a matter of chance. This view is untenable. A probability
may be 10% conditional on one piece of information and higher or lower than 10% if we condition
on other relevant information as well. For instance, men who are heavy cigarette smokers and who
worked for many years in occupations with historically high levels of exposure to airborne asbestos
fibers would be said to have a lifetime lung cancer risk appreciably higher than 10%.

Regardless of whether we interpret probability as relative frequency or degree of certainty, the
assignment of equal risks merely reflects the particular grouping. In our ignorance, the best we can
do in assessing risk is to classify people according to measured risk indicators and then assign the
average risk observed within a class to persons within the class. As knowledge or specification of
additional risk indicators expands, the risk estimates assigned to people will depart from average
according to the presence or absence of other factors that predict the outcome.

STRENGTH OF EFFECTS

The causal model exemplified by Figure 2–2 can facilitate an understanding of some key concepts
such as strength of effect and interaction. As an illustration of strength of effect, Table 2–1 displays
the frequency of the eight possible patterns for exposure to A, B, and E in two hypothetical popu-
lations. Now the pie charts in Figure 2–2 depict classes of mechanisms. The first one, for instance,
represents all sufficient causes that, no matter what other component causes they may contain, have
in common the fact that they contain A = 0 and B = 1. The constituents of U1 may, and ordinarily
would, differ from individual to individual. For simplification, we shall suppose, rather unrealisti-
cally, that U1, U2, and U3 are always present or have always occured for everyone and Figure 2–2
represents all the sufficient causes.
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ˆ

ˆ

ˆ

ˆ
T A B L E 2 – 1

Exposure Frequencies and Individual Risks in Two Hypothetical Populations
According to the Possible Combinations of the Three Specified Component
Causes in Fig. 2–1

Exposures Frequency of Exposure Pattern

A B E Sufficient Cause Completed Risk Population 1 Population 2

1 1 1 III 1 900 100
1 1 0 None 0 900 100
1 0 1 None 0 100 900
1 0 0 None 0 100 900
0 1 1 I, II, or III 1 100 900
0 1 0 I 1 100 900
0 0 1 II 1 900 100
0 0 0 none 0 900 100

Under these assumptions, the response of each individual to the exposure pattern in a given row
can be found in the response column. The response here is the risk of developing a disease over a
specified time period that is the same for all individuals. For simplification, a deterministic model
of risk is employed, such that individual risks can equal only the value 0 or 1, and no values in
between. A stochastic model of individual risk would relax this restriction and allow individual
risks to lie between 0 and 1.

The proportion getting disease, or incidence proportion, in any subpopulation in Table 2–1 can be
found by summing the number of persons at each exposure pattern with an individual risk of 1 and
dividing this total by the subpopulation size. For example, if exposure A is not considered (e.g., if it
were not measured), the pattern of incidence proportions in population 1 would be those in Table 2–2.

As an example of how the proportions in Table 2–2 were calculated, let us review how the
incidence proportion among persons in population 1 with B = 1 and E = 0 was calculated: There
were 900 persons with A = 1, B = 1, and E = 0, none of whom became cases because there are no
sufficient causes that can culminate in the occurrence of the disease over the study period in persons
with this combination of exposure conditions. (There are two sufficient causes that contain B = 1
as a component cause, but one of them contains the component cause A = 0 and the other contains
the component cause E = 1. The presence of A = 1 or E = 0 blocks these etiologic mechanisms.)
There were 100 persons with A = 0, B = 1, and E = 0, all of whom became cases because they
all had U1, the set of causal complements for the class of sufficient causes containing A = 0 and

ˆ

ˆ

ˆ

ˆ
T A B L E 2 – 2

Incidence Proportions (IP) for Combinations of Component
Causes B and E in Hypothetical Population 1, Assuming That
Component Cause A Is Unmeasured

B = 1, E = 1 B = 1, E = 0 B = 0, E = 1 B = 0, E = 0

Cases 1,000 100 900 0
Total 1,000 1,000 1,000 1,000
IP 1.00 0.10 0.90 0.00
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ˆ

ˆ

ˆ

ˆ
T A B L E 2 – 3

Incidence Proportions (IP) for Combinations of Component
Causes B and E in Hypothetical Population 2, Assuming That
Component Cause A Is Unmeasured

B = 1, E = 1 B = 1, E = 0 B = 0, E = 1 B = 0, E = 0

Cases 1,000 900 100 0
Total 1,000 1,000 1,000 1,000
IP 1.00 0.90 0.10 0.00

B = 1. Thus, among all 1,000 persons with B = 1 and E = 0, there were 100 cases, for an incidence
proportion of 0.10.

If we were to measure strength of effect by the difference of the incidence proportions, it is
evident from Table 2–2 that for population 1, E = 1 has a much stronger effect than B = 1, because
E = 1 increases the incidence proportion by 0.9 (in both levels of B), whereas B = 1 increases the
incidence proportion by only 0.1 (in both levels of E). Table 2–3 shows the analogous results for
population 2. Although the members of this population have exactly the same causal mechanisms
operating within them as do the members of population 1, the relative strengths of causative factors
E = 1 and B = 1 are reversed, again using the incidence proportion difference as the measure of
strength. B = 1 now has a much stronger effect on the incidence proportion than E = 1, despite
the fact that A, B, and E have no association with one another in either population, and their index
levels (A = 1, B = 1 and E = 1) and reference levels (A = 0, B = 0, and E = 0) are each present
or have occured in exactly half of each population.

The overall difference of incidence proportions contrasting E = 1 with E = 0 is (1,900/2,000) −
(100/2,000) = 0.9 in population 1 and (1,100/2,000) − (900/2,000) = 0.1 in population 2. The
key difference between populations 1 and 2 is the difference in the prevalence of the conditions
under which E = 1 acts to increase risk: that is, the presence of A = 0 or B = 1, but not both.
(When A = 0 and B = 1, E = 1 completes all three sufficient causes in Figure 2–2; it thus does not
increase anyone’s risk, although it may well shorten the time to the outcome.) The prevalence of the
condition, “A = 0 or B = 1 but not both” is 1,800/2,000 = 90% in both levels of E in population 1.
In population 2, this prevalence is only 200/2,000 = 10% in both levels of E. This difference in
the prevalence of the conditions sufficient for E = 1 to increase risk explains the difference in the
strength of the effect of E = 1 as measured by the difference in incidence proportions.

As noted above, the set of all other component causes in all sufficient causes in which a causal
factor participates is called the causal complement of the factor. Thus, A = 0, B = 1, U2, and U3

make up the causal complement of E = 1 in the above example. This example shows that the strength
of a factor’s effect on the occurrence of a disease in a population, measured as the absolute difference
in incidence proportions, depends on the prevalence of its causal complement. This dependence has
nothing to do with the etiologic mechanism of the component’s action, because the component is
an equal partner in each mechanism in which it appears. Nevertheless, a factor will appear to have
a strong effect, as measured by the difference of proportions getting disease, if its causal comple-
ment is common. Conversely, a factor with a rare causal complement will appear to have a weak
effect.

If strength of effect is measured by the ratio of proportions getting disease, as opposed to
the difference, then strength depends on more than a factor’s causal complement. In particular, it
depends additionally on how common or rare the components are of sufficient causes in which the
specified causal factor does not play a role. In this example, given the ubiquity of U1, the effect of
E = 1 measured in ratio terms depends on the prevalence of E = 1’s causal complement and on the
prevalence of the conjunction of A = 0 and B = 1. If many people have both A = 0 and B = 1,
the “baseline” incidence proportion (i.e., the proportion of not-E or “unexposed” persons getting
disease) will be high and the proportion getting disease due to E will be comparatively low. If few
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people have both A = 0 and B = 1, the baseline incidence proportion will be low and the proportion
getting disease due to E = 1 will be comparatively high. Thus, strength of effect measured by the
incidence proportion ratio depends on more conditions than does strength of effect measured by
the incidence proportion difference.

Regardless of how strength of a causal factor’s effect is measured, the public health significance
of that effect does not imply a corresponding degree of etiologic significance. Each component cause
in a given sufficient cause has the same etiologic significance. Given a specific causal mechanism,
any of the component causes can have strong or weak effects using either the difference or ratio
measure. The actual identities of the components of a sufficient cause are part of the mechanics of
causation, whereas the strength of a factor’s effect depends on the time-specific distribution of its
causal complement (if strength is measured in absolute terms) plus the distribution of the components
of all sufficient causes in which the factor does not play a role (if strength is measured in relative
terms). Over a span of time, the strength of the effect of a given factor on disease occurrence may
change because the prevalence of its causal complement in various mechanisms may also change,
even if the causal mechanisms in which the factor and its cofactors act remain unchanged.

INTERACTION AMONG CAUSES

Two component causes acting in the same sufficient cause may be defined as interacting causally
to produce disease. This definition leaves open many possible mechanisms for the interaction,
including those in which two components interact in a direct physical fashion (e.g., two drugs that
react to form a toxic by-product) and those in which one component (the initiator of the pair) alters
a substrate so that the other component (the promoter of the pair) can act. Nonetheless, it excludes
any situation in which one component E is merely a cause of another component F, with no effect
of E on disease except through the component F it causes.

Acting in the same sufficient cause is not the same as one component cause acting to produce a
second component cause, and then the second component going on to produce the disease (Robins
and Greenland 1992, Kaufman et al., 2004). As an example of the distinction, if cigarette smoking
(vs. never smoking) is a component cause of atherosclerosis, and atherosclerosis (vs. no atheroscle-
rosis) causes myocardial infarction, both smoking and atherosclerosis would be component causes
(cofactors) in certain sufficient causes of myocardial infarction. They would not necessarily appear
in the same sufficient cause. Rather, for a sufficient cause involving atherosclerosis as a component
cause, there would be another sufficient cause in which the atherosclerosis component cause was
replaced by all the component causes that brought about the atherosclerosis, including smoking.
Thus, a sequential causal relation between smoking and atherosclerosis would not be enough for
them to interact synergistically in the etiology of myocardial infarction, in the sufficient-cause
sense. Instead, the causal sequence means that smoking can act indirectly, through atherosclerosis,
to bring about myocardial infarction.

Now suppose that, perhaps in addition to the above mechanism, smoking reduces clotting time
and thus causes thrombi that block the coronary arteries if they are narrowed by atherosclerosis. This
mechanism would be represented by a sufficient cause containing both smoking and atherosclerosis
as components and thus would constitute a synergistic interaction between smoking and atheroscle-
rosis in causing myocardial infarction. The presence of this sufficient cause would not, however,
tell us whether smoking also contributed to the myocardial infarction by causing the atheroscle-
rosis. Thus, the basic sufficient-cause model does not alert us to indirect effects (effects of some
component causes mediated by other component causes in the model). Chapters 4 and 12 intro-
duce potential-outcome and graphical models better suited to displaying indirect effects and more
general sequential mechanisms, whereas Chapter 5 discusses in detail interaction as defined in the
potential-outcome framework and its relation to interaction as defined in the sufficient-cause model.

PROPORTION OF DISEASE DUE TO SPECIFIC CAUSES

In Figure 2–2, assuming that the three sufficient causes in the diagram are the only ones operating,
what fraction of disease is caused by E = 1? E = 1 is a component cause of disease in two of the
sufficient-cause mechanisms, II and III, so all disease arising through either of these two mechanisms
is attributable to E = 1. Note that in persons with the exposure pattern A = 0, B = 1, E = 1, all three
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sufficient causes would be completed. The first of the three mechanisms to be completed would
be the one that actually produces a given case. If the first one completed is mechanism II or III,
the case would be causally attributable to E = 1. If mechanism I is the first one to be completed,
however, E = 1 would not be part of the sufficient cause producing that case. Without knowing the
completion times of the three mechanisms, among persons with the exposure pattern A = 0, B =
1, E = 1 we cannot tell how many of the 100 cases in population 1 or the 900 cases in population
2 are etiologically attributable to E = 1.

Each of the cases that is etiologically attributable to E = 1 can also be attributed to the other
component causes in the causal mechanisms in which E = 1 acts. Each component cause interacts
with its complementary factors to produce disease, so each case of disease can be attributed to every
component cause in the completed sufficient cause. Note, though, that the attributable fractions
added across component causes of the same disease do not sum to 1, although there is a mistaken
tendency to think that they do. To illustrate the mistake in this tendency, note that a necessary
component cause appears in every completed sufficient cause of disease, and so by itself has an
attributable fraction of 1, without counting the attributable fractions for other component causes.
Because every case of disease can be attributed to every component cause in its causal mechanism,
attributable fractions for different component causes will generally sum to more than 1, and there
is no upper limit for this sum.

A recent debate regarding the proportion of risk factors for coronary heart disease attributable
to particular component causes illustrates the type of errors in inference that can arise when the
sum is thought to be restricted to 1. The debate centers around whether the proportion of coronary
heart disease attributable to high blood cholesterol, high blood pressure, and cigarette smoking
equals 75% or “only 50%” (Magnus and Beaglehole, 2001). If the former, then some have argued
that the search for additional causes would be of limited utility (Beaglehole and Magnus, 2002),
because only 25% of cases “remain to be explained.” By assuming that the proportion explained
by yet unknown component causes cannot exceed 25%, those who support this contention fail to
recognize that cases caused by a sufficient cause that contains any subset of the three named causes
might also contain unknown component causes. Cases stemming from sufficient causes with this
overlapping set of component causes could be prevented by interventions targeting the three named
causes, or by interventions targeting the yet unknown causes when they become known. The latter
interventions could reduce the disease burden by much more than 25%.

As another example, in a cohort of cigarette smokers exposed to arsenic by working in a smelter,
an estimated 75% of the lung cancer rate was attributable to their work environment and an estimated
65% was attributable to their smoking (Pinto et al., 1978; Hertz-Picciotto et al., 1992). There is
no problem with such figures, which merely reflect the multifactorial etiology of disease. So, too,
with coronary heart disease; if 75% of that disease is attributable to high blood cholesterol, high
blood pressure, and cigarette smoking, 100% of it can still be attributable to other causes, known,
suspected, and yet to be discovered. Some of these causes will participate in the same causal
mechanisms as high blood cholesterol, high blood pressure, and cigarette smoking. Beaglehole and
Magnus were correct in thinking that if the three specified component causes combine to explain
75% of cardiovascular disease (CVD) and we somehow eliminated them, there would be only 25%
of CVD cases remaining. But until that 75% is eliminated, any newly discovered component could
cause up to 100% of the CVD we currently have.

The notion that interventions targeting high blood cholesterol, high blood pressure, and cigarette
smoking could eliminate 75% of coronary heart disease is unrealistic given currently available
intervention strategies. Although progress can be made to reduce the effect of these risk factors, it
is unlikely that any of them could be completely eradicated from any large population in the near
term. Estimates of the public health effect of eliminating diseases themselves as causes of death
(Murray et al., 2002) are even further removed from reality, because they fail to account for all the
effects of interventions required to achieve the disease elimination, including unanticipated side
effects (Greenland, 2002a, 2005a).

The debate about coronary heart disease attribution to component causes is reminiscent of an
earlier debate regarding causes of cancer. In their widely cited work, The Causes of Cancer, Doll and
Peto (1981, Table 20) created a table giving their estimates of the fraction of all cancers caused by
various agents. The fractions summed to nearly 100%. Although the authors acknowledged that any
case could be caused by more than one agent (which means that, given enough agents, the attributable
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fractions would sum to far more than 100%), they referred to this situation as a “difficulty” and
an “anomaly” that they chose to ignore. Subsequently, one of the authors acknowledged that the
attributable fraction could sum to greater than 100% (Peto, 1985). It is neither a difficulty nor an
anomaly nor something we can safely ignore, but simply a consequence of the fact that no event
has a single agent as the cause. The fraction of disease that can be attributed to known causes will
grow without bound as more causes are discovered. Only the fraction of disease attributable to a
single component cause cannot exceed 100%.

In a similar vein, much publicity attended the pronouncement in 1960 that as much as 90%
of cancer is environmentally caused (Higginson, 1960). Here, “environment” was thought of as
representing all nongenetic component causes, and thus included not only the physical environment,
but also the social environment and all individual human behavior that is not genetically determined.
Hence, environmental component causes must be present to some extent in every sufficient cause
of a disease. Thus, Higginson’s estimate of 90% was an underestimate.

One can also show that 100% of any disease is inherited, even when environmental factors are
component causes. MacMahon (1968) cited the example given by Hogben (1933) of yellow shanks,
a trait occurring in certain genetic strains of fowl fed on yellow corn. Both a particular set of genes
and a yellow-corn diet are necessary to produce yellow shanks. A farmer with several strains of
fowl who feeds them all only yellow corn would consider yellow shanks to be a genetic condition,
because only one strain would get yellow shanks, despite all strains getting the same diet. A different
farmer who owned only the strain liable to get yellow shanks but who fed some of the birds yellow
corn and others white corn would consider yellow shanks to be an environmentally determined
condition because it depends on diet. In humans, the mental retardation caused by phenylketonuria
is considered by many to be purely genetic. This retardation can, however, be successfully prevented
by dietary intervention, which demonstrates the presence of an environmental cause. In reality,
yellow shanks, phenylketonuria, and other diseases and conditions are determined by an interaction
of genes and environment. It makes no sense to allocate a portion of the causation to either genes
or environment separately when both may act together in sufficient causes.

Nonetheless, many researchers have compared disease occurrence in identical and nonidentical
twins to estimate the fraction of disease that is inherited. These twin-study and other heritability
indices assess only the relative role of environmental and genetic causes of disease in a particular
setting. For example, some genetic causes may be necessary components of every causal mechanism.
If everyone in a population has an identical set of the genes that cause disease, however, their effect
is not included in heritability indices, despite the fact that the genes are causes of the disease.
The two farmers in the preceding example would offer very different values for the heritability
of yellow shanks, despite the fact that the condition is always 100% dependent on having certain
genes.

Every case of every disease has some environmental and some genetic component causes, and
therefore every case can be attributed both to genes and to environment. No paradox exists as long
as it is understood that the fractions of disease attributable to genes and to environment overlap
with one another. Thus, debates over what proportion of all occurrences of a disease are genetic
and what proportion are environmental, inasmuch as these debates assume that the shares must add
up to 100%, are fallacious and distracting from more worthwhile pursuits.

On an even more general level, the question of whether a given disease does or does not have
a “multifactorial etiology” can be answered once and for all in the affirmative. All diseases have
multifactorial etiologies. It is therefore completely unremarkable for a given disease to have such
an etiology, and no time or money should be spent on research trying to answer the question of
whether a particular disease does or does not have a multifactorial etiology. They all do. The job of
etiologic research is to identify components of those etiologies.

INDUCTION PERIOD

Pie-chart diagrams of sufficient causes and their components such as those in Figure 2–2 are not
well suited to provide a model for conceptualizing the induction period, which may be defined as
the period of time from causal action until disease initiation. There is no way to tell from a pie-
chart diagram of a sufficient cause which components affect each other, which components must
come before or after others, for which components the temporal order is irrelevant, etc. The crucial
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information on temporal ordering must come in a separate description of the interrelations among
the components of a sufficient cause.

If, in sufficient cause I, the sequence of action of the specified component causes must be A =
0, B = 1 and we are studying the effect of A = 0, which (let us assume) acts at a narrowly defined
point in time, we do not observe the occurrence of disease immediately after A = 0 occurs. Disease
occurs only after the sequence is completed, so there will be a delay while B = 1 occurs (along with
components of the set U1 that are not present or that have not occured when A = 0 occurs). When
B = 1 acts, if it is the last of all the component causes (including those in the set of unspecified
conditions and events represented by U1), disease occurs. The interval between the action of B =
1 and the disease occurrence is the induction time for the effect of B = 1 in sufficient cause I.

In the example given earlier of an equilibrium disorder leading to a later fall and hip injury, the
induction time between the start of the equilibrium disorder and the later hip injury might be long,
if the equilibrium disorder is caused by an old head injury, or short, if the disorder is caused by
inebriation. In the latter case, it could even be instantaneous, if we define it as blood alcohol greater
than a certain level. This latter possibility illustrates an important general point: Component causes
that do not change with time, as opposed to events, all have induction times of zero.

Defining an induction period of interest is tantamount to specifying the characteristics of the
component causes of interest. A clear example of a lengthy induction time is the cause–effect relation
between exposure of a female fetus to diethylstilbestrol (DES) and the subsequent development
of adenocarcinoma of the vagina. The cancer is usually diagnosed between ages 15 and 30 years.
Because the causal exposure to DES occurs early in pregnancy, there is an induction time of about
15 to 30 years for the carcinogenic action of DES. During this time, other causes presumably are
operating; some evidence suggests that hormonal action during adolescence may be part of the
mechanism (Rothman, 1981).

It is incorrect to characterize a disease itself as having a lengthy or brief induction period. The
induction time can be conceptualized only in relation to a specific component cause operating in a
specific sufficient cause. Thus, we say that the induction time relating DES to clear-cell carcinoma
of the vagina is 15 to 30 years, but we should not say that 15 to 30 years is the induction time for
clear-cell carcinoma in general. Because each component cause in any causal mechanism can act
at a time different from the other component causes, each can have its own induction time. For
the component cause that acts last, the induction time equals zero. If another component cause of
clear-cell carcinoma of the vagina that acts during adolescence were identified, it would have a much
shorter induction time for its carcinogenic action than DES. Thus, induction time characterizes a
specific cause–effect pair rather than just the effect.

In carcinogenesis, the terms initiator and promotor have been used to refer to some of the com-
ponent causes of cancer that act early and late, respectively, in the causal mechanism. Cancer itself
has often been characterized as a disease process with a long induction time. This characterization
is a misconception, however, because any late-acting component in the causal process, such as a
promotor, will have a short induction time. Indeed, by definition, the induction time will always be
zero for at least one component cause, the last to act. The mistaken view that diseases, as opposed to
cause–disease relationships, have long or short induction periods can have important implications
for research. For instance, the view of adult cancers as “diseases of long latency” may induce some
researchers to ignore evidence of etiologic effects occurring relatively late in the processes that
culminate in clinically diagnosed cancers. At the other extreme, the routine disregard for exposures
occurring in the first decade or two in studies of occupational carcinogenesis, as a major example,
may well have inhibited the discovery of occupational causes with very long induction periods.

Disease, once initiated, will not necessarily be apparent. The time interval between irreversible
disease occurrence and detection has been termed the latent period (Rothman, 1981), although
others have used this term interchangeably with induction period. Still others use latent period to
mean the total time between causal action and disease detection. We use induction period to describe
the time from causal action to irreversible disease occurrence and latent period to mean the time from
disease occurrence to disease detection. The latent period can sometimes be reduced by improved
methods of disease detection. The induction period, on the other hand, cannot be reduced by early
detection of disease, because disease occurrence marks the end of the induction period. Earlier
detection of disease, however, may reduce the apparent induction period (the time between causal
action and disease detection), because the time when disease is detected, as a practical matter, is
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usually used to mark the time of disease occurrence. Thus, diseases such as slow-growing cancers
may appear to have long induction periods with respect to many causes because they have long
latent periods. The latent period, unlike the induction period, is a characteristic of the disease and
the detection effort applied to the person with the disease.

Although it is not possible to reduce the induction period proper by earlier detection of disease,
it may be possible to observe intermediate stages of a causal mechanism. The increased interest in
biomarkers such as DNA adducts is an example of attempting to focus on causes more proximal
to the disease occurrence or on effects more proximal to cause occurrence. Such biomarkers may
nonetheless reflect the effects of earlier-acting agents on the person.

Some agents may have a causal action by shortening the induction time of other agents. Suppose
that exposure to factor X = 1 leads to epilepsy after an interval of 10 years, on average. It may be
that exposure to a drug, Z = 1, would shorten this interval to 2 years. Is Z = 1 acting as a catalyst, or
as a cause, of epilepsy? The answer is both: A catalyst is a cause. Without Z = 1, the occurrence of
epilepsy comes 8 years later than it comes with Z = 1, so we can say that Z = 1 causes the onset of
the early epilepsy. It is not sufficient to argue that the epilepsy would have occurred anyway. First,
it would not have occurred at that time, and the time of occurrence is part of our definition of an
event. Second, epilepsy will occur later only if the individual survives an additional 8 years, which
is not certain. Not only does agent Z = 1 determine when the epilepsy occurs, it can also determine
whether it occurs. Thus, we should call any agent that acts as a catalyst of a causal mechanism,
speeding up an induction period for other agents, a cause in its own right. Similarly, any agent that
postpones the onset of an event, drawing out the induction period for another agent, is a preventive.
It should not be too surprising to equate postponement to prevention: We routinely use such an
equation when we employ the euphemism that we “prevent” death, which actually can only be
postponed. What we prevent is death at a given time, in favor of death at a later time.

SCOPE OF THE MODEL

The main utility of this model of sufficient causes and their components lies in its ability to provide a
general but practical conceptual framework for causal problems. The attempt to make the proportion
of disease attributable to various component causes add to 100% is an example of a fallacy that
is exposed by the model (although MacMahon and others were able to invoke yellow shanks
and phenylketonuria to expose that fallacy long before the sufficient-component cause model was
formally described [MacMahon and Pugh, 1967, 1970]). The model makes it clear that, because of
interactions, there is no upper limit to the sum of these proportions. As we shall see in Chapter 5,
the epidemiologic evaluation of interactions themselves can be clarified, to some extent, with the
help of the model.

Although the model appears to deal qualitatively with the action of component causes, it can be
extended to account for dose dependence by postulating a set of sufficient causes, each of which
contains as a component a different dose of the agent in question. Small doses might require a
larger or rarer set of complementary causes to complete a sufficient cause than that required by
large doses (Rothman, 1976a), in which case it is particularly important to specify both sides of the
causal contrast. In this way, the model can account for the phenomenon of a shorter induction period
accompanying larger doses of exposure, because a smaller set of complementary components would
be needed to complete the sufficient cause.

Those who believe that chance must play a role in any complex mechanism might object to the
intricacy of this seemingly deterministic model. A probabilistic (stochastic) model could be invoked
to describe a dose–response relation, for example, without the need for a multitude of different
causal mechanisms. The model would simply relate the dose of the exposure to the probability
of the effect occurring. For those who believe that virtually all events contain some element of
chance, deterministic causal models may seem to misrepresent the indeterminism of the real world.
However, the deterministic model presented here can accommodate “chance”; one way might be to
view chance, or at least some part of the variability that we call “chance,” as the result of deterministic
events that are beyond the current limits of knowledge or observability.

For example, the outcome of a flip of a coin is usually considered a chance event. In classical
mechanics, however, the outcome can in theory be determined completely by the application of
physical laws and a sufficient description of the starting conditions. To put it in terms more familiar
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to epidemiologists, consider the explanation for why an individual gets lung cancer. One hundred
years ago, when little was known about the etiology of lung cancer; a scientist might have said
that it was a matter of chance. Nowadays, we might say that the risk depends on how much the
individual smokes, how much asbestos and radon the individual has been exposed to, and so on.
Nonetheless, recognizing this dependence moves the line of ignorance; it does not eliminate it. One
can still ask what determines whether an individual who has smoked a specific amount and has a
specified amount of exposure to all the other known risk factors will get lung cancer. Some will
get lung cancer and some will not, and if all known risk factors are already taken into account,
what is left we might still describe as chance. True, we can explain much more of the variability in
lung cancer occurrence nowadays than we formerly could by taking into account factors known to
cause it, but at the limits of our knowledge, we still ascribe the remaining variability to what we call
chance. In this view, chance is seen as a catchall term for our ignorance about causal explanations.

We have so far ignored more subtle considerations of sources of unpredictability in events, such
as chaotic behavior (in which even the slightest uncertainty about initial conditions leads to vast
uncertainty about outcomes) and quantum-mechanical uncertainty. In each of these situations, a
random (stochastic) model component may be essential for any useful modeling effort. Such com-
ponents can also be introduced in the above conceptual model by treating unmeasured component
causes in the model as random events, so that the causal model based on components of sufficient
causes can have random elements. An example is treatment assignment in randomized clinical trials
(Poole 2001a).

OTHER MODELS OF CAUSATION

The sufficient-component cause model is only one of several models of causation that may be use-
ful for gaining insight about epidemiologic concepts (Greenland and Brumback, 2002; Greenland,
2004a). It portrays qualitative causal mechanisms within members of a population, so its fundamen-
tal unit of analysis is the causal mechanism rather than a person. Many different sets of mechanisms
can lead to the same pattern of disease within a population, so the sufficient-component cause model
involves specification of details that are beyond the scope of epidemiologic data. Also, it does not
incorporate elements reflecting population distributions of factors or causal sequences, which are
crucial to understanding confounding and other biases.

Other models of causation, such as potential-outcome (counterfactual) models and graphical
models, provide direct representations of epidemiologic concepts such as confounding and other
biases, and can be applied at mechanistic, individual, or population levels of analysis. Potential-
outcome models (Chapters 4 and 5) specify in detail what would happen to individuals or populations
under alternative possible patterns of interventions or exposures, and also bring to the fore prob-
lems in operationally defining causes (Greenland, 2002a, 2005a; Hernán, 2005). Graphical models
(Chapter 12) display broad qualitative assumptions about causal directions and independencies.
Both types of model have close relationships to the structural-equations models that are popular in
the social sciences (Pearl, 2000; Greenland and Brumback, 2002), and both can be subsumed under
a general theory of longitudinal causality (Robins, 1997).

PHILOSOPHY OF SCIENTIFIC INFERENCE

Causal inference may be viewed as a special case of the more general process of scientific reasoning.
The literature on this topic is too vast for us to review thoroughly, but we will provide a brief overview
of certain points relevant to epidemiology, at the risk of some oversimplification.

INDUCTIVISM

Modern science began to emerge around the 16th and 17th centuries, when the knowledge demands
of emerging technologies (such as artillery and transoceanic navigation) stimulated inquiry into the
origins of knowledge. An early codification of the scientific method was Francis Bacon’s Novum
Organum, which, in 1620, presented an inductivist view of science. In this philosophy, scientific
reasoning is said to depend on making generalizations, or inductions, from observations to general
laws of nature; the observations are said to induce the formulation of a natural law in the mind of
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the scientist. Thus, an inductivist would have said that Jenner’s observation of lack of smallpox
among milkmaids induced in Jenner’s mind the theory that cowpox (common among milkmaids)
conferred immunity to smallpox. Inductivist philosophy reached a pinnacle of sorts in the canons
of John Stuart Mill (1862), which evolved into inferential criteria that are still in use today.

Inductivist philosophy was a great step forward from the medieval scholasticism that preceded
it, for at least it demanded that a scientist make careful observations of people and nature rather than
appeal to faith, ancient texts, or authorities. Nonetheless, in the 18th century the Scottish philosopher
David Hume described a disturbing deficiency in inductivism. An inductive argument carried no
logical force; instead, such an argument represented nothing more than an assumption that certain
events would in the future follow the same pattern as they had in the past. Thus, to argue that cowpox
caused immunity to smallpox because no one got smallpox after having cowpox corresponded to an
unjustified assumption that the pattern observed to date (no smallpox after cowpox) would continue
into the future. Hume pointed out that, even for the most reasonable-sounding of such assumptions,
there was no logical necessity behind the inductive argument.

Of central concern to Hume (1739) was the issue of causal inference and failure of induction to
provide a foundation for it:

Thus not only our reason fails us in the discovery of the ultimate connexion of causes and effects,
but even after experience has inform’d us of their constant conjunction, ’tis impossible for us to
satisfy ourselves by our reason, why we shou’d extend that experience beyond those particular
instances, which have fallen under our observation. We suppose, but are never able to prove, that
there must be a resemblance betwixt those objects, of which we have had experience, and those
which lie beyond the reach of our discovery.

In other words, no number of repetitions of a particular sequence of events, such as the appearance
of a light after flipping a switch, can prove a causal connection between the action of the switch
and the turning on of the light. No matter how many times the light comes on after the switch has
been pressed, the possibility of coincidental occurrence cannot be ruled out. Hume pointed out that
observers cannot perceive causal connections, but only a series of events. Bertrand Russell (1945)
illustrated this point with the example of two accurate clocks that perpetually chime on the hour,
with one keeping time slightly ahead of the other. Although one invariably chimes before the other,
there is no direct causal connection from one to the other. Thus, assigning a causal interpretation
to the pattern of events cannot be a logical extension of our observations alone, because the events
might be occurring together only because of a shared earlier cause, or because of some systematic
error in the observations.

Causal inference based on mere association of events constitutes a logical fallacy known as post
hoc ergo propter hoc (Latin for “after this therefore on account of this”). This fallacy is exemplified
by the inference that the crowing of a rooster is necessary for the sun to rise because sunrise is
always preceded by the crowing.

The post hoc fallacy is a special case of a more general logical fallacy known as the fallacy of
affirming the consequent. This fallacy of confirmation takes the following general form: “We know
that if H is true, B must be true; and we know that B is true; therefore H must be true.” This fallacy is
used routinely by scientists in interpreting data. It is used, for example, when one argues as follows:
“If sewer service causes heart disease, then heart disease rates should be highest where sewer service
is available; heart disease rates are indeed highest where sewer service is available; therefore, sewer
service causes heart disease.” Here, H is the hypothesis “sewer service causes heart disease” and B
is the observation “heart disease rates are highest where sewer service is available.” The argument
is logically unsound, as demonstrated by the fact that we can imagine many ways in which the
premises could be true but the conclusion false; for example, economic development could lead to
both sewer service and elevated heart disease rates, without any effect of sewer service on heart
disease. In this case, however, we also know that one of the premises is not true—specifically, the
premise, “If H is true, B must be true.” This particular form of the fallacy exemplifies the problem
of confounding, which we will discuss in detail in later chapters.

Bertrand Russell (1945) satirized the fallacy this way:

‘If p, then q; now q is true; therefore p is true.’ E.g., ‘If pigs have wings, then some winged animals
are good to eat; now some winged animals are good to eat; therefore pigs have wings.’ This form of
inference is called ‘scientific method.’



P1: TNL/OVY P2: SCF/OVY QC: SCF/OVY T1: SCF Printer: RRD

GRBT241-02 GRBT241-v4.cls January 28, 2008 23:32

20 Section I ● Basic Concepts

REFUTATIONISM

Russell was not alone in his lament of the illogicality of scientific reasoning as ordinarily practiced.
Many philosophers and scientists from Hume’s time forward attempted to set out a firm logical
basis for scientific reasoning.

In the 1920s, most notable among these was the school of logical positivists, who sought a logic
for science that could lead inevitably to correct scientific conclusions, in much the way rigorous
logic can lead inevitably to correct conclusions in mathematics. Other philosophers and scientists,
however, had started to suspect that scientific hypotheses can never be proven or established as true
in any logical sense. For example, a number of philosophers noted that scientific statements can
only be found to be consistent with observation, but cannot be proven or disproven in any “airtight”
logical or mathematical sense (Duhem, 1906, transl. 1954; Popper 1934, transl. 1959; Quine, 1951).
This fact is sometimes called the problem of nonidentification or underdetermination of theories
by observations (Curd and Cover, 1998). In particular, available observations are always consistent
with several hypotheses that themselves are mutually inconsistent, which explains why (as Hume
noted) scientific theories cannot be logically proven. In particular, consistency between a hypothesis
and observations is no proof of the hypothesis, because we can always invent alternative hypotheses
that are just as consistent with the observations.

In contrast, a valid observation that is inconsistent with a hypothesis implies that the hypothesis
as stated is false and so refutes the hypothesis. If you wring the rooster’s neck before it crows and
the sun still rises, you have disproved that the rooster’s crowing is a necessary cause of sunrise.
Or consider a hypothetical research program to learn the boiling point of water (Magee, 1985). A
scientist who boils water in an open flask and repeatedly measures the boiling point at 100◦C will
never, no matter how many confirmatory repetitions are involved, prove that 100◦C is always the
boiling point. On the other hand, merely one attempt to boil the water in a closed flask or at high
altitude will refute the proposition that water always boils at 100◦C.

According to Popper, science advances by a process of elimination that he called “conjecture
and refutation.” Scientists form hypotheses based on intuition, conjecture, and previous experience.
Good scientists use deductive logic to infer predictions from the hypothesis and then compare obser-
vations with the predictions. Hypotheses whose predictions agree with observations are confirmed
(Popper used the term “corroborated”) only in the sense that they can continue to be used as expla-
nations of natural phenomena. At any time, however, they may be refuted by further observations
and might be replaced by other hypotheses that are more consistent with the observations. This view
of scientific inference is sometimes called refutationism or falsificationism. Refutationists consider
induction to be a psychologic crutch: Repeated observations did not in fact induce the formulation
of a natural law, but only the belief that such a law has been found. For a refutationist, only the
psychologic comfort provided by induction explains why it still has advocates.

One way to rescue the concept of induction from the stigma of pure delusion is to resurrect it
as a psychologic phenomenon, as Hume and Popper claimed it was, but one that plays a legitimate
role in hypothesis formation. The philosophy of conjecture and refutation places no constraints on
the origin of conjectures. Even delusions are permitted as hypotheses, and therefore inductively
inspired hypotheses, however psychologic, are valid starting points for scientific evaluation. This
concession does not admit a logical role for induction in confirming scientific hypotheses, but it
allows the process of induction to play a part, along with imagination, in the scientific cycle of
conjecture and refutation.

The philosophy of conjecture and refutation has profound implications for the methodology of
science. The popular concept of a scientist doggedly assembling evidence to support a favorite thesis
is objectionable from the standpoint of refutationist philosophy because it encourages scientists to
consider their own pet theories as their intellectual property, to be confirmed, proven, and, when all
the evidence is in, cast in stone and defended as natural law. Such attitudes hinder critical evalua-
tion, interchange, and progress. The approach of conjecture and refutation, in contrast, encourages
scientists to consider multiple hypotheses and to seek crucial tests that decide between competing
hypotheses by falsifying one of them. Because falsification of one or more theories is the goal, there
is incentive to depersonalize the theories. Criticism leveled at a theory need not be seen as criticism
of the person who proposed it. It has been suggested that the reason why certain fields of science
advance rapidly while others languish is that the rapidly advancing fields are propelled by scientists
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who are busy constructing and testing competing hypotheses; the other fields, in contrast, “are sick
by comparison, because they have forgotten the necessity for alternative hypotheses and disproof”
(Platt, 1964).

The refutationist model of science has a number of valuable lessons for research conduct,
especially of the need to seek alternative explanations for observations, rather than focus on the
chimera of seeking scientific “proof” for some favored theory. Nonetheless, it is vulnerable to
criticisms that observations (or some would say their interpretations) are themselves laden with
theory (sometimes called the Duhem-Quine thesis; Curd and Cover, 1998). Thus, observations
can never provide the sort of definitive refutations that are the hallmark of popular accounts of
refutationism. For example, there may be uncontrolled and even unimagined biases that have made
our refutational observations invalid; to claim refutation is to assume as true the unprovable theory
that no such bias exists. In other words, not only are theories underdetermined by observations,
so are refutations, which are themselves theory-laden. The net result is that logical certainty about
either the truth or falsity of an internally consistent theory is impossible (Quine, 1951).

CONSENSUS AND NATURALISM

Some 20th-century philosophers of science, most notably Thomas Kuhn (1962), emphasized the
role of the scientific community in judging the validity of scientific theories. These critics of the
conjecture-and-refutation model suggested that the refutation of a theory involves making a choice.
Every observation is itself dependent on theories. For example, observing the moons of Jupiter
through a telescope seems to us like a direct observation, but only because the theory of optics on
which the telescope is based is so well accepted. When confronted with a refuting observation, a
scientist faces the choice of rejecting either the validity of the theory being tested or the validity of the
refuting observation, which itself must be premised on scientific theories that are not certain (Haack,
2003). Observations that are falsifying instances of theories may at times be treated as “anomalies,”
tolerated without falsifying the theory in the hope that the anomalies may eventually be explained.
An epidemiologic example is the observation that shallow-inhaling smokers had higher lung cancer
rates than deep-inhaling smokers. This anomaly was eventually explained when it was noted that
lung tissue higher in the lung is more susceptible to smoking-associated lung tumors, and shallowly
inhaled smoke tars tend to be deposited higher in the lung (Wald, 1985).

In other instances, anomalies may lead eventually to the overthrow of current scientific doctrine,
just as Newtonian mechanics was displaced (remaining only as a first-order approximation) by
relativity theory. Kuhn asserted that in every branch of science the prevailing scientific viewpoint,
which he termed “normal science,” occasionally undergoes major shifts that amount to scientific
revolutions. These revolutions signal a decision of the scientific community to discard the scientific
infrastructure rather than to falsify a new hypothesis that cannot be easily grafted onto it. Kuhn and
others have argued that the consensus of the scientific community determines what is considered
accepted and what is considered refuted.

Kuhn’s critics characterized this description of science as one of an irrational process, “a matter
for mob psychology” (Lakatos, 1970). Those who believe in a rational structure for science consider
Kuhn’s vision to be a regrettably real description of much of what passes for scientific activity, but
not prescriptive for any good science. Although many modern philosophers reject rigid demarcations
and formulations for science such as refutationism, they nonetheless maintain that science is founded
on reason, albeit possibly informal common sense (Haack, 2003). Others go beyond Kuhn and
maintain that attempts to impose a singular rational structure or methodology on science hobbles
the imagination and is a prescription for the same sort of authoritarian repression of ideas that
scientists have had to face throughout history (Feyerabend, 1975 and 1993).

The philosophic debate about Kuhn’s description of science hinges on whether Kuhn meant to
describe only what has happened historically in science or instead what ought to happen, an issue
about which Kuhn (1970) has not been completely clear:

Are Kuhn’s [my] remarks about scientific development. . . to be read as descriptions or
prescriptions? The answer, of course, is that they should be read in both ways at once. If I have a
theory of how and why science works, it must necessarily have implications for the way in which
scientists should behave if their enterprise is to flourish.
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The idea that science is a sociologic process, whether considered descriptive or normative, is an
interesting thesis, as is the idea that from observing how scientists work we can learn about how
scientists ought to work. The latter idea has led to the development of naturalistic philosophy of
science, or “science studies,” which examines scientific developments for clues about what sort
of methods scientists need and develop for successful discovery and invention (Callebaut, 1993;
Giere, 1999).

Regardless of philosophical developments, we suspect that most epidemiologists (and most
scientists) will continue to function as if the following classical view is correct: The ultimate goal
of scientific inference is to capture some objective truths about the material world in which we live,
and any theory of inference should ideally be evaluated by how well it leads us to these truths. This
ideal is impossible to operationalize, however, for if we ever find any ultimate truths, we will have
no way of knowing that for certain. Thus, those holding the view that scientific truth is not arbitrary
nevertheless concede that our knowledge of these truths will always be tentative. For refutationists,
this tentativeness has an asymmetric quality, but that asymmetry is less marked for others. We may
believe that we know a theory is false because it consistently fails the tests we put it through, but
our tests could be faulty, given that they involve imperfect reasoning and sense perception. Neither
can we know that a theory is true, even if it passes every test we can devise, for it may fail a test
that is as yet undevised.

Few, if any, would disagree that a theory of inference should be evaluated at least in part by
how well it leads us to detect errors in our hypotheses and observations. There are, however, many
other inferential activities besides evaluation of hypotheses, such as prediction or forecasting of
events, and subsequent attempts to control events (which of course requires causal information).
Statisticians rather than philosophers have more often confronted these problems in practice, so it
should not be surprising that the major philosophies concerned with these problems emerged from
statistics rather than philosophy.

BAYESIANISM

There is another philosophy of inference that, like most, holds an objective view of scientific truth
and a view of knowledge as tentative or uncertain, but that focuses on evaluation of knowledge
rather than truth. Like refutationism, the modern form of this philosophy evolved from the writings
of 18th-century thinkers. The focal arguments first appeared in a pivotal essay by the Reverend
Thomas Bayes (1764), and hence the philosophy is usually referred to as Bayesianism (Howson
and Urbach, 1993), and it was the renowned French mathematician and scientist Pierre Simon de
Laplace who first gave it an applied statistical format. Nonetheless, it did not reach a complete
expression until after World War I, most notably in the writings of Ramsey (1931) and DeFinetti
(1937); and, like refutationism, it did not begin to appear in epidemiology until the 1970s (e.g.,
Cornfield, 1976).

The central problem addressed by Bayesianism is the following: In classical logic, a deductive
argument can provide no information about the truth or falsity of a scientific hypothesis unless you
can be 100% certain about the truth of the premises of the argument. Consider the logical argument
called modus tollens: “If H implies B, and B is false, then H must be false.” This argument is
logically valid, but the conclusion follows only on the assumptions that the premises “H implies B”
and “B is false” are true statements. If these premises are statements about the physical world, we
cannot possibly know them to be correct with 100% certainty, because all observations are subject
to error. Furthermore, the claim that “H implies B” will often depend on its own chain of deductions,
each with its own premises of which we cannot be certain.

For example, if H is “Television viewing causes homicides” and B is “Homicide rates are highest
where televisions are most common,” the first premise used in modus tollens to test the hypothesis
that television viewing causes homicides will be: “If television viewing causes homicides, homicide
rates are highest where televisions are most common.” The validity of this premise is doubtful—
after all, even if television does cause homicides, homicide rates may be low where televisions are
common because of socioeconomic advantages in those areas.

Continuing to reason in this fashion, we could arrive at a more pessimistic state than even
Hume imagined. Not only is induction without logical foundation, deduction has limited scientific
utility because we cannot ensure the truth of all the premises, even if a logical argument is valid.
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The Bayesian answer to this problem is partial in that it makes a severe demand on the scientist
and puts a severe limitation on the results. It says roughly this: If you can assign a degree of
certainty, or personal probability, to the premises of your valid argument, you may use any and all
the rules of probability theory to derive a certainty for the conclusion, and this certainty will be a
logically valid consequence of your original certainties. An inescapable fact is that your concluding
certainty, or posterior probability, may depend heavily on what you used as initial certainties, or
prior probabilities. If those initial certainties are not the same as those of a colleague, that colleague
may very well assign a certainty to the conclusion different from the one you derived. With the
accumulation of consistent evidence, however, the data can usually force even extremely disparate
priors to converge into similar posterior probabilities.

Because the posterior probabilities emanating from a Bayesian inference depend on the person
supplying the initial certainties and so may vary across individuals, the inferences are said to be
subjective. This subjectivity of Bayesian inference is often mistaken for a subjective treatment of
truth. Not only is such a view of Bayesianism incorrect, it is diametrically opposed to Bayesian
philosophy. The Bayesian approach represents a constructive attempt to deal with the dilemma that
scientific laws and facts should not be treated as known with certainty, whereas classic deductive
logic yields conclusions only when some law, fact, or connection is asserted with 100% certainty.

A common criticism of Bayesian philosophy is that it diverts attention away from the classic
goals of science, such as the discovery of how the world works, toward psychologic states of mind
called “certainties,” “subjective probabilities,” or “degrees of belief” (Popper, 1959). This criticism,
however, fails to recognize the importance of a scientist’s state of mind in determining what theories
to test and what tests to apply, the consequent influence of those states on the store of data available
for inference, and the influence of the data on the states of mind.

Another reply to this criticism is that scientists already use data to influence their degrees of belief,
and they are not shy about expressing those degrees of certainty. The problem is that the conventional
process is informal, intuitive, and ineffable, and therefore not subject to critical scrutiny; at its worst,
it often amounts to nothing more than the experts announcing that they have seen the evidence and
here is how certain they are. How they reached this certainty is left unclear, or, put another way,
is not “transparent.” The problem is that no one, even an expert, is very good at informally and
intuitively formulating certainties that predict facts and future events well (Kahneman et al., 1982;
Gilovich, 1993; Piattelli-Palmarini, 1994; Gilovich et al., 2002). One reason for this problem is that
biases and prior prejudices can easily creep into expert judgments. Bayesian methods force experts
to “put their cards on the table” and specify explicitly the strength of their prior beliefs and why
they have such beliefs, defend those specifications against arguments and evidence, and update their
degrees of certainty with new evidence in ways that do not violate probability logic.

In any research context, there will be an unlimited number of hypotheses that could explain
an observed phenomenon. Some argue that progress is best aided by severely testing (empirically
challenging) those explanations that seem most probable in light of past research, so that short-
comings of currently “received” theories can be most rapidly discovered. Indeed, much research in
certain fields takes this form, as when theoretical predictions of particle mass are put to ever more
precise tests in physics experiments. This process does not involve mere improved repetition of
past studies. Rather, it involves tests of previously untested but important predictions of the theory.
Moreover, there is an imperative to make the basis for prior beliefs criticizable and defensible. That
prior probabilities can differ among persons does not mean that all such beliefs are based on the
same information, nor that all are equally tenable.

Probabilities of auxiliary hypotheses are also important in study design and interpretation. Failure
of a theory to pass a test can lead to rejection of the theory more rapidly when the auxiliary
hypotheses on which the test depends possess high probability. This observation provides a rationale
for preferring “nested” case-control studies (in which controls are selected from a roster of the
source population for the cases) to “hospital-based” case-control studies (in which the controls
are “selected” by the occurrence or diagnosis of one or more diseases other than the case-defining
disease), because the former have fewer mechanisms for biased subject selection and hence are
given a higher probability of unbiased subject selection.

Even if one disputes the above arguments, most epidemiologists desire some way of expressing
the varying degrees of certainty about possible values of an effect measure in light of available
data. Such expressions must inevitably be derived in the face of considerable uncertainty about
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methodologic details and various events that led to the available data and can be extremely sensi-
tive to the reasoning used in its derivation. For example, as we shall discuss at greater length in
Chapter 19, conventional confidence intervals quantify only random error under often question-
able assumptions and so should not be interpreted as measures of total uncertainty, particularly
for nonexperimental studies. As noted earlier, most people, including scientists, reason poorly in
the face of uncertainty. At the very least, subjective Bayesian philosophy provides a methodology
for sound reasoning under uncertainty and, in particular, provides many warnings against being
overly certain about one’s conclusions (Greenland 1998a, 1988b, 2006a; see also Chapters 18
and 19).

Such warnings are echoed in refutationist philosophy. As Peter Medawar (1979) put it, “I cannot
give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis
is true has no bearing on whether it is true or not.” We would add two points. First, the intensity of
conviction that a hypothesis is false has no bearing on whether it is false or not. Second, Bayesian
methods do not mistake beliefs for evidence. They use evidence to modify beliefs, which scientists
routinely do in any event, but often in implicit, intuitive, and incoherent ways.

IMPOSSIBILITY OF SCIENTIFIC PROOF

Vigorous debate is a characteristic of modern scientific philosophy, no less in epidemiology than in
other areas (Rothman, 1988). Can divergent philosophies of science be reconciled? Haack (2003)
suggested that the scientific enterprise is akin to solving a vast, collective crossword puzzle. In areas
in which the evidence is tightly interlocking, there is more reason to place confidence in the answers,
but in areas with scant information, the theories may be little better than informed guesses. Of the
scientific method, Haack (2003) said that “there is less to the ‘scientific method’ than meets the eye.
Is scientific inquiry categorically different from other kinds? No. Scientific inquiry is continuous
with everyday empirical inquiry—only more so.”

Perhaps the most important common thread that emerges from the debated philosophies is that
proof is impossible in empirical science. This simple fact is especially important to observational
epidemiologists, who often face the criticism that proof is impossible in epidemiology, with the
implication that it is possible in other scientific disciplines. Such criticism may stem from a view
that experiments are the definitive source of scientific knowledge. That view is mistaken on at least
two counts. First, the nonexperimental nature of a science does not preclude impressive scientific
discoveries; the myriad examples include plate tectonics, the evolution of species, planets orbiting
other stars, and the effects of cigarette smoking on human health. Even when they are possible,
experiments (including randomized trials) do not provide anything approaching proof and in fact
may be controversial, contradictory, or nonreproducible. If randomized clinical trials provided
proof, we would never need to do more than one of them on a given hypothesis. Neither physical
nor experimental science is immune to such problems, as demonstrated by episodes such as the
experimental “discovery” (later refuted) of cold fusion (Taubes, 1993).

Some experimental scientists hold that epidemiologic relations are only suggestive and believe
that detailed laboratory study of mechanisms within single individuals can reveal cause–effect
relations with certainty. This view overlooks the fact that all relations are suggestive in exactly the
manner discussed by Hume. Even the most careful and detailed mechanistic dissection of individual
events cannot provide more than associations, albeit at a finer level. Laboratory studies often involve
a degree of observer control that cannot be approached in epidemiology; it is only this control, not
the level of observation, that can strengthen the inferences from laboratory studies. And again, such
control is no guarantee against error. In addition, neither scientists nor decision makers are often
highly persuaded when only mechanistic evidence from the laboratory is available.

All of the fruits of scientific work, in epidemiology or other disciplines, are at best only tentative
formulations of a description of nature, even when the work itself is carried out without mistakes.
The tentativeness of our knowledge does not prevent practical applications, but it should keep us
skeptical and critical, not only of everyone else’s work, but of our own as well. Sometimes etiologic
hypotheses enjoy an extremely high, universally or almost universally shared, degree of certainty.
The hypothesis that cigarette smoking causes lung cancer is one of the best-known examples. These
hypotheses rise above “tentative” acceptance and are the closest we can come to “proof.” But even
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these hypotheses are not “proved” with the degree of absolute certainty that accompanies the proof
of a mathematical theorem.

CAUSAL INFERENCE IN EPIDEMIOLOGY

Etiologic knowledge about epidemiologic hypotheses is often scant, making the hypotheses them-
selves at times little more than vague statements of causal association between exposure and disease,
such as “smoking causes cardiovascular disease.” These vague hypotheses have only vague con-
sequences that can be difficult to test. To cope with this vagueness, epidemiologists usually focus
on testing the negation of the causal hypothesis, that is, the null hypothesis that the exposure does
not have a causal relation to disease. Then, any observed association can potentially refute the
hypothesis, subject to the assumption (auxiliary hypothesis) that biases and chance fluctuations are
not solely responsible for the observation.

TESTS OF COMPETING EPIDEMIOLOGIC THEORIES

If the causal mechanism is stated specifically enough, epidemiologic observations can provide
crucial tests of competing, non-null causal hypotheses. For example, when toxic-shock syndrome
was first studied, there were two competing hypotheses about the causal agent. Under one hypothesis,
it was a chemical in the tampon, so that women using tampons were exposed to the agent directly
from the tampon. Under the other hypothesis, the tampon acted as a culture medium for staphylococci
that produced a toxin. Both hypotheses explained the relation of toxic-shock occurrence to tampon
use. The two hypotheses, however, led to opposite predictions about the relation between the
frequency of changing tampons and the rate of toxic shock. Under the hypothesis of a chemical
agent, more frequent changing of the tampon would lead to more exposure to the agent and possible
absorption of a greater overall dose. This hypothesis predicted that women who changed tampons
more frequently would have a higher rate than women who changed tampons infrequently. The
culture-medium hypothesis predicts that women who change tampons frequently would have a
lower rate than those who change tampons less frequently, because a short duration of use for
each tampon would prevent the staphylococci from multiplying enough to produce a damaging
dose of toxin. Thus, epidemiologic research, by showing that infrequent changing of tampons was
associated with a higher rate of toxic shock, refuted the chemical theory in the form presented. There
was, however, a third hypothesis that a chemical in some tampons (e.g., oxygen content) improved
their performance as culture media. This chemical-promotor hypothesis made the same prediction
about the association with frequency of changing tampons as the microbial toxin hypothesis (Lanes
and Rothman, 1990).

Another example of a theory that can be easily tested by epidemiologic data relates to the
observation that women who took replacement estrogen therapy had a considerably elevated rate
of endometrial cancer. Horwitz and Feinstein (1978) conjectured a competing theory to explain the
association: They proposed that women taking estrogen experienced symptoms such as bleeding
that induced them to consult a physician. The resulting diagnostic workup led to the detection of
endometrial cancer at an earlier stage in these women, as compared with women who were not taking
estrogens. Horwitz and Feinstein argued that the association arose from this detection bias, claiming
that without the bleeding-induced workup, many of these cancers would not have been detected
at all. Many epidemiologic observations were used to evaluate these competing hypotheses. The
detection-bias theory predicted that women who had used estrogens for only a short time would
have the greatest elevation in their rate, as the symptoms related to estrogen use that led to the
medical consultation tended to appear soon after use began. Because the association of recent
estrogen use and endometrial cancer was the same in both long- and short-term estrogen users,
the detection-bias theory was refuted as an explanation for all but a small fraction of endometrial
cancer cases occurring after estrogen use. Refutation of the detection-bias theory also depended on
many other observations. Especially important was the theory’s implication that there must be a
huge reservoir of undetected endometrial cancer in the typical population of women to account for
the much greater rate observed in estrogen users, an implication that was not borne out by further
observations (Hutchison and Rothman, 1978).
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The endometrial cancer example illustrates a critical point in understanding the process of causal
inference in epidemiologic studies: Many of the hypotheses being evaluated in the interpretation
of epidemiologic studies are auxiliary hypotheses in the sense that they are independent of the
presence, absence, or direction of any causal connection between the study exposure and the dis-
ease. For example, explanations of how specific types of bias could have distorted an association
between exposure and disease are the usual alternatives to the primary study hypothesis. Much of
the interpretation of epidemiologic studies amounts to the testing of such auxiliary explanations for
observed associations.

CAUSAL CRITERIA

In practice, how do epidemiologists separate causal from noncausal explanations? Despite philo-
sophic criticisms of inductive inference, inductively oriented considerations are often used as criteria
for making such inferences (Weed and Gorelic, 1996). If a set of necessary and sufficient causal
criteria could be used to distinguish causal from noncausal relations in epidemiologic studies, the
job of the scientist would be eased considerably. With such criteria, all the concerns about the logic
or lack thereof in causal inference could be subsumed: It would only be necessary to consult the
checklist of criteria to see if a relation were causal. We know from the philosophy reviewed earlier
that a set of sufficient criteria does not exist. Nevertheless, lists of causal criteria have become pop-
ular, possibly because they seem to provide a road map through complicated territory, and perhaps
because they suggest hypotheses to be evaluated in a given problem.

A commonly used set of criteria was based on a list of considerations or “viewpoints” proposed by
Sir Austin Bradford Hill (1965). Hill’s list was an expansion of a list offered previously in the land-
mark U.S. Surgeon General’s report Smoking and Health (1964), which in turn was anticipated by
the inductive canons of John Stuart Mill (1862) and the rules given by Hume (1739). Subsequently,
others, especially Susser, have further developed causal considerations (Kaufman and Poole,
2000).

Hill suggested that the following considerations in attempting to distinguish causal from non-
causal associations that were already “perfectly clear-cut and beyond what we would care to attribute
to the play of chance”: (1) strength, (2) consistency, (3) specificity, (4) temporality, (5) biologic gra-
dient, (6) plausibility, (7) coherence, (8) experimental evidence, and (9) analogy. Hill emphasized
that causal inferences cannot be based on a set of rules, condemned emphasis on statistical signif-
icance testing, and recognized the importance of many other factors in decision making (Phillips
and Goodman, 2004). Nonetheless, the misguided but popular view that his considerations should
be used as criteria for causal inference makes it necessary to examine them in detail.

Strength

Hill argued that strong associations are particularly compelling because, for weaker associations, it is
“easier” to imagine what today we would call an unmeasured confounder that might be responsible
for the association. Several years earlier, Cornfield et al. (1959) drew similar conclusions. They
concentrated on a single hypothetical confounder that, by itself, would explain entirely an observed
association. They expressed a strong preference for ratio measures of strength, as opposed to
difference measures, and focused on how the observed estimate of a risk ratio provides a minimum
for the association that a completely explanatory confounder must have with the exposure (rather
than a minimum for the confounder–disease association). Of special importance, Cornfield et al.
acknowledged that having only a weak association does not rule out a causal connection (Rothman
and Poole, 1988). Today, some associations, such as those between smoking and cardiovascular
disease or between environmental tobacco smoke and lung cancer, are accepted by most as causal
even though the associations are considered weak.

Counterexamples of strong but noncausal associations are also not hard to find; any study with
strong confounding illustrates the phenomenon. For example, consider the strong relation between
Down syndrome and birth rank, which is confounded by the relation between Down syndrome and
maternal age. Of course, once the confounding factor is identified, the association is diminished by
controlling for the factor.

These examples remind us that a strong association is neither necessary nor sufficient for causal-
ity, and that weakness is neither necessary nor sufficient for absence of causality. A strong association
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bears only on hypotheses that the association is entirely or partially due to unmeasured confounders
or other source of modest bias.

Consistency

To most observers, consistency refers to the repeated observation of an association in different
populations under different circumstances. Lack of consistency, however, does not rule out a causal
association, because some effects are produced by their causes only under unusual circumstances.
More precisely, the effect of a causal agent cannot occur unless the complementary component
causes act or have already acted to complete a sufficient cause. These conditions will not always
be met. Thus, transfusions can cause infection with the human immunodeficiency virus, but they
do not always do so: The virus must also be present. Tampon use can cause toxic-shock syndrome,
but only rarely, when certain other, perhaps unknown, conditions are met. Consistency is appar-
ent only after all the relevant details of a causal mechanism are understood, which is to say very
seldom. Furthermore, even studies of exactly the same phenomena can be expected to yield dif-
ferent results simply because they differ in their methods and random errors. Consistency serves
only to rule out hypotheses that the association is attributable to some factor that varies across
studies.

One mistake in implementing the consistency criterion is so common that it deserves special
mention. It is sometimes claimed that a literature or set of results is inconsistent simply because
some results are “statistically significant” and some are not. This sort of evaluation is completely
fallacious even if one accepts the use of significance testing methods. The results (effect estimates)
from a set of studies could all be identical even if many were significant and many were not, the
difference in significance arising solely because of differences in the standard errors or sizes of the
studies. Conversely, the results could be significantly in conflict even if all were all were nonsignif-
icant individually, simply because in aggregate an effect could be apparent in some subgroups but
not others (see Chapter 33). The fallacy of judging consistency by comparing P-values or statistical
significance is not eliminated by “standardizing” estimates (i.e., dividing them by the standard devi-
ation of the outcome, multiplying them by the standard deviation of the exposure, or both); in fact it is
worsened, as such standardization can create differences where none exists, or mask true differences
(Greenland et al., 1986, 1991; see Chapters 21 and 33).

Specificity

The criterion of specificity has two variants. One is that a cause leads to a single effect, not multiple
effects. The other is that an effect has one cause, not multiple causes. Hill mentioned both of them.
The former criterion, specificity of effects, was used as an argument in favor of a causal interpretation
of the association between smoking and lung cancer and, in an act of circular reasoning, in favor of
ratio comparisons and not differences as the appropriate measures of strength. When ratio measures
were examined, the association of smoking to diseases looked “quantitatively specific” to lung
cancer. When difference measures were examined, the association appeared to be nonspecific, with
several diseases (other cancers, coronary heart disease, etc.) being at least as strongly associated
with smoking as lung cancer was. Today we know that smoking affects the risk of many diseases and
that the difference comparisons were accurately portraying this lack of specificity. Unfortunately,
however, the historical episode of the debate over smoking and health is often cited today as
justification for the specificity criterion and for using ratio comparisons to measure strength of
association. The proper lessons to learn from that episode should be just the opposite.

Weiss (2002) argued that specificity can be used to distinguish some causal hypotheses from
noncausal hypotheses, when the causal hypothesis predicts a relation with one outcome but no
relation with another outcome. His argument is persuasive when, in addition to the causal hypothesis,
one has an alternative noncausal hypothesis that predicts a nonspecific association. Weiss offered
the example of screening sigmoidoscopy, which was associated in case-control studies with a 50%
to 70% reduction in mortality from distal tumors of the rectum and tumors of the distal colon, within
the reach of the sigmoidoscope, but no reduction in mortality from tumors elsewhere in the colon.
If the effect of screening sigmoidoscopy were not specific to the distal colon tumors, it would lend
support not to all noncausal theories to explain the association, as Weiss suggested, but only to
those noncausal theories that would have predicted a nonspecific association. Thus, specificity can
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come into play when it can be logically deduced from the causal hypothesis in question and when
nonspecificity can be logically deduced from one or more noncausal hypotheses.

Temporality

Temporality refers to the necessity that the cause precede the effect in time. This criterion is
inarguable, insofar as any claimed observation of causation must involve the putative cause C
preceding the putative effect D. It does not, however, follow that a reverse time order is evidence
against the hypothesis that C can cause D. Rather, observations in which C followed D merely
show that C could not have caused D in these instances; they provide no evidence for or against the
hypothesis that C can cause D in those instances in which it precedes D. Only if it is found that C
cannot precede D can we dispense with the causal hypothesis that C could cause D.

Biologic Gradient

Biologic gradient refers to the presence of a dose–response or exposure–response curve with an
expected shape. Although Hill referred to a “linear” gradient, without specifying the scale, a linear
gradient on one scale, such as the risk, can be distinctly nonlinear on another scale, such as the log
risk, the odds, or the log odds. We might relax the expectation from linear to strictly monotonic
(steadily increasing or decreasing) or even further merely to monotonic (a gradient that never
changes direction). For example, more smoking means more carcinogen exposure and more tissue
damage, hence more opportunity for carcinogenesis. Some causal associations, however, show
a rapid increase in response (an approximate threshold effect) rather than a strictly monotonic
trend. An example is the association between DES and adenocarcinoma of the vagina. A possible
explanation is that the doses of DES that were administered were all sufficiently great to produce the
maximum effect from DES. Under this hypothesis, for all those exposed to DES, the development
of disease would depend entirely on other component causes.

The somewhat controversial topic of alcohol consumption and mortality is another example.
Death rates are higher among nondrinkers than among moderate drinkers, but they ascend to the
highest levels for heavy drinkers. There is considerable debate about which parts of the J-shaped
dose–response curve are causally related to alcohol consumption and which parts are noncausal
artifacts stemming from confounding or other biases. Some studies appear to find only an in-
creasing relation between alcohol consumption and mortality, possibly because the categories of
alcohol consumption are too broad to distinguish different rates among moderate drinkers and
nondrinkers, or possibly because they have less confounding at the lower end of the consumption
scale.

Associations that do show a monotonic trend in disease frequency with increasing levels of
exposure are not necessarily causal. Confounding can result in a monotonic relation between a
noncausal risk factor and disease if the confounding factor itself demonstrates a biologic gradient
in its relation with disease. The relation between birth rank and Down syndrome mentioned earlier
shows a strong biologic gradient that merely reflects the progressive relation between maternal age
and occurrence of Down syndrome.

These issues imply that the existence of a monotonic association is neither necessary nor sufficient
for a causal relation. A nonmonotonic relation only refutes those causal hypotheses specific enough
to predict a monotonic dose–response curve.

Plausibility

Plausibility refers to the scientific plausibility of an association. More than any other criterion, this
one shows how narrowly systems of causal criteria are focused on epidemiology. The starting point
is an epidemiologic association. In asking whether it is causal or not, one of the considerations
we take into account is its plausibility. From a less parochial perspective, the entire enterprise of
causal inference would be viewed as the act of determining how plausible a causal hypothesis is.
One of the considerations we would take into account would be epidemiologic associations, if they
are available. Often they are not, but causal inference must be done nevertheless, with inputs from
toxicology, pharmacology, basic biology, and other sciences.

Just as epidemiology is not essential for causal inference, plausibility can change with the
times. Sartwell (1960) emphasized this point, citing remarks of Cheever in 1861, who had been
commenting on the etiology of typhus before its mode of transmission (via body lice) was known:
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It could be no more ridiculous for the stranger who passed the night in the steerage of an emigrant
ship to ascribe the typhus, which he there contracted, to the vermin with which bodies of the sick
might be infested. An adequate cause, one reasonable in itself, must correct the coincidences of
simple experience.

What was to Cheever an implausible explanation turned out to be the correct explanation, because
it was indeed the vermin that caused the typhus infection. Such is the problem with plausibility:
It is too often based not on logic or data, but only on prior beliefs. This is not to say that biologic
knowledge should be discounted when a new hypothesis is being evaluated, but only to point out
the difficulty in applying that knowledge.

The Bayesian approach to inference attempts to deal with this problem by requiring that one
quantify, on a probability (0 to 1) scale, the certainty that one has in prior beliefs, as well as in
new hypotheses. This quantification displays the dogmatism or open-mindedness of the analyst in
a public fashion, with certainty values near 1 or 0 betraying a strong commitment of the analyst for
or against a hypothesis. It can also provide a means of testing those quantified beliefs against new
evidence (Howson and Urbach, 1993). Nevertheless, no approach can transform plausibility into
an objective causal criterion.

Coherence

Taken from the U.S. Surgeon General’s Smoking and Health (1964), the term coherence implies
that a cause-and-effect interpretation for an association does not conflict with what is known of
the natural history and biology of the disease. The examples Hill gave for coherence, such as
the histopathologic effect of smoking on bronchial epithelium (in reference to the association
between smoking and lung cancer) or the difference in lung cancer incidence by sex, could rea-
sonably be considered examples of plausibility, as well as coherence; the distinction appears to
be a fine one. Hill emphasized that the absence of coherent information, as distinguished, appar-
ently, from the presence of conflicting information, should not be taken as evidence against an
association being considered causal. On the other hand, the presence of conflicting information
may indeed refute a hypothesis, but one must always remember that the conflicting information
may be mistaken or misinterpreted. An example mentioned earlier is the “inhalation anomaly” in
smoking and lung cancer, the fact that the excess of lung cancers seen among smokers seemed
to be concentrated at sites in the upper airways of the lung. Several observers interpreted this
anomaly as evidence that cigarettes were not responsible for the excess. Other observations, how-
ever, suggested that cigarette-borne carcinogens were deposited preferentially where the excess
was observed, and so the anomaly was in fact consistent with a causal role for cigarettes (Wald,
1985).

Experimental Evidence

To different observers, experimental evidence can refer to clinical trials, to laboratory experiments
with rodents or other nonhuman organisms, or to both. Evidence from human experiments, however,
is seldom available for epidemiologic research questions, and animal evidence relates to different
species and usually to levels of exposure very different from those that humans experience. Un-
certainty in extrapolations from animals to humans often dominates the uncertainty of quantitative
risk assessments (Freedman and Zeisel, 1988; Crouch et al., 1997).

To Hill, however, experimental evidence meant something else: the “experimental, or semi-
experimental evidence” obtained from reducing or eliminating a putatively harmful exposure and
seeing if the frequency of disease subsequently declines. He called this the strongest possible
evidence of causality that can be obtained. It can be faulty, however, as the “semi-experimental”
approach is nothing more than a “before-and-after” time trend analysis, which can be confounded
or otherwise biased by a host of concomitant secular changes. Moreover, even if the removal of
exposure does causally reduce the frequency of disease, it might not be for the etiologic reason
hypothesized. The draining of a swamp near a city, for instance, would predictably and causally
reduce the rate of yellow fever or malaria in that city the following summer. But it would be a
mistake to call this observation the strongest possible evidence of a causal role of miasmas (Poole,
1999).
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Analogy

Whatever insight might be derived from analogy is handicapped by the inventive imagination of
scientists who can find analogies everywhere. At best, analogy provides a source of more elaborate
hypotheses about the associations under study; absence of such analogies reflects only lack of
imagination or experience, not falsity of the hypothesis.

We might find naive Hill’s examples in which reasoning by analogy from the thalidomide and
rubella tragedies made it more likely to him that other medicines and infections might cause other
birth defects. But such reasoning is common; we suspect most people find it more credible that
smoking might cause, say, stomach cancer, because of its associations, some widely accepted as
causal, with cancers in other internal and gastrointestinal organs. Here we see how the analogy
criterion can be at odds with either of the two specificity criteria. The more apt the analogy, the less
specific are the effects of a cause or the less specific the causes of an effect.

Summary

As is evident, the standards of epidemiologic evidence offered by Hill are saddled with reservations
and exceptions. Hill himself was ambivalent about their utility. He did not use the word criteria in
the speech. He called them “viewpoints” or “perspectives.” On the one hand, he asked, “In what
circumstances can we pass from this observed association to a verdict of causation?” (emphasis
in original). Yet, despite speaking of verdicts on causation, he disagreed that any “hard-and-fast
rules of evidence” existed by which to judge causation: “None of my nine viewpoints can bring
indisputable evidence for or against the cause-and-effect hypothesis and none can be required as a
sine qua non” (Hill, 1965).

Actually, as noted above, the fourth viewpoint, temporality, is a sine qua non for causal expla-
nations of observed associations. Nonetheless, it does not bear on the hypothesis that an exposure
is capable of causing a disease in situations as yet unobserved (whether in the past or the future).
For suppose every exposed case of disease ever reported had received the exposure after developing
the disease. This reversed temporal relation would imply that exposure had not caused disease
among these reported cases, and thus would refute the hypothesis that it had. Nonetheless, it would
not refute the hypothesis that the exposure is capable of causing the disease, or that it had caused
the disease in unobserved cases. It would mean only that we have no worthwhile epidemiologic
evidence relevant to that hypothesis, for we had not yet seen what became of those exposed before
disease occurred relative to those unexposed. Furthermore, what appears to be a causal sequence
could represent reverse causation if preclinical symptoms of the disease lead to exposure, and then
overt disease follows, as when patients in pain take analgesics, which may be the result of disease
that is later diagnosed, rather than a cause.

Other than temporality, there is no necessary or sufficient criterion for determining whether an
observed association is causal. Only when a causal hypothesis is elaborated to the extent that one
can predict from it a particular form of consistency, specificity, biologic gradient, and so forth, can
“causal criteria” come into play in evaluating causal hypotheses, and even then they do not come
into play in evaluating the general hypothesis per se, but only some specific causal hypotheses,
leaving others untested.

This conclusion accords with the views of Hume and many others that causal inferences cannot
attain the certainty of logical deductions. Although some scientists continue to develop causal con-
siderations as aids to inference (Susser, 1991), others argue that it is detrimental to cloud the inferen-
tial process by considering checklist criteria (Lanes and Poole, 1984). An intermediate, refutationist
approach seeks to transform proposed criteria into deductive tests of causal hypotheses (Maclure,
1985; Weed, 1986). Such an approach helps avoid the temptation to use causal criteria simply to
buttress pet theories at hand, and instead allows epidemiologists to focus on evaluating competing
causal theories using crucial observations. Although this refutationist approach to causal inference
may seem at odds with the common implementation of Hill’s viewpoints, it actually seeks to answer
the fundamental question posed by Hill, and the ultimate purpose of the viewpoints he promulgated:

What [the nine viewpoints] can do, with greater or less strength, is to help us to make up our minds
on the fundamental question—is there any other way of explaining the set of facts before us, is there
any other answer equally, or more, likely than cause and effect? (Hill, 1965)
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The crucial phrase “equally or more likely than cause and effect” suggests to us a subjective
assessment of the certainty, or probability of the causal hypothesis at issue relative to another
hypothesis. Although Hill wrote at a time when expressing uncertainty as a probability was unpop-
ular in statistics, it appears from his statement that, for him, causal inference is a subjective matter
of degree of personal belief, certainty, or conviction. In any event, this view is precisely that of
subjective Bayesian statistics (Chapter 18).

It is unsurprising that case studies (e.g., Weed and Gorelick, 1996) and surveys of epidemiologists
(Holman et al., 2001) show, contrary to the rhetoric that often attends invocations of causal criteria,
that epidemiologists have not agreed on a set of causal criteria or on how to apply them. In one
study in which epidemiologists were asked to employ causal criteria to fictional summaries of
epidemiologic literatures, the agreement was only slightly greater than would have been expected
by chance (Holman et al., 2001). The typical use of causal criteria is to make a case for a position
for or against causality that has been arrived at by other, unstated means. Authors pick and choose
among the criteria they deploy, and define and weight them in ad hoc ways that depend only on
the exigencies of the discussion at hand. In this sense, causal criteria appear to function less like
standards or principles and more like values (Poole, 2001b), which vary across individual scientists
and even vary within the work of a single scientist, depending on the context and time. Thus universal
and objective causal criteria, if they exist, have yet to be identified.
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In this chapter, we begin to address the basic elements, concepts, and tools of epidemiology. A
good starting point is to define epidemiology. Unfortunately, there seem to be more definitions of
epidemiology than there are epidemiologists. Some have defined it in terms of its methods. Although
the methods of epidemiology may be distinctive, it is more typical to define a branch of science in
terms of its subject matter rather than its tools. MacMahon and Pugh (1970) gave a widely cited
definition, which we update slightly: Epidemiology is the study of the distribution and determinants
of disease frequency in human populations. A similar subject-matter definition has been attributed
to Gaylord Anderson (Cole, 1979), who defined epidemiology simply as the study of the occurrence
of illness. Although reasonable distinctions can be made between the terms disease and illness, we
shall treat them as synonyms here.

Recognizing the broad scope of epidemiology today, we may define epidemiology as the study
of the distribution of health-related states and events in populations. With this definition we intend
to capture not only disease and illness, but physiologic states such as blood pressure, psychologic
measures such as depression score, and positive outcomes such as disease immunity. Other sci-
ences, such as clinical medicine, are also directed toward the study of health and disease, but in
epidemiology the focus is on population distributions.

The objective of much epidemiologic research is to obtain a valid and precise estimate of the
effect of a potential cause on the occurrence of disease, which is often a binary (either/or) outcome

32
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such as “dead/alive.” To achieve this objective, an epidemiologist must be able to measure the
frequency of disease occurrence, either in absolute or in relative terms. We will focus on four basic
measures of disease frequency. Incidence times are simply the times, after a common reference
event, at which new cases of disease occur among population members. Incidence rate measures
the occurrence of new cases of disease per unit of person-time. Incidence proportion measures the
proportion of people who develop new disease during a specified period of time. Prevalence, a
measure of status rather than of newly occurring disease, measures the proportion of people who
have disease at a specific time. We will also discuss how these measures generalize to outcomes
measured on a more complex scale than a dichotomy, such as lung function, lymphocyte count,
or antibody titer. Finally, we will describe how measures can be standardized or averaged over
population distributions of health-related factors to obtain summary occurrence measures.

INCIDENCE TIMES

In the attempt to measure the frequency of disease occurrence in a population, it is insufficient
merely to record the number of people or the proportion of the population that is affected. It is also
necessary to take into account the time elapsed before disease occurs, as well as the period of time
during which events are counted. Consider the frequency of death. Because all people are eventually
affected, the time from birth to death becomes the determining factor in the rate of occurrence of
death. If, on average, death comes earlier to the members of one population than to members of
another population, it is natural to say that the first population has a higher death rate than the
second. Time is the factor that differentiates between the two situations shown in Figure 3–1.

In an epidemiologic study, we may measure the time of events in a person’s life relative to any
one of several reference events. Using age, for example, the reference event is birth, but we might
instead use the start of a treatment or the start of an exposure as the reference event. The reference
event may occur at a time that is unique to each person, as is the case with birth, but it could also
be set to a common value, such as a day chosen from the calendar. The time of the reference event
determines the time origin or zero time for measuring the timing of events.

Given an outcome event or “incident” of interest, a person’s incidence time for this outcome is
defined as the time span from zero time to the time at which the outcome event occurs, if it occurs.
Synonyms for incidence time include event time, failure time, and occurrence time. A man who
experienced his first myocardial infarction in 2000 at age 50 years has an incidence time of 2000
in (Western) calendar time and an incidence time of 50 in age time. A person’s incidence time is
undefined if that person never experiences the outcome event. There is a convention that classifies
such a person as having an incidence time that is not specified exactly but is known to exceed the last
time that the person could have experienced the outcome event. Under this convention, a woman
who had a hysterectomy at age 45 years without ever having had endometrial cancer is classified as
having an endometrial cancer incidence time that is unspecified but greater than age 45. It is then
said that the hysterectomy censored the woman’s endometrial cancer incidence at age 45 years.

FIGURE 3–1 ● Two different patterns of
mortality.
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There are many ways to summarize the distribution of incidence times in populations if there is
no censoring. For example, one could look at the mean time, median time, and other summaries.
Such approaches are commonly used with time to death, for which the average, or life expectancy,
is a popular measure for comparing the health status of populations. If there is censoring, however,
the summarization task becomes more complicated, and epidemiologists have traditionally turned
to the concepts involving person-time at risk to deal with this situation.

The term average age at death deserves special attention, as it is sometimes used to denote life
expectancy but is often used to denote an entirely different quantity, namely, the average age of those
dying at a particular point in time. The latter quantity is more precisely termed the cross-sectional
average age at death. The two quantities can be very far apart. Comparisons of cross-sectional
average age at an event (such as death) can be quite misleading when attempting to infer causes of
the event. We shall discuss these problems later on in this chapter.

INCIDENCE RATES

PERSON-TIME AND POPULATION TIME

Epidemiologists often study outcome events that are not inevitable or that may not occur during
the period of observation. In such situations, the set of incidence times for a specific event in a
population will not all be precisely defined or observed. One way to deal with this complication is
to develop measures that account for the length of time each individual was in the population at risk
for the event, that is, the period of time during which the event was a possibility and would have
been counted as an event in the population, had it occurred. This length or span of time is called
the person-time contribution of the individual.

The sum of these person-times over all population members is called the total person-time at
risk or the population-time at risk. This total person-time should be distinguished from clock time
in that it is a summation of time that occurs simultaneously for many people, whereas clock time is
not. The total person-time at risk merely represents the total of all time during which disease onsets
could occur and would be considered events occurring in the population of interest.

POPULATION AND INDIVIDUAL RATES

We define the incidence rate of the population as the number of new cases of disease (incident
number) divided by the person-time over the period:

Incidence rate = number of disease onsets∑
persons

time spent in population

This rate has also been called the person-time rate, incidence density, force of morbidity (or force of
mortality in reference to deaths), hazard rate, and disease intensity, although the latter three terms
are more commonly used to refer to the theoretical limit approached by an incidence rate as the unit
of time measure approaches zero.

When the risk period is of fixed length �t, the proportion of the period that a person spends in
the population at risk is their amount of person-time divided by �t. It follows that the average size
of the population over the period is

N =
∑

persons

time spent in population

�t

Hence, the total person-time at risk over the period is equal to the product of the average size
of the population over the period, N , and the fixed length of the risk period, �t. If we denote
the incident number by A, it follows that the incidence rate equals A/

(
N · �t

)
. This formulation

shows that the incidence rate has units of inverse time (per year, per month, per day, etc.). The units
attached to an incidence rate can thus be written as year−1, month−1, or day−1.

The only outcome events eligible to be counted in the numerator of an incidence rate are those
that occur to persons who are contributing time to the denominator of the incidence rate at the time



P1: PSB Printer: RRD

GRBT241-ch03 GRBT241-v4.cls December 17, 2007 9:38

Chapter 3 ● Measures of Occurrence 35

that the disease onset occurs. Likewise, only time contributed by persons eligible to be counted in
the numerator if they suffer such an event should be counted in the denominator.

Another way of expressing a population incidence rate is as a time-weighted average of individual
rates. An individual rate is either 0/(time spent in population) = 0, if the individual does not
experience the event, or else 1/(time spent in the population) if the individual does experience the
event. We then have that the number of disease onsets A is

A =
∑

persons

(time spent in poplation) (individual rate)

and so

Incidence rate =
∑

persons

(time spent in population) (individual rate)

/∑
persons

time spent in population

This formulation shows that the incidence rate ignores the distinction between individuals who
do not contribute to the incident number A because they were in the population only briefly, and
those who do not contribute because they were in the population a long time but never got the disease
(e.g., immune individuals). In this sense, the incidence rate deals with the censoring problem by
ignoring potentially important distinctions among those who do not get the disease.

Although the notion of an incidence rate is a central one in epidemiology, the preceding formu-
lation shows it cannot capture all aspects of disease occurrence. This limitation is also shown by
noting that a rate of 1 case/(100 years) = 0.01 year−1 could be obtained by following 100 people for
an average of 1 year and observing one case, but it could also be obtained by following two people
for 50 years and observing one case, a very different scenario. To distinguish these situations, more
detailed measures of occurrence are also needed, such as incidence time.

PROPER INTERPRETATION OF INCIDENCE RATES

Apart from insensitivity to important distinctions, incidence rates have interpretational difficulties
insofar as they are often confused with risks (probabilities). This confusion arises when one fails
to account for the dependence of the numeric portion of a rate on the units used for its expression.

The numeric portion of an incidence rate has a lower bound of zero and no upper bound, which
is the range for the ratio of a non-negative quantity to a positive quantity. The two quantities are
the number of events in the numerator and the person-time in the denominator. It may be surprising
that an incidence rate can exceed the value of 1, which would seem to indicate that more than 100%
of a population is affected. It is true that at most 100% of persons in a population can get a disease,
but the incidence rate does not measure the proportion of a population that gets disease, and in fact
it is not a proportion at all. Recall that incidence rate is measured in units of the reciprocal of time.
Among 100 people, no more than 100 deaths can occur, but those 100 deaths can occur in 10,000
person-years, in 1,000 person-years, in 100 person-years, or in 1 person-year (if the 100 deaths
occur after an average of 3.65 days each, as in a military engagement). An incidence rate of 100
cases (or deaths) per 1 person-year might be expressed as

100
cases

person-year

It might also be expressed as

10,000
cases

person-century

8.33
cases

person-month

1.92
cases

person-week

0.27
cases

person-day
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The numeric value of an incidence rate in itself has no interpretability because it depends on the
selection of the time unit. It is thus essential in presenting incidence rates to give the time unit used
to calculate the numeric portion. That unit is usually chosen to ensure that the minimum rate has
at least one digit to the left of the decimal place. For example, a table of incidence rates of 0.15,
0.04, and 0.009 cases per person-year might be multiplied by 1,000 to be displayed as 150, 40,
and 9 cases per 1,000 person-years. One can use a unit as large as 1,000 person-years regardless of
whether the observations were collected over 1 year of time, over 1 week of time, or over a decade,
just as one can measure the speed of a vehicle in terms of kilometers per hour even if the speed is
measured for only a few seconds.

RATES OF RECURRENT EVENTS

Incidence rates often include only the first occurrence of disease onset as an eligible event for the
numerator of the rate. For the many diseases that are irreversible states, such as multiple sclerosis,
cirrhosis, or death, there is at most only one onset that a person can experience. For some diseases that
do recur, such as rhinitis, we may simply wish to measure the incidence of “first” occurrence, or first
occurrence after a prespecified disease-free period, even though the disease can occur repeatedly.
For other diseases, such as cancer or heart disease, the first occurrence is often of greater interest for
etiologic study than subsequent occurrences in the same person, because the first occurrence or its
medical therapies affect the rate of subsequent occurrences. Therefore, it is typical that the events
in the numerator of an incidence rate correspond to the first occurrence of a particular disease,
even in those instances in which it is possible for a person to have more than one occurrence. In
this book, we will assume we are dealing with first occurrences, except when stated otherwise. As
explained later on, the approaches for first occurrences extend naturally to subsequent occurrences
by restricting the population at risk based on past occurrence.

When the events tallied in the numerator of an incidence rate are first occurrences of disease, then
the time contributed by each person in whom the disease develops should terminate with the onset of
disease. The reason is that the person is no longer eligible to experience the event (the first occurrence
can occur only once per person), so there is no more information about first occurrence to obtain from
continued observation of that person. Thus, each person who experiences the outcome event should
contribute time to the denominator until the occurrence of the event, but not afterward. Furthermore,
for the study of first occurrences, the number of disease onsets in the numerator of the incidence
rate is also a count of people experiencing the event, because only one event can occur per person.

An epidemiologist who wishes to study both first and subsequent occurrences of disease may
decide not to distinguish between first and later occurrences and simply count all the events that
occur among the population under observation. If so, then the time accumulated in the denominator
of the rate would not cease with the occurrence of the outcome event, because an additional event
might occur in the same person. Usually, however, there is enough of a biologic distinction between
first and subsequent occurrences to warrant measuring them separately. One approach is to define
the “population at risk” differently for each occurrence of the event: The population at risk for the
first event would consist of persons who have not experienced the disease before; the population
at risk for the second event (which is the first recurrence) would be limited to those who have
experienced the event once and only once, etc. Thus, studies of second cancers are restricted to the
population of those who survived their first cancer. A given person should contribute time to the
denominator of the incidence rate for first events only until the time that the disease first occurs.
At that point, the person should cease contributing time to the denominator of that rate and should
now begin to contribute time to the denominator of the rate measuring the second occurrence. If
and when there is a second event, the person should stop contributing time to the rate measuring
the second occurrence and begin contributing to the denominator of the rate measuring the third
occurrence, and so forth.

TYPES OF POPULATIONS

CLOSED POPULATIONS

Given a particular time scale for displaying incidence, we may distinguish populations according
to whether they are closed or open on that scale. A closed population adds no new members over
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FIGURE 3–2 ● Size of a closed population of 1,000 people, by time.

time and loses members only to death, whereas an open population may gain members over time,
through immigration or birth, or lose members who are still alive through emigration, or both. (Some
demographers and ecologists use a broader definition of a closed population in which births, but
not immigration or emigration, are allowed.) Members of the population can leave this population
only by dying.

Suppose we graph the survival experience of a closed population that starts with 1,000 people.
Because death eventually claims everyone, after a period of sufficient time the original 1,000 will
have dwindled to zero. A graph of the size of the population with time might approximate that in
Figure 3–2. The curve slopes downward because as the 1,000 persons in the population die, the
population at risk of death is reduced. The population is closed in the sense that we consider the fate
of only the 1,000 persons present at time zero. The person-time experience of these 1,000 persons
is represented by the area under the curve in the diagram. As each person dies, the curve notches
downward; that person no longer contributes to the person-time denominator of the death (mortality)
rate. Each person’s contribution is exactly equal to the length of time that person is followed from
start to finish. In this example, because the entire population is followed until death, the finish is the
person’s death. In other instances, the contribution to the person-time experience would continue
until either the onset of disease or some arbitrary cutoff time for observation, whichever came sooner.

Suppose we added up the total person-time experience of this closed population of 1,000 and
obtained a total of 75,000 person-years. The death rate would be (1,000/75,000) × year−1, because
the 75,000 person-years represent the experience of all 1,000 people until their deaths. Furthermore,
if time is measured from start of follow-up, the average death time in this closed population would
be 75,000 person-years/1,000 persons = 75 years, which is the inverse of the death rate.

A closed population experiencing a constant death rate over time would decline in size exponen-
tially (which is what is meant by the term exponential decay). In practice, however, death rates for
a closed population change with time, because the population is aging as time progresses. Conse-
quently, the decay curve of a closed human population is never exponential. Life-table methodology
is a procedure by which the death rate (or disease rate) of a closed population is evaluated within
successive small age or time intervals, so that the age or time dependence of mortality can be
elucidated. With any method, however, it is important to distinguish age-related effects from those
related to other time axes, because each person’s age increases directly with an increase along any
other time axis. For example, a person’s age increases with increasing duration of employment,
increasing calendar time, and increasing time from start of follow-up.
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OPEN POPULATIONS

An open population differs from a closed population in that the population at risk is open to new
members who did not qualify for the population initially. An example of an open population is the
population of a country. People can enter an open population through various mechanisms. Some
may be born into it; others may migrate into it. For an open population of people who have attained a
specific age, persons can become eligible to enter the population by aging into it. Similarly, persons
can exit by dying, aging out of a defined age group, emigrating, or becoming diseased (the latter
method of exiting applies only if first bouts of a disease are being studied). Persons may also exit
from an open population and then re-enter, for example by emigrating from the geographic area in
which the population is located, and later moving back to that area.

The distinction between closed and open populations depends in part on the time axis used to
describe the population, as well as on how membership is defined. All persons who ever used a
particular drug would constitute a closed population if time is measured from start of their use of the
drug. These persons would, however, constitute an open population in calendar time, because new
users might accumulate over a period of time. If, as in this example, membership in the population
always starts with an event such as initiation of treatment and never ends thereafter, the population
is closed along the time axis that marks this event as zero time for each member, because all new
members enter only when they experience this event. The same population will, however, be open
along most other time axes. If membership can be terminated by later events other than death, the
population is an open one along any time axis.

By the above definitions, any study population with loss to follow-up is open. For example,
membership in a study population might be defined in part by being under active surveillance for
disease; in that case, members who are lost to follow-up have by definition left the population, even
if they are still alive and would otherwise be considered eligible for study. It is common practice to
analyze such populations using time from start of observation, an axis along which no immigration
can occur (by definition, time zero is when the person enters the study). Such populations may be
said to be “closed on the left,” and are often called “fixed cohorts,” although the term cohort is often
used to refer to a different concept, which we discuss in the following.

POPULATIONS VERSUS COHORTS

The term population as we use it here has an intrinsically temporal and potentially dynamic element:
One can be a member at one time, not a member at a later time, a member again, and so on. This usage
is the most common sense of population, as with the population of a town or country. The term cohort
is sometimes used to describe any study population, but we reserve it for a more narrow concept, that
of a group of persons for whom membership is defined in a permanent fashion, or a population in
which membership is determined entirely by a single defining event and so becomes permanent. An
example of a cohort would be the members of the graduating class of a school in a given year. The list
of cohort members is fixed at the time of graduation, and will not increase. Other examples include
the cohort of all persons who ever used a drug, and the cohort of persons recruited for a follow-up
study. In the latter case, the study population may begin with all the cohort members but may grad-
ually dwindle to a small subset of that cohort as those initially recruited are lost to follow-up. Those
lost to follow-up remain members of the initial-recruitment cohort, even though they are no longer in
the study population. With this definition, the members of any cohort constitute a closed population
along the time axis in which the defining event (e.g., birth with Down syndrome, or study recruit-
ment) is taken as zero time. A birth cohort is the cohort defined in part by being born at a particular
time, e.g., all persons born in Ethiopia in 1990 constitute the Ethiopian birth cohort for 1990.

STEADY STATE

If the number of people entering a population is balanced by the number exiting the population in
any period of time within levels of age, sex, and other determinants of risk, the population is said to
be stationary, or in a steady state. Steady state is a property that can occur only in open populations,
not closed populations. It is, however, possible to have a population in steady state in which no
immigration or emigration is occurring; this situation would require that births perfectly balance
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FIGURE 3–3 ● Composition of an open
population in approximate steady state, by
time; > indicates entry into the population,
D indicates disease onset, and C indicates exit
from the population without disease.

deaths in the population. The graph of the size of an open population in steady state is simply a
horizontal line. People are continually entering and leaving the population in a way that might be
diagrammed as shown in Figure 3–3.

In the diagram, the symbol > represents a person entering the population, a line segment repre-
sents his or her person-time experience, and the termination of a line segment represents the end of
his or her experience. A terminal D indicates that the experience ended because of disease onset,
and a terminal C indicates that the experience ended for other reasons. In theory, any time interval
will provide a good estimate of the incidence rate in a stationary population.

RELATION OF INCIDENCE RATES TO INCIDENCE TIMES
IN SPECIAL POPULATIONS

The reciprocal of time is an awkward concept that does not provide an intuitive grasp of an inci-
dence rate. The measure does, however, have a close connection to more interpretable measures of
occurrence in closed populations. Referring to Figure 3–2, one can see that the area under the curve
is equal to N × T , where N is the number of people starting out in the closed population and T is
the average time until death. The time-averaged death rate is then N/(N × T ) = 1/T ; that is, the
death rate equals the reciprocal of the average time until death.

In a stationary population with no migration, the crude incidence rate of an inevitable outcome
such as death will equal the reciprocal of the average time spent in the population until the outcome
occurs (Morrison, 1979). Thus, in a stationary population with no migration, a death rate of 0.04
year−1 would translate to an average time from entry until death of 25 years. Similarly, in stationary
population with no migration, the cross-sectional average age at death will equal the life expectancy.
The time spent in the population until the outcome occurs is sometimes referred to as the waiting
time until the event occurs, and it corresponds to the incidence time when time is measured from
entry into the population.

If the outcome of interest is not death but either disease onset or death from a specific cause, the
average-time interpretation must be modified to account for competing risks, which are events that
“compete” with the outcome of interest to remove persons from the population at risk. Even if there
is no competing risk, the interpretation of incidence rates as the inverse of the average waiting time
will usually not be valid if there is migration (such as loss to follow up), and average age at death
will no longer equal the life expectancy. For example, the death rate for the United States in 1977
was 0.0088 year−1. In a steady state, this rate would correspond to a mean lifespan, or expectation
of life, of 114 years. Other analyses, however, indicate that the actual expectation of life in 1977
was 73 years (Alho, 1992). The discrepancy is a result of immigration and to the lack of a steady
state. Note that the no-migration assumption cannot hold within specific age groups, for people are
always “migrating” in and out of age groups as they age.

OTHER TYPES OF RATES

In addition to numbers of cases per unit of person-time, it is sometimes useful to examine numbers
of events per other unit. In health services and infectious-disease epidemiology, epidemic curves
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are often depicted in terms of the number of cases per unit time, also called the absolute rate,

no. of disease onsets

time span of observation

or A/�t . Because the person-time rate is simply this absolute rate divided by the average size of the
population over the time span, or A/

(
N · �t

)
, the person-time rate has been called the relative rate

(Elandt-Johnson, 1975); it is the absolute rate relative to or “adjusted for” the average population
size.

Sometimes it is useful to express event rates in units that do not involve time directly. A common
example is the expression of fatalities by travel modality in terms of passenger-miles, whereby the
safety of commercial train and air travel can be compared. Here, person-miles replace person-time
in the denominator of the rate. Like rates with time in the denominator, the numerical portion of
such rates is completely dependent on the choice of measurement units; a rate of 1.6 deaths per 106

passenger-miles equals a rate of 1 death per 106 passenger-kilometers.
The concept central to precise usage of the term incidence rate is that of expressing the change

in incident number relative to the change in another quantity, so that the incidence rate always has
a dimension. Thus, a person-time rate expresses the increase in the incident number we expect per
unit increase in person-time. An absolute rate expresses the increase in incident number we expect
per unit increase in clock time, and a passenger-mile rate expresses the increase in incident number
we expect per unit increase in passenger miles.

INCIDENCE PROPORTIONS AND SURVIVAL PROPORTIONS

Within a given interval of time, we can also express the incident number of cases in relation to the
size of the population at risk. If we measure population size at the start of a time interval and no one
enters the population (immigrates) or leaves alive (emigrates) after the start of the interval, such
a rate becomes the proportion of people who become cases among those in the population at the
start of the interval. We call this quantity the incidence proportion, which may also be defined as
the proportion of a closed population at risk that becomes diseased within a given period of time.
This quantity is sometimes called the cumulative incidence, but that term is also used for another
quantity we will discuss later. A more traditional term for incidence proportion is attack rate, but
we reserve the term rate for person-time incidence rates.

If risk is defined as the probability that disease develops in a person within a specified time
interval, then incidence proportion is a measure, or estimate, of average risk. Although this concept of
risk applies to individuals whereas incidence proportion applies to populations, incidence proportion
is sometimes called risk. This usage is consistent with the view that individual risks merely refer
to the relative frequency of disease in a group of individuals like the one under discussion. Average
risk is a more accurate synonym, one that we will sometimes use.

Another way of expressing the incidence proportion is as a simple average of the individual
proportions. The latter is either 0 for those who do not have the event or 1 for those who do have
the event. The number of disease onsets A is then a sum of the individual proportions,

A =
∑

persons

individual proportions

and so

Incidence proportion =

∑
persons

individual proportions

initial size of the population
= A/N

If one calls the individual proportions the “individual risks,” this formulation shows another sense
in which the incidence proportion is also an “average risk.” It also makes clear that the incidence
proportion ignores the amount of person-time contributed by individuals and so ignores even more
information than does the incidence rate, although it has a more intuitive interpretation.

Like any proportion, the value of an incidence proportion ranges from 0 to 1 and is dimensionless.
It is not interpretable, however, without specification of the time period to which it applies. An
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incidence proportion of death of 3% means something very different when it refers to a 40-year
period than when it refers to a 40-day period.

A useful complementary measure to the incidence proportion is the survival proportion, which
may be defined as the proportion of a closed population at risk that does not become diseased within
a given period of time. If R and S denote the incidence and survival proportions, then S = 1 − R.
Another measure that is commonly used is the incidence odds, defined as R/S = R/(l − R), the ratio
of the proportion getting the disease to the proportion not getting the disease. If R is small, S ≈ 1
and R/S ≈ R; that is, the incidence odds will approximate the incidence proportion when both
quantities are small. Otherwise, because S<1, the incidence odds will be greater than the incidence
proportion and, unlike the latter, it may exceed 1.

For sufficiently short time intervals, there is a very simple relation between the incidence propor-
tion and the incidence rate of a nonrecurring event. Consider a closed population over an interval t0
to t1, and let �t = t1 − t0 be the length of the interval. If N is the size of the population at t0 and A
is the number of disease onsets over the interval, then the incidence and survival proportions over
the interval are R = A/Nand S = (N − A)/N . Now suppose the time interval is short enough that
the size of the population at risk declines only slightly over the interval. Then, N − A ≈ N , S ≈ 1,
and so R/S ≈ R. Furthermore, the average size of the population at risk will be approximately N ,
so the total person-time at risk over the interval will be approximately N�t. Thus, the incidence
rate (I ) over the interval will be approximately A/N�t, and we obtain

R = A/N = (A/N�t)�t ≈ I�t and R ≈ R/S

In words, the incidence proportion, incidence odds, and the quantity I�t will all approximate
one another if the population at risk declines only slightly over the interval. We can make this
approximation hold to within an accuracy of 1/N by making �t so short that no more than one person
leaves the population at risk over the interval. Thus, given a sufficiently short time interval, one can
simply multiply the incidence rate by the time period to approximate the incidence proportion. This
approximation offers another interpretation for the incidence rate: It can be viewed as the limiting
value of the ratio of the average risk to the duration of time at risk as the latter duration approaches
zero.

A specific type of incidence proportion is the case fatality rate, or case fatality ratio, which is
the incidence proportion of death among those in whom an illness develops (it is therefore not a
rate in our sense, but a proportion). The time period for measuring the case fatality rate is often
unstated, but it is always better to specify it.

RELATIONS AMONG INCIDENCE MEASURES

Disease occurrence in a population reflects two aspects of individual experiences: the amount of
time the individual is at risk in the population, and whether the individual actually has the focal
event (e.g., gets disease) during that time. Different incidence measures summarize different aspects
of the distribution of these experiences. Average incidence time is the average time until an event
and incidence proportion is the average “risk” of the event (where “risk” is 1 or 0 according to
whether or not the event occurred in the risk period). Each is easy to grasp intuitively, but they are
often not easy to estimate or even to define. In contrast, the incidence rate can be applied to the
common situation in which the time at risk and the occurrence of the event can be unambiguously
determined for everyone. Unfortunately, it can be difficult to comprehend correctly what the rate
is telling us about the different dimensions of event distributions, and so it is helpful to understand
its relation to incidence times and incidence proportions. These relations are a central component
of the topics of survival analysis and failure-time analysis in statistics (Kalbfleisch and Prentice,
2002; Cox and Oakes, 1984).

There are relatively simple relations between the incidence proportion of an inevitable, nonre-
curring event (such as death) and the incidence rate in a closed population. To illustrate them, we
will consider the small closed population shown in Figure 3–4. The time at risk (risk history) of
each member is graphed in order from the shortest on top to the longest at the bottom. Each history
either ends with a D, indicating the occurrence of the event of interest, or ends at the end of the
follow-up, at t5 = 19. The starting time is denoted t0 and is here equal to 0. Each time that one or
more events occur is marked by a vertical dashed line, the unique event times are denoted by t1 (the
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FIGURE 3–4 ● Example of a
small closed population with end of
follow-up at 19 years.

earliest) to t4, and the end of follow-up is denoted by t5. We denote the number of events at time tk
by Ak , the total number of persons at risk at time tk (including the Ak people who experience the
event) by Nk , and the number of people alive at the end of follow-up by N5.

PRODUCT-LIMIT FORMULA

Table 3–1 shows the history of the population over the 20-year follow-up period in Figure 3–4, in
terms of tk , Ak , and Nk . Note that because the population is closed and the event is inevitable, the
number remaining at risk after tk , Nk+1, is equal to Nk − Ak , which is the number at risk up to tk
minus the number experiencing the event at tk . The proportion of the population remaining at risk
up to tk that also remains at risk after tk is thus

sk = Nk − Ak

Nk
= Nk+1

Nk

We can now see that the proportion of the original population that remains at risk at the end of
follow-up is

S = N5/N1 = (N5/N4)(N4/N3)(N3/N2)(N2/N1) = s4s3s2s1

which for Table 3–1 yields

S = (4/5)(5/6)(6/8)(8/9) = 4/9

ˆ

ˆ

ˆ

ˆ
T A B L E 3 – 1

Event Times and Intervals for the Closed Population in Figure 3–4

Start Outcome Event Times (tk ) End

0 2 4 8 14 19

Index (k) 0 1 2 3 4 5
No. of outcome events (Ak) 0 1 2 1 1 0
No. at risk (Nk) 9 9 8 6 5 4
Proportion surviving (Sk) 8/9 6/8 5/6 4/5 4/4
Length of interval (�tk) 2 2 4 6 5
Person-time (Nk�tk) 18 16 24 30 20
Incidence rate (Ik) 1/18 2/16 1/24 1/30 0/20
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This multiplication formula says that the survival proportion over the whole time interval in
Figure 3–4 is just the product of the survival proportions for every subinterval tk−1 to tk . In its more
general form,

S =
5∏

k=1

Nk − Ak

Nk
[3–1]

This multiplication formula is called the Kaplan-Meier or product-limit formula (Kalbfleisch
and Prentice, 2002; Cox and Oakes, 1984).

EXPONENTIAL FORMULA

Now let Tk be the total person-time at risk in the population over the subinterval from tk−1 to tk , and
let �tk = tk − tk−1 be the length of the subinterval. Because the population is of constant size Nk

over this subinterval and everyone still present contributes �tk person-time units at risk, the total
person-time at risk in the interval is Nk�tk , so that the incidence rate in the time following tk−1 up
through (but not beyond) tk is

Ik = Ak

Nk�tk

But the incidence proportion over the same subinterval is equal to Ik�tk , so the survival propor-
tion over the subinterval is

sk = 1 − Ik�tk

Thus, we can substitute 1 − Ik�tk for sk in the earlier equation for S, the overall survival
proportion, to get

S = (1 − I5�t5)(1 − I4�t4)(1 − I3�t3)(1 − I2�t2)(1 − I1�t1)

= [1 − (0)5][1 − (1/30)6][1 − (1/24)4][1 − (2/16)2][1 − (1/18)2]

= 4/9

as before.
If each of the subinterval incidence proportions Ik�tk is small (<0.10 or so), we can simplify

the last formula by using the fact that, for small x ,

1 − x ≈ exp(−x)

Taking x = Ik�tk in this approximation formula, we get 1 − Ik tk ≈ exp(−Ik�tk), and so

S ≈ exp(−I5�t5) exp(−I4�t4) · · · exp(−I1�t1)

= exp(−I5�t5 − I4�t4 − · · · − I1�t1)

= exp

(
−

5∑
k=1

Ik�tk

)

which for Table 3–1 yields

exp[−0(5) − (1/30)6 − (1/24)4 − (2/16)2 − (1/18)2] = 0.483

not too far from the earlier value of 4/9 = 0.444. Finally, we use the fact that the incidence proportion
for the whole period is 1 − S to get

R = 1 − S ≈ 1 − exp

(
−

5∑
k=1

Ik�tk

)
[3–2]

The last formula is cited in many textbooks and is sometimes called the exponential formula for
relating rates and incidence proportions. The sum in the exponent,

∑
k

Ik�tk , is sometimes called
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the cumulative incidence (Breslow and Day, 1980) or cumulative hazard (Kalbfleisch and Prentice,
2002; Cox and Oakes, 1984). Confusingly, the term cumulative incidence is more often used to
denote the incidence proportion. The cumulative hazard, although unitless, is not a proportion and
will exceed 1.0 when the incidence proportion exceeds 1 − e−1 = 0.632.

We wish to emphasize the assumptions we used to derive the exponential formula in equa-
tion 3–2:

1. The population is closed.
2. The event under study is inevitable (there is no competing risk).
3. The number of events Ak at each event time tk is a small proportion of the number at risk Nk at

that time (i.e., Ak/Nk is always small).

If the population is not very small, we can almost always force assumption 3 to hold by measuring
time so finely that every event occurs at its own unique time (so that only one event occurs at each
tk). In Table 3–1, the discrepancy between the true R of 5/9 = 0.555 and the exponential formula
value of 1 − 0.483 = 0.517 is rather small considering that Ak/Nk gets as large as 2/8 = 0.25
(at t2).

Assumptions 1 and 2 were also used to derive the product-limit formula in equation 3–1. These
assumptions are rarely satisfied, yet they are often overlooked in presentations and applications of the
formulas. Some form of the closed-population assumption (no. 1) is essential because the incidence
proportion is defined only with reference to closed populations. A major use of the product-limit
and exponential formulas is, however, in translating incidence-rate estimates from open popula-
tions into incidence-proportion estimates for a closed population of interest. By assuming that the
incidence rates in the two populations are the same at each time, one can justify substituting
the survival proportions (Nk − Ak)/Nk or the incidence rates observed in the open population into
the product-limit formula or the exponential formula. This assumption is often plausible when the
open population one observes is a subset of the closed population of interest, as in a cohort study
with losses to follow-up that are unrelated to risk.

APPLICATIONS WITH COMPETING RISKS

When competing risks remove persons from the population at risk, application of the product-limit
and exponential formulas requires new concepts and assumptions. Consider the subinterval-specific
incidence rates for our closed population of interest. When competing risks are present, the product-
limit formula in equation 3–1 for the survival proportion S no longer holds, because competing risks
may remove additional people between disease onset times, in which case Nk+1 will be smaller
than Nk − Ak . Also, when competing risks occur between tk−1 and tk , the population size will not
be constant over the subinterval. Consequently, the person-time in interval k will not equal Nk�tk
and Ik�tk will not equal Ak/Nk . Thus, the exponential formula of equation 3–2 will not hold if
competing risks occur. The amount of error will depend on the frequency of the events that are the
competing risks.

We can, however, ask the following question: What would the incidence proportion over the
total interval have been if no competing risk had occurred? This quantity is sometimes called
the conditional risk of the outcome (conditioned on removal of competing risks). One minus the
product-limit formula of equation 3–1 gives an estimate of this quantity under the assumption that the
subinterval-specific incidence rates would not change if no competing risk occurred (independent
competing risks). One minus the exponential formula of equation 3–2 remains an approximation
to it if Ak/Nk is always small. The assumption that the rates would not change if competing risks
were removed is made by almost all survival-analysis methods for estimating conditional risks, but
it requires careful scrutiny. Under conditions that would eliminate competing risks, the incidence
rates of the outcome under study may be likely to change. Suppose, for example, that the outcome
of interest is colon cancer. Competing risks would include deaths from any causes other than colon
cancer. Removal of so many risks would be virtually impossible, but an attempt to minimize them
might involve dietary interventions to prevent deaths from other cancers and from heart disease.
If these interventions were effective, they might also lower colon cancer rates, thus violating the
assumption that the specific rates would not change if no competing risk occurred.
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Because of the impracticality of removing competing risks without altering rates of the study
disease, many authors caution against interpreting survival estimates based on statistical removal of
competing risks as the incidence that would actually occur upon removal of competing risks (Cox and
Oakes, 1984; Prentice and Kalbfleisch, 1988; Pepe and Mori, 1993; Kalbfleisch and Prentice, 2002;
Greenland, 2002a, 2005a; Alberti et al., 2003). An arguably more practical approach is to focus on the
risk (probability) of the outcome without removing competing risks, sometimes called the “uncondi-
tional risk.” This quantity is estimable with no assumption about competing-risk removal (Benichou
and Gail, 1990a; Pepe and Mori, 1993; Gooley et al., 1999; Kalbfleisch and Prentice, 2002).

A more defensible use of the product-limit formula is to estimate survival proportions in the
presence of censoring (e.g., loss to follow-up); see Chapter 16 for details. For this usage, the
assumption is made that the censoring is random (e.g., the experience of lost subjects differs only
randomly from that of subjects not lost). This assumption is often questionable but is addressable in
the design and analysis of a study via measurement and adjustment for factors that affect censoring
and the outcome event (Kalbfleisch and Prentice, 2002).

RELATION OF SURVIVAL PROPORTION TO
AVERAGE INCIDENCE TIME

Returning now to the simpler situation of an inevitable nonrecurring outcome in a closed population,
we will derive an equation relating survival proportions to average incidence time. First, we may
write the total person-time at risk over the total interval in Figure 3–4 as

N1�t1 + . . . + N5�t5 =
5∑

k=1

Nk�tk = 18 + 16 + 24 + 30 + 20 = 108 person-years

Thus, the average time at risk contributed by population members over the interval is

1

N0

5∑
k=1

Nk�tk =
5∑

k=1

(
Nk

N0

)
�tk = 1

9
108 = 12 years

Note that Nk/N0 is just the proportion who remain at risk up to tk , that is, the survival proportion
from t0 to tk . If we denote this proportion Nk/N0 by S0,k (to distinguish it from the subinterval-
specific proportions sk), the average time at risk can be written

5∑
k=1

S0,k�tk =
(

9

9

)
2 +

(
8

9

)
2 +

(
6

9

)
4 +

(
5

9

)
6 +

(
4

9

)
5 = 12 years

as before. Now suppose that the interval is extended forward in time until the entire population
has experienced the outcome of interest, as in Figure 3–2. The average time at risk will then equal
the average incidence time, so the average incidence time will be computable from the survival
proportions using the last formula. The survival proportions may in turn be computed from the
subinterval-specific incidence rates, as described above.

SUMMARY

The three broad types of measures of disease frequency—incidence time, incidence rate, and inci-
dence (and survival) proportion—are all linked by simple mathematical formulas that apply when
one considers an inevitable nonrecurring event in a closed population followed until everyone
has experienced the event. The mathematical relations become more complex when one considers
events with competing risks, open populations, or truncated risk periods. Interpretations become
particularly problematic when competing risks are present.

LIMITATIONS AND GENERALIZATIONS OF
BASIC OCCURRENCE MEASURES

All the above measures can be viewed as types of arithmetic means, with possible weighting.
Consequently, it is straightforward to extend these measures to outcomes that are more detailed



P1: PSB Printer: RRD

GRBT241-ch03 GRBT241-v4.cls December 17, 2007 9:38

46 Section I ● Basic Concepts

than all-or-none. Consider, for example, antibody titer following vaccination of persons with no
antibody for the target. We might examine the mean number of days until the titer reaches any given
level L , or the proportion that reach L within a given number of days. We might also examine the
rate at which persons reach L . To account for the fact that a titer has many possible levels, we could
examine these measures for different values of L .

Means cannot capture all relevant aspects of a distribution and can even be misleading, except
for some special distributions. For example, we have illustrated how—by itself—an incidence rate
fails to distinguish among many people followed over a short period and a few people followed for
a long period. Similarly, an incidence proportion of (say) 0.30 over 10 years fails to tell us whether
the 30% of persons who had the event all had it within 2 years, or only after 8 years, or had events
spread over the whole period. An average incidence time of 2 months among 101 people fails to
tell us whether this average was derived from all 101 people having the event at 2 months, or from
100 people having the event at 1 month and 1 person having the event at 102 months, or something
between these extremes.

One way to cope with these issues without making assumptions about the population distribution
is to focus on how the distribution of the outcome event changes over time. We introduced this idea
earlier by constructing survival proportions and incidence rates within time intervals (strata). By
using short enough time intervals, we could see clearly how events are spread over time. For example,
we could see whether our overall event rate reflects many people having the event early and a few
people having it very late, or few having it early and many having it late, or anything between. We
can also describe the distribution of event recurrences, such as asthma attacks.

We may generalize our notion of event to represent any transition from one state to another—not
just from “no disease” to “diseased,” but from (say) a diastolic blood pressure of 90 mm Hg in
one time interval to 100 mm Hg in the next. We can examine these transitions on a scale as fine
as our measurements allow, e.g., in studying the evolution of CD4 lymphocyte counts over time,
we can imagine the rate of transitions from count x to count y per unit time for every sensible
combination of x and y. Of course, this generalized viewpoint entails a much more complex picture
of the population. Studying this complexity is the topic of longitudinal data analysis. Aside from
some brief comments in Chapter 21, we will not discuss this important and vast field further. There
are many textbooks devoted to different aspects of the topic; for example, Manton and Stallard
(1988) provide a population-dynamics (demographic) approach, whereas Diggle et al. (2002) cover
approaches based on statistical analysis of study cohorts, and van der Laan and Robins (2003) focus
on longitudinal causal modeling.

PREVALENCE

Unlike incidence measures, which focus on new events or changes in health states, prevalence
focuses on existing states. Prevalence of a state at a point in time may be defined as the proportion
of a population in that state at that time; thus prevalence of a disease is the proportion of the
population with the disease at the specified time. The terms point prevalence, prevalence proportion,
and prevalence rate are sometimes used as synonyms. Prevalence generalizes to health states with
multiple levels. For example, in considering cardiovascular health we could examine the prevalence
of different levels of diastolic and systolic resting blood pressure; that is, we could examine the
entire blood-pressure distribution, not just prevalence of being above certain clinical cutpoints.

The prevalence pool is the subset of the population in the given state. A person who dies with
or from the state (e.g., from the disease under consideration) is removed from the prevalence pool;
consequently, death decreases prevalence. People may also exit the prevalence pool by recovering
from the state or emigrating from the population. Diseases with high incidence rates may have low
prevalence if they are rapidly fatal or quickly cured. Conversely, diseases with very low incidence
rates may have substantial prevalence if they are nonfatal but incurable.

USE OF PREVALENCE IN ETIOLOGIC RESEARCH

Seldom is prevalence of direct interest in etiologic applications of epidemiologic research. Because
prevalence reflects both the incidence rate and the duration of disease, studies of prevalence or studies
based on prevalent cases yield associations that reflect both the determinants of survival with disease
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and the causes of disease. The study of prevalence can be misleading in the paradoxical situation in
which better survival from a disease and therefore a higher prevalence follow from the action of pre-
ventive agents that mitigate the disease once it occurs. In such a situation, the preventive agent may
be positively associated with the prevalence of disease and so be misconstrued as a causative agent.

Nevertheless, for at least one class of diseases, namely, congenital malformations, prevalence is
the measure usually employed. The proportion of babies born with some malformation is a preval-
ence proportion, not an incidence rate. The incidence of malformations refers to the occurrence of
the malformations among the susceptible populations of embryos. Many malformations lead to early
embryonic or fetal death that is classified, if recognized, as a miscarriage and not as a birth, whether
malformed or not. Thus, malformed babies at birth represent only those fetuses who survived long
enough with their malformations to be recorded as births. The frequency of such infants among all
births is indeed a prevalence measure, the reference point in time being the moment of birth. The
measure classifies the population of newborns as to their disease status, malformed or not, at the
time of birth. This example illustrates that the reference time for prevalence need not be a point in
calendar time; it can be a point on another time scale, such as age or time since treatment.

To study causes, it would be more useful to measure the incidence than the prevalence of con-
genital malformations. Unfortunately, it is seldom possible to measure the incidence rate of mal-
formations, because the population at risk—young embryos—is difficult to ascertain, and learning
of the occurrence and timing of the malformations among the embryos is equally problematic.
Consequently, in this area of research, incident cases are not usually studied, and most investigators
settle for the theoretically less desirable but much more practical study of prevalence at birth.

Prevalence is sometimes used to measure the occurrence of degenerative diseases with no clear
moment of onset. It is also used in seroprevalence studies of the incidence of infection, especially
when the infection has a long asymptomatic (silent) phase that can only be detected by serum testing.
Human immunodeficiency virus (HIV) infection is a prime example (Brookmeyer and Gail, 1994).
Here, incidence of infection may be back-calculated from incidence of symptom onset (acquired
immune deficiency syndrome, or AIDS) and prevalence of infection using assumptions and data
about the duration of the asymptomatic phase. Of course, in epidemiologic applications outside of
etiologic research, such as planning for health resources and facilities, prevalence may be a more
relevant measure than incidence.

PREVALENCE, INCIDENCE, AND MEAN DURATION

Often, the study of prevalence in place of incidence is rationalized on the basis of the simple relation
between the two measures that obtains under certain very special conditions. We will examine these
conditions carefully, with the objective of explaining why they rarely if ever provide a secure basis
for studying prevalence as a proxy for incidence.

Recall that a stationary population has an equal number of people entering and exiting during
any unit of time. Suppose that both the population at risk and the prevalence pool are stationary and
that everyone is either at risk or has the disease. Then the number of people entering the prevalence
pool in any time period will be balanced by the number exiting from it:

Inflow (to prevalence pool) = outflow (from prevalence pool)

People can enter the prevalence pool from the nondiseased population and by immigration from
another population while diseased. Suppose there is no immigration into or emigration from the
prevalence pool, so that no one enters or leaves the pool except by disease onset, death, or recovery.
If the size of the population is N and the size of the prevalence pool is P , then the size of the
population at risk that feeds the prevalence pool will be N − P . Also, during any time interval of
length �t , the number of people who enter the prevalence pool will be

I (N − P)�t

where I is the incidence rate, and the outflow from the prevalence pool will be

I ′P�t

where I ′ represents the incidence rate of exiting from the prevalence pool, that is, the number who
exit divided by the person-time experience of those in the prevalence pool. Therefore, in the absence
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of migration, the reciprocal of I ′ will equal the mean duration of the disease, D, which is the mean
time until death or recovery. It follows that

Inflow = I (N − P)�t = outflow = (1/D)P�t

which yields

P

N − P
= I · D

P/(N − P) is the ratio of diseased to nondiseased people in the population or, equivalently,
the ratio of the prevalence proportion to the nondiseased proportion. (We could call those who are
nondiseased healthy except that we mean they do not have a specific illness, which does not imply
an absence of all illness.)

The ratio P/(N − P) is called the prevalence odds; it is the ratio of the proportion of a population
that has a disease to the proportion that does not have the disease. As shown above, the prevalence
odds equals the incidence rate times the mean duration of illness. If the prevalence is small, say
<0.1, then

Prevalence proportion ≈ I · D

because the prevalence proportion will approximate the prevalence odds for small values of preva-
lence. Under the assumption of stationarity and no migration in or out of the prevalence pool
(Freeman and Hutchison, 1980),

Prevalence proportion = I · D

1 + I · D

which can be obtained from the above expression for the prevalence odds, P/(N − P).
Like the incidence proportion, the prevalence proportion is dimensionless, with a range of 0 to 1.

The above equations are in accord with these requirements, because in each of them the incidence
rate, with a dimensionality of the reciprocal of time, is multiplied by the mean duration of illness,
which has the dimensionality of time, giving a dimensionless product. Furthermore, the product
I · D has the range of 0 to infinity, which corresponds to the range of prevalence odds, whereas the
expression

I · D

1 + I · D

is always in the range 0 to 1, corresponding to the range of a proportion.
Unfortunately, the above formulas have limited practical utility because of the no-migration

assumption and because they do not apply to age-specific prevalence (Miettinen, 1976a). If we
consider the prevalence pool of, say, diabetics who are 60 to 64 years of age, we can see that this pool
experiences considerable immigration from younger diabetics aging into the pool, and considerable
emigration from members aging out of the pool. More generally, because of the very strong relation
of age to most diseases, we almost always need to consider age-specific subpopulations when
studying patterns of occurrence. Under such conditions, proper analysis requires more elaborate
formulas that give prevalence as a function of age-specific incidence, duration, and other population
parameters (Preston, 1987; Manton and Stallard, 1988; Keiding, 1991; Alho, 1992).

AVERAGE AGE AT EVENT

Life expectancy is usually taken to refer to the mean age at death of a cohort or a closed population
defined by a cohort, such as all persons born in a particular year. As such, life expectancy can
only unfold over a time interval from cohort inception until the death of the final surviving cohort
member (which may be more than a century). In contrast, average age at death usually refers to the
average age of persons dying in a particular narrow time interval. For example, average age at death
among people living in Vietnam as of 2010 represents experiences of persons born from roughly
1900 all the way up to 2010. It is heavily influenced by the size of the population in years that
contribute to the calculation and by changes in life expectancy across the birth cohorts contributing
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to it. Thus, like prevalence, it is a cross-sectional (single-time point) attribute of a population, and
the population may be open.

Had the population been in steady state for over a century and continued that way for another
century or more, the life expectancy of those born today might resemble the average age at death
today. The reality in many locales, however, is that the number of births per year increased dramat-
ically over the 20th century, and thus the proportion in younger age groups increased. That change
alone pulled the average age at death downward as it became more weighted by the increased
number of deaths from younger age groups. Changes in actual life expectancy would exert other
effects, possibly in the opposite direction. The net consequence is that the average age at death can
differ considerably from life expectancy in any year.

These same forces and other similar forces also affect the average age of occurrence of other
events, such as the occurrence of a particular disease. Comparisons among such cross-sectional
averages mix the forces that affect the rate of disease occurrence with demographic changes that
affect the age structure of the population. Such comparisons are therefore inherently biased as
estimates of causal associations.

STANDARDIZATION

The notion of standardization is central to many analytic techniques in epidemiology, including
techniques for control of confounding (Chapters 4 and 15) and for summarization of occurrence
and effects (Chapters 20 and 21). Thus, standardized rates and proportions will arise at several points
in this book, where they will be described in more detail. Standardization of occurrence measures
is nothing more than weighted averaging of those measures. Proper use of the idea nonetheless
requires careful attention to issues of causal ordering, which we will return to in later discussions.
We also note that the term standardization has an entirely different definition in some branches of
statistics, where it means re-expressing quantities in standard deviation units, a practice that can
lead to severe distortions of effect estimates (Greenland et al., 1986, 1991; see Chapter 33).

To illustrate the basic idea of standardization, suppose we are given a distribution of person-
time specific to a series of variables, for example, the person-years at risk experienced within age
categories 50 to 59 years, 60 to 69 years, and 70 to 74 years, for men and women in Quebec in 2000.
Let T1, T2, . . . , T6 be the distribution of person-years in the six age–sex categories in this example.
Suppose also that we are given the six age–sex specific incidence rates I1, I2, . . . , I6 corresponding
to the age–sex specific strata. From this distribution and set of rates, we can compute a weighted
average of the rates with weights from the distribution,

Is = I1T1 + · · · + I6T6

T1 + · · · + T6

=

6∑
k=1

Ik Tk

6∑
k=1

Tk

The numerator of Is may be recognized as the number of cases one would see in a population that
had the person-time distribution T1, T2, . . . , T6 and these stratum-specific rates. The denominator
of Is is the total person-time in such a population. Therefore, Is is the rate one would see in a
population with distribution T1, T2, . . . , T6 and specific rates I1, I2, . . . , I6.

Is is traditionally called a standardized rate, and T1, T2, . . . , T6 is called the standard distribution
on which Is is based. Is represents the overall rate that would be observed in a population whose
person-time follows the standard distribution and whose specific rates are I1, I2, . . . , I6.

The standardization process can also be conducted with incidence or prevalence proportions.
Suppose, for example, we have a distribution N1, N2, . . . , N6 of persons rather than person-time at
risk and a corresponding set of stratum-specific incidence proportions R1, R2, . . . , R6. From this
distribution and set of proportions, we can compute the weighted average risk

Rs = R1 N1 + · · · + R6 N6

N1 + · · · + N6

=

6∑
k=1

Rk Nk

6∑
k=1

Nk
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which is a standardized risk based on the standard distribution N1, N2, . . . , N6. Standardization
can also be applied using other measures (such as mean incidence times or mean blood pressures)
in place of the rates or proportions.

Because the rates that apply to a population can affect the person-time distribution, the standard-
ized rate is not necessarily the rate that would describe what would happen to a population with the
standard distribution T1, . . . , T6 if the specific rates I1, I2, . . . , I6 were applied to it. An analogous
discrepancy can arise for standardized odds. This problem can distort inferences based on compar-
ing standardized rates and odds, and will be discussed further in the next chapter. The problem does
not arise when considering standardized risks because the initial distribution N1, . . . , N6 cannot be
affected by the subsequent risks R1, . . . , R6.
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Suppose we wish to estimate the effect of an exposure on the occurrence of a disease. For reasons
explained below, we cannot observe or even estimate this effect directly. Instead, we observe an
association between the exposure and disease among study subjects, which estimates a population
association. The observed association will be a poor substitute for the desired effect if it is a poor
estimate of the population association, or if the population association is not itself close to the
effect of interest. Chapters 9 through 12 address specific problems that arise in connecting observed
associations to effects. The present chapter defines effects and associations in populations, and the
basic concepts needed to connect them.

MEASURES OF EFFECT

Epidemiologists use the term effect in two senses. In one sense, any case of a given disease may be
the effect of a given cause. Effect is used in this way to mean the endpoint of a causal mechanism,
identifying the type of outcome that a cause produces. For example, we may say that human
immunodeficiency virus (HIV) infection is an effect of sharing needles for drug use. This use of the

51
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term effect merely identifies HIV infection as one consequence of the activity of sharing needles.
Other effects of the exposure, such as hepatitis B infection, are also possible.

In a more epidemiologic sense, an effect of a factor is a change in a population characteristic
that is caused by the factor being at one level versus another. The population characteristics of
traditional focus in epidemiology are disease-frequency measures, as described in Chapter 3. If
disease frequency is measured in terms of incidence rate or proportion, then the effect is the change
in incidence rate or proportion brought about by a particular factor. We might say that for drug
users, the effect of sharing needles compared with not sharing needles is to increase the average risk
of HIV infection from 0.001 in 1 year to 0.01 in 1 year. Although it is customary to use the definite
article in referring to this second type of effect (the effect of sharing needles), it is not meant to
imply that this is the only effect of sharing needles. An increase in risk for hepatitis or other diseases
remains possible, and the increase in risk of HIV infection may differ across populations and time.

In epidemiology, it is customary to refer to potential causal characteristics as exposures. Thus, ex-
posure can refer to a behavior (e.g., needle sharing), a treatment or other intervention (e.g., an educa-
tional program about hazards of needle sharing), a trait (e.g., a genotype), an exposure in the ordinary
sense (e.g., an injection of contaminated blood), or even a disease (e.g., diabetes as a cause of death).

Population effects are most commonly expressed as effects on incidence rates or incidence
proportions, but other measures based on incidence times or prevalences may also be used. Epi-
demiologic analyses that focus on survival time until death or recurrence of disease are examples
of analyses that measure effects on incidence times. Absolute effect measures are differences in oc-
currence measures, and relative effect measures are ratios of occurrence measures. Other measures
divide absolute effects by an occurrence measure.

For simplicity, our basic descriptions will be of effects in cohorts, which are groups of individuals.
As mentioned in Chapter 3, each cohort defines a closed population starting at the time the group
is defined. Among the measures we will consider, only those involving incidence rates generalize
straightforwardly to open populations.

DIFFERENCE MEASURES

Consider a cohort followed over a specific time or age interval—say, from 2000 to 2005 or from
ages 50 to 69 years. If we can imagine the experience of this cohort over the same interval under two
different conditions—say, exposed and unexposed—then we can ask what the incidence rate of any
outcome would be under the two conditions. Thus, we might consider a cohort of smokers and an
exposure that consisted of mailing to each cohort member a brochure of current smoking-cessation
programs in the cohort member’s county of residence. We could then ask what the lung cancer
incidence rate would be in this cohort if we carry out this treatment and what it would be if we do not
carry out this treatment. These treatment histories represent mutually exclusive alternative histories
for the cohort. The two incidence rates thus represent alternative potential outcomes for the cohort.

The difference between the two rates we call the absolute effect of our mailing program on the
incidence rate, or the causal rate difference. To be brief, we might refer to the causal rate difference
as the excess rate due to the program (which would be negative if the program prevented some
lung cancers).

In a parallel manner, we might ask what the incidence proportion would be if we carry out this
treatment and what it would be if we do not carry out this treatment. The difference between the
two proportions we call the absolute effect of our treatment on the incidence proportion, or causal
risk difference, or excess risk for short. Also in a parallel fashion, the difference in the average lung
cancer–free years of life lived over the interval under the treated and untreated conditions is another
absolute effect of treatment.

To illustrate the above measures in symbolic form, suppose we have a cohort of size N defined
at the start of a fixed time interval and that anyone alive without the disease is at risk of the disease.
Further, suppose that if every member of the cohort is exposed throughout the interval, A1 cases
will occur and the total time at risk will be T1, but if no member of the same cohort is exposed
during the interval, A0 cases will occur and the total time at risk will be T0. Then the causal rate
difference will be

A1

T1

− A0

T0
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the causal risk difference will be

A1

N
− A0

N

and the causal difference in average disease-free time will be

T1

N
− T0

N
= T1 − T0

N

When the outcome is death, the negative of the average time difference, T0/N − T1/N, is often
called the years of life lost as a result of exposure. Each of these measures compares disease
occurrence by taking differences, so they are called difference measures, or absolute measures.
They are expressed in units of their component measures: cases per unit person-time for the rate
difference, cases per person starting follow-up for the risk difference, and time units for the average-
time difference.

RATIO MEASURES

Most commonly, effect measures are calculated by taking ratios. Examples of such ratio (or relative)
measures are the causal rate ratio,

A1/T1

A0/T0

= I1

I0

where Ij = Aj/Tj is the incidence rate under condition j (1 = exposed, 0 = unexposed); the causal
risk ratio,

A1/N

A0/N
= A1

A0

= R1

R0

where Ri = Aj /N is the incidence proportion (average risk) under condition j ; and the causal ratio
of disease-free time,

T1/N

T0/N
= T1

T0

In contrast to difference measures, ratio measures are dimensionless because the units cancel
out upon division.

The rate ratio and risk ratio are often called relative risks. Sometimes this term is applied to odds
ratios as well, although we would discourage such usage. “Relative risk” may be the most common
term in epidemiology. Its usage is so broad that one must often look closely at the details of study
design and analysis to discern which ratio measure is being estimated or discussed.

The three ratio measures are related by the formula

R1

R0

= R1 N

R0 N
= A1

A0

= I1T1

I0T0

which follows from the fact that the number of cases equals the disease rate times the time at risk.
A fourth relative measure can be constructed from the incidence odds. If we write S1 = 1 − R1 and
S0 = 1 − R0, the causal odds ratio is then

R1/S1

R0/S0

= A1/(N − A1)

A0/(N − A0)

RELATIVE EXCESS MEASURES

When a relative risk is greater than 1, reflecting an average effect that is causal, it is sometimes
expressed as an excess relative risk, which may refer to the excess causal rate ratio,

IR − 1 = I1

I0

− 1 = I1 − I0

I0
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where IR = I1/I0 is the causal rate ratio. Similarly, the excess causal risk ratio is

RR − 1 = R1

R0

− 1 = R1 − R0

R0

where RR = R1/R0 is the causal risk ratio. These formulas show how excess relative risks equal
the rate or risk difference divided by (relative to) the unexposed rate or risk (I0 or R0), and so are
sometimes called relative difference or relative excess measures.

More often, the excess rate is expressed relative to I1, as

I1 − I0

I1

= I1/I0 − 1

I1/I0

= IR − 1

IR
= 1 − 1

IR

where IR = I1/I0 is the causal rate ratio. Similarly, the excess risk is often expressed relative
to R1, as

R1 − R0

R1

= R1/R0 − 1

R1/R0

= RR − 1

RR
= 1 − 1

RR

where RR = R1/R0 is the causal risk ratio. In both these measures the excess rate or risk attributable
to exposure is expressed as a fraction of the total rate or risk under exposure; hence, (IR − 1)/IR
may be called the rate fraction and (RR − 1)/RR the risk fraction. Both these measures are often
called attributable fractions.

A number of other measures are also referred to as attributable fractions. Especially, the rate and
risk fractions just defined are often confused with a distinct quantity called the etiologic fraction,
which cannot be expressed as a simple function of the rates or risks. We will discuss these problems
in detail later, where yet another relative excess measure will arise.

Relative excess measures were intended for use with exposures that have a net causal effect.
They become negative and hence difficult to interpret with a net preventive effect. One expedient
modification for dealing with preventive exposures is to interchange the exposed and unexposed
quantities in the measures. The measures that arise from interchanging I1 with I0 and R1 with R0 in
attributable fractions have been called preventable fractions and are easily interpreted. For example,
(R0 − R1)/R0 = 1 − R1/R0 = 1 − RR is the fraction of the risk under nonexposure that could be
prevented by exposure. In vaccine studies this measure is also known as the vaccine efficacy.

DEPENDENCE OF THE NULL STATE ON THE EFFECT MEASURE

If the occurrence measures being compared do not vary with exposure, the measure of effect will
equal 0 if it is a difference or relative difference measure and will equal 1 if it is a ratio measure.
In this case we say that the effect is null and that the exposure has no effect on the occurrence
measure. This null state does not depend on the way in which the occurrence measure is compared
(difference, ratio, etc.), but it may depend on the occurrence measure. For example, the 150-year
average risk of death is always 100%, and so the 150-year causal risk difference is always 0 for any
known exposure; nothing has been discovered that prevents death by age 150. Nonetheless, many
exposures (such as tobacco use) will change the risk of death by age 60 relative to nonexposure, and
so will have a nonzero 60-year causal risk difference; those exposures will also change the death
rate and the average death time.

THE THEORETICAL NATURE OF EFFECT MEASURES

The definitions of effect measures given above are sometimes called counterfactual or potential-
outcome definitions. Such definitions may be traced back to the writings of Hume in the 18th century.
Although they received little explication until the latter third of the 20th century, they were being
used by scientists (including epidemiologists and statisticians) long before; see Lewis (1973), Rubin
(1990a), Greenland (2000a, 2004a), and Greenland and Morgenstern (2001) for early references.

They are called counterfactual measures because at least one of the two conditions in the defi-
nitions of the effect measures must be contrary to fact. The cohort may be exposed or treated (e.g.,
every member sent a mailing) or untreated (no one sent a mailing). If the cohort is treated, then the
untreated condition will be counterfactual, and if it is untreated, then the treated condition will be
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counterfactual. Both conditions may be counterfactual, as would occur if only part of the cohort is
sent the mailing. The outcomes of the conditions (e.g., I1 and I0, or R1 and R0, or T1/N and T0/N )
remain potentialities until a treatment is applied to the cohort (Rubin, 1974, 1990a; Greenland,
2000a, 2004a).

One important feature of counterfactually defined effect measures is that they involve two distinct
conditions: an index condition, which usually involves some exposure or treatment, and a reference
condition—such as no treatment—against which this exposure or treatment will be evaluated. To
ask for the effect of exposure is meaningless without reference to some other condition. In the
preceding example, the effect of one mailing is defined only in reference to no mailing. We could
have asked instead about the effect of one mailing relative to four mailings; this comparison is very
different from one versus no mailing.

Another important feature of effect measures is that they are never observed separately from
some component measure of occurrence. If in the mailing example we send the entire population
one mailing, the rate difference comparing the outcome to no mailing, I1 − I0, is not observed
directly; we observe only I1, which is the sum of that effect measure and the (counterfactual) rate
under no mailing, I0: I1 = (I1 − I0) + I0. Therefore the researcher faces the problem of separating
the effect measure I1 − I0 from the unexposed rate I0 upon having observed only their sum, I1.

DEFINING EXPOSURE IN EFFECT MEASURES

Because we have defined effects with reference to a single cohort under two distinct conditions, one
must be able to describe meaningfully each condition for the one cohort (Rubin, 1990a; Greenland,
2002a, 2005a; Hernán, 2005; Maldonado and Greenland, 2002). Consider, for example, the effect
of sex (male vs. female) on heart disease. For these words to have content, we must be able to
imagine a cohort of men, their heart disease incidence, and what their incidence would have been
had the very same men been women instead. The apparent ludicrousness of this demand reveals the
vague meaning of sex effect. To reach a reasonable level of scientific precision, sex effect could be
replaced by more precise mechanistic concepts, such as hormonal effects, discrimination effects,
and effects of other sex-associated factors, which explain the association of sex with incidence.
With such concepts, we can imagine what it means for the men to have their exposure changed:
hormone treatments, sex-change operations, and so on.

The preceding considerations underscore the need to define the index and reference conditions
in substantial detail to aid interpretability of results. For example, in a study of smoking effects,
a detailed definition of the index condition for a current smoker might account for frequency of
smoking (cigarettes per day), the duration of smoking (years), and the age at which smoking began.
Similarly, definition of the absence of exposure for the reference condition—with regard to dose,
duration, and induction period—ought to receive as much attention as the definition of the presence
of exposure. While it is common to define all persons who fail to satisfy the current-smoker definition
as unexposed, such a definition might dilute the effect by including former and occasional smokers
in the reference group.

Whether the definitions of the index and reference conditions are sufficiently precise depends
in part on the outcome under study. For example, a study of the effect of current smoking on
lung cancer occurrence would set minimums for the frequency, duration, and induction period of
cigarette smoking to define the exposed group and would set maximums (perhaps zero) for these
same characteristics to define the unexposed group. Former smokers would not meet either the index
or reference conditions. In contrast, a study of the effect of current smoking on the occurrence of
injuries in a residential fire might allow any current smoking habit to define the exposed group
and any current nonsmoking habit to define the unexposed group, even if the latter group includes
former smokers (presuming that ex-smokers and never-smokers have the same household fire risk).

EFFECTS MEDIATED BY COMPETING RISKS

As discussed in Chapter 3, the presence of competing risks leads to several complications when
interpreting incidence measures. The complexities carry over to interpreting effect measures. In
particular, the interpretation of simple comparisons of incidence proportions must be tempered by
the fact that they reflect exposure effects on competing risks as well as individual occurrences of
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the study disease. One consequence of these effects is that exposure can affect time at risk for the
study disease. To take an extreme example, suppose that exposure was an antismoking treatment
and the “disease” was being hit by a drunk driver. If the antismoking treatment was even moderately
effective in reducing tobacco use, it would likely lead to a reduction in deaths, thus leading to more
time alive, which would increase the opportunity to be struck by a drunk driver. The result would
be more hits from drunk drivers for those exposed and hence higher risk under exposure.

This elevated risk of getting hit by a drunk driver is a genuine effect of the antismoking treat-
ment, albeit an indirect and unintended one. The same sort of effect arises from any exposure
that changes time at risk of other outcomes. Thus, smoking can reduce the average risk of acci-
dental death simply by reducing the time at risk for an accident. Similarly, and quite apart from
any direct biologic effect, smoking could reduce the average risk of Alzheimer’s disease, Parkin-
son’s disease, and other diseases of the elderly, simply by reducing the chance of living long
enough to get these diseases. This indirect effect occurs even if we look at a narrow time inter-
val, such as 2-year risk rather than lifetime risk: Even within a 2-year interval, smoking could
cause some deaths and thus reduce the population time at risk, leading to fewer cases of these
diseases.

Although the effects just described are real exposure effects, investigators typically want to
remove or adjust away these effects and focus on more direct effects of exposure on disease. Rate
measures account for the changes in time at risk produced by exposure in a simple fashion, by
measuring number of disease events relative to time at risk. Indeed, if there is no trend in the disease
rate over time and the only effect of the exposure on disease occurrence is to alter time at risk, the
rate ratio and difference will be null (1 and 0, respectively). If, however, there are time trends in
disease, then even rate measures will incorporate some exposure effects on time at risk; when this
happens, time-stratified rate comparisons (survival analysis; see Chapter 16) are needed to account
for these effects.

Typical risk estimates attempt to “adjust” for competing risks, using methods that estimate the
counterfactual risk of the study disease if the competing risks were removed. As mentioned in
Chapter 3, one objection to these methods is that the counterfactual condition is not clear: How
are the competing risks to be removed? The incidence of the study disease would depend heavily
on the answer. The problems here parallel problems of defining exposure in effect measures: How
is the exposure to be changed to nonexposure, or vice versa? Most methods make the implausible
assumptions that the exposure could be completely removed without affecting the rate of competing
risks, and that competing risks could be removed without affecting the rate of the study disease.
These assumptions are rarely if ever justified. A more general approach treats the study disease
and the competing risks as parts of a multivariate or multidimensional outcome. This approach
can reduce the dependence on implausible assumptions; it also responds to the argument that an
exposure should not be considered in isolation, especially when effects of exposure and competing
risks entail very different costs and benefits (Greenland, 2002a, 2005a).

Owing to the complexities that ensue from taking a more general approach, we will not delve
further into issues of competing risks. Nonetheless, readers should be alert to the problems that can
arise when the exposure may have strong effects on diseases other than the one under study.

ASSOCIATION AND CONFOUNDING

Because the single population in an effect definition can only be observed under one of the two
conditions in the definition (and sometimes neither), we face a special problem in effect estimation:
We must predict accurately the magnitude of disease occurrence under conditions that did not or will
not in fact occur. In other words, we must predict certain outcomes under what are or will become
counterfactual conditions. For example, we may observe I1 = 50 deaths per 100,000 person-years
in a target cohort of smokers over a 10-year follow-up and ask what rate reduction would have been
achieved had these smokers quit at the start of follow-up. Here, we observe I1, and need I0 (the rate
that would have occurred under complete smoking cessation) to complete I1 − I0.

Because I0 is not observed, we must predict what it would have been. To do so, we would need
to refer to data on the outcomes of nonexposed persons, such as data from a cohort that was not
exposed. From these data, we would construct a prediction of I0. Neither these data nor the prediction
derived from them is part of the effect measure; they are only ingredients in our estimation process.
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We use them to construct a measure of association that we hope will equal the effect measure of
interest.

MEASURES OF ASSOCIATION

Consider a situation in which we contrast a measure of occurrence in two different populations. For
example, we could take the ratio of cancer incidence rates among males and females in Canada. This
cancer rate ratio comparing the male and female subpopulations is not an effect measure because its
two component rates refer to different groups of people. In this situation, we say that the rate ratio
is a measure of association; in this example, it is a measure of the association of sex with cancer
incidence in Canada.

As another example, we could contrast the incidence rate of dental caries in children within
a community in the year before and in the third year after the introduction of fluoridation of the
water supply. If we take the difference of the rates in these before and after periods, this difference
is not an effect measure because its two component rates refer to two different subpopulations,
one before fluoridation and one after. There may be considerable or even complete overlap among
the children present in the before and after periods. Nonetheless, the experiences compared refer
to different time periods, so we say that the rate difference is a measure of association. In this
example, it is a measure of the association between fluoridation and dental caries incidence in the
community.

We can summarize the distinction between measures of effect and measures of association as
follows: A measure of effect compares what would happen to one population under two possible
but distinct life courses or conditions, of which at most only one can occur (e.g., a ban on all
tobacco advertising vs. a ban on television advertising only). It is a theoretical (some would say
“metaphysical”) concept insofar as it is logically impossible to observe the population under both
conditions, and hence it is logically impossible to see directly the size of the effect (Maldonado
and Greenland, 2002). In contrast, a measure of association compares what happens in two distinct
populations, although the two distinct populations may correspond to one population in different
time periods. Subject to physical and social limitations, we can observe both populations and so
can directly observe an association.

CONFOUNDING

Given the observable nature of association measures, it is tempting to substitute them for effect
measures (perhaps after making some adjustments). It is even more natural to give causal expla-
nations for observed associations in terms of obvious differences between the populations being
compared. In the preceding example of dental caries, it is tempting to ascribe a decline in incidence
following fluoridation to the act of fluoridation itself. Let us analyze in detail how such an inference
translates into measures of effect and association.

The effect we wish to measure is that which fluoridation had on the rate. To measure this
effect, we must contrast the actual rate under fluoridation with the rate that would have occurred
in the same time period had fluoridation not been introduced. We cannot observe the latter rate, for
fluoridation was introduced, and so the nonfluoridation rate in that time period is counterfactual.
Thus, we substitute in its place, or exchange, the rate in the time period before fluoridation. In
doing so, we substitute a measure of association (the rate difference before and after fluoridation)
for what we are really interested in: the difference between the rate with fluoridation and what that
rate would have been without fluoridation in the one postfluoridation time period.

This substitution will be misleading to the extent that the rate before fluoridation does not equal—
so should not be exchanged with—the counterfactual rate (i.e., the rate that would have occurred in
the postfluoridation period if fluoridation had not been introduced). If the two are not equal, then
the measure of association will not equal the measure of effect for which it is substituted. In such
a circumstance, we say that the measure of association is confounded (for our desired measure of
effect). Other ways of expressing the same idea is that the before–after rate difference is confounded
for the causal rate difference or that confounding is present in the before–after difference (Greenland
and Robins, 1986; Greenland et al., 1999b; Greenland and Morgenstern, 2001). On the other hand,
if the rate before fluoridation does equal the postfluoridation counterfactual rate, then the measure
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of association equals our desired measure of effect, and we say that the before–after difference is
unconfounded or that no confounding is present in this difference.

The preceding definitions apply to ratios as well as differences. Because ratios and differences
contrast the same underlying quantities, confounding of a ratio measure implies confounding of
the corresponding difference measure and vice versa. If the value substituted for the counterfactual
rate or risk does not equal that rate or risk, both the ratio and difference will be confounded.

The above definitions also extend immediately to situations in which the contrasted quantities
are average risks, incidence times, odds, or prevalences. For example, one might wish to estimate
the effect of fluoridation on caries prevalence 3 years after fluoridation began. Here, the needed but
unobserved counterfactual is what the caries prevalence would have been 3 years after fluoridation
began, had fluoridation not in fact begun. We might substitute for that counterfactual the prevalence
of caries at the time fluoridation began. It is possible (though perhaps rare in practice) for one
effect measure to be confounded but not another, if the two effect measures derive from different
underlying measures of disease frequency (Greenland et al., 1999b). For example, there could in
theory be confounding of the rate ratio but not the risk ratio, or of the 5-year risk ratio but not the
10-year risk ratio.

One point of confusion in the literature is the failure to recognize that incidence odds are
risk-based measures, and hence incidence odds ratios will be confounded under exactly the same
circumstances as risk ratios (Miettinen and Cook, 1981; Greenland and Robins, 1986; Greenland,
1987a; Greenland et al., 1999b). The confusion arises because of the peculiarity that the causal odds
ratio for a whole cohort can be closer to the null than any stratum-specific causal odds ratio. Such
noncollapsibility of the causal odds ratio is sometimes confused with confounding, even though it
has nothing to do with the latter phenomenon; it will be discussed further in a later section.

CONFOUNDERS

Consider again the fluoridation example. Suppose that within the year after fluoridation began,
dental-hygiene education programs were implemented in some of the schools in the community.
If these programs were effective, then (other things being equal) some reduction in caries inci-
dence would have occurred as a consequence of the programs. Thus, even if fluoridation had not
begun, the caries incidence would have declined in the postfluoridation time period. In other words,
the programs alone would have caused the counterfactual rate in our effect measure to be
lower than the prefluoridation rate that substitutes for it. As a result, the measure of association
(which is the before–after rate difference) must be larger than the desired measure of effect
(the causal rate difference). In this situation, we say the programs confounded the measure
of association or that the program effects are confounded with the fluoridation effect in the mea-
sure of association. We also say that the programs are confounders of the association and that the
association is confounded by the programs.

Confounders are factors (exposures, interventions, treatments, etc.) that explain or produce all
or part of the difference between the measure of association and the measure of effect that would
be obtained with a counterfactual ideal. In the present example, the programs explain why the
before–after association overstates the fluoridation effect: The before–after difference or ratio in-
cludes the effects of programs as well as the effects of fluoridation. For a factor to explain this
discrepancy and thus confound, the factor must affect or at least predict the risk or rate in the
unexposed (reference) group, and not be affected by the exposure or the disease. In the preced-
ing example, we assumed that the presence of the dental hygiene programs in the years after
fluoridation entirely accounted for the discrepancy between the prefluoridation rate and the (coun-
terfactual) rate that would have occurred 3 years after fluoridation, if fluoridation had not been
introduced.

A large portion of epidemiologic methods are concerned with avoiding or adjusting (controlling)
for confounding. Such methods inevitably rely on the gathering and proper use of confounder
measurements. We will return repeatedly to this topic. For now, we simply note that the most
fundamental adjustment methods rely on the notion of stratification on confounders. If we make
our comparisons within appropriate levels of a confounder, that confounder cannot confound the
comparisons. For example, we could limit our before–after fluoridation comparisons to schools in
states in which no dental hygiene program was introduced. In such schools, program introductions
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could not have had an effect (because no program was present), so effects of programs in those
schools could not explain any decline following fluoridation.

A SIMPLE MODEL THAT DISTINGUISHES CAUSATION
FROM ASSOCIATION

We can clarify the difference between measures of effect and measures of association, as well as the
role of confounding and confounders, by examining risk measures under a simple potential-outcome
model for a cohort of individuals (Greenland and Robins, 1986).

Table 4–1 presents the composition of two cohorts, cohort 1 and cohort 0. Suppose that cohort 1
is uniformly exposed to some agent of interest, such as one mailing of smoking-cessation material,
and that cohort 0 is not exposed, that is, receives no such mailing. Individuals in the cohorts are
classified by their outcomes when exposed and when unexposed:

1. Type 1 or “doomed” persons, for whom exposure is irrelevant because disease occurs with or
without exposure

2. Type 2 or “causal” persons, for whom disease occurs if and only if they are exposed
3. Type 3 or “preventive” persons, for whom disease occurs if and only if they are unexposed
4. Type 4 or “immune” persons, for whom exposure is again irrelevant because disease does not

occur, with or without exposure

Among the exposed, only type 1 and type 2 persons get the disease, so the incidence proportion
in cohort 1 is p1 + p2. If, however, exposure had been absent from this cohort, only type 1 and type
3 persons would have gotten the disease, so the incidence proportion would have been p1 + p3.
Therefore, the absolute change in the incidence proportion in cohort 1 caused by exposure, or the
causal risk difference, is (p1 + p2) − (p1 + p3) = p2 − p3, while the relative change, or causal
risk ratio, is (p1 + p2)/(p1 + p3). Similarly, the incidence odds is (p1 + p2)/[1 − (p1 + p2)] =
(p1 + p2)/(p3 + p4) but would have been (p1 + p3)/[1 − (p1 + p3)] = (p1 + p3)/(p2 + p4) if
exposure had been absent; hence the relative change in the incidence odds (the causal odds ratio) is

(p1 + p2)/(p3 + p4)

(p1 + p3)/(p2 + p4)

Equal numbers of causal types (type 2) and preventive types (type 3) in cohort 1 correspond
to p2 = p3. Equality of p2 and p3 implies that the causal risk difference p2 − p3 will be 0, and
the causal risk and odds ratios will be 1. Thus, these values of the causal effect measures do not
correspond to no effect, but instead correspond to a balance between causal and preventive effects.

ˆ

ˆ

ˆ

ˆ
T A B L E 4 – 1

An Elementary Model of Causal Types and Their Distribution in
Two Distinct Cohorts

Proportion of types in
Responsea under Cohort 1 Cohort 0

Type Exposure Nonexposure Description (Exposed) (Unexposed)

1 1 1 Doomed p1 q1

2 1 0 Exposure is causal p2 q2

3 0 1 Exposure is preventive p3 q3

4 0 0 Immune p4 q4

a1, gets disease; 0, does not get disease.
Source: Reprinted from Greenland S, Robins JM. Identifiability, exchangeability and epidemiological confounding. Int J Epidemiol.

1986;15:413–419.
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The hypothesis of no effect at all is sometimes called the sharp null hypothesis, and here corresponds
to p2 = p3 = 0. The sharp null is a special case of the usual null hypothesis that the risk difference
is zero or the risk ratio is 1, which corresponds to causal and preventive effects balancing one
another to produce p2 = p3. Only if we can be sure that one direction of effect does not happen
(either p2 = 0 or p3 = 0) can we say that a risk difference of 0 or a risk ratio of 1 corresponds to
no effect; otherwise we can only say that those values correspond to no net effect. More generally,
population effect measures correspond only to net effects: A risk difference represents only the net
change in the average risk produced by the exposure.

Among the unexposed, only type 1 and type 3 persons get the disease, so the incidence proportion
in cohort 0 is q1 + q3 and the incidence odds is (q1 + q3)/(q2 + q4). Therefore, the difference and
ratio of the incidence proportions in the cohorts are (p1 + p2) − (q1 + q3) and (p1 + p2)/(q1 + q3),
while the ratio of incidence odds is

(p1 + p2)/(p3 + p4)

(q1 + q3)/(q2 + q4)

These measures compare two different cohorts, the exposed and the unexposed, and so are
associational rather than causal measures. They equal their causal counterparts only if q1 + q3 =
p1 + p3, that is, only if the incidence proportion for cohort 0 equals what cohort 1 would have
experienced if exposure were absent. If q1 + q3 �= p1 + p3, then the quantity q1 + q3 is not a valid
substitute for p1 + p3. In that case, the associational risk difference, risk ratio, and odds ratio are
confounded by the discrepancy between q1 + q3 and p1 + p3, so we say that confounding is present
in the risk comparisons.

Confounding corresponds to the difference between the desired counterfactual quantity p1 + p3

and the observed substitute q1 + q3. This difference arises from differences between the exposed and
unexposed cohorts with respect to other factors that affect disease risk, the confounders. Control
of confounding would be achieved if we could stratify the cohorts on a sufficient set of these
confounders, or on factors associated with them, to produce strata within which the counterfactual
and its substitute were equal, i.e., within which no confounding occurs.

Confounding depends on the cohort for which we are estimating effects. Suppose we are in-
terested in the relative effect that exposure would have on risk in cohort 0. This effect would
be measured by the causal ratio for cohort 0: (q1 + q2)/(q1 + q3). Because cohort 0 is not ex-
posed, we do not observe q1 + q2, the average risk it would have if exposed; that is, q1 + q2

is counterfactual. If we substitute the actual average risk from cohort 1, p1 + p2, for this coun-
terfactual average risk in cohort 0, we obtain the same associational risk ratio used before:
(p1 + p2)/(q1 + q3). Even if this associational ratio equals the causal risk ratio for cohort 1
(which occurs only if p1 + p3 = q1 + q3), it will not equal the causal risk ratio for cohort 0 un-
less p1 + p2 = q1 + q2. To see this, suppose p1 = p2 = p3 = q1 = q3 = 0.1 and q2 = 0.3. Then
p1 + p3 = q1 + q3 = 0.2, but p1 + p2 = 0.2 �= q1 + q2 = 0.4. Thus, there is no confounding in
using the associational ratio (p1 + p2)/(q1 + q3) = 0.2/0.2 = 1 for the causal ratio in cohort 1,
(p1 + p2)/(p1 + p3) = 0.2/0.2 = 1, yet there is confounding in using the associational ratio for
the causal ratio in cohort 0, for the latter is (q1 + q2)/(q1 + q3) = 0.4/0.2 = 2. This example shows
that the presence of confounding can depend on the population chosen as the target of inference (the
target population), as well as on the population chosen to provide a substitute for a counterfactual
quantity in the target (the reference population). It may also depend on the time period in question.

Causal diagrams (graphical models) provide visual models for distinguishing causation from
association, and thus for defining and detecting confounding (Pearl, 1995, 2000; Greenland et al.,
1999a; Chapter 12). Potential-outcome models and graphical models can be linked via a third class
of causal models, called structural equations, and lead to the same operational criteria for detection
and control of confounding (Greenland et al., 1999a; Pearl, 2000; Greenland and Brumback, 2002).

RELATIONS AMONG MEASURES OF EFFECT

RELATIONS AMONG RELATIVE RISKS

Recall from Chapter 3 that in a closed population over an interval of length �t , the incidence
proportion R, the rate I , and the odds R/S (where S = 1 − R) will be related by R ≈ I�t ≈ R/S
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if the size of the population at risk declines only slightly over the interval (which implies that R must
be small and S = 1 − R ≈ 1). Suppose now we contrast the experience of the population over the
interval under two conditions, exposure and no exposure, and that the size of the population at risk
would decline only slightly under either condition. Then, the preceding approximation implies that

R1

R0

≈ I1/�t

I0/�t
= I1

I0

≈ R1/S1

R0/S0

where S1 = 1 − R1 and S0 = 1 − R0. In other words, the ratios of the risks, rates, and odds will
be approximately equal under suitable conditions. The condition that both R1 and R0 are small is
sufficient to ensure that both S1 and S0 are close to 1, in which case the odds ratio will approximate
the risk ratio (Cornfield, 1951). For the rate ratio to approximate the risk ratio, we must have
R1/R0 ≈ I1T1/I0T0 ≈ I1/I0, which requires that exposure only negligibly affects the person-time
at risk (i.e., that T1 ≈ T0). Both conditions are satisfied if the size of the population at risk would
decline by no more than a few percent over the interval, regardless of exposure status.

The order of the three ratios (risk, rate, and odds) in relation to the null is predictable. When
R1 > R0, we have S1 = 1 − R1 < 1 − R0 = S0, so that S0/S1 > 1 and

1 <
R1

R0

<
R1

R0

S0

S1

= R1/S1

R0/S0

On the other hand, when R1 < R0, we have S1 > S0, so that S0/S1 < 1 and

1 >
R1

R0

>
R1

R0

S0

S1

= R1/S1

R0/S0

Thus, when exposure affects average risk, the risk ratio will be closer to the null (1) than the
odds ratio.

Now suppose that, as we would ordinarily expect, the effect of exposure on the person-time
at risk is in the opposite direction of its effect on risk, so that T1 < T0 if R1 > R0 and T1 > T0 if
R1 < R0. Then, if R1 > R0, we have T1/T0 < 1 and so

1 <
R1

R0

= I1T1

I0T0

<
I1

I0

and if R1 < R0, we have T1/T0 > 1 and so

1 >
R1

R0

= I1T1

I0T0

>
I1

I0

Thus, when exposure affects average risk, we would ordinarily expect the risk ratio to be closer
to the null than the rate ratio. Under further conditions, the rate ratio will be closer to the null than
the odds ratio (Greenland and Thomas, 1982). Thus, we would usually expect the risk ratio to be
nearest to the null, the odds ratio to be furthest from the null, and the rate ratio to fall between the
risk ratio and the odds ratio.

EFFECT-MEASURE MODIFICATION (HETEROGENEITY)

Suppose we divide our population into two or more categories or strata. In each stratum, we can
calculate an effect measure of our choosing. These stratum-specific effect measures may or may not
equal one another. Rarely would we have any reason to suppose that they would equal one another.
If they are not equal, we say that the effect measure is heterogeneous or modified or varies across
strata. If they are equal, we say that the measure is homogeneous, constant, or uniform across strata.

A major point about effect-measure modification is that, if effects are present, it will usually
be the case that no more than one of the effect measures discussed above will be uniform across
strata. In fact, if the exposure has any effect on an occurrence measure, at most one of the ratio or
difference measures of effect can be uniform across strata. As an example, suppose that among men
the average risk would be 0.50 if exposure was present but 0.20 if exposure was absent, whereas
among women the average risk would be 0.10 if exposure was present but 0.04 if exposure was
absent. Then the causal risk difference for men is 0.50 − 0.20 = 0.30, five times the difference
for women of 0.10 − 0.04 = 0.06. In contrast, for both men and women, the causal risk ratio is
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0.50/0.20 = 0.10/0.04 = 2.5. Now suppose we change this example to make the risk differences
uniform, say, by making the exposed male risk 0.26 instead of 0.50. Then, both risk differences
would be 0.06, but the male risk ratio would be 0.26/0.20 = 1.3, much less than the female risk
ratio of 2.5. Finally, if we change the example by making the exposed male risk 0.32 instead of
0.50, the male risk difference would be 0.12, double the female risk difference of 0.06, but the male
ratio would be 1.6, less than two thirds the female ratio of 2.5. Thus, the presence, direction, and
size of effect-measure modification can be dependent on the choice of measure (Berkson, 1958;
Brumback and Berg, 2008).

RELATION OF STRATUM-SPECIFIC MEASURES TO
OVERALL MEASURES

The relation of stratum-specific effect measures to the effect measure for an entire cohort can be
subtle. For causal risk differences and ratios, the measure for the entire cohort must fall somewhere
in the midst of the stratum-specific measures. For the odds ratio, however, the causal odds ratio
for the entire cohort can be closer to the null than any of the causal odds ratios for the strata
(Miettinen and Cook, 1981; Greenland, 1987a; Geenland et al., 1999b). This bizarre phenomenon
is sometimes referred to as noncollapsibility of the causal odds ratio. The phenomenon has led some
authors to criticize the odds ratio as a measure of effect, except as an approximation to risk and
rate ratios (Miettinen and Cook, 1981; Greenland, 1987a; Greenland et al., 1999b; Greenland and
Morgenstern, 2001).

As an example, suppose we have a cohort that is 50% men, and among men the average risk
would be 0.50 if exposure was present but 0.20 if exposure was absent, whereas among women
the average risk would be 0.08 if exposure was present but 0.02 if exposure was absent. Then the
causal odds ratios are

0.50/(1 − 0.50)

0.20/(1 − 0.20)
= 4.0 for men and

0.08/(1 − 0.08)

0.02/(1 − 0.02)
= 4.3 for women

For the total cohort, the average risk if exposure was present would be just the average of the male
and female average risks, 0.5(0.50) + 0.5(0.08) = 0.29; similarly, the average risk exposure was
absent would be 0.5(0.20) + 0.5(0.02) = 0.11. Thus, the causal odds ratio for the total cohort is

0.29/(1 − 0.29)

0.11/(1 − 0.11)
= 3.3

which is less than both the male and female odds ratios. This noncollapsibility can occur because, un-
like the risk difference and ratio, the causal odds ratio for the total cohort is not a weighted average of
the stratum-specific causal odds ratios (Greenland, 1987a). It should not be confused with the pheno-
menon of confounding (Greenland et al., 1999b), which was discussed earlier. Causal rate ratios
and rate differences can also display noncollapsibility without confounding (Greenland, 1996a).
In particular, the causal rate ratio for a total cohort can be closer to the null than all of the
stratum-specific causal rate ratios. To show this, we extend the preceding example as follows.
Suppose that the risk period in the example was the year from January 1, 2000, to December 31,
2000, that all persons falling ill would do so on January 1, and that no one else was removed from
risk during the year. Then the rates would be proportional to the odds, because none of the cases
would contribute a meaningful amount of person-time. As a result, the causal rate ratios for men and
women would be 4.0 and 4.3, whereas the causal rate ratio for the total cohort would be only 3.3.

As discussed earlier, risk, rate, and odds ratios will approximate one another if the population at
risk would decline only slightly in size over the risk period, regardless of exposure. If this condition
holds in all strata, the rate ratio and odds ratio will approximate the risk ratio in the strata, and hence
both measures will be approximately collapsible when the risk ratio is collapsible.

ATTRIBUTABLE FRACTIONS

One often sees measures that attempt to assess the public health impact of an exposure by measuring
its contribution to the total incidence under exposure. For convenience, we will refer to the entire
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family of such fractional measures as attributable fractions. The terms attributable risk percent or
just attributable risk are often used as synonyms, although “attributable risk” is also used to denote
the risk difference (MacMahon and Pugh, 1970; Szklo and Nieto, 2000; Koepsell and Weiss, 2003).
Such fractions may be divided into two broad classes, which we shall term excess fractions and
etiologic fractions.

A fundamental difficulty is that the two classes are usually confused, yet excess fractions can be
much smaller than etiologic fractions, even if the disease is rare or other reasonable conditions are
met. Another difficulty is that etiologic fractions are not estimable from epidemiologic studies alone,
even if those studies are perfectly valid: Assumptions about the underlying biologic mechanism
must be introduced to estimate etiologic fractions, and the estimates will be very sensitive to those
assumptions.

EXCESS FRACTIONS

One family of attributable fractions is based on recalculating an incidence difference as a proportion
or fraction of the total incidence under exposure. One such measure is (A1 − A0)/A1, the excess
caseload due to exposure, which has been called the excess fraction (Greenland and Robins, 1988).
In a cohort, the fraction of the exposed incidence proportion R1 = A1/N that is attributable to
exposure is exactly equal to the excess fraction:

R1 − R0

R1

= A1/N − A0/N

A1/N
= A1 − A0

A1

where R0 = A0/N is what the incidence proportion would be with no exposure. Comparing this
formula to the earlier formula for the risk fraction (R1 − R0)/R1 = (RR − 1)/RR, we see that in a
cohort the excess caseload and the risk fraction are equal.

The rate fraction (I1 − I0)/I1 = (IR − 1)/IR is often mistakenly equated with the excess fraction
(A1 − A0)/A1. To see that the two are not equal, let T1 and T0 represent the total time at risk that
would be experienced by the cohort under exposure and nonexposure during the interval of interest.
The rate fraction then equals

A1/T1 − A0/T0

A1/T1

If exposure has any effect and the disease removes people from further risk (as when the disease
is irreversible), then T1 will be less than T0. Thus, the last expression cannot equal the excess fraction
(A1 − A0)/A1 because T1 �= T0, although if the exposure effect on total time at risk is small, T1 will
be close to T0 and so the rate fraction will approximate the excess fraction.

ETIOLOGIC FRACTIONS

Suppose that all sufficient causes of a particular disease were divided into two sets, those that contain
exposure and those that do not, and that the exposure is never preventive. This situation is summa-
rized in Figure 4–1. C and C ′ may represent many different combinations of causal components.
Each of the two sets of sufficient causes represents a theoretically large variety of causal mechanisms
for disease, perhaps as many as one distinct mechanism for every case that occurs. Disease can
occur either with or without E , the exposure of interest. The causal mechanisms are grouped in the
diagram according to whether or not they contain the exposure. We say that exposure can cause dis-
ease if exposure will cause disease under at least some set of conditions C . We say that the exposure
E caused disease if a sufficient cause that contains E is the first sufficient cause to be completed.

At first, it seems a simple matter to ask what fraction of cases was caused by exposure. We
will call this fraction the etiologic fraction. Because we can estimate the total number of cases,

FIGURE 4–1 ● Two types of sufficient causes of a disease.
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we could estimate the etiologic fraction if we could estimate the number of cases that were caused
by E . Unfortunately, this number is not estimable from ordinary incidence data, because the ob-
servation of an exposed case does not reveal the mechanism that caused the case. In particular,
people who have the exposure can develop the disease from a mechanism that does not include
the exposure. For example, a smoker may develop lung cancer through some mechanism that
does not involve smoking (e.g., one involving asbestos or radiation exposure, with no contribution
from smoking). For such lung cancer cases, smoking was incidental; it did not contribute to the
cancer causation. There is no general way to tell which factors are responsible for a given case.
Therefore, exposed cases include some cases of disease caused by the exposure, if the exposure is
indeed a cause, and some cases of disease that occur through mechanisms that do not involve the
exposure.

The observed incidence rate or proportion among the exposed reflects the incidence of cases in
both sets of sufficient causes represented in Figure 4–1. The incidence of sufficient causes containing
E could be found by subtracting the incidence of the sufficient causes that lack E . The latter incidence
cannot be estimated if we cannot distinguish cases for which exposure played an etiologic role from
cases for which exposure was irrelevant (Greenland and Robins, 1988; Greenland, 1999a). Thus,
if I1 is the incidence rate of disease in a population when exposure is present and I0 is the rate in
that population when exposure is absent, the rate difference I1 − I0 does not necessarily equal the
rate of disease arising from sufficient causes with the exposure as a component cause, and need not
even be close to that rate.

To see the source of this difficulty, imagine a cohort in which, for every member, the causal
complement of exposure, C , will be completed before the sufficient cause C ′ is completed. If the
cohort is unexposed, every case of disease must be attributable to the cause C ′. But if the cohort
is exposed from start of follow-up, every case of disease occurs when C is completed (E being
already present), so every case of disease must be attributable to the sufficient cause containing
C and E . Thus, the incidence rate of cases caused by exposure is I1 when exposure is present,
not I1 − I0, and thus the fraction of cases caused by exposure is 1, or 100%, even though the rate
fraction (I1 − I0)/I1 may be very small.

Excess fractions and rate fractions are often incorrectly interpreted as etiologic fractions. The
preceding example shows that these fractions can be far less than the etiologic fraction: In the
example, the rate fraction will be close to 0 if the rate difference is small relative to I1, but
the etiologic fraction will remain 1, regardless of A0 or I0. Robins and Greenland (1989a, 1989b)
and Beyea and Greenland (1999) give conditions under which the rate fraction and etiologic frac-
tion are equal, but these conditions are not testable with epidemiologic data and rarely have any
supporting evidence or genuine plausibility (Robins and Greenland, 1989a, 1989b). One condition
sometimes cited is that exposure acts independently of background causes, which will be examined
further in a later section. Without such assumptions, however, the most we can say is that the excess
fraction provides a lower bound on the etiologic fraction.

One condition that is irrelevant yet is sometimes given is that the disease is rare. To see that this
condition is irrelevant, note that the above example made no use of the absolute frequency of the
disease; the excess and rate fractions could still be near 0 even if the etiologic fraction was near 1.
Disease rarity only brings the case and rate fractions closer to one another, in the same way as it
brings the risk and rate ratios close together (assuming exposure does not have a large effect on the
person-time); it does not bring the rate fraction close to the etiologic fraction.

PROBABILITY OF CAUSATION AND SUSCEPTIBILITY TO EXPOSURE

To further illustrate the difference between excess and etiologic fractions, suppose that at a given
time in a cohort, a fraction Fof completions of C ′ was preceded by completions of C. Again, no case
can be attributable to exposure if the cohort is unexposed. But if the cohort is exposed, a fraction
Fof the A0 cases that would have occurred without exposure will now be caused by exposure. In
addition, there may be cases caused by exposure for whom disease would never have occurred. Let
A0 and A1 be the numbers of cases that would occur over a given interval when exposure is absent
and present, respectively. A fraction 1 − F of A0 cases would be unaffected by exposure; for these
cases, completions of C ′ precede completions of C . The product A0(1 − F) is the number of cases
unaffected by exposure. Subtracting this product from A1 gives A1 − A0(1 − F) for the number
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of cases in which exposure played an etiologic role. The fraction of A1 cases attributable to C
(a sufficient cause with exposure) is thus

A1 − A0(1 − F)

A1

= 1 − (1 − F)/RR [4–1]

If we randomly sample one case, this etiologic fraction formula equals the probability that
exposure caused that case, or the probability of causation for the case. Although it is of great biologic
and legal interest, this probability cannot be epidemiologically estimated if nothing is known about
the fraction F (Greenland and Robins, 1988, 2000; Greenland, 1999a; Beyea and Greenland, 1999;
Robins and Greenland, 1989a, 1989b). This problem is discussed further in Chapter 16 under the
topic of attributable-fraction estimation.

For preventive exposures, let F now be the fraction of exposed cases A1 for whom disease
would have been caused by a mechanism requiring absence of exposure (i.e., nonexposure, or not-
E), had exposure been absent. Then the product A1(1 − F) is the number of cases unaffected by
exposure; subtracting this product from A0 gives A0 − A1(1 − F) for the number of cases in which
exposure would play a preventive role. The fraction of the A0 unexposed cases that were caused by
nonexposure (i.e., attributable to a sufficient cause with nonexposure) is thus

[A0 − A1(1 − F)]/A0 = 1 − RR(1 − F)

As with the etiologic fraction, this fraction cannot be estimated if nothing is known about F.
Returning to a causal exposure, it is commonly assumed, often without statement or supporting

evidence, that completion of C and C ′ occur independently in the cohort, so that the probability
of “susceptibility” to exposure, Pr(C), can be derived by the ordinary laws of probability for
independent events. Now Pr(C ′) = A0/N = R0; thus, under independence,

Pr(C or C ′) = A1/N = R1

= Pr(C) + Pr(C ′) − Pr(C)Pr(C ′)

= Pr(C) + R0 − Pr(C)R0 [4–2]

Rearrangement yields

Pr(C) = A1/N − A0/N

1 − A0/N
= R1 − R0

1 − R0

[4–3]

The right-hand expression is the causal risk difference divided by the proportion surviving under
nonexposure. Hence the equation can be rewritten

Pr(C) = (R1 − R0)/S0 = (S0 − S1)/S0 = 1 − S1/S0

This measure was first derived by Sheps (1958), who referred to it as the relative difference;
it was later proposed as an index of susceptibility to exposure effects by Khoury et al. (1989a)
based on the independence assumption. But as with the independence condition, one cannot ver-
ify equation 4–3 from epidemiologic data alone, and it is rarely if ever plausible on biologic
grounds.

A NOTE ON TERMINOLOGY

More than with other concepts, there is profoundly inconsistent and confusing terminology across
the literature on attributable fractions. Levin (1953) used the term attributable proportion for his
original measure of population disease impact, which in our terms is an excess fraction or risk
fraction. Many epidemiologic texts thereafter used the term attributable risk to refer to the risk
difference R1 − R0 and called Levin’s measure an attributable risk percent (e.g., MacMahon and
Pugh, 1970; Koepsell and Weiss, 2003). By the 1970s, however, portions of the biostatistics literature
began calling Levin’s measure an attributable risk (e.g., Walter, 1976; Breslow and Day, 1980), and
unfortunately, part of the epidemiologic literature followed suit. Some epidemiologists struggled to
keep the distinction by introducing the term attributable fraction for Levin’s concept (Ouellet et al.,
1979; Deubner et al., 1980); others adopted the term etiologic fraction for the same concept and thus
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confused it with the fraction of cases caused by exposure. The term attributable risk continues to be
used for completely different concepts, such as the risk difference, the risk fraction, the rate fraction,
and the etiologic fraction. Because of this confusion we recommend that the term attributable risk
be avoided entirely, and that the term etiologic fraction not be used for relative excess measures.

GENERALIZING DEFINITIONS OF EFFECT

For convenience, we have given the above definitions for the situation in which we can imagine the
cohort of interest subject to either of two distinct conditions, treatments, interventions, or exposure
levels over (or at the start of) the time interval of interest. We ordinarily think of these exposures
as applying separately to each cohort member. But to study public health interventions, we must
generalize our concept of exposure to general populations, and allow variation in exposure effects
across individuals and subgroups. We will henceforth consider the “exposure” of a population as
referring to the pattern of exposure (or treatment) among the individuals in the population. That
is, we will consider the subscripts 1 and 0 to denote different distributions of exposure across the
population. With this view, effect measures refer to comparisons of outcome distributions under
different pairs of exposure patterns across the population of interest (Greenland, 2002a; Maldonado
and Greenland, 2002).

To illustrate this general epidemiologic concept of effect, suppose our population comprises just
three members at the start of a 5-year interval, each of whom smokes one pack of cigarettes a day
at the start of the interval. Let us give these people identifying numbers, 1, 2, and 3, respectively.
Suppose we are concerned with the effect of different distributions (patterns) of mailed antismoking
literature on the mortality experience of this population during the interval. One possible exposure
pattern is

Person 1: Mailing at start of interval and quarterly thereafter
Person 2: Mailing at start of interval and yearly thereafter
Person 3: No mailing

Call this pattern 0, or the reference pattern. Another possible exposure pattern is

Person 1: No mailing
Person 2: Mailing at start of interval and yearly thereafter
Person 3: Mailing at start of interval and quarterly thereafter

Call this exposure pattern 1, or the index pattern; it differs from pattern 0 only in that the treatment
of persons 1 and 3 are interchanged.

Under both patterns, one third of the population receives yearly mailings, one third receives
quarterly mailings, and one third receives no mailing. Yet it is perfectly reasonable that pattern 0
may produce a different outcome from pattern 1. For example, suppose person 1 would simply
discard the mailings unopened, and so under either pattern would continue smoking and die at year
4 of a smoking-related cancer. Person 2 receives the same treatment under either pattern; suppose
that under either pattern person 2 dies at year 1 of a myocardial infarction. But suppose person 3
would continue smoking under pattern 0, until at year 3 she dies from a smoking-related stroke,
whereas under pattern 1 she would read the mailings, successfully quit smoking by year 2, and as
a consequence suffer no stroke or other cause of death before the end of follow-up.

The total deaths and time lived under exposure pattern 0 would be A0 = 3 (all die) and T0 =
4 + 1 + 3 = 8 years, whereas the total deaths and time lived under exposure pattern 1 would be
A1 = 2 and T1 = 4 + 1 + 5 = 10 years. The effects of pattern 1 versus pattern 0 on this population
would thus be to decrease the incidence rate from 3/8 = 0.38 per year to 2/10 = 0.20 per year,
a causal rate difference of 0.20 − 0.38 = −0.18 per year and a causal rate ratio of 0.20/0.38 =
0.53; to decrease the incidence proportion from 3/3 = 1.00 to 2/3 = 0.67, a causal risk difference
of 0.67 − 1.00 = −0.33 and a causal risk ratio of 0.67/1.00 = 0.67; and to increase the total years
of life lived from 8 to 10. The fraction of deaths under pattern 0 that is preventable by pattern 1 is
(3 − 2)/3 = 0.33, which equals the fraction of deaths under pattern 0 for whom change to pattern
1 would have etiologic relevance. In contrast, the fraction of the rate “prevented” (removed) by
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pattern 1 relative to pattern 0 is (0.38 − 0.20)/0.38 = 1 − 0.53 = 0.47 and represents only the rate
reduction under pattern 1; it does not equal an etiologic fraction.

This example illustrates two key points that epidemiologists should bear in mind when inter-
preting effect measures:

1. Effects on incidence rates are not the same as effects on incidence proportions (average risks).
Common terminology, such as “relative risk,” invites confusion among effect measures. Unless
the outcome is uncommon for all exposure patterns under study during the interval of interest,
the type of relative risk must be kept distinct. In the preceding example, the rate ratio was 0.53,
whereas the risk ratio was 0.67. Likewise, the type of attributable fraction must be kept distinct.
In the preceding example, the preventable fraction of deaths was 0.33, whereas the preventable
fraction of the rate was 0.47.

2. Not all individuals respond alike to exposures or treatments. Therefore, it is not always sufficient
to distinguish exposure patterns by simple summaries, such as “80% exposed” versus “20%
exposed.” In the preceding example, both exposure patterns had one third of the population
given quarterly mailings and one third given yearly mailings, so the patterns were indistinguish-
able based on exposure prevalence. The effects were produced entirely by the differences in
responsiveness of the persons treated.

POPULATION-ATTRIBUTABLE FRACTIONS AND
IMPACT FRACTIONS

One often sees population-attributable risk percent or population-attributable fraction defined as
the reduction in incidence that would be achieved if the population had been entirely unexposed,
compared with its current (actual) exposure pattern. This concept, due to Levin (1953, who called
it an attributable proportion), is a special case of the definition of attributable fraction based on
exposure pattern. In particular, it is a comparison of the incidence (either rate or number of cases,
which must be kept distinct) under the observed pattern of exposure with the incidence under a
counterfactual pattern in which exposure or treatment is entirely absent from the population.

Complete removal of an exposure is often very unrealistic, as with smoking and with air pollution;
even with legal restrictions and cessation or clean-up programs, many people will continue to
expose themselves or to be exposed. A measure that allows for these realities is the impact fraction
(Morgenstern and Bursic, 1982), which is a comparison of incidence under the observed exposure
pattern with incidence under a counterfactual pattern in which exposure is only partially removed
from the population. Again, this is a special case of our definition of attributable fraction based on
exposure pattern.

STANDARDIZED MEASURES OF ASSOCIATION AND EFFECT

Consider again the concept of standardization as introduced at the end of Chapter 3. Given a
standard distribution T1, . . . , TK of person-times across K categories or strata defined by one
or more variables and a schedule I1, . . . , IK of incidence rates in those categories, we have the
standardized rate

Is =

K∑
k=1

Tk Ik

K∑
k=1

Tk

which is the average of the Ik weighted by the Tk . If I1
∗, . . . , IK

∗ represents another schedule of
rates for the same categories, and

Is
∗ =

K∑
k=1

Tk Ik
∗

K∑
k=1

Tk
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is the standardized rate for this schedule, then

IRs = Is

Is
∗ =

∑
Tk Ik

/ ∑
Tk Ik

∗

is called a standardized rate ratio. The defining feature of this ratio is that the same standard
distribution is used to weight the numerator and denominator rate. Similarly,

IDs =
∑

Tk Ik −
∑

Tk Ik
∗ =

∑
Tk(Ik − Ik

∗)

is called the standardized rate difference; note that it is not only a difference of standardized rates,
but is also a weighted average of the stratum-specific rate differences Ik − Ik

∗ using the same
weights as were used for the standardization (the Tk).

Suppose that I1, . . . , IK represent the rates observed or predicted for strata of a given target
population if it is exposed to some cause or preventive of disease, T1, . . . , TK are the observed
person-time in strata of that population, and I1

∗, . . . , IK
∗ represent the rates predicted or observed

for strata of the population if it is not exposed. The presumption is then that IRs = Is/Is
∗ and

IDs are the effects of exposure on this population, comparing the overall (crude) rates that would
occur under distinct exposure conditions. This interpretation assumes, however, that the relative
distribution of person-times would be unaffected by exposure.

If I1
∗, . . . , IK

∗ represent counterfactual rather than actual rates, say, because the population was
actually exposed, then Is

∗ need not represent the overall rate that would occur in the population
if exposure were removed. For instance, the change in rates from the Ik to the Ik

∗ could shift the
person-time distribution T1, . . . , TK to T1

∗, . . . , TK
∗. In addition, as discussed earlier, the exposure

could affect competing risks, and this effect could also shift the person-time distribution. If this
shift is large, the standardized rate ratio and difference will not properly reflect the actual effect of
exposure on the rate of disease (Greenland, 1996a).

There are a few special conditions under which the effect of exposure on person-time will not
affect the standardized rate ratio. If the stratum-specific ratios Ik /Ik

∗ are constant across categories,
the standardized rate ratio will equal this constant stratum-specific ratio. If the exposure has only a
small effect on person-time, then, regardless of the person-time distribution used as the standard,
the difference between a standardized ratio and the actual effect will also be small. In general,
however, one should be alert to the fact that a special assumption is needed to allow one to interpret
a standardized rate ratio as an effect measure, even if there is no methodologic problem with the
observations. Analogously, the standardized rate difference will not be an effect measure except
when exposure does not affect the person-time distribution or when other special conditions exist,
such as constant rate differences Ik − Ik

∗ across categories.
Incidence proportions have denominators N1, . . . , NK that are not affected by changing rates

or competing risks. Thus, if these denominators are used to create standardized risk ratios and
differences, the resulting measures may be interpreted as effect measures without the need for the
special assumptions required to interpret standardized rate ratios and differences.

STANDARDIZED MORBIDITY RATIOS (SMRs)

When the distribution of exposed person-time provides the standard, the standardized rate ratio
takes on a simplified form. Suppose T1, . . . , TK are the exposed person time, A1, . . . , AK are the
number of cases in the exposed, I1, . . . , IK are the rates in the exposed, and I1

∗, . . . , IK
∗ are the

rates that would have occurred in the exposed had they not been exposed. Then in each stratum we
have Tk Ik = Ak , and so the standardized rate ratio becomes∑

Tk Ik

/ ∑
Tk Ik

∗ =
∑

Ak

/ ∑
Tk Ik

∗

The numerator of this ratio is just the total number of exposed cases occurring in the population.
The denominator is the number of cases that would be expected to occur in the absence of exposure
if the exposure did not affect the distribution of person-time. This ratio of observed to expected
cases is called the standardized morbidity ratio (SMR), standardized incidence ratio (SIR), or, when
death is the outcome, the standardized mortality ratio. When incidence proportions are used in place
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of incidence rates, the same sort of simplification occurs upon taking the exposed distribution of
persons as the standard: The standardized risk ratio reduces to a ratio of observed to expected cases.

Many occupational and environmental studies that examine populations of exposed workers
attempt to estimate SMRs by using age–sex–race categories as strata, and then use age–sex–race
specific rates from the general population in place of the desired counterfactual rates I1

∗, . . . , IK
∗.

A major problem with this practice is that of residual confounding. There will usually be many
other differences between the exposed population and the general population besides their age, sex,
and race distributions (differences in smoking, health care, etc.), and some of these differences will
confound the resulting standardized ratio. This problem is an example of the more common problem
of residual confounding in observational epidemiology, to which we will return in later chapters.

SMRs estimated across exposure categories or different populations are sometimes compared
directly with one another to assess a dose–response trend, for example. Such comparisons are usually
not fully standardized because each exposure category’s SMR is weighted by the distribution of
that category’s person-time or persons, and these weights are not necessarily comparable across the
exposure categories. The result is residual confounding by the variables used to create the strata as
well as by unmeasured variables (Yule, 1934; Breslow and Day, 1987; Greenland, 1987e). There
are, however, several circumstances under which this difference in weights will not lead to important
confounding (beyond the residual confounding problem discussed earlier).

One circumstance is when the compared populations differ little in their distribution of person-
time across strata (e.g., when they have similar age–sex–race distributions). Another circumstance is
when the stratification factors have little effect on the outcome under study (which is unusual; age and
sex are strongly related to most outcomes). Yet another circumstance is when the stratum-specific
ratios are nearly constant across strata (no modification of the ratio by the standardization variables)
(Breslow and Day, 1987). Although none of these circumstances may hold exactly, the first and last
are often together roughly approximated; when this is so, the lack of mutual standardization among
compared SMRs will lead to little distortion. Attention can then turn to the many other validity
problems that plague SMR studies, such as residual confounding, missing data, and measurement
error (see Chapters 9 and 19). If, however, one cannot be confident that the bias due to comparing
SMRs directly is small, estimates should be based on a single common standard applied to the
risks in all groups, or on a regression model that accounts for the differences among the compared
populations and the effects of exposure on person-time (Chapter 20).

PREVALENCE RATIOS

In Chapter 3 we showed that the crude prevalence odds, PO, equals the crude incidence rate, I ,
times the average disease duration, D, when both the population at risk and the prevalence pool are
stationary and there is no migration in or out of the prevalence pool. Restating this relation sepa-
rately for a single population under exposure and nonexposure, or one exposed and one unexposed
population, we have

PO1 = I1 D1 and PO0 = I0 D0 [4–5]

where the subscripts 1 and 0 refer to exposed and unexposed, respectively. If the average disease
duration is the same regardless of exposure, i.e., if D1 = D0, the crude prevalence odds ratio, POR,
will equal the crude incidence rate ratio IR:

POR = PO1

PO0

= I1

I0

= IR [4–6]

Unfortunately, if exposure affects mortality, it will also alter the age distribution of the population.
Thus, because older people tend to die sooner, exposure will indirectly affect average duration, so
that D1 will not equal D0. In that, case equation 4–6 will not hold exactly, although it may still
hold approximately (Newman, 1988).

OTHER MEASURES

The measures that we have discussed are by no means exhaustive of all those that have been
proposed. Not all proposed measures of effect meet our definition of effect measure—that is, not
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all are a contrast of the outcome of a single population under two different conditions. Examples of
measures that are not effect measures by our definition include correlation coefficients and related
variance-reduction measures (Greenland et al., 1986, 1991). Examples of measures that are effect
measures by our definition, but not discussed in detail here, include expected years of life lost
(Murray et al., 2002), as well as risk and rate advancement periods (Brenner et al., 1993).

Years of life lost, T0/N − T1/N, and the corresponding ratio measure, T0/T1, have some note-
worthy advantages over conventional rate and risk-based effect measures. They are not subject to
the problems of inestimability that arise for etiologic fractions (Robins and Greenland, 1991), nor
are they subject to concerns about exposure effects on time at risk. In fact, they represent the expo-
sure effect on time at risk. They are, however, more difficult to estimate statistically from typical
epidemiologic data, especially when only case-control data (Chapter 8) are available, which may
in part explain their limited popularity thus far (Boshuizen and Greenland, 1997).
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The concept of interaction centers on the idea that the effect of an exposure, compared with a
reference unexposed condition, may depend on the presence of one or more other conditions. A
well-known example concerns the effect of occupational exposure to asbestos dust on lung cancer
risk, which depends on smoking status (Berry and Liddell, 2004). As a hypothetical illustration,
suppose we examine the average 10-year risk of lung cancer in an occupational setting and find
that, among nonsmoking male asbestos workers, this risk is 3/1,000, and the corresponding risk
is 1/1,000 in comparable nonsmoking men who did not work with asbestos. Suppose also that the
risk is 20/1,000 among male asbestos workers who smoked, and it is 10/1,000 in comparable men
who smoked and did not work with asbestos. The risk ratio associating asbestos work with lung
cancer risk is then 3/1 = 3 in nonsmokers, greater than the risk ratio of 20/10 = 2 in smokers. In
contrast, the risk difference is 3 − 1 = 2/1,000 among nonsmokers, less than the risk difference
of 20 − 10 = 10/1,000 among smokers. Thus, when using the ratio measure, it appears that the
association between asbestos exposure and lung cancer risk is greater in nonsmokers than smokers.
When using the difference measure, however, it appears that the association is considerably less for
nonsmokers than for smokers.

The potential scale dependence of an assessment of interaction illustrates the kind of issue
that complicates understanding of the concept. Indeed, the concept of interaction generated much
debate when it first became a focus for epidemiologists, as seen in Rothman (1974, 1976a, 1976b),
Koopman (1977), Kupper and Hogan (1978), Walter and Holford (1978), and Siemiatycki and
Thomas (1981). The ensuing literature identified a number of distinctions and concepts whose
delineation has helped shed light on the earlier disagreements and has pointed the way to further
elaboration of concepts of interaction; for examples, see Blot and Day (1979), Rothman et al. (1980),
Saracci (1980), Koopman (1981), Walker (1981), Miettinen (1982b), Weinberg (1986), Greenland
and Poole (1988), Weed et al. (1988), Thompson (1991), Greenland (1993b), Darroch and Borkent
(1994), Darroch (1997), and VanderWeele and Robins (2007a, 2008a).

71
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In addition to scale dependence, another problem is the ambiguity of the term interaction, which
has been used for a number of distinct statistical, biologic, and public health concepts. Failure
to distinguish between these concepts was responsible for much of the early controversy (Blot
and Day, 1979; Saracci, 1980; Rothman et al., 1980). Once these distinctions are made, there
remains the question of what can be learned about interaction from epidemiologic data (Thompson,
1991).

The present chapter provides definitions and makes distinctions among concepts of interaction.
Chapter 16 describes how stratified analysis methods can be used to study interactions and the
limitations of such methods. We begin by discussing statistical interaction, a concept that refers
to associations, whether causal or not. Statistical interaction is scale-dependent. When no bias is
present, so that observed associations validly estimate causal effects of interest, statistical interaction
corresponds to effect-measure modification. After discussing the relation of statistical interaction
to effect modification, we discuss models for biologic interaction. We show that when effects
are measured by causal risk differences and biologic interaction is defined as modification of
potential-response types, biologic interaction is implied by departures from additivity of effects.
We also show that biologic interaction may be present even if there is additivity of effects, when
there are opposing types of interaction that cancel one another, leaving the net effect additive. We
then contrast this potential-outcome model of biologic interaction to that based on the sufficient-
component cause model introduced in Chapter 2. We conclude with a discussion of public health
interaction.

STATISTICAL INTERACTION AND
EFFECT-MEASURE MODIFICATION

When no bias is present, the definition of interaction that is often used in statistics books and
software programs (particularly for analysis of variance) is logically equivalent to the definition of
effect-measure modification or heterogeneity of effect. It is frequently described as “departure from
additivity of effects on the chosen outcome scale.” Thus, methods for analyzing statistical interac-
tions can be viewed as methods for analyzing effect-measure modification under the assumption
that all bias has been adequately controlled (see Chapter 15).

As seen in the above example of asbestos and smoking effects, the presence or absence of
statistical interaction between two factors X and Z depends on the scale with which one chooses to
measure their association. Suppose that both X and Z have effects, and the risk difference for one
remains constant across levels of the other, so that there is no modification of the risk differences
(i.e., there is homogeneity of the risk differences). If there is no bias (so that associations equal
effects), this state of affairs corresponds to no statistical interaction on the risk-difference scale for
the effect, because the combined effect of X and Z on risk can be computed simply by adding
together the separate risk differences for X and Z . In the example of interaction between asbestos
exposure and smoking, there was effect-measure modification, or statistical interaction, on the
difference scale, because risk added by asbestos exposure was greater among smokers than among
nonsmokers. There was also effect-measure modification, or statistical interaction, between asbestos
and smoking on the risk-ratio scale for the effect, because the amount that asbestos multiplied the
risk was less among smokers than among nonsmokers.

SCALE DEPENDENCE OF EFFECT-MEASURE MODIFICATION

As explained in Chapter 4, if both X and Z have effects and there is no modification (heterogeneity)
of the risk differences for one factor by the other factor, there has to be modification of the risk
ratios. Conversely, if X and Z have effects and there is no modification of the risk ratios, there has
to be modification of the risk differences. Commonly, both the risk differences and risk ratios for
one factor are heterogeneous across categories of the other. In that case, they may be modified in
opposite directions, as seen in the example for asbestos and smoking.

To explain why homogeneity of the effect measure on one scale requires heterogeneity of the
effect measure on the other scale when both factors have effects, we will first examine the case in
which risk differences are homogeneous and risk ratios are heterogeneous. We will then examine
the opposite case.
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ˆ

ˆ

ˆ

ˆ
T A B L E 5 – 1

Notation for Risks with Two Binary(1, 0) Exposure Variables

Z = 1 Z = 0 Risk Difference Risk Ratio

X = 1 R11 R10 R11 − R10 R11/R10

X = 0 R01 R00 R01 − R00 R01/R00

Risk difference R11 − R01 R10 − R00

Risk ratio R11/R01 R10/R00

To begin, write Ri j for the average risk (incidence proportion) when X = i and Z = j , as in
Table 5–1. Suppose the risk difference for X = 1 versus X = 0 when Z = 0 (which is R10 − R00)
equals the risk difference for X = 1 versus X = 0 when Z = 1 (which is R11− R01):

R11 − R01 = R10 − R00 [5–1]

By subtracting R00 from each side and rearranging, we can rewrite this equation as

R11 − R00 = (R10 − R00) + (R01 − R00) [5–2]

This equation shows that the risk difference for changing the exposure status from X = Z = 0 to
X = Z = 1 can be found by simply adding the risk difference for X = 1 versus X = 0 when Z =
0 to the risk difference for Z = 1 versus Z = 0 when X = 0. If we divide both sides of equation
5–1 by R00 (the risk when X = 0, Z = 0), we get

R11

R00

− R01

R00

= R10

R00

− 1 [5–3]

By subtracting 1 from each side and rearranging, we can rewrite this equation in terms of the excess
risk ratios:

R11

R00

− 1 =
(

R10

R00

− 1

)
+

(
R01

R00

− 1

)
[5–4]

If both X and Z have effects, the additivity of the excess risk ratio in equation 5–4 implies that
R11/R01 �= R10/R00; that is, the risk ratio for X = 1 versus X = 0 when Z = 1(R11/R01) cannot
equal the risk ratio for X = 1 versus X = 0 when Z = 0(R10/R00). We reach this conclusion because
the equality

R11/R01 = R10/R00 [5–5]

implies multiplicativity of the risk ratios:

R11/R00 = (R11/R01)(R01/R00) = (R10/R00)(R01/R00) [5–6]

which contradicts equation 5–4 unless R10/R00 = 1 or R01/R00 = 1. Neither of these risk ratios
can equal 1, however, when X and Z both affect risk.

To show that homogeneity of the risk ratio requires heterogeneity of the risk difference, begin
by assuming no modification of the risk ratio, so that equation 5–5 does hold. Then equation 5–6
must also hold, and we can take the logarithm of both sides to get the equation

ln(R11/R00) = ln(R10/R00) + ln(R01/R00) [5–7]

or

ln(R11) − ln(R00) = ln(R10) − ln(R00) + ln(R01) − ln(R00) [5–8]

Equation 5–7 shows that the log risk ratio for changing the exposure status from X = Z = 0 to
X = Z = 1 can be found by simply adding the log risk ratio for X = 1 versus X = 0 when Z = 0 to
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the log risk ratio for Z = 1 versus Z = 0 when X = 0. Thus, homogeneity (no modification) of the
risk ratio corresponds to additivity (no statistical interaction) on the log-risk scale for the outcome
(equation 5–8). Combined effects are simply the sum of effects on the log-risk scale. Furthermore,
if both X and Z have nonzero effects and these effects are additive on the log-risk scale, the effects
cannot be additive on the risk scale. That is, the absence of statistical interaction on the log-risk
scale (equation 5–7) implies the presence of statistical interaction on the risk-difference scale, if
both factors have effects and there is no bias.

Because the additive log-risk equation 5–7 is equivalent to the multiplicative risk-ratio equation
5–6, log risk-ratio additivity corresponds to risk-ratio multiplicativity. Thus, “no multiplicative
interaction” is often described as “no statistical interaction on the log-risk ratio scale.” Unfortu-
nately, because most epidemiologic statistics are based on multiplicative models, there has devel-
oped a bad habit of dropping the word multiplicative and claiming that there is “no interaction”
whenever one believes that the data are consistent with equation 5–5 or 5–6. Such loose usage
invites confusion with other concepts of interaction. To avoid such confusion, we strongly advise
that one should refer to the scale or measure that one is examining with more precise phrases,
such as “no risk-ratio heterogeneity was evident,” “no risk-difference heterogeneity was evident,”
“no departure from risk-ratio multiplicativity was evident,” or “no departure from risk-difference
additivity was evident,” as appropriate. The term effect modification is also ambiguous, and we
again advise more precise terms such as risk-difference modification or risk-ratio modification, as
appropriate.

Another source of ambiguity is the fact that equations 5–1 through 5–8 can all be rewritten using
a different type of outcome measure, such as rates, odds, prevalences, means, or other measures in
place of risks Ri j . Each outcome measure leads to a different scale for statistical interaction and a
corresponding concept of effect-measure modification and heterogeneity of effect. Thus, when both
factors have effects, absence of statistical interaction on any particular scale necessarily implies
presence of statistical interaction on many other scales.

Consider now relative measures of risk: risk ratios, rate ratios, and odds ratios. If the disease risk
is low at all levels of the study variables (i.e., less than about 0.1), absence of statistical interaction
for one of these ratio measures implies absence of statistical interaction for the other two measures.
For larger risks, however, absence of statistical interaction for one ratio measure implies that there
must be some modification of the other two ratio measures when both factors have effects. For
example, the absence of modification of the odds ratio,

R11/(1 − R11)

R01(1 − R01)
= R10/(1 − R10)

R00/(1 − R00)
[5–9]

is equivalent to no multiplicative interaction on the odds scale. But, if X and Z have effects, then
equation 5–9 implies that there must be modification of the risk ratio, so that equations 5–6
through 5–8 cannot hold unless all the risks are low. In a similar fashion, equation 5–9 also implies
modification of the rate ratio. Parallel results apply for difference measures: If the disease risk
is always low, absence of statistical interaction for one of the risk difference, rate difference, or
odds difference implies absence of statistical interaction for the other two. Conversely, if disease
risk is high, absence of statistical interaction for one difference measure implies that there must be
some modification of the other two difference measures when both factors have effects.

The preceding examples and algebra demonstrate that statistical interaction is a phenomenon
whose presence or absence, as well as magnitude, is usually determined by the scale chosen for
measuring departures from additivity of effects. To avoid ambiguity, one must specify precisely the
scale on which one is measuring such interactions. In doing so, it is undesirable to use a term as
vague as interaction, because more precise phrases can always be substituted by using the equivalent
concept of effect-measure modification or heterogeneity of the effect measure.

BIOLOGIC INTERACTIONS

There are two major approaches to the topic of biologic (causal) interaction. One approach is
based on delineating specific mechanisms of interaction. The concept of mechanistic interaction
is rarely given a precise definition, but it is meant to encompass the notion of direct physical or
chemical reactions among exposures, their metabolites, or their reaction products within individuals
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or vectors of exposure transmission. Examples include the inhibition of gastric nitrosation of dietary
amines and amides by ascorbic acid and the quenching of free radicals in tissues by miscellaneous
antioxidants.

Description of a mechanism whereby such interactions take place does not lead immediately to
precise predictions about epidemiologic observations. One reason is that rarely, if ever, is a mech-
anism proposed that can account for all observed cases of disease, or all effects of all risk factors,
measured and unmeasured. Background noise, in the form of unaccounted-for effects and biologic
interactions with other factors, can easily obliterate any pattern sought by the investigator. Nonethe-
less, efforts have been made to test hypotheses about biologic mechanisms and interactions using
simplified abstract models. Such efforts have been concentrated largely in cancer epidemiology;
for example, see Moolgavkar (1986, 2004).

A key limitation of these and other biologic modeling efforts is that any given data pattern
can be predicted from a number of dissimilar mechanisms or models for disease development
(Siemiatycki and Thomas, 1981; Thompson, 1991), even if no bias is present. In response to this
limitation, a number of authors define biologic interactions within the context of a general causal
model, so that it does not depend on any specific mechanistic model for the disease process. We
describe two such definitions. The first definition, based on the potential-outcome or counterfac-
tual causal model described in Chapter 4, has a long history in pharmacology (at least back to the
1920s) and is sometimes called the dependent-action definition of interaction. The second definition,
based on the sufficient-cause model described in Chapter 2, has been more common in epidemi-
ology. After providing these definitions, we will describe how they are logically related to one
another.

POTENTIAL OUTCOMES FOR TWO VARIABLES

Consider the following example. Suppose we wish to study the effects of two fixed variables X and
Z on 10-year mortality D in a closed cohort. If X and Z are binary indicators, there are four possible
exposure combinations that each person in the cohort could have: X = Z = 0, X = 1 and Z = 0,
X = 0 and Z = 1, or X = Z = 1. Furthermore, every person has one of two possible outcomes under
each of the four combinations: They either survive the 10 years (D = 0) or they do not (D = 1).
This means that there are 2 · 2 · 2· 2 = 24 = 16 possible types of person in the cohort, according to
how the person would respond to each of the four exposure combinations.

These 16 types of people are shown in Table 5–2. Columns 2 through 5 of the table show the
outcome (Y = 1 if disease develops, 0 if not) for the type of person in the row under the exposure
combination shown in the column heading. For each type, we can define the risk for that type under
each combination of X and Z as the outcome Y under that combination. Thus for a given response
type, R11 is 1 or 0 according to whether Y is 1 or 0 when X = 1 and Z = 1, and so on for the other
combinations of X and Z . We can then define various risk differences for each type. For example,
R11 − R01 and R10 − R00 give the effects of changing from X = 0 to X = 1, and R11 − R10 and
R01 − R00 for the effects of changing from Z = 0 to Z = 1. These differences may be 1, 0, or −1,
which correspond to causal effect, no effect, and preventive effect of the change.

We can also define the difference between these risk differences. A useful fact is that the difference
of the risk differences for changing X is equal to the difference of the risk differences in chang-
ing Z :

(R11 − R01) − (R10 − R00) = (R11 − R10) − (R01 − R00) [5–10]

This equation tells us that the change in the effect of X when we move across levels of Z is the
same as the change in the effect of Z when we move across levels of X . The equation holds for
every response type. We will hereafter call the difference of risk differences in equation [5–10] the
interaction contrast, or IC.

Note first that equation [5–10] and hence the interaction contrast equals R11 − R10 − R01 + R00.
The final column of Table 5–2 provides this interaction contrast for each response type, along with
phrases describing the causal process leading to the outcome (disease or no disease) in each type
of person. For six types—types 1, 4, 6, 11, 13, 16—at least one factor never has an effect, and so
there can be no interaction, because both factors must have an effect for there to be an interaction.
The interaction contrast equals 0 for these six types. The other 10 types (marked with an asterisk)
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ˆ

ˆ

ˆ

ˆ
T A B L E 5 – 2

Possible Response Types (Potential Outcomes) for Two Binary Exposure
Variables X and Z and a Binary Outcome Variable Y

Outcome (Risk) Y when
Exposure Combination Is

Interaction Contrast (Difference in Risk Differences)
X = 1 X = 0 X = 1 X = 0 IC = R11 − R10 − R01 + R00 and Description of

Type Z = 1 Z = 1 Z = 0 Z = 0 Causal Type

1 1 1 1 1 0 no effect (doomed)
2∗ 1 1 1 0 −1 single plus joint causation by X = 1 and Z = 1
3∗ 1 1 0 1 1 Z = 1 blocks X = 1 effect (preventive antagonism)
4 1 1 0 0 0 X = 1 ineffective, Z = 1 causal
5∗ 1 0 1 1 1 X = 1 blocks Z = 1 effect (preventive antagonism)
6 1 0 1 0 0 X = 1 causal, Z = 1 ineffective
7∗ 1 0 0 1 2 mutual blockage (preventive antagonism)
8∗ 1 0 0 0 1 X = 1 plus Z = 1 causal (causal synergism)
9∗ 0 1 1 1 −1 X = 1 plus Z = 1 preventive (preventive synergism)

10∗ 0 1 1 0 −2 mutual blockage (causal antagonism)
11 0 1 0 1 0 X = 1 preventive, Z = 1 ineffective
12∗ 0 1 0 0 −1 X = 1 blocks Z = 1 effect (causal antagonism)
13 0 0 1 1 0 X = 1 ineffective, Z = 1 preventive
14∗ 0 0 1 0 −1 Z = 1 blocks X = 1 effect (causal antagonism)
15∗ 0 0 0 1 1 single plus joint prevention by X = 1 and Z = 1
16 0 0 0 0 0 no effect (immune)

∗Defined as interaction response type in present discussion (types with a nonzero interaction contrast).

can be viewed as exhibiting some type of interaction (or interdependence) of the effects of the two
factors (X and Z ); for these 10 types, the interaction contrast is not 0.

The defining feature of these 10 interaction types is that we cannot say what the effect of X
will be (to cause, prevent, or have no effect on disease) unless we know that person’s value for
Z (and conversely, we cannot know the effect of Z without knowing that person’s value of X ).
In other words, for an interaction type, the effect of one factor depends on the person’s status for
the other factor. An equally apt description is to say that each factor modifies the effect of the
other. Unfortunately, the term effect modification has often been used as a contraction of the term
effect-measure modification, which we have showed is equivalent to statistical interaction and is
scale-dependent, in contrast to the 10 interaction types in Table 5–2.

Some of the response types in Table 5–2 are easily recognized as interactions. For type 8, each
factor causes the disease if and only if the other factor is present; thus both factors must be present
for disease to occur. Hence, this type is said to represent synergistic effects. For type 10, each factor
causes the disease if and only if the other factor is absent; thus each factor blocks the effect of the
other. Hence, this type is said to represent mutually antagonistic effects.

Other interaction types are not always recognized as exhibiting interdependent effects. For ex-
ample, type 2 has been described simply as one for which both factors can have an effect (Miettinen,
1982b). Note, however, that the presence of both factors can lead to a competitive interaction: For a
type 2 person, each factor will cause disease when the other is absent, but neither factor can have an
effect on the outcome under study (D = 0 or 1) once the other is present. Thus each factor affects
the outcome under study only in the absence of the other, and so the two factors can be said to
interact antagonistically for this outcome (Greenland and Poole, 1988).
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RELATION OF RESPONSE-TYPE DISTRIBUTIONS TO AVERAGE RISKS

A cohort of more than a few people is inevitably a mix of different response types. To examine
cohorts, we will return to using R11, R10, R01, R00 to denote the average risks (incidence proportions)
in a cohort; these risks represent averages of the outcomes (risks) over the response types in the
population under discussion. The risks shown in Table 5–2 can be thought of as special cases in
which the cohort has just one member.

To compute the average risks, let pk be the proportion of type k persons in the cohort (k =
1, . . . , 16). A useful feature of Table 5–2 is that we can compute the average risk of the cohort
under any of the four listed combinations of exposure to X and Z by adding up the pk for which
there is a “1” in the column of interest. We thus obtain the following general formulas:

R11 = average risk if X and Z are 1

= p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

R01 = average risk if X is 0 and Z is 1

= p1 + p2 + p3 + p4 + p9 + p10 + p11 + p12

R10 = average risk if X is 1 and Z is 0

= p1 + p2 + p5 + p6 + p9 + p10 + p13 + p14

R00 = average risk if X and Z are 0

= p1 + p3 + p5 + p7 + p9 + p11 + p13 + p15

For a cohort in which none of the 10 interaction types is present, the additive-risk relation (equation
5–2) emerges among the average risks (incidence proportions) that would be observed under
different exposure patterns (Greenland and Poole, 1988). With no interaction types, only p1, p4, p6,
p11, p13, and p16 are nonzero. In this situation, the incidence proportions under the four exposure
patterns will be as follows:

R11 = average risk if X and Z are 1 = p1 + p4 + p6

R01 = average risk if X is 0 and Z is 1 = p1 + p4 + p11

R10 = average risk if X is 1 and Z is 0 = p1 + p6 + p13

R00 = average risk if X and Z are 0 = p1 + p11 + p13

Then the separate risk differences for the effects of X = 1 alone and Z = 1 alone (relative to
X = Z = 0) add to the risk difference for the effect of X = 1 and Z = 1 together:

R11 − R00 = p4 + p6 − (p11 + p13)

Rearranging the right side of the equation, we have

R11 − R00 = (p6 − p13) + (p4 − p11)

Adding p13 to the left parenthetical and subtracting it from the right, and subtracting p11 from the
left parenthetical and adding it to the right, we obtain

R11 − R00 = (p6 + p13 − p11 − p13) + (p4 + p11 − p11 − p13) [5–11]

Substituting from the definitions of incidence proportions with only noninteraction types, we have

R11 − R00 = (R10 − R00) + (R01 − R00)

This equation is identical to equation 5–2 and so is equivalent to equation 5–1, which corresponds
to no modification of the risk differences. There is a crucial difference in interpretation, however:
Equation 5–2 is descriptive of the differences in risk among different study cohorts; in contrast,
equation 5–10 is a causal relation among risks, because it refers to risks that would be observed
in the same study cohort under different exposure conditions. The same cohort cannot be observed
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under different exposure conditions, so we must use the descriptive equation 5–2 as a substitute
for the causal equation 5–11. This usage requires absence of confounding, or else standardization
of the risks to adjust for confounding. The remainder of the present discussion will concern only
the causal equation 5–11 and thus involves no concern regarding confounding or other bias. The
discussion also applies to situations involving equation 5–2 in which either bias is absent or has
been completely controlled (e.g., all confounding has been removed via standardization).

Four important points deserve emphasis. First, the preceding algebra shows that departures from
causal additivity (equation 5–11) can occur only if interaction causal types are present in the cohort.
Thus, observation of nonadditivity of risk differences (departures from equation 5–2) will imply
the presence of interaction types in a cohort, provided the observed descriptive relations unbiasedly
represent the causal relations in the cohort. Second, interaction types may be present and yet both
the additive relations (equations 5–11 and 5–2) can still hold. This circumstance can occur because
different interaction types could counterbalance each other’s effect on the average risk. For example,
suppose that, in addition to the noninteraction types, there were type 2 and type 8 persons in exactly
equal proportions (p2 = p8 > 0). Then

R11 − R00 = p2 + p4 + p6 + p8 − (p11 + p13)

By rearranging, adding p13 to the left parenthetical and subtracting it from the right parenthetical,
and adding p11 to the right parenthetical and subtracting it from the left parenthetical, we have

R11 − R00 = (p8 + p6 + p13 − p11 − p13) + (p2 + p4 + p11 − p11 − p13)

= (R10 − R00) + (R01 − R00)

We may summarize these two points as follows: Departures from additivity imply the presence of
interaction types, but additivity does not imply absence of interaction types.

The third point is that departure from risk additivity implies the presence of interaction types
whether we are studying causal or preventive factors (Greenland and Poole, 1988). To see this, note
that the preceding arguments made no assumptions about the absence of causal types (types 4 and
6 in the absence of interaction) or preventive types (types 11 and 13 in the absence of interaction).
This point stands in contrast to earlier treatments, in which preventive interactions had to be studied
using multiplicative models (Rothman, 1974; Walter and Holford, 1978).

The fourth point is that the definitions of response types (and hence interactions) given above are
specific to the particular outcome under study. If, in our example, we switched to 5-year mortality,
it is possible that many persons who would die within 10 years under some exposure combination
(and so would be among types 1 through 15 in Table 5–2) would not die within 5 years. For instance,
a person who was a type 8 when considering 10-year mortality could be a type 16 when considering
5-year mortality. In a similar fashion, it is possible that a person who would die within 10 years if
and only if exposed to either factor would die within 5 years if and only if exposed to both factors.
Such a person would be a type 2 (competitive action) for 10-year mortality but a type 8 (synergistic
action) for 5-year mortality. To avoid the dependence of response type on follow-up time, one can
base the definitions of response type on incidence time rather than risk (Greenland, 1993b).

RELATION OF RESPONSE-TYPE DISTRIBUTIONS TO ADDITIVITY

The interaction contrast IC = R11 − R10 − R01 + R00 corresponds to departure of the risk dif-
ference contrasting X = 1 and Z = 1 to X = 0 and Z = 0 from what would be expected if no
interaction types were present (i.e., if the risk difference for X = Z = 1 versus X = Z = 0 was
just the sum of the risk difference for X = 1 versus X = 0 and the risk difference for Z = 1 versus
Z = 0). In algebraic terms, we have

IC = (R11 − R00) − (R10 − R00) − (R01 − R00) [5–12]

Substituting the proportions of response types for the risks in this formula and simplifying, we
get

IC = (p3 + p5 + 2p7 + p8 + p15) − (p2 + p9 + 2p10 + p12 + p14) [5–13]
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IC is thus composed of proportions of all 10 interaction types, and it will be zero if no interaction
type is present. The proportions of types 7 and 10 weigh twice as heavily as the proportions of
the other interaction types because they correspond to the types for which the effects of X reverse
across strata of Z . Equation 5–13 illustrates the first two points above: Departure from additivity
(IC �= 0) implies the presence of interaction types, because IC �= 0 requires some interaction types
to be present; but additivity (IC = 0) does not imply absence of interaction types, because the IC
can be zero even when some proportions within it are not zero. This phenomenon occurs when
negative contributions to the IC from some interaction types balance out the positive contributions
from other interaction types.

Departures from additivity may be separated into two classes. Superadditivity (also termed
transadditivity) is defined as a “positive” departure, which for risks corresponds to IC > 0, or

R11 − R00 > (R10 − R00) + (R01 − R00)

Subadditivity is a “negative” departure, which for risks corresponds to IC < 0, or

R11 − R00 < (R10 − R00) + (R01 − R00)

Departures from risk additivity have special implications when we can assume that neither fac-
tor is ever preventive (neither factor will be preventive in the presence or absence of the other,
which excludes types 3, 5, 7, and 9 through 15). Under this assumption, the interaction contrast
simplifies to

IC = p8 − p2

Superadditivity (IC > 0) plus no prevention then implies that p8 > p2. Because p2 ≥ 0, su-
peradditivity plus no prevention implies that synergistic responders (type 8 persons) must be
present (p8 > 0). The converse is false, however; that is, the presence of synergistic responders
does not imply superadditivity, because we could have p2 > p8 > 0, in which case subadditivity
would hold. Subadditivity plus no prevention implies that p8 < p2. Because p8 ≥ 0, subadditivity
(IC < 0) plus no prevention implies that competitive responders (type 2 persons) must be present
(p2 > 0). Nonetheless, the converse is again false: The presence of competitive responders does
not imply subadditivity, because we could have p8 > p2 > 0, in which case superadditivity would
hold.

THE NONIDENTIFIABILTY OF INTERACTION RESPONSE TYPES

Epidemiologic data on risks or rates, even if perfectly valid, cannot alone determine the particular
response types that are present or absent. In particular, one can never infer that a particular type
of interaction in Table 5–2 is absent, and inference of presence must make untestable assump-
tions about absence of other response types. As a result, inferences about the presence of partic-
ular response types must depend on very restrictive assumptions about absence of other response
types.

One cannot infer the presence of a particular response type even when qualitative statistical
interactions are present among the actual effect measures, that is, when the actual effect of one
factor entirely reverses direction across levels of another factor. Such reversals can arise from
entirely distinct combinations of interaction types. Qualitative interaction demonstrates only that
interaction types must be present.

Consider the example of the two cohorts shown in Table 5–3, for which the proportions of
response types are different. In both cohorts, the risks at various combinations of X and Z are
identical, and hence so are all the effect measures. For example, the risk difference for X when
Z = 1 (R11 − R01) equals 0.2 and when Z = 0 (R10 − R00) equals −0.2, a qualitative statistical in-
teraction. Thus, these two completely different cohorts produce identical interaction contrasts (IC =
0.4). In the first cohort, the two interaction types are those for whom X only has an effect in the
presence of Z and this effect is causal (type 8) and those for whom X only has an effect in the
absence of Z and this effect is preventive (type 15). In the second cohort, the only interaction type
present is that in which the effect of X is causal when Z is present and preventive when Z is absent
(type 7). In other words, even if we saw the actual effects, free of any bias or error, we could not
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ˆ

ˆ

ˆ

ˆ
T A B L E 5 – 3

Example of Two Cohorts with Different Proportions of Response Types that
Yield the Same Interaction Contrast

Cohort #1 Cohort #2

Response Response
Type Proportion R 11 R 10 R 01 R 00 Type Proportion R 11 R 10 R 01 R 00

1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1
7 0 — — — — 7 0.2 0.2 — — 0.2
8 0.2 0.2 — — — 8 0 — — — —

15 0.2 — — — 0.2 15 0 — — — —
16 0.5 — — — — 16 0.7 — — — —
Total 1.0 0.3 0.1 0.1 0.3 Total 1.0 0.3 0.1 0.1 0.3

distinguish whether the qualitative statistical interaction arose because different people are affected
by X in different Z strata (p8 = p15 = 0.2, p16 = 0.5), or because the same people are affected but
in these individuals the X effects reverse across Z strata (p 7 = 0.2, p16 = 0.7).

INTERACTIONS UNDER THE SUFFICIENT-CAUSE MODEL

In Chapter 2 we defined biologic interaction among two or more component causes to mean that the
causes participate in the same sufficient cause. Here, a component cause for an individual is identical
to a causal risk factor, or level of variable, the occurrence of which contributes to completion of a
sufficient cause. Different causal mechanisms correspond to different sufficient causes of disease. If
two component causes act to produce disease in a common sufficient cause, some cases of disease
may arise for which the two component causes share in the causal responsibility. In the absence
of either of the components, these cases would not occur. Under the sufficient-cause model, this
coparticipation in a sufficient cause is defined as synergistic interaction between the components,
causal coaction, or synergism.

There may also be mechanisms that require absence of one factor and presence of the other to
produce disease. These correspond to a sufficient cause in which absence of one factor and presence
of another are both component causes. Failure of disease to occur because both factors were present
may be defined as an antagonistic interaction between the components, or antagonism.

If two factors never participate jointly in the same sufficient cause by synergism or antagonism,
then no case of disease can be attributed to their coaction. Absence of biologic interaction, or
independence of effects of two factors, thus means that no case of disease was caused or prevented
by the joint presence of the factors.

We emphasize that two component causes can participate in the same causal mechanism without
acting at the same time. Expanding an example from Chapter 2, contracting a viral infection can
cause a person to have a permanent equilibrium disturbance. Years later, during icy weather, the
person may slip and fracture a hip while walking along a path because the equilibrium disturbance
has made balancing more difficult. The viral infection years before has interacted with the icy
weather (and the choice of type of shoe, the lack of a handrail, etc.) to cause the fractured hip. Both
the viral infection and the icy weather are component causes in the same causal mechanism, despite
their actions being separated by many years.

We have said that two factors can “interact” by competing to cause disease, even if neither they
nor their absence share a sufficient cause, because only one complete sufficient cause is required
for disease to occur, and thus all sufficient causes compete to cause disease. Consider causes of
death: Driving without seat belts can be a component cause of a fatal injury (the first completed
sufficient cause), which prevents death from all other sufficient causes (such as fatal lung cancer) and
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their components (such as smoking). Driving without seat belts thus prevents deaths from smoking
because it kills some people who would otherwise go on to die of smoking-related disease.

RELATION BETWEEN THE POTENTIAL-OUTCOME AND
SUFFICIENT-CAUSE MODELS OF INTERACTION

There is a direct logical connection between the two definitions of biologic interaction discussed
thus far, which can be exploited to provide a link between the sufficient-cause model (Chapter 2) and
measures of incidence (Greenland and Poole, 1988). To build this connection, Figure 5–1 displays
the nine sufficient causes possible when we can distinguish only two binary variables X and Z . The
Uk in each circle represents all component causes (other than X = 1 or X = 0 and Z = 1 or X = 0)
that are necessary to complete the sufficient cause. We say a person is at risk of, or susceptible to,
sufficient cause k (k = A, B, C , D, E , F , G, H , I ) if Uk is present for that person, that is, if sufficient
cause k is complete except for any necessary contribution from X or Z . Note that a person may

FIGURE 5–1 ● Enumeration of the nine types of sufficient causes for two
dichotomous exposure variables.



P1: TNL/OVY P2: SCF/OVY QC: SCF/OVY T1: SCF Printer: RRD

GRBT241-05 GRBT241-v4.cls January 18, 2008 11:58

82 Section I ● Basic Concepts

be at risk of none, one, or several sufficient causes. Of the nine types of sufficient causes in Figure
5–1, four (F , G, H , I ) are examples of causal coaction (biologic interaction in the sufficient-cause
sense).

We can deduce the causal response type of any individual given his or her risk status for sufficient
causes. In other words, we can deduce the row in Table 5–2 to which an individual belongs if we
know the sufficient causes for which he or she is at risk. For example, any person at risk of sufficient
cause A is doomed to disease, regardless of the presence of X or Z , so that person is of response
type 1 in Table 5–2. Also, a person at risk of sufficient causes B and C , but no other, will get the
disease unless X = Z = 0, so is of type 2. Similarly, a person at risk of sufficient causes F , G, and
H , but no other, will also get the disease unless X = Z = 0, so must be response type 2.

Several other combinations of sufficient causes will yield a type 2 person. In general, completely
different combinations of susceptibilities to sufficient causes may produce the same response type,
so that the sufficient-cause model is a “finer” or more detailed model than the potential-outcome
(response-type) model of the effects of the same variables (Greenland and Poole, 1988; Greenland
and Brumback, 2002; VanderWeele and Hernán, 2006; VanderWeele and Robins, 2007a). In other
words, for every response type in a potential-outcome model we can construct at least one and often
several sufficient-cause models that produce the response type. Nonetheless, there are a few response
types that correspond to a unique sufficient cause. One example is the synergistic response type
(type 8 in Table 5–2), for whom disease results if and only if X = 1 and Z = 1. The susceptibility
pattern that results in such synergistic response is the one in which the person is at risk of only
sufficient cause F . Sufficient cause F corresponds exactly to synergistic causation or causal coaction
of X = 1 and Z = 1 in the sufficient-cause model. Thus, the presence of synergistic responders
(type 8 in Table 5–2) corresponds to the presence of synergistic action (cause F in Fig. 5–1).

VanderWeele and Robins (2007a) show that the presence of interaction response type 7, 8, 10, 12,
14, or 15 implies the presence of causal coaction, i.e., the presence of a sufficient cause of the form
F , G, H , or I (which they take as their definition of biologic interaction). In contrast, the other four
response types defined as interactions above (2, 3, 5, 9) do not imply causal coaction, i.e., response
types 2, 3, 5, and 9 can occur even if no causal coaction is present. For this reason, VanderWeele
and Robins (2007a) define only types 7, 8, 10, 12, 14, and 15 as reflecting interdependent action,
in order to induce a correspondence with coaction in the sufficient-cause model. The four types
that they exclude (types 2, 3, 5, and 9) are the types for which disease occurs under 3 out of the 4
combinations of possible X and Z values.

As shown earlier, we can infer that synergistic response types are present from superadditivity of
the causal risk differences if we assume that neither factor is ever preventive. Because no preventive
action means that neither X = 0 nor Z = 0 acts in a sufficient cause, we can infer the presence of
synergistic action (sufficient cause F) from superadditivity if we assume that sufficient causes D,
E , G, H , and I are absent (these are the sufficient causes that contain X = 0 or Z = 0). Without
assuming no preventive action, VanderWeele and Robins (2007a) show that if R11 − R01 − R10 > 0
(a stronger condition than superadditivity), then the sufficient cause F must be present—that is, there
must be synergism between X = 1 and Z = 1. They also give analogous conditions for inferring
the presence of sufficient causes G, H , and I .

Interaction analysis is described further in Chapter 16.

BIOLOGIC VERSUS STATISTICAL INTERACTION

Some authors have argued that factors that act in distinct stages of a multistage model are examples
of independent actions with multiplicative effect (Siemiatycki and Thomas, 1981). By the definitions
we use, however, actions at different stages of a multistage model are interacting with one another,
despite their action at different stages, just as the viral infection and the slippery walk interacted
in the example to produce a fractured hip. Thus, we would not call these actions independent.
Furthermore, we do not consider risk-difference additivity to be a natural relation between effects
that occur. Although complete absence of interactions implies risk additivity, we would rarely expect
to observe risk-difference additivity because we would rarely expect factors to act independently
in all people.

More generally, we reiterate that statistical interaction—effect-measure modification—should
not be confused with biologic interaction. Most important, when two factors have effects, risk-ratio
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homogeneity—though often misinterpreted as indicating absence of biologic interaction—implies
just the opposite, that is, presence of biologic interactions. This conclusion follows because, as
shown earlier, homogeneity of a ratio measure implies heterogeneity (and hence nonadditivity) of
the corresponding difference measure. This nonadditivity in turn implies the presence of some type
of biologic interaction.

PUBLIC HEALTH INTERACTIONS

Assuming that costs or benefits of exposures or interventions are measured by the excess or reduction
in case load they produce, several authors have proposed that departures from additivity of case
loads (incident numbers) or incidences correspond to public health interaction (Blot and Day, 1979;
Rothman et al., 1980; Saracci, 1980). The rationale is that, if the excess case loads produced by
each factor are not additive, one must know the levels of all the factors in order to predict the public
health impact of removing or introducing any one of them (Hoffman et al., 2006).

As an example, we can return to the interaction between smoking and asbestos exposure examined
at the beginning of the chapter. Recall that in the hypothetical example the average 10-year mortality
risk in a cohort of asbestos-exposed smokers was 0.020, but it would have been 0.003 if all cohort
members quit smoking at the start of follow-up, it would have been 0.010 if only the asbestos
exposure had been prevented, and it would have declined to 0.001 if everyone quit smoking and
the asbestos exposure had been prevented. These effects are nonadditive, because

R11 − R00 = 0.020 − 0.001 = 0.019 > (R10 − R00) + (R01 − R00)

= (0.003 − 0.001) + (0.010 − 0.001) = 0.011

If there were 10,000 exposed workers, prevention of asbestos exposure would have reduced the case
load from (0.020)10,000 = 200 to (0.010)10,000 = 100 if smoking habits did not change, but it
would have reduced the case load from 0.003(10,000) = 30 to 0.001(10,000) = 20 if everyone also
quit smoking at the start of follow-up. Thus, the benefit of preventing asbestos exposure (in terms
of mortality reduction) would have been five times greater if no one quit smoking than if everyone
quit. Only if the risk differences were additive would the mortality reduction be the same regardless
of smoking. Otherwise, the smoking habits of the cohort cannot be ignored when estimating the
benefit of preventing asbestos exposure. As discussed in Chapter 2, complete removal of exposure
is usually infeasible, but the same point applies to partial removal of exposure. The benefit of partial
removal of one factor may be very sensitive to the distribution of other factors among those in whom
the factor is removed, as well as being sensitive to the means of removal.

If public health benefits are not measured using case-load reduction, but instead are measured
using some other benefit measure (for example, expected years of life gained or health care cost
reduction), then public health interaction would correspond to nonadditivity for that measure,
rather than for case load or risk differences. The general concept is that public health interactions
correspond to a situation in which public health costs or benefits from altering one factor must
take into account the prevalence of other factors. Because the presence and extent of public health
interactions can vary with the benefit measure, the concept parallels algebraically certain types of
statistical interaction or effect-measure modification, and so statistical methods for studying the
latter phenomenon can also be used to study public health interaction. The study of public health
interaction differs, however, in that the choice of the measure is dictated by the public health context,
rather than by statistical convenience or biologic assumptions.
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Epidemiologic study designs comprise both experimental and nonexperimental studies. The
experiment is emblematic of scientific activity. But what constitutes an experiment? In common
parlance, an experiment refers to any trial or test. For example, a professor might introduce new
teaching methods as an experiment. For many scientists, however, the term has a more specific
meaning: An experiment is a set of observations, conducted under controlled circumstances, in
which the scientist manipulates the conditions to ascertain what effect, if any, such manipulation has
on the observations. Some might enlarge this definition to include controlled observations without
manipulation of the conditions. Thus, the astronomical observations during the solar eclipse of 1919
that corroborated Einstein’s general theory of relativity have often been referred to as an experiment.
For epidemiologists, however, the word experiment usually implies that the investigator manipulates
the exposure assigned to participants in the study. Experimental epidemiology is therefore limited
by definition to topics for which the exposure condition can be manipulated. Because the subjects
of these manipulations are human, experimental epidemiology is further limited ethically to studies
in which all exposure assignments are expected to cause no harm.

When epidemiologic experiments meet minimal standards of feasibility and ethics, their design
is guided by the objectives of reducing variation in the outcome attributable to extraneous factors
and accounting accurately for the remaining extraneous variation. There are generally two or more
forms of the intervention. Intervention assignments are ordinarily determined by the researcher by
applying a randomized allocation scheme. The purpose of random allocation is to create groups
that differ only randomly at the time of allocation with regard to subsequent occurrence of the study
outcome. Epidemiologic experiments include clinical trials (with patients as subjects), field trials
(with interventions assigned to individual community members), and community intervention trials
(with interventions assigned to whole communities).

When experiments are infeasible or unethical, epidemiologists design nonexperimental (also
known as observational) studies in an attempt to simulate what might have been learned had an
experiment been conducted. In nonexperimental studies, the researcher is an observer rather than

87
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an agent who assigns interventions. The four main types of nonexperimental epidemiologic studies
are cohort studies—in which all subjects in a source population are classified according to their
exposure status and followed over time to ascertain disease incidence; case-control studies—in
which cases arising from a source population and a sample of the source population are classified
according to their exposure history; cross-sectional studies, including prevalence studies—in which
one ascertains exposure and disease status as of a particular time; and ecologic studies—in which
the units of observation are groups of people.

EXPERIMENTAL STUDIES

A typical experiment on human subjects creates experimental groups that are exposed to different
treatments or agents. In a simple two-group experiment, one group receives a treatment and the other
does not. Ideally, the experimental groups are identical with respect to extraneous factors that affect
the outcome of interest, so that if the treatment had no effect, identical outcomes would be observed
across the groups. This objective could be achieved if one could control all the relevant conditions
that might affect the outcome under study. In the biologic sciences, however, the conditions affecting
most outcomes are so complex and extensive that they are mostly unknown and thus cannot be made
uniform. Hence there will be variation in the outcome, even in the absence of a treatment effect.
This “biologic variation” reflects variation in the set of conditions that produces the effect.

Thus, in biologic experimentation, one cannot create groups across which only the study treat-
ment varies. Instead, the experimenter may settle for creating groups in which the net effect of
extraneous factors is expected to be small. For example, it may be impossible to make all animals
in an experiment eat exactly the same amount of food. Variation in food consumption could pose
a problem if it affected the outcome under study. If this variation could be kept small, however, it
might contribute little to variation in the outcome across the groups.

The investigator would usually be satisfied if the net effect of extraneous factors across the groups
were substantially less than the expected effect of the study treatment. Often not even that can be
achieved, however. In that case, the experiment must be designed so that the variation in outcome
due to extraneous factors can be measured accurately and thus accounted for in comparisons across
the treatment groups.

RANDOMIZATION

In the early 20th century, R. A. Fisher and others developed a practical basis for experimental designs
that accounts accurately for extraneous variability across experimental units (whether the units are
objects, animals, people, or communities). This basis is called randomization (random allocation) of
treatments or exposures among the units: Each unit is assigned treatment using a random assignment
mechanism such as a coin toss. Such a mechanism is unrelated to the extraneous factors that affect
the outcome, so any association between the treatment allocation it produces and those extraneous
factors will be random. The variation in the outcome across treatment groups that is not due to
treatment effects can thus be ascribed to these random associations and hence can be justifiably
called chance variation.

A hypothesis about the size of the treatment effect, such as the null hypothesis, corresponds to a
specific probability distribution for the potential outcomes under that hypothesis. This probability
distribution can be compared with the observed association between treatment and outcomes. The
comparison links statistics and inference, which explains why many statistical methods, such as
analysis of variance, estimate random outcome variation within and across treatment groups. A study
with random assignment of the treatment allows one to compute the probability of the observed
association under various hypotheses about how treatment assignment affects outcome. In particular,
if assignment is random and has no effect on the outcome except through treatment, any systematic
(nonrandom) variation in outcome with assignment must be attributable to a treatment effect.

Scientists conducted experiments for centuries before the idea of random allocation crystallized,
and experiments that have little extraneous outcome variation (as often occur in physical sciences)
have no need of the method. Nonetheless, some social scientists and epidemiologists identify the
term experiment with a randomized experiment only. Sometimes the term quasi-experiment is used
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to refer to controlled studies in which exposure was assigned by the investigator without using
randomization (Cook and Campbell, 1979).

VALIDITY VERSUS ETHICAL CONSIDERATIONS IN EXPERIMENTS
ON HUMAN SUBJECTS

In an experiment, those who are exposed to an experimental treatment are exposed only because the
investigator has assigned the exposure to the subject. In a purely scientific experiment, the reason
for assigning the specific exposure to the particular subject is only to maximize the validity of
the study. The steps considered necessary to reach this goal are usually operationalized in a study
protocol. The only reason for the assignment is to conform to the protocol rather than to meet the
needs of the subject.

For example, suppose that a physician treating headache had prescribed a patented drug to her
wealthy patients and a generic counterpart to her indigent patients, because the presumed greater
reliability of the patented version was in her judgment not worth the greater cost for those of
modest means. Should the physician want to compare the effects of the two medications among her
patients, she could not consider herself to be conducting a valid experiment, despite the fact that the
investigator herself had assigned the exposures. Because assignment was based in part on factors
that could affect the outcome, such as wealth, one would expect there to be differences among
the treatment groups even if the medications had the same effect on the outcome, i.e., one would
expect there to be confounding (see Chapter 4). To conduct a valid experiment, she would have to
assign the drugs according to a protocol that would not lead to systematic imbalance of extraneous
causes of headache across the treatment groups. The assignment of exposure in experiments is
designed to help the study rather than the individual subject. If it is done to help the subject, then
a nonexperimental study is still possible, but it would not be considered an experiment because of
the confounding that the treatment-assignment criterion might induce.

Because the goals of the study, rather than the subject’s needs, determine the exposure assignment,
ethical constraints limit severely the circumstances in which valid experiments on humans are feasi-
ble. Experiments on human subjects are ethically permissible only when adherence to the scientific
protocol does not conflict with the subject’s best interests. Specifically, there should be reasonable
assurance that there is no known and feasible way a participating subject could be treated better than
with the treatment possibilities that the protocol provides. From this requirement comes the con-
straint that any exposures or treatments given to subjects should be limited to potential preventives
of disease. This limitation alone confines most etiologic research to the nonexperimental variety.

Among the more specific ethical implications is that subjects admitted to the study should not
be thereby deprived of some preferable form of treatment or preventive that is not included in the
study. This requirement implies that best available therapy should be included to provide a reference
(comparison) for any new treatment. Another ethical requirement, known as equipoise, states that
the treatment possibilities included in the trial must be equally acceptable given current knowledge.
Equipoise severely restricts use of placebos: The Declaration of Helsinki states that it is unethical to
include a placebo therapy as one of the arms of a clinical trial if an accepted remedy or preventive of
the outcome already exists (World Medical Association, www.wma.net/e/policy/b3.htm; Rothman
and Michels, 2002).

Even with these limitations, many epidemiologic experiments are conducted (some of which
unfortunately ignore ethical principles such as equipoise). Most are clinical trials, which are epi-
demiologic studies evaluating treatments for patients who already have acquired disease (trial is
used as a synonym for experiment). Epidemiologic experiments that aim to evaluate primary pre-
ventives (agents intended to prevent disease onset in the first place) are less common than clinical
trials; these studies are either field trials or community intervention trials.

CLINICAL TRIALS

A clinical trial is an experiment with patients as subjects. The goal of most clinical trials is either
to evaluate a potential cure for a disease or to find a preventive of disease sequelae such as death,
disability, or a decline in the quality of life. The exposures in such trials are not primary preventives,
because they do not prevent occurrence of the initial disease or condition, but they are preventives of

http://www.wma.net/e/policy/b3.htm
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the sequelae of the initial disease or condition. For example, a modified diet after an individual suffers
a myocardial infarction may prevent a second infarction and subsequent death, chemotherapeutic
agents given to cancer patients may prevent recurrence of cancer, and immunosuppressive drugs
given to transplant patients may prevent transplant rejection.

Subjects in clinical trials of sequelae prevention must be diagnosed as having the disease in
question and should be admitted to the study soon enough following diagnosis to permit the treatment
assignment to occur in a timely fashion. Subjects whose illness is too mild or too severe to permit the
form of treatment or alternative treatment being studied must be excluded. Treatment assignment
should be designed to minimize differences between treatment groups with respect to extraneous
factors that might affect the comparison. For example, if some physicians participating in the study
favored the new therapy, they could conceivably influence the assignment of, say, their own patients
or perhaps the more seriously afflicted patients to the new treatment. If the more seriously afflicted
patients tended to get the new treatment, then confounding (see Chapter 4) would result and valid
evaluation of the new treatment would be compromised.

To avoid this and related problems, it is desirable to assign treatments in clinical trials in a
way that allows one to account for possible differences among treatment groups with respect to
unmeasured “baseline” characteristics. As part of this goal, the assignment mechanism should deter
manipulation of assignments that is not part of the protocol. It is almost universally agreed that
randomization is the best way to deal with concerns about confounding by unmeasured baseline
characteristics and by personnel manipulation of treatment assignment (Byar et al., 1976; Peto et al.,
1976; Gelman et al., 2003). The validity of the trial depends strongly on the extent to which the
random assignment protocol is the sole determinant of the treatments received. When this condition
is satisfied, confounding due to unmeasured factors can be regarded as random, is accounted for
by standard statistical procedures, and diminishes in likely magnitude as the number randomized
increases (Greenland and Robins, 1986; Greenland, 1990). When the condition is not satisfied,
however, unmeasured confounders may bias the statistics, just as in observational studies. Even
when the condition is satisfied, the generalizability of trial results may be affected by selective
enrollment. Trial participants do not often reflect the distribution of sex, age, race, and ethnicity
of the target patient population (Murthy et al., 2004; Heiat et al., 2002). For reasons explained
in Chapter 8, representative study populations are seldom scientifically optimal. When treatment
efficacy is modified by sex, age, race, ethnicity, or other factors, however, and the study population
differs from the population that would be receiving the treatment with respect to these variables,
then the average study effect will differ from the average effect among those who would receive
treatment. In these circumstances, extrapolation of the study results is tenuous or unwarranted, and
one may have to restrict the inferences to specific subgroups, if the size of those subgroups permits.

Given that treatment depends on random allocation, rather than patient and physician treatment
decision making, patients’ enrollment into a trial requires their informed consent. At a minimum,
informed consent requires that participants understand (a) that they are participating in a research
study of a stated duration, (b) the purpose of the research, the procedures that will be followed,
and which procedures are experimental, (c) that their participation is voluntary and that they can
withdraw at any time, and (d) the potential risks and benefits associated with their participation.

Although randomization methods often assign subjects to treatments in approximately equal
proportions, this equality is not always optimal. True equipoise provides a rationale for equal as-
signment proportions, but often one treatment is hypothesized to be more effective based on a
biologic rationale, earlier studies, or even preliminary data from the same study. In these circum-
stances, equal assignment probabilities may be a barrier to enrollment. Adaptive randomization
(Armitage, 1985) or imbalanced assignment (Avins, 1998) allows more subjects in the trial to
receive the treatment expected to be more effective with little reduction in power.

Whenever feasible, clinical trials should attempt to employ blinding with respect to the treatment
assignment. Ideally, the individual who makes the assignment, the patient, and the assessor of the
outcome should all be ignorant of the treatment assignment. Blinding prevents certain biases that
could affect assignment, assessment, or compliance. Most important is to keep the assessor blind,
especially if the outcome assessment is subjective, as with a clinical diagnosis. (Some outcomes,
such as death, will be relatively insusceptible to bias in assessment.) Patient knowledge of treatment
assignment can affect adherence to the treatment regime and can bias perceptions of symptoms that
might affect the outcome assessment. Studies in which both the assessor and the patient are blinded
as to the treatment assignment are known as double-blind studies. A study in which the individual



P1: TNL/OVY P2: SCF/OVY QC: SCF/OVY T1: SCF Printer: RRD

GRBT241-06 GRBT241-v4.cls January 18, 2008 11:56

Chapter 6 ● Types of Epidemiologic Studies 91

who makes the assignment is unaware which treatment is which (such as might occur if the
treatments are coded pills and the assigner does not know the code) may be described as triple-blind,
though this term is used more often to imply that the data analyst (in addition to the patient and
the assessor) does not know which group of patients in the analysis received which treatment.

Depending on the nature of the intervention, it may not be possible or practical to keep knowledge
of the assignment from all of these parties. For example, a treatment may have well-known side
effects that allow the patients to identify the treatment. The investigator needs to be aware of and to
report these possibilities, so that readers can assess whether all or part of any reported association
might be attributable to the lack of blinding.

If there is no accepted treatment for the condition being studied, it may be useful to employ a
placebo as the comparison treatment, when ethical constraints allow it. Placebos are inert treatments
intended to have no effect other than the psychologic benefit of receiving a treatment, which itself
can have a powerful effect. This psychologic benefit is called a placebo response, even if it occurs
among patients receiving active treatment. By employing a placebo, an investigator may be able
to control for the psychologic component of receiving treatment and study the nonpsychologic
benefits of a new intervention. In addition, employing a placebo facilitates blinding if there would
otherwise be no comparison treatment. These benefits may be incomplete, however, if noticeable
side effects of the active treatment enhance the placebo response (the psychologic component of
treatment) among those receiving the active treatment.

Placebos are not necessary when the objective of the trial is solely to compare different treatments
with one another. Nevertheless, even without placebos, one should be alert to the possibility of a
placebo effect, or of adherence differences, due to differences in noticeable side effects among the
active treatments that are assigned.

Nonadherence to or noncompliance with assigned treatment results in a discrepancy between
treatment assigned and actual treatment received by trial participants. Standard practice bases all
comparisons on treatment assignment rather than on treatment received. This practice is called
the intent-to-treat principle, because the analysis is based on the intended treatment, not the re-
ceived treatment. Although this principle helps preserve the validity of tests for treatment effects,
it tends to produce biased estimates of treatment effects; hence alternatives have been developed
(Goetghebeur et al., 1998). Adherence may sometimes be measured by querying subjects directly
about their compliance, by obtaining relevant data (e.g., by asking that unused pills be returned), or
by biochemical measurements. These adherence measures can then be used to adjust estimates of
treatment effects using special methods in which randomization plays the role of an instrumental
variable (Sommer and Zeger, 1991; Angrist et al., 1996; Greenland, 2000b; Chapter 12).

Most trials are monitored while they are being conducted by a Data and Safety Monitoring
Committee or Board (DSMB). The primary objective of these committees is to ensure the safety of
the trial participants (Wilhelmsen, 2002). The committee reviews study results, including estimates
of the main treatment effects and the occurrence of adverse events, to determine whether the trial
ought to be stopped before its scheduled completion. The rationale for early stopping might be (a)
the appearance of an effect favoring one treatment that is so strong that it would no longer be ethical
to randomize new patients to the alternative treatment or to deny enrolled patients access to the
favored treatment, (b) the occurrence of adverse events at rates considered to be unacceptable, given
the expected benefit of the treatment or trial results, or (c) the determination that the reasonably
expected results are no longer of sufficient value to continue the trial. The deliberations of the DSMB
involve weighing issues of medicine, ethics, law, statistics, and costs to arrive at a decision about
whether to continue a trial. Given the complexity of the issues, the membership of the DSMB must
comprise a diverse range of training and experiences, and thus often includes clinicians, statisticians,
and ethicists, none of whom have a material interest in the trial’s result.

The frequentist statistical rules commonly used by DSMB to determine whether to stop a trial
were developed to ensure that the chance of Type I error (incorrect rejection of the main null
hypothesis of no treatment effect; see Chapter 10) would not exceed a prespecified level (the alpha
level) during the planned interim analyses (Armitage et al., 1969). Despite these goals, DSMB
members may misinterpret interim results (George et al., 2004), and strict adherence to these
stopping rules may yield spurious results (Wheatley and Clayton, 2003). Stopping a trial early
because of the appearance of an effect favoring one treatment will often result in an overestimate of
the true benefit of the treatment (Pocock and Hughes, 1989). Furthermore, trials that are stopped early
may not allow sufficient follow-up to observe adverse events associated with the favored treatment
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(Cannistra, 2004), particularly if those events are chronic sequelae. Bayesian alternatives have been
suggested to ameliorate many of these shortcomings (Berry, 1993; Carlin and Sargent, 1996).

FIELD TRIALS

Field trials differ from clinical trials in that their subjects are not defined by presence of disease or
by presentation for clinical care; instead, the focus is on the initial occurrence of disease. Patients in
a clinical trial may face the complications of their disease with high probability during a relatively
short time. In contrast, the risk of incident disease among free-living subjects is typically much
lower. Consequently, field trials usually require a much larger number of subjects than clinical trials
and are usually much more expensive. Furthermore, because the subjects are not under active health
care and thus do not come to a central location for treatment, a field trial often requires visiting
subjects at work, home, or school, or establishing centers from which the study can be conducted
and to which subjects are urged to report. These design features add to the cost.

The expense of field trials limits their use to the study of preventives of either extremely common
or extremely serious diseases. Several field trials were conducted to determine the efficacy of large
doses of vitamin C in preventing the common cold (Karlowski et al., 1975; Dykes and Meier, 1975).
Paralytic poliomyelitis, a rare but serious illness, was a sufficient public health concern to warrant
what may have been the largest formal human experiment ever attempted, the Salk vaccine trial,
in which the vaccine or a placebo was administered to hundreds of thousands of school children
(Francis et al., 1955). When the disease outcome occurs rarely, it is more efficient to study subjects
thought to be at higher risk. Thus, the trial of hepatitis B vaccine was carried out in a population
of New York City male homosexuals, among whom hepatitis B infection occurs with much greater
frequency than is usual among New Yorkers (Szmuness, 1980). Similarly, the effect of cessation of
vaginal douching on the risk of pelvic inflammatory disease was studied in women with a history of
recent sexually transmitted disease, a strong risk factor for pelvic inflammatory disease (Rothman
et al., 2003).

Analogous reasoning is often applied to the design of clinical trials, which may concentrate
on patients at high risk of adverse outcomes. Because patients who had already experienced a
myocardial infarction are at high risk for a second infarction, several clinical trials of the effect
of lowering serum cholesterol levels on the risk of myocardial infarction were undertaken on such
patients (Leren, 1966; Detre and Shaw, 1974). It is much more costly to conduct a trial designed
to study the effect of lowering serum cholesterol on the first occurrence of a myocardial infarction,
because many more subjects must be included to provide a reasonable number of outcome events
to study. The Multiple Risk Factor Intervention Trial (MRFIT) was a field trial of several primary
preventives of myocardial infarction, including diet. Although it admitted only high-risk individuals
and endeavored to reduce risk through several simultaneous interventions, the study involved 12,866
subjects and cost $115 million (more than half a billion 2006 dollars) (Kolata, 1982).

As in clinical trials, exposures in field trials should be assigned according to a protocol that
minimizes extraneous variation across the groups, e.g., by removing any discretion in assignment
from the study’s staff. A random assignment scheme is again an ideal choice, but the difficulties of
implementing such a scheme in a large-scale field trial can outweigh the advantages. For example,
it may be convenient to distribute vaccinations to groups in batches that are handled identically,
especially if storage and transport of the vaccine is difficult. Such practicalities may dictate use of
modified randomization protocols such as cluster randomization (explained later). Because such
modifications can seriously affect the informativeness and interpretation of experimental findings,
the advantages and disadvantages need to be weighed carefully.

COMMUNITY INTERVENTION AND CLUSTER RANDOMIZED TRIALS

The community intervention trial is an extension of the field trial that involves intervention on a
community-wide basis. Conceptually, the distinction hinges on whether or not the intervention is
implemented separately for each individual. Whereas a vaccine is ordinarily administered singly to
individual people, water fluoridation to prevent dental caries is ordinarily administered to individual
water supplies. Consequently, water fluoridation was evaluated by community intervention trials
in which entire communities were selected and exposure (water treatment) was assigned on a
community basis. Other examples of preventives that might be implemented on a community-wide
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basis include fast-response emergency resuscitation programs and educational programs conducted
using mass media, such as Project Burn Prevention in Massachusetts (MacKay and Rothman, 1982).

Some interventions are implemented most conveniently with groups of subjects that are smaller
than entire communities. Dietary intervention may be made most conveniently by family or house-
hold. Environmental interventions may affect an entire office, factory, or residential building. Pro-
tective sports equipment may have to be assigned to an entire team or league. Intervention groups
may be army units, classrooms, vehicle occupants, or any other group whose members are exposed
to the intervention simultaneously. The scientific foundation of experiments using such interven-
tions is identical to that of community intervention trials. What sets all these studies apart from
field trials is that the interventions are assigned to groups rather than to individuals.

Field trials in which the treatment is assigned randomly to groups of participants are said to be
cluster randomized. The larger the size of the group to be randomized relative to the total study size,
the less is accomplished by random assignment. If only two communities are involved in a study,
one of which will receive the intervention and the other of which will not, such as in the Newburgh–
Kingston water fluoridation trial (Ast et al., 1956), it cannot matter whether the community that
receives the fluoride is assigned randomly or not. Differences in baseline (extraneous) characteristics
will have the same magnitude and the same effect whatever the method of assignment—only the
direction of the differences will be affected. It is only when the numbers of groups randomized to
each intervention are large that randomization is likely to produce similar distributions of baseline
characteristics among the intervention groups. Analysis of cluster randomized trials should thus
involve methods that take account of the clustering (Omar and Thompson, 2000; Turner et al., 2001;
Spiegelhalter, 2001), which are essential to estimate properly the amount of variability introduced
by the randomization (given a hypothesis about the size of the treatment effects).

NONEXPERIMENTAL STUDIES

The limitations imposed by ethics and costs restrict most epidemiologic research to nonexperimental
studies. Although it is unethical for an investigator to expose a person to a potential cause of disease
simply to learn about etiology, people often willingly or unwillingly expose themselves to many
potentially harmful factors. Consider the example of cigarettes (MacMahon, 1979):

[People] choose a broad range of dosages of a variety of potentially toxic substances. Consider the
cigarette habit to which hundreds of millions of persons have exposed themselves at levels ranging
from almost zero (for those exposed only through smoking by others) to the addict’s three or four
cigarettes per waking hour, and the consequent two million or more deaths from lung cancer in the
last half century in this country alone.

Beyond tobacco, people in industrialized nations expose themselves, among other things, to a
range of exercise regimens from sedentary to grueling, to diets ranging from vegan to those derived
almost entirely from animal sources, and to medical interventions for diverse conditions. Each
of these exposures may have intended and unintended consequences that can be investigated by
observational epidemiology.

Ideally, we would want the strength of evidence from nonexperimental research to be as high
as that obtainable from a well-designed experiment, had one been possible. In an experiment,
however, the investigator has the power to assign exposures in a way that enhances the validity of
the study, whereas in nonexperimental research the investigator cannot control the circumstances of
exposure. If those who happen to be exposed have a greater or lesser risk for the disease than those
who are not exposed, a simple comparison between exposed and unexposed will be confounded by
this difference and thus not reflect validly the sole effect of the exposure. The comparison will be
confounded by the extraneous differences in risk across the exposure groups (i.e., differences that
are not attributable to the exposure contrast under study).

Lack of randomization calls into question the standard practice of analyzing nonexperimental
data with statistical methods developed for randomized studies. Without randomization, systematic
variation is a composite of all uncontrolled sources of variation—including any treatment effect—
but also including confounding factors and other sources of systematic error. As a result, in studies
without randomization, the systematic variation estimated by standard statistical methods is not
readily attributable to treatment effects, nor can it be reliably compared with the variation expected
to occur by chance. Separation of treatment effects from the mixture of uncontrolled systematic
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variation in nonrandomized studies (or in randomized studies with noncompliance) requires addi-
tional hypotheses about the sources of systematic error. In nonexperimental studies, these hypotheses
are usually no more than speculations, although they can be incorporated into the analysis as prior
distributions in Bayesian analysis or as parameter settings in a bias analysis (Chapters 18 and 19).
In this sense, causal inference in the absence of randomization is largely speculative. The valid-
ity of such inference depends on how well the speculations about the effect of systematic errors
correspond with their true effect.

Because the investigator cannot assign exposure in nonexperimental studies, he or she must rely
heavily on the primary source of discretion that remains: the selection of subjects. If the paradigm
of scientific observation is the experiment, then the paradigm of nonexperimental epidemiologic
research is the “natural experiment,” in which nature emulates the sort of experiment the investigator
might have conducted, but for ethical and cost constraints. By far the most renowned example is the
elegant study of cholera in London conducted by John Snow. In London during the mid-19th century,
there were several water companies that piped drinking water to residents, and these companies
often competed side by side, serving similar clientele within city districts. Snow took advantage of
this natural experiment by comparing the cholera mortality rates for residents subscribing to two of
the major water companies: the Southwark and Vauxhall Company, which piped impure Thames
River water contaminated with sewage, and the Lambeth Company, which in 1852 changed its
collection point from opposite Hungerford Market to Thames Ditton, thus obtaining a supply of
water that was free of the sewage of London. As Snow (1855) described it,

. . . the intermixing of the water supply of the Southwark and Vauxhall Company with that of the
Lambeth Company, over an extensive part of London, admitted of the subject being sifted in such a
way as to yield the most incontrovertible proof on one side or the other. In the subdistricts. . .
supplied by both companies, the mixing of the supply is of the most intimate kind. The pipes of each
company go down all the streets, and into nearly all the courts and alleys. A few houses are supplied
by one company and a few by the other, according to the decision of the owner or occupier at the
time when the Water Companies were in active competition. In many cases a single house has a
supply different from that on either side. Each company supplies both rich and poor, both large
houses and small; there is no difference in either the condition or occupation of the persons receiving
the water of the different companies. . . it is obvious that no experiment could have been devised
which would more thoroughly test the effect of water supply on the progress of cholera than this.

The experiment, too, was on the grandest scale. No fewer than three hundred thousand people of
both sexes, of every age and occupation, and of every rank and station, from gentle folks down to the
very poor, were divided into two groups without their choice, and, in most cases, without their
knowledge; one group being supplied with water containing the sewage of London, and amongst it,
whatever might have come from the cholera patients, the other group having water quite free from
impurity.

To turn this experiment to account, all that was required was to learn the supply of water to each
individual house where a fatal attack of cholera might occur. . . .

There are two primary types of nonexperimental studies in epidemiology. The first, the cohort
study (also called the follow-up study or incidence study), is a direct analog of the experiment.
Different exposure groups are compared, but (as in Snow’s study) the investigator only selects
subjects to observe, and only classifies these subjects by exposure status, rather than assigning them
to exposure groups. The second, the incident case-control study, or simply the case-control study,
employs an extra step of sampling from the source population for cases: Whereas a cohort study
would include all persons in the population giving rise to the study cases, a case-control study
selects only a sample of those persons and chooses who to include in part based on their disease
status. This extra sampling step can make a case-control study much more efficient than a cohort
study of the same population, but it introduces a number of subtleties and avenues for bias that are
absent in typical cohort studies.

More detailed discussions of both cohort and case-control studies and their variants, with specific
examples, are presented in Chapters 7 and 8. We provide here brief overviews of the designs.

COHORT STUDIES

In the paradigmatic cohort study, the investigator defines two or more groups of people that are free
of disease and that differ according to the extent of their exposure to a potential cause of disease.
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These groups are referred to as the study cohorts. When two groups are studied, one is usually
thought of as the exposed or index cohort—those individuals who have experienced the putative
causal event or condition—and the other is then thought of as the unexposed, or reference cohort.
There may be more than just two cohorts, but each cohort would represent a group with a different
level or type of exposure. For example, an occupational cohort study of chemical workers might
comprise cohorts of workers in a plant who work in different departments of the plant, with each
cohort being exposed to a different set of chemicals. The investigator measures the incidence times
and rates of disease in each of the study cohorts, and compares these occurrence measures.

In Snow’s natural experiment, the study cohorts were residents of London who consumed water
from either the Lambeth Company or the Southwark and Vauxhall Company and who lived in
districts where the pipes of the two water companies were intermixed. Snow was able to estimate
the frequency of cholera deaths, using households as the denominator, separately for people in each
of the two cohorts (Snow, 1855):

According to a return which was made to Parliament, the Southwark and Vauxhall Company
supplied 40,046 houses from January 1 to December 31, 1853, and the Lambeth Company supplied
26,107 houses during the same period; consequently, as 286 fatal attacks of cholera took place, in
the first four weeks of the epidemic, in houses supplied by the former company, and only 14 in
houses supplied by the latter, the proportion of fatal attacks to each 10,000 houses was as follows:
Southwark and Vauxhall 71, Lambeth 5. The cholera was therefore fourteen times as fatal at this
period, amongst persons having the impure water of the Southwark and Vauxhall Company, as
amongst those having the purer water from Thames Ditton.

Many cohort studies begin with but a single cohort that is heterogeneous with respect to exposure
history. Comparisons of disease experience are made within the cohort across subgroups defined
by one or more exposures. Examples include studies of cohorts defined from membership lists
of administrative or social units, such as cohorts of doctors or nurses, or cohorts defined from
employment records, such as cohorts of factory workers.

CASE-CONTROL STUDIES

Case-control studies are best understood and conducted by defining a source population at the
outset, which represents a hypothetical study population in which a cohort study might have been
conducted, and by identifying a single disease of interest. If a cohort study were undertaken, the
primary tasks would be to identify the exposed and unexposed denominator experience, measured in
person-time units of experience or as the number of people in each study cohort, and then to identify
the number of cases occurring in each person-time category or study cohort. In a case-control study,
these same cases are identified and their exposure status is determined just as in a cohort study, but
denominators from which rates could be calculated are not measured. Instead, a control group of
study subjects is sampled from the entire source population that gave rise to the cases.

The purpose of this control group is to determine the relative size of the exposed and unexposed
denominators within the source population. Just as we can attempt to measure either risks or rates in
a cohort, the denominators that the control series represents in a case-control study may reflect either
the number of people in the exposed and unexposed subsets of the source population, or the amount
of person-time in the exposed and unexposed subsets of the source population (Chapter 8). From the
relative size of these denominators, the relative size of the incidence rates or incidence proportions
can then be estimated. Thus, case-control studies yield direct estimates of relative effect measures.
Because the control group is used to estimate the distribution of exposure in the source population,
the cardinal requirement of control selection is that the controls must be sampled independently of
their exposure status.

PROSPECTIVE VERSUS RETROSPECTIVE STUDIES

Studies can be classified further as either prospective or retrospective, although several definitions
have been used for these terms. Early writers defined prospective and retrospective studies to denote
cohort and case-control studies, respectively. Using the terms prospective and retrospective in this
way conveys no additional information and fails to highlight other important aspects of a study for
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which the description prospective or retrospective might be illuminating, and therefore a different
usage developed.

A central feature of study design that can be highlighted by the distinction between prospective
and retrospective is the order in time of the recording of exposure information and the occurrence
of disease. In some studies, in particular, those in which the exposure is measured by asking
people about their history of exposure, it is possible that the occurrence of disease could influence
the recording of exposure and bias the study results, for example, by influencing recall. A study
based on such recall is one that merits the label retrospective, at least with respect to the recording
of exposure information, and perhaps for the study as a whole. Assessing exposure by recall after
disease has occurred is a feature of many case-control studies, which may explain why case-control
studies are often labeled retrospective. A study with retrospective measurement in this sense is
subject to the concern that disease occurrence or diagnosis has affected exposure evaluation.

Nevertheless, not all case-control studies involve recall. For example, case-control studies that
evaluate drug exposures have prospective measurement if the information on the exposures and other
risk factors is taken from medical records or exposure registries that predate disease development.
These case-control studies may be more appropriately described as prospective, at least with respect
to exposure measurement.

Not all study variables need be measured simultaneously. Some studies may combine prospective
measurement of some variables with retrospective measurement of other variables. Such studies
might be viewed as being a mixture of prospective and retrospective measurements. A reasonable
rule might be to describe a study as prospective if the exposure measurement could not be influ-
enced by the disease, and retrospective otherwise. This rule could lead to a study with a mixture
of prospectively and retrospectively measured variables being described differently for different
analyses, and appropriately so.

The access to data may affect study validity as much as the recording of the data. Historical
ascertainment has implications for selection and missing-data bias insofar as records or data may
be missing in a systematic fashion. For example, preserving exposure information that has been
recorded in the past (that is, prospectively) may depend on disease occurrence, as might be the case
if occupational records were destroyed except for workers who have submitted disability claims.
Thus, prospectively recorded information might have a retrospective component to its inclusion in
a study, if inclusion depends on disease occurrence. In determining whether the information in a
study is prospectively or retrospectively obtained, the possibility that disease could influence either
the recording of the data or its entry path into the study should be considered.

The terms prospective and retrospective have also been used to refer to the timing of the accu-
mulated person-time with respect to the study’s conduct. Under this usage, when the person-time
accumulates before the study is conducted, it said to be a retrospective study, even if the exposure
status was recorded before the disease occurred. When the person-time accumulates after the study
begins, it is said to be a prospective study; in this situation, exposure status is ordinarily recorded
before disease occurrence, although there are exceptions. For example, job status might be recorded
for an occupational cohort at the study’s inception and as workers enter the cohort, but an industrial
hygienist might assign exposure levels to the job categories only after the study is completed and
therefore after all cases of disease have occurred. The potential then exists for disease to influence
the industrial hygienist’s assignment.

Additional nuances can similarly complicate the classification of studies as retrospective or
prospective with respect to study conduct. For example, cohort studies can be conducted by mea-
suring disease events after the study begins, by defining cohorts as of some time in the past and
measuring the occurrence of disease in the time before the study begins, or a combination of the
two. Similarly, case-control studies can be based on disease events that occur after the study begins,
or events that have occurred before the study begins, or a combination. Thus, either cohort or case-
control studies can ascertain events either prospectively or retrospectively from the point of view of
the time that the study begins. According to this usage, prospective and retrospective describe the
timing of the events under study in relation to the time the study begins or ends: Prospective refers
to events concurrent with the study, and retrospective refers to use of historical events.

These considerations demonstrate that the classification of studies as prospective or retrospective
is not straightforward, and that these terms do not readily convey a clear message about the study.
The most important study feature that these terms might illuminate would be whether the disease
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could influence the exposure information in the study, and this is the usage that we recommend.
Prospective and retrospective will then be terms that could each describe some cohort studies
and some case-control studies. Under the alternative definitions, studies labeled as “retrospective”
might actually use methods that preclude the possibility that exposure information could have been
influenced by disease, and studies labeled as “prospective” might actually use methods that do not
exclude that possibility. Because the term retrospective often connotes an inherently less reliable
design and the term prospective often connotes an inherently more reliable design, assignment of
the classification under the alternative definitions does not always convey accurately the strengths or
weaknesses of the design. Chapter 9 discusses further the advantages and drawbacks of concurrent
and historical data and of prospective and retrospective measurement.

CROSS-SECTIONAL STUDIES

A study that includes as subjects all persons in the population at the time of ascertainment or a
representative sample of all such persons, selected without regard to exposure or disease status,
is usually referred to as a cross-sectional study. A cross-sectional study conducted to estimate
prevalence is called a prevalence study. Usually, exposure is ascertained simultaneously with the
disease, and different exposure subpopulations are compared with respect to their disease prevalence.
Such studies need not have etiologic objectives. For example, delivery of health services often
requires knowledge only of how many items will be needed (such as number of hospital beds),
without reference to the causes of the disease. Nevertheless, cross-sectional data are so often used
for etiologic inferences that a thorough understanding of their limitations is essential.

One problem is that such studies often have difficulty determining the time order of events
(Flanders et al., 1992). Another problem, often called length-biased sampling (Simon, 1980a), is
that the cases identified in a cross-sectional study will overrepresent cases with long duration and
underrepresent those with short duration of illness. To see this, consider two extreme situations
involving a disease with a highly variable duration. A person contracting this disease at age 20 and
living until age 70 can be included in any cross-sectional study during the person’s 50 years of
disease. A person contracting the disease at age 40 and dying within a day has almost no chance
of inclusion. Thus, if the exposure does not alter disease risk but causes the disease to be mild and
prolonged when contracted (so that exposure is positively associated with duration), the prevalence
of exposure will be elevated among cases. As a result, a positive exposure–disease association will
be observed in a cross-sectional study, even though exposure has no effect on disease risk and
would be beneficial if disease occurs. If exposure does not alter disease risk but causes the disease
to be rapidly fatal if it is contracted (so that exposure is negatively associated with duration), then
prevalence of exposure will be very low among cases. As a result, the exposure–disease association
observed in the cross-sectional study will be negative, even though exposure has no effect on disease
risk and would be detrimental if disease occurs. There are analytic methods for dealing with the
potential relation of exposure to duration (e.g., Simon, 1980a). These methods require either the
diagnosis dates of the study cases or information on the distribution of durations for the study
disease at different exposure levels; such information may be available from medical databases.

Cross-sectional studies may involve sampling subjects differentially with respect to disease
status to increase the number of cases in the sample. Such studies are sometimes called prevalent
case-control studies, because their design is much like that of incident case-control studies, except
that the case series comprises prevalent rather than incident cases (Morgenstern and Thomas, 1993).

PROPORTIONAL MORTALITY STUDIES

A proportional mortality study includes only dead subjects. The proportions of dead exposed subjects
assigned to index causes of death are compared with the proportions of dead unexposed subjects
assigned to the index causes. The resulting proportional mortality ratio (abbreviated PMR) is the
traditional measure of the effect of the exposure on the index causes of death. Superficially, the
comparison of proportions of subjects dying from a specific cause for an exposed and an unexposed
group resembles a cohort study measuring incidence. The resemblance is deceiving, however,
because a proportional mortality study does not involve the identification and follow-up of cohorts.
All subjects are dead at the time of entry into the study.
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The premise of a proportional mortality study is that if the exposure causes (or prevents) a specific
fatal illness, there should be proportionately more (or fewer) deaths from that illness among dead
people who had been exposed than among dead people who had not been exposed. This reasoning
suffers two important flaws. First, a PMR comparison cannot distinguish whether exposure increases
the occurrence of the index causes of death, prevents the occurrence of other causes of death, or
some mixture of these effects (McDowall, 1983). For example, a proportional mortality study could
find a proportional excess of cancer deaths among heavy aspirin users compared with nonusers
of aspirin, but this finding might be attributable to a preventive effect of aspirin on cardiovascular
deaths, which compose the great majority of noncancer deaths. Thus, an implicit assumption of a
proportional mortality study of etiology is that the overall death rate for categories other than the
index is not related to the exposure.

The second major problem in mortality comparisons is that they cannot determine the extent
to which exposure causes the index causes of death or worsens the prognosis of the illnesses
corresponding to the index causes. For example, an association of aspirin use with stroke deaths
among all deaths could be due to an aspirin effect on the incidence of strokes, an aspirin effect on
the severity of strokes, or some combination of these effects.

The ambiguities in interpreting a PMR are not necessarily a fatal flaw, because the mea-
sure will often provide insights worth pursuing about causal relations. In many situations, there
may be only one or a few narrow causes of death that are of interest, and it may be judged
implausible that an exposure would substantially affect either the prognosis or occurrence of
any nonindex deaths. Nonetheless, many of the difficulties in interpreting proportional mortal-
ity studies can be mitigated by considering a proportional mortality study as a variant of the
case-control study. To do so requires conceptualizing a combined population of exposed and un-
exposed individuals in which the cases occurred. The cases are those deaths, both exposed and
unexposed, in the index category or categories; the controls are other deaths (Miettinen and Wang,
1981).

The principle of control series selection is to choose individuals who represent the source pop-
ulation from which the cases arose, to learn the distribution of exposure within that population.
Instead of sampling controls directly from the source population, we can sample deaths occurring
in the source population, provided that the exposure distribution among the deaths sampled is the
same as the distribution in the source population; that is, the exposure should not be related to the
causes of death among controls (McLaughlin et al., 1985). If we keep the objectives of control
selection in mind, it becomes clear that we are not bound to select as controls all deaths other
than index cases. We can instead select as controls a limited set of reference causes of death,
selected on the basis of a presumed lack of association with the exposure. In this way, other
causes of death for which a relation with exposure is known, suspected, or merely plausible can be
excluded.

The principle behind selecting the control causes of death for inclusion in the study is identical
to the principle of selecting a control series for any case-control study: The control series should
be selected independently of exposure, with the aim of estimating the proportion of the source
population experience that is exposed, as in density case-control studies (Chapter 8). Deaths from
causes that are not included as part of the control series may be excluded from the study or may be
studied as alternative case groups.

Treating a proportional mortality study as a case-control study can thus enhance study validity.
It also provides a basis for estimating the usual epidemiologic measures of effect that can be derived
from such studies (Wang and Miettinen, 1982). Largely for these reasons, proportional mortality
studies are increasingly described and conducted as case-control studies. The same type of design
and analysis has reappeared in the context of analyzing spontaneously reported adverse events in
connection with pharmaceutical use. The U.S. Food and Drug Administration maintains a database
of spontaneous reports, the Adverse Event Reporting System (AERS) (Rodriguez et al., 2001),
which has been a data source for studies designed to screen for associations between drugs and
previously unidentified adverse effects using empirical Bayes techniques (DuMouchel, 1999). Evans
et al. (2001) proposed that these data should be analyzed in the same way that mortality data had
been analyzed in proportional mortality studies, using a measure that they called the proportional
reporting ratio, or PRR, which was analogous to the PMR in proportional mortality studies. This
approach, however, is subject to the same problems that accompanied the PMR. As with the PMR,
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these problems can be mitigated by applying the principles of case-control studies to the task of
surveillance of spontaneous report data (Rothman et al., 2004).

ECOLOGIC STUDIES

All the study types described thus far share the characteristic that the observations made pertain
to individuals. It is possible, and sometimes necessary, to conduct research in which the unit of
observation is a group of people rather than an individual. Such studies are called ecologic or
aggregate studies. The groups may be classes in a school, factories, cities, counties, or nations. The
only requirement is that information on the populations studied is available to measure the exposure
and disease distributions in each group. Incidence or mortality rates are commonly used to quantify
disease occurrence in groups. Exposure is also measured by an overall index; for example, county
alcohol consumption may be estimated from alcohol tax data, information on socioeconomic status
is available for census tracts from the decennial census, and environmental data (temperature, air
quality, etc.) may be available locally or regionally. These environmental data are examples of
exposures that are measured by necessity at the level of a group, because individual-level data are
usually unavailable and impractical to gather.

When exposure varies across individuals within the ecologic groups, the degree of associa-
tion between exposure and disease need not reflect individual-level associations (Firebaugh, 1978;
Morgenstern, 1982; Richardson et al., 1987; Piantadosi et al., 1988; Greenland and Robins, 1994;
Greenland, 2001a, 2002b; Chapter 25). In addition, use of proxy measures for exposure (e.g., alcohol
tax data rather than consumption data) and disease (mortality rather than incidence) further distort
the associations (Brenner et al., 1992b). Finally, ecologic studies usually suffer from unavailability
of data necessary for adequate control of confounding in the analysis (Greenland and Robins, 1994).
Even if the research goal is to estimate effects of group-level exposures on group-level outcomes,
problems of data inadequacy as well as of inappropriate grouping can severely bias estimates from
ecologic studies (Greenland, 2001a, 2002b, 2004a). All of these problems can combine to pro-
duce results of questionable validity on any level. Despite such problems, ecologic studies can be
useful for detecting associations of exposure distributions with disease occurrence, because such
associations may signal the presence of effects that are worthy of further investigation. A detailed
discussion of ecologic studies is presented in Chapter 25.

HYPOTHESIS GENERATION VERSUS HYPOTHESIS SCREENING

Studies in which validity is less secure have sometimes been referred to as “hypothesis-generating”
studies to distinguish them from “analytic studies,” in which validity may be better. Ecologic
studies have often been considered as hypothesis-generating studies because of concern about
various biases. The distinction, however, between hypothesis-generating and analytic studies is
not conceptually accurate. It is the investigator, not the study, that generates hypotheses, and any
type of data may be used to test hypotheses. For example, international comparisons indicate that
Japanese women have a much lower breast cancer rate than women in the United States. These
data are ecologic and subject to the usual concerns about the many differences that exist between
cultures. Nevertheless, the finding corroborates a number of hypotheses, including the theories
that early menarche, high-fat diets, and large breast size (all more frequent among U.S. women
than Japanese women) may be important determinants of breast cancer risk (e.g., see Trichopou-
los and Lipman, 1992). The international difference in breast cancer rates is neither hypothesis-
generating nor analytic, for the hypotheses arose independently of this finding. Thus, the distinction
between hypothesis-generating and analytic studies is one that is best replaced by a more accurate
distinction.

A proposal that we view favorably is to refer to preliminary studies of limited validity or precision
as hypothesis-screening studies. In analogy with screening of individuals for disease, such studies
represent a relatively easy and inexpensive test for the presence of an association between exposure
and disease. If such an association is detected, it is subject to more rigorous and costly tests using
a more valid study design, which may be called a confirmatory study. Although the screening
analogy should not be taken to an extreme, it does better describe the progression of studies than
the hypothesis-generating/analytic study distinction.
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The goal of a cohort study is to measure and usually to compare the incidence of disease in one
or more study cohorts. As discussed in Chapter 3, the word cohort designates a group of people
who share a common experience or condition. For example, a birth cohort shares the same year
or period of birth, a cohort of smokers has the experience of smoking in common, and a cohort
of vegetarians share their dietary habit. Often, if there are two cohorts in the study, one of them is
described as the exposed cohort—those individuals who have experienced a putative causal event
or condition—and the other is thought of as the unexposed, or reference, cohort. If there are more
than two cohorts, each may be characterized by a different level or type of exposure.

The present chapter focuses on basic elements for the design and conduct of cohort studies.
Further considerations for the design of cohort studies are given in Chapters 9 through 11, whereas
analysis methods applicable to cohort studies are given in Chapters 14 through 21. Many special
aspects of exposure assessment that are not covered here can be found in Armstrong et al. (1992).

DEFINITION OF COHORTS AND EXPOSURE GROUPS

In principle, a cohort study could be used to estimate average risks, rates, or occurrence times. Except
in certain situations, however, average risks and occurrence times cannot be measured directly from
the experience of a cohort. Observation of average risks or times of specific events requires that the
whole cohort remain at risk and under observation for the entire follow-up period. Loss of subjects
during the study period prevents direct measurements of these averages, because the outcome of
lost subjects is unknown. Subjects who die from competing risks (outcomes other than the one
of interest) likewise prevent the investigator from estimating conditional risks (risk of a specific
outcome conditional on not getting other outcomes) directly. Thus, the only situation in which it
is feasible to measure average risks and occurrence times directly is in a cohort study, in which
there is little or no loss to follow-up and little competing risk. Although some clinical trials provide
these conditions, many epidemiologic studies do not. When losses and competing risks do occur,

100
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one may still estimate the incidence rate directly, whereas average risk and occurrence time must
be estimated using survival (life-table) methods (see Chapters 3 and 16).

Unlike average risks, which are measured with individuals as the unit in the denominator, inci-
dence rates have person-time as the unit of measure. The accumulation of time rather than individuals
in the denominator of rates allows flexibility in the analysis of cohort studies. Whereas studies that
estimate risk directly are tied conceptually to the identification of specific cohorts of individuals,
studies that measure incidence rates can, with certain assumptions, define the comparison groups
in terms of person-time units that do not correspond to specific cohorts of individuals. A given
individual can contribute person-time to one, two, or more exposure groups in a given study, be-
cause each unit of person-time contributed to follow-up by a given individual possesses its own
classification with respect to exposure. Thus, an individual whose exposure experience changes
with time can, depending on details of the study hypothesis, contribute follow-up time to several
different exposure-specific rates. In such a study, the definition of each exposure group corresponds
to the definition of person-time eligibility for each level of exposure.

As a result of this focus on person-time, it does not always make sense to refer to the members of
an exposure group within a cohort study as if the same set of individuals were exposed at all points in
time. The terms open population or dynamic population describe a population in which the person-
time experience can accrue from a changing roster of individuals (see Chapter 3). (Sometimes the
term open cohort or dynamic cohort is used, but this usage conflicts with other usage in which
a cohort is a fixed roster of individuals.) For example, the incidence rates of cancer reported by
the Connecticut Cancer Registry come from the experience of an open population. Because the
population of residents of Connecticut is always changing, the individuals who contribute to these
rates are not a specific set of people who are followed through time.

When the exposure groups in a cohort study are defined at the start of follow-up, with no
movement of individuals between exposure groups during the follow-up, the groups are sometimes
called fixed cohorts. The groups defined by treatment allocation in clinical trials are examples of
fixed cohorts. If the follow-up of fixed cohorts suffers from losses to follow-up or competing risks,
incidence rates can still be measured directly and used to estimate average risks and incidence times.
If no losses occur from a fixed cohort, the cohort satisfies the definition of a closed population (see
Chapter 3) and is often called a closed cohort. In such cohorts, unconditional risks (which include
the effect of competing risks) and average survival times can be estimated directly.

In the simplest cohort study, the exposure would be a permanent and easily identifiable condition,
making the job of assigning subjects to exposed and unexposed cohorts a simple task. Unfortunately,
exposures of interest to epidemiologists are seldom constant and are often difficult to measure. Con-
sider as an example the problems of identifying for study a cohort of users of a specific prescription
drug. To identify the users requires a method for locating those who receive or who fill prescriptions
for the drug. Without a record-keeping system of prescriptions, it becomes a daunting task. Even
with a record system, the identification of those who receive or even those who fill a prescription
is not equivalent to the identification of those who actually use the drug. Furthermore, those who
are users of this drug today may not be users tomorrow, and vice versa. The definition of drug use
must be tied to time because exposure can change with time. Finally, the effect of the drug that is
being studied may be one that involves a considerable induction period. In that case, the exposure
status at a given time will relate to a possible increase or decrease in disease risk only at some later
time. Thus, someone who began to take the drug today might experience a drug-related effect in 10
years, but there might be no possibility of any drug-related effect for the first 5 years after exposure.

It is tempting to think of the identification of study cohorts as simply a process of identifying and
classifying individuals as to their exposure status. The process can be complicated, however, by the
need to classify the experience of a single individual in different exposure categories at different
times. If the exposure can vary over time, at a minimum the investigator needs to allow for the
time experienced by each study subject in each category of exposure in the definition of the study
cohorts. The sequence or timing of exposure could also be important. If there can be many possible
exposure sequences, each individual could have a unique sequence of exposure levels and so define
a unique exposure cohort containing only that individual.

A simplifying assumption that is common in epidemiologic analysis is that the only aspect of
exposure that determines current risk is some simple numeric summary of exposure history. Typical
summaries include current level of exposure, average exposure, and cumulative exposure, that is,
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the sum of each exposure level multiplied by the time spent at that level. Often, exposure is lagged
in the summary, which means that only exposure at or up to some specified time before the current
time is counted. Although one has enormous flexibility in defining exposure summaries, methods
based on assuming that only a single summary is relevant can be severely biased under certain
conditions (Robins, 1987). For now, we will assume that a single summary is an adequate measure
of exposure. With this assumption, cohort studies may be analyzed by defining the cohorts based
on person-time rather than on persons, so that a person may be a member of different exposure
cohorts at different times. We nevertheless caution the reader to bear in mind the single-summary
assumption when interpreting such analyses.

The time that an individual contributes to the denominator of one or more of the incidence rates
in a cohort study is sometimes called the time at risk, in the sense of being at risk for development of
the disease. Some people and, consequently, all their person-time are not at risk for a given disease
because they are immune or they lack the target organ for the study disease. For example, women
who have had a hysterectomy and all men are by definition not at risk for uterine cancer, because
they have no uterus.

CLASSIFYING PERSON-TIME

The main guide to the classification of persons or person-time is the study hypothesis, which should
be defined in as much detail as possible. If the study addresses the question of the extent to which
eating carrots will reduce the subsequent risk of lung cancer, the study hypothesis is best stated
in terms of what quantity of carrots consumed over what period of time will prevent lung cancer.
Furthermore, the study hypothesis should specify an induction time between the consumption of a
given amount of carrots and the subsequent effect: The effect of the carrot consumption could take
place immediately, begin gradually, or begin only after a delay, and it could extend beyond the time
that an individual might cease eating carrots (Rothman, 1981).

In studies with chronic exposures (i.e., exposures that persist over an extended period of time),
it is easy to confuse the time during which exposure occurs with the time at risk of exposure effects.
For example, in occupational studies, time of employment is sometimes confused with time at
risk for exposure effects. The time of employment is a time during which exposure accumulates.
In contrast, the time at risk for exposure effects must logically come after the accumulation of a
specific amount of exposure, because only after that time can disease be caused or prevented by
that amount of exposure. The lengths of these two time periods have no constant relation to one
another. The time at risk of effects might well extend beyond the end of employment. It is only the
time at risk of effects that should be tallied in the denominator of incidence rates for that amount
of exposure.

The distinction between time of exposure accrual and the time at risk of exposure effects is easier
to see by considering an example in which exposure is very brief. In studies of the delayed effects
of exposure to radiation emitted from the atomic bomb, the exposure was nearly instantaneous, but
the risk period during which the exposure has had an effect has been very long, perhaps lifelong,
although the risk for certain diseases did not increase immediately after exposure. Cancer risk after
the radiation exposure increased only after a minimum induction period of several years, depending
on the cancer. The incidence rates of cancer among those exposed to high doses of radiation from
the bomb can be calculated separately for different times following exposure, so that one may detect
elevations specific to the induction period addressed by the study hypothesis. Without stratification
by time since exposure, the incidence rate measured among those exposed to the bomb would be
an average rate reflecting periods of exposure effect and periods with no effect, because they would
include in the denominator some experience of the exposed cohort that corresponds to time in which
there was no increased risk from the radiation.

How should the investigator study hypotheses that do not specify induction times? For these,
the appropriate time periods on which to stratify the incidence rates are unclear. There is no way to
estimate exposure effects, however, without making some assumption, implicitly or explicitly, about
the induction time. The decision about what time to include for a given individual in the denominator
of the rate corresponds to the assumption about induction time. If in a study of delayed effects in
survivors of the atomic bombs in Japan, the denominator of the rate included time experienced
by study subjects beginning on the day after the exposure, the rate would provide a diluted effect
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estimate unless the induction period (including the “latent” period) had a minimum of only 1 day.
It might be more appropriate to allow for a minimum induction time of some months or years after
the bomb explosion.

What if the investigator does not have any basis for hypothesizing a specific induction period?
It is possible to learn about the period by estimating effects according to categories of time since
exposure. For example, the incidence rate of leukemia among atomic bomb survivors relative to
that among those who were distant from the bomb at the time of the explosion can be examined
according to years since the explosion. In an unbiased study, we would expect the effect estimates
to rise above the null value when the minimum induction period has passed. This procedure works
best when the exposure itself occurs at a point or narrow interval of time, but it can be used even
if the exposure is chronic, as long as there is a model to describe the amount of time that must
pass before a given accumulation of exposure would begin to have an effect. More sophisticated
approaches for analyzing induction time are discussed in Chapter 16.

CHRONIC EXPOSURES

The definition of chronic exposure based on anticipated effects is more complicated than when
exposure occurs only at a point in time. We may conceptualize a period during which the exposure
accumulates to a sufficient extent to trigger a step in the causal process. This accumulation of
exposure experience may be a complex function of the intensity of the exposure and time. The
induction period begins only after the exposure has reached this hypothetical triggering point, and
that point will likely vary across individuals. Occupational epidemiologists have often measured
the induction time for occupational exposure from the time of first exposure, but this procedure
involves the extreme assumption that the first contact with the exposure can be sufficient to produce
disease. Whatever assumption is adopted, it should be made an explicit part of the definition of the
cohort and the period of follow-up.

Let us consider the steps to take to identify study cohorts when exposure is chronic. First, the
investigator must determine how many exposure groups will be studied and determine the definitions
for each of the exposure categories. The definition of exposure level could be based on the maximum
intensity of exposure experienced, the average intensity over a period of time, or some cumulative
amount of exposure. A familiar measure of cigarette smoking is the measure “pack-years,” which is
the product of the number of packs smoked per day and the number of years smoked. This measure
indexes the cumulative number of cigarettes smoked, with one pack-year equal to the product
of 20 cigarettes per pack and 365 days, or 7,300 cigarettes. Cumulative indices of exposure and
time-weighted measures of average intensity of exposure are both popular methods for measuring
exposure in occupational studies. These exposure definitions should be linked to the time period of
an exposure effect, according to the study hypothesis, by explicitly taking into account the induction
period.

In employing cumulative or average exposure measures, one should recognize the composite
nature of the measures and, if possible, separately analyze the components. For example, pack-years
is a composite of duration and intensity of smoking: 20 pack-years might represent half a pack a day
for 40 years, one pack a day for 20 years, or two packs a day for 10 years, as well as innumerable
other combinations. If the biologic effects of these combinations differ to an important degree, use
of pack-years would conceal these differences and perhaps even present a misleading impression
of dose–response patterns (Lubin and Caporaso, 2006). Supplemental analyses of smoking as two
exposure variables, duration (years smoked) and intensity (packs smoked per day), would provide
a safeguard against inadequacies of the pack-years analysis. Other exposure variables that are not
accounted for by duration and intensity, such as age at start of exposure, age at cessation of exposure,
and timing of exposure relative to disease (induction or lag period), may also warrant separation in
the analyses.

Let us look at a simplified example. Suppose the study hypothesis is that smoking increases
the risk for lung cancer with a minimum induction time of 5 years. For a given smoking level, the
time experienced by a subject is not “exposed” person-time until the individual has reached that
level and then an additional 5 years have passed. Only then is the lung cancer experience of that
individual related to smoking according to the study hypothesis. The definition of the study co-
hort with 20 pack-years of smoking will be the person-time experience of exposed individuals
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beginning 5 years after they have smoked 20 pack-years. Note that if the cohort study measures
incidence rates, which means that it allocates the person-time of the individual study subjects,
exposure groups are defined by person-time allocation rather than by rosters of individual subjects.
Analysis of these rates depends on the assumption that only “current” exposure, defined as having
smoked 20 pack-years as of 5 years ago, is relevant and that other aspects of exposure history, such
as amount smoked after 5 years ago, are irrelevant.

UNEXPOSED TIME IN EXPOSED SUBJECTS

What happens to the time experienced by exposed subjects that does not meet the definition of time
at risk of exposure effects according to the study hypothesis? Specifically, what happens to the time
after the exposed subjects become exposed and before the minimum induction has elapsed, or after a
maximum induction time has passed? Two choices are reasonable for handling this experience. One
possibility is to consider any time that is not related to exposure as unexposed time and to apportion
that time to the study cohort that represents no exposure. Possible objections to this approach would
be that the study hypothesis may be based on guesses about the threshold for exposure effects and
the induction period and that time during the exposure accumulation or induction periods may in
fact be at risk of exposure effects. To treat the latter experience as not at risk of exposure effects
may then lead to an underestimate of the effect of exposure (see Chapter 8 for a discussion of
misclassification of exposure). Alternatively, one may simply omit from the study the experience
of exposed subjects that is not at risk of exposure effects according to the study hypothesis. For
this alternative to be practical, there must be a reasonably large number of cases observed among
subjects with no exposure.

For example, suppose a 10-year minimum induction time is hypothesized. For individuals fol-
lowed from start of exposure, this hypothesis implies that no exposure effect can occur within the first
10 years of follow-up. Only after the first 10 years of follow-up can an individual experience disease
due to exposure. Therefore, under the hypothesis, only person-time occurring after 10 years of expo-
sure should contribute to the denominator of the rate among exposed. If the hypothesis were correct,
we should assign the first 10 years of follow-up to the denominator of the unexposed rate. Suppose,
however, that the hypothesis were wrong and exposure could produce cases in less than 10 years.
Then, if the cases and person-time from the first 10 years of follow-up were added to the unexposed
cases and person-time, the resulting rate would be biased toward the rate in the exposed, thus reducing
the apparent differences between the exposed and unexposed rates. If computation of the unexposed
rate were limited to truly unexposed cases and person-time, this problem would be avoided.

The price of avoidance, however, would be reduced precision in estimating the rate among the
unexposed. In some studies, the number of truly unexposed cases is too small to produce a stable
comparison, and thus the early experience of exposed persons is too valuable to discard. In general,
the best procedure in a given situation would depend on the decrease in precision produced by
excluding the early experience of exposed persons and the amount of bias that is introduced by
treating the early experience of exposed persons as if it were equivalent to that of people who
were never exposed. An alternative that attempts to address both problems is to treat the induction
time as a continuous variable rather than a fixed time, and model exposure effects as depending on
the times of exposure (Thomas, 1983, 1988). This approach is arguably more realistic insofar as the
induction time varies across individuals.

Similar issues arise if the exposure status can change from exposed to unexposed. If the exposure
ceases but the effects of exposure are thought to continue, it would not make sense to put the
experience of a formerly exposed individual in the unexposed category. On the other hand, if
exposure effects are thought to be approximately contemporaneous with the exposure, which is to say
that the induction period is near zero, then changes in exposure status should lead to corresponding
changes in how the accumulating experience is classified with respect to exposure. For example, if
individuals taking a nonsteroidal anti-inflammatory drug are at an increased risk for gastrointestinal
bleeding only during the period that they take the drug, then only the time during exposure is
equivalent to the time at risk for gastrointestinal bleeding as a result of the drug. When an individual
stops using the drug, the bleeding events and person-time experienced by that individual should
be reclassified from exposed to unexposed. Here, the induction time is zero and the definition of
exposure does not involve exposure history.
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CATEGORIZING EXPOSURE

Another problem to consider is that the study hypothesis may not provide reasonable guidance on
where to draw the boundary between exposed and unexposed. If the exposure is continuous, it is
not necessary to draw boundaries at all. Instead one may use the quantitative information from
each individual fully either by using some type of smoothing method, such as moving averages
(see Chapter 17), or by putting the exposure variable into a regression model as a continuous term
(see Chapters 20 and 21). Of course, the latter approach depends on the validity of the model
used for estimation. Special care must be taken with models of repeatedly measured exposures and
confounders, which are sometimes called longitudinal-data models (see Chapter 21).

The simpler approach of calculating rates directly will require a reasonably sized population
within categories of exposure if it is to provide a statistically stable result. To get incidence rates,
then, we need to group the experience of individuals into relatively large categories for which
we can calculate the incidence rates. In principle, it should be possible to form several cohorts
that correspond to various levels of exposure. For a cumulative measure of exposure, however,
categorization may introduce additional difficulties for the cohort definition. An individual who
passes through one level of exposure along the way to a higher level would later have time at risk
for disease that theoretically might meet the definition for more than one category of exposure.

For example, suppose we define moderate smoking as having smoked 50,000 cigarettes (equiv-
alent to about 7 pack-years), and we define heavy smoking as having smoked 150,000 cigarettes
(about 21 pack-years). Suppose a man smoked his 50,000th cigarette in 1970 and his 150,000th
in 1980. After allowing for a 5-year minimum induction period, we would classify his time as
moderate smoking beginning in 1975. By 1980 he has become a heavy smoker, but the 5-year
induction period for heavy smoking has not elapsed. Thus, from 1980 to 1985, his experience is
still classified as moderate smoking, but from 1985 onward his experience is classified as heavy
smoking (Figure 7–1). Usually, the time is allocated only to the highest category of exposure that
applies. This example illustrates the complexity of the cohort definition with a hypothesis that
takes into account both the cumulative amount of exposure and a minimum induction time. Other
apportionment schemes could be devised based on other hypotheses about exposure action, includ-
ing hypotheses that allowed induction time to vary with exposure history.

One invalid allocation scheme would apportion to the denominator of the exposed incidence rate
the unexposed experience of an individual who eventually became exposed. For example, suppose
that in an occupational study exposure is categorized according to duration of employment in a

FIGURE 7–1 ● Timeline showing how a smoker moves into higher categories of cumulative smoking
exposure and how the time at risk that corresponds to these categories is apportioned to take into account a
5-year minimum induction period.
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particular job, with the highest-exposure category being at least 20 years of employment. Suppose
a worker is employed at that job for 30 years. It is a mistake to assign the 30 years of experience
for that employee to the exposure category of 20 or more years of employment. The worker only
reached that category of exposure after 20 years on the job, and only the last 10 years of his or her
experience is relevant to the highest category of exposure. Note that if the worker had died after
10 years of employment, the death could not have been assigned to the 20-years-of-employment
category, because the worker would have only had 10 years of employment.

A useful rule to remember is that the event and the person-time that is being accumulated at
the moment of the event should both be assigned to the same category of exposure. Thus, once the
person-time spent at each category of exposure has been determined for each study subject, the
classification of the disease events (cases) follows the same rules. The exposure category to which
an event is assigned is the same exposure category in which the person-time for that individual
was accruing at the instant in which the event occurred. The same rule—that the classification of
the event follows the classification of the person-time—also applies with respect to other study
variables that may be used to stratify the data (see Chapter 15). For example, person-time will be
allocated into different age categories as an individual ages. The age category to which an event is
assigned should be the same age category in which the individual’s person-time was accumulating
at the time of the event.

AVERAGE INTENSITY AND ALTERNATIVES

One can also define current exposure according to the average (arithmetic or geometric mean)
intensity or level of exposure up to the current time, rather than by a cumulative measure. In the
occupational setting, the average concentration of an agent in the ambient air would be an example
of exposure intensity, although one might also have to take into account any protective gear that
affects the individual’s exposure to the agent. Intensity of exposure is a concept that applies to a point
in time, and intensity typically will vary over time. Studies that measure exposure intensity might
use a time-weighted average of intensity, which would require multiple measurements of exposure
over time. The amount of time that an individual is exposed to each intensity would provide its
weight in the computation of the average.

An alternative to the average intensity is to classify exposure according to the maximum intensity,
median intensity, minimum intensity, or some other function of the exposure history. The follow-up
time that an individual spends at a given exposure intensity could begin to accumulate as soon as
that level of intensity is reached. Induction time must also be taken into account. Ideally, the study
hypothesis will specify a minimum induction time for exposure effects, which in turn will imply
an appropriate lag period to be used in classifying individual experience.

Cumulative and average exposure-assignment schema suffer a potential problem in that they may
make it impossible to disentangle exposure effects from the effects of time-varying confounders
(Robins 1986, 1987). Methods that treat exposures and confounders in one period as distinct from
exposure and confounders in other periods are necessary to avoid this problem (Robins et al., 1992;
see Chapter 21).

IMMORTAL PERSON-TIME

Occasionally, a cohort’s definition will require that everyone meeting the definition must have
survived for a specified period. Typically, this period of immortality comes about because one of
the entry criteria into the cohort is dependent on survival. For example, an occupational cohort
might be defined as all workers who have been employed at a specific factory for at least 5 years.
There are certain problems with such an entry criterion, among them that it will guarantee that the
study will miss effects among short-term workers who may be assigned more highly exposed jobs
than regular long-term employees, may include persons more susceptible to exposure effects, and
may quit early because of those effects. Let us assume, however, that only long-term workers are
of interest for the study and that all relevant exposures (including those during the initial 5 years of
employment) are taken into account in the analysis.

The 5-year entry criterion will guarantee that all of the workers in the study cohort survived
their first 5 years of employment, because those who died would never meet the entry criterion and
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so would be excluded. It follows that mortality analysis of such workers should exclude the first
5 years of employment for each worker. This period of time is referred to as immortal person-time.
The workers at the factory were not immortal during this time, of course, because they could have
died. The subset of workers that satisfy the cohort definition, however, is identified after the fact as
those who have survived this period.

The correct approach to handling immortal person-time in a study is to exclude it from any
denominator, even if the analysis does not focus on mortality. This approach is correct because
including immortal person-time will downwardly bias estimated disease rates and, consequently,
bias effect estimates obtained from internal comparisons. As an example, suppose that an occu-
pational mortality study includes only workers who worked for 5 years at a factory, that 1,000
exposed and 1,000 unexposed workers meet this entry criterion, and that after the criterion is
met we observe 200 deaths among 5,000 exposed person-years and 90 deaths among 6,000 unex-
posed person-years. The correct rate ratio and difference comparing the exposed and unexposed
are then (200/5,000)/(90/6,000) = 2.7 and 200/5,000 − 90/6,000 = 25/1,000 year−1. If, how-
ever, we incorrectly include the 5,000 exposed and 5,000 unexposed immortal person-years in the
denominators, we get a biased ratio of (200/10,000)/(90/11,000) = 2.4 and a biased difference
of 200/10,000 − 90/11,000 = 12/1,000 year−1. To avoid this bias, if a study has a criterion for
a minimum amount of time before a subject is eligible to be in a study, the time during which
the eligibility criterion is met should be excluded from the calculation of incidence rates. More
generally, the follow-up time allocated to a specific exposure category should exclude time during
which the exposure-category definition is being met.

POSTEXPOSURE EVENTS

Allocation of follow-up time to specific categories should not depend on events that occur after the
follow-up time in question has accrued. For example, consider a study in which a group of smokers
is advised to quit smoking, with the objective of estimating the effect on mortality rates of quitting
versus continuing to smoke. For a subject who smokes for a while after the advice is given and
then quits later, the follow-up time as a quitter should only begin at the time of quitting, not at the
time of giving the advice, because it is the effect of quitting that is being studied, not the effect of
advice (were the effect of advice under study, follow-up time would begin with the advice). But
how should a subject be treated who quits for a while and then later takes up smoking again?

When this question arose in an actual study of this problem, the investigators excluded anyone
from the study who switched back to smoking. Their decision was wrong, because if the subject had
died before switching back to smoking, the death would have counted in the study and the subject
would not have been excluded. A subject’s follow-up time was excluded if the subject switched back
to smoking, something that occurred only after the subject had accrued time in the quit-smoking
cohort. A proper analysis should include the experience of those who switched back to smoking
up until the time that they switched back. If the propensity to switch back was unassociated with
risk, their experience subsequent to switching back could be excluded without introducing bias.
The incidence rate among the person-years while having quit could then be compared with the rate
among those who continued to smoke over the same period.

As another example, suppose that the investigators wanted to examine the effect of being an
ex-smoker for at least 5 years, relative to being an ongoing smoker. Then, anyone who returned
to smoking within 5 years of quitting would be excluded. The person-time experience for each
subject during the first 5 years after quitting should also be excluded, because it would be immortal
person-time.

TIMING OF OUTCOME EVENTS

As may be apparent from earlier discussion, the time at which an outcome event occurs can be a
major determinant of the amount of person-time contributed by a subject to each exposure category.
It is therefore important to define and determine the time of the event as unambiguously and
precisely as possible. For some events, such as death, neither task presents any difficulty. For other
outcomes, such as human immunodeficiency virus (HIV) seroconversion, the time of the event can
be defined in a reasonably precise manner (the appearance of HIV antibodies in the bloodstream),
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but measurement of the time is difficult. For others, such as multiple sclerosis and atherosclerosis,
the very definition of the onset time can be ambiguous, even when the presence of the disease can
be determined unambiguously. Likewise, time of loss to follow-up and other censoring events can
be difficult to define and determine. Determining whether an event occurred by a given time is a
special case of determining when an event occurred, because knowing that the event occurred by
the given time requires knowing that the time it occurred was before the given time.

Addressing the aforementioned problems depends heavily on the details of available data and
the current state of knowledge about the study outcome. We therefore will offer only a few general
remarks on issues of outcome timing. In all situations, we recommend that one start with at least one
written protocol to classify subjects based on available information. For example, seroconversion
time may be measured as the midpoint between time of last negative and first positive test. For
unambiguously defined events, any deviation of actual times from the protocol determination can
be viewed as measurement error (which is discussed further in Chapter 9). Ambiguously timed
diseases, such as cancers or vascular conditions, are often taken as occurring at diagnosis time, but
the use of a minimum lag period is advisable whenever a long latent (undiagnosed or prodromal)
period is inevitable. It may sometimes be possible to interview cases about the earliest onset of
symptoms, but such recollections and symptoms can be subject to considerable error and between-
person variability.

Some ambiguously timed events are dealt with by standard, if somewhat arbitrary, definitions. For
example, in 1993, acquired immunodeficiency syndrome (AIDS) onset was redefined as occurrence
of any AIDS-defining illnesses or clinical event (e.g., CD4 count <200/μL). As a second example,
time of loss to follow-up is conventionally taken as midway between the last successful attempt to
contact and the first unsuccessful attempt to contact. Any difficulty in determining an arbitrarily
defined time of an event is then treated as a measurement problem, which can be addressed by
the methods described in Chapter 19. One should recognize, however, that the arbitrariness of the
definition for the time of an event represents another source of measurement error, with potential
bias consequences that will be discussed in Chapter 9.

EXPENSE

Cohort studies are usually large enterprises. Most diseases affect only a small proportion of a
population, even if the population is followed for many years. To obtain stable estimates of incidence
requires a substantial number of cases of disease, and therefore the person-time giving rise to the
cases must also be substantial. Sufficient person-time can be accumulated by following cohorts
for a long span of time. Some cohorts with special exposures (e.g., Japanese victims of atomic
bombs [Beebe, 1979]) or with detailed medical and personal histories (e.g., the Framingham,
Massachusetts, study cohort [Kannel and Abbott, 1984]) have indeed been followed for decades.
If a study is intended to provide more timely results, however, the requisite person-time can be
attained by increasing the size of the cohorts. Of course, lengthy studies of large populations are
expensive. It is not uncommon for cohort studies to cost millions of dollars, and expenses in excess
of $100 million have occurred. Most of the expense derives from the need to establish a continuing
system for monitoring disease occurrence in a large population.

The expense of cohort studies often limits feasibility. The lower the disease incidence, the
poorer the feasibility of a cohort study, unless public resources devoted to health registries can be
productively employed (see Chapter 23). Feasibility is further handicapped by a long induction
period between the hypothesized cause and its effect. A long induction time contributes to a low
overall incidence because of the additional follow-up time required to obtain exposure-related cases.
To detect any effect, the study must span an interval at least as long as, and in practice considerably
longer than, the minimum induction period. Cohort studies are poorly suited to study the effect of
exposures that are hypothesized to cause rare diseases with long induction periods. Such cohort
studies are expensive in relation to the amount of information returned, which is to say that they
are not efficient.

The expense of cohort studies can be reduced in a variety of ways. One way is to use an
existing system for monitoring disease occurrence (see Chapter 23). For example, a regional cancer
registry may be used to ascertain cancer occurrence among cohort members. If the expense of case
ascertainment is already being borne by the registry, the study will be considerably cheaper.
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Another way to reduce cost is to rely on historical cohorts. Rather than identifying cohort
members concurrently with the initiation of the study and planning to have the follow-up period
occur during the study, the investigator may choose to identify cohort members based on records of
previous exposure. The follow-up period until the occurrence of disease may be wholly or partially
in the past. To ascertain cases occurring in the past, the investigators must rely on records to ascertain
disease in cohort members. If the follow-up period begins before the period during which the study
is conducted but extends into the study period, then active surveillance or a new monitoring system
to ascertain new cases of disease can be devised.

To the extent that subject selection occurs after the follow-up period under observation (some-
times called retrospective cohort selection; see Chapter 6), the study will generally cost less than an
equivalent study in which subject selection occurs before the follow-up period (sometimes called
prospective). A drawback of retrospective cohort studies is their dependence on records, which may
suffer from missing or poorly recorded information. Another drawback is that entire subject records
may be missing. When such “missingness” is related to the variables under study, the study may
suffer from selection biases similar to those that can occur in case-control studies (see Chapter 8).
For example, if records are systematically deleted upon the death of a cohort member, then all of
the retrospective person-time will be immortal, and should therefore be excluded.

A third way to reduce cost is to replace one of the cohorts, specifically the unexposed cohort,
with general population information. Rather than collecting new information on a large unexposed
population, existing data on a general population is used for comparison. This procedure has several
drawbacks. For one, it is reasonable only if there is some assurance that only a small proportion of
the general population is exposed to the agent under study, as is often the case with occupational
exposures. To the extent that part of the general population is exposed, there is misclassification error
that will introduce a bias into the comparison, which is ordinarily in the direction of underestimating
the effect (see Chapter 9). Another problem is that information obtained for the exposed cohort may
differ in quality from the existing data for the general population. If mortality data are used, the
death certificate is often the only source of information for the general population. If additional
medical information were used to classify deaths in an exposed cohort, the data thus obtained would
not be comparable with the general population data. This noncomparability may reduce or increase
bias in the resulting comparisons (Greenland and Robins, 1985a). Finally, the exposed cohort is
likely to differ from the general population in many ways that are not measured, thus leading to
uncontrollable confounding in the comparison. The classical “healthy worker effect” is one example
of this problem, in which confounding arises because workers must meet a minimal criterion of
health (they must be able to work) that the general population does not.

A fourth way to reduce the cost of a cohort study is to conduct a case-control study within the
cohort, rather than including the entire cohort population in the study (Chapter 8). Such “nested”
case-control studies can often be conducted at a fraction of the cost of a cohort study and yet produce
the same findings with nearly the same precision.

TRACING OF SUBJECTS

Cohort studies that span many years present logistic problems that can adversely affect validity.
Whether the study is retrospective or prospective, it is often difficult to locate people or their
records many years after they have been enrolled into study cohorts. In prospective studies, it may
be possible to maintain periodic contact with study subjects and thereby keep current information
on their location. Such tracking adds to the costs of prospective cohort studies, yet the increasing
mobility of society warrants stronger efforts to trace subjects. A substantial number of subjects lost
to follow-up can raise serious doubts about the validity of the study. Follow-ups that trace less than
about 60% of subjects are generally regarded with skepticism, but even follow-up of 70% or 80%
or more can be too low to provide sufficient assurance against bias if there is reason to believe that
loss to follow-up may be associated with both exposure and disease (Greenland, 1977).

SPECIAL-EXPOSURE AND GENERAL-POPULATION COHORTS

An attractive feature of cohort studies is the capability they provide to study a range of possible
health effects stemming from a single exposure. A mortality follow-up can be accomplished just as
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easily for all causes of death as for any specific cause. Health surveillance for one disease endpoint
can sometimes be expanded to include many or all endpoints without much additional work. A
cohort study can provide a comprehensive picture of the health effect of a given exposure. Attempts
to derive such comprehensive information about exposures motivate the identification of “special-
exposure” cohorts, which are identifiable groups with exposure to agents of interest. Examples
of such special-exposure cohorts include occupational cohorts exposed to workplace exposures,
studies of fishermen or farmers exposed chronically to solar radiation, atomic bomb victims and the
population around Chernobyl exposed to ionizing radiation, the population around Seveso, Italy,
exposed to environmental dioxin contamination, Seventh-day Adventists who are “exposed” to
vegetarian diets, and populations who are exposed to stress through calamities such as earthquakes
and terrorist attacks. These exposures are not common and require the identification of exposed
cohorts to provide enough information for study.

Common exposures are sometimes studied through cohort studies that survey a segment of the
population that is identified without regard to exposure status. Such “general-population” cohorts
have been used to study the effects of smoking, oral contraceptives, diet, and hypertension. It is
most efficient to limit a general-population cohort study to exposures that a substantial proportion
of people have experienced; otherwise, the unexposed cohort will be inefficiently large relative
to the exposed cohort. A surveyed population can be classified according to smoking, alcoholic
beverage consumption, diet, drug use, medical history, and many other factors of potential interest.
A disadvantage is that the exposure information usually must be obtained by interviews with each
subject, as opposed to obtaining information from records, as is often done with special-exposure
cohorts.
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The use and understanding of case-control studies is one of the most important methodologic
developments of modern epidemiology. Conceptually, there are clear links from randomized exper-
iments to nonrandomized cohort studies, and from nonrandomized cohort studies to case-control
studies. Case-control studies nevertheless differ enough from the scientific paradigm of experi-
mentation that a casual approach to their conduct and interpretation invites misconception. In this
chapter we review case-control study designs and contrast their advantages and disadvantages with
cohort designs. We also consider variants of the basic case-control study design.

Conventional wisdom about case-control studies is that they do not yield estimates of effect
that are as valid as measures obtained from cohort studies. This thinking may reflect common
misunderstandings in conceptualizing case-control studies, which will be clarified later. It may
also reflect concern about biased exposure information and selection in case-control studies. For
example, if exposure information comes from interviews, cases will usually have reported the
exposure information after learning of their diagnosis. Diagnosis may affect reporting in a number of
ways, for example, by improving memory, thus enhancing sensitivity among cases, or by provoking
more false memory of exposure, thus reducing specificity among cases. Furthermore, the disease
may itself cloud memory and thus reduce sensitivity. These phenomena are examples of recall bias.
Disease cannot affect exposure information collected before the disease occurred, however. Thus
exposure information taken from records created before the disease occurs will not be subject to
recall bias, regardless of whether the study is a cohort or a case-control design.

Conversely, cohort studies are not immune from problems often thought to be particular to
case-control studies. For example, while a cohort study may gather information on exposure for an
entire source population at the outset of the study, it still requires tracing of subjects to ascertain

111
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exposure variation and outcomes. If the success of this tracing is related to the exposure and the
outcome, the resulting selection bias will behave analogously to that often raised as a concern in
case-control studies (Greenland, 1977; Chapter 12). Similarly, cohort studies sometimes use recall
to reconstruct or impute exposure history (retrospective evaluation) and are vulnerable to recall
bias if this reconstruction is done after disease occurrence. Thus, although more opportunity for
recall and selection bias may arise in typical case-control studies than in typical prospective cohort
studies, each study must be considered in detail to evaluate its vulnerability to bias, regardless of
its design.

Conventional wisdom also holds that cohort studies are useful for evaluating the range of effects
related to a single exposure, whereas case-control studies provide information only about the one
disease that afflicts the cases. This thinking conflicts with the idea that case-control studies can
be viewed simply as more efficient cohort studies. Just as one can choose to measure more than
one disease outcome in a cohort study, it is possible to conduct a set of case-control studies nested
within the same population using several disease outcomes as the case series. The case-cohort study
(see below) is particularly well suited to this task, allowing one control group to be compared with
several series of cases. Whether or not the case-cohort design is the form of case-control study that
is used, case-control studies do not have to be characterized as being limited with respect to the
number of disease outcomes that can be studied.

For diseases that are sufficiently rare, cohort studies become impractical and case-control studies
become the only useful alternative. On the other hand, if exposure is rare, ordinary case-control
studies are inefficient, and one must use methods that selectively recruit additional exposed subjects,
such as special cohort studies or two-stage designs. If both the exposure and the outcome are rare,
two-stage designs may be the only informative option, as they employ oversampling of both exposed
and diseased subjects.

As understanding of the principles of case-control studies has progressed, the reputation of case-
control studies has also improved. Formerly, it was common to hear case-control studies referred to
disparagingly as “retrospective” studies, a term that should apply to only some case-control studies
and applies as well to some cohort studies (see Chapter 6). Although case-control studies do present
more opportunities for bias and mistaken inference than cohort studies, these opportunities come
as a result of the relative ease with which a case-control study can be mounted. Because it need
not be extremely expensive or time-consuming to conduct a case-control study, many studies have
been conducted by naive investigators who do not understand or implement the basic principles of
valid case-control design. Occasionally, such haphazard research can produce valuable results, but
often the results are wrong because basic principles have been violated. The bad reputation once
suffered by case-control studies stems more from instances of poor conduct and overinterpretation
of results than from any inherent weakness in the approach.

Ideally, a case-control study can be conceptualized as a more efficient version of a corresponding
cohort study. Under this conceptualization, the cases in the case-control study are the same cases
as would ordinarily be included in the cohort study. Rather than including all of the experience of
the source population that gave rise to the cases (the study base), as would be the usual practice in
a cohort design, controls are selected from the source population. Wacholder (1996) describes this
paradigm of the case-control study as a cohort study with data missing at random and by design.
The sampling of controls from the population that gave rise to the cases affords the efficiency
gain of a case-control design over a cohort design. The controls provide an estimate of the prevalence
of the exposure and covariates in the source population. When controls are selected from members
of the population who were at risk for disease at the beginning of the study’s follow-up period,
the case-control odds ratio estimates the risk ratio that would be obtained from a cohort design.
When controls are selected from members of the population who were noncases at the times that
each case occurs, or otherwise in proportion to the person-time accumulated by the cohort, the
case-control odds ratio estimates the rate ratio that would be obtained from a cohort design. Finally,
when controls are selected from members of the population who were noncases at the end of the
study’s follow-up period, the case-control odds ratio estimates the incidence odds ratio that would be
obtained from a cohort design. With each control-selection strategy, the odds-ratio calculation is the
same, but the measure of effect estimated by the odds ratio differs. Study designs that implement
each of these control selection paradigms will be discussed after topics that are common to all
designs.
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COMMON ELEMENTS OF CASE-CONTROL STUDIES

In a cohort study, the numerator and denominator of each disease frequency (incidence proportion,
incidence rate, or incidence odds) are measured, which requires enumerating the entire population
and keeping it under surveillance—or using an existing registry—to identify cases over the follow-
up period. A valid case-control study observes the population more efficiently by using a control
series in place of complete assessment of the denominators of the disease frequencies. The cases in
a case-control study should be the same people who would be considered cases in a cohort study
of the same population.

PSEUDO-FREQUENCIES AND THE ODDS RATIO

The primary goal for control selection is that the exposure distribution among controls be the same
as it is in the source population of cases. The rationale for this goal is that, if it is met, we can
use the control series in place of the denominator information in measures of disease frequency to
determine the ratio of the disease frequency in exposed people relative to that among unexposed
people. This goal will be met if we can sample controls from the source population such that the
ratio of the number of exposed controls (B1) to the total exposed experience of the source population
is the same as the ratio of the number of unexposed controls (B0) to the unexposed experience of the
source population, apart from sampling error. For most purposes, this goal need only be followed
within strata of factors that will be used for stratification in the analysis, such as factors used for
restriction or matching (Chapters 11, 15, 16, and 21).

Using person-time to illustrate, the goal requires that B1 has the same ratio to the amount of
exposed person-time (T1) as B0 has to the amount of unexposed person-time (T0), apart from
sampling error:

B1

T1

= B0

T0

Here B1/T1 and B0/T0 are the control sampling rates—that is, the number of controls selected per
unit of person-time. Suppose that A1 exposed cases and A0 unexposed cases occur over the study
period. The exposed and unexposed rates are then

I1 = A1

T1

and I0 = A0

T0

We can use the frequencies of exposed and unexposed controls as substitutes for the actual
denominators of the rates to obtain exposure-specific case-control ratios, or pseudo-rates:

Pseudo-rate1 = A1

B1

and

Pseudo-rate0 = A0

B0

These pseudo-rates have no epidemiologic interpretation by themselves. Suppose, however, that
the control sampling rates B1/T1 and B0/T0 are equal to the same value r , as would be expected
if controls are selected independently of exposure. If this common sampling rate r is known, the
actual incidence rates can be calculated by simple algebra because, apart from sampling error,
B1/r should equal the amount of exposed person-time in the source population and B0/r should
equal the amount of unexposed person-time in the source population: B1/r = B1/(B1/T1) = T1

and B0/r = B0/(B0/T0) = T0. To get the incidence rates, we need only multiply each pseudo-rate
by the common sampling rate, r.

If the common sampling rate is not known, which is often the case, we can still compare the
sizes of the pseudo-rates by division. Specifically, if we divide the pseudo-rate for exposed by the
pseudo-rate for unexposed, we obtain

Pseudo-rate1

Pseudo-rate0

= A1/B1

A0/B0

= A1/[(B1/T1)T1]

A0/[(B0/T0)T0]
= A1/(r · T1)

A0/(r · T0)
= A1/T1

A0/T0
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In other words, the ratio of the pseudo-rates for the exposed and unexposed is an estimate of
the ratio of the incidence rates in the source population, provided that the control sampling rate is
independent of exposure. Thus, using the case-control study design, one can estimate the incidence
rate ratio in a population without obtaining information on every subject in the population. Similar
derivations in the following section on variants of case-control designs show that one can estimate
the risk ratio by sampling controls from those at risk for disease at the beginning of the follow-
up period (case-cohort design) and that one can estimate the incidence odds ratio by sampling
controls from the noncases at the end of the follow-up period (cumulative case-control design).
With these designs, the pseudo-frequencies correspond to the incidence proportions and incidence
odds, respectively, multiplied by common sampling rates.

There is a statistical penalty for using a sample of the denominators rather than measuring
the person-time experience for the entire source population: The precision of the estimates of the
incidence rate ratio from a case-control study is less than the precision from a cohort study of
the entire population that gave rise to the cases (the source population). Nevertheless, the loss of
precision that stems from sampling controls will be small if the number of controls selected per
case is large (usually four or more). Furthermore, the loss is balanced by the cost savings of not
having to obtain information on everyone in the source population. The cost savings might allow
the epidemiologist to enlarge the source population and so obtain more cases, resulting in a better
overall estimate of the incidence-rate ratio, statistically and otherwise, than would be possible using
the same expenditures to conduct a cohort study.

The ratio of the two pseudo-rates in a case-control study is usually written as A1 B0/A0 B1 and
is sometimes called the cross-product ratio. The cross-product ratio in a case-control study can be
viewed as the ratio of cases to controls among the exposed subjects (A1/B1), divided by the ratio
of cases to controls among the unexposed subjects (A0/B0). This ratio can also be viewed as the
odds of being exposed among cases (A1/A0) divided by the odds of being exposed among controls
(B1/B0), in which case it is termed the exposure odds ratio. While either interpretation will give
the same result, viewing this odds ratio as the ratio of case-control ratios shows more directly how
the control group substitutes for the denominator information in a cohort study and how the ratio of
pseudo-frequencies gives the same result as the ratio of the incidence rates, incidence proportion,
or incidence odds in the source population, if sampling is independent of exposure.

One point that we wish to emphasize is that nowhere in the preceding discussion did we have to
assume that the disease under study is “rare.” In general, the rare-disease assumption is not needed
in case-control studies. Just as for cohort studies, however, neither the incidence odds ratio nor the
rate ratio should be expected to be a good approximation to the risk ratio or to be collapsible across
strata of a risk factor (even if the factor is not a confounder) unless the incidence proportion is less
than about 0.1 for every combination of the exposure and the factor (Chapter 4).

DEFINING THE SOURCE POPULATION

If the cases are a representative sample of all cases in a precisely defined and identified population and
the controls are sampled directly from this source population, the study is said to be population-
based or a primary base study. For a population-based case-control study, random sampling of
controls may be feasible if a population registry exists or can be compiled. When random sampling
from the source population of cases is feasible, it is usually the most desirable option.

Random sampling of controls does not necessarily mean that every person should have an equal
probability of being selected to be a control. As explained earlier, if the aim is to estimate the
incidence-rate ratio, then we would employ longitudinal (density) sampling, in which a person’s
control selection probability is proportional to the person’s time at risk. For example, in a case-
control study nested within an occupational cohort, workers on an employee roster will have been
followed for varying lengths of time, and a random sampling scheme should reflect this varying
time to estimate the incidence-rate ratio.

When it is not possible to identify the source population explicitly, simple random sampling is
not feasible and other methods of control selection must be used. Such studies are sometimes called
studies of secondary bases, because the source population is identified secondarily to the definition
of a case-finding mechanism. A secondary source population or “secondary base” is therefore a
source population that is defined from (secondary to) a given case series.
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Consider a case-control study in which the cases are patients treated for severe psoriasis at the
Mayo Clinic. These patients come to the Mayo Clinic from all corners of the world. What is the
specific source population that gives rise to these cases? To answer this question, we would have to
know exactly who would go to the Mayo Clinic if he or she had severe psoriasis. We cannot enumerate
this source population, because many people in it do not know themselves that they would go to the
Mayo Clinic for severe psoriasis, unless they actually developed severe psoriasis. This secondary
source might be defined as a population spread around the world that constitutes those people who
would go to the Mayo Clinic if they developed severe psoriasis. It is this secondary source from
which the control series for the study would ideally be drawn. The challenge to the investigator is
to apply eligibility criteria to the cases and controls so that there is good correspondence between
the controls and this source population. For example, cases of severe psoriasis and controls might
be restricted to those in counties within a certain distance of the Mayo Clinic, so that at least a
geographic correspondence between the controls and the secondary source population could be
assured. This restriction, however, might leave very few cases for study.

Unfortunately, the concept of a secondary base is often tenuously connected to underlying
realities, and it can be highly ambiguous. For the psoriasis example, whether a person would go
to the Mayo Clinic depends on many factors that vary over time, such as whether the person is
encouraged to go by his regular physician and whether the person can afford to go. It is not clear,
then, how or even whether one could precisely define, let alone sample from, the secondary base,
and thus it is not clear that one could ensure that controls were members of the base at the time
of sampling. We therefore prefer to conceptualize and conduct case-control studies as starting with
a well-defined source population and then identify and recruit cases and controls to represent the
disease and exposure experience of that population. When one instead takes a case series as a
starting point, it is incumbent upon the investigator to demonstrate that a source population can be
operationally defined to allow the study to be recast and evaluated relative to this source. Similar
considerations apply when one takes a control series as a starting point, as is sometimes done
(Greenland, 1985a).

CASE SELECTION

Ideally, case selection will amount to a direct sampling of cases within a source population. There-
fore, apart from random sampling, all people in the source population who develop the disease of
interest are presumed to be included as cases in the case-control study. It is not always necessary,
however, to include all cases from the source population. Cases, like controls, can be randomly
sampled for inclusion in the case-control study, so long as this sampling is independent of the
exposure under study within strata of factors that will be used for stratification in the analysis. To
see this, suppose we take only a fraction, f , of all cases. If this fraction is constant across exposure,
and A1 exposed cases and A0 unexposed cases occur in the source population, then, apart from
sampling error, the study odds ratio will be

A1/B1

A0/B0

= fA1/(r · T1)

fA0/(r · T0)
= A1/T1

A0/T0

as before. Of course, if fewer than all cases are sampled ( f < 1), the study precision will be lower
in proportion to f .

The cases identified in a single clinic or treated by a single medical practitioner are possible
case series for case-control studies. The corresponding source population for the cases treated in
a clinic is all people who would attend that clinic and be recorded with the diagnosis of interest
if they had the disease in question. It is important to specify “if they had the disease in question”
because clinics serve different populations for different diseases, depending on referral patterns and
the reputation of the clinic in specific specialty areas. As noted above, without a precisely identified
source population, it may be difficult or impossible to select controls in an unbiased fashion.

CONTROL SELECTION

The definition of the source population determines the population from which controls are sampled.
Ideally, selection will involve direct sampling of controls from the source population. Based on the
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principles explained earlier regarding the role of the control series, many general rules for control
selection can be formulated. Two basic rules are that:

1. Controls should be selected from the same population—the source population—that gives rise
to the study cases. If this rule cannot be followed, there needs to be solid evidence that the
population supplying controls has an exposure distribution identical to that of the population
that is the source of cases, which is a very stringent demand that is rarely demonstrable.

2. Within strata of factors that will be used for stratification in the analysis, controls should be
selected independently of their exposure status, in that the sampling rate for controls (r in the
previous discussion) should not vary with exposure.

If these rules and the corresponding case rules are met, then the ratio of pseudo-frequencies
will, apart from sampling error, equal the ratio of the corresponding measure of disease frequency
in the source population. If the sampling rate is known, then the actual measures of disease fre-
quency can also be calculated. (If the sampling rates differ for exposed and unexposed cases or
controls, but are known, the measures of disease frequency and their ratios can still be calcu-
lated using special correction formulas; see Chapters 15 and 19.) For a more detailed discussion
of the principles of control selection in case-control studies, see Wacholder et al. (1992a, 1992b,
1992c).

When one wishes controls to represent person-time, sampling of the person-time should be
constant across exposure levels. This requirement implies that the sampling probability of any
person as a control should be proportional to the amount of person-time that person spends at risk
of disease in the source population. For example, if in the source population one person contributes
twice as much person-time during the study period as another person, the first person should have
twice the probability of the second of being selected as a control. This difference in probability of
selection is automatically induced by sampling controls at a steady rate per unit time over the period
in which cases are sampled (longitudinal or density sampling), rather than by sampling all controls
at a point in time (such as the start or end of the follow-up period). With longitudinal sampling of
controls, a population member present for twice as long as another will have twice the chance of
being selected.

If the objective of the study is to estimate a risk or rate ratio, it should be possible for a person
to be selected as a control and yet remain eligible to become a case, so that person might appear in
the study as both a control and a case. This possibility may sound paradoxical or wrong, but it is
nevertheless correct. It corresponds to the fact that in a cohort study, a case contributes to both the
numerator and the denominator of the estimated incidence.

Suppose the follow-up period spans 3 years, and a person free of disease in year 1 is selected
as a potential control at year 1. This person should in principle remain eligible to become a case.
Suppose this control now develops the disease at year 2 and now becomes a case in the study.
How should such a person be treated in the analysis? Because the person did develop disease
during the study period, many investigators would count the person as a case but not as a control.
If the objective is to have the case-control odds ratio estimate the incidence odds ratio, then this
decision would be appropriate. Recall, however, that if a follow-up study were being conducted,
each person who develops disease would contribute not only to the numerator of the disease risk or
rate but also to the persons or person-time tallied in the denominator. We want the control group to
provide estimates of the relative size of the denominators of the incidence proportions or incidence
rates for the compared groups. These denominators include all people who later become cases.
Therefore, each case in a case-control study should be eligible to be a control before the time of
disease onset, each control should be eligible to become a case as of the time of selection as a
control, and a person selected as a control who later does develop the disease and is selected as
a case should be included in the study both as a control and as a case (Sheehe, 1962; Miettinen,
1976a; Greenland and Thomas, 1982; Lubin and Gail, 1984; Robins et al., 1986a). If the controls
are intended to represent person time and are selected longitudinally, similar arguments show that
a person selected as a control should remain eligible to be selected as a control again, and thus
might be included in the analysis repeatedly as a control (Lubin and Gail, 1984; Robins et al.,
1986a).
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COMMON FALLACIES IN CONTROL SELECTION

In cohort studies, the study population is restricted to people at risk for the disease. Some authors
have viewed case-control studies as if they were cohort studies done backwards, even going so
far as to describe them as “trohoc” studies (Feinstein, 1973). Under this view, the argument was
advanced that case-control studies ought to be restricted to those at risk for exposure (i.e., those with
exposure opportunity). Excluding sterile women from a case-control study of an adverse effect of
oral contraceptives and matching for duration of employment in an occupational study are examples
of attempts to control for exposure opportunity. If the factor used for restriction (e.g., sterility) is
unrelated to the disease, it will not be a confounder, and hence the restriction will yield no benefit
to the validity of the estimate of effect. Furthermore, if the restriction reduces the study size, the
precision of the estimate of effect will be reduced (Poole, 1986).

Another principle sometimes used in cohort studies is that the study cohort should be “clean” at
start of follow-up, including only people who have never had the disease. Misapplying this principle
to case-control design suggests that the control group ought to be “clean,” including only people who
are healthy, for example. Illness arising after the start of the follow-up period is not reason to exclude
subjects from a cohort analysis, and such exclusion can lead to bias; similarly controls with illness
that arose after exposure should not be removed from the control series. Nonetheless, in studies
of the relation between cigarette smoking and colorectal cancer, certain authors recommended that
the control group should exclude people with colon polyps, because colon polyps are associated
with smoking and are precursors of colorectal cancer (Terry and Neugut, 1998). Such an exclusion
actually reduces the prevalence of the exposure in the controls below that in the source population
of cases and hence biases the effect estimates upward (Poole, 1999).

SOURCES FOR CONTROL SERIES

The following methods for control sampling apply when the source population cannot be explicitly
enumerated, so random selection is not possible. All of these methods should only be implemented
subject to the reservations about secondary bases described earlier.

Neighborhood Controls

If the source population cannot be enumerated, it may be possible to select controls through sampling
of residences. This method is not straightforward. Usually, a geographic roster of residences is not
available, so a scheme must be devised to sample residences without enumerating them all. For
convenience, investigators may sample controls who are individually matched to cases from the
same neighborhood. That is, after a case is identified, one or more controls residing in the same
neighborhood as that case are identified and recruited into the study. If neighborhood is related to
exposure, the matching should be taken into account in the analysis (see Chapter 16).

Neighborhood controls are often used when the cases are recruited from a convenient source,
such as a clinic or hospital. Such usage can introduce bias, however, for the neighbors selected as
controls may not be in the source population of the cases. For example, if the cases are from a
particular hospital, neighborhood controls may include people who would not have been treated
at the same hospital had they developed the disease. If being treated at the hospital from which
cases are identified is related to the exposure under study, then using neighborhood controls would
introduce a bias. As an extreme example, suppose the hospital in question were a U.S. Veterans
Administration hospital. Patients at these hospitals tend to differ from their neighbors in many ways.
One obvious way is in regard to service history. Most patients at Veterans Administration hospitals
have served in the U.S. military, whereas only a minority of their neighbors will have done so. This
difference in life history can lead to differences in exposure histories (e.g., exposures associated with
combat or weapons handling). For any given study, the suitability of using neighborhood controls
needs to be evaluated with regard to the study variables on which the research focuses.

Random-Digit Dialing

Sampling of households based on random selection of telephone numbers is intended to simulate
sampling randomly from the source population. Random-digit dialing, as this method has been
called (Waksberg, 1978), offers the advantage of approaching all households in a designated area,
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even those with unlisted telephone numbers, through a simple telephone call. The method requires
considerable attention to details, however, and carries no guarantee of unbiased selection.

First, case eligibility should include residence in a house that has a telephone, so that cases and
controls come from the same source population. Second, even if the investigator can implement a
sampling method so that every telephone has the same probability of being called, there will not
necessarily be the same probability of contacting each eligible control subject, because households
vary in the number of people who reside in them, the amount of time someone is at home, and the
number of operating phones. Third, making contact with a household may require many calls at
various times of day and various days of the week, demanding considerable labor; many dozens of
telephone calls may be required to obtain a control subject meeting specific eligibility characteristics
(Wacholder et al., 1992b). Fourth, some households use answering machines, voicemail, or caller
identification to screen calls and may not answer or return unsolicited calls. Fifth, the substitution
of mobile telephones for land lines by some households further undermines the assumption that
population members can be selected randomly by random-digit dialing. Finally, it may be impossible
to distinguish accurately business from residential telephone numbers, a distinction required to
calculate the proportion of nonresponders.

Random-digit-dialing controls are usually matched to cases on area code (in the United States,
the first three digits of the telephone number) and exchange (the three digits following the area
code). In the past, area code and prefix were related to residence location and telephone type (land
line or mobile service). Thus, if geographic location or participation in mobile telephone plans was
likely related to exposure, then the matching should be taken into account in the analysis. More
recently, telephone companies in the United States have assigned overlaying area codes and have
allowed subscribers to retain their telephone number when they move within the region, so the
correspondence between assigned telephone numbers and geographic location has diminished.

Hospital- or Clinic-Based Controls

As noted above, the source population for hospital- or clinic-based case-control studies is not
often identifiable, because it represents a group of people who would be treated in a given clinic
or hospital if they developed the disease in question. In such situations, a random sample of the
general population will not necessarily correspond to a random sample of the source population. If
the hospitals or clinics that provide the cases for the study treat only a small proportion of cases
in the geographic area, then referral patterns to the hospital or clinic are important to take into
account in the sampling of controls. For these studies, a control series comprising patients from
the same hospitals or clinics as the cases may provide a less biased estimate of effect than general-
population controls (such as those obtained from case neighborhoods or by random-digit dialing).
The source population does not correspond to the population of the geographic area, but only to the
people who would seek treatment at the hospital or clinic were they to develop the disease under
study. Although the latter population may be difficult or impossible to enumerate or even define
very clearly, it seems reasonable to expect that other hospital or clinic patients will represent this
source population better than general-population controls. The major problem with any nonrandom
sampling of controls is the possibility that they are not selected independently of exposure in
the source population. Patients who are hospitalized with other diseases, for example, may be
unrepresentative of the exposure distribution in the source population, either because exposure is
associated with hospitalization, or because the exposure is associated with the other diseases, or
both. For example, suppose the study aims to evaluate the relation between tobacco smoking and
leukemia using hospitalized cases. If controls are people who are hospitalized with other conditions,
many of them will have been hospitalized for conditions associated with smoking. A variety of other
cancers, as well as cardiovascular diseases and respiratory diseases, are related to smoking. Thus,
a control series of people hospitalized for diseases other than leukemia would include a higher
proportion of smokers than would the source population of the leukemia cases.

Limiting the diagnoses for controls to conditions for which there is no prior indication of an
association with the exposure improves the control series. For example, in a study of smoking and
hospitalized leukemia cases, one could exclude from the control series anyone who was hospitalized
with a disease known to be related to smoking. Such an exclusion policy may exclude most of the
potential controls, because cardiovascular disease by itself would represent a large proportion of
hospitalized patients. Nevertheless, even a few common diagnostic categories should suffice to
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find enough control subjects, so that the exclusions will not harm the study by limiting the size of
the control series. Indeed, in limiting the scope of eligibility criteria, it is reasonable to exclude
categories of potential controls even on the suspicion that a given category might be related to the
exposure. If wrong, the cost of the exclusion is that the control series becomes more homogeneous
with respect to diagnosis and perhaps a little smaller. But if right, then the exclusion is important
to the ultimate validity of the study.

On the other hand, an investigator can rarely be sure that an exposure is not related to a disease
or to hospitalization for a specific diagnosis. Consequently, it would be imprudent to use only a
single diagnostic category as a source of controls. Using a variety of diagnoses has the advantage
of potentially diluting the biasing effects of including a specific diagnostic group that is related to
the exposure, and allows examination of the effect of excluding certain diagnoses.

Excluding a diagnostic category from the list of eligibility criteria for identifying controls is
intended simply to improve the representativeness of the control series with respect to the source
population. Such an exclusion criterion does not imply that there should be exclusions based on
disease history (Lubin and Hartge, 1984). For example, in a case-control study of smoking and
hospitalized leukemia patients, one might use hospitalized controls but exclude any who are hospi-
talized because of cardiovascular disease. This exclusion criterion for controls does not imply that
leukemia cases who have had cardiovascular disease should be excluded; only if the cardiovascular
disease was a cause of the hospitalization should the case be excluded. For controls, the exclusion
criterion should apply only to the cause of the hospitalization used to identify the study subject. A
person who was hospitalized because of a traumatic injury and who is thus eligible to be a control
would not be excluded if he or she had previously been hospitalized for cardiovascular disease.
The source population includes people who have had cardiovascular disease, and they should be in-
cluded in the control series. Excluding such people would lead to an underrepresentation of smoking
relative to the source population and produce an upward bias in the effect estimates.

If exposure directly affects hospitalization (for example, if the decision to hospitalize is in part
based on exposure history), the resulting bias cannot be remedied without knowing the hospitaliza-
tion rates, even if the exposure is unrelated to the study disease or the control diseases. This problem
was in fact one of the first problems of hospital-based studies to receive detailed analysis (Berkson,
1946), and is often called Berksonian bias; it is discussed further under the topics of selection bias
(Chapter 9) and collider bias (Chapter 12).

Other Diseases

In many settings, especially in populations with established disease registries or insurance-claims
databases, it may be most convenient to choose controls from people who are diagnosed with other
diseases. The considerations needed for valid control selection from other diagnoses parallel those
just discussed for hospital controls. It is essential to exclude any diagnoses known or suspected to
be related to exposure, and better still to include only diagnoses for which there is some evidence
indicating that they are unrelated to exposure. These exclusion and inclusion criteria apply only to
the diagnosis that brought the person into the registry or database from which controls are selected.
The history of an exposure-related disease should not be a basis for exclusion. If, however, the
exposure directly affects the chance of entering the registry or database, the study will be subject
to the Berksonian bias mentioned earlier for hospital studies.

Friend Controls

Choosing friends of cases as controls, like using neighborhood controls, is a design that inherently
uses individual matching and needs to be evaluated with regard to the advantages and disadvantages
of such matching (discussed in Chapter 11).

Aside from the complications of individual matching, there are further concerns stemming from
use of friend controls. First, being named as a friend by the case may be related to the exposure
status of the potential control (Flanders and Austin, 1986). For example, cases might preferentially
name as friends their acquaintances with whom they engage in specific activities that might relate
to the exposure. Physical activity, alcoholic beverage consumption, and sun exposure are examples
of such exposures. People who are more reclusive may be less likely to be named as friends, so
their exposure patterns will be underrepresented among a control series of friends. Exposures more
common to extroverted people may become overrepresented among friend controls. This type of
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bias was suspected in a study of insulin-dependent diabetes mellitus in which the parents of cases
identified the controls. The cases had fewer friends than controls, had more learning problems, and
were more likely to dislike school. Using friend controls could explain these findings (Siemiatycki,
1989).

A second problem is that, unlike other methods of control selection, choosing friends as controls
cedes much of the decision making about the choice of control subjects to the cases or their proxies
(e.g., parents). The investigator who uses friend controls will usually ask for a list of friends and
choose randomly from the list, but for the creation of the list, the investigator is completely dependent
on the cases or their proxies. This dependence adds a potential source of bias to the use of friend
controls that does not exist for other sources of controls.

A third problem is that using friend controls can introduce a bias that stems from the overlapping
nature of friendship groups (Austin et al., 1989; Robins and Pike, 1990). The problem arises because
different cases name groups of friends that are not mutually exclusive. As a result, people with many
friends become overrepresented in the control series, and any exposures associated with such people
become overrepresented as well (see Chapter 11).

In principle, matching categories should form a mutually exclusive and collectively exhaustive
partition with respect to all factors, such as neighborhood and age. For example, if matching on
age, bias due to overlapping matching groups can arise from caliper matching, a term that refers to
choosing controls who have a value for the matching factor within a specified range of the case’s
value. Thus, if the case is 69 years old, one might choose controls who are within 2 years of age
69. Overlap bias can be avoided if one uses nonoverlapping age categories for matching. Thus, if
the case is 69 years old, one might choose controls from within the age category 65 to 69 years.
In practice, however, bias due to overlapping age and neighborhood categories is probably minor
(Robins and Pike, 1990).

Dead Controls

A dead control cannot be a member of the source population for cases, because death precludes
the occurrence of any new disease. Suppose, however, that the cases are dead. Does the need
for comparability argue in favor of using dead controls? Although certain types of comparability
are important, choosing dead controls will misrepresent the exposure distribution in the source
population if the exposure causes or prevents death in a substantial proportion of people or if it
is associated with an uncontrolled factor that does. If interviews are needed and some cases are
dead, it will be necessary to use proxy respondents for the dead cases. To enhance comparability
of information while avoiding the problems of taking dead controls, proxy respondents can also
be used for those live controls matched to dead cases (Wacholder et al., 1992b). The advantage of
comparable information for cases and controls is often overstated, however, as will be addressed
later. The main justification for using dead controls is convenience, such as in studies based entirely
on deaths (see the discussion of proportional mortality studies below and in Chapter 6).

OTHER CONSIDERATIONS FOR SUBJECT SELECTION

Representativeness

Some textbooks have stressed the need for representativeness in the selection of cases and controls.
The advice has been that cases should be representative of all people with the disease and that controls
should be representative of the entire nondiseased population. Such advice can be misleading. A
case-control study may be restricted to any type of case that may be of interest: female cases, old
cases, severely ill cases, cases that died soon after disease onset, mild cases,cases from Philadelphia,
cases among factory workers, and so on. In none of these examples would the cases be representative
of all people with the disease, yet perfectly valid case-control studies are possible in each one (Cole,
1979). The definition of a case can be quite specific as long as it has a sound rationale. The main
concern is clear delineation of the population that gave rise to the cases.

Ordinarily, controls should represent the source population for cases (within categories of strat-
ification variables), rather than the entire nondiseased population. The latter may differ vastly from
the source population for the cases by age, race, sex (e.g., if the cases come from a Veterans Admin-
istration hospital), socioeconomic status, occupation, and so on—including the exposure of interest.
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One of the reasons for emphasizing the similarities rather than the differences between cohort and
case-control studies is that numerous principles apply to both types of study but are more evident
in the context of cohort studies. In particular, many principles relating to subject selection apply
identically to both types of study. For example, it is widely appreciated that cohort studies can be
based on special cohorts rather than on the general population. It follows that case-control studies
can be conducted by sampling cases and controls from within those special cohorts. The resulting
controls should represent the distribution of exposure across those cohorts, rather than the general
population, reflecting the more general rule that controls should represent the source population of
the cases in the study, not the general population.

Comparability of Information Accuracy

Some authors have recommended that information obtained about cases and controls should be
of comparable or equal accuracy, to ensure nondifferentiality (equal distribution) of measurement
errors (Miettinen, 1985a; Wacholder et al., 1992a; MacMahon and Trichopoulos, 1996). The ra-
tionale for this principle is the notion that nondifferential measurement error biases the observed
association toward the null, and so will not generate a spurious association, and that bias in studies
with nondifferential error is more predictable than in studies with differential error.

The comparability-of-information (equal-accuracy) principle is often used to guide selection of
controls and collection of data. For example, it is the basis for using proxy respondents instead of
direct interviews for living controls whenever case information is obtained from proxy respondents.
In most settings, however, the arguments for the principle are logically inadequate. One problem,
discussed at length in Chapter 9, is that nondifferentiality of exposure measurement error is far
from sufficient to guarantee that bias will be toward the null. Such guarantees require that the
exposure errors also be independent of errors in other variables, including disease and confounders
(Chavance et al., 1992; Kristensen, 1992), a condition that is not always plausible (Lash and
Fink, 2003b). For example, it seems likely that people who conceal heavy alcohol use will also
tend to understate other socially disapproved behaviors such as heavy smoking, illicit drug use,
and so on.

Another problem is that the efforts to ensure equal accuracy of exposure information will also tend
to produce equal accuracy of information on other variables. The direction of overall bias produced
by the resulting nondifferential errors in confounders and effect modifiers can be larger than the
bias produced by differential error from unequal accuracy of exposure information from cases
and controls (Greenland, 1980; Brenner, 1993; Marshall and Hastrup, 1996; Marshall et al., 1999;
Fewell et al., 2007). In addition, unless the exposure is binary, even independent nondifferential
error in exposure measurement is not guaranteed to produce bias toward the null (Dosemeci et al.,
1990). Finally, even when the bias produced by forcing equal measurement accuracy is toward the
null, there is no guarantee that the bias is less than the bias that would have resulted from using a
measurement with differential error (Greenland and Robins, 1985a; Drews and Greenland, 1990;
Wacholder et al., 1992a). For example, in a study that used proxy respondents for cases, use of
proxy respondents for the controls might lead to greater bias than use of direct interviews with
controls, even if the latter results in greater accuracy of control measurements.

The comparability-of-information (equal accuracy) principle is therefore applicable only under
very limited conditions. In particular, it would seem to be useful only when confounders and effect
modifiers are measured with negligible error and when measurement error is reduced by using
equally accurate sources of information. Otherwise, the bias from forcing cases and controls to
have equal measurement accuracy may be as unpredictable as the effect of not doing so and risking
differential error (unequal accuracy).

Number of Control Groups

Situations arise in which the investigator may face a choice between two or more possible control
groups. Usually, there will be advantages for one group that are missing in the other, and vice
versa. Consider, for example, a case-control study based on a hospitalized series of cases. Because
they are hospitalized, hospital controls would be unrepresentative of the source population to the
extent that exposure is related to hospitalization for the control conditions. Neighborhood controls
would not suffer this problem, but might be unrepresentative of persons who would go to the
hospital if they had the study disease. So which control group is better? In such situations, some
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have argued that more than one control group should be used, in an attempt to address the biases
from each group (Ibrahim and Spitzer, 1979). For example, Gutensohn et al. (1975), in a case-
control study of Hodgkin disease, used a control group of spouses to control for environmental
influences during adult life but also used a control group of siblings to control for childhood
environment and sex. Both control groups are attempting to represent the same source population
of cases, but have different vulnerabilities to selection biases and match on different potential
confounders.

Use of multiple control groups may involve considerable labor, so is more the exception than
the rule in case-control research. Often, one available control source is superior to all practical
alternatives. In such settings, effort should not be wasted on collecting controls from sources likely
to be biased. Interpretation of the results will also be more complicated unless the different control
groups yield similar results. If the two groups produced different results, one would face the problem
of explaining the differences and attempting to infer which estimate was more valid. Logically, then,
the value of using more than one control group is quite limited. The control groups can and should
be compared, but a lack of difference between the groups shows only that both groups incorporate
similar net bias. A difference shows only that at least one is biased, but does not indicate which is
best or which is worst. Only external information could help evaluate the likely extent of bias in
the estimates from different control groups, and that same external information might have favored
selection of only one of the control groups at the design stage of the study.

Timing of Classification and Diagnosis

Chapter 7 discussed at length some basic principles for classifying persons, cases, and person-time
units in cohort studies according to exposure status. The same principles apply to cases and controls
in case-control studies. If the controls are intended to represent person-time (rather than persons) in
the source population, one should apply principles for classifying person-time to the classification
of controls. In particular, principles of person-time classification lead to the rule that controls should
be classified by their exposure status as of their selection time. Exposures accrued after that time
should be ignored. The rule necessitates that information (such as exposure history) be obtained in
a manner that allows one to ignore exposures accrued after the selection time. In a similar manner,
cases should be classified as of time of diagnosis or disease onset, accounting for any built-in lag
periods or induction-period hypotheses. Determining the time of diagnosis or disease onset can
involve all the problems and ambiguities discussed in the previous chapter for cohort studies and
needs to be resolved by study protocol before classifications can be made.

As an example, consider a study of alcohol use and laryngeal cancer that also examined smoking
as a confounder and possible effect modifier, used interviewer-administered questionnaires to collect
data, and used neighborhood controls. To examine the effect of alcohol and smoking while assuming
a 1-year lag period (a 1-year minimum induction time), the questionnaire would have to allow
determination of drinking and smoking habits up to 1 year before diagnosis (for cases) or selection
(for controls).

Selection time need not refer to the investigator’s identification of the control, but instead may
refer to an event analogous to the occurrence time for the case. For example, the selection time
for controls who are cases of other diseases can be taken as time of diagnosis for that disease; the
selection time of hospital controls might be taken as time of hospitalization. For other types of
controls, there may be no such natural event analogous to the case diagnosis time, and the actual
time of selection will have to be used.

In most studies, selection time will precede the time data are gathered. For example, in interview-
based studies, controls may be identified and then a delay of weeks or months may occur before
the interview is conducted. To avoid complicating the interview questions, this distinction is often
ignored and controls are questioned about habits in periods dating back from the interview.

VARIANTS OF THE CASE-CONTROL DESIGN

NESTED CASE-CONTROL STUDIES

Epidemiologists sometimes refer to specific case-control studies as nested case-control studies when
the population within which the study is conducted is a fully enumerated cohort, which allows formal
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random sampling of cases and controls to be carried out. The term is usually used in reference to
a case-control study conducted within a cohort study, in which further information (perhaps from
expensive tests) is obtained on most or all cases, but for economy is obtained from only a fraction
of the remaining cohort members (the controls). Nonetheless, many population-based case-control
studies can be thought of as nested within an enumerated source population. For example, when
there is a population-based disease registry and a census enumeration of the population served by
the registry, it may be possible to use the census data to sample controls randomly.

CASE-COHORT STUDIES

The case-cohort study is a case-control study in which the source population is a cohort and (within
sampling or matching strata) every person in this cohort has an equal chance of being included in
the study as a control, regardless of how much time that person has contributed to the person-time
experience of the cohort or whether the person developed the study disease. This design is a logical
way to conduct a case-control study when the effect measure of interest is the ratio of incidence
proportions rather than a rate ratio, as is common in perinatal studies. The average risk (or incidence
proportion) of falling ill during a specified period may be written

R1 = A1

N1

for the exposed subcohort and

R0 = A0

N0

for the unexposed subcohort, where R1 and R0 are the incidence proportions among the exposed
and unexposed, respectively, and N1 and N0 are the initial sizes of the exposed and unexposed
subcohorts. (This discussion applies equally well to exposure variables with several levels, but for
simplicity we will consider only a dichotomous exposure.) Controls should be selected such that the
exposure distribution among them will estimate without bias the exposure distribution in the source
population. In a case-cohort study, the distribution we wish to estimate is among the N1 + N0 cohort
members, not among their person-time experience (Thomas, 1972; Kupper et al., 1975; Miettinen,
1982a).

The objective is to select controls from the source cohort such that the ratio of the number of
exposed controls (B1) to the number of exposed cohort members (N1) is the same as the ratio of the
number of unexposed controls (B0) to the number of unexposed cohort members (N0), apart from
sampling error:

B1

N1

= B0

N0

Here, B1/N1 and B0/N0 are the control sampling fractions (the number of controls selected per
cohort member). Apart from random error, these sampling fractions will be equal if controls have
been selected independently of exposure.

We can use the frequencies of exposed and unexposed controls as substitutes for the actual
denominators of the incidence proportions to obtain “pseudo-risks”:

Pseudo-risk1 = A1

B1

and

Pseudo-risk0 = A0

B0

These pseudo-risks have no epidemiologic interpretation by themselves. Suppose, however, that
the control sampling fractions are equal to the same fraction, f . Then, apart from sampling error,
B1/ f should equal N1, the size of the exposed subcohort; and B0/ f should equal N0, the size of the
unexposed subcohort: B1/ f = B1/(B1/N1) = N1 and B0/ f = B0/(B0/N0) = N0. Thus, to get the
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incidence proportions, we need only multiply each pseudo-risk by the common sampling fraction,
f . If this fraction is not known, we can still compare the sizes of the pseudo-risks by division:

Pseudo-risk1

Pseudo-risk0

= A1/B1

A0/B0

= A1/[(B1/N1)N1]

A0/[(B0/N0)N0]
= A1/ f N1

A0/ f N0

= A1/N1

A0/N0

In other words, the ratio of pseudo-risks is an estimate of the ratio of incidence proportions (risk
ratio) in the source cohort if control sampling is independent of exposure. Thus, using a case-cohort
design, one can estimate the risk ratio in a cohort without obtaining information on every cohort
member.

Thus far, we have implicitly assumed that there is no loss to follow-up or competing risks in
the underlying cohort. If there are such problems, it is still possible to estimate risk or rate ratios
from a case-cohort study, provided that we have data on the time spent at risk by the sampled
subjects or we use certain sampling modifications (Flanders et al., 1990). These procedures require
the usual assumptions for rate-ratio estimation in cohort studies, namely, that loss-to-follow-up
and competing risks either are not associated with exposure or are not associated with disease
risk.

An advantage of the case-cohort design is that it facilitates conduct of a set of case-control
studies from a single cohort, all of which use the same control group. As a sample from the cohort
at enrollment, the control group can be compared with any number of case groups. If matched
controls are selected from people at risk at the time a case occurs (as in risk-set sampling, which is
described later), the control series must be tailored to a specific group of cases. If common outcomes
are to be studied and one wishes to use a single control group for each outcome, another sampling
scheme must be used. The case-cohort approach is a good choice in such a situation.

Case-cohort designs have other advantages as well as disadvantages relative to alternative case-
control designs (Wacholder, 1991). One disadvantage is that, because of the overlap of membership
in the case and control groups (controls who are selected may also develop disease and enter the
study as cases), one will need to select more controls in a case-cohort study than in an ordinary
case-control study with the same number of cases, if one is to achieve the same amount of statistical
precision. Extra controls are needed because the statistical precision of a study is strongly determined
by the numbers of distinct cases and noncases. Thus, if 20% of the source cohort members will
become cases, and all cases will be included in the study, one will have to select 1.25 times as many
controls as cases in a case-cohort study to ensure that there will be as many controls who never
become cases in the study. On average, only 80% of the controls in such a situation will remain
noncases; the other 20% will become cases. Of course, if the disease is uncommon, the number of
extra controls needed for a case-cohort study will be small.

DENSITY CASE-CONTROL STUDIES

Earlier, we described how case-control odds ratios will estimate rate ratios if the control series is
selected so that the ratio of the person-time denominators T1/T0 is validly estimated by the ratio of
exposed to unexposed controls B1/B0. That is, to estimate rate ratios, controls should be selected
so that the exposure distribution among them is, apart from random error, the same as it is among
the person-time in the source population or within strata of the source population. Such control
selection is called density sampling because it provides for estimation of relations among incidence
rates, which have been called incidence densities.

If a subject’s exposure may vary over time, then a case’s exposure history is evaluated up to the
time the disease occurred. A control’s exposure history is evaluated up to an analogous index time,
usually taken as the time of sampling; exposure after the time of selection must be ignored. This
rule helps ensure that the number of exposed and unexposed controls will be in proportion to the
amount of exposed and unexposed person-time in the source population.

The time during which a subject is eligible to be a control should be the time in which that
person is also eligible to become a case, if the disease should occur. Thus, a person in whom the
disease has already developed or who has died is no longer eligible to be selected as a control.
This rule corresponds to the treatment of subjects in cohort studies. Every case that is tallied in the
numerator of a cohort study contributes to the denominator of the rate until the time that the person
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becomes a case, when the contribution to the denominator ceases. One way to implement this rule
is to choose controls from the set of people in the source population who are at risk of becoming
a case at the time that the case is diagnosed. This set is sometimes referred to as the risk set for
the case, and this type of control sampling is sometimes called risk-set sampling. Controls sampled
in this manner are matched to the case with respect to sampling time; thus, if time is related to
exposure, the resulting data should be analyzed as matched data (Greenland and Thomas, 1982). It
is also possible to conduct unmatched density sampling using probability sampling methods if one
knows the time interval at risk for each population member. One then selects a control by sampling
members with probability proportional to time at risk and then randomly samples a time to measure
exposure within the interval at risk.

As mentioned earlier, a person selected as a control who remains in the study population at risk
after selection should remain eligible to be selected once again as a control. Thus, although it is
unlikely in typical studies, the same person may appear in the control group two or more times. Note,
however, that including the same person at different times does not necessarily lead to exposure
(or confounder) information being repeated, because this information may change with time. For
example, in a case-control study of an acute epidemic of intestinal illness, one might ask about food
ingested within the previous day or days. If a contaminated food item was a cause of the illness for
some cases, then the exposure status of a case or control chosen 5 days into the study might well
differ from what it would have been 2 days into the study.

CUMULATIVE (“EPIDEMIC”) CASE-CONTROL STUDIES

In some research settings, case-control studies may address a risk that ends before subject selection
begins. For example, a case-control study of an epidemic of diarrheal illness after a social gathering
may begin after all the potential cases have occurred (because the maximum induction time has
elapsed). In such a situation, an investigator might select controls from that portion of the population
that remains after eliminating the accumulated cases; that is, one selects controls from among
noncases (those who remain noncases at the end of the epidemic follow-up).

Suppose that the source population is a cohort and that a fraction f of both exposed and unexposed
noncases is selected to be controls. Then the ratio of pseudo-frequencies will be

A1/B1

A0/B0

= A1/ f (N1 − A1)

A0/ f (N0 − A0)
= A1/(N1 − A1)

A0/(N0 − A0)

which is the incidence odds ratio for the cohort. This ratio will provide a reasonable approximation
to the rate ratio, provided that the proportions falling ill in each exposure group during the risk
period are low, that is, less than about 20%, and that the prevalence of exposure remains reasonably
steady during the study period (see Chapter 4). If the investigator prefers to estimate the risk ratio
rather than the incidence rate ratio, the study odds ratio can still be used (Cornfield, 1951), but the
accuracy of this approximation is only about half as good as that of the odds-ratio approximation
to the rate ratio (Greenland, 1987a). The use of this approximation in the cumulative design is the
primary basis for the mistaken teaching that a rare-disease assumption is needed to estimate effects
from case-control studies.

Before the 1970s, the standard conceptualization of case-control studies involved the cumulative
design, in which controls are selected from noncases at the end of a follow-up period. As discussed
by numerous authors (Sheehe, 1962; Miettinen, 1976a; Greenland and Thomas, 1982), density
designs and case-cohort designs have several advantages outside of the acute epidemic setting,
including potentially much less sensitivity to bias from exposure-related loss-to-follow-up.

CASE-ONLY, CASE-SPECULAR, AND CASE-CROSSOVER STUDIES

There are a number of situations in which cases are the only subjects used to estimate or test
hypotheses about effects. For example, it is sometimes possible to employ theoretical considerations
to construct a prior distribution of exposure in the source population and use this distribution in
place of an observed control series. Such situations arise naturally in genetic studies, in which basic
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laws of inheritance may be combined with certain assumptions to derive a population or parental-
specific distribution of genotypes (Self et al., 1991). It is also possible to study certain aspects
of joint effects (interactions) of genetic and environmental factors without using control subjects
(Khoury and Flanders, 1996); see Chapter 28 for details.

When the exposure under study is defined by proximity to an environmental source (e.g., a power
line), it may be possible to construct a specular (hypothetical) control for each case by conducting
a “thought experiment.” Either the case or the exposure source is imaginarily moved to another
location that would be equally likely were there no exposure effect; the case exposure level under
this hypothetical configuration is then treated as the (matched) “control” exposure for the case
(Zaffanella et al., 1998). When the specular control arises by examining the exposure experience
of the case outside of the time in which exposure could be related to disease occurrence, the result
is called a case-crossover study.

The classic crossover study is a type of experiment in which two (or more) treatments are
compared, as in any experimental study. In a crossover study, however, each subject receives both
treatments, with one following the other. Preferably, the order in which the two treatments are
applied is randomly chosen for each subject. Enough time should be allocated between the two
administrations so that the effect of each treatment can be measured and can subside before the
other treatment is given. A persistent effect of the first intervention is called a carryover effect. A
crossover study is only valid to study treatments for which effects occur within a short induction
period and do not persist, i.e., carryover effects must be absent, so that the effect of the second
intervention is not intermingled with the effect of the first.

The case-crossover study is a case-control analog of the crossover study (Maclure, 1991). For
each case, one or more predisease or postdisease time periods are selected as matched “control”
periods for the case. The exposure status of the case at the time of the disease onset is compared with
the distribution of exposure status for that same person in the control periods. Such a comparison
depends on the assumption that neither exposure nor confounders are changing over time in a
systematic way.

Only a limited set of research topics are amenable to the case-crossover design. The exposure
must vary over time within individuals rather than stay constant. Eye color or blood type, for example,
could not be studied with a case-crossover design because both are constant. If the exposure does
not vary within a person, then there is no basis for comparing exposed and unexposed time periods
of risk within the person. Like the crossover study, the exposure must also have a short induction
time and a transient effect; otherwise, exposures in the distant past could be the cause of a recent
disease onset (a carryover effect).

Maclure (1991) used the case-crossover design to study the effect of sexual activity on incident
myocardial infarction. This topic is well suited to a case-crossover design because the exposure
is intermittent and is presumed to have a short induction period for the hypothesized effect. Any
increase in risk for a myocardial infarction from sexual activity is presumed to be confined to
a short time following the activity. A myocardial infarction is an outcome that is well suited to
this type of study because it is thought to be triggered by events close in time. Other possible
causes of a myocardial infarction that might be studied by a case-crossover study would be caffeine
consumption, alcohol consumption, carbon monoxide exposure, drug exposures, and heavy physical
exertion (Mittleman et al., 1993), all of which occur intermittently.

Each case and its control in a case-crossover study is automatically matched on all characteristics
(e.g., sex and birth date) that do not change within individuals. Matched analysis of case-crossover
data controls for all such fixed confounders, whether or not they are measured. Subject to special
assumptions, control for measured time-varying confounders may be possible using modeling
methods for matched data (see Chapter 21). It is also possible to adjust case-crossover estimates
for bias due to time trends in exposure through use of longitudinal data from a nondiseased control
group (case-time controls) (Suissa, 1995). Nonetheless, these trend adjustments themselves depend
on additional no-confounding assumptions and may introduce bias if those assumptions are not met
(Greenland, 1996b).

There are many possible variants of the case-crossover design, depending on how control time
periods are selected. These variants offer trade-offs among potential for bias, inefficiency, and diffi-
culty of analysis; see Lumley and Levy (2000), Vines and Farrington (2001), Navidi and Weinhandl
(2002), and Janes et al. (2004, 2005) for further discussion.
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TWO-STAGE SAMPLING

Another variant of the case-control study uses two-stage or two-phase sampling (Walker, 1982a;
White, 1982b). In this type of study, the control series comprises a relatively large number of people
(possibly everyone in the source population), from whom exposure information or perhaps some
limited amount of information on other relevant variables is obtained. Then, for only a subsample of
the controls, more detailed information is obtained on exposure or on other study variables that may
need to be controlled in the analysis. More detailed information may also be limited to a subsample
of cases. This two-stage approach is useful when it is relatively inexpensive to obtain the exposure
information (e.g., by telephone interview), but the covariate information is more expensive to obtain
(say, by laboratory analysis). It is also useful when exposure information already has been collected
on the entire population (e.g., job histories for an occupational cohort), but covariate information is
needed (e.g., genotype). This situation arises in cohort studies when more information is required
than was gathered at baseline. As will be discussed in Chapter 15, this type of study requires special
analytic methods to take full advantage of the information collected at both stages.

PROPORTIONAL MORTALITY STUDIES

Proportional mortality studies were discussed in Chapter 6, where the point was made that the
validity of such studies can be improved if they are designed and analyzed as case-control studies.
The cases are deaths occurring within the source population. Controls are not selected directly from
the source population, which consists of living people, but are taken from other deaths within the
source population. This control series is acceptable if the exposure distribution within this group
is similar to that of the source population. Consequently, the control series should be restricted to
categories of death that are not related to the exposure. See Chapter 6 for a more detailed discussion.

CASE-CONTROL STUDIES WITH PREVALENT CASES

Case-control studies are sometimes based on prevalent cases rather than incident cases. When it is
impractical to include only incident cases, it may still be possible to select existing cases of illness
at a point in time. If the prevalence odds ratio in the population is equal to the incidence-rate ratio,
then the odds ratio from a case-control study based on prevalent cases can unbiasedly estimate the
rate ratio. As noted in Chapter 4, however, the conditions required for the prevalence odds ratio
to equal the rate ratio are very strong, and a simple general relation does not exist for age-specific
ratios. If exposure is associated with duration of illness or migration out of the prevalence pool,
then a case-control study based on prevalent cases cannot by itself distinguish exposure effects
on disease incidence from the exposure association with disease duration or migration, unless the
strengths of the latter associations are known. If the size of the exposed or the unexposed population
changes with time or there is migration into the prevalence pool, the prevalence odds ratio may be
further removed from the rate ratio. Consequently, it is always preferable to select incident rather
than prevalent cases when studying disease etiology.

As discussed in Chapter 3, prevalent cases are usually drawn in studies of congenital malforma-
tions. In such studies, cases ascertained at birth are prevalent because they have survived with the
malformation from the time of its occurrence until birth. It would be etiologically more useful to as-
certain all incident cases, including affected abortuses that do not survive until birth. Many of these,
however, do not survive until ascertainment is feasible, and thus it is virtually inevitable that case-
control studies of congenital malformations are based on prevalent cases. In this example, the source
population comprises all conceptuses, and miscarriage and induced abortion represent emigration
before the ascertainment date. Although an exposure will not affect duration of a malformation, it
may very well affect risks of miscarriage and abortion.

Other situations in which prevalent cases are commonly used are studies of chronic conditions
with ill-defined onset times and limited effects on mortality, such as obesity, Parkinson’s disease,
and multiple sclerosis, and studies of health services utilization.
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VALIDITY OF ESTIMATION

An epidemiologic estimate is the end product of the study design, the study conduct, and the data
analysis. We will call the entire process leading to an estimate (study design, conduct, and analysis)
the estimation process. The overall goal of an epidemiologic study can then usually be viewed as
accuracy in estimation. More specifically, as described in previous chapters, the objective of an
epidemiologic study is to obtain a valid and precise estimate of the frequency of a disease or of the
effect of an exposure on the occurrence of a disease in the source population of the study. Inherent
in this objective is the view that epidemiologic research is an exercise in measurement. Often, a
further objective is to obtain an estimate that is generalizable to relevant target populations; this
objective involves selecting a source population for study that either is a target or can be argued to
experience effects similar to the targets.

Accuracy in estimation implies that the value of the parameter that is the object of measure-
ment is estimated with little error. Errors in estimation are traditionally classified as either random
or systematic. Although random errors in the sampling and measurement of subjects can lead to
systematic errors in the final estimates, important principles of study design emerge from sepa-
rate consideration of sources of random and systematic errors. Systematic errors in estimates are
commonly referred to as biases; the opposite of bias is validity, so that an estimate that has little
systematic error may be described as valid. Analogously, the opposite of random error is precision,
and an estimate with little random error may be described as precise. Validity and precision are
both components of accuracy.

The validity of a study is usually separated into two components: the validity of the inferences
drawn as they pertain to the members of the source population (internal validity) and the validity of
the inferences as they pertain to people outside that population (external validity or generalizability).
Internal validity implies validity of inference for the source population of study subjects. In studies
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of causation, it corresponds to accurate measurement of effects apart from random variation. Under
such a scheme, internal validity is considered a prerequisite for external validity.

Most violations of internal validity can be classified into three general categories: confounding,
selection bias, and information bias, where the latter is bias arising from mismeasurement of study
variables. Confounding was described in general terms in Chapter 4, while specific selection bias
and measurement problems were described in Chapters 7 and 8. The present chapter describes the
general forms of these problems in epidemiologic studies. Chapter 10 describes how to measure and
limit random error, Chapter 11 addresses options in study design that can improve overall accuracy,
and Chapter 12 shows how biases can be described and identified using causal diagrams. After
an introduction to statistics in Chapters 13 and 14, Chapters 15 and 16 provide basic methods to
adjust for measured confounders, while Chapter 19 introduces methods to adjust for unmeasured
confounders, selection bias, and misclassification.

The dichotomization of validity into internal and external components might suggest that gener-
alization is simply a matter of extending inferences about a source population to a target population.
The final section of this chapter provides a different view of generalizability, in which the essence
of scientific generalization is the formulation of abstract (usually causal) theories that relate the
study variables to one another. The theories are abstract in the sense that they are not tied to specific
populations; instead, they apply to a more general set of circumstances than the specific populations
under study. Internal validity in a study is still a prerequisite for the study to contribute usefully to
this process of abstraction, but the generalization process is otherwise separate from the concerns
of internal validity and the mechanics of the study design.

CONFOUNDING

The concept of confounding was introduced in Chapter 4. Although confounding occurs in experi-
mental research, it is a considerably more important issue in observational studies. Therefore, we
will here review the concepts of confounding and confounders and then discuss further issues in
defining and identifying confounders. As in Chapter 4, in this section we will presume that the
objective is to estimate the effect that exposure had on those exposed in the source population. This
effect is the actual (or realized) effect of exposure. We will indicate only briefly how the discussion
should be modified when estimating counterfactual (or potential) exposure effects, such as the effect
exposure might have on the unexposed. Chapter 12 examines confounding within the context of
causal diagrams, which do not make these distinctions explicit.

CONFOUNDING AS MIXING OF EFFECTS

On the simplest level, confounding may be considered a confusion of effects. Specifically, the
apparent effect of the exposure of interest is distorted because the effect of extraneous factors
is mistaken for—or mixed with—the actual exposure effect (which may be null). The distortion
introduced by a confounding factor can be large, and it can lead to overestimation or underes-
timation of an effect, depending on the direction of the associations that the confounding fac-
tor has with exposure and disease. Confounding can even change the apparent direction of an
effect.

A more precise definition of confounding begins by considering the manner in which effects are
estimated. Suppose we wish to estimate the degree to which exposure has changed the frequency of
disease in an exposed cohort. To do so, we must estimate what the frequency of disease would have
been in this cohort had exposure been absent and compare this estimate to the observed frequency
under exposure. Because the cohort was exposed, this absence of exposure is counterfactual (con-
trary to the facts) and so the desired unexposed comparison frequency is unobservable. Thus, as a
substitute, we observe the disease frequency in an unexposed cohort. But rarely can we take this
unexposed frequency as fairly representing what the frequency would have been in the exposed
cohort had exposure been absent, because the unexposed cohort may differ from the exposed cohort
on many factors that affect disease frequency besides exposure. To express this problem, we say
that the use of the unexposed as the referent for the exposed is confounded, because the disease
frequency in the exposed differs from that in the unexposed as a result of a mixture of two or more
effects, one of which is the effect of exposure.
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CONFOUNDERS AND SURROGATE CONFOUNDERS

The extraneous factors that are responsible for difference in disease frequency between the exposed
and unexposed are called confounders. In addition, factors associated with these extraneous causal
factors that can serve as surrogates for these factors are also commonly called confounders. The most
extreme example of such a surrogate is chronologic age. Increasing age is strongly associated with
aging—the accumulation of cell mutations and tissue damage that leads to disease—but increasing
age does not itself cause most such pathogenic changes (Kirkland, 1992), because it is just a measure
of how much time has passed since birth.

Regardless of whether a confounder is a cause of the study disease or merely a surrogate for such
a cause, one primary characteristic is that if it is perfectly measured it will be predictive of disease
frequency within the unexposed (reference) cohort. Otherwise, the confounder cannot explain why
the unexposed cohort fails to represent properly the disease frequency the exposed cohort would
experience in the absence of exposure. For example, suppose that all the exposed were men and
all the unexposed were women. If unexposed men have the same incidence as unexposed women,
the fact that all the unexposed were women rather than men could not account for any confounding
that is present.

In the simple view, confounding occurs only if extraneous effects become mixed with the
effect under study. Note, however, that confounding can occur even if the factor under study
has no effect. Thus, “mixing of effects” should not be taken to imply that the exposure under
study has an effect. The mixing of the effects comes about from an association between the expo-
sure and extraneous factors, regardless of whether the exposure has an effect.

As another example, consider a study to determine whether alcohol drinkers experience a greater
incidence of oral cancer than nondrinkers. Smoking is an extraneous factor that is related to the
disease among the unexposed (smoking has an effect on oral cancer incidence among alcohol
abstainers). Smoking is also associated with alcohol drinking, because there are many people who
are general “abstainers,” refraining from alcohol consumption, smoking, and perhaps other habits.
Consequently, alcohol drinkers include among them a greater proportion of smokers than would be
found among nondrinkers. Because smoking increases the incidence of oral cancer, alcohol drinkers
will have a greater incidence than nondrinkers, quite apart from any influence of alcohol drinking
itself, simply as a consequence of the greater amount of smoking among alcohol drinkers. Thus,
the apparent effect of alcohol drinking is distorted by the effect of smoking; the effect of smoking
becomes mixed with the effect of alcohol in the comparison of alcohol drinkers with nondrinkers.
The degree of bias or distortion depends on the magnitude of the smoking effect, the strength of
association between alcohol and smoking, and the prevalence of smoking among nondrinkers who
do not have oral cancer. Either absence of a smoking effect on oral cancer incidence or absence
of an association between smoking and alcohol would lead to no confounding. Smoking must be
associated with both oral cancer and alcohol drinking for it to be a confounding factor.

PROPERTIES OF A CONFOUNDER

In general, a variable must be associated with both the exposure under study and the disease under
study to be a confounder. These associations do not, however, define a confounder, for a variable
may possess these associations and yet not be a confounder. There are several ways this can happen.
The most common way occurs when the exposure under study has an effect. In this situation, any
correlate of that exposure will also tend to be associated with the disease as a consequence of
its association with exposure. For example, suppose that frequent beer consumption is associated
with the consumption of pizza, and suppose that frequent beer consumption is a risk factor for
rectal cancer. Would consumption of pizza be a confounding factor? At first, it might seem that the
answer is yes, because consumption of pizza is associated both with beer drinking and with rectal
cancer. But if pizza consumption is associated with rectal cancer only because of its association with
beer consumption, it would not be confounding; in fact, the association of pizza consumption with
colorectal cancer would then be due entirely to confounding by beer consumption. A confounding
factor must be associated with disease occurrence apart from its association with exposure. In
particular, as explained earlier, the potentially confounding variate must be associated with disease
among unexposed (reference) individuals. If consumption of pizza were associated with rectal
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cancer among nondrinkers of beer, then it could confound. Otherwise, if it were associated with
rectal cancer only because of its association with beer drinking, it could not confound.

Analogous with this restriction on the association between a potential confounder and disease,
the potential confounder must be associated with the exposure among the source population for
cases, for this association with exposure is how the effects of the potential confounder become
mixed with the effects of the exposure. In this regard, it should be noted that a risk factor that is
independent of exposure in the source population can (and usually will) become associated with
exposure among the cases; hence one cannot take the association among cases as a valid estimate
of the association in the source population.

CONFOUNDERS AS EXTRANEOUS RISK FACTORS

It is also important to clarify what we mean by the term extraneous in the phrase “extraneous risk
factor.” This term means that the factor’s association with disease arises from a causal pathway
other than the one under study. Specifically, consider the causal diagram

Smoking −→ elevated blood pressure −→ heart disease

where the arrows represent causation. Is elevated blood pressure a confounding factor? It is certainly
a risk factor for disease, and it is also correlated with exposure, because it can result from smoking.
It is even a risk factor for disease among unexposed individuals, because elevated blood pressure
can result from causes other than smoking. Nevertheless, it cannot be considered a confounding
factor, because the effect of smoking is mediated through the effect of blood pressure. Any factor
that represents a step in the causal chain between exposure and disease should not be treated as
an extraneous confounding factor, but instead requires special treatment as an intermediate factor
(Greenland and Neutra, 1980; Robins, 1989; see Chapter 12).

Finally, a variable may satisfy all of the preceding conditions but may not do so after control
for some other confounding variable, and so may no longer be a confounder within strata of the
second confounder. For example, it may happen that either (a) the first confounder is no longer
associated with disease within strata of the second confounder, or (b) the first confounder is no
longer associated with exposure within strata of the second confounder. In either case, the first
confounder is only a surrogate for the second confounder. More generally, the status of a variable
as a confounder may depend on which other variables are controlled when the evaluation is made;
in other words, being a confounder is conditional on what else is controlled.

JUDGING THE CAUSAL ROLE OF A POTENTIAL CONFOUNDER

Consider the simple but common case of a binary exposure variable, with interest focused on the
effect of exposure on a particular exposed population, relative to what would have happened had this
population not been exposed. Suppose that an unexposed population is selected as the comparison
(reference) group. A potential confounder is then a factor that is associated with disease among
the unexposed, and is not affected by exposure or disease. We can verify the latter requirement
if we know that the factor precedes the exposure and disease. Association with disease among
the unexposed is a more difficult criterion to decide. Apart from simple and now obvious potential
confounders such as age, sex, and tobacco use, the available epidemiologic data are often ambiguous
as to predictiveness even when they do establish time order. Simply deciding whether predictiveness
holds on the basis of a statistical test is usually far too insensitive to detect all important confounders
and as a result may produce highly confounded estimates, as real examples demonstrate (Greenland
and Neutra, 1980).

One answer to the ambiguity and insensitivity of epidemiologic methods to detect confounders
is to call on other evidence regarding the effect of the potential confounder on disease, including
nonepidemiologic (e.g., clinical or social) data and perhaps mechanistic theories about the possible
effects of the potential confounders. Uncertainties about the evidence or mechanism can justify the
handling of a potential confounding factor as both confounding and not confounding in different
analyses. For example, in evaluating the effect of coffee on heart disease, it is unclear how to treat
serum cholesterol levels. Elevated levels are a risk factor for heart disease and may be associated
with coffee use, but serum cholesterol may mediate the action of coffee use on heart disease risk.
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That is, elevated cholesterol may be an intermediate factor in the etiologic sequence under study. If
the time ordering of coffee use and cholesterol elevation cannot be determined, one might conduct
two analyses, one in which serum cholesterol is controlled (which would be appropriate if coffee
does not affect serum cholesterol) and one in which it is either not controlled or is treated as
an intermediate (which would be more appropriate if coffee affects serum cholesterol and is not
associated with uncontrolled determinants of serum cholesterol). The interpretation of the results
would depend on which of the theories about serum cholesterol were correct. Causal graphs provide
a useful means for depicting these multivariable relations and, as will be explained in Chapter 12,
allow identification of confounders for control from the structure of the graph.

CRITERIA FOR A CONFOUNDING FACTOR

We can summarize thus far with the observation that for a variable to be a confounder, it must have
three necessary (but not sufficient or defining) characteristics, which we will discuss in detail. We
will then point out some limitations of these characteristics in defining and identifying confounding.

1. A confounding factor must be an extraneous risk factor for the disease.

As mentioned earlier, a potential confounding factor need not be an actual cause of the disease,
but if it is not, it must be a surrogate for an actual cause of the disease other than exposure. This
condition implies that the association between the potential confounder and the disease must occur
within levels of the study exposure. In particular, a potentially confounding factor must be a risk
factor within the reference level of the exposure under study. The data may serve as a guide to
the relation between the potential confounder and the disease, but it is the actual relation between
the potentially confounding factor and disease, not the apparent relation observed in the data, that
determines whether confounding can occur. In large studies, which are subject to less sampling
error, we expect the data to reflect more closely the underlying relation, but in small studies the
data are a less reliable guide, and one must consider other, external evidence (“prior knowledge”)
regarding the relation of the factor to the disease.

The following example illustrates the role that prior knowledge can play in evaluating con-
founding. Suppose that in a cohort study of airborne glass fibers and lung cancer, the data show
more smoking and more cancers among the heavily exposed but no relation between smoking and
lung cancer within exposure levels. The latter absence of a relation does not mean that an effect
of smoking was not confounded (mixed) with the estimated effect of glass fibers: It may be that
some or all of the excess cancers in the heavily exposed were produced solely by smoking, and
that the lack of a smoking–cancer association in the study cohort was produced by an unmeasured
confounder of that association in this cohort, or by random error.

As a converse example, suppose that we conduct a cohort study of sunlight exposure and
melanoma. Our best current information indicates that, after controlling for age and geographic
area of residence, there is no relation between Social Security number and melanoma occurrence.
Thus, we would not consider Social Security number a confounder, regardless of its association with
melanoma in the reference exposure cohort, because we think it is not a risk factor for melanoma
in this cohort, given age and geographic area (i.e., we think Social Security numbers do not affect
melanoma rates and are not markers for some melanoma risk factor other than age and area). Even if
control of Social Security number would change the effect estimate, the resulting estimate of effect
would be less accurate than one that ignores Social Security number, given our prior information
about the lack of real confounding by social security number.

Nevertheless, because external information is usually limited, investigators often rely on their
data to infer the relation of potential confounders to the disease. This reliance can be rationalized if
one has good reason to suspect that the external information is not very relevant to one’s own study.
For example, a cause of disease in one population will be causally unrelated to disease in another
population that lacks complementary component causes (i.e., susceptibility factors; see Chapter 2).
A discordance between the data and external information about a suspected or known risk factor
may therefore signal an inadequacy in the detail of information about interacting factors rather than
an error in the data. Such an explanation may be less credible for variables such as age, sex, and
smoking, whose joint relation to disease are often thought to be fairly stable across populations. In
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a parallel fashion, external information about the absence of an effect for a possible risk factor may
be considered inadequate, if the external information is based on studies that had a considerable
bias toward the null.

2. A confounding factor must be associated with the exposure under study in the source population
(the population at risk from which the cases are derived).

To produce confounding, the association between a potential confounding factor and the exposure
must be in the source population of the study cases. In a cohort study, the source population
corresponds to the study cohort and so this proviso implies only that the association between a
confounding factor and the exposure exists among subjects that compose the cohort. Thus, in
cohort studies, the exposure–confounder association can be determined from the study data alone
and does not even theoretically depend on prior knowledge if no measurement error is present.

When the exposure under study has been randomly assigned, it is sometimes mistakenly thought
that confounding cannot occur because randomization guarantees exposure will be independent of
(unassociated with) other factors. Unfortunately, this independence guarantee is only on average
across repetitions of the randomization procedure. In almost any given single randomization (allo-
cation), including those in actual studies, there will be random associations of the exposure with
extraneous risk factors. As a consequence, confounding can and does occur in randomized trials.
Although this random confounding tends to be small in large randomized trials, it will often be large
within small trials and within small subgroups of large trials (Rothman, 1977). Furthermore, heavy
nonadherence or noncompliance (failure to follow the assigned treatment protocol) or drop-out can
result in considerable nonrandom confounding, even in large randomized trials (see Chapter 12,
especially Fig. 12–5).

In a case-control study, the association of exposure and the potential confounder must be present
in the source population that gave rise to the cases. If the control series is large and there is
no selection bias or measurement error, the controls will provide a reasonable estimate of the
association between the potential confounding variable and the exposure in the source population
and can be checked with the study data. In general, however, the controls may not adequately
estimate the degree of association between the potential confounder and the exposure in the source
population that produced the study cases. If information is available on this population association,
it can be used to adjust findings from the control series. Unfortunately, reliable external information
about the associations among risk factors in the source population is seldom available. Thus, in
case-control studies, concerns about the control group will have to be considered in estimating
the association between the exposure and the potentially confounding factor, for example, via bias
analysis (Chapter 19).

Consider a nested case-control study of occupational exposure to airborne glass fibers and the
occurrence of lung cancer that randomly sampled cases and controls from cases and persons at
risk in an occupational cohort. Suppose that we knew the association of exposure and smoking in
the full cohort, as we might if this information were recorded for the entire cohort. We could then
use the discrepancy between the true association and the exposure–smoking association observed in
the controls as a measure of the extent to which random sampling had failed to produce representative
controls. Regardless of the size of this discrepancy, if there were no association between smoking
and exposure in the source cohort, smoking would not be a true confounder (even if it appeared to
be one in the case-control data), and the unadjusted estimate would be the best available estimate
(Robins and Morgenstern, 1987). More generally, we could use any information on the entire
cohort to make adjustments to the case-control estimate, in a fashion analogous to two-stage studies
(Chapters 8 and 15).

3. A confounding factor must not be affected by the exposure or the disease. In particular, it cannot
be an intermediate step in the causal path between the exposure and the disease.

This criterion is automatically satisfied if the factor precedes exposure and disease. Otherwise,
the criterion requires information outside the data. The investigator must consider evidence or
theories that bear on whether the exposure or disease might affect the factor. If the factor is an
intermediate step between exposure and disease, it should not be treated as simply a confounding



P1: TNL Printer: RRD

GRBT241-09 GRBT241-v4.cls January 24, 2008 22:3

134 Section II ● Study Design and Conduct

factor; instead, a more detailed analysis that takes account of its intermediate nature is required
(Robins, 1989; Robins and Greenland, 1992; Robins et al., 2000).

Although the above three characteristics of confounders are sometimes taken to define a con-
founder, it is a mistake to do so for both conceptual and technical reasons. Confounding is the
confusion or mixing of extraneous effects with the effect of interest. The first two characteristics
are simply logical consequences of the basic definition, properties that a factor must satisfy in order
to confound. The third property excludes situations in which the effects cannot be disentangled in a
straightforward manner (except in special cases). Technically, it is possible for a factor to possess all
three characteristics and yet not have its effects mixed with the exposure, in the sense that a factor
may produce no spurious excess or deficit of disease among the exposed, despite its association
with exposure and its effect on disease. This result can occur, for example, when the factor is only
one of several potential confounders and the excess of incidence produced by the factor among the
exposed is perfectly balanced by the excess incidence produced by another factor in the unexposed.

The above discussion omits a number of subtleties that arise in qualitative determination of
which variables are sufficient to control in order to eliminate confounding. These qualitative issues
will be discussed using causal diagrams in Chapter 12. It is important to remember, however, that
the degree of confounding is of much greater concern than its mere presence or absence. In one
study, a rate ratio of 5 may become 4.6 after control of age, whereas in another study a rate ratio
of 5 may change to 1.2 after control of age. Although age is confounding in both studies, in the
former the amount of confounding is comparatively unimportant, whereas in the latter confounding
accounts for nearly all of the crude association. Methods to evaluate confounding quantitatively
will be described in Chapters 15 and 19.

SELECTION BIAS

Selection biases are distortions that result from procedures used to select subjects and from factors
that influence study participation. The common element of such biases is that the relation between
exposure and disease is different for those who participate and for all those who should have been
theoretically eligible for study, including those who do not participate. Because estimates of effect
are conditioned on participation, the associations observed in a study represent a mix of forces that
determine participation and forces that determine disease occurrence.

Chapter 12 examines selection bias within the context of causal diagrams. These diagrams show
that it is sometimes (but not always) possible to disentangle the effects of participation from those
of disease determinants using standard methods for the control of confounding. To employ such
analytic control requires, among other things, that the determinants of participation be measured
accurately and not be affected by both exposure and disease. However, if those determinants are
affected by the study factors, analytic control of those determinants will not correct the bias and
may even make it worse.

Some generic forms of selection bias in case-control studies were described in Chapter 8. Those
include use of incorrect control groups (e.g., controls composed of patients with diseases that are
affected by the study exposure). We consider here some further types.

SELF-SELECTION BIAS

A common source of selection bias is self-selection. When the Centers for Disease Control investi-
gated leukemia incidence among troops who had been present at the Smoky Atomic Test in Nevada
(Caldwell et al., 1980), 76% of the troops identified as members of that cohort had known outcomes.
Of this 76%, 82% were traced by the investigators, but the other 18% contacted the investigators
on their own initiative in response to publicity about the investigation. This self-referral of subjects
is ordinarily considered a threat to validity, because the reasons for self-referral may be associated
with the outcome under study (Criqui et al., 1979).

In the Smoky Atomic Test study, there were four leukemia cases among the 0.18 × 0.76 = 14%
of cohort members who referred themselves and four among the 0.82 × 0.76 = 62% of cohort
members traced by the investigators, for a total of eight cases among the 76% of the cohort with
known outcomes. These data indicate that self-selection bias was a small but real problem in the
Smoky study. If the 24% of the cohort with unknown outcomes had a leukemia incidence like that
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of the subjects traced by the investigators, we should expect that only 4(24/62) = 1.5 or about one
or two cases occurred among this 24%, for a total of only nine or 10 cases in the entire cohort.
If instead we assume that the 24% with unknown outcomes had a leukemia incidence like that of
subjects with known outcomes, we would calculate that 8(24/76) = 2.5 or about two or three cases
occurred among this 24%, for a total of 10 or 11 cases in the entire cohort. It might be, however,
that all cases among the 38% (= 24% + 14%) of the cohort that was untraced were among the
self-reported, leaving no case among those with unknown outcome. The total number of cases in
the entire cohort would then be only 8.

Self-selection can also occur before subjects are identified for study. For example, it is routine
to find that the mortality of active workers is less than that of the population as a whole (Fox
and Collier, 1976; McMichael, 1976). This “healthy-worker effect” presumably derives from a
screening process, perhaps largely self-selection, that allows relatively healthy people to become
or remain workers, whereas those who remain unemployed, retired, disabled, or otherwise out of
the active worker population are as a group less healthy (McMichael, 1976; Wang and Miettinen,
1982). While the healthy-worker effect has traditionally been classified as a selection bias, one can
see that it does not reflect a bias created by conditioning on participation in the study, but rather
from the effect of another factor that influences both worker status and some measure of health. As
such, the healthy-worker effect is an example of confounding rather than selection bias (Hernan
et al, 2004), as explained further below.

BERKSONIAN BIAS

A type of selection bias that was first described by Berkson (1946) (although not in the context of
a case-control study), which came to be known as Berkson’s bias or Berksonian bias, occurs when
both the exposure and the disease affect selection and specifically because they affect selection. It
is paradoxical because it can generate a downward bias when both the exposure and the disease
increase the chance of selection; this downward bias can induce a negative association in the study
if the association in the source population is positive but not as large as the bias.

A dramatic example of Berksonian bias arose in the early controversy about the role of exoge-
nous estrogens in causing endometrial cancer. Several case-control studies had reported a strong
association, with about a 10-fold increase in risk for women taking estrogens regularly for a number
of years (Smith et al., 1975; Ziel and Finkle, 1975; Mack et al., 1976; Antunes et al., 1979). Most
investigators interpreted this increase in risk as a causal relation, but others suggested that estrogens
were merely causing the cancers to be diagnosed rather than to occur (Horwitz and Feinstein, 1978).
Their argument rested on the fact that estrogens induce uterine bleeding. Therefore, the administra-
tion of estrogens would presumably lead women to seek medical attention, thus causing a variety
of gynecologic conditions to be detected. The resulting bias was referred to as detection bias.

The remedy for detection bias that Horwitz and Feinstein proposed was to use a control series
of women with benign gynecologic diseases. These investigators reasoned that benign conditions
would also be subject to detection bias, and therefore using a control series comprising women with
benign conditions would be preferable to using a control series of women with other malignant
disease, nongynecologic disease, or no disease, as earlier studies had done. The flaw in this reasoning
was the incorrect assumption that estrogens caused a substantial proportion of endometrial cancers
to be diagnosed that would otherwise have remained undiagnosed. Even if the administration of
estrogens advances the date of diagnosis for endometrial cancer, such an advance in the time
of diagnosis need not in itself lead to any substantial bias (Greenland, 1991a). Possibly, a small
proportion of pre-existing endometrial cancer cases that otherwise would not have been diagnosed
did come to attention, but it is reasonable to suppose that endometrial cancer that is not in situ
(Horwitz and Feinstein excluded in situ cases) usually progresses to cause symptoms leading to
diagnosis (Hutchison and Rothman, 1978). Although a permanent, nonprogressive early stage of
endometrial cancer is a possibility, the studies that excluded such in situ cases from the case series
still found a strong association between estrogen administration and endometrial cancer risk (e.g.,
Antunes et al., 1979).

The proposed alternative control group comprised women with benign gynecologic conditions
that were presumed not to cause symptoms leading to diagnosis. Such a group would provide an
overestimate of the proportion of the source population of cases exposed to estrogens, because
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administration of estrogens would indeed cause the diagnosis of a substantial proportion of the
benign conditions. The use of a control series with benign gynecologic conditions would thus
produce a bias that severely underestimated the effect of exogenous estrogens on risk of endometrial
cancer. Another remedy that Horwitz and Feinstein proposed was to examine the association within
women who had presented with vaginal bleeding or had undergone treatment for such bleeding.
Because both the exposure (exogenous estrogens) and the disease (endometrial cancer) strongly
increase bleeding risk, restriction to women with bleeding or treatment for bleeding results in
a Berksonian bias so severe that it could easily diminish the observed relative risk by fivefold
(Greenland and Neutra, 1981).

A major lesson to be learned from this controversy is the importance of considering selection
biases quantitatively rather than qualitatively. Without appreciation for the magnitude of potential
selection biases, the choice of a control group can result in a bias so great that a strong association
is occluded; alternatively, a negligible association could as easily be exaggerated. Methods for
quantitative consideration of biases are discussed in Chapter 19. Another lesson is that one runs the
risk of inducing or worsening selection bias whenever one uses selection criteria (e.g., requiring the
presence or absence of certain conditions) that are influenced by the exposure under study. If those
criteria are also related to the study disease, severe Berksonian bias is likely to ensue.

DISTINGUISHING SELECTION BIAS FROM CONFOUNDING

Selection bias and confounding are two concepts that, depending on terminology, often overlap. For
example, in cohort studies, biases resulting from differential selection at start of follow-up are often
called selection bias, but in our terminology they are examples of confounding. Consider a cohort
study comparing mortality from cardiovascular diseases among longshoremen and office workers.
If physically fit individuals self-select into longshoreman work, we should expect longshoremen to
have lower cardiovascular mortality than that of office workers, even if working as a longshoreman
has no effect on cardiovascular mortality. As a consequence, the crude estimate from such a study
could not be considered a valid estimate of the effect of longshoreman work relative to office work
on cardiovascular mortality.

Suppose, however, that the fitness of an individual who becomes a lumberjack could be measured
and compared with the fitness of the office workers. If such a measurement were done accurately on
all subjects, the difference in fitness could be controlled in the analysis. Thus, the selection effect
would be removed by control of the confounders responsible for the bias. Although the bias results
from selection of persons for the cohorts, it is in fact a form of confounding.

Because measurements on fitness at entry into an occupation are generally not available, the
investigator’s efforts in such a situation would be focused on the choice of a reference group that
would experience the same selection forces as the target occupation. For example, Paffenbarger
and Hale (1975) conducted a study in which they compared cardiovascular mortality among groups
of longshoremen who engaged in different levels of physical activity on the job. Paffenbarger and
Hale presumed that the selection factors for entering the occupation were similar for the subgroups
engaged in tasks demanding high or low activity, because work assignments were made after entering
the profession. This design would reduce or eliminate the association between fitness and becoming
a longshoreman. By comparing groups with different intensities of exposure within an occupation
(internal comparison), occupational epidemiologists reduce the difference in selection forces that
accompanies comparisons across occupational groups, and thus reduce the risk of confounding.

Unfortunately, not all selection bias in cohort studies can be dealt with as confounding. For
example, if exposure affects loss to follow-up and the latter affects risk, selection bias occurs
because the analysis is conditioned on a common consequence (remaining under follow-up is
related to both the exposure and the outcome). This bias could arise in an occupational mortality
study if exposure caused people to leave the occupation early (e.g., move from an active job to a
desk job or retirement) and that in turn led both to loss to follow-up and to an increased risk of death.
Here, there is no baseline covariate (confounder) creating differences in risk between exposed and
unexposed groups; rather, exposure itself is generating the bias. Such a bias would be irremediable
without further information on the selection effects, and even with that information the bias could
not be removed by simple covariate control. This possibility underscores the need for thorough
follow-up in cohort studies, usually requiring a system for outcome surveillance in the cohort. If
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no such system is in place (e.g., an insurance claims system), the study will have to implement its
own system, which can be expensive.

In case-control studies, the concerns about choice of a control group focus on factors that
might affect selection and recruitment into the study. Although confounding factors also must be
considered, they can be controlled in the analysis if they are measured. If selection factors that
affect case and control selection are themselves not affected by exposure (e.g., sex), any selection
bias they produce can also be controlled by controlling these factors in the analysis. The key, then,
to avoiding confounding and selection bias due to pre-exposure covariates is to identify in advance
and measure as many confounders and selection factors as is practical. Doing so requires good
subject-matter knowledge.

In case-control studies, however, subjects are often selected after exposure and outcome occurs,
and hence there is an elevated potential for bias due to combined exposure and disease effects
on selection, as occurred in the estrogen and endometrial cancer studies that restricted subjects
to patients with bleeding (or to patients receiving specific medical procedures to treat bleeding).
As will be shown using causal graphs (Chaper 12), bias from such joint selection effects usually
cannot be dealt with by basic covariate control. This bias can also arise in cohort studies and even in
randomized trials in which subjects are lost to follow-up. For example, in an occupational mortality
study, exposure could cause people to leave the occupation early and that in turn could produce
both a failure to locate the person (and hence exclusion from the study) and an increased risk of
death. These forces would result in a reduced chance of selection among the exposed, with a higher
reduction among cases.

In this example, there is no baseline covariate (confounder) creating differences in risk between
exposed and unexposed groups; rather, exposure itself is helping to generate the bias. Such a bias
would be irremediable without further information on the selection effects, and even with that
information could not be removed by simple covariate control. This possibility underscores the
need for thorough ascertainment of the outcome in the source population in case-control studies; if
no ascertainment system is in place (e.g., a tumor registry for a cancer study), the study will have
to implement its own system.

Because many types of selection bias cannot be controlled in the analysis, prevention of selection
bias by appropriate control selection can be critical. The usual strategy for this prevention involves
trying to select a control group that is subject to the same selective forces as the case group,
in the hopes that the biases introduced by control selection will cancel the biases introduced by
case selection in the final estimates. Meeting this goal even approximately can rarely be assured;
nonetheless, it is often the only strategy available to address concerns about selection bias. This
strategy and other aspects of control selection were discussed in Chapter 8.

To summarize, differential selection that occurs before exposure and disease leads to confound-
ing, and can thus be controlled by adjustments for the factors responsible for the selection differences
(see, for example, the adjustment methods described in Chapter 15). In contrast, selection bias as
usually described in epidemiology (as well as the experimental-design literature) arises from se-
lection affected by the exposure under study, and may be beyond any practical adjustment. Among
these selection biases, we can further distinguish Berksonian bias in which both the exposure and
the disease affect selection.

Some authors (e.g., Hernan et al., 2004) attempt to use graphs to provide a formal basis for
separating selection bias from confounding by equating selection bias with a phenomenon termed
collider bias, a generalization of Berksonian bias (Greenland, 2003a; Chapter 12). Our terminology
is more in accord with traditional designations in which bias from pre-exposure selection is treated
as a form of confounding. These distinctions are discussed further in Chapter 12.

INFORMATION BIAS

MEASUREMENT ERROR, MISCLASSIFICATION, AND BIAS

Once the subjects to be compared have been identified, one must obtain the information about
them to use in the analysis. Bias in estimating an effect can be caused by measurement errors in
the needed information. Such bias is often called information bias. The direction and magnitude
depends heavily on whether the distribution of errors for one variable (e.g., exposure or disease)
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depends on the actual value of the variable, the actual values of other variables, or the errors in
measuring other variables.

For discrete variables (variables with only a countable number of possible values, such as
indicators for sex), measurement error is usually called classification error or misclassification.
Classification error that depends on the actual values of other variables is called differential mis-
classification. Classification error that does not depend on the actual values of other variables is
called nondifferential misclassification. Classification error that depends on the errors in measuring
or classifying other variables is called dependent error; otherwise the error is called independent
or nondependent error. Correlated error is sometimes used as a synonym for dependent error, but
technically it refers to dependent errors that have a nonzero correlation coefficient.

Much of the ensuing discussion will concern misclassification of binary variables. In this special
situation, the sensitivity of an exposure measurement method is the probability that someone who
is truly exposed will be classified as exposed by the method. The false-negative probability of the
method is the probability that someone who is truly exposed will be classified as unexposed; it
equals 1 minus the sensitivity. The specificity of the method is the probability that someone who
is truly unexposed will be classified as unexposed. The false-positive probability is the probability
that someone who is truly unexposed will be classified as exposed; it equals 1 minus the specificity.
The predictive value positive is the probability that someone who is classified as exposed is truly
exposed. Finally, the predictive value negative is the probability that someone who is classified as
unexposed is truly unexposed. All these terms can also be applied to descriptions of the methods
for classifying disease or classifying a potential confounder or modifier.

DIFFERENTIAL MISCLASSIFICATION

Suppose a cohort study is undertaken to compare incidence rates of emphysema among smokers and
nonsmokers. Emphysema is a disease that may go undiagnosed without special medical attention.
If smokers, because of concern about health-related effects of smoking or as a consequence of other
health effects of smoking (e.g., bronchitis), seek medical attention to a greater degree than nonsmok-
ers, then emphysema might be diagnosed more frequently among smokers than among nonsmokers
simply as a consequence of the greater medical attention. Smoking does cause emphysema, but
unless steps were taken to ensure comparable follow-up, this effect would be overestimated: A
portion of the excess of emphysema incidence would not be a biologic effect of smoking, but would
instead be an effect of smoking on detection of emphysema. This is an example of differential
misclassification, because underdiagnosis of emphysema (failure to detect true cases), which is a
classification error, occurs more frequently for nonsmokers than for smokers.

In case-control studies of congenital malformations, information is sometimes obtained from
interview of mothers. The case mothers have recently given birth to a malformed baby, whereas the
vast majority of control mothers have recently given birth to an apparently healthy baby. Another
variety of differential misclassification, referred to as recall bias, can result if the mothers of mal-
formed infants recall or report true exposures differently than mothers of healthy infants (enhanced
sensitivity of exposure recall among cases), or more frequently recall or report exposure that did
not actually occur (reduced specificity of exposure recall among cases). It is supposed that the birth
of a malformed infant serves as a stimulus to a mother to recall and report all events that might have
played some role in the unfortunate outcome. Presumably, such women will remember and report
exposures such as infectious disease, trauma, and drugs more frequently than mothers of healthy
infants, who have not had a comparable stimulus. An association unrelated to any biologic effect
will result from this recall bias.

Recall bias is a possibility in any case-control study that relies on subject memory, because the
cases and controls are by definition people who differ with respect to their disease experience at
the time of their recall, and this difference may affect recall and reporting. Klemetti and Saxen
(1967) found that the amount of time lapsed between the exposure and the recall was an important
indicator of the accuracy of recall; studies in which the average time since exposure was different
for interviewed cases and controls could thus suffer a differential misclassification.

The bias caused by differential misclassification can either exaggerate or underestimate an effect.
In each of the examples above, the misclassification ordinarily exaggerates the effects under study,
but examples to the contrary can also be found.
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NONDIFFERENTIAL MISCLASSIFICATION

Nondifferential exposure misclassification occurs when the proportion of subjects misclassified on
exposure does not depend on the status of the subject with respect to other variables in the analysis,
including disease. Nondifferential disease misclassification occurs when the proportion of subjects
misclassified on disease does not depend on the status of the subject with respect to other variables
in the analysis, including exposure.

Bias introduced by independent nondifferential misclassification of a binary exposure or disease
is predictable in direction, namely, toward the null value (Newell, 1962; Keys and Kihlberg, 1963;
Gullen et al., 1968; Copeland et al., 1977). Because of the relatively unpredictable effects of
differential misclassification, some investigators go through elaborate procedures to ensure that the
misclassification will be nondifferential, such as blinding of exposure evaluations with respect to
outcome status, in the belief that this will guarantee a bias toward the null. Unfortunately, even in
situations when blinding is accomplished or in cohort studies in which disease outcomes have not
yet occurred, collapsing continuous or categorical exposure data into fewer categories can change
nondifferential error to differential misclassification (Flegal et al., 1991; Wacholder et al., 1991).
Even when nondifferential misclassification is achieved, it may come at the expense of increased
total bias (Greenland and Robins, 1985a; Drews and Greenland, 1990).

Finally, as will be discussed, nondifferentiality alone does not guarantee bias toward the null.
Contrary to popular misconceptions, nondifferential exposure or disease misclassification can some-
times produce bias away from the null if the exposure or disease variable has more than two levels
(Walker and Blettner, 1985; Dosemeci et al., 1990) or if the classification errors depend on errors
made in other variables (Chavance et al., 1992; Kristensen, 1992).

Nondifferential Misclassification of Exposure

As an example of nondifferential misclassification, consider a cohort study comparing the incidence
of laryngeal cancer among drinkers of alcohol with the incidence among nondrinkers. Assume that
drinkers actually have an incidence rate of 0.00050 year−1, whereas nondrinkers have an incidence
rate of 0.00010 year−1, only one-fifth as great. Assume also that two thirds of the study population
consists of drinkers, but only 50% of them acknowledge it. The result is a population in which one
third of subjects are identified (correctly) as drinkers and have an incidence of disease of 0.00050
year−1, but the remaining two thirds of the population consists of equal numbers of drinkers and
nondrinkers, all of whom are classified as nondrinkers, and among whom the average incidence
would be 0.00030 year−1 rather than 0.00010 year−1 (Table 9–1). The rate difference has been

ˆ

ˆ

ˆ

ˆ
T A B L E 9 – 1

Effect of Nondifferential Misclassification of Alcohol Consumption on
Estimation of the Incidence-Rate Difference and Incidence-Rate Ratio
for Laryngeal Cancer (Hypothetical Data)

Incidence Rate Rate Difference
(×105 y) (×105 y) Rate Ratio

No misclassification
1,000,000 drinkers 50 40 5.0
500,000 nondrinkers 10

Half of drinkers classed with nondrinkers
500,000 drinkers 50 20 1.7
1,000,000 “nondrinkers” (50% are actually drinkers) 30

Half of drinkers classed with nondrinkers and one-third of
nondrinkers classed with drinkers
666,667 “drinkers” (25% are actually nondrinkers) 40 6 1.2
833,333 “nondrinkers” (60% are actually drinkers) 34
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reduced by misclassification from 0.00040 year−1 to 0.00020 year−1, while the rate ratio has been
reduced from 5 to 1.7. This bias toward the null value results from nondifferential misclassification
of some alcohol drinkers as nondrinkers.

Misclassification can occur simultaneously in both directions; for example, nondrinkers might
also be incorrectly classified as drinkers. Suppose that in addition to half of the drinkers being
misclassified as nondrinkers, one third of the nondrinkers were also misclassified as drinkers. The
resulting incidence rates would be 0.00040 year−1 for those classified as drinkers and 0.00034
year−1 for those classified as nondrinkers. The additional misclassification thus almost completely
obscures the difference between the groups.

This example shows how bias produced by nondifferential misclassification of a dichotomous
exposure will be toward the null value (of no relation) if the misclassification is independent of other
errors. If the misclassification is severe enough, the bias can completely obliterate an association
and even reverse the direction of association (although reversal will occur only if the classification
method is worse than randomly classifying people as “exposed” or “unexposed”).

Consider as an example Table 9–2. The top panel of the table shows the expected data from a
hypothetical case-control study, with the exposure measured as a dichotomy. The odds ratio is 3.0.
Now suppose that the exposure is measured by an instrument (e.g., a questionnaire) that results in
an exposure measure that has 100% specificity but only 80% sensitivity. In other words, all the truly

ˆ

ˆ

ˆ

ˆ
T A B L E 9 – 2

Nondifferential Misclassification with Two
Exposure Categories

Exposed Unexposed

Correct data
Cases 240 200
Controls 240 600

OR = 3.0
Sensitivity = 0.8
Specificity = 1.0

Cases 192 248
Controls 192 648

OR = 2.6
Sensitivity = 0.8
Specificity = 0.8

Cases 232 208
Controls 312 528

OR = 1.9
Sensitivity = 0.4
Specificity = 0.6

Cases 176 264
Controls 336 504

OR = 1.0
Sensitivity = 0.0
Specificity = 0.0

Cases 200 240
Controls 600 240

OR = 0.33

OR, odds ratio.
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unexposed subjects are correctly classified as unexposed, but there is only an 80% chance that an
exposed subject is correctly classified as exposed, and thus a 20% chance an exposed subject will be
incorrectly classified as unexposed. We assume that the misclassification is nondifferential, which
means for this example that the sensitivity and specificity of the exposure measurement method
is the same for cases and controls. We also assume that there is no error in measuring disease,
from which it automatically follows that the exposure errors are independent of disease errors. The
resulting data are given in the second panel of the table. With the reduced sensitivity in measuring
exposure, the odds ratio is biased in that its approximate expected value decreases from 3.0 to 2.6.

In the third panel, the specificity of the exposure measure is assumed to be 80%, so that there
is a 20% chance that someone who is actually unexposed will be incorrectly classified as exposed.
The resulting data produce an odds ratio of 1.9 instead of 3.0. In absolute terms, more than half of
the effect has been obliterated by the misclassification in the third panel: the excess odds ratio is
3.0 − 1 = 2.0, whereas it is 1.9 −1 = 0.9 based on the data with 80% sensitivity and 80% specificity
in the third panel.

The fourth panel of Table 9–2 illustrates that when the sensitivity and specificity sum to 1, the
resulting expected estimate will be null, regardless of the magnitude of the effect. If the sum of the
sensitivity and specificity is less than 1, then the resulting expected estimate will be in the opposite
direction of the actual effect. The last panel of the table shows the result when both sensitivity and
specificity are zero. This situation is tantamount to labeling all exposed subjects as unexposed and
vice versa. It leads to an expected odds ratio that is the inverse of the correct value. Such drastic
misclassification would occur if the coding of exposure categories were reversed during computer
programming.

As seen in these examples, the direction of bias produced by independent nondifferential mis-
classification of a dichotomous exposure is toward the null value, and if the misclassification is
extreme, the misclassification can go beyond the null value and reverse direction. With an exposure
that is measured by dividing it into more than two categories, however, an exaggeration of an asso-
ciation can occur as a result of independent nondifferential misclassification (Walker and Blettner,
1985; Dosemeci et al., 1990). This phenomenon is illustrated in Table 9–3.

The correctly classified expected data in Table 9–3 show an odds ratio of 2 for low exposure
and 6 for high exposure, relative to no exposure. Now suppose that there is a 40% chance that a
person with high exposure is incorrectly classified into the low exposure category. If this is the
only misclassification and it is nondifferential, the expected data would be those seen in the bottom
panel of Table 9–3. Note that only the estimate for low exposure changes; it now contains a mixture
of people who have low exposure and people who have high exposure but who have incorrectly
been assigned to low exposure. Because the people with high exposure carry with them the greater

ˆ
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ˆ

ˆ
T A B L E 9 – 3

Nondifferential Misclassification with Three Exposure Categories

Unexposed Low Exposure High Exposure

Correct data
Cases 100 200 600
Controls 100 100 100

OR = 2 OR = 6
40% of high exposure → 4 low exposure

Cases 100 440 360
Controls 100 140 60

OR = 3.1 OR = 6

OR, odds ratio.
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risk of disease that comes with high exposure, the resulting effect estimate for low exposure is
biased upward. If some low-exposure individuals had incorrectly been classified as having had high
exposure, then the estimate of the effect of exposure for the high-exposure category would be biased
downward.

This example illustrates that when the exposure has more than two categories, the bias from
nondifferential misclassification of exposure for a given comparison may be away from the null
value. When exposure is polytomous (i.e., has more than two categories) and there is nondiffer-
ential misclassification between two of the categories and no others, the effect estimates for those
two categories will be biased toward one another (Walker and Blettner, 1985; Birkett, 1992). For
example, the bias in the effect estimate for the low-exposure category in Table 9–3 is toward that
of the high-exposure category and away from the null value. It is also possible for independent
nondifferential misclassification to bias trend estimates away from the null or to reverse a trend
(Dosemeci et al., 1990). Such examples are unusual, however, because trend reversal cannot occur
if the mean exposure measurement increases with true exposure (Weinberg et al., 1994d).

It is important to note that the present discussion concerns expected results under a particular
type of measurement method. In a given study, random fluctuations in the errors produced by a
method may lead to estimates that are further from the null than what they would be if no error were
present, even if the method satisfies all the conditions that guarantee bias toward the null (Thomas,
1995; Weinberg et al., 1995; Jurek at al., 2005). Bias refers only to expected direction; if we do
not know what the errors were in the study, at best we can say only that the observed odds ratio is
probably closer to the null than what it would be if the errors were absent. As study size increases,
the probability decreases that a particular result will deviate substantially from its expectation.

Nondifferential Misclassification of Disease

The effects of nondifferential misclassification of disease resemble those of nondifferential mis-
classification of exposure. In most situations, nondifferential misclassification of a binary disease
outcome will produce bias toward the null, provided that the misclassification is independent of
other errors. There are, however, some special cases in which such misclassification produces no
bias in the risk ratio. In addition, the bias in the risk difference is a simple function of the sensitivity
and specificity.

Consider a cohort study in which 40 cases actually occur among 100 exposed subjects and
20 cases actually occur among 200 unexposed subjects. Then, the actual risk ratio is (40/100)/
(20/200) = 4, and the actual risk difference is 40/100 − 20/200 = 0.30. Suppose that specificity
of disease detection is perfect (there are no false positives), but sensitivity is only 70% in both
exposure groups (that is, sensitivity of disease detection is nondifferential and does not depend on
errors in classification of exposure). The expected numbers detected will then be 0.70(40) = 28
exposed cases and 0.70(20) = 14 unexposed cases, which yield an expected risk-ratio estimate of
(28/100)/(14/200) = 4 and an expected risk-difference estimate of 28/100 − 14/200 = 0.21. Thus,
the disease misclassification produced no bias in the risk ratio, but the expected risk-difference
estimate is only 0.21/0.30 = 70% of the actual risk difference.

This example illustrates how independent nondifferential disease misclassification with perfect
specificity will not bias the risk-ratio estimate, but will downwardly bias the absolute magnitude
of the risk-difference estimate by a factor equal to the false-negative probability (Rodgers and
MacMahon, 1995). With this type of misclassification, the odds ratio and the rate ratio will remain
biased toward the null, although the bias will be small when the risk of disease is low (<10%) in
both exposure groups. This approximation is a consequence of the relation of the odds ratio and the
rate ratio to the risk ratio when the disease risk is low in all exposure groups (see Chapter 4).

Consider next the same cohort study, but now with perfect sensitivity of disease detection
(no false negatives) and imperfect specificity of 80%. The expected number of apparent cases
will then be 40 + (1 − 0.80)(100 − 40) = 52 among the exposed and 20 + (1 − 0.80)(200 −
20) = 56 among the unexposed. Under this formulation, the numerators yield an expected risk-ratio
estimate of (52/100)/(56/200) = 1.9 and an expected risk-difference estimate of 52/100 − 56/200 =
0.24. Both measures are biased toward the null, with the expected risk-difference estimate equal to
0.24/0.30 = 80% of the actual value. This example illustrates how independent nondifferential dis-
ease misclassification with perfect sensitivity will bias both measures, with the absolute magnitude



P1: TNL Printer: RRD

GRBT241-09 GRBT241-v4.cls January 24, 2008 22:3

Chapter 9 ● Validity in Epidemiologic Studies 143

of the risk-difference estimate downwardly biased by a factor equal to the false-positive probability
(Rodgers and MacMahon, 1995).

With imperfect sensitivity and specificity, the bias in the absolute magnitude of the risk difference
produced by nondifferential disease misclassification that is independent of other errors will equal
the sum of the false-negative and false-positive probabilities (Rodgers and MacMahon, 1995). The
biases in relative effect measures do not have a simple form in this case.

We wish to emphasize that when both exposure and disease are nondifferentially misclassified
but the classification errors are dependent, it is possible to obtain substantial bias away from the null
(Chavance et al., 1992; Kristensen, 1992), and the simple bias relations just given will no longer
apply. Dependent errors can arise easily in many situations, such as in studies in which exposure
and disease status are both determined from interviews.

Pervasiveness of Misinterpretation of Nondifferential
Misclassification Effects

The bias from independent nondifferential misclassification of a dichotomous exposure is always in
the direction of the null value, so one would expect to see a larger estimate if misclassification were
absent. As a result, many researchers are satisfied with achieving nondifferential misclassification
in lieu of accurate classification. This stance may occur in part because some researchers consider
it more acceptable to misreport an association as absent when it in fact exists than to misreport an
association as present when it in fact does not exist, and regard nondifferential misclassification
as favoring the first type of misreporting over the latter. Other researchers write as if positive
results affected by nondifferential misclassification provide stronger evidence for an association
than indicated by uncorrected statistics. There are several flaws in such interpretations, however.

First, many researchers forget that more than nondifferentiality is required to ensure bias toward
the null. One also needs independence and some other constraints, such as the variable being binary.
Second, few researchers seem to be aware that categorization of continuous variables (e.g., using
quintiles instead of actual quantities of food or nutrients) can change nondifferential to differential
error (Flegal et al., 1991; Wacholder et al., 1991), or that failure to control factors related to
measurement can do the same even if those factors are not confounders.

Even if the misclassification satisfies all the conditions to produce a bias toward the null in the
point estimate, it does not necessarily produce a corresponding upward bias in the P-value for the
null hypothesis (Bross, 1954; Greenland and Gustafson, 2006). As a consequence, establishing that
the bias (if any) was toward the null would not increase the evidence that a non-null association was
present. Furthermore, bias toward the null (like bias away from the null) is still a distortion, and one
that will vary across studies. In particular, it can produce serious distortions in literature reviews
and meta-analyses, mask true differences among studies, exaggerate differences, or create spurious
differences. These consequences can occur because differences in secondary study characteristics
such as exposure prevalence will affect the degree to which misclassification produces bias in
estimates from different strata or studies, even if the sensitivity and specificity of the classification
do not vary across the strata or studies (Greenland, 1980). Typical situations are worsened by the
fact that sensitivity and specificity as well as exposure prevalence will vary across studies (Begg,
1987).

Often, these differences in measurement performance arise from seemingly innocuous differ-
ences in the way variables are assessed or categorized, with worse performance arising from over-
simplified or crude categorizations of exposure. For example, suppose that taking aspirin transiently
reduces risk of myocardial infarction. The word “transiently” implies a brief induction period, with
no preventive effect outside that period. For a given point in time or person-time unit in the history
of a subject, the ideal classification of that time as exposed or unexposed to aspirin would be based
on whether aspirin had been used before that time but within the induction period for its effect.
By this standard, a myocardial infarction following aspirin use within the induction period would
be properly classified as an aspirin-exposed case. On the other hand, if no aspirin was used within
the induction period, the case would be properly classified as unexposed, even if the case had used
aspirin at earlier or later times.

These ideal classifications reflect the fact that use outside the induction period is causally ir-
relevant. Many studies, however, focus on ever use (use at any time during an individual’s life) or
on any use over a span of several years. Such cumulative indices over a long time span augment
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possibly relevant exposure with irrelevant exposure, and can thus introduce a bias (usually toward
the null) that parallels bias due to nondifferential misclassification.

Similar bias can arise from overly broad definition of the outcome. In particular, unwarranted
assurances of a lack of any effect can easily emerge from studies in which a wide range of etiolog-
ically unrelated outcomes are grouped. In cohort studies in which there are disease categories with
few subjects, investigators are occasionally tempted to combine outcome categories to increase the
number of subjects in each analysis, thereby gaining precision. This collapsing of categories can
obscure effects on more narrowly defined disease categories. For example, Smithells and Shepard
(1978) investigated the teratogenicity of the drug Bendectin, a drug indicated for nausea of preg-
nancy. Because only 35 babies in their cohort study were born with a malformation, their analysis
was focused on the single outcome, “malformation.” But no teratogen causes all malformations;
if such an analysis fails to find an effect, the failure may simply be the result of the grouping of
many malformations not related to Bendectin with those that are. In fact, despite the authors’ claim
that “their study provides substantial evidence that Bendectin is not teratogenic in man,” their data
indicated a strong (though imprecise) relation between Bendectin and cardiac malformations.

Misclassification that has arguably produced bias toward the null is a greater concern in inter-
preting studies that seem to indicate the absence of an effect. Consequently, in studies that indicate
little or no effect, it is crucial for the researchers to attempt to establish the direction of the bias to
determine whether a real effect might have been obscured. Occasionally, critics of a study will argue
that poor exposure data or poor disease classification invalidate the results. This argument is incor-
rect, however, if the results indicate a nonzero association and one can be sure that the classification
errors produced bias toward the null, because the bias will be in the direction of underestimating
the association. In this situation the major task will instead be in establishing that the classification
errors were indeed of the sort that would produce bias toward the null.

Conversely, misclassification that has arguably produced bias away from the null is a greater
concern in interpreting studies that seem to indicate an effect. The picture in this direction is clouded
by the fact that forces that lead to differential error and bias away from the null (e.g., recall bias)
are counterbalanced to an unknown extent (possibly entirely) by forces that lead to bias toward
the null (e.g., simple memory deterioration over time). Even with only binary variables, a detailed
quantitative analysis of differential recall may be needed to gain any idea of the direction of bias
(Drews and Greenland, 1990), and even with internal validation data the direction of net bias may
rarely be clear. We discuss analytic methods for assessing these problems in Chapter 19.

The importance of appreciating the likely direction of bias was illustrated by the interpretation
of a study on spermicides and birth defects (Jick et al., 1981a, 1981b). This study reported an
increased prevalence of several types of congenital disorders among women who were identified as
having filled a prescription for spermicides during a specified interval before the birth. The exposure
information was only a rough correlate of the actual use of spermicides during a theoretically relevant
time period, but the misclassification that resulted was likely to be nondifferential and independent
of errors in outcome ascertainment, because prescription information was recorded on a computer
log before the outcome was known. One of the criticisms raised about the study was that inaccuracies
in the exposure information cast doubt on the validity of the findings (Felarca et al., 1981; Oakley,
1982). These criticisms did not, however, address the direction of the resulting bias, and so are
inappropriate if the structure of the misclassification indicates that the bias is downward, for then
that bias could not explain the observed association (Jick et al., 1981b).

As an example, it is incorrect to dismiss a study reporting an association simply because there
is independent nondifferential misclassification of a binary exposure, because without the mis-
classification the observed association would probably be even larger. Thus, the implications of
independent nondifferential misclassification depend heavily on whether the study is perceived as
“positive” or “negative.” Emphasis on quantitative assessment instead of on a qualitative descrip-
tion of study results lessens the likelihood for misinterpretation, hence we will explore methods for
quantitative assessment of bias in Chapter 19.

MISCLASSIFICATION OF CONFOUNDERS

If a confounding variable is misclassified, the ability to control confounding in the analysis is
hampered (Greenland, 1980; Kupper, 1984; Brenner, 1993; Marshall and Hastrup, 1996; Marshall
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et al., 1999; Fewell et al., 2007). Independent nondifferential misclassification of a dichotomous con-
founding variable will reduce the degree to which the confounder can be controlled, and thus causes
a bias in the direction of the confounding by the variable. The expected result will lie between the
unadjusted association and the correctly adjusted association (i.e., the one that would have obtained
if the confounder had not been misclassified). This problem may be viewed as one of residual con-
founding (i.e., confounding left after control of the available confounder measurements). The degree
of residual confounding left within strata of the misclassified confounder will usually differ across
those strata, which will distort the apparent degree of heterogeneity (effect modification) across strata
(Greenland, 1980). Independent nondifferential misclassification of either the confounder or expo-
sure can therefore give rise to the appearance of effect-measure modification (statistical interaction)
when in fact there is none, or mask the appearance of such modification when in fact it is present.

If the misclassification is differential or dependent, the resulting adjusted association may not
even fall between the crude and the correct adjusted associations. The problem then becomes not
only one of residual confounding, but of additional distortion produced by differential selection of
subjects into different analysis strata. Unfortunately, dependent errors among exposure variables
are common, especially in questionnaire-based studies. For example, in epidemiologic studies of
nutrients and disease, nutrient intakes are calculated from food intakes, and any errors in assessing
the food intakes will translate into dependent errors among nutrients found in the same foods.
Similarly, in epidemiologic studies of occupations and disease, chemical exposures are usually
calculated from job histories, and errors in assessing these histories will translate into dependent
errors among exposures found in the same jobs.

If the confounding is strong and the exposure–disease relation is weak or zero, misclassification
of the confounder can produce extremely misleading results, even if the misclassification is indepen-
dent and nondifferential. For example, given a causal relation between smoking and bladder cancer,
an association between smoking and coffee drinking would make smoking a confounder of the
relation between coffee drinking and bladder cancer. Because the control of confounding by smok-
ing depends on accurate smoking information and because some misclassification of the relevant
smoking information is inevitable no matter how smoking is measured, some residual confounding
by smoking is inevitable (Morrison et al., 1982). The problem of residual confounding will be even
worse if the only available information on smoking is a simple dichotomy such as “ever smoked”
versus “never smoked,” because the lack of detailed specification of smoking prohibits adequate
control of confounding. The resulting residual confounding is especially troublesome because to
many investigators and readers it may appear that confounding by smoking has been fully controlled.

THE COMPLEXITIES OF SIMULTANEOUS MISCLASSIFICATION

Continuing the preceding example, consider misclassification of coffee use as well as smoking. On
the one hand, if coffee misclassification were nondifferential with respect to smoking and indepen-
dent of smoking errors, the likely effect would be to diminish further the observed smoking–coffee
association and so further reduce the efficacy of adjustment for smoking. The result would be even
more upward residual confounding than when smoking alone were misclassified. On the other hand,
if the measurements were from questionnaires, the coffee and smoking errors might be positively
associated rather than independent, potentially counteracting the aforementioned phenomenon to an
unknown degree. Also, if the coffee errors were nondifferential with respect to bladder cancer and
independent of diagnostic errors, they would most likely produce a downward bias in the observed
association.

Nonetheless, if the measurements were from a questionnaire administered after diagnosis, the
nondifferentiality of both smoking or coffee errors with respect to bladder cancer would become
questionable. If controls tended to underreport these habits more than did cases, the resulting dif-
ferentiality would likely act in an upward direction for both the coffee and the smoking associations
with cancer, partially canceling both the downward bias from the coffee misclassification and the
upward bias from residual smoking confounding; but if cases tended to underreport these habits
more than did controls, the differentiality would likely aggravate the downward bias from coffee
misclassification and the upward bias from residual smoking confounding.

The net result of all these effects would be almost impossible to predict given the usual lack of
accurate information on the misclassification rates. We emphasize that this unpredictability is over
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and above that of the random error assumed by conventional statistical methods; it is therefore not
reflected in conventional confidence intervals, because the latter address only random variation in
subject selection and actual exposure, and assume that errors in coffee and smoking measurement
are absent.

GENERALIZABILITY

Physicists operate on the assumption that the laws of nature are the same everywhere, and therefore
that what they learn about nature has universal applicability. In biomedical research, it sometimes
seems as if we assume the opposite, that is, that the findings of our research apply only to populations
that closely resemble those we study. This view stems from the experience that biologic effects can
and do differ across different populations and subgroups. The cautious investigator is thus inclined
to refrain from generalizing results beyond the circumstances that describe the study setting.

As a result, many epidemiologic studies are designed to sample subjects from a target population
of particular interest, so that the study population is “representative” of the target population, in
the sense of being a probability sample from that population. Inference to this target might also be
obtained by oversampling some subgroups and then standardizing or reweighting the study data to
match the target population distribution. Two-stage designs (Chapter 8 and 15) are simple examples
of such a strategy.

Taken to an extreme, however, the pursuit of representativeness can defeat the goal of validly
identifying causal relations. If the generalization of study results is literally limited to the charac-
teristics of those studied, then causal inferences cannot be generalized beyond those subjects who
have been studied and the time period during which they have been studied. On the other hand, even
physicists acknowledge that what we consider to be universal physical laws could vary over time or
under boundary conditions and therefore may not be truly universal. The process of generalization
in science involves making assumptions about the domain in which the study results apply.

The heavy emphasis on sample representativeness in epidemiologic research probably derives
from early experience with surveys, for which the inferential goal was only description of the
surveyed population. Social scientists often perform and rely on probability-sample surveys because
decisions about what is relevant for generalization are more difficult in the social sciences. In
addition, the questions of interest to social scientists may concern only a particular population
(e.g., voters in one country at one point in time), and populations are considerably more diverse in
sociologic phenomena than in biologic phenomena.

In biologic laboratory sciences, however, it is routine for investigators to conduct experiments
using animals with characteristics selected to enhance the validity of the experimental work rather
than to represent a target population. For example, laboratory scientists conducting experiments
with hamsters will more often prefer to study genetically identical hamsters than a representative
sample of the world’s hamsters, in order to minimize concerns about genetic variation affecting
results. These restrictions may lead to concerns about generalizability, but this concern becomes
important only after it has been accepted that the study results are valid for the restricted group that
was studied.

Similarly, epidemiologic study designs are usually stronger if subject selection is guided by the
need to make a valid comparison, which may call for severe restriction of admissible subjects to
a narrow range of characteristics, rather than by an attempt to make the subjects representative,
in a survey-sampling sense, of the potential target populations. Selection of study groups that are
representative of larger populations in the statistical sense will often make it more difficult to make
internally valid inferences, for example, by making it more difficult to control for confounding
by factors that vary within those populations, more difficult to ensure uniformly high levels of
cooperation, and more difficult to ensure uniformly accurate measurements.

To minimize the validity threats we have discussed, one would want to select study groups
for homogeneity with respect to important confounders, for highly cooperative behavior, and for
availability of accurate information, rather than attempt to be representative of a natural population.
Classic examples include the British Physicians’ Study of smoking and health and the Nurses’
Health Study, neither of which were remotely representative of the general population with respect
to sociodemographic factors. Their nonrepresentativeness was presumed to be unrelated to most of
the effects studied. If there were doubts about this assumption, they would only become important
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once it was clear that the associations observed were valid estimates of effect within the studies
themselves.

Once the nature and at least the order of magnitude of an effect are established by studies
designed to maximize validity, generalization to other, unstudied groups becomes simpler. This
generalization is in large measure a question of whether the factors that distinguish these other
groups from studied groups somehow modify the effect in question. In answering this question,
epidemiologic data will be of help and may be essential, but other sources of information such as
basic pathophysiology may play an even larger role. For example, although most of the decisive
data connecting smoking to lung cancer was derived from observations on men, no one doubted
that the strong effects observed would carry over at least approximately to women, for the lungs of
men and women appear to be similar if not identical in physiologic detail. On the other hand, given
the huge sex differences in iron loss, it would seem unwise to generalize freely to men about the
effects of iron supplementation observed in premenopausal women.

Such contrasting examples suggest that, perhaps even more than with (internal) inference about
restricted populations, valid generalization must bring into play knowledge from diverse branches of
science. As we have emphasized, representativeness is often a hindrance to executing an internally
valid study, and considerations from allied science show that it is not always necessary for valid
generalization. We thus caution that blind pursuit of representativeness will often lead to a waste of
precious study resources.
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As described in Chapter 9, two types of error, systematic and random, detract from accuracy.
Chapter 9 focused on understanding sources of systematic error. In this chapter we discuss methods
to measure, limit, and account for random error in an epidemiologic study, and how to interpret these
methods properly. In Chapter 11, we address options in study design that can reduce the amount of
random error (i.e., improve precision) of a study within given cost and feasibility constraints.

RANDOM ERROR AND STATISTICAL PRECISION

What is random error? It is often equated with chance or random variation, which itself is rarely
well defined. Many people believe that chance plays a fundamental role in all physical and, by
implication, biologic phenomena. For some, the belief in chance is so dominant that it vaults
random occurrences into an important role as component causes of all we experience. Others
believe that causality may be viewed as deterministic, meaning that a full elaboration of the relevant
factors in a given set of circumstances will lead unwaveringly, on sufficient analysis, to a perfect
prediction of effects resulting from these causes. Under the latter view, all experience is predestined
to unravel in a theoretically predictable way that follows inexorably from the previous pattern of
actions. Even with this extreme deterministic view, however, one must face the fact that no one can
acquire sufficient knowledge to predict effects perfectly for any but trivial cause–effect patterns.
The resulting incomplete predictability of determined outcomes makes their residual variability
indistinguishable from random occurrences.

A unifying description of incomplete predictability can thus be forged that equates random
variation with ignorance about causes of our study outcomes, an ignorance that is inevitable whether
or not physical chance is among the causes. For example, predicting the outcome of a tossed coin
represents a physical problem, the solution of which is feasible through the application of physical
laws. Whether the sources of variation that we cannot explain are actually chance phenomena makes
little difference: We treat such variation as being random until we can explain it, and thereby reduce
it, by relating it to known factors.

In an epidemiologic study, random variation has many components, but a major contributor is the
process of selecting the specific study subjects. This process is usually referred to as sampling; the
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attendant random variation is known as sampling variation or sampling error. Case-control studies
often involve a physical sampling process, whereas cohort studies often do not. Nevertheless, it is
standard practice to treat all epidemiologic studies, including cohort studies, as having sampling
error. In this view, the subjects in a study, whether physically sampled or not, are viewed as a
figurative sample of possible people who could have been included in the study or of the different
possible experiences the study subjects could have had. Even if all the individuals in a population
were included in a study, the study subjects are viewed as a sample of the potential biologic
experience of an even broader conceptual population. With this view, the statistical dictum that
there is no sampling error if an entire population (as opposed to a sample of it) is studied does not
apply to epidemiologic studies, even if an entire population is included in the study. Conceptually,
the actual subjects are always considered a sample of a broader experience of interest—although
they seldom actually satisfy the definition of a random sample that underpins the statistical tools
ordinarily used to measure random variation (Greenland, 1990, 2005b).

Sampling is only one source of random error that contributes to unpredictable inaccuracies in
epidemiologic studies. Another source is the unexplained variation in occurrence measures, such
as observed incidence rates or prevalence proportions. For example, when exposure status is not
randomly assigned, confounding (Chapter 4) may lead to deviations of estimated associations from
target effects that far exceed what standard statistical models assume probable. Mismeasurement of
key study variables also contributes to the overall inaccuracy, in both random and in systematic ways.
As a result of these extra sources of variation, and because of the weak theoretical underpinnings for
conceptualizing study subjects as a sample of a broader experience, the usual statistical tools that
we use to measure random variation at best provide minimum estimates of the actual uncertainty
we should have about the object of estimation (Greenland, 1990, 2005b). One elementary way
to improve the quantification of our uncertainty is through bias analysis, which we discuss in
Chapter 19.

A common measure of random variation in a measurement or estimation process is the variance of
the process, which is discussed in Chapter 13. The statistical precision of (or statistical information
in) a measurement or process is often taken to be the inverse of the variance of the measurements
or estimates that the process produces. In this sense, precision is the opposite of random error.
Precision of estimation can be improved (which is to say, variance can be reduced) by increasing
the size of the study. Precision can also be improved by modifying the design of the study to decrease
the variance given a fixed total number of subjects; this process is called improving the statistical
efficiency of the study. It will be introduced here and discussed more fully in Chapter 13. Perhaps
the most common epidemiologic example of such design improvement is the use of a case-control
study rather than a cohort study, because for a fixed study size the variance of an effect estimate is
heavily dependent on the proportion of subjects in the study that are cases.

STUDY SIZE

A common way to reduce random error in, or increase precision of, an epidemiologic estimate is to
enlarge the size of the study. Practical constraints on resources inevitably limit study size, so one
must plan accordingly. One method that is used to plan the size of a study is to calculate study size
based on conventional statistical “sample-size” formulas (e.g., see Schlesselman, 1974; Rothman
and Boice, 1982; Greenland, 1985b, 1988a). These formulas relate the size of a study to the study
design, study population, and the desired power or precision.

Study-size formulas, being purely mathematical, do not account for anything that is not included
as a variable in the formula. At best they serve only to provide rough guidelines, and in some situ-
ations they may be misleading from a broader perspective. For example, conventional formulas do
not weigh the value of the information obtained from a study against its use of resources. Yet a focal
problem in planning the study size is determining how to balance the value of greater precision
in study results against the greater cost. Solving the problem thus involves a cost–benefit analysis
of expending greater effort or funds to gain greater precision. Greater precision has a value to the
beneficiaries of the research, but the value is indeterminate because it is always uncertain how
many beneficiaries there will be. Furthermore, the potential benefits of the study involve intrica-
cies of many social, political, and biologic factors that are almost never quantified. Consequently,
only informal guesses as to a cost-efficient size for an epidemiologic study are feasible. Although
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study-size determination can be aided by conventional formulas, the final choice must also incor-
porate unquantified practical constraints and implications of various study sizes.

STUDY EFFICIENCY

Another way to reduce random error, or increase precision, in an epidemiologic estimate is to modify
the design of the study. One feature that can often be manipulated by design is apportionment of
subjects into study groups. When the study factor has no effect and no adjustment is needed, equal
apportionment into exposure groups is the most efficient cohort design (Walter, 1977). For example,
in the absence of an effect or confounding, a cohort study of 2,000 persons will be most efficient if it
selects 1,000 exposed and 1,000 unexposed persons for study. Similarly, in a case-control study, in
the absence of an effect or confounding it will be most statistically efficient to have an equal number
of cases and controls. In the presence of an effect, the apportionment that is optimal for statistical
efficiency differs from equal apportionment by an amount that is a function of the parameter being
estimated (Walter, 1977). When (as is almost always the case) adjustments for confounding are
needed, however, these results no longer apply strictly. Furthermore, these results assume that no
effect is present—which is of course not known to be true in any real application (otherwise there
would be no need for the study). Thus, these results should not be taken as anything more than
rough guidelines for design.

PRECISION AND STRATIFICATION

In many epidemiologic analyses, the crude data are divided into strata to examine effects in sub-
categories of another variable or to control confounding. The efficiency of a study can be affected
dramatically by stratifying the data. A study that has an overall apportionment ratio that is fa-
vorable for precision (which will be a ratio of 1.0 if there is no effect and no confounding) may
nevertheless have apportionment ratios within strata that vary severely from low to high values.
It is not uncommon to see some strata with the extreme apportionment ratios of 0 and infinity
(e.g., no cases in some strata and no controls in others). The smaller the numbers within strata,
the more extreme the variation in the apportionment ratio across strata is likely to be. The extreme
values result from zero subjects or person-time units for one group in a stratum. Small numbers
within strata result from having too few subjects relative to the number of strata created. This
sparse-data problem can develop even with large studies, because the number of strata required in
the analysis increases geometrically with the number of variables used for stratification. Indeed,
sparse data are a major limitation of stratified analysis, although the same problem negatively af-
fects regression modeling as well. Methods for dealing with sparsity are described in Chapters 15
and 21.

When comparisons within strata will be essential and much variation in the apportionment ratio
is expected across strata, then matching on the stratification variables (Chapter 11) is one way to
maintain an efficient apportionment ratio within strata and to reduce sparsity problems without
increasing study size. When matching on all stratification variables is not feasible, increasing the
overall number of subjects will at least reduce data sparsity and improve precision, even if only one
group (e.g., the controls) can be expanded.

APPROACHES TO RANDOM ERROR

Statistics and its role in data analysis have undergone a gradual but profound transformation in recent
times. There is an essential distinction between a qualitative study objective (to answer a question
“yes” or “no”) and a quantitative one (to measure something). The recent transformation reflects a
growing preference for the latter objective and for statistical methods consistent with it. Until the
1970s, most applications of statistics in epidemiology focused on deciding whether “chance” or
“random error” could be solely responsible for an observed association. The methods used for this
decision were those of classical significance testing, predominant in British applications, and those
of Neyman-Pearson hypothesis testing, predominant in American applications (Goodman, 1993;
Gigerenzer, 2004). Because of their similarities, the term significance testing is often applied to
both collections of methods.
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These testing applications, which were subject to some early criticism (Boring, 1919; Berkson,
1938, 1942; Hogben, 1957), came under growing criticism by epidemiologists and statisticians
throughout the 1970s and 1980s. The critics pointed out that most, if not all, epidemiologic appli-
cations need more than a decision as to whether chance alone could have produced an association.
More important is estimation of the magnitude of the association, including an assessment of the
precision of the estimation method. The estimation tool used by most authors is the confidence in-
terval, which provides a range of values for the association, under the hypothesis that only random
variation has created discrepancies between the true value of the association under study and the
value observed in the data (Altman et al., 2000; see Chapters 13 through 16). Other authors, while
favoring the move toward interval estimation, point out that confidence intervals suffer from some
of the flaws associated with significance testing and favor other approaches to interval estimation
(Goodman and Royall, 1988; Berger and Berry, 1988; Royall, 1997; Greenland, 2006a; Chapter 18).

SIGNIFICANCE TESTING AND HYPOTHESIS TESTING

Nearly 70 years ago, Berkson (1942) wrote:

It is hardly an exaggeration to say that statistics, as it is taught at present in the dominant school,
consists almost entirely of tests of significance, though not always presented as such, some
comparatively simple and forthright, others elaborate and abstruse.

The ubiquitous use of P-values and references to “statistically significant” findings in the current
medical literature demonstrates the dominant role that statistical hypothesis testing still plays in data
analysis in some branches of biomedical sciences. Many researchers still believe that it would be
fruitless to submit for publication any paper that lacks statistical tests of significance. Their belief is
not entirely ill-founded, because many journal editors and referees still rely on tests of significance
as indicators of sophisticated and meaningful statistical analysis as well as the primary means of
assessing sampling variability in a study. Statistical significance is usually based on the P-value
(described below): results are considered “significant” or “not significant” according to whether the
P-value is less than or greater than an arbitrary cutoff value, usually 0.05, which is called the alpha
level of the test.

The preoccupation with significance testing derives from the research interests of the statisti-
cians who pioneered the development of statistical theory in the early 20th century. Their research
problems were primarily industrial and agricultural, and they typically involved randomized experi-
ments or random-sample surveys that formed the basis for a choice between two or more alternative
courses of action. Such studies were designed to produce results that would enable a decision to
be made, and the statistical methods employed were intended to facilitate decision making. The
concepts that grew out of this heritage are today applied in clinical and epidemiologic research, and
they strongly reflect this background of decision making.

Statistical significance testing of associations usually focuses on the null hypothesis, which is
usually formulated as a hypothesis of no association between two variables in a superpopulation, the
population from which the observed study groups were purportedly sampled in a random fashion.
For example, one may test the hypothesis that the risk difference in the superpopulation is 0 or,
equivalently, that the risk ratio is 1. Note that this hypothesis is about the superpopulation, not about
the observed study groups. Testing may alternatively focus on any other specific hypothesis, e.g.,
that the risk difference is 0.1 or the risk ratio is 2. For non-null hypotheses, tests about one measure
(e.g., a risk difference) are not usually equivalent to tests about another measure (e.g., a risk ratio),
so one must choose a measure of interest to perform a non-null test.

A common misinterpretation of significance tests is to claim that there is no difference between
two observed groups because the null test is not statistically significant, in that P is greater than
the cutoff for declaring statistical significance (again, usually 0.05). This interpretation confuses a
descriptive issue (whether the two observed groups differ) with an inference about the superpopula-
tion. The significance test refers only to the superpopulation, not the observed groups. To say that the
difference is not statistically significant means only that one cannot reject the null hypothesis that the
superpopulation groups are different; it does not imply that the two observed groups are the same.

One need only look at the two observed groups to see whether they are different. Significance
testing concerns instead whether the observed difference should lead one to infer that there is
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a difference between the corresponding groups in the superpopulation. Furthermore, even if the
observed difference is not statistically significant, the superpopulation groups may be different (i.e.,
the result does not imply that the null is correct). Rather, the nonsignificant observed difference
means only that one should not rule out the null hypothesis if one accepts the statistical model used
to construct the test.

Conversely, it is a misinterpretation to claim that an association exists in the superpopulation
because the observed difference is statistically significant. First, the test may be significant only
because the model used to compute it is wrong (e.g., there may be many sources of uncontrolled
bias). Second, the test may be significant because of chance alone; for example, even under perfect
conditions, a test using a 0.05 alpha level will yield a statistically significant difference 5% of the
time if the null hypothesis is correct.

As we emphasize, the alpha cutoff point is an arbitrary and questionable convention; it can be
dispensed with simply by reporting the actual P-value from the test, which we now discuss in detail.
We will then further explore and criticize the theory that led to widespread use of arbitrary testing
cutoffs in research.

P-Values

There are two major types of P-values: one-tailed and two-tailed. Further, there are two types of
one-tailed P-values: upper and lower. Accurate definitions and interpretations of these statistics are
subtle and thus are rarely provided in epidemiologic texts. As a result, misinterpretation of P-values
are common in epidemiology, as well as in other fields. We will thus devote much of this chapter
and Chapter 13 to discussion of these statistics.

An upper one-tailed P-value is the probability that a corresponding quantity computed from the
data, known as the test statistic (such as a t-statistic or a chi-square statistic), will be greater than
or equal to its observed value, assuming that (a) the test hypothesis is correct and (b) there is no
source of bias in the data collection or analysis processes. Similarly, a lower one-tailed P-value is
the probability that the corresponding test statistic will be less than or equal to its observed value,
again assuming that (a) the test hypothesis is correct and (b) there is no source of bias in the data
collection or analysis processes (sometimes described by saying that the underlying statistical model
is correct). The two-tailed P-value is usually defined as twice the smaller of the upper and lower
P-values, although more complicated definitions have been used. Being a probability, a one-tailed
P-value must fall between 0 and 1; the two-tailed P-value as just defined, however, may exceed 1.
The following comments apply to all types of P-values. Some authors refer to P-values as “levels
of significance” (Cox and Hinkley, 1974), but the latter term is best avoided because it has been
used by other authors to refer to alpha levels.

In classical significance testing, small P-values are supposed to indicate that at least one of the
assumptions used to derive it is incorrect, that is, either or both the test hypothesis (assumption 1)
or the statistical model (assumption 2) is incorrect. All too often, the statistical model is taken as a
given, so that a small P-value is taken as indicating a low degree of compatibility between the test
hypothesis and the observed data. This incompatibility derives from the fact that a small P-value
represents a low probability of getting a test statistic as extreme or more extreme than the observed
statistic if the test hypothesis is true and no bias is operative. Small P-values, therefore, are supposed
to indicate that the test hypothesis is not an acceptable explanation for the association observed in
the data. This common interpretation has been extensively criticized because it does not account for
alternative explanations and their acceptability (or lack thereof); for example, see Berkson (1942)
and later epidemiologic criticisms by Goodman and Royall (1988), Greenland (1990), Goodman
(1993), and Gigerenzer (2004). A less hypothetical and more cautious interpretation is then that a
small P-value indicates that there is a problem with the test hypothesis or with the study, or with
both (Fisher, 1943).

One of the most common naive misinterpretations of P-values is that they represent probabilities
of test hypotheses. In many situations, one can compute a Bayesian probability, or credibility
(see Chapter 18), for the test hypothesis, but it will almost always be far from the two-tailed
P-value (Berger and Delampady, 1987; Berger and Sellke, 1987). A one-tailed P-value can be used
to put a lower bound on the Bayesian probability of certain compound hypotheses (Casella and
Berger, 1987), and under certain conditions will approximate the Bayesian probability that the true
association is the opposite of the direction observed (Greenland and Gustafson, 2006). Nonetheless,
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a P-value for a simple test hypothesis (for example, that exposure and disease are unassociated)
is not a probability of that hypothesis: That P-value is usually much smaller than such a Bayesian
probability and so can easily mislead one into inappropriately rejecting the test hypothesis (Berger
and Sellke, 1987; Goodman and Royall, 1988).

A common and blatantly incorrect interpretation is that the P-value is the probability of the
observed data under the test hypothesis. This probability is known as the likelihood of the test
hypothesis; see Goodman and Royall (1988), Royall (1997), Edwards (1992), and the following
discussion. The likelihood of a hypothesis is usually much smaller than the P-value for the hy-
pothesis, because the P-value includes not only the probability of the observed data under the test
hypothesis, but also the probabilities for all other possible data configurations in which the test
statistic was more extreme than that observed.

A subtle and common misinterpretation of a P-value for testing the null hypothesis is that it
represents the probability that the data would show as strong an association as observed or stronger
if the null hypothesis were correct. This misinterpretation can be found in many methodologic
articles and textbooks. The nature of the misinterpretation can be seen in a study of a risk difference
RD. The study might produce an estimate of RD of 0.33 with an estimated standard deviation of
0.20, which (from formulas in Chapter 14) would produce a standard normal test statistic of z =
0.33/0.20 = 1.65 and a two-tailed P = 0.10. The same study, however, might have instead estimated
a RD of 0.30 and standard deviation of 0.15, which would produce a standard normal test statistic
of z = 0.30/0.15 = 2.00 and P = 0.05. The result with the association nearer the null would then
produce a smaller P-value. The point is that the P-value refers to the size of the test statistic (which
in this case is the estimate divided by its estimated standard deviation), not to the strength or size
of the estimated association.

It is crucial to remember that P-values are calculated from statistical models, which are assump-
tions about the form of study-to-study data variation. Every P-value, even “nonparametric” and
“exact” P-values, depends on a statistical model; it is only the strength of the model assumptions
that differ (Freedman, 1985; Freedman et al., 2007). A major problem with the P-values and tests
in common use (including all commercial software) is that the assumed models make no allowance
for sources of bias, apart from confounding by controlled covariates.

Neyman-Pearson Hypothesis Tests

A P-value is a continuous measure of the compatibility between a hypothesis and data. Although
its utility as such a measure can be disputed (Goodman and Royall, 1988; Royall, 1997), a worse
problem is that it is often used to force a qualitative decision about rejection of a hypothesis. As
introduced earlier, a fixed cutoff point or alpha level, often denoted by the Greek letter α (alpha),
is selected as a criterion by which to judge the P-value. This point is then used to classify the
observation either as “significant at level α ” if P ≤ α, in which case the test hypothesis is rejected,
or “not significant at level α” if P > α, in which case the test hypothesis is accepted (or, at least,
not rejected).

The use of a fixed cutoff α is a hallmark of the Neyman-Pearson form of statistical hypothesis
testing. Both the alpha level (Lehmann, 1986) and the P-value (Goodman, 1992, 1993) have been
called the “significance level” of the test. This usage has led to misinterpretation of the P-value as
the alpha level of a statistical hypothesis test. To avoid the error, one should recall that the P-value
is a quantity computed from the data, whereas the alpha level is a fixed cutoff (usually 0.05) that
can be specified without even seeing the data. (As a technical aside, Neyman and Pearson actually
avoided use of P-values in their formulation of hypothesis tests, and instead defined their tests
based on whether the value of the test statistic fell within a “rejection region” for the test.)

An incorrect rejection is called a Type I error, or alpha error. A hypothesis testing procedure
is said to be valid if, whenever the test hypothesis is true, the probability of rejection (i.e., the
probability that P ≤ α) does not exceed the alpha level (provided there is no bias and all test
assumptions are satisfied). For example, a valid test with α = 0.01 (a 1% alpha level) will lead to a
Type I error with no more than 1% probability, provided there is no bias or incorrect assumption.

If the test hypothesis is false but is not rejected, the incorrect decision not to reject is called a
Type II, or beta error. If the test hypothesis is false, so that rejection is the correct decision, the
probability (over repetitions of the study) that the test hypothesis is rejected is called the power of



P1: TNL Printer: RRD

GRBT241-10 GRBT241-v4.cls January 16, 2008 21:43

154 Section II ● Study Design and Conduct

the test. The probability of a Type II error is related to the power by the equation Pr (Type II error) =
1− power.

There is a trade-off between the probabilities of a Type I and a Type II error. This trade-off
depends on the chosen alpha level. Reducing the Type I error when the test hypothesis is true
requires a smaller alpha level, for with a smaller alpha level a smaller P-value will be required to
reject the test hypothesis. Unfortunately, a lower alpha level increases the probability of a Type II
error if the test hypothesis is false. Conversely, increasing the alpha level reduces the probability of
Type II error when the test hypothesis is false, but increases the probability of Type I error if it is
true.

The concepts of alpha level, Type I error, Type II error, and power stem from a paradigm in
which data are used to decide whether to reject the test hypothesis, and therefore follow from a
qualitative study objective. The extent to which decision making dominates research thinking is
reflected in the frequency with which the P-value, a continuous measure, is reported or interpreted
only as an inequality (such as P < 0.05 or P > 0.05) or else not at all, with the evaluation focusing
instead on “statistical significance” or its absence.

When a single study forms the sole basis for a choice between two alternative actions, as in
industrial quality-control activities, a decision-making mode of analysis may be justifiable. Even
then, however, a rational recommendation about which of two actions is preferable will require
consideration of the costs and benefits of each action. These considerations are rarely incorporated
into statistical tests. In most scientific and public health settings, it is presumptuous if not absurd for
an investigator to act as if the results of his or her study will form the sole basis for a decision. Such
decisions are inevitably based on results from a collection of studies, and proper combination of the
information from the studies requires more than just a classification of each study into “significant”
or “not significant” (see Chapter 33). Thus, degradation of information about an effect into a simple
dichotomy is counterproductive, even for decision making, and can be misleading.

In a classic review of 71 clinical trials that reported no “significant” difference between the
compared treatments, Freiman et al. (1978) found that in the great majority of such trials the data
either indicated or at least were consistent with a moderate or even reasonably strong effect of the
new treatment (Fig. 10–1). In all of these trials, the original investigators interpreted their data as
indicative of no effect because the P-value for the null hypothesis was not “statistically significant.”
The misinterpretations arose because the investigators relied solely on hypothesis testing for their
statistical analysis rather than on estimation. On failing to reject the null hypothesis, the investigators
in these 71 trials inappropriately accepted the null hypothesis as correct, which probably resulted
in Type II error for many of these so-called negative studies.

Type II errors result when the magnitude of an effect, biases, and random variability combine to
give results that are insufficiently inconsistent with the null hypothesis to reject it. This failure to
reject the null hypothesis can occur because the effect is small, the observations are too few, or both,
as well as from biases. More to the point, however, is that Type I and Type II errors arise because
the investigator has attempted to dichotomize the results of a study into the categories “significant”
or “not significant.” Because this degradation of the study information is unnecessary, an “error”
that results from an incorrect classification of the study result is also unnecessary.

Why has such an unsound practice as Neyman-Pearson (dichotomous) hypothesis testing become
so ingrained in scientific research? Undoubtedly, much of the popularity of hypothesis testing stems
from the apparent objectivity and definitiveness of the pronouncement of significance. Declarations
of significance or its absence can supplant the need for more refined interpretations of data; the
declarations can serve as a mechanical substitute for thought, promulgated by the inertia of training
and common practice. The neatness of an apparent clear-cut result may appear more gratifying to
investigators, editors, and readers than a finding that cannot be immediately pigeonholed.

The unbridled authority given to statistical significance in the social sciences has also been
attributed to the apparent objectivity that the pronouncement of significance can convey (Atkins
and Jarrett, 1979):

‘Let’s look and see what’s significant’ is not too far from the approach of some researchers, and
when the data involve perhaps several hundred variables the practical temptations to use a
ready-made decision rule are enormous. . . . [T]he pressure to decide, in situations where the very
use of probability models admits the uncertainty of the inference, has certain consequences for the
presentation of knowledge. The significance test appears to guarantee the objectivity of the
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FIGURE 10–1 ● Ninety percent
confidence limits for the true percentage
difference for the 71 trials. The vertical
bar at the center of each interval
indicates the observed difference,
PC − PT, for each trial. (Reproduced with
permission from Freiman JA, Chalmers
TC, Smith H, et al. The importance of
beta, the type II error and sample size in
the design and interpretation of the
randomized control trial. Survey of 71
“negative” trials. N Engl J Med.
1978;299:690–694.)

researcher’s conclusions, and may even be presented as providing crucial support for the whole
theory in which the research hypothesis was put forward. As we have seen, tests of significance
cannot do either of these things—but it is not in the interests of anyone involved to admit this too
openly.

The origin of the nearly universal acceptance of the 5% cutoff point for significant findings
is tied to the abridged form in which the chi-square table was originally published (Freedman
et al., 2007). Before computers and calculators could easily give quick approximations to the chi-
square distribution, tables were used routinely. Because there is a different chi-square distribution
corresponding to every possible value for the degrees of freedom, the tables could not give many
points for any one distribution. The tables typically included values at 1%, 5%, and a few other
levels, encouraging the practice of checking the chi-squared statistic calculated from one’s data to
see if it exceeded the cutoff levels in the table. In Neyman and Pearson’s original formulation of
hypothesis testing, the alpha level was supposed to be determined from contextual considerations,
especially the cost of Type I and Type II errors. This thoughtful aspect of their theory was rapidly
lost when the theory entered common scientific use.

The Alternative Hypothesis

Another hallmark of Neyman-Pearson hypothesis testing, and perhaps one that most distinguishes it
from earlier significance-testing paradigms, is that if the test hypothesis is rejected, it is supposed to
be rejected in favor of some alternative hypothesis. The alternative hypothesis may be very specific,
but more often it is implicit and very broad. For example, if the test hypothesis postulates that there
is no association, then the usual (implicit) alternative hypothesis is that there is an association. Such
nonspecific alternatives lead to nondirectional tests based on comparing a two-tailed P-value from
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a directional test statistic against the alpha level. Because this P-value is sensitive to violations of
the test hypothesis in either direction, it is often called a two-sided P-value.

Nonetheless, the test and alternative hypotheses can instead be one-sided (directional). For
example, the test hypothesis could state that an association is not positive (that is, either null or
negative). The alternative is then that the association is positive. Such an alternative leads to use of
a one-sided test based on comparing an upper-tailed P-value from a directional test statistic against
alpha. Because this one-tailed P-value is sensitive to violations of the test hypothesis in only one
direction, it is often called a one-sided P-value. An analogous one-sided test that the association
was not negative would employ the lower-tailed P-value; the alternative for this test is that the
association is negative.

Another form of the alternative hypothesis is a finite interval of “equivalence” about the null,
for example, that the risk difference RD is between −0.1 and +0.1. This alternative is found
in comparisons of two treatments (so that the “exposed” are those given one treatment and the
“unexposed” are those given another treatment). The bounds of the interval are selected so that
any value within the interval is considered close enough to the null for practical purposes. The test
hypothesis is then that the two treatments are not equivalent (RD is outside the interval), and is
rejected if P is less than alpha for all values outside the interval of equivalence. This approach
is called equivalence testing, and it corresponds to rejecting the test hypothesis when the 1 − α

confidence interval falls entirely within the equivalence interval (Blackwelder, 1998).
Note that the alternative hypothesis in all these examples comprises a range of values. For

a two-sided test, the alternative comprises every possible value except the one being tested. For
epidemiologic effect measures, this two-sided alternative hypothesis will range from absurdly large
preventive effects to absurdly large causal effects, and include everything in between except the
test hypothesis. This hypothesis will be compatible with any observed data. The test hypothesis,
on the other hand, corresponds to a single value of effect and therefore is readily consistent with a
much narrower range of possible outcomes for the data. Statistical hypothesis testing amounts to
an attempt to falsify the test hypothesis. It is natural to focus on a test hypothesis that is as specific
as possible because it is easier to marshal evidence against a specific hypothesis than a broad one.
The equivalence-testing example shows, however, that in some cases the alternative may be more
specific than the test hypothesis, and the test hypothesis may range from absurdly large preventive
effects to absurdly large causal effects.

A major defect in the way all the above alternatives are usually formulated is that they assume
the statistical model is correct. Because the model is never exactly correct and is often grossly
incorrect, a scientifically more sound formulation of the alternative to the null hypothesis (for
example) would be “either the null is false or else the statistical model is wrong” (Fisher, 1943).
By adding the warning “or else the statistical model is wrong” to the alternative, we allow for the
possibility that uncontrolled systematic errors were responsible for the rejection.

STATISTICAL ESTIMATION

If Neyman-Pearson hypothesis testing is misleading, how should results be interpreted and pre-
sented? In keeping with the view that science is based on measurement—which leads in turn
to quantitative study objectives—the analysis of epidemiologic data can be conceptualized as a
measurement problem rather than as a problem in decision making. Measurement requires more
detailed statistics than the simple dichotomy produced by statistical hypothesis testing. Whatever
the parameter that is the target of inference in an epidemiologic study—usually an effect mea-
sure, such as a ratio of rates or risks, but it can also be an incidence rate or any other epidemiologic
measure—it will be measured on a continuous scale, with a theoretically infinite number of possible
values.

The data from a study can be used to generate an estimate of the target parameter. An esti-
mate may be presented as a single value on the measurement scale of the parameter; this value
is referred to as a point estimate. A point estimate may be viewed as a measure of the extent of
the association, or (in causal analyses) the magnitude of effect under study. There will be many
forces that will determine the final data values, such as confounding, measurement error, selection
biases, and “random” error. It is thus extremely unlikely that the point estimate will equal the true
parameter.
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Confidence Intervals and Confidence Limits

One way to account for random error in the estimation process is to compute P-values for a broad
range of possible parameter values (in addition to the null value). If the range is broad enough,
we will be able to identify an interval of parameter values for which the test P-value exceeds a
specified alpha level (typically 0.05). All parameter values within the range are compatible with the
data under the standard interpretation of significance tests. The range of values is called a confidence
interval, and the endpoints of that interval are called confidence limits. The process of calculating
the confidence interval is an example of the process of interval estimation.

The width of a confidence interval depends on the amount of random variability inherent in the
data-collection process (as estimated from the underlying statistical model and the data). It also
depends on an arbitrarily selected alpha level that specifies the degree of compatibility between the
limits of the interval and the data. One minus this alpha level (0.95 if alpha is 0.05) is called the
confidence level of the interval and is usually expressed as a percentage.

If the underlying statistical model is correct and there is no bias, a confidence interval derived
from a valid test will, over unlimited repetitions of the study, contain the true parameter with
a frequency no less than its confidence level. This definition specifies the coverage property of
the method used to generate the interval, not the probability that the true parameter value lies
within the interval. For example, if the confidence level of a valid confidence interval is 90%,
the frequency with which the interval will contain the true parameter will be at least 90%, if
there is no bias. Consequently, under the assumed model for random variability (e.g., a binomial
model, as described in Chapter 14) and with no bias, we should expect the confidence interval to
include the true parameter value in at least 90% of replications of the process of obtaining the data.
Unfortunately, this interpretation for the confidence interval is based on probability models and
sampling properties that are seldom realized in epidemiologic studies; consequently, it is preferable
to view the confidence limits as only a rough estimate of the uncertainty in an epidemiologic
result due to random error alone. Even with this limited interpretation, the estimate depends on
the correctness of the statistical model, which may be incorrect in many epidemiologic settings
(Greenland, 1990).

Relation of Confidence Intervals to Significance Tests and Hypothesis Tests

Consider now the relation between the confidence level and the alpha level of hypothesis testing.
The confidence level equals 1 minus the alpha level (1 − α) of the test used to construct the interval.
To understand this relation, consider the diagram in Figure 10–2. Suppose that we performed a test
of the null hypothesis with α = 0.10. The fact that the 90% confidence interval does not include
the null point indicates that the null hypothesis would be rejected for α = 0.10. On the other hand,
the fact that the 95% confidence interval includes the null point indicates that the null hypothesis
would not be rejected for α = 0.05. Because the 95% interval includes the null point and the 90%
interval does not, it can be inferred that the two-sided P-value for the null hypothesis is greater than
0.05 and less than 0.10.

The point of the preceding example is not to suggest that confidence limits should be used as
surrogate tests of significance. Although they can be and often are used this way, doing so defeats all
the advantages that confidence intervals have over hypothesis tests. An interval-estimation procedure

FIGURE 10–2 ● Two nested
confidence intervals, with the wider
one including the null hypothesis.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 0 – 1

Hypothetical Data from a Cohort Study,
Corresponding to the P-Value Function
in Figure 10–3

Exposure

Yes No

Cases 9 2
Person-years 186 128

does much more than assess the extent to which a hypothesis is compatible with the data. It provides
simultaneously an idea of the likely direction and magnitude of the underlying association and the
random variability of the point estimate. The two-sided P-value, on the other hand, indicates only
the degree of consistency between the data and a single hypothesis, and thus reveals nothing about
the magnitude or even the direction of the association, or the random variability of the point estimate
(Bandt and Boen, 1972).

For example, consider the data in Table 10–1. An exact test of the null hypothesis that the
exposure is not associated with the disease gives a two-sided P-value of 0.14. (The methods used to
calculate this P-value are described in Chapter 14.) This result might be reported in several ways.
The least informative way is to report that the observed association is not significant. Somewhat
more information can be given by reporting the actual P-value; to express the P-value as an
inequality such as P > 0.05 is not much better than reporting the results as not significant, whereas
reporting P = 0.14 at least gives the P-value explicitly rather than degrading it into a dichotomy.
An additional improvement is to report P2 = 0.14, denoting the use of a two-sided rather than a
one-sided P-value.

Any one P-value, no matter how explicit, fails to convey the descriptive finding that exposed
individuals had about three times the rate of disease as unexposed subjects. Furthermore, exact
95% confidence limits for the true rate ratio are 0.7–13. The fact that the null value (which, for the
rate ratio, is 1.0) is within the interval tells us the outcome of the significance test: The estimate
would not be statistically significant at the 1 − 0.95 = 0.05 alpha level. The confidence limits,
however, indicate that these data, although statistically compatible with no association, are even
more compatible with a strong association—assuming that the statistical model used to construct
the limits is correct. Stating the latter assumption is important because confidence intervals, like
P-values, do nothing to address biases that may be present.

P-Value Functions

Although a single confidence interval can be much more informative than a single P-value, it is
subject to the misinterpretation that values inside the interval are equally compatible with the data,
and all values outside it are equally incompatible. Like the alpha level of a test, however, the specific
level of confidence used in constructing a confidence interval is arbitrary; values of 95% or, less
often, 90% are those most frequently used.

A given confidence interval is only one of an infinite number of ranges nested within one another.
Points nearer the center of these ranges are more compatible with the data than points farther
away from the center. To see the entire set of possible confidence intervals, one can construct a
P-value function (Birnbaum, 1961; Miettinen, 1985b; Poole, 1987a). This function, also known as
a consonance function (Folks, 1981) or confidence-interval function (Sullivan and Foster, 1990),
reflects the connection between the definition of a two-sided P-value and the definition of a two-
sided confidence interval (i.e., a two-sided confidence interval comprises all points for which the
two-sided P-value exceeds the alpha level of the interval).

The P-value function gives the two-sided P-value for the null hypothesis, as well as every al-
ternative to the null hypothesis for the parameter. A P-value function from the data in Table 10–1
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FIGURE 10–3 ● P -value function, from which one can find all confidence
limits, for a hypothetical study with a rate ratio estimate of 3.1 (see Table 10–1).

is shown in Figure 10–3. Figure 10–3 also provides confidence levels on the right, and so indicates
all possible confidence limits for the estimate. The point at which the curve reaches its peak corre-
sponds to the point estimate for the rate ratio, 3.1. The 95% confidence interval can be read directly
from the graph as the function values where the right-hand ordinate is 0.95, and the 90% confidence
interval can be read from the graph as the values where the right-hand ordinate is 0.90. The P-value
for any value of the parameter can be found from the left-hand ordinate corresponding to that value.
For example, the null two-sided P-value can be found from the left-hand ordinate corresponding
to the height where the vertical line drawn at the hypothesized rate ratio = 1 intersects the P-value
function.

A P-value function offers a visual display that neatly summarizes the two key components of
the estimation process. The peak of the curve indicates the point estimate, and the concentration
of the curve around the point estimate indicates the precision of the estimate. A narrow P-value
function would result from a large study with high precision, and a broad P-value function would
result from a small study that had low precision.

A confidence interval represents only one possible horizontal slice through the P-value function,
but the single slice is enough to convey the two essential messages: Confidence limits usually provide
enough information to locate the point estimate and to indicate the precision of the estimate. In
large-sample epidemiologic statistics, the point estimate will usually be either the arithmetic or
geometric mean of the lower and upper limits. The distance between the lower and upper limits
indicates the spread of the full P-value function.

The message of Figure 10–3 is that the example data are more compatible with a moderate
to strong association than with no association, assuming the statistical model used to construct
the function is correct. The confidence limits, when taken as indicative of the P-value function,
summarize the size and precision of the estimate (Poole, 1987b, Poole, 2001c). A single P-value,
on the other hand, gives no indication of either the size or precision of the estimate, and, if it is used
merely as a hypothesis test, might result in a Type II error if there indeed is an association between
exposure and disease.

Evidence of Absence of Effect

Confidence limits and P-value functions convey information about size and precision of the estimate
simultaneously, keeping these two features of measurement in the foreground. The use of a single
P-value—or (worse) dichotomization of the P-value into significant or not significant—obscures
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these features so that the focus on measurement is lost. A study cannot be reassuring about the
safety of an exposure or treatment if only a statistical test of the null hypothesis is reported. As we
have already seen, results that are not significant may be compatible with substantial effects. Lack
of significance alone provides no evidence against such effects (Altman and Bland, 1995).

Standard statistical advice states that when the data indicate a lack of significance, it is important
to consider the power of the study to detect as significant a specific alternative hypothesis. The
power of a test, however, is only an indirect indicator of precision, and it requires an assumption
about the magnitude of the effect. In planning a study, it is reasonable to make conjectures about the
magnitude of an effect to compute study-size requirements or power. In analyzing data, however,
it is always preferable to use the information in the data about the effect to estimate it directly,
rather than to speculate about it with study-size or power calculations (Smith and Bates, 1992;
Goodman and Berlin, 1994; Hoenig and Heisey, 2001). Confidence limits and (even more so) P-
value functions convey much more of the essential information by indicating the range of values
that are reasonably compatible with the observations (albeit at a somewhat arbitrary alpha level),
assuming the statistical model is correct. They can also show that the data do not contain the
information necessary for reassurance about an absence of effect.

In their reanalysis of the 71 negative clinical trials, Freiman et al. (1978) used confidence limits for
the risk differences to reinterpret the findings from these studies. These confidence limits indicated
that probably many of the treatments under study were indeed beneficial, as seen in Figure 10–1.
The inappropriate interpretations of the authors in most of these trials could have been avoided by
focusing their attention on the confidence limits rather than on the results of a statistical test.

For a study to provide evidence of lack of an effect, the confidence limits must be near the null
value and the statistical model must be correct (or, if wrong, only in ways expected to bias the
interval away from the null). In equivalence-testing terms, the entire confidence interval must lie
within the zone about the null that would be considered practically equivalent to the null. Consider
Figure 10–4, which depicts the P-value function from Figure 10–3 on an expanded scale, along
with another P-value function from a study with a point estimate of 1.05 and 95% confidence limits
of 1.01 and 1.10.

The study yielding the narrow P-value function must have been large to generate such precision.
The precision enables one to infer that, absent any strong biases or other serious problems with the
statistical model, the study provides evidence against a strong effect. The upper confidence limit
(with any reasonable level of confidence) is near the null value, indicating that the data are not
readily compatible with large or even moderate effects. Or, as seen from the P-value function, the

FIGURE 10–4 ● A P -value function from a precise study with a relative
risk estimate of 1.05 and the P -value function from Figure 10–3.
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curve is a narrow spike close to the null point. The spike is not centered exactly on the null point,
however, but slightly above it. In fact, the data from this large study would be judged as statistically
significant by conventional criteria, because the (two-sided) P-value testing the null hypothesis is
about 0.03. In contrast, the other P-value function in Figure 10–4 depicts data that, as we have
seen, are readily compatible with large effects but are not statistically significant by conventional
criteria.

Figure 10–4 illustrates the dangers of using statistical significance as the primary basis for
inference. Even if one assumes no bias is present (i.e., that the studies and analyses are perfectly
valid), the two sets of results differ in that one result indicates there may be a large effect, while the
other offers evidence against a large effect. The irony is that it is the statistically significant finding
that offers evidence against a large effect, while it is the finding that is not statistically significant
that raises concern about a possibly large effect. In these examples, statistical significance gives
a message that is opposite of the appropriate interpretation. Focusing on interval estimation and
proper interpretation of the confidence limits avoids this problem.

Numerous real-world examples demonstrate the problem of relying on statistical significance
for inference. One such example occurred in the interpretation of a large randomized trial of
androgen blockade combined with the drug flutamide in the treatment of advanced prostate cancer
(Eisenberger et al., 1998). This trial had been preceded by 10 similar trials, which in aggregate
had found a small survival advantage for patients given flutamide, with the pooled results for
the 10 studies producing a summary odds ratio of 0.88, with a 95% confidence interval of 0.76–
1.02 (Rothman et al., 1999; Prostate Cancer Trialists’ Collaborative Group, 1995). In their study,
Eisenberger et al. reported that flutamide was ineffective, thus contradicting the results of the 10
earlier studies, despite their finding an odds ratio of 0.87 (equivalent in their study to a mortality
rate ratio of 0.91), a result not very different from that of the earlier 10 studies. The P-value for
their finding was above their predetermined cutoff for ‘significance’, which is the reason that the
authors concluded that flutamide was an ineffective therapy. But the 95% confidence interval of
0.70–1.10 for their odds ratio showed that their data were readily compatible with a meaningful
benefit for patients receiving flutamide. Furthermore, their results were similar to those from the
summary of the 10 earlier studies. The P-value functions for the summary of the 10 earlier studies,
and the study by Eisenberger et al., are shown in Figure 10–5. The figure shows how the findings of

FIGURE 10–5 ● P -value functions based on 10 earlier trials of flutamide
(solid line) and the trial by Eisenberger et al. (dashed line), showing the similarity of
results, and revealing the fallacy of relying on statistical significance to conclude, as
did Eisenberger et al., that flutamide has no meaningful effect.



P1: TNL Printer: RRD

GRBT241-10 GRBT241-v4.cls January 16, 2008 21:43

162 Section II ● Study Design and Conduct

FIGURE 10–6 ● P -value functions for moderate and heavier drinkers of
alcohol showing essentially identical negative associations with decline in
cognitive function. The authors incorrectly reported that there was an
association with moderate drinking, but not with heavier drinking, because
only the finding for moderate drinking was statistically significant (Reproduced
with permission from Stampfer MJ, Kang JH, Chen J, et al. Effects of moderate
alcohol consumption on cognitive function in women. N Engl J Med.
2005;352:245–253.)

Eisenberger et al. reinforce rather than refute the earlier studies. They misinterpreted their findings
because of their focus on statistical significance.

Another example was a headline-generating study reporting that women who consumed moderate
amounts of alcohol retained better cognitive function than nondrinkers (Stampfer et al., 2005). For
moderate drinkers (up to 15 g of alcohol per day), the authors reported a risk ratio for impaired
cognition of 0.81 with 95% confidence limits of 0.70 and 0.93, indicating that moderate drinking
was associated with a benefit with respect to cognition. In contrast, the authors reported that “There
were no significant associations between higher levels of drinking (15 to 30 g per day) and the
risk of cognitive impairment or decline,” implying no benefit for heavy drinkers, an interpretation
repeated in widespread news reports. Nevertheless, the finding for women who consumed larger
amounts of alcohol was essentially identical to the finding for moderate drinkers, with a risk-ratio
estimate of 0.82 instead of 0.81. It had a broader confidence interval, however, with limits of 0.59
and 1.13. Figure 10–6 demonstrates how precision, rather than different effect size, accounted for
the difference in statistical significance for the two groups. From the data, there is no basis to infer
that the effect size differs for moderate and heavy drinkers; in fact, the hypothesis that is most
compatible with the data is that the effect is about the same in both groups. Furthermore, the lower
95% confidence limit for the ratio of the risk ratio in the heavy drinkers to the risk ratio in the
moderate drinkers is 0.71, implying that the data are also quite compatible with a much lower (more
protective) risk ratio in the heavy drinkers than in the moderate drinkers.

Guidelines for Practice

Good data analysis does not demand that P-value functions be calculated routinely. It is usually
sufficient to use conventional confidence limits to generate the proper mental visualization for the
underlying P-value function. In fact, for large studies, only one pair of limits and their confidence
level is needed to sketch the entire function, and one can easily learn to visualize the function
that corresponds to any particular pair of limits. If, however, one uses the limits only to determine
whether the null point lies inside or outside the confidence interval, one is only performing a
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significance test. It is lamentable to go to the trouble to calculate confidence limits and then use
them for nothing more than classifying the study finding as statistically significant or not. One
should instead remember that the precise locations of confidence limits are not important for proper
interpretation. Rather, the limits should serve to give one a mental picture of the location and spread
of the entire P-value function.

The main thrust of the preceding sections has been to argue the inadequacy of statistical signifi-
cance testing. The view that estimation is preferable to testing has been argued by many scientists in
a variety of disciplines, including, for example, economics, social sciences, environmental science,
and accident research. There has been a particularly heated and welcome debate in psychology. In
the overall scientific literature, hundreds of publications have addressed the concerns about statis-
tical hypothesis testing. Some selected references include Rozeboom (1960), Morrison and Henkel
(1970), Wulff (1973), Cox and Hinkley (1974), Rothman (1978a), Salsburg (1985), Simon and
Wittes (1985), Langman (1986), Gardner and Altman (1986), Walker (1986), Oakes (1990), Ware
et al. (1986), Pocock et al. (1987), Poole (1987a, 1987b), Thompson (1987), Evans et al. (1988),
Anscombe (1990), Oakes (1990), Cohen (1994), ), Hauer (2003), Gigerenzer (2004), Ziliak and
McCloskey (2004), Batterham and Hopkins (2006), and Marshall (2006). To quote Atkins and
Jarrett (1979):

Methods of estimation share many of the problems of significance tests—being likewise based on
probability model assumptions and requiring “arbitrary” limits of precision. But at least they do not
require irrelevant null hypotheses to be set up nor do they force a decision about “significance” to be
made—the estimates can be presented and evaluated by statistical and other criteria, by the
researcher or the reader. In addition the estimates of one investigation can be compared with others.
While it is often the case that different measurements or methods of investigation or theoretical
approaches lead to “different” results, this is not a disadvantage; these differences reflect important
theoretical differences about the meaning of the research and the conclusions to be drawn from it.
And it is precisely those differences which are obscured by simply reporting the significance level of
the results.

Indeed, because statistical hypothesis testing promotes so much misinterpretation, we recom-
mend avoiding its use in epidemiologic presentations and research reports. Such avoidance requires
that P-values (when used) be presented without reference to alpha levels or “statistical signifi-
cance,” and that careful attention be paid to the confidence interval, especially its width and its
endpoints (the confidence limits) (Altman et al., 2000; Poole, 2001c).

Problems with Confidence Intervals

Because they can be derived from P-values, confidence intervals and P-value functions are them-
selves subject to some of the same criticisms as significance tests (Goodman and Royall, 1988;
Greenland, 1990, 2006a). One problem that confidence intervals and P-value functions share with
statistical hypothesis tests is their very indirect interpretations, which depend on the concept of “rep-
etition of the study in a manner identical in all respects except for random error.” Interpretations of
statistics that appeal to such a concept are called repeated-sampling or frequentist interpretations,
because they refer to the frequency of certain events (rejection by a test, or coverage by a confidence
interval) in a series of repeated experiments.

An astute investigator may properly ask what frequency interpretations have to do with the
single study under analysis. It is all very well to say that an interval estimation procedure will,
in 95% of repetitions, produce limits that contain the true parameter. But in analyzing a given
study, the relevant scientific question is this: Does the single pair of limits produced from this one
study contain the true parameter? The ordinary (frequentist) theory of confidence intervals does not
answer this question. The question is so important that many (perhaps most) users of confidence
intervals mistakenly interpret the confidence level of the interval as the probability that the answer
to the question is “yes.” It is quite tempting to say that the 95% confidence limits computed from
a study contain the true parameter with 95% probability. Unfortunately, this interpretation can be
correct only for Bayesian interval estimates (discussed later and in Chapter 18), which often diverge
from ordinary confidence intervals.

There are several alternative types of interval estimation that attempt to address these problems.
We will discuss two of these alternatives in the next two subsections.
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Likelihood Intervals

To avoid interpretational problems, a few authors prefer to replace confidence intervals with like-
lihood intervals, also known as support intervals (Goodman and Royall, 1988; Edwards, 1992;
Royall, 1997). In ordinary English, “likelihood” is just a synonym for “probability.” In likelihood
theory, however, a more specialized definition is used: The likelihood of a specified parameter value
given observed data is defined as the probability of the observed data given that the true parameter
equals the specified parameter value. This concept is covered in depth in many statistics textbooks;
for example, see Berger and Wolpert (1988), Clayton and Hills (1993), Edwards (1992), and Royall
(1997). Here, we will describe the basic definitions of likelihood theory; more details are given in
Chapter 13.

To illustrate the definition of likelihood, consider again the population in Table 10–1, in which
186/(186 + 128) = 59% of person-years were exposed. Under standard assumptions, it can be
shown that, if there is no bias and the true rate ratio is 10, there will be a 0.125 chance of observing
nine exposed cases given 11 total cases and 59% exposed person-years. (The calculation of this
probability is beyond the present discussion.) Thus, by definition, 0.125 is the likelihood for a rate
ratio of 10 given the data in Table 10–1. Similarly, if there are no biases and the true ratio is 1,
there will be a 0.082 chance of observing nine exposed cases given 11 total and 59% exposed
person-years; thus, by definition, 0.082 is the likelihood for a rate ratio of 1 given Table 10–1.

When one parameter value makes the observed data more probable than another value and hence
has a higher likelihood, it is sometimes said that this parameter value has higher support from the
data than the other value (Edwards, 1992; Royall, 1997). For example, in this special sense, a rate
ratio of 10 has higher support from the data in Table 10–1 than a rate ratio of 1, because those data
have a greater chance of occurring if the rate ratio is 10 than if it is 1.

For most data, there will be at least one possible parameter value that makes the chance of getting
those data highest under the assumed statistical model. In other words, there will be a parameter
value whose likelihood is at least as high as that of any other parameter value, and so has the
maximum possible likelihood (or maximum support) under the assumed model. Such a parameter
value is called a maximum-likelihood estimate (MLE) under the assumed model. For the data in
Table 10–1, there is just one such value, and it is the observed rate ratio (9/186)/(2/128) = 3.1.
If there are no biases and the true rate ratio is 3.1, there will be a 0.299 chance of observing nine
exposed cases given 11 total and 59% exposed person-years, so 0.299 is the likelihood for a rate
ratio of 3.1 given Table 10–1. No other value for the rate ratio will make the chance of these results
higher than 0.299, and so 3.1 is the MLE. Thus, in the special likelihood sense, a rate ratio of 3.1
has the highest possible support from the data.

As has been noted, Table 10–1 yields a likelihood of 0.125 for a rate ratio of 10; this value
(0.125) is 42% of the likelihood (of 0.299) for 3.1. Similarly, Table 10–1 yields a likelihood of
0.082 for a rate ratio of 1; this value (0.082) is 27% of the likelihood for 3.1. Overall, a rate ratio
of 3.1 maximizes the chance of observing the data in Table 10–1. Although rate ratios of 10 and 1
have less support (lower likelihood) than 3.1, they are still among values that likelihoodists regard
as having enough support to warrant further consideration; these values typically include all values
with a likelihood above one-seventh of the maximum (Goodman and Royall, 1988; Edwards, 1992;
Royall, 1997). Under a normal model for random errors, such one-seventh likelihood intervals are
approximately equal to 95% confidence intervals (Royall, 1997).

The maximum of the likelihood is the height of the likelihood function at the MLE. A likelihood
interval for a parameter (here, the rate ratio) is the collection of all possible values whose likelihood
is no less than some specified fraction of this maximum. Thus, for Table 10–1, the collection of
all rate ratio values with a likelihood no less than 0.299/7 = 0.043 (one-seventh of the highest
likelihood) is a likelihood interval based on those data. Upon computing this interval, we find that
all rate ratios between 0.79 and 20 imply a probability for the observed data at least one-seventh
of the probability of the data when the rate ratio is 3.1 (the MLE). Because the likelihoods for rate
ratios of 1 and 10 exceed 0.299/7 = 0.043, 1 and 10 are within this interval.

Analogous to confidence limits, one can graph the collection of likelihood limits for all fractions
of the maximum (1/2, 1/4, 1/7, 1/20, etc.). The resulting graph has the same shape as one would
obtain from simply graphing the likelihood for each possible parameter value. The latter graph is
called the likelihood function for the data. Figure 10–7 gives the likelihood function for the data
in Table 10–1, with the ordinate scaled to make the maximum (peak) at 3.1 equal to 1 rather than
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FIGURE 10–7 ● Relative likelihood function based on Table 10–1.

0.299 (this is done by dividing all the likelihoods by the maximum, 0.299). Thus, Figure 10–6
provides all possible likelihood limits within the range of the figure.

The function in Figure 10–7 is proportional to(
86 (IR)

86 (IR) + 128

)9 (
128

86 (IR) + 128

)2

where IR is the hypothesized incidence rate ratio (the abscissa). Note that this function is broader and
less sharply peaked than the P-value function in Figure 10–3, reflecting the fact that, by likelihood
standards, P-values and confidence intervals tend to give the impression that the data provide more
evidence against the test hypothesis than they actually do (Goodman and Royall, 1988). For larger
data sets, however, there is a simple approximate relation between confidence limits and likelihood
limits, which we discuss in Chapter 13.

Some authors prefer to use the natural logarithm of the likelihood function, or log-likelihood
function, to compare the support given to competing hypotheses by the data (Goodman and Royall,
1988; Edwards, 1992; Royall, 1997). These authors sometimes refer to the log-likelihood function as
the support function generated by the data. Although we find log-likelihoods less easily interpretable
than likelihoods, log-likelihoods can be useful in constructing confidence intervals (Chapter 13).

Bayesian Intervals

As with confidence limits, the interpretation of likelihood limits is indirect, in that it does not answer
the question: “Is the true value between these limits?” Unless the true value is already known (in
which case there is no point in gathering data), it can be argued that the only rational answer to the
question must be a subjective probability statement, such as “I am 95% sure that the true value is
between these limits” (DeFinetti, 1974; Howson and Urbach, 1993; see Chapter 18). Such subjective
probability assessments, or certainties, are common in everyday life, as when a weather forecaster
predicts 80% chance of rain tomorrow, or when one is delayed while traveling and thinks that there
is a 90% chance of arriving between 1 and 2 hours after the scheduled arrival time. If one is sure that
the true arrival time will be between these limits, this sureness represents a subjective assessment
of 100% probability (complete certainty) that arrival will be 1 to 2 hours late. In reality, however,
there is always a chance (however small) that one will be delayed longer or may never arrive, so
complete certainty is never warranted.
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Subjective Bayesian analysis is concerned with producing realistic and rationally coherent prob-
ability assessments, and it is especially concerned with updating these assessments as data become
available. Rationally coherent means only that assessments are free of logical contradictions and
do not contradict the axioms of probability theory (which are also used as axioms for frequentist
probability calculations) (Savage, 1972; DeFinetti, 1974; Howson and Urbach, 1993; Greenland,
1998b).

All statistical methods require a model for data probabilities. Bayesian analysis additionally
requires a prior probability distribution. In theory, this means that one must have a probability
assessment available for every relevant interval; for example, when trying to study a rate ratio,
before seeing the data one must be able to specify one’s certainty that the rate ratio is between 1
and 2, and between 1/2 and 4, and so on. This prior-specification requirement demands that one has
a probability distribution for the rate ratio that is similar in shape to Figure 10–3 before seeing the
data. This is a daunting demand, and it was enough to have impeded the use and acceptance of
Bayesian methods for most of the 20th century.

Suppose, however, that one succeeds in specifying in advance a prior probability distribution that
gives prespecified certainties for the target parameter. Bayesian analysis then proceeds by combining
this prior distribution with the likelihood function (such as in Fig. 10–7) to produce a new, updated
set of certainties, called the posterior probability distribution for the target parameter based on the
given prior distribution and likelihood function. This posterior distribution in turn yields posterior
probability intervals (posterior certainty intervals). Suppose, for example, one accepts the prior
distribution as a good summary of previous information about the parameter, and similarly accepts
the likelihood function as a good summary of the data probabilities given various possible values
for the parameter. The resulting 95% posterior interval is then a range of numbers that one can be
95% certain contains the true parameter.

The technical details of computing exact posterior distributions can be quite involved and
were also an obstacle to widespread adoption of Bayesian methods. Modern computing advances
have all but eliminated this obstacle as a serious problem; also, the same approximations used
to compute conventional frequentist statistics (Chapters 14 through 17) can be used to compute
approximate Bayesian statistics (see Chapter 18).

Another obstacle to Bayesian methods has been that the intervals produced by a Bayesian anal-
ysis refer to subjective probabilities rather than objective frequencies. Some argue that, because
subjective probabilities are just one person’s opinion, they should be of no interest to objective
scientists. Unfortunately, in nonexperimental studies there is (by definition) no identified random
mechanism to generate objective frequencies over study repetitions; thus, in such studies, so-called
objective frequentist methods (such as significance tests and confidence intervals) lack the objective
repeated-sampling properties usually attributed to them (Freedman, 1985, 1987; Greenland, 1990,
1998b, 2005b, 2006a; Freedman et al., 2007). Furthermore, scientists do routinely offer their opin-
ions and are interested in the opinions of colleagues. Therefore, it can be argued that a rational (if
subjective) certainty assessment may be the only reasonable inference we can get out of a statistical
analysis of observational epidemiologic data. Some argue that this conclusion applies even to per-
fect randomized experiments (Berger and Berry, 1988; Howson and Urbach, 1993; Spiegelhalter
et al., 2004).

At the very least, Bayesian statistics provide a probabilistic answer to questions as “Does the
true rate ratio lie between 1 and 4?” (to which one possible Bayesian answer is “In light of the
data and my current prior information, I can be 90% certain that it does.”). A more general argu-
ment for the use of Bayesian methods is that they can provide point and interval estimates that
have better objective frequency (repeated-sampling) properties than ordinary frequentist estimates.
These calibrated Bayesian statistics include Bayesian confidence intervals that are narrower (more
precise) than ordinary confidence intervals with the same confidence level. Because the advantages
of procedures with Bayesian justification can be so dramatic, some authors argue that only meth-
ods with a clear Bayesian justification should be used, even though repeated-sampling (objective
frequency) properties are also desirable (such as proper coverage frequency for interval estimates)
(Rubin, 1984, 1991; Gelman et al., 2003).

In addition to providing improved analysis methods, Bayesian theory can be used to evaluate
established or newly proposed statistical methods. For example, if a new confidence interval is
proposed, we may ask: “What prior distribution do we need to get this new interval as our Bayesian
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posterior probability interval?” It is often the case that the prior distribution one would need to
justify a conventional confidence interval is patently absurd; for example, it would assign equal
probabilities to rate ratios of 1 and 1,000,000 (Greenland, 1992a, 1998b, 2006a; Chapter 18). In
such cases it can be argued that one should reject the proposed interval because it will not properly
reflect any rational opinion about the parameter after a careful data analysis (Rubin, 1984; Greenland,
2006a).

Under certain conditions, ordinary (frequentist) confidence intervals and one-sided P-values can
be interpreted as approximate posterior (Bayesian) probability intervals (Cox and Hinkley, 1974;
Greenland and Gustafson, 2006). These conditions typically arise when little is known about the
associations under study. Frequentist intervals cease to have Bayesian utility when much is already
known or the data under analysis are too limited to yield even modestly precise estimates. The latter
situation arises not only in small studies, but also in large studies that must deal with many variables
at once, or that fail to measure key variables with sufficient accuracy.

Chapter 18 provides further discussion of these issues, and shows how to do basic Bayesian
analysis of categorical (tabular) data using ordinary frequentist software. Similar Bayesian methods
for epidemiologic regression analysis are given by Greenland (2007ab).

CONCLUSION

Statistics can be viewed as having a number of roles in epidemiology. Data description is one role,
and statistical inference is another. The two are sometimes mixed, to the detriment of both activities,
and are best distinguished from the outset of an analysis.

Different schools of statistics view statistical inference as having different roles in data analy-
sis. The hypothesis-testing approach treats statistics as chiefly a collection of methods for making
decisions, such as whether an association is present in a source population or “superpopulation”
from which the data are randomly drawn. This approach has been declining in the face of criti-
cisms that estimation, not decision making, is the proper role for statistical inference in science.
Within the latter view, frequentist approaches derive estimates by using probabilities of data (either
P-values or likelihoods) as measures of compatibility between data and hypotheses, or as measures
of the relative support that data provide hypotheses. In contrast, the Bayesian approach uses data
to improve existing (prior) estimates in light of new data. Different approaches can be used in the
course of an analysis. Nonetheless, proper use of any approach requires more careful interpretation
of statistics than has been common in the past.
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This chapter covers a number of topics specific to the design of cohort and case-control studies.
These topics pertain to the overlapping goals of efficient control of confounding and efficient subject
selection. We use efficiency to refer to both the statistical precision and the cost-effectiveness of the
study design.

DESIGN OPTIONS TO CONTROL CONFOUNDING

Various methods are used to help control confounding in the design of epidemiologic studies. One,
randomization, is applicable only in experiments. In contrast, restriction is applicable to all study
designs. Matching is often treated as another option for control of confounding, but this view is not
accurate. The primary benefits of matching (when they arise) are more in the realm of improved
efficiency in confounder control—that is, an increase in the precision of the confounder-adjusted
estimate, for a given study size. Matching is therefore covered in its own section.

EXPERIMENTS AND RANDOMIZATION

When it is practical and ethical to assign exposure to subjects, one can in theory create study
cohorts that would have equal incidences of disease in the absence of the assigned exposure and
so eliminate the possibility of confounding. If only a few factors determine incidence and if the
investigator knows of these factors, an ideal plan might call for exposure assignment that would lead
to identical, balanced distributions of these causes of disease in each group. In studies of human
disease, however, there are always unmeasured (and unknown) causes of disease that cannot be
forced into balance among treatment groups. Randomization is a method that allows one to limit
confounding by unmeasured factors probabilistically and to account quantitatively for the potential
residual confounding produced by these unmeasured factors.

As mentioned in Chapter 6, randomization does not lead to identical distributions of all factors,
but only to distributions that tend, on repeated trials, to be similar for factors that are not affected

168
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by treatment. The tendency increases as the sizes of the study groups increase. Thus, randomiza-
tion works very well to prevent substantial confounding in large studies but is less effective for
smaller studies (Rothman, 1977). In the extreme case in which only one randomization unit is
included in each group (as in the community fluoridation trial described in Chapters 4 and 6, in
which there was only one community in each group), randomization is completely ineffective in
preventing confounding. As compensation for its unreliability in small studies, randomization has
the advantage of providing a firm basis for calculating confidence limits that allow for confounding
by unmeasured, and hence uncontrollable, factors. Because successful randomization allows one
to account quantitatively for uncontrollable confounding, randomization is a powerful technique to
help ensure valid causal inferences from studies, large or small (Greenland, 1990). Its drawback of
being unreliable in small studies can be mitigated by measuring known risk factors before random
assignment and then making the random assignments within levels of these factors. Such a process
is known as matched randomization or stratified randomization.

RESTRICTION

A variable cannot produce confounding if it is prohibited from varying. Restricting the admissibility
criteria for subjects to be included in a study is therefore an extremely effective method of preventing
confounding. If the potentially confounding variable is measured on a nominal scale, such as race
or sex, restriction is accomplished by admitting into the study as subjects only those who fall into
specified categories (usually just a single category) of each variable of interest. If the potentially
confounding variable is measured on a continuous scale such as age, restriction is achieved by
defining a range of the variable that is narrow enough to limit confounding by the variable. Only
individuals within the range are admitted into the study as subjects. If the variable has little effect
within the admissible range, then the variable cannot be an important confounder in the study. Even
if the variable has a non-negligible effect in the range, the degree of confounding it produces will
be reduced by the restriction, and this remaining confounding can be controlled analytically.

Restriction is an excellent technique for preventing or at least reducing confounding by known
factors, because it is not only extremely effective but also inexpensive, and therefore it is very
efficient if it does not hamper subject recruitment. The decision about whether to admit a given
individual to the study can be made quickly and without reference to other study subjects (as
is required for matching). The main disadvantage is that restriction of admissibility criteria can
shrink the pool of available subjects below the desired level. When potential subjects are plentiful,
restriction can be employed extensively, because it improves validity at low cost. When potential
subjects are less plentiful, the advantages of restriction must be weighed against the disadvantages
of a diminished study group.

As is the case with restriction based on risk or exposure, one may be concerned that restriction
to a homogeneous category of a potential confounder will provide a poor basis for generalization
of study results. This concern is valid if one suspects that the effect under study will vary in an
important fashion across the categories of the variables used for restriction. Nonetheless, studies that
try to encompass a “representative” and thus heterogeneous sample of a general population are often
unable to address this concern in an adequate fashion, because in studies based on a “representative”
sample, the number of subjects within each subgroup may be too small to allow estimation of the
effect within these categories. Depending on the size of the subgroups, a representative sample
often yields unstable and hence ambiguous or even conflicting estimates across categories, and
hence provides unambiguous information only about the average effect across all subgroups. If
important variation (modification) of the effect exists, one or more studies that focus on different
subgroups may be more effective in describing it than studies based on representative samples.

APPORTIONMENT RATIOS TO IMPROVE STUDY EFFICIENCY

As mentioned in Chapter 10, one can often apportion subjects into study groups by design to enhance
study efficiency. Consider, for example, a cohort study of 100,000 men to determine the magnitude
of the reduction in cardiovascular mortality resulting from daily aspirin consumption. A study this
large might be thought to have good precision. The frequency of exposure, however, plays a crucial
role in precision: If only 100 of the men take aspirin daily, the estimates of effect from the study
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will be imprecise because very few cases will likely occur in the mere 100 exposed subjects. A
much more precise estimate could be obtained if, instead of 100 exposed and 99,900 unexposed
subjects, 50,000 exposed and 50,000 unexposed subjects could be recruited instead.

The frequency of the outcome is equally crucial. Suppose the study had 50,000 aspirin users and
50,000 nonusers, but all the men in the study were between the ages of 30 and 39 years. Whereas
the balanced exposure allocation enhances precision, men of this age seldom die of cardiovascular
disease. Thus, few events would occur in either of the exposure groups, and as a result, effect
estimates would be imprecise. A much more precise study would use a cohort at much higher risk,
such as one comprising older men. The resulting study would not have the same implications unless
it was accepted that the effect measure of interest changed little with age. This concern relates not
to precision, but to generalizability, which we discussed in Chapter 9.

Consideration of exposure and outcome frequency must also take account of other factors in
the analysis. If aspirin users were all 40 to 49 years old but nonusers were all over age 50, the
age discrepancy might severely handicap the study, depending on how these nonoverlapping age
distributions were handled in the analysis. For example, if one attempted to stratify by decade of
age to control for possible age confounding, there would be no information at all about the effect
of aspirin in the data, because no age stratum would have information on both users and nonusers.

Thus, we can see that a variety of design aspects affect study efficiency and in turn affect the
precision of study results. These factors include the proportion of subjects exposed, the disease
risk of these subjects, and the relation of these study variables to other analysis variables, such as
confounders or effect modifiers.

Study efficiency can be judged on various scales. One scale relates the total information content
of the data to the total number of subjects (or amount of person-time experience) in the study. One
valid design is said to be more statistically efficient than another if the design yields more precise
estimates than the other when both are performed with the same number of subjects or person-time
(assuming proper study conduct).

Another scale relates the total information content to the costs of acquiring that information.
Some options in study design, such as individual matching, may increase the information content
per subject studied, but only at an increased cost. Cost efficiency relates the precision of a study to
the cost of the study, regardless of the number of subjects in the study. Often the cost of acquiring
subjects and obtaining data differs across study groups. For example, retrospective cohort studies
often use a reference series from population data because such data can be acquired for a price that
is orders of magnitude less than the information on the exposed cohort. Similarly, in case-control
studies, eligible cases may be scarce in the source population, whereas those eligible to be controls
may be plentiful. In such situations, more precision might be obtained per unit cost by including
all eligible cases and then expanding the size of the reference series rather than by expanding the
source population to obtain more cases. The success of this strategy depends on the relative costs
of acquiring information on cases versus controls and the cost of expanding the source population
to obtain more cases—the latter strategy may be very expensive if the study cannot draw on an
existing case-ascertainment system (such as a registry).

In the absence of an effect and if no adjustment is needed, the most cost-efficient apportionment
ratio is approximately equal to the reciprocal of the square root of the cost ratio (Miettinen, 1969).
Thus, if C1 is the cost of each case and C0 is the cost of each control, the most cost-efficient apportion-
ment ratio of controls to cases is (C1/C0)1/2. For example, if cases cost four times as much as controls
and there is no effect and no need for adjustments, the most cost-efficient design would include two
times as many controls as cases. The square-root rule is applicable only for small or null effects. A
more general approach to improving cost efficiency takes into account the conjectured magnitude of
the effect and the type of data (Morgenstern and Winn, 1983). These formulas enable the investigator
to improve the precision of the estimator of effect in a study for a fixed amount of resources.

Occasionally, one of the comparison groups cannot be expanded, usually because practical
constraints limit the feasibility of extending the study period or area. For such a group, the cost
of acquiring additional subjects is essentially infinite, and the only available strategy for acquiring
more information is to expand the other group. As the size of one group increases relative to the
other group, statistical efficiency does not increase proportionally. For example, if there are m cases,
no effect, and no need to stratify on any factor, the proportion of the maximum achievable precision
that can be obtained by using a control group of size n is n/(m + n), often given as r /(r+ 1), where
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r = n/m. This relation implies that, if only 100 cases were available in a case-control study and no
stratification was needed, a design with 400 controls could achieve 400/(100 + 400) = 80% of the
maximum possible efficiency.

Unfortunately, the formulas we have just described are misleading when comparisons across
strata of other factors are needed or when there is an effect. In either case, expansion of just one
group may greatly improve efficiency (Breslow et al., 1983). Furthermore, study design formulas
that incorporate cost constraints usually treat the costs per subject as fixed within study groups
(Meydrech and Kupper, 1978; Thompson et al., 1982). Nonetheless, the cost per subject may
change as the number increases; for example, there may be a reduction in cost if the collection time
can be expanded and there is no need to train additional interviewers, or there may be an increase
in cost if more interviewers need to be trained.

MATCHING

Matching refers to the selection of a reference series—unexposed subjects in a cohort study or
controls in a case-control study—that is identical, or nearly so, to the index series with respect to
the distribution of one or more potentially confounding factors. Early intuitions about matching
were derived from thinking about experiments (in which exposure is assigned by the investigator).
In epidemiology, however, matching is applied chiefly in case-control studies, where it represents a
very different process from matching in experiments. There are also important differences between
matching in experiments and matching in nonexperimental cohort studies.

Matching may be performed subject by subject, which is known as individual matching, or for
groups of subjects, which is known as frequency matching. Individual matching involves selection
of one or more reference subjects with matching-factor values equal to those of the index subject.
In a cohort study, the index subject is exposed, and one or more unexposed subjects are matched to
each exposed subject. In a case-control study, the index subject is a case, and one or more controls
are matched to each case. Frequency matching involves selection of an entire stratum of reference
subjects with matching-factor values equal to that of a stratum of index subjects. For example, in a
case-control study matched on sex, a stratum of male controls would be selected for the male cases,
and, separately, a stratum of female controls would be selected for the female cases.

One general observation applies to all matched studies: Matching on a factor may necessitate its
control in the analysis. This observation is especially important for case-control studies, in which
failure to control a matching factor can lead to biased effect estimates. With individual matching,
often each matched set is treated as a distinct stratum if a stratified analysis is conducted. When two
or more matched sets have identical values for all matching factors, however, the sets can and for
efficiency should be coalesced into a single stratum in the analysis (Chapter 16). Given that strata
corresponding to individually matched sets can be coalesced in the analysis, there is no important
difference in the proper analysis of individually matched and frequency-matched data.

PURPOSE AND EFFECT OF MATCHING

To appreciate the different implications of matching for cohort and case-control studies, consider
the hypothetical target population of 2 million individuals given in Table 11–1. Both the exposure
and male sex are risk factors for the disease: Within sex, exposed have 10 times the risk of the
unexposed, and within exposure levels, men have five times the risk of women. There is also
substantial confounding, because 90% of the exposed individuals are male and only 10% of the
unexposed are male. The crude risk ratio in the target population comparing exposed with unexposed
is 33, considerably different from the sex-specific value of 10.

Suppose that a cohort study draws an exposed cohort from the exposed target population and
matches the unexposed cohort to the exposed cohort on sex. If 10% of the exposed target population
is included in the cohort study and these subjects are selected independently of sex, we have
approximately 90,000 men and 10,000 women in the exposed cohort. If a comparison group of
unexposed subjects is drawn from the 1 million unexposed individuals in the target population
independently of sex, the cohort study will have the same confounding as exists in the target
population (apart from sampling variability), because the cohort study is then a simple 10% sample of
the target population. It is possible, however, to assemble the unexposed cohort so that its proportion
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 1 – 1

Hypothetical Target Population of 2 Million People, in Which
Exposure Increases the Risk 10-Fold, Men Have Five Times the
Risk of Women, and Exposure Is Strongly Associated with
Being Male

Men Women

Exposed Unexposed Exposed Unexposed

No. of cases in 1 y 4,500 50 100 90
Total 900,000 100,000 100,000 900,000
1-y risk 0.005 0.0005 0.001 0.001

Crude risk ratio = (4,500 + 100) /1,000,000

(50 + 90) /1,000,000
= 33

of men matches that in the exposed cohort. This matching of the unexposed to the exposed by sex
will prevent an association of sex and exposure in the study cohort. Of the 100,000 unexposed men
in the target population, suppose that 90,000 are selected to form a matched comparison group for
the 90,000 exposed men in the study, and of the 900,000 unexposed women, suppose that 10,000
are selected to match the 10,000 exposed women.

Table 11–2 presents the expected results (if there is no sampling error) from the matched cohort
study we have described. The expected risk ratio in the study population is 10 for men and 10 for
women and is also 10 in the crude data for the study. The matching has apparently accomplished its
purpose: The point estimate is not confounded by sex because matching has prevented an association
between sex and exposure in the study cohort.

The situation differs considerably, however, if a case-control study is conducted instead. Consider
a case-control study of all 4,740 cases that occur in the source population in Table 11–1 during 1 year.
Of these cases, 4,550 are men. Suppose that 4,740 controls are sampled from the source population,
matched to the cases by sex, so that 4,550 of the controls are men. Of the 4,740 cases, we expect

ˆ

ˆ

ˆ

ˆ
T A B L E 1 1 – 2

Expected Results of a Matched 1-Year Cohort Study of 100,000
Exposed and 100,000 Unexposed Subjects Drawn from the
Target Population Described in Table 10–1

Men Women

Exposed Unexposed Exposed Unexposed

Cases 450 45 10 1
Total 90,000 90,000 10,000 10,000

Approximate expected RR = 10 RR = 10

Crude risk ratio = (450 + 10) /100,000

(45 + 1) /100,000
= 10

RR, risk ratio.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 1 – 3

Expected Results of Case-Control Study
with 4,740 Controls Matched on Sex
When the Source Population Is
Distributed as in Table 10–1

Exposed Unexposed

Cases 4,600 140
Controls 4,114 626

Approximate expected crude OR = 4,600 (626)

4,114 (140)
= 5.0

OR, odds ratio.

4,500 + 100 = 4,600 to be exposed and 4,740 − 4,600 = 140 to be unexposed. Of the 4,550 male
controls, we expect about 90%, or 4,095, to be exposed, because 90% of the men in the target
population are exposed. Of the 4,740 − 4,550 = 190 female controls, we expect about 10%, or 19,
to be exposed, because 10% of the women in the target population are exposed. Hence, we expect
4,095 + 19 = 4,114 controls to be exposed and 4,740 − 4,114 = 626 to be unexposed. The expected
distribution of cases and controls is shown in Table 11–3. The crude odds ratio (OR) is much less than
the true risk ratio (RR) for exposure effect. Table 11–4 shows, however, that the case-control data
give the correct result, RR = 10, when stratified by sex. Thus, unlike the cohort matching, the case-
control matching has not eliminated confounding by sex in the crude point estimate of the risk ratio.

The discrepancy between the crude results in Table 11–3 and the stratum-specific results in
Table 11–4 results from a bias that is introduced by selecting controls according to a factor that
is related to exposure, namely, the matching factor. The bias behaves like confounding, in that the
crude estimate of effect is biased but stratification removes the bias. This bias, however, is not a
reflection of the original confounding by sex in the source population; indeed, it differs in direction
from that bias.

The examples in Tables 11–1 through 11–4 illustrate the following principles: In a cohort study
without competing risks or losses to follow-up, no additional action is required in the analysis to
control for confounding of the point estimate by the matching factors, because matching unexposed
to exposed prevents an association between exposure and the matching factors. (As we will discuss

ˆ

ˆ

ˆ

ˆ
T A B L E 1 1 – 4

Expected Results of a Case Control Study of 4,740 Cases and
4,740 Matched Controls When the Source of Subjects Is the
Target Population Described in Table 10–1 and Sampling Is
Random within Sex

Men Women

Exposed Unexposed Exposed Unexposed

Cases 4,500 50 100 90
Controls 4,095 455 19 171

Approximate expected OR = 10 OR = 10

OR, odds ratio.
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later, however, competing risks or losses to follow-up may necessitate control of the matching
factors.) In contrast, if the matching factors are associated with the exposure in the source population,
matching in a case-control study requires control by matching factors in the analysis, even if the
matching factors are not risk factors for the disease.

What accounts for this discrepancy? In a cohort study, matching is of unexposed to exposed
on characteristics ascertained at the start of follow-up, so is undertaken without regard to events
that occur during follow-up, including disease occurrence. By changing the distribution of the
matching variables in the unexposed population, the matching shifts the risk in this group toward
what would have occurred among the actual exposed population if they had been unexposed. In
contrast, matching in a case-control study involves matching nondiseased to diseased, an entirely
different process from matching unexposed to exposed. By selecting controls according to matching
factors that are associated with exposure, the selection process will be differential with respect to
both exposure and disease, thereby resulting in a selection bias that has no counterpart in matched
cohort studies. The next sections, on matching in cohort and case-control designs, explore these
phenomena in more detail.

MATCHING IN COHORT STUDIES

In cohort studies, matching unexposed to exposed subjects in a constant ratio can prevent confound-
ing of the crude risk difference and ratio by the matched factors because such matching prevents
an association between exposure and the matching factors among the study subjects at the start of
follow-up. Despite this benefit, matched cohort studies are uncommon. Perhaps the main reason is
the great expense of matching large cohorts. Cohort studies ordinarily require many more subjects
than case-control studies, and matching is usually a time-consuming process. One exception is
when registry data or other database information is used as a data source. In database studies, an
unexposed cohort may be matched to an exposed cohort within the data source relatively easily
and inexpensively. It also is possible to improve the poor cost efficiency in matched cohort studies
by limiting collection of data on unmatched confounders to those matched sets in which an event
occurs (Walker, 1982b), but this approach is rare in practice.

Another reason that matched cohort studies are rare may be that cohort matching does not
necessarily eliminate the need to control the matching factors. If the exposure and the matching
factors affect disease risk or censoring (competing risks and loss to follow-up), the original balance
produced by the matching will not extend to the persons and person-time available for the analysis.
That is, matching prevents an exposure-matching-factor association only among the original counts
of persons at the start of follow-up; the effects of exposure and matching factors may produce
an association of exposure and matching factors among the remaining persons and the observed
person-time as the cohort is followed over time. Even if only pure-count data and risks are to be
examined and no censoring occurs, control of any risk factors used for matching will be necessary to
obtain valid standard-deviation estimates for the risk-difference and risk-ratio estimates (Weinberg,
1985; Greenland and Robins, 1985b).

Matching and Efficiency in Cohort Studies

Although matching can often improve statistical efficiency in cohort studies by reducing the standard
deviation of effect estimates, such a benefit is not assured if exposure is not randomized (Greenland
and Morgenstern, 1990). To understand this difference between nonexperimental and randomized
cohort studies, let us contrast the matching protocols in each design. In randomized studies, matching
is a type of blocking, which is a protocol for randomizing treatment assignment within groups
(blocks). In pairwise blocking, a pair of subjects with the same values on the matching (blocking)
factors is randomized, one to the study treatment and the other to the control treatment. Such a
protocol almost invariably produces a statistically more precise (efficient) effect estimate than the
corresponding unblocked design, although exceptions can occur (Youkeles, 1963).

In nonexperimental cohort studies, matching refers to a family of protocols for subject selec-
tion rather than for treatment assignment. In perhaps the most common cohort-matching protocol,
unexposed subjects are selected so that their distribution of matching factors is identical to the distri-
bution in the exposed cohort. This protocol may be carried out by individual or frequency matching.
For example, suppose that the investigators have identified an exposed cohort for follow-up, and
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they tally the age and sex distribution of this cohort. Then, within each age–sex stratum, they may
select for follow-up an equal number of unexposed subjects.

In summary, although matching of nonexperimental cohorts may be straightforward, its im-
plications for efficiency are not. Classical arguments from the theory of randomized experiments
suggest that matched randomization (blocking) on a risk factor will improve the precision of effect
estimation when the outcome under study is continuous; effects are measured as differences of
means, and random variation in the outcome can be represented by addition of an independent
error term to the outcome. These arguments do not carry over to epidemiologic cohort studies,
however, primarily because matched selection alters the covariate distribution of the entire study
cohort, whereas matched randomization does not (Greenland and Morgenstern, 1990). Classical
arguments also break down when the outcome is discrete, because in that case the variance of the
outcome depends on the mean (expected) value of the outcome within each exposure level. Thus, in
nonexperimental cohort studies, matching can sometimes harm efficiency, even though it introduces
no bias.

MATCHING IN CASE-CONTROL STUDIES

In case-control studies, the selection bias introduced by the matching process can occur whether or
not there is confounding by the matched factors in the source population (the population from which
the cases arose). If there is confounding in the source population, as there was in the earlier example,
the process of matching will superimpose a selection bias over the initial confounding. This bias
is generally in the direction of the null value of effect, whatever the nature of the confounding
in the source population, because matching selects controls who are more like cases with respect
to exposure than would be controls selected at random from the source population. In the earlier
example, the strong confounding away from the null in the source population was overwhelmed by
stronger bias toward the null in the matched case-control data.

Let us consider more closely why matching in a case-control study introduces bias. The purpose
of the control series in a case-control study is to provide an estimate of the distribution of exposure in
the source population. If controls are selected to match the cases on a factor that is correlated with the
exposure, then the crude exposure frequency in controls will be distorted in the direction of similarity
to that of the cases. Matched controls are identical to cases with respect to the matching factor.
Thus, if the matching factor were perfectly correlated with the exposure, the exposure distribution
of controls would be identical to that of cases, and hence the crude odds ratio would be 1.0.

The bias of the effect estimate toward the null value does not depend on the direction of the
association between the exposure and the matching factor; as long as there is an association,
positive or negative, the crude exposure distribution among controls will be biased in the direction
of similarity to that of cases. A perfect negative correlation between the matching factor and the
exposure will still lead to identical exposure distributions for cases and controls and a crude odds
ratio of 1.0, because each control is matched to the identical value of the matching factor of the
case, guaranteeing identity for the exposure variable as well.

If the matching factor is not associated with the exposure, then matching will not influence the
exposure distribution of the controls, and therefore no bias is introduced by matching. If the matching
factor is indeed a confounder, however, the matching factor and the exposure will be associated. (If
there were no association, the matching factor could not be a confounder, because a confounding
factor must be associated with both the exposure and the disease in the source population.)

Thus, although matching is usually intended to control confounding, it does not attain that
objective in case-control studies. Instead, it superimposes over the confounding a selection bias.
This selection bias behaves like confounding, because it can be controlled in the analysis by the
methods used to control for confounding. In fact, matching can introduce bias when none previously
existed: If the matching factor is unrelated to disease in the source population, it would not be a
confounder; if it is associated with the exposure, however, matching for it in a case-control study
will introduce a controllable selection bias.

This situation is illustrated in Table 11–5, in which the exposure effect corresponds to a risk ratio
of 5 and there is no confounding in the source population. Nonetheless, if the cases are selected
for a case-control study, and a control series is matched to the cases by sex, the expected value
for the crude estimate of effect from the case-control study is 2 rather than the correct value of 5.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 1 – 5

Source Population with No Confounding by Sex and a
Case-Control Study Drawn from the Source Population,
Illustrating the Bias Introduced by Matching on Sex

Men Women

Exposed Unexposed Exposed Unexposed

A. Source Population
Disease 450 10 50 90
Total 90,000 10,000 10,000 90,000

RR = 5 RR = 5

Crude risk ratio =
(450 + 50) /100,000

(10 + 1) 90/100,000
= 5

B. Case-Control Study Drawn from Source Population and Matched on Sex
Cases 450 10 50 90
Controls 414 46 14 126

OR = 5 OR = 5

Approximate expected crude OR = (450 + 50) / (46 + 126)

(10 + 90) / (414 + 14)
= 2.0

RR = risk ratio; OR, odds ratio.

In the source population, sex is not a risk factor because the incidence proportion is 0.001 in both
unexposed men and unexposed women. Nevertheless, despite the absence of association between
sex and disease within exposure levels in the source population, an association between sex and
disease within exposure levels is introduced into the case-control data by matching. The result is
that the crude estimate of effect seriously underestimates the correct value.

The bias introduced by matching in a case-control study is by no means irremediable. In Tables
11–4 and 11–5, the stratum-specific estimates of effect are valid; thus, both the selection bias
introduced by matching and the original confounding can be dealt with by treating the matching
variable as a confounder in the data analysis. Table 11–5 illustrates that, once case-control matching
is undertaken, it may prove necessary to stratify on the matching factors, even if the matching factors
were not confounders in the source population. Chapter 16 discusses guidelines and methods for
control of matching factors.

Matching and Efficiency in Case-Control Studies

It is reasonable to ask why one might consider matching at all in case-control studies. After all,
it does not prevent confounding and often introduces a bias. The utility of matching derives not
from an ability to prevent confounding, but from the enhanced efficiency that it sometimes affords
for the control of confounding. Suppose that one anticipates that age will confound the exposure–
disease relation in a given case-control study and that stratification in the analysis will be needed.
Suppose further that the age distribution for cases is shifted strongly toward older ages, compared
with the age distribution of the entire source population. As a result, without matching, there may
be some age strata with many cases and few controls, and others with few cases and many controls.
If controls are matched to cases by age, the ratio of controls to cases will instead be constant over
age strata.

Suppose now that a certain fixed case series has been or can be obtained for the study and that the
remaining resources permit selection of a certain fixed number of controls. There is a most efficient
(“optimal”) distribution for the controls across the strata, in that selecting controls according to this



P1: TNL Printer: RRD

GRBT241-11 GRBT241-v4.cls December 17, 2007 9:42

Chapter 11 ● Design Strategies to Improve Study Accuracy 177

distribution will maximize statistical efficiency, in the narrow sense of minimizing the variance of
a common odds-ratio estimator (such as those discussed in Chapter 15). This “optimal” control
distribution depends on the case distribution across strata. Unfortunately, it also depends on the
unknown stratum-specific exposure prevalences among cases and noncases in the source population.
Thus, this “optimal” distribution cannot be known in advance and used for control selection. Also,
it may not be the scientifically most relevant choice; for example, this distribution assumes that the
ratio measure is constant across strata, which is never known to be true and may often be false (in
which case a focus on estimating a common ratio measure is questionable). Furthermore, if the ratio
measure varies across strata, the most efficient distribution for estimating that variation in the effect
measure may be far from the most efficient distribution for estimating a uniform (homogeneous)
ratio measure.

Regardless of the estimation goal, however, extreme inefficiency occurs when controls are se-
lected that are in strata that have no case (infinite control/case ratio) or when no control is selected
in strata with one or more cases (zero control/case ratio). Strata without cases or controls are es-
sentially discarded by stratified analysis methods. Even in a study in which all strata have both
cases and controls, efficiency can be considerably harmed if the subject-selection strategy leads to a
case-control distribution across strata that is far from the one that is most efficient for the estimation
goal.

Matching forces the controls to have the same distribution of matching factors across strata as the
cases, and hence prevents extreme departures from what would be the optimal control distribution
for estimating a uniform ratio measure. Thus, given a fixed case series and a fixed number of controls,
matching often improves the efficiency of a stratified analysis. There are exceptions, however. For
example, the study in Table 11–4 yields a less efficient analysis for estimating a uniform ratio
than an unmatched study with the same number of controls, because the matched study leads to an
expected cell count in the table for women of only 19 exposed controls, whereas in an unmatched
study no expected cell count is smaller than 50. This example is atypical because it involves only
two strata and large numbers within the cells. In studies that require fine stratification whether
matched or not, and so yield sparse data (expected cell sizes that are small, so that zero cells are
common within strata), matching will usually result in higher efficiency than what can be achieved
without matching.

In summary, matching in case-control studies can be considered a means of providing a more
efficient stratified analysis, rather than a direct means of preventing confounding. Stratification (or
an equivalent regression approach; see Chapter 21) may still be necessary to control the selection
bias and any confounding left after matching, but matching will often make the stratification more
efficient. One should always bear in mind, however, that case-control matching on a nonconfounder
will usually harm efficiency, for then the more efficient strategy will usually be neither to match
nor to stratify on the factor.

If there is some flexibility in selecting cases as well as controls, efficiency can be improved
by altering the case distribution, as well as the control distribution, to approach a more efficient
case-control distribution across strata. In some instances in which a uniform ratio is assumed, it
may turn out that the most efficient approach is restriction of all subjects to one stratum (rather
than matching across multiple strata). Nonetheless, in these and similar situations, certain study
objectives may weigh against use of the most efficient design for estimating a uniform effect. For
example, in a study of the effect of occupational exposures on lung cancer risk, the investigators may
wish to ensure that there are sufficient numbers of men and women to provide reasonably precise
sex-specific estimates of these effects. Because most lung cancer cases in industrialized countries
occur in men and most high-risk occupations are held by men, a design with equal numbers of
men and women cases would probably be less efficient for estimating summary effects than other
designs, such as one that matched controls to a nonselective series of cases.

Partial or incomplete matching, in which the distribution of the matching factor or factors is
altered from that in the source population part way toward that of the cases, can sometimes improve
efficiency over no matching and thus can be worthwhile when complete matching cannot be done
(Greenland, 1986a). In some situations, partial matching can even yield more efficient estimates
than complete matching (Stürmer and Brenner, 2001). There are a number of more complex schemes
for control sampling to improve efficiency beyond that achievable by ordinary matching, such as
countermatching; see citations at the end of this section.
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Costs of Matching in Case-Control Studies

The statistical efficiency that matching provides in the analysis of case-control data often comes
at a substantial cost. One part of the cost is a research limitation: If a factor has been matched in
a case-control study, it is no longer possible to estimate the effect of that factor from the stratified
data alone, because matching distorts the relation of the factor to the disease. It is still possible to
study the factor as a modifier of relative risk (by seeing how the odds ratio varies across strata). If
certain population data are available, it may also be possible to estimate the effect of the matching
factor (Greenland, 1981; Benichou and Wacholder, 1994).

A further cost involved with individual matching is the possible expense entailed in the process
of choosing control subjects with the same distribution of matching factors found in the case series.
If several factors are being matched, it may be necessary to examine data on many potential control
subjects to find one that has the same characteristics as the case. Whereas this process may lead to
a statistically efficient analysis, the statistical gain may not be worth the cost in time and money.

If the efficiency of a study is judged from the point of view of the amount of information per
subject studied (size efficiency), matching can be viewed as an attempt to improve study efficiency.
Alternatively, if efficiency is judged as the amount of information per unit of cost involved in
obtaining that information (cost efficiency), matching may paradoxically have the opposite effect of
decreasing study efficiency, because the effort expended in finding matched subjects might be spent
instead simply in gathering information for a greater number of unmatched subjects. With matching,
a stratified analysis would be more size efficient, but without it the resources for data collection
can increase the number of subjects, thereby improving cost efficiency. Because cost efficiency is
a more fundamental concern to an investigator than size efficiency, the apparent efficiency gains
from matching are sometimes illusory.

The cost objections to matching apply to cohort study (exposed/unexposed) matching as well as
to case-control matching. In general, then, a beneficial effect of matching on overall study efficiency,
which is the primary reason for employing matching, is not guaranteed. Indeed, the decision to match
subjects can result in less overall information, as measured by the expected width of the confidence
interval for the effect measure, than could be obtained without matching, especially if the expense
of matching reduces the total number of study subjects. A wider appreciation for the costs that
matching imposes and the often meager advantages it offers would presumably reduce the use of
matching and the number of variables on which matching is performed.

Another underappreciated drawback of case-control matching is its potential to increase bias
due to misclassification. This problem can be especially severe if one forms unique pair matches
on a variable associated only with exposure and the exposure is misclassified (Greenland, 1982a).

Benefits of Matching in Case-Control Studies

There are some situations in which matching is desirable or even necessary. If the process of ob-
taining exposure and confounder information from the study subjects is expensive, it may be more
efficient to maximize the amount of information obtained per subject than to increase the number
of subjects. For example, if exposure information in a case-control study involves an expensive
laboratory test run on blood samples, the money spent on individual matching of subjects may
provide more information overall than could be obtained by spending the same money on finding
more subjects. If no confounding is anticipated, of course, there is no need to match; for example,
restriction of both series might prevent confounding without the need for stratification or matching.
If confounding is likely, however, matching will ensure that control of confounding in the analysis
will not lose information that has been expensive to obtain.

Sometimes one cannot control confounding efficiently unless matching has prepared the way
to do so. Imagine a potential confounding factor that is measured on a nominal scale with many
categories; examples are variables such as neighborhood, sibship, referring physician, and occu-
pation. Efficient control of sibship is impossible unless sibling controls have been selected for the
cases; that is, matching on sibship is a necessary prerequisite to obtain an estimate that is both
unconfounded and reasonably precise. These variables are distinguished from other nominal-scale
variables such as ethnicity by the inherently small number of potential subjects available for each
category. This situation is called a sparse-data problem: Although many subjects may be available,
any given category has little chance of showing up in an unmatched sample. Without matching,
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most strata in a stratified analysis will have only one subject, either a case or a control, and thus
will supply no information about the effect when using elementary stratification methods (Chapters
15 and 16). Matching does not prevent the data from being sparse, but it does ensure that, after
stratification by the matched factor, each stratum will have both cases and controls.

Although continuous variables such as age have a multitude of values, their values are either
easily combined by grouping or they may be controlled directly as continuous variables, avoiding
the sparse-data problem. Grouping may leave residual confounding, however, whereas direct control
requires the use of explicit modeling methods. Thus, although matching is not essential for control
of such variables, it does facilitate their control by more elementary stratification methods.

A fundamental problem with stratified analysis is the difficulty of controlling confounding by
several factors simultaneously. Control of each additional factor involves spreading the existing
data over a new dimension; the total number of strata required becomes exponentially large as the
number of stratification variables increases. For studies with many confounding factors, the number
of strata in a stratified analysis that controls all factors simultaneously may be so large that the
situation mimics one in which there is a nominal-scale confounder with a multitude of categories:
There may be no case or no control in many strata, and hardly any comparative information about
the effect in any stratum. Consequently, if a large number of confounding factors is anticipated,
matching may be desirable to ensure that an elementary stratified analysis is informative. But, as
pointed out earlier, attempting to match on many variables may render the study very expensive
or make it impossible to find matched subjects. Thus, the most practical option is often to match
only on age, sex, and perhaps one or a few nominal-scale confounders, especially those with a large
number of possible values. Any remaining confounders can be controlled along with the matching
factors by stratification or regression methods.

We can summarize the utility of matching as follows: Matching is a useful means for improving
study efficiency in terms of the amount of information per subject studied, in some but not all
situations. Case-control matching is helpful for known confounders that are measured on a nominal
scale, especially those with many categories. The ensuing analysis is best carried out in a manner
that controls for both the matching variables and unmatched confounders. We will discuss principles
for control of matching variables in Chapter 16.

OVERMATCHING

A term that is often used with reference to matched studies is overmatching. There are at least
three forms of overmatching. The first refers to matching that harms statistical efficiency, such as
case-control matching on a variable associated with exposure but not disease. The second refers to
matching that harms validity, such as matching on an intermediate between exposure and disease.
The third refers to matching that harms cost efficiency.

Overmatching and Statistical Efficiency

As illustrated in Table 11–5, case-control matching on a nonconfounder associated with exposure but
not disease can cause the factor to behave like a confounder: control of the factor will be necessary if
matching is performed, whereas no control would have been needed if it had not been matched. The
introduction of such a variable into the stratification ordinarily reduces the efficiency relative to an
unmatched design in which no control of the factor would be needed (Kupper et al., 1981; Smith and
Day, 1981; Thomas and Greenland, 1983). To explore this type of overmatching further, consider a
matched case-control study of a binary exposure, with one control matched to each case on one or
more nonconfounders. Each stratum in the analysis will consist of one case and one control unless
some strata can be combined. If the case and its matched control are either both exposed or both
unexposed, one margin of the 2 × 2 table will be 0. As one may verify from the Mantel-Haenszel
odds-ratio formula in Chapter 15, such a pair of subjects will not contribute any information to the
analysis. If one stratifies on correlates of exposure, one will increase the chance that such tables
will occur and thus tend to increase the information lost in a stratified analysis. This information
loss detracts from study efficiency, reducing both information per subject studied and information
per dollar spent. Thus, by forcing one to stratify on a nonconfounder, matching can detract from
study efficiency. Because the matching was not necessary in the first place and has the effect of
impairing study efficiency, matching in this situation can properly be described as overmatching.
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This first type of overmatching can thus be understood to be matching that causes a loss of
information in the analysis because the resulting stratified analysis would have been unnecessary
without matching. The extent to which information is lost by matching depends on the degree of
correlation between the matching factor and the exposure. A strong correlate of exposure that has
no relation to disease is the worst candidate for matching, because it will lead to relatively few
informative strata in the analysis with no offsetting gain. Consider, for example, a study of the
relation between coffee drinking and bladder cancer. Suppose that matching for consumption of
cream substitutes is considered along with matching for a set of other factors. Because this factor is
strongly associated with coffee consumption, many of the individual strata in the matched analysis
will be completely concordant for coffee drinking and will not contribute to the analysis; that is,
for many of the cases, controls matched to that case will be classified identically to the case with
regard to coffee drinking simply because of matching for consumption of cream substitutes. If cream
substitutes have no relation to bladder cancer, nothing is accomplished by the matching except to
burden the analysis with the need to control for use of cream substitutes. This problem corresponds
to the unnecessary analysis burden that can be produced by attempting to control for factors that are
related only to exposure or exposure opportunity (Poole, 1986), which is a form of overadjustment
(Chapter 15).

These considerations suggest a practical rule for matching: Do not match on a factor that is
associated only with exposure. It should be noted, however, that unusual examples can be constructed
in which case-control matching on a factor that is associated only with exposure improves efficiency
(Kalish, 1986). More important, in many situations the potential matching factor will have at least a
weak relation to the disease, and so it will be unclear whether the factor needs to be controlled as a
confounder and whether matching on the factor will benefit statistical efficiency. In such situations,
considerations of cost efficiency and misclassification may predominate.

When matched and unmatched controls have equal cost and the potential matching factor is to
be treated purely as a confounder, with only summarization (pooling) across the matching strata
desired, we recommend that one avoid matching on the factor unless the factor is expected to be a
strong disease risk factor with at least some association with exposure (Smith and Day, 1981; Howe
and Choi, 1983; Thomas and Greenland, 1983). When costs of matched and unmatched controls
differ, efficiency calculations that take account of the cost differences can be performed and used
to choose a design strategy (Thompson et al., 1982). When the primary interest in the factor is as
an effect modifier rather than confounder, the aforementioned guidelines are not directly relevant.
Nonetheless, certain studies have indicated that matching can have a greater effect on efficiency
(both positive and negative) when the matching factors are to be studied as effect modifiers, rather
than treated as pure confounders (Smith and Day, 1984; Thomas and Greenland, 1985).

Overmatching and Bias

Matching on factors that are affected by the study exposure or disease is almost never warranted
and is potentially capable of biasing study results beyond any hope of repair. It is therefore crucial
to understand the nature of such overmatching and why it needs to be avoided.

Case-control matching on a factor that is affected by exposure but is unrelated to disease in
any way (except possibly through its association with exposure) will typically reduce statistical
efficiency. It corresponds to matching on a factor that is associated only with exposure, which was
discussed at length earlier, and is the most benign possibility of those that involve matching for a
factor that is affected by exposure. If, however, the potential matching factor is affected by exposure
and the factor in turn affects disease (i.e., is an intermediate variable), or is affected by both exposure
and disease, then matching on the factor will bias both the crude and the adjusted effect estimates
(Greenland and Neutra, 1981). In these situations, case-control matching is nothing more than an
irreparable form of selection bias (see Chapters 8 and 12).

To see how this bias arises, consider a situation in which the crude estimate from an unmatched
study is unbiased. If exposure affects the potential matching factor and this factor affects or is
affected by disease, the factor will be associated with both exposure and disease in the source
population. As a result, in all but some exceptional situations, the associations of exposure with
disease within the strata of the factor will differ from the crude association. Because the crude
association is unbiased, it follows that the stratum-specific associations must be biased for the true
exposure effect.
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The latter bias will pose no problem if we do not match our study subjects on the factor, because
then we need only ignore the factor and use the crude estimate of effect (which is unbiased in this
example). If we (inappropriately) adjust for the factor, we will bias our estimate (sometimes called
overadjustment bias; see Chapter 15), but we can avoid this bias simply by not adjusting for the
factor. If, however, we match on the factor, we will shift the exposure prevalence among noncases
toward that of the cases, thereby driving the crude effect estimate toward the null. The stratified
estimates will remain biased. With matching, then, both the crude and stratum-specific estimates
will be biased, and we will be unable to obtain an unbiased effect estimate from the study data
alone.

It follows that, if (as usual) interest is in estimating the net effect of exposure on disease, one
should never match on factors that are affected by exposure or disease, such as symptoms or signs
of the exposure or the disease, because such matching can irreparably bias the study data. The only
exceptions are when the relative selection probabilities for the subjects under the matched design are
known and can be used to adjust the estimates back to their expected unmatched form (Chapter 19).

Overmatching and Cost Efficiency

Some methods for obtaining controls automatically entail matching. Examples include neighbor-
hood controls, sibling controls, and friend controls (Chapter 8). One should consider the potential
consequences of the matching that results from the use of such controls. As an example, in a case-
control study it is sometimes very economical to recruit controls by asking each case to provide
the names of several friends who might serve as controls, and to recruit one or more of these
friends to serve as controls. As discussed in Chapter 8, use of friend controls may induce bias under
ordinary circumstances. Even when this bias is negligible, however, friendship may be related to
exposure (e.g., through lifestyle factors), but not to disease. As a result, use of such friend controls
could entail a statistical efficiency loss because such use corresponds to matching on a factor that
is related only to exposure. More generally, the decision to use convenient controls should weigh
any cost savings against any efficiency loss and bias relative to the viable alternatives (e.g., general
population controls). Ordinarily, one would prefer the strategy that has the lowest total cost among
strategies that are expected to have the least bias.

The problem of choice of strategy can be reformulated for situations in which the number of cases
can be varied and situations in which the numbers of cases and controls are both fixed (Thompson
et al., 1982). Unfortunately, one rarely knows in advance the key quantities needed to make the best
choice with certainty, such as cost per control with each strategy, the number of subjects that will
be needed with each strategy, and the biases that might ensue with each strategy. The choice will
be easy when the same bias is expected regardless of strategy, and the statistically most efficient
strategy is also the cheapest per subject: One should simply use that strategy. But in other settings,
one may be able to do no better than conduct a few rough, speculative calculations to guide the
choice of strategy.

MATCHING ON INDICATORS OF INFORMATION ACCURACY

Matching is sometimes employed to achieve comparability in the accuracy of information collected.
A typical situation in which such matching might be undertaken is a case-control study in which
some or all of the cases have already died and surrogates must be interviewed for exposure and
confounder information. Theoretically, controls for dead cases should be living, because the source
population that gave rise to the cases contains only living persons. In practice, because surrogate
interview data may differ in accuracy from interview data obtained directly from the subject, some
investigators prefer to match dead controls to dead cases.

Matching on information accuracy is not necessarily beneficial, however. Whereas using dead
controls can be justified in proportional mortality studies, essentially as a convenience (see Chapter
6), matching on information accuracy does not always reduce overall bias (see Chapter 8). Some
of the assumptions about the accuracy of surrogate data, for example, are unproved (Gordis, 1982).
Furthermore, comparability of information accuracy still allows bias from nondifferential misclas-
sification, which can be more severe in matched than in unmatched studies (Greenland, 1982a), and
more severe than the bias resulting from differential misclassification arising from noncomparability
(Greenland and Robins, 1985a; Drews and Greenland, 1990).
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ALTERNATIVES TO TRADITIONAL MATCHED DESIGNS

Conventional matched and unmatched designs represent only two points on a broad spectrum of
matching strategies. Among potentially advantageous alternatives are partial and marginal match-
ing (Greenland, 1986a), countermatching (Langholz and Clayton, 1994; Cologne et al., 2004), and
other matching strategies for improving efficiency (Stürmer and Brenner, 2002). Some of these ap-
proaches can be more convenient, as well as more efficient, than conventional matched or unmatched
designs. For example, partial matching allows selection of matched controls for some subjects, un-
matched controls for others, and the use of different matching factors for different subjects, where
the “controls” may be either the unexposed in a cohort study or the noncases in a case-control
study. Marginal matching is a form of frequency matching in which only the marginal (separate)
distributions of the matching factors are forced to be alike, rather than the joint distribution. For
example, one may select controls so that they have the same age and sex distributions as cases,
without forcing them to have the same age–sex distribution (e.g., the proportion of men could be
the same in cases and controls, even though the proportion of 60- to 64-year-old men might be
different).

For both partial and marginal matching, the resulting data can be analyzed by treating all matching
factors as stratification variables and following the guidelines for matched-data analysis given in
Chapter 16. An advantage of partial and marginal matching is that one need not struggle to find a
perfect matched control for each case (in a case-control study) or for each exposed subject (in a
cohort study). Thus partial matching may save considerable effort in searching for suitable controls.
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INTRODUCTION

Diagrams of causal pathways have long been used to visually summarize hypothetical relations
among variables of interest. Modern causal diagrams, or causal graphs, were more recently devel-
oped from a merger of graphical probability theory with path diagrams. The resulting theory provides
a powerful yet intuitive device for deducing the statistical associations implied by causal relations.
Conversely, given a set of observed statistical relations, a researcher armed with causal graph theory
can systematically characterize all causal structures compatible with the observations. The theory
also provides a visual representation of key concepts in the more general theory of longitudinal
causality of Robins (1997); see Chapter 21 for further discussion and references on the latter topic.

The graphical rules linking causal relations to statistical associations are grounded in mathe-
matics. Hence, one way to think of causal diagrams is that they allow nonmathematicians to draw
logically sound conclusions about certain types of statistical relations. Learning the rules for reading
statistical associations from causal diagrams may take a little time and practice. Once these rules
are mastered, though, they facilitate many tasks, such as understanding confounding and selection

183
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bias, choosing covariates for adjustment and for regression analyses, understanding analyses of di-
rect effects and instrumental-variable analyses, and assessing “natural experiments.” In particular,
diagrams help researchers recognize and avoid common mistakes in causal analysis.

This chapter begins with the basic definitions and assumptions used in causal graph theory. It
then describes construction of causal diagrams and the graphical separation rules linking the causal
assumptions encoded in a diagram to the statistical relations implied by the diagram. The chapter
concludes by presenting some examples of applications. Some readers may prefer to begin with
the examples and refer back to the definitions and rules for causal diagrams as needed. The section
on Graphical Models, however, is essential to understanding the examples. Full technical details
of causal diagrams and their relation to causal inference can be found in Pearl (2000) and Spirtes
et al. (2001), while Greenland and Pearl (2008) provide a short technical review. Less technical
articles geared toward health scientists include Greenland et al. (1999a), Robins (2001), Greenland
and Brumback (2002), Hernán et al. (2002), Jewell (2004), and Glymour (2006b).

PRELIMINARIES FOR CAUSAL GRAPHS

Consider two variables X and Y for which we wish to represent a causal connection from X to Y,
often phrased as “X causes Y ” or “X affects Y.” Causal diagrams may be constructed with almost
any definition of cause and effect in mind. Nonetheless, as emphasized in Chapter 4, it is crucial
to distinguish causation from mere association. For this purpose we use the potential-outcome
(counterfactual) concept of causation. We say that X affects Y in a population of units (which may
be people, families, neighborhoods, etc.) if and only if there is at least one unit for which changing
(intervening on) X will change Y (Chapter 4).

STATISTICAL INDEPENDENCE

Association of X and Y corresponds to statistical dependence of Y and X , whereby the distribution
of Y differs across population strata defined by levels of X . When the distribution of Y does not
differ across strata of X , we say that X and Y are statistically independent, or unassociated. If
X and Y are unassociated (independent), knowing the value of X gives us no information about
the value of Y. Association refers to differences in Y between units with different X values. Such
between-unit differences do not necessarily imply that changing the value of X for any single unit
will result in a change in Y (which is causation).

It is helpful to rephrase the above ideas more formally. Let Pr(Y = y) be the expected proportion
of people in the population who have y for the value of Y ; this expected proportion is more often
called the probability that Y = y. If we examine the proportion who have Y = y within levels or
strata of a second variable X , we say that we are examining the probability of Y given or conditional
on X . We use a vertical line “|” to denote “given” or “conditional on.” For example, Pr(Y = y|X = x)
denotes the proportion with Y = y in the subpopulation with X = x . Independence of X and Y
then corresponds to saying that for any pair of values x and y for X and Y,

Pr(Y = y|X = x) = Pr(Y = y) [12–1]

which means that the distribution of Y values does not differ across different subpopulations defined
by the X values. In other words, the equation says that the distribution of Y given (or conditional on)
a particular value of X always equals the total population (marginal or unconditional) distribution
of Y. As stated earlier, if X and Y are independent, knowing the value of X and nothing more about
a unit provides no information about the Y value of the unit.

Equation 12–1 involves no variable other than X and Y, and is the definition of marginal inde-
pendence of X and Y. When we examine the relations between two variables within levels of a third
variable—for example, the relation between income and mortality within levels of education—we
say that we are examining the conditional relation. We examine conditional relationships in many
contexts in epidemiology. We may intentionally condition on a variable(s) through features of study
design such as restriction or matching, or analytic decisions, such as stratification or regression
modeling. Conditioning may arise inadvertently as well, for example due to refusal to participate or
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loss to follow-up. These events essentially force conditioning on variables that determine participa-
tion and ascertainment. Informally, it is sometimes said that conditioning on a variable is “holding
the variable constant,” but this phrase is misleading because it suggests we are actively intervening
on the value of the variable, when all we are doing is separating the data into groups based on
observed values of the variable and estimating the effects within these groups (and then, in some
cases, averaging these estimates over the groups, see Chapter 15).

To say that X and Y are independent given Z means that for any values x , y, z for X , Y, and Z ,

Pr(Y = y|X = x, Z = z) = Pr(Y = y|Z = z) [12–2]

which says that, within any stratum of Z , the distribution of Y does not vary with X . In other words,
within any stratum defined in terms of Z alone, we should see no association between X and Y. If
X and Y are independent given Z , then once one knows the Z value of a unit, finding out the value
of X provides no further information about the value of Y.

CAUSATION AND ASSOCIATION

As explained in Chapter 4, causation and association are qualitatively different concepts. Causal
relations are directed; associations are undirected (symmetric). Sample associations are directly
observable, but causation is not. Nonetheless, our intuition tells us that associations are the result of
causal forces. Most obviously, if X causes Y, this will generally result in an association between X
and Y. The catch, of course, is that even if we observe X and Y without error, many other forces (such
as confounding and selection) may also affect the distribution of Y and thus induce an association
between X and Y that is not due to X causing Y. Furthermore, unlike causation, association is
symmetric in time (nondirectional), e.g., an association of X and Y could reflect Y causing X rather
than X causing Y.

A study of causation must describe plausible explanations for observed associations in terms
of causal structures, assess the logical and statistical compatibility of these structures with the
observations, and (in some cases) develop probabilities for those structures. Causal graphs provide
schematic diagrams of causal structures, and the independencies predicted by a graph provide a
means to assess the compatibility of each causal structure with the observations.

More specifically, when we see an association of X and Y, we will seek sound explanations for
this observation. For example, logically, if X always precedes Y, we know that Y cannot be causing
X . Given that X precedes Y, obvious explanations for the association are that X causes Y, that X
and Y share a common cause (confounding), or some combination of the two (which can also lead
to no association even though X affects Y ). Collider bias is a third type of explanation that seems
much less intuitive but is easily illustrated with graphs. We will first discuss focus on collider bias
because it arises frequently in epidemiology.

COLLIDER BIAS

As described in Chapter 9, a potentially large source of bias in assessing the effect of X on Y
arises when selection into the population under study or into the study sample itself is affected by
both X and Y. Such selection is a source of bias even if X and Y are independent before selection.
This phenomenon was first described by Joseph Berkson in 1938 (published in Berkson [1946]).
Berksonian bias is an example of the more general phenomenon called collider bias, in which
the association of two variables X and Y changes upon conditioning on a third variable Z if Z is
affected by both X and Y. The effects of X and Y are said to “collide” somewhere along the way to
producing Z.

As an example, suppose that X and Y are marginally independent and Z = Y − X, so Z is
completely determined by X and Y. Then X and Y will exhibit perfect dependence given Z : If
Z = z, then Y = X + z. As a more concrete example, body mass index (BMI) is defined as (weight
in kg)/(height in meters)2 and so is strongly affected by both height and weight. Height and weight
are associated in any natural population, but not perfectly: We could not exactly tell a person’s
weight from his or her height. Suppose, however, we learn that the person has BMI = 25 kg/m2;
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then, upon being told (say) that the person is 2 m tall, we can compute his weight exactly, as
BMI(height2) = 25(4) = 100 kg.

Collider bias occurs even when the causal dependency of the collider Z on X and Y is not
perfect, and when there are several intermediates between X and the collider or between Y and the
collider. It can also be induced when X and Z (or Y and Z ) are associated due to a common cause
rather than because X influences Z .

Collider bias can result from sample selection, stratification, or covariate adjustment if X and
Y affect selection or the stratifying covariates. It can be just as severe as confounding, as shown in
the classic example in which X , Y, and Z were exogenous estrogen use, endometrial cancer, and
uterine bleeding (Chapter 9). As discussed later, it can also can induce confounding.

SUMMARY

Four distinct causal structures can contribute to an association between X and Y : (a) X may cause
Y ; (b) Y may cause X ; (c) X and Y may share a common cause that we have failed to condition
on (confounding); or (d) we have conditioned or selected on a variable affected by X and Y, factors
influenced by such a variable, or a variable that shares causes with X and Y (collider bias). Of course,
the observed association may also have been affected by purely random events. As described in Part
III of this book, conventional statistics focus on accounting for the resulting random variation. The
remainder of this chapter focuses on the representation of causal structures via graphical models,
and on the insights that these representations provide. Throughout, we focus on the causal structures
underlying our observations, ignoring random influences.

GRAPHICAL MODELS

TERMINOLOGY

Causal diagrams visually encode an investigator’s assumptions about causal relations among the
exposure, outcomes, and covariates. We say that a variable X affects a variable Y directly (relative
to the other variables in the diagram) if there is an arrow from X to Y. We say that X affects Y
indirectly if there is a head-to-tail sequence of arrows (or “one-way street”) from X to Y ; such a
sequence is called a directed path or causal path. Any variable along a causal path from X to Y
is called an intermediate variable between X and Y. X may affect Y both directly and indirectly.
In Figure 12–1, X affects Y directly and Z indirectly. The absence of a directed path between two
variables represents the assumption that neither affects the other; in Figure 12–1, U and X do not
affect each other.

Children of a variable X are variables that are affected directly by X (have an arrow pointing to
them from X ); conversely, parents of X are variables that directly affect X (have an arrow pointing
from them to X ). More generally, the descendants of a variable X are variables affected, either
directly or indirectly, by X ; conversely, the ancestors of X are all the variables that affect X directly
or indirectly. In Figure 12–1, Y has parents U and X , and a child Z ; X has one child (Y ) and two
descendants (Y and Z ); and Z has a parent Y and three ancestors, Y, U , and X .

It is not necessary to include all causes of variables in the diagram. If two or more variables
in a graph share a cause, however, then this cause must also be shown in the graph as an ancestor
of those variables, or else the graph is not considered a causal graph. A variable with no parents
in a causal graph is said to be exogenous in the graph; otherwise it is endogenous. Thus, all

Y

X

U

Z

FIGURE 12–1 ● A causal diagram with no confounding.
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exogenous variables in the graph are assumed to share no cause with other variables in the graph. If
unknown common causes of two variables may exist, a casual graph must show them; they may be
represented as unspecified variables with arrows to the variables they are thought to influence. In a
slight modification of these rules, some authors (e.g., Pearl, 2000) use a two-headed arrow between
two variables as a shorthand to indicate that there is at least one unknown exogenous common cause
of the two variables (e.g., X ↔ Z means that there is at least one unknown exogenous variable U
such that X ← U → Z ). We assume in the remainder of this chapter that unknown common causes
are represented explicitly in causal diagrams, so there is no need for two-headed arrows.

All the graphs we will consider are acyclic, which means that they contain no feedback loops;
this means that no variable is an ancestor or descendant of itself, so if X causes Y, Y cannot also
cause X at the same moment. If a prior value of Y affects X , and then X affects a subsequent value
of Y, these must each be shown as separate variables (e.g., Y0 → X1 → Y2) (for discussions of
extensions to causal structures including feedback, see Spirtes [1995], Pearl and Dechter [1996],
and Lauritzen and Richardson [2002]). In most causal graphs the only connectors between variables
are one-headed arrows (→), although some graphs use an undirected dashed line (- - -) to indicate
associations induced by collider bias. Connectors, whether arrows or dashed lines, are also known as
edges, and variables are often called nodes or vertices of the graph. Two variables joined by a
connector are said to be adjacent or neighbors. If the only connectors in the graph are one-headed
arrows, the graph is called directed. A directed acyclic graph or DAG is thus a graph with only
arrows between variables and with no feedback loops. The remainder of our discussion applies to
DAGs and graphs that result from conditioning on variables in DAGs.

A path between X and Y is any noncrossing and nonrepeating sequence traced out along connec-
tors (also called edges) starting with X and ending with Y, regardless of the direction of arrowheads.
A variable along the path from X to Y is said to intercept the path. Directed paths are the special
case in which all the connectors in the path flow head to tail. Any other path is an undirected path.
In Figure 12–1, U → Y ← X is an undirected path from U to X , and Y intercepts the path.

When tracing out a path, a variable on the path where two arrowheads meet is called a collider
on that path. In Figure 12–1, Y is a collider on the path U → Y ← X from U to X . Thus, a collider
on a path is a direct effect (child) of both the variable just before it and the variable just after
it on the path. A directed path cannot contain a collider. If a variable on a path has neighbors on
both sides but is not a collider, then the variable must be either an intermediate (X → Y → Z or
X ← Y ← Z ) or a cause (X ← Y → Z ) of its immediate neighbors on the path.

Being a collider is specific to a path. In the same DAG, a variable may be a collider on one path
but an intermediate on another path; e.g., in Figure 12–1, Y is an intermediate rather than a collider
on the path X → Y → Z . Nonetheless, a variable with two or more parents (direct causes) is called
a collider in the graph, to indicate that it is a collider on at least one path. As we will see, paths with
colliders can turn out to be sources of confounding and selection bias.

RULES LINKING ABSENCE OF OPEN PATHS TO
STATISTICAL INDEPENDENCIES

Given a causal diagram, we can apply the d-separation criteria (or directed-graph separation rules)
to deduce independencies implied by the diagram. We first focus on rules for determining whether
two variables are d-separated unconditionally, and then examine how conditioning on variables
may d-separate or d-connect other variables in the graph. We emphasize that the deduced relations
apply only “in expectation,” meaning that they apply to the expected data distribution if the causal
structure represented by the graph is correct. They do not describe the associations that may arise
as a result of purely random events, such as those produced by randomization or random sampling.

Unconditional d-Separation

A path is said to be open or unblocked or active unconditionally if there is no collider on the path.
Otherwise, if there is a collider on the path, it is said to be closed or blocked or inactive, and we say
that the collider blocks the path. By definition a directed path has no collider, so every directed path
is open, although not every open path is directed. Two variables X and Y are said to be d-separated
if there is no open path between them; otherwise they are d-connected. In Figure 12–2, the only
path from X to Y is open at Z1 and Z2 but closed at W, and hence it is closed overall; thus X and Y
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W: Mother 

had diabetes

Y: DiabetesX: Low 

education

Z1: Family income 

during childhood

Z2: Mother’s genetic 

diabetes risk

FIGURE 12–2 ● A DAG under which traditional confounder-identification rules fail (an “M diagram”).

are d-separated. When using these terms we will usually drop the “d-” prefix and just say that they
are separated or connected as appropriate.

If X and Y are separated in a causal graph, then the causal assumptions encoded by the graph
imply that X and Y will be unassociated. Thus, if every path from X to Y is closed, the graph
predicts that X and Y will be marginally independent; i.e., for any values x and y of X and
Y, Pr(Y = y|X = x) = Pr(Y = y). More generally and informally we can say this: In a causal
graph, the only sources of marginal association between variables are the open paths between them.
Consider Table 12–1, which lists the causal assumptions represented by the diagram of Figure 12–1,
and the associations implied by those causal assumptions. For example, the causal diagram implies
that U and X are marginally independent because the only path between them passes through a
collider, Y. This idea is formalized later when we define compatibility.

Conditional d-Separation

We also need the concept of graphical conditioning. Consider first conditioning on a noncollider Z
on a path. Because it is a noncollider, Z must either be an intermediate between its neighbors on the
path (X → Z → Y or X ← Z ← Y ) or a cause of its neighbors (X ← Z → Y ). In these cases the
path is open at Z , but conditioning on Z closes the path and removes Z as a source of association
between X and Y. These phenomena reflect the first criterion for blocking paths by conditioning on
covariates:

• Conditioning on a noncollider Z on a path blocks the path at Z .

In contrast, conditioning on a collider requires reverse reasoning. If two variables X and Y are
marginally independent, we expect them to become associated upon conditioning (stratifying) on a
shared effect W. In particular, suppose we are tracing a path from X to Y and reach a segment on
the path with a collider, X → W ← Y. The path is blocked at W, so no association between X and
Y passes through W. Nonetheless, conditioning on W or any descendant of W opens the path at W.
In other words, we expect conditioning on W or any descendant to create an X–Y association via
W. We thus come to the second criterion for blocking paths by conditioning on covariates:

• Conditioning on a collider W on a path, or any descendant of W, or any combination of W or its
descendants, opens the path at W.

Combining these criteria, we see that conditioning on a variable reverses its status on a path:
Conditioning closes noncolliders (which are open unconditionally) but opens colliders (which are
closed unconditionally).

We say that a set of variables S blocks a path from X to Y if, after conditioning on S, the path
is closed (regardless of whether it was closed or open to begin with). Conversely, we say that a set
of variables S unblocks a path if, after conditioning on S, the path is open (regardless of whether it
was closed or open to begin with). The criteria for a set of variables to block or unblock a path are
summarized in Table 12–2.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 2 – 1

Assumptions Represented in the Directed Acyclic Graph in Figure 12–1, and
Statistical Implications of These Assumptions

Marginal Associations Conditional Associations
Expected under Expected under

Causal Assumptions Independencies Figure 12–1 Figure 12–1
Represented in Implied by (Assuming (Assuming

Figure 12–1 Figure 12–1 Faithfulness) Faithfulness)

• X and U are each
direct causes of Y
(direct with respect to
other variables in the
diagram).

• Y is a direct cause of Z .
• X is not a direct cause

of Z , but X is an
indirect cause of Z
via Y .

• X is not a cause
of U and U is not a
cause of X .

• U is not a direct cause
of Z , but U is an
indirect cause of Z
via Y .

• No two variables in the
diagram (X , U , Y , or
Z ) share a prior cause
not shown in the
diagram, e.g., no
variable causes both
X and Y , or both
X and U .

• X and U are
independent (the only
path between them
is blocked by the
collider Y ).

• X and Z are
independent
conditional on Y
(conditioning on Y
blocks the path
between X and Z ).

• U and Z are
independent
conditional on Y .

• X and Y are
associated.

• U and Y are
associated.

• Y and Z are
associated.

• X and Z are
associated.

• U and Z are
associated.

• X and U are associated
conditional on Y
(conditioning on a
collider unblocks the
path).

• X and U are associated
conditional on Z (Z is a
descendant of the
collider Y ).

If S blocks every path from X to Y, we say that X and Y are d-separated by S, or that S separates
X and Y. This definition of d-separation includes situations in which there was no open path before
conditioning on S. For example, a set S may be sufficient to separate X and Y even if S includes no
variables: if there is no open path between X and Y to begin with, the empty set separates them.

d-Separation and Statistical Independence

We have now specified the d-separation criteria and explained how to apply them to determine
whether two variables in a graph are d-separated or d-connected, either marginally or conditionally.
These concepts provide a link between the causal structure depicted in a DAG and the statistical
associations we expect in data generated from that causal structure. The following two rules specify
the relation between d-separation and statistical independence; these rules underlie the applications
we will present.

Rule 1 (compatibility). Suppose that two variables X and Y in a causal graph are separated by a
set of variables S. Then if the graph is correct, X and Y will be unassociated given S. In other



P1: TNL Printer: RRD

GRBT241-12 GRBT241-v4.cls January 19, 2008 9:5

190 Section II ● Study Design and Conduct

ˆ

ˆ

ˆ

ˆ
T A B L E 1 2 – 2

Criteria for Determining Whether a Path is Blocked or Unblocked
Conditional on a Set of Variables S

The Path from X to Y is Blocked The Path from X to Y is Unblocked
Conditional on S if Either: Conditional on S if Both:

A noncollider Z on the path is in S (because
the path will be blocked by S at Z )

S contains no noncollider on the path (so
conditioning on S blocks no noncollider)

OR AND
There is a collider W on the path that is not
in S and has no descendant in S (because W
still blocks the path after conditioning on S ).

Every collider on the path is either in S or
has a descendant in S (because conditioning
on S opens every collider).

words, if S separates X from Y, we will have Pr(Y = y|X = x , S = S) = Pr(Y = y|S = S) for
every possible value x , y, S of X , Y, S.

Rule 2 (weak faithfulness). Suppose that S does not separate X and Y. Then, if the graph is correct,
X and Y may be associated given S. In other words, if X and Y are connected given S, then
without further information we should not assume that X and Y are independent given S.

As an illustration, consider again Figure 12–1. U and X are unassociated. Because Y is a collider,
however, we expect U and X to become associated after conditioning on Y or Z or both (that is, S
unblocks the path whether S = {Y}, S = {Z}, or S = {Y, Z}). In contrast, X and Z are marginally
associated, but become independent after conditioning on Y or S = {U , Y}.

ASSUMPTIONS AND INTUITIONS UNDERLYING THE RULES

Although informal diagrams of causal paths go back at least to the 1920s, the mathematical theory of
graphs (including DAGs) developed separately and did not at first involve causal inference. By the
1980s, however, graphs were being used to represent the structure of joint probability distributions,
with d-separation being used to encode “stable” conditional independence relations (Pearl, 1988).
One feature of this use of graphs is that a given distribution will have more than one graph that
encodes these relations. In other words, graphical representations of probability distributions are
not unique. For example, in probabilistic (associational) terms, A → B and B → A have the same
implication, that A and B are dependent. By the 1990s, however, several research groups had
adapted these probability graphs to causal inference by letting the arrows represent cause–effect
relations, as they had in path diagrams. Many graphical representations that are probabilistically
equivalent are not causally equivalent. For example, if A precedes B temporally, then B → A can
be ruled out as a representation for the relation of A and B.

The compatibility and faithfulness rules define what we mean when we say that a causal
model for a set of variables is consistent with a probability model for the distribution of those
variables. In practice, the rules are used to identify causal graphs consistent with the observed
probability distributions of the graphed variables, and, conversely, to identify distributions that
are consistent with a given causal graph. When the arrows in probability graphs represent causal
processes, the compatibility rule above (rule 1) is equivalent to the causal Markov assumption
(CMA), which formalizes the idea that (apart from chance) all unconditional associations arise
from ancestral causal relations. Causal explanations of an association between two variables invoke
some combination of shared common causes, collider bias, and one of the variables affecting the
other. These relations form the basis for Rule 1.

Specifically, the CMA states that for any variable X , conditional upon its direct causes (parents),
X is independent of all other variables that it does not affect (its nondescendants). This condition
asserts that if we can hold constant the direct causes of X , then X will be independent of any other
variable that is not itself affected by X . Thus, assuming X precedes Y temporally, in a DAG without
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conditioning there are only two sources of association between X and Y: Effects of X on Y (directed
paths from X to Y ), or common causes (shared ancestors) of X and Y, which introduce confounding.
We will make use of this fact when we discuss control of bias.

The d-separation rule (Rule 1) and equivalent conditions such as the CMA codify common intu-
itions about how probabilistic relations (associations) arise from causal relations. We rely implicitly
on these conditions in drawing causal inferences and predicting everyday events—ranging from
assessments of whether a drug in a randomized trial was effective to predictions about whether flip-
ping a switch on the wall will suffuse a room with light. In any sequence of events, holding constant
both intermediate events and confounding events (common causes) will interrupt the causal cas-
cades that produce associations. In both our intuition and in causal graph theory, this act of “holding
constant” renders the downstream events independent of the upstream events. Conditioning on a
set that d-separates upstream from downstream events corresponds to this act. This correspondence
is the rationale for deducing the conditional independencies (features of a probability distribution)
implied by a given causal graph from the d-separation rule.

The intuition behind Rule 2 is this: If, after conditioning on S, there is an open path between
two variables, then there must be some causal relation linking the variables, and so they ought to be
associated given S, apart from certain exceptions or special cases. An example of an exception occurs
when associations transmitted along different open paths perfectly cancel each other, resulting in
no association overall. Other exceptions can also occur. Rule 2 says only that we should not count
on such special cases to occur, so that, in general, when we see an open path between two variables,
we expect them to be associated, or at least we are not surprised if they are associated.

Some authors go beyond Rule 2 and assume that an open path between two variables means that
they must be associated. This stronger assumption is called faithfulness or stability and says that if S
does not d-separate X and Y, then X and Y will be associated given S. Faithfulness is thus the logical
converse of compatibility (Rule 1). Compatibility says that if two variables are d-separated, then
they must be independent; faithfulness says that if two variables are independent, then they must be
d-separated. When both compatibility and faithfulness hold, we have perfect compatibility, which
says that X and Y are independent given S if and only if S d-separates X and Y; faithfulness adds
the “only if” part. For any given pattern of associations, the assumption of perfect compatibility
rules out a number of possible causal structures (Spirtes et al., 2001). Therefore, when it is credible,
perfect compatibility can help identify causal structures underlying observed data.

Nonetheless, because there are real examples of near-cancellation (e.g., when confounding
obscures a real effect in a study) and other exceptions, faithfulness is controversial as a routine
assumption, as are algorithms for inferring causal structure from observational data; see Robins
(1997, section 11), Korb and Wallace (1997), Freedman and Humphreys (1999), Glymour et al.
(1999), Robins and Wasserman (1999), and Robins et al. (2003). Because of this controversy, we
discuss only uses of graphical models that do not rely on the assumption of faithfulness. Instead,
we use Rule 2, which weakens the faithfulness condition by saying that the presence of open paths
alerts us to the possibility of association, and so we should allow for that possibility.

The rules and assumptions just discussed should be clearly distinguished from the content-
specific causal assumptions encoded in a diagram, which relate to the substantive question at hand.
These rules serve only to link the assumed causal structure (which is ideally based on sound and
complete contextual information) to the associations that we observe. In this fashion, they allow
testing of those assumptions and estimation of the effects implied by the graph.

GRAPHICAL REPRESENTATION OF BIAS AND ITS CONTROL

A major use of causal graphs is to identify sources of bias in studies and proposed analyses, including
biases resulting from confounding, selection, or overadjustment. Given a causal graph, we can use
the definitions and rules we have provided to determine whether a set of measured variables S is
sufficient to allow us to identify (validly estimate) the causal effect of X on Y.

Suppose that X precedes Y temporally and that the objective of a study is to estimate a measure
of the effect of X on Y. We will call an undirected open path between X and Y a biasing path for the
effect because such paths do not represent effects of X on Y, yet can contribute to the association
of X and Y. The association of X and Y is unconditionally unbiased or marginally unbiased for the
effect of X on Y if the only open paths from X to Y are the directed paths.



P1: TNL Printer: RRD

GRBT241-12 GRBT241-v4.cls January 19, 2008 9:5

192 Section II ● Study Design and Conduct

SUFFICIENT AND MINIMALLY SUFFICIENT CONDITIONING SETS

When there are biasing paths between X and Y, it may be possible to close these paths by conditioning
on other variables. Consider a set of variables S. The association of X and Y is unbiased given S
if, after conditioning on S, the open paths between X and Y are exactly (only and all) the directed
paths from X to Y. In such a case we say that S is sufficient to control bias in the association of X
and Y. Because control of colliders can open biasing paths, it is possible for a set S to be sufficient,
and yet a larger set containing S and such colliders may be insufficient.

A sufficient set S is minimally sufficient to identify the effect of X on Y if no proper subset of
S is sufficient (i.e., if removing any set of variables from S leaves an insufficient set). In practice,
there may be several distinct sufficient sets and even several distinct minimally sufficient sets for
bias control. Investigators may sometimes wish to adjust for more variables than are included in
what appears as a minimally sufficient set in a graph (e.g., to allow for uncertainty about possible
confounding paths). Identifying minimally sufficient sets can be valuable nonetheless, because
adjusting for more variables than necessary risks introducing biases and reducing precision, and
measuring extra variables is often difficult or expensive.

For example, the set of all parents of X is always sufficient to eliminate bias when estimating the
effects of X in an unconditional DAG. Nonetheless, the set of parents of X may be far from minimally
sufficient. Whenever X and Y share no ancestor and there is no conditioning or measurement error,
the only open paths from X to Y are directed paths. In this case, there is no bias and hence no need for
conditioning to prevent bias in estimating the effect of X on Y, no matter how many parents of X exist.

CHOOSING CONDITIONING SETS TO IDENTIFY CAUSAL EFFECTS

There are several reasons to avoid (where possible) including descendants of X in a set S of
conditioning variables. First, conditioning on descendants of X that are intermediates will block
directed (causal) paths that are part of the effect of interest, and thus create bias. Second, conditioning
on descendants of X can unblock or create paths that are not part of the effect of X on Y and thus
introduce another source of bias. For example, biasing paths can be created when one conditions on
a descendant Z of both X and Y. The resulting bias is the Berksonian bias described earlier. Third,
even when inclusion of a particular descendant of X induces no bias, it may still reduce precision
in effect estimation.

Undirected paths from X to Y are termed back-door (relative to X ) if they start with an arrow
pointing into X (i.e., it leaves X from a “back door”). In Figure 12–2, the one path from X to Y is
back-door because it starts with the back-step X ← Z1. Before conditioning, all biasing paths in a
DAG are open back-door paths, and all open back-door paths are biasing paths. Thus, to identify
the causal effect of X on Y all the back-door paths between the two variables must be blocked. A set
S satisfies the back-door criterion for identifying the effect of X on Y if S contains no descendant
of X and there is no open back-door path from X to Y after conditioning on S. If S satisfies the
back-door criterion, then conditioning on S alone is sufficient to control bias in the DAG, and we
say that the effect of X on Y is identified or estimable given S alone. We emphasize again, however,
that further conditioning may introduce bias: Conditioning on a collider may create new biasing
paths, and conditioning on an intermediate will block paths that are part of the effect under study.

CONFOUNDING AND SELECTION BIAS

The terms confounding and selection bias have varying and overlapping usage in different disci-
plines. The traditional epidemiologic concepts of confounding and selection bias both correspond
to biasing paths between X and Y. The distinction between the two concepts is not consistent
across the literature, however, and many phenomena can be reasonably described as both con-
founding and selection bias. We emphasize that the d-separation criteria are sufficient to identify
structural sources of bias, and thus there is no need to categorize each biasing path as a confounding
or selection-bias path. Nonetheless, the discussion below may help illustrate the correspondence
between conventional epidemiologic terms and sources of bias in causal diagrams.

Traditionally, confounding is thought of as a source of bias arising from causes of Y that are
associated with but not affected by X (Chapter 9). Thus we say that a biasing path from X to Y is
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FIGURE 12–3 ● A causal diagram with confounding of the X–Y
association by U but not by Z .

a confounding path if it ends with an arrow into Y. Bias arising from a common cause of X and Y
(and thus present in the unconditional graph, e.g., U in Figure 12–3) is sometimes called “classical
confounding” (Greenland, 2003a) to distinguish it from confounding that arises from conditioning
on a collider. Variables that intercept confounding paths between X and Y are confounders.

Often, only indirect measures of the variables that intercept a confounding path are available
(e.g., W in Figure 12–3). In this case, adjusting for such surrogates or markers of proper con-
founders may help remediate bias (Greenland and Pearl, 2008). Such surrogates are often referred
to informally as confounders. Caution is needed whenever adjusting for a surrogate in an effort
to block a confounding path. To the extent that the surrogate is imperfectly related to the actual
confounder, the path will remain partially open. Furthermore, if variables other than the actual
confounder itself influence the surrogate, conditioning on the surrogate may open new paths and
introduce collider bias. More generally, adjusting for an imperfect surrogate may increase bias under
certain circumstances. Related issues will be discussed in the section on residual confounding.

If a confounding path is present, we say that the dependence of Y on X is confounded, and if no
confounding path is present we say that the dependence is unconfounded. Note that an unconfounded
dependency may still be biased because of biasing paths that are not confounding paths (e.g., if
Berksonian bias is present). Thus, S may be sufficient for confounding control (in that it blocks
all confounding paths), and yet may be insufficient to control other bias (such as Berksonian bias,
which is often uncontrollable).

If W is a variable representing selection into the study sample (e.g., due to intentional selection,
self-selection, or survival), all analyses are conditioned on W. Selection bias is thus sometimes
defined as the collider bias that arises from conditioning on selection W. For example, in Figure 12–4,
we would say that, before conditioning on W, the relation between X and Y is confounded by the path
X − Z1 − W − Y . Conditioning on W alone opens the confounding path X − Z1 − W − Z2 − Y ;
the bias that results is a collider bias because the bias arises from conditioning on W, a common

W: Mother 

had diabetes

Y: DiabetesX: Low 

education

Z1: Family income 

during childhood

Z2: Mother’s genetic 

diabetes risk

FIGURE 12–4 ● A diagram under which control of W alone might
increase bias even though W is a confounder.
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effect of causes of X and Y. But it can also be called confounding, because the bias arises from a
path that ends with an arrow into Y.

Econometricians and others frequently use “selection bias” to refer to any form of confounding.
The motivation for this terminology is that some causes of Y also influence “selection for treatment,”
that is, selection of the level of X one receives, rather than selection into the study sample. This
terminology is especially common in discussions of confounding that arises from self-selection, e.g.,
choosing to take hormone-replacement therapy. Other writers call any bias created by conditioning a
“selection bias,” thus using the term “selection bias” for what we have called collider bias (Hernán
et al., 2004); they then limit their use of “confounding” to what we have defined as “classical
confounding” (confounding from a common cause of X and Y ).

Regardless of terminology, it is helpful to identify the potential sources of bias to guide both
design and analysis decisions. Our examples show how bias can arise in estimating the effect of X
on Y if selection is influenced either by X or by factors that influence X , and is also influenced by
Y or factors that influence Y. Thus, to control the resulting bias, one will need good data on either
the factors that influence both selection and X or the factors that influence both selection and Y.
We will illustrate these concepts in several later examples, and provide further structure to describe
biases due to measurement error, missing data, and model-form misspecification.

SOME APPLICATIONS

Causal diagrams help us answer causal queries under various assumed causal structures, or causal
models. Consider Figure 12–3. If we are interested in estimating the effect of X on Y, it is evident
that, under the model shown in the figure, our analysis should condition on U: There is a confounding
path from X to Y, and U is the only variable on the path. On the other hand, suppose that we are
interested in estimating the effect of Z on Y. Under the diagram in Figure 12–3, we need not
condition on U, because the relation of Z to Y is unconfounded (as is the relation of X to Z ), that
is, there is no confounding path from Z to Y. Because Figure 12–3 is a DAG, we can rephrase these
conditions by saying that there is an open back-door path from X to Y, but not from Z to Y.

We now turn to examples in which causal diagrams can be used to clarify methodologic issues.
In some cases the diagrams simply provide a convenient way to express well-understood concepts.
In other examples they illuminate points of confusion regarding the biases introduced by proposed
analyses or study designs. In all these cases, the findings can be shown mathematically or seen by
various informal arguments. The advantage of diagrams is that they provide flexible visual expla-
nations of the problems, and the explanations correspond to logical relations under the definitions
and rules given earlier.

WHY CONVENTIONAL RULES FOR CONFOUNDING
ARE NOT ALWAYS RELIABLE

In both intuition and application, the graphical and conventional criteria for confounding overlap
substantially. For example, in Chapter 9, confounding was informally described as a distortion in the
estimated exposure effect that results from differences in risk between the exposed and unexposed
that are not due to exposure. Similarly, Hennekens and Buring (1987, p. 35) say that confounding
occurs when “an observed association. . . . is in fact due to a mixing of effects between the exposure,
the disease, and a third factor. . . .”

Variations on the following specific criteria for identifying confounders are frequently suggested,
although, as noted in Chapter 9, these criteria do not define a confounder:

1. A confounder must be associated with the exposure under study in the source population.
2. A confounder must be a “risk factor” for the outcome (i.e., it must predict who will develop

disease), though it need not actually cause the outcome.
3. The confounding factor must not be affected by the exposure or the outcome.

These traditional criteria usually agree with graphical criteria; that is, one would choose the same
set of covariates for adjustment using either set of criteria. For example, in Figure 12–3, both
the graphical and intuitive criteria indicate that one should condition on U to derive an unbiased
estimate of the effect of X on Y. Under the graphical criteria, U satisfies the back-door criterion
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for identifying the effect of X on Y : U is not an effect of X , and the only path between X and Y
that contains an arrow into X can be blocked by conditioning on U. It fulfills the three traditional
criteria because U and X will be associated, U will also predict Y, and U is not affected by X or Y.

Nonetheless, there are cases in which the criteria disagree, and when they diverge, it is the
conventional criteria (1–3) that fail. Suppose that we are interested in whether educational attainment
affects risk of type II diabetes. Figure 12–2 then depicts a situation under the causal null hypothesis
in which education (X ) has no effect on subject’s diabetes (Y ). Suppose that we have measured
maternal diabetes status (W ), but we do not have measures of family income during childhood (Z1)
or whether the mother had any genes that would increase risk of diabetes (Z2). Should we adjust
for W, maternal diabetes?

Figure 12–2 reflects the assumption that family income during childhood affects both educational
attainment and maternal diabetes. The reasoning is that if a subject was poor as a child, his or her
mother was poor as an adult, and this poverty also increased the mother’s risk of developing diabetes
(Robbins et al., 2005). Maternal diabetes will thus be associated with the subject’s education, because
under these assumptions they share a cause, family income. In Figure 12–2, this association is due
entirely to confounding of the X–W (education-maternal diabetes) association. Figure 12–2 also
reflects the assumption that a maternal genetic factor affects risk of both maternal diabetes and the
subject’s diabetes. Maternal diabetes will thus be associated with the subject’s diabetes, because
under these assumptions they share a cause, the genetic factor. In Figure 12–2, this association is
purely confounding of the W –Y (maternal diabetes-subject’s diabetes) association.

In Figure 12–2, maternal diabetes W is not affected by the subject’s education level X or diabetes
status Y. Thus, the mother’s diabetes meets the three traditional criteria for a confounder, so these
criteria could lead one to adjust for mother’s diabetic status. Note, however, that both the associations
on which the latter decision is based (traditional criteria 1 and 2) arise from confounding.

Turning to the graphical criteria, note first that there is only one undirected path between low
education X and diabetes Y, and mother’s diabetes W is a collider on that path. Thus this path is
blocked at W and transmits no association between X and Y — that is, it introduces no bias. This
structure means that we get an unbiased estimate if we do not adjust for the mother’s diabetes.
Because maternal diabetes is a collider, however, adjusting for it opens this undirected path, thus
introducing a potential spurious association between low education and diabetes. The path opened
by conditioning on W could be blocked by conditioning on either Z1 or Z2, but there is no need to
condition on W in the first place. Therefore, under Figure 12–2, the graphical criteria show that one
should not adjust for maternal diabetes, lest one introduce bias where none was present to begin
with. In this sense, adjustment for W would be one form of overadjustment (Chapter 15), and the
traditional criteria were mistaken to identify W as a confounder.

Figure 12–2 illustrates why in Chapter 9 it was said that the traditional criteria do not define
a confounder: While every confounder will satisfy them, Figure 12–2 shows that some noncon-
founders satisfy them as well. In some cases, adjusting for such nonconfounders is harmless, but
in others, as in the example here, it introduces a bias. This bias may, however, be removed by
adjustment for another variable on the newly opened path.

The situation in Figure 12–2 is analogous to Berksonian bias if we focus on the part of the graph
(subgraph) in which Z1 → W ← Z2: Conditioning on the collider W connects its parents Z1 and
Z2, and thus connects X to Y. Another way to describe the problem is that we have a spurious
appearance of confounding by W if we do not condition on Z1 or Z2, for then W is associated
with X and Y. Because W temporally precedes X and Y, these associations may deceive one into
thinking that W is a confounder. Nonetheless, the association between W and X is due solely to
the effects of Z1 on W and X, and the association between W and Y is due solely to the effects of
Z2 on W and Y. There is no common cause of X and Y, however, and hence no confounding if we
do not condition on W.

To eliminate this sort of problem, traditional criterion 2 (here, that W is a “risk factor” for Y ) is
sometimes replaced by

2′. The variable must affect the outcome under study.

This substitution addresses the difficulty in examples like Figure 12–2 (for W will fail this revised
criterion). Nonetheless, it fails to address the more general problem that conditioning may introduce
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bias. To see this failing, draw an arrow from W to Y in Figure 12–2, which yields Figure 12–4.
W now affects the outcome, Y, and thus satisfies criterion 2′. This change is quite plausible, because
having a mother with diabetes might lead some subjects to be more careful about their weight and
diet, thus lowering their own diabetes risk. W is now a confounder: Failing to adjust for it leaves
open a confounding path (X ← Z1 → W → Y ) that is closed by adjusting for W. But adjusting for
W will open an undirected (and hence biasing) path from X to Y (X ← Z1 → W ← Z2 → Y ), as
just discussed. The only ways to block both biasing paths at once is to adjust for Z1 (alone or in
combination with any other variable) or both Z2 and W together.

If neither Z1 nor Z2 is measured, then under Figure 12–4, we face a dilemma not addressed by
the traditional criteria. As with Figure 12−2, if we adjust for W, we introduce confounding via Z1

and Z2; yet, unlike Figure 12–2, under Figure 12–4 we are left with confounding by W if we do not
adjust for W. The question is, then, which undirected path is more biasing, that with adjustment for
W or that without? Both paths are modulated by the same X–W connection (X ← Z1 → W ), so
we may focus on whether the connection of W to Y with adjustment (W ← Z2 → Y ) is stronger
than the connection without adjustment (W → Y ). If so, then we would ordinarily expect less bias
when we don’t adjust for W ; if not, then we would ordinarily expect less bias if we adjust. The final
answer will depend on the strength of the effect represented by each arrow, which is context-specific.
Assessments of the likely relative biases (as well as their direction) thus depend on subject-matter
information.

In typical epidemiologic examples with noncontagious events, the strength of association trans-
mitted by a path attenuates rapidly as the number of variables through which it passes increases.
More precisely, the longer the path, the more we would expect attenuation of the association trans-
mitted by the path (Greenland, 2003a). In Figure 12–4, this means that the effects of Z2 on W and
Z2 on Y would both have to be much stronger than the effect of W on Y in order for the unadjusted
X–Y association to be less biased than the W -adjusted X–Y association. However, if the proposed
analysis calls for stratifying or restricting on W (instead of adjusting for W ), the bias within a single
stratum of W can be larger than the bias when adjusting for W (which averages across all strata).

To summarize, expressing assumptions in a DAG provides a flexible and general way to identify
“sufficient” sets under a range of causal structures, using the d-separation rules. For example, if we
changed the structure in Fig 12–2 only slightly by reversing the direction of the relationship between
Z1 and W (so we have X ← Z1 ← W ← Z2 → Y ), then conditioning on W would be desirable,
and any of Z1, W, or Z2 would provide a sufficient set for identifying the effect of X on Y. Modified
versions of the conventional criteria for confounder identification have been developed that alleviate
their deficiencies and allow them to identify sufficient sets, consistent with the graphical criteria
(Greenland et al., 1999a). We do not present these here because they are rarely used and, in general,
it is simpler to apply the graphical criteria.

GRAPHICAL ANALYSES OF SELECTION BIAS

Selection forces in a study may be part of the design (e.g., enrollment criteria, or hospitalization status
in a hospital-based case-control study) or may be unintended (e.g., loss to follow-up in a cohort study,
or refusals in any study). Selection forces can of course compromise generalizability (e.g., results
for white men may mislead about risk factors in black women). As shown by the above examples
and discussed in Chapters 7 through 9, they can also compromise the internal validity of a study.

Causal diagrams provide a unifying framework for thinking about well-known sources of bias
and also illustrate how some intentional selection and analysis strategies result in bias in more subtle
situations. To see these problems, we represent selection into a study as a variable, and then note
that all analyses of a sample are conditioned on this variable. That is, we conceptualize selection
as a variable with two values, 0 = not selected and 1 = selected; analyses are thus restricted to
observations where selection = 1. Selection bias may occur if this selection variable (that is, entry
into the study) depends on the exposure, the outcome, or their causes (whether shared or not).

BIAS FROM INTENTIONAL SELECTION

Even seemingly innocuous choices in dataset construction can induce severe selection bias. To take
an extreme example, imagine a study of education (X ) and Alzheimer’s disease (Y ) conducted
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FIGURE 12–5 ● A diagram with a selection indicator S.

by pooling two datasets, one consisting only of persons with college education (X = high), the
other consisting only of persons diagnosed with impaired memory (I = 1). Within this pooled
study, everyone without college education (X = low) has memory impairment (I = 1), which
in turn is strongly associated with Alzheimer’s disease because impairment is often a symptom
of early, undiagnosed Alzheimer’s disease (in fact, it is a precursor or prodrome). Likewise, any
subject with no impairment (I = 0) has college education (X = high). Thus, in this study, college
education is almost certainly negatively associated with Alzheimer’s disease. This association would
be completely spurious, induced by defining selection as an effect of both education (X ) and memory
impairment (I ) as a result of pooling the two datasets. Graphing the relations in Figure 12–5, this
association can be viewed as Berksonian bias: Selection S is strongly affected by both the exposure
X and an independent cause of the outcome Y, hence is a collider between them. All analyses are
conditioned on selection and the resulting collider bias will be large, greatly misrepresenting the
population association between education and Alzheimer’s disease.

This example parallels Berksonian bias in clinic-based and hospital-based studies, because
selection was affected directly by exposure and outcome. Selection is often only indirectly related
to exposure and outcome, however. Suppose we study how education affects risk for Alzheimer’s
disease in a study with selection based on membership in a high-prestige occupation. Achievement of
high-prestige occupations is likely to be influenced by both education and intellect. Of course, many
people obtain prestigious jobs by virtue of other advantages besides education or intelligence, but to
keep our example simple, we will assume here that none of these other factors influence Alzheimer’s
disease.

There is evidence that intelligence protects against diagnosis of Alzheimer’s disease (Schmand
et al., 1997). Consider Figure 12–5 (relabeling the variables from the previous example), in which
selection S (based on occupation) is influenced by education (X ) and intellect (I ), where the latter
affects Alzheimer’s disease (Y ). Among the high-prestige job holders, people with less education
(X = lower) are more likely to have high intellect (I = high), whereas those with lesser intellect
(I = lower) are more likely to have advanced education (X = high), because most individuals had
to have some advantage (at least one of X = high or I = high) to get their high-prestige job. In
effect, X and I are compensatory, in that having more of one compensates somewhat for having
less of the other, even if everyone in the study is above average on both.

The selection process thus biases the education–intellect association away from the association
in the population as a whole. The strength of the spurious association will depend on the details
of the selection process, that is, how strongly education and intellect each affect occupation and
whether they interact in any way to determine occupation. Note, however, that if high-education
subjects are less likely to have high intellect than low-education subjects, and high intellect protects
against Alzheimer’s disease, then high-education subjects will exhibit excess risk of Alzheimer’s
disease relative to low-education subjects even if education has no effect. In other words, whatever
the true causal relation between education and Alzheimer’s disease, in a study of high-prestige job
holders, the association in the study will be biased downward, unless one can adjust for the effect
of intellect on Alzheimer’s disease.

Telling this story in words is complicated and prone to generating confusion, but analyzing a
corresponding diagram is straightforward. In Figure 12–5, we can see that S is a collider between X
and I , and so we should expect X and I to be associated conditional on S. Thus, conditional on S,
we expect X and Y to be associated, even if X does not affect Y. Whether selection exacerbates or
reduces bias in estimating a specific causal effect depends crucially on the causal relations among
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variables determining selection. If we added an arrow from I to X in Figure 12–5 (i.e. if intellect
directly affects education), I would be a confounder and the X–Y association would be biased
before selection. If the confounding produced by I were upward, the bias produced by selection on
S might counteract it enough to lessen the overall (net) bias in the X–Y association.

SURVIVOR BIAS

Survivor bias, and more generally bias due to differential competing risks or loss to follow-up, can
be thought of as a special case of selection bias. In life-course research on early life exposures
and health in old age, a large fraction of the exposed are likely to die before reaching old age, so
survivor bias could be large. Effect estimates for early life exposures often decline with age (Elo and
Preston, 1996; Tate et al., 1998). An example is the black–white mortality crossover: Mortality is
greater for blacks and other disadvantaged groups relative to whites at younger ages, but the pattern
reverses at the oldest ages (Corti et al., 1999; Thornton, 2004). Do such phenomena indicate that the
early life exposures become less important with age? Not necessarily. Selective survival can result
in attenuated associations among survivors at older ages, even though the effects are undiminished
(Vaupel and Yashin, 1985; Howard and Goff, 1998; Mohtashemi and Levins, 2002). The apparent
diminution of the magnitude of effects can occur due to confounding by unobserved factors that
conferred a survival advantage.

Apart from some special cases, such confounding should be expected whenever both the exposure
under study and unmeasured risk factors for the outcome influence survival—even if the exposure
and factors were unassociated at the start of life (and thus the factors are not initially confounders).
Essentially, if exposure presents a disadvantage for survival, then exposed survivors will tend to
have some other characteristic that helped them to survive. If that protective characteristic also
influences the outcome, it creates a spurious association between exposure and the outcome. This
result follows immediately from a causal diagram like Figure 12–5, interpreted as showing survival
(S) affected by early exposure (X ) and also by an unmeasured risk factor (I ) that also affects the
study outcome (Y ).

RESIDUAL CONFOUNDING AND BIAS QUANTIFICATION

Ideally, to block a back-door path between X and Y by conditioning on a variable or set of variables
Z , we would have sufficient data to create a separate analysis stratum for every observed value
of Z and thus avoid making any assumptions about the form of the relation of Z to X or Y. Such
complete stratification may be practical if Z has few observed values (e.g., sex). In most situations,
however, Z has many levels (e.g., Z represents a set of several variables, including some, such
as age, that are nearly continuous), and as a result we obtain cells with no or few persons if we
stratify on every level of Z . The standard solutions compensate for small cell counts using statistical
modeling assumptions (Robins and Greenland, 1986). Typically, these assumptions are collected
in the convenient form of a regression model, as described in Chapter 20. The form of the model
will rarely be perfectly correct, and to the extent that it is in error, the model-based analysis will
not completely block confounding paths. The bias that remains as a result is an example of residual
confounding, i.e., the confounding still present after adjustment.

Causal diagrams are nonparametric in that they make no assumption about the functional form of
relationships among variables. For example, the presence of open paths between two variables leads
us to expect they are associated in some fashion, but a diagram does not say how. The association
between the variables could be linear, U-shaped, involve a threshold, or an infinitude of other forms.
Thus the graphical models we have described provide no guidance on the form to use to adjust for
covariates.

One aspect of the residual confounding problem, however, can be represented in a causal diagram,
and that is the form in which the covariates appear in a stratified analysis or a regression model.
Suppose Z is a covariate, that when uncontrolled induces a positive bias in the estimated relationship
between the exposure and outcome of interest. Stratification or regression adjustment for a particular
form of Z , say g(Z ), may eliminate bias; for example, there might be no bias if Z is entered in the
analysis as its natural logarithm, ln(Z ). But there might be considerable bias left if we enter Z in
a different form f (Z ), e.g., as quartile categories, which in the lowest category combines persons
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Y: Diabetes risk

X: Birth weight

Z: Parental income 

(continuous)

f (Z): Parental poverty 

(dichotomous)

FIGURE 12–6 ● Diagram with residual confounding of the X–Y association
after control of f (Z ) alone.

with very different values of ln(Z ). Similarly, use of measures f (Z ) of Z that suffer from substantial
error could make it impossible to adjust accurately for Z .

“Blocking the path at Z” involves complete stratification on the variables in a sufficient set, or
anything equivalent, even if the resulting estimate is too statistically unstable for practical use. We
can thus represent our problem by adding to the diagram the possibly inferior functional form or
measurement f (Z ) as a separate variable. This representation shows that, even if Z is sufficient to
control confounding, f (Z ) may be insufficient.

To illustrate, suppose that we are interested in estimating the effect of birth weight on adult
diabetes risk, and that Figure 12–6 shows the true causal structure. We understand that parental
income Z is a potential confounder of the relationship between birth weight and diabetes risk
because it affects both variables. Suppose further that this relationship is continuously increasing
(more income is better even for parents who are well above the poverty line), but, unfortunately,
our data set includes no measure of income. Instead, we have only an indicator f (Z ) for whether
or not the parents were in poverty (a dichotomous variable); that is, f (Z ) is an indicator of very
low income—e.g., f (Z ) = 1 if Z < poverty level, f (Z ) = 0 otherwise. Poverty is an imperfect
surrogate for income. Then the association between birth weight and diabetes may be confounded by
parental income even conditional on f (Z ), because f (Z ) fails to completely block the confounding
path between parental income and diabetes. The same phenomena will occur using a direct measure
of income that incorporates substantial random error. In both cases, residual confounding results
from inadequate control of income.

BIAS FROM USE OF MISSING-DATA CATEGORIES OR INDICATORS

Many methods for handling missing data are available, most of which are unbiased under some
assumptions but biased under alternative scenarios (Robins et al., 1994; Greenland and Finkle,
1995; Little and Rubin, 2002; see Chapter 13). In handling missing data, researchers usually want
to retain as many data records as possible to preserve study size and avoid analytic complexity.
Thus, a popular approach to handling missing data on a variable Z is to treat “missing” as if it were
just another value for Z . The idea is often implemented by adding a stratum for Z = “missing,”
which in questionnaires includes responses such as “unknown” and “refused.” The same idea is
implemented by adding an indicator variable for missingness to a regression model: We set Z to 0
when it is missing, and add an indicator MZ = 0 if Z is observed, MZ = 1 if Z is missing.

Missing indicators allow one to retain every subject in the analysis and are easy to implement,
but they may introduce bias. This bias can arise even under the best-case scenario, that the data are
missing completely at random (MCAR). MCAR means that missingness of a subject’s value for Z
is independent of every variable in the analysis, including Z . For example, if Z is sexual orientation,
MCAR assumes that whether someone skips the question or refuses to answer has nothing to do with
the person’s age, sex, or actual preference. Thus MCAR is an exceedingly optimistic assumption,
but it is often used to justify certain techniques.

Next, suppose that Figure 12–7 represents our study. We are interested in the effect of X on
Y, and we recognize that it is important to adjust for the confounder Z. If Z is missing for some
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Z*

X

Z

MZ

Y

FIGURE 12–7 ● Diagram with a missing-data indicator MZ .

subjects, we add to the analysis the missing indicator MZ . If Z is never zero, we also define a
new variable, Z∗, that equals Z whenever Z is observed and equals 0 whenever Z is missing,
that is, Z∗ = Z (1 − MZ ). There are no arrows pointing into MZ in the diagram, implying that Z
is unconditionally MCAR, but Z∗ is determined by both Z and MZ. Using the missing-indicator
method, we enter both Z∗ and MZ in the regression model, and thus we condition on them both.

In Figure 12–7, the set {Z∗, MZ} does not block the back-door path from X to Y via Z , so
control of Z∗ and MZ does not fully control the confounding by Z (and we expect this residual
confounding to increase as the fraction with Z missing increases). Similarly, it should be clear
from Figure 12–7 that conditioning only on Z∗ also fails to block the back-door path from X to
Y. Now consider a complete-subject analysis, which uses only observations with Z observed—in
other words, we condition on (restrict to) MZ = 0. From Figure 12–7 we see that this conditioning
creates no bias. Because we have Z on everyone with MZ = 0, we can further condition on Z and
eliminate all confounding by Z . So we see that instead of the biased missing-indicator approach,
we have an unbiased (and even simpler) alternative: an analysis limited to subjects with complete
data. The diagram can be extended to consider alternative assumptions about the determinants of
missingness. Note, however, that more efficient and more broadly unbiased alternatives to complete-
subject analysis (such as multiple imputation or inverse probability weighting) are available, and
some of these methods are automated in commercial software packages.

ADJUSTING FOR AN INTERMEDIATE DOES NOT NECESSARILY
ESTIMATE A DIRECT EFFECT

Once an effect has been established, attention often turns to questions of mediation. Is the effect of
sex on depression mediated by hormonal differences between men and women or by differences in
social conditions? Is the effect of prepregnancy body mass index on pre-eclampsia risk mediated
by inflammation? Is the apparent effect of occupational status on heart disease attributable to psy-
chologic consequences of low occupational status or to material consequences of low-paying jobs?

In considering exposure X and outcome Y with an intermediate (mediator) Z , a direct effect
of X on Y (relative to Z ) is an X effect on Y that is not mediated by Z . In a causal diagram,
effects of X on Y mediated by Z , or “indirect effects,” are those directed paths from X to Y that
pass through Z . Direct effects are then represented by directed paths from X to Y that do not pass
through Z . Nonetheless, because Z may modify the magnitude of a direct effect, the total effect of
X on Y cannot necessarily be partitioned into nonoverlapping direct and indirect effects (Robins
and Greenland, 1992).

The term direct effect may refer to either of two types of effects. The first type is the effect of X
on Y in an experiment in which each individual’s Z is held constant at the same value z. This has
been termed the controlled direct effect because the intermediate is controlled. The magnitude of
this direct effect may differ across each possible value of Z ; thus there is a controlled direct effect
defined for every possible value of Z . The second type is called a pure or natural direct effect and
is the effect of X on Y when Z takes on the value it would “naturally” have under a single reference
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FIGURE 12–8 ● Diagram with an unconfounded direct effect and no
indirect effect of X on Y.

value x for X . Thus there is one of these effects for each possible value of X. For each direct effect
of X on Y, we can also define a contrast between the total effect of X on Y and that direct effect.
This contrast is sometimes referred to as the “indirect effect of X on Y ” relative to the chosen direct
effect. There will be one of these contrasts for every controlled direct effect (i.e., for every level of
Z ) and one for every pure direct effect (i.e., for every level of X ).

A causal diagram can reveal pitfalls in naive estimation procedures, as well as additional data
and assumptions needed to estimate direct effects validly. For example, a standard method of direct-
effect estimation is to adjust for (condition on) Z in the analysis—e.g., by entering it in a regression
of Y on X . The Z -adjusted estimate of the X coefficient is taken as an estimate of “the” direct effect
of X on Y (without being clear about which direct effect is being estimated). The difference in the
X coefficients with and without adjustment for Z is then taken as the estimate of the indirect effect
of X on Y (with respect to Z ).

The diagram in Figure 12–8 shows no confounding of the total effect of X on Y, and no effect
of Z on Y at all, so no indirect effect of X on Y via Z (all the X effect on Y is direct). Z is,
however, a collider on the closed path from X to Y via U ; thus, if we adjust for Z , we will open this
path and introduce bias. Consequently, upon adjusting for Z , we will see the X association with Y
change, misleading us into thinking that the direct and total effects differ. This change, however,
only reflects the bias we have created by adjusting for Z .

This bias arises because we have an uncontrolled variable U that confounds the Z–Y association,
and that confounds the X–Y association upon adjustment for Z . The bias could be removed by
conditioning on U. This example is like that in Figure 12–3, in which adjusting for a seeming
confounder introduced confounding that was not there originally. After adjustment for the collider,
the only remedy is to obtain and adjust for more covariates. Here, the new confounders may have
been unassociated with X to begin with, as we would expect if (say) X were randomized, and so
are not confounders of the total effect. Nonetheless, if they confound the association of Z with Y,
they will confound any conventionally adjusted estimate of the direct effect of X on Y.

As an illustration of bias arising from adjustment for intermediates, suppose that we are inter-
ested in knowing whether the effect of education on systolic blood pressure (SBP) is mediated by
adult wealth (say, at age 60). Unfortunately, we do not have any measure of occupational charac-
teristics, and it turns out that having a high-autonomy job promotes the accumulation of wealth
and also lowers SBP (perhaps because of diminished stress). Returning to Figure 12–8, now X
represents education, Y represents SBP, Z represents wealth at age 60, and U represents job au-
tonomy. To estimate the effect of education on SBP that is not mediated by wealth, we need to
compare the SBP in people with high and low education if the value of wealth were not allowed
to change in response to education. Thus we might ask, if we gave someone high education but
intervened to hold her wealth to what she would have accumulated had she had low education (but
changed no other characteristic), how would SBP change compared with giving the person less
education?

We cannot conduct such an intervention. The naive direct-effect (mediation) analysis described
above instead compares the SBP of people with high versus low education who happened to have
the same level of adult wealth. On average, persons with high education tend to be wealthier than
persons with low education. A high-education person with the same wealth as a low-education
person is likely to have accumulated less wealth than expected for some other reason, such as a
low-autonomy job. Thus, the mediation analysis will compare people with high education but low
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job autonomy to people with low education and average job autonomy. If job autonomy affects
SBP, the high-education people will appear to be worse off than they would have been if they had
average job autonomy, resulting in underestimation of the direct effect of education on SBP and
hence overestimation of the indirect (wealth-mediated) effect.

The complications in estimating direct effects are a concern whether one is interested in mediator-
controlled or pure (natural) direct effects. With a causal diagram, one can see that adjusting for a
confounded intermediate will induce confounding of the primary exposure and outcome—even if
that exposure is randomized. Thus confounders of the effect of the intermediate on the outcome
must be measured and controlled. Further restrictions (e.g., no confounding of the X effect on Z)
are required to estimate pure direct effects. For more discussion of estimation of direct effects,
see Robins and Greenland (1992, 1994), Blakely (2002), Cole and Hernán (2002), Kaufman et al.
(2004, 2005), Peterson et al. (2006), Peterson and van der Laan (2008), and Chapter 26.

INSTRUMENTAL VARIABLES

Observational studies are under constant suspicion of uncontrolled confounding and selection bias,
prompting many to prefer evidence from randomized experiments. When noncompliance (nonad-
herence) and losses are frequent, however, randomized trials may themselves suffer considerable
confounding and selection bias. Figure 12–9 illustrates both phenomena. In an observational study,
U represents unmeasured confounders of the X–Y association. In a randomized trial, U represents
variables that affect adherence to treatment assignment and thus influence received treatment X .
In Figure 12–9, Z is called an instrumental variable (or instrument) for estimating the effect of X
on Y.

Valid instruments for the effect of X on Y can be used to test the null hypothesis that X has
no effect on Y. With additional assumptions, instrumental variable analyses can be exploited to
estimate the magnitude of this effect within specific population subgroups. We will first review
the assumptions under which a valid instrument can be used to test a null hypothesis of no causal
effect, and then describe examples of additional assumptions under which an instrumental variable
analysis identifies a specific causal parameter.

Under the assumptions in the DAG in Figure 12–9, assignment Z can be associated with Y only
if Z affects X and X in turn affects Y, because the only open path from Z to Y is Z → X → Y . In
other words, Z can be associated with Y only if the null hypothesis (that X does not affect Y ) is
false. Thus, if one rejects the null hypothesis for the Z–Y association, one must also reject the null
hypothesis that X does not affect Y. This logical requirement means that, under Figure 12–9, a test
of the Z–Y association will be a valid test of the X–Y null hypothesis, even if the X–Y association
is confounded. The unconfoundedness of the Z–Y test, called the intent-to-treat test, is considered
a “gold standard” in randomized trials: If Z represents the assigned treatment, Figure 12–9 holds if
Z is truly randomized, even if the treatment received (X ) is influenced by unmeasured factors that
also affect the outcome Y.

In a DAG, a variable Z is an unconditionally valid instrument for the effect of X on Y if:

1. Z affects X (i.e., Z is an ancestor of X ).
2. Z affects the outcome Y only through X (i.e., all directed paths from Z to Y pass through X ).
3. Z and Y share no common causes.

XZ

U

W

Y

FIGURE 12–9 ● Diagram with valid instruments Z , W for the X–Y effect.
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FIGURE 12–10 ● Diagram for a confounded trial in which treatment
assignment directly affects the outcome.

These assumptions are met in a well-conducted randomized trial in which Z is the randomized
treatment-assignment variable. In Figure 12–10, assumption 2 is violated, and in Figure 12–11,
assumption 3 is violated, and no unconditionally valid instrument is available in either case.

Most methods can be extended to allow use of certain descendants of Z (such as W in Figure
12–9) instead of Z itself to test whether X affects Y. Some authors extend the definition of instru-
mental variables to include such descendants. Note first that assumptions 2 and 3 imply that every
open path from Z to Y includes an arrow pointing into X. This is a special case of a more general
definition that W is an unconditional instrument for the X → Y effect in a DAG if (a) there is an
open path from W to X , and (b) every open path from W to Y includes an arrow pointing into X.
This definition extends to conditioning on a set of variables S that are unaffected by X: W is an
instrument given S if, after conditioning on S, (a) there is an open path from W to X , and (b) every
open path from W to Y includes an arrow pointing into X (Pearl, 2000, section 7.4). For example,
if W and Y share a common cause such as U2 in Figure 12–11, but this common cause is included
in S, then W is a valid instrument for the effect of X on Y conditional on S.

The assumptions for a valid instrument imply that, after conditioning on S, the instrument–
outcome association is mediated entirely through the X effect on Y. These assumptions require that
S blocks all paths from W to Y not mediated by X. For example, conditioning on M in Figure
12–10 would render Z a valid instrument. Nonetheless, if S contains a descendant of W, there is
a risk that conditioning on S may induce a W –Y association via collider bias, thus violating the
conditional instrumental assumption (b). This collider bias might even result in an unconditionally
valid instrument becoming conditionally invalid. Hence many authors exclude descendants of W
(or Z ) as well as descendants of X from S.

Consider now a randomized trial represented by Figure 12–9. Although an association between
Z and Y is evidence that X affects Y, the corresponding Z–Y (intent to treat or ITT) association
will not equal the effect of X on Y if compliance is imperfect (i.e., if X does not always equal Z ).
In particular, the ITT (Z–Y ) association will usually be attenuated relative to the desired X → Y
effect because of the extra Z → X step. When combined with additional assumptions, however, the
instrument Z may be used to estimate the effect of X on Y via special instrumental-variable (IV)
estimation methods (Zohoori and Savitz, 1997; Newhouse and McClellan, 1998; Greenland, 2000b;
Angrist and Krueger, 2001; Hernán and Robins, 2006; Martens et al., 2006) or related g-estimation
methods (Robins and Tsiatis, 1991; Mark and Robins, 1993ab; White et al., 2002; Cole and Chu,
2005; Greenland et al., 2008; see also Chapter 21).

XZ

U1

W

U2

Y

FIGURE 12–11 ● Diagram
for a confounded trial in which
an unmeasured cause U2 affects
both treatment assignment Z
and outcome Y.
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Simple IV estimates are based on scaling up the Z–Y association in proportion to the Z–X
association. An example of an assumption underlying these methods is monotonicity of the Z → X
effect: For every member of the population, Z can affect X in only one direction (e.g., if increasing
Z increases X for some people, then it cannot decrease X for anyone). Under monotonicity, IV
estimates can be interpreted as the effect receiving the treatment had on those individuals who
received treatment (got X = 1) precisely because they were assigned to do so (i.e., because they
got Z = 1). Some methods use further assumptions, usually in the form of parametric models.

The causal structure in Figure 12–9 might apply even if the researcher did not assign Z . Thus,
with this diagram in mind, a researcher might search for variables (such as Z or W ) that are valid
instruments and use these variables to calculate IV effect estimates (Angrist et al., 1996; Angrist
and Krueger, 2001; Glymour, 2006a). Although it can be challenging to identify a convincing
instrument, genetic studies (Chapter 28) and “natural experiments” may supply them:

• Day of symptom onset may determine the quality of hospital care received, but there is rarely
another reason for day of onset to influence a health outcome. Day of symptom onset then provides
a natural instrument for the effect of quality of hospital care on the outcome.

• Hour of birth may serve as an instrument for studying postpartum length of stay in relation to
maternal and neonatal outcomes (Malkin et al., 2000).

• Mothers who deliver in hospitals with lactation counseling may be more likely to breast-feed. If
being born in such a hospital has no other effect on child health, then hospital counseling (yes/no)
provides an instrument for the effect of breastfeeding on child health.

• Women with relatives who had breast cancer may be unlikely to receive perimenopausal hor-
mone therapy. If having relatives with breast cancer has no other connection to cardiovascular
risk, having relatives with breast cancer is an instrument for the effect of hormone therapy on
cardiovascular disease.

These examples highlight the core criteria for assessing proposed instruments (e.g., day of symptom
onset, hour of birth). After control of measured confounders the instrument must have no association
with the outcome except via the exposure of interest. In other words, if the exposure has no effect,
the controlled confounders separate the instrument from the outcome.

A skeptical reader can find reason to doubt the validity of each of the above proposed instruments,
which highlights the greatest challenge for instrumental variables analyses with observational data:
finding a convincing instrument. Causal diagrams provide a clear summary of the hypothesized
situation, enabling one to check the instrumental assumptions. When the instrument is not random-
ized, those assumptions (like common no-residual-confounding assumptions) are always open to
question. For example, suppose we suspect that hospitals with lactation counseling tend to provide
better care in other respects. Then the association of hospital counseling with child’s outcome is in
part not via breastfeeding, and counseling is not a valid instrument.

IV methods for confounding control are paralleled by IV methods for correcting measurement
error in X. The latter methods, however, require only associational rather than causal assumptions,
because they need not remove confounding (Carroll et al., 2006). For example, if Z is affected by
X and is unassociated with Y given X , then Z may serve as an instrument to remove bias due to
measurement error, even though Z will not be a valid instrument for confounding control.

BIAS FROM CONDITIONING ON A DESCENDANT OF THE OUTCOME

For various reasons, it may be appealing to examine relations between X and Y conditioning on
a function or descendant Y ∗ of Y. For example, one might suspect that the outcome measurement
available becomes increasingly unreliable at high values and therefore wish to exclude high-scoring
respondents from the analysis. Such conditioning can produce bias, as illustrated in Figure 12–12.
Although U affects Y, U is unassociated with X and so the X–Y association is unconfounded. If
we examine the relation between X and Y conditional on Y ∗, we open the U → Y ← X path, thus
allowing a U–X association and confounding of the X–Y association by U .

Consider the effect of education on mental status, measuring the latter with the Mini-Mental
Status Exam (MMSE). The MMSE ranges from 0 to 30, with a score below 24 indicating impairment
(Folstein et al., 1975). Suppose we ask whether the effect of education on MMSE is the same for
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FIGURE 12–12 ● Diagram illustrating effect of conditioning on an outcome variable.

respondents with MMSE ≥ 24 as for respondents with MMSE <24. If education does indeed affect
MMSE score, we can apply Figure 12–12 with X = education, Y = MMSE score, and Y ∗ an
indicator of MMSE score ≥24. U now represents unmeasured factors that affect MMSE score
but do not confound the X–Y association. We should then expect to underestimate the association
between education and MMSE score in both strata of Y ∗. Among high-MMSE subjects, those with
low education are more likely to have factors that raise MMSE scores, whereas among low-MMSE
scorers, those with high education are less likely to have such factors. Thus, even if these unmeasured
factors are not confounders to start, they will be negatively associated with education within strata
of their shared effect, MMSE score.

This bias also occurs when there is an artificial boundary (ceiling or floor) on the measurement
of Y and one deletes observations with these boundary values. It also can arise from deleting
observations with extreme values of Y (outliers), although many might have to be deleted for the
bias to become large. Such exclusions will condition the analysis on the value of Y and can thus
introduce bias.

If X has no effect on Y, conditioning on Y ∗ will not open the U → Y ← X path in Figure 12–12.
Thus, if there is no confounding of the X–Y relation and no effect of X on Y, the estimated effect
of X on Y will remain unbiased after conditioning on Y ∗ (although precision of the estimate may
be drastically reduced).

SELECTION BIAS AND MATCHING IN CASE-CONTROL STUDIES

Case-control studies are especially vulnerable to selection bias. By definition, case-control studies
involve conditioning on a descendant of Y, specifically, the selection variable S. If we compute effect
estimates from the case-control data as if there were no effect of Y on S —e.g., a risk difference—it
will be severely biased. As discussed in Chapter 8, however, the bias produced by this conditioning
will cancel out of the odds ratio from the study, provided S is associated with exposure only through
Y (i.e., if Y separates S from X ).

Suppose, however, that the situation is as in Figure 12–13. Here, W is not a confounder of the
X–Y association if there is no conditioning, because it has no association with Y except through X .
A case-control study, however, conditions on selection S. Because W is associated with exposure
and affects selection, this conditioning results in a new association of W with Y via S. Thus
X ← W → S ← Y is opened at S and so becomes a biasing path. To identify the effect of X on
Y, this path must be blocked, for example, by conditioning on W. The same conclusion applies if
Figure 12–13 is modified so that W is associated with X via a variable U with (say) X ← U → W.

As discussed in Chapter 11, case-control matching on W means that W affects selection, and
so Figure 12–13 can be taken to represent the situation in a case-control study matched on a
nonconfounder associated with the exposure. Here, we see that the matching generated the W –S
connection and thus necessitates control of W when no control would have been needed without
matching. Thus, the figure illustrates a type of overmatching (Chapter 11).

Y

S

X

W

FIGURE 12–13 ● Diagram showing potential selection bias in a case-control
study with a cause of the exposure influencing selection into the study.
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HOW ADJUSTING FOR BASELINE VALUES CAN BIAS
ANALYSES OF CHANGE

Research often focuses on identifying determinants of change in a dynamic outcome, such as blood
pressure, or depressive symptoms measured at start and end of follow-up, indicated by Y1 and Y2.
Suppose we wish to estimate how much an exposure X , that was measured at baseline and preceded
Y1, affects the change in the outcome variable between times 1 and 2, measured with the change
score �Y = Y2 − Y1. An important issue is whether to adjust for (condition on) the baseline variable
Y1 when attempting to estimate the effect of X on change in the outcome. This conditioning may
take the form of restriction or stratification on Y1, or inclusion of Y1 as a covariate in a regression of
�Y on X . Typically, X and Y1 are associated. Indeed, this cross-sectional association may prompt
researchers to investigate whether X similarly affects changes in Y.

A common rationale for baseline adjustment is that baseline “acts like a confounder” under the
traditional confounder criteria: It is associated with X and likely affects the dependent variable
(�Y). This intuition can be misleading, however, in the common situation in which Y1 and Y2 are
subject to measurement error (Glymour et al., 2005).

Suppose that our research question is whether graduating from college with honors affects
changes in depressive symptoms after graduation. In a cohort of new college graduates, depressive
symptoms are assessed with the Centers for Epidemiologic Studies—Depression scale at baseline
(CES-D1) and again after 5 years of follow-up (CES-D2). The CES-D scale ranges from 0 to 60,
with higher scores indicating worse depressive symptoms (Radloff, 1977). The dependent variable
of interest is change in depressive symptoms, which we measure in our data using the CES-D
change score �CES-D = CES-D2 − CES-D1. The CES-D is a common measure of depressive
symptoms, but it is known to have considerable measurement error. In other words, the CES-D
score is influenced both by actual underlying depression and by randomly fluctuating events such
as the weather and the interviewer’s rapport with the subject. In a causal diagram, we represent
this by showing arrows into CES-D score from underlying depression and from a summary “error”
variable. The error is not measured directly but is defined as the difference between the CES-D
score and the latent variable “Depression,” so that

CES-D = Depression + Error

Bear in mind that we are actually interested in change in Depression (�Depression), rather than
change in CES-D (�CES-D).

Now suppose that, at baseline, graduating with honors (X ) is associated with lower CES-D
scores, that is, there is an inverse association between X and Y1, perhaps because graduating
with honors improves mood, at least temporarily. These assumptions are shown in a DAG in Figure
12–14. In this figure, there is an arrow from Error1 to �CES-D. This arrow represents a deterministic
(inverse) relationship between �CES-D and Error1, because

�CES-D = CES-D2 − CES-D1

= Depression2 + Error2 − (Depression1 + Error1)

= Depression2 − Depression1 + Error2 − Error1

= �Depression + Error2 − Error1

Another assumption in Figure 12–14 is that Error1 and Error2 are independent. Positive as-
sociation of these errors reduces the magnitude of the bias we will discuss, but this bias is not
eliminated unless the errors are identical (and so cancel out). Under the conditions of Figure 12–14,
honors degree has no effect on change in depression. Correspondingly, honors degree and �CES-D
are unconditionally independent under the null hypothesis because the only path in the diagram
connecting honors degree and change score is blocked by the collider CES-D1. Thus, when not
adjusting for CES-D1, we obtain an unbiased estimate of the overall (i.e., total) effect of honors
degree on change in depression.

Conditional on CES-D1, however, honors degree and �CES-D are associated, because condi-
tioning on CES-D1 unblocks the path. This result can be explained as follows. Anyone with a high
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CES-D1

Depression1

Change in CES-D

(ΔCES-D)
Time 1 to Time 2

Measurement Error1

Honors 

Degree

Change in Depression
(ΔDepression)

Time 1 to Time 2

Measurement Error2

FIGURE 12–14 ● An example in which baseline adjustment biases
analyses of change.

CES-D1 has either high Depression1, or large positive measurement Error1, or both. A nondepressed
person with high CES-D1 must have a positive Error1, and a depressed person with low CES-D1

must have a negative Error1. Thus, within levels of CES-D1,Depression1 and Error1 are inversely
associated, and honors degree and Error1 are therefore positively associated. Because Error1 con-
tributes negatively to �CES-D, �CES-D and Error1 are negatively associated (this is an example of
regression to the mean). Hence, conditional on CES-D1, honors degree and �CES-D are inversely
associated. Therefore the baseline-adjusted honors-degree association is inverse, making it appear
that honors degrees predict declines in depression, even when receiving an honors degree does not
affect changes in depression. The bias in the association is proportional to the error in the CES-D
scores and the strength of the honors degree–Depression1 association (Yanez et al., 1998).

To summarize the example, the unadjusted association of honors degree and �CES-D correctly
reflects the effect of honors degree on change in actual depression (�Depression), whereas adjust-
ment for baseline CES-D1 biases the association downward in the direction of the cross-sectional
association between CES-D1 and honors degree.

Now consider baseline adjustment in a slightly different research question, in which we wish to
estimate how much a baseline exposure X affects the change score �Y over the follow-up period. In
this case, we ignore measurement error and focus on identifying determinants of changes in CES-D
score. We return to our example of the effect of graduating college with honors (X ) and CES-D
change scores. Figure 12–15 provides one model of the situation. There are confounding paths from
X to �Y via U and Y1, which we can block by conditioning on baseline score Y1. Thus, if U is
unmeasured, it appears from this model that we ought to control for baseline score. This model for
�Y is fatally oversimplified, however, because there will always be other unmeasured factors that
affect CES-D1 (such as genetic risk factors), which influence both CES-D1 and the rate of change.

If we expand Figure 12–15 to include such a factor, B, and B is unassociated with X , we obtain
Figure 12–16. B does not appear to be a confounder, but it is a collider on a path between X and
�Y. Conditioning on baseline Y1 opens the confounding path X ← U → Y1 ← B → �Y. Thus,
adjusting for baseline is insufficient to eliminate bias in assessing the relation of X to the change
score �Y; after such adjustment, to ensure unbiasedness we would have to adjust for all shared
causes of earlier and later scores—a daunting task to say the least.

Y1: CES-D1

U

X: Honors 

degree
ΔY: Change in CES-D 

Time 1 to Time 2

FIGURE 12–15 ● An example in which baseline adjustment eliminates
bias in analyses of change.
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Y1: CES-D1

U

X: Honors 

Degree

B

ΔY: Change in CES-D 

Time 1 to Time 2

FIGURE 12–16 ● An example in which baseline adjustment does not
eliminate bias in analyses of change.

CAVEATS AND EXTENSIONS

For many if not most epidemiologic research questions, the data available or feasible to obtain are
simply not adequate to identify the “right” answer. Given this reality, every method will be biased
under conditions that we cannot rule out. Thus it is rarely enough to know that a particular approach
is biased; we will want to estimate how biased it may be, especially relative to alternatives. Graphs
alone, however, are silent with respect to the magnitude of likely biases.

Graphs can be augmented with signs on each arrow to indicate directions of effects, as is
common with structural equation models (Duncan, 1975). Under the assumption of monotonic
effects (causal monotonicity), the directions of associations and biases can be computed from
these signs (VanderWeele and Robins, 2008b). More detail can be added to causal diagrams to
indicate mechanism types under the sufficient-component cause model described in Chapters 2 and
5 (VanderWeele and Robins, 2007b). Nonetheless, causal diagrams as currently developed do not
convey information about important aspects of causal relations and biases, such as the magnitudes
or functional forms of the relations (e.g., effect size or effect-measure modification).

The g-computation algorithm or g-formula (Robins, 1986, 1987, 1997) can be used to quantify
the size of effects and predict the consequences of interventions under an assumed causal struc-
ture (Pearl and Robins, 1995). The formula simplifies to ordinary standardization (Chapters 3 and
4) when the intervention variable is a fixed baseline characteristic (as opposed to a time-varying
exposure) (Robins, 1987; Pearl, 1995, 2000). Applying the g-computation algorithm is often im-
practical, for the same reason that stratified analysis methods (Chapter 15) can be impractical with
many covariates: There will rarely be enough observations for every combination of covariate lev-
els. This problem is addressed by assuming parametric models for some or all of the relations
among the covariates. This approach has a long history in the structural-equations literature (Dun-
can, 1975; Pearl, 2000). In the structural-equations model for a graph, each variable is represented
as a function of its parents and a random error that represents effects of forces not shown in the
graph. More advanced approaches such as g-estimation and marginal structural modeling estimate
parameters using structural models only for the effect of interest, and use associational models to
control confounding; see Chapter 21 for further description and references.

Modeling approaches allow comparison of bias magnitudes under various scenarios about causal
relations. For example, assuming logistic models, Greenland (2003a) compared the bias left by
failing to adjust for a variable that is both a collider and confounder, versus the bias introduced by
adjusting for it, and found evidence that when the causal structure is unknown, adjustment is more
likely to result in less bias than no adjustment. In many (if not most) situations, however, there will
be insufficient information to identify the best strategy. In these situations, analyses under different
assumptions (involving different diagrams or different structural equations under the same diagram)
will be essential to get a sense of reasonable possibilities. For example, we can perform analyses in
which a variable is not controlled because it is assumed to be an intermediate, and perform others
in which it is treated as a confounder (Greenland and Neutra, 1980); and, in the latter case, we can
vary the equations that relate the variable to exposure and disease. Such sensitivity analyses are
described in Chapter 19.
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A related difficulty is deciding whether a dubious causal relationship ought to be represented
in a DAG. In typical epidemiologic examples, very weak relationships are unlikely to introduce
large biases. Thus one heuristic for drawing DAGs would take the absence of an arrow between two
variables to indicate that the direct causal relation between the variables is negligible. While such
a heuristic can provide a useful perspective, we recommend starting with a DAG that shows all the
arrows that cannot be ruled out based on available data or logic (like time order), to determine what
assumptions are required in order to identify with certainty the causal parameter of interest with
the available data.

CONCLUSION

Causal diagrams show how causal relations translate into associations. They provide a simple,
flexible tool for understanding and discovering many problems, all using just a few basic rules.
Rather than considering each type of bias as a new problem and struggling for the “right” answer,
diagrams provide a unified framework for evaluating design and analysis strategies for any causal
question under any set of causal assumptions. Nonetheless, drawing a diagram that adequately
describes contextually plausible assumptions can be a challenge. To the extent that using diagrams
forces greater clarity about assumptions, accepting the challenge can be beneficial. Although we
may never know the “true” diagram, to the extent that we can specify the diagram, we will be able
to identify key sources of bias and uncertainty in our observations and inferences.
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ELEMENTS OF DATA ANALYSIS

In Chapter 9 we emphasized that a study may be thought of as a measurement exercise, in which the
overall goal is accuracy in estimation. Data analysis is the step in this exercise in which the raw data
are checked for accuracy, and estimates are then computed from the data, based on assumptions
about the forces that led to those data. This chapter describes considerations in data preparation
and then reviews the statistical theory that underpins conventional statistical methods, covering in
more detail several of the topics introduced in Chapter 10.

By “conventional methods,” we mean methods that assume all systematic errors are known and
accounted for by the underlying statistical model. Such methods focus on accounting for random
errors by familiar means such as standard deviations, P-values, confidence intervals, and hypothesis
tests. These methods became the standard of analysis in the early to mid 20th century, in parallel with
the ascendance of random sampling and randomization as the “gold standard” of study design. Be-
cause they remain the standard of presentation in the health and social science literature, Chapters 14
through 17 provide details of conventional methods for epidemiologic data analysis, and Chapter 18
presents their Bayesian analogs. Chapter 19 provides an introduction to methods that address the
key shortcomings of conventional methods by examining the possible role of systematic errors (bias
sources) in generating the observations.

A good data analysis has several distinct stages. In the first stage, the investigator should review
the recorded data for accuracy, consistency, and completeness. This process is often referred to as
data editing. Next, the investigator should summarize the data in a concise form for descriptive
analysis, such as contingency tables that classify the observations according to key factors. This

213
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stage of the analysis is referred to as data reduction or data summarization. Finally, the summarized
data are used to estimate the epidemiologic measures of interest, typically one or more measures of
occurrence or effect (such as risk or relative-risk estimates), with appropriate confidence intervals.
This estimation stage is usually based on smoothing or modeling the data, which can lead to many
philosophical as well as technical issues (Greenland, 1993c); see Chapters 17–21.

The estimation stage of analysis usually includes statistical hypothesis testing. Chapter 10 ex-
plained why statistical hypothesis testing is undesirable in most epidemiologic situations. Nonethe-
less, because the statistical theory and methods of confidence intervals parallel those of statistical
hypothesis testing, it is useful to study the theory and methods of statistical hypothesis testing as
part of the foundation for understanding the estimation step of data analysis.

The final step of analysis involves properly interpreting the results from the summarization and
estimation steps. This step requires consideration of unmeasured factors that may have influenced
subject selection, measurement, and risk, as well as issues in statistical inference. These considera-
tions are usually nothing more than description of possible factors, along with qualitative judgments
about their possible importance. Chapter 19 describes ways in which these considerations can be
given a more quantitative form.

DATA EDITING

The essential first task of data analysis is careful scrutiny of the raw data for errors and correction
of such errors whenever possible (Chapter 24). Errors find their way into data in a variety of ways;
some errors are detectable in editing and some are not.

The data in an epidemiologic study usually come from self-administered or interviewer-
administered questionnaires, from existing records that are transcribed for research, or from elec-
tronic databases collected for purposes other than research (such as disease surveillance registries
or administrative medical databases). The data from these sources may be transcribed from this
primary form to a code form for machine entry, or they may be electronically loaded directly from
one database to a research database. Coding of responses is often necessary. For example, occu-
pational data obtained from interviews need to be classified into a manageable code, as does drug
information, medical history, and many other types of data.

Data on continuous variables such as age, although often grouped into broad categories for
reporting purposes, should be recorded in a precise form rather than grouped, because the actual
values will allow greater flexibility later in the analysis. For example, different groupings may be
necessary for comparisons with other studies. Year of birth may be preferable to age, because it
tends to be reported more accurately and does not change with time.

Some nominal-scale variables that have only a limited number of possible values can be pre-
coded on the primary forms by checking a designated box corresponding to the appropriate category.
For nominal-scale variables with many possible categories, however, such as country of birth or
occupation, precoded questions may not be practical if full detail is desired. If all data items can be
precoded, it may be feasible to collect the data in a primary form that can be read directly by a ma-
chine, for example, by optical scanning. Otherwise, it will be necessary to translate the information
on the primary data form before it is stored in a computer or in machine-readable form. Such trans-
lation may introduce errors, but it also provides an opportunity to check for errors on the primary
form. Alternatively, respondents can be asked to answer questionnaires made available to them on
a computer or via the Internet. These data will still need to be edited to code open-response items.

It is desirable to avoid rewriting the data onto a secondary data form during the coding process,
which may generate additional transcription errors. The number of errors may be reduced by coding
the data as part of the computer entry process. A computer program can be devised to prompt data
entry item by item, displaying category codes on a terminal screen to assist in coding. If the data are
coded and rewritten by hand, they will often require key entry anyway, unless they are coded onto
optical-scanning sheets; consequently, direct data entry during coding reduces both costs and errors.

Whenever possible, data entry and data coding should be kept separate. Data entry should follow
the original collection form as closely as possible. Computer algorithms should be used to code data
from the entries, rather than relying on data-entry personnel to perform the coding. For example, if
age information is collected as date of birth, it should be entered as date of birth and then age at the
study date can be calculated by the computer. Similarly, with fewer rewriting operations between
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the primary record and the machine-stored version, fewer errors are likely to occur. If rewriting
is unavoidable, it is useful to assess the extent of coding errors in the rewritten form by coding a
proportion of the data forms twice, by two independent individuals. The information thus obtained
can be used to judge the magnitude of bias introduced by misclassification from coding errors.

Basic editing of the data involves checking each variable for impossible or unusual values. For
example, gender may be coded 1 for male and 2 for female, in which case any other recorded
value for gender will represent an error or an unknown value. Usually a separate value, such as
−1 or 9, is used to designate an unknown value. It is preferable not to use a code of 0 if it can be
avoided, because non-numeric codes (such as special missing-value codes) may be interpreted by
some programs as a 0. Not assigning 0 as a specific code, not even for unknown information, makes
it easier to detect data errors and missing information. Any inadmissible values should be checked
against the primary data forms. Unusual values such as unknown gender or unusual age or birth
year should also be checked. A good data-entry program will provide for detection of such values.

The entire distribution of each variable should also be examined to see if it appears reasonable.
In a typical residential population, one expects about half of the subjects to be male; if the subjects
have, say, lung cancer, one might expect about 70% to be male; and if the subjects are a typical
group of nurses, one might expect a few percent to be male. Deviations from expectations may
signal important problems that might not otherwise come to light. For example, a programming
error could shift all the data in each electronic record by one or more characters, thereby producing
meaningless codes that might not be detected without direct visual inspection of data values. The
potential for such errors heightens the need to check carefully the distribution of each variable
during the editing of the data.

The editing checks described so far relate to each variable in the data taken singly. In addition to
such basic editing, it is usually desirable to check the consistency of codes for related variables. It is
not impossible, but it is unusual that a person who is 16 years of age will have three children. Men
should not have been hospitalized for hysterectomy. People over 2 meters tall are unlikely to weigh
less than 50 kg. Thorough editing will involve many such consistency and logic checks and is best
accomplished by computer programs designed to flag such errors (MacLaughlin, 1980), although
it can also be done by inspecting cross-tabulations. Occasionally, an apparently inconsistent result
may appear upon checking to be correct, but many errors will turn up through such editing.

It is important, also, to check the consistency of various distributions. If exactly 84 women
in a study are coded as “no menopause” for the variable “type of menopause” (“no menopause,”
surgical, drug-induced, natural), then it is reassuring that exactly 84 are likewise coded as having
no menopause for the variable “age at menopause” (for such a variable, the code “no menopause”
should take a different code number from that assigned to unknown—e.g., −1 for no menopause
and −9 for unknown).

An important advantage of coding and entering data through a computer program is the ability to
require all data forms to be entered twice. The data entered in the second pass are compared with the
data entered on the first pass, and inconsistencies are flagged and resolved in real time. Double data
entry reduces keystroke errors and other data-entry errors that affect data quality. A second advantage
of entering data through a computer program is the ability to edit the data automatically during
the entry process. Inadmissible or unusual values can be screened as they are entered. Inadmissible
values can be rejected and corrected on the spot by programming the machine to display an error
message on the screen and give an audible message as well to alert the operator about the error.
Unlikely but possible values can be brought to the operator’s attention in the same way.

A sophisticated data-entry program can also check for consistency between variables and can
eliminate some potential inconsistencies by automatically supplying appropriate codes. For exam-
ple, if a subject is premenopausal, the program can automatically supply the correct code for “age
at menopause” and skip the question. On the other hand, it is safer to use the redundancy of the
second question to guard against an error in the first. Nonetheless, even with sophisticated editing
during data entry, it is still important to check the stored data for completeness and reasonableness
of the distribution of each variable.

Even the most meticulous data-collection efforts can suffer from errors that are detectable during
careful editing. If editing is planned as a routine part of handling the data, such errors need not
cause serious problems. If editing is neglected, however, data errors may undermine subsequent
analyses.
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DATA DESCRIPTION AND SUMMARIZATION

Data analysis should begin with careful examination of the data distributions of the analysis vari-
ables (exposures, diseases, confounders, effect-measure modifiers). This examination can be done
with tables, histograms, scatterplots, and any other visual aid. We wish to emphasize strongly,
however, that these data descriptors do not include P-values, confidence intervals, or any other
statistics designed for making inferences beyond the data. Unfortunately, many statistical packages
automatically generate such inferential statistics with all descriptive statistics. This automation is
hazardous for a number of reasons, not the least of which is that it invites one to treat inferential
statistics as descriptions of one’s data.

With few exceptions, inferential statistics should not be treated as data descriptors, because useful
and correct interpretations of such statistics require some assumption or model about the relation of
the data to some population or theoretical structure beyond the data. For example, interpretations
of significance tests and confidence intervals refer to the true value of the association under study;
this value does not exist in the data, but in some target population or some theoretical model
relating disease to exposure. There are a few statistics that can be useful in both descriptive and
inferential analyses; an example is the proportion getting disease in an observed cohort, which
is both descriptive of the cohort and is also an estimate of the average risk of disease in cohorts
exchangeable with the observed cohort. Nonetheless, attempts to claim a descriptive role for analytic
statistics such as P-values and standard errors appear to be contrived and unnecessary.

If descriptive statistics are not for inference beyond the data, what are they for? First, they can
help one spot data errors. There may be nothing unusual about having both women under age 40 and
menopausal women in one’s data, but if one sees a cross-tabulation of age and menopausal status
(premenopausal, natural, surgical) in which there are women under age 40 who have had natural
menopause, it behooves one to check the correctness of the age and menopausal status data.

Second, descriptive statistics can help one anticipate violations of assumptions required by infer-
ential statistics. In epidemiology, most inferential statistics are large-sample (asymptotic) statistics,
meaning that they require certain numbers of subjects to be “large” (where “large” may mean only
“five or more”). For example, validity of the ordinary (Pearson) chi-square (χ2) test of association
for two categorical variables is usually said to require expected values of at least four or five per
cell. Suppose, upon examining the observed data, one sees that there are fewer than eight subjects
in some categories of an exposure. One should then immediately know that, in a complete table of
exposure and disease, some cells will have fewer than four expected subjects and so will not have
sufficiently large expected values for the Pearson χ2 test to be valid. For such checking purposes,
one will often want to return to the descriptive summaries after one has moved on to inferential
statistics.

DATA TABULATION

In many fields, means, medians, and other continuous measures are common data summaries. In
epidemiology, however, the most useful summaries are usually contingency tables in which the
frequency of subjects (or units of observation) with specific combinations of variable values is
tabulated for the key variables of interest. Such a table may contain essentially all the relevant
information in the data. If so, the contingency table will be all the investigator needs for estimation.

Even if the table does not contain all relevant information, it can directly display relations among
the main study variables. For variables (such as age and diastolic blood pressure) that are measured
on continuous scales, scatterplots and other exploratory visual displays can provide further insights
(Tukey, 1977).

Analysis of data in the form of a contingency table essentially assumes that there is at most only
a small number of variables that might be confounders or effect-measure modifiers. If one must
adjust simultaneously for a large number of variables, an analysis based on regression modeling may
be necessary. Examination of contingency tables and scatterplots can reveal whether the number
of subjects is adequate for certain types of regression models, and can also serve as a check on
the validity of the regression analysis. Indeed, proceeding with an abridged analysis based on the
contingency table data is essential even if one is certain that the final analysis will be based on a
regression model.
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CHOICE OF CATEGORIES

Collapsing the edited data into categories for the contingency table may necessitate some decision
making. The process can be straightforward for nominal-scale variables such as religion or ethnicity,
which are already categorized. Some categories may be collapsed together when data are sparse,
provided these combinations do not merge groups that are very disparate with respect to the phe-
nomena under study. For continuous variables, the investigator must decide how many categories to
make and where the category boundaries should be. The number of categories will usually depend
on the amount of data available. If the data are abundant, it is nearly always preferable to divide a
variable into many categories. On the other hand, the purpose of data summarization is to present
the data concisely and conveniently; creating too many categories will defeat this purpose.

For adequate control of confounding, about five categories may often suffice (Cochran, 1968),
provided the boundaries are well chosen to reflect the size of the confounder effects expected across
and within categories. As discussed later in this chapter and in Chapter 15, use of percentiles to
create confounder categories (e.g., using quintiles as boundaries to create five equal-sized cate-
gories) may fail to control confounding adequately if the variable is a strong confounder and is
unevenly distributed (highly nonuniform) across its range. In that case, one or a few of the resulting
confounder-percentile categories are likely to be overly broad, resulting in large confounder effects
within those categories (where they will be uncontrolled), and leaving the exposure-effect estimates
seriously confounded within those categories.

Similarly, if an exposure variable is categorized to examine effect estimates for various levels of
exposure, again about five categories may often suffice, provided the boundaries are well chosen to
reflect the size of the effects expected across the range of exposure. As discussed later in this chapter
and in Chapter 17, use of percentiles to create the exposure categories may fail to capture exposure
effects adequately if the exposure distribution is quite uneven. In that case, one or a few of the
resulting exposure-percentile categories are likely to be overly broad, resulting in exposure effects
aggregated within those categories (where they may go undetected), and diminished estimates of
exposure effects across categories.

All too often the data are so sparse that it will be impractical to use as many as five categories for
a given variable. When the observations are stretched over too many categories, the numbers within
categories become so small that patterns cannot be easily discerned in the resulting cross-tabulation.
Even if the number of categories per variable is only two or three, a large body of data can be spread
too thin if the contingency table involves many dimensions, that is, if many variables are used to
classify the subjects.

Suppose that we create a separate two-way table (or stratum) of exposure and disease for each
possible combination of levels for potentially confounding variables. With three confounders of
three categories each, there will be 33 = 27 strata, for a total of 27 × 4 = 108 table cells if both
exposure and disease are dichotomous. With an additional two confounders of three categories each,
there will be 35 = 243 strata, for a total of 243 × 4 = 972 cells; this is enough to stretch even a
considerable body of data quite thinly, because a study of 1,000 people will average only about one
subject per cell of the multidimensional table. If five categories are used for the five confounders,
there will be 55 = 3,125 strata, for a total of 3,125 × 4 = 12,500 cells.

There is no generally accepted method to decide where to draw the boundary between categories.
A frequently expressed concern is that boundaries might be “gerrymandered,” that is, shifted after
a preliminary examination of the effect estimates in such a way that the estimates are altered in
a desired direction. Gerrymandering can occur even when the analyst is attempting to be honest,
simply through failure to understand the problems it may engender. For example, conventional
statistical methods assume that boundaries were chosen independently of the outcome. Nonethe-
less, there are legitimate reasons for inspecting the variable distributions when selecting category
boundaries. For example, when the cells are large but the data patterns are sensitive to a small shift
in the category boundaries, this sensitivity is a finding of potential interest, indicating some special
feature of the data distribution. There may be natural categories if the distribution has more than
one mode. Nonetheless, it is best to select exposure and outcome categories without regard to the
resulting estimates and test statistics; otherwise, the estimates and P-values will be biased.

If meaningful category boundaries are inherent in the variable, these should be used when-
ever possible. For example, in categorizing subjects according to analgesic consumption, relevant
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categories will contrast the various therapeutic indications for analgesic use, for which the recom-
mended doses can be specified in advance. It is often desirable, especially for an exposure variable,
to retain extreme categories in the analysis without merging these with neighboring categories, be-
cause the extreme categories are often those that permit the most biologically informative contrasts,
provided enough subjects fall into these categories.

As mentioned earlier, one common method for creating category boundaries is to set the bound-
aries at fixed percentiles (quantiles) of the variable. For example, quintile categories have boundaries
at the 20th, 40th, 60th, and 80th percentiles of the variable distribution. Although this categorization
is sometimes adequate, such an automatic procedure can lead to very misleading results in many
situations. For example, for many occupational and environmental exposures, such as to electro-
magnetic fields, most people—over 90%—are exposed in a very narrow range. When this is so,
there may be almost no difference in exposure among the first four of the five quintiles, and the fifth
high-exposure quintile may itself contain many persons with exposure little different from the lower
quintiles. As a result, a comparison of risk will reveal no effect across the first four quintiles, and
a diluted effect comparing the fifth quintile to the fourth. The apparent absence of trend produced
by such a quintile analysis may be taken as evidence against an effect, when in reality it is only an
artifact of using quintiles rather than biologically or physically meaningful categories.

In a parallel fashion, use of percentiles to create confounder categories can leave serious residual
confounding when most of the confounder distribution is concentrated in a very narrow range, but
the confounder effect is considerable across its entire range. In that case, there might be almost
no difference in the confounder across all but one of the categories, while the remaining category
may contain persons with vastly different confounder values. As a consequence, that category may
yield a highly confounded estimate of exposure effect and produce bias in any summary estimate
of exposure effect.

Another problem in creating categories is how to deal with the ends of the scale. Open-ended
categories can provide an opportunity for considerable residual confounding, especially if there are
no theoretical bounds for the variable. For example, age categories such as 65+, with no upper limit,
allow a considerable range of variability within which the desired homogeneity of exposure or risk
may not be achieved. Another example is the study of the effects of alcohol consumption on the risk
of oral cancer. Control of tobacco use is essential; within the highest category of tobacco use, it is
likely that the heaviest alcohol users will also be the heaviest smokers (Rothman and Keller, 1972).
When residual confounding from open-ended categories is considered likely, we recommend that
one place strict boundaries on every category, including those at the extremes of the scale; if sparse
categories result, one should use sparse-data analysis methods, such as Mantel-Haenszel methods
(see Chapter 15) or modeling (Chapters 20–21).

A convenient method of assembling the final categories is to categorize the data initially much
more finely than is necessary. A fine categorization will facilitate review of the distribution for
each variable; fewer categories for subsequent analyses can then be created by combining adjacent
categories. Combining adjacent strata of a confounding variable can be justified if no confounding
is introduced by merging the categories. The advantage of starting with more categories than will
ultimately be necessary is that the data can be used to help identify which mergings will not introduce
confounding. Merging will generally not introduce confounding if the exposure distribution does not
vary across strata of the study cohort (in a cohort study) or source population (in a case-control study).
It will also not introduce confounding if average risk among the unexposed is constant across strata.

CLASSIFICATION OF SUBJECTS AND PERSON-TIME

Classification of subjects or person-time into categories of exposure and other covariates is rarely
straightforward if the covariate is a time-varying subject characteristic such as an occupational
exposure or medication. At the very least, the person-time experience classified as “exposed” needs
to be defined according to a plausible model for induction time (see Chapters 7 and 16). Before a
person becomes exposed, all of that person’s time at risk is, naturally, unexposed person-time. If
exposure occurs at a point in time and the induction-time model being evaluated calls for a minimum
induction time of 5 years, then all the time at risk up to 5 years after the point of exposure for each
individual should likewise be treated as unexposed person-time experience rather than exposed. The
reason that this time following exposure should be treated as unexposed time is that, according to
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the induction-time model, any disease that occurs during the period just following exposure relates
back to a period of time when exposure was absent.

Tallying persons or person-time units (time at risk) into the appropriate exposure categories
must be done subject by subject. The assignment into categories may involve complicated rules if
the exposure may vary. Incident cases are tallied into the same category to which the concurrent
person-time units are being added. For example, if the induction-time model specified a minimum
induction time of 5 years, an incident case occurring 4 years after exposure would not be tallied as
an “exposed” case because the person-time for that individual at the time of diagnosis would not
be contributing toward “exposed” person-time.

HANDLING OF MISSING VALUES

Frequently, some subject records in a data file are incomplete, in that values are missing from that
record for some but not all values of study variables. A common way of dealing with such records is
simply to delete them from any analyses that involve variables for which the records have missing
values. This approach is called complete-subject analysis. It has the advantage of being easy to
implement, and it is easy to understand when it is a valid approach. It will be valid (within the limits
of the study) whenever subjects with complete data have been, in effect, been randomly sampled
from all the subjects in the study; the missing data are then “missing completely at random.” It will
also be valid if these subjects are randomly sampled within levels of complete variables that are
used for stratification (Little and Rubin, 2002).

A drawback of the complete-subject approach is that it is valid only under limited conditions
compared with certain more complex approaches. It can also be very inefficient if many subjects have
missing values, because it discards so much recorded data (it discards all the data in a record, even
if only one study variable in the record has a missing value). For these reasons, many alternatives to
complete-subject analysis have been developed, as can be found in more advanced statistics books
(e.g., Allison, 2001; Little and Rubin, 2002; Tsiatis, 2006).

Most missing-data methods fall into one of two classes. Imputation methods predict and fill in
the missing values based on the observed data and the missing-data pattern (the pattern of missing
values seen among all records); multiple imputation is a common example (Little and Rubin, 2002).
Inverse-probability weighted methods analyze directly only the complete records but assign special
weights to those records based on estimated probabilities of completeness (Robins et al., 1994).
All of these methods can be especially valuable when a high proportion of subjects are missing
data on a study exposure or a strong confounder. Nonetheless, they assume that the probability that
a variable is missing depends only on the observed portion of the data. This “missing at random”
condition is weaker than the “missing completely at random” condition, but should not be assumed
automatically, especially when the missing data are responses to sensitive personal questions.

Unfortunately, there are some methods commonly used in epidemiology that can be invalid even
if data are missing completely at random. One such technique creates a special missing category for
a variable with missing values, and then uses this category in the analysis as if it were just a special
level of the variable. In reality, such a category is a mix of actual levels of the variable. As a result,
the category can yield completely confounded results if the variable is a confounder (Vach and
Blettner, 1991) and can thus lead to biased estimates of the overall effect of the study exposure. An
equivalent method, sometimes recommended for regression analyses, is to create a special “missing-
value” indicator variable for each variable with missing values. This variable equals 1 for subjects
whose values are missing and 0 otherwise. This missing-indicator approach is just as biased as the
“missing-category” approach (Greenland and Finkle, 1995). For handling ordinary missing-data
problems, both the missing-category and missing-indicator approaches should be avoided in favor
of other methods; even the complete-subject method is usually preferable, despite its limitations.

METHODS OF TESTING AND ESTIMATION

As indicated in Chapter 10, there is considerable controversy regarding what are the best or even
proper approaches to statistical analysis. Most techniques currently used in epidemiology, how-
ever, can be derived from fairly standard methods of significance testing and interval estimation.
All such methods require that the analyst (or, by default, the analyst’s computer program) make
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assumptions about the probabilities of observing different data configurations. This is so even if
one adopts a “nonparametric” or “distribution-free” approach to data analysis. “Distribution-free”
methods involve assumptions (models) about data probabilities just as do other methods; they are
distinguished only in that they require weaker assumptions than other methods to be valid. Because
these weaker assumptions amount to assuming that sampling was random or exposure was random-
ized, and these assumptions are questionable in observational studies, analysis of epidemiologic
data always requires critical examination of the models and assumptions underlying the statistical
methods (Greenland, 1990; Chapter 19).

Two broad classes of methods can be distinguished. One comprises small-sample (or exact) meth-
ods, which are based on direct computation of data probabilities; the other comprises large-sample
(or asymptotic) methods, which are based on approximations whose accuracy depends directly on
the amount of data available. Approximate methods are used because exact methods can become
computationally impractical when the analysis involves many subjects or many variables, and be-
cause exact methods are not available for all epidemiologic measures. These different approaches
will be illustrated later in this chapter, but in most of this book we focus almost exclusively on
simpler large-sample methods.

TEST STATISTICS AND P-VALUES

Recall from Chapter 10 that significance tests begin with a test statistic. Examples include the
familiar Pearson or Mantel-Haenszel χ2 statistic computed from a contingency table. Another
common type of test statistic is the Wald statistic, which is the estimate of interest (such as an
estimated rate difference, or estimated log rate ratio) divided by its estimated standard deviation;
this statistic is also known as a Z-ratio or Z-value. Another common test statistic is the total number
of exposed cases observed in the study, which is used in exact tests. A χ2 statistic reflects only the
absolute distance of the actual observations from the observation one would expect under the test
hypothesis; it does not reflect direction of departure. In contrast, both the Z -ratio and the number
of exposed cases reflect the direction of departure of the actual observations from the observation
one would expect under the test hypothesis. For example, Wald statistics of −1.9 and 1.9 would
represent equal but opposite departures of the actual observations from their expectations under
the test hypothesis. One can compute an absolute (nondirectional) statistic by squaring or taking
the absolute value of a directional statistic, provided the latter is 0 when the actual observations
perfectly conform to what would be expected under the test hypothesis (as with Wald statistics).

To test a hypothesis with a given statistic, one must be able to compute the probability (fre-
quency) distribution of the statistic over repetitions of the study when the test hypothesis is true.
Such computations ordinarily assume the following validity conditions: (a) only chance produces
differences between repetitions, (b) no biases are operating, and (c) the statistical model used to
derive the distribution is correct. The upper one-tailed P-value for the observed test statistic is the
probability that the statistic would be as high as observed or higher if the test hypothesis and validity
conditions were correct; the lower one-tailed P-value for the statistic is the probability that the test
statistic would be as low as observed or lower if the test hypothesis and validity conditions were
correct. In the remainder of this chapter, we will refer to these P-values simply as upper and lower.

To interpret lower and upper P-values correctly, one must distinguish between absolute and
directional test statistics. Consider an ordinary χ2 statistic for a contingency table (Chapter 17).
This absolute statistic ranges from 0 to extreme positive values. A very high value means that the
observations are far from what would be expected under the test hypothesis, and a small upper
P-value means the observations are unusually far from this expectation if the test hypothesis and
validity conditions are correct. In contrast, a very low value is close to 0 and means that the
observations are close to this expectation. A small lower P-value thus means the observations are
unusually close to this expectation if the test hypothesis and validity conditions are correct.

Now consider an ordinary Wald statistic, or Z -score, computed from a point estimate and its
standard error. This directional statistic ranges from extreme negative to extreme positive values.
A very high value still means that the observations are far from this expectation, but in a positive
direction. Now, however, a very low value is very negative, and means that the observations are far
from what would be expected under the test hypothesis. A small lower P-value thus means that the
observations are unusually far from this expectation if the test hypothesis and validity conditions are
correct. Thus the meaning of a lower P-value is very different for absolute and directional statistics.
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A questionable dual tradition regarding P-values and tests has become firmly established in
statistical practice. First, it is traditional to use P-values that refer to absolute departures, regardless
of whether the actual scientific, medical, or policy context would dictate concern with only one
direction of departure (e.g., a positive direction). This practice is bad enough on contextual grounds.
For example, in the legal arena it has led to use of absolute statistics to determine whether evidence
of harm is “significant,” even though by the very statement of the problem, the only concern is with
a harmful direction of effect.

Suppose now, whether from context or tradition, one wishes to use an absolute test. Such a test
logically dictates use of an absolute statistic. In a rather strange second tradition, however, it has
become common first to compute a directional statistic, and from that to compute a nondirectional
two-sided P-value for the test. This two-sided P-value is usually defined as twice the smaller of the
upper and lower P-values. There is, however, a logical problem with two-sided P-values defined
in this manner: Unlike one-tailed P-values, they are not necessarily probabilities, as can be seen
by noting that they may exceed 1 (as will be shown in a later section). Several different proposals
have been made to overcome this problem, one of which (mid-P-values) we discuss later. For now,
we use the most common definitions of P-values, in which a one-tailed P-value is always a true
probability, but a two-sided P-value is simply twice the smaller of two probabilities and so is not
necessarily a probability.

These traditions have implications for interpreting confidence intervals. Recall that a two-sided
90% confidence interval is the set of all values for the measure of interest that have a two-sided
P-value of at least 0.10. It follows that a point is inside the two-sided 90% confidence interval if
and only if both its lower and upper P-values are greater than 0.10/2 = 0.05. Similarly, a point is
inside the two-sided 95% confidence interval if and only if both its lower and upper P-values are
greater than 0.05/2 = 0.025. Indeed, these conditions are equivalent to the definitions of 90% and
95% confidence intervals.

MEDIAN-UNBIASED ESTIMATES

An exact two-sided P-value reaches its maximum at the point where the lower and upper P-values
are equal (the peak of the exact P-value function). This point may be taken as a point estimate
of the measure of interest and is called the median-unbiased estimate. The name median unbiased
suggests that the estimate has equal probability of being above the true value as below it. The
median-unbiased estimate does not exactly satisfy this condition; rather, it is the point for which
the test statistic would have equal probability of being above and below its observed value over
repetitions of the study, as well as the peak (maximum) of the exact two-sided P-value function.

Under “large-sample” conditions that will be discussed later, the median-unbiased estimate tends
to differ little from the far more common maximum-likelihood estimate, also discussed later. We
thus focus on the latter estimate in the ensuing chapters of this book.

SENSITIVITY AND INFLUENCE ANALYSIS

Inferential statistics such as P-values and confidence limits must themselves be subjected to scrutiny
to complete the statistical portion of the data analysis. Two broad components of this scrutiny are
sensitivity and influence analysis.

As mentioned earlier, all statistical techniques, even so-called nonparametric or distribution-free
methods, are based on assumptions that often cannot be checked with available data. For exam-
ple, one may be concerned that the observed association (or lack thereof) was a consequence of
an unmeasured confounder, or misclassification, or an undetected violation of the model used for
analysis. One way to deal with the issue of possible assumption violations is to conduct a sensitivity
analysis, in which the statistical analysis is systematically repeated, using different assumptions
each time, to see how sensitive the statistics are to changes in the analysis assumptions. In sensi-
tivity analysis, one may repeat the analysis with different adjustments for uncontrolled confound-
ing, measurement errors, and selection bias, and with different statistical models for computing
P-values and confidence limits. Chapter 19 provides an introduction to sensitivity analysis.

It is possible for analysis results to hinge on data from only one or a few key subjects, even
when many subjects are observed. Influence analysis is a search for such problems. For example,
the analysis may be repeated deleting each subject one at a time, or deleting each of several special
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subgroups of subjects, to see if the statistics change to an important extent upon such deletions.
Statistical quantities that change little in response to such deletions are sometimes said to be resistant
to the deletions. When the key estimates of interest are found to be strongly influenced by deletions, it
will be necessary to report the influential observations and their degree of influence on the estimates.

PROBABILITY DISTRIBUTIONS AND EXACT STATISTICS

We will illustrate basic concepts in the context of a prevalence survey for human immunodeficiency
virus (HIV). Suppose that we take as our test statistic the number of HIV-positive subjects observed
in the sample. It is possible that among 1,000 sampled subjects, 10 would test positive; it is also
possible that four would test positive; it may also be possible that 100 would test positive. If, however,
our sample of 1,000 was drawn randomly from all U.S. Army enlistees, getting 100 positives would
be highly improbable (in the sense that we would expect that result to occur very rarely), whereas
getting four positives would not. The reasons are that the U.S. Army will not knowingly enlist
high-risk or HIV-positive persons (so such persons tend to avoid enlistment), and HIV prevalence
in the general U.S. population is less than a few percent.

A probability distribution for a test statistic is just a rule, model, or function that tells us the
probability of each possible value for our test statistic. For the present example, our test statistic
for testing hypotheses about HIV prevalence in the sampled population will be Y = the number
of HIV-positive sample subjects. Suppose that the survey sample is a simple random sample of
the population, the true prevalence of HIV in the population is 0.004, and the sample size is no
more than a fraction of a percent of the population size. Then the probability of getting Y = 2 (two
positives) among 1,000 surveyed is given by

Pr(Y = 2 | HIV prev. = 0.004) = 0.146

or about one chance in seven.
We can derive the preceding probability (of 0.146) as follows. Suppose the subjects are to be

selected in sequence, from the first to the 1,000th subject. With our assumptions, the HIV status of
each subject is approximately independent of the status of any other subject. Thus, the probability
that the first and second subject are HIV-positive and the others are not is

0.0042(1 − 0.004)1,000−2

We obtain the same number for the probability that any two distinct subjects (e.g., first and third,
or second and fourth) are positive and the others are not.

To find the total probability that exactly two subjects are positive, we must multiply the preceding
number by the number of combinations (ways) in which exactly two of the 1,000 subjects are
positive. To find this number of combinations, note that there are 1,000 · 1,000 pairs of orders of
subjects (first, first), (first, second), (second, first), etc. However, in 1,000 of these pairs of orders
the first and second entries are the same and so do not contain two subjects, i.e., the pairs (first,
first), (second, second), and so on. Removing these one-subject pairs leaves

1,000 · 1,000 − 1,000 = 1,000(1,000 − 1) = 1,000 · 999

two-subject pairs of orders. However, each of these two-subject pairs has a companion pair that
contains the same two subjects in reverse order, e.g., the pair (first, second) represents the same
two subjects as (second, first). Therefore, the total number of unique combinations of two subjects
among the 1,000 is 1,000 · 999/2. To finish, we multiply this number by the probability that a given
pair is positive and the remaining subjects are not:

(1,000 · 999/2)0.0042(1 − 0.004)1,000−2 = 0.146

which is the probability that exactly two subjects are HIV-positive.
The preceding paragraph is an example of a combinatorial argument. Such arguments are often

used to find sample probabilities when random sampling or randomization has been employed
in selecting subjects for study. Such arguments also form the foundation of most small-sample
statistical methods. The number of unique possible combinations of y subjects taken from N total
is given by the formula N !/y!(N − y)!. (The exclamation point ! following a number y is read
“factorial” and indicates that one should take the product of all numbers from 1 to y; that is,
y! = 1·2· · · · ·y; by definition, 0! is set equal to 1.)
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The number of combinations is so important in probability that it is usually expressed with a
special notation defined by (

N

y

)
= N !

y!(N − y)!

The number of combinations
(N

y

)
is often read “N choose y” and is sometimes called the combi-

natorial coefficient or binomial coefficient. The latter term arises from the fact that
(N

y

)
appears in

the general formula for the binomial distribution (see later). In the above example of finding the
number of combinations of two subjects out of 1,000, we get(

1,000
2

)
= 1,000!

2!(1,000 − 2)!
= 1,000 · 999 · 998 · · · · · 2 · 1

2 · 1(998 · 997 · · · · · 2 · 1)
= 1,000 · 999/2

which is what we deduced earlier.
Under the above assumptions, the probability of getting Y = y (y positives) out of 1,000 subjects,

given an HIV prevalence of 0.004, is

Pr(Y = y | HIV prevalence = 0.004) =
(

1,000
y

)
0.004y(1 − 0.004)1,000−y [13–1]

Equation 13–1 is an example of a probability distribution. Specifically, it is an example of a binomial
distribution with a probability parameter of 0.004 and a sample size of 1,000.

Now suppose that we carry out the random-sample survey and observe only one positive among
1,000 sampled persons. From formula 13–1, we can compute the probability of observing Y ≤ 1
(one or fewer positives) under the test hypothesis that the HIV prevalence is 0.004 in the sampled
population. Because only Y = 0 and Y = 1 correspond to one or fewer positives, the probability of
one or fewer positives is

Pr(Y ≤ 1 | HIV prevalence = 0.004)

= Pr(Y = 0 | HIV prevalence = 0.004)

+ Pr(Y = 1 | HIV prevalence = 0.004)

=
(

1,000
0

)
0.0040(1 − 0.004)1,000 +

(
1,000

1

)
0.0041(1 − 0.004)999

= (1 − 0.004)1,000 + 1,000(0.004)(1 − 0.004)999

= 0.091

This probability is Plower, the traditional (Fisher) lower-tailed exact P-value for the test hypothesis.
Here, the number of positives Y serves as the test statistic, and we compute the P-value directly
from the exact distribution of Y as given by formula 13–1.

If we repeat our calculation under the test hypothesis that the HIV prevalence is 0.005, we have
to use the following probability distribution to get P-values:

Pr(Y = y | HIV prevalence = 0.005)

=
(

1,000
y

)
0.005y(1 − 0.005)1,000−y [13–2]

The differences between formulas 13–1 and 13–2 illustrate how the probability distribution for the
test statistic changes when the test hypothesis is changed, even though the test statistic Y does not.
Formula 13–2 yields a lower P-value of

Plower = Pr(Y ≤ 1 | HIV prevalence = 0.005)

= Pr(Y = 0 | HIV prevalence = 0.005) + Pr(Y = 1 | HIV prevalence = 0.005)

= (1 − 0.005)1,000 + 1,000(0.005)(1 − 0.005)999 = 0.040

By doubling the above P-values, we get two-sided P-values of 0.18 under the hypothesis that
the HIV prevalence is 0.004, and 0.08 under the hypothesis that the HIV prevalence is 0.005. To
illustrate, recall that a two-sided 90% confidence interval derived from a test comprises all points
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for which the two-sided P-value from the test is at least 0.10, and the 90% confidence limits are
the two points at which the two-sided P-value is 0.10. Because a prevalence of 0.0040 yielded a
two-sided P-value greater than 0.10, it must be inside the 90% interval. Because a prevalence of
0.0050 yielded a two-sided P-value less than 0.10, it must be outside the 90% interval. We can
interpolate that the upper 90% limit must be roughly (0.10 − 0.08)/(0.18 − 0.08) = one fifth of
the way from 0.005 to 0.004, which corresponds to a prevalence of 0.0048. One way to check this
interpolation is to compute the lower exact P-value for 0.0048:

Plower = (1 − 0.0048)1,000 + 1,000(0.0048)(1 − 0.0048)999 = 0.0474

Doubling this lower exact P-value yields a two-sided P-value of 0.095. Because this P-value is
just under 0.10, we may conclude that a prevalence of 0.0048 is just outside the 90% interval, and
that the upper 90% confidence limit is a little under 0.0048 (the limit is in fact closer to 0.0047).

To obtain a point estimate of the HIV prevalence, we must find the test hypothesis at which the
lower P-value and upper P-value equal one another. We must therefore also calculate the upper
exact P-value, Pupper, which is the probability that Y is at least as big as the observed value of 1.
It is often easier to work with 1 minus this probability, which is the probability that Y is less than
its observed value. For example, if we wish to test the hypothesis that the HIV prevalence is 0.001,
we use the relation

Pupper = Pr(Y ≥ 1 | HIV prevalence = 0.001)

= 1 − Pr(Y < 1 | HIV prevalence = 0.001)

Because 0 is the only possible Y value of less than 1, we have

Pupper = 1 − Pr(Y = 0 | HIV prevalence = 0.001)

= 1 − (1 − 0.001)1,000 = 0.63

The lower P-value for the same test hypothesis is

Plower = Pr(Y ≤ 1 | HIV prevalence = 0.001)

= (1 − 0.001)1,000 + 1,000(0.001)(1 − 0.001)999 = 0.74

Thus Pupper < Plower for an HIV prevalence of 0.001. If, however, we increase the test hypothesis
to 0.0011 and recompute the P-values, we get

Pupper = 1 − (1 − 0.0011)1,000 = 0.67

and this equals

Plower = (1 − 0.0011)1,000 + 1,000(0.0011)(1 − 0.0011)999 = 0.67

Thus, 0.0011 is the median-unbiased estimate of the HIV prevalence. Note that this estimate is not
quite equal to the sample prevalence of 1/1,000 = 0.0010. The sample prevalence, however, is not
an ideal estimate in very small samples (Bishop et al., 1975; Chapter 12; Greenland, 2006b).

This process of repeated P-value computation typifies many computational approaches for exact
analysis, as well as for various approximate methods such as g-estimation (Chapter 21). For the
preceding simple example, there are formulas that give the exact limits in just one step, but for more
complicated data one must turn to iterative computations (and hence computers) to get exact results.

In the preceding example, the most crucial statistical assumption underlying the applications of
the binomial distribution was the assumption that the sampling of 1,000 participants from the target
population was random. If the sampling was not random, then the above statistical analysis (and
any inference based on it) would be open to question. Even if the sampling was random, further
assumptions would be needed to make valid inferences about HIV prevalence in the sampled
population, among them that the measurement technique (here, the test for HIV) used by the survey
is error-free. Such an assumption is of course not realistic, but it could be assessed via sensitivity
analysis (Chapter 19).

By computing P-values for many different test hypotheses, we are in effect drawing out the
P-value function. Returning to the preceding example, we may continue to draw out the P-value
function for the HIV prevalence based on our random-sampling model by writing a general form
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for the probability distributions. If we let the Greek letter π (pi) stand for the HIV prevalence in
the sampled population, we can write the probability distribution for the number of HIV positives
in our sample of 1,000 as

Pr(Y = y | HIV prevalence = π ) =
(

1,000
y

)
π y(1 − π )1,000−y

The earlier distributions are special cases of this formula, with π hypothesized to equal 0.004, 0.005,
0.0048, 0.001, and 0.0011, respectively. The number π in this formula is called a parameter of the
distribution, because each different value for π produces a different probability distribution. In our
example, π represents the true prevalence of HIV in the sampled population; in other examples, π

will represent risk of disease or death.
We can be even more general by letting N represent the size of our random sample; then the last

equation becomes (
N
y

)
π y(1 − π )N−y [13–3]

Given a fixed sample size N and parameter π , any probability distribution of this form is called a
binomial distribution. Equations 13–1 and 13–2 are examples with N = 1,000 and π = 0.004 and
0.005, respectively.

APPROXIMATE STATISTICS: THE SCORE METHOD

Exact distributions such as the binomial can be unwieldy to work with if N is very large. This
difficulty has led to extensive development of approximations to such distributions, which allow
calculation of approximate P-values and estimates.

Some approximations to the binomial distribution are very accurate. Rather than display the
most accurate, we focus on two approximate methods, the score method and the Wald method, that
are simpler and are special cases of the most common methods. We present many examples of score
and Wald statistics in later chapters. The reader has probably encountered examples in past reading,
for most epidemiologic statistics are of one of these two types.

Suppose that we have a test statistic Y and formulas E(Y |π ) and V (Y |π ) that give us the exact
mean and variance of Y when the true parameter value is π . We may then construct approximate
tests of the parameter by treating Y as if it were normal with mean and variance computed from the
formulas. In the HIV example, Y is binomial, and the formulas for its mean and variance are Nπ

and Nπ (1 − π ). We then test values of π by treating Y as if it were normal with mean Nπ and
standard deviation (SD) [Nπ (1 − π )]1/2. This procedure implies that the score statistic, given by

χscore = (Y − Nπ )/[Nπ (1 − π )]1/2 [13–4]

has a “standard” normal distribution (that is, a normal distribution with a mean of 0 and a SD of 1).
Thus, to find an approximate lower P-value when Y = y, we merely look up the probability that
a standard normal variate would be less than or equal to χscore with y substituted for Y . To find an
approximate upper P-value, we look up the probability that a standard normal deviate would be
greater than or equal to χscore with y substituted for Y .

To illustrate this process, suppose that, in the HIV example, the test hypothesis is that the HIV
prevalence π is 0.004. Because N = 1,000 subjects were observed and only Y = 1 was HIV-
positive, we get

χscore = 1 − 1,000(0.004)

[1,000(0.004)(1 − 0.004)]1/2
= −1.503

To get the lower P-value based on this statistic, we need only use a table of the standard normal
distribution to find the probability that a standard normal variate would be less than or equal to
−1.503; it is 0.067. This value is not particularly close to the exact lower P-value of 0.091 that
we obtained earlier. The discrepancy is not surprising, considering that the approximation depends
on both Nπ and N (1 − π ) being “large” (5 or more), and that Nπ is here only 1,000(0.004) = 4.
If, however, we next test π = 0.005, we get Nπ = 5, a score statistic of χscore = −1.793, and an
approximate lower P-value of 0.036, practically the same as the exact lower P-value of 0.040 for
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π = 0.005. As before, to get a two-sided P-value, we would just double the smaller of the upper
and lower P-values.

This example illustrates that some care is needed when using approximate formulas such as
formula 13–4. The criteria for valid approximation are usually summarized by saying that the
sample size N must be “large.” Unfortunately, a truly large sample is neither necessary nor sufficient
for a close approximation. For example, a sample size of 10 can yield a useful approximation if
π = 0.5, for then Nπ = N (1 − π ) = 5. In contrast, a sample size of 100,000 is not big enough to
test approximately an hypothesized prevalence of 0.00002, for then Nπ is only 2.

We could, if we wished, find approximate 90% confidence limits for the HIV prevalence π just as
before, by trying different hypothesized prevalences π in the score statistic until we found the pair
of prevalences with approximate two-sided P-values of 0.10. From a table of the standard normal
distribution, we can see that this pair of prevalences must be the pair that yields score statistics
(χscore) of −1.645 and 1.645, because a standard normal deviate has a 5% chance of falling below
−1.645 and a 5% chance of falling above 1.645. For 95% limits, we would need to find the pair
of prevalences that yield score statistics of −1.96 and 1.96. From trying different values for π in
formula 13–4 with N = 1,000, we can see that a prevalence of 0.0045 yields a score statistic χscore

of −1.645. Thus, 0.0045 must be the approximate (upper) 90% confidence limit based on the score
statistic given above. This value is not far from the exact limit of 0.0047, which we could have
anticipated from the fact that 1,000(0.0045) = 4.5 is close to 5.

The approximate point estimate corresponding to the score statistic is easy to find: The approx-
imate upper and lower P-values can be equal only for the prevalence

∧
π that makes χscore = 0. The

latter can happen only if the numerator of χscore is zero, so that

Y − N
∧
π = 0

Solving for
∧
π yields the approximate estimator

∧
π = Y/N . This result shows that the score estimate

equals the observed sample proportion. In our example,
∧
π = 1/1,000 = 0.0010, corresponding to

an HIV prevalence of 0.10%. This approximate estimate is remarkably close to the median-unbiased
estimate of 0.0011, considering that the informal large-sample criterion N

∧
π equals 1,000(0.0010) =

1, and so is nowhere near “large.”
Summarizing and generalizing the above discussion, the score method is based on taking a test

statistic Y for which we can compute the exact mean and variance E(Y |π ) and V (Y |π ), and creating
from these quantities a score statistic

χscore = Y − E(Y |π )

V (Y |π )1/2
[13–5]

Approximate P-values are found by treating this score statistic as normal with a mean of 0 and a
SD of 1. An approximate point estimate may be found by solving the score equation

Y − E(Y |π ) = 0

to obtain the
∧
π that has a score statistic of 0 (and hence a two-sided score P-value of 1, the largest

possible value).
Under the most commonly used probability models (such as those that assume the observed

outcomes are independent and have a binomial, Poisson, or normal distribution), the point estimate∧
π obtained from the score equation turns out to equal the maximum-likelihood estimate (see later).
This equivalence arises because the numerator of the score statistic equals the derivative of the
log-likelihood function produced by those models. A score statistic obtained by differentiating the
log-likelihood function is sometimes called the efficient score statistic under the assumed probability
model (Cox and Hinkley, 1974). Some statistics books drop the word efficient and use the term score
statistic to refer only to the score statistic derived from the log-likelihood function.

APPROXIMATE STATISTICS: THE WALD METHOD

Although score statistics are much easier to use than exact statistics, they still require some modest
computing to find confidence limits. This computational requirement arises because the SD in the
denominator of a score statistic changes for each test hypothesis (prevalence). A simpler approxi-
mation, called the Wald method, replaces the SD in the score statistic (formula 13–5) by a single
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unchanging value, the SD when π = ∧
π , the approximate point estimate. This substitution yields

the Wald statistic based on Y ,

χ
Wald

= Y − E(Y |π )

V (Y |π = ∧
π )1/2

[13–6]

In the HIV example,
∧
π = Y/N , so

χ
Wald

= Y − Nπ

[N
∧
π (1 − ∧

π )]1/2

= Y − Nπ

[Y (N − Y )/N ]1/2
[13–7]

If we replace χ
Wald

by the value that a desired upper confidence limit πU would yield, we could solve
the resulting equation for this πU. For example, to get the upper limit of a two-sided 90% interval,
we need to find the prevalence πU that solves

χ
Wald

= y − NπU

[y(N − Y )/N ]1/2
= −1.645

Solving for πU, we get

πU = Y/N + 1.645 [Y (N − Y )/N ]1/2/N

In our HIV example,

πU = 1/1,000 + 1.645[1(999)/1,000]1/2/1,000

= 0.0026

This approximation is poor compared with the score limit. The score statistic yielded an upper limit
of 0.0045, whereas the exact upper limit was 0.0047. Unfortunately, this result is typical: Simpler
formulas usually yield poorer approximations.

In general, P-values and hence intervals from the Wald method are less accurate than those
from the score method, because the Wald method is itself an approximation to the score method (in
the above example, it replaces the varying denominator of the score statistic χscore, which depends
on π , with a single standard deviation). Because the score method is also an approximation, the
Wald method is an approximation to an approximation, and so requires criteria more stringent—
for binomial distributions, larger Nπ and N (1 − π )—than those required for the score method
to be accurate. Nonetheless, because it is so simple, the Wald method is the most widely used
approximation. Its accuracy can be improved by applying it to a function of the proportion, such as
the logit transform, instead of to the proportion itself (see Chapter 14).

LIKELIHOOD FUNCTIONS

Likelihood functions play a central role in modern statistical theory. Consider again the general
formula 13–3 for the binomial distribution with sample size N , number of observed cases y, and
probability parameter π . Let us substitute into this formula the data values for N and y from our
hypothetical HIV survey, 1,000 and 1. We get(

1,000
1

)
π1(1 − π )1,000−1 = 1,000π (1 − π )999 [13–8]

Note carefully the following crucial point: Once we replace the data variables in the general binomial
probability formula, equation 13–3, with actual data numbers, we are left with a formula, equation
13–8, that has only one variable, π, which is the unknown prevalence parameter that we are trying
to estimate.

We can view equation 13–8 as representing a simple mathematical function of the parameter π.
This function is called the likelihood function for π and is denoted by L(π ). That is,

L(π ) = 1,000π (1 − π )999 [13–9]
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is the likelihood function for π given the hypothetical data in our example. This function has a
number of applications in statistical analysis. First, it can be used to measure directly the relative
support the data provide to various hypotheses. Second, it can supply approximate tests and estimates
that have reasonable accuracy in large samples. Third, it can be used to compute Bayesian statistics.

The first two applications begin by finding the value for π , the unknown parameter, that makes
the likelihood function L(π ) as large as it can be. In other words, we find the value of π that brings
L(π ) to its maximum value. For example, with calculus we can show that the maximum of formula
13–9 occurs when π is 1/1,000 = 0.001. This value for π is called the maximum-likelihood estimate
(MLE) of π. More generally, with calculus we can show that the maximum-likelihood estimate for
a binomial parameter π is equal to the number of cases divided by the number sampled, y/N . We
denote this estimate by

∧
πml to distinguish it from the median-unbiased estimate, which was 0.0011

in our example.
Next, consider the maximum value of the likelihood function,

= L(
∧
πml) = L(0.001)

= 1,000(0.001)(1 − 0.001)999 = 0.3681

Suppose that we are interested in testing a particular hypothesized value for π, say 0.005. One
way to do so would be to take the ratio of the likelihood function at π = 0.005 to the function at∧
πml = 0.001. We have

L(0.005) = 1,000(0.005)(1 − 0.005)999 = 0.0334

which is 0.0334/0.3681 = 0.0908 (about 9%) of the maximum value. Some authors suggest using
this likelihood ratio or its logarithm to measure directly the degree to which the data support the
hypothesized value for π (Edwards, 1992; Goodman and Royall, 1988). Such direct use of likelihood
ratios is sometimes called “pure likelihood inference.”

In general terms, if we are given a hypothesized (test) value π, then we may measure the relative
support the data give π by the likelihood ratio

LR(π ) = L(π )/L(
∧
πml) [13–10]

or its natural logarithm ln[LR(π )] (Goodman and Royall, 1988; Royall, 1997). In our example, if
the test value is 0.005, then the likelihood ratio is

LR(0.005) = 0.0334/0.3681 = 0.0908

If the test value is 0.004, the likelihood ratio is

LR(0.004) = L(0.004)/L(
∧
πml)

= 1,000(0.004)(1 − 0.004)999/0.3681 = 0.0730/0.3681 = 0.198

or about 20%, more than twice the likelihood ratio for 0.005. Thus, in pure likelihood terms, we
could say that a prevalence of 0.004 has twice as much relative support from the data as 0.005.

In likelihood theory, all support is measured relative to the maximum-likelihood estimate. Conse-
quently, the maximum-likelihood estimate

∧
πml (0.001 in our example) always has the 100% relative

support, because

LR(
∧
πml) = L(

∧
πml)/L(

∧
πml) = 1.00

Although there are no firm guidelines, it is sometimes implied that test values for the study parameter
π that have likelihood ratios below e−2 = 0.135 (13.5% or about 1/7) of the maximum are not well
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supported by the data (Edwards, 1992). In our example, the upper-score 90% confidence limit of
0.0045 determined earlier has a likelihood ratio of

LR(0.0045) = 1,000(0.0045)(1 − 0.0045)999/0.3681 = 0.135

and so by the 13.5% criterion is on the boundary in terms of relative support. The value 0.0045 is
thus an example of a pure likelihood limit at the 13.5% relative support level. It is an upper limit,
as can be seen from the fact that 0.004 has more relative support and 0.005 has less.

APPROXIMATE STATISTICS: THE LIKELIHOOD-RATIO METHOD

Although pure likelihood limits are not conceptually the same as confidence limits, 13.5% likelihood
limits and 95% confidence limits tend to be close in value in large samples. The two types of limits
are guaranteed to be close if the confidence limits are approximate ones calculated by the likelihood-
ratio method, which we now describe.

As before, suppose that π is the test value of the parameter of interest. Then −2 times the natural
log of the likelihood ratio,

χ2
LR = −2 · ln[LR(π )] [13–11]

will have an approximately χ2 distribution with one degree of freedom if π is the true value of
the parameter (i.e., if the test hypothesis is true), provided all the usual validity conditions hold
(absence of bias and the correct probability model is used to construct the likelihood function)
and the sample is “large” in the sense described earlier (Nπ and N (1 − π ) both greater than 5)
(Lehmann, 1986; Cox and Hinkley, 1974). The test statistic χ2

LR in formula 13–11 is called the
likelihood-ratio statistic or deviance statistic for testing the hypotheses that π is the true value, and
the test of π based on it is called the likelihood-ratio test or deviance test.

Unlike the score and Wald statistics, the likelihood-ratio statistic bears no resemblance to the
ordinary test statistics of elementary courses. It requires some calculus (specifically, the use of a
Taylor-series expansion) to show the rather remarkable fact that χ2

score, the score χ2 based on taking
the number of cases as the test statistic (formula 13–5), will approximate χ2

LR, the likelihood-ratio
statistic (formula 13–11), if the sample size is large enough and the test value has reasonably high
support (Cox and Hinkley, 1974). Because the P-value from χ2

score is two-sided, we can see that
the P-value derived from χ2

LR must also be two-sided.
How good are the likelihood-ratio statistics in our example? Because there is only one case among

the 1,000 persons sampled, they appear very poor relative to the exact statistics. The likelihood ratio
for an HIV prevalence of 0.004 was found earlier to be 0.198, so the likelihood-ratio statistic for
this prevalence is −2 · ln(0.198) = 3.24. From a one-degree-of-freedom χ2 table, we see that this
statistic yields a two-sided P-value of 0.072. Contrast this result with the corresponding two-sided
exact P-value of 2(0.091) = 0.18, or the two-sided score P-value of 2(0.067) = 0.13. Only the
two-sided Wald P-value looks less accurate than the likelihood-ratio result in this example. The
Wald statistic is

1 − 1,000(0.004)

[1,000(0.001)(1 − 0.001)]1/2
= −3.00

which yields a two-sided P-value of 0.003.
In this example, the large disparities among the statistics are due chiefly to the fact that the

maximum-likelihood estimate of the expected number of cases is very far from the large-sample
criterion: N

∧
πml = 1,000(0.001) = 1 in this example. If

∧
πml, Nπ, N (1 − ∧

πml), and N (1 − π )
were all at least 5, we would expect the likelihood-ratio statistic to be much closer to the score
statistic.

Likelihood-ratio confidence limits are computed by finding the two parameter values that have
likelihood-ratio P-values equal to 1 minus the confidence level. This calculation is equivalent to
finding the two limits that have likelihood-ratio statistics equal to the desired percentile of a one-
degree-of-freedom χ2 distribution. Thus, to find 90% likelihood-ratio confidence limits, we find the
two parameter values πL and πU that solve the equation

−2 · ln[LR(π )] = 2.71 [13–12]
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because 2.71 is the 90th percentile of a χ2 distribution with one degree of freedom. In the HIV
example, we find the limits by solving

−2 · ln[1,000π (1 − π )999/0.3681] = 2.71

The solution for the upper limit πU is 0.0036. This limit is not close to the exact limit of 0.0047
or the score limit of 0.0045, but it is still better than the Wald limit of 0.0030. Again, with more
cases, the likelihood-ratio result would be much closer to the score result, and all the results would
converge to one another.

If we had desired 95% limits instead, we would solve

−2 · ln[LR(π )] = 3.84 [13–13]

because 3.84 is the 95th percentile of a χ2 distribution with one degree of freedom. This equation
yields an upper 95% limit for π of 0.0044, very close to the 13.5% upper pure likelihood limit
found earlier. This is no coincidence. Recall that the pure likelihood limit was the upper value for
π such that LR(π ) = e−2. If we solve the confidence-limit equation 13–13 for the likelihood ratio
LR(π ), we get

LR(π ) = exp[−1/2(3.84)] = e−1.92 = 0.147

Thus, the pure-likelihood equation for 13.5% limits and the likelihood-ratio equations for 95%
confidence limits are almost the same, and so should yield almost the same interval estimates
for π .

For more thorough discussions of the uses of likelihood functions in testing and estimation, and
their relation to the score and Wald methods, see Clayton and Hills (1993) for a basic treatment
oriented toward epidemiologic applications. Cox and Hinkley (1974) provide a classic treatment
oriented toward general conceptual issues as well as mathematical details (the latter authors refer
to the Wald statistic as the “maximum-likelihood test statistic”).

LIKELIHOODS IN BAYESIAN ANALYSIS

The third application of likelihood ratios is in computing Bayesian statistics, which may be illustrated
in its simplest form by combining likelihood ratios with prior odds of hypotheses to find posterior
odds of hypotheses. Returning to the HIV survey, suppose that, before seeing the data, we think
it twice as probable that the prevalence π is 0.004 as opposed to 0.005. That is, we would bet in
favor of 0.004 over 0.005 with two-to-one (2/1) odds (perhaps because of previous survey results).
How should we revise these betting odds upon seeing the data? More generally, given a prior odds
(odds before seeing the data) for parameter value π1 versus parameter value π0, what should be the
posterior odds (odds after seeing the data)?

The answer can be computed from elementary probability theory to be

Odds after data = likelihood for π1

likelihood for π0

odds before data

or

Posterior odds = L(π1)

L(π0)
prior odds [13–14]

Unlike the earlier applications, the likelihood ratio in formula 13–14 does not involve the maximum-
likelihood estimate (the latter is often unnecessary for a Bayesian analysis). In our example, π1 =
0.004, π0 = 0.005, and our prior odds were 2/1 = 2, so L(π1) = L(0.004) = 0.0730, L(π0) =
L(0.005) = 0.0334, and

Posterior odds = 0.0730

0.0334

2

1
= 0.1460

0.0334
= 4.36

1

Thus, if we started out 2/1 in favor of π = 0.004 over π = 0.005, after seeing the data we should
be 4.36/1 in favor of 0.004 over 0.005.

One must take care to note that the last answer applies only to the stated pair of hypotheses,
π1 = 0.004 and π0 = 0.005. Even though we may favor 0.004 over 0.005 by a wide margin, it
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does not mean that 0.004 should be our most favored or 0.005 our least favored hypothesis when
considering other hypotheses. Calculation of other posterior odds for other pairs of values for π

would be needed to broaden the scope of our analysis.
Bayesian philosophy and elementary Bayesian methods will be covered in Chapter 18. There

it is shown how Bayesian statistics can be computed from ordinary frequentist programs via the
device of “prior data.” There are now many books that give comprehensive treatments of Bayesian
theory and methods for applied researchers, such as Gelman et al. (2003).

CHOICE OF TEST STATISTICS

So far, we have given no indication of how one should go about choosing a statistic Y on which to base
testing and estimation. In any analysis there will be many possibilities. In the survey example we took
the number of positives (cases) as our test statistic Y. If we let A stand for the number of cases, we
can say we took Y = A. But we could have taken Y = ln(A) or Y = logit(A/N ) = ln[A/(N − A)]
as test statistics for normal approximation, to name only two of many possibilities. Why choose Y
to be the number of cases?

This is a subtle issue, and we can only outline certain aspects of it here. Statisticians have
used various criteria to choose test statistics in a given problem. The primary criterion, confi-
dence validity, requires that the chosen statistic yield approximate confidence intervals with proper
coverage: For reasonably sized samples and reasonable parameter values, an approximate inter-
val should contain (cover) the true parameter with a frequency no less than its stated (nominal)
confidence level (Rubin, 1996). For example, an approximate 95% confidence interval is valid
if it will contain the true parameter with a frequency no less than 95% over study repetitions.
To choose among valid approximate intervals, we may further impose a second criterion, which
is precision. For reasonable-sized samples and reasonable parameter values, a valid and precise
interval has an average width over the repetitions that is no greater than other valid intervals.
Taken together, the two criteria of validity and precision are sometimes referred to as accuracy
criteria.

Although we have stated these two criteria qualitatively, it is more practical to use them quanti-
tatively and note the trade-off between validity and precision. For example, in a given setting, one
approximate 95% confidence interval might cover 94% of the time while another might cover 95%
of the time, but if the second interval were always 30% wider than the first, we should prefer the
first interval for precision, even though it is not quite as valid as the second.

A third criterion in choosing a statistic Y is the ease or availability of computational formulas
for its mean and variance. For most choices of Y, including logit(A/N ) in the preceding example,
one must use approximate means and variances. Worse, approximate intervals that use ln(A) or
logit(A/N ) directly as test statistics tend to be less valid than those based on Y = A, with little
or no precision or computation advantage. On the other hand, taking Y = arcsine[(A/N )1/2] can
produce more valid intervals than taking Y = A, but it also requires use of approximations to its
mean and variance that become unwieldy in stratified analyses. We thus might view the choice
Y = A, the number of cases, as representing a compromise between accuracy and simplicity. The
choice Y = A can also be derived from consideration of score statistics and likelihood functions
(Gart and Tarone, 1983).

CONTINUITY CORRECTIONS AND MID-P-VALUES

As we saw in earlier sections, there can be some discrepancies between exact and approximate
results. There are two major philosophies for dealing with these discrepancies, each with corre-
sponding methods.

The traditional philosophy is based on the fact that only traditional exact confidence intervals
are conservatively calibrated: If the underlying assumptions are correct, a traditional exact 90%
interval is guaranteed to cover (contain) the true measure of occurrence or effect with a frequency
no less than 90%. Parallel statements apply for other confidence levels. We emphasize the phrase
“no less than 90%” because, although in some situations the actual frequency will be 90%, in others
the traditional exact 90% interval will cover the true measure with a greater frequency—as much
as 100% in some extreme examples.



P1: TNL Printer: RRD

GRBT241-13 GRBT241-v4.cls February 2, 2008 11:48

232 Section III ● Data Analysis

The traditional philosophy maintains that overcoverage (coverage frequency above the stated
confidence level) is always preferable to undercoverage (coverage frequency below the confidence
level). Thus, because traditional exact intervals never suffer from undercoverage, the traditional
philosophy would have us adjust our approximation methods so that our approximate P-values and
intervals come close to the traditional exact P-values and intervals. In other words, it would have
us take traditional exact results as the “gold standard.”

Perhaps the simplest way to implement this philosophy is to adopt what are known as continuity
corrections for approximate statistics (Yates, 1934). The score approximation uses a normal curve
whose mean and SD are E(Y |π ) and V (Y |π )1/2. In the preceding example, the lower P-value was
taken as the area under the normal curve to the left of the observed Y value. A better approximation
is obtained by taking the area under the normal curve to the left of the point midway between the
observed Y and the next largest Y. That is, to get a better approximation to the traditional exact lower
P-value, we should replace Y by Y + 1/2 in the score statistic χscore (equation 13–5). Similarly, to
get a better approximation to the traditional exact upper P-value, we should replace Y by Y− 1/2 in
the score statistic.

The factors 1/2 for Plower and −1/2 for Pupper are examples of continuity corrections, and the
statistics obtained when using them are said to be continuity corrected. In the HIV survey example,
the continuity-corrected score statistic for getting a lower P-value to test a prevalence of 0.004 is

1 + 1/2 − 1,000(0.004)

[1,000(0.004)(1 − 0.004)]1/2
= −1.253

This statistic yields a continuity-corrected lower P-value of 0.105, which (as desired) is closer to
the traditional exact value of 0.091 than the uncorrected value of 0.067 found earlier.

A second, alternative philosophy rejects the notions that traditional exact P-values should be
taken as the “gold standard” and that overcoverage is always preferable to undercoverage. Instead,
it maintains that we should seek procedures that produce the narrowest confidence intervals whose
coverage is (in some average sense) as close as possible to the stated confidence level. In this view,
a confidence interval with a stated confidence level of 90% that sometimes covered the truth with
only 88% frequency would be preferable to a much wider interval that always covered with at least
90% frequency. In other words, some risk of moderate undercoverage is acceptable if worthwhile
precision gains can be obtained.

One way of implementing this alternative philosophy is to replace traditional exact P-values
with mid-P-values (Lancaster, 1949, 1961; Berry and Armitage, 1995). The lower mid-P-value
is defined as the probability under the test hypothesis that the test statistic Y is less than its ob-
served value, plus half the probability that Y equals its observed value. Thus, for the HIV survey
example,

mid-Plower = Pr(Y < 1 | HIV prevalence = 0.004) + Pr(Y = 1 | HIV prevalence = 0.004)/2

= (1 − 0.004)1,000 + 1,000(0.004)(1 − 0.004)999/2 = 0.055

This mid-P-value is notably less than the traditional exact P-value of 0.091. For an HIV prevalence
of 0.0041, the lower mid-P-value is 0.050, so 0.0041 is the upper mid-P 90% confidence limit for
the HIV prevalence. This limit is notably less than the traditional exact upper limit of 0.0047, so it
more precisely bounds the HIV prevalence.

To approximate the lower mid-P-value using a normal distribution, we should take the area
under the normal curve to the left of the observed Y value. It follows that, if we wish to approximate
the results from mid-P-values, we should not use continuity corrections (Miettinen, 1974a). This
conclusion is very apparent in the HIV survey example, in which the mid-P-value and the uncor-
rected score P-value for a prevalence of 0.004 are 0.055 and 0.067, while the continuity corrected
score P-value is 0.105.

Upper mid-P-values are defined analogously to lower mid-P-values: The upper mid-P-value is
the probability under the test hypothesis that the test statistic Y is greater than its observed value,
plus half the probability that Y equals its observed value. The two-sided mid-P-value is then just
twice the smaller of the upper and lower mid-P-values. One pleasant property of the two-sided
mid-P-value is that (unlike the traditional two-sided P-value) it cannot exceed 1. To see this, note
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that the upper and lower mid-P-values always sum to 1:

mid-P lower + mid-Pupper = Pr(Y less than observed | test hypothesis)

+ Pr(Y equals observed | test hypothesis)/2

+ Pr(Y greater than observed | test hypothesis)

+ Pr(Y equals observed | test hypothesis)/2

= Pr(Y less than observed | test hypothesis)

+ Pr(Y equals observed | test hypothesis)

+ Pr(Y greater than observed | test hypothesis)

= 1

This result implies that the smaller of mid-Plower and mid-Pupper must be 1/2 or less, so twice this
smaller value (the two-sided mid-P-value) cannot exceed 1.

The median-unbiased point estimate was earlier defined as the point for which the upper and
lower traditional exact P-values are equal. This estimate is also the point for which the upper and
lower mid-P-values are equal. Thus, use of mid-P-values in place of traditional exact P-values
does not change the point estimate.

Mid-P-values are always smaller than traditional exact P-values. As a result, for a given confi-
dence level, fewer points will fall inside the confidence interval produced from mid-P-values than
the traditional exact interval; in other words, the mid-P interval will always be narrower than the
traditional exact interval.

These advantages of mid-P-values do have a price. For example, in some situations involving
small observed numbers, mid-P intervals can suffer from notable undercoverage, as can intervals
based on normal approximations. Thus mid-P intervals, like the approximate intervals, are not
guaranteed to perform well when the observed numbers are very small. They do, however, perform
as well as or better than approximate methods such as the score or Wald method.

Another disadvantage of mid-P-values is that they cannot be interpreted as exact probabilities.
Whereas upper and lower (but not two-sided) traditional exact P-values are exact frequency proba-
bilities of certain events, mid-P-values have no such straightforward frequency interpretation. They
do have useful Bayesian probability interpretations (Nurminen and Mutanen, 1987), but these are
beyond our present discussion. In any case, it can be argued that this interpretational disadvantage
of mid-P-values is of no practical concern if the P-values are used only to construct confidence
intervals.

In sum, one position is that traditional exact P-values are the “gold standard” because confidence
intervals based on them have coverage frequencies no less than the stated (nominal) confidence level
(e.g., 95%). If one accepts this position, one should use continuity corrections with approximate
statistics. The alternative position is that one should not ignore precision concerns, but instead seek
the narrowest interval that is consistent with keeping coverage close to the stated confidence level
of the interval. In particular, some risk of moderate undercoverage is tolerable. If one accepts this
position, one should use mid-P-values in place of traditional exact P-values, and not use continuity
corrections with approximate statistics.

Neither position is completely logically compelling, nor is either position dominant in statistics
today. It may also be argued that the choice is of little practical importance, because any data set
in which the choice makes a large numerical difference must have very little information on the
measure of interest. It can be shown that, when the sample size is large, all the methods (traditional,
mid-P , approximate with or without correction) will give similar results. The difference among
them is marked only when the results are so statistically unstable that most inferences from the data
are unwarranted, even in the absence of biases. For example, in the HIV survey example, the mid-P
confidence limits are not close to the traditional exact limits, because only one case was observed
and hence the results are imprecise.

For simplicity, in the remainder of this book we limit our discussion of approximate statistics to
those without continuity corrections.
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COMPUTATION AND INTERPRETATION OF TWO-SIDED P-VALUES

As we have mentioned, only traditional one-tailed P-values can be interpreted as probabilities in
all circumstances (this is because they are defined as probabilities). Mid-P-values and two-sided
P-values do not share this property except in special circumstances. Nonetheless, if the sample
numbers are large enough so that the traditional, approximate, and mid-P-values are all nearly
equal, the two-sided P-values will have an approximate probability interpretation. Specifically, in
this situation the two-sided P-values will approximately equal the probability that the square of the
score statistic is greater than or equal to its observed value.

For example, if Y has a binomial distribution (as in the HIV example), the square of the score
statistic χscore for testing π is

χ2
score = (Y − Nπ )2

Nπ (1 − π )
[13–15]

In most of the statistics literature, χ2
score rather than χscore is called the score statistic. If both Nπ

and N (1 −π ) are more than 5 or so, all the two-sided P-values discussed above (traditional, score,
Wald, and mid-P) will approximate the probability that χ2

score is greater than or equal to its observed
value. In this large-sample situation, χscore has approximately a normal distribution with a mean of
0 and a SD of 1, and so χ2

score will have approximately a χ2 distribution with one degree of freedom.
Thus, if we are interested only in the two-sided P-value, we can simply compute χ2

score and look
up the probability that a χ2 variate with one degree of freedom is this large or larger. Tables and
functions for this purpose are widely available in statistics books and software.

A common misinterpretation of the two-sided P-value is that it represents the probability that
the point estimate would be as far or farther from the test value as was observed. This interpretation
is not even approximately correct for many epidemiologic estimates, particularly risk differences,
because a P-value refers to the distribution of a test statistic, not a point estimate. As an example,
consider again the HIV survey, this time taking the sample proportion of HIV-positives (which was
0.001) as the test statistic. Suppose our test hypothesis is that the HIV prevalence is 0.005. The
distance between the observed sample proportion of 0.001 and the test value of 0.005 is 0.004. For
the sample proportion to be as far or farther from the test value of 0.005 as was observed, it would
have to be either less than or equal to 0.005 − 0.004 = 0.001 or greater than or equal to 0.005 +
0.004 = 0.009. If the true prevalence is 0.005, the probability of the sample proportion being less
than 0.001 or more than 0.009 is 0.11. This probability is more than the traditional two-sided
P-value of 0.080 computed earlier and more than twice the size of the two-sided mid-P-value of
0.047.

Again, the preceding interpretational obstacles need not concern us if we use two-sided P-values
only to find confidence limits, rather than attempting to interpret them directly. This advantage is yet
another reason to focus on confidence intervals and their coverage interpretation when analyzing
data.

MULTIPLE COMPARISONS

Consider the following problem: We conduct a study in which we examine every exposure–disease
association among 10 exposures and 10 diseases, for a total of 10 ×10 = 100 associations (expo-
sure–disease pairs). To analyze each association, we use a “perfect” method to set 95% confidence
limits—i.e., one that produces intervals containing the true association with exactly 95% frequency.
If the coverage of each interval is independent of the coverage of every other interval, how many
of the 100 resulting confidence intervals should we expect to contain their respective true value?

The answer to this question is simply 95% of the 100, or 95. This means that of the 100
independent confidence intervals we are to examine, we should expect five to miss their target (the
corresponding true value). Of course, anywhere from 0 to 100 may actually miss their target, and
five represents only an average over hypothetical repetitions of the study. But the point is that we
should expect several of these intervals to miss their target, even if we use a perfectly valid 95%
confidence-interval method.

Furthermore, we cannot identify the intervals that missed their targets. Suppose we are very
uncomfortable with the idea of reporting five intervals that miss their targets completely, even if
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the other 95 intervals cover their targets. One alternative is to increase the confidence level of our
intervals. For example, if we increase our confidence level to 99% we can then expect only one of
the 100 intervals to miss their targets. Although this will widen every interval by a considerable
factor (for Wald intervals, the factor will be 2.576/1.960 − 1, or 31%), the widening is an inevitable
price of reducing the 5% miss rate to 1%.

The trade-off we have just described, between the width and the miss rate of the confidence
interval, in no way affects the P-values computed for each association; we simply choose a lower
alpha level and hence a lower slice through the P-value functions to get our interval estimates. There
is, however, another perspective, which leads to an entirely different P-value function from the data.
It is the result of a multiple-comparisons analysis, also known as simultaneous testing, joint testing,
or multiple inference. In this view, we do not treat the 100 associations as 100 separate parameters
to be estimated. Instead, we treat them as composing a single entity with 100 components, called
the joint parameter or vector parameter for the associations. Here we provide an example for a
conceptual introduction and discuss the issues further in Chapter 17.

Suppose that the true values of the 100 associations correspond to 100 risk ratios of 3.0, 2.1, 4.2,
0.6, 1.0, 1.5, and so on (up to 100 values). Then the single vector parameter representing these 100
true values is the ordered list of the values:

(3.0, 2.1, 4.2, 0.6, 1.0, 1.5, . . .)

where the ellipsis represents the list of the remaining 94 risk ratios. Each number in this ordered
list (vector) corresponds to one of the 100 associations of interest and is called a component of the
list. In other words, every single association is only one component of the entire list.

With this simultaneous view of the 100 associations, we can formulate a joint hypothesis that
the entire list of true associations equals a particular list of 100 specified numbers. Most commonly,
this hypothesized list is a list of nothing but null values; for risk ratios this list would comprise
100 ones,

(1, 1, 1, 1, 1, 1, . . .)

where the ellipsis represents 94 more ones. This null list or null vector corresponds to the joint null
hypothesis that there is no association among all 100 exposure–disease pairs. It is also possible to
test other joint hypotheses, for example, that all 100 risk ratios are equal to 2, or that the first 50 in
the list equal 1 and the remaining 50 in the list equal 0.5.

For any joint hypothesis we can imagine, it is possible to construct a statistic for testing that the
hypothesis is true, which yields a P-value and test for that hypothesis. Such a P-value and test are
called a joint P-value and joint test (or simultaneous test) for the associations. In particular, we can
perform a simultaneous test of the joint null hypothesis (that no exposure is associated with any
disease). If the joint test is valid and the joint null hypothesis is correct—so that there really are no
associations at all—there will be no more than a 5% chance that the joint P-value from the test will
fall below 0.05.

JOINT CONFIDENCE REGIONS

We can consider the joint P-values for all possible vectors of values for the 100 associations. This
collection of P-values is the multiple-comparisons analog of the P-value function. The collection
of all vectors that have a joint P-value of at least 0.05 is called a 95% joint confidence region for
the vector of parameter values. A 95% confidence region constructed from a valid testing method
has the useful property that it will include the true parameter vector with a frequency no less than
95%, provided there is no bias and all assumptions underlying the method are satisfied.

How is this joint confidence region for the vector of 100 associations related to the 100 single-
association confidence intervals that we usually compute? If the joint null hypothesis is indeed
correct and single-association intervals are independent of one another, then on average we should
expect about five of the single-association intervals to miss their target, which in every case is
the null value (a risk ratio of 1). We should also expect a valid joint confidence region to include
the null vector 95% of the time, because there is at least a 95% chance that P > 0.05 when the joint
null hypothesis is correct. Thus, if there are no associations, we have this apparently paradoxical
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result: The joint confidence region will probably contain the null vector, apparently saying that
the joint null hypothesis is compatible with the data; yet it is also probable that at least a few
of the single 95% confidence intervals will miss the null, apparently saying that at least a few
single null hypotheses are not compatible with the data. In other words, we expect the joint confi-
dence region to indicate that every association may be null, and the single intervals to indicate that
some associations are not null. In fact, if all the null hypotheses are correct, the single-interval cover-
age probabilities are exactly 95%, and the intervals are independent, then the probability that at least
two of the single intervals will miss the null is 1 minus the binomial probability that only none or
one of the intervals misses the null:

1 − 0.95100 − 100(0.05)0.9599 = 0.96

or 96%.
This apparent paradox has been the source of much confusion. Its resolution comes about by

recognizing that the joint confidence region and the 100 single intervals are all addressing different
questions and have different objectives. A single 95% interval addresses the question, “What is the
value of this parameter?,” where “this” means just one of the 100, ignoring the other 99. Its objective
is to miss the correct value of that one parameter no more than 5% of the time, without regard to
whether any of the other intervals miss or not. Thus, each single interval addresses only one of
100 distinct single-association questions and has only one of 100 distinct objectives. In contrast,
the joint confidence region addresses the question, “What is the vector of parameter values?”; its
objective is to miss the true vector of all 100 associations no more than 5% of the time.

If we are indeed trying to meet the latter objective, we must recognize that some misses by
the single intervals are very likely to occur by chance even if no association is present. Thus,
to meet the objective of joint estimation, we cannot naively combine the results from the single
intervals. For example, suppose that we take as our confidence region the set of all vectors for
which the first component (i.e., the first association in the list) falls within the single 95% interval
for the first association, the second component falls within the single 95% interval for the second
association, and so on for all 100 components. The chance that such a combined region will contain
the true vector of associations is equal to the chance that all the single intervals will contain the
corresponding components. If all the exposures and diseases are independent of one another, this
probability will be 0.95100, which is only 0.6%! These issues are discussed further in Chapter 17.

PROBLEMS WITH CONVENTIONAL APPROACHES

The preceding example illustrates how the tasks of joint testing and estimation are much more
stringent than those of single one-at-a-time testing and estimation. One awful response to this
stringency is to construct the single confidence intervals to have a confidence level that guarantees the
naive combination method just described will yield a valid joint confidence region. This procedure is
called the Bonferroni method for “adjusting for multiple comparisons.” If we want a 95% confidence
region from overlapping the single intervals, in the preceding example we will need a single-interval
alpha level that is one-hundredth the desired joint alpha level. This value is α = 0.05/100 = 0.0005,
which corresponds to a single-interval confidence level of 1 − 0.0005 = 99.95%. This choice yields
a 0.9995100 = 95% chance that a naive combination of all the single 99.95% confidence intervals
will produce a confidence region that includes the true vector of associations. Thus the Bonferroni
method is valid, but the single intervals it produces are much too wide (conservative) for use
in single-association estimation (e.g., Wald intervals have to be 70% wider to get a 95% joint
Bonferroni region when there are 100 associations). Also, the joint Bonferroni confidence region
is typically much larger (more imprecise) than it needs to be; that is, the Bonferroni region is also
unnecessarily imprecise for joint estimation purposes. For hypothesis testing, a procedure that is
equivalent to the Bonferroni adjustment, and equally bad, is to use a 0.05 alpha level but multiply
all the single-association P-values by the number of associations before comparing them to the
alpha level.

A deeper problem in the multiple-comparisons literature is that joint confidence regions have
been recommended in situations in which the scientific objectives of the study call for single
intervals. Typically, the different associations in a study are of interest on a purely one-at-a-time
basis, often to different investigators with different interests. For example, a large health survey
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or cohort study may collect data pertaining to many possible associations, including data on diet
and cancer, on exercise and heart disease, and perhaps many other distinct topics. A researcher
can legitimately deny interest in any joint hypothesis regarding all of these diverse topics, instead
wanting to focus on those few (or even one) pertinent to his or her specialties. In such situations,
multiple-inference procedures such as we have outlined are irrelevant, inappropriate, and wasteful
of information (because they will produce improperly imprecise single intervals) (Rothman, 1990a;
Savitz and Olshan, 1995, 1998; Mayo and Cox, 2006).

Nevertheless, it is important to recognize that investigators frequently conduct data searches or
“data dredging” in which joint hypotheses are of genuine interest (Greenland and Robins, 1991;
Thompson, 1998a, 1998b). Such searches are usually done with multiple single-inference proce-
dures, when special multiple-inference procedures should be used instead. Classic examples of such
misuse of single-inference procedures involve selecting for further analysis only those associations
or interactions that are “statistically significant.” This approach is commonly used in attempts to
identify harmful exposures, high-risk population subgroups, or subgroups that are selectively af-
fected by study exposures. Such attempts represent multiple-inference problems, because the study
question and objectives concern the vector of all the tested associations. For example, central ques-
tions that drive searches for harmful exposures may include “Which (if any) of these associations
is positive?” or “Which of these associations is important in magnitude?”

Unfortunately, conventional approaches to multiple-inference questions (such as Bonferroni
adjustments and stepwise regression) are poor choices for answering such questions, in part be-
cause they have low efficiency or poor accuracy (Greenland, 1993a). More modern procedures,
such as hierarchical (empirical-Bayes) modeling, can offer dramatic performance advantages over
conventional approaches and are well suited to epidemiologic data searches (Thomas et al., 1985;
Greenland and Robins, 1991; Greenland, 1992a; Greenland and Poole, 1994; Steenland et al., 2000;
Greenland, 2000c). We briefly describe these methods in Chapter 21.

SUMMARY

In any analysis involving testing or estimation of multiple parameters, it is important to clarify
the research questions to discern whether multiple-inference procedures will be needed. Multiple-
inference procedures will be needed if and only if joint hypotheses are of interest. Even if one is
interested in a joint hypothesis, conventional or classical multiple-inference procedures will usually
provide poor results, and many better procedures are now available.

When in doubt about the best strategy to pursue, most audiences will find acceptable a presenta-
tion of the results of all single-inference procedures (e.g., confidence intervals for all associations
examined). When this is not possible, and one must select associations to present based on statistical
criteria, one should at least take care to note the number and nature of the associations examined,
and the probable effect of such selection on the final results (for example, the high probability that
at least a few intervals have missed their target).

Chapter 17 provides further discussion of multiple-comparisons procedures, and a graphical
illustration of the distinction between single- and multiple-comparison procedures.
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In Chapter 13 we discussed the fundamentals of epidemiologic data analysis, focusing on methods
used to estimate the proportion of a population with a disease. In this chapter we turn to comparisons
of disease proportions, odds, or rates in two groups of people. We therefore present the basic structure
of statistical techniques for cross-tabulations of person-counts and person-time. To do so, we focus
almost exclusively on methods for unstratified (crude) data and then, in Chapter 15, extend these
methods to stratified data. We also discuss only differences and ratios of risks, rates, and odds, and
defer discussion of attributable fractions and survival-time comparisons until Chapter 16. Finally,
we limit the present chapter to data with a dichotomized exposure and outcome variable. In Chapter
17, the methods given here and in Chapter 15 are extended to exposures and outcomes with multiple
levels. Chapter 18 provides Bayesian analogs of the basic methods given here and in Chapter 15.

In order to discourage the use of confidence intervals as 0.05-level significance tests, we often use
90% or 99% intervals rather than the conventional 95% intervals in our examples. A large-sample
90% interval has the small technical advantage of more closely approximating the corresponding
exact interval. The present chapter provides both approximate and exact intervals, so that the reader
can obtain a feel for the difference between the two. In any event, the formulas allow one to choose
one’s own confidence level.

Although it is usually necessary to take into account factors beyond the exposure and the disease
of interest, it is not unusual to see data analyzed and presented in crude form. Narrow restrictions
on covariates in subject selection to prevent confounding can sometimes obviate the need for

238
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stratification. Results of large randomized trials may often be summarized adequately in unstratified
form.

As is usually done in basic statistical presentations, we assume throughout this chapter that
there is no source of bias in the study—no measurement error, selection bias, follow-up bias, or
confounding. Confounding and some forms of selection bias due to measured covariates can be
handled by stratification. Chapter 19 discusses analysis of confounding by unmeasured covariates,
general selection bias, and misclassification. Several other statistical assumptions will be used
in most of what we present: sufficiency of sample size, independence of subject outcomes, and
homogeneity of risk within levels of exposure and stratification variables. Throughout, we point
out the sample-size limitations of the large-sample methods.

SAMPLE-SIZE CONSIDERATIONS

For most applications, computation of small-sample statistics (such as exact and mid-P-values and
confidence limits) are practical only if one has computer software that provides them, whereas
for unstratified data one can quickly compute large-sample (approximate) statistics with a hand
calculator. Therefore, we focus on large-sample methods. In the final sections of this chapter we
present small-sample methods for unstratified data, without computational details. The formulas
we present are intended only to illustrate the concepts underlying small-sample statistics. Good
statistical programs employ more general and more efficient formulas; hence, we expect and rec-
ommend that users will obtain small-sample statistics from packaged software. After introducing
exact methods for count data, we illustrate how to trick programs written to do exact analysis of
2 × 2 tables (which are used to compare two cohorts) into providing the corresponding analyses
of single cohorts and of person-time data. Rothman and Boice (1982), Rothman (1986), and Hirji
(2006) provide more formulas for small-sample analysis.

INDEPENDENCE OF OUTCOMES

Most of the methods discussed in this book assume that the outcomes of study subjects are indepen-
dent, in the following narrow sense: Once you know the risk of a group (such as the exposed group),
discovering the outcome status of one group member will tell you nothing about the outcome status
of any other group member. This assumption has subtleties and is often misunderstood or over-
looked. A straightforward practical consequence of this assumption, however, is that all the P-value
and confidence-interval methods we present will usually not give valid results when the disease is
contagious, or when the subjects under study can contribute multiple disease events to the total case
count (as in studies of recurrent outcomes). A simple solution in the latter case is to count only the
first event contributed by each subject, although this simplification will limit generalizability.

When dependence is present, many phenomena can arise that require special analytic attention.
At the very least, the standard deviations (SDs) of conventional estimates are likely to be underesti-
mated by conventional techniques, thus leading to underestimation of the uncertainty in the results.
Therefore, we frequently remind the reader that conventional models implicitly assume indepen-
dence. The independence assumption is plausible in most studies of first occurrences of chronic
diseases (e.g., carcinomas, myocardial infarction) but is implausible in studies of contagious dis-
eases. Note, however, that neither dependence nor contagiousness is synonymous with the disease
having an infectious agent among its causes. First, some infectious diseases (such as Lyme disease)
may have no transmission among humans. Second, some noninfectious conditions, such as drug
use and other health-related behaviors may be transmitted socially among humans.

HOMOGENEITY ASSUMPTIONS

Implicit in comparisons of observed incidence rates is the concept that a given amount of person-
time, say 100 person-years, can be derived from observing many people for a short time or few
people for a long time. That is, the experience of 100 persons for 1 year, 200 persons for 6 months,
50 persons for 2 years, or 1 person for 100 years are assumed to be equivalent. Most statistical
methods assume that, within each analysis subgroup defined by exposure and confounder levels,
the probability (risk) of an outcome event arising within a unit of person-time is identical for all
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person-time units in the stratum. For example, the methods based on the Poisson distribution that
we present are based on this homogeneity assumption. Because risk almost inevitably changes over
time, the homogeneity assumption is only an unmet idealization. Although the assumption may be
a useful approximation in many applications, it is inadvisable in extreme situations. For example,
observing one individual for 50 years to obtain 50 person-years would rarely approximate the
assumption, whereas observing 100 similar people for an average of 6 months each may sometimes
do so. Usually the units of person-time in the denominator of a rate are restricted by age and the
amount of calendar time over which person-time has been observed, which together prevent the
within-stratum heterogeneity that aging could produce.

In a similar fashion, most statistical methods for pure count data assume that, within each analysis
subgroup, subjects have identical risks. Another way of stating this assumption is that the probability
of experiencing an outcome event is identical for all persons in a given subgroup. For example,
the methods based on the binomial and hypergeometric distributions presented in this chapter are
based on this homogeneity assumption.

For both person-time and pure-count data, heterogeneity of risk (violation of the homogeneity
assumption) will invalidate the standard-deviation formulas based on that assumption, and so will
lead to erroneous uncertainty assessments.

CLASSIFICATION OF ANALYSIS METHODS

Epidemiologists often group basic types of epidemiologic studies into cohort, case-control, or
cross-sectional studies (Chapter 6). Classification according to the probability model underlying
the statistics leads to a different categorization, according to whether or not the data include person-
time (time-at-risk) measurements among the basic observations. Although person-time observations
pertain only to cohort studies, not all analyses of cohorts make use of such data. If there is no loss-to-
follow-up or late entry in any study group, the study groups form closed populations (Chapter 3). It
may then be convenient to present the data in terms of proportions experiencing the outcome, that is,
incidence proportions (which serve as risk estimates). For these closed-cohort studies, the number
of cases can be measured relative to person counts (cohort sizes), as well as relative to person-time
experience. Clinical trials are often presented in this manner. Person-count cohort data are also
common in perinatal research, for example, in studies in which neonatal death is the outcome.

It can be shown that, under conventional assumptions of independence and identical risk of
persons within exposure levels and analysis strata (along with absence of bias), many of the statistical
methods developed for cohort data can also be applied to analysis of case-control data and prevalence
(cross-sectional) data (Anderson, 1972; Mantel, 1973; Prentice and Breslow, 1978; Farewell, 1979;
Prentice and Pyke, 1979; Thomas, 1981b; Greenland, 1981; Weinberg and Wacholder, 1993). As
discussed in Chapter 15, relatively minor modifications are required for basic analyses of two-stage
data. These facts greatly reduce the number of analytic methods needed in epidemiology. Slightly
more complicated methods are needed for estimating risk ratios from case-cohort data.

In studies that involve extended follow-up, some subjects may leave observation before the study
disease occurs or the risk period of interest ends (e.g., because of loss to follow-up or competing
risks). For such studies, methods that stratify on follow-up time will be needed; these methods are
given in Chapter 16.

PERSON-TIME DATA: LARGE-SAMPLE METHODS

SINGLE STUDY GROUP

The simplest statistics arise when the data represent incidence in a single study group. Examples
are common in occupational and environmental epidemiology, especially in the initial analysis of
excess morbidity or mortality in a single workplace, community, or neighborhood. In such studies,
the analysis proceeds in two steps: First, an expected number of cases, E , is calculated; second, the
number of cases observed in the study group, A, is compared with this expected number.

Usually, E is calculated by applying stratum-specific incidence rates obtained from a large
reference population (such as vital statistics data for a state or country) to the stratum-specific
person-time experience of the study group. The process by which this is done is an example of
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standardization, which in this situation involves taking a weighted sum of the reference rates, using
the stratum-specific person-time from the study group as weights (see Chapter 3). For example,
if we are studying the stomach cancer rates in a group consisting of persons aged 51 to 75 years
divided into three age categories (ages 51 to 60 years, 61 to 70 years, 71 to 75 years), two sexes,
and two ethnicity categories, there are a total of 3(2)2 = 12 possible age–sex–ethnicity categories.
Suppose that the person-times observed in each subgroup are T1, T2, . . . , T12, and the corresponding
age–sex–ethnicity specific rates in the reference population are known to be I1, . . . , I12. Then,
for a cohort that had the same age–sex–ethnicity specific rates as the reference population and the
same person-time distribution as that observed in the study group, the number of cases we should
expect is

E = T1 I1 + T2 I2 + · · · + T12 I12

The quantity E is generally not precisely equal to the number of cases one should expect in the
study group if it had experienced the rates of the reference population (Keiding and Vaeth, 1986).
This inequality arises because an alteration of the person-time rates in the study group will usually
alter the distribution of person-time in the study group (see Chapters 3 and 4). Nonetheless, the
quantity E has several valid statistical uses, which involve comparing A with E .

The ratio A/E is sometimes called the standardized morbidity ratio (or standardized mortality
ratio, if the outcome is death), usually abbreviated as SMR. Let T be the total person-time observed
in the study group; that is, T = �

k
Tk . Then A/T is the observed crude rate in the study group,

and E/T is the rate that would be expected in a population with the specific rates of the reference
population and the person-time distribution of the study group. The ratio of these rates is

A/T

E/T
= A

E

which shows that the SMR is a rate ratio.
Boice and Monson (1977) reported A = 41 breast cancer cases out of 28,010 person-years at

risk in a cohort of women treated for tuberculosis with x-ray fluoroscopy. Only E = 23.3 cases were
expected based on the age-year specific rates among women in Connecticut, so A/E = 41/23.3 =
1.76 is the ratio of the rate observed in the treated women to that expected in a population with
the age-year specific rates of Connecticut women and the person-time distribution observed in the
treated women.

To account for unknown sources of variation in the single observed rate A/T , we must specify
a probability model for the random variability in the observed number of cases A. If the outcome
under study is not contagious, the conventional probability model for a single observed number of
cases A is the Poisson distribution. Define I to be the average rate we would observe if we could
repeat the study over and over again under the same conditions with the same amount of person-time
T observed each time (the latter condition could be imposed by ending follow-up upon reaching T
units). The Poisson model specifies that the probability of observing A = a (that is, the probability
that the number of cases observed equals a), given that T person-time units were observed in the
study group, is

Pr(A = a) = exp (−I · T )(I · T )a/a! [14–1]

The Poisson model arises as a distribution for the number of cases occurring in a stationary
population of size N followed for a fixed time span T/N . It also arises as an approximation to the
binomial distribution (see Chapter 13) when N is very large and risk is very low (Clayton and Hills,
1993). The latter view of the Poisson distribution reveals that underlying use of this distribution
are assumptions of homogeneity of risk and independence of outcomes described earlier, because
these assumptions are needed to derive the binomial distribution.

In data analysis, the average rate I is an unknown quantity called the rate parameter, whereas
A and T are known quantities. The function of I that results when the observed number of cases
and person-time units are put into equation 14–1 is called the Poisson likelihood for I based on the
data.
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We state without proof the following facts. Under the Poisson model (equation 14–1),

1. A/T is the maximum-likelihood estimator (MLE) of I (for a discussion of maximum-likelihood
estimation, see Chapter 13).

2. I · T is the average value of A that we would observe over study repetitions in which T person-
time units were observed, and so I · T/E is the average value of the SMR over those repetitions
(I · T/E is sometimes called the SMR parameter); I · T is also the variance of A over those
repetitions.

It follows from the second fact that a large-sample statistic for testing the null hypothesis that the
unknown rate parameter I equals the expected rate E/T is the score statistic

χscore = A − E

E1/2

because if I = E/T , the mean and variance of A are both (E/T )T = E .
For the Boice and Monson (1977) study of breast cancer, the Poisson likelihood is

exp(−I · 28,010)(I · 28,010)41/41!,

the MLE of I is 41/28,010 = 146 cases/100,000 person-years, and the score statistic for testing
whether I = 23.3/28,010 = 83 cases/100,000 person-years is

χscore = A − E

E1/2
= 41 − 23.3

23.31/2
= 3.67

From a standard normal table, this yields an upper-tailed P-value of 0.0001. Thus a score statistic
as large or larger than that observed would be very improbable under the Poisson model if no bias
was present and the specific rates in the cohort were equal to the Connecticut rates.

Let IR be the ratio of the rate parameter of the study group I and the expected rate based on the
reference group E/T :

IR = I

E/T

Because A/T is the MLE of I,

ÎR = A/T

E/T
= A

E

is the MLE of IR. To set approximate Wald confidence limits for IR, we first set limits for the natural
logarithm of IR, ln(IR), and then take the antilogs of these limits to get limits for IR. To do so, we
use the fact that an estimate of the approximate SD of ln(ÎR) is

ŜD[ln(ÎR)] = 1

A1/2

Let γ be the desired confidence percentage for interval estimation, and let Zγ be the number such
that the chance that a standard normal variable falls between −Zγ and Zγ is γ % (for example,
Z90 = 1.65, Z95 = 1.96, and Z99 = 2.58). Then γ % Wald confidence limits for IR are given by

IR, IR = exp[ln(ÎR) ± Zγ (1/A1/2)]

For the Boice and Monson (1977) comparison, the 90% and 95% limits are

IR, IR = exp[ln(41/23.3) ± 1.65(1/411/2)] = 1.36, 2.28

and

IR, IR = exp[ln(41/23.3) ± 1.96(1/411/2)] = 1.30, 2.39

These results suggest that, if the Poisson model is correct, if the variability in E is negligible,
and if there is no bias, there is a nonrandom excess of breast cancers among fluoroscoped women
relative to the Connecticut women, but do not indicate very precisely just how large this excess
might be.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 4 – 1

Format for Unstratified Data with
Person-Time Denominators

Exposed Unexposed Total

Cases A 1 A 0 M 1

Person-time T 1 T 0 T

Under the Poisson model (equation 14–1), the score statistic provides an adequate approximate
P-value when E exceeds 5, whereas the Wald limits will be adequate if IR · E and IR · E exceed 5.
If these criteria are not met, then, as illustrated later in this chapter, one can compute small-sample
statistics directly from the Poisson distribution.

TWO STUDY GROUPS

Now suppose that we wish to compare observations from two study groups, which we shall refer
to as “exposed” and “unexposed” groups. The crude data can be displayed in the format shown in
Table 14–1.

Unlike the notation in Chapter 4, A1 and A0 now represent cases from two distinct populations.
As for a single group, if the outcome is not contagious, one conventional probability model for the
observed numbers of cases A1 and A0 is the Poisson model. If I1 and I0 are the rate parameters for
the exposed and unexposed groups, this model specifies that the probability of observing A1 = a1

and A0 = a0 is

Pr(A1 = a1, A0 = a0) = Pr(A1 = a1) Pr(A0 = a0)

= exp(−I1T1)
(I1T1)a1

a1!
exp(−I0T0)

(I0T0)a0

a0!
[14–2]

which is just the product of the probabilities for the two single groups (exposed and unexposed).
In data analysis, I1 and I0 are unknown parameters, whereas A1, T1, A0, and T0 are observed

quantities. The function of I1 and I0 that results when the observed data numbers are put into
equation 14–2 is called the Poisson likelihood for I1 and I0, based on the data.

Under the Poisson model (equation 14–2):

1. A1/T1 and A0/T0 are the maximum-likelihood estimates (MLEs) of I1 and I0.
2. The MLE of the rate ratio IR = I1/I0 is

ÎR = A1/T1

A0/T0

3. The MLE of the rate difference ID = I1 − I0 is ÎD = A1/T1 − A0/T0.
4. Suppose that I1 = I0 (no difference in the rates). Then E = M1T1/T is the average number

of exposed cases A1 one would observe over study repetitions in which M1 total cases were
observed out of T1 exposed and T0 unexposed person-time totals. Also, the variance of A1 over
the same repetitions would be

V = ET0

T
= M1T1T0

T 2

It follows from the last fact that a large-sample statistic for testing the null hypothesis I1 = I0 (which
is the same hypothesis as IR = 1 and ID = 0) is

χscore = A1 − E

V 1/2

(Oleinick and Mantel, 1970).
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 4 – 2

Breast Cancer Cases and Person-Years of
Observation for Women with Tuberculosis
Who Are Repeatedly Exposed to Multiple
x-Ray Fluoroscopies, and Unexposed Women
with Tuberculosis

Radiation Exposure

Yes No Total

Breast cancer cases 41 15 56
Person-years 28,010 19,017 47,027

From Boice JD, Monson RR. Breast cancer in women after repeated fluoroscopic
examinations of the chest. J Natl Cancer Inst. 1977;59:823–832.

Table 14–2 gives both study groups from the Boice and Monson (1977) study of breast cancer
and x-ray fluoroscopy among women with tuberculosis. For these data, we have

ÎR = 41/28,010

15/19,017
= 1.86

ÎD = 41

28,010 y
− 15

19,017 y
= 68

100,000 y

E = 56(28,010)

47,047
= 33.35

V = 33.35(19,017)

47,047
= 13.49

and

χscore = 41 − 33.35

(13.49) 1/2
= 2.08

which, from a standard normal table, corresponds to an upper-tailed P-value of 0.02. The rate
ratio is similar to the value of 1.76 found using Connecticut women as a reference group, and it is
improbable that as large a score statistic or larger would be observed (under the Poisson model) if
no bias were present and exposure had no effect on incidence.

To set approximate confidence intervals for the rate ratio IR and the rate difference ID, we use
the facts that an estimate of the approximate SD of ln(IR) is

ŜD[ln(ÎR)] =
(

1

A1

+ 1

A0

)1/2

and an estimate of the SD of ID is

ŜD(ÎD) =
(

A1

T 2
1

+ A0

T 2
0

)1/2

We obtain γ % Wald limits for ln(IR) and then take antilogs to get limits for IR:

IR, IR = exp{ln(ÎR) ± Zγ ŜD[ln(ÎR)]}
We obtain Wald limits for ID directly:

ID, ID = ÎD ± Zγ ŜD(ÎD)
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From the data of Table 14–2 we get

ŜD[ln(ÎR)] =
(

1

41
+ 1

15

)1/2

= 0.302

and

ŜD(ÎD) =
[

41

(28,010 y)2
+ 15

(19,017 y)2

]1/2

= 31

100,000 y

Hence, 90% Wald limits for IR and ID are

IR, IR = exp[ln(1.86) ± 1.645(0.302)] = 1.13, 3.06

and

ID, ID = 68

100,000 y
± 1.645

(
31

100,000 y

)
= 17, 119 per 105 y

The corresponding 95% limits are 1.03, 3.35 for IR, and 7.5, 128 per 105 years for ID. Thus, although
the results suggest a nonrandom excess of breast cancers among fluoroscoped women, they are very
imprecise about just how large this excess might be.

Under the two-Poisson model, the score statistic should provide an adequate approximate
P-value when both E and M1 − E exceed 5, whereas the Wald limits for IR will be adequate
if both

M1T0

(IR)T1 + T0

and
M1( IR )T0

( IR )T1 + T0

exceed 5. These numbers are the expected values for the A0 cell and the A1 cell assuming that
IR = IR and IR = IR, respectively. For the above 95% limits, these numbers are

56(19,017)

3.35(28,010) + 19,017
= 9.4 and

56(1.03)28,010

1.03(28,010) + 19,017
= 33.8,

both well above 5.
If the preceding criteria are not met, small-sample methods are recommended. The last section

of this chapter illustrates how programs that do exact analysis of 2 × 2 tables can be used to compute
small-sample P-values and rate-ratio confidence limits from person-time data in the format of Table
14–1. Unfortunately, at this time there is no widely distributed small-sample method for the rate
difference, ID, although approximations better than the Wald limits have been developed (Miettinen,
1985).

PURE COUNT DATA: LARGE-SAMPLE METHODS

Most cohort studies suffer from losses of subjects to follow-up and to competing risks. Studies in
which these losses are not negligible should be analyzed using survival methods. Such methods in
effect stratify on follow-up time, so they are properly viewed as stratified analysis methods. They
are discussed in Chapter 16. Here we assume that we have cohort data with no loss to follow-up
and no competing risk. Such data can be analyzed as pure count data, with denominators consisting
of the number of persons at risk in the study, rather than person-time. They can also be analyzed
using person-time if times of events are available and relevant.

SINGLE STUDY GROUP: LARGE-SAMPLE METHODS

It is sometimes necessary to analyze an incidence proportion arising from a single occupational,
geographic, or patient group, such as the proportion of infants born with malformations among
women living near a toxic waste site, or the proportion of patients who go into anaphylactic shock
when treated with a particular drug. If A cases are observed out of N persons at risk and the
outcome is not contagious, the conventional model used to analyze the incidence proportion A/N
is the binomial distribution (introduced in Chapter 13).
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Define R as the probability that a subject will experience the outcome. If we assume that
this probability is the same for all the subjects, and that the subject outcomes are independent, we
obtain the binomial model, which specifies that the probability of observing A = a cases out of N
persons is

Pr(A = a) =
(

N
a

)
Ra(1 − R)N−a [14–3]

In data analysis, R is an unknown quantity called the risk parameter, whereas A and N are known
quantities. The function of R that results when the observed data numbers are put into equation
14–3 is called the binomial likelihood for R, based on the data.

Under the binomial model (equation 14–3):

1.
∧
R = A/N is the maximum-likelihood estimator (MLE) of R.

2. N · R is the average value of A that we would observe over study repetitions, and N · R(1 − R)
is the variance of A over the repetitions.

It follows from the last fact that a large-sample statistic for testing the null hypothesis that R equals
some expected risk RE is the score statistic

χscore = A − E

[E(N − E)/N ]1/2

where E = N · RE is the expected number of cases.
It is common practice to use the Wald method to set approximate confidence limits for the logit

of R (the natural logarithm of the odds):

L = logit(R) = ln

(
R

1 − R

)

One then transforms the limits L, L for the logit back to the risk scale by means of the logistic
transform, which is defined by

R = expit(L) ≡ eL

1 + eL
= 1

1 + e−L

Wald limits use the fact that an estimate of the approximate SD of logit(
∧
R) is

ŜD[logit(
∧
R)] = (1/A + 1/B)1/2

where B = N− A is the number of noncases. Approximate γ % limits for R are then

R, R = expit{logit(
∧
R) ± Zγ ŜD[logit(

∧
R)]}

If we want γ % limits for the risk ratio RR = R/RE, we use R/RE, R/RE.
Lancaster (1987) observed six infants with neural tube defects in a cohort of 1,694 live births

conceived through in vitro fertilization, an incidence proportion of
∧
R = 6/1,694 = 0.00354. He

cited a general population risk of 1.2 per 1,000, so RE = 0.0012. This risk yields an expected
number of cases of 0.0012(1,694) = 2.0, and a score statistic of

χscore = 6 − 2.0

[2.0(1,694 − 2.0)/1,694]1/2
= 2.83

which, from a standard normal table, yields an upper-tailed P-value of 0.002. Also, SD[logit(
∧
R)] =

(1/6 + 1/1,688)1/2 = 0.409, so the 90% limits for the risk R based on the Wald method are

R, R = expit[logit(0.00354) ± 1.645(0.409)] = 0.0018, 0.0070

which yield 90% limits for the risk ratio RR of RR, RR = R/0.0012, R/0.0012 = 1.5, 5.8. The
corresponding 95% limits are 1.3, 6.6. The results suggest that if the binomial model is correct,
either a bias is present or there is an elevated rate of defects in the study cohort, but the magnitude
of elevation is very imprecisely estimated.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 4 – 3

Notation for a Crude 2 × 2 Table

Exposed Unexposed Total

Cases A1 A 0 M 1

Noncases B1 B0 M 0

Total N 1 N 0 N

Another concern is that the study size is probably too small for these approximate statistics to
be accurate. As with the person-time statistics, the score statistic will be adequate when E and
N − E exceed 5, and the Wald limits will be adequate when both NR and N (1 − R) exceed 5. In
the Lancaster study, E is only 2 and NR = 1,694(0.0016) = 2.7, so exact methods are needed.

TWO STUDY GROUPS: LARGE-SAMPLE METHODS

When comparing two study groups, the data can be displayed in a 2 × 2 table of counts. The
four cells of the table are the numbers of subjects classified into each combination of presence or
absence of exposure and occurrence or nonoccurrence of disease. The notation we will use is given in
Table 14–3.

Superficially, Table 14–3 resembles Table 14–1 except for the addition of a row for noncases.
The denominators in Table 14–3, however, are frequencies (counts) of subjects rather than person-
time accumulations. Conveniently, crude data from a case-control study has a form identical to
Table 14–3 and can be analyzed using the same probability model as used for pure-count cohort
data.

For a noncontagious outcome, one conventional probability model for the observed numbers
of cases A1 and A0 is the binomial model. If R1 and R0 are the risk parameters for exposed and
unexposed cohorts, this model specifies that the probability of observing A1 = a1 and A0 = a0 is

Pr(A1 = a1, A0 = a0) = Pr(A1 = a1) Pr(A0 = a0)

=
(

N1

a1

)
R1

a1 (1 − R1)N1−a1

(
N0

a0

)
R0

a0 (1 − R0)N0−a0 [14–4]

which is just the product of the probabilities for the two cohorts.
In data analysis, R1 and R0 are unknown parameters, whereas A1, N1, A0, and N0 are known

quantities. The function of the unknowns R1 and R0 obtained when actual data values are put into
equation 14–4 is called the binomial likelihood of R1 and R0, based on the data.

Under the two-binomial model (equation 14–4):

1. A1/N1 and A0/N0 are the maximum-likelihood estimators of R1 and R0.
2. The MLE of the risk ratio RR = R1/R0 is

R̂R = A1/N1

A0/N0

3. The MLE of the risk difference RD = R1 − R0 is

R̂D = A1

N1

− A0

N0

4. The MLE of the risk-odds ratio

OR = R1/(1 − R1)

R0/(1 − R0)
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 4 – 4

Diarrhea During a 10-Day Follow-Up Period in 30
Breast-Fed Infants Colonized with Vibrio cholerae
01, According to Antipolysaccharide Antibody
Titers in the Mother’s Breast Milk

Antibody Level

Low High Total

Diarrhea 12 7 19
No diarrhea 2 9 11
Totals 14 16 30

From Glass RI, Svennerholm AM, Stoll BJ, et al. Protection against cholera in breast-fed
children by antibiotics in breast milk. N Engl J Med. 1983;308:1389–1392.

is the observed incidence-odds ratio

ÔR = A1/B1

A0/B0

= A1 B0

A0 B1

5. If R1 = R0 (no difference in risk), E = M1 N1/N is the average number of exposed cases A1 that
one would observe over the subset of study repetitions in which M1 total cases were observed,
and

V = E M0 N0

N (N − 1)
= M1 N1 M0 N0

N 2(N − 1)

is the variance of A1 over the same subset of repetitions.

It follows from the last fact that a large-sample statistic for testing the null hypothesis R1 = R0 (the
same hypothesis as RR = 1, RD = 0, and OR = 1) is

χscore = A1 − E

V 1/2

This score statistic has the same form as the score statistic for person-time data. Nonetheless, the
formula for V , the variance of A1, has the additional multiplier M0/(N − 1). This multiplier reflects
the fact that we are using a different probability model for variation in A1.

Table 14–4 presents data from a cohort study of diarrhea in breast-fed infants colonized with
Vibrio cholerae 01, classified by level of antibody titers in their mother’s breast milk (Glass et al.,
1983). A low titer confers an elevated risk and so is taken as the first column of Table 14–4. From
these data, we obtain

R̂R = (12/14)/(7/16) = 1.96

R̂D = 12/14 − 7/16 = 0.42

ÔR = 12(9)/7(2) = 7.71

E = 19(14)/30 = 8.87

V = 8.87(11)16/30(30 − 1) = 1.79

and

χscore = 12 − 8.87

1.791/2
= 2.34

The latter yields an upper-tailed P-value of 0.01. Thus a score statistic as large or larger than that
observed has low probability in the absence of bias or an antibody effect.
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There are at least two cautions to consider in interpreting the statistics just given. First, infant
diarrhea is usually infectious in origin, and causative agents could be transmitted between subjects if
there were contact between the infants or their mothers. Such phenomena would invalidate the score
test given above. Second, there are only two low-antibody noncases, raising the possibility that the
large-sample statistics (R̂R, ÔR, χscore) are not adequate. We expect χscore to be adequate when all
four expected cells, E , M1 − E , N1 − E , and M0 − N1 + E exceed 5; R̂R to be adequate when
N1 R1 and N0 R0 exceed 5; and ÔR to be adequate when N1 R1, N0 R0, N1(1 − R1), and N0(l−R0) all
exceed 5. In the diarrhea example, the smallest of the expected cells is N1 − E = 5.13, just above
the criterion. Because B1 is an estimate of N1(1 − R1) and is only 2, ÔR seems less trustworthy.

Turning now to interval estimation, a SD estimate for R̂D is

ŜD(R̂D) =
[

A1 B1

N 2
1 (N1 − 1)

+ A0 B0

N 2
0 (N0 − 1)

]1/2

which yields the γ % Wald confidence limits

R̂D ± Zγ ŜD(R̂D)

This formula can produce quite inaccurate limits when the expected cell sizes are small, as evidenced
by limits that may fall below −1 or above 1. Improved approximate confidence limits for the risk
difference can be found from

RD, RD = e±s − d

e±s + d

where

s = 2Zγ ŜD(R̂D)

1 − R̂D2

and

d = 1 − R̂D

1 + R̂D

(Zou and Donner, 2004). When R̂D = 1 or −1 this formula fails, but then the upper limit should be
set to 1 if R̂D = 1, or to −1 if R̂D = −1.
Approximate SD estimates for ln(R̂R) and ln(ÔR) are

ŜD[ln(R̂R)] =
(

1

A1

− 1

N1

+ 1

A0

− 1

N0

)1/2

and

ŜD[ln(ÔR)] =
(

1

A1

+ 1

B1

+ 1

A0

+ 1

B0

)1/2

which yield γ % Wald limits of

RR, RR = exp{ln(R̂R) ± Zγ ŜD[ln(R̂R)]}
and

OR, OR = exp{ln(ÔR) ± Zγ ŜD[ln(ÔR)]}
For the data of Table 14–4,

ŜD(R̂D) =
[

12(2)

14213
+ 7(9)

16215

]1/2

= 0.161

ŜD[ln(R̂R)] =
(

1

12
− 1

14
+ 1

7
− 1

16

)1/2

= 0.304
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and

ŜD[ln(ÔR)] =
(

1

12
+ 1

2
+ 1

7
+ 1

9

)1/2

= 0.915

which yield 90% Wald limits of

RD, RD = 0.42 ± 1.645(0.161) = 0.16, 0.68

RR, RR = exp[ln(1.96) ± 1.645(0.304)] = 1.2, 3.2

and

OR, OR = exp[ln(7.71) ± 1.645(0.915)] = 1.7, 35

The improved approximate 90% limits for RD are 0.13, 0.65, which are slightly shifted toward the
null compared with the simple Wald limits. The simple 95% Wald limits are 0.10, 0.73 for RD, 1.1,
3.6 for RR, and 1.3, 46 for OR. Thus, although the data show a positive association, the measures
are imprecisely estimated, especially the odds ratio.

Under the two-binomial model, we expect the Wald limits for the risk difference and ratio to
be adequate when the limits for the odds ratio are adequate. The Wald limits for the odds ratio
should be adequate when all four cell expectations given the lower odds-ratio limit and all four cell
expectations given the upper odds-ratio limit exceed 5. This rather unwieldy criterion takes much
labor to apply, however. Instead, we recommend that, if there is any doubt about the adequacy of the
study size for Wald methods, one should turn to more accurate methods. There are more accurate
large-sample approximations than the Wald method for setting confidence limits (see Chapter 13),
but only the odds ratios have widely available small-sample methods; these methods are described
at the end of this chapter.

RELATIONS AMONG THE RATIO MEASURES

As discussed in Chapter 4, OR is always further from the null value of 1 than RR. In a parallel
fashion, ÔR is always further from 1 than R̂R in an unstratified study; therefore, use of ÔR from a
cohort study as an estimate for RR tends to produce estimates that are too far from 1. The disparity
between OR and RR increases with both the size of the risks R1 and R0 and the strength of the as-
sociation (as measured by OR or RR). A parallel relation holds for ÔR and R̂R. The disparity
increases as both the size of the incidence proportions A1/N1 and A0/N0 and the strength of the
observed association increases. For Table 14–4, RR = 2.0 and OR = 7.7 are far apart because both
observed proportions exceed 40% and the association is strong.

One often sees statements that the odds ratio approximates the risk ratio when the disease is
“rare.” This statement can be made more precise in a study of a closed population: If both risk odds
R1/(1 −R1) and R0/(1 −R0) are under 10%, then the disparity between OR and RR will also be
under 10% (Greenland, 1987a). In a parallel fashion, if the observed incidence odds A1/B1 and
A0/B0 are under 10%, then the disparity between ÔR and R̂R will be under 10%.

The relation of the odds ratio and risk ratio to the rate ratio IR is more complex. Nonetheless,
if the incidence rates change only slightly across small subintervals of the actual follow-up period
(i.e., the incidence rates are nearly constant across small time strata), IR will be further from the
null than RR and closer to the null than OR (Greenland and Thomas, 1982). It follows that, given
constant incidence rates over time, ÔR as an estimate of IR tends to be too far from the null, and
ÎR as an estimate of RR tends to be too far from the null. Again, however, the disparity among the
three measures will be small when the incidence is low.

CASE-CONTROL DATA

Assuming that the underlying source cohort is closed, the odds-ratio estimates given earlier can
be applied directly to cumulative case-control data. Table 14–5 provides data from a case-control
study of chlordiazepoxide use in early pregnancy and congenital heart defects. For testing OR = 1
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 4 – 5

History of Chlordiazepoxide Use in Early Pregnancy
for Mothers of Children Born with Congenital Heart
Defects and Mothers of Normal Children

Chlordiazepoxide Use

Yes No Total

Case mothers 4 386 390
Control mothers 4 1,250 1,254
Totals 8 1,636 1,644

From Rothman KJ, Fyler DC, Goldblatt A, et al. Exogenous hormones and other drug exposures of
children with congenital heart disease. Am J Epidemiol. 1979;109:433–439.

(no association), we have

E = 390(8)

1,644
= 1.90

V = 1.90(1,254)(1,636)

1,644(1,643)
= 1.44

and

χscore = 4 − 1.90

1.441/2
= 1.75

which yields an upper-tailed P-value of 0.04. Also,

ÔR = 4(1,250)

4(386)
= 3.24

and

ŜD[ln(ÔR)] =
(

1

4
+ 1

4
+ 1

386
+ 1

1,250

)1/2

= 0.710

which yield 90% Wald limits of

exp[ln(3.24) ± 1.65(0.710)] = 1.00, 10.5

and 95% Wald limits of 0.81, 13. Thus, the data exhibit a positive association but do so with little
precision, indicating that, even in the absence of bias, the data are reasonably compatible with
effects ranging from little or nothing up through more than a 10-fold increase in risk.

If the exposure prevalence does not change over the sampling period, the above odds-ratio
formulas can also be used to estimate rate ratios from case-control studies done with density
sampling (see Chapter 8). Because controls in such studies represent person-time, persons may at
different times be sampled more than once as controls, and may be sampled as a case after being
sampled as a control. Data from such a person must be entered repeatedly, just as if the person had
been a different person at each sampling time. If a person’s exposure changes over time, the data
entered for the person at each sampling time will differ. For example, in a study of smoking, it
is conceivable (though extremely unlikely in practice) that a single person could first be sampled
as a smoking control, then later be sampled as a nonsmoking control (if the person quit between
the sampling times); if the person then fell ill, he or she could be sampled a third time as a case
(smoking or nonsmoking, depending on whether the person resumed or not between the second and
third sampling times).
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 4 – 6

Notation for Crude Case-Cohort Data When
All Cases in the Cohort Are Selected

Exposed Unexposed Total

Case but not control A 11 A 01 M 11

Case and control A 10 A 00 M 10

Noncase control B1 B0 M 0

Total N 1 N 0 N

The repeated-use rule may at first appear odd, but it is no more odd than the use of multiple
person-time units from the same person in a cohort study. One caution should be borne in mind,
however: If exposure prevalence changes over the course of subject selection, and risk changes
over time or subjects are matched on sampling time, one should treat sampling time as a potential
confounder and thus stratify on it (see Chapters 15 and 16) (Greenland and Thomas, 1982). With
fine enough time strata, no person will appear twice in the same time stratum. Such fine stratification
should also be used if one desires a small-sample (exact) analysis of density-sampled data.

CASE-COHORT DATA

Case-cohort data differ from cumulative case-control data in that some of the controls may also be
cases, because controls in case-cohort data are a sample of the entire cohort, whereas controls in
cumulative case-control data are a sample of noncases only. We limit our discussion of methods to
the common special case in which every case in the source cohort is ascertained and selected for
study. We further stipulate that the source cohort is closed and that the cohort sample was selected
by simple random sampling. We may then use the notation given in Table 14–6 for case-cohort
data.

Table 14–6 resembles Table 14–3 except that the cases are now split into cases that were not
also selected as controls and cases that were. Data in the form of Table 14–6 can be collapsed into
the form of Table 14–3 by adding together the first two rows, so that

A1 = A11 + A10 A0 = A01 + A00 M1 = M11 + M10

With the data collapsed in this fashion, the odds ratio can be tested and estimated using the same
large- and small-sample methods as given in previous sections for case-control data. In other words,
we can obtain P-values from the score statistic or from the hypergeometric formula below (equation
14–8), and Wald-type limits for OR as before. As in cohort studies and in case-control studies of a
cohort, if the source cohort for the case-cohort study suffers meaningful losses to follow-up or from
competing risks, it will be important to analyze the data with stratification on time (see Chapter 16).

One can estimate the risk ratio directly from the case-cohort data using large-sample formulas
that generalize the risk-ratio methods for full-cohort data. To describe the maximum-likelihood
estimator of the risk ratio in case-cohort data (Sato, 1992a), we first must define the “pseudo-
denominators”

N ∗
1 = A1 M10

M1

+ B1

and

N ∗
0 = A0 M10

M1

+ B0

M10 is the number of cases among the controls, M1 is the total number of cases, and M10/M1 is
the proportion of cases that are controls. The ratio N ∗

1 /N ∗
0 is a more stable estimate of the ratio
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of exposed to unexposed in the source cohort than the intuitive estimate (A10 + B1)/(A00 + B0)
obtained from the controls alone. Thus we take as our case-cohort risk-ratio estimate

R̂R = A1/N ∗
1

A0/N ∗
0

= A1/A0

N ∗
1 /N ∗

0

The approximate variance of ln(R̂R) is estimated as

∧
V [ln(R̂R)] =

1

A1

+ 1

A0

+
(

M11 − M10

M1

) (
1

N ∗
1

+ 1

N ∗
0

)
−

(
1

A1

+ 1

A0

) (
1

N ∗
1

+ 1

N ∗
0

)2 (
M11 M10

M2
1

)

so that 95% confidence limits for the risk ratio can be computed from

RR, RR = exp[ln(R̂R) ± 1.96 ŜD]

where ŜD is the square root of
∧
V [ln(R̂R)].

If the disease is so uncommon that no case appears in the control sample, then M10 = 0, M11 =
M1, N ∗

1 = B1, N ∗
0 = B0, and so

R̂R = A1 B0

A0 B1

= ÔR

and

∧
V [ln(R̂R)] =

(
1

A1

+ 1

A0

+ 1

B1

+ 1

B0

)

which are identical to the odds-ratio point and variance estimates for case-control data. On the other
hand, if every cohort member is selected as a control, then M11 = 0 and these formulas become
identical to the risk-ratio formulas for closed cohort data.

SMALL-SAMPLE STATISTICS FOR PERSON-TIME DATA

SINGLE STUDY GROUP

Consider again a study in which A cases occur in observation of T person-time units, and E cases
would be expected if reference-population rates applied. The mean value of A, which is I · T in the
Poisson distribution (equation 14–1), is equal to IR · E :

I · T =
[

I

(E/T )

] (
E

T

)
· T = IR · E

Using this relation, we can compute the mid-P-value functions for IR directly from the Poisson
distribution with IR · E in place of I · T :

Plower = 1

2
Pr(A = a) + Pr(A < a)

= 1

2
exp(−IR · E)(IR · E)a/a! +

a−1∑
k=0

exp(−IR · E)(IR · E)k/k!

= 1 − Pupper = 1 −
[

1

2
Pr(A = a) + Pr(A > a)

]

To get the median-unbiased estimate of IR we find that value of IR for which Plower = Pupper (which
exists only if A > 0) (Birnbaum, 1964). This value of IR will have lower and upper mid-P-values
equal to 0.5. To get a two-sided (1 − α)-level mid-P confidence interval for IR, we take the lower
limit to be the value IR for IR for which Pupper = α/2, and take the upper limit to be the value IR
for IR for which Plower = α/2. To get limits for I , we multiply IR and IR by E/T .
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Waxweiler et al. (1976) observed A = 7 deaths from liver and biliary cancer in a cohort of
workers who were exposed for at least 15 years to vinyl chloride. Only E = 0.436 deaths were
expected based on general population rates. The mid-P-value functions are given by

Plower = 1

2
Pr(A = 7) + Pr(A < 7)

= 1

2
exp[−IR(0.436)][IR(0.436)]7/7! +

6∑
k=0

exp[−IR(0.436)][IR(0.436)]k/k!

= 1 − Pupper = 1

[
1

2
Pr(A = 7) + Pr(A > 7)

]

The lower mid-P-value for the hypothesis IR = 1 is under 0.00001. The value of IR for which
Plower = Pupper = 0.5 is 16.4, which is the median-unbiased estimate. The value of IR for which
Plower = 0.10/2 = 0.05 is IR = 8.1, the lower limit of the 1 − 0.10 = 90% mid-P confidence interval.
The value of IR for which Pupper = 0.10/2 = 0.05 is IR = 29, the upper limit of the 90% mid-P
confidence interval. The 95% limits are 6.9 and 32, and the 99% limits are 5.1 and 38. The number
of cases observed is clearly far greater than we would expect under the Poisson model with IR = 1.
Thus it appears that this null model is wrong, as would occur if biases are present or there is a rate
elevation in the study cohort (IR > 1).

For comparison, the MLE of IR in this example is IR = 7/0.436 = 16.1, the score statistic is
(7 − 0.436)/0.4361/2 = 9.94, the upper P-value less than 0.00001, the 90% Wald limits are

IR, IR = exp[ln(7/0.436) ± 1.65(1/71/2)] = 8.6, 30

and the 95% and 99% Wald limits are 7.7, 34 and 6.1, 43. As may be apparent, the 90% Wald limits
provide better approximations than the 95% limits, and the 95% provide better approximations than
the 99% limits.

The simple examples we have given illustrate the basic principles of small-sample analysis:
Compute the upper and lower P-value functions directly from the chosen probability model, and
then use these functions to create equations for point and interval estimates, as well as to compute
P-values.

TWO STUDY GROUPS

Consider again a study in which A1 cases occur in observation of T1 exposed person-time, and A0

cases occur in observation of T0 unexposed person-time. The expectation E and variance V for the
exposed-case cell A1 in the score statistic were computed only for study repetitions in which the
total number of cases M1 was equal to its observed value. Another way of putting this restriction
is that M1 was treated as fixed in the computation of E and V. In more technical and general terms,
we say that computation of E and V was done conditional on M1, the observed case margin.

The philosophy behind fixing M1 is based on a statistical concept called conditionality (Cox
and Hinkley, 1974; Little, 1989). One useful consequence of this step is that it greatly simplifies
small-sample statistics. By treating M1 as fixed, we can compute exact and mid-P-values and limits
for the incidence rate ratio IR using the following binomial probability model for the number of
exposed cases, A1, given the total number of cases observed, M1:

Pr(A1 = a1|M1 = m1) =
(

m1

a1

)
sa1 (1 − s)m1−a1 [14–5]

where s is the probability that a randomly sampled case is exposed. It turns out that s is a simple
function of the incidence rate ratio IR and the observed person-time:

s = average number of exposed cases

average total number of cases

= I1T1

I1T1 + I0T0

= (I1/I0)T1

(I1/I0)T1 + T0

= IR · T1

IR · T1 + T0

[14–6]
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where the averages are over repetitions of the study (keeping T1 and T0 fixed). We can set small-
sample confidence limits s, s for s by computing directly from the binomial equation 14–5. We
can then convert these limits to rate-ratio limits IR, IR by solving equation 14–6 for IR and then
substituting s and s into the resulting formula,

IR = s

1 − s

(
T0

T1

)
[14–7]

(Rothman and Boice, 1982). Computing directly from the binomial distribution (equation 14–5)
the mid-P-value functions are

Plower = 1

2

(
m1

a1

)
sa1 (1 − s)m1-a1 +

a1−1∑
k=0

(
m1

k

)
sk(1 − s)M1−k = 1 − Pupper

The median-unbiased estimate of s is the value of s at which Plower = Pupper, the lower limit of
the 1 − α mid-P interval is the value of s at which Pupper = α/2, and the upper limit of the 1 − α

mid-P interval is the value of s at which Plower = α/2. These can be converted to a point estimate
and confidence limits for IR using equation 14–7. If we have a particular value of IR we wish to
test, we can convert to a test value of s using equation 14–6; the resulting mid-P-values apply to
the original test value of IR as well as to the derived test value of s.

For the data in Table 14–2,

Plower = 1

2
Pr(A1 = 41) + Pr(A1 < 41)

= 1

2

(
56
41

)
s41(1 − s)15 +

40∑
k=0

(
56
k

)
sk(1 − s)56−k = 1 − Pupper

where

s = IR(28,010)

IR(28,010) + 19,017

and

IR = s

1 − s

(
19,017

28,010

)
For IR = 1, we get s = 28,010/47,027 = 0.596, which has a lower mid-P-value of 0.02; this is

also the lower mid-P-value for the hypothesis IR = 1. The lower and upper 90% mid-P limits for
s are 0.626 and 0.8205, which translate into limits for IR of

0.626

1 − 0.626
· 19,017

28,010
= 1.14 and

0.8205

1 − 0.8205
· 19,017

28,010
= 3.10

The corresponding 95% limits are 1.04, 3.45. Because the numbers of cases in the study are large,
these small-sample statistics are close to the large-sample statistics obtained earlier.

SMALL-SAMPLE STATISTICS FOR PURE COUNT DATA

SINGLE STUDY GROUP

Consider again a study in which A cases occur among N persons observed at risk. Computing
directly from the binomial distribution (equation 14–5), the mid-P-value functions are

Plower = 1

2

(
N
a

)
Ra(1 − R)N−a +

a−1∑
k=0

(
N
k

)
Rk(1 − R)N−k = 1 − Pupper

The median-unbiased estimate of R is the value at which Plower = Pupper, the lower limit of the
1 − α mid-P interval is the value R at which Pupper = α/2, and the upper limit of the 1 − α mid-P
interval is the value R at which Plower = α/2. If the expected risk derived from an external reference
population is RE, we obtain estimates of the risk ratio RR = R/RE by substituting RE · RR for R in
the formula.
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For the Lancaster data, A = 6, N = 1,694, and RE = 0.0012, which yield the mid-P-value
function

Plower = 1

2

(
1,694

6

)
(0.0012RR)6(1 − 0.012RR)1,688

+
5∑

k=0

(
1,694

6

)
(0.0012RR)k(1 − 0.0012RR)1,694−k

Substituting 0.5 for Plower and solving for RR yields a median-unbiased risk-ratio estimate of 3.1.
Other substitutions yield 90% mid-P limits for the risk ratio of 1.4 and 5.7, 95% mid-P limits of
1.2 and 6.4, and a lower mid-P-value for testing RR = 1 (R = RE = 0.0012) of 0.01. Despite the
small number of cases, these confidence limits are very similar to the large-sample limits (which
were 1.5, 5.8 at 90% confidence and 1.3, 6.6 at 95% confidence).

TWO STUDY GROUPS

Consider again a study in which A1 cases occur among N1 exposed persons at risk and A0 cases
occur among N0 unexposed persons at risk. As in person-time data, the expectation E and variance
V in the score statistic for Table 14–3 are computed as if all the margins (M1, M0, N1, N0) were
fixed. In reality, none of the designs we have described has both margins fixed: In a cohort study,
the case total M1 is free to vary; in a case-control study, the exposed total N1 is free to vary; and in
a prevalence survey, all the margins may be free to vary.

The philosophy behind treating all the margins in a two-way table as fixed is even more abstract
than in the person-time situation (Fisher, 1935; for more modem perspectives, see Little, 1989,
and Greenland, 1991b). Although it is mildly controversial, the practice is virtually universal in
epidemiologic statistics. It originated in the context of testing the null hypothesis in randomized
experiments. Consider the sharp (strong) null hypothesis, that exposure has no effect on anyone, in
the context of an experiment that will assign exactly N1 out of N persons to exposure. Then, under
the potential-outcome model of Chapter 4, no causal “type 2” or preventive “type 3” persons are
in the study, and the total number of cases M1 is just the number of doomed “type 1” persons in
the study. Once persons are chosen for the study, M1 is unaffected by exposure and so in this sense
is fixed, given the cohort. In particular, if only exposure status may vary (e.g., via experimental
assignment), and the number exposed N1 is also predetermined, then under the sharp null hypothesis,
the only quantities left to vary are the internal table cells. Furthermore, given one cell and the fixed
margins, we can compute all the other cells by subtraction, e.g., given A1 we get A0 = M1 − A1

and B1 = N1 − A1. If exposure is assigned by simple randomization, the resulting distribution for
A1 is the null hypergeometric distribution

Pr(A1 = a1|M1 = m1, M0 = m0, N1 = n1, N0 = n0, null hypothesis) =

(
n1

a1

) (
n0

m1 − a1

)
(

n
m1

)

Fisher’s exact test computes P-values for the null hypothesis directly from this distribution.
In the non-null situation the rationale for computing statistics by fixing the margins is less

straightforward and applies only to inference on odds ratios. For this purpose, it has the advantage
of reducing small-sample bias in estimation even if the margins are not actually fixed (Mantel and
Hankey, 1975; Pike et al., 1980). Those who remain uncomfortable with the use of fixed margins
for a table in which the margins are not truly fixed may find comfort in the fact that the fixed-
margins assumption makes little difference compared with statistical methods that do not assume
fixed margins when the observed table cells are large enough to give precise inferences.

When treating all margins as fixed, we can compute exact and mid-P-values and limits for
the odds ratio using only the noncentral (non-null) hypergeometric distribution for the number of
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exposed cases, A1, given the margins:

Pr(A1 = a1|M1 = m1, M0 = m0, N1 = n1, N0 = n0) =

(
n1

a1

) (
n0

m1 − a1

)
ORa1

∑
k

(
n1

k

) (
n0

m1 − k

)
ORk

[14–8]

where k ranges over all possible values for A1 (Breslow and Day, 1980; McCullagh and Nelder,
1989). Under the null hypothesis, OR = 1 and this distribution reduces to the null hypergeometric.
One can compute median-unbiased estimates, exact P-values, and mid-P-values from the hyper-
geometric equation 14–8 in the manner illustrated earlier for other models.

Upon entering data values a1, m1, n1, n0 into equation 14–8 only one unknown remains, the odds
ratio OR, and so the formula becomes an odds-ratio function. This odds-ratio function is called the
conditional-likelihood function for the odds ratio based on the data, and the value of OR that makes
it largest is called the conditional maximum-likelihood estimate (CMLE) of OR. This CMLE does
not equal the familiar unconditional maximum-likelihood estimate ÔR = a1b1/a0b0 given earlier,
and in fact it has no explicit formula. It is always closer to the null and tends to be closer to the true
odds ratio than the unconditional MLE ÔR, although for unstratified samples in which all cells are
“large” (>4) it will be very close to ÔR and the median-unbiased estimate of OR.

For the data in Table 14–4 on infant diarrhea, equation 14–8 yields the mid-P-value function

Plower =
1

2

(
14
12

) (
16
7

)
OR12

14∑
k=3

(
14
k

) (
16

19 − k

)
ORk

+

11∑
k=3

(
14
k

) (
16

19 − k

)
ORk

14∑
k=3

(
14
k

) (
16

19 − k

)
ORk

= 1 − Pupper

This function yields a lower mid-P-value of 0.01 for the hypothesis OR = 1, and a median-unbiased
odds-ratio estimate (the OR for which mid-Plower = mid-Pupper = 0.5) of 6.9. The conditional
maximum-likelihood estimate is 7.2, whereas the unconditional (ordinary) maximum-likelihood
estimate is 12(9)/7(2) = 7.7. The mid-P 90% limits (the values of OR at which Pupper = 0.05 and
Plower = 0.05, respectively) are 1.6 and 40, whereas the mid-P 95% limits are 1.3 and 61. The lower
mid-P limits are close to the approximate lower limits (of 1.7 and 1.3) obtained earlier, but the
upper mid-P limits are somewhat greater than the approximate upper limits (which were 35 and
46).

APPLICATION OF EXACT 2 × 2 PROGRAMS TO PERSON-TIME DATA
AND SINGLE-GROUP DATA

The results in the last example were obtained from a public-domain program for exact analysis of
one or more 2 × 2 tables (Martin and Austin, 1996). Although this and some other exact programs
also provide exact analyses of 1 × 2 tables like Table 14–1, many do not. For such programs,
one can analyze person-time data as follows: First, multiply the person-time denominators T1 and
T0 by a number h so large that hT1 > 1,000A1 and hT0 > 1,000A0; second, enter the data into
the 2 × 2 program as if it were person-count data with Nl = hT1 and N0 = hT0. The resulting
odds-ratio statistics from the 2 × 2 program will, to within about 0.1%, equal the corresponding
rate-ratio statistics obtained from a person-time analysis. For the data in Table 14–2, h = 2 will do.
The theoretical basis for this trick is the fact that the hypergeometric probability (equation 14–8)
approximates the binomial probability (equation 14–3) when one substitutes RR for OR and T1 and
T0 for N1 and N0, provided T1 and T0 are numerically much greater than A1 and A0.

If the outcome is uncommon, a similar trick can be used to compare a single-group proportion
to an expected E/N using the 2 × 2 table program. First, enter A and N as the “exposed” column
of the table; second, find a number h such that hE > 1,000A and h(N − E) > 1,000(N − A); and
third, enter hE and hN as the “unexposed” column of the table. The resulting P-values will be
correct for comparing A with E , and if the risk parameter R is small (as in the Lancaster example),
the resulting odds-ratio limits will be accurate risk-ratio limits.
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Stratification is the mainstay of epidemiologic analyses. Even with studies that ultimately
require more complicated analyses, stratification is an important intermediate step. It familiarizes
the investigator with distributions of key variables and patterns in the data that are less transparent
when using other methods.

Several analytic concerns motivate stratification. Most prominent are evaluation and control of
confounding and certain forms of selection bias, such as the bias produced by case-control matching.
Another is the need to evaluate effect-measure modification, or heterogeneity of measures, as we will
refer to it here. Stratification on follow-up time is also used in cohort studies to address problems of
loss to follow-up and competing risks. Finally, stratification on times between exposure and disease
may be used to begin analyses of latency and induction.

This chapter presents elementary stratified-analysis methods for dealing with confounding and
heterogeneity of a measure. We first review the distinctions between these concepts, which were
introduced in Chapter 4. We then discuss the assessment of confounding via stratification. The
remainder of the chapter gives methods for executing a sequence of steps that an investigator might
reasonably take in analyzing stratified data:

1. Examine stratum-specific estimates.
2. If the examination indicates heterogeneity is present, report the stratum-specific estimates. In

addition, one may use regression analysis to further study and describe the heterogeneity. One

258



P1: TNL Printer: RRD

GRBT241-15 GRBT241-v4.cls February 2, 2008 2:20

Chapter 15 ● Introduction to Stratified Analysis 259

may also estimate standardized measures to evaluate the overall effect of exposure on a population
having a specific “standard” distribution of the stratifying factors.

3. If the data are reasonably consistent with homogeneity, then obtain a single summary esti-
mate across strata that is statistically efficient (or nearly so); if this summary and its con-
fidence limits are negligibly altered by ignoring a particular stratification variable, one may
(but need not) simplify presentation by noting this fact and giving only results that ignore the
variable.

4. Obtain a P-value for the null hypothesis of no stratum-specific association of exposure with
disease.

Chapter 16 discusses how basic stratified methods can be applied to analysis of matched data,
attributable fractions, induction time, and cohort studies in which losses or competing risks occur.
The latter application is usually referred to as survival analysis (Cox and Oakes, 1984) or failure-
time analysis (Kalbfleisch and Prentice, 2002). Chapter 17 extends basic stratified methods to
exposures and diseases with multiple levels, and Chapter 18 shows how these methods can be used
to construct Bayesian analyses.

Regardless of our best efforts, there is likely to be some residual confounding and other bias
within our analysis strata. Thus, the quantities we are actually estimating with the methods in this
chapter are stratum-specific and summary associations of exposure with disease, which may differ
considerably from the stratum-specific and summary effects of exposure on disease. Chapter 19
introduces methods for estimating the latter effects, after allowing for residual bias.

HETEROGENEITY VERSUS CONFOUNDING

As discussed in Chapter 4, effect-measure modification refers to variation in the magnitude of
a measure of exposure effect across levels of another variable. As discussed in Chapter 5, this
concept is often confused with biologic interaction, but it is a distinct concept. The variable
across which the effect-measure varies is called an effect modifier. Effect-measure modification
is also known as heterogeneity of effect, nonuniformity of effect, and effect variation. Absence
of effect-measure modification is also known as homogeneity of effect, uniformity of effect, and
commonality of effect across strata. In most of this chapter we will use the more general phrase,
heterogeneity of a measure, to refer to variation in any measure of effect or association across
strata.

Effect-measure modification differs from confounding in several ways. The most central differ-
ence is that, whereas confounding is a bias that the investigator hopes to prevent or remove from
the effect estimate, effect-measure modification is a property of the effect under study. Thus, effect-
measure modification is a finding to be reported rather than a bias to be avoided. In epidemiologic
analysis one tries to eliminate confounding, but one tries to detect and estimate effect-measure
modification.

Confounding originates from the interrelation of the confounders, exposure, and disease in the
source population from which the study subjects are selected. By changing the source population
that will be studied, design strategies such as restriction can prevent a variable from becoming a
confounder and thus eliminate the burden of adjusting for the variable. Unfortunately, the same
design strategies may also impair the ability to study effect-measure modification by the variable.
For example, restriction of subjects to a single level of a variable will prevent it from being a
confounder in the study, but will also prevent one from examining whether the exposure effect
varies across levels of the variable.

Epidemiologists commonly use at least two different types of measures, ratios and differences.
As discussed in Chapter 4, the degree of heterogeneity of a measure depends on the measure one
uses. In particular, ratios and differences can vary in opposite directions across strata. Consider
stratifying by age. Suppose that the outcome measure varies both within age strata (with exposure)
and across age strata (e.g., the exposure-specific rates or risks vary across strata). Then at least one
of (and usually both) the difference and ratio must vary across the age strata (i.e., they cannot both be
homogeneous over age). In contrast to this measure dependence, confounding can be defined without
reference to a particular measure of effect (although its apparent severity may differ according to
the chosen measure).
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ASSESSMENT OF CONFOUNDING

As discussed in Chapters 4 and 9, confounding is a distortion in the estimated exposure effect that
results from differences in risk between the exposed and unexposed that are not due to exposure.
When estimating the effect of exposure on those exposed, two necessary criteria for a variable to
explain such differences in risk (and hence explain some or all of the confounding) are

1. It must be a risk factor for the disease among the unexposed (although it need not be a cause of
disease).

2. It must be associated with the exposure variable in the source population from which the subjects
arise.

In order to avoid bias due to inappropriate control of variables, the following criterion is tradi-
tionally added to the list:

3. It must not be affected by exposure or disease (although it may affect exposure or disease).

The three criteria were discussed in Chapter 9 and are more critically evaluated in Greenland
et al. (1999a), Pearl (2000), and Chapter 12. Adjustment for variables that violate any of these criteria
is sometimes called overadjustment and is the analytic parallel of the design error of overmatching
(Chapter 11).

If a variable violates any of these criteria, its use in conventional stratified analysis (as covered
in this chapter) can reduce the efficiency (increase the variance) of the estimation process, without
reducing bias. If the variable violates the third criterion, such use can even increase bias (Chapters
9 and 12). Among other things, the third criterion excludes variables that are intermediate on the
causal pathway from exposure to disease. This exclusion can be relaxed under certain conditions,
but in doing so special analytic techniques must be applied (Robins, 1989, 1997, 1999; Robins
et al., 1992a, 2000; Chapter 21). In the remainder of this chapter we will assume that variables
being considered for use in stratification have been prescreened to meet the above criteria, for
example, using causal diagrams (Chapter 12).

The data in Table 15–1 are from a large multicenter clinical trial that examined the efficacy
of tolbutamide in preventing the complications of diabetes. Despite the fact that subjects were
randomly assigned to treatment groups, the subjects in the tolbutamide group tended to be older
than the placebo group. A larger proportion of subjects who were assigned to receive tolbutamide
were in the age category 55+ years. As a result, the crude risk difference falls outside the ranges of
the stratum-specific measures: The stratum-specific risk differences are 0.034 and 0.036, whereas
the crude is 0.045. The presence of confounding is not as obvious for the risk ratio: The stratum-
specific risk ratios are 1.81 and 1.19, whereas the crude is 1.44.

ˆ

ˆ

ˆ

ˆ
T A B L E 1 5 – 1

Age-Specific Comparison of Deaths from All Causes for Tolbutamide and
Placebo Treatment Groups, University Group Diabetes Program (1970)

Stratum 1, Age <55 y Stratum 2, Age 55+ y Total (Crude)

Tolbutamide Placebo Tolbutamide Placebo Tolbutamide Placebo

Dead 8 5 22 16 30 21
Surviving 98 115 76 69 174 184
Total 106 120 98 85 204 205
Average risk 0.076 0.042 0.224 0.188 0.147 0.102
RD 0.034 0.036 0.045
RR 1.81 1.19 1.44

From University Group Diabetes Program. A study of the effects of hypoglycemic agents on vascular complications in patients with adult
onset diabetes. Diabetes. 1970;19:747–830.
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The variable “age 55+” in Table 15–1 satisfies the traditional criteria for a confounding factor.
First, it is a risk factor for the outcome, death, and this relation holds within levels of the exposure,
tolbutamide. In Table 15–1, the proportion dying of the unexposed (placebo) group was 5/120 =
0.042 among those under age 55, but was 16/85 = 0.19 (over four times higher) among those
age 55+. Second, age is associated with exposure in the source population (which is the entire
randomized cohort): the proportion under age 55 was 106/204 = 0.52 among the tolbutamide-
treated, but was 120/205 = 0.59 among the placebo-treated. Finally, we know with certainty that
being assigned to take tolbutamide does not alter a person’s age.

It is possible to detect confounding by examining whether, in the source population, a potentially
confounding factor is associated with exposure, and with disease conditional on exposure. Nonethe-
less, the magnitude of the confounding is difficult to assess in this way, because it is a function
of both of these component associations. Further, when several factors are being examined, the
component associations should ideally be examined conditional on the other confounding factors,
thereby complicating the problem (Chapter 12).

More direct methods for confounder assessment compare the estimates of effect obtained with
and without control of each potential confounder (assuming that the potential confounder is not
affected by exposure). The magnitude of confounding is estimated by the degree of discrepancy
between the two estimates. For example, the unadjusted risk difference in Table 15–1 is 0.147 −
0.102 = 0.045. If we adjust for age confounding by standardizing (averaging) the age-specific risks
in Table 15–1 using the total cohort as the standard (see Chapter 4), we obtain a standardized
risk-difference of

226(0.076) + 183(0.224)

226 + 183
− 226(0.042) + 183(0.0188)

226 + 183
= 0.142 − 0.107 = 0.035

Thus, the relatively crude age adjustments obtained by treating age as a dichotomy has reduced the
estimated risk difference produced by tolbutamide from 4.5% to 3.5%. Similarly, the unadjusted risk
ratio in Table 15–1 is 0.147/0.102 = 1.44, whereas the age-standardized risk ratio is 0.142/0.107 =
1.33.

SELECTING CONFOUNDERS FOR CONTROL

Having computed estimates both with and without adjustment for the age dichotomy (under age 55
vs. age 55+), the analyst must now decide whether it is important to adjust for this variable when
presenting results. It may be important to do so simply because many readers would not trust results
that are not adjusted for age, despite the fact that tolbutamide was randomized. This distrust stems
from knowledge that age is strongly related to disease and mortality rates, and thus could confound
any comparison if it were imbalanced between the tolbutamide and placebo groups (even if this
imbalance were random).

In Table 15–1, 98/204 = 48% of the tolbutamide group is age 55+, versus 85/205 = 41% of
the placebo group. Although this difference is small, it is still worrisome given the strong relation
of age to mortality (about 3 times the mortality among those age 55+ vs. those under age 55 in each
group). Note that a significance test of the null hypothesis of no age difference would be useless in
evaluating this observed age difference: The study was randomized, and so we know that the null
hypothesis is true and the difference is purely random. Whether random or not, the older age of the
tolbutamide group should lead us to expect a higher mortality in that group, even if tolbutamide had
no effect. Thus age is a confounder and adjustment may be warranted, even if the age difference
is not “statistically significant” (Miettinen, 1976b; Rothman, 1977; Greenland and Neutra, 1980;
Robins and Morgenstern, 1987).

Suppose, however, we wish to apply a quantitative criterion to see whether it is contextually
important to control for age and other variables. To do so, the analyst must choose a cutoff for what
constitutes an important change in the estimate. In Table 15–1 the unadjusted risk ratio is (1.44 −
1.33)/1.33 = 8% larger than the adjusted (although the effect component of the measure, RR – 1,
is 33% greater). If only changes of greater than 10% in the RR are considered important, then this
8% change is not important; but if changes of greater than 5% are considered important, then this
change is important and indicates that age should not be ignored in further analyses.
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The exact cutoff for importance is somewhat arbitrary but is limited in range by the subject matter.
For example, a 5% change in the risk ratio would be considered ignorable in most contexts, but
rarely if ever would a 50% change. Similar observations apply when considering confidence limits.
Changes might instead be expressed in units of standard deviation of the difference on the log(RR)
scale (Greenland and Mickey, 1988), although then it may be more difficult to specify contextually
meaningful changes. For example, a change of 1.96 standard deviations or more (corresponding
to P > 0.05) is often contextually erroneous as a criterion, usually because it is too large. The
most important point, however, is that one should report the criterion used to select confounders for
adjustment so that the reader may critically evaluate the criterion.

Although many have argued against the practice (Miettinen, 1976b; Breslow and Day, 1980;
Greenland and Neutra, 1980; Greenland, 1989a, b), one often sees statistical tests used to select
confounders (as in stepwise regression), rather than the change-in-estimate criterion just discussed.
Usually, the tests are of the confounder–disease association, although sometimes the difference
between the unadjusted and adjusted estimates are tested (the latter approach is often termed col-
lapsibility testing). It has been argued that these testing approaches will perform adequately if the
tests have high enough power to detect any important confounder effects. One way to ensure ade-
quate power is to raise the α level for rejecting the null (of no confounding) to 0.20 or even more,
instead of using the traditional 0.05 level (Dales and Ury, 1978). Limited simulation studies indi-
cate that this approach is reasonable, in that use of a 0.20 or higher α level instead of a 0.05 level
for confounder selection can make the difference between acceptable and poor performance of
statistical testing for confounder selection (Mickey and Greenland, 1989; Maldonado and
Greenland, 1993a).

Several important subtleties must be considered when more than one potential confounder must
be examined. First, it can make a big difference in the observed change in estimate whether one
evaluates the change with or without adjustment for other confounders. For example, suppose that
we have to consider adjustment for age and sex. To evaluate age, we could compare the esti-
mates without and with age adjustment, ignoring sex in both instances. Or we could compare the
estimate with age and sex adjustment to that with only sex adjustment. In other words, we could
evaluate age confounding without or with background adjustment for sex. Furthermore, we could
evaluate sex confounding with or without background adjustment for age. Our decision about
importance could be strongly influenced by the strategy we choose.

To cope with this complexity, several authors have suggested the following “backward dele-
tion” strategy (Miettinen, 1976b; Kleinbaum et al., 1984): First, one adjusts for all the potential
confounders one can. Then, if one would like to use fewer confounders in further analyses, one
deletes the confounders from adjustment one by one in a stepwise fashion, at each step deleting
that confounder that makes the smallest change in the exposure effect estimate upon deletion. One
stops deleting confounders when the total change in the estimate and confidence limits accrued
from the start of the process (with all confounders controlled) would exceed the chosen limit of
importance. One often sees analogous stepwise confounder-selection strategies based on testing
the confounder coefficients and deleting in sequence the least statistically significant coefficient;
again, such strategies can produce extremely confounded results unless the α levels for deletion and
retention are set much higher than 0.05 (Dales and Ury, 1978; Maldonado and Greenland, 1993a).

Sometimes not a single confounder can be deleted without producing important changes, but
more often at least a few will appear to be ignorable if others are controlled. Sometimes, however, it
is impossible to control all the confounders (at least by stratification), because the data become too
thinly spread across strata to yield any estimate at all (this occurs when no stratum contains both a
case and a noncase, as well as in other situations). When this problem occurs, the pure “backwards
deletion” strategy just described cannot be implemented. One approach proposed for this situation
is to use a “forward selection” strategy, in which one starts with the exposure-effect estimate from
the simplest acceptable stratification (e.g., one involving only age and sex), then stratifies on the
confounder that makes the most difference in the estimate, then adds confounders one by one
to the stratification, at each step adding the confounder that makes the most difference among
those not yet added. The process stops when addition of variables ceases to make an “important”
difference.

Certain methods such as hierarchical and exposure-probability regression can handle far more
confounders than traditional stratification and regression methods. Use of these methods can avoid
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the need for selection among variables identified as potential confounders. These methods are
discussed in Chapter 21.

STATISTICAL BIASES IN VARIABLE SELECTION

If the data become very thin when all or most confounders are used for stratification or regression,
all confounder-selection strategies based on approximate statistics can suffer from certain statistical
artefacts that lead to very biased final results. No conventional approach to confounding (based on
change-in-estimate or more traditional significance testing) can wholly address this problem, and
the artefacts can appear even when only a few confounders are involved (Robins and Greenland,
1986; Greenland et al., 2000). Although hierarchical and exposure-probability modeling can cope
with these situations, a more transparent stratified analysis is usually a desirable preliminary to
such techniques, and may often suffice. For this reason, epidemiologists often resort to some sort
of forward selection strategy when data are sparse.

There is a hallmark symptom of the bias that arises when stratification has exceeded the limits
of the data: The estimates of exposure–disease association get further and further from the null as
more variables are added to the stratification or regression model. For example, one might observe
only estimates of modest size as one moves from adjustment for the strongest confounder alone to
adjustment for the two or three strongest confounders. Then, with further adjustment, the estimate
becomes very large (e.g., odds ratios above 5 or under 0.20) as more confounders are controlled.
This inflation is often interpreted as evidence of confounding, but in our experience it more often
reflects bias due to applying large-sample methods to excessively sparse data.

Another problem with all variable-selection approaches, whether based on change-in-estimate
or statistical testing, is their potential to distort P-values and confidence intervals away from their
nominal behavior. For example, conventional 95% confidence intervals computed after using the
data to select variables can have true coverage much less than 95% because the computation of such
intervals assumes that no selection of variables has been done (Greenland, 1989a, 1993a; Hurvich
and Tsai, 1990). This distortion arises because the intervals produced after selection do not reflect
the uncertainty about confounder effects and thus are too narrow. The limited studies performed thus
far suggest that the distortion produced by typical confounder-selection strategies need not be large
in practice if very high α levels (0.20 or more) are used for selection (Mickey and Greenland, 1989;
Maldonado and Greenland, 1993b). The alternative is to use methods that can operate with a large
number of confounders and so require no selection, such as hierarchical or shrinkage regression
(Greenland, 2008; Chapter 21).

One way to reduce distortion due to confounder selection is to insist that the confidence limits
do not change to an important degree if a confounder is to be deleted from control. If one uses
confidence limits rather than the point estimate to monitor the change produced by adding or
deleting control of a confounder, one can use exact confidence limits rather than the usual large-
sample approximate limits produced by Mantel-Haenszel or maximum-likelihood methods. With
exact limits, the sparse-data bias discussed earlier will not occur. Unfortunately, exact intervals can
become excessively wide if they are computed from traditional exact P-values, which is the default
method in most software; mid-P methods do not suffer from this problem (see Chapter 13).

Selection of confounders can lead to complex problems, especially if there are many confounders
from which to choose. Strategies based on examining changes in the exact confidence limits seem
to be the best that can be carried out with standard software, although if enough data are available
one may instead use approximate limits to monitor the changes. Most important, if selection is
done, one should report the strategy used to select potential confounders for control in the methods
section of the research report. In addition, one may have to include certain potential confounders on
subject-matter grounds, even if they do not meet the quantitative criteria for inclusion. For example,
a study of lung cancer might be well advised to adjust for smoking whenever possible, as well as
age and sex, because of the known strong relations of these variables to lung cancer rates.

SELECTING CONFOUNDER CATEGORIES

An issue that is closely related to selection of confounders is selection of confounder categories.
Some aspects of this issue are discussed in Chapter 13. In particular, we want to choose categories
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such that no important confounding by the confounder can occur within the categories. In the
tolbutamide example, one might well question whether the age dichotomy (under age 55 vs. age
55+) is adequate, for, within the broad category of “age 55+,” age has a profound association with
death risk.

To address such concerns, one can examine whether use of a finer categorization (such as under
age 55, age 55 to 64, age 65 to 74, age 75+) appreciably alters the point and interval estimates. In
doing so, all the issues raised earlier should be considered, including problems with the criteria and
statistics used to determine “appreciably.” A strategy based on examining exact limits seems best,
given current software; approximate limits can be used instead if the sample size is adequate, as in
the tolbutamide example. As always, we caution that category boundaries are best chosen to ensure
that risk will not change profoundly within categories, and that percentile categories can do poorly
in this regard if the variable is a strong confounder and is unevenly distributed across its range, e.g.,
if it is highly skewed (see Chapter 13).

EXAMINING STRATUM-SPECIFIC ESTIMATES

In its simplest form, stratified analysis involves computing a separate estimate from each stratum, so
that the single crude estimate is replaced with a set of estimates, one per stratum. In most stratified
analyses there is some variation in the estimates across the strata. One must then determine (a)
whether the variation in the stratum-specific estimates is of any scientific or public health importance
and (b) whether the variation is compatible with random statistical fluctuation. The answers to these
questions determine what analytic methods are used to present the results of the stratified analysis.

Consider the coronary death-rate ratio for smokers relative to nonsmokers in the data in Table
15–2. The crude mortality-rate ratio is 1.7, which may be confounded by age. Age confounding is
much reduced within the 10-year age categories by which the data have been stratified. In addition
to removing most of the age confounding, stratification has revealed that the rate-ratio estimates
decline with age (although the risk differences increase until the oldest category). One often sees
such a decline in ratio estimates across categories of a variable as the risk of disease among the
unexposed increases, an example of what is sometimes called modification by baseline risk. This
pattern of variation in the estimates is a key result of the analysis.

This example illustrates the importance of examining stratum-specific estimates whenever it is
feasible to do so. It is not always feasible to do so by simple stratification, however. Some variables
have too many categories to examine each separately. For example, studies may be conducted with
potential confounding by family or neighborhood, for which there are too few subjects to produce
stable estimates from each stratum. Instead, one can only treat such variables as confounders when

ˆ

ˆ

ˆ

ˆ
T A B L E 1 5 – 2

Age-Specific Coronary Disease Deaths, Person-Years Observed, and Coronary
Death Rates among British Male Doctors by Cigarette Smoking

Cigarette Smokers Nonsmokers

Age (y) Deaths Years Ratea Deaths Years Ratea Rate Ratio

35–44 32 52,407 6.1 2 18,790 1.1 5.7
45–54 104 43,248 24.0 12 10,673 11.2 2.1
55–64 206 28,612 72.0 28 5,710 49.0 1.5
65–74 186 12,663 146.9 28 2,585 108.3 1.4
75–84 102 5,317 191.8 31 1,462 212.0 0.9
Total 630 142,247 — 101 39,220 — —

a Deaths per 10,000 person-years.
From Doll R, Hill AB. Mortality of British doctors in relation to smoking; observations on coronary thrombosis. In: Haenszel W, ed.

Epidemiological approaches to the study of cancer and other chronic diseases. Monogr Natl Cancer Inst. 1966;19:205–268.
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analyzing heterogeneity across other variables. For example, if neighborhood is a confounder,
then to examine heterogeneity of a risk ratio across age, one will have to create and compare
neighborhood-adjusted estimates for each age stratum.

When there are adequate numbers to examine stratum-specific estimates, however, it may be
desirable to report findings separately for each stratum. These stratum-specific estimates may them-
selves be adjusted for other variables. For example, we might infer that the rate ratio differs for
males and females and so report sex-specific estimates, each adjusted for age and perhaps other
confounding variables.

In addition to the stratum-specific presentation of results, the investigator might choose to fit a
regression model to the pattern of estimates and use the model to describe heterogeneity. A regression
model, for example, could be used to model the variation in the stratum-specific rate ratios. We
discuss such models in Chapter 20. Regression methods, however, are not as easily understood as
stratum-specific results. Furthermore, a regression model can summarize a set of stratum-specific
estimates parsimoniously only if each stratum can be assigned a meaningful numeric value. For
example, a model for the variation of the risk difference across age strata can be greatly simplified by
making use of the natural ordering of age; the same simplification is not available when examining
variation across strata of religion.

STANDARDIZATION

As discussed in Chapters 3 and 4, epidemiologic measures can be summarized across strata by
standardization. Standardization involves taking weighted averages of the stratum-specific outcome
measure (rates, risks, prevalences, or means). Summary ratios and differences can then be obtained
as the ratios and differences of the standardized incidences or prevalences. A standard is a set of
weights that is used in taking the weighted average. For example, if the only stratification variable is
age, a standard might be the amount of person-time or number of persons in a standard population
that fall into each of the age categories.

If the stratum-specific incidences of a population are standardized to that population’s distri-
bution, then the standardized incidence will be equal to the crude incidence for that population.
Thus, a crude incidence is an average weighted by the distribution of the study population itself. A
standardized incidence can be interpreted as the crude incidence in a population that has the same
stratum-specific incidences as those of the observed population, but in which the distribution of the
stratification variables is given by the standard.

The formula we will use for a standardized rate is

Iw =
∑

i
wi Ii∑

i
wi

[15–1]

where wi is the weight for stratum i and Ii is the rate in stratum i ; wi is usually the amount of
person-time observed in stratum i of a standard population. Similarly, the standardized risk formula
we will use is

Rw =
∑

i
wi Ri∑

i
wi

, [15–2]

where wi is the weight for stratum i and Ri is the risk in stratum i ; wi is usually the number of
persons in stratum i of a standard population. Standardized prevalences or standardized means can
be constructed using the same formulas, substituting stratum-specific prevalences or means for the
stratum-specific rates or risks.

As mentioned in Chapter 4, if exposure affects the distribution used to construct the standardiza-
tion weights, comparisons of standardized incidences will not properly reflect the net exposure effect
on the population incidence if the same standard weights are used to construct each standardized
incidence. This problem will occur, for example, when exposure alters the person-time distribution
of the population, and the weights are person-times (Greenland, 1996a). If exposure has an effect,
it will alter not only the rates but also the distribution of person-time over the follow-up period.
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If one wishes to estimate the total effect of exposure when exposure affects the weighting
distribution, it will be necessary to use weights that change with exposure in a manner that reflects
the exposure effect. Inverse-probability-of-exposure weighting (Chapter 21) provides examples of
such exposure-dependent weighting. For the present chapter we will assume that exposure has
negligible effects on the weights. This assumption would be satisfied in risk standardization when
the standard is the baseline (starting) distribution of confounders in a cohort study, and exposure
occurs only at baseline. An example of risk estimation in which this assumption is violated will be
given in the attributable-fraction discussion in the next chapter.

STANDARDIZED DIFFERENCES

If I1i is the rate among the exposed in stratum i and I0i is the rate among the unexposed in stratum i ,
then the standardized rate difference is IDw = I1w − I0w , the difference between the standardized
rates for exposed and unexposed. The following algebra shows that a standardized rate difference is
the weighted average of the stratum-specific rate differences IDi = I1i − I0i using the same standard
weights:

IDw =
∑

i
wi I1i∑

i
wi

−
∑

i
wi I0i∑

i
wi

=
∑

i
wi (I1i − I0i )∑

i
wi

=
∑

i
wi IDi∑
i

wi
[15–3]

Similarly, the standardized risk difference RDw = R1w − R0w is the weighted average of the stratum-
specific risk differences RDi = R1i − R0i based on the standard weights:

RDw =
∑

i
wi RDi∑
i

wi
[15–4]

The standard should be chosen to facilitate interpretation of the results. For some applications,
there may be a conventional standard, such as the world age–sex distribution in a given year, or a
national age–sex distribution from a specific census, that facilitates comparisons with other data.
For most analyses, however, the standard should be derived from the specific population for which
one wants to estimate exposure effect.

From data in Table 15–1, suppose that we wish to estimate what the effect of tolbutamide
would have been if every patient in the study (not just those randomized to tolbutamide) had
received tolbutamide. To adjust for age, we should use the distribution of the entire cohort as the
standard, which corresponds to weights of 106 + 120 = 226 for the “under age 55” stratum and
98 + 85 = 183 for the “age 55+” stratum. These yield standardized risk estimates of

∧
R0w = 226(5/120) + 183(16/85)

226 + 183
= 0.107

∧
R1w = 226(8/106) + 183(22/98)

226 + 183
= 0.142

which yield a standardized risk difference estimate of 0.142 − 0.107 = 0.035.
For the British doctors’ data in Table 15–2, using the age distribution of smoking subjects

as the standard yields an estimated standardized coronary death rate for smoking doctors (
∧
I1w )

that is the same as the crude rate for this group, 630/142,247 years = 44.3 cases per 104 person-
years. The corresponding standardized rate for the nonsmoking British doctors is estimated by
taking a weighted average of the age-specific rates for the nonsmoking doctors using the number
of person-years in each age category of the smoking doctors as the weights:

∧
I 0w =

52,407

(
2

18,790

)
+ · · · + 5,317

(
31

1,462

)
52,407 + · · · + 5,317

= 444.41/142,247 years = 31.2 cases per 104 person-years
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The estimated standardized rate difference is the difference between these two standardized rate
estimates, which is about 13 cases per 104 person-years. This value can also be obtained by taking a
weighted average of the stratum-specific rate differences, weighting by the number of person-years
among smoking doctors in each age category.

STANDARDIZED RATIOS

A standardized risk ratio is the ratio of two standardized risks,

RRw =
∑

i
wi R1i

/ ∑
i

wi∑
i

wi R0i
/ ∑

i
wi

=
∑

i
wi R1i∑

i
wi R0i

=
∑

i
wi R0i RRi∑
i

wi R0i
[15–5]

where RRi is the stratum-specific risk ratio, R1i/R0i . Similarly, a standardized rate ratio is the ratio
of two standardized rates,

IRw =
∑

i
wi I1i

/ ∑
i

wi∑
i

wi I0i
/ ∑

i
wi

=
∑

i
wi I1i∑

i
wi I0i

=
∑

i
wi I0i IRi∑
i

wi I0i
[15–6]

where IRi is the stratum-specific rate ratio, I1i/I0i . Note that both RRw and IRw are weighted averages
of stratum-specific ratios, but the weights for this averaging are not the weights for standardization;
they are instead the products of the weights for standardization and the risks or rates among the
unexposed in each stratum.

We can estimate a standardized risk ratio from the tolbutamide data in Table 15–1 as 0.142/

0.107 = 1.33 when the total cohort is used as the standard. Similarly, we estimate a standardized
rate ratio from the data in Table 15–2 by dividing the standardized rate estimate among the smokers
by the standardized rate estimate among the nonsmokers. Using smokers as the standard, this gives
44.3/31.2 = 1.42.

A standardized ratio that is standardized to the distribution of an exposed group (the group in
the numerator of the standardized ratio) is traditionally referred to as a standardized morbidity ratio
(SMR), or SMR estimate. These were introduced in Chapter 14 as observed/expected (A/E) case
ratios. The estimate of 1.42 from Table 15–2 is another example. Note that a standardized ratio will
not be an SMR if it does not use the exposed group as a standard. As explained in Chapter 4, if the
stratum-specific ratios are heterogeneous and there is confounding across the strata, a comparison
of two or more SMR estimates will remain confounded by the stratifying factors, because the SMRs
are standardized to different exposure groups.

CONFIDENCE INTERVALS

Confidence intervals for standardized measures can be calculated from the stratified data and from
the weights used for standardization. Suppose that Ai cases are observed out of Ti person-time units
or Ni persons in stratum i . The variance for a standardized rate can then be estimated from

V̂ar(
∧
Iw ) =

∑
w2

i V̂ar(
∧
Ii )(∑

i
wi

)2
[15–7]

V̂ar(
∧
Ii ), the estimated variance of the rate in each stratum i , depends on the probability model

assumed for the number of cases Ai in each stratum. For person-time data and a Poisson model for
the Ai ,

V̂ar(
∧
Ii ) = Ai/T 2

i = ∧
Ii/Ti [15–8]
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For pure count data from a closed cohort and a binomial model for the Ai , we use formula 15–7

to obtain V̂ar(
∧
Rw ), but with

V̂ar(
∧
Ri ) = Ai (Ni − Ai )

N 2
i (Ni − 1)

=
∧
Ri (1 − ∧

Ri )

Ni − 1
[15–9]

in place of V̂ar(
∧
I i ). As noted in Chapter 14, the Poisson and binomial models assume no contagion

or other sources of dependence among outcomes. Less restrictive models lead to more generally
applicable variance formulas (Carriere and Roos, 1994; Stukel et al., 1994).

Suppose now that the data are divided into two exposure groups, distinguished by a subscript
that is either 1 (for exposed) or 0 (for unexposed). Confidence intervals for a standardized rate
difference and a standardized rate ratio can be calculated using the variance estimates

V̂ar(ÎDw ) = V̂ar(
∧
I1w ) + V̂ar(

∧
I0w ) [15–10]

V̂ar[ln(ÎRw )] = V̂ar(
∧
I1w )/

∧
I 1w

2 + V̂ar(
∧
I0w )/

∧
I 0w

2 [15–11]

Both these formulas assume that the standardized rate in the exposed varies independently of the
standardized rate in the unexposed. Parallel formulas can be applied to estimate risk differences

R̂Dw , risk ratios R̂Rw , and standard deviations of R̂Dw and ln(R̂Rw ) using
∧
R1w and

∧
R0w in place of∧

I1w and
∧
I0w . For setting confidence limits on the standardized risk difference, we recommend using

the improved formula given in the preceding chapter (Zou and Donner, 2004).
For the data in Table 15–2, taking the person-years for smokers as the stratum-specific weights,

we use formulas 15–7, 15–8, and 15–10 to obtain a variance estimate for ÎDw . Intermediate
calculations are given in Table 15–3. We get

V̂ar(
∧
I1w ) = 630

142,2472
= 3.114

(104 y)2

V̂ar(
∧
I0w ) = 1,997.56

142,2472
= 9.872

(104 y)2

V̂ar(ÎDw ) = 3.114

(104 y)2
= 9.872

(104 y)2
+ 12.99

(104 y)2

Taking the square root, we get a standard deviation (SD) of 3.60 × 104 years, which yields trans-
formed 90% confidence limits for the standardized rate difference of 7.1 and 19.0 per 104 years.

ˆ

ˆ

ˆ

ˆ
T A B L E 1 5 – 3

Intermediate Calculations for Estimating the Variance of Standardized
Estimates from the Data in Table 15–2

Age (y) wi wi
∧
I 1i wi

∧
I 0i w2

i Var(
∧
I 1i ) w2

i Var(
∧
I 0i )

35–44 52,407 32 5.58 32 15.56
45–54 43,248 104 48.63 104 197.03
55–64 28,612 206 140.30 206 703.04
65–74 12,663 186 137.16 186 671.91
75–84 5,317 102 112.74 102 410.02
Total 142,247 630 444.41 630 1,997.56
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For the standardized rate ratio, using the smokers in Table 15–2 as the standard gives the SMR.
From formula 15–11, the estimated variance of ln(SMR) is

V̂ar[ln(ŜMR)] = 3.114(104 y)2

(44.29/104 y)2
+ 9.872(104 y)2

(31.24/104 y)2

= 0.00159 + 0.01012 = 0.0117

The estimated SD is therefore (0.0117)1/2 = 0.1082, and a 90% confidence interval for the SMR
is

exp[ln(1.42) ± 1.645(0.1082)] = 1.19, 1.70

STANDARDIZED CASE-CONTROL ESTIMATES

Without external information, case-control studies do not provide stratum-specific rate or rate-
difference estimates, but can provide standardized rate-ratio estimates under density sampling
schemes or a rare-disease assumption (Chapter 8). Use of external information to estimate other
measures is discussed in Chapter 21. Let A1i and A0i be the numbers of exposed and unexposed cases
and B1i and B0i be the numbers of exposed and unexposed controls in stratum i , and suppose the
source population experiences T1i and T0i person-time units at risk during the study period. Recall
from Chapter 8 that, in the absence of biases, B1i/B0i estimates the ratio of exposed to unexposed
person-time in the source population, T1i/T0i . It follows that B1i (A0i/B0i ) = E1i = A0i B1i/B0i

estimates the number of exposed cases one should expect in stratum i of the study if the exposed
population in that stratum experienced the unexposed rate and T1i person-time units. Further-
more, ŜMR = A1+/E1+ is then an estimator of the SMR for case-control data, where A1+ = �

i
A1i

and E1+ = �
i

E1i (Miettinen, 1972). Under the binomial model for case-control data, the logarithm

of ŜMR has a variance estimator

V̂ar[ln(ŜMR)] = 1

A1+
+

∑
i

E2
1i (1/A0i + 1/B1i + 1/B0i )

E2
1+

[15–12]

It is also possible to estimate a standardized rate ratio from case-control data using other standards
(Miettinen, 1972). For example, in the absence of biases, E0i = A1i B0i/B1i estimates the number
of cases one should have expected among the unexposed in stratum i if they had experienced the
exposed rate and T0i person-time units; thus, an estimator of the standardized rate ratio using the
unexposed population as the standard is ŜRRu = E0+/A0+, where A0+ = �

i
A0i and E0+ = �

i
E0i .

The logarithm of ŜRRu has a variance estimator

V̂ar[ln(ŜRRu)] =
∑

i
E2

0i (1/A1i + 1/B1i + 1/B0i )

E2
0+

+ 1

A0+
[15–13]

Similarly, an estimator of the standardized rate ratio using the total population as the standard is

ŜRRt = (A1+ + E0+)/(E1+ + A0+). The logarithm of ŜRRt has a variance estimator

V̂ar[ln(ŜRRt )] = [A1+ + �i E2
0i (1/A1i + 1/B1i + 1/B0i )]/(A1+ + E0+)2

+ [�i E2
1i (1/A0i + 1/B1i + 1/B0i ) + A0+]/(E1+ + A0+)2 [15–14]

The standardized estimators presented above assume that the expected values of the stratum-
specific numbers (A1+, B1i , A0i , B0i ) are “large” (at least 5). If the data are sparse, as is often
the case in matched case-control studies, one should instead use estimators based on homogeneity
assumptions or regression models. Such estimators need not assume homogeneity over all strat-
ification variables; for example, see Flanders and Rhodes (1987) and Greenland (1986b,1987b,
1991c).
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ESTIMATION ASSUMING HOMOGENITY ACROSS STRATA

RATIONALE

Standardization summarizes measures across strata without assuming that the measures are ho-
mogenous across strata. Use of methods that do invoke a homogeneity assumption need not require
that one actually believes that assumption. Use of the homogeneity assumption can instead be
viewed as a decision to simplify analysis and reporting, based on the idea that such heterogeneity
that is present cannot be accurately analyzed given the study’s size. This rationale is reasonable as
long as the homogeneity assumption is not clearly contradicted by the data or other evidence. The
assumption should thus be viewed as a potentially useful approximation.

Given that one can never be sure of homogeneity, how should one interpret estimates based
on such an assumption? When the ratios do not vary much across strata, the homogeneous risk
and rate ratio estimates discussed here appear to provide good estimates of risk and rate ratios
standardized using the total population (exposed plus unexposed) as the standard (Greenland and
Maldonado, 1994). This is also true of homogeneous odds-ratio estimators derived from unmatched
case-control studies, provided the stratum-specific odds ratios approximate the stratum-specific risk
or rate ratios. These approximations provide a straightforward interpretation of homogeneous ratio
estimators and so justify their use even when some ratio heterogeneity is present (as is always the
case). Nonetheless, they do not provide a rationale for failing to search for heterogeneity and report
it when it appears likely to be of important magnitude.

There is no rigid criterion for deciding whether the homogeneity assumption can be used (al-
though statistical tests of homogeneity are sometimes used to force this decision). The first step
should be to inspect the stratum-specific estimates. Although one should expect some random
variation in the stratum-specific estimates even when the underlying parameter is homogeneous,
excessive variation (relative to that expected by chance) or obvious nonrandom patterns of varia-
tion may be evident. The investigator’s judgment about heterogeneity should not be limited to the
appearance of the data under analysis; if it is available, knowledge from previous studies or more
general biologic insight should be integrated into the evaluation process.

Typically, outside knowledge is scant, and investigators desire a more formal statistical evaluation
of the extent to which variation in the stratum-specific estimates is consistent with purely random
behavior. Toward this end, a variety of statistical tests can be applied. Part of the variety derives from
the fact that ratio and difference measures require separate evaluations, because homogeneity of the
ratio measure usually implies heterogeneity of the difference measure and vice versa. In Chapter
10 we criticized the use of statistical tests, and especially criticized the concept of “statistical
significance,” which artificially forces a continuous measure (the P-value) into a dichotomy. The
use of statistical tests is a bit more defensible, however, when an immediate decision rests on the
outcome of a single statistical evaluation. Such may be the case if an investigator is attempting
to decide whether the extent of variation in a set of stratum-specific estimates is consistent with
probable random departures from a homogeneous measure, so that homogeneity is tenable in light
of the data.

Statistical tests of homogeneity (i.e., tests of the hypothesis that the measure has a “common” or
constant value across the strata) are based on comparisons of stratum-specific estimates against a
summary estimate that assumes homogeneity, or of observed cell counts against cell counts expected
under the homogeneity hypothesis. Thus, to test homogeneity we first conduct an analysis in which
we assume homogeneity and derive an estimate of the homogeneous measure. The next section
discusses analysis methods based on the homogeneity assumption. We will then present some basic
methods for testing this assumption.

One should bear in mind that tests of the homogeneity assumption usually have very low power
(Greenland, 1983). Studies are often designed to have “sufficient” power (e.g., 80%) to detect a
crude association of a fixed plausible size. Tests of homogeneity require that the data be divided into
strata, and that the stratum-specific estimates—each with its own variance estimate—are compared
with one another. The power of tests of homogeneity is therefore reduced in two ways relative to
the crude power: The study sample is divided into strata, which increases the total variance; and
every stratum (some of much smaller size than the total) must be used to estimate its own measure
for comparison to other strata.
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ESTIMATES OF A HOMOGENOUS MEASURE

In Table 15–1, the point estimates of the risk difference were 0.034 and 0.036 in the two age strata, so
that any estimate summarizing these differences should be between 0.034 and 0.036. Even if the true
measure is identical across strata, however, it is reasonable to expect that estimates of the measure
will vary across strata because of random error. Thus, even if one assumes homogeneity across
strata, one must derive an overall estimate of association or effect from stratified data. A summary
estimate derived under the homogeneity assumption is sometimes called a “pooled estimate.”

Pooled estimates are usually weighted averages of stratum-specific estimates. Taking a weighted
average of stratum-specific estimates describes standardization as well as pooling. The difference is
that with standardization, the weights are derived from a standard distribution that may be external
to the data, are applied to the estimated occurrence measures (or case-control ratios) rather than to
association or effect measures, and the entire process does not assume homogeneity of the measure
across strata. With pooling, the weights are applied to the estimated association or effect measure,
are determined solely by the data and the homogeneity assumption, and are chosen to reduce the
random variability of the summary estimate. In particular, if the measure is homogeneous across
strata, each stratum provides an estimate of the same quantity, and the only question is then how to
average these stratum-specific estimates in a manner to minimize variance.

A standardized estimate might assign relatively large weight to strata with little data, and little
weight to strata with ample data. In contrast, pooling is designed to assign weights that reflect
the amount of information in each stratum. If the measure is homogeneous, one way to minimize
the variance of the overall weighted average without introducing bias is to assign weights to the
stratum-specific values that are inversely proportional to the estimated variance of each stratum-
specific estimate. Direct pooling, or precision weighting, involves first estimating the stratum-
specific variances, then inverting these to get the weights, and finally averaging the stratum-specific
estimates using these weights; this is sometimes known as the Woolf method or weighted least
squares (Breslow and Day, 1980). To be valid, direct pooling requires large numbers within each
cell in each stratum. Because many stratified analyses have sparse data, directly weighted approaches
are not as broadly applicable as the alternatives we will discuss below (Breslow, 1981).

One alternative is to find the value of the measure that maximizes the probability of the data under
the homogeneity assumption. This maximum-likelihood (ML) method (Chapter 13) produces the
pooled estimate without explicitly determining stratum-specific weights; for example, see Breslow
and Day (1980), Jewell (2004), or Newman (2001). ML estimates have certain desirable statistical
properties (such as minimum large-sample variance among approximately unbiased estimators),
and consequently ML methods are often considered the optimal large-sample estimating methods.
Nonetheless, there are other relevant statistical criteria (such as mean-squared error) under which
ML estimation is inferior to certain methods, such as penalized-likelihood estimation (Chapter 21).

Another approach to estimating a homogeneous measure is the Mantel-Haenszel method. Mantel-
Haenszel estimators are easy to calculate, and in many applications are nearly as accurate as ML
estimators. We will restrict our attention to maximum-likelihood and Mantel-Haenszel estimators
for homogeneous measures, providing only citations for small-sample methods. Because likelihood
computations can be complex and are invariably done by computers, we will omit formulas for ML
estimates and instead focus on Mantel-Haenszel formulas. For a more detailed introduction to
likelihood methods in epidemiologic analysis, see Clayton and Hills (1993), Jewell (2004), or
Newman (2001).

MAXIMUM-LIKELIHOOD ESTIMATORS

Maximum-likelihood estimation of a homogeneous measure involves taking the data probabilities
for each stratum and multiplying them together to produce a total data probability. For person-
time data, the latter probability is a function of the stratum-specific rates in the exposed I1i , and
the unexposed I0i . If no constraint is imposed on these rates, the maximum-likelihood estimates
(MLEs) of the stratum-specific rates will simply be the observed rates,

∧
I 1i = A1i/T1i and

∧
I 0i = A0i/T0i
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If, however, we assume that one of the association measures is homogeneous across the strata, the
MLEs of the stratum-specific rates and this homogeneous measure requires iterative computation,
either with a spreadsheet or using software written for this purpose. Software is available when a
homogeneous rate ratio is assumed, that is, when we assume that

I1i/I0i = IR

where IR is constant across strata. Most such software assumes a Poisson probability model for
the stratum-specific counts A1i and A0i (Chapter 14), and that the counts are independent of one
another within and across strata. Neither assumption is realistic when the disease under study is
contagious, but they are reasonable for most other diseases.

Less frequently, a homogeneous rate difference may be assumed, that is,

I1i − I0i = ID

Finding the MLEs under this assumption usually requires converting the assumption into a regression
model and using a maximum-likelihood Poisson regression program (Chapter 21).

For closed-cohort data with count denominators N1i and N0i in each stratum, the maximum-
likelihood estimates of the stratum-specific average risks are the observed incidence proportions

∧
R1i = A1i/N1i and

∧
R0i = A0i/N0i

if no constraint is imposed. If, however, we constrain either the risk ratio, odds ratio or risk difference
measure to be homogeneous across the strata, then the MLEs of the stratum-specific risks and the
ratio or difference measure must be found by iterative computation. Much software is available for
estimating a homogeneous odds ratio, that is, assuming that the stratum-specific odds ratios

R1i/(1 − R1i )

R0i/(1 − R0i )

are the same across strata. Most such software assumes a binomial probability model for the counts
A1i and A0i (Chapter 14), and that these counts are independent within and across strata. Assuming
either a homogeneous risk difference R1i − R0i = RD or homogeneous risk ratio R1i/R0i = RR
usually requires use of a maximum-likelihood binomial regression program (Chapter 21).

UNCONDITIONAL VERSUS CONDITIONAL ANALYSIS

Chapter 14 introduced two different probability models used for analyzing rate ratios: a two-Poisson
model and a single-binomial model that was based on taking the observed number of cases (M1)
as given, or “fixed.” It also introduced two different models for analysis of odds ratios in 2 × 2
tables: a two-binomial model and a single-hypergeometric model that was based on taking all the
table margins (M1, M0, N1, N0) as fixed. The fixed-margin models are called conditional models,
because they condition all data probabilities on the observed margins.

The hypergeometric likelihood statistics are more often called conditional-likelihood statistics,
and the MLE of the common odds ratio derived from the hypergeometric model is called the
conditional maximum-likelihood estimate (CMLE). The binomial-likelihood statistics are often
called unconditional likelihood statistics, and the MLE of the common odds ratio derived from
the two-binomial model is often called the unconditional maximum-likelihood estimate (UMLE).
Usually, if a discussion does not specify which MLE is being considered, it is the unconditional
estimate that is under discussion.

Stratified analysis of rate and odds ratios may also be conducted with or without conditioning
on the stratum margins. For rate ratios, the difference is essentially only computational. For odds
ratios, however, the choice of whether to model each stratum with two binomials or a single
hypergeometric probability can have a profound effect on the resulting common odds-ratio analysis.
Only conditional-likelihood methods (based on the hypergeometric model, conditioning on all
stratum margins M1i , M0i , N0i ) and Mantel-Haenszel methods remain approximately valid in sparse
data, that is, data in which the number of subjects per stratum is small. As discussed below, however,
they require that the total number of subjects contributing to the estimates at each exposure–disease
combination be adequate (Mantel and Fleiss, 1980; Greenland et al., 2000a; Greenland, 2000e).
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Unconditional likelihood methods (based on the two-binomial model) additionally require that each
binomial denominator in each stratum (N1i and N0i in a cohort study, M1i and M0i in a case-control
study) be “large,” meaning about 10 or more for odds-ratio analysis (Pike et al., 1980).

Only exact methods have no sample-size requirement. Because the unconditional odds-ratio
MLE additionally requires large numbers within strata whereas the conditional MLE does not, one
may well ask why the unconditional MLE is used at all. There are at least two reasons: First, the
conditional MLE is computationally much more demanding, and when the numbers within strata
are large (N1i > 10 and N0i > 10), the two estimators will usually be almost equal and so there
will be no need to use the conditional MLE. Second, only the unconditional method is theoretically
justifiable for estimation of quantities other than rate ratios and odds ratios, such as risks, risk
differences, and risk ratios.

MANTEL-HAENSZEL ESTIMATION: PERSON-TIME DATA

It is possible to construct Mantel-Haenszel estimators of homogeneous rate differences, but such
estimators can have much higher variances than the corresponding maximum-likelihood estimator
(Greenland and Robins, 1985b). We therefore recommend maximum likelihood for estimating a
homogeneous rate difference, subject to the caution that there be at least 10 cases per stratum. If,
however, there are fewer than 10 cases per stratum, the maximum-likelihood rate difference can
become excessively biased, whereas the Mantel-Haenszel rate difference remains unbiased. The
Mantel-Haenszel rate difference is essentially a standardized rate difference with standard weights
given by

wMHi = T1i T0i/T+i

where T+i = T1i + T0i . This weighting yields

ÎDMH =
∑

i
wMHi (

∧
I1i − ∧

I0i )∑
i

wMHi
=

∑
i

(A1i T0i − A0i T1i )/T+i∑
i

T1i T0i/T+i
[15–15]

where
∧
I1i = A1i/T1i and

∧
I0i = A0i/T0i are the stratum-specific rate estimates. A variance estimator

for ÎDMH that is appropriate even if the data are sparse is

V̂ar(ÎDMH) =
∑

i
w 2

MHi (
∧
I1i/T1i + ∧

I0i/T0i )(∑
i

wMHi

)2
[15–16]

(Greenland and Robins, 1985b). The variance of ÎDMH can be considerably reduced by using
T1i T0i/M1i instead of wMHi as the weight, but this change renders the estimator invalid for sparse
data.

Unlike the Mantel-Haenszel rate difference, in most situations the Mantel-Haenszel rate ratio
based on the weights wMHi has a variance equal to or not much larger than that of the MLE
(Greenland and Robins, 1985b; Walker, 1985). It reduces to an exceptionally simple form:

ÎRMH =
∑

i
wMHi

∧
I1i

∑
i

wMHi
∧
I0i

=
∑

i
A1i T0i/T+i∑

i
A0i T1i/T+i

[15–17]

(Nurminen, 1981; Rothman and Boice, 1982). A variance estimator for the logarithm of the Mantel-
Haenszel rate ratio is

V̂ar[ln(ÎRMH)] =
∑

i
M1i T1i T0i/T 2

+i(∑
i

A1i T0i/T+i

) (∑
i

A0i T1i/T+i

) [15–18]
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 5 – 4

Intermediate Calculations for Mantel-Haenszel Analysis of the Smoking/
Coronary Mortality Data in Table 15–2

Age (y) T1i T0i/T+ i A1i T0i/T+ i A0i T1i/T+ i M1i T1i/T+ i M1i T1i T0i/T 2
+ i

35–44 13,831 8.45 1.47 25.05 6.60
45–54 8,560 20.59 9.62 93.04 18.42
55–64 4,760 34.27 23.34 195.07 32.45
65–74 2,147 31.53 23.25 177.72 30.13
75–84 1,147 22.00 24.31 104.32 22.50
Total 30,445 116.8 82.0 595.2 110.1

(Greenland and Robins, 1985b). Both these rate-ratio formulas remain valid even if the data are
sparse. Nonetheless, like the MLEs, both are “large-sample” formulas, in that their validity requires
adequate numbers of subjects observed at each exposure–disease combination. As a rough guide,
one should use exact limits if either of the following expressions is less than 5:

A =
∑

i

M1i IR · T1i

IR · T1i + T0i
, A =

∑
i

M1i T0i

IR · T1i + T0i

where IR, IR are the lower and upper confidence limits derived from the above formulas.
Table 15–4 gives the intermediate calculations for Mantel-Haenszel analysis of the coronary

mortality data in Table 15–2. In units of deaths per 104 years,

ÎDMH = 13,831(6.1 − 1.1) + · · · + 1,147(191.8 − 212.0)

30,4452
= 11.44

V̂ar(ÎDMH) = 13,8312(6.1/52,407 + 1.1/18,790) + . . .

30,4452
= 9.57

which yield 90% limits for a common rate difference of 11.44 ± 1.645(9.57)1/2 = 6.35, 16.53 per
104 person-years.

If instead we assume a common rate ratio, we get

ÎRMH = 116.8/82.0 = 1.42

V̂ar[ln(ÎRMH)] = 110.1

116.8(82.0)
= 0.01150

which yield 90% confidence limits of

exp[ln(1.424) ± 1.645(0.01150)1/2] = 1.19, 1.70

Maximum likelihood yields virtually the same point estimate and confidence limits for the rate
ratio.

MANTEL-HAENSZEL ESTIMATION: PURE COUNT DATA

Suppose that our data come from a closed cohort. Mantel-Haenszel risk-difference and risk-ratio
estimators are then standardized estimators based on the standard weights

wMHi = N1i N0i/N+i
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where N+i = N1i + N0i . These weights are direct analogs of the person-time weights. They yield
the risk-difference estimator

R̂DMH =
∑

i
(A1i N0i − A0i N1i )/N+i∑

i
N1i N0i/N+i

[15–19]

(Cochran, 1954) and risk-ratio estimator

R̂RMH =
∑

i
A1i N0i/N+i∑

i
A0i N1i/N+i

[15–20]

(Nurminen, 1981). As in the person-time situation, these Mantel-Haenszel estimators can have
much higher variance than the maximum-likelihood estimators of the homogeneous risk difference
or ratio. Unlike the corresponding MLEs, however, the Mantel-Haenszel estimators remain valid in
sparse data (Greenland and Robins, 1985b). A variance estimator for R̂DMH that is valid for all types
of data is given by Sato (1989). It is rather complex and so is omitted here. If every denominator
(N1i and N0i ) is greater than 1, one can use the variance estimator

V̂ar(R̂DMH ) =

∑
i

w2
MHi

[
A1i B1i

N 2
1i (N1i − 1)

+ A0i B0i

N 2
0i (N0i − 1)

]
(∑

i
wMHi

)2
[15–21]

Unless all the cell counts are large, it is best to set limits using the improved approximation formula

given for the crude RD in Chapter 14. A variance estimator for ln(R̂RMH) that is valid for all types
of data is

V̂ar[ln(R̂RMH)] =
∑

i
(M1i N1i N01/N 2

+i − A1i A0i/N+i )(∑
i

A1i N0i

N+i

) (∑
i

A0i N1i

N+i

) [15–22]

Like the MLEs, R̂RMH and its variance estimator are “large-sample” estimators, but R̂RMH does not
require the strata to be large. This issue will be discussed further in the testing section that follows.

The variance of R̂DMH can be greatly reduced by using N1i N0i/M1i instead of wMHi as the
weight. Similarly, if M0i = N+i − M1i is the total number of noncases in stratum i , the variance of
R̂RMH can be reduced by using N1i N0i/M0i instead of wMHi as the weight (Tarone, 1981). These
modifications, however, render the estimates invalid for sparse data.

Consider again Table 15–1, comparing tolbutamide with placebo. From these data, we obtain
a Mantel-Haenszel risk difference of 0.035 with an estimated SD of 0.032, which yield 90%
confidence limits of 0.035 ± 1.645(0.032) = −0.018 and 0.088. These results suggest that those
who received tolbutamide may have had a greater average risk of death during the study than
those who received placebo, despite the fact that tolbutamide was intended to prevent death in these
patients. For comparison, the maximum-likelihood estimate of the risk difference is 0.034 with an
estimated SD of 0.028; these yield 90% confidence limits of −0.012 and 0.080, a bit narrower than
the Mantel-Haenszel limits.

The Mantel-Haenszel risk-ratio estimate from Table 15–1 is 1.33, and the variance estimate for
its logarithm is 0.0671. These yield approximate 90% confidence limits of

exp[ln(1.33) ± 1.645(0.0671)1/2] = 0.87, 2.0

For comparison, the maximum-likelihood estimate and 90% confidence limits are 1.31 and
0.86, 2.0.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 5 – 5

Infants with Congenital Heart Disease and Down Syndrome, and Healthy
Controls, according to Maternal Spermicide Use before Conception and
Maternal Age at Delivery

Maternal Age <35 y, Spermicide Use Maternal Age 35+ y, Spermicide Use

Yes No Total Yes No Total

Down syndrome 3 9 12 1 3 4
Control 104 1,059 1,163 5 86 91
Total 107 1,068 1,175 6 89 95

From Rothman KJ. Spermicide use and Down syndrome. Am J Public Health, 1982;72:399–401.

For cohort, case-control, and cross-sectional data, one may wish to assume a homogeneous odds
ratio, OR. The Mantel-Haenszel estimate of this parameter is

ÔRMH =
∑

i
A1i B0i/N+i∑

i
A0i B1i/N+i

=
∑

i
Gi∑

i
Hi

[15–23]

where Gi = A1iB0i/N+i and Hi = A0iB1i/N+i (Mantel and Haenszel, 1959). For values of the
odds ratio not far from 1, this estimator has a variance not much greater than the MLE, and it
remains valid in sparse data (Breslow, 1981; Breslow and Liang, 1982). Nonetheless, it is a “large-
sample” estimator in the sense explained below. A variance estimator for the logarithm of the
Mantel-Haenszel estimator that is valid even if the data are sparse is

V̂ar[ln(ÔRMH )] =
∑

i
GiPi

2

(∑
i

Gi

)2
+

∑
i

(GiQi + HiPi )

2
∑

i
Gi

∑
i

Hi
+

∑
i

HiQi

2

(∑
i

Hi

)2
[15–24]

where Pi = (A1i + B0i )/N+i and Qi = (A0i + B1i )/N+i (Robins et al., 1986b, 1986c).
Table 15–5 provides data from a case-control study of congenital heart disease, Down syndrome,

and maternal spermicide use before conception. The Mantel-Haenszel estimate of the maternal-age
stratified odds ratio relating maternal spermicide use to Down syndrome is

ÔRMH = (3 · 1059)/1,175 + (1 · 86)/95

(104 · 9)/1,175 + (5 · 3)/95
= 3.78

The estimated variance from the above formula is 0.349, which yields 90% confidence limits of
1.43, 10.0. For comparison, the unconditional MLE is 3.79, the conditional MLE is 3.76, and the
mid-P 90% limits are 1.30, 9.78. In view of the small number of exposed cases, the differences are
remarkably minor.

SMALL-SAMPLE METHODS

One can avoid approximations and conduct stratified analyses of a homogeneous measure by com-
puting traditional exact or mid-P-values (and hence confidence limits) directly from an exact
probability model for the data. These approaches are direct extensions of the small-sample methods
discussed in Chapter 14. Although conceptually simple, the necessary formulas and computations
become quite complex in stratified data, and are limited to rate-ratio and odds-ratio analyses (Bres-
low and Day, 1980, 1987). The chief advantage of such analyses is that no sample-size assumption
is needed. For a description of these methods, see Hirji (2006) or Cytel (2006).
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P -VALUES FOR THE STRATIFIED NULL HYPOTHESIS

Examples can be found in which a pooled estimate of a homogeneous rate difference shows a
negative association whereas a pooled estimate of a homogeneous rate ratio shows a positive
association for the same data. Such discrepancies stem from differences in the optimal weighting
schemes for the different pooled estimators and reflect the fact that at most one of the measures
can be homogeneous. For the purposes of testing the null hypothesis of no association in any
stratum, however, the efficient (variance-minimizing) weightings are approximately equivalent for
all measures. Consequently, only a single hypothesis test of no association need be considered,
whatever the parameter used to measure the association.

Hypothesis testing is generally performed with respect to the overall departure of the data from
the null value of no association. Even if the chosen measure varies substantially across strata,
tests of the null that assume homogeneity can often outperform tests that do not. If the stratum-
specific values of the rate ratio (in person-time data) or odds ratio (in pure count data) are in fact
homogeneous, the tests described below are optimal under certain restrictive criteria (Gart and
Tarone, 1983).

If the true values of the rate ratio or odds ratio vary across strata, specialized tests can be
constructed that will be more powerful than the tests of overall departure from the null value
described here. Even in this situation, the tests given below are still valid. More problematically,
however, it is possible that estimates could be strongly positive in some strata and strongly negative
in others. In such circumstances, the pooled estimate may be near the null value as a result of the
balancing of the opposing estimates in individual strata. If the underlying stratum-specific measures
change direction across strata, the tests given below may have little power to detect the presence of
stratum-specific associations.

Test statistics for stratified data represent a straightforward extension of the corresponding statis-
tics for unstratified data. The score tests for stratified data retain the general form of the score tests
in Chapter 14; they extend the formulas for crude data by summing stratum-specific components
for the test statistics (the observed number of exposed cases, the number expected under the null
hypothesis, and the null variance).

P-VALUES FOR STRATIFIED PERSON-TIME DATA

As with unstratified data, the test statistic is the total number of exposed cases, A1+ = �
i

A1i . The

expectations and variances for the number of exposed cases under the test hypothesis are calculated
within each stratum and are summed over the strata. Conditional on the total numbers of cases M1i

in each stratum, and assuming the null hypothesis (IR = 1), the expectation for the total number of
exposed cases is

E = E(A1+ | IR = 1) =
∑

i

M1i T1i

T+i

and the null variance is

V = Var(A1+ | IR = 1) =
∑

i

M1i T1i T0i

T 2
+i

E and V yield the score statistic

χscore = A1+ − E

V 1/2
[15–25]

(Shore et al., 1976). This statistic is perhaps better known as the Mantel-Haenszel statistic for
person-time data; it is identical to the test statistic for unstratified person-time data, except that the
three components of the test statistic are obtained by summing their stratum-specific contributions.
It is valid in sparse data, but it requires large total numbers. As a rough guide, small-sample methods
are recommended if either E or the quantity

∑
i

M1i ÎRMH T1i

ÎRMH T1i + T0i

is less than 5 or greater than M1+− 5.
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For the data in Table 15–2, the number of exposed cases, A1, equals 630, whereas the expected
value and variance of A1 under the null hypothesis are seen from Table 15–4 to be E = 595.2 and
V = 110.1. Hence,

χscore = 630 − 595.2

(110.1)1/2
= 3.3

which corresponds to an upper-tailed P-value of 0.0005.

P-VALUES FOR STRATIFIED PURE COUNT DATA

The extension of the unstratified score test for pure count data to stratified 2 × 2 tables is analogous
to the extension of the unstratified score test for person-time data. As before, the contributions to
each of the three components of the test statistic (the number of exposed cases and the expectation
and variance for the number of exposed cases) are derived separately for each stratum and then
summed over the strata. Assuming that all stratum margins are fixed, the expectation and variance
for the number of exposed cases under the null hypothesis (OR = 1) are

E = E(A1+ | OR = 1) =
∑

i

M1i N1i

N+i

and

V = Var(A+1 | OR = 1) =
∑

i

M1i M0i N1i N0i

N 2
+i (N+i − 1)

E and V yield the score statistic

χscore = A1+ − E

V 1/2
[15–26]

This test statistic, first derived by Cochran (1954) and later modified by Mantel and Haenszel
(1959) to the above form, is now known as the Mantel-Haenszel statistic. It has been widely used
in epidemiology and other fields. It is valid in sparse data but requires “large” numbers overall. The
precise requirements are rather complex (Mantel and Fleiss, 1980) and so are not given here, but
they imply that small-sample methods should be used if any of the crude totals (A1+, A0+, B1+,
B0+) or their null expected values (E , M1 + −E , N1+ − E , N0+ − M1+ + E) are less than 5, as
well as in some other situations.

Consider the P-value for the hypothesis of no association between tolbutamide and death using
the data in Table 15–1 and the Mantel-Haenszel statistic. The number of exposed cases A1+, where
“exposed” indicates tolbutamide therapy, equals 8 + 22 = 30. The expected value and variance of
A1 under the null hypothesis are

E = (106)(13)

226
+ (98)(38)

183
= 6.10 + 20.35 = 26.45

V = (106)(120)(13)(213)

(226)2(225)
+ (98)(85)(38)(145)

(183)2(182)
= 3.06 + 7.53 = 10.60

so that the statistic is

χscore = 30 − 26.45

(10.60)1/2
= 1.09

which gives a lower-tailed P-value of 0.86, or a two-sided P-value of 0.28. (Because tolbutamide
was being studied as preventive of the complications of diabetes, departures from the null value
were expected to occur in the direction of preventing death. Therefore, the relevant one-sided null
hypothesis is that there is no inverse association, in which is tested by the lower-tailed P-value.)

Consider again the spermicide and Down syndrome data in Table 15–5. The Mantel-Haenszel
(score) statistic is 2.41 with an upper-tailed P-value of 0.008, which is not close to the upper-tailed
mid-P-value of 0.023. This discrepancy reflects the fact that the sample size is too small (only four
exposed cases) for the Mantel-Haenszel P-value to approximate the mid-P-value.
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TESTING HOMOGENEITY

The general form of a Wald statistic for testing the hypothesis that a measure U is homogeneous
across strata is

χ2
Wald =

∑
i

(
∧
Ui − ∧

U )2

∧
Vi

where
∧
Ui is the stratum-specific MLE of the measure,

∧
Vi is the estimated variance of

∧
Ui , and

∧
U

is the MLE of the hypothesized homogeneous (common) value of the measure. This homogeneity
statistic will have a χ2 distribution with degrees of freedom one less than the number of strata if
the true measures Ui are homogeneous across strata. Thus, a P-value for the homogeneity
hypothesis can be obtained by looking up the statistic in a χ2 table. The stratum-specific esti-
mates

∧
Ui may be adjusted for factors other than the modifier under study. For example, we may test

homogeneity across age strata while adjusting for sex, so that i varies across age strata;
∧
Ui is then

the MLE obtained by stratifying on sex within stratum i of age, and
∧
U is the overall MLE obtained

by stratifying on age and sex.
One important caution in using χ2

Wald is that, for ratio measures, U should be taken to be the
logarithm of the ratio. Substitution of the logarithm of the Mantel-Haenszel rate or odds ratio for
the logarithm of the corresponding MLE, though not theoretically correct, will usually make little
difference in the result. If U is a rate or risk difference or a risk ratio, however, one should not use
the Mantel-Haenszel estimate in place of a MLE, as this would invalidate the statistic.

Consider again the tolbutamide data in Table 15–1. Applying the unstratified formulas from
Chapter 14 to each age stratum yields

Stratum 1: R̂R1 = 1.81, V̂ar[ln(R̂R1)] = 0.3072.

Stratum 2: R̂R2 = 1.19, V̂ar[ln(R̂R2)] = 0.0860.

Earlier, we mentioned that the MLE of a common RR for these data is 1.31. Thus

χ2
Wald = [ln(1.81) − ln(1.31)]2

0.3072
+ [ln(1.19) − ln(1.31)]2

0.0860
= 0.45

Because there are only two strata, this statistic has 2 − 1 = 1 degree of freedom and yields a P-
value of 0.50. Thus, the data are compatible with the hypothesis of homogeneity of the risk ratio.
Repeating the process for the risk difference, we get

Stratum 1: R̂D1 = 0.034, V̂ar(R̂D1) = 0.0010.

Stratum 2: R̂D2 = 0.036, V̂ar(R̂D2) = 0.0036.

Because the MLE of a common RD is 0.034, we get

χ2
Wald = (0.034 − 0.034)2

0.0010
+ (0.036 − 0.034)2

0.0036
= 0.001

with one degree of freedom, which yields P = 1.00. Thus, as is evident from the point estimates, the
same data are almost perfectly compatible with the hypothesis of homogeneity of the risk difference.

As mentioned earlier, if both the exposure and the stratifying variables are risk factors, then at
most one of the risk ratio and risk difference can be homogeneous. Thus, if there is any stratum-
specific association of tolbutamide with death, at least one of the above homogeneity hypotheses
must be wrong. Yet the tests reject neither hypothesis. This result reflects a general problem of
homogeneity testing mentioned earlier: The standard tests of homogeneity have very low power in
typical epidemiologic settings. That is, there is often only a small probability that they will reject
homogeneity, even if there is heterogeneity (Breslow and Day, 1980; Greenland, 1983). When there
are more than two strata, it is often possible to use more powerful tests that make use of ordering
of the strata with respect to the stratifying variables. Such tests are more easily described in the
context of testing product terms in regression models (Chapters 20 and 21).

Even with such improved tests, one should always bear in mind that a high P-value from a
homogeneity test does not show that the measure is homogeneous; it means only that heterogeneity
was not detected by the test. When heterogeneity is detected, it is usually best to present and discuss
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stratum-specific estimates. Nonetheless, standardized summaries (as opposed to summaries that
assume homogeneity) retain valid interpretations and can be used as measures of population effect
(Miettinen, 1972; Greenland, 1982b).

Consider again the coronary death and smoking data in Table 15–2. We will test the homogeneity
of the rate ratio using the Mantel-Haenszel estimate. Because the variances of the stratum-specific
log rate-ratio estimates are 1/A1i + 1/A0i (Chapter 14), our test statistic is

χ2
Wald =

∑
i

[ln(ÎRi ) − ln(ÎRMH)]2

1/A1i + 1/A0i

= ln[(6.1/1.1) − ln(1.42)]2

1/32 + 1/2
+ · · · + [ln(191.8/212.0) − ln(1.42)]2

1/102 + 1/31
= 10.41

Because there are five age strata, this statistic has 5 − 1 = 4 degrees of freedom, which yields a
P-value of 0.03. Thus, it appears that homogeneity of the rate ratio is not a good assumption for
analyzing the data. It also appears that the declining trend in ratios seen in Table 15–2 should be
accounted for in the analysis and presentation of results. For a simple trend such as that in Table
15–2, a regression analysis may provide the most parsimonious complete summary, although the
estimated SMR of 1.43 remains a valid (if incomplete) summary.

Most computer programs for stratified analysis provide an approximate test of homogeneity, such
as a Wald test, score test, or likelihood-ratio test; a few packages, such as StatXact (Cytel, 2006),
can supply an exact homogeneity P-value if the numbers are not too large. Tests for qualitative
interaction (reversal of association) have also been developed (Gail and Simon, 1985).

Except for exact tests, basic homogeneity tests require the study numbers to be large within strata.
It is possible to apply the sample-size criteria given in Chapter 14 on a stratum-by-stratum basis to
determine whether unconditional maximum-likelihood estimates and unconditional homogeneity
tests can be validly applied to stratified data. For example, if every stratum is large enough for
the valid estimation of the stratum-specific rate ratio, the Wald test of rate-ratio homogeneity will
usually be approximately valid as well. This stratum-by-stratum criterion is probably more strict
than needed for score and likelihood-ratio tests of homogeneity. Nonetheless, if the criterion is not
satisfied, it is unlikely that any of the standard homogeneity tests will yield a small P-value, and
thus use of an exact test is unlikely to alter the inferences.

CASE-COHORT DATA

As for unstratified case-cohort data (Chapter 14), one can estimate a homogeneous odds ratio and
compute a P-value from case-cohort data simply by combining all cases together (whether they
come from the case sample or the cohort sample) and then analyzing the data as if they were case-
control data. For risk-ratio estimation, however, we must distinguish cases that are not controls (i.e.,
not part of the cohort sample) and cases that are controls (i.e., are part of the cohort sample). We
will use the notation in Table 15–6 to represent a stratum in the study.

ˆ

ˆ

ˆ

ˆ
T A B L E 1 5 – 6

Notation for a Stratum in a Case-Cohort Study

Exposed Unexposed Total

Case, not control A 11i A 01i M11i

Case and control A 10i A 00i M10i

Noncase control B1i B0i M0i

Total N 1i N 0i N+i
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Also, let

A1i = A11i + A10i = exposed cases in stratum i
A0i = A01i + A00i = unexposed cases in stratum i
M1i = A1i + A0i = total cases in stratum i
C1i = A10i + B1i = exposed controls in stratum i
C0i = A00i + B0i = unexposed controls in stratum i

A Mantel-Haenszel risk-ratio estimator for case-cohort data is then

R̂RMH =
∑

i
A1i C0i/N+i∑

i
A0i C1i/N+i

[15–27]

(Greenland, 1986c). A variance estimator for the logarithm of R̂RMH is

V̂ar[ln(R̂RMH )] = (A01i + B0i )A1i C1i + (A11i + B1i )A0i C0i + A11i B0i + A01i B1i ]/N 2
+i(∑

i
A1i C0i/N+i

) (∑
i

A0i C1i/N+i

)

[15–28]

(Sato, 1992a). Like the other Mantel-Haenszel estimators, both of these estimators remain valid for
sparse data but require adequate numbers of subjects contributing to the estimate at each exposure–

disease combination. The variance of the risk-ratio estimator R̂RMH can be reduced by replacing
Ni with Ci = C1i + C0i throughout (including the variance formula), but then the estimator will no
longer be valid for sparse data.

Maximum-likelihood analysis of stratified case-cohort data is also feasible (Sato, 1992b), but as
in other designs the MLEs require iterative computation, and the MLE of the risk ratio will not be
valid in sparse data.

TWO-STAGE DATA

In a two-stage (two-phase) study, the exposure and disease status of an entire study cohort is
known, so a crude (unstratified) analysis can be computed for the entire cohort, but data on other
variables are obtained only on subsamples from each of the four exposure–disease cells (Chapter
8). Maximum-likelihood analysis of two-stage data is possible, but rather complex (Breslow and
Holubkov, 1997ab). We focus here on slightly less efficient but much simpler methods.

Let A∗
1, A∗

0, B∗
1 , and B∗

0 be the numbers of exposed and unexposed cases and exposed and
unexposed noncases in the entire cohort. Suppose that simple random subsamples of size A1+,
A0+, B1+, and B0+ are selected from the four cohort cells A∗

1, A∗
0, B∗

1 , and B∗
0 , and we obtain

covariate information only for the subjects in these subsamples. Estimates of the stratum-specific
full-cohort numbers and measures are then

∧
A∗

1i = A1i (A∗
1/A1+)

∧
A∗

0i = A0i (A∗
0/A0+)

∧
B∗

1i = B1i (B∗
1/B1+)

∧
B∗

0i = B0i (B∗
0/B0+)

∧
N ∗

1i = ∧
A1i + ∧

B1i
∧
N ∗

0i = ∧
A0i + ∧

B0i

∧
R1i = ∧

A∗
1i/

∧
N ∗

1i

∧
R0i = ∧

A∗
0i/

∧
N ∗

0i

R̂Di = ∧
R1i − ∧

R0i R̂Ri = ∧
R1i/

∧
R0i

and

ÔRi = ∧
A∗

1i

∧
B∗

0i/
∧
A∗

0i

∧
B∗

0i

General variance formulas for two-stage estimators are much more complicated than those given
earlier for unsampled cohort data. We will give only simple approximate formulas for estimating
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odds ratios under the condition that the subsample sizes are fixed by design. Let F be the crude
odds ratio for the total cohort divided by the crude odds ratio for the sample:

F = (A0+/A∗
0)(B1+/B∗

1 )

(A1+/A∗
1)(B0+/B∗

0 )
= A∗

1 B∗
0

A∗
0 B∗

1

(
A1+ B0+
A0+ B1+

)−1

[15–29]

Then the stratum-specific odds-ratio estimator given above can be rewritten

ÔRi = FA1i B0i/A0i B1i

Similarly, the Mantel-Haenszel estimator of the homogeneous odds ratio for two-stage data is

ÔRMH = F

∑
i

A1i B0i/N+i∑
i

A0i B1i/N+i
[15–30]

where the N+i are the actual stratum-specific sampled number of subjects (Walker, 1982a). An
approximate variance estimator for the two-stage ln(ÔRMH) can be computed by subtracting

1/A1 + 1/A0+ + 1/B1+ + 1/B0+ − 1/A∗
1 − 1/A∗

0 − 1/B∗
1 − 1/B∗

0

from the usual Mantel-Haenszel variance estimator given in formula 15–24; this variance correction
was originally derived for the estimator given by Cain and Breslow (1988).

White (1982b) gives point and variance estimators for a homogeneous odds ratio, and homogene-
ity tests, for the situation in which the sampling fractions are random. Unfortunately, these estimators
and tests are not valid with sparse data. It is possible to modify the usual Mantel-Haenszel (score)
statistic to apply to two-stage data, but the forms of the null expectation and variance for A1+ when
F �= 1 are complex. For simplicity, Walker (1982a) and White (1982b) recommend using a Wald
statistic. For example, one may use

χWald = ln(ÔRMH)

V̂ar[ln(ÔRMH)]1/2
[15–31]

This is an approximately normal statistic for testing the hypothesis that there is no stratum-specific
association of exposure and disease; it is slightly less powerful than the modified Mantel-Haenszel
statistic.
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This chapter describes how to apply basic stratified methods to analyses of matched data; to
average risks and incidence times in censored cohort data (commonly known as survival analysis
or failure-time analysis); to attributable fractions; and to biologic interactions. It also discusses
fundamental problems in analyses of attributable and etiologic fractions, biologic interactions, and
induction periods. The main sections in this chapter are independent of one another and thus may
be read in any order.

ANALYSIS OF DATA FROM MATCHED STUDIES

Analysis of matched data involves the same statistical methods as are used for unmatched data.
Even though many textbooks present special “matched-data” techniques, these techniques are
just special cases of general stratified methods for sparse data. The evenly balanced nature of
matched covariates, however, can result in great simplifications of more general formulas, espe-
cially when the data are pair-matched. We will illustrate this simplification by showing how the
general Mantel-Haenszel formulas introduced in Chapter 15 reduce to simple matched-pair analysis
formulas.

With modern computing resources, there is little practical need to consider other simplifications
(e.g., for matched data with multiple controls). Instead, a general approach to matched data as
stratified data may be used. There is, however, one important guideline to follow in such an approach:
Each matching category should be treated as a unique stratum, at least in the initial stages of analysis.
Exceptions occur only if one can demonstrate that such detailed stratification makes no difference
in the study results. For example, suppose that subjects have been matched on sex (two levels) and
age in four 5-year categories of age 60 to 64 years, age 65 to 69 years, age 70 to 74 years, and age 75
to 79 years. To account fully for the matched nature of subject selection, it is necessary to stratify

283
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on at least the eight composite matching strata formed by each sex–age category combination.
In particular, broader age categories are not sufficient to remove the selection bias introduced by
matching.

On the other hand, any stratification that is as fine as or finer than the original matching criteria
will remove the bias induced by the matching. For example, given enough data, one could use
1-year age strata with 5-year age category matching; this additional stratification will adjust for
any residual age confounding within the original 5-year matching strata. One could also include
unmatched variables in the stratification process. The limitation of such extensions is that many
strata could end up with only a single subject and thus contribute nothing to the estimation process.
For this reason, many analysts turn to “matched” modeling methods such as conditional logistic
regression, which allow use of regression terms to control residual confounding (the confounding
left after stratification on the matching factors). These matched-regression methods are just special
cases of general modeling methods for sparse data, which are discussed in Chapter 21. In some
situations it may instead be possible to use the matching factors as regressors in an ordinary model.
This use can lead to bias, however, if the factors are continuous and treated as such instead of being
categorized to reflect the matching protocol (Greenland, 1986a, 1997a).

Sometimes care is needed in determining what constitutes sufficient stratification by the matching
factors. It is not always necessary and can be inefficient to retain the original matches made in
subject selection (Brookmeyer et al., 1986). For example, if two cases and their paired controls
all have identical values for the matching factors (say, all four subjects have the same age, sex,
and neighborhood), then combining these subjects into a single stratum will produce an estimator
with lower variance and no less validity than that produced by an analysis in which the two pairs
are kept separate. Another advantage of combining matched sets with identical matching values
is that it can eliminate “double loss” of subjects. When one member of a pair has missing data,
its corresponding match will be ignored by any paired analysis method that requires the missing
information. If, however, the matched pair belongs to a larger stratum, the corresponding match can
be retained as part of that stratum.

If a continuous variable is matched using caliper intervals rather than fixed categories, some
ambiguity can arise in determining proper analysis strata, and a small amount of bias may be
unavoidable, regardless of the analysis used (Austin et al., 1989). For example, matching “age ±
2 years” could yield two case-control pairs: one with case of age 65 and matched control age 63,
and the other with a case age 63 and a matched control age 61. Among these four subjects, the first
control and the second case are the best age match and should be in the same stratum. Nonetheless,
combining all four subjects in the same age 61–65 stratum will yield a 4-year age range for the
stratum, twice that specified by the 2-year caliper radius. A conservative approach is to form strata
no wider than the caliper radius, but this might produce strata with only one subject from a pair. A
more accurate result will likely be obtained by using a slightly biased but less variable estimator
based on broader categories (such as 4-year or even 5-year categories). In general, however, there
is no unambiguously best way to analyze caliper-matched data, because of the inherent bias in such
matching (Austin et al., 1989). We view this ambiguity as constituting a minor but practical reason
for preferring fixed-category matching over caliper matching.

To summarize, validity of the odds-ratio estimate in a matched case-control study may require
that one stratify on any matching factors related to exposure in at least as much detail as was used for
matching. In contrast, control of matching factors is not necessary for validity of point estimates of
the risk difference or risk ratio in a cohort study. Nonetheless, stratification by matched risk factors
is in principle necessary in cohort studies, because matching on risk factors affects the variance
(and hence the confidence limits) of the risk difference and ratio estimators. This matching effect is
accounted for by stratification on the matching factors (Greenland and Robins, 1985b; Weinberg,
1985).

The remainder of this section illustrates some special formulas that apply when each stratum
contains one matched pair of subjects.

ANALYSIS OF MATCHED-PAIR COHORT DATA

Suppose that stratification of a cohort yields P uniquely matched pairs of exposed and unexposed
subjects. Each stratum (pair) can then be one of only four possible types.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 6 – 1

General Form for Uniquely Pair-Matched Cohort Data

Unexposed Pair Member

Disease No Disease Exposed Totals

Exposed Disease T U T + U
Pair Member No disease V W V + W

Unexposed totals T + V U + W P

1. Both exposed and unexposed get disease, so that (in the notation of Chapter 15) A1i = A0i = 1,
B1i = B0i = 0.

2. Exposed get disease but unexposed does not, so that A1i = B0i = 1, A0i = B1i = 0.
3. Unexposed get disease but exposed does not, so that A1i = B0i = 0, A0i = B1i = 1.
4. Neither exposed nor unexposed get disease, so that A1i = A0i = 0, B1i = B0i = 1.

Note that, in every stratum, N1i = N0i = 1, so N+i = N1i + N0i = 2. We can summarize the four
types of strata in a cohort matched-pair table, given in a general form in Table 16–1.

In this notation, there are T , U , V , and W strata (or pairs) of types 1, 2, 3, and 4, respectively.
Recall from Chapter 15 that the Mantel-Haenszel estimator of a common risk ratio is

R̂RMH =
∑

i
A1i N0i/N+i∑

i
A0i N1i/N+i

[16–1]

The T type-1 pairs and U type-2 pairs have A1i = 1, so have A1i N0i/N+i = 1/2, whereas the V
type-3 and W type-4 pairs have A1i = 0, so have A1i N0i/N+i = 0. Similarly, the T type-1 and V
type-3 pairs have A0i = 1, so have A0i N1i/N+i = 1/2 whereas the U type-2 and W type-4 pairs
have A0i = 0, so have A0i N1i/N+i = 0. Hence, the Mantel-Haenszel risk ratio (equation 16–1)
simplifies to

R̂RMH = (T + U )/2

(T + V )/2
= T + U

T + V
[16–2]

Note that T + U and T + V are just the total (crude) numbers of exposed and unexposed cases.
Because there are P pairs, there are exactly P exposed and P unexposed subjects total. Hence the
crude risk ratio is

(T + U )/2

(T + V )/2
= T + U

T + V

equal to the Mantel-Haenszel risk ratio. This equality illustrates how pair matching in a cohort study
prevents confounding by the matching factors if no loss to follow-up occurs.

In a manner analogous to that just shown, formula 15–22 for the estimated variance of ln(R̂RMH)
simplifies to

U + V

(T + U )(T + V )
[16–3]

In contrast, the crude variance estimator is

1

T + U
+ 1

T + V
− 2

P
= 2T + U + V

(T + U )(T + V )
− 2

P

= 2T

(T + U )(T + V )
+ U + V

(T + U )(T + V )
− 2

P
[16–4]
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This quantity is larger than that in formula 16–3 if the pair outcomes are positively associated,
i.e., if TW > UV, as is usually the case. In this case, the crude variance estimator is upwardly biased
for the matched data, even though the crude point estimator is unbiased.

Although we forgo the details, one can similarly show that the Mantel-Haenszel risk difference
for the matched pairs simplifies to the crude risk difference,

T + U

P
− T + V

P
= U − V

P
[16–5]

but the (correct) Mantel-Haenszel variance estimate is smaller than the crude variance estimate if
TW > UV. The Mantel-Haenszel odds ratio reduces to an even simpler form for matched-pair cohort
data: It equals U/V , the ratio of discordant pairs. We show later that the same type of simplification
occurs for matched-pair case-control data.

Another interesting simplification occurs for the Mantel-Haenszel statistic. Recall that it equals

χscore = A1+ − E

V 1/2
[16–6]

where A1+ = �
i

A1i , E = �
i

M1i N1i/N+i , and V = �
i

M1i M0i N1i N0i/N+i
2(N+i− 1). For type-1

pairs, M1i = 2, M0i = 0; for type-2 and type-3 pairs, M1i = M0i = 1; and for type-4 pairs, M1i = 0,
M0i = 2. After substituting these values as appropriate and using N1i = N0i = 1, N+i = 2, we find
that A1+ = T + U (as before), E = (2T + U + V )/2, and V = (U + V )/4. Thus, for pairs,

χscore = T + U − (2T + U + V )/2

[(U + V )/4]1/2
= U − V

(U + V )1/2
[16–7]

This expression is better known as the McNemar matched-pair test statistic (McNemar, 1947)
and has been a mainstay of matched-pair analysis. Under the null hypothesis of no exposure–disease
association, it has an approximately normal distribution with a mean of 0 and a standard deviation
(SD) of 1. The test statistic calculated from the crude table does not simplify to this form.

A useful fact about the matched-cohort risk-ratio and test statistic is that they do not depend
on any matched sets with no disease. This fact implies that one can estimate risk ratios from
a population by using only case surveillance (population registry) data, as long as the data are
naturally matched and the exposure status of cases and their matches can be ascertained. Examples
of such naturally matched sets include twins, siblings, spouses, and vehicle riders. As an illustration,
consider the problem of estimating the risk ratio comparing accident fatalities of motorcycle drivers
and passengers. The Fatal Accident Reporting System (FARS) of the U.S. National Highway Safety
Administration attempts to register all U.S. motor vehicle accidents that report a fatality, and obtains
basic data on the accidents and persons involved. Evans and Frick (1988) reported from these data
that, among two-rider motorcycle crashes in which both driver and passenger were male and neither
wore a helmet, in T = 226 both died, in U = 546 only the driver died, and in V = 378 only the
passenger died. Because accidents without a fatality are not reported to the FARS, we do not know
W = number of two-rider crashes in which neither died. Nonetheless, we can estimate the death-risk
ratio for drivers versus passengers as

R̂RMH = (226 + 546)/(226 + 378) = 1.278

The logarithm of this ratio has an estimated SD of

{(546 + 378)/[(226 + 546)(226 + 378)]}1/2 = 0.0445

which yields 95% limits of

exp[ln(1.278) ± 1.96(0.0445)] = 1.17, 1.39

The Mantel-Haenszel statistic is

(546 − 378)/(546 + 378)1/2 = 5.53

which yields P < 0.0001. Thus, in two-rider motorcycle crashes in the United States in which both
riders are men and neither is helmeted, it appears that the driver is at moderately higher risk of death
than the passenger.
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Basic analysis of matched cohort data may proceed by stratifying on the matching factors (and
by other factors, if deemed necessary) and employing appropriate stratified analysis methods. We
nonetheless caution that one should examine the strata visually and use sparse-data methods (such as
Mantel-Haenszel methods) if most within-stratum numerators (A1i and A0i ) are small. If the number
of exposed cases is small or the number of unexposed cases is small, small-sample (“exact”) methods
should be used. As a rough guide, “small” may be taken as “under 5.”

For person-time analyses of follow-up data, the analysis formulas do not simplify as extensively
as do the formulas for count data, so we do not present them. Similar to count data, matched
person-time data may be analyzed using ordinary stratified-analysis formulas.

ANALYSIS OF MATCHED-PAIR CASE-CONTROL DATA

Suppose that stratification of a case-control data set yields P uniquely matched pairs of case and
control subjects. Each stratum (pair) can then be one of only four possible types:

1. Both the case and control are exposed, so that (in the notation of Chapter 15) A1i = B1i = 1,
A0i = B0i = 0.

2. The case is exposed, but the control is not, so that A1i = B0i = 1, A0i = B1i = 0.
3. The control is exposed, but the case is not, so that A1i = B0i = 0, A0i = B1i = 1.
4. Neither case nor control are exposed, so that A1i = B1i = 0, A0i = B0i = 1.

Note that, in every stratum, M1i = M0i = 1 and N+i = M1i + M0i = 2. We can summarize the
four types of strata in a case-control matched-pair table, given in general form in Table 16–2. In
this notation, there are, respectively, T , U , V , and W strata (pairs) of type 1, 2, 3, and 4 listed above.

Recall from Chapter 15 that the Mantel-Haenszel estimator of a common odds ratio is

ÔRMH =
∑

i
A1i B0i/N+i∑

i
A0i B1i/N+i

. [16–8]

The T type-1 and W type-4 pairs have A1i B0i/N+i = A0i B1i/N+i = 0 and so contribute nothing
to ÔRMH. The U type-2 pairs have A1i B0i/N+i = 1(1)/2 = 1/2 and A0i B1i/N+i = 0, whereas the
V type-3 pairs have A1i B0i/N+i = 0 and A0i B1i/N+i = 1(1)/2 = 1/2. Hence, the Mantel-Haenszel
odds ratio (equation 16–8) simplifies to

ÔRMH = U (1/2)

V (1/2)
= U

V
[16–9]

This formula may be recognized as the classical matched-pair odds-ratio estimator (Kraus,
1960), which is the ratio of the two types of exposure-discordant pairs. It is also identical to the
conditional maximum-likelihood (CML) estimator of the common odds ratio across strata (pairs)
(Breslow and Day, 1980). In a similar fashion, the SD estimator of Robins et al. (1986b, c) for
ln(ÔRMH) given in Chapter 15 simplifies to (1/U + 1/V )1/2 for matched-pair data. The latter ex-
pression is just the usual approximate SD estimator for 1n(U/V ) (Breslow and Day, 1980). Finally,

ˆ

ˆ

ˆ

ˆ
T A B L E 1 6 – 2

General Form for Uniquely Pair-Matched Case-Control Data

Control Pair Member

Exposed Unexposed Case Totals

Case Exposed T U T + U
Pair Member Unexposed V W V + W

Control totals T + V U + W P
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using essentially the same derivation as given earlier for matched-pair cohort data, one can show that
the Mantel-Haenszel test statistic applied to case-control pairs simplifies to the McNemar statistic
(U − V )/(U + V )1/2.

The crude counts obtained by ignoring the matching are A1+ = T + U , A0+ = V + W , B1+ =
T + V , and B0+ = U + W . The crude odds ratio is thus

ÔRc = (T + U )(U + W )

(T + V )(V + W )

The degree to which the case and control exposures are associated can be measured by the difference
in diagonal products TW − UV. This quantity is positive if the case and control exposures are
positively associated, and negative if these exposures are negatively associated. In general, the
crude odds ratio ÔRc will be closer to 1.0 than ÔRMH = U/V if the case and control exposures are
positively associated, and will be farther from 1.0 than ÔRMH if the case and control exposures
are negatively associated. Typically, we expect matching to make cases and controls more alike
on exposure, and thus to induce a positive association of the case and control exposures. Thus,
ordinarily we expect the crude odds ratio to be closer to the null (1.0) than the matched odds ratio.
Exceptions occur, however.

As an illustration of the above points and formulas, we consider data from a matched-pair study
of risk factors for adenomatous polyps of the colon (Witte et al., 1996). In this study, both cases
and controls had undergone sigmoidoscopy screening, and controls were matched to cases on time
of screening (3-month categories), clinic (two clinics), age (50 to 54 years, 55 to 59 years, 60 to 64
years, 65 to 69 years, 70+ years; 76 years maximum age), and sex. Of major interest is the possible
effect of low fruit and vegetable consumption; here, low consumption (exposure) is defined as two
or fewer servings per day. There were U = 45 pairs in which the case but not the control reported
low consumption, and V = 24 pairs in which the control but not the case reported low consumption.
Thus, the Mantel-Haenszel odds ratio is 45/24 = 1.875, whose logarithm has an estimated standard
error of (1/45 + 1/24)1/2 = 0.253. These yield 95% limits of

exp[ln(1.875) ± 1.96(0.253)] = 1.14, 3.08

The McNemar (Mantel-Haenszel) test statistic is (45 − 24)/(45 + 24)1/2 = 2.53, P = 0.011. These
results can be contrasted to those obtained from the crude data. In T = 4 pairs, both the case and
control reported low consumption, while in W = 415 pairs, neither reported low consumption.
The crude counts are thus A1+ = 4 + 45 = 49, A0+ = 24 + 415 = 439, B1+ = 4 + 24 = 28, and
B0+ = 415 + 45 = 460, which yield a crude odds ratio of 1.83 with 95% limits of 1.13, 2.97, and
a Xscore statistic of 2.49, P = 0.013. These are very similar to the matched results, indicating that
the matching factors were not closely related to exposure (low consumption).

Many authors have noted, with some discomfort, that the matched-pair estimator U/V makes
no use of the T + W concordant pairs (which often compose most of the pairs). It is possible
to derive odds-ratio estimators that make use of the concordant pairs, and which as a result have
smaller variance than U/V (Kalish, 1990). The cost of this variance reduction is the introduction of
some bias, although the bias is considered worth the increase in accuracy afforded by the variance
reduction. Because the formulas for these estimators are not simple, we do not present them here.

For more complex matched case-control data, analysis may proceed by stratifying on the match-
ing factors and employing appropriate stratified analysis methods. As always, however, one should
examine the strata and use sparse-data methods (such as Mantel-Haenszel or conditional maximum
likelihood) if most of the within-stratum case or control counts are small. If the total numbers of
exposed and unexposed cases and controls are also small, small-sample (exact) methods should be
used.

ANALYSIS OF CASE-CROSSOVER AND
OTHER CASE-ONLY DESIGNS

Chapter 8 described several case-only designs related to case-control studies. When the exposure
status of cases is known over the entire time period of a case-crossover study, and the exposure
distribution of case time at risk is representative of the source population distribution, one may
estimate the rate ratio from the data as if it were person-time data from a cohort study (Maclure,
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1991). Similarly, if case exposure status is known only at certain time points, and the exposure
distribution of these points is representative of the time at risk in the source population, one may
estimate the rate ratio from case-crossover data as if it were matched case-control data, with the data
from a single case at different time points forming a matched set (Mittleman et al., 1995; Greenland,
1999c). This set comprises a “case” (the case record as of disease incidence time) and “controls”
(the records from other time periods, which are used for reference).

The assumptions that permit such simple approaches to case-crossover data depend heavily
on how the time points were sampled, as well on the disease process under study, and cannot be
expected to hold in general. Sampling designs and analysis methods to address these issues are
discussed by Lumley and Levy (2000), Vines and Farrington (2001), Navidi and Weinhandl (2002),
and Janes et al. (2004, 2005).

Analysis of case-specular studies may be conducted by treating the case and specular as matched
pairs (Zaffanella et al., 1998; Greenland, 1999c). See Chapter 28 and Thomas (2004) for discussions
of the analysis of genetic case-only studies, as well as other genetic designs.

BASIC SURVIVAL ANALYSIS

Suppose that we wish to compare the average risk of disease in two cohorts, exposed and unexposed.
Our discussion thus far has implicitly assumed that each cohort member is followed until either
the event of interest occurs or the risk period of interest is over. In other words, the pure count
methods given in Chapters 14 and 15 assume that there are no losses to follow-up or competing
risks. Although this condition is usually met in some settings, such as perinatal mortality studies, it
is often not met in others, especially when the follow-up period is very long.

Losses to follow-up can occur in many ways. If the study ends before the end of a subject’s
risk period, the subject is lost to follow-up; such losses are sometimes called “withdrawals from
observation.” Subjects or their physicians may refuse further participation in the study after some
point in time and deny the investigator further contact. Subjects may move away and leave behind
no means of further contact (true losses). If the outcome under study is not inevitable, subjects
may suffer from a competing risk and so be removed from follow-up. For example, in a study of
long-term risk of uterine cancer, many women will have hysterectomies or die from other causes
during the risk period.

Most statistical methods for follow-up data treat losses to follow-up and losses to competing risks
as forms of censoring. Nonetheless, these two forms of censoring are very different phenomena, and
usually have very different relations to the study variables. For example, consider a cohort study of
fat intake and colon cancer. Over the very long follow-up period of such a study, people will drop
out of the study or move away and be lost for a variety of reasons. We expect few if any of these
losses to be related both to fat intake and colon cancer risk. But people will also be censored (lost
to observation) as a result of competing risks. For example, many will die of coronary heart disease
(CHD), which we expect to be related both to fat intake and also to colon cancer risk (through mutual
risk factors such as sedentary lifestyle and poor diet). As a result of these relations, we expect that
prevention of the competing risk of fatal CHD via improvements in diet and exercise habits will
lower the risk of colon cancer as well. This assumption implies that projecting risk outward from
the followed subjects to those lost to CHD death will overestimate what the colon cancer risk of
the latter subjects would have been if their CHD had been prevented.

The last point is particularly important, because all standard risk-estimation methods, including
the basic procedures we now present, assume that all censoring (whether due to loss to follow-up
or competing risks) is unrelated to risk of the disease under study. In other words, we assume that,
within every stratum and exposure level and over any time interval within the study, the average risk
of the study disease among subjects not lost to follow-up or competing risks is the same as what the
average risk would be if no such censoring occurred. We will call this the independent-censoring
assumption, for it demands that censoring be unrelated to risks within stratum-specific exposure
levels.

If competing risks are present, the independent-censoring assumption defines the risks being
estimated as “conditional risks,” that is, the disease risks that would apply if all competing risks were
absent. These are purely hypothetical quantities. As just discussed, actual prevention of competing
risks may alter the subsequent risk of the study disease, as when it involves changing exposures that
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are risk factors for both the competing risks and the study disease. Stratification on such exposures
will, however, produce a conditional-risk estimate that assumes no alteration is made. Thus, stratified
comparisons of conditional-risk estimates assume that (somehow) competing risks can be removed
without altering the distribution of risk factors, which is an unrealistic assumption (Kalbfleisch and
Prentice, 1980; Greenland, 2005a).

An alternative answer to the competing-risks problem is to focus attention on estimating “un-
conditional risks” of the study disease, that is, average risks in the presence of the competing risks,
also known as absolute or marginal risks (Benichou and Gail, 1990a). Other alternatives are also
possible (Pepe and Mori, 1993). These alternatives avoid much of the ambiguity inherent in standard
methods, but they are somewhat more complex than adaptation of the basic stratification methods
given earlier. We will thus confine our discussion of survival analysis to standard methods, with
the caveat that unambiguous interpretation of the estimates may require an unrealistic assumption
about the independence of the study disease and its competing risks.

RISK ESTIMATION

Basic survival analysis involves stratification on follow-up time and is traditionally known as life-
table analysis. As discussed in Chapter 3, the overall survival proportion (proportion of subjects
not getting disease) in a cohort with no competing risk is simply the product of survival proportions
over the time strata. A parallel relation holds for probabilities (which are expected proportions).
Suppose that we have K time strata indexed by k = 1, . . . , K , each with an upper boundary tk , and
with the lower boundary of the first interval being the start of follow-up. Imagine that there is a
certain probability sk of getting through time interval k without disease if one gets to the interval
without the disease. The probability of getting through all the intervals without disease is then

S = s1 × s2 × · · · × sK =
∏

k

sk [16–10]

and the overall risk of disease is R = 1 − S.
To estimate the overall risk up to a given time tend, we may construct the intervals so that the

incidence times of study disease occurring up to tend form the upper interval boundaries t1, . . . , tk ,
where tk is the last incidence time up to tend (so tk ≥ tend). We then define Ak to be the number of
cohort members observed to get disease at tk , Bk to be the number observed at risk at tk who do
not get disease at tk , and Nk to be Ak + Bk , the total still under follow-up at tk . Then, provided
censoring is independent of study disease risk,

∧
SKM =

∏
k

∧
sk =

∏
k

Bk/Nk [16–11]

will be a valid estimate of S, the probability of surviving past time tend without disease if no
competing risk occurs, and

∧
RKM = 1 − ∧

SKM will be a valid estimate of R, the probability of getting
disease by tend if no competing risk occurs.

∧
SKM is known as the Kaplan-Meier or product-limit

estimate of survival probability (Chapter 3).
An estimator for the large-sample variance of the logit of

∧
SKM, ln(

∧
SKM/

∧
RKM), based on

Greenwood’s formula (Cox and Oakes, 1984), is

V̂ar[logit(
∧
SKM)] = V̂ar[ln(

∧
SKM/

∧
RKM)] = 1

∧
R2

KM

∑
k

(
1

Bk
− 1

Nk

)
[16–12]

which is also an estimate of the variance of the logit of
∧
RKM, ln(

∧
RKM/

∧
SKM). This estimate can be

used to set confidence limits for S and R,

S, S = expit{logit(
∧
SKM) ± Zγ V̂ar[logit(

∧
SKM)]1/2}

where Zγ is 1.645 for 90% limits and 1.960 for 95% limits, with limits R = 1 − S and R = 1 − S
for R. Because these are large-sample limits, we recommend there be at least five cases observed
and at least five survivors under observation at the end of the study period (i.e., A+ ≥ 5 and
Bk ≥ 5); other formulas are available that produce more accurate limits, especially in small samples
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ˆ

ˆ

ˆ
T A B L E 1 6 – 3

Death Times (in weeks) in a Cohort of 26 Leukemia Patients with Baseline
White Blood Counts of <50,000

AG-Negative AG-Positive
Time Death Interval
Index Time Length Deaths Survivors Total Deaths Survivors Total

(k ) (tk ) (Δtk ) (A1k ) (B1k ) (N1k ) (A0k ) (B0k ) (N0k )

1 2 2 1 12 13 0 13 13
2 3 1 3 9 12 0 13 13
3 4 1 2 7 9 1 12 13
4 7 3 1 6 7 0 12 12
5 8 1 1 5 6 0 12 12
6 16 8 1 4 5 1 11 12
7 17 1 1 3 4 0 11 11
8 22 5 1 2 3 1 10 11
9 26 4 0 2 2 1 9 10

From Feigl P, Zelen M. Estimation of exponential survival probabilities with concomitant information. Biometrics. 1965;21:826–838.

(Rothman, 1978b; Anderson et al., 1982). If censoring occurs, it is best that time be measured finely
enough so that censoring and disease times are distinct (so that no censoring occurs at an interval
boundary tk). Finally, accuracy will be enhanced if time is measured finely enough so that few
incidence times are equal to one another (so that Ak is only infrequently greater than 1).

In a study of leukemia patients (Feigl and Zelen, 1965), the 13 AG-negative patients (patients
with no Auer rods or significant granulature) whose white blood count (WBC) was under 50,000 at
baseline (t = 0) had death times at weeks 2, 3, 3, 3, 4, 4, 7, 8, 16, 17, 22, 56, and 65 (Table 16–3).
Suppose that we are interested in the probability of surviving 13 weeks among such patients. There
are N = 5 distinct death times in the first 13 weeks: t1 = 2, t2 = 3, t3 = 4, t4 = 7, t5 = 8 weeks.
The numbers of subjects surviving up to each time are N1 = 13, N2 = 12, N3 = 9, N4 = 7, and
N5 = 6. The numbers surviving past each time are B1 = 12, B2 = 9, B3 = 7, B4 = 6, B5 = 5. The
product-limit estimate is thus

∧
SKM = (12/13)(9/12)(7/9)(6/7)(5/6) = 0.385

∧
RKM = 1 − 0.385 = 0.615

Because there is no censoring,
∧
SKM equals the simple survival proportion 5/13 = 0.385. The esti-

mated variance of logit(
∧
SKM) and logit(

∧
RKM) is

1

0.6152

(
1

12
− 1

13
+ 1

9
− 1

12
+ 1

7
− 1

9
+ 1

6
− 1

7
+ 1

5
− 1

6

)
= 0.325

which yields 90% limits for S and R of

S, S = expit

[
ln

(
0.385

0.615

)
± 1.645(0.325)1/2

]
= 0.20, 0.62

R, R = 1 − 0.62, 1 − 0.20 = 0.38, 0.80

Thus, S and R are very imprecisely estimated.



P1: PSB Printer: RRD

GRBT241-16 GRBT241-v4.cls January 16, 2008 13:26

292 Section III ● Data Analysis

A simple alternative to the product-limit estimator, the Nelson-Aalen estimator, is based on the
exponential formula:

∧
SNA = exp

(
−

∑
k

Ak/N k

)
,

∧
RNA = 1 − ∧

SNA [16–13]

where Ak = Nk − Bk is the number of cases occurring at time tk . This estimator has about the same
performance as the product-limit estimator, as it is a good approximation to it in large samples (see

Chapter 3). An approximate variance estimator for the logits of
∧
SNA and

∧
RNA is

V̂ar[logit(
∧
SNA)] = 1

∧
R2

NA

∑
k

Ak Bk

N 2
k (Nk − 1)

[16–14]

For the Feigl and Zelen (1965) data, the exponential formula (Nelson-Aalen) estimates are

∧
SNA = exp

(
− 1

13
− 3

12
− 2

9
− 1

7
− 1

6

)
= 0.424

∧
RNA = 1 − 0.424 = 0.576

These are not too far from the product-limit estimates of 0.385 and 0.615 considering the very
small numbers and the great imprecision involved. The estimated variance of logit(

∧
SNA) and

logit(
∧
RNA) is

1

0.5762

(
1 · 12

13212
+ 3 · 9

12211
+ 2 · 7

928
+ 1 · 6

726
+ 1 · 5

625

)
= 0.279

which yields 90% limits for S of 0.24 and 0.63.
Suppose now that we have independent survival risk estimates

∧
S1,

∧
R1 and

∧
S0,

∧
R0, for exposed

and unexposed cohorts with variance estimates
∧
V1 and

∧
V0 for their logits, such as the product-limit

estimates given above. Approximate variance estimates for the risk-difference estimator
∧
R1 − ∧

R0

and the log risk-ratio estimator ln(
∧
R1 /

∧
R0) are then

V̂ar(
∧
R1 − ∧

R0) = ∧
R1

2
∧
S1

2
∧
V1 + ∧

R0
2

∧
S0

2
∧
V0 [16–15]

and

V̂ar[ln(
∧
R1/

∧
R0)] = ∧

S1
2

∧
V1 + ∧

S0
2

∧
V0 [16–16]

These formulas can be used to set confidence limits for the risk difference and risk ratio.
Table 16–3 summarizes death times for 13 AG-negative and 13 AG-positive patients in the first

26 weeks (6 months) of a study of leukemia patients described earlier (only patients with white blood
cell counts of <50,000 are presented). Because there is no censoring in these data, the product-limit

6-month survival estimates are
∧
S1 = 2/13 and

∧
S0 = 9/13, with

∧
R1 = 11/13 and

∧
R0 = 4/13. The

variance estimates for the logits of
∧
R1 and

∧
R0 simplify to

∧
V1 = 1

(11/13)2

(
1

2
− 1

13

)
= 13

22

and

∧
V0 = 1

(4/13)2

(
1

9
− 1

13

)
= 13

36

These yield variance estimates for the risk difference and log risk-ratio estimates of(
2

13

)2 (
11

13

)2 13

22
+

(
4

13

)2 (
9

13

)2 13

36
= 0.0264

and (
2

13

)2 13

22
+

(
9

13

)2 13

36
= 0.187
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and 90% limits for the risk difference and risk ratio of

11

13
− 4

13
± 1.645(0.0264)1/2 = 0.27, 0.81

and

exp

[
ln

(
11/13

4/13

)
± 1.645(0.187)1/2

]
= 1.35, 5.60

Because there is no censoring, these results are identical to what would be obtained by applying the
unstratified methods of Chapter 14 to the data, ignoring (collapsing over) time. If censoring were
present, however, the unstratified and stratified results would differ.

It is possible to reduce the variances of risk estimators through use of survival models (Cox and
Oakes, 1984). Chapter 20 discusses such models.

ESTIMATION OF AVERAGE SURVIVAL TIME

Suppose that we are studying an inevitable outcome, such as death. To estimate the average (ex-
pected) survival or incidence time experienced from a start time until a specific end time tend, we
extend the relation of survival proportions to average incidence time outlined in Chapter 3, using
survival probability estimates (e.g., product-limit estimates) in place of the proportions. Suppose

that t1, . . . , tk are the incidence times and
∧
SKM1

, . . . ,
∧
SKMK are the product-limit estimates of the

probabilities of surviving past each time. Then an estimator of the average survival time up to tend

is

T =
∑

k

∧
SKMk−1

(tk − tk−1) + ∧
SKMK (tend−tK )

=
∑

k

(
∧
SKMk−1

− ∧
SKMk )tk + ∧

SKMK tend [16–17]

where the sums are from k = 1 to K , t0 is defined to be 0, and S0 is defined to be 1. Other
survival-probability estimates (such as Nelson-Aalen estimates) may be used in place of product-
limit estimates in this formula. If one uses product-limit estimators, however, the formula simplifies
to

T =
∑

k

Ak

Nk
tk + ∧

SKMK tend. [16–18]

If we have two groups with estimates T1 and T0, we can compare the groups using the difference
or ratio of these estimates. When death is the outcome and time is age, the difference T0 − T1 is
commonly known as the estimated expected years of life lost up to age tend. For chronic diseases,
T1 and T0 are known as the average ages at first occurrence among the exposed and unexposed, and
for irreversible diseases T0 − T1 is the estimated expected years of disease-free life lost.

We will estimate the average survival time up to tend = 28 weeks for AG-positive patients, using
the data in Table 16–3. The death times for this group are weeks 4, 16, 22, and 26, and the estimated
probabilities of surviving past these times are 12/13, 11/13, 10/13, and 9/13. (Because there is no
censoring, we can use the observed survival proportions as estimates, rather than the Kaplan-Meier
or Nelson-Aalen estimates.) These values yield an estimate for the average survival time of

T = 1(4 − 0) + 12

13
(16 − 4) + 11

13
(22 − 16) + 10

13
(26 − 22) + 9

13
(28 − 26) weeks

=
(

1 − 12

13

)
4 +

(
12

13
− 11

13

)
16 +

(
11

13
− 10

13

)
22 +

(
10

13
− 9

13

)
26 + 9

13
28 weeks

= 1

13
4 + 1

13
16 + 1

13
22 + 1

13
26 + 9

13
28 = 24.6 weeks

In contrast, the estimate for the AG-negative group is 11.2 weeks. Thus, these data indicate that
AG-positive patients experience 24.6 − 11.2 = 13.4 more weeks or about 3 more months of life,
on average, during a 28-week follow-up.
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Differences and ratios of average survival times often provide more useful measures of harm
than differences and ratios of average risks or rates (Robins and Greenland, 1991; Boshuizen and
Greenland, 1997). Nonetheless, because survival-time comparisons can become rather complicated
when losses to follow-up occur, comparisons of incidence and survival times are most easily con-
ducted using incidence-time (survival) models, as discussed in Chapter 20.

COMPARISON OF RATES OVER TIME

Suppose that we wish to compare disease rates in an exposed and an unexposed cohort. Let t1, . . . , tK

represent (in order) all the distinct disease incidence times, whether among exposed or unexposed
subjects. For the purposes of estimating and testing a uniform rate difference or ratio, we need only
consider time as one more stratification variable, along with other variables, and include it among
the factors defining the analysis strata. For example, suppose that death is the outcome and time
is measured from assignment to one of the two alternative drug therapies, with “exposed” = new
therapy assigned and “unexposed” = standard therapy assigned. If age at assignment and sex are
the other stratifying factors, each stratum in the analysis will contain the number of deaths and
subjects remaining alive at a specific death time among patients of a specific age and sex.

A stratification that places a boundary at every incidence time will produce sparse strata, because
each stratum will contain only those cases that occurred at that time in that stratum. If there is no
stratification variable other than time, there will be only one or two cases in most strata; if there are
other stratification variables, many strata will contain no case. Thus, one should use only sparse-data
methods (exact, conditional maximum-likelihood, or Mantel-Haenszel) for the analysis.

Having stratified the data on incidence time, and perhaps other variables, one may tally the
exposed and unexposed person-time within strata and apply standard methods for stratified person-
time data. Consider again the data in Table 16–3. The AG-negative and AG-positive person-times
at risk observed in each time interval are

T1k = N1k�tk and T0k = N0k�tk

For example, the times at risk for k = 4 are 3(7) = 21 negative weeks and 3(12) = 36 positive
weeks. From the formulas given in Chapter 15, the Mantel-Haenszel estimate of a uniform rate
ratio comparing AG-negative patients to AG-positive patients is 6.24, with a log rate-ratio variance
estimate of 0.445, which yields 90% confidence limits of 2.08 and 18.7. The Mantel-Haenszel
person-time χ (score statistic) is 3.14 (two-sided P = 0.0017). We note, however, that these data
do not quite fulfill the large-sample criteria given earlier: There are only four deaths among the
positives (i.e., A0+ = 4). Thus, use of small-sample methods is preferable.

Use of person-times (as in the preceding example) implicitly assumes that the rates are homo-
geneous (constant) over the time intervals between disease times. This assumption can be avoided,
at a small increase in variance, by using a simpler and more common approach in which one forms
a 2 × 2 table for each stratum. Each table contains the number of cases occurring in that stratum’s
time interval and the number of subjects (noncases) remaining at risk through the end of the stra-
tum’s time interval. One then analyzes the odds ratios in the resulting set of 2 × 2 tables using any
of the large-sample or small-sample (exact) methods given in Chapter 15.

A simple rationale for the odds-ratio approach is as follows: Suppose that one adheres to our
earlier recommendations and measures incidence time on a scale fine enough so that no tied incidence
time occurs (that is, only one case occurs at each time-interval boundary tk), and one does not attempt
to analyze follow-up beyond the point at which five survivors remain under observation in each
exposure group. Then, within each exposure group and time interval, the proportion observed to get
disease will be low (mostly less than 1/5 = 0.20, and often 0). As a consequence, we expect the
uniform odds ratio estimate obtained from analyzing the data as a series of 2 × 2 tables to be close
to the uniform rate-ratio estimate obtained from a person-time analysis (which involves slightly
more labor and one extra assumption).

Consider again Table 16–3. Using only the counts to form 2 × 2 tables (A1k , B1k , N1k , and A0k ,
B0k , N0k in each table’s columns), instead of the person-times, we obtain a Mantel-Haenszel odds-
ratio estimate comparing negatives to positives of 7.58 (which is here being used to approximate
a rate ratio), with a log odds-ratio variance estimate of 0.461. These yield 90% limits of 2.48 and
23.2. From the formula in Chapter 15, the Mantel-Haenszel χ statistic for these count data is 3.24
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(two-sided P = 0.0012). These results are close to the direct person-time results (rate ratio = 6.24,
90% limits = 2.08, 18.7), considering that none of the criteria for a good approximation is met: There
are only four positive cases; only two negative subjects survived the whole period (i.e., B0K = 2);
and there are several tied death times (in four of the nine strata there is more than 1 death, so it
would have been better to measure time in days, not weeks).

Using more sophisticated arguments, it is possible to show that in large enough samples and
with time measured finely enough (essentially, as a continuous variable), the conditional maximum-
likelihood and Mantel-Haenszel odds-ratio estimates from the time-stratified 2 × 2 tables will
provide valid estimates of a rate-ratio parameter that is constant (uniform) over time (Cox and
Oakes, 1984). Furthermore, the Mantel-Haenszel statistic for pure count data when applied to the
tables will supply a valid test of the null hypothesis (that the incidence rates for the exposed and
unexposed groups are equal within strata). When applied in this manner to survival analysis data,
the Mantel-Haenszel test is often called the log-rank test.

In an approximate (large-sample) sense, the log-rank test is as powerful as any valid and unbiased
test can be under the uniform rate-ratio model. There are, however, other simple models for exposure
effect in which the log-rank test is generally inferior to alternatives (Kalbfleisch and Prentice, 2002;
Cox and Oakes, 1984). Perhaps the most important of these is the accelerated-life (accelerated
failure-time) model, which we will describe briefly in Chapter 20.

ATTRIBUTABLE FRACTION ESTIMATION

ADJUSTED ATTRIBUTABLE FRACTION ESTIMATES

Suppose that we study a closed cohort and a causal exposure. Recall from the results in Chapter 4
that the fraction of exposed cases that would not have occurred if exposure had not occurred (the
attributable fraction among the exposed) is given by

AFe = (RR − 1)/RR

where RR is the causal risk ratio (the proportionate increase in average risk among the exposed
produced by exposure). If stratification has successfully removed all confounding and there is no
bias, the risk ratio standardized to the exposed (the SMR parameter) will equal the causal risk ratio.
Thus, we will get a valid estimate and confidence limits for AFe from any valid estimate of the SMR:

ÂFe = (ŜMR − 1)/ŜMR [16–19]

AF e, AFe = ( SMR − 1)/SMR, (SMR − 1)/SMR

The situation is not so simple if we wish to estimate the fraction of all cases (exposed and
unexposed) that would not have occurred if exposure had not occurred, the population attributable
fraction AFp. Suppose that the numbers exposed and unexposed in the cohort are N1 and N0. If no
adjustment is needed, we have the simple relation

AFp = N1(R1−R0)

N1 R1 + N0 R0

= p(RR − 1)

p(RR − 1) − 1
[16–20]

where p = N1/(N1 + N0) is the proportion exposed in the entire cohort.
If adjustment is needed, the above simple formula (equation 16–20) for AFp no longer holds

(Greenland, 1984b). If the stratification successfully removes confounding, we still have the fol-
lowing simple formula, however:

AFp = pcAFe = pc

SMR − 1

SMR
[16–21]

where again the SMR is the risk ratio standardized to the exposed and pc is exposure prevalence
among cases (Miettinen, 1974b). Another useful decomposition of AFp is as a weighted average of
stratum-specific population attributable fractions AFpi :

AFp =
∑

i

pi AFpi [16–22]

where pi is the proportion of cases falling in stratum i (Walter, 1976).
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In almost all situations, pc and the pi are not known. If, however, they can be validly estimated
from the study data, we can use the simple point estimator

ÂFp = ∧
pc

ŜMR − 1

ŜMR
=

∑
i

∧
pi ÂFpi [16–23]

where

∧
pc = A1+/M1+

∧
pi = M1i/M1+ ÂFpi = A1i

M1i

R̂Ri − 1

R̂Ri

and ŜMR is the estimate of the risk ratio standardized to the exposed. If the risk ratio is homogeneous
across strata and the disease is uncommon, we can replace ŜMR with any valid common rate-ratio
or common odds-ratio estimator:

ÂFp = A1+
M1+

R̂R − 1

R̂R
[16–24]

where R̂R may be a maximum-likelihood or Mantel-Haenszel estimator of a common rate ratio IR
or a common odds ratio OR.

For setting confidence limits, it helps to transform AFp to H = ln(1 − AFp). Then
∧
H = ln(1−ÂFp)

has variance estimator

V̂ar(
∧
H ) = V̂ar[ln(1 − ÂFp)] = ÂFp

2

(1 − ÂFp)2

[ ∧
V

(R̂R − 1)2
+ 2

A1+(R̂R − 1)
+ A0+

A1+M1+

]
[16–25]

where
∧
V is a variance estimator for ln(R̂R), such as one of those given in Chapter 15, as appropriate

(Greenland, 1987c). The limits H , H = ∧
H ± ZαV̂ar

∧
(H )1/2 found using equation 16–25 can then

be transformed back to limits for AFp = 1 − exp(−H ). The point and interval estimators of AFp

obtained from 16–24 and 16–25 will be valid in sparse data if the RR and variance estimators used in
the formulas are valid in sparse data (e.g., a Mantel-Haenszel or a conditional maximum-likelihood
[CML] estimator).

To estimate the fraction of coronary deaths in the British Doctors Study (Chapter 15, Table 15–2)
that could be attributable to smoking, we use the Mantel-Haenszel estimate computed from Chapter

15, Table 15–4, which was ÎRMH = 1.424 with variance estimate for ln(ÎRMH) = 0.01150. These
yield

ÂFp = 630

731

1.424 − 1

1.424
= 0.255

V̂ar[ln(1 − ÂFp)] = 0.2552

0.7452

[
0.01150

0.4242
+ 2

630(0.424)
+ 101

630(731)

]

= 0.008397

and 95% limits for ln(1 − AF p) of ln(1 − 0.255) ± 1.96(0.008397)1/2 = −0.4740, −0.1148. The
latter transform to AFp limits of 1 − exp(−0.1148), 1 − exp(−0.4740) = 0.108, 0.377. Using the
SMR estimate instead yields almost the same ÂFp estimate,

ÂFp = 630

731

1.43 − 1

1.43
= 0.259

One might be tempted to interpret these estimates as indicating that on the order of 25% fewer
coronary deaths would have occurred had these doctors not smoked. Of course, this interpretation
assumes that biases are absent. The interpretation also assumes that absence of smoking would not
expand the person-years at risk of coronary death by removing other (competing) risks for death,
such as lung cancer. This assumption cannot be exactly true, because smoking does affect the rates
of many other causes of death, particularly lung cancer.

The preceding example points out that the common public health interpretation of the attributable
fraction (as potential caseload reduction) assumes that removing exposure will not affect the size
of the population at risk. This assumption is not always correct, and it needs to be scrutinized in
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any discussion of an attributable-fraction estimate. For example, to estimate the excess of Down
syndrome cases that could be attributable to spermicide exposure in the study in Chapter 15, Table
15–5, we might use the Mantel-Haenszel odds ratio of 3.78 as an approximate risk-ratio estimate
(because Down syndrome is very uncommon). This odds ratio yields

ÂFp = 4

16

3.78 − 1

3.78
= 0.18

which seems to suggest that on the order of 20% fewer cases would have occurred if no one had
used spermicide. Again, this interpretation assumes that bias is absent. Even if the study were
perfectly valid, however, this figure could not be interpreted as the effect of spermicide use on the
number of Down syndrome cases, because this interpretation unrealistically assumes that absence
of spermicide use would not lead to more pregnancies. In reality, absence of spermicide use would
probably lead to more pregnancies, thus expanding the source cohort and increasing the number of
cases.

ETIOLOGIC FRACTION AND PROBABILITY OF CAUSATION

As we have defined it, the attributable fraction is the excess caseload arising over a risk period due
to the presence of exposure as opposed to its absence. This quantity sounds like and hence is often
confused with the etiologic fraction, in which the latter is the fraction of cases for whom exposure
was involved in the causal mechanism (or sufficient cause) that produced the disease. As discussed
in Chapters 2 and 4, however, the latter quantity may be quite a bit larger than the attributable
fraction, because it includes cases caused by exposure that would have occurred from other causes
if exposure had been absent (Greenland and Robins, 1988; Robins and Greenland, 1989a). Thus,
even for a purely causal exposure, it is logically possible for the attributable (excess) fraction to be
0% and the etiologic fraction to be 100%. This possibility would happen, for example, if exposure
never affected anyone who would not get the disease if unexposed, but displaced another causal
component among all those who would get the disease if unexposed. Note well that such phenomena
can occur no matter how rare the outcome is or how short the time period under study is.

Like the risk ratio from which it is derived, the attributable fraction requires no biologic model
for its estimation. Thus, it can be estimated from epidemiologic data using only the usual assump-
tions about study validity and that the exposure does not change the population at risk. In contrast,
estimation of the etiologic fraction requires assumptions about the mechanism of exposure action,
especially in relation to sufficient causes that act in the absence of exposure. At one extreme, mech-
anisms involving exposure would occur and act independently of other “background” mechanisms,
in which case the attributable and etiologic fractions will be equal. At the other extreme, in which
exposure advances the incidence time whenever a background mechanism is present, the attributable
fraction can be tiny but the etiologic fraction will be 100% (Robins and Greenland, 1989a). Both
extremes are rather implausible in typical settings, and there is rarely enough information to pin
down the etiologic fraction, even if the attributable fraction is known accurately.

The distinction is of great social importance because of the equality between the etiologic fraction
and the probability of causation, where the latter is the probability that the disease of a randomly
selected case was produced by a mechanism involving exposure (and usually the population under
discussion is restricted to the exposed only). The same arguments apply as with the etiologic fraction:
The attributable fraction and the probability of causation may be very far apart, and to estimate
the probability of causation one must make strong assumptions about the mechanism of exposure
action (Robins and Greenland, 1989b; Beyea and Greenland, 1999; Greenland and Robins, 2000).

The confusion between the attributable fraction and the probability of causation has led to serious
distortions in regulatory and legal decision criteria (Greenland, 1999a; Robins and Greenland, 2000).
The distortions arise when criteria based solely on epidemiologic evidence (such as estimated
relative risks) are used to determine whether the probability of causation meets some threshold. The
most common mistake is to infer that the probability of causation is below 50% when the relative
risk is inferred to be below 2. The reasoning is that (RR − 1)/RR represents the probability of
causation, and that this quantity is below 50% unless RR is at least 2. This reasoning is fallacious,
however, because (RR − 1)/RR is the attributable fraction among the exposed. It thus may understate
the probability of causation to an arbitrarily large degree, in the same manner as it understates the
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etiologic fraction, even if the RR estimate is highly valid and precise (Robins and Greenland, 1989b;
Greenland, 1999a; Greenland and Robins, 2000).

ANALYSES OF BIOLOGIC INTERACTIONS

BIOLOGIC INTERACTION AND ADDITIVITY CONDITIONS

A number of basic relations among risks and rates can be derived under various assumptions
regarding biologic interactions (e.g., Koopman, 1981; Walker, 1981; Miettinen, 1982b; Weinberg,
1986; Greenland and Poole, 1988; Robins and Greenland, 1989a; Koopman and Weed, 1990;
VanderWeele and Robins, 2007a, 2008a). As described in Chapter 5 for two binary variables, absence
of interaction response types will lead to an additive pattern among the causal risk differences. This
relation means that the sum of the differences comparing the risks given each factor alone to the
risk in absence of both factors will equal the difference comparing risk given both factors to risk
absent both factors. Suppose that X and Z are binary variables equal to 1 or 0, and let Rxz be the
average risk in a given cohort when factor X = x and factor Z = z. Additivity corresponds to

R11 − R00 = R10 − R00 + R01 − R00

If we define RDxz to be Rxz − R00, then additivity is RD11 = RD10 + RD01.
Assuming that neither factor is ever preventive, superadditivity (RD11 > RD10 + RD01, also

known as transadditivity) can occur only if synergistic response types (type 8 in Table 5–2) are
present; subadditivity (RD11 < RD10 + RD01) can occur only if competitive (type 2 in Table 5–2)
or antagonistic response types are present. We also have that the “interaction contrast” IC = RD11 −
RD10 − RD01 is zero if and only if the risk differences for X are constant across Z and the risk
differences for Z are constant across X , that is,

IC = RD11 − RD10 − RD01 = R11 − R10 − R01 + R00 = 0

if and only if R11 − R10 = R01 − R00 and R11 − R01 = R10 − R00.
Recall that R11, R01, R10, and R00 refer to only one target cohort under four different expo-

sure conditions. Unfortunately, we can only observe different cohorts under different exposure
conditions, and we must adjust for any difference of these cohorts from the target cohort via stan-

dardization or some other technique. Suppose that we have four adjusted estimates
∧
R11,

∧
R01,

∧
R10,∧

R00 of average risk in the target cohort under the four possible exposure conditions (these estimates
may be obtained in a manner that accounts for losses to follow-up, as in survival analysis). Then if

R̂Djk = ∧
Rjk − ∧

R00, our estimate of the interaction contrast is

ÎC = R̂D11 − R̂D10 − R̂D01 = ∧
R11 − ∧

R01 − ∧
R10 − ∧

R00

Because additivity (an interaction contrast of zero) corresponds to homogeneity (uniformity) of the
risk differences, we can use any test of risk-difference homogeneity as a test of additivity (Hogan

et al., 1978). If the average-risk estimates
∧
Rxz are standardized based on weights from the target

population, a variance estimate for ÎC is the sum of the separate variance estimates for the
∧
Rxz .

These separate variance estimates can be computed as described in Chapter 15. On the other hand,
if the risks are estimated using a homogeneity assumption (for example, that the risk or odds ratios
are constant across the confounder strata), then more complex variance estimates must be used,
and it is easier to recast the problem as one of testing and estimating product terms in additive-risk
models (Chapters 20 and 21).

The risk differences RDxz cannot be estimated from case-control data without an estimate of
sampling fractions or incidence in the source population for the study. Absent such an estimate,
one can still test the additivity hypothesis from case-control data if the observed odds ratios can be
used to estimate the risk ratios. To see this, let RRxz = Rxz/R00 and let

ICR = IC/R00 = R11/R00 − R10/R00 − R01/R00 + R00/R00

= RR11 − RR10 − RR01 + 1
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Then ICR = 0 if and only if the interaction contrast IC equals 0. Thus, any P-value for the hypothesis
ICR = 0 provides a P-value for the additivity hypothesis. Furthermore, because ICR and IC must
have the same sign (direction), we can infer superadditivity (or subadditivity) if we can infer that
ICR > 0 (or ICR < 0). One can construct a P-value for ICR = 0 from stratified case-control data
alone. It is, however, much easier to recast the problem as one of examining product terms in additive
odds-ratio models (Chapters 20 and 21). ICR has previously been labeled the “relative excess risk
for interaction” or RERI (Rothman, 1986). Several interaction measures besides IC and ICR have
been proposed that reflect the presence of interaction types under certain assumptions (Rothman
1976b, 1986; Walker, 1981; Hosmer and Lemeshow, 1992).

Suppose now that all the risk differences contrasting level 1 to level 0 are positive, i.e., RD11 >

max(RD10, RD01) and min(RD10, RD01) > 0 or, equivalently, RR11 > max(RR10, RR01) and
min(RR10, RR01) > 1. We then have that risk-ratio multiplicativity or beyond, RR11 ≥ RR10(RR01),
implies superadditivity RD11 > RD10 + RD01 or, equivalently, RR11 > RR10 + RR01 − 1
or IC > 0. Thus, by assuming a multiplicative model with positive risk differences, we are
forcing superadditivity to hold. Parallel results involving negative differences follow from recoding
X or Z or both (switching 1 and 0 as the codes) to make all the differences positive.

Next, suppose that R11 > R10 + R01 or, equivalently, RR11 > RR10 + RR01. VanderWeele and
Robins (2007a, 2008a) show that these conditions imply the presence of causal co-action (co-
participation in a sufficient cause, or interaction in a sufficient-cause model). They also show
how to test these conditions and adjust for confounders when substituting estimates for the risks,
and extend these results to co-action among three or more variables. Again, parallel results with
protective (negative) net effects follow from recoding X or Z or both. These conditions imply
superadditivity but can coexist with submultiplicative or supermultiplicative relations. In particular,
if both RR10 < 2 and RR01 < 2 (both effects “weakly positive”), then multiplicativity will imply
that RR11 < RR10 + RR01, but if both RR10 > 2 and RR01 > 2 (both effects are “not weak”), then
multiplicativity will imply that RR11 > RR10 + RR01. Thus, assuming a multiplicative model with
positive effects does not by itself force RR11 > RR10 + RR01, even though that model does force
RR11 > RR10 + RR01 − 1 (“superadditive risks”).

LIMITATIONS OF STATISTICAL INFERENCES ABOUT INTERACTIONS

Several arguments have been made that interaction relations and measures may have limited practical
utility (e.g., Thompson, 1991). First, as described in Chapter 15, study size is usually set to address
the average effect of a single exposure, which involves comparison across groups defined by a
single variable. Interaction analyses require dividing the study population into smaller groups to
create contrasts across subgroups defined by multiple variables. Interaction analyses are therefore
handicapped in that they compare smaller subsets of study subjects and thus have less precision
than the primary study analysis. For example, statistical tests of additivity (as well as tests for other
statistical interactions) have very little power at typical study sizes, and the corresponding estimates
of departures from additivity have little precision (Greenland, 1983; Breslow and Day, 1987; Lubin
et al., 1990).

Another problem is that simple assumptions (such as no interaction) become difficult to justify
when the two factors X and Z are replaced by continuous variables. For example, it can become
impossible to separate assumptions about induction time and dose–response from those concerning
interactions (Thomas, 1981; Greenland, 1993a). Even greater complexity arises when effects of
other variables must be considered. Third, as shown in Chapter 5, one cannot infer that a particular
interaction response type is absent, and inference of presence must make assumptions about absence
of other response types. As a result, inferences about the presence of particular response types must
depend on very restrictive assumptions about absence of other response types, even when qualitative
statistical interactions are present, that is, when the epidemiologic measure of the effect of one factor
entirely reverses direction across levels of another factor.

Regardless of these issues, it is important not to confuse statistical interaction (effect-measure
modification) with biologic interaction. In particular, when two factors have effects and the study
estimates are valid, risk-ratio homogeneity—though often misinterpreted as indicating absence of
biologic interaction—in fact implies presence of interaction response types (as defined in Chapter 5),
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because homogeneity of the risk, rate, or odds ratio implies heterogeneity (and hence nonadditivity)
of the risk differences.

ANALYSES OF INDUCTION PERIODS

Ideally, causal analyses should be longitudinal rather than cross-sectional, in that there should
be an allowance for a time interval between exposure and disease onset that corresponds to a
meaningful induction period. In cohort studies, the interval may be accommodated by restricting
the accumulation of person-time experience in the denominator of incidence rates for the exposed
to that period of time following exposure that corresponds to the limits of the possible induction
period. In case-control studies, the interval may be accommodated by obtaining data on exposure
status at a time that precedes the disease onset or control selection by an amount that corresponds
to the limits of the possible induction period.

Suppose that one is studying whether exposure to canine distemper in one’s pet causes multiple
sclerosis, and the induction period (to the time of diagnosis) is assumed to be 10 to 25 years. Using
the latter assumption in a cohort study, exposed individuals will not contribute to person-time at
risk until 10 years from the time the pet had distemper. Such contribution to the risk experience
begin at 10 years and last 15 years (the duration of the induction-time interval), or less if the subject
is removed from follow-up (because he or she died, was lost, or was diagnosed with multiple
sclerosis). Only if multiple sclerosis is diagnosed during this same interval will it be considered
to be potentially related to exposure. In a case-control study, cases of multiple sclerosis would be
classified as exposed if the patient’s pet dog had distemper during the interval of 10 to 25 years
before the diagnosis of multiple sclerosis. If exposure to distemper occurred outside this time
window, the case would be considered unexposed. Controls would be questioned with reference to
a comparable time period and similarly classified.

It is also possible to study and compare different possible induction periods. An example of this
technique was a case-control study of pyloric stenosis that examined the role of Bendectin exposure
during early gestation (Aselton et al., 1984). Different time windows of 1-week duration during
early pregnancy were assumed. Exposure before week 6 of pregnancy or after week 12 led to a
relative-risk estimate of less than 2, whereas an estimate greater than 3 was obtained for exposure
to Bendectin during weeks 6 to 12. The largest effect estimate, a relative risk of 3.7, was obtained
for exposure during weeks 8 and 9 after conception. This example illustrates how epidemiologic
analyses have been used to estimate a narrow period of causal action. If only one analysis had been
conducted using a single exposure period before or after the relevant one, little or no information
about the time relation between exposure and disease would have resulted.

All analyses of exposure effects are based on some assumption about induction time. If a case-
control study measures exposure from birth (or conception) until diagnosis, some period that is
irrelevant to meaningful exposure is likely to be included, diluting the measurement of relevant
exposure. If a cross-sectional study examines current exposure and disease (the onset of which may
even have antedated the exposure), this too involves use of an irrelevant exposure, if only as a proxy
for the unknown relevant exposure. Often the assumption about induction period is implicit and
obscure. Good research practice dictates making such assumptions explicit and evaluating them to
the extent possible.

If the wrong induction period is used, the resulting exposure measure may be thought of as a
mismeasured version of the true exposure. Under certain assumptions (see Chapter 9) this mis-
measurement would tend to reduce the magnitude of associations and underestimate effects: The
smaller the overlap between the assumed induction period window in a given analysis and the actual
induction times, the greater the amount of nondifferential misclassification and consequent bias to-
ward the null. Ideally, a set of induction-time assumptions would produce a set of effect estimates
that reach a peak for an induction-time assumption that corresponds more closely to the correct
value than alternative assumptions. Rothman (1981) proposed that this phenomenon could be used
to infer the induction period, as in the study on pyloric stenosis. By repeating the analysis of the data
while varying the assigned limits (or “window”) for the induction period, one could see whether
a consistent pattern of effects emerged that reflected apparent nondifferential misclassification of
exposure with various induction time assumptions. Rothman (1981) suggested that, if such a pattern
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is apparent, the middle of the assumed induction period that gives the largest effect estimate will
estimate the average induction period.

A closely related and perhaps more common approach to induction-period analysis involves
exposure lagging, in which only exposures preceding a certain cutoff time before disease occurrence
(in cases) or sampling time (for controls in a case-control study) are used to determine exposure
status. Similarly, the exposure of a person-time unit (such as a person-year) is determined only by
the status of the contributing person before a given cutoff time (Checkoway et al., 1989, 1990). For
example, to lag asbestos exposure by 5 years, only exposure up to 5 years before disease time would
be used to classify cases; in a case-control study, only exposure up to 5 years before sampling time
would be used to classify controls; and, in a cohort study, only a person’s exposure up to 5 years
before a given year at risk would be used to classify the exposure of the person-year contributed by
that person in that year.

Lagged analysis may be repeated using different lag periods. One might then take the lag that
yields the strongest association as an estimated induction period. Note that this use of induction
period refers to a minimum time for pathogenesis and detection, rather than an average time as with
the window method.

Unfortunately, there can be serious problems with “largest estimate” methods, whether based
on windows or lags, especially if they are applied without regard to whether the data demonstrate
a regular pattern of estimates. Without evidence of such a pattern, these approaches will tend to
pick out induction periods whose estimate is large simply by virtue of large statistical variability.
Estimates of effect derived in this way will be biased away from the null and will not serve well as
a summary estimate of effect. To deal with these problems, Salvan et al. (1995) proposed taking the
induction period that yields the highest likelihood-ratio (deviance) statistic for exposure effect as
the estimated induction period. This approach is equivalent to taking the induction period that yields
the lowest P-value and so corresponds to taking the most “statistically significant” estimate. The
result will be that the final P-value will be biased downward, i.e., it will understate the probability
of getting a statistic as extreme or more extreme than observed if there are no exposure effects.

Another problem is that the degree of bias resulting from exposure misclassification can vary
across windows for reasons that are not related to the exposure effect. For example, the degree of
misclassification bias depends in part on the exposure prevalence (Chapter 19). Hence, variation in
exposure prevalence over time will lead to variation in misclassification bias over time, so it can
distort the pattern of effect estimates across time windows.

A third problem in any approach based on separate analyses of windows is that they do not
control for an exposure effect that appears in multiple windows (that is, an exposure effect that has
a long and variable induction time, so that the exposure effect is reflected in several windows). Such
“multiple effects” often (if not always) lead to mutual confounding among the estimates obtained
using just one window at a time (Robins, 1987), because exposures tend to be highly associated
across windows. Furthermore, the resulting confounding will almost certainly vary in magnitude
across windows. For example, the association of exposures in adjacent windows will often be higher
than those for nonadjacent windows. In that case, effect estimates for windows adjacent to those
close to the true induction period will be more confounded than other estimates.

A first attempt to avoid the problems just mentioned would estimate the effects for each window
while adjusting for the exposures from other windows (as well as other confounders). There are
two problems with this approach. A major practical problem is that one may quickly run out of
numbers when trying to examine one window while stratifying on other windows and confounders.
In the Bendectin example, use of 1-week windows during 5 to 15 weeks would yield 11 windows,
so that estimates for one window would have to control for 10 other window variables, plus other
confounders. One could limit this problem by using just a few broad windows, at a cost of precision
in the definitions.

A more subtle theoretical problem is that exposures in early windows can affect exposures in
later windows. As a result, effect estimates for earlier windows will at best only reflect direct ef-
fects of exposures in those windows (Robins, 1987, 1989), and at worst may be more biased than
the one-at-a-time estimates because of confounding generated by control of the intermediate win-
dows (Robins and Greenland, 1992; Cole and Hernán, 2002; Chapter 12). To deal with the problems
inherent in using all exposure windows in the same analysis, several authors have developed sophis-
ticated modeling methods for analyses of longitudinal exposure data. These methods incorporate all
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exposure variables into a single model, which may have an explicit parameter for average induction
time (Thomas, 1988) or may be based on parameters for disease time (Robins, 1997). The latter
g-estimation methods will be discussed in Chapter 21.

Despite the potential for bias, we suggest a preliminary stratified analysis using windows broad
enough to allow simultaneous control of other windows, as well as other confounders, which should
then be followed by more sophisticated methods. We caution, however, that even with this approach,
the overall pattern of estimates across the windows should be taken into account. Simply choosing
the largest estimate will lead to a result that is biased away from the null as an estimate of the
largest window effect; the smallest P-value will not provide a valid test of the null hypothesis of
no exposure effect; and the induction times that define the windows with the largest effect estimate
and smallest P-value will not provide an unbiased estimate of average induction time. Nonetheless,
a table of estimates obtained from a simultaneous analysis of windows can provide an initial idea
of the shape of the induction-time distribution, subject to restrictive assumptions that there is no
measurement error and no confounding of any window when other windows are controlled.
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This chapter introduces extensions of tabular analysis methods to polytomous data—that is, data
in which the exposure or outcome has more than two levels. These extensions provide a conceptual
bridge between simple tabular methods and more sophisticated regression analysis, as well as
being useful in their own right. They also provide an initial approach to dose–response and trend
analyses. Finally, they provide an important means of checking the results of regression analyses,
to see if patterns suggested by regressions can be seen in the basic counts that summarize the
data.

The primary focus in this chapter is on methods for analyzing an exposure with multiple levels and
a binary disease outcome. It also shows how these methods extend to analyses of multiple outcomes,
such as arise when multiple diseases are under study or when a case-control study employs multiple
control groups. It begins, however, by reviewing issues in categorization of variables, because most
of the methods discussed in this chapter assume that exposure is categorized.

CATEGORIZATION OF ORDERED VARIABLES

As discussed in Chapters 13 and 15, choice of categories for variables is an important step in data
analysis. When the variable is measured on an ordered scale with many levels, one often sees this
step disposed of by using percentile category boundaries. For example, quartiles correspond to four
categories with boundaries at the 25th, 50th, and 75th percentiles, whereas quintiles correspond
to five categories with boundaries at the 20th, 40th, 60th, and 80th percentiles. Such automatic
procedures for category formation are suboptimal in most applications and can sometimes be quite
harmful to power, precision, and confounder control (Lagakos, 1988; Zhao and Kolonel, 1992;

303
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Greenland, 1995a, 1995b). Percentile boundaries also make it difficult to compare associations or
effects across studies, because those boundaries will correspond to different exposure values in each
study.

Most important, percentile categories rarely correspond to subject-matter knowledge. Instead,
they blindly lump together disparate subgroups of subjects and may thereby hide important effects.
For example, vitamin C levels are high enough in most Western diets that persons with borderline
or deficient intakes will constitute less than 10% of a typical study group. As a result, these people
will compose fewer than half of the subjects in the lowest quartile for vitamin C intake. If only this
deficient minority suffers an elevated disease risk, this fact will be obscured by the quartile analysis.
The elevated risk of the 10% minority is averaged with the normal risk of the 15% majority in the
lowest quartile, and then compared with the normal risk in the three higher-intake quartiles. There
will be only a limited elevation of risk in the lowest quartile, which might be difficult to detect in a
categorical analysis.

As another example, in many occupational and environmental studies only a small percentage of
subjects have a biologically important amount of exposure. Here again, use of quartiles or quintiles
submerges these subjects among a larger mass of barely exposed (and thus unaffected) subjects,
thereby reducing power and possibly inducing a biased impression of dose–response (Greenland
1995b, 1995c). Mixing persons of different risk in broad categories is also a problem when the
categorized variable is a strong confounder. In this situation, broad categories of the confounder
can result in stratum-specific estimates with substantial residual confounding.

Perhaps the most common alternative to percentiles is equally spaced boundaries. For example,
vitamin C intake might be categorized in 10- or 20-mg increments of daily average intake. Such
boundaries often make more subject-matter sense than percentiles, because they allow those with
very low or very high intake to be put in separate categories and because the categories conform
with familiar units of dose. Nonetheless, equally spaced boundaries are also generally suboptimal
and, like percentile boundaries, can sometimes submerge high-risk groups and yield poor power
and precision (Greenland, 1995b).

Ideally, categories should make sense based on external information. This guideline can be
especially important and easiest to accomplish in categorization of confounders, because the prior
information that led to their identification can also be used to create categories. To illustrate, consider
maternal age as a potential confounder in perinatal studies. The relation of maternal age to risk can
be poorly captured by either percentile or equally spaced categories, because most maternal-age
effects tend to be concentrated at one or both extremes. For example, risk of neonatal death is highest
when the mother is under 18 or over 40 years of age, whereas risk of Down syndrome is highest
when the mother is over 40 years of age, with very little change in risk of either outcome during
the peak reproductive ages of 20 to 35 years. Yet in typical U.S. or European populations, quartile
or quintile boundaries would fall within this homogeneous-risk range, as would standard equally
spaced maternal age category boundaries of, say, 20, 25, 30, and 35 years. Quartile categories,
quintile categories, and these equally spaced categories would all fail to separate the heterogeneous
mix of risks at the extremes of maternal age, and would instead focus attention on the intermediate
age range, with its small differences in risk.

Ideal categories would be such that any important differences in risk will exist between them
but not within them. Unfortunately, this scheme may result in some categories (especially end
categories) with too few subjects to obtain a reasonably precise estimate of the outcome measure in
that category. One way to cope with this problem is to broaden the categories gradually until there
are adequate numbers in each one, while retaining meaningful boundaries. In doing so, however,
it is important to avoid defining categories based on the size of the estimates obtained from the
categorizations unless the shape of the trend is known (e.g., as for a well-studied confounder such
as age). If category choice is based on the resulting estimates, the trend estimates and standard
errors from the final categorization may be biased. For example, if we collapse together adjacent
categories to maximize the appearance of a linear trend, the apparent trend in the final estimates will
be biased toward a linear pattern, away from any true departures from linearity. Such a collapsing
procedure might be justifiable, however, if it were known that the true trend was approximately
linear.

Open-ended categories (e.g., “20+ years exposure”) are particularly hazardous because they
may encompass a broad range of exposure or confounder effects. We thus recommend that one
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make sure the single boundary of an open-ended category is not too far from the most extreme
value in the category. For example, if having more than 10 additional years of exposure could have
a large effect on risk, we would try to avoid using the “20+ years exposure” category if the largest
exposure value in the data is >30 years. Another drawback of open-ended categories is the difficulty
of assigning a point to the category against which its response might be plotted.

A consequence of using close to ideal categories is that the cell counts within strata may become
small. One sometimes sees books that recommend adding 1/2 to each cell of a table in which the
counts are small. Worse, some packaged programs automatically add 1/2 to all cells when one or
more cell count equals 0. This practice is suboptimal because it can create distortions in certain
statistics; for example, it artificially inflates the study size. More sophisticated methods for handling
small counts have long been available (Chapter 12 of Bishop et al., 1975; Greenland, 2006b). For
example, one may replace each cell count with an average of that count and the count expected
under a simple hypothesis or model. A version of this approach will be described later, in the section
on graphics. An alternative to such procedures is to employ methods that do not require large cells,
such as Mantel-Haenszel methods, exact methods, moving averages, and running lines or curves.

We emphasize again that all the above problems of exposure categorization apply to confounder
categorization (Greenland 1995a; Greenland 1995b; Brenner and Blettner 1997; Brenner, 1998;
Austin and Brunner 2006). In particular, use of automated categorization methods such as percentile
boundaries can easily lead to overly broad categories in which much residual confounding remains.

BASIC TABULAR ANALYSIS

Table 17–1 displays the notation we use for stratified person-time data with J + 1 exposure levels
and with strata indexed by i . In this table, the ellipses represent all the remaining exposure levels
Xj , counts A ji , and person-times Tji between level XJ and level X1. (If there are only three levels,
J = 2 and there is no level between XJ and X1.) We will always take the rightmost (X0) exposure
column to be the reference level of exposure, against which the J nonreference levels will be
compared. Usually, X0 is an “unexposed” or “low exposure” level, such as when the levels X0 to XJ

correspond to increasing levels of exposure to a possibly harmful agent. Sometimes, however, X0

is simply a commonly found level, such as when the levels X0 to XJ are the range of an unordered
variable such as religion or race. For preventive exposures, the highest exposure level is sometimes
chosen for X0.

The notation in Table 17–1 may be modified to represent person-count data by adding a row
for noncase counts, BJi , . . . , B1i , B0i and then changing the person-times Tji to column totals
N ji = A ji + B ji , as in Table 17–2. It may also be modified so that known expected values E ji for
the case-counts A ji replace the person-times Tji . The notations used in Chapter 15 were just the
special cases of these notations in which X1 = “exposed” and X0 = “unexposed.”

If the exposure variable is unordered or its ordering is ignored, analyses of polytomous data
may proceed using computations identical in form to those given in Chapters 14 and 15. To start,
we may use any and all of the binary-exposure techniques given earlier to compare any pair of
exposure levels. As an example, Table 17–3 presents crude data from a study of the relation of fruit

ˆ

ˆ

ˆ

ˆ
T A B L E 1 7 – 1

Notation for Stratified Person-Time Data with a
Polytomous Exposure

Exposure Level

X J · · · X 1 X 0

Cases A J i · · · A 1i A 0i M 1i

Person-time TJ i · · · T 1i T 0i T +i
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 7 – 2

Notation for Stratified Count Data with a
Polytomous Exposure

Exposure Level

X J · · · X 1 X 0

Cases A J i · · · A 1i A 0 I M 1i

Noncases B J i · · · B 1i B 0i M 0i

Totals N J i · · · N 1i N 0i N +i

and vegetable intake to colon polyps, divided into three index categories of equal width and a broad
reference category. (These data are discussed in Chapter 16.) Also presented are the odds ratios
and 95% confidence limits obtained from comparing each category below the highest intake level
to the highest intake level, and each category to the next higher category. It appears that the odds
ratios decline as intake increases, with the sharpest decline occurring among the lowest intakes.
Stratification of the data on the matching factors and computation of Mantel-Haenszel statistics
yield virtually the same results.

The number of possible comparisons grows rapidly as the number of exposure levels increases:
The number of exposure-level pairs is (J + 1)J/2, which equals 3 when there are three exposure

ˆ

ˆ

ˆ

ˆ
T A B L E 1 7 – 3

Data on Fruit and Vegetable Intake (Average Number of Servings per Day) in
Relation to Colon Polyps, Odds Ratios, 95% Confidence Limits, and 2-Sided
P -Values

Servings of Fruit and Vegetables per Day

≤ 2 >2, ≤ 4 >4, ≤ 6 >6 Totals

Cases 49 125 136 178 488
Controls 28 111 140 209 488
Total 77 236 276 387 976

Comparison to Highest (>6) Category

Odds ratio 2.05 1.32 1.14 1.0 (referent)
Lower limit 1.24 0.96 0.84
Upper limit 3.41 1.83 1.55
P -value 0.005 0.092 0.40

Incremental Comparisons to Next Higher Category

Odds ratio 1.55 1.16 1.14
Lower limit 0.91 0.82 0.84
Upper limit 2.64 1.64 1.55
P -value 0.10 0.41 0.40

From Witte JS, Longnecker MP, Bird CL, et al. Relation of vegetable, fruit, and grain consumption to colorectal adenomatous polyps. Am J
Epidemiol. 1996;144:1015–1025.
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levels (J = 2) but rises to six when there are four exposure levels (J = 3, as in Table 17–3) and
10 when there are five exposure levels (J = 4). Pairwise analysis of a polytomous exposure thus
raises an issue of multiple comparisons, which was discussed in general terms in Chapter 13. This
issue can be addressed by using either a trend test or an unordered simultaneous test statistic. Both
approaches provide P-values for the joint null hypothesis that there is no association between
exposure and disease across all levels of exposure.

Several equivalent simultaneous test statistics can be used for unstratified data. The oldest and
most famous such statistic is the Pearson χ2 statistic, which for unstratified person-time data has
the form

χ2
P = �

j
(A j − E j )

2/E j [17–1]

where the sum is from j = 0 to J , and E j = M1Tj/T+ is the expected value for A j under the
joint null hypothesis that there is no exposure–disease association. (The notation here is as in Table
17–1, but without the stratum subscript i .) If there are no biases and the joint null hypothesis HJoint

is correct, χ2
P has approximately a χ2 distribution with J degrees of freedom. For pure count data

with exposure totals Nj = A j + B j (where B j is the observed number of noncases) and grand total
N+ = �

j
Nj , the Pearson χ2 equals

χ2
P = �

j
(A j − E j )

2/Vj [17–2]

where E j = M1 Nj/N+ and Vj = E j (Nj − E j )/Nj are the mean and variance of A j under the joint
null hypothesis. Equation 17–2 is equivalent to the more familiar form

χ2
P = �

j
[(A j − E j )

2/E j + (B j − Fj )
2/Fj ] [17–3]

where Fj = M0 Nj/N+ is the mean of B j under the joint null hypothesis. For the data in Table
17–3, equation 17–3 yields

χ2
P = [49 − 488(77)/976]2

488(77)/976
+ · · · + [209 − 488(387)/976]2

488(387)/976
= 9.1

which has three degrees of freedom and P = 0.03. Note that this simultaneous P-value is smaller
than all but one of the pairwise P-values in Table 17–3.

We use the Pearson statistic here because it is very easy to compute. For unstratified data, the
quantity (N − 1)χ2

P/N is identical to the generalized Mantel-Haenszel statistic for testing the joint
null hypothesis (Breslow and Day, 1980; Somes, 1986). When it is extended to stratified data, the
Pearson statistic requires that all stratum expected counts be “large” (usually taken to be more than
four or five), whereas the generalized Mantel-Haenszel statistic can remain valid even if all the
stratum counts are small (although the crude counts must be “large”). When stratification is needed,
joint statistics can be more easily computed using regression programs, however, and so we defer
presenting such statistics until Chapter 21. We discuss unordered statistics further in the section on
simultaneous analysis.

Note that the pairwise P-values considered singly or together do not provide an appropriate
P-value for the null hypothesis that there is no association of exposure and disease. As will be
illustrated in the final section, it is possible to have all the pairwise P-values be much larger than
the simultaneous P-value. Conversely, it is possible to have one or more of the pairwise P-values
be much smaller than the simultaneous P-value. Thus, to evaluate a hypothesis that involves more
than two exposure levels, one should compute a simultaneous test statistic.

For stratified data, the ordinary Mantel-Haenszel estimates can be somewhat inefficient when
exposure is polytomous, because they do not make use of the fact that the product of the common
ratios comparing level i with level j and level j with level k must equal the common ratio comparing
level i with level k (the “common ratio” may be a risk, rate, or odds ratio). They can, however,
be modified to use this information and so be made more efficient (Yanagawa and Fujii, 1994).
Efficient estimates can also be obtained from regression analyses; see Chapter 20 for polytomous
exposure models.
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 7 – 4

Data on Fruit and Vegetable Intake and Colon Polyps, Including Mean
Servings per Day, Mean Log Servings, and Case-Control Ratios
in Each Category

Upper Category Mean Mean Log No. of No. of Case-Control
Boundary Servings Servings Cases Controls Ratio

1 0.68 −0.52 13 4 3.25
2 1.58 0.45 36 24 1.50
3 2.57 0.94 55 44 1.25
4 3.55 1.26 70 67 1.04
5 4.52 1.51 77 74 1.04
6 5.51 1.71 59 66 0.89
7 6.50 1.87 54 48 1.12
8 7.58 2.02 33 41 0.80
9 8.51 2.14 33 31 1.06

10 9.43 2.24 24 22 1.04
11 10.48 2.35 10 26 0.38
12 11.49 2.44 6 12 0.50
14 12.83 2.55 9 12 0.75
18 15.73 2.75 4 11 0.36
27 20.91 3.03 5 6 0.83

Totals — — 488 488 —

DOSE–RESPONSE AND TREND ANALYSIS

If the exposure levels have a natural ordering, a serious source of inefficiency in the pairwise and
unordered analyses is that the statistics take no account of this ordering. Dose–response and trend
analysis concerns the use of such ordering information.

Table 17–4 presents the data used in Table 17–3 in more detail, using the finest categories with
integer boundaries that yield at least four cases and four controls per category. These data will
be used in the examples that follow. (Subjects in this study often had fractional values of average
servings per day, because servings per day were calculated from questions asking the consumption
frequencies of individual fruits and vegetables, such as apples and broccoli.)

GRAPHING A TREND

Perhaps the simplest example of trend analyses is a plot of estimates against the exposure
levels. Occurrence plots are straightforward. For example, given population data, one may
plot estimates of the average risks R0, R1, . . . , RJ or the incidence rates I0, I1, . . . , IJ against
the exposure levels X0, X1, . . . , XJ . For unmatched case-control data, the case-control ratios
A0/B0, A1/B1, . . . , AJ /BJ may substitute for the risk or rate estimates (Easton et al., 1991;
Greenland et al., 1999c). If important confounding appears to be present, one may standardize
the measures, or plot them separately for different confounder strata.

The pattern exhibited by plotted estimates is called a trend. A trend is monotonic or monotone if
every change in the height of the plotted points is always in the same direction. A monotone trend
never reverses direction, but it may have flat segments. A trend is strictly monotone if it is either
always increasing or always decreasing. Such a trend never reverses and has no flat segments. One
commonly sees phrases such as “the data exhibited a dose–response relation” used to indicate that
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FIGURE 17–1 ● Plot of case-control ratios and 80% and 99% confidence limits from data in
Table 17–4, using arithmetic scale.

a plot of estimates versus exposure level was monotone. The term “dose–response,” however, can
refer to any pattern whatsoever, and here we use it in this general sense. That is, dose–response will
here mean the pattern relating the outcome or effect measure to exposure, whatever it may be. The
term “trend” is often used as a synonym for “dose–response,” though it is more general still, as in
“the trend in risk was upward but fluctuations occurred in later years.” In particular, a trend may be
observed over time, age, weight, or other variables for which the concept of “dose” is meaningless.

Figure 17–1 presents the case-control ratios A j/B j computed from Table 17–4, plotted against
the category means, and connected by straight line segments. The inner dotted lines are approximate
80% confidence limits, and the fainter outer dotted lines are 99% limits. These limits are computed
using the variance estimate

∧
V = V̂ar[ln(A j/B j )] = 1/A j + 1/B j

in the formula

exp[ln(A j/B j ) + Zγ

∧
V

1/2
]

where Zγ is the 100γ percentile of the standard normal distribution (Z0.80 = 1.282, Z0.99 = 2.576).
The figure gives an impression of a steeper trend in the ratios at low consumption levels (less than
three servings per day) than at higher levels. If no important bias or error is present, the trends in
Figure 17–1 should reflect those in the underlying source-population rates.

A common approach to graphing risk or rate ratios uses a single reference level; for example,
with X0 as the reference level in rate ratios, one would plot I1/I0, . . . , IJ /I0 or their logarithms
against the nonreference exposure levels X1, . . . , XJ . With this approach, the resulting curve is
proportional to the curve obtained by plotting the rates, but it appears to be less precisely estimated
(Easton et al., 1991).

PLOTTING CONFIDENCE LIMITS

Although it is helpful to plot confidence limits along with point estimates, care must be taken to
prevent the graph from visually overemphasizing imprecise points. The conventional approach of
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placing error bars around the points produces such overemphasis. Thus, we recommend instead that
the upper and lower limits receive their own graph line, as in Figure 17–1, rather than connecting
the limits to their point estimate by error bars. The resulting graphs of the lower and upper limits
together form a confidence band for the curve being estimated.

Two serious problems arise in plotting estimated associations or effects that are derived using
a shared reference level. One is that the widths of the confidence intervals at nonreference levels
depend on the size of the counts in the chosen reference category; the other is that no confidence
interval is generated for the curve at the reference category. If the counts in the reference category
are smaller than those in other categories, the confidence limits around the estimates at the non-
reference levels will be far apart and will thus make the shape of the dose–response curve appear
much more imprecisely estimated than it actually is. Graphs of confidence limits for rates, risks, and
case-control ratios do not suffer from these problems but are sometimes not an option (as in matched
case-control studies). A more general solution, known as floating absolute risk (Easton et al., 1991;
Greenland et al., 1999c), circumvents the problems but is designed for regression analyses and so
will not be described here. To address the problems in tabular analyses of cohort or unmatched
case-control data, we again recommend plotting rates, risks, case-control ratios, or their transforms,
rather than rate ratios, risk ratios, or odds ratios. For matched case-control analyses, we suggest
taking as the reference category the one that yields the narrowest confidence intervals, although a
narrower confidence band can be obtained using the floating absolute risk method.

The limits obtained using the methods presented earlier in this book are known as pointwise
limits. If no bias is present, a 90% pointwise confidence band has at least a 90% chance (over
study repetitions) of containing the true rate, risk, or effect at any single observed exposure level.
Nonetheless, there is a much lower chance that a conventional pointwise confidence band contains
the entire true dose–response curve. That is, there will be less than a 90% chance that the true curve
runs inside the pointwise band at every point along the graph. Construction of confidence bands that
have a 90% chance of containing the true curve everywhere is best accomplished using regression
methods; see Hastie and Tibshirani (1990, sec. 3.8).

As a final caution, note that neither the pointwise limits nor the corresponding graphical con-
fidence band provide an appropriate test of the overall null hypothesis of no exposure–outcome
association. For example, it is possible (and not unusual) for all the 99% confidence limits for
the exposure-specific associations to contain the null value, and yet the trend statistic may yield a
P-value of less than 0.01 for the association between exposure and disease.

VERTICAL SCALING

Rates, risks, and ratio measures are often plotted on a semilogarithmic graph, in which the vertical
scale is logarithmic. Semilogarithmic plotting is equivalent to plotting the log rates, log risks, or
log ratios against exposure, and is useful as a preliminary to log-linear (exponential) and logistic
regression. Such regressions assume linear models for the log rates, log risks, or log odds, and
departures from the models are easiest to detect visually when using a logarithmic vertical scale.
Figure 17–2 is a plot of the case-control ratios and confidence limits from Figure 17–1, using a
logarithmic vertical scale. In this scale, the difference in trend at high and low doses appears less
than in Figure 17–1.

There are various arguments for examining semilogarithmic plots (Gladen and Rogan, 1983),
but there can be subject-matter reasons for also examining plots with other scales for the verti-
cal or horizontal axis (Morgenstern and Greenland, 1990; Devesa et al., 1995). In particular, the
untransformed scale (that is, direct plotting of the measures) is important to examine when one
wishes to convey information about absolute effects and health impacts. For example, suppose the
average risks at levels X0, X1, X2 of a potentially modifiable exposure follow the pattern R0 =
0.001, R1 = 0.010, R2 = 0.050. A plot of the risk ratios R0/R0 = 1, R1/R0 = 10, R2/R0 = 50
against X0, X1, X2 will indicate that the proportionate risk reduction produced by moving from
level X2 to level X1 is (50 − 10)/50 = 0.80. This reduction is over 80% of the maximum potential
reduction of (50 − 1)/50 = 0.98 produced by moving from X2 to X0. In other words, reducing
exposure from X2 to X1 may yield most of the total potential risk reduction. A plot of the log risk
ratios at X0, X1, X2 (which are 0, 2.3, 3.9) will not make clear the preceding point and may convey
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FIGURE 17–2 ● Plot of case-control ratios and 80% and 99% confidence limits from data in
Table 17–4, using logarithmic vertical scale.

the mistaken impression that moving from X2 to X1 does not achieve most of the possible benefit
from exposure modification.

Another approach to graphical analysis is to plot attributable and prevented fractions (relative
to a common reference level) against exposure levels. Attributable fractions are plotted above the
horizontal axis for exposure levels with risks higher than the reference level risk, and preventable
fractions are plotted below the horizontal axis for levels with risks lower than the reference level
(Morgenstern and Greenland, 1990).

INCREMENTAL (SLOPE) PLOTS

The slope (direction) of a curve may be assessed directly by plotting incremental (adja-
cent) differences, such as I1 − I0, I2 − I1, . . . , IJ − IJ−1, or incremental ratios, such as I1/I0,
I2/ l1, . . . , IJ /IJ−1, against the category boundaries (Maclure and Greenland, 1992). Incremental
differences will be greater than 0 and incremental ratios will be greater than 1 wherever the trend is
upward; the differences will be less than 0 and the ratios less than 1 wherever the trend is downward.
Figure 17–3 displays the incremental odds ratios and their 80% and 99% confidence limits from
the data in Table 17–4 plotted on a logarithmic vertical scale against the category boundaries. This
graph supplements Figure 17–2 by showing that the data are fairly consistent with an unchanging
slope in the logarithmic trend across consumption, which corresponds to an exponential trend on
the original scale.

Because incremental ratios are based on division by a shifting reference quantity, their pattern
does not follow that of underlying rates or risks, and so they are not well suited for evaluating
health impacts. They need logarithmic transformation to avoid distorted impressions produced by
the shifting reference level. Suppose, for example, that average risks at X0, X1, X2 are R0 = 0.02,
R1 = 0.01, R2 = 0.02, such as might occur if exposure was a nutrient for which both deficiency
and excess are harmful. On the untransformed scale, the change in risk from X0 to X1 is exactly
opposite the change in risk from X1 to X2. As a result, in going from X0 to X2 the exposure effects
cancel out to yield identical risks at X0 and X2. Yet the incremental risk ratios are R1/R0 = 1/2 and
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FIGURE 17–3 ● Plot of incremental odds ratios and 80% and 99% confidence limits from
data in Table 17–4, using logarithmic vertical scale.

R2/R1 = 2, so that the second exposure increment will appear visually to have a larger effect than
the first if the ratios are plotted on the arithmetic scale. In contrast, on a logarithmic scale R1/R0

will be the same distance below zero as R2/R1 is above zero. This equidistance shows that the
effects of the two increments cancel exactly.

HORIZONTAL SCALING AND CATEGORY SCORES

One must also choose a horizontal (exposure) scale for a plot. When each exposure level X0,
X1, . . . , XJ represents a unique exposure value, an obvious choice is to use this unique value. For
example, if Xj corresponds to “ j previous pregnancies,” one may simply use number of previous
pregnancies as the horizontal axis. If, however, the exposure levels represent internally heteroge-
neous categories, such as 5-year groupings of exposure time, a numeric value or score must be
assigned to each category to form the horizontal scale.

Category midpoints are perhaps the simplest choice that will often yield reasonable scores.
For example, this scheme would assign scores of s0 = 0, s1 = 2.5, s2 = 7, and s3 = 12 years for
exposure categories of 0, 1 to 4, 5 to 9, and 10 to 14 years. Midpoints do not, however, provide
scores for open-ended categories such as 15+ years.

Two slightly more involved choices that do provide scores for open-ended categories are category
means and medians. Category means have an advantage that they will on average produce a straight
line if there is no bias and the true dose–response curve is a line. If, however, there are categories
within which exposure has large nonlinear effects (such as an exponential trend and a fivefold risk
increase from the lower to the upper end of a category), no simple scoring method will provide an
undistorted dose–response curve (Greenland, 1995b). Thus, avoidance of very broad categories is
advisable when strong effects may be present within such categories.

One automatic, common, and poor method of scoring categories is to assign them ordi-
nal numbers (that is, s j = j , so that 0, 1, . . . , J is assigned to category X0, X1, . . . , XJ ). If
any category is internally heterogeneous, it will only be accidental that such ordinal scores
yield a biologically meaningful horizontal axis. If the categories span unequal intervals, as in
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FIGURE 17–4 ● Plot of case-control ratios and 80% and 99% confidence limits from data in
Table 17–4, using logarithmic horizontal and vertical scales.

Tables 17–3 and 17–4, ordinal scores can easily yield quantitatively meaningless dose–response
curves and harm the power of trend tests (Lagakos, 1988; Greenland, 1995a, 1995b). These short-
comings arise because the distance between the ordinal scores is always 1, and this distance will
not in general correspond to any difference in average exposure or effect across the categories.

In choosing the horizontal scale, it is possible to transform exposure in any fashion that is of
scientific interest. Suppose, for example, one has a carcinogenesis model that predicts the logarithm
of lung cancer rates will increase linearly with the logarithm of exposure. To check the prediction,
one may plot the logarithms of the rates against the category-specific means of log exposure.
Equivalently, one may plot the rates against the geometric means of the exposure categories, using
logarithmic scales for both axes. (Recall that the geometric mean exposure is the antilog of the
mean of the logarithms of the individual exposures.) Under the theory, the resulting plot should
on average follow a line if no bias is present. Figure 17–4 presents the same results as in Figure
17–2, but plotted with logarithmic horizontal and vertical scales. With this scaling, the entire curve
appears not too far from a straight line, considering the statistical uncertainty in the results.

In the preceding example, a different (and nonlinear) curve would result if one used the arithmetic
means (the second column of Table 17–4) as scores for the exposure categories. The difference
between the geometric and arithmetic means will tend to be small if the categories are narrow, but it
may be large for broad categories. This potential for discrepancy is yet another reason we recommend
keeping categories as narrow as practical. When examining a logarithmic exposure scale, geometric
means will provide a more meaningful analysis than will arithmetic means, because the logarithm
of the geometric mean is the average of the logarithms of the potentially unique individual exposure
measurements, whereas the logarithm of the arithmetic mean is not.

SMOOTHING THE GRAPH

Small counts may produce graphs with highly implausible fluctuations. As mentioned earlier, a
common approach to this problem is to add 1/2 to each table cell. A superior approach is to average
the observed counts with expected counts (Chapter 12 of Bishop et al., 1975; Greenland, 2006b).
A simple way to do so is as follows. Suppose there are J + 1 exposure levels and I strata, for a
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total of K = I (J + 1) case cells (numerators). The expected value for A ji if there is no association
of exposure or stratification variables with the outcome (the null expected number of cases) is
E ji = (M1+/T++)Tji for person-time data, which is just the overall crude rate times the person-
time at exposure j , stratum i . For count data, this expected value is E ji = (M1+/N++)N ji . The
smoothed case count that replaces A ji in graphing rates or proportions or case-control ratios is then
a weighted average of the observed cases and null expected number of cases. One such average is

Sji = [M1+ A ji + (K/2)E ji ]/(M1+ + K/2)

in which the observed counts A ji are weighted by the number of cases M1+, and the null expected
number of cases E ji are weighted by half the number of case cells K (Chapter 12 of Bishop
et al., 1975). The smoothed case count Sji yields a smoothed rate Sji/Tji or smoothed proportion
Sji/N ji or smoothed case-control ratio Sji/(N ji − Sji ). The numbers in Table 17–4 are so large
that this smoothing approach produces a barely perceptible difference in the graphs in Figures 17–1
through 17–4.

There are other simple averaging schemes, each of which can greatly improve accuracy of rate
or risk estimates when the observed counts A ji are small. More complex schemes can do even
better (Greenland, 2006b). All operate as in the preceding equation by putting more weight on the
observed value as the sample size grows and putting more weight on the expected value as the cases
are spread over more cells.

The curves obtained using null expectations in the averaging formula are somewhat flattened
toward the null. Because unsmoothed data may tend to exaggerate trends, this flattening is not nec-
essarily a bad property. If desired, the flattening can be eliminated by using expected values derived
from a logistic regression model that includes exposure and confounder effects rather than null
expected values. If, however, one goes so far as to use a regression model for the graphical analysis,
one can instead use model extensions such as splines (Chapter 20) to generate smoothed graphs.

Two cautions should be observed in using the above weighted-averaging approach. First, the
smoothed counts are designed to take care of only sporadic small counts (especially zeros and
ones). If the data are consistently sparse (such as pair-matched data), only summary sparse-data
measures (such as Mantel-Haenszel estimates) should be graphed. Second, one need not and should
not compute sparse-data summaries or trend statistics from the smoothed counts. The purpose
of the smoothed counts is only to stabilize estimates that depend directly on cell sizes, such as
stratum-specific and standardized rates, proportions, and case-control ratios.

If the exposure measurement is continuous (or nearly so), one may instead use more sophisticated
smoothing techniques. One such method (kernel smoothing) is discussed below, and others are
described in Chapters 20 and 21.

TREND STATISTICS

In examining tables and trend graphs, a natural question to ask is whether the outcome measure
tends to increase or decrease in value as the exposure score increases. If the outcome measure is
a rate, for example, we could ask whether the true rates tend to increase with the scores. We can
suggest an answer to this question based on visual inspection of the graph, but one usually wants
some formal statistical assessment as well.

The standard approach to statistical assessment of trend is to perform a regression analysis of the
variation in the outcome measure with the scores. Because this approach typically involves many
subtleties and computer-based calculations, we defer discussion of such analysis until the chapters
on regression. The basic qualitative question—“Does the outcome measure tend to go up or down
with the exposure scores?”—can, however, be addressed by a relatively simple and popular trend
test developed by Mantel (1963). Unfortunately, its simplicity and popularity have led to extensive
misinterpretation of the P-value derived from the test (Maclure and Greenland, 1992). Therefore,
before we present the statistic, we explain its meaning.

Consider two hypotheses about the true outcome measures. Under the null hypothesis, these
measures are not associated with the exposure scores. Under the linear hypothesis, the true measures
will fall along a line when plotted against the scores. (The hypothesis is sometimes said to be log-
linear if the outcome measures are logarithms of more basic measures such as rates or rate ratios.)
The null hypothesis is a special case of the linear hypothesis, the one in which the line is horizontal.
The Mantel trend P-value is often misinterpreted as a P-value for the linear hypothesis; it is not,



P1: TNL Printer: RRD

GRBT241-17 GRBT241-v4.cls January 16, 2008 13:27

Chapter 17 ● Analysis of Polytomous Exposures and Outcomes 315

however. Rather, it is a P-value for testing the null hypothesis. If no bias is present, it provides
a valid test of that hypothesis, in that the P-value will tend toward small values only if the null
hypothesis is false.

In addition to validity, we would like a statistic to have the highest power possible, so that if the
null hypothesis is false, the P-value will tend toward small values. The Mantel test will be powerful
when the linear hypothesis holds for the rate, risk, log rate, or log odds. That is, if any of these
outcome measures has a linear relation to the scores, the Mantel test will have good power relative
to the best power achievable from the study. If, however, the relation of the outcomes to the scores
is nonlinear to the point of being nonmonotonic, the Mantel test may have poor power relative
to the best achievable. In some extreme situations involving U-shaped relations between outcome
measures and scores, the Mantel test may have little chance of detecting even a strong association.

The basic cautions in using the Mantel test may be summarized as follows: As always, a large P-
value means only that the test did not detect an association; it does not mean that the null hypothesis
is true or probably true, nor does it mean that further analyses will not reveal some violation of
the null. A small P-value means only that some association was detected by the test; it does not
mean that the association of the outcome with exposure is linear or even that it is monotone. The
test is related to the linear hypothesis only in that it is much more capable of detecting linear and
log-linear associations than nonmonotone associations.

With these cautions in mind, we now describe the test. The Mantel trend statistic is a type of
score statistic, and it is a direct generalization of the Mantel-Haenszel statistic for binary exposures.
It has the form

χtrend = S − E

V 1/2
[17–4]

where S is the sum of the case scores when every person is assigned the score in his or her category,
and E and V are the expected value and variance of S under the null hypothesis. S and E may
be computed from S = �

i
�
j

A ji s j and E = �
i

M1i Ei , where s j is the score assigned to category

j and Ei is the expected case score in stratum i under the null hypothesis; Ei = �
j

Tji s j/T+i for

person-time data and Ei = �
j

N ji s j/N+i for pure count data. For person-time data,

V = Ei M1i Vi where Vi = �
j

Tji s
2
j /T+i − E2

i

whereas for pure count data,

V =
∑

i

M1i M0i

N+i − 1
Vi where Vi =

∑
i

N ji s
2
j /N+i − E2

i

In either case, Vi is the variance of the scores in stratum i under the null hypothesis. If there are only
two exposure categories (J = 1), χtrend simplifies to the usual Mantel-Haenszel statistic described
in Chapter 15.

If no bias is present and the null hypothesis is correct, χtrend will have a standard normal distri-
bution. Thus, its observed value can be found in a standard normal table to obtain a P-value for
the null hypothesis. Special care is needed in interpreting the sign of χtrend and the P-values based
on it, however. A negative value for χtrend may only indicate a trend that is predominantly but not
consistently decreasing; similarly, a positive value may only indicate a trend that is predominantly
but not consistently increasing. We emphasize again that a small P-value from this statistic means
only that an association was detected, not that this association is linear or even monotone.

The data in Table 17–4 have only one stratum. Using the arithmetic category means as the scores,
the formulas simplify to

S = �
j

A j s j = 13(0.68) + · · · + 5(20.91) = 2694.3

E = M1 �
j

Nj s j/N+ = 488[17(0.68) + · · · + 11(20.91)]/976 = 2870.8

V = M1 M0

N+ − 1

(
�
j

N j s
2
j /N+ − E2/M2

1

)

= 4882

975
[17(0.682)/976 + · · · + 11(20.912)/976 − 5.88282] = 2814.6
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and so χtrend = (2694.3 − 5.8828)/2814.61/2 = −3.33, which has a two-sided P-value of 0.0009.
If we use the mean log servings as the scores, we instead get χtrend = −3.69 and P = 0.0002. This
larger χtrend and smaller P reflect the fact that the log case-control ratios appear to follow a line
more closely when plotted against log servings (Fig. 17–4) than when plotted against servings
(Fig. 17–2).

The Mantel statistic is well suited for sparse stratifications, in that it remains valid even if all the
counts A ji are only zeros or ones, and even if there is never more than two subjects per stratum.
Thus, it may be applied directly to matched data. It is, however, a large-sample statistic, in that it
requires (among other things) at least two of the exposure-specific case totals A j+ be large and (for
pure count data) at least two of the exposure-specific noncase totals B j+ be large. When there is
doubt about the adequacy of sample size for the test, one may instead use a stratified permutation
(exact) test, which, like the Mantel test, is available in several computer packages, including Egret
and StatXact (Cytel, 2006).

One positive consequence of their sparse-data validity is that neither the Mantel test nor its per-
mutation counterparts require that one collapse subjects into heterogeneous exposure categories.
In particular, the Mantel statistic can be applied directly to continuous exposure data, in which
each subject may have a unique exposure value. By avoiding degradation of exposure into broad
categories, the power of the test can be improved (Lagakos, 1988; Greenland, 1995a). This im-
provement is reflected in the preceding example, in that χtrend obtained from the broad categories
in Table 17–3 using mean log servings is −2.95, two-sided P = 0.003, whereas the χtrend obtained
using the individual data in Table 17–4 on log servings is −3.77, two-sided P = 0.0002. To com-
pute χtrend from subject-specific data, note that the formula for S, E , and V can use “categories”
that contain only a single person. For example, in the data in Table 17–4, there was one person (a
case) who reported eating only 1 serving every other week, which is 1/14 serving per day. Using
subject-specific data, this person is the sole member of the first ( j = 1) serving category, which
has Al = 1, B1 = 0, N1 = 1, and s1 = ln(1/14). This category contributes to the sums in S, E , and
V the amounts A1s1 = ln(1/14), M1 N1s1/N+ = 488[ln(1/14)]/976, and N1s2

1/N+ = ln(1/14)2/976.
By applying the above formulas to each case and control separately and summing the results over
all subjects, we obtain a χtrend of −3.77, which yields a smaller P-value than any of the categorical
(grouped) analyses.

The Mantel statistic takes on an exceptionally simple and well-known form in matched-pair
case-control studies. For such studies, M1i = M0i = 1 and Ni = 2 in all strata. Let s1i and s0i

be the case and control scores or exposures in pair (stratum) i . We then have S = sum of case
exposures = �

i
s1i , Ei = (s1i + s0i )/2, and

Vi = (
s2

1i + s2
0i

)
/2 − (s1i + s0i )

2/22 = (s1i − s0i )
2/4

so that

S − E = �
i

s1i − �
i

(s1i + s0i )/2 = �
i

(s1i − s0i )/2 = �
i

di/2

and

V 1/2 =
(

�
i

d2
i

)1/2

/2

where di = s1i − s0i = case-control exposure difference. Thus

χtrend = �
i

di/

(
�
i

d2
i

)1/2

This may be recognized as the classical t-statistic for testing pairwise differences (Dixon and
Massey, 1969). When exposure is dichotomous, χtrend simplifies further, to the McNemar matched-
pairs statistic (Chapter 16).

SPECIAL HANDLING OF THE ZERO LEVEL

When exposure is a non-negative physical or temporal quantity (such as grams, years, rads, or
pack-years of exposure), some authors recommend routine deletion of the zero level (unexposed)
before computation of trend estimates or statistics. Such deletion cannot be justified in all situations,
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however. In any given situation, a number of context-specific factors must be evaluated to develop
a rationale for retaining or deleting the unexposed (Greenland and Poole, 1995).

One valid rationale for deleting the unexposed arises if there is good evidence that such subjects
differ to an important extent from exposed subjects on uncontrolled confounders or selection factors.
This hypothesis is plausible when considering, for example, alcohol use: Abstainers may differ in
many health-related ways from drinkers. If such differences are present, the estimated outcome
measure among the unexposed may be biased to a different extent than the estimates from other
categories. This differential bias can distort the shape of the dose–response curve and bias the entire
sequence of estimates. Suppose, for example, that j = years exposed, and the corresponding true
risks R j fall on a straight line with a slope of 0.010/year, with R0 = 0.010, R1 = 0.020, R2 = 0.030,
R3 = 0.040. The sequence of risks relative to the unexposed risk will then also be linear: R1/R0 = 2,
R2/R0 = 3, R3/R0 = 4. Suppose next that the net bias in the estimated risks is 0% (none) among
the unexposed but is −30% among the four exposed levels. The expected estimates for the R j will
then be 0.010, 0.014, 0.021, 0.028. The resulting risk curve will no longer be a straight line (which
has a constant slope throughout); instead, the slope will increase from 0.014 − 0.010 = 0.004/year
to 0.021 − 0.014 = 0.007/year after the first year, whereas the resulting risk ratios will be 1.4, 2.1,
and 2.8, all downward biased.

On the other hand, if the unexposed group is not subject to bias different from the exposed, there
is no sound reason to discard them from the analysis. In such situations, deleting the unexposed will
simply harm the power and precision of the study, severely if many or most subjects are unexposed.
In real data analyses, one may be unsure of the best approach. If so, it is not difficult to perform
analyses both with and without the unexposed group to see if the results depend on its inclusion. If
such dependence is found, this fact should be reported as part of the results.

Another problem that arises in handling the zero exposure level is that one cannot take the
logarithm of zero. Thus, if one retains the zero exposed in a dose–response analysis, one cannot use
the log transform ln(x) of exposure, or plot exposure on a logarithmic scale. A common solution
to this problem is to add a small positive number c to the exposure before taking the logarithm;
the resulting transform is then ln(c + x). For example, one could use ln(1 + x), in which case
subjects with zero exposure have a value of ln(1 + 0) = ln(1) = 0 on the new scale. This solution
has a drawback of being arbitrary, as the transform ln(1 + x) depends entirely on the units used to
measure exposure. For example, if exposure is measured in servings per day, persons who eat 0, 1,
and 5 servings per day will have ln(1 + x) equal to ln(1) = 0, ln(2) = 0.7, and ln(6) = 1.8, so that
the first two people are closer together than the second two. If we instead use servings per week,
the same people will have ln(1 + x) equal to 0, ln(1 + 7) = 2.1, and ln[1 + 7(5)] = 3.6, so that the
second two people will be closer together than the first two. Likewise, use of a different added
number, such as ln(0.1 + x) instead of ln(1 + x), can make a large difference in the results. There is
no general solution for this arbitrariness except to be aware that ln(c + x) represents a broad variety
of transforms, depending on both c and the units of exposure measurement. The smaller c is, the
more closely the transform produces a logarithmic shape, which is extremely steep near x = 0 and
which levels off rapidly as x increases; as c is increased, the transform moves gradually toward a
linear shape.

MOVING AVERAGES

Categorical analysis of trends is apparently simple, but it involves the complexities of choosing the
number of categories, the category boundaries, and the category scores. A simpler alternative with
potentially better statistical properties is to plot a moving average or running mean of the outcome
variable across exposure levels. This approach may be viewed as a smoothing technique suitable
for exposures measured on a fine quantitative scale. It involves moving a window (interval) across
the range of exposure; one computes a rate, risk, or relative-risk estimate within the window each
time one moves the window.

The width of the window may be fixed, or it may be varied as the window is moved; often this
variation is done to keep the same number of subjects in each window. The window radius is half
its width and so is also known as its half-width. The main choice to be made is that of this radius.
Once the radius is selected, one plots the average outcome for each window against the exposure
value at the center of the window. The number and spacing of window moves depends on how much
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detail one wants in the final graph; with a computer graphing algorithm, the number of windows
used can be made as large as desired. For example, in plotting rates against pack-years of smoking,
one could have the window center move from 0 to 20 in increments of 0.5 pack-years, with a radius
of 4 pack-years.

To improve statistical performance, it is customary to employ weighted averaging within a
window, such that any subject at the center of the window is given maximum weight, with weight
smoothly declining to zero for subjects at the ends of the window. There are a number of standard
weighting functions in use, all of which tend to yield similar-looking curves in typical epidemiologic
data. These weight functions are also known as kernels; hence, the weighted averaging process
is often called kernel smoothing, and algorithms for carrying out the process are called kernel
smoothers (Hastie and Tibshirani, 1990; Hastie et al., 2001).

To describe the weighted-averaging process, let x be a given exposure value, and let h be the
radius of the window centered at x . The weight (kernel) function we will use is defined by

wu(x) = weight to give to a person whose exposure level is u
when estimating the average outcome at exposure level x

= 1 − (u − x)2/h2 when |x − u| < h

= 0 otherwise

This function reaches a maximum of 1 when u = x , drops toward 0 as u moves away from x , and is
0 when u is more than h units from x (for then u is outside the window centered at x). For example,
consider a window centered at x = 9 pack-years with radius h = 4. The weight given a person with
9 pack-years is w9(9) = 1 − (9 − 9)2/42 = 1, whereas the weights given persons with 7, 11, 5, and
13 pack-years are

w7(9) = 1 − (7 − 9)2/42 = 0.75 = 1 − (11 − 9)2/42 = w11(9)

and

w5(9) = 1 − (5 − 9)2/42 = 0 = 1 − (13 − 9)2/42 = w13(9)

Thus, persons whose exposure level is near x are given more weight for estimating the average
outcome at x than persons whose exposure level is further from x . Persons whose exposure level is
outside the window centered at x are given zero weight.

When averaging rates or proportions, the statistical properties of the smoothed estimate may
be further improved by multiplying the kernel weight wu(x) by the denominator (person-time or
number of persons) observed at u. When this is done, the formula for the moving weighted-average
rate at x becomes

Îx =
∑
u

Tuwu(x)Au
/

Tu∑
u

Tuwu(x)
=

∑
u

wu(x)Au∑
u

wu(x)Tu
=

∑
u

wu(x)Au
/ ∑

u
wu(x)∑

u
wu(x)Tu

/ ∑
u

wu(x)
= A(x)

T (x)

where Au is the number of cases and Tu is the amount of person-time observed at exposure level
u. Note that Au/Tu is the rate observed at exposure level u. The rate estimate

∧
Ix is just the ratio of

two weighted averages with weights wu(x): the weighted average number of cases observed, A(x),
and the weighted average amount of person-time observed, T (x). To estimate the average risk at x ,
we would instead use the number of persons observed at u, Nu , in place of the person-time Tu in
the preceding formula.

For case-control data, we could plot the moving weighted-average case-control ratio by using
control counts Bu in place of Tu . To adjust for confounders, the smoothed rate or risk estimates or
case-control ratios may be computed within strata (using the same window weights in each stratum),
and then standardized (averaged) across strata, to obtain moving standardized averages.

Weighted averaging can be applied directly to uncategorized data and so does not require any
choice of category boundaries or category scores. It is much simpler to illustrate for categorical
data, however, and so we construct an example from the data in Table 17–4. To do so, we must
consider choice of the exposure scale on which we wish to construct the weights wu(x). This choice
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is a different issue from the choice of plotting scale considered earlier, because once we construct
the moving averages, we can plot them on any axis scales we wish.

The kernel weights wu(x) depend on the distance from u to x , and so their relative magnitude
as u varies will depend strongly on whether and how one transforms exposure before computing
the weights. For example, one could measure distances between different numbers of servings per
day on an arithmetic (untransformed) scale, in which case u and x represent servings per day. A
common alternative is to measure distances on a geometric (log-transformed) scale, in which case
u and x represent the logarithms of servings per day. The moving weighted averages described here
tend to work better when the outcome being averaged (such as a rate or risk) varies linearly across
the exposure scale used to construct the weights. Comparing Figures 17–2 and 17–4 shows that a
log transform of servings per day yields a more linear plot than does an untransformed scale, and
so we use weights based on log servings for our illustration.

The radius h based on log exposure has a simple interpretation on the original (untransformed)
scale. If x represents a log exposure level, then only persons whose log exposure level u is between
x − h and x + h will have nonzero weight for the average computed at x . Taking antilogs, we see
that only persons whose exposure level eu is between ex−h = ex e−h and ex+h = ex eh will have
nonzero weight in the average computed at the exposure level ex . For example, if we use a radius
of h = ln(2) to construct the weights at 8 servings per day, only persons whose daily number of
servings is between exp[ln(8) − ln(2)] = 4 and exp[ln(8) + ln(2)] = 16 servings will have nonzero
weight in the average case-control ratio.

As one example, we compute the average case-control ratio for the third category in Table
17–4, using a radius on the log-servings scale of h = ln(2) = 0.69. Only the logarithmic means of
categories 2, 3, 4, and 5 are within a distance of 0.69 from 0.94, the logarithmic mean of category 3,
so only the case-control ratios of categories 2, 3, 4, and 5 will have nonzero weights. The weights
for these categories are

w0.45(0.94) = 1 − (0.45 − 0.94)2/0.692 = 0.50

w0.94(0.94) = 1 − (0.94 − 0.94)2/0.692 = 1.00

w1.26(0.94) = 1 − (1.26 − 0.94)2/0.692 = 0.78

w1.51(0.94) = 1 − (1.51 − 0.94)2/0.692 = 0.32

The weighted average case-control ratio for e0.94 = 2.56 servings per day is thus

A(0.94)

B(0.94)
= 0.50(36) + 1.00(55) + 0.78(70) + 0.32(77)

0.50(24) + 1.00(44) + 0.78(67) + 0.32(74)
= 152.2

131.9
= 1.15

We repeat this averaging process for each category in Table 17–4, and obtain 15 smoothed case-
control ratios. The solid line in Figure 17–5 provides a log-log plot of these ratios, with dotted lines
for the 80% and 99% confidence bands. Because of their complexity, we omit the variance formulas
used to obtain the bands; for a discussion of confidence bands for smoothed curves, see Hastie and
Tibshirani (1990). Comparing this curve to the unsmoothed curve in Figure 17–4, we see that the
averaging has provided a much more stable and smooth curve. The smoothed curve is also much
more in accord with what we would expect from a true dose–response curve, or even one that is
biased in some simple fashion.

As the final step in our graphical analysis, we replot the curve in Figure 17–5 using the original
(arithmetic) scales for the coordinate axes. Figure 17–6 shows the result: The slightly nonlinear
log-log curve in Figure 17–5 becomes a profoundly nonlinear curve in the original scale. Figure
17–6 suggests that most of the apparent risk reduction from fruit and vegetable consumption occurs
in going from less than 1 serving per day to 2 servings per day, above which only a very gradual (but
consistent) decline in risk occurs. Although the initial large reduction is also apparent in the original
categorical plot in Figure 17–1, the gradual decline is more clearly imaged by the smoothed curve
in Figure 17–6.

We have used both the transformed (Fig. 17–5) and untransformed (Fig. 17–6) scales in our
smoothing analysis. As mentioned earlier, moving averages tend to work best (in the sense of
having the least bias) when the curve being smoothed is not too far from linear; in our example,
this led us to use logarithmic exposure and outcome scales for computing the moving averages.
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FIGURE 17–5 ● Plot of running weighted-average (kernel-smoothed) case-control ratios from
data in Table 17–4, using logarithmic horizontal and vertical scales and logarithmic weight (kernel)
function.

FIGURE 17–6 ● Plot of running weighted-average case-control ratios from data in Table
17–4, using arithmetic scale and logarithmic weight function.
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Nevertheless, transforming the results back to the original scale can be important for interpretation;
in our example, this transformation makes clear that, even after smoothing, the association under
study is concentrated largely at the lowest intake levels.

VARIABLE-SPAN SMOOTHERS

Instead of being constant, the window width 2h can be allowed to vary with x so that there are
either a fixed number of subjects or (equivalently) a fixed percentage of subjects in each window.
For example, the width may be chosen so each window has as close to 100 subjects as possible. (It
may not be possible to have exactly 100 subjects in some windows, because there may be subjects
with identical exposure values that have to be all in or all out of any window.) The width may
instead be chosen so that each window has as close to 50% of all subjects as possible. These types
of windows are called (asymmetric) nearest-neighbor windows. The proportion of subjects in each
window is called the span of the window.

In a person-time rate analysis or in an analysis in which the number of cases is far less than
the number of noncases, the window widths can be chosen to include a fixed percentage of cases
instead of subjects. There are many more sophisticated methods for choosing window widths, but
the basic nearest-neighbor approaches just described are adequate for exploratory analyses. The
larger the span is, the smoother the curve that will be generated. With a computer program, it is a
simple matter to graph a moving average for several different spans. Such a process can provide a
feel for the stability of patterns observed in the graphs.

CATEGORICAL ESTIMATES AS MOVING AVERAGES

The curves obtained from moving weighted averages tend to be biased toward flatness, especially
when wide windows are used or the curve is highly nonlinear in the scales used for averaging.
The latter problem is one of the reasons we used the log scale rather than the original scale when
smoothing the curve in the example. Nonetheless, moving averages are less biased than the curves
obtained using fixed categories of width that are less than the window width of the moving weighted
average. The curves obtained by plotting rates or risks from fixed categories are special cases of
moving averages in which only a few (usually four to six) nonoverlapping windows are used.
Curves from fixed categories correspond to using a weight function wu(x) that equals 1 for all
exposure levels u in the category of x and equals 0 for all u outside the category. In other words,
the fixed-category curves in Figures 17–1 through 17–4 may be viewed as just very crude versions
of moving-average graphs.

MORE GENERAL SMOOTHERS

One way to avoid flattening of the smoothed curve is to use a running-weighted regression curve
(such as a running weighted line) rather than a running weighted average. Moving averages and
running curves are examples of scatterplot smoothers (Hastie and Tibshirani, 1990). Such tech-
niques can be extended to include covariate adjustment and other refinements; see the discussion of
nonparametric regression in Chapter 21. Software that produces and graphs the results from such
smoothers is becoming more widely available. We strongly recommend use of smoothers when-
ever one must study trends or dose–response with a continuous exposure variable, and a substantial
number of subjects are spread across the range of exposure. The smoothed curves produced by these
techniques can help alert one to violations of assumptions that underlie common regression models,
can make more efficient use of the data than categorical methods, and can be used as presentation
graphics.

BASIC ANALYSIS OF MULTIPLE OUTCOMES

Several special points should be considered in analyses of data in which the individual outcomes
are classified beyond a simple dichotomy of “diseased/nondiseased” or “case/control.” Such data
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arise when disease is subclassified by subtype, or competing causes of death are studied, or multiple
case or control groups are selected in a case-control study. For example, studies of cancer usually
subdivide cases by cancer site; a study of cancer at a given site may subdivide cases by stage at
diagnosis or by histology; and in hospital-based case-control studies, controls may be subdivided
according to diagnosis.

The simplest approach to multiple-outcome analysis is to perform repeated dichotomous-
outcome analyses, one for each disease rate or risk in a cohort study, or one for each case-control
group combination in a case-control study. Such repeated analyses are rarely sufficient, however;
for example, in case-control studies with multiple control groups, one should also conduct a com-
parison of the control groups. It can also be important to examine simultaneous estimates of all
effects of interest (Thomas et al., 1985). The most statistically efficient way to perform simulta-
neous comparisons involves methods such as polytomous logistic regression, described in Chapter
20. These methods also lend themselves directly to sensible multiple-comparison procedures based
on hierarchical regression (Greenland, 1992a, 1997b; see Chapter 21).

We recommend that one begin with tabular analyses, cross-classifying all outcomes (including
the noncases or denominators) against the exposure variable. Table 17–5 presents results on the
association of male genital implants with cancers diagnosed a year or more following the implant
(Greenland and Finkle, 1996). The estimates in the table were adjusted using 5-year age categories
and 1-year categories for year of diagnosis. The first panel of the table compares the five different
diagnoses chosen as control diseases, using the largest group (colon polyps) as referent. The dif-
ferences observed here were judged small enough to warrant combination of the controls into one
group for the main analysis in the second panel of the table. This analysis suggests an association
of the implants with liver cancer and possibly bone and connective-tissue cancer as well.

ˆ

ˆ

ˆ

ˆ
T A B L E 1 7 – 5

Case-Control Data on Male Genital Implants (Penile and Testicular) and
Cancers Diagnosed >1 Year after Implant

Implant

Yes No Odds Ratio (95% Limits) P -Value

I. Comparisons of Control Diseases
Benign stomach tumorsa 6 1,718 1.24 (0.48, 2.59) 0.63
Deviated septum 17 7,874 1.04 (0.61, 1.76) 0.88
Viral pneumonia 10 3,616 1.22 (0.63, 2.38) 0.55
Gallstones 49 20,986 0.91 (0.64, 1.29) 0.60
Colon polyps 94 32,707 1.00 (reference group)

II. Comparison of Cancers against Combined Controls
Livera 10 1,700 2.47 (1.22, 4.44) 0.02
Bonea 19 4,979 1.70 (1.02, 2.65) 0.04
Connective tissuea 8 2,119 1.54 (0.69, 2.92) 0.27
Brain 26 10,296 1.14 (0.75, 1.73) 0.53
Lymphomas 10 4,068 1.02 (0.54, 1.93) 0.95
Myelomasa 3 1,455 0.84 (0.20, 2.21) 0.76
Leukemiasa 5 2,401 0.89 (0.31, 1.94) 0.79
All control diseases 176 66,901 1.00 (reference group)

a Median-unbiased estimates and mid-P statistics; remainder are Mantel-Haenszel statistics. Statistics were derived with stratification on age
in 5-year intervals from 30 to 89 years of age and year of diagnosis in 1-year intervals from 1989 to 1994. P -values are two-sided.

From Greenland S, Finkle WD. A case-control study of prosthetic implants and selected chronic diseases. Ann Epidemiol. 1996;6:530–540.
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As with an analysis of a polytomous exposure, analysis of multiple diseases should include
examination of a simultaneous statistic that tests for all exposure–disease associations. For unstrat-
ified data, one can use the Pearson χ2 statistic, which when applied to the numbers in the second
panel of Table 17–5 has a value of 10.23 with seven degrees of freedom (the number of cancers).
This statistic yields P = 0.18 for the joint hypothesis of no exposure–cancer association, indicating
that the spread of estimates and P-values seen in the table is fairly consistent with purely random
variation. This fact would not be apparent from examining only the pairwise comparisons in the
table. We further discuss simultaneous analysis of multiple outcome data in the next section.

SIMULTANEOUS STATISTICS FOR TABULAR DATA

Earlier we mentioned the multiple-comparisons problem inherent in separate pairwise comparisons
of multiple exposure levels. This problem is ordinarily addressed by presenting a simultaneous or
joint analysis of the exposure levels. In the remainder of this chapter, we describe the principles of
simultaneous analysis in more detail.

To understand better the distinction between separate and joint analyses of multiple exposure
levels, consider the following J (J + 1)/2 questions regarding an exposure with J + 1 levels (one
question for each pair i , j of exposure levels):

Question ij: Do exposure levels Xi and Xj have different rates of disease?

For an exposure with three levels (J = 2), this represents 2(3)/2 = 3 different questions. Each
of these questions could be addressed by conducting a Mantel-Haenszel comparison of the cor-
responding pair of exposure levels. We would then get three different Mantel-Haenszel statistics,
χMH10, χMH20, χMH21, which compare exposure levels X1 to X0, X2 to X0, and X2 to X1. In the
absence of biases, χMHij would have a standard normal distribution under the single null hypothesis:

H0i j : Exposure levels Xi and Xj have the same disease rate, regardless of the rates at other levels.

Thus, in Table 17–3, the first P-value of 0.005 refers to the hypothesis that the ≤2 category has the
same polyp rate as the >6 category, regardless of the rate in any other exposure category.

Contrast the above set of questions and hypotheses, which consider only two exposures at a
time, with the following question that considers all exposure levels simultaneously:

Joint Question: Are there any differences among the rates of disease at different exposure levels?

This question is a compound of all the separate (pairwise) questions, in that it is equivalent to asking
whether there is a difference in the rates between any pair of exposure levels. To address this joint
question statistically, we need to use a test statistic (such as the Pearson statistic χ2

P or the Mantel
trend statistic χtrend) that specifically tests the joint null hypothesis:

HJoint: There is no difference among the disease rates at different exposure levels.

This hypothesis asserts that the answer to the joint question is “no.”

We may extend the Pearson statistic to test joint hypotheses other than the joint null. To do so,
we must be able to generate expected values under non-null hypotheses. For example, if exposure
has three levels indexed by j = 0, 1, 2 (J = 2), we must be able to generate expected values
under the hypothesis that the rate ratios IR1 and IR2 comparing level 1 and 2 to level 0 are 2 and
3 (HJoint:IR1 = 2, IR2 = 3), as well as under other hypotheses. Consider the person-time data in
Table 17–1. Under the hypothesis that the true rate ratios for X1, . . . , XJ versus X0 are IR1, . . . ,
IRJ , the expectation of A j is

E j = IR j Tj

�
k

IRk Tk
. [17–5]

The summation index k in the denominator ranges from 0 to J ; IR0 (the rate ratio for X0 versus X0)
is equal to 1 by definition. To obtain a test statistic for the hypothesis that the true rate ratios are
IR1, . . . , IRJ , we need only substitute these expected values into the Pearson χ2 formula (equation
17–1 or 17–2). If there is no bias and the hypothesis is correct, the resulting χ2

P will have
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approximately a χ2 distribution with J degrees of freedom. Again, the accuracy of the approx-
imation depends on the size of the expected values E j .

Although the non-null Pearson statistic can be extended to stratified data, this extension requires
the expected numbers to be large in all strata, and so methods based on regression models are
preferable (Chapter 21).

JOINT CONFIDENCE REGIONS

Rarely is a particular non-null hypothesis of special interest. The Pearson statistic based on non-null
expected values (formula 17–5) can, however, be used to find joint (or simultaneous) confidence
regions. Such a region is the generalization of a confidence interval to encompass several measures
at once. To understand the concept, suppose that exposure has three levels, X0, X1, X2, and that we
are interested in the log rate ratios ln(IR1) and ln(IR2) comparing levels X1 and X2 to X0. Figure
17–7 shows an elliptical region in the plane of possible values for ln(IR2) and ln(IR1). Such a
region is called a C% confidence region for ln(IR1) and ln(IR2) if it is constructed by a method that
produces regions containing the pair of true values for ln(IR1), ln(IR2) with at least C% frequency.

Suppose we have an approximate statistic for testing that the pair of true values equals a particular
pair of numbers, such as the simultaneous Pearson statistic χ2

P described earlier. Then we can
construct an approximate C% confidence region for the pair of true values by taking it to be the set
of all points that have a P-value greater than 1 − C/100. For example, to get an approximate 90%
confidence region for IR1, IR2 in the preceding examples, we could take the region to be the set of
all points that have P ≥ 0.10 by the Pearson χ2 test. We could also obtain a 90% confidence region
for ln(IR1), ln(IR2) just by plotting these points for IR1, IR2, using logarithmic axes.

The notion of joint confidence region extends to any number of measures. For example, in
studying a four-level exposure with three rate ratios, IR1, IR2, IR3, we could use the Pearson statistic
to obtain a three-dimensional confidence region. Given large enough numbers, the corresponding
region for ln(IR1), ln(IR2), ln(IR3) would resemble an ellipsoid.

FIGURE 17–7 ● Graphical comparison of single 95% confidence intervals (dashed lines) and a
joint 95% confidence region (ellipse).
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 7 – 6

General Data Layout for Simultaneous Analysis of
Three Diseases in a Person-Time Follow-up Study

Exposure Level

X J · · · X 0 Totals

Disease · · ·
D3 A 3 J · · · A 20 M 3

D2 A 2 J · · · A 20 M 2

D1 A 1 J · · · A 10 M 1

All diseases D A J · · · A 0 M
Person-time T J · · · T 0 T

SIMULTANEOUS ANALYSIS OF MULTIPLE OUTCOMES

Table 17–6 illustrates a general data layout for simultaneous analysis of three diseases in a person-
time follow-up study. There are several parameters that can be studied with these data, among
them:

1. The association of the combined-disease outcome D (“All diseases”) with exposure
2. The association of each disease Dh (h = 1, 2, 3) with exposure
3. The differences among the separate exposure–disease associations

For example, we could have D = colon cancer with D1 = ascending, D2 = transverse, and D3 =
descending colon cancer. The associations of exposure with the combined site D and separate sites
DI could be examined one at a time, using any of the methods described earlier for analyzing a
single-disease outcome. We also have the option of analyzing the separate sites simultaneously.

To understand the distinction between separate and joint analyses, consider the following ques-
tions (one each for h = 1, 2, 3):

Question h: Is exposure associated with disease Dh?

For the colon cancer example, this represents three different questions, one for each of the ascend-
ing (h = 1), transverse (h = 2), and descending (h = 3) sites. Each of these questions could be
examined separately by repeatedly applying the unordered Pearson statistic or the Mantel trend
statistic described earlier in this chapter, each time using a different row for the number of cases
but keeping the same denominators Tj . The unordered analyses would yield three Pearson statistics
χ2

P1, χ2
P2, χ2

P3, one for each disease site Dh , and we might also obtain three corresponding trend
statistics χT1, χT2, χT3. In the absence of biases, the statistic χ2

Ph would have approximately a χ2

distribution with J degrees of freedom if the following null hypothesis (a “no” answer to Question
h) was true:

H0h : Exposure is unassociated with disease Dh , regardless of the exposure association with any
other disease site.

Similarly, in the absence of biases, the statistic χTh would have approximately a standard normal
distribution if H0h were true.

Contrast the three questions that consider one disease site at a time with the following question
that considers all sites simultaneously:

Joint Question: Is exposure associated with any of the sites D1, D2, D3?
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Logically, the answer to this question is “no” if and only if the answer is “no” to all of the three
preceding questions. That is, the joint null hypothesis,

HJoint: Exposure is not associated with any site.

is equivalent to stating that H0h is true for every site Dh . A test statistic for HJoint that does not
require or make use of any ordering of exposure is the joint Pearson statistic,

χ2
P+ = �

h
E j (Ahj − Ehj )

2/Ehj [17–6]

where Ehj = Mh Tj/T+ is the expectation of Ahj under the joint null hypothesis HJoint. With I
diseases, this statistic has approximately a χ2 distribution with IJ degrees of freedom if there is no
bias and HJoint is true. Note that χ2

P+ = �
h

χ2
Ph . For pure count data, χ2

P+ is equal to N+/(N+ − 1)

times the generalized Mantel-Haenszel statistic for pure count data. The latter statistic generalizes
to stratified data without an increase in degrees of freedom, but requires matrix inversion (Somes,
1986). Alternatively, one may test HJoint using a deviance statistic computed using a polytomous
logistic regression program (Chapters 20 and 21).

A test statistic for HJoint that makes use of ordered exposure scores s0, s1, . . . , sJ is the joint
trend statistic

χ2
T+ = �

h
(Sh − Eh)2/Vh [17–7]

where
Sh = �

j
Ahj s j , Eh = Mh �

j
Tj s j/T

and

Vh = Mh

(
�
j

Tj s j/T − E2
h

)
χ2

T+ has approximately a χ2 distribution with the number of diseases as its degrees of freedom if there

are no biases and the joint null is true. For person-time data, χ2
T+ = �

h
χ2

Th . Like the Mantel-Haenszel

statistic, the stratified version of χ2
T+ requires matrix inversion, but it is also easily computed using

a polytomous logistic regression program. If both the disease and exposure have ordered scores,
a one-degree-of-freedom statistic can be constructed for testing HJoint that will usually be more
powerful than χ2

T+ (Mantel, 1963).

RELATION BETWEEN SIMULTANEOUS AND SINGLE COMPARISONS

It is an important and apparently paradoxical fact that the simple logical relations between simulta-
neous and single-comparison hypotheses do not carry over to simultaneous and single-comparison
statistics. For example, the joint null hypothesis that there is no difference in disease rates across
exposure levels can be false if and only if at least one of the single null hypotheses is false. Nonethe-
less, it is possible to have the P-value from the multiple-disease statistic χ2

P be much smaller than
every one of the P-values from the single-disease statistics χ2

Ph . For example, suppose we had
rates at three disease sites and four exposure levels (J = 3 with three nonreference levels), with
χ2

P1 = χ2
P2 = χ2

P3 = 6.3 with J = 3 degrees of freedom for each disease separately. These statistics
each yield P = 0.10, but the joint statistic is then χ2

P+ = 6.3 + 6.3 + 6.3 = 18.9 on 3 + 3 + 3 = 9
degrees of freedom, which yields P = 0.03.

Conversely, a joint null hypothesis can be true if and only if all the single null hypotheses are
true. Yet it is possible for the P-value from one or more (but not all) of the single statistics to be
much smaller than the P-value from the joint statistic, χ2

P . For example, with rates at two disease
sites and four exposure levels, we could get χ2

P1 = 0 and χ2
P2 = 8.4 with three degrees of freedom

for the two sites, which yield P-values of 1.0 and 0.04. But then χ2
P+ = 0 + 8.4 = 8.4 with six

degrees of freedom, which has a P-value of 0.2. The results in the second panel of Table 17–5
illustrate a similar phenomenon for pure count data: The liver and bone cancer associations have
P = 0.02 and P = 0.04, yet the joint P-value for all seven diseases is 0.18.

Similar examples can be found using other statistics, such as the simultaneous trend statistic
χ2

T+. In general, simultaneous (joint hypothesis) P-values do not have a simple logical relation
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to the single-hypothesis P-values. This counterintuitive lack of relation also applies to confidence
intervals. For example, a simultaneous 95% confidence region for two rate ratios need not contain
a point contained in the two one-at-a-time 95% confidence intervals; conversely, a point in the
simultaneous 95% confidence region may not be in all of the one-at-a-time confidence intervals.

A resolution of the apparent paradox may be obtained by overlaying a simultaneous 95% con-
fidence region for two log rate ratios with two single 95% confidence intervals, as in Figure 17–7.
The single 95% confidence intervals are simply a vertical band for ln(RR1) and a horizontal band for
ln(RR2). For a valid study design, the vertical band contains ln(RR1) with at least 95% probability
(over study repetitions) and the horizontal band contains ln(RR2) with at least 95% probability;
nonetheless, the overlap of these bands (which is the dashed square) contains the true pair (ln(RR1),
ln(RR2)) with as little as 0.95(0.95)

.= 0.90 or 90% probability. In contrast, the joint 95% confidence
region is the ellipse, which contains the true pair (ln(RR1) ln(RR2)) with at least 95% probability
over study repetitions. Note that two of the square’s corners are outside the ellipse; points inside
these corners are inside the overlap of the single confidence intervals, but outside the joint confi-
dence region. Conversely, there are sections inside the ellipse that are outside the square; points
inside these sections are inside the joint confidence region but outside one or the other single
confidence interval.

Figure 17–7 may help one visualize why a joint confidence region and the single confidence
intervals have very different objectives: Simultaneous methods use a single region to try to capture
all the true associations at once at a given minimum frequency, while keeping the area (or volume)
of the region as small as possible. In contrast, single methods use a single interval to capture just
one true association at a given minimum frequency, while keeping this one interval as narrow as
possible. Overlapping the regions produced by the single intervals will not produce joint confidence
regions that are valid at the confidence level of the single intervals.
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Chapters 10 and 13 briefly introduced the central concepts of Bayesian statistics. Begin-
ning with Laplace in the 18th century, these methods were used freely alongside other methods.
In the 1920s, however, several influential statisticians (R. A. Fisher, J. Neyman, and E. Pearson)
developed bodies of frequentist techniques intended to supplant entirely all others, based on no-
tions of objective probability represented by relative frequencies in hypothetical infinite sequences
of randomized experiments or random samplings. For the rest of the 20th century these meth-
ods dominated statistical research and became the sole body of methods taught to most students.
Chapters 14 through 17 describe the fundamentals of these frequentist methods for epidemiologic
studies.

In the context of randomized trials and random-sample surveys in which they were developed,
these frequentist techniques appear to be highly effective tools. As the use of the methods spread
from designed surveys and experiments to observational studies, however, an increasing number of
statisticians questioned the objectivity and realism of the hypothetical infinite sequences invoked
by frequentist methods (e.g., Lindley, 1965; DeFinetti, 1974; Cornfield, 1976; Leamer, 1978; Good,
1983; Berger and Berry, 1988; Berk et al., 1995; Greenland, 1998a). They argued that a subjective

328



P1: TNL Printer: RRD

GRBT241-18 GRBT241-v4.cls January 7, 2008 22:38

Chapter 18 ● Introduction to Bayesian Statistics 329

Bayesian approach better represented situations in which the mechanisms generating study samples
and exposure status were heavily nonrandom and poorly understood. In those settings, which typify
most epidemiologic research, the personal judgments of the investigators play an unavoidable and
crucial role in making inferences and often override technical considerations that dominate statistical
analyses (as perhaps they should; cf. Susser, 1977).

In the wake of such arguments, Bayesian methods have become common in advanced training
and research in statistics (e.g., Leonard and Hsu, 1999; Carlin and Louis, 2000; Gelman et al., 2003;
Efron, 2005), even in the randomized-trial literature for which frequentist methods were developed
(e.g., Spiegelhalter et al., 1994, 2004). Elementary training appears to have lagged, however, despite
arguments for reform (Berry, 1997). The present chapter illustrates how the conventional frequentist
methods introduced in Chapter 15 can be used to generate Bayesian analyses. In particular, it shows
how basic epidemiologic analyses can be conducted with a hand calculator or ordinary software
packages for stratified analysis (Greenland, 2006a). The same computational devices can also be
used to conduct Bayesian regression analyses with ordinary regression software (Greenland, 2007a;
Chapter 21). Thus, as far as computation is concerned, it is a small matter to extend current training
and practice to encompass Bayesian methods.

The chapter begins with a philosophical section that criticizes standard objections to Bayesian
approaches, and that delineates key parallels and differences between frequentist and Bayesian
methods. It does not address distinctions within frequentist and Bayesian traditions. See Chapter
10 and Goodman (1993) for reviews of the profound divergence between Fisherian and Neyman-
Pearsonian frequentism. The present chapter argues that observational researchers (not just statisti-
cians) need training in subjective Bayesianism (Lindley, 1965; DeFinetti, 1974; Goldstein, 2006) to
serve as a counterweight to the alleged objectivity of frequentist methods. For this purpose, neither
“objective” Bayesian methods (Berger, 2004) nor “pure likelihood” methods (Royall, 1997) will
do, because they largely replicate the pretense of objectivity that renders frequentist methods so
misleading in observational research.

Much of the modern Bayesian literature focuses on a level of precision in specifying a prior and
analytic computation that is far beyond anything required of frequentist methods or by the messy
problems of observational data analysis. Many of these computing methods obscure important par-
allels between traditional frequentist methods and Bayesian methods. High precision is unnecessary
given the imprecision of the data and the goals of everyday epidemiology. Furthermore, subjec-
tive Bayesian methods are distinguished by their use of informative prior distributions; hence their
proper use requires a sound understanding of the meaning and limitations of those distributions,
not a false sense of precision. In observational studies, neither Bayesian nor other methods require
extremely precise computation, especially in light of the huge uncertainties about the processes
generating observational data (represented by the likelihood function), as well as uncertainty about
prior information.

After an introduction to the philosophy of Bayesian methods, the chapter focuses on basic
Bayesian approaches that display prior distributions as prior estimates or prior data, and that employ
the same approximate formulas used by frequentist methods (Lindley, 1964; Good, 1965, 1983;
Bedrick et al., 1996; Greenland 2001b, 2003b, 2006a, 2007a, 2007b; Greenland and Christensen,
2001). Even for those who prefer other computing methods, the representation of prior distributions
as prior data is helpful in understanding the strength of the prior judgments.

FREQUENTISM VERSUS SUBJECTIVE BAYESIANISM

There are several objections that frequentists have raised against Bayesian methods. Some of these
are legitimate but apply in parallel to frequentist methods (and indeed to all of statistics) in obser-
vational studies. Most important, perhaps, is that the assumptions or models employed are at best
subjective judgments. Others are propaganda—e.g., that adopting a Bayesian approach introduces
arbitrariness that is not already present. In reality, the Bayesian approach makes explicit those sub-
jective and arbitrary elements that are shared by all statistical inferences. Because these elements
are hidden by frequentist conventions, Bayesian methods are left open to criticisms that make it
appear only they are using those elements.
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SUBJECTIVE PROBABILITIES SHOULD NOT BE ARBITRARY

In subjective (personalist) Bayesian theory, a prior for a parameter is a probability distribution
Pr(parameters) that shows how a particular person would bet about parameters if she disregarded
the data under analysis. This prior need not originate from evidence preceding the study; rather, it
represents information apart from the data being analyzed. When the only parameter is a risk ratio,
RR, the 50th percentile (median) of her prior Pr(RR) is a number RRmedian for which she would give
even odds that RR < RRmedian versus RR > RRmedian, i.e., she would assign Pr(RR < RRmedian) =
Pr(RR > RRmedian) if she disregarded the analysis data. Similarly, her 95% prior limits are a pair
of numbers RRlower and RRupper such that she would give 95:5 = 19:1 odds that the true risk ratio
is between these numbers, i.e., Pr(RRlower< RR < RRupper) = .95 if she disregarded the analysis
data.

Prior limits may vary considerably across individuals; mine may be very different from yours.
This variability does not mean, however, that the limits are arbitrary. When betting on a race with
the goal of minimizing losses, no one would regard it reasonable to bet everything on a randomly
drawn contestant; rather, a person would place different bets on different contestants, based on their
previous performance (but taking account of differences in the past conditions from the present).
Similarly, in order for a Bayesian analysis to seem reasonable or credible to others, a prior should
reflect results from previous studies or reviews. This reflection should allow for possible biases and
lack of generalizability among studies, so that prior limits might be farther apart than frequentist
meta-analytic confidence limits (even if the latter incorporated random effects).

The prior Pr(parameters) is one of two major inputs to a Bayesian analysis. The other input is a
function Pr(data|parameters) that shows the probability the analyst would assign the observed data
for any given set of parameter values (usually called the likelihood function; see Chapter 13). In
subjective-Bayesian analysis this function is another set of bets: The model for Pr(data|parameters)
summarizes how one would bet on the study outcome (the data) if one knew the parameters (e.g., the
exposure-covariate specific risks). Any such model should meet the same credibility requirements
as the prior. This requirement parallels the frequentist concern that the model should be able to
approximate reality. In fact, any competent Bayesian has the same concern, albeit perhaps with
more explicit doubts about whether that can be achieved with standard models.

The same need for credibility motivates authors to discuss other literature when writing their
research reports. Credible authors pay attention to past literature in their analyses, e.g., by adjusting
for known or suspected confounders, by not adjusting for factors affected by exposure, and by using
a dose–response model that can capture previously observed patterns (e.g., the J-shaped relation of
alcohol use to cardiovascular mortality). They may even vary their models to accommodate different
views on what adjustments should be done. In a similar manner, Bayesian analyses need not be
limited to using a single prior or likelihood function. Acceptability of an analysis is often enhanced
by presenting results from different priors to reflect different opinions about the parameter, by
presenting results using a prior that is broad enough to assign relatively high probability to each
discussant’s opinion (a “consensus” prior), and by presenting results from different degrees of
regression adjustment (which involves varying the likelihood function).

THE POSTERIOR DISTRIBUTION

Upon seeing the outcome of a race on which a person had bet, she would want to update her bets
regarding the outcome of another race involving the same contestants. In this spirit, Bayesian analysis
produces a model for the posterior distribution Pr(parameters|data), a probability distribution that
shows how she should bet about the parameters after examining the analysis data.

As a minimal criterion of reasonable betting, suppose she would never want to place her bets in
a manner that allows an opponent betting against her to guarantee a loss. This criterion implies that
her bets should obey the laws of probability, including Bayes’s theorem,

Pr(parameters|data) = Pr(data|parameters)Pr(parameters)/Pr(data)

where the portion Pr(data) is computed from the likelihood function and the prior (for a review
of these arguments, see Greenland, 1998a). The 50th percentile (median) of her posterior about a
risk ratio RR is a number RRmedian for which Pr(RR < RRmedian|data) = Pr(RR > RRmedian|data),
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where “|data” indicates that this bet is formulated in light of the analysis data. Similarly, her 95%
posterior limits are a pair of numbers RRlower and RRupper such that after analyzing the data she
would give 95:5 = 19:1 odds that the true relative risk is between these numbers, i.e., Pr(RRlower <

RR < RRupper|data) = 0.95.
As with priors, posterior distributions may vary considerably across individuals, not only because

they may use different priors Pr(parameters), but also because they may use different models for
the data probabilities Pr(data|parameters). This variation is only to be expected given disagreement
among observers about the implications of past study results and the present study’s design. Bayesian
analyses can help pinpoint sources of disagreement, especially in that they distinguish sources in
the priors from sources in the data models.

FREQUENTIST–BAYESIAN PARALLELS

It is often said (incorrectly) that “parameters are treated as fixed by the frequentist but as random by
the Bayesian.” For frequentists and Bayesians alike, the value of a parameter may have been fixed
from the start, or it may have been generated from a physically random mechanism. In either case,
both suppose that it has taken on some fixed value that we would like to know. The Bayesian uses
probability models to express personal uncertainty about that value. In other words, the “random-
ness” in these models represents personal uncertainty; it is not a property of the parameter, although
it should accurately reflect properties of the mechanisms that produced the parameter.

A crucial parallel between frequentist and Bayesian methods is their dependence on the model
chosen for the data probability Pr(data|parameters). Statistical results are as sensitive to this choice
as they are to choice of priors. The choice should thus ideally reflect the best available knowledge
about forces that influence the data, including effects of unmeasured variables, biased selection,
and measurement errors (such as misclassification). Instead, the choice is almost always a default
built into statistical software, based on assumptions of random sampling or random treatment
assignment (which are rarely credible in observational epidemiology), plus additivity assumptions.
Worse, the data models are often selected by mechanical algorithms that are oblivious to background
information and, as a result, often conflict with contextual information. These problems afflict the
majority of epidemiologic analyses today, in the form of models (such as the logistic, Poisson,
and proportional-hazards models) that make interaction and dose–response assumptions that are
rarely if ever justified. These models are never known to be correct and in fact cannot hold exactly,
especially when one considers possible study biases (Greenland, 1990, 2005b).

Acceptance of results derived from these models (whether the results are frequentist or Bayesian)
thus requires the doubtful assumption that existing violations have no important effect on results.
The model for Pr(data|parameters) is thus a weak link in the chain of reasoning leading from data to
inference, shared by both frequentist and Bayesian methods. In practice, the two approaches often
use the same model for Pr(data|parameters), whence divergent outputs from the methods must
arise elsewhere. A major source of divergence is the explicit prior Pr(parameters) used in Bayesian
reasoning. The methods described in this chapter will show the mechanics of this divergence and
provide a sense of when it will be important.

EMPIRICAL PRIORS

The addition of the prior Pr(parameter) raises the point that the validity of the Bayesian answer
will depend on the validity of the prior model as well as the validity of the data model. If the prior
should not just be some arbitrary opinion, however, what should it be?

One answer arises from frequentist shrinkage-estimation methods (also known as Stein estima-
tion, empirical-Bayes, penalized estimation, and random-coefficient or ridge regression) to improve
repeated-sampling accuracy of estimates. These methods use numerical devices that translate di-
rectly into priors (Leamer, 1978; Good, 1983; Titterington, 1985) and thus leave unanswered the
same question asked of subjective Bayesians: Where should these devices come from? Empirical-
Bayes and random-coefficient methods assume explicitly that the parameters as well as the data
would vary randomly across repetitions according to an actual frequency distribution Pr(parameters)
that can be estimated from available data. As in Bayesian analyses, these methods compute posterior
coefficient distributions using Bayes’s theorem. Given the randomness of the coefficients, however,
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the resulting posterior intervals are also frequentist confidence intervals in the sense of containing
the true (if varying) parameter values in the stated percentage of repetitions (Carlin and Louis,
2000).

Those who wish to extend Bayes–frequentist parallels into practice are thus led to the following
empirical principle: When true frequency distributions exist and are known for the data or the
parameter distribution (as in multilevel random sampling; Goldstein, 2003), they should be used
as the distributions in Bayesian analysis. This principle reflects the idea of placing odds on race
contestants based on their past frequencies of winning and corresponds to common notions of
induction (Greenland, 1998b). Such frequency-based priors are more accurately termed “empirical”
rather than “subjective,” although the decision to accept the empirical evidence remains a subjective
judgment (and subject to error). Empirical priors are mandated in much of Bayesian philosophy,
such as the “principal principle” of Lewis (1981), which states that when frequency probabilities
exist and are known (as in games of chance and in quantum physics), one should use them as
personal probabilities. More generally, an often-obeyed (if implicit) inductive principle is that the
prior should be found by fitting to available empirical frequencies, as is often done in frequentist
hierarchical regression (Good, 1965, 1983, 1987; Greenland, 2000d; Chapter 21). The fitted prior
is thus no more arbitrary than (and may even be functionally identical to) a fitted second-stage
frequentist model. With empirical priors, the resulting frequentist and Bayesian interval estimates
may be numerically identical.

FREQUENTIST–BAYESIAN DIVERGENCES

Even when a frequentist and a Bayesian arrive at the same interval estimate for a parameter,
the interpretations remain quite different. Frequentist methods pretend that the models are laws of
chance in the real world (indeed, much of the theoretical literature encourages this illusion by calling
distributions “laws”). In contrast, subjective-Bayesian methods interpret the models as nothing more
than summaries of tentative personal bets about how the data and the parameters would appear,
rather than as models of a real random mechanism. The prior model should be based on observed
frequencies when those are available, but the resulting model for the posterior Pr(parameters|model)
is a summary of personal bets after seeing the data, not a frequency distribution (although if the
parameters are physically random, it will also represent a personal estimate of their distribution).

It is important to recognize that the subjective-Bayesian interpretation is much less ambitious
(and less confident) than the frequentist interpretation, insofar as it treats the models and the analysis
results as systems of personal judgments, possibly poor ones, rather than as some sort of objective
reality. Probabilities are nothing more than expressions of opinions, as in common phrasings such
as “It will probably rain tomorrow.” Reasonable opinions are based heavily on frequencies in past
experience, but they are never as precise as results from statistical computations.

FREQUENTIST FANTASY VERSUS OBSERVATIONAL REALITY

For Bayesian methods, there seems no dispute that the results should be presented with reference
to the priors as well as to the data models and the data. For example, a posterior interval should be
presented as “Given these priors, models, and data, we would be 95% certain that the parameter is
in this interval.”

A parallel directive should be applied to frequentist presentations. For example, 95% confidence
intervals are usually presented as if they account for random error, without regard for what that
random error is supposed to represent. For observational research, one of many problems with
frequentist (“repeated-sampling”) interpretations is that it is not clear what is “random” when no
random sampling or randomization has been done. Although “random variation” may be present
even when it has not been introduced by the investigator, in observational studies there is seldom
a sound rationale for claiming it follows the distributions that frequentist methods assume, or any
known distribution (Greenland, 1990). At best, those distributions refer only to thought experiments
in which one asks, “If data were repeatedly produced by the assumed random-sampling process,
the statistics would have their stated properties (e.g., 95% coverage) across those repetitions.” They
do not refer to what happens under the distributions actually operating, for the latter are unknown.
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Thus, what they do say is extremely hypothetical, so much so that to understand them fully is to
doubt their relevance for observational research (Leamer, 1978).

Frequentist results are hypothetical whenever one cannot be certain that the assumed data model
holds, as when uncontrolled sources of bias (such as confounding, selection bias, and measurement
error) are present. In light of such problems, claims that frequentist methods are “objective” in an
observational setting seem like propaganda or self-delusion (Leamer, 1978; Good, 1983; Berger
and Berry, 1988; Greenland, 1998a, 2005b). At best, frequentist methods in epidemiology represent
a dubious social convention that mandates treating observational data as if they arose from a fantasy
of a tightly designed and controlled randomized experiment on a random sample (that is, as if a
thought experiment were reality). Like many entrenched conventions, they provoke defenses that
claim utility (e.g., Zeger, 1991; Efron, 2005) without any comparative empirical evidence that
the conventions serve observational research better than would alternatives. Other defenses treat
the frequentist thought experiments as if they were real—an example of what has been called the
mind-projection fallacy (Jaynes and Bretthorst, 2003).

Were we to apply the same truth-in-packaging standard to frequentists as to Bayesians, a “sta-
tistically significant” frequentist result would be riddled with caveats such as “If these data had
been generated from a randomized trial with no drop-out or measurement error, these results would
be very improbable were the null true; but because they were not so generated we can say little of
their actual statistical significance.” Such brutal honesty is of course rare in presentations of obser-
vational epidemiologic results because emphasizing frequentist premises undermines the force of
the presentation.

SUMMARY

A criticism of Bayesian methods is that the priors must be arbitrary, or subjective in a pernicious or
special way. In observational studies, however, the prior need be no more arbitrary than the largely
arbitrary data models that are routinely applied to data, and can often be given a scientific foundation
as or more firm than that of frequentist data models. Like any analysis element, prior models should
be scrutinized critically (and rejected as warranted), just as should frequentist models. When relevant
and valid external frequency data are available, they should be used to build the prior model (which
may lead to inclusion of those data as part of the likelihood function, so that the external and current
data become pooled).

When prior frequency data are absent or invalid, however, other sources of priors will enter,
and must be judged critically. Later sections will show how simple log relative-risk priors can be
translated into “informationally equivalent” prior frequency data, which aids in this judgment, and
which also allows easy extension of Bayesian methods to regression analysis and non-normal priors
(Greenland, 2007ab).

SIMPLE APPROXIMATE BAYESIAN METHODS

Exact Bayesian analysis proceeds by computing the posterior distribution via Bayes’s theorem,
which requires Pr(data). The latter can be difficult to evaluate (usually requiring multiple integration
over the parameters), which seems to have fostered the misimpression that practical Bayesian
analyses are inherently more complex computationally than frequentist analyses. But this impression
is based on an unfair comparison of exact Bayesian methods to approximate frequentist methods.

Frequentist teaching evolved during an era of limited computing, so they focused on simple, large-
sample approximate methods for categorical data. In contrast, the Bayesian resurgence occurred
during the introduction of powerful personal computers and advanced Monte Carlo algorithms,
hence much Bayesian teaching focuses on exact methods, often presented as if simple approx-
imations are inadequate. But Bayesian approximations suitable for categorical data have a long
history (Lindley 1964; Good 1965), are as accurate as frequentist approximations, and are accurate
enough for epidemiologic studies. The approximations also provide insights into the meaning of
both Bayesian and frequentist methods and hence are the focus of the remainder of this chapter.

In the examples that follow, the outcome is very rare, so we may ignore distinctions among
risk, rate, and odds ratios, which will be generically described as “relative risks” (RR). Because
a normal distribution has equal mode, median, and mean, we may also ignore distinctions among
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these measures of location when discussing a normal ln(RR). When we take the antilog eln(RR) = RR,
however, we obtain a log-normal distribution, for which mode < median and geometric mean <

arithmetic mean. Only the median transforms directly: median RR = emedian ln(RR).

INFORMATION-WEIGHTED AVERAGING

Information (or precision) is here defined as the inverse of the variance (Leonard and Hsu, 1999, sec.
3.4). Weighting by information shows how simple Bayesian methods parallel frequentist summary
estimation based on inverse-variance weighting (Chapters 15 and 33). It assumes that both the prior
model and the data model are adequately approximated by normal distributions. This assumption
requires that the sample sizes (both actual and prior) are large enough for the approximation to
be adequate. As with the approximate frequentist methods on which they are based, there is no
hard-and-fast rule on what size is adequate, in part because of disagreement about how much
inaccuracy is tolerable (which depends on context). As mentioned in earlier chapters, however, the
same approximations in frequentist categorical statistics are arguably adequate down to cell sizes
of 4 or 5 (Agresti, 2002).

A SINGLE TWO-WAY TABLE

Table 18–1 shows case-control data from Savitz et al. (1988), the first widely publicized study to
report a positive association between residential magnetic fields and childhood leukemia. Although
previous studies had reported positive associations between household wiring and leukemia, strong
field effects seemed unlikely at the time, and very strong effects seemed very unlikely. Suppose we
model these a priori ideas by placing 2:1 odds on a relative risk (RR) between 1/2 and 2 and 95%
probability on RR between 1/4 and 4 when comparing children above and below a 3 milligauss (mG)
cutpoint for fields. These bets would follow from a normal prior for the log relative risk ln(RR) that
satisfies

exp(prior mean −1.96 · prior standard deviation) = 1/4

exp(prior mean + 1.96 · prior standard deviation) = 4

Solving this pair of equations, we get

Prior mean of ln(RR) = average of the limits = ln(1/4 ) + ln(4)
2

= 0

Prior standard deviation of ln(RR) = width of interval in ln(RR) units

width of interval in standard deviation units

= ln(4) − ln(1/4)

2(1.96)
= 0.707

Prior variance of ln(RR) = 0.7072 = 0.500 = 1/2

ˆ

ˆ

ˆ

ˆ
T A B L E 1 8 – 1

Case-Control Data on Residential Magnetic Fields (X = 1 is
>3 mG average exposure, X = 0 is ≤3 mG) and Childhood
Leukemia (Savitz et al., 1988) and Frequentist Results

X = 1 X = 0

Cases 3 33 Table odds ratio = RR estimate = 3.51
Controls 5 193 95% confidence limits = 0.80, 15.4

ln(OR) = ln(RR) estimate = ln(3.51), estimated variance = 0.569
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Thus, the normal prior distribution that would produce the stated bets has mean zero and vari-
ance 1/2.

Three of 36 cases and five of 198 controls had estimated average fields above 3 milligauss (mG).
These data yield the following frequentist RR estimates:

Estimated RR = sample odds ratio = 3(193)/5(33) = 3.51

Estimated variance of log odds ratio = 1/3 + 1/33 + 1/5 + 1/193 = 0.569

95% confidence limits = exp[ln(3.51) ± 1.96 · 0.5691/2] = 0.80, 15.4

Assuming there is no prior information about the prevalence of exposure, an approximate posterior
mean for ln(RR) is just the average of the prior mean ln(RR) of 0 and the data estimate ln(3.51),
weighted by the information (inverse variance) of 1/(1/2) and 1/0.569, respectively:

Posterior mean for ln(RR) = expected ln(RR) given data

≈ [0/(1/2) + ln(3.51)/0.569]/[1/(1/2) + 1/0.569] = 0.587

The approximate posterior variance of ln(RR) is the inverse of the total information:

Posterior variance for ln(RR) ≈ 1/[1/(1/2) + 1/0.569] = 0.266

Together, this mean and variance produce

Posterior median for RR ≈ exp(0.587) = 1.80

95% posterior limits for RR ≈ exp(0.587 ± 1.96 · 0.2661/2) = 0.65, 4.94

The posterior RR of 1.80 is close to a simple geometric averaging of the prior RR (of 1) with
the frequentist estimate (of 3.51), because the data information is 1/0.569 = 1.76 whereas the
prior information is 1/(1/2) = 2, giving almost equal weight to the two. This equal weighting arises
because both the study (with only three exposed cases and five exposed controls) and the prior are
weak. Note too that the posterior RR of 1.80 is much closer to the frequentist odds ratios from other
studies, which average around 1.7 (Greenland, 2005b).

BAYESIAN INTERPRETATION OF FREQUENTIST RESULTS

The weighted-averaging formula shows that the frequentist results arise from the Bayesian calcu-
lation when the prior information is made negligibly small relative to the data information . In this
sense, frequentist results are just extreme Bayesian results, ones in which the prior information is
zero, asserting that absolutely nothing is known about the RR outside of the study. Some promote
such priors as “letting the data speak for themselves.” In reality, the data say nothing by themselves:
The frequentist results are computed using probability models that assume complete absence of
bias, and so filter the data through false assumptions.

A Bayesian analysis that uses these frequentist data models is subject to the same criticism.
Even with no bias, however, assuming absence of prior information is empirically absurd. Prior
information of zero implies that a relative risk of (say) 10100 is as plausible as a value of 1 or 2.
Suppose the relative risk were truly 10100; then every child exposed above 3 mG would have
contracted leukemia, making exposure a sufficient cause. The resulting epidemic would have come
to everyone’s attention long before the above study was done because the leukemia rate would
have reflected the prevalence of high exposure, which is about 5% in the United States. The actual
rate of leukemia is 4 cases per 100,000 person-years, which implies that the relative risk cannot be
extremely high. Thus there are ample background data to rule out such extreme relative risks.

So-called objective-Bayes methods (Berger, 2006) differ from frequentist methods only in that
they make these unrealistic “noninformative” priors explicit. The resulting posterior intervals rep-
resent inferences that no thoughtful person could make, because they reflect nothing of the subject
under study or even the meaning of the variable names. Genuine prior bets are more precise. Even
exceptionally “strong” relations in noninfectious-disease epidemiology (such as smoking and lung
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cancer) involve RR of the order of 10 or 1/10, and few noninfectious study exposures are even
that far from the null. This situation reflects the fact that, for a factor to reach the level of formal
epidemiologic study, its effects must be small enough to have gone undetected by clinical practice
or by surveillance systems. There is almost always some surveillance (if only informal, through the
health care system) that implies limits on the effect size. If these limits are huge, frequentist results
serve as a rough approximation to a Bayesian analysis that uses an empirically based prior for the
RR; otherwise the frequentist results may be very misleading.

ADJUSTMENT

To adjust for measured confounders without using explicit priors for their confounding effects,
one need only set a prior for the adjusted RR and then combine the prior ln(RR) with the ad-
justed frequentist estimate by inverse-variance averaging. For example, in a pooled analysis of
14 studies of magnetic fields (>3 mG vs. less) and childhood leukemia (Greenland, 2005b, Ta-
ble 18–1), the only important measured confounder was the source of the data (i.e., the variable
coding “study”), and thus stratification by study was crucial. The maximum-likelihood odds-ratio
estimate of the common odds ratio across the studies was 1.69, with 95% confidence limits of
1.28, 2.23; thus the log odds ratio was ln(1.69) = 0.525 with variance estimate [ln(2.23/1.28)/
3.92]2 = 0.0201. Combining this study-adjusted frequentist result with a normal(0,1/2) prior
yields

Posterior mean for ln(RR) ≈ [0/(1/2) + ln(1.69)/0.0201]/[1/(1/2) + 1/0.0201] = 0.504

Posterior variance for ln(RR) ≈ 1/[1/(1/2) + 1/.0201] = 0.0193

Posterior median for RR ≈ exp(0.504) = 1.66

95% posterior limits for RR ≈ exp(0.504 ± 1.96 · 0.01931/2) = 1.26, 2.17

This posterior hardly differs from the frequentist results, reflecting that the data information is
1/0.0201 = 50, or 25 times the prior information of 1/(1/2) = 2. In other words, the data information
dominates the prior information.

One can also make adjustments based on priors for confounding, which may include effects of
unmeasured variables (Leamer, 1974; Graham, 2000; Greenland, 2003c, 2005b).

VARYING THE PRIOR

Many authors have expressed skepticism over the existence of an actual magnetic field effect, so
much so that they have misinterpreted positive findings as null because they were not “statistically
significant” (e.g., UKCCS, 1999). The Bayesian framework allows this sort of prejudice to be
displayed explicitly in the prior, rather than forcing it into misinterpretation of the data (Higgins
and Spiegelhalter, 2002). Suppose that the extreme skepticism about the effect is expressed as a
normal prior for ln(RR) with mean zero and 95% prior limits for RR of 0.91 and 1.1 (cf. Taubes,
1994). The prior standard deviation is then [ln(1.1) − ln(0.91)]/3.92 = 0.0484. Averaging this prior
with the frequentist summary of ln(1.69) yields 95% posterior RR limits of 0.97, 1.16. Here, the
prior weight is 1/0.04842 = 427, more than 8 times the data information of 50, and so the prior
dominates the final result.

It can be instructive to examine how the results change as the prior changes (Leamer, 1978;
Spiegelhalter et al., 1994, 2004; Greenland, 2005b). Using a normal(0, v) prior, a simple approach
examines the outputs as the variance v ranges over values that different researchers hold. For
example, when examining a relative risk (RR), prior variances of 1/8, 1/2, 2, 4 for ln(RR) correspond
to 95% prior intervals for RR of (1/2, 2), (1/4, 4), (1/16, 16), (1/50, 50). The frequentist results
represent another (gullible) extreme prior based on two false assumptions: first, that the likelihood
(data) model is correct (which is falsified by biases); and second, that nothing is known about
any explicit parameter, corresponding to infinite v and hence no prior upper limit on RR (which
is falsified by surveillance data). At the other extreme, assertions of skeptics often correspond to
priors with v < 1/8 and hence a 95% prior interval within (1/2, 2).
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BAYES VERSUS SEMI-BAYES

The preceding example analyses are semi-Bayes in that they do not introduce an explicit prior for
all the free parameters in the problem. For example, they do not use a prior for the population
exposure prevalence Pr(X = 1) or for the relation of adjustment factors to exposure or the outcome.
Semi-Bayes analyses are equivalent to Bayesian analyses in which those parameters are given
noninformative priors and correspond to frequentist mixed models (in which some but not all
coefficients are random). As with frequentist analyses, the cost of using no prior for a parameter
is that the results fall short of the accuracy that could be achieved if a realistic prior were used.
The benefit is largely one of simplicity in not having to specify priors for many parameters. Good
(1983) provides a general discussion of cost–benefit trade-offs of analysis complexity, under the
heading of “Type-II rationality.” Good (1983) and Greenland (2000d) also describe how multilevel
(hierarchical) modeling subsumes frequentist, semi-Bayes, and Bayes methods, as well as shrinkage
(empirical-Bayes) methods.

PRIOR DATA: FREQUENTIST INTERPRETATION OF PRIORS

Having expressed one’s prior bets as intervals about the target parameter, it is valuable to ask what
sort of data would have generated those bets as confidence intervals. In the previous examples, we
could ask: What would constitute data “equivalent” to the prior? That is, what experiment would
convey the same information as the normal (0, 1/2) prior for ln(RR)? Answers to such Bayesian
questions can be found by frequentist thought experiments (Higgins and Spiegelhalter, 2002, app.
2), which show how Bayesian methods parallel frequentist methods for pooled analysis of multiple
studies.

Suppose we were given the results of a trial with N1 children randomized to exposure (X = 1)
and N0 to no exposure (a trial that would be infeasible and unethical in reality but, as yet, allowed
in the mind), as in Table 18–2. With equal allocation, N1 = N0 = N . The frequentist RR estimate
then equals the ratio of the number of treated cases A1 to the number of untreated cases A0:

Estimated RR = (A1/N )/(A0/N ) = A1/A0

Given the rarity of leukemia, N would be very large relative to A1 and A0. Hence 1/N ≈ 0, and

Estimated variance for ln(RR) = 1/A1 + 1/A0 − 1/N − 1/N ≈ 1/A1 + 1/A0

(Chapter 14). To yield our prior for RR, these estimates must satisfy

Estimated RR = A1/A0 = 1

so A1 = A0 = A, and

Estimated variance of ln(RR) estimate ≈ 1/A1 + 1/A0 = 1/A + 1/A = 2/A = 1/2

so A1 = A0 = A = 4. Thus, data roughly equivalent to a normal(0, 1/2) prior would comprise 4
cases in each of the treated and the untreated groups in a very large randomized trial with equal
allocation, yielding a prior estimate RRprior of 1 and a ln(RR) variance of 1/2. The value of N would
not matter provided it was large enough so that 1/N was negligible relative to 1/A. Table 18–3
shows an example.

ˆ

ˆ

ˆ

ˆ
T A B L E 1 8 – 2

General Notation for 2 × 2 Prior-Data Layout

X = 1 X = 0

Cases A 1 A 0 Table RR = RRprior = (A 1/N 1)/(A 0/N 0)
Total N 1 N 0 = (A 1/A 0)/(N 1/N 0)
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 8 – 3

Example of Bayesian Analysis via Frequentist Methods: Data Approximating
a Log-Normal Prior, Reflecting 2:1 Certainty That RR Is Between1/2 and 2,
95% Certainty That RR Is between1/4 and 4, and Result of Combination with
Data from Table 18–1. (X = 1 is >3 mG average exposure, X = 0 is ≤3 mG)

X = 1 X = 0

Cases 4 4 Table RR = RRprior = 1
Total 100,000 100,000 Approximate 95% prior limits = 0.25, 4.00
ln(RRprior) = 0, approximate variance = 1/4 + 1/4 = 1/2

Approximate posterior median and 95% limits from stratified analyses combining prior with Table 18–1:
From information (inverse-variance) weighting of RR estimates: 1.80, 95% limits 0.65, 4.94
From maximum-likelihood (ML) estimation: 1.76, 95% limits 0.59, 5.23

Expressing the prior as equivalent data leads to a general method for doing Bayesian and semi-
Bayes analyses with frequentist software:

1. Construct data equivalent to the prior, then
2. Add those prior data to the actual study data as a distinct (prior) stratum.

The resulting point estimate and C% confidence limits from the frequentist analysis of the augmented
(actual + prior) data provide an approximate posterior median and C% posterior interval for the
parameter.

In the example, this method leads to a frequentist analysis of two strata: one stratum for the
actual study data (Table 18–1) and one stratum for the prior-equivalent data (Table 18–3). Using
information weighting (which assumes both the prior and the likelihood are approximately normal),
these strata produce a point estimate of 1.80 and 95% limits of 0.65, 4.94, as above. A better
approximation is supplied by using maximum likelihood (ML) to combine the strata, which here
yields a point estimate of 1.76 and 95% limits of 0.59, 5.23. This approximation assumes only that
the posterior distribution is approximately normal.

With other stratification factors in the analysis, the prior remains just an extra stratum, as above.
For example, in the pooled analysis there were 14 strata, one for each study (Greenland, 2005b,
Table 18–1). Adding the prior data used above with A = 4 and N = 100,000 as if it were a 15th
study, and applying ML, the approximate posterior median RR and 95% limits are 1.66 and 1.26,
2.17, the same as from information weighting.

After translating the prior to equivalent data, one might see the size of the hypothetical study and
decide that the original prior was overconfident, implying a prior trial larger than seemed justified.
For a childhood leukemia incidence of 4/105 years, 8 cases would require 200,000 child-years of
follow-up, which is quite a bit larger than any real randomized trial of childhood leukemia. If one
were not prepared to defend the amount of one’s prior information as being this ample, one should
make the trial smaller. In other settings one might decide that the prior trial should be larger.

REVERSE-BAYES ANALYSIS

Several authors describe how to apply Bayes’s theorem in reverse (inverse-Bayes analysis) by
starting with hypothetical posterior results and asking what sort of prior would have led to those
results, given the actual data and data models used (Good, 1983; Matthews, 2001). One hypothetical
posterior result of interest has the null as one of the 95% limits. In the above pooled analysis, this
posterior leads to the question: How many prior cases per group (A) would be needed to make the
lower end of the 95% posterior interval equal 1?
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Repeating the ordinary Bayes analysis with different A and N until the lower posterior limit
equals 1, we find that A = 275 prior leukemia cases per group (550 total) forces the lower end of the
95% posterior interval to 1.00. That number is more than twice the number of exposed cases seen
in all epidemiologic studies to date. At a rate of about 4 cases/105 person-years, a randomized trial
capable of producing 2A = 550 leukemia cases under the null would require roughly 550/(4/105)
>13 million child-years of follow-up. The corresponding prior variance is 2/275 = 0.00727, for a
95% prior interval of

exp(0 ± 1.96 · 0.007271/2) = 0.85, 1.18

Although this is an extremely skeptical prior, it is not as skeptical as many of the opinions written
about the relation (Taubes, 1994). Upon seeing this calculation, we might fairly ask of skeptics, “Do
you actually have evidence for the null that is equivalent to such an impossibly large, perfect random-
ized trial?” Without such evidence, the calculation shows that any reasonable posterior skepticism
about the association must arise from methodologic shortcomings of the studies. These shortcom-
ings correspond to shortcomings of standard frequentist data models; see Greenland (2005b) and
Chapter 19.

PRIORS WITH NON-NULL CENTER

Suppose we shift the prior estimate RRprior for RR to 2, with 95% prior limits of 1/2 and 8. This shift
corresponds to ln(RRprior) = ln(2) with a prior variance of 1/2. Combining this prior with the Savitz
data by information weighting yields

Posterior variance ≈ 1/[1/(1/2) + 1/0.569] = 0.266 (as before)

Posterior ln(RR) median ≈ [ln(2)/(1/2) + ln(3.51)/0.569]/[1/(1/2) + 1/0.569] = 0.956

Posterior RR median ≈ exp(0.956) = 2.60

95% posterior RR limits ≈ exp(0.956 ± 1.96 · 0.2661/2) = 0.95, 7.15

One can accomplish the same by augmenting the observed data set with a stratum of prior data.
To preserve approximate normality, we keep A1 = A0 (so A1/A0 = 1) and adjust the denominator
quotient N1/N0 to obtain the desired RRprior = (A1/A0)/(N1/N0) = 1/(N1/N0) = N0/N1. In the
preceding example this change means keeping A1 = A0 = 4 and N1 = 100,000, but making N0 =
200,000, so that

RRprior = (4/100,000)/(4/200,000) = 200,000/100,000 = 2

The approximate prior variance of ln(RR) remains 1/4 + 1/4 = 1/2. Thus, data equivalent to the
upshifted prior would be the observation of 4 cases in each of the treated and the untreated groups
in a randomized trial with a 1:2 allocation to X = 1 and X = 0.

CHOOSING THE SIZES OF THE PRIOR DENOMINATORS

The absolute size of N1 and N0 used will matter little, provided both N1 > 100 · A1 and N0 >

100 · A0. Thus, if we enlarge A1 and A0, we enlarge N1 and N0 proportionally to maintain disease
rarity in the prior data. Although it may seem paradoxical, this rarity is simply a numerical device
that can be used even with common diseases. This procedure works because standard frequentist
RR estimators do not combine baseline risks across strata. By placing the prior data in a separate
stratum, the baseline risk in the prior data may take on any small value, without affecting either
the baseline risk estimates for the actual data or the posterior RR estimates. N1 and N0 are used
only to move the prior estimate RRprior to the desired value: When they are very large, they cease
to influence the prior variance and only their ratio, N1/N0, matters in setting the prior.

For the thought experiment used to set N1 and N0, one envisions an experimental group that
responds to treatment (X ) with the relative risk one expects, but in which the baseline risk is so
low that the distinctions among odds, risk, and rate ratios become unimportant. The estimator
applied to the total (augmented) data will determine what is estimated. An odds-ratio estimator
will produce an odds-ratio estimate, a risk-ratio estimator will produce a risk-ratio estimate, and a
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rate-ratio estimator will produce a rate-ratio estimate. For rate-ratio analyses, N1 and N0 represent
person-time rather than persons.

NON-NORMAL PRIORS

The addition of prior data shown above (with very large N1, N0) corresponds to using an F distri-
bution with 2A1, 2A0 degrees of freedom as the RR prior (Jones, 2004; Greenland, 2007b). With
A1 = A0 = A, the above log-normal approximation to this prior appears adequate down to about
A = 4; for example, at A = 4, the approximate 95% RR interval of (1/4, 4) has 93.3% exact prior
probability from an F(8, 8) distribution; at A = 3 the approximate 95% interval is (1/5, 5) and
has 92.8% exact probability from an F(6, 6). These are minor discrepancies compared to other
sources of error, and the resulting discrepancies for the posterior percentiles are smaller still. As
with the accuracy of maximum likelihood, the accuracy of the posterior approximation depends on
the total information across strata (prior + data). Nonetheless, if we want to introduce prior data that
represent even less information or that represent non-normal ln(RR) priors, we can employ prior
data with A1 �= A0 to induce ln(RR)-skewness, and with A1, A0 < 3 to induce heavier tails than
the normal distribution. Generalizations beyond the F distribution are also available (Greenland,
2003b, 2007b).

FURTHER EXTENSIONS

Prior-data methods extend easily to multivariable modeling and to settings in which some or all
variables (including the outcome) have multiple levels. For example, one may add a prior stratum
for each regression coefficient in a model; coefficients for continuous variables can be represented
as trials comparing two levels of the variable (e.g., 800 vs. 0 mcg/day folic acid supplementation);
and prior correlations can be induced using a hierarchical prior-data structure (Greenland, 2003c,
2007a).

CHECKING THE PRIOR

A standard recommendation is to check homogeneity of measures before summarizing them across
strata. An analogous recommendation is to check the compatibility of the data and the prior (Box,
1980), which is subsumed under the more general topic of Bayesian model checking (Geweke,
1998; Gelman et al., 2003; Spiegelhalter et al., 2004). For normal priors, one simple approximate
check examines the P-value from the “standardized” difference,

(Frequentist estimate − prior estimate)/(frequentist variance + prior variance)1/2,

which is the analog of the frequentist two-stratum homogeneity statistic (Chapter 15). Like fre-
quentist homogeneity tests, this check is neither sensitive nor specific, and it assumes that the prior
is normal and the observed counts are “large” (>4). A small P-value does indicate, however, that
the prior and the frequentist results are too incompatible to average by information weighting.

For the pooled magnetic field data with a normal(0, 1/2) prior (A1 = A0 = 4 << N1 = N0),
the check is [ln(1.69) − 0]/(0.0201 + 1/2)1/2 = 0.72, P = 0.47. Thus, by this check the prior and
the frequentist result appear to be compatible, largely because the prior is compatible with such
a broad range of results. Despite this compatibility, their average may still be misleading (e.g.,
as a result of study biases). In contrast, with the skeptical normal (0, 0.04842) prior (A1 = A0 =
427 << N1 = N0), the check is [ln(1.69) − 0]/(0.0201 + 0.04842)1/2 = 3.50, P = 0.0005, which
indicates extreme incompatibility of the prior and the frequentist result, and which suggests that the
average would be misleading because at least one of the prior and the frequentist result is misleading
(and perhaps both are).

The P-value for the exposure–disease (X -Y ) association in the actual data equals the homogene-
ity P-value from comparing the frequentist result to a dogmatic normal (0, 0) prior concentrated
entirely at the null with zero variance (equivalent to overwhelming prior data, e.g., A = 10100 and
N = 10100,000). For the pooled-data example this P-value is 0.0002, corresponding to the usual
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interpretation that a small P-value is indicative of a conflict between the null and the data. The
P-value comparing the prior mean to the frequentist estimate can be viewed as a generalization of
the usual P-value to allow testing of nondogmatic (“fuzzy”) hypotheses in which the true parameter
is specified only up to a distribution, rather than asserted to equal a single number.

DISCUSSION

DATA ALONE SAY NOTHING AT ALL

It is sometimes recommended that the prior should be given up if it appears to be in conflict with
the “actual data” (e.g., Robins and Greenland, 1986). The conflict, however, is between the prior
and the frequentist result from the data model; without a model for the data-generating mechanism,
the data alone can conflict with nothing (Robins, 2001).

If we truly believed the frequentist results were from perfect data from a randomized trial con-
ducted on a random sample from the target population, we would no doubt afford them precedence
over a prior composed from mere impressions of other evidence. Indeed, a key inferential property
of randomized studies is that, if they are precise enough, they force agreement among those who
believe that the randomization was carried out properly and not undermined by subsequent events.
Observational studies stray from this ideal, however, and do so to an unknown extent. A conflict
between a prior and a frequentist result can arise from an invalid data model (resulting from study
biases or an incorrect analytic method), as opposed to an incorrect prior. Thus, an apparent conflict
only calls attention to a discrepancy in need of explanation. This situation is starkly illustrated by
the magnetic-field controversy, in which many scientists still postulate that the frequentist result
(rather than their skeptical prior) is in error.

Although (as is often said) frequentist statistics better reflect the data than do Bayesian statistics,
those data should not be regarded as sacrosanct when making inferences beyond the observations.
Even rough but contextually well-informed priors can provide information as reliable as or more
reliable than current observations. To put it negatively, one may be justifiably afraid of the unre-
liability of subjective priors, but this fear does not license exclusive reliance on unreliable data.
Frequentist statistics and their “objective” Bayesian analogs indeed stay closer to the observations,
but this closeness will harm inference when those observations are riddled with error and better
external information is available. Conversely, for the goal of data description (as opposed to infer-
ence), neither Bayesian nor frequentist modeling results are an adequate substitute for tabular and
graphical data summaries.

DATA PRIORS AS A GENERAL DIAGNOSTIC DEVICE

The data representation of priors is far more important and general than is realized by most of the
statistics community today. For teaching, data priors provide both a Bayesian interpretation of
frequentist statistics (as Bayesian statistics with no prior data) and a frequentist interpretation of
Bayesian statistics (as frequentist statistics based in part on external data). For analysis, data priors
provide a critical perspective on a proposed prior and can lead to refinements to better match the
level of prior information one wishes to assume. Other prior representations are also conceptually
helpful; for example, the penalized-likelihood approach illustrates how Bayesian statistics can be
viewed as frequentist statistics with probabilistic constraints on parameters (Greenland, 2000c,
2001b). These interpretations show that entering and deleting variables in a regression are extremes
along a continuum in which the variable may enter partially, to the extent allowed by the constraint
(Leamer, 1978; Greenland, 1999b, 2000a).

Data representations are not limited to conjugate priors (priors that have the same functional
form as the likelihood function). Any prior that can be viewed as a product of likelihood functions
can be translated into data, namely, the data arising from the statistical studies represented by the
functions. These functions may be of varying forms, and those forms may differ from that of the
actual-data likelihood (i.e., they may be nonconjugate). The translation clarifies the evidential claims
that the prior is making. Conversely, to say that a given prior cannot be viewed as augmenting data
means that one could not envision a series of studies that would lead to the prior (let alone point to
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actual studies that produce the prior). Such a prior is arguably nonempirical in principle and hence
scientifically meaningless (in the same sense that a theory that is empirically untestable in principle
is scientifically meaningless). Translation between forms for a prior is thus a scientific (as opposed
to statistical) diagnostic for priors.

THE ROLE OF MARKOV-CHAIN MONTE CARLO

Translation of the prior into various forms does not dictate the manner of posterior computation.
One could, for example, translate for diagnostic purposes and then sample from the posterior
distribution using a Markov-chain Monte Carlo (MCMC) program such as WinBUGS (www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml). Nonetheless, MCMC is subject to technical problems that are
not always easily detected; indeed, as of this writing (2007) the WinBUGS website carries the
warning: “MCMC is inherently less robust than analytic statistical methods.” MCMC also does not
display the parallels between frequentist and Bayesian analyses. Hence it is arguably inadequate
alone or as a starting point for Bayesian instruction, and analytic methods are valuable for starting
and checking MCMC analyses.

One can question, however, whether MCMC analyses are necessary once approximate results are
in hand. Given perfectly correct models, and if allowed to run long enough, MCMC can produce
more accurate results than the methods described above. Nonetheless, upon considering all the
poorly understood sources of bias that plague observational research, our models are always highly
inaccurate, and MCMC refinements may only add a false sense of precision to inaccurate results.

CONNECTIONS TO SENSITIVITY ANALYSIS

There is a close and complementary connection between Bayesian methods and sensitivity analyses
(Chapter 19), in which parameters fixed at defaults by frequentist methods are varied to see their
effect on statistics. Simple sensitivity analyses will reveal unlimited sensitivities to certain variations
and hence convey no information unless coupled with contextual information to determine what
variations are meaningful (Greenland, 1998c). That contextual information is none other than prior
information, which can be formalized in a prior distribution for use in Bayesian or analogous
prior-sampling methods for risk and decision analysis (Eddy et al., 1992; Greenland, 2001c, 2003c,
2005b; Chapter 19). In this format, one can also conduct Bayesian sensitivity analysis by seeing
how results vary as the prior is varied. For this process, data representations can help one judge
which priors are credible enough to examine.

SOME CAUTIONS ON USE OF PRIORS

Many have argued for integrating the Bayesian perspective into the teaching of basic methods (e.g.,
see Berry, 1997, and the ensuing discussion). The prior-data approach facilitates this goal because
it requires no new statistical formulas or software. Standard frequentist methods for stratified and
regression analysis become Bayesian by adding just a few data records and covariates.

With this new capacity, however, comes risk of abuse. Although Bayesian methods are now
widely accepted as a way to improve inferences using prior information (e.g., Carlin and Louis,
2000; Gelman et al., 2003), one cannot expect improvement over ordinary methods using just any
prior. Worsening could occur from using a badly misinformed prior (a prior that assigns relatively
low probability to values near the truth), which suggests being generous in setting the spread of the
prior. If the resulting prior remains highly influential, subject-matter justification will be especially
important, as will statistical checks of the compatibility of priors with the likelihood. Among basic
diagnostics are visual comparisons of prior and likelihood summaries or graphs, e.g., comparing
the prior mode and limits to the maximum-likelihood (ML) estimate and confidence limits, or
comparing entire graphs. Another simple check is the P-value for comparing the actual and prior
data as if the latter were an actual data stratum, as described above. Although a large P-value means
only that the check detected no problem, a small P-value indicates incompatibility of the prior with
the model for the actual data, which could arise from faulty prior information, faulty actual data
(resulting from, e.g., study defects), a faulty model for the data (i.e., a faulty likelihood model), or
some combination.

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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Concerns about background information argue for retaining frequentist results to compare with
Bayesian results whenever the former are sensible to apply, and for using vaguely informative and
relatively simple priors. “Vaguely informative” is a context-dependent notion, however, in which the
percentiles of the prior distribution would be viewed as at least reasonable if not liberally inclusive
by all those working in the research topic. With 95% limits of 1/4, 4 and 2:1 (67%) limits of 1/ 2, 2,
the normal(0, 0.5) prior for ln(RR) may often seem reasonable when the RR is expected to be in
the “weak” (1/2, 2) range and there is no strong directional information. But in some contexts (e.g.,
environmental and occupational research), only adverse health effects are of serious concern, and
the use of more directional priors may then be justifiable.

Vaguely informative should not be construed as noninformative. Noninformative priors corre-
spond to using values of A1 and A0 of zero, which give back the ML estimate and confidence
interval as the posterior mode and interval. So-called reference priors (Berger, 2006) correspond
to using very small values and thus give similar results. Such “objective Bayesian” methods con-
fer none of the predictive benefits obtainable from well-informed priors, rarely make sense on
subject-matter grounds (Greenland, 1998b, 2006a), and (like frequentist methods) break down in
the face of nonidentification (Greenland, 2005b). In essence, they discard prior information, the key
source of Bayesian strengths as well as weaknesses. Thus, like frequentism, objective Bayesianism
leads to mechanical procedures that software or a robot could apply to data. Such decontextu-
alized algorithmic statistics form the bulk of current statistical training. Epidemiologic inference
requires contextual input, however, and prior specification is one crucial aspect that should not be
automatic.

CONCLUSIONS

Bayesian and frequentist methods address different questions. Bayesian methods address questions
of the form: “Having seen the data, what betting odds should I place on this hypothesis versus
another?” and seek to use contextual information to improve the bet. The methods focus on the
observed data, rather than on counterfactual data as might arise under a hypothetical long run.
In contrast, frequentist methods address questions of the form: “If I applied this method to a
hypothetical long run of studies like this one, how would it behave over that long run?” and seek
methods with desirable long-run properties (properties such as correct confidence-interval coverage
rates; see Chapters 10 and 13). Frequentist methods do not provide odds of hypotheses, nor do they
address whether the particular inference they produce from the observed data is better than other
inferences one could make from those data, without reference to a long run.

Despite their focus on actual data, Bayesian methods exhibit desirable frequentist (long-run)
properties when both they and the evaluation are well-informed by the scientific context (Gustafson
and Greenland, 2006b). Thus, even for a frequentist, Bayesian thinking is necessary as part of a broad
and well-rounded approach. Bayesian and related methods become particularly worthwhile when
conventional frequentist statistics become questionable and priors matter, as when confronting
sparse data, multiple comparisons, collinearity, or nonidentification (Greenland, 1993a, 2000c,
2000d, 2000e, 2001b, 2003c, 2005b, 2007a; Greenland et al., 2000; Gustafson and Greenland,
2006b). Frequentist interval estimates inevitably get interpreted as if they were Bayesian, without
appreciating that the priors implicit in those interpretations are rarely if ever contextually plausible.
Because this appreciation seems essential for proper interpretation of frequentist as well as Bayesian
methods in observational settings (e.g., see Leamer, 1978; Rubin, 1991; Greenland, 2003c, 2005b,
2006a), the inclusion of Bayesian perspectives in teaching would be helpful even if frequentist
results remained the norm for presentation.

A major flaw shared by conventional statistical methods (be they frequentist, likelihoodist, or
Bayesian), however, is that they pretend the data came from an ideal study in which all important
influences on the data (including those of the investigators and the subjects) can be approximated by
a known model. In observational epidemiology, this assumption can be drastically flawed, resulting
in far too much certainty placed on statistical results. Chapter 19 discusses how statistics can
approach this problem in a contextually informed manner by using bias models with explicit priors
for unknown bias parameters.

In summary, Bayesian analysis can be performed easily by information weighting of prior
estimates with frequentist estimates (as if doing a meta-analysis of prior studies and the current
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study). More generally, it can be done by representing prior information as hypothetical study data
to be added to the analysis as new strata (as if doing a pooled analysis of prior studies and the current
study). This data-prior approach provides a diagnostic for contextual strength and relevance of the
prior, and also facilitates Bayesian regression analysis (Greenland, 2007a, 2007b). Both approaches
allow one to produce Bayesian analyses from formulas and software for frequentist analyses, and
both facilitate introduction of Bayesian ideas into introductory statistics training alongside the
corresponding frequentist approaches.
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INTRODUCTION

This chapter provides an introduction to quantitative methods for evaluating potential biases (sys-
tematic errors) in individual studies. The first half of this chapter covers basic methods to assess
sensitivity of results to confounding by an unmeasured variable, misclassification, and selection
bias. These methods quantify systematic errors by means of bias parameters, which in a sensitivity
analysis are first fixed at hypothetical values and then varied to see how the results vary with the
parameters.

The second half of this chapter extends basic bias-sensitivity analysis by assigning a prior
probability distribution to the bias parameters (probabilistic bias modeling) to produce distributions
of results as output. The methods are typically implemented via simulation, and their outputs have
a natural interpretation as semi-Bayesian posterior distributions (Chapter 18) for exposure effects.
They are “semi-” Bayesian because they use prior distributions for the bias parameters but not for
the effect under study. We focus on the special case in which the observed data can be represented
in a 2 × 2 table of an exposure indicator X (coded 1 = present, 0 = absent) and a disease indicator
D. Many of the basic principles and difficulties of bias analysis can be illustrated with this simple
case, because the 2 × 2 table can be thought of as a stratum from a larger data set.

Most statistical methods also assume specific models for the form of effects (of exposure,
modifiers, and confounders) and of random errors. Use of erroneous model forms is sometimes

345
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called specification error and can lead to systematic errors known as specification biases. Model-
sensitivity analysis addresses these biases by seeing how the results change as the model form is
changed (Leamer, 1985; Draper, 1995; Saltelli et al., 2000). We do not cover model-sensitivity
analysis, because it involves technical issues of model selection beyond the scope of this chapter;
see Chapter 21 for further discussion.

We also do not address general missing-data bias (bias due to nonrandomly incomplete data);
see Robins et al. (1994) and Little and Rubin (2002) for discussions, especially under the heading
of informatively or nonignorably missing data (Lyles and Allen, 2002). All the problems we discuss
can be viewed as extreme cases of missing-data bias: Uncontrolled confounding is due to missing
data on a confounder; misclassification is due to missing data on the true variables; and selection
bias is due to nonrandomly missing members of the source population.

All methods, whether conventional methods or those described here, consider the data as given;
that is, they assume that we have the data and that the data have not been corrupted by miscodings,
programming errors, forged responses, etc. Thus, the methods assume that there is no misclassifi-
cation due to data processing errors or investigator fraud. Such problems arise from isolated events
that may affect many records, and their correction depends entirely on detection (e.g., via logic
checks, data examination, and comparison of data sources). Thus, we do not see such problems as
falling within the sphere of sensitivity analysis.

THE NEED FOR BIAS ANALYSES

Our discussion of statistical methods has so far focused on accounting for measured confounders
and random errors in the data-generating process. Randomization of exposure assignment is the
conventional assumption of statistical methods for causal inference within a study cohort, for it
makes confounding a chance phenomenon. Random sampling forms the analogous conventional
assumption of statistical methods for inference from the sample to a larger population (e.g., from a
case-control study to a source population), for it makes sampling error a chance phenomenon. Most
methods assume that measurement error is absent, but those that account for errors assume that the
errors are random (Carroll et al., 2006). Upon stratification, these assumptions (that confounding,
sampling errors, and measurement errors are random) are made within levels of the stratifying
variables. We will call methods based on these randomness assumptions conventional methods.

By assuming that all errors are random and that any modeling assumptions (such as homogeneity)
are correct, all uncertainty about the effect of errors on estimates is subsumed within conventional
standard deviations for the estimates (standard errors), such as those given in earlier chapters (which
assume no measurement error), and any discrepancy between an observed association and the tar-
get effect may be attributed to chance alone. When the assumptions are incorrect, however, the
logical foundation for conventional statistical methods is absent, and those methods may yield
highly misleading inferences. Epidemiologists recognize the possibility of incorrect assumptions in
conventional analyses when they talk of residual confounding (from nonrandom exposure assign-
ment), selection bias (from nonrandom subject selection), and information bias (from imperfect
measurement). These biases rarely receive quantitative analysis, a situation that is understandable
given that the analysis requires specifying values (such as amount of selection bias) for which
little or no data may be available. An unfortunate consequence of this lack of quantification is
the switch in focus to those aspects of error that are more readily quantified, namely, the random
components.

Systematic errors can be and often are larger than random errors, and failure to appreciate their
impact is potentially disastrous. The problem is magnified in large studies and pooling projects,
because in those studies the large size reduces the amount of random error, and as a result the
random error may be only a small component of total error. In such studies, a focus on “statistical
significance” or even on confidence limits may amount to nothing more than a decision to focus on
artifacts of systematic error as if they reflect a real causal effect.

Addressing concerns about systematic errors in a constructive fashion is not easy, but is nonethe-
less essential if the results of a study are to be used to inform decisions in a rational fashion. The
process of addressing bias quantitatively we shall call bias analysis. As described in a number of
books (e.g., Eddy et al., 1992; National Research Council, 1994; Vose, 2000), the basic ideas have
existed for decades under the topic of sensitivity analysis and the more general topics of uncertainty
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analysis, risk assessment, and risk analysis. These topics address more sources of uncertainty than
we shall address, such as model misspecification and informatively missing data. Here we focus
only on the effects of basic validity problems.

A discomforting aspect of these analyses is that they reveal the highly tentative and subjective
nature of inference from observational data, a problem that is concealed by conventional statistical
analysis. Bias analysis requires educated guesses about the likely sizes of systematic errors, guesses
that are likely to vary considerably across observers. The conventional approach is to make the guess
qualitatively by describing the study’s limitations. An assessment of the extent of bias, compared
with the extent of exposure effects, therefore becomes an exercise in intuitive reasoning under
uncertainty.

The ability to reason under uncertainty has been studied by cognitive psychologists and sociol-
ogists, who have found it susceptible to many predictable patterns of mistakes (Kahneman et al.,
1982; Gilovich, 1993; Gilovich et al., 2002). This literature, where it deals with situations anal-
ogous to epidemiologic inference, indicates that the qualitative approach tends to favor exposure
effects over systematic errors as an explanation for observed associations (Lash, 2007). Quantitative
methods such as those described in this chapter offer a potential safeguard against these failures,
by providing insight into the importance of various sources of error and by helping to assess the
uncertainty of study results. For example, such assessments may argue persuasively that certain
sources of bias cannot by themselves plausibly explain a study result, or that a bias explanation
cannot be ruled out. As discussed in Chapters 2 and 18, and later in this section, the primary caution
is that what appears “plausible” may vary considerably across persons and time.

There are several reasons why quantitative methods that take account of uncontrolled biases have
traditionally seen much less development than methods for addressing random error. First, until
recently, randomized experiments supplied much of the impetus for statistical developments. These
experiments were concentrated in agriculture, manufacturing, and clinical medicine and often could
be designed so that systematic errors played little role in the final results. A second reason is that
most uncontrolled biases cannot be analyzed by conventional methods (i.e., without explicit priors
for bias parameters) unless additional “validation” data are available. Such data are usually absent
or very limited. Furthermore, validation studies may themselves be subject to systematic errors
beyond those present in the main study, such as potentially biased selection for validation (e.g., if
validation requires further subject consent and participation). As a result, investigators must resort
to less satisfactory partial analyses, or quantify only the uncertainty due to random error.

Editors and reviewers in the health sciences seldom call on authors to provide a quantitative
assessment of systematic errors. Because of the labor and expertise required for a bias analysis, and
the limited importance of single studies for policy issues, it makes little sense to require such an
analysis of every study. For example, studies whose conventional 95% confidence limits exclude
no reasonable possibility will be viewed as inconclusive regardless of any further analysis. It can be
argued that the best use of effort and journal space for single-study reports is to focus on a thorough
description of the study design, methods, and data, to facilitate later use of the study data in reviews,
meta-analyses, and pooling projects (Greenland et al., 2004).

On the other hand, any report with policy implications may damage public health if the claimed
implications are wrong. Thus it is justifiable to demand quantitative bias analysis in such studies.
Going further, it is arguably an ethical duty of granting agencies and editors to require a thorough
quantitative assessment of relevant literature and of systematic errors to support claimed implications
for public policy or medical practice. Without the endorsement of these gatekeepers of funding
and publication, there is little motivation to collect validation data or to undertake quantitative
assessments of bias.

CAVEATS ABOUT BIAS ANALYSIS

As noted above, results of a bias analysis are derived from inputs specified by the analyst, a point
that should be emphasized in any presentation of the methods or their results. These inputs are
constructed from judgments, opinions, or inferences about the likely magnitude of bias sources or
parameters. Consequently, bias analyses do not establish the existence or absence of causal effects
any more than do conventional analyses. Rather, they show how the analysts developed their output
judgments (inferences) from their input judgments.
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An advantage of bias analysis over a qualitative discussion of study limitations is that it allows
mathematics to replace unsound intuitions and heuristics at many points in judgment formation.
Nonetheless, the mathematics should not entice researchers to phrase judgments in objective terms
that mask their subjective origin. For example, a claim that “our analysis indicates the conventional
results are biased away from the null” would be misleading. A better description would say that
“our analysis indicates that, under the values we chose for the bias parameters, the conventional
results would be biased away from the null.” The latter description acknowledges the fact that the
results are sensitive to judgmental inputs, some of which may be speculative. The description, by
its nature, should also encourage the analyst to present evidence that the values chosen for the bias
parameters cover the range of reasonable combinations of those parameters.

The more advanced methods of this chapter require input distributions (rather than sets of values)
for bias parameters, but the same caveat holds: The results of the bias analysis apply only under
those chosen distributions. The analysis will be more convincing if the analyst provides evidence
that the chosen distributions assign high probability to reasonable combinations of the parameters.

To some extent, similar criticisms apply to conventional frequentist and Bayesian analyses
(Chapters 13–18 and 20–21), insofar as those analyses require many choices and judgments from
the investigators. Examples include choice of methods used to handle missing data (Chapter 13),
choice of category boundaries for quantitative variables (Chapter 13 and 17), choice of methods for
variable selection (Chapter 21), and choice of priors assigned to effects under study (Chapter 18).
As the term “conventional” connotes, many choices have default answers (e.g., a binomial model for
the distribution of a dichotomous outcomes). Although the scientific basis for these defaults is often
doubtful or lacking (e.g.,missing-data indicators; percentile boundaries for continuous variables;
stepwise variable selection; noninformative priors for effects), deviations from the defaults may
prompt requests for explanations from referees and readers.

Bias analysis requires more input specifications than do conventional analyses, and as yet there
is no accepted convention regarding these specifications. As a result, input judgments are left
entirely to the analyst, opening avenues for manipulation to produce desired output. Thus, when
examining a bias analysis, a reader must bear in mind that other reasonable inputs might produce
quite different results. This input sensitivity is why we emphasize that bias analysis is a collection
of methods for explaining and refining subjective judgments in light of data (like the subjective
Bayesian methods of Chapter 18), rather than a method for detecting nonrandom data patterns.
In fact, a bias analysis can be made to produce virtually any estimate for the study effect without
altering the data or imposing an objectionable prior on that effect. Such outcome-driven analyses,
however, may require assignment of values or distributions to bias parameters that have doubtful
credibility. Therefore, it is crucial that the inputs used for a bias analysis be described in detail so
that those inputs can be examined critically by the reader.

ANALYSIS OF UNMEASURED CONFOUNDERS

Sensitivity analysis and external adjustment for confounding by dichotomous variables appeared in
Cornfield et al. (1959) and were further elaborated by Bross (1966, 1967), Yanagawa (1984), Axelson
and Steenland (1988), and Gail et al. (1988). Extensions of these approaches to multiple-level
confounders are available (Schlesselman, 1978, correction by Simon, 1980b; Flanders and Khoury,
1990; Rosenbaum, 2002); see Chapter 33 for an example. Although most of these methods assume
that the odds ratios or risk ratios are constant across strata, it is possible to base external adjustment
on other assumptions (Yanagawa, 1984; Gail et al., 1988). Practical extensions to multiple regression
analyses typically involve modeling the unmeasured confounders as latent (unobserved) variables
(e.g., Lin et al., 1998; Robins et al., 1999a; Greenland, 2005b; McCandless et al., 2007)).

EXTERNAL ADJUSTMENT

Suppose that we have conducted an analysis of an exposure X and a disease D, adjusting for the
recorded confounders, but we know of an unmeasured potential confounder and want to assess
the possible effect of failing to adjust for this confounder. For example, in a case-control study of
occupational exposure to resin systems (resins) and lung cancer mortality among male workers at
a transformer-assembly plant, Greenland et al. (1994) could adjust for age and year of death, but
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 9 – 1

Crude Data for Case-Control Study of Occupational Resins Exposure (X) and
Lung Cancer Mortality (Greenland et al., 1994); Controls Are Selected
Noncancer Causes of Death

X = 1 X = 0 Total

Cases (D = 1) A 1+ = 45 A 0+ = 94 M 1+ = 139
Controls (D = 0) B1+ = 257 B 0+ = 945 M 0+ = 1202

Odds ratio after adjustment for age and death year: 1.77.
Age-year adjusted conventional 95% confidence limits for ORD X : 1.18, 2.64.

they had no data on smoking. Upon adjustment for age and year at death, a positive association was
observed for resins exposure and lung cancer mortality (OR = 1.77, 95% confidence limits = 1.18,
2.64). To what extent did confounding by smoking affect this observation?

For simplicity, suppose that resins exposure and smoking are treated as dichotomous: X = 1
for resin-exposed, 0 otherwise; Z = 1 for smoker, 0 otherwise. We might wish to know how large
the resins/smoking association has to be so that adjustment for smoking removes the resins-lung
cancer association. The answer to this question depends on a number of parameters, among them
(a) the resins-specific associations (i.e., the associations within levels of resins exposure) of smoking
with lung cancer, (b) the resins-specific prevalences of smoking among the controls, and (c) the
prevalence of resins exposure among the controls. Resins prevalence is observed, but we can only
speculate about the first two quantities.

It is this speculation, or educated guessing, that forms the basis for sensitivity analysis. We will
assume various plausible combinations of values for the smoking/lung cancer association and resins-
specific smoking prevalences, then see what values we get for the smoking-adjusted resins-lung
cancer association. If all the latter values are substantially elevated, we have a basis for doubting that
the unadjusted resins-lung cancer association is due entirely to confounding by smoking. Otherwise,
confounding by smoking is a plausible explanation for the observed resins-lung cancer association.

We will use the crude data in Table 19–1 for illustration. There is no evidence of important
confounding by age or year in these data, probably because the controls were selected from other
chronic-disease deaths. For example, the crude odds ratio is 1.76 versus an age-year adjusted
odds ratio of 1.77, and the crude 95% confidence limits are 1.20 and 2.58 versus 1.18 and 2.64
after age-year adjustment. If it is necessary to stratify on age, year or both, we could repeat the
computations given below for each stratum and then summarize the results across strata, or we
could use regression-based adjustments (Greenland, 2005b).

Consider the general notation for the expected stratified data given in Table 19–2. We will use
hypothesized values for the stratum-specific prevalences to fill in this table and solve for an assumed

ˆ

ˆ

ˆ

ˆ
T A B L E 1 9 – 2

General Layout (Expected Data) for Sensitivity Analysis and External
Adjustment for a Dichotomous Confounder Z

Z = 1 Z = 0

X = 1 X = 0 Total X = 1 X = 0 Total

Cases A 11 A 01 M 11 A 1+− A 11 A 0+ − A 01 M 1+ − M 11

Controls B 11 B 01 M 01 B 1+ − B 11 B 0+ − B 01 M 0+ − M 01
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common odds ratio relating exposure to disease within levels of Z ,

ORDX = A11 B01

A01 B11

= (A1+ − A11)(B0+ − B01)

(A0+ − A01)(B1+ − B11)

Suppose that the smoking prevalences among the exposed and unexposed populations are estimated
or assumed to be PZ1 and PZ0, and the odds ratio relating the confounder and disease within levels
of exposure is ORDZ (i.e., we assume odds-ratio homogeneity). Assuming that the control group
is representative of the source population, we set B11 = PZ1 B1+ and B01 = PZ0 B0+. Next, to find
A11 and A01, we solve the pair of equations

ORDZ = A11(B1+ − B11)

(A1+ − A11)B11

and

ORDZ = A01(B0+ − B01)

(A0+ − A01)B01

These have solutions

A11 = ORDZ A1+ B11/(ORDZ B11 + B1+ − B11) [19–1]

and

A01 = ORDZ A0+ B01/(ORDZ B01 + B0+ − B01) [19–2]

Having obtained data counts corresponding to A11, A01, B11, and B01, we can put these numbers
into Table 19–2 and compute directly a Z -adjusted estimate of the exposure-disease odds ratios
ORDX . The answers from each smoking stratum should agree.

The preceding estimate of ORDX is sometimes said to be “indirectly adjusted” for Z , because
it is the estimate of ORDX that one would obtain if one had data on the confounder Z and disease
D that displayed the assumed prevalences and confounder odds ratio ORDZ. A more precise term
for the resulting estimate of ORDX is “externally adjusted,” because the estimate makes use of
an estimate of ORDZ obtained from sources external to the study data. The smoking prevalences
must also be obtained externally; occasionally (and preferably), they may be obtained from a
survey of the underlying source population from which the subjects were selected. (Because we
assumed the odds ratios are constant across strata, the result does not depend on the exposure
prevalence.)

To illustrate external adjustment with the data in Table 19–1, suppose that the smoking preva-
lences among the resins exposed and unexposed are 70% and 50%. Then

B11 = PZ1 B1+ = 0.70(257) = 179.9

and

B01 = PZ0 B0+ = 0.50(945) = 472.5

Taking ORDZ = 5 for the resins-specific smoking/lung cancer odds ratio, equations 19–1 and 19–2
yield

A11 = 5(45)179.9/[5(179.9) + 257 − 179.9] = 41.45

and

A01 = 5(94)472.5/[5(472.5) + 945 − 472.5] = 78.33

Putting these results into Table 19–2, we obtain the stratum-specific resins-lung cancer odds
ratios

ORDX = 41.45(472.5)

179.9(78.33)
= 1.39
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ˆ

ˆ

ˆ

ˆ
T A B L E 1 9 – 3

Sensitivity of Externally Adjusted Resins–Cancer Odds Ratio ORDX to Choice
of PZ1 and PZ0 (Smoking Prevalences among Exposed and Unexposed), and
ORDZ (Resins-Specific Smoking–Cancer Odds Ratio)

ORDZ

PZ1 PZ0 ORXZ 5 10 15

0.40 0.30 1.56 ORDX = 1.49 ORDX = 1.42 ORDX = 1.39
0.55 0.45 1.49 1.54 1.49 1.48
0.70 0.60 1.56 1.57 1.54 1.53
0.45 0.25 2.45 1.26 1.13 1.09
0.60 0.40 2.25 1.35 1.27 1.24
0.75 0.55 2.45 1.41 1.35 1.33

and

ORDX = (45 − 41.45)(945 − 472.5)

(257 − 179.9)(94 − 78.33)
= 1.39

which agree (as they should). We see that confounding by smoking could account for much of the
crude resins odds ratio if there were a much higher smoking prevalence among the resin exposed
relative to the unexposed.

In a sensitivity analysis, we repeat the above external adjustment process using other plausible
values for the prevalences and the confounder effect (see Sundararajan et al., 2002; Marshall et al.,
2003; and Maldonado et al., 2003 for examples). Table 19–3 presents a summary of results using
other values for the resins-specific smoking prevalences and the smoking odds ratio. The table also
gives the smoking-resins odds ratio

ORXZ = OZ1/OZ0 = PZ1(1 − PZ0)/(1 − PZ1)PZ0

where OZ j = PZ j/(1 − PZ j ) is the odds of Z = 1 versus Z = 0 when X = j . There must be
a substantial exposure-smoking association to remove most of the exposure-cancer association.
Because there was no reason to expect an exposure-smoking association at all, Table 19–3 supports
the notion that the observed resins-cancer association is probably not due entirely to confounding
by the dichotomous smoking variable used here. We would have to consider a polytomous smoking
variable to further address confounding by smoking.

RELATION OF UNADJUSTED TO ADJUSTED ODDS RATIOS

An equivalent approach to that just given uses the following formulas for the ratio of the unadjusted
to Z -adjusted odds ratios (Yanagawa, 1984):

ORDX-unadjusted

ORDX-adjusted
= (ORDZ OZ1 + 1)(OZ0 + 1)

(ORDZ OZ0 + 1)(OZ1 + 1)

= (ORDZORXZ OZ0 + 1)(OZ0 + 1)

(ORDZ OZ0 + 1)(ORXZ OZ0 + 1)

= ORDZORXZ PZ0 + 1 − PZ0

(ORDZ PZ0 + 1 − PZ0)(ORXZ PZ0 + 1 − PZ0)

= ORDZ PZ1 + 1 − PZ1

ORDZ PZ0 + 1 − PZ0

[19–3]
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Assuming that Z is the sole uncontrolled confounder, this ratio can be interpreted as the degree of
bias due to failure to adjust for Z . This series of equations shows that when Z is not associated with
the disease (ORDZ = 1) or is not associated with exposure (ORXZ = 1), the ratio of the unadjusted
and adjusted odds ratios is 1, and there is no confounding by Z . In other words, a confounder
must be associated with the exposure and the disease in the source population (Chapter 9). Recall,
however, that these associations are not sufficient for Z to be a confounder, because a confounder
must also satisfy certain causal relations (e.g., it must not be affected by exposure or disease; see
Chapters 4, 9, and 12). The equations in 19–3 also show that the ratio of unadjusted to adjusted
odds ratios depends on the prevalence of Z = 1; i.e., the degree of confounding depends not only
on the magnitude of the associations but also on the confounder distribution.

In many circumstances, we may have information about only one or two of the three parameters
that determine the unadjusted/adjusted ratio. Nonetheless, it can be seen from 19–3 that the ratio
cannot be further from 1 than are ORDZ/(ORDZ PZ0 + 1 − PZ0), ORX Z/(ORXZ PZ0 + 1 − PZ0),
1/(ORDZ PZ0 + 1 − PZ0), or 1/(ORXZ PZ0 + 1 − PZ0); the ratio is thus bounded by these quantities.
Furthermore, because the bound ORDZ/(ORDZ PZ0 + 1 − PZ0) cannot be further from 1 than ORDZ,
the ratio cannot be further from 1 than ORDZ, and similarly cannot be further from 1 than ORX Z

(Cornfield et al., 1959; Bross, 1967). Thus, the odds-ratio bias from failure to adjust Z cannot
exceed the odds ratio relating Z to D or to X .

These methods readily extend to cohort studies. For data with person-time denominators Tji ,
we use the Tji in place of the control counts B ji in the previous formulas to obtain an externally
adjusted rate ratio. For data with count denominators Nji , we use the Nji in place of the Bji to
obtain an externally adjusted risk ratio (Flanders and Khoury, 1990). Bounds analogous to those
above can be derived for risk differences (Kitagawa, 1955). Improved bounds can also be derived
under deterministic causal models relating X to D in the presence of uncontrolled confounding
(e.g., Maclehose et al., 2005). There is also a large literature on bounding causal risk differences
from randomized trials when uncontrolled confounding due to noncompliance may be present; see
Chapter 8 of Pearl, 2000 for references.

COMBINATION WITH ADJUSTMENT
FOR MEASURED CONFOUNDERS

The preceding equations relate the unadjusted odds ratio to the odds ratio adjusted only for the
unmeasured confounder (Z ) and thus ignore the control of any other confounders. If adjustment for
measured confounders has an important effect, the equations must be applied using bias parameters
conditioned on those measured confounders. To illustrate, suppose that age adjustment was essential
in the previous example. We should then have adjusted for confounding by smoking in the age-
adjusted or age-specific odds ratios. Application of the previous equations to these odds ratios
will require age-specific parameters, e.g., PZ0 will be the age-specific smoking prevalence among
unexposed noncases, ORDZ will be the age-specific association of smoking with lung cancer among
the unexposed, and ORXZ will be the age-specific association of smoking with resins exposure
among noncases.

Although most estimates of confounder–disease associations are adjusted for major risk factors
such as age, information adjusted for other parameters is often unavailable. Use of unadjusted
parameters in the preceding equations may be misleading if they are not close to the adjusted
parameters (e.g., if the unadjusted and age-adjusted odds ratios associating smoking with exposure
are far apart). For example, if age is associated with smoking and exposure, adjustment for age
could partially adjust for confounding by smoking, and the association of smoking with exposure
will change upon age adjustment. Use of the age-unadjusted smoking–exposure odds ratio (ORXZ)
in the preceding equations will then give a biased estimate of the residual confounding by smoking
after age adjustment. More generally, proper external adjustment in combination with adjustments
for measured confounders requires information about the unmeasured variables that is conditional
on the measured confounders.

ANALYSIS OF MISCLASSIFICATION

Nearly all epidemiologic studies suffer from some degree of measurement error, which is usually
referred to as classification error or misclassification when the variables are discrete. The effect of
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even modest amounts of error can be profound, yet rarely is the error quantified (Jurek et al., 2007).
Simple situations can be analyzed, however, using basic algebra (Copeland et al., 1977; Greenland,
1982a; Kleinbaum et al., 1984), and more extensive analyses can be done using software that
performs matrix algebra (e.g., SAS, GAUSS, MATLAB, R, S-Plus) (Barron, 1977; Greenland and
Kleinbaum, 1983; Greenland, 1988b). We will focus on basic methods for dichotomous variables.
We will then briefly discuss methods that allow use of validation study data, in which classification
rates are themselves estimated from a sample of study subjects.

EXPOSURE MISCLASSIFICATION

Consider first the estimation of exposure prevalence from a single observed category of subjects,
such as the control group in a case-control study. Define the following quantities in this category:

X = 1 if exposed, 0 if not
X∗ = 1 if classified as exposed, 0 if not

PVP = probability that someone classified as exposed is truly exposed
= predictive value of an exposure “positive” = Pr(X = 1|X∗ = 1)

PVN = probability that someone classified as unexposed is truly unexposed
= predictive value of an exposure “negative” = Pr(X = 0|X∗ = 0)

B1
∗ = number classified as exposed (with X∗ = 1)

B0
∗ = number classified as unexposed (with X∗ = 0)

B1 = expected number truly exposed (with X = 1)
B0 = expected number truly unexposed (with X = 0)

If they are known, the predictive values can be used directly to estimate the numbers truly
exposed (B1) and truly unexposed (B0) from the misclassified counts B1

∗ and B0
∗ via the expected

relations

B1 = PVP · B1
∗ + (1 − PVN)B0

∗

B0 = PVN · B0
∗ + (1 − PVP)B1

∗ [19–4]

Note that the total M0 is not changed by exposure misclassification:

M0 = B1 + B0

= PVN · B0
∗ + (1 − PVP)B1

∗ + PVP · B1
∗ + (1 − PVN)B0

∗

= (PVP + 1 − PVP)B1
∗ + (PVN + 1 − PVN)B0

∗

= B1
∗ + B0

∗

Thus, once we have estimated B1, we can estimate B0 from B0 = M0 − B1. From the preceding
equations we can estimate the true exposure prevalence as Pe0 = B1/M0. Parallel formulas for cases
or person-time follow by substituting A1, A0, A1

∗, and A0
∗ or T1, T0, T1

∗, and T0
∗ for B1, B0, B1

∗,
and B0

∗ in equations 19–4. The adjusted counts obtained by applying the formula to actual data
are only estimates derived under the assumption that the true predictive values are PVP and PVN
and there is no other error in the observed counts (e.g., no random error). To make this clear, one

should denote the solutions in equations 19–4 by
∧
B1 and

∧
B0 instead of B1 and B0; for notational

simplicity, we have not done so.
Unfortunately, predictive values are seldom available, and when they are, their applicability is

highly suspect, in part because they depend directly on exposure prevalence, which varies across
populations (see formulas 19–9 and 19–10). For example, those study participants who agree to
participate in a much more extensive validation substudy of food intake or medication usage (highly
cooperative subjects) may have different patterns of intake and usage than other study participants.
Owing to variations in exposure prevalence across populations and time, predictive values from a
different study are even less likely to apply to a second study. Even when one can reliably estimate
predictive values for a study, these estimates must be allowed to vary with disease and confounder
levels, because exposure prevalence will vary across these levels.
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These problems in applying predictive values lead to alternative adjustment methods, which
use classification parameters that do not depend on true exposure prevalence. The following four
probabilities are common examples of such parameters:

Se = probability that someone exposed is classified as exposed

= sensitivity = Pr(X∗ = 1|X = 1)

Fn = probability that someone exposed is classified as unexposed

= false-negative probability = Pr(X∗ = 0|X = 1) = 1 − Se

Sp = probability that someone unexposed is classified as unexposed

= specificity = Pr(X∗ = 0|X = 0)

Fp = probability that someone unexposed is classified as exposed

= false-positive probability = Pr(X∗ = 1|X = 0) = 1 − Sp

The following equations then relate the expected misclassified counts to the true counts:

B1
∗ = expected number of subjects classified as exposed

= Se B1 + Fp B0

[19–5]

and

B0
∗ = expected number of subjects classified as unexposed

= Fn B1 + Sp B0

[19–6]

Note that Se + Fn = Sp + Fp = 1, showing again that the total is unchanged by the exposure
misclassification:

M0 = B1 + B0 = (Se + Fn)B1 + (Sp + Fp)B0

= Se B1 + Fp B0 + Fn B1 + Sp B0 = B1
∗ + B0

∗

In most studies, one observes only the misclassified counts B1
∗ and B0

∗. If we assume that the
sensitivity and specificity are equal to Se and Sp (with Fn = 1 − Se and Fp = 1 − Sp), we can
estimate B1 and B0 by solving equations 19–5 and 19–6. From equation 19–6, we get

B0 = (B0
∗ − Fn B1)/Sp

We can substitute the right side of this equation for B0 in equation 19–5, which yields

B1
∗ = Se B1 + Fp(B0

∗ − Fn B1)/Sp

We then solve for B1 to get

B1 = (Sp B1
∗ − Fp B0

∗)/(Se Sp − Fn Fp)

= (B1
∗ − Fp M0)/(Se + Sp − 1) [19–7]

B0 = M0 − B1 = (B0
∗ − Fn M0)/(Se + Sp − 1).

From these equations we can also estimate the true exposure prevalence as Pe0 = B1/M0. Again,
the B1 and B0 obtained by applying equation 19–7 to actual data are only estimates derived under
the assumption that the true sensitivity and specificity are Se and Sp.

Sensitivity analysis for exposure classification proceeds by applying equation 19–7 for various
pairs of classification probabilities (Se, Sp) to the observed noncase counts B1

∗ and B0
∗. To construct

a corrected measure of association, we must also apply analogous equations to estimate A1 and A0

from the observed (misclassified) case counts A1
∗ and A0

∗:

A1 = (A1
∗ − Fp M1)/(Se + Sp − 1) [19–8]

from which we get A0 = M1 − A1, where M1 is the observed case total. These formulas may be
applied to case-control, closed-cohort, or prevalence-survey data. For person-time follow-up data,
equation 19–7 can be modified by substituting T1, T0, T1

∗, and T0
∗ for B1, B0, B1

∗, and B0
∗.
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The formulas may be applied within strata of confounders as well. After application of the formu-
las, we may compute “adjusted” stratum-specific and summary effect estimates from the estimated
true counts. Finally, we tabulate the adjusted estimates obtained by using different pairs (Se, Sp),
and thus obtain a picture of how sensitive the results are to various degrees of misclassification.

Formulas 19–7 and 19–8 can yield negative adjusted counts, which are impossible values for
the true counts. One way this can arise is if Se + Sp <1, which implies that the classification is
assigning values worse than randomly, in the following sense: Imagine that we conduct a coin toss
with a probability p of heads to decide whether someone was exposed or not, setting X∗ = 1 when
the coin toss yielded heads (p may be any number between 0 and 1). The sensitivity and specificity
of this completely random classification are then p and 1 − p, respectively, and Se + Sp = 1. We
will henceforth assume that our actual classification method is better than a coin toss, in the sense
that Se + Sp > 1.

Even with this assumption, the solution B1 to equation 19–7 will be negative if Fp > B1
∗/M0,

i.e., if the assumed false-positive probability exceeds the observed prevalence of exposure in the
noncases, or, equivalently, if Sp < B0

∗/M0. In parallel, B0 will be negative if Fn > B0
∗/M0 (equiv-

alently, Se < B1
∗/M0), A1 will be negative if Fp > A1

∗/M1, and A0 will be negative if Fn > A0
∗/

M1. A negative solution indicates that either other errors (e.g., random errors) have distorted the
observed counts, the value chosen for Se or for Sp is wrong, or some combination of these problems.

Although sensitivity and specificity do not depend on the true exposure prevalence, they are
influenced by other characteristics. Because predictive values are functions of sensitivity and speci-
ficity (see formulas 19–9 and 19–10, later), they too will be affected by these characteristics, as well
as by any characteristic that affects prevalence. For example, covariates that affect exposure recall
(such as age and comorbidities) will alter the classification probabilities for self-reported exposure
history and may vary considerably across populations. In such situations, sensitivity and specificity
may not generalize well from one population to another (Begg, 1987). This lack of generalizability
is one reason why varying classification probabilities in the formulas (sensitivity analysis) is crucial
even when estimates are available from the literature.

Valid variances for adjusted estimates cannot be calculated from the adjusted counts using
conventional formulas (such as those in Chapters 14–18), even if we assume that sensitivity and
specificity are known or are unbiased estimates from a validation study. This problem arises because
conventional formulas do not take account of the data transformations and random errors in the
adjustments. Formulas that do so are available (Selén, 1986; Espeland and Hui, 1987; Greenland,
1988b, 2007c; Gustafson, 2003; Greenland and Gustafson, 2006). Probabilistic sensitivity analysis
(discussed later) can also account for these technical issues, and for other sources of bias as well.

NONDIFFERENTIALITY

In the preceding description, we assumed nondifferential exposure misclassification, that is, the
same values of Se and Sp applied to both the cases (equation 19–8) and the noncases (equation
19–7). To say that a classification method is nondifferential with respect to disease means that it has
identical operating characteristics among cases and noncases, so that sensitivity and specificity do
not vary with disease status. We expect this property to hold when the mechanisms that determine
the classification are identical among cases and noncases. In particular, we expect nondifferential-
ity when the disease is unrelated to exposure measurement. This expectation is reasonable when
the mechanisms that determine exposure classification precede the disease occurrence and are not
affected by uncontrolled risk factors, as in many cohort studies, although even then it is not guaran-
teed to hold (Chapter 9). Thus, to say that there is nondifferential misclassification (such as when
exposure data are collected from records that predate the outcome) means that neither disease nor
uncontrolled risk factors result in different accuracy of response for cases compared to noncases.

Put more abstractly, nondifferentiality means that the classification X* is independent of the
outcome D (i.e., the outcome conveys no information about X ) conditional on the true exposure X
and adjustment variables. Although this condition may seldom be met exactly, it can be examined
on the basis of qualitative mechanistic considerations. Intuition and judgment about the role of the
outcome in exposure classification errors are the basis for priors about measurement behavior. Such
judgments provide another reason to express such priors in terms of sensitivity and specificity, as
we will do later, rather than predictive values.
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As discussed in Chapter 9, differentiality should be expected when exposure assessment can
be affected by the outcome. For example, in interview-based case-control studies, cases may be
more likely to recall exposure (correctly or falsely) than controls, leading to higher sensitivity or
lower specificity among cases relative to controls (recall bias). When differential misclassification
is a reasonable possibility, we can extend the sensitivity analysis by using different sensitivities
and specificities for cases and noncases. Letting Fp1, Fp0 be the case and noncase false-positive
probabilities, and Fn1, Fn0 the case and noncase false-negative probabilities, the corrected odds
ratio for a single 2-by-2 table simplifies to

(A1
∗ − Fp1M1)(B0

∗ − Fn0M0)

(A0
∗ − Fn1M1)(B1

∗ − Fp0M0)

This formula is sensible, however, only if all four parenthetical terms in the ratio are positive.

APPLICATION TO THE RESINS-LUNG CANCER EXAMPLE

As a numerical example, we adjust the resins-lung cancer data in Table 19–1 under the assumption
that the case sensitivity and specificity are 0.9 and 0.8, and the control sensitivity and specificity are
0.8 and 0.8. This assumption means that exposure detection is somewhat better for cases. (Because
this study is record-based with deaths from other diseases as controls, it seems unlikely that the
actual study would have had such differential misclassification.) From equations 19–7 and 19–8,
we obtain

B1 = [257 − 0.2(1,202)]/[0.8 + 0.8 − 1] = 27.67

B0 = 1,202 − 27.67 = 1,174.33

A1 = [45 − 0.2(139)]/[0.8 + 0.9 − 1] = 24.57

A0 = 139 − 24.57 = 114.43

These yield an adjusted odds ratio of 24.57(1,174.33)/114.43(27.67) = 9.1. This value is much
higher than the unadjusted odds ratio of 1.8, despite the fact that exposure detection is better for
cases.

By repeating the preceding calculation, we obtain a resins-misclassification sensitivity analysis
for the data in Table 19–1. Table 19– 4 provides a summary of the results of this analysis. As
can be seen, under the nondifferential misclassification scenarios along the descending diagonal,
the adjusted odds-ratio estimates (2.34, 2.42, 10.7, 11.0) are always further from the null than

ˆ

ˆ

ˆ

ˆ
T A B L E 1 9 – 4

Adjusted Resins-Lung Cancer Mortality Odds Ratios under Various
Assumptions about the Resins Exposure Sensitivity (Se) and Specificity (Sp)
among Cases and Controls

Controls

Cases Se: 0.90 0.80 0.90 0.80
Se Sp Sp: 0.90 0.90 0.80 0.80

0.90 0.90 2.34a 2.00 19.3 16.5
0.80 0.90 2.83 2.42a 23.3 19.9
0.90 0.80 1.29 1.11 10.7a 9.1
0.80 0.80 1.57 1.34 12.9 11.0a

a Nondifferential misclassification.



P1: PSB Printer: RRD

GRBT241-19 GRBT241-v4.cls January 16, 2008 13:29

Chapter 19 ● Bias Analysis 357

the unadjusted estimate computed directly from the data (1.76, which corresponds to the adjusted
estimate assuming Se = Sp = 1, no misclassification). This result reflects the fact that, if the exposure
is dichotomous and the misclassification is better than random, nondifferential, and independent of
all other errors (whether systematic or random), the bias produced by the exposure misclassification
is toward the null. We caution, however, that this rule does not extend automatically to other
situations, such as those involving a polytomous exposure (see Chapter 9).

In one form of recall bias, cases remember true exposure more than do controls, i.e., there is
higher sensitivity among cases (Chapter 9). Table 19– 4 shows that, even if we assume that this
form of recall bias is present, adjustment may move the estimate away from the null; in fact, three
adjusted estimates (2.00, 16.5, 9.1) are further from the null than the unadjusted estimate (1.76).
These results show that the association can be considerably diminished by misclassification, even
in the presence of recall bias. To understand this apparently counterintuitive phenomenon, one may
think of the classification procedure as having two components: a nondifferential component shared
by both cases and controls, and a differential component reflecting the recall bias. In many plausible
scenarios, the bias toward the null produced by the nondifferential component overwhelms the bias
away from the null produced by the differential component (Drews and Greenland, 1990).

Table 19– 4 also shows that the specificity is a much more powerful determinant of the observed
odds ratio than is the sensitivity in this example (e.g., with Se = 0.8 and Sp = 0.9, the adjusted
estimate is 2.42, whereas with Se = 0.9 and Sp = 0.8, the adjusted estimate is 10.7), because the
exposure prevalence is low. In general, when exposure prevalence is low, the odds-ratio estimate is
more sensitive to false-positive error than to false-negative error, because false positives arise from
a larger group and thus can easily overwhelm true positives.

Finally, the example shows that the uncertainty in results due to the uncertainty about the
classification probabilities can be much greater than the uncertainty conveyed by conventional
confidence intervals. The unadjusted 95% confidence interval in the example extends from 1.2 to
2.6, whereas the misclassification-adjusted odds ratios range above 10 if we allow specificities of
0.8, even if we assume that the misclassification is nondifferential, and to as low as 1.1 if we allow
differential misclassification. Note that this range of uncertainty does not incorporate random error,
which is the only source of error reflected in the conventional confidence interval.

RELATION OF PREDICTIVE VALUES
TO SENSITIVITY AND SPECIFICITY

Arguments are often made that the sensitivity and specificity of an instrument will be roughly stable
across similar populations, at least within levels of disease and covariates such as age, sex, and
socioeconomic status. Nonetheless, as mentioned earlier, variations in sensitivity and specificity
can occur under many conditions—for example, when the measure is an interview response and
responses are interviewer-dependent (Begg, 1987). These variations in sensitivity and specificity
will also produce variations in predictive values, which can be seen from formulas that relate the
predictive values to sensitivity and specificity. To illustrate the relations, again consider exposure
classification among noncases, where M0 = B1 + B0 = B1

∗ + B0
∗ is the noncase total, and let

Pe0 = B1/M0 be the true exposure prevalence among noncases. Then, in expectation, the predictive
value positive among noncases is

PVP0 = (number of correctly classified subjects in B1
∗)/B1

∗

= Se B1/(Se B1 + Fp B0)

= Se(B1/M0)/[Se(B1/M0) + Fp(B0/M0)]

= SePe0/[SePe0 + Fp(1 − Pe0)] [19–9]

Similarly, in expectation, the predictive value negative among noncases is

PVN0 = Sp(1 − Pe0)/[FnPe0 + Sp(1 − Pe0)] [19–10]

Equations 19–9 and 19–10 show that predictive values are a function of the sensitivity, specificity
and the unknown true exposure prevalence in the population to which they apply. When adjustments
are based on internal validation data and those data are a random sample of the entire study, there
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is no issue of generalization across populations. In such situations the predictive-value approach is
simple and efficient (Marshall, 1990; Brenner and Gefeller, 1993). We again emphasize, however,
that validation studies may be afflicted by selection bias, thus violating the randomness assumption
used by this approach.

DISEASE MISCLASSIFICATION

Most formulas and concerns for exposure misclassification also apply to disease misclassification.
For example, Equation 19–4 and 19–7 can be modified to adjust for disease misclassification. For
disease misclassification in a closed-cohort study or a prevalence survey, PVP and PVN will refer to
the predictive values for disease, and A, B, and N will replace B1, B0, and M0. For the adjustments
using sensitivity and specificity, consider first the estimation of the incidence proportion from a
closed cohort or of prevalence from a cross-sectional sample. The preceding formulas can then be
adapted directly by redefining Se, Fn, Sp, and Fp to refer to disease. Let

D =1 if diseased, 0 if not
D∗ =1 if classified as diseased, 0 if not
Se = Probability someone diseased is classified as diseased

= Disease sensitivity = Pr(D∗ = 1|D = 1)
Fn = False-negative probability = 1 − Se
Sp = Probability someone nondiseased is classified as nondiseased

= disease specificity = Pr(D∗ = 0|D = 0)
Fp = False-positive probability = 1 − Sp

Suppose that A and B are the true number of diseased and nondiseased subjects, and A∗ and B∗ are
the numbers classified as diseased and nondiseased. Then equations 19–5 through 19–7 give the
expected relations between A, B and A∗, B∗, with A, B replacing B1, B0; A∗, B∗ replacing B1

∗,
B0

∗; and N = A + B = A∗ + B∗ replacing M0. With these changes, equation 19–7 becomes

A = (A∗ − Fp N )/(Se + Sp − 1) [19–11]

and B = N − A. These equations can be applied separately to different exposure groups and within
strata, and “adjusted” summary estimates can then be computed from the adjusted counts. Results
of repeated application of this process for different pairs of Se, Sp can be tabulated to provide
a sensitivity analysis. Also, the pair Se, Sp can either be kept the same across exposure groups
(nondifferential disease misclassification) or allowed to vary across groups (differential misclassi-
fication). As noted earlier, however, special variance formulas are required (Selén, 1986; Espeland
and Hui, 1987; Greenland, 1988b; Greenland, 2007c; Gustafson, 2003).

The situation differs slightly for person-time follow-up data. Here, one must replace the speci-
ficity Sp and false-positive probability Fp with a different concept, that of the false-positive rate, Fr:

Fr = number of false-positive diagnoses (noncases diagnosed as cases) per unit person-time.

We then have

A∗ = Se A + Fr T [19–12]

where T is the true person-time at risk. Also, false-negatives (of which there are Fn A) will inflate
the observed person-time T ∗; how much depends on how long the false-negatives are followed.
Unless the disease is very common, however, the false negatives will add relatively little person-time
and we can take T to be approximately T ∗. Upon doing so, we need only solve equation 19–12
for A:

A = (A∗ − Fr T ∗)/Se [19–13]

and get an adjusted rate A/T ∗. Sensitivity analysis then proceeds (similarly to before) by applying
equation 19–13 to the different exposure groups, computing adjusted summary measures, and
repeating this process for various combinations of Se and Fr (which may vary across subcohorts).

The preceding analysis of follow-up data is simplistic, in that it does not account for possible
effects if exposure lengthens or shortens the time from incidence to diagnosis. These effects have
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generally not been correctly analyzed in the medical literature (Greenland, 1991a, Greenland, 1999a;
see the discussion of standardization in Chapter 4). In these cases, one should treat time of disease
onset as the outcome variable and adjust for errors in measuring this outcome using methods for
continuous variables (Carroll et al., 2006).

Often studies make special efforts to verify case diagnoses, so that the number of false positives
within the study will be negligible. If such verification is successful, we can assume that Fp = 0,
Sp = 1, and equations 19–11 and 19–13 then simplify to A = A∗/Se. If we examine a risk ratio RR
under these conditions, then, assuming nondifferential misclassification, the observed RR∗ will be

RR∗ = A1
∗/N1

A0
∗/N0

= Se A1/N1

Se A0/N0

= A1/N1

A0/N0

= RR

In other words, with perfect specificity, nondifferential sensitivity of disease misclassification will
not bias the risk ratio. Assuming that the misclassification negligibly alters person-time, the same
will be true for the rate ratio (Poole, 1985) and will also be true for the odds ratio when the disease
is uncommon. The preceding fact allows extension of the result to case-control studies in which
cases are carefully screened to remove false positives (Brenner and Savitz, 1990).

Suppose now that the cases cannot be screened, so that in a case-control study there may be
many false cases (false positives). It would be a severe mistake to apply the disease-misclassification
adjustment equation 19–11 to case-control data if (as is almost always true) Se and Sp are determined
from other than the study data themselves (Greenland and Kleinbaum, 1983), because the use of
different sampling probabilities for cases and controls alters the sensitivity and specificity within
the study relative to the source population. To see the problem, suppose that all apparent cases A1

∗,
A0

∗ but only a fraction f of apparent noncases B1
∗, B0

∗ are randomly sampled from a closed cohort
in which disease has been classified with sensitivity Se and specificity Sp. The expected numbers
of apparent cases and controls selected at exposure level j is then

A j
∗ = Se A j + Fp B j

and

f · Bj
∗ = f (Fn A j + Sp B j )

The numbers of true cases and noncases at exposure level j in the case-control study are

Se A j + f · Fn A j = (Se + f · Fn)A j

and

Fp B j + f · Sp B j = (Fp + f · Sp)B j

whereas the numbers of correctly classified cases and noncases in the study are Se A j and f · SpB j .
The sensitivity and specificity in the study are thus

Se A j/(Se + f · Fn)A j = Se/(Se + f · Fn)

and

f · Sp B j/(Fp + f · Sp)B j = f · Sp/(Fp + f · Sp)

The study specificity can be far from the population specificity. For example, if Se = Sp = 0.90,
all apparent cases are selected, and controls are 1% of the population at risk, the study specificity
will be 0.01(0.90)/[0.1 + 0.01(0.90)] = 0.08. Use of the population specificity 0.90 instead of the
study specificity 0.08 in a sensitivity analysis could produce extremely distorted results.

CONFOUNDER MISCLASSIFICATION

The effects of dichotomous confounder misclassification lead to residual and possibly differential
residual confounding (Greenland, 1980; Chapter 9). These effects can be explored using the methods
discussed previously for dichotomous exposure misclassification (Savitz and Baron, 1989; Marshall
and Hastrup, 1996; Marshall et al., 1999). One may apply equations 19–7 and 19–8 to the confounder
within strata of the exposure (rather than to the exposure within strata of the confounder) and then
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compute a summary exposure–disease association from the adjusted data. The utility of this approach
is limited, however, because most confounder adjustments involve more than two strata. We discuss
a more general (matrix) approach below.

MISCLASSIFICATION OF MULTIPLE VARIABLES

So far, our analyses have assumed that only one variable requires adjustment. In many situations,
age and sex (which tend to have negligible error) are the only important confounders, the cases are
carefully screened, and only exposure remains seriously misclassified. There are, however, many
other situations in which not only exposure but also major confounders (such as smoking level)
are misclassified. Disease misclassification may also coexist with these other problems, especially
when studying disease subtypes.

In examining misclassification of multiple variables, it is commonly assumed that the classi-
fication errors for each variable are independent of errors in other variables. This assumption is
different from that of nondifferentiality, which asserts that errors for each variable are independent
of the true values of the other variables. Neither, either one, or both assumptions may hold, and
both have different implications for bias. As mentioned in Chapter 9, the generalization that “non-
differential misclassification of exposure always produces bias toward the null” is false if the errors
are dependent or if exposure has multiple levels.

If all the classification errors are independent across variables, we can apply the adjustment
formulas in sequence for each misclassified variable, one at a time. For example, in a prevalence
survey we may first obtain counts adjusted for exposure misclassification from equations 19–7
and 19–8, then further adjust these counts for disease misclassification using equation 19–11. If,
however, the classification errors are dependent across variables, we must turn to more complex
adjustment methods such as those based on matrix adjustment of counts (Greenland and Kleinbaum,
1983; Selén, 1986; Espeland and Hui, 1987; Greenland, 1988b). Dependent errors most easily arise
when a common method, such as an interview or medical record review, is used to ascertain more
than one variable involved in the analysis (Lash and Fink, 2003b). Matrix methods are also useful
for adjustments of polytomous (multilevel) variables.

A MATRIX ADJUSTMENT METHOD

We now briefly outline one simple matrix approach that is the natural generalization of the formulas
given earlier (Barron, 1977; Greenland and Kleinbaum, 1983; Kleinbaum et al., 1984; Greenland,
1988b), and can be applied under any misclassification setting, including dependent and differential
misclassification of polytomous variables. Imagine that we have a multiway table of data classified
by disease, one or more exposures, and one or more stratification variables (all of which may have
multiple levels). Suppose that this table has K cells. We can list these cells in any order and index
them by a subscript k = 1, . . . . . . , K . Suppose that Ck

∗ subjects are classified into cell k, whereas
Ck subjects truly belong in that cell. Next, define

pmk = probability of being classified into cell m when the true cell is k.

Then, in expectation,

Cm
∗ =

K∑
k=1

pmkCk [19–14]

This equation is a generalization of equations 19–5 and 19–6.
If we write C∗ and C for the vectors of Cm

∗ and Ck , and P for the matrix of pmk , then equation
19–14 reduces to C∗ = PC. The adjusted counts, assuming that P contains the true classification
probabilities, can then be found from the observed (misclassified) counts C∗ by inverting P , to get
C = P−1C∗. The practical utility of this formula in a given application will of course depend on
the information available to specify plausible values for the pmk .
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USE OF VALIDATION DATA

In the previous sensitivity formulas we assumed that Se and Sp were educated guesses, perhaps
suggested by or estimated from external literature. Suppose instead that classification probabilities
can be estimated directly from an internal validation subsample of the study subjects, and the latter
subsample is itself free of bias. In particular, suppose that the sampling is random within levels of
exposure, disease, and any adjustment covariates. A number of statistically efficient ways of using
these data are then available, beginning with the predictive-value approaches described earlier, but
also including two-stage and missing-data analysis methods. From such methods, correctly classified
counts may be estimated using maximum-likelihood or related techniques, and full statistics (includ-
ing confidence intervals) can be obtained for the resulting effect estimates (e.g., Tennenbein, 1970;
Selén, 1986; Espeland and Hui, 1987; Greenland, 1988b; Marshall, 1990; Lyles, 2002; Greenland,
2007c). Regression methods may also be used to adjust for errors in continuous measurements
(e.g., Rosner et al., 1989; Speigelman et al., 2000, 2001, 2005; Carroll et al., 2006; Freedman et al.,
2004). Robins et al. (1994) and Carroll et al. (2006) review and compare a number of methods and
their relation to missing-data techniques, and discuss general methods for continuous as well as
discrete variables.

A general adjustment formula for the predictive-value approach follows if we have estimates of

qkm = probability of truly belonging to cell k when classified into cell m

We can then obtain estimates of the true counts from the formula

Ck =
M∑

m=1

qkmCm
∗, [19–15]

which is a generalization of equation 19–4. In the matrix algebra formulation, we can write this
equation as C = QC∗, where Q is the matrix of qkm . Adjustment methods more efficient and more
general than the preceding approach can be obtained using likelihood-based techniques; see Carroll
et al. (2006) for a model-based treatment.

An important caution in interpreting the results from formal adjustment methods is that most
methods assume the validation standard is measured without error. If, however, the validation
measurement taken as the truth is itself subject to error, then the adjusted estimate will also be
biased, possibly severely so (Wacholder et al., 1993). Many studies labeled as validation studies
actually substitute one imperfect measure of a variable for another. They are thus measures of
agreement, not validity. For binary exposures, the bias in the adjusted estimate can be kept below that
of the unadjusted estimate if the validation measurement has higher sensitivity and specificity than
the regular measurement, and the adjustment method does not assume nondifferentiality (Brenner,
1996). More generally, by introducing assumptions (models) for the joint relation of the available
measurements to each other and to the true values, as well as assumptions about randomness
of validation sampling, further adjustments can be made to account for errors in the validation
measurements (Spiegelman et al., 1997ab, 2000, 2001, 2005). These assumptions may then be
subjected to sensitivity analyses of the impact of assumption violations.

We have underscored the random-sampling assumptions in validation methods because of the
high potential for selection bias in many validation studies. Validation studies often require an
additional respondent burden (e.g., to complete a diet diary in addition to a food frequency ques-
tionnaire), leading to questions about the representativeness of those who volunteer to participate.
Even when no burden is imposed, selection bias may occur. For example, studies that validate
self-reported history by record review sometimes treat those who refuse permission to review their
records as if they were no different from those who permit review. Nonetheless, one reason to refuse
permission may be to avoid detection of an inaccurate self-report. If this type of refusal is common
enough, extrapolation of the results from those who permit review to the larger study group will
exaggerate the validity of self-reported history. Sensitivity analysis of selection bias (discussed
next) can be used to assess such problems.

In summary, when the validation study is itself subject to systematic error and bias, sensitivity
analysis remains an important adjunct to more formal adjustment methods.
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SELECTION BIAS

Selection bias (including response and follow-up bias) is perhaps the simplest to deal with mathe-
matically and yet is often the hardest to address convincingly, although attempts have been made
(e.g., Tang et al., 2000; Greenland, 2003c; Lash and Fink, 2004). The chief obstacle is lack of suffi-
cient information to perform a quantitative analysis. It is thus unsurprising that many subject-matter
controversies (such as those once surrounding exogenous estrogens and endometrial cancer; see
Chapter 9) can be reduced to disputes about selection bias in case-control studies.

Some early writings mistakenly implied that selection bias, like confounding, can always be
controlled if one obtains data on factors affecting selection . Although some forms of selection bias
(“selection confounding”) can be controlled like confounding, other forms can be impossible to
control without external information; see Chapter 12. An example of controllable selection bias is
that induced by matching in case-control studies. As discussed in Chapter 11, one need only control
the matching factors to remove the bias. Other examples include two-stage studies, which employ
biased selection with known selection probabilities and then use those probabilities to adjust for
the selection bias (Walker, 1982a; White, 1982b; Breslow and Cain, 1988; Flanders and Greenland,
1991; Weinberg and Wacholder, 1990; Chapter 15). Examples of ordinarily uncontrollable bias
occur when controls are matched to cases on factors affected by exposure or disease and for which
the population distribution is unknown, such as intermediate causal factors or disease symptoms
(Greenland and Neutra, 1981; Chapter 12).

Selection bias is controllable when the factors that affect selection are measured on all study
subjects, and either (a) these factors are antecedents of both exposure and disease, and so can be
controlled like confounders (Chapter 12), or (b) one knows the joint distribution of these factors
(including exposure and disease, if they jointly affect selection) in the entire source population,
and so can adjust for the bias using methods such as shown in equation 19–3 or the one given
below. A condition equivalent to (b) is that one knows the selection probabilities for each level
of the factors affecting selection. Unfortunately, this situation is rare. It usually occurs only when
the study incorporates features of a population survey, as in two-stage designs (Walker, 1982a;
White, 1982b) and randomized recruitment (Weinberg and Sandler, 1991). In most studies, one can
usually only control as appropriate and hope that no other factors (such as intermediates or disease
symptoms) have influenced selection.

There is a well-known decomposition for the odds ratio that can be used for sensitivity analysis
of selection bias. Suppose that SAj and SB j are the probabilities of case and noncase selection at
exposure level j . (For a dichotomous exposure, j = 1 for the exposed and 0 for the unexposed.)
Alternatively, in a density-sampled case-control study, let SB j be the person-time rate of control
selection at exposure level j . Then the population case counts can be estimated by A j/SAj and the
population noncase counts (or person-times) can be estimated by B j/SB j . Therefore, the adjusted
odds ratio or rate-ratio estimate comparing exposure level j to level 0 is

(A j/SAj )(B0/SB0)

(A0/SA0)(B j/SB j )
= A j B0

A0 B j

(
SAj SB0

SA0SB j

)−1

[19–16]

for example, see Walker (1982a) and Kleinbaum et al. (1984). In words, an adjusted estimate can
be obtained by dividing the sample odds ratio by a selection bias factor SAj SB0/SA0SB j . Equation
19–16 can be applied within strata of confounders, and the selection bias factor can vary across the
strata. Generalizations of this formula to regression settings are also available (Scharfstein et al.,
1999; Greenland, 2003c). It can also be applied repeatedly to account for independent sources of
selection bias. We will illustrate its application in the section on probabilistic sensitivity analysis.

The obstacle to any application is determining or even getting a vague idea of the selection
probabilities SAj and SB j . Again, these usually can be estimated only if the study in question
incorporates survey elements to determine the true population frequencies. Otherwise, a sensitivity
analysis based on equation 19–16 may have to encompass a broad range of possibilities. Equation
19–16 does provide one minor insight: No bias occurs if the selection bias factor is 1. One way
the latter will occur is if disease and exposure affect selection independently, in the sense that
SAj = tAu j and SB j = tBu j , where tA and tB are the marginal selection probabilities for cases and
noncases, and u j is the marginal selection probability at exposure level j (in density studies, tB will
be the marginal rate of control selection). Occasionally one may reason that such independence will
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hold, or independence can be forced to hold through careful sampling. Nonetheless, when refusal
is common and subjects know their own exposure and disease status, there may be good reasons to
doubt the assumption (Criqui et al., 1979).

Now suppose that the selection bias is a consequence of having a covariate Z affected by exposure
X that influenced selection (e.g., as when Z is an intermediate, or is affected by exposure X and the
study disease D). Recall that equation 19–3 gives the ratio of the unadjusted ORDX to the Z -adjusted
ORDXZ in terms of the prevalence PZ0 of Z = 1 among unexposed noncases, the odds ratio ORDZ
relating Z to D given X , and the odds ratio ORXZ relating Z to X given D. Our present situation
is the reverse of that when Z is an unmeasured confounder: we now have the Z -stratified ORDX
but want the unadjusted ORDX. The inverses of the expressions in 19–3 are equal to the ratio of the
adjusted and unadjusted DX odds ratios and thus equal the selection bias produced by stratifying
on Z , assuming that the Z -specific DX odds ratio (ORDX) is constant across Z levels (Greenland,
2003a). If the odds ratio for the association of Z with selection does not vary with D or X , we can
estimate ORDX, ORDZ, and ORXZ from the data and then do a sensitivity analysis of selection bias
as a function of OZ0, which equals the product of the true (population) odds of Z = 1 versus Z = 0
and the ratio of selection probabilities when Z = 1 versus Z = 0 (the degree of Z -related selection
bias).

MULTIPLE-BIAS ANALYSES

Sensitivity analyses for different biases may be combined into a multiple-bias analysis. This combi-
nation, however, requires proper ordering of the adjustments, because order can make a difference.
As a general rule, adjustments should be made in the reverse of the order in which the problems
occurred during the data-generation process, much as one undoes package wrappings in the reverse
of the order of the wrappings (Greenland, 1996c, 2005b). In particular, because differential misclas-
sification bias as a function of sensitivity and specificity does not reduce to a simple multiplicative
bias factor in the odds ratio, the result of the combined adjustment will depend on the order in which
misclassification adjustment is made.

Confounding originates in population causal relations (Chapters 4, 9, and 12) and so is usually
the first problem to occur, but selection from the source population may occur before or after
classification. As an example, suppose that we wish to make adjustments for uncontrolled smoking
confounding and exposure misclassification, and we have external data indicating a likely joint
distribution for smoking and exposure. Suppose also that these external data are themselves based
on exposure measurements misclassified in a manner similar to the study data (as would be the case
if the data came from the same cohort as the study data). The external adjustment for smoking will
then yield a hypothetical smoking-stratified table of misclassified exposure by disease, which then
must be adjusted for misclassification. In other words, the smoking stratification should precede the
misclassification adjustment. On the other hand, if the joint distribution of smoking and exposure
used for external adjustment was a purely hypothetical one referring to the true exposure, the
misclassification adjustment should precede the construction of the hypothetical smoking-stratified
table.

To complicate matters further, the ordering of classification may differ for different variables;
e.g., in a case-control study, exposure classification typically occurs after selection, but disease
classification typically occurs before. Sometimes even the ordering of classification steps for a single
variable is mixed; e.g., in the resins example, job information came from records that preceded
the study, but exposure classification based on the jobs came from hygienist evaluations made
after selection. An ideal analysis would make separate adjustments for each source of exposure
misclassification, with misclassification adjustments occurring both before and after selection-bias
adjustments.

Another problem in multiple-bias analysis is the complexity of examining and presenting results
from multiple adjustments. The minimum number of parameters for a realistic analysis of an
effect is arguably three confounding parameters, four classification probabilities, and four selection
probabilities. Yet if we assigned only five values to each of these 3 + 4 + 4 = 11 bias parameters,
and eliminated half the combinations from each of the three parameter groups based on symmetry
considerations, we would still have 511/23 > 6 million combinations to consider. This problem has
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led to development of probabilistic methods for summarizing over these combinations, which we
address next.

PROBABILISTIC BIAS ANALYSIS

The methods in the preceding sections describe simple sensitivity analyses that provide a quantitative
assessment of one bias at a time, or as ordered adjustments. The bias parameters (e.g., associations
of an unmeasured confounder with the exposure and outcome; false-positive and false-negative
classification probabilities; selection probabilities) are assigned one value or a limited number of
values. Although these methods yield an estimate of the direction and magnitude of bias, they treat
the bias parameters as if they were perfectly measured themselves (one assigned value) or as if they
can only take on a limited combination of values (as in Tables 19–3 and 19–4). Neither treatment
is likely correct. In addition, when a set of adjustments arises from different combinations of bias
parameters, these simple methods provide no sense of which adjustment is most plausible and
which adjustment is least plausible. All combinations are treated as if they are equally likely, and
presentation of multiple combinations is both cumbersome and difficult to interpret (Greenland,
1998c).

The simple methods we have presented do not combine the adjustment for systematic error with
the random error reflected in the conventional confidence interval. The effect of adjustments on
the P-value and confidence interval can be nonintuitive. For example, although an adjustment for
nondifferential misclassification of a binary exposure can easily move a small unadjusted association
far from the null (see Table 19–4), the same adjustment will either have no effect on the P-value
or, through an overwhelming increase in variance, will make the P-value larger than it was before
adjustment. Therefore, the adjustment does not yield stronger evidence against the null hypothesis,
even though it yields an estimate of association that is farther from the null (Greenland and Gustafson,
2006).

As we have mentioned, a major problem with conventional statistical analysis is its exclusive
focus on random error as the only source of uncertainty. Early attempts to integrate bias analysis with
random-error analysis applied sensitivity analyses to P-values and confidence limits (Greenland
and Robins, 1985a; Rosenbaum, 2002), for example by repeatedly applying conventional formulas
to the adjusted data obtained from multiple scenarios. Such approaches, however, may convey an
unduly pessimistic or conservative picture of the uncertainty surrounding results. For example, the
lowest lower 95% limit and highest upper 95% limit from a broad-ranging analysis will contain a
very wide interval that could have a coverage rate much greater than 95%. This problem occurs in
part because sensitivity analyses treat all scenarios equally, regardless of plausibility. Probabilistic
bias analysis provides a more coherent approach by integrating the results using explicit prior
distributions for the bias parameters. This approach is the focus of the remainder of the chapter.

We will illustrate probabilistic bias analysis in perhaps its simplest and most common form,
Monte-Carlo sensitivity analysis (MCSA), also known as Monte-Carlo risk assessment. After out-
lining this approach, we apply it to adjustments for an unmeasured confounder, misclassification,
and selection bias, following the outline and example used above for simple sensitivity analysis. We
conclude with a brief description of Bayesian bias analysis, which provides a more general approach
to probabilistic bias analysis based on the same models and distributions. Both approaches can be
thought of as supplying a posterior distribution for the target parameter (e.g., an effect measure), in
the sense described in Chapter 18. The chief limitation of MCSA (which it shares with conventional
frequentist methods) is that it implicitly assumes we have no prior information about the target pa-
rameter and certain other parameters. In contrast, the Bayesian approach can use prior information
on any and all the parameters of the models.

PROBABILISTIC SENSITIVITY ANALYSIS

Probabilistic sensitivity analysis extends simple sensitivity analysis by assigning probability distri-
butions to the bias parameters (Hoffman and Hammonds, 1994; Lash and Silliman, 2000; Greenland,
2001c, 2003c, 2005b; Lash and Fink, 2003a; Phillips, 2003), rather than using a few fixed values
for the parameters. Assuming that the data under analysis provide no information about the bias
parameters, these distributions must be developed based on information outside the data, such
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as experiences in other studies. The distributions for the bias parameters are then Bayesian prior
distributions, as described in Chapter 18.

At each iteration of a Monte-Carlo sensitivity analysis, values for the bias parameters are ran-
domly selected from their assigned probability distributions and then used in the sensitivity-analysis
formulas given earlier to produce an adjusted estimate. There may be adjustments for multiple biases
as well as for random error. Repeating this random selection-and-adjustment process, we generate
a frequency distribution of adjusted estimates of the target parameter. This distribution can be sum-
marized using percentiles, such as the median (the 50th percentile), and using intervals between
percentiles. For example, the 2.5th and 97.5th percentiles of the distribution are the limits of an
interval that contains 95% of the simulated estimates.

Percentiles and intervals from the MCSA distribution depict in a compact and accessible way the
frequency of estimates obtained from repeated adjustment for systematic errors (or both systematic
and random errors) based on the priors. To distinguish them from confidence intervals, we will call
them simulation intervals or MCSA intervals. Conventional confidence intervals implicitly assume
absence of uncontrolled systematic error, and they usually cover the true value with much less than
their stated frequency when this assumption is not approximately correct. In the latter case, if the
priors used in MCSA assign high relative probability to the actual values of the bias parameters, the
resulting simulation interval typically has better coverage of the true value than the corresponding
conventional confidence interval (e.g., Gustafson and Greenland, 2006b).

Suppose that our overall model of bias and random error is a good approximation to the actual
data-generating process, that we have negligible background information about the target parameter,
and that our distributions for the bias parameters fairly reflect our best information about the biases.
The MCSA summaries then provide a reasonable sense of where the target parameter is “most
likely” to be, where “most likely” is meant in a Bayesian (betting) sense as described in Chapter 18.
The final MCSA distribution incorporates biases judged potentially important and random error.
It provides a sense of the total uncertainty about the target parameter that is warranted under the
assumed models and distributions, given the data. This more complete sense of uncertainty stems
from using a model that makes fewer assumptions than are used by conventional statistical methods,
which neglect unmeasured sources of bias.

ANALYSIS OF UNCONTROLLED CONFOUNDING

We will illustrate a Monte-Carlo analysis of confounding by smoking, an unmeasured potential
confounder, in the study of the association between occupational resins exposure and lung cancer
mortality (Table 19–1). Multiple combinations of the bias parameters yielded the 18 adjusted
estimates in Table 19–3. Our probabilistic sensitivity analysis begins by assigning prior probability
distributions to each of the bias parameters, which are the prevalence of smoking in those exposed
to resins (PZ1), the prevalence of smoking in those unexposed to resins (PZ0), and the odds ratio
associating smoking with lung cancer mortality (ORDZ).

As an initial simple illustration, we give PZ0 and PZ1 independent prior distributions that are
uniform between 0.40 and 0.70. These bounds reflect that we know smoking prevalence among men
in the United States was high (over 50%) during the time under study (Centers for Disease Control,
2006), but we do not know how the study population differed from the general population, nor do
we know how smoking was associated with exposure, if at all. To draw a uniform random number p
between 0.40, 0.70, one can use a uniform random-number generator (available in most statistical
software) to get a number u between 0 and 1, and then transform u to p = 0.40 + (0.70 − 0.40)u =
0.4 + 0.3u.

We emphasize that our use of independent uniform distributions is unrealistic. One problem is
that the uniform distribution imposes sharp boundaries on supported (allowed) values, where in fact
no sharp boundary exists, and makes the probabilities jump from 0 to a maximum value at those
boundaries. Another problem is that the uniform distribution makes all supported values equally
probable, when in fact there will be differences in plausibility among these values. We will describe
later how to obtain more realistic distributions for proportions, and how to deal with dependencies.

Our prior distribution for ORDZ is log-normal with 95% limits of 5 and 15. To simulate from
this distribution, at iteration i we draw ln(ORDZ ,i ) from a normal distribution with 95% limits of
ln(5) and ln(15), reflecting our high certainty that the odds ratio ORDZ for the smoking indicator Z
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is between 5 and 15. The solid curve in Figure 19–1a shows the density of this distribution. The
limits imply that the mean of this symmetrical distribution is [ln(15) + ln(5)]/2 = 2.159. Because
the number of standard deviations between the upper and lower 95% limits is 2(1.96) = 3.92, the
standard deviation (SD) of this distribution is [ln(15) − ln(5)]/3.92 = 0.280. To draw a normal
random number w with mean = 2.159 and SD = 0.280, one can use a standard (mean = 0, SD
= 1) normal random-number generator (available in most software) to get a number z, and then
transform z to w = mean + z · SD = 2.159 + z(0.280). Finally, we use w as our draw of ln(ORDZ)
and hence ew as our draw of ORDZ.

To generate a large number (K ) of adjusted estimates based on the chosen distributions, we
proceed as follows. At iteration i (where i goes from 1 to K ) we execute the following steps:

1. For each bias parameter, draw a random value from its prior distribution: PZ0,i from a uni-
form(0.40, 0.70), PZ1,i from a uniform (0.40, 0.70), and ln(ORDZ,i) from a normal with mean =
2.159 and SD = 0.280.

2. Using the bias parameter values drawn in step 1, solve equation 19–1 or 19–3 to obtain the
corresponding ORDX,i adjusted for smoking. Record this value.

Repeating steps 1 and 2 K times generates a frequency distribution of K externally adjusted
ORDX,i . Ideally, K is chosen so that the simulated percentiles of most interest (such as the median
ORDX) are accurate to the number of digits used for presentation (e.g., three digits). This criterion
may require far more iterations than needed to obtain sufficient accuracy for practical purposes,
however.

In this example, after one simulation run of K = 20,000 iterations, the median ORDX,i equaled
1.77 with 95% simulation limits of 1.25 and 2.50, which have a ratio of 2.50/1.25 = 2.00. We use the
ratio of limits to measure the width of the interval because the measure of association being simulated
is itself a ratio measure. Note that this ratio of limits will vary with the chosen interval percentage.
The limits and their ratio reflect only our uncertainty about the bias parameters, as modeled by
their prior distributions. They should be contrasted with the conventional 95% confidence limits
for ORDX of 1.18 and 2.64, which have a ratio of 2.64/1.18 = 2.24. The similar ratios of limits
reflect the fact that our priors induce uncertainty about confounding that is comparable with our
uncertainty about random error.

Incorporating Adjustment for Random Error

We next generate a distribution for ORDX that incorporates both sources of uncertainty (confounding
and random error). We take each adjusted ln(ORDX,i ) and subtract from it a random error generated
from a normal distribution with a standard deviation equal to the conventional standard deviation
estimate for the log odds ratio. From the formula in Chapter 14, that estimated standard deviation

is
∧
SD = (1/45 + 1/94 + 1/257 + 1/945)1/2 = 0.1944. Thus, to incorporate independent random

error into our simulation, we add a third step to each iteration:

3. Draw a number zi from a standard normal distribution. Then construct a smoking and random-
error-adjusted odds ratio

ORDX,i
∗ = exp[ln(ORDX,i ) − zi

∧
SD] [19–17]

If we apply step 3 without steps 1 and 2, the resulting frequency distribution will adjust for random
error only and its 2.5th and 97.5th percentiles will approach the conventional confidence limits (Fig.
19–2a) as K grows large. As described above, repeating steps 1 and 2 without step 3 generates a
distribution of ORDX,i that is adjusted for smoking only. Repeating all three steps together generates
a distribution of ORDX,i

∗ that are adjusted for smoking and for random error. After one simulation
run of K = 20,000 iterations, the median ORDX,i

∗ equals 1.77 with 95% simulation limits 1.04 and
3.03, which have a ratio of 3.03/1.04 = 2.91. In contrast, the conventional 95% confidence limits
for ORDX have a ratio of 2.24, which is only 2.24/2.91 ≈ 77% that of the new ratio.

The larger ratio of upper to lower limits from the simulation results reflects the fact that our priors
allow for some uncertainty about a source of uncontrolled confounding. The simulation returns the
conventional interval if in step 1 of our simulation we make PZ1,i = PZ0,i , for then smoking and
exposure are unassociated in every iteration, and there is no confounding by smoking. In other
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A B

C D

E F

Odds ratios on log scale

Bias parameter with range 0 to 1

Bias parameter with range 0 to 1 Selection bias priors

Bias parameter with range 0 to 1

w = logit(p)

FIGURE 19–1 ● Probability densities for distributions discussed in text. (a) Densities for
unmeasured-confounding example: solid curve (——), normal prior for ln(ORDZ) with mean ln(10) and
standard deviation 0.280; dashed curve (— —), normal prior for ln(ORXZ) with mean 0 and standard deviation
0.639. (b) Densities for unbounded w with location m and scale factor s: solid curve (——), normal density
m = 0 and standard deviation = σ = s = 1.45; dashed curve (— —), logistic density with m = 0, s = 0.8,
σ = 0.8π/31/2 = 1.45; mixed dashed curve (— – – —), logistic density with m = 0 and s = 0.5; dotted curve
(· · · · · ·), logistic density with m = 0 and s = 0.3. (c) Densities for a proportion p, where w = logit(p) has
location m and scale factor s: solid curve (——), logit-normal density with m = 0 and σ = s = 1.45; dashed
curve (— —), logit-logistic density with m = 0 and s = 0.8; mixed dashed curve (— – – —), logit-logistic
density with m = 0 and s = 0.5; dotted curve (· · · · · ·), logit-logistic density with m = 0 and s = 0.3. (d)
Densities for a proportion p, where w = logit(p) has location m and scale factor s: solid curve (——), normal
density with m = logit(0.5) = 0 and σ = s = 1.45; dashed curve (— —), logit-logistic density with m =
logit(0.3) and s = 0.8; mixed dashed curve (— – – —), logit-logistic density with m = logit(0.8) and s = 0.8;
dotted curve (· · · · · ·), logit-logistic density with m = logit(0.9) and s = 0.8. (e) Densities for misclassification
example: solid curve (——), prior for sensitivity Sei of resin exposure classification, where Sei = 0.8 + 0.2
expit(w) and w has a logistic distribution with m = logit(0.8) and s = 0.8; dashed curve (— —), prior for
specificity Spi of resin exposure classification, where Spi = 0.8 + 0.2 expit(w) and w has a logistic distribution
with m = logit(0.7) and s = 0.8. (f) Densities for selection-bias example (semilogarithmic plot): solid curve
(——), normal prior for log selection-bias factor with mean ln(1) = 0 and standard deviation 0.207; dashed
curve (— —), trapezoidal prior density for log selection-bias factor with b l = − ln(0.95), bu = − ln(1.8),
m l = − ln(1) = 0, mu = − ln(1.2).
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A B

C D

E F

Simulated odds ratios adjusted for random error

Simulated odds ratio adjusted for exposure misclassification

Simulated odds ratios adjusted for confounding, misclassification, & selection bias Simulated odds ratios adjusted for all bias and random error

Simulated odds ratio adjusted for selection bias

Simulated odds ratios adjusted for smoking – simulation 2

FIGURE 19–2 ● Histograms of simulation results (K = 20,000) from Monte-Carlo sensitivity analysis of
bias in the resins-lung cancer example. (a) Adjustment for random error only: median = 1.77, 95% simulation
limits = 1.18, 2.64 (equal to the conventional 95% confidence limits), ratio of limits = 2.24. (b) Adjustment
for unmeasured confounding by smoking, without random error: median = 1.77, 95% simulation limits =
1.26, 3.06, ratio of limits = 2.43. (c) Adjustment for misclassification of resin exposure, without random
errror: median = 1.92, 95% simulation limits = 1.46, 4.90, ratio of limits = 3.36. (d) Adjustment for selection
biases, without random error: median = 2.14, 95% simulation limits = 1.32, 3.57, ratio of limits = 2.70.
(e) Adjustment for uncontrolled confounding by smoking, misclassification of resin exposure, and selection
biases, without random error: median = 2.52, 95% simulation limits = 1.21, 7.54, ratio of limits = 6.23.
(f) Adjustment for uncontrolled confounding by smoking, misclassification of resin exposure, and selection
biases, with random error: median = 2.54, 95% simulation limits = 1.10, 7.82, ratio of limits = 7.11.

words, the conventional interval is equivalent to a simulation interval that assumes that there is no
uncontrolled confounding.

Step 3 as given above uses the same normal approximation to random error on the log odds
ratio scale as used in conventional statistics (e.g., Chapters 14 through 16). An alternative that
is sometimes easier to employ (particularly with the record-level adjustments described later) is
resampling. At each iteration, before making the bias adjustment in step 2, a new data set of
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the same size as the old is sampled with replacement from the original data set (separately for
cases and controls in a case-control study, to maintain the original case and control numbers). The
distribution of estimates obtained with this added step adjusts simultaneously for random error and
the unmeasured confounder, whereas the distribution of estimates from the original data adjusts only
for the unmeasured confounder. Rather than using the resampled data directly, more sophisticated
bootstrap approaches use the resampled data to make adjustments for statistical biases as well as
for random error (Efron and Tibshirani, 1994; Davison and Hinkley, 1997; Carpenter and Bithell,
2000).

Building More Realistic Prior Distributions

The uniform distributions assigned to the prevalences PZ1 and PZ0 of smoking in exposed and
unexposed assign the same probability to every possible pair of values for these prevalences. Thus a
70% smoking prevalence in the exposed and 40% prevalence in the unexposed is assigned the same
probability as a 50% prevalence for both. But we have no basis for expecting that any difference
actually occurred, and we think that small differences are more likely than large ones. Furthermore,
if we knew the smoking prevalence in one group, it would lead us to expect a similar prevalence
in the other. As a result of placing overly high probabilities on large differences, the preceding
simulation may exaggerate the uncertainty due to confounding. It may also understate uncertainty
by excluding improbable—but possible—large values for the differences. One way to give higher
probabilities to pairs with smaller differences, and thus more accurately reflect our uncertainty,
is to generate the pairs so that the two prevalences are correlated. We will discuss generation of
correlated pairs under misclassification.

Another way to better represent our uncertainty is to switch to a bias formula in which it
is reasonable to treat the bias parameters as independent (Greenland, 2001c). Formula 19–3 is an
example. Using this formula, instead of sampling from a distribution for PZ1 we may instead sample
from a distribution for ORXZ, the exposure-confounder odds ratio. Unlike with PZ1, knowing ORXZ
will have little if any influence on our expectation for PZ0, so giving ORXZ and PZ0 independent
priors is not unreasonable.

Another feature of the uniform prior distributions for PZ1 and PZ0 is that they impose sharp
bounds on ORXZ, excluding as impossible values that are less than (1 − 0.7)0.4/0.7(1 − 0.4) = 2/7
or more than 0.7(1 − 0.4)/(1 − 0.7)0.4 = 7/2 = 3.5. Because we do not know for certain that ORXZ
is within these bounds, we can better reflect our uncertainty by using a distribution that allows some
chance of falling outside these bounds. For illustration, suppose that we assign ln(ORXZ) a normal
distribution with 95% prior limits at the extreme values from the uniform distributions for PZ1 and
PZ0, which are ± ln[0.7(1 − 0.4)/(1 − 0.7)0.4] = ± ln(3.5). The mean of this normal distribution
is 0, and the width of the 95% prior interval is 2 · ln(3.5), so the SD is 2 · ln(3.5)/3.92 = 0.639. The
dashed curve in Figure 19–1a shows the density of this distribution. We then replace step 1 above
with

1.′ For each bias parameter, draw a random value from its prior distribution: PZ0,i from a uniform
distribution (0.40, 0.70), ln(ORXZ,i ) from a normal distribution with mean = 0 and SD = 0.639,
and ln(ORDZ,i ) from a normal distribution with mean = 2.16 and SD = 0.280.

Repeating steps 1′ through 3 K times generates a new frequency distribution of K externally
adjusted ORDX,i (Fig. 19–2b) and also a frequency distribution of K externally adjusted ORDX,i

∗
that are adjusted for random error as well. After one simulation run of K = 20,000 iterations, the
median ORDX,i

∗ equaled 1.77 with 95% simulation limits 1.05 and 3.47, which have a ratio of
3.47/1.05 = 3.30. The conventional 95% confidence limits for ORDX have a ratio of 2.64/1.18 =
2.24, which is only 2.24/3.30 ≈ 2/3 that of the new ratio. The earlier simulation limits based on
unrealistic independent priors have a ratio of 3.03/1.04 = 2.91, which is only 2.91/3.30 = 88%
that of the new ratio.

Analysis of Uncontrolled Confounding via Direct Bias Simulation

Confounding analyses are sometimes conducted by placing a prior directly on the amount of con-
founding in the conventional estimate (Robins et al., 1999b; Bodnar et al., 2006). For example, if
earlier studies of the same association measured the confounder in question and reported both the
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unadjusted and adjusted estimates, the adjusted could be divided into the unadjusted to provide an
estimate of the bias due to failing to adjust for the confounder; one can also construct confidence
intervals for this ratio (Greenland and Mickey, 1988). These results and other considerations can
be used as a basis for a prior on the size of the bias factor in a study that fails to adjust for the
confounder.

SOME EASILY GENERATED DISTRIBUTIONS

As mentioned earlier, the uniform is a rigid and unrealistic distribution. Although prior distributions
are usually little more than educated guesses or bets about the parameters (hopefully reflecting
relevant external data), flexible alternatives are needed to capture the rough distinctions that can be
made (e.g., among “likely,” “probable,” “reasonable,” and “implausible” values). One alternative
we have illustrated for log odds ratios is the normal distribution. This choice can be adequate as
long as our uncertainty about the parameter can be approximated by a symmetric, unbounded,
and peaked distribution. Often, however, our uncertainty is better represented by a distribution
with asymmetries, boundaries, or broad areas of equally probable values. Although normal random
numbers can be transformed to capture these properties, other distributions better suited for this
purpose can be derived from uniform random numbers.

Logistic Distributions

Consider a number u generated from the uniform distribution between 0 and 1. Let m and s be any
fixed numbers with s > 0, and let

w = m + s · logit(u) where logit(u) = ln(u) − ln(1 − u) [19–18]

The new random number w has what is known as a logistic distribution recentered at m and
rescaled by s. It has mean, median, and mode at m, and scale s. Like a normal distribution, it is
symmetric with an unbounded range, but it has heavier tails, reflected in the fact that the standard
deviation of a logistic distribution is σ = (π/31/2)s ≈ 1.81s, or 81% larger than the scale factor s.
In contrast, for a normal distribution, the standard deviation σ and the scale factor s are equal
(σ = s), which is why elementary statistics books rarely distinguish the scale factor from the
standard deviation. Figure 19–1b shows densities of logistic distributions for various choices of s,
along with the density of a normal distribution with σ = 1.81(0.8) ≈ 1.45 for comparison (solid
curve). Relative to the normal, the logistic spreads mass from the center hump into the tails. Thus a
logistic prior can be used as an alternative to a normal prior when extreme values are not considered
as highly improbable as a normal prior makes them appear.

The logistic prior can be generalized further into recentered and rescaled log-F distributions (also
known as generalized-conjugate distributions). These distributions can generate a large variety of
shapes, including skew distributions, and can be extended further to encompass multiple correlated
parameters (Greenland, 2003b, 2007b; Jones, 2004). These distributions can also be translated into
“prior data,” along the lines described in Chapter 18 (Greenland, 2007b).

Transformation to Proportions and Bounded Variables

Now let p = expit(w) = ew/(1 + ew ) where w has an unbounded distribution with median m, such
as a normal, logistic, or log-F distribution. The new random number p has a distribution from 0 to
1 with median expit(m). Consider first the special case in which w has a logistic distribution with
m = 0. The distribution of p is then symmetric about 0.5 and is uniform if, in addition, s = 1. If
s < 1, however, the distribution of p will give more probability to the middle values (near 0.5) than
to extreme values (near 0 and 1), and if s > 1 it will give more probability to the extremes (near 0
and 1) than to the middle. For s = 0.9, the distribution of p is largely flat from 0.1 to 0.9, then falls
off, and for s = 0.8, the distribution of p is a rounded hill or semicircle between 0 and 1. As s gets
smaller, the hill becomes less rounded and more peaked; for s = 0.3 the density of p becomes a
bell curve between 0 and 1. Figure 19–1c shows the density of p for various choices of s when w
is logistic and m = 0, and also for p when w is normal with σ = 1.45 and m = 0. We caution that
for logistic distributions with s > 1 or normal distributions with σ > 1.6, the resulting density for
p is bimodal.
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With nonzero m, the distribution of p becomes skewed even if the starting distribution of w =
logit(p) is symmetric. Suppose that we start with a symmetric distribution for w that is determined
by its median m and scale factor s, such as a normal or a logistic distribution. To skew the distribution
of p to a median of, say, 0.3, we shift w by m = logit(0.3), so that w = m + s · logit(u), where u
is again uniform. Thus, starting from a uniform u, we get

p = expit(w) = expit[m + s · logit(u)]

Figure 19–1d shows the density of the distribution of p for various choices of m when s = 0.8. If we
take the logit of p, we get back the logistic or normal distribution that we started with. Therefore, by
analogy with the term “log-normal” for a variable whose log has a normal distribution, we say that
the distribution of p = expit(w) is logit-logistic if w is logistic, and is logit-normal if w is normal
(Lesaffre et al., 2006).

We can also shift and rescale the range of p to get yet another random number q that falls
between a desired minimum (lower boundary) b1 and maximum (upper boundary) bu, by setting
q = b1 + (bu − b1)p. If w = logit(p) has a distribution determined by its median m and scale factor
s, four parameters specify the distribution of q: m, s, and the boundaries b1 and bu. The median of
qis then b1 + (bu− b1)expit(m).

TRAPEZOIDAL DISTRIBUTIONS

A trapezoidal distribution has as parameters a minimum (lower boundary) b1, a maximum (upper
boundary) bu, a lower mode m1, and an upper mode mu. The minimum and maximum set the range
of values allowed (supported) by the distribution, and the lower and upper modes set a zone of
indifference in which all values are considered equally probable. The density of the distribution
has a lower triangular “tail” sloping upward between b1 and m1, a flat “table” between m1 and mu,
and an upper triangular “tail” sloping downward between mu and bu. The density is symmetric if
bu − mu = m1 − b1, and becomes more peaked as mu and m1 become closer. In the extreme case
with m1 = mu, the density becomes triangular with a sharp peak at the modes. At the other extreme,
at which the lower mode equals the minimum (m1 = b1) and the upper mode equals the maximum
(mu = bu), the density becomes uniform.

A trapezoidal random number t can be obtained from a random uniform (0, 1) number u as
follows:

Let v = [b1 + m1 + u · (bu + mu − b1 − m1)]/2. Then

(i) If m1 ≤ v ≤ mu, then t = v .

(ii) If v < m1, then t = b1 + [(m1 − b1)(2v − m1 − b1)]1/2. [19–19]

(iii) If v > mu, then t = bu − [2(bu − mu)(v − mu)]1/2.

The trapezoidal distribution is a useful candidate prior for logically bounded quantities such as
proportions, and for other quantities when one is comfortable with placing sharp lower and upper
bounds on the possible values. Uncertainty about the bounds to use can be accommodated by setting
those bounds very wide to accommodate all remotely reasonable possibilities, thus making the tails
long (i.e., making m1 − b1 and bu − mu large relative to mu − m1).

GENERATING DEPENDENT VARIABLES

So far we have discussed only use of independent distributions for the different bias parameters.
For realism, however, it is sometimes essential to build dependence into these distributions. Earlier
we noted that the prevalence of smoking in those exposed to resins (PZ1) and in those unexposed
to resins (PZ0) were likely similar, although both may have been in a wide range (we used 0.4 to
0.7). More generally, when considering analogous classification or selection probabilities across
different subgroups (e.g., cases and controls, men and women), it is often unrealistic to consider
the probabilities equal (nondifferential) across the subgroups, but it is usually even more unrealistic
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to pretend that they are completely unrelated, for we often expect these probabilities to be similar
across the subgroups. Even if we think that they are not necessarily close together, finding evidence
that a probability of misclassification (or of refusal) is high in one subgroup will lead us to think
it high in other subgroups. In other words, we usually expect analogous bias parameters to be
positively associated across subgroups.

If we can translate the degree of association we expect between two unknown parameters π and
τ into a correlation coefficient r , there is a simple way to generate pairs of random draws of π and
τ that have that correlation. At each iteration, we first generate three (instead of two) independent
random numbers, labeled h1, h2, h3. These three numbers need not come from the same distribution;
all that matters is that they are drawn independently and have the same variance. Then the pair of
random numbers

g1 = r1/2h1 + (1 − r )1/2h2 g2 = r1/2h1 + (1 − r )1/2h3 [19–20]

will have correlation r across the iterations. Now g1 and g2 may not have the location, spread,
or shape desired for the π and the τ distributions (i.e., they might not have the desired mean and
standard deviation, or the desired bounds, or desired modes). If, however, the hk are all drawn from
distributions with mean 0 and variance 1, then g1 and g2 will also have mean 0 and variance 1; in
that case, to get different means μ1, μ2 and variances σ 2

1, σ 2
2 for the pair members, we use instead

μ1+ σ 1g1, μ2+ σ 2g2, which will still have correlation r . For this reason it is often easiest to start
with distributions for hk that have means of 0 and variances of 1, and then transform the output
pair to have the desired means and variances. This approach can be generalized to create multiple
correlated parameters via hierarchical modeling (Greenland, 2003c, 2005b).

Use of equation 19–20 will be illustrated in application to differential misclassification adjust-
ment. If the inputs hk are normal, the output pair g1 and g2 will also be normal. If the inputs hk

have the same distribution (e.g., all logistic or all trapezoidal), the distributions of the outputs g1

and g2 will tend to have a more normal shape than the inputs. When using equation 19–20 with
non-normal inputs, one should create histograms of the final generated variables to check that they
have acceptable distributions. If we require non-normality of one or both of the final pair members,
we can transform g1 or g2 or both in a nonlinear fashion. For example, starting with normal g1 and
g2, we could use exp(g1) and expit(g2) to obtain a final pair with exp(g1) a positive log-normal
number and expit(g2) a logit-normal number between 0 and 1. Nonlinear transforms sometimes
have little effect on the final pair correlation if r is positive, but they can be changed dramatically
by certain transformations (Greenland, 1996e). Hence if nonlinear transforms are used, one should
check the actual correlation as well as means and variances of the final pairs generated.

ANALYSIS OF MISCLASSIFICATION

Consider again Table 19–4, which shows the results of our initial sensitivity analysis of misclas-
sification. The four bias parameters that govern these results are the sensitivities and specificities
of exposure classification among cases and controls. For a Monte-Carlo sensitivity analysis of
misclassification paralleling Table 19–4, one needs to assign prior distributions to the four bias
parameters. A simple way to use the simulation draws from these distributions is as follows. At
each iteration, the misclassification-adjusted counts B1i , B0i , A1i , and A0i are derived from Sei

and Spi using equations 19–7 and 19–8. The misclassification-adjusted odds-ratio estimate from
iteration i is then ORDX,i = A1i B0i/A0i B1i . Finally, formulas 19–7 and 19–8 are applied iteratively
using draws from these distributions.

Nondifferential Misclassification

To continue the resins-lung cancer example assuming nondifferential misclassification, at each
iteration we draw two independent uniform random numbers u1, u2 and transform them to logistic
draws g1 = logit(0.9) + 0.8 · logit(u1) and g2 = logit(0.7) + 0.8 · logit(u2). We then set

Sei = 0.8 + 0.2 · expit(g1) and Spi = 0.8 + 0.2 · expit(g2)

which force Sei and Spi to lie between 0.8 and 1, with a median of 0.8 + 0.2(0.9) = 0.98 for
Sei and a median of 0.8 + 0.2(0.7) = 0.94 for Spi . Figure 19–1e shows the resulting densities
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for Sei and Spi . After one simulation run of K = 20,000 iterations, the median ORDX,i adjusted
for nondifferential misclassification is 2.01, and the 95% simulation limits are 1.78 and 4.71, which
have a ratio of 2.65. This ratio is 18% greater than the ratio of the conventional confidence limits.
As in the confounding examples, one can also account for random error by applying formula 19–17
(step 3) to generate ORDX,i

∗ from the ORDX,i . With random error added, the median ORDX,i
∗ is 2.10

and the 95% simulation limits are 1.32 and 4.99, which have a ratio of 3.78. These limits are shifted
upward relative to the conventional limits of 1.18 and 2.64, and have a ratio about 70% greater than
that of the conventional limits. This shift arises because the assumed exposure misclassification is
nondifferential, and other, downward sources of bias are not included in the adjustment model.

Treatment of Negative Adjustments

To avoid negative adjusted counts, the prior distributions for sensitivity and specificity must
be bounded by Se ≥ B1

∗/M0 and Sp ≥ B0
∗/M0 among noncases, and by Se ≥ A1

∗/M1 and
Sp ≥ A0

∗/M1 among cases. If a distribution is used that extends into the region of negative adjust-
ment (i.e., if it allows draws that violate any of these inequalities), there are several options. If one
regards the region as a reasonable possibility and regards the prior distribution as fair, one may set
the negative counts to 0 and then tally the resulting 0 or infinite odds ratios in the final simulation
percentiles. On the other hand, if one does not regard the region as realistic, one can either revise
the prior distribution to fall above the region, or let the simulation do this revision automatically by
having it discard draws that fall in the region.

If draws are discarded, the result is the same as using a distribution that is truncated at the point
where the region of negative adjustments begins. One should thus check whether the resulting trun-
cated distribution still appears satisfactory. As an example, Fox et al. (2005) used trapezoidal prior
distributions for the parameters in the resins-lung cancer example. For nondifferential misclassifica-
tion scenarios, at Monte-Carlo iteration i , Fox et al. independently drew a sensitivity Sei and a speci-
ficity Spi from a trapezoidal distribution with b1 = 75%, bu = 100%, m1 = 85%, and mu = 95%.
This distribution results in negative adjusted counts when Spi ≤ B0

∗/M0 = 945/1,202 = 0.786.
Discarding these draws (as Fox et al. did) truncates the distribution at 0.786, so that the actual
simulation distribution is no longer trapezoidal. Instead, the probability of Sp < 0.786 is 0. The
resulting prior density jumps from 0 to about (0.786 − 0.75)/(0.85 − 0.75) ≈ 40% of its maximum
at 0.786, and continues upward, paralleling the original trapezoidal density.

Using this truncated prior, the median adjusted odds ratio obtained by Fox et al. was 2.5, with
95% simulation limits of 1.7 and 14 before accounting for random error, and limits of 1.4 and
15 (ratio 15/1.7 ≈ 9) after accounting for random error. The distribution assigned to sensitivity
and specificity was meant to parallel the fixed values used in Table 19–4, rather than to reflect
actual prior beliefs about the values; as a consequence, all of the adjusted odds ratios from the
earlier sensitivity analysis that assumed nondifferential misclassification (the descending diagonal
of Table 19–4) fall within the 95% simulation limits.

Record-Level Adjustment

To obtain their results, Fox et al. (2005) actually used a simulation procedure more complex but
approximately equivalent to the one based on equations 19–7 and 19–8. At each iteration, the
adjusted counts A1,i and B1,i derived from Sei and Spi are used to compute the prevalences among
cases and controls, then predictive values are estimated from equations 19–9 and 19–10. For each
data record, these predictive values are used to impute the “true” values of exposure from the
observed misclassified values. The resulting adjusted data set at iteration i is then used to compute
an adjusted odds ratio. The advantage of this procedure is that it retains the same form even if
further adjustments are needed (e.g., for age, sex, and other confounders recorded in the data). It also
parallels multiple imputation for measurement-error adjustment based on validation data (Cole et al.,
2006), and so is easily combined with imputations for missing data. The disadvantage is that it can
be computationally demanding, because it requires construction of a new data set at each iteration.

Differential Misclassification

To allow for differential misclassification, we must generate separate sensitivities Se1,i , Se0,i and
separate specificities Sp1,i , Sp0,i for cases and controls. In doing so, however, we must note that case
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sensitivities are not a priori independent of the control sensitivities, nor are the case specificities a
priori independent of the control specificities, and take these facts into account in the simulations.
For example, if we found out the sensitivity and specificity for the controls, the information would
definitely influence the distributions we would assign to the case sensitivity and specificity. One
way to address this dependence in the resins-lung cancer example is as follows. At each iteration i ,
we:

1. Draw three independent uniform random numbers u1, u2, u3, transform them to logistic numbers
hk = logit(0.9) + 0.8 · logit(uk), and use formula 19–20 to generate pairs of numbers g1 and g2

from the hk , with correlation r = 0.8. We then set

Se1,i = 0.8 + 0.2 · expit(g1) and Se0,i = 0.8 + 0.2 · expit(g2)

2. Draw three more independent uniform random numbers u4, u5, u6, transform them to logistic
numbers hk = logit(0.7) + 0.8 · logit(uk), and use formula 19–20 to generate pairs of numbers
g3 and g4 from the hk , with correlation r = 0.8. We then set

Sp1,i = 0.8 + 0.2 · expit(g3), Sp0,i = 0.8 + 0.2 · expit(g4)

Se1,i , Sp1,i are then used to adjust the case counts via formula 19–8, and Se0,i , Sp0,i are used to
adjust the control counts via formula 19–7.

After one simulation run of K = 20,000 iterations, the correlation of Se1,i and Se0,i was 0.76 and
the correlation of Sp1,i and Sp0,i was 0.78. The median ORDX,i was 1.92 and the 95% simulation
limits were 1.46 and 4.90, which have a ratio of 3.36 (Fig. 19–2c). This ratio is 3.36/2.24 ≈ 1.5
times larger than the ratio of the conventional limits, and is 3.36/2.65 ≈ 1.27 times larger than the
ratio of the limits from the nondifferential simulations. Upon adding random error using formula
19–17, the median ORDX,i

∗ is 2.01 and the 95% simulation limits are 1.20 and 5.13, which have
a ratio of 4.28 (Fig. 19–2d). This ratio is 4.28/3.36 ≈ 1.27 times larger than that without random
error.

We use the same classification priors for cases and controls, because in this study we have no
basis for presuming that any difference exists. By generating separately the parameters for cases
and controls with a correlation less than 1, however, we produce a limited and random degree
of differentiality at each draw. The distribution of differentiality is partially controlled by the
correlation parameter r , with less differentiality expected as r approaches 1. With the same priors
for cases and controls, a correlation of 1 corresponds to nondifferentiality, because it would make
g1 = g2 and g3 = g4 and thus create the same sensitivity and specificity for cases and controls at
every iteration. The distribution of differentiality is also controlled by the final transformation to
sensitivity and specificity, with less differentiality expected as the bounds become narrower. Equality
of the distributions for cases and controls simply reflects our ignorance about how differentiality
might have occurred, if it occurred.

Had the exposure histories been based on subject recall rather than on records, we would have
made the case sensitivity distribution higher and the case specificity distribution lower relative to
the control distributions, to build some recall bias into our priors. A more-detailed model for the
underlying continuous exposure measurement could also lead to a difference in the case and control
distributions for sensitivity and specificity, even if the continuous error distribution was the same
for both cases and controls (Flegal et al., 1991).

The sensitivity distribution is set higher than the specificity distribution because the dichotomy
into exposed versus unexposed corresponds to positive exposure versus no exposure in the original
quantitative exposure evaluation. It thus favors sensitivity over specificity. If a very high cutpoint
is used, the sensitivity distribution might be set lower than the specificity distribution.

Both the differential and nondifferential results are more compatible with larger odds ratios
than the conventional result. One should bear in mind that disagreements are due entirely to the
different priors underlying the analyses. The conventional result assumes perfect classification and
gives a result equivalent to a simulation in which the prior probability that Se = Sp = 1 is 100%.
In contrast, our simulations allow for the possibility that both false-positive and false-negative
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exposure misclassification might be common. One’s preferences should depend on which priors
better reflect one’s own judgment about the exposure classification that generated Table 19–1.

In all the preceding simulations, sensitivities were generated independently of specificities.
An independence judgment might be justified if there were forces that move the correlation of
sensitivity with specificity in the positive direction, other forces that moved the correlation in the
negative direction, and we do not know the relative strength of these forces (Greenland, 2005b). As
an upward force on the correlation, the association of the original quantitative exposure assessment
with true exposure level is unknown: If it is high, then both sensitivity and specificity will be high;
and if it is low, then both sensitivity and specificity will be low. As a downward force, sensitivity
will decline and specificity will increase as the cutpoint chosen for dichotomization is increased. An
ideal analysis would attempt to model the relative contribution of these forces to the final correlation.
In the present example, however, the cutpoint is known and at its minimum, hence arguably the
downward force is eliminated and sensitivity and specificity should have been given a positive
correlation.

ANALYSIS OF SELECTION BIAS

As noted earlier, when the factors affecting selection are measured on all study subjects and are
not affected by exposure or disease, the selection bias produced by the factors can be controlled by
adjusting for the factors. Thus, if such a factor Z is unmeasured but we can assign prior distributions
to its prevalence and its associations with exposure and disease, we can conduct a Monte-Carlo
sensitivity analysis of selection bias using the formulas presented earlier for analysis of confounding.
When selection bias arises because exposure X affects Z and Z influences selection, the inverse of
formula 19–3 gives the selection bias produced by stratifying on Z . If Z is measured, the quantities
ORDZ and ORXZ can be estimated from the data, and the simulation requires only a prior on the
prevalence of Z = 1 within one of the exposure–disease combinations, e.g., prevalence odds OZ0

among the unexposed noncases. If Z is unmeasured however, priors on ORDZ and ORXZ will be
needed as well.

If data are available that indicate the size of the selection bias factor SAj SB0/SA0SB j in equation
19–16, they can be used to create a prior directly for this factor. Draws from this prior are then
divided into the odds-ratio estimate to provide a selection-bias adjusted estimate from that iteration.
This approach generalizes easily to regression-model coefficients (Greenland, 2003c).

Consider again the resins-lung cancer example. In this study, 71 of 210 (34%) lung cancer cases
and 787 of 1,989 (40%) control deaths were omitted from the analysis because of lack of adequate
job records for exposure reconstruction, due mostly to routine record disposal during the history
of the facility under study (Greenland et al., 1994). If lack of records were strongly related to both
resin exposure and cause of death, considerable selection bias could result. The magnitude could
be bounded by the (absurd) extremes in which either all 71 missing cases were exposed and all 787
missing controls were unexposed, which yields a bias factor of (45 + 71)(945 + 787)/45(945) =
4.7, or all 71 missing cases were unexposed and all 787 missing controls were exposed, which
yields a bias factor of 94(257)/(94 + 71)(257 + 787) = 0.14.

Because we see only a small association between lack of records and cause of death, we expect
the bias (if any) from lack of records to be small; hence these bounds are of no help. Instead, we
assign a normal prior to the component of bias in the log odds ratio due to missing records with
mean 0 (no bias) and standard deviation 0.207 (Fig. 19–1f, solid curve), which yields 95% prior
probability of the bias factor falling between exp(±1.96 · 0.207) = 0.67 and 1.5, and 2:1 odds of
the factor falling between exp(±0.97 · 0.207) = 0.82 and 1.22. Draws z from a standard normal
distribution are thus used to adjust the resin-lung cancer odds ratio by dividing exp(0.207z) into the
odds ratio. A more thorough analysis would attempt to relate lack of records to dates of employment,
trends in resin use, and trends in mortality from lung cancer and the control diseases (lack of records
was far more frequent among earlier employees than later employees, and was modestly associated
with cause of death).

Other sources of selection bias include use of lung cancer deaths as a substitute for incident
cases, and use of other deaths as controls. To build a prior distribution for these sources, assume
for the moment that lack of records is not a source of bias. Given the relative socioeconomic
homogeneity of the underlying occupational cohort, we expect similar survival rates among the
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exposed and unexposed, making it plausible that the use of deaths for cases produced little bias.
Thus we neglect case-selection bias, i.e., we assume that SA1 ≈ SA0. On the other hand, use of other
deaths as controls is suspect. For example, if resins exposure is positively associated with death
from these control causes of deaths, controls will exhibit too much exposure relative to the source
population (i.e., SB1 > SB0), leading to SB0/SB1 ≈ SA1SB0/SA0SB1 < 1 if SA1 ≈ SA0. Furthermore,
if resin association with control deaths were the sole source of selection bias, the inverse of this
bias factor, SB1/SB0, would equal the rate ratio for that association (for related discussion, see
“Number of Control Groups” in Chapter 8). Thus a prior for the control selection bias in this
example is approximated by a prior for the inverse of the odds ratio relating resin exposure to the
control causes of death. Equivalently, a prior for the log selection-bias factor is approximated by
the negative of the prior for the log odds ratio relating exposure to control deaths.

The control deaths were primarily from cardiovascular causes, which were chosen based on a
prior that assigned low probability to an association with the study exposures. Even if there were
an association, occupational factors for cardiovascular deaths usually have small ratios (less than
smoking–cardiovascular disease rate ratios, which are typically on the order of 2), as one would
expect owing to the high frequency and heterogeneity of cardiovascular deaths. To roughly capture
these ideas, we assign a trapezoidal prior to the log selection-bias factor for control selection bias,
with b1 = − ln(.95), bu = − ln(1.8), m1 = − ln(1) = 0, and mu = − ln(1.2) (Fig. 19–1f, dashed).
Draws w from this distribution are then used to adjust the resin-lung cancer odds ratio by dividing
ew into the odds ratio.

Combining the two selection-bias adjustments under the assumption of independence of the
sources, at each iteration we draw a standard normal z and a trapezoidal w , then divide the resin–
lung cancer odds ratio by exp(0.207z + w). After one simulation run with K = 20,000 iterations,
the median ORDX,i is 2.14 and the 95% simulation limits are 1.32 and 3.57, which have a ratio of
2.70 (Fig. 19–2d). This ratio is 2.70/2.24 ≈ 1.21 times larger than the ratio of the conventional
limits. After accounting for random error using formula 19–17, the median ORDX,i

∗ is 2.15 and the
95% simulation limits are 1.14 and 4.14, which have a ratio 3.63, 3.63/2.24 ≈ 1.62 times larger
than the ratio of the conventional limits. The conventional limits are obtained from a simulation in
which the priors for both selection-bias factors assign 100% probability to 1 (no bias).

Another form of selection bias arises in meta-analyses, in which studies may be selectively
excluded because of inclusion criteria or publication bias. A number of methods for dealing with
publication bias have been developed, including sensitivity analyses; see Chapter 33 for citations.

COMPARATIVE AND COMBINED ANALYSES

Table 19–5 summarizes the results of the Monte-Carlo analyses given here. With the example
prior distributions, it appears that random error, confounding, and selection bias make similar
contributions to uncertainty about the resins-lung cancer odds ratio, whereas exposure classification
errors are a somewhat larger source of uncertainty.

Extension of these methods to multiple probabilistic bias analysis is straightforward if the param-
eters from each source of bias (confounding, exposure misclassification, disease misclassification,
confounder misclassification, selection bias) can be treated as if they are independent. An important
caution is that, even if the parameters from each source are independent, the order of adjustment
can still matter if misclassification adjustment is made. As discussed earlier, adjustments should
be made in reverse order of their occurrence. Thus, some misclassification adjustments may come
before selection-bias adjustments, whereas others may come after.

If all the tabular data counts are large and random error is independent of the bias parameters,
the order in which random error is added will usually not matter much, especially when (as in the
present example) random error turns out to be small compared with potential biases. Nonetheless,
the sensitivity of random-error adjustment to order can be investigated by comparing results from
resampling the data first, versus adding random error last as in formula 19–17. No ordering is uni-
versally justified, however, because random variation can occur at any stage of the data-generating
process. Exposure and disease occurrence have random components (which lead to random com-
ponents in confounding), and selection and classification errors have random components. An ideal
analysis would also model these sources separately, although again, given large enough data counts,
their combination into one step may have little effect.
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In the resins-lung cancer example, we assume that the study problems occurred in the order
of confounding, selection bias, and misclassification. Thus, at each iteration of our multiple-bias
analysis, we

1. Draw sensitivities and specificities to adjust the odds ratio for misclassification.
2. Draw the selection-bias factors to divide into this misclassification-adjusted odds ratio.
3. Draw the independent confounding parameters PZ0, ORDZ, ORXZ, to create a confounding factor

to divide into the odds ratio adjusted for misclassification and selection.

We use the priors illustrated earlier, allowing differential misclassification. After one simulation
run of K = 20,000 iterations, the resulting median ORDX,i is 2.52 and the 95% simulation limits
are 1.21 and 7.54, which have a ratio of 6.23 (Fig. 19–2e). This ratio is 6.23/2.24 ≈ 2.8 times larger
than the ratio of conventional limits, demonstrating that random error is of far less importance than
total bias uncertainty under our priors. Adding random error using formula 19–17 gives a median
ORDX,i

∗ of 2.54 and 95% simulation limits of 1.10 and 7.82, which have a ratio of 7.11 (Fig. 19–2f).
This ratio is 7.11/2.24 ≈ 3.2 times larger than the ratio of conventional limits, demonstrating that
the conventional limits grossly understate the uncertainty one should have if one accepts our priors.

Figures 19–2a through 19–2d display the separate sources of uncertainty that contributed to
the final risk assessment in Figure 19–2f. Other sets of priors could give very different results.
Nonetheless, we expect that any set of priors that is reasonably consistent with the limited study
design (a record-based mortality case-control study in an occupational cohort) will also yield a
combined simulation interval that is much wider than the conventional confidence interval, because
the simulation interval will incorporate uncertainty about biases as well as random error.

The priors we chose did lead to a point of agreement with the conventional analysis: Both
analyses suggest that workplace exposure to resins is associated with lung cancer in the underlying
cohort. In our final combined assessment, the proportion of simulations in which the adjusted OR
estimate fell below 1 was 0.014; the analogous conventional statistic is the upper-tailed P-value
for testing ORDX ≤ 1, which from Table 19–1 is 0.002. We emphasize, however, that this degree
of agreement with the conventional result might not arise from bias analyses with other defensible
sets of priors.

Our assessment assumed independence among the different sources of uncertainty (random
error, confounding, misclassification, selection bias). Parameter dependencies within and between
the different steps (1 to 3) can be accommodated by inducing correlations using formula 19–20.
Our ability to specify such correlations knowledgeably is often limited. Nonetheless, information
about the mechanisms responsible for the correlations is often available; for example, vitamin
intakes estimated from food-intake data have substantially correlated errors owing to the errors
in capturing food and supplement consumption. Hierarchical models (Chapter 21) can be used to
capture available information about such correlations (Greenland, 2003c, 2005b).

BAYESIAN AND SEMI-BAYESIAN ANALYSIS

Bayesian approaches to bias analysis begin with a bias model as used in a sensitivity analysis, then
add prior distributions for the bias parameters. Thus they involve the same initial work, inputs, and
assumptions as probabilistic sensitivity analysis (PSA). They may also employ prior distributions
for other parameters in the problem, such as one for the effect under study. As discussed in Chapter
18, if all parameters are given an explicit prior, the analysis is fully Bayesian; otherwise it is semi-
Bayesian. To describe these methods, we will use the term distribution to refer to what is technically
known as a probability density or mass function.

If only the bias parameters are given explicit priors, the only difference between semi-Bayesian
analysis and PSA is in the ensuing computations. To outline the differences, suppose that:

• Y represents the observed data under analysis; above, Y is the four counts in Table 19–1.
• β represents all the bias parameters; above, β would contain the parameters involving an unmea-

sured confounder, sensitivities and specificities, and selection-bias factors.
• α represents all other parameters in the problem; above, α would contain the effect of interest

(the log odds ratio adjusted for all bias and random error) and the true exposure prevalence.
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• P(β) represents the joint prior distribution of the bias parameters; if, as above, parameters for
different bias sources are given independent priors, P(β) is just the product of all the bias-prior
distributions.

• P(ε) represents the assumed distribution of random errors; above, P(ε) was approximated by a
normal distribution on the log odds-ratio scale.

For a Monte-Carlo (simulation) analysis, PSA iterates through draws of the bias parameters β from
their prior P(β), along with draws of random errors ε from P(ε), then plots or tabulates the adjusted
results, as in Table 19–5. It is thus a simple extension of classical sensitivity analysis using priors
to choose the possible bias-parameter values, and adding random-error adjustment.

In contrast, a Monte-Carlo Bayesian analysis iterates through draws of all parameters from the
joint posterior distribution P(α, β|Y ) for both α and β. From Bayes’s theorem (Chapter 18), the
posterior P(α, β|Y) is proportional to P(Y |α, β)P(α, β), where P(α,β) is the joint prior distribution
for α and β and P(Y |α,β) is the probability of seeing the data Y given the parameters α and β.
The latter data probability is a function of α, β, and the random-error distribution P(ε). In a semi-
Bayesian bias analysis, all values of α are taken to have equal prior probability, in that P(α, β) is
assumed to equal P(β); i.e., a “noninformative” prior for α is assumed. The semi-Bayesian posterior
distribution is thus proportional to P(Y |α, β)P(β).

Posterior sampling can be computationally demanding and technically subtle, especially when
the data contain no direct information about certain parameters, as in the bias models used earlier
(e.g., see Carlin and Louis, 2000, Gelman et al., 2003, Gustafson, 2003, 2005). Computational details
can be largely handled by free Internet software such as WinBUGS (MRC, 2004), however. As a
result, bias analyses using Monte-Carlo Bayesian methods have begun to appear in the epidemiologic
literature (Gustafson, 2003; Steenland and Greenland, 2004; Chu et al., 2006; McCandless et al.,
2007). There are also analytic approximations to Bayesian analyses that are easy to implement using
ordinary commercial software, such as the prior-data approach in Chapter 18 (Greenland, 2006a,
2007a, 2007b), and that can be adapted to bias analysis and combined with Monte-Carlo methods
(Greenland and Kheifets, 2006).

Under the models for bias discussed earlier in this chapter, PSA with random error included tends
to give results similar to semi-Bayesian bias analysis, provided the priors do not lead to impossible
outputs (e.g., negative adjusted counts) in the sensitivity analysis (Greenland, 2005b). For example,
in an analysis of smoking as an unmeasured confounder in an occupational cohort study of silica
exposure and lung cancer, Steenland and Greenland (2004) obtained conventional 95% confidence
limits of 1.31 and 1.93. In contrast, the 95% MCSA simulation limits (including random error) were
1.15 and 1.78, while the Bayesian posterior simulation limits using the same confounding prior and
a noninformative prior for the silica effect were 1.13 and 1.84. In general, we expect the PSA and
semi-Bayesian results to be similar when, under the assumed model and prior, the data provide
no information about the bias parameters, i.e., when the posterior distribution P(β|Y ) equals the
prior P(β) (Greenland, 2005b). The confounding and selection models used earlier are examples.
Gustafson (2005) provides a general discussion of conditions for the latter equality.

Although they are less transparent computationally than PSA, Bayesian approaches have ad-
vantages in interpretation and flexibility. First, unlike with PSA, the Bayesian output distribution is
guaranteed to be a genuine posterior probability distribution. This guarantee means, for example,
that the 95% Bayesian interval is a fair betting interval under the assumed prior and data model
(Chapter 18). Second, Bayesian analysis has no difficulty accommodating priors that would some-
times yield impossible outputs in sensitivity analysis. Recall that an impossible sensitivity-analysis
output might reflect a problem with the data (e.g., large random error) rather than the prior; hence
such an output is not a sufficient reason to reject or modify the prior. Third, Bayesian analyses
can reveal counterintuitive phenomena in uncertainty assessments that are not apparent in PSA
(Gustafson and Greenland, 2006a).

Fourth and perhaps most important, the Bayesian formulation facilitates use of prior information
about any parameter in the analysis, not just those in the sensitivity models. For example, in addition
to bias priors, one can use priors for effects of measured confounders (Greenland, 2000c; Gustafson
and Greenland, 2006b) or for the effect under study (Greenland, 2001c; Greenland and Kheifets,
2006). As explained in Chapter 18, the “noninformative” effect priors implicit in conventional
methods, in PSA, and in semi-Bayesian analysis are always contextually absurd, in that they treat
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effects that are enormous and effects that are small as if they were equally probable. The consequence
of this treatment is unnecessary imprecision and greater susceptibility to false-positive results.
Nonetheless, PSA provides an easily implemented bridge between ordinary sensitivity analysis and
Bayesian analysis, and will often be sufficient for bias analysis, especially when random error is a
small component of total uncertainty.

CONCLUSION

Bias analysis is a quantitative extension of the qualitative speculations that characterize good dis-
cussions of study results. In this regard, it can be viewed as an attempt to move beyond conventional
statistics, which are based on implausible randomization and random-error assumptions (Greenland,
1990; Greenland, 2005b), and the more informed but informal inferences that recognize the impor-
tance of biases, but do not attempt to estimate their magnitude.

No analysis should be expected to address every conceivable source of uncertainty. There will be
many sources that will be of minor importance in a given context, and preliminary considerations
will often identify just a few sources of concern. At one extreme, conventional results may show that
the random error in a study is potentially so large that no important inference could be drawn under
any reasonable scenario (as in studies with few exposed cases). In that case, bias analysis will be
a superfluous exercise. Bias analysis may also be justifiably avoided if the author is content with a
descriptive approach to the study report, and can refrain from making inferences or recommendations
(Greenland et al., 2004).

Nonetheless, bias analysis will often be essential to obtain an accurate picture of the net uncer-
tainty one should have in light of study data and a given set of prior judgments. The results quantify
the degree to which a study should seem informative under those priors, rather than classifying
the study into crude and often misleading categories of “valid” versus “invalid” or “high quality”
versus “low quality” based on qualitative assessments. This quantification can be most important
for large studies, pooled analyses, and meta-analyses claiming to have clear findings. It can even
become essential to the public interest when results are likely to be used for public policy or med-
ical practice recommendations. In these settings, conventional results can become an impediment
to sound recommendations if they appear to provide conclusive inferences and are not tempered by
formal bias analysis.

As mentioned in the introduction, a danger of quantitative bias analyses is the potential for
analysts to exaggerate or obscure reported associations by manipulating bias parameters or priors.
As various controversies have revealed, however, there is ample opportunity for investigators to
inject their own biases (or those of their sponsors) by manipulating study protocols, study data, and
conventional analyses (e.g., see Curfman et al., 2006, regarding Vioxx and coronary events). Thus,
as with all methods, the potential for abuse is not an argument against honest use, nor does it argue
for the superiority of conventional approaches.

Honest use of sensitivity and Bayesian analyses involves attempts to base priors and models
on empirical evidence, uninfluenced by the consequences (both analytically and politically). As
emphasized in the introduction, however, it also requires presentation of results as judgments based
on the chosen models and priors, rather than as data analyses or as objective study findings. Because
conventional results are themselves based on doubtful models and implicit priors of no bias, they
would be presented as nothing more than ill-founded judgments if they were subject to the same
truth-in-packaging requirement (Greenland, 2005b).

An advantage of formal bias analyses over narrative evaluations of conventional results is that
opinions and prejudices about parameter values are made explicit in the priors, thus opening the
assumptions underpinning any inferences to public scrutiny and criticism. Readers can evaluate the
reasonableness of the analysis in light of their own priors and background information. When con-
troversy arises, alternative analyses will be needed. Once a bias analysis is programmed, however,
alternative bias models and priors can be examined with little extra effort. Comparisons of alterna-
tive formulations can be viewed as a sensitivity analysis of the bias analysis (Greenland, 1998c).
Such comparisons allow observers to isolate more easily sources of disagreement and identify for-
mulations that best reflect their own judgment, thereby helping move debates beyond qualitative
assertions and counterassertions.
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WHY MODEL?

Basic tabular and graphical methods (Chapters 13 through 18) are an essential component of
epidemiologic analysis and are often sufficient, especially when one need consider only a few
variables at a time. They are, however, limited in the number of variables that they can examine
simultaneously. Even sparse-strata methods (such as Mantel-Haenszel) require that some strata have
two or more subjects; yet, as more and more variables or categories are added to a stratification, the
number of subjects in each stratum may eventually fall to 0 or 1.

Regression analysis encompasses a vast array of techniques designed to overcome the numerical
limitations of simpler methods. This advantage is purchased at a cost of stronger assumptions,
which are compactly represented by a regression model. Such models (and hence the assumptions
they represent) have the advantage of being explicit; a disadvantage is that the models may not be
well understood by the intended audience or even the user.

381
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Regression models can and should be tailored by the analyst to suit the topic at hand; the
latter process is sometimes called model specification. This process is part of the broader task of
regression modeling, which will be discussed in the next chapter. To ensure that the assumptions
underlying the regression analysis are realistic, it is essential that the modeling process be actively
guided by the scientists involved in the research, rather than be left solely to mechanical algorithms.
Such active guidance requires familiarity with the variety and interpretation of models, as well as
familiarity with the scientific context and subject matter. This chapter thus focuses primarily on
forms of models and their interpretation, rather than on the more technical issues of model fitting
and testing.

A crucial point is that a regression function is distinct from a model for that function. A regression
model is another, simpler function used to approximate or estimate the true regression function.
This distinction is often obscured and even unrecognized in elementary treatments of regression,
which in turn has generated much misunderstanding of regression modeling. Therefore, this chapter
provides separate discussions of regression functions and regression models.

This chapter provides only outlines of key topics. It begins with the general theory needed to
understand regression analysis, and then provides details of various model forms. Although the
focus is on models for risks, rates, and survival times, the general theory applies to any outcome,
and several of the model forms described (transformed-outcome, ordinal-logistic, and generalized-
linear models) apply to continuous outcomes. More detailed treatments of regression analysis can
be found in many books, including Mosteller and Tukey (1977), Leamer (1978), Breslow and Day
(1980, 1987), McCullagh and Nelder (1989), Clayton and Hills (1993), Hosmer and Lemeshow
(2000), Agresti (2002), Dobson (2001), Hardin and Hilbe (2001), McCulloch and Searle (2001),
Hoffman (2003), and Berk (2004). Leamer (1978) and Berk (2004) are particularly recommended
for their attention to deficiencies of regression analysis in scientific applications. Berk gives special
attention to causal analysis via regression, whereas Mosteller and Tukey (1977) provide detailed
connections of regression analysis to descriptive analysis.

REGRESSION FUNCTIONS

There are two primary interpretations of regression functions, frequentist and Bayesian, which
correspond to two different interpretations of probability (see Chapter 18). We focus primarily on
the frequentist interpretation, but we briefly discuss the Bayesian interpretation at the end of this
section. In both interpretations, the term regression is often used to refer to the regression function.

FREQUENTIST REGRESSION

In the frequentist view, the regression of a variable Y on another variable X is the function that
describes how the average (mean) value of Y changes across population subgroups defined by
values of X . This function is often written as E(Y |X = x), which should be read as “the average
of Y when the variable X takes on the specific value x .” The “E” part of the notation stands for
“expectation,” which here is just another word for “population mean.”

As an example, suppose that Y stands for “height” to the nearest centimeter at some time t ,
X stands for “weight” to the nearest kilogram at time t , and the population of interest is that of
Denmark at time t . If we subclassify the Danish population at t into categories of weight X , compute
the average height in each category, and tabulate or graph these average heights against the weight
categories, the result displays the regression, E(Y |X = x), of height Y on weight X in Denmark at
time t . Several important points should be emphasized:

1. The concept of regression involves no modeling. Some describe this fact by saying that the
concept of regression is essentially “nonparametric.” The regression of Y on X is just a graphical
property of the physical world, like the orbital path of Earth around the Sun.

2. There is nothing mathematically sophisticated about the regression function. Each point on a
regression curve could be computed by taking the average of Y within a subpopulation defined as
having a particular value of X . In the example, the value of the regression function at X = 50 kg,
E(Y |X = 50), is just average height at time t among Danes who weigh 50 kg at time t .
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3. A regression function cannot be unambiguously computed until we carefully define X , Y , and the
population over which the averages are to be taken. We will call the latter population the target
population of the regression. This population is all too often left out of regression definitions,
often resulting in confusion.

Some ambiguity is unavoidable in practice. In our example, is time t measured to the nearest year,
day, minute, or millisecond? Is the Danish population all citizens, all residents, or all persons present
in Denmark at t? We may decide that leaving these questions unanswered is tolerable, because
varying the definitions over a modest range will not change the result to an important extent. But if
we left time completely out of the definition, the regression would become hopelessly ambiguous,
for now we would not have a good idea of who to include or exclude from our average: Should we
include people living in Denmark in prehistoric times, or in the time of King Canute (the 11th century
a.d.), or in the distant future (a thousand years from now)? The choice could strongly influence our
answer, because of the large changes in height-to-weight relations that have occurred over time.

OTHER CONCEPTS OF POPULATION

It is important to distinguish between our usage of “target population” and our usage of “source
population.” The target population of regression is defined without regard to our observations; for
example, the regression of diastolic blood pressure on cigarette usage in China is defined whether
or not we conduct a study in China (the target for this regression). A source population is a source
of subjects for a particular study and is defined by the selection methods of the study; for example,
a random-sample survey of all residents of Beijing would have Beijing as its source population.
The concepts of target and source populations connect only insofar as inferences about a regression
function drawn from a study are most easily justified when the source population of the study is
identical to the target population of the regression. Otherwise, issues of generalization from the
source to the target have to be addressed (see Chapter 9).

In some literature, regression functions (and many other concepts) are defined in terms of
averages within a “superpopulation” or “hypothetical universe.” A superpopulation is an abstraction
of a target population, sometimes said to represent the distribution (with respect to all variables of
interest) of all possible persons that ever were or ever could be targets of inference for the analysis
at hand. Because the superpopulation approach focuses on purely hypothetical distributions, we
believe it has encouraged substitution of mathematical theory for the more prosaic task of connecting
study results to populations of immediate public health concern. Thus, in this chapter we define a
regression function in terms of averages within a real (target) population.

REGRESSION AND CAUSATION

When considering a regression function E(Y |X = x), the variable Y is termed the dependent
variable, outcome variable, or regressand, and the variable X is termed the independent variable,
predictor, covariate, or regressor. The “dependent/independent” terminology is most common but
also problematic, because it invites confusion with unrelated probabilistic and causal concepts of
dependence and independence. For example, if Y is age and X is blood pressure, E(Y |X = x)
represents the average age of persons given blood pressure, X . But it is blood pressure X that
causally depends on age Y , not the other way around.

More generally, for any pair of variables X and Y , we can consider either the regression of Y on
X , E(Y |X = x), or the regression of X on Y , E(X |Y = y). Thus, the concept of regression does not
imply any causal or even temporal relation between the regressor and the regressand. For example,
Y could be blood pressure at the start of follow-up of a cohort, and X could be blood pressure after
1 year of follow-up. Then, E(Y |X = x) represents the average initial blood pressure among cohort
members whose blood pressure after 1 year of follow-up is x . Below we will introduce a notation
that distinguishes causation from association in regression.

BINARY REGRESSION

The concept of regression applies to variables measured on any scale: The regressand and the
regressor may be continuous or discrete, or even binary. For example, Y could be an indicator of
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diabetes (Y = 1 for present, Y = 0 for absent), and X could be an indicator for sex (X = 1 for
female, X = 0 for male). Then E(Y |X = 1) represents the average of the diabetes indicator Y
among women, and E(Y |X = 0) represents the average of Y among men.

When the regressand Y is a binary indicator (0, 1) variable, E(Y |X = x) is called a binary
regression, and this regression simplifies in a very useful manner. Specifically, when Y can be only 0
or 1, the average E(Y |X = x) equals the proportion of population members who have Y = 1 among
those who have X = x . For example, if Y is the diabetes indicator, E(Y |X = x) is the proportion
with diabetes (i.e., with Y = 1) among those with X = x . To see this, let Nyx denote the number of
population members who have Y = y and X = x . Then the number of population members with
X = x is N1x + N0x = N+x , and the average of Y among these members, E(Y |X = x), is

N1x · 1 + N0x · 0

N1x + N0x
= N1x

N+x

which is just the proportion with Y = 1 among those with X = x .
The epidemiologic ramifications of the preceding relation are important. Let Pr(Y = y|X = x)

stand for “the proportion (of population members) with Y = y among those with X = x” (which
is often interpreted as the probability of Y = y in the subpopulation with X = x). If Y is a binary
indicator, we have just seen that

E(Y |X = x) = Pr(Y = 1|X = x)

that is, the average of Y when X = x equals the proportion with Y = 1 when X = x . Thus, if Y is
an indicator of disease presence at a given time, the regression of Y on X , E(Y |X = x), provides
the proportion with the disease at that time, or prevalence proportion, given X = x . For example,
if Y = 1 indicates diabetes presence on January 1, 2010, and X is weight on that day, E(Y |X = x)
provides diabetes prevalence as a function of weight on that day. If Y is instead an indicator of
disease incidence over a time interval, the regression of Y on X provides the proportion getting
disease over that interval, or incidence proportion, given X = x . For example, if Y = 1 indicates
stroke occurrence in 2010 and X is weight at the start of the year, E(Y |X = x) provides the 2010
stroke incidence (proportion) as a function of initial weight.

MULTIPLE REGRESSION

The concept of multiple regression (or multivariable regression) is a simple extension of the ideas
discussed above to situations in which there are multiple (two or more) regressors. To illustrate,
suppose that Y is a diabetes indicator, X1 stands for “sex” (coded 1 for females, 0 for males), and X2

stands for “weight” (in kilograms). Then the regression of Y on X1 and X2, written E(Y |X1 = x1,
X2 = x2), provides the average of Y among population members of a given sex X1 and weight X2.
For example, E(Y |X1 = 1, X2 = 70) is the average diabetes indicator (and, hence, the diabetes
prevalence) among women who weigh 70 kg.

We can add as many regressors as we want. For example, we could add age (in years) to the last
regression. Let X3 stand for “age.” Then E(Y |X1 = x1, X2 = x2, X3 = x3) provides the diabetes
prevalence among population members of a given sex, weight, and age. Continuing to add regressors
produces a very clumsy notation, however, and so we adopt a simple convention: We will let X
without a subscript represent the ordered list of all the regressors we want to consider. Thus, in our
diabetes example, X will stand for the horizontal list (X1, X2, X3) of “sex,” “weight,” and “age.”
Similarly, we will let x without a subscript stand for the horizontal ordered list of values (x1, x2, x3)
for X = (X1, X2, X3). Thus, if we write E(Y |X = x), it is a shorthand for

E(Y |X1 = x1, X2 = x2, X3 = x3)

when there are three regressors under consideration.
More generally, if there are n regressors X1, . . . , Xn , we will write X for the ordered list

(X1, . . . , Xn) and x for the ordered list of values (x1, . . . , xn). The horizontal ordered list of vari-
ables X is called a row vector of regressors, and the horizontal ordered list of values x is called
a row vector of values. Above, the vector X is composed of the n = 3 items “sex,” “weight,” and
“age,” and the list x is composed of specific values for sex (0 or 1), weight (kilograms), and age
(years). The number of items n in X is called the length or dimension of X.
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REGRESSION MEASURES OF EFFECT

As discussed earlier, regression functions do not involve any assumptions of time order or causal
relations. Thus, regression coefficients and quantities derived from them represent measures of
association, not measures of effect. To interpret the exposure coefficients as measures of effect, the
exposure variables X must be interpretable as potential intervention variables (Chapter 4) and the
regression function must be modeled to provide an unconfounded representation of the effects of
interest. Issues of selection bias and measurement error do not arise at this point because here and
throughout this chapter the models are assumed to refer to population relations, before selection
and measurement.

To make this unconfounded representation more precise, suppose that X is the vector containing
the exposures of interest, Z is another vector containing the other regressors, and that the regressors
in Z are proper confounder candidates, i.e., they are unaffected by X or Y (see Chapters 9 and 12).
We may then write

E(Y |Set[X = x], Z = z)

for the average value Y would have if everyone in the target population with Z = z had their X value
set to x. This potential average outcome can be very different from the actual average E(Y | X =
x, Z = z). The latter refers only to those population members with X = x and Z = z, whereas the
former refers to all population members with Z = z, including those who actually had X equal to
values other than x. Thus the potential average outcome generalizes the potential-outcome concept
from Chapter 4 to regressions. In terms of causal diagrams (Chapter 12), the potential average E(Y |
Set[X = x], Z = z) refers to a graph that has no arrow into any member of X for the subpopulation
with Z = z.

As an example, suppose the target population is all persons born between 1901 and 1950 and
surviving to age 50 years, Y is an indicator of death by age 80, X contains only X1 = pack-years of
cigarettes smoked by age 50, and Z = (Z1, Z2) where Z1 = 1 if female, 0 if male and Z2 = year
of birth. Then

E{Y |X1 = 20, Z = (1, 1940)}
is the average risk of dying by age 80 years (mortality proportion) among women born in 1940 and
surviving to age 50 who smoked 20 pack-years by age 50. In contrast,

E{Y |Set[X1 = 20], Z = (1, 1940)}
is the average risk of dying by age 80 among all women born in 1940 and surviving to age 50 if all
such women had smoked 20 pack-years by age 50.

In Chapter 4 we defined effect measures as contrasts (such as differences and ratios) of occurrence
in the same population under different conditions. In regression analysis, we may define effect
measures as contrasts of averages in the same population under different conditions. Because
occurrence measures are averages, this definition subsumes the preceding definition. As an example,
consider the average of Y in the subpopulation with Z = z when X is set to x∗ versus that average
when X is set to x. The ratio effect measure is

E{Y |Set[X = x∗], Z = z}
E{Y |Set[X = x], Z = z}

the difference effect measure is

E{Y |Set[X = x∗], Z = z} − E{Y |Set[X = x], Z = z}
and the attributable fraction is

E{Y |Set[X = x∗], Z = z} − E{Y |Set[X = x], Z = z}
E{Y |Set[X = x∗], Z = z}

In the example, the ratio

E{Y |Set[X1 = 20], Z = (1, 1940)}
E{Y |Set[X1 = 0], Z = (1, 1940)}
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measures the effect of smoking 20 pack-years by age 50 versus no smoking on the risk of dying by
age 80 among women born in 1940. On the other hand, the ratio

E{Y |X1 = 20, Z = (1, 1940)}
E{Y |X1 = 0, Z = (1, 1940)}

represents only the association of smoking 20 pack-years by age 50 versus no smoking with the risk
among women born in 1940, because it contrasts two different subpopulations (one with X1 = 20,
the other with X1 = 0).

To infer that all associational measures estimated from our analysis equal their corresponding
effect measures, we have to make the following assumption of no confounding given Z (which is
sometimes expressed by stating that there is no residual confounding):

E(Y |X = x, Z = z) = E(Y |Set[X = x], Z = z)

This assumption states that the average we observe or estimate in the subpopulation with both X =
x and Z = z is equal to what the average in the larger subpopulation with Z = z would have been if
everyone had X set to x. It is important to appreciate the strength of the assumption. In the above
example, the no-confounding assumption entails

E{Y |X1 = 20, Z = (1, 1940)} = E{Y |Set[X1 = 20], Z = (1, 1940)}
which states that the risk we will observe among women born in 1940 who smoked 20 pack-years
by age 50 equals the risk we would have observed in all women born in 1940 if they all had smoked
20 pack-years by age 50. The social variables associated with both smoking and death should lead
us to doubt that the two quantities are even approximately equal.

The dubiousness of no-confounding assumptions is often the chief limitation in using epidemi-
ologic data for causal inference. This limitation applies to both tabular and regression methods.
Randomization of persons to values of X can largely overcome this limitation because it ensures
that effect estimates follow an identifiable probability distribution centered around the true effect.
The remaining strategy is to ensure there are enough well-measured confounders in Z so that the
no-confounding assumption is at least plausible. This strategy often leads to few subjects at each
value x of X and z of Z, which in turn leads to the sparse-data problems that regression modeling
attempts to address (Robins and Greenland, 1986).

REGRESSION STANDARDIZATION

Regression modeling alone is often insufficient to address sparse-data problems. For example, when
the number of observed values of X or Z is comparable to the number of observations, it may be
impossible to estimate reliably any regressor-specific outcome or effect. It may still be possible
to estimate averages over the regressors, however. It then becomes important to define relevant
averages.

Standardization is weighted averaging of an outcome measure over a distribution (Chapter 3). A
standard distribution W for the vector of regressors Z = (Z1, . . . , Z K ) is a set of weights w(z), one
for each value z of Z, that sum or integrate to 1: �

z
w(z) = 1. The regression of Y on X standardized

to W is then the average of E(Y |X = x, Z = z) weighted by the w(z) (Lane and Nelder, 1982),

EW (Y |X = x) = ∑
z

w(z)E(Y |X = x, Z = z)

If Y and Z are independent given X, EW (Y |X = x) = E(Y |X = x), the unstandardized (crude)
expectation when X = x, but otherwise the two will not be equal for most weighting schemes.
Ideally, the standardizing weights w(z) will reflect the distribution of the covariates Z in a target
population of subject-matter relevance.

For the rest of this section, suppose that X is a single intervention variable, which we will denote
X . Then, if the regression is generalizable to the target, the distribution of Z is unaffected by X , and
Z is sufficient for confounding control (Chapter 12), EW (Y |X = x) will represent the expectation
of Y under the intervention X = x in that population, i.e.,

EW (Y |X = x) = E(Y |Set[X = x]) for that population.
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A caution, however, is that if X and Z affect Y , then even if X does not affect Z directly, X
will likely affect the person-time distribution of Z, leading to failure of this equation if W is a
person-time distribution (Chapter 4; Greenland, 1996a).

Often, the standard weights are by default taken to be w(z) = Pr(Z = z), the proportion with Z
= z in the study cohort or source population. The resulting averages are then said to be marginal or
population-averaged or standardized to the total. This standard is appropriate when X is a treatment
variable and one wants to compare the effect of different treatment choices for the entire population,
as in field trials. In that case, if Z is sufficient for confounding control, the standardized mean equals
the marginal potential outcome of the total population under treatment X = x :

EW (Y = y|X = x) = E(Y = y|Set[X = x])

(Chapter 4; Pearl, 1995, 2000). In many settings, however, concern is with effects in a particular
subpopulation. A more relevant weighting then uses the proportion with Z = z among those in
that subpopulation. For example, suppose that X = 0 represents those unexposed and X > 0 those
exposed. If interest is in effects among the exposed, w(z) = Pr(Z = z|X > 0) will be the relevant
standard, whereas if interest is in effects among the unexposed, w(z) = Pr(Z = z|X = 0) will be
the relevant standard. If X and Z are independent, however, all these standards are identical, for
then

w(z) = Pr(Z = z|X > 0) = Pr(Z = z|X = x) = Pr(Z = z)

for any value x of X .
Standardized outcome measures at different levels of exposure X can be contrasted to form

standardized measures of association or effect. For example, standardized ratios, differences, and
attributable fractions contrasting X = x1 with X = x0 have the form

EW (Y |X = x1)/EW (Y |X = x0),

EW (Y |X = x1) − EW (Y |X = x0),

and

[EW (Y |X = x1) − EW (Y |X = x0)]/EW (Y |X = x1)

More generally, one can compare outcomes under different distributions for X (Chapter 4; Mor-
genstern and Bursic, 1982; Bruzzi et al., 1985; Greenland and Drescher, 1993; Greenland, 2004d).
Suppose that X would have a distribution Pr1(X = x) after an intervention and a distribution
Pr0(X = x) without the intervention. Suppose also that the standardizing covariates are sufficient
for confounding control and are unaffected by the intervention. Then the standardized ratios, dif-
ferences, and attributable fractions contrasting the outcome with and without the intervention have
the above forms but with∑

x
EW (Y |X = x)Pr1(X = x) and

∑
x

EW (Y |X = x)Pr0(X = x)

in place of

EW (Y |X = x1) and EW (Y |X = x0).

Comparison of X = x1 with X = x0 is just the extreme special case of these general measures when
Pr1(X = x1) = 1 and Pr0(X = x0) = 1, as, for example, when an intervention shifts everyone from
X = 1 (exposed) to X = 0 (unexposed). These standardized measures become measures of the
effect of shifting the X distribution when the Z distribution is given by the standard W , assuming
that the regressors Z are sufficient for confounding control and are unaffected by X , and the relations
are generalizable (stable) under the interventions.

If only a single measure of effect is desired, the regressor-specific no-confounding assumption
can be replaced by a less restrictive assumption tailored to that measure. To illustrate, suppose
that X is pack-years of smoking we are interested only in what the effect of smoking 20 versus 0
pack-years would be on everyone in the target, regardless of sex or birth year, as measured by the
causal risk ratio

E[Y |Set(X = 20)]/E[Y |Set(X = 0)]
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The corresponding measure of association is the risk ratio for 20 versus 0 pack-years, standardized to
the total population, EW (Y |X = 20)/EW (Y |X = 0), where w(z) = Pr(Z = z). The no-confounding
assumption is now that this standardized ratio equals the causal ratio. This summary assumption
may hold even if there is confounding within levels of sex and birth year or there is confounding
when using other standards (although it would still be implausible in this example).

MULTIVARIATE REGRESSION

Multiple regression concerns averages within levels of multiple regressors. Sometimes this process
is called “multivariate analysis.” In advanced statistics, however, the term multivariate regression
is usually reserved for regressions in which there are multiple regressands. To illustrate, suppose
that Y1 is an indicator of the presence of diabetes, Y2 is diastolic blood pressure, and Y is the list
(Y1, Y2) composed of these two variables. Also, let X be the list (X1, X2, X3) composed of the
sex indicator, weight, and age. Then the multivariate regression of diabetes and blood pressure on
sex, weight, and age provides the average diabetes indicator and average blood pressure for each
specific combination of sex, weight, and age:

E(Y1, Y2|X1 = x1, X2 = x2, X3 = X3) = E(Y|X = x)

There may be any number of regressands in the list Y and regressors in the list X of a multivariate
regression. Multivariate regression notation allows one to express the separate regressions for each
regressand in one equation.

FREQUENTIST VERSUS BAYESIAN REGRESSION

In frequentist theory, an expectation is interpreted as an average in a specific subgroup of a specific
population. The regression E(Y |X = x) thus represents an objective functional relation among
theoretically measurable variables (the average of Y as a function of the variables listed in X). It
may be that this relation has not been observed, perhaps because it exists but we are unable to
measure it, or because it does not yet exist. Examples of the former and latter are the regressions
of blood pressure on weight in Spain 10 years ago and 10 years from now. In either situation, the
regression is an external relation that one tries to estimate, perhaps by projecting (extrapolating)
from current knowledge about presumably similar relations. For example, one might use whatever
survey data one can find on blood pressure and weight to estimate what the regression of blood
pressure on weight would look like in Spain 10 years ago or 10 years from now. In this approach,

one tries to produce an estimate
∧
E(Y |X = x) of the true regression E(Y |X = x).

In subjective Bayesian theory (Chapter 18), an expectation is what we would or should expect
to see in a given target population. This notion of expectation corresponds roughly to a prediction
of what we would see if we could observe the target in question. The regression E(Y |X = x) does
not represent an objective relation to be estimated, but instead represents a subjective (personal)
expectation about how the average of Y varies across levels of X in the target population. Like the
frequentist regression estimate, however, it is something one constructs from whatever data one
may find that seems to be informative about this variation.

Both frequentist and Bayesian authors have noted that the two approaches often yield similar in-
terval estimates (Cox and Hinkley, 1974; Good, 1983). It is increasingly recognized that divergences
are usually due to differences in the criteria for a “good” point estimate: Frequentists traditionally
prefer criteria of unbiased prediction (e.g., having an average error of 0), whereas Bayesians more
often prefer criteria of closeness (e.g., having the smallest average squared error possible). When
analogous criteria are adopted in both approaches, Bayesian and frequentist methods can yield
similar numeric results in standard epidemiologic applications.

Nonetheless, Bayesians and frequentists interpret their results differently. The Bayesian presents
a prediction, denoted by E(Y |X = x), as his or her “best bet” about the average of Y when X =
x, according to some criteria for “best bet.” The frequentist presents a prediction, denoted by∧
E(Y |X = x) (or, more commonly,

∧
Y X=x), as “the” best estimate of the average of Y when X =

x, according to some criteria for “best estimate” (such as minimum variance among statistically
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unbiased estimators). Too often, the latter criteria are presumed to be universally shared but are
not really shared or even properly understood by epidemiologists; one could and would reach
different conclusions using other defensible criteria (such as minimum mean squared error). For
these reasons, it can be valuable to consider both frequentist and Bayesian interpretations of the
models, methods, and results.

BASIC REGRESSION MODELS

In any given instance, the true regression of Y on X, E(Y |X = x), can be an extremely complicated
function of the regressors X. Thus, even if we observe this function without error, we may wish to
formulate simplified pictures of reality that yield models for this regression. These models, though
inevitably incorrect, can be very useful. A classic example is the representation of the distance from
the earth to the sun, Y , as a function of day of the year T . To the nearest kilometer, this distance is
a complex function of T because of the gravitational effects of the moon and of the other planets
in the solar system. If we represent the orbit of the earth around the sun as a circle with the sun at
the center, our regression model will predict the distance E(Y |T = t) by a single number (about
150 million kilometers) that does not change with t . This model is adequate if we can tolerate a few
percent error in our predictions. If we represent the orbit of the earth as an ellipse, our regression
model will predict the earth–sun distance as smoothly and cyclically varying over the course of a
year (within a range of about 147 to 153 million kilometers). Although it is not perfectly accurate,
this model is adequate if we can tolerate a few tenths of a percent error in our predictions.

MODEL SPECIFICATION AND MODEL FITTING

Our description of the preceding models must be refined by distinguishing between the form of a
model and a fitted model. “Circle” and “ellipse” refer to forms, that is, general classes of shapes. The
circular model form corresponds to assuming a constant earth–sun distance over time; the elliptical
model form allows this distance to vary over a temporal cycle. The process of deciding between
these two forms is a simple example of model specification.

If we decide to use the circular form, we must also select a value for the radius (which is the
earth–sun distance in the model). This radius specifies which circle (out of the many possible circles)
to use as a representation of the earth’s orbit and is an example of a model parameter. The process of
selecting the “best” estimate of the radius is an example of model fitting, and the circle that results
is sometimes called the fitted model (although the latter term is sometimes used instead to refer to
the model form).

There are two important relations between a set of data and a model fit to those data. First, there
is “distance” from the fitted model to the data; second, there is “resistance” or “stability” of the fitted
model, which is the degree to which the model predictions or parameter estimates change when
the data themselves are changed. Chapter 21 describes a few approaches to evaluating distance and
stability, including delta-beta analysis.

Depending on our accuracy requirements, we may have on hand several simplified pictures of
reality and hence several candidate models. At best, our choice may require a trade-off between
simplicity and accuracy, as in the preceding example. There is an old dictum (often referred to as
Occam’s razor) that one should not introduce needless complexity for purposes of prediction or
explanation. Following this dictum, if we need only 2% accuracy in predicting the earth’s distance
from the sun, then we should not bother with the ellipse model and instead use the constant distance
derived from the circle model.

There is a more subtle benefit from this advice than avoiding needless mental exertion. Suppose
that we are given two models, one (the more complex) containing the other (the more simple) as a
special case, and some data with which to fit the two models. Then the more complex model will be
able to fit the available data more closely than the simpler model, in the sense that the predictions
from the more complex model will (on average) be closer to what is seen in the data than will
the predictions from the simpler model. This is so in the preceding example because the ellipse
contains the circle as a special case. Nonetheless, there is a penalty for this closeness to the data:
The predictions obtained from the more complex model tend to be less stable than those obtained
from the simpler model.



P1: TNL Printer: RRD

GRBT241-20 GRBT241-v4.cls January 4, 2008 5:10

390 Section III ● Data Analysis

Consider now the use of the two different model forms to predict events outside of the data set to
which the models were fitted. One example is forecasting the earth’s distance from the sun; another
is predicting the incidence of AIDS at a time 5 years in the future. Intuitively, we might expect that
if one model is both closer to the data and more stable than the other, that model will give more
accurate predictions. The choice among models is rarely so clear-cut, however. Usually, one model
will be closer to the data, while the other will be more stable, and it will be difficult to tell which
will be more accurate. We often face this dilemma in a choice between a more complex and simpler
model.

To summarize, model specification is the process of selecting a model form, whereas model
fitting is the process of using data to estimate the parameters in a model form. There are many
methods of model fitting, and the topic is so vast and technical that we will only superficially
outline a few key elements. Nearly all commercial computer programs are based on one of just
a few fitting methods, so that nearly all users (statisticians as well as epidemiologists) are forced
to base their analyses on the assumptions of these few methods. We will discuss specification and
fitting methods in Chapter 21.

BACKGROUND EXAMPLE

The following epidemiologic example will be used at various points to illustrate specific models. In
the 1990s a controversy arose over whether women with no history of breast cancer but thought to be
of high risk (because of family history and perhaps other factors) should be given the drug tamoxifen
as a prophylactic regimen. Evidence suggested that tamoxifen might prevent breast cancer (Fisher
et al., 1998) but also cause or promote endometrial and liver cancer.

One measure of the net effect of tamoxifen prophylaxis up to a given age is the change in risk of
death by that age. Suppose that the regress and Y is an indicator of death by age 70 years (Y = 1
for dead, 0 for alive). The regressors X include

X1 = years of tamoxifen therapy
X2 = age (in years) at start of tamoxifen therapy
X3 = age at menarche
X4 = age at menopause
X5 = parity

Suppose that the target population is American women born between 1925 and 1950 who survived
to age 50 years and did not use tamoxifen before that age. If tamoxifen was not taken during follow-
up, we set age at tamoxifen start (X2) to 70, because women who started at age 70 or later and
women who never took tamoxifen have the same exposure history during the age interval under
study.

In this example, the regression E(Y |X = x) is just the average risk, or incidence proportion, of
death by age 70 among women in the target population who have X = x. Therefore, we will write
R(x) as a shorthand for E(Y |X = x). We will also write R for the crude (overall) average risk E(Y ),
R(x1) for the average risk E(Y |X1 = x1) in the subpopulation defined by having X1 = x1 (without
regard to the other variables), and so on.

VACUOUS MODELS

A model so general that it implies nothing at all, but simply re-expresses the overall average risk in
a different notation, is

E(Y ) = R = α [20–1]

There is only one regression parameter (or coefficient) α in this model, and it corresponds to the
average risk in the target population. A model such as model 20–1 that has no implication (i.e., that
imposes no restriction or constraint) is said to be vacuous.

Two models are said to be equivalent if they have identical implications for the regression. Given
that R > 0, a model that is equivalent to model 20–1 is

E(Y ) = R = exp(α) [20–2]



P1: TNL Printer: RRD

GRBT241-20 GRBT241-v4.cls January 4, 2008 5:10

Chapter 20 ● Introduction to Regression Models 391

Model 20–2 has no implication beyond forcing R to be positive. In this model, α is the natural
logarithm of the overall average risk:

α = ln(R)

Given that R > 0 and R < 1, a model that is equivalent to models 20–1 and 20–2 is

E(Y ) = R = expit(α) [20–3]

where expit(α) is the logistic transform of α, defined as

expit(α) = eα/(1 + eα)

Model 20–3 has no implication beyond forcing R to fall between 0 and 1. Now, however, the
parameter α in model 20–3 is the logit (log odds) of the overall average risk:

α = ln

(
R

1 − R

)
= logit(R)

CONSTANT MODELS

In comparing the complexity and implications of two models A and B, we say that model A is more
general, more flexible, or more complex than model B, or that A contains B, if all the implications of
model A are also implications of model B, but not vice versa (that is, if B imposes some restrictions
beyond those imposed by A). Other ways of stating this relation are that B is simpler, stronger, or
stricter than A, B is contained or nested within A, or B is a special case of A.

The following model is superficially similar to model 20–1 but is in fact much more strict:

E(Y |X1 = x1) = R(x1) = α [20–4]

This model implies that the average risks of the subpopulations defined by years of tamoxifen use
are identical. The parameter α represents the common value of these risks. This model is called a
constant regression because it allows no variation in average risks across levels of the regressor. To
see that it is a special case of model 20–1, note that E(Y ), the overall average, is just an average
of all the X1-specific averages E(Y |X1 = x1). Hence, if all the X1-specific averages equal α, as in
model 20–4, then the overall average must equal α as well, as in model 20–1.

Given that R(x1) > 0 and R(x1) < 1, the following two models are equivalent to model 20–4:

R(x1) = exp(α) [20–5]

which can be rewritten as

ln[R(x1)] = α

and

R(x1) = expit(α) = eα/(1 + eα) [20–6]

which can be rewritten as

logit[R(x1)] = α

In model 20–5, α is the common value of the log risks ln[R(x1)], whereas in model 20–6, α is
the common value of the logits, logit[R(x1)]. Each of the models (models 20–4 through 20–6) is a
special case of the more general models (models 20–1 through 20–3). In other words, models 20–4
through 20–6 are simpler, stronger, or stricter than models 20–1 through 20–3, and are contained
or nested within models 20–1 through 20–3.

A constant regression is of course implausible in most situations. For example, age is related
to most health outcomes. In the above example, we expect the average death risk to vary across
the subgroups defined by age at start (X2). There are infinite ways to model these variations.
Chapter 21 discusses the problem of selecting a useful model from among the many choices. The
present chapter describes some of the more common choices, focusing on models for average risks
(incidence proportions), incidence odds, and person-time incidence rates. The models for risks and
odds can also be used to model prevalence proportions and prevalence odds.
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LINEAR RISK MODELS

Consider the model

R(x1) = α + β1x1 [20–7]

This model allows the average risk to vary across subpopulations with different values for X1, but
only in a linear fashion. The model implies that subtracting the average risk in the subpopulation
with X1 = x1 from that in the subpopulation with X1 = x1 + 1 will always yield β1, regardless of
what x1 is. Under model 20–7,

R(x1 + 1) = α + β1(x1 + 1)

and

R(x1) = α + β1x1

so

R(x1 + 1) − R(x1) = β1

β1 thus represents the difference in risk between the subpopulation defined by having X1 = x1 + 1
and that defined by having X1 = x1. The model implies that this difference does not depend on the
reference level x1 for X1 used for the comparison.

Model 20–7 is an example of a linear risk model. It is a special case of model 20–1; it also
contains model 20–4 as a special case: Model 20–4 is the special case of model 20–7 in which
β1 = 0 and so average risks do not vary across levels of X1. Linear risk models (such as model
20–7) are easy to understand, but they have a severe technical problem that makes them difficult to
fit in practice: There are combinations of α and β1 that will produce impossible values (less than
0 or greater than 1) for one or more of the risks R(x1). Several models partially or wholly address
this problem by transforming the linear term α + β1x1 before equating it to the risk. We will study
two of these models.

RECENTERING

Under model 20–7,

R(0) = α + β1 · 0 = α

so α represents the average risk for the subpopulation with X1 = 0. In the present example, 0 is
a possible value for X1 (tamoxifen) and so this interpretation of α presents no problem. Suppose,
however, that we model X3 (age at menarche) instead of X1:

R(X3) = α + β3 X3

Because age at menarche cannot equal 0, α has no meaningful interpretation in this model. To avoid
such interpretational problems, it is useful to recenter a variable for which 0 is impossible (such
as X3), by subtracting some frequently observed value from it before putting it in the model. For
example, age 13 is a frequently observed value for age at menarche. We can redefine X3 to be “age
at menarche minus 13 years.” With this redefinition, R(X3) = α + β3 X3 refers to a different model,
one in which R(0) = α represents the average risk for women who were age 13 at menarche. We
will see later that such recentering is advisable when using any model, and it is especially important
when product terms (“interactions”) are used in a model.

RESCALING

A simple way of describing β1 in model 20–7 is that it is the difference in risk per unit increase
in X1. Often the units used to measure X1 are small relative to exposure increases of substantive
interest. Suppose, for example, that X1 is diastolic blood pressure (DBP) measured in mm Hg; β1

is then the risk difference per millimeter increase in DBP. A 1-mm Hg increase, however, will be of
no clinical interest; instead, we will want to consider increases of at least 5 and possibly 10 or 20
mm Hg. Under model 20–7, the difference in risk per 10 mm Hg increase is 10 β1. If we want to
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have β1 represent the difference in risk per 10 mm Hg, we need only redefine X1 as DBP divided
by 10; X1 will then be DBP in cm Hg.

Division of a variable by a constant, as just described, is sometimes called rescaling of the
variable. Such rescaling is advisable whenever it changes the measurement unit to a more mean-
ingful value. Unfortunately, rescaling is often done in a way that makes the measurement unit less
meaningful, by dividing the variable by its sample standard deviation (SD). The sample SD is an
irregular unit that is unique to the study data and that depends heavily on how subjects were selected
into the analysis. For example, the SD of DBP might be 12.7 mm Hg in one study and 15.3 mm
Hg in another study. Suppose that each study divides DBP by its SD before entering it in model
20–7. In the first study, β1 refers to the change in risk per 12.7 mm Hg increase in DBP, whereas in
the second study β1 refers to the change in risk per 15.3 mm Hg. Rescaling by the SD thus renders
the coefficients interpretable only in peculiar and different units, so that they cannot be compared
directly with one another or to coefficients from other studies.

We will see later that rescaling is even more important when product terms are used in a model.
We thus recommend that rescaling be done using simple and easily interpreted constants for the
divisions. Methods that involve division by sample SDs (such as transformations of variables to
Z -scores), however, should be avoided (Greenland et al., 1986, 1991).

EXPONENTIAL RISK MODELS

Consider the following model:

R(x1) = exp(α + β1x1) [20–8]

The exponential function (exp) is always positive, so model 20–8 will produce positive R(x1) for
any combination of α and β1. Model 20–8 is sometimes called an exponential risk model. It is a
special case of the vacuous model 20–2; it also contains the constant model 20–5 as the special
case in which β1 = 0.

To understand the implications of the exponential risk model, we can recast it in an equivalent
form by taking the natural logarithm of both sides:

ln[R(x1)] = ln[exp(α + β1x1)] = α + β1x1 [20–9]

Model 20–9 is often called a log-linear risk model. The exponential/log-linear model allows risk
to vary across subpopulations defined by X1, but only in an exponential fashion. To interpret the
coefficients, we may compare the log risks under model 20–9 for the two subpopulations defined
by X1 = x1 + 1 and X1 = x1:

ln[R(x1 + 1)] = α + β1(x1 + 1)

and

ln[R(x1)] = α + β1x1

so

ln[R(x1 + 1)] − ln[R(x1)] = ln[R(x1 + 1)/R(x1)] = β1

Thus, under models 20–8 and 20–9, β1 represents the log risk ratio comparing the subpopulation
defined by having X1 = x1 + 1 and that defined by X1 = x1, regardless of the chosen reference level
x1. Also, ln[R(0)] = α + β1 · 0 = α if X1 = 0; thus, α represents the log risk for the subpopulation
with X1 = 0 (and so is meaningful only if X1 can be zero).

We can derive another equivalent interpretation of the parameters in the exponential risk model
by noting that

R(x1 + 1) = exp[α + β1(x1 + 1)]

and

R(x1) = exp(α + β1x1)
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so

R(x1 + 1)/R(x1) = exp[α + β1(x1 + 1) − (α + β1x1)] = exp(β1)

Thus, under models 20–8 and 20–9, exp(β1) represents the ratio of risks between the subpopulations
defined by X1 = x1 + 1 and X1 = x1, and this ratio does not depend on the reference level x1

(because x1 does not appear in the final expression for the risk ratio). Also, R(0) = exp(α + β1 · 0) =
eα , so eα represents the average risk for the subpopulation with X1 = 0.

As with linear risk models, exponential risk models have the technical problem that some
combinations of α and β1 will yield risk values greater than 1, which are impossible. This problem
will not be a practical concern, however, if all the fitted risks and their confidence limits fall well
below 1.

LOGISTIC MODELS

As will be discussed in Chapter 21, neither linear nor exponential risk models can be used to analyze
case-control data if no external information is available to allow estimation of risks in the source
population, whereas the following model can be used without such information:

R(x1) = expit(α + β1x1)

= exp(α + β1x1)

1 + exp(α + β1x1)
[20–10]

This model is called a logistic risk model, after the logistic function (expit) in the core of its definition.
Because the range of the logistic function is between 0 and 1, the model will only produce risks
between 0 and 1, regardless of the values for α, β1, and x1. The logistic model is perhaps the most
commonly used model in epidemiology, so we examine it in some detail. Model 20–10 is a special
case of model 20–3, but unlike model 20–3, it is not vacuous because it constrains the X1-specific
risks to follow a particular (logistic) pattern. The constant model 20–6 is the special case of the
logistic model in which β1 = 0.

To understand the implications of the logistic model, it is helpful to recast it as a model for the
odds. First, note that, under the logistic model (equation 20–10),

1 − R(x1) = 1 − exp(α + β1x1)

1 + exp(α + β1x1)

= 1

1 + exp(α + β1x1)

Because R(x1)/[1 − R(x1)] is the odds, we divide each side of equation 20–10 by the preceding
expression and find that, under the logistic model, the odds of disease O(x1) when X1 = x1 is

O(x1) = R(x1)

1 − R(x1)
=

exp(α + β1x1)

1 + exp(α + β1x1)

1

1 + exp(α + β1x1)

[20–11]

= exp(α + β1x1)

This model form (equation 20–11) shows that the logistic risk model is equivalent to an exponential
odds model.

Taking logarithms of both sides of equation 20–11, we see that the logistic model is also equi-
valent to the log-linear odds model

ln[O(x1)] = α + β1x1 [20–12]

Recall that the logit of risk is defined as the log odds:

logit[R(x1)] = ln{R(x1)/[(1 − R(x1)]} = ln[O(x1)]
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Hence, from equation 20–12, the logistic model can be rewritten in one more equivalent form,

logit[R(x1)] = α + β1x1 [20–13]

This equivalent of the logistic model is often called the logit-linear risk model, or logit model.
As a general caution regarding terms, note that “log-linear model” can refer to any one of several

different models, depending on the context: In addition to log-linear risk models (equation 20–9)
and log-linear odds models (equation 20–12) given earlier, there are also the log-linear rate models
and log-linear incidence-time models described below, as well as log-linear count models (Chapter
21).

We can derive two equivalent interpretations of the logistic model parameters. First,

ln[O(x1 + 1)] = α + β1(x1 + 1)

ln[O(x1)] = α + β1x1

so

ln[O(x1 + 1)] − ln[O(x1)] = ln[O(x1 + 1)/O(x1)] = β1

Thus, under the logistic model (equation 20–10), β1 represents the log odds ratio comparing the
subpopulations with X1 = x1 + 1 and X1 = x1. Also, ln[O(0)] = α + β1 · 0 = α; thus, α is the
log odds (logit) for the subpopulation with X1 = 0 (and so is meaningful only if X1 can be 0).
Equivalently, we have

O(x1 + 1)/O(x1) = exp(β1)

and

O(0) = exp(α)

so that exp(β1) is the odds ratio comparing the subpopulations with X1 = x1 + 1 and X1 = x1, and
exp(α) is the odds for the subpopulation with X1 = 0.

OTHER RISK AND ODDS MODELS

In addition to those given so far, several other risk models are occasionally mentioned but rarely
used in epidemiology. The linear odds model is obtained by replacing the average risk by the odds
in the linear risk model:

O(x1) = α + β1x1 [20–14]

Here, β1 is the odds difference between subpopulations with X1 = x1 + 1 and X1 = x1, and α is
the odds for the subpopulation with X1 = 0. Like risk, the odds cannot be negative; unfortunately,
some combinations of α and β1 in model 20–14 will produce negative odds. As a result, this model
(like the linear risk model) may be difficult to fit and gives unsatisfactory results in many settings.

Another model replaces the logistic transform (expit) in the logistic model (equation 20–10) by
the inverse of the standard normal distribution, which also has a range between 0 and 1. The resulting
model, called a probit model, has seen much use in bioassay. Its absence from epidemiologic use
may stem from the fact that (unlike the logistic model) its parameters have no simple epidemiologic
interpretation, and the model appears to have no advantage over the logistic in epidemiologic
applications.

Several attempts have been made to use models that are mixtures of different basic models.
These mixtures have various drawbacks, including difficulties in fitting the models and interpreting
the parameters (Moolgavkar and Venzon, 1987). We thus do not describe them here.

RATE MODELS

Instead of modeling average risks, we may model person-time incidence rates. If we let Y denote
the rate observed in a study subpopulation (so that Y is the observed number of cases per unit of
observed person-time), the regression E(Y |X = x) represents the average number of cases per unit
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of person-time in the target subpopulation defined by X = x. We will denote this expected rate or
“average rate” by I (x).

Most rate models are analogs of risk and odds models. For example, the model

I (x1) = E(Y |X1 = x1) = α + β1x1 [20–15]

is a linear rate model, analogous to (but different from) the linear risk and odds models (equations
20–7, 20–14). This rate model implies that the difference in average rates between subpopulations
with X1 = x1 + 1 and X1 = x1 is β1, regardless of x1. Also, α is the average rate for the subpop-
ulation with X1 = 0. This model can be problematic, because some combinations of α and β1 in
model 20–15 can produce negative rate values, which are impossible.

To prevent the latter problem, most rate modeling begins with an exponential rate model such
as

I (x1) = exp(α + β1x1) [20–16]

Because the exponential (exp) can never be negative, this model will not produce negative rates,
regardless of α, β1, or x1. The model is equivalent to the log-linear rate model

ln[I (x1)] = α + β1x1 [20–17]

The parameter β1 in models 20–16 and 20–17 is the log of the rate ratio comparing the subpopu-
lation with X1 = x1 + 1 to the subpopulation with X1 = x1, regardless of x1; hence, exp(β1) is the
corresponding rate ratio I (x1 + 1)/I (x1). Also, α is the log of the rate for the subpopulation with
X1 = 0; hence, exp(α) is the average rate I(0) when X1 = 0. The exponential rate model (model
20–16) is analogous to, but different from, the exponential risk model (equation 20–8) and the
exponential odds model (equation 20–11).

INCIDENCE-TIME AND HAZARD MODELS

We can also model the average time to occurrence of an event, starting from some designated zero
time such as birth (in which case, “time” is age), start of treatment, or some calendar date (Cox
and Oakes, 1984; Hosmer and Lemeshow, 1999; Kalbfleisch and Prentice, 2002). These are called
incidence-time, waiting-time, failure-time, or survival-time models. Let T stand for time of the
event measured from zero. One approach to incidence time regression is to use a linear model for
log incidence time, such as

E[ln(T )|X1 = x1] = α − β1x1 [20–18]

Because T is always positive, ln(T ) is always defined. In this model, α is the average log incidence
time in the subpopulation with X1 = 0, and −β1 is the difference in average log incidence times
when comparing the subpopulation with X1 = x1 + 1 to the subpopulation with X1 = x1 (regardless
of the value x1). Model 20–18 is an example of an accelerated-life model (Cox and Oakes, 1984),
which is a building block for the method of g-estimation (see Chapter 21).

Note that the sign of β1 in the model is reversed from its sign in earlier models. This reversal is
done so that, if the outcome event at T is undesirable, then, as in earlier models, positive values of
β1 will correspond to harmful effects from increasing X1, and negative values will correspond to
beneficial effects. For example, under the model, if T is death time and β1 is positive, an increase
in X1 will be associated with earlier death.

Another generalization of the basic accelerated-life model, similar but not identical to model
20–18, is the log-linear model for expected incidence time,

ln[E(T |X1 = x1)] = α − β1x1 [20–19]

Model 20–19 differs from model 20–18 because the log of an average is greater than the average
of the logs (unless T does not vary). Model 20–19 can be rewritten as

E(T |X1 = x1) = exp(α − β1x1) = exp(−β1x1)eα

= exp(−β1x1)T0
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where T0 = E(T |X1 = 0) = eα . Under model 20–19, eα is the average incidence time in the sub-
population with X1 = 0, and e−β1 is the ratio of average incidence times in the subpopulation with
X1 = x1 + 1 and the subpopulation with X1 = x1. As with model 20–18, the sign of β1 is negative
so that positive values of β1 will correspond to harmful effects.

More common approaches to modeling incidence times impose a model for the risk of the event
up to each point in time, or for the rate of the event “at” each point in time. The most common such
model is the Cox model, also known as the proportional-hazards model. We can give an approximate
description of this model as follows: Suppose that we specify a time span �t that is small enough
so that the risk of having the event in any interval t to t + �t among those who survive to t without
the event is very small. The Cox model then implies that the rates in any such short interval will
follow an exponential model like equation 20–16, with α but not β1 allowed to vary with time t .

If we write I (t ; x1) for the average rate in the interval t to t + �t among persons who survive
to t and have X1 = x1, the Cox model implies that

I (t ; x1) ≈ exp(αt + β1x1) [20–20]

Under the model, the approximation (≈) improves as �t gets smaller. Note that the intercept αt

may vary with time, but in this simple Cox model the coefficient β1 of X1 is assumed to remain
constant. This constancy means that, at any time t , the rate ratio comparing subpopulations with
X1 = x1 + 1 and X1 = x1 will be

I (t ; x1 + 1)/I (t ; x1) ≈ exp[αt + β1(x1 + 1)]/ exp(αt + β1x1) = exp(β1)

so that β1 is the log rate ratio per unit of X1, regardless of either the reference level x1 or the time t
at which it is computed. As a consequence, when plotted over time, the rate curves at X1 = x1 + 1
and at X1 = x1 will be proportional, having the constant ratio exp(β1).

Under the Cox model (equation 20–20), the rate at time t for the subpopulation with X1 = 0 is
given by I (t ; 0) ≈ exp(αt ). If we denote this “baseline” rate by h0(t) instead of exp(αt ), we have

I (t ; x1) ≈ exp(αt + β1x1) = exp(αt ) exp(β1x1) = h0(t) exp(β1x1) = exp(β1x1)h0(t)

The last expression is the standard form of the model given in most textbooks. The term “Cox model”
has become fairly standard, although a special case of the model was proposed by Sheehe (1962).

The approximate form of the Cox model (equation 20–20) may be seen as an extension of the
exponential rate model (equation 20–16) in which the rates may vary over time. In statistical theory,
the assumption is made that, at each time t , the rate I (t ; x1) approaches a limit h(t ; x1) as �t goes
to zero. This limit is usually called the hazard or intensity of the outcome at time t . The Cox model
is then defined as a model for these hazards,

h(t ; x1) = exp(β1x1)h0(t)

In epidemiologic studies, these hazards are purely theoretical quantities; thus, it is important to
understand the approximate forms of the model given above and what those forms imply about
observable rates.

The Cox model may be extended to allow X1 to vary over time. Let us write X1(t) as an
abbreviation for “the exposure as of time t” and x1(t) for the actual numerical value of X1(t) at time
t . Then the Cox model with time-dependent covariates implies that the incidence rate at time t in
the subpopulation that has exposure level x1(t) at time t is

I [t ; x1(t)] ≈ h[t ; x1(t)] = exp[β1x1(t)]h0(t) [20–21]

This model may be the most widely used model for time-dependent exposures. Usually, a time-
dependent exposure X1(t) is not defined as the actual amount at time t , but instead is some cumulative
and lagged index of exposure up to t (see Chapter 16). For example, if time is measured in months
and exposure is cumulative tamoxifen lagged 3 months, X1(t) will mean “cumulative amount of
tamoxifen taken up to month t − 3” and x1(t) will be a value for this variable.

Even if X1(t) is a summarized history, it refers to a person’s history as of time t , not to his or her
time at risk, and may even be calculated using data that precede start of follow-up. Thus no issue of
immortal person-time (Chapter 7) arises in defining or computing X1(t). In particular, if exposure
can begin before start of follow-up, this historical X1(t) will depend on exposure that precedes that
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start. If, however, data on exposure before follow-up are unavailable, then X1(t) will be censored
at start of follow-up.

There are biases that can arise in use of Cox models to estimate effects of time-dependent
exposures (Robins et al., 1992a; Robins and Greenland, 1994). See the section of Chapter 21 on
modeling longitudinal data for further discussion and references.

TREND MODELS: UNIVARIATE EXPOSURE TRANSFORMS

Consider again the linear risk model (equation 20–7). If this model is correct, a plot of average
risk across the subpopulations defined by X1 (that is, a plot of risk against X1) will yield a line.
Ordinarily, however, there is no compelling reason to think that the model is correct, and we may
wish to entertain other possible models for the trend in risk across exposure levels. We can generate
an unlimited variety of such models by transforming exposure, that is, by replacing X1 in the model
by some function of X1.

To illustrate, we can replace years exposed in model 20–7 by its logarithm, to get

R(x1) = α + β1ln(x1) [20–22]

This equation still defines a linear risk model, because a plot of average risk against the new regressor
ln(X1) will yield a line. But it is a very different model from model 20–7, because if model 20–22
is correct, a plot of average risk against years exposed (X1) will yield a logarithmic curve rather
than a line. Such a curve starts off very steep for X1 < 1, but it levels off rapidly beyond X1 > 1.

As discussed in Chapter 17, a technical problem can arise in using the logarithmic transform:
It is not defined if X1 is negative or zero. If the original exposure measurement can be negative or
zero, it is common practice to add a number c to X1 that is big enough to ensure that X1 + c is
always positive. The resulting model is

R(x1) = α + β1 ln(x1 + c) [20–23]

The shape of the curve represented by this model (and hence results derived using the model) can
be very sensitive to the value chosen for c, especially when the values of X1 may be less than 1.
Frequently, c is set equal to 1, although there is usually no compelling reason for this choice.

Among other possibilities for exposure transforms are simple power curves of the form

R(x1) = α + β1x p
1 [20–24]

where p is some number (typically 1/2 or 2) chosen in advance according to some desired property.
For example, with X1 as years exposed, use of p = 1/2 yields the square-root model

R(x1) = α + β1x1/2
1

which produces a trend curve that levels off as X1 increases above zero. In contrast, use of p = 2
yields the simple quadratic model

R(x1) = α + β1x2
1

which produces a trend that rises more and more steeply as X1 increases above zero.
One technical problem can arise when using the power model (equation 20–24): It is not defined

if p is fractional and X1 can be negative. To get around this limitation, we may add some number
c to X1 that is big enough to ensure that X1 + c is never negative, and then use (x1 + c)p in the
model; nonetheless, the result may again be sensitive to the choice of c.

The trend implications of linear and exponential models are vastly different, and hence the
implications of exposure transforms are also different. Consider again the exponential risk model
(equation 20–8). If this model is correct, a plot of average risk against X1 will yield an exponential
curve rather than a line. If β1 is positive, this curve starts out slowly but rises more and more rapidly
as X1 increases; it eventually rises more rapidly than does any power curve (equation 20–24). Such
rapid increase is often implausible, and we may wish to use a slower-rising curve to model risk.

One means of moderating the trend implied by an exponential model is to replace x1 by a fixed
power x p

1 with 0 < p < 1, for example,

R(x1) = exp(α + β1x1/2
1 )
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Another approach is to take the logarithm of exposure. This transform produces a new model:

R(x1) = exp[α + β1 ln(x1)]

= exp(α) exp[β1 ln(x1)] [20–25]

= eα exp[ln(x1)]β1 = eαxβ1

1

A graph of risk against exposure under this model produces a power curve, but now (unlike model
20–24) the power is the unspecified (unknown) coefficient β1 instead of a prespecified value p, and
the multiplier of the exposure power is eα (which must be positive) instead of β1. Model 20–25 may
thus appear to be more appropriate than model 20–24 when we want the power ofX1 to appear as
an unknown coefficient β1 in the model, rather than as a prespecified value p. As earlier, however,
X1 must always be positive in order to use model 20–25; otherwise, we must add a constant c to it
such that X1 + c is always positive.

When β1 is negative in model 20–25, risk declines more and more gradually across increasingly
exposed subpopulations. For example, if β1 = −1, then under model 20–25, R(x1) = eαx−1

1 =
eα/x1, which implies that risk declines 50% (from eα/l to eα/2) when going from X1 = 1 to X1 = 2,
but declines less than 10% (from eα/10 to eα/11) when going from X1 = 10 to X1 = 11.

The exposure transforms and implications just discussed carry over to the analogous models for
odds and rates. For example, we can modify the logistic model (which is an exponential odds model)
by substituting the odds O(x1) for the risk R(x1) in models 20–22 through 20–25. Similarly, we can
modify the rate models by substituting the rate I (x1) for R(x1). Each model will have implications
for the odds or rates analogous to those described earlier for the risk; because the risks, odds, and
rates are functions of one another (Chapter 3), each model will have implications for other measures
as well.

Any trend in the odds will appear more gradual when transformed into a risk trend. To see this,
note that

R(x1) = O(x1)/[1 + O(x1)] < O(x1)

and hence

O(x1)/R(x1) = 1 + O(x1)

This ratio of odds to risk grows as the odds (and the risks) get larger. Thus, the logistic risk model,
which is an exponential odds model, implies a less than exponential trend in the risk. Conversely,
any trend in the risks will appear steeper when transformed into an odds trend. Thus, the exponential
risk model implies a greater than exponential trend in the odds. Of course, when all the risks are
low (less than 10% for all possible X1 values), the risks and odds will be similar and so there will
be little difference between the shape of the curves produced by analogous risk and odds models.

The relation of risk and odds trends to rate trends is more complex in general, but in typical
applications follows the simple rule that rate trends tend to fall between the less steep risk and more
steep odds trends. For example, an exponential rate model typically implies a less than exponential
risk trend but more than exponential odds trend. To see why these relations can be reasonable to
expect, recall that, if incidence is measured over a span of time �t in a closed population, then
R(x1) < I (x1)�t < O(x1). When the risks are uniformly low, we obtain R(x1) ≈ I (x1)�t ≈ O(x1)
(Chapter 3), and so there will be little difference in the curves produced by analogous risk, rate, and
odds models.

INTERPRETING MODELS AFTER TRANSFORMATION

One drawback of models with transformed regressors is that the interpretation of the coefficients
depends on the transformation. As an example, consider the model 20–25, which has ln(x1) in place
of x1. Under this model, the risk ratio for a one-unit increase in X1 is

R(x1 + 1)/R(x1) = eα(x1 + 1)β1/eαxβ1

1

= [(x1 + 1)/x1]β1
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which will depend on the value x1 used as the reference level: If β1 = 1 and x1 is 1, the risk ratio
is 2, but if β1 = 1 and x1 is 2, the ratio is 1.5. Here, β1 is the power to which x1 is raised, and
so it determines the shape of the trend. The interpretation of the intercept α is also altered by the
transformation. Under model 20–25, R(l) = eα1β1 = eα; thus, α is the log risk when X1 = 1, rather
than when X1 = 0, and so is meaningful only if 1 is a possible value for X1.

As a contrast, consider again the model R(x1) = exp(α + β1x1/2
1 ). Use of x1/2

1 rather than x1

moderates the rapid increase in the slope of the exponential dose–response curve, but it also leads
to difficulties in coefficient interpretation. Under the model, the risk ratio for a 1-unit increase in
X1 is

exp
[
α + β1(x1 + 1)1/2

]
/ exp(α + β1x1/2

1 ) = exp
{
β1

[
(x1 + 1)1/2 − x1/2

1

]}
Here, β1 is the log risk ratio per unit increase in the square root of X1, which is rather obscure in
meaning. Interpretation may proceed better by considering the shape of the curve implied by the

model, for example, by plotting exp(α + β1x1/2
1 ) against possible values of X1 for several values of

β1. (The intercept α is less important in this model, because it determines only the vertical scale of
the curve rather than its shape.) Such plotting is often needed to understand and compare different
transforms.

OUTCOME TRANSFORMATIONS

Suppose now that Y is quantitative (e.g., CD4 count, diastolic blood pressure) and h(y) is a transform
(function) defined for all possible values y of Y . We may then model the regression of h(Y ) instead
of Y . This transformation of the outcome is often done to ensure that the model does not allow
impossible values for Y , such as a negative value for a count. One example is model 20–18 for log
incidence time ln(T ). The general form is

E[h(Y )|X1 = x1)] = α + β1x1

Interpretation of coefficients with a transformed outcome h(Y ) depends on the outcome transfor-
mation h, for with the transform β1 will be the change in the expected h(Y ) per unit increase in
X1. If the regressor X1 is also replaced by a transform, interpretation of the model coefficient can
become very obscure. For example, suppose that Y is birth weight, h(y) is the natural log ln(y), X1

is previous number of pregnancies, and the model is

E[ln(Y )|X1 = x1)] = α + β1x1/2
1

Then β1 will be the change in the expected log birth weight E[ln(Y )|X1 = x1] per unit increase in
the square root of previous number of pregnancies X1. Graphing this regression function against

X1 (rather than against X1/2
1 ) can aid in interpretation by showing the expected log birth weight as a

function of previous number of pregnancies, but it is still not straightforward because the regression
is for log birth weight, not birth weight.

An alternative to transforming the outcome is to transform the regression itself. Model 20–19
provides an example of this approach with incidence time T as the outcome. As was shown there
(using T in place of Y ), transforming the regression E(Y |X1 = x1) leads to a model different from
that obtained by transforming the outcome Y , and leaves the interpretation of the final model in
terms of the expectation of the original Y . Transformation of the regression is covered later, under
the topic of generalized linear models.

MULTIPLE REGRESSION MODELS

Suppose now that we wish to model the full multiple regression E(Y |X = x). Each of the previous
models for the single regression E(Y |X1 = x1) can be extended to handle this more general situation
by using the following device: In any model for the single regression, replace β1x1 by

β1x1 + β2x2 + . . . + βn xn [20–26]
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To illustrate the idea, suppose that we wish to model average risk of death by age 70 years across
female subpopulations defined by

X1 = years of tamoxifen therapy
X2 = age at start of tamoxifen use
X3 = age at menarche

with X = (X1, X2, X3). Then the multiple linear risk model for R(x) is

R(x) = α + β1x1 + β2x2 + β3x3

whereas the multiple logistic risk model is

R(x) = expit(α + β1x1 + β2x2 + β3x3)

If instead we wished to model the death rate, we could use the multiple linear rate model

I (x) = α + β1x1 + β2x2 + β3x3

or a multiple exponential rate model,

I (x) = exp(α + β1x1 + β2x2 + β3x3)

Because formula 20–26 can be clumsy to write out when there are three or more regressors (n ≥ 3),
several shorthand notations are in use. Let � represent the vertical list (column vector) of coefficients
β1, . . . , βn . Recall that x stands for the horizontal list (row vector) of values x1, . . . , xn . If we let
x� stand for β1x1 + . . . + βn xn , we can represent the multiple linear risk model by

R(x) = α + x� = α + β1x1 + . . . + βn xn [20–27]

the multiple logistic model by

R(x) = expit(α + x�) [20–28]

the multiple exponential rate model by

I (x) = exp(α + x�) [20–29]

and so on for all the models discussed earlier.

RELATIONS AMONG MULTIPLE-REGRESSION MODELS

The multiple-regression models 20–27 through 20–29 are not more general than the single-
regression models 20–7, 20–10, and 20–16, nor do they contain those models as special cases, be-
cause they refer to entirely different subclassifications of the target population. The single-regression
models refer to variations in averages across subpopulations defined by levels of just one variable;
the multiple-regression models, in contrast, refer to variations across the much finer subdivisions
defined by the levels of several variables. For example, it is at least logically possible for R(x1)
to follow the single-logistic model (equation 20–10) without R(x) following the multiple-logistic
model (equation 20–28); conversely, it is possible for R(x) to follow the multiple-logistic model
without R(x1) following the single-logistic model.

The preceding point is often overlooked because the single-regression models are often confused
with multiple-regression models in which all regressor coefficients except one are 0. The difference,
however, is analogous to the differences discussed earlier between the vacuous models 20–1 through
20–3 (which are so general as to imply nothing) and the constant regression models 20–4 through
20–6 (which are so restrictive as to be unbelievable in typical situations). To see this analogy,
consider the multiple-logistic model

R(x) = expit(α + β1x1) [20–30]

The right side of this equation is the same as in the single-logistic model (equation 20–10), but the
left side is crucially different: It is the multiple-risk regression R(x), instead of the single-regression
R(x1). Unlike model 20–10, model 20–30 is a special case of the multiple-logistic model (equation
20–28), the one in which β2 = β3 = . . . = βn = 0. Unlike model 20–10, model 20–30 asserts that
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risk does not vary across subpopulations defined by X1, X2, . . . , Xn except to the extent that X1

varies. This model is far more strict than model 20–28, which allows risk to vary with X2, . . . , Xn as
well as X1 (albeit only in a logistic fashion). It is also far more strict than model 20–10, which says
absolutely nothing about whether or how risk varies across subpopulations defined by X2, . . . , Xn ,
within specific levels of X1.

We must be careful to distinguish between models that refer to different multiple regressions.
For example, compare the two exponential rate models

I (x1, x2) = exp(α + β1x1 + β2x2) [20–31]

and

I (x1, x2, x3) = exp(α + β1x1 + β2x2) [20–32]

These are different models. The first is a model for the regression of rates on X1 and X2 only,
whereas the second is a model for the regression of rates on X1, X2, and X3. The first model in no
way refers to X3, whereas the second asserts that rates do not vary across levels of X3 if one looks
within levels of X1 and X2. Model 20–32 is the special case of

I (x1, x2, x3) = exp(α + β1x1 + β2x2 + β3x3)

in which β3 = 0, whereas model 20–31 is not.
Many textbooks and software manuals fail to distinguish between models such as 20–31 and

20–32, and instead focus only on the appearance of the right-hand side of the models. Most software
fits the less restrictive model that ignores other covariates (equation 20–31 in the preceding example)
rather than the more restrictive model (equation 20–32) when requested to fit a model with only X1

and X2 as regressors. Note that if the less restrictive model is inadequate, then the more restrictive
model must also be inadequate.

Unfortunately, if the less restrictive model appears adequate, it does not follow that the more
restrictive model is also adequate. For example, it is possible for the model form exp(α + β1x1 +
β2x2) to describe adequately the double regression I (x1, x2) (which means it describes adequately
the rate variation across X1 and X2 when X3 is ignored), and yet at the same time describe poorly
the triple regression I (x1, x2, x3) (which means that it describes inadequately the rate variation
across X1, X2, and X3). That is, a model may describe poorly the rate variation across X1, X2, and
X3 even if it describes adequately the rate variation across X1 and X2 when X3 is ignored. The
decision as to whether the model is acceptable should depend on whether the rate variation across
X3 is relevant to the analysis objectives. For example, if the objective is to estimate the effect of
changes in X1 on the death rate, and X2 and X3 are both potential confounders (as in the tamoxifen
example), we want the model to describe adequately the rate variation across all three variables.
But if X3 is instead affected by the study exposure X1 (such as when X1 is past estrogen exposure
and X3 is an indicator of current uterine bleeding), we usually will not want to include X3 in the
regression model (because we will not want to adjust our exposure-effect estimate for X3).

PRODUCT TERMS (STATISTICAL INTERACTIONS)

Each model form we have described has differing implications for measures of association derived
from the models. Consider again the linear risk model with three regressors X1, X2, and X3 , and
let x∗

1 and x1 be any two values for X1. Under the model, the risks at X1 = x∗
1 and X1 = x1 and

their difference, RD, when X2 = x2 and X3 = x3 are

R(x∗
1 , x2, x3) = α + β1x∗

1 + β2x2 + β3x3

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3

R D = β1(x∗
1 − x1)

Thus, the model implies that the risk difference between two subpopulations with the same X2 and
X3 levels depends only on the difference in their X1 levels. In other words, the model implies that
the risk differences for X1 within levels of X2 and X3 will not vary across levels of X2 and X3.
Such an implication may be unacceptable, in which case we can either modify the linear model or
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switch to another model. A simple way to modify a model is to add product terms. For example,
suppose we want to allow the risk differences for X1 to vary across levels of X2. We can add the
product of X1 and X2 to the model as a fourth variable. The risks and their differences will then be

R(x∗
1 , x2, x3) = α + β1x∗

1 + β2x2 + β3x3 + γ12x∗
1 x2

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ12x1x2 [20–33]

RD = β1(x∗
1 − x1) + γ12(x∗

1 − x1)x2 = (β1 + γ12x2)(x∗
1 − x1) [20–34]

Under model 20–33, the risk difference for X1 = x∗
1 versus X1 = x1 is given by formula 20–34,

which depends on X2.
A model (e.g., equation 20–33) that allows variation of the risk difference for X1 across levels

of X2 will also allow variation in the risk difference for X2 across levels of X1. As an example, let
x∗

2 and x2 be any two possible values for X2. Under model 20–33, the risks at X2 = x∗
2 and X2 = x2

and their difference RD when X1 = x1, X3 = x3 are

R(x1, x∗
2 , x3) = α + β1x1 + β2x∗

2 + β3x3 + γ12x1x∗
2

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ12x1x2

RD = β2(x∗
2 − x2) + γ12x1(x∗

2 − x2) = (β2 + γ12x1)(x∗
2 − x2) [20–35]

Thus, under the model, the risk difference for X2 = x∗
2 versus X2 = x2 is given by formula 20–35,

which depends on X1. Formulas 20–34 and 20–35 illustrate how product terms modify a model in
a symmetric way. The term γ12x1x2 allows the risk differences for X1 to vary with X2 and the risk
differences for X2 to vary with X1.

If we have three regressors in a model, we have three unique two-way regressor products (x1x2,
x1x3, x2x3) that we can put in the model. More generally, with n regressors, there are

(n
2

)
pairs and

hence
(n

2

)
two-way products we can use. It is also possible to add triple products (e.g., x1x2x3) or

other complex combinations to the model, but such additions are rare in practice (notable exceptions
are body mass indices, such as weight/height2 [Michels et al., 1998]). A model without product
terms is sometimes called a “main-effects only” model, and can be viewed as the special case of a
model with product terms (the special case in which all the product coefficients γi j are 0).

Consider next an exponential risk model with the above three variables. Under this model, the
risks at X1 = x∗

1 and X1 = x1 and their ratio RR when X2 = x2, X3 = x3 are

R(x∗
1 , x2, x3) = exp(α + β1x∗

1 + β2x2 + β3x3)

R(x1, x2, x3) = exp(α + β1x1 + β2x2 + β3x3)

RR = exp[β1(x∗
1 − x1)] [20–36]

Thus, the model implies that the risk ratio comparing two subpopulations with the same X2 and X3

levels depends only on the difference in their X1 levels. In other words, the model implies that the
risk ratios for X1 will be constant across levels of X2 and X3. If this implication is unacceptable,
product terms can be inserted, as with the linear model. These terms allow the risk ratios to vary in
a limited fashion across levels of other variables.

The preceding discussion of product terms can be applied to linear and exponential models in
which the odds or rate replace the risk. For example, without product terms, the logistic model
implies that the odds ratios for each regressor are constant across levels of the other regressors
(because the logistic model is an exponential odds model); we can add product terms to allow the
odds ratios to vary. Likewise, without product terms, the exponential rate model implies that the
rate ratios for each regressor are constant across levels of the other regressors; we can add product
terms to allow the rate ratios to vary.

Although product terms can greatly increase the flexibility of a model, the type of variation
allowed by product terms can be very limited. For example, model 20–33 implies that raising X2

by 1 unit (i.e., comparing subpopulations that have X2 = x2 + 1 instead of X2 = x2) will yield a
risk difference for X1 of

[β1 + γ12(x2 + 1)](x∗
1 − x1) = (β1 + γ12x2)(x∗

1 − x1) + γ12(x∗
1 − x1)
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In other words, the model implies that shifting our comparison to subpopulations that are 1 unit
higher in X2 will change the risk difference for X1 in a linear fashion, by an amount γ12(x∗

1 − x1),
regardless of the reference values x1, x2, x3 of X1, X2, X3.

TRENDS AND PRODUCT TERMS

Each of the preceding models forces or assumes a particular shape for the graph obtained when
average outcome (regression) is plotted against the regressors. Consider again the tamoxifen exam-
ple. Suppose we wished to plot how the risk varies across subpopulations with different number of
years exposure but with the same age at start of exposure and the same age at menarche. Under the
linear risk model, this involves plotting the average risk

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3

against X1, while keeping X2 and X3 fixed at some values x2 and x3. By doing so, we obtain a line
with an intercept equal to α + β2x2 + β3x3 and a slope equal to β1. Whenever we change X2 and
X3 and replot R(x) against X1, the intercept will change (unless β2 = β3 = 0), but the slope will
remain β1. Because lines with the same slope are parallel, we can say that the linear risk model
given above implies parallel linear trends in risk with increasing tamoxifen (X1) as one moves
across subpopulations of different starting age (X2) and menarche age (X3). Each change in X2 and
X3 adds some constant (possibly negative) amount to the X1 curve. For this reason, the linear risk
model is sometimes called an additive risk model.

If we plot risks against X2, we will get analogous results: The linear risk model given above
implies parallel linear relations between average risk and X2 as one moves across levels of X1 and
X3. Likewise, the model implies parallel linear relations between average risk and X3 across levels
of X1 and X2. Thus, the linear model implies additive (parallel) relations among all the variables.

If we are not satisfied with the linearity assumption but we wish to retain the additivity (parallel-
trend) assumption, we can transform the regressors. If we are not satisfied with the parallel-trend
assumption, we can allow the trends to vary across levels of other regressors by adding product
terms to the model. For example, adding the product of X1 and X2 to the model yields model 20–33,
which can be rewritten as

R(x1, x2, x3) = α + (β1 + γ12x2)x1 + β2x2 + β3x3

From this reformulation, we see that the slope for the line obtained by plotting average risk against
X1 while keeping X2, X3 fixed at x2, x3 will be β1 + γ12x2. Thus, the slope of the trend in risk
across X1 will vary across levels of X2 (if γ12 �= 0), and so the trend lines for X1 will not be parallel.
We also see that γ12 is the difference in the X1-trend slopes between subpopulations with the same
X3 value but 1 unit apart in their X2 value.

An entirely different approach to producing nonparallel trends begins with an exponential model.
For example, under the exponential risk model (equation 20–36), a plot of average risk against X1

while keeping X2 and X3 fixed at x2 and x3 will produce an exponential curve rather than a line.
This exponential curve will have intercept exp(α + β2x2 + β3x3). If, however, we change the value
of X2 or X3 and replot risk against X1, we will not obtain a parallel risk curve. Instead, the new
curve will be proportional to the old one: A change in X2 or X3 multiplies the entire X1 curve
by some amount. For this reason, the exponential model is sometimes called a multiplicative risk
model. If we are not satisfied with this proportionality-of-trends assumption, we can insert product
terms into the model, which will allow for certain types of nonproportional trends. Proportional
trends in risk appear parallel when plotted on a logarithmic vertical scale; when product terms with
nonzero coefficients are present, logarithmic trends appear nonparallel.

Analogous comments and definitions apply if we substitute odds or rates for risks in the preceding
arguments. For example, consider the multiple logistic model in the exponential odds form:

O(x) = exp(α + β1x1 + β2x2 + β3x3)

A plot of the disease odds O(x) against X1 while keeping X2 and X3 fixed will produce an exponential
curve; a plot of the log odds (logit) against X1 while keeping X2 and X3 fixed will produce a line.
If we change the value of X2 or X3 and replot the odds against X1, we will obtain a new curve that
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is proportional to the old; that is, the new odds curve will equal the old curve multiplied by some
constant amount. Thus, the logistic model is sometimes called a multiplicative odds model. For
analogous reasons, the exponential rate model is sometimes called a multiplicative rate model. In
both these models, inserting product terms into the model allows certain types of departures from
proportional trends.

INTERPRETING PRODUCT-TERM MODELS

Several important cautions should be highlighted when attempting to build models with product
terms and interpret coefficients in models with product terms. First, the “main-effect” coefficient
β j will be meaningless when considered alone if its regressor X j appears in a product with another
variable Xk that cannot be 0. In the tamoxifen example, X1 is years of exposure, which can be 0,
while X3 is age at menarche (in years), which is always greater than 0. Consider the model

R(x1, x2, x3) = α + β1x1 + β2x2 + β3x3 + γ13x1x3

= α + β1x1 + β2x2 + (β3 + γ13x1)x3

= α + (β1 + γ13x3)x1 + β2x2 + β3x3 [20–37]

Under this model, β1 + γ13x3 is the slope for the trend in risks across X1 given X2 = x2 and X3 = x3.
Thus, if X3 is 0, this slope will be β1 + γ130 = β1, and so β1 could be interpreted as the slope for X1

in subpopulations of a given X2 and with X3 = 0. But X3 is age at menarche and so it cannot be 0;
thus β1 has no simple epidemiologic interpretation. In contrast, because X1 is years of exposure and
so can be 0, β3 does have a simple interpretation: Under model 20–37, β3 + γ13x1 is the slope for
X3 given X1 = x1; hence β3 + γ13 · 0 = β3 is the slope for X3 in subpopulations with no tamoxifen
exposure (X1 = 0).

As mentioned earlier, if a regressor X j cannot be zero, one can ensure a simple interpretation
of the intercept a by recentering the regressor, that is, by subtracting a reference value from the
regressor before entering it in the model. Such recentering also helps provide a simple interpretation
for the coefficients of variables that appear with X3 in product terms. In the example, we can recenter
by redefining X3 to be age at menarche minus 13 years. With this change, β1 in model 20–37 will
now be the slope for X1 (years of tamoxifen) in subpopulations of a given X2 (age at start of
tamoxifen) in which this new X3 is 0 (that is, in which the age at menarche was 13).

Rescaling can also be important for interpretation of product-term coefficients. As an example,
suppose that X1 is serum cholesterol in mg/dL and X2 is diastolic blood pressure (DBP) in mm Hg,
and that the product of X1 and X2 is entered into the model without rescaling—say, as γ12x1x2 in an
exponential rate model. Then γ12 represents the difference in the log rate ratio for a 1-mg/dL increase
in cholesterol when comparing subpopulations 1 mm Hg apart in DBP. Even if this term is impor-
tant, it will appear to be very small in magnitude because of the small units used to measure
cholesterol and DBP. To avoid such deceptive appearances, we can rescale X1 and X2 so that
their units represent important increases in cholesterol and DBP. For example, we can redefine X1

as cholesterol divided by 20 and X2 as DBP divided by 10. With this rescaling, γ12 represents the
difference in the log rate ratio for a 20-mg/dL increase in cholesterol when comparing subpopulations
that are 10 mm Hg apart in DBP.

Another caution is that, in most situations, a product term in a model should be accompanied by
terms for all variables and products contained within that product. For example, if one enters γ12x1x2

in a model, β1x1 and β2x2 should also be included in that model; and if one enters δ123x1x2x3 in a
model, all of β1x1, β2x2, β3x3, γ12x1x2, γ13x1x3, and γ23x2x3 should be included in that model. This
rule, sometimes called the hierarchy principle (Bishop et al., 1975), is useful in avoiding models
with bizarre implications. As an example, suppose that X1 is serum lead concentration and X2 is
age minus 50 years. If γ12 > 0, the 1-year mortality-risk model

R(x1, x2) = exp(α + β2x2 + γ12x1x2)

implies that serum lead is positively related to risk among persons older than age 50 (X2 > 0), is
unrelated to risk among persons of age 50 (X2 = 0), and is negatively related to risk among persons
younger than age 50 (X2 < 0); if γ12 < 0, it implies a negative relation over 50 and a positive
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relation below 50. Rarely (if ever) will we have grounds for assuming that such unusual relations
hold. To prevent use of absurd models, many regression programs automatically enter all terms
contained within a product when the user instructs the program to enter the product into the model.

Models that violate the hierarchy principle often arise when one variable is not defined for all
subjects. As an example, suppose in a study of breast cancer in women that X1 is age at first birth
(AFB) and X2 is parity. Because X1 is undefined for nulliparous women (X2 = 0), one sometimes
sees the breast cancer rate modeled by a function in which age at first birth appears only in a product
term with parity, such as exp(α + β2x2 + γ1x1x2). The rationale for this model is that the rate will
remain defined even when age at first birth (X1) is undefined, because x1x2 will be 0 when parity
(X2) is 0. But this type of model assumes that the coefficient relating X1 to the outcome is always
a multiple of X2, which is rarely plausible; e.g., here it says that the multiplier γ1x2 of age at first
birth is 6 times higher for a woman with six births than for a woman with one birth.

One can sometimes avoid violating the hierarchy principle if there is a reasonable way to extend
variable definitions to all subjects. Thus, in the tamoxifen example, age at start of tamoxifen was
extended to the untreated by setting it to age 70 years (end of follow-up) for those subjects, and for
those subjects who started at age 70 or later. The rationale for this extension is that, within the age
interval under study, untreated subjects and subjects starting tamoxifen at age 70 or later will have
identical exposures.

Another caution is that product terms are commonly labeled “interaction terms” or “statistical
interactions.” We avoid these labels because they may inappropriately suggest the presence of
biologic (mechanical) interactions between the variables in a product term. In practice, regression
models are applied in many situations in which there is no effect of the regressors on the regressand
(outcome). Even in causal analyses, the connections between product terms and biologic interactions
can be very indirect and can depend on many biologic assumptions. In the next section, we will
briefly describe the simplest of these connections.

REGRESSION MODELS AND BIOLOGIC INTERACTIONS

In Chapter 5 we defined interaction response types for binary factors and showed that absence of
such interactions implies additivity of causal risk differences. In the absence of confounding, the
latter additivity condition is equivalent to a multiple-linear risk model. To see this equivalence,
consider two binary risk factors X1 and X2. Additivity of risk differences corresponds to

R(1, 1) − R(0, 0) = [R(1, 0) − R(0, 0)] + [R(0, 1) − R(0, 0)]

which yields

R(1, 1) = R(0, 0) + [R(1, 0) − R(0, 0)] + [R(0, 1) − R(0, 0)]

Define α = R(0, 0), β1 = R(1, 0) −R(0, 0), and β2 = R(0, 1) −R(0, 0). The equation for R(1, 1)
can then be rewritten

R(1, 1) = α + β1 + β2

The definitions of α, β1, β2 also yield

R(0, 0) = α, R(1, 0) = α + β1, R(0, 1) = α + β2

The last four risk equations can be represented by the single formula

R(x1, x2) = α + β1x1 + β2x2

where x1 and x2 can be either 0 or 1. This formula is a special case of the multiple-linear risk
model (equation 20–27). Thus, in the absence of confounding, departure of risks from the multiple-
linear risk model implies a departure from risk-difference additivity, which in turn implies that
interaction response types are present. As discussed in Chapter 5, however, risk-difference additivity
is a population phenomenon that may arise from a balance between synergistic and antagonistic
responses, rather than absence of interactions. Hence, neither risk-difference additivity nor the
linear-risk model implies absence of biologic interactions between X1 and X2.
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Consider next the extension of the linear-risk model with a product term,

R(x1, x2) = α + β1x1 + β2x2 + β3x1x2

One occasionally sees the product (“interaction”) coefficient β3 used as a measure of the population
frequency of interactions between X1 and X2. Such usage is incorrect, insofar as the magnitude
of β3 reflects only the net balance among the different response types listed in Chapter 5. For
example, β3 > 0 implies only that synergistic response types are more frequent than antagonistic
and competitive response types, not that antagonistic and competitive response types are absent;
β3 < 0 implies only that antagonistic and competitive responses are more frequent than synergis-
tic responses, not that synergistic responses are absent; and β3 = 0 implies only that synergistic
responses are balanced by antagonistic and competitive responses, not that interactions are absent.

The preceding concepts and observations extend to situations involving polytomous or contin-
uous regressors (Greenland, 1993b).

CATEGORICAL REGRESSORS

Consider a regressor whose possible values are discrete and few, and perhaps purely nominal
(that is, with no natural ordering or quantitative meaning). An example is marital status (never
married, currently married, formerly married). Such regressors may be entered into a multiple-
regression model using category indicator variables. To use this approach, we first choose one
level of the regressor as the reference level against which we want to compare risks or rates. For
each of the remaining levels (the index levels), we create a binary variable to indicate whether a
person is at that level (1 if at the level, 0 if not). We then enter these indicators into the regression
model.

The entire set of indicators is called the coding of the original regressor. To code marital status,
we can take “currently married” as the reference level and define

X1 = 1 if formerly married, 0 if currently or never married
X2 = 1 if never married, 0 if currently or formerly married (i.e., ever married)

There are 2 · 2 = 4 possible numerical combinations of values for X1 and X2, but only three of
them are logically possible. The impossible combination is X1 = 1 (formerly married) and X2 = 1
(never married). Note, however, that we need two indicators to distinguish the three levels of marital
status, because one indicator can only distinguish two levels.

In general, we need J − 1 indicators to code a variable with J levels. Although these indicators
will have 2J−1 possible numerical combinations, only J of these combinations will be logically
possible. For example, we need four indicators to code a variable with five levels. These indicators
have 24 = 16 numerical combinations, but only 5 of the 16 combinations will be logically possible.

Interpretation of the indicator coefficients depends on the model form and the chosen coding.
For example, in the logistic model

R(x1, x2) = expit(α + β1x1 + β2x2) [20–38]

exp(β2) is the odds ratio comparing X2 = 1 persons (never married) to X2 = 0 persons (ever
married) within levels of X1. Because one cannot have X2 = 1 (never married) and X1 = 1 (formerly
married), the only level of X1 within which we can compare X2 = 1 to X2 = 0 is the zero level
(never or currently married). Thus, exp(β2) is the odds ratio comparing never married (X2 = 1) to
currently married (X2 = 0) people among those never or currently married (X1 = 0). In a similar
fashion, exp(β1) compares those formerly married to those currently married among those ever
married.

In general, the type of indicator coding just described, called disjoint category coding, results
in coefficients that compare each index category to the reference category. With this coding, for a
given person, no more than one indicator in the set can equal 1; all the indicators are 0 for persons in
the reference category. A different kind of coding is nested indicator coding. In this type of coding,
levels of the regressor are grouped, and then codes are created to facilitate comparisons both within
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and across groups. For example, suppose we wish to compare those not currently married (never
or formerly married) to those currently married, and also compare those never married to those
formerly married. We can then use the indicators

Z1 = 1 if never or formerly married (i.e., not currently married), 0 otherwise (currently married)
Z2 = 1 if never married, 0 if ever married

Z2 is the same as the X2 used above, but Z1 is different from X1. The combination Z1 = 0 (currently
married), Z2 = 1 (never married) is impossible; Z1 = Z2 = 1 for people who never married. In the
logistic model

R(z1, z2) = expit(α + β1z1 + β2z2) [20–39]

exp(β2) is now the odds ratio comparing those never married (Z2 = 1) to those ever married (Z2 = 0)
among those not currently married (Z1 = 1). Similarly, exp(β1) is now the odds ratio comparing
those formerly married (Z1 = 1) to those currently married (Z1 = 0) among those ever married
(Z2 = 0).

There can be many options for coding category indicators. The choice among these options may
be dictated by which comparisons are of most interest. As long as each level of the regressor can be
uniquely represented by the indicator coding, the choice of coding will not alter the assumptions
represented by the model. There is, however, one technical point to consider in choosing codes. The
precision of the estimated coefficient for an indicator depends directly on the numbers of subjects
at each indicator level. For example, suppose that in the data there are 1,000 currently married
subjects, 200 formerly married subjects, and only 10 never married subjects. Then an indicator that
has “never married” as one of its levels (0 or 1) has a much less precise coefficient estimate than
other indicators. If “never married” is chosen as the reference level for a disjoint coding scheme, all
the indicators will have that level as their zero level, and so all will have very imprecise coefficient
estimates. To maximize precision, many analysts prefer to use disjoint coding in which the largest
category (currently married in the preceding example) is taken as the reference level.

In choosing a coding scheme, one need not let precision concerns prevent one from making
interesting comparisons. Coding schemes that distinguish among the same categories produce
equivalent models. Therefore, one may fit a model repeatedly using different but equivalent coding
schemes, in order to easily examine all comparisons of interest. For example, one could fit model
20–38 to compare those never or formerly married with those currently married, then fit model
20–39 to compare the never with formerly married.

Although indicator coding is essential for purely nominal regressors, it can also be used to
study quantitative regressors, especially when one expects qualitative differences between persons
at different levels. Consider number of marriages as a regressor. We might suspect that people of a
given age who have had one marriage tend to be qualitatively distinct from people of the same age
who have had no marriage or two marriages, and that people who have had several marriages are
even more distinctive. We thus might want to code number of marriages in a manner that allows
qualitative distinctions among its levels. If “one marriage” is the most common level, we might use
it as the reference level and use

X1 = 1 if never married, 0 otherwise
X2 = 1 if two marriages, 0 otherwise
X3 = 1 if three or more marriages, 0 otherwise

We use one variable to represent “three or more” because there might be too few subjects with three
or more marriages to produce acceptably precise coefficients for a finer division of levels. The coding
just given will provide comparisons of those never married, twice married, and more-than-twice
married to those once married. Other codings could be used to make other comparisons.

TREND MODELS IN MULTIPLE REGRESSION

Multiple regression models can be extended to produce much more flexible trend models than
those provided by simple transformations. The latter restrict trends to follow basic shapes, such as
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quadratic or logarithmic curves. The use of multiple terms for each exposure and confounder allows
more detailed assessment of trends and more complete control of confounding than is possible with
simple transformations.

CATEGORICAL TRENDS

One way to extend trend models is to categorize the regressor and then use a category-indicator
coding such as discussed earlier. The resulting analysis may then parallel the categorical (tabular)
trend methods discussed in Chapter 17. Much of the advice given there also applies here. To the
extent allowed by the data numbers and background information, the categories should represent
scientifically meaningful constructs within which risk is not expected to change dramatically. Purely
mathematical categorization methods such as percentiles (quantiles) can do very poorly in this regard
and so are best avoided when prior risk information is available (Greenland, 1995a, 1995c). On the
other hand, the choices of categories should not be dictated by the results produced; for example,
manipulation of category boundaries to maximize the effect estimate will produce an estimate that is
biased away from the null, whereas manipulation of boundaries to minimize a P-value will produce
a downwardly biased P-value. Similarly, manipulation to minimize the estimate or maximize the
P-value will produce a null-biased estimate or an upwardly biased P-value.

Two common types of category codes are used in trend models. Disjoint coding produces
estimates that compare each index category (level) to the reference level. Consider coding weekly
servings of fruits and vegetables with

X1 = 1 for <15, 0 otherwise
X2 = 1 for 36 to 42, 0 otherwise
X3 = 1 for >42, 0 otherwise

In the rate model

ln[I (x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 [20–40]

exp(β1) is the rate ratio comparing the “<15” category with the “15 to 35” category (which is the
referent), and so on, whereas exp(α) is the rate in the “15 to 35” category (the category for which all
the X j are 0). When model 20–40 is fitted, we can plot the fitted rates on a graph as a step function,
as was done in Chapter 17 for category-specific rates. This plot provides a crude impression of the
trends across (but not within) categories.

Confounders may be added to the model in order to control confounding, and these too may
be coded using multiple indicators or any of the methods described later. We may plot the model-
adjusted trends by fixing each confounder at a reference level and allowing the exposure level to
vary.

Incremental coding (nested coding) can be useful when one wishes to compare each category
against its immediate predecessor (Maclure and Greenland, 1992). For “number of servings per
week,” we could use

Z1 = 1 for >14, 0 otherwise
Z2 = 1 for >35, 0 otherwise
Z3 = 1 for >42, 0 otherwise

Note that if Z2 = 1, then Z1 = 1, and if Z3 = 1, then Z1 = Z2 = 1. In the model

ln[I (zl , z2, z3)] = α + β1z1 + β2z2 + β3z3 [20–41]

exp(β1) is the rate ratio comparing the “15 to 35” category (Z1 = 1 and Z2 = Z3 = 0) to the
<15 category (Z1 = Z2 = Z3 = 0). Similarly, exp(β2) is the rate ratio comparing the “36 to 42”
category (Z1 = Z2 = 1 and Z3 = 0) to the “15 to 35” category (Z1 = 1 and Z2 = Z3 = 0). Finally,
exp(β3) compares the >42 category (Z1 = Z2 = Z3 = 1) to the “36 to 42” category (Z1 = Z2 = 1
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and Z3 = 0). Thus, exp(β1), exp(β2), and exp(β3) are the incremental rate ratios across adjacent
categories. Again, we may add confounders to the model and plot adjusted trends.

REGRESSION WITH CATEGORY SCORES

A common practice in epidemiology is to divide each covariate into categories, assign a score to
each category, and enter scores into the model instead of the original variable values. The issues
involved in assigning such scores were discussed in Chapter 17 under the heading, “Horizontal
Scaling and Category Scores” in the “Dose–Response and Trend Analysis” section. Briefly, ordinal
scores or codes (e.g., 1, 2, 3, 4, 5 for a series of five categories) should be avoided, as they can yield
quantitatively meaningless dose–response curves and harm the power and precision of the results
(Lagakos, 1988; Greenland, 1995b, 1995c). Category midpoints can be much less distortive but are
not defined for open-ended categories; category means or medians can be even less distortive and
are defined for open-ended categories. Unfortunately, if there are important nonlinear effects within
categories, no simple scoring method will yield an undistorted dose–response curve, nor will it
achieve the power and precision obtainable by entering the uncategorized covariates into the model
(Greenland, 1995b, 1995c). We thus recommend that categories be kept narrow and that scores be
derived from category means or medians, rather than from midpoints or ordinal scores. We further
recommend that one also examine models using the covariates in their uncategorized (continuous)
form whenever associations are clearly present.

POWER MODELS

Another approach to trend analysis and confounder control is to use multiple power terms for each
regressor. Such an approach does not require categorization, but it does require care in selection of
terms. Traditionally, the powers used are positive integers (e.g., x1, x2

1 , x3
1 ), but fractional powers

may also be used (Royston and Altman, 1994). As an illustration, suppose that X1 represents the
actual number of servings per week (instead of an indicator). We can model trends across this
regressor by using X1 in the model along with the following powers of X1:

X2 = X1/2
1 = square root of X1

X3 = X2
1 = square of X1

The multiple-regression model

ln[I (x1, x2, x3)] = α + β1x1 + β2x2 + β3x3

is now just another way of writing the fractional polynomial model

ln[I (x1)] = α + β1x1 + β2x1/2
1 + β3x2

1 [20–42]

We can plot fitted rates from this model using very narrow spacing to produce a smooth curve as
an estimate of rate trends across X1. As always, we may also include confounders in the model and
plot model-adjusted trends.

Power models have several advantages over categorical models. Most important, they make use
of information about differences within categories, which is ignored by categorical models and
categorical analyses (Greenland, 1995a, 1995b, 1995c). Thus, they can provide a more complete
picture of trends across exposure and more thorough control of confounders. They also provide a
smoother picture of trends. One disadvantage of power models is a potentially greater sensitivity of
estimates to outliers, that is, persons with unusual values or unusual combinations of values for the
regressors. This problem can be addressed by performing influence analysis (Chapters 13 and 21).

REGRESSION SPLINES

Often it is possible to combine the advantages of categorical and power models through the use
of spline models. Such models can be defined in a number of equivalent ways, and we present
only the simplest. In all approaches, one first categorizes the regressor, as in categorical analysis
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(although fewer, broader categories may be sufficient in a spline model). The boundaries between
these categories are called the knots or join points of the spline. Next, one chooses the power (or
order) of the spline, according to the flexibility one desires within the categories (higher powers
allow more flexibility).

Use of category indicators corresponds to a zero-power spline, in which the trend is flat within
categories but may jump suddenly at the knots; thus, category-indicator models are just special and
unrealistic types of spline models. In a first-power or linear spline, the trend is modeled by a series
of connected line segments. The trend within each category corresponds to a line segment; the slope
of the trend may change only at the knots, and no sudden jump in risk (discontinuity in trend) can
occur.

To illustrate how a linear spline may be represented, let X1 again be “number of servings per
week” but now define

X2 = X1− 14 if X1 > 14, 0 otherwise
X3 = X1− 35 if X1 > 35, 0 otherwise

Then the log-linear rate model

ln[I (x1, x2, x3)] = α + β1x1 + β2x2 + β3x3 [20–43]

produces a log-rate trend that is a series of three line segments that are connected at the knots
(category boundaries) of 14 and 35. To see this, note that when X1 is less than 14, X2 and X3 are
0, so the model simplifies to a line with slope β1:

ln[I (x1, x2, x3)] = α + β1x1

in this range. When X1 is greater than 14 but less than 35, the model simplifies to a line with slope
β1 + β2:

ln[I (x1, x2, x3)] = α + β1x1 + β2x2

= α + β1x1 + β2(x1 − 14)

= α − 14β2 + (β1 + β2)x1

Finally, when X1 is greater than 35, the model becomes a line with slope β1 + β2 + β3:

ln[I (x1, x2, x3)] = α + β1x1 + β2x2 + β3x3

= α + β1x1 + β2(x1 − 14) + β3(x1 − 35)

= α − 14β2 − 35β3 + (β1 + β2 + β3)x1

Thus, β1 is the slope of the spline in the first category, β2 is the change in slope in going from the
first to the second category, and β3 is the change in slope in going from the second to the third
category.

The pattern produced by a linear spline appears to be more realistic than a categorical trend,
but it can suddenly change its slope at the knots. To smooth out such sudden changes, we may
increase the order of the spline. Increasing the power to 2 produces a second-power or quadratic
spline, which comprises a series of parabolic curve segments smoothly joined together at the knots.
To illustrate how such a trend may be represented, let X1, X2, and X3 be as just defined. Then the
model

ln[I (x1, x2, x3)] = α + β1x1 + γ1x2
1 + γ2x2

2 + γ3x2
3 [20–44]

will produce a log-rate trend that is a series of three parabolic segments smoothly connected at the
knots of 14 and 35. The coefficient γ1 corresponds to the curvature of the trend in the first category,
while γ2 and γ3 correspond to the changes in curvature when going from the first to the second
category and from the second to the third category. A still smoother curve could be fit by using a
third-power or cubic spline, but for epidemiologic purposes the quadratic spline is often smooth
and flexible enough.
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One disadvantage of quadratic and cubic splines is that the curves in the end categories (tails)
may become very unstable, especially if the category is open-ended. This instability may be reduced
by restricting one or both of the end categories to be a line segment rather than a curve. To restrict
the lower category to be linear in a quadratic spline, we need only remove the first quadratic term
γi x2

1 from the model. To restrict the upper category, we must subtract the last quadratic term from
all the quadratic terms; in doing so, we must remove the last term from the model because it will
be 0 after the subtraction.

To illustrate an upper category restriction, suppose we wish to restrict the above quadratic spline
model for log rates (20–44) so that it is linear in the upper category only. Define

Z1 = X1 = number of servings per week

Z2 = X2
1 − X2

3

Z3 = X2
2 − X2

3

Then the model

ln[I (zl , z2, z3)] = α + β1z1 + β2z2 + β3z3 [20–45]

will produce a log-rate trend that comprises smoothly connected parabolic segments in the first two
categories (“<14” and “15 to 35”), and a line segment in the last category (“>35”) that is smoothly
connected to the parabolic segment in the second category. (If we also wanted to force the log-rate
curve in the first category to follow a line, we would remove Z2 from the model.)

To plot or tabulate the curve from a spline model, we select a set of X1 values spaced across
the range of interest, compute the set of spline terms for each X1 value, combine these terms with
the coefficients in the model to get the model-predicted outcomes, and plot these predictions. To
illustrate, suppose that X1 is servings per week and we wish to plot model 20–45 with α = −6.00,
β1 = −0.010, β2 = −0.001, and β3 = 0.001 over the range 0 to 50 servings per week in 5-serving
increments. We then compute Z1, Z2, Z3 at 0, 5, 10, . . . , 50 servings per week, then compute the
predicted rate

exp(−6.00 − 0.010z1 − 0.001z2 + 0.001z3)

at each set of Z1, Z2, Z3 values and plot these predictions against the corresponding X1 values
0, 5, 10, . . . , 50. For example, at X1 = 40 we get Z1 = 40, Z2 = 402 − (40 − 35)2 =1,575, and
Z3 = (40 − 14)2− (40 − 35)2 = 651, for a predicted rate of

exp[−6.00 − 0.010(40) − 0.001(1,575) + 0.001(651)] = 6.6/10,000 years

As with other trend models, we may obtain model-adjusted trends by adding confounder terms
to our spline models. The confounder terms may be splines or any other form we prefer; spline
plotting will be simplified, however, if the confounders are centered before they are entered into the
analysis, for then the above plotting method may be used without modification. Further discussions
of splines and their application are given by Hastie and Tibshirani (1990), Wahba (1990), de Boor
(2001), and Hastie et al. (2001).

MODELS FOR TREND VARIATION

We may allow trends to vary across regressor levels by entering products among regressor terms.
For example, suppose that X1, X2, X3 are power terms for fruit and vegetable intake, while W1, W2,
W3, W4 are spline terms for age. To allow the fruit-vegetable trend in log rates to vary with age, we
could enter into the model all 3 · 4 = 12 products of the X j and Wk , along with the X j and Wk . If
in addition there is an indicator Z1 = 1 for female, 0 for male, the resulting model is

ln[R(x1, x2, x3, w1, w2, w3, w4, z1)]

= α + β1x1 + β2x2 + β3x3 + β4w1 + β5w2 + β6w3 + β7w4 + β8z1

+ γ11x1w1 + γ12x1w2 + · · · + γ33x3w3 + γ34x3w4

The same model form may be used if X1, X2, X3 and W1, W2, W3, W4 represent category indicators
or other terms for fruit-vegetable intake and age.
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Models with products among multiple trend terms can be difficult to fit and may yield quite
unstable results unless large numbers of cases are observed. Given enough data, however, such
models can provide more realistic pictures of dose–response relations than can simpler models.
Results from such models may be easily interpreted by plotting or tabulating the fitted trends for the
key exposures of interest at various levels of the “modifying” regressors. In the preceding example,
this process would involve plotting the model-fitted rates against fruit and vegetable intake for each
of several ages (e.g., for ages evenly spaced within the range of case ages).

The results may also be summarized using standardization over the confounders and modifiers,
which will be discussed in the next chapter.

EXTENSIONS OF LOGISTIC MODELS

Polytomous and continuous outcomes are often analyzed by reducing them to just two categories
and applying a logistic model. For example, CD4 counts might be reduced to the dichotomy
≤ 200, >200; cancer outcomes might be reduced to cancer and no cancer. Alternatively, multi-
ple categories may be created with one designated as a referent, and the other categories compared
one at a time to the referent using separate logistic models for each comparison. Although they are
not necessarily invalid, these approaches disregard the information contained in differences within
categories, in differences between nonreference categories, and in ordering among the categories.
As a result, models designed specifically for polytomous or continuous outcomes can yield far more
precision and power than simple dichotomous-outcome analyses.

This section briefly describes several extensions of the multiple logistic model (equation 20–28)
to polytomous and ordinal outcomes. Analogous extensions of other models are possible.

POLYTOMOUS LOGISTIC MODELS

Suppose that an outcome variable Y has I + 1 mutually exclusive outcome categories or levels
y0, . . . , y1, where category y0 is considered the reference category. The second part of Table 17–5
provides an example in which Y is a disease outcome variable, with y0 = all control diseases as
the reference category, and I = 7 other categories y1, . . . , y7 corresponding to the cancer outcomes
listed in the table. Let Ri (x) denote the average risk of falling in outcome category yi (i = 1, . . . , I )
given that the regressors X equal x; that is, let

Ri (x) = Pr(Y = yi |X = x)

The polytomous logistic model for this risk is then

Ri (x) = exp(αi + x�i )

1 + I
�
j=1

exp(α j + x� j )

[20–46]

For the example in the second part of Table 17–5, this is a model for the risk of falling in cancer
category yi (i = 1, . . . , 7). When Y has only two levels, I equals 1, and so formula 20–46 simplifies
to the multiple logistic model (equation 20–28).

Model 20–46 represents I separate risk equations, one for each nonreference outcome level
y1, . . . , yI . Each equation has its own intercept αi and vector of coefficients �i = (βi1, . . . , βin),
with a distinct coefficient βik corresponding to every combination of a regressor Xk and nonreference
outcome level yi (i = 1, . . . , I ). Thus, with n regressors in X, the polytomous logistic model involves
I intercepts and I · n regressor coefficients. For example, with seven nonreference outcome levels
and three regressors, the model would involve seven intercepts and 7 · 3 = 21 regressor coefficients,
for a total of 28 model parameters.

The polytomous logistic model can be written more simply as a model for the odds. To see this,
note that the risk of falling in the reference category must equal 1 minus the sum of the risks of
falling in the nonreference categories:

R0(x) = Pr(Y = y0|X = x)
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= 1 − I
�

i=1
exp(αi + x�i )/[1 + I

�
j=1

exp(α j + x�j )]

= 1/[1 + I
�
j=1

exp(α j + x�j )] [20–47]

Dividing equation 20–47 into 20–46, we get a model for Oi (x) = Ri (x)/R0(x) = the odds of falling
in outcome category yi versus category y0:

Oi (x) =
exp(αi + x�i )/[1 + �

j
exp(αj + x�j )]

1/[1 + �
j

exp(αj + x�j )]

= exp(αi + x�i ) [20–48]

This form of the model provides a familiar interpretation for the coefficients. Suppose x1 and x0 are
two different vectors of values for the regressors X. Then the ratio of the odds of falling in category
yi versus y0 when X = x∗ versus X = x is

Oi (x∗)

Oi (x)
= exp(αi + x∗�i )

exp(αi + x�i )
= exp[(x∗ − x)�i ]

From this equation, we see that the antilog exp(βik) of a coefficient βik corresponds to the propor-
tionate change in the odds of outcome yi versus y0 when the regressor Xk increases by 1 unit.

The polytomous logistic model is most useful when the levels of Y have no meaningful order,
as with the cancer types in Table 17–5. For further reading about the model, see McCullagh and
Nelder (1989) and Hosmer and Lemeshow (2000).

ORDINAL LOGISTIC MODELS

Suppose that the levels y0, . . . , yI of Y follow a natural order. Order arises, for example, when Y
is a clinical scale, such as y0 = normal, y1 = dysplasia, y2 = neoplasia, rather than just a cancer
indicator; Y is a count, such as number of malformations found in an individual; or the Y levels
represent categories of a physical quantity, such as CD4 count (e.g., >500, 200 to 500, <200).
There are at least four different ways to extend the logistic model to such outcomes.

Recall that the logistic model is equivalent to an exponential odds model. One extension uses an
exponential model to represent the odds of falling in outcome category yi versus falling in category
yi−1 (the next lowest category):

Ri (x)

Ri−1(x)
= Pr(Y = yi |X = x)

Pr(Y = yi−1|X = x)
= exp(α∗

i + x�∗) [20–49]

for i = 1, . . . , I. This may be called the adjacent-category logistic model, because taking logarithms
of both sides yields the equivalent adjacent-category logit model (Agresti, 2002). It may be seen
as a special case of the polytomous logistic model: From formula 20–48, the polytomous logistic
model implies that

Ri (x)

Ri−1(x)
= Ri (x)/R0(x)

Ri−1(x)/R0(x)
= exp(αi + x�i )

exp(αi−1 + x�i−1)

= exp[(αi − αi−1) + x(�i − �i−1)]

The adjacent-category logistic model sets α∗
i = αi − αi−1, and forces the I coefficient differences

�i − �i−1 (i = 1, . . . , I ) to equal a common value �∗. If there is a natural distance di between
adjacent outcome categories yi and yi−1 (such as the difference between the category means), the
model can be modified to use these distances as follows:

Ri (x)/Ri−1(x) = exp(α∗
i + x�∗di ) [20–50]



P1: TNL Printer: RRD

GRBT241-20 GRBT241-v4.cls January 4, 2008 5:10

Chapter 20 ● Introduction to Regression Models 415

for i = 1, . . . , I . This model allows the coefficient differences �i − �i−1 to vary with the distances
di between categories. For further discussion of adjacent-category models, see Agresti (2002) and
Greenland (1994a).

A different extension uses an exponential model to represent the odds of falling above category
yi versus falling in or below category yi :

Pr(Y > yi |X = x)

Pr(Y ≤ yi |X = x)
= exp(α∗

i + x�∗) [20–51]

where i = 0, . . . , I. This is called the cumulative-odds or proportional-odds model. It can be derived
by assuming that Y was obtained by categorizing a special type of continuous variable (McCullagh
and Nelder, 1989). Yet another extension uses an exponential model to represent the odds of falling
above outcome category yi versus in category yi :

Pr(Y > yi |X = x)

Pr(Y = yi |X = x)
= exp(α∗

i + x�∗) [20–52]

where i = 0, . . . , I . This is called the continuation-ratio model. A similar extension uses an expo-
nential model to represent the odds of falling in category yi versus falling below yi :

Pr(Y = yi |X = x)

Pr(Y < yi |X = x)
= exp(α∗

i + x�∗) [20–53]

where i = 1, . . . , I . This model may be called the reverse continuation-ratio model. It can be
derived by reversing the order of the Y levels in model 20–52, but in any given application it is not
equivalent to model 20–52 (Greenland, 1994a).

Certain guidelines may be of use for choosing among ordinal models, although none is absolute.
First, the adjacent-category and cumulative-odds models are reversible, in that only the signs of the
coefficients change if the order of the Y levels is reversed. In contrast, the two continuation-ratio
models are not reversible. This observation suggests that the continuation-ratio models may be
more appropriate for modeling irreversible disease stages (e.g., osteoarthritic severity), whereas the
adjacent-category and cumulative-odds models may be more appropriate for potentially reversible
outcomes (such as cell counts) (Greenland, 1994a). Second, because the coefficients of adjacent-
category models contrast pairs of categories, the model appears best suited for discrete outcomes
with few levels (e.g., cell types along a normal–dysplastic–neoplastic scale). Third, because the
cumulative-odds model can be derived from categorizing certain special types of continuous out-
comes, it is often considered most appropriate when the outcome under study is derived by cate-
gorizing a single underlying continuum (e.g., blood pressure) (McCullagh and Nelder, 1989). For
a more detailed comparative discussion of ordinal logistic models and guidelines for their use, see
Greenland (1994a).

All the preceding ordinal models simplify to the ordinary logistic model when there are only
two outcome categories (I = 2). They can also be applied to continuous Y , although most software
requires categorizing Y for this purpose. Categorization may be a problem insofar as results from
all the preceding models (including the cumulative-odds model) can be sensitive to the choice of
the Y categories (Greenland, 1994a; Strömberg, 1996). One advantage of the continuation-ratio
models (20–52 and 20–53) over their competitors is that they can be fitted with ordinary software
without categorization of Y , even if Y is continuous (Greenland, 1994a). The primary caution is
that conditional maximum likelihood (see Chapters 15 and 21) must be used for model fitting if
the observed outcomes are sparsely scattered across the levels of Y (as will be inevitable if Y is
continuous). If Y is continuous (e.g., BMI, blood pressure, etc.), this requirement can be met by
using a Cox (proportional-hazards) regression program to fit the models, as follows: Let ymin and
ymax be the minimum and maximum values of Y in the data. Then model 20–52 can be fitted by
using T = Y − ymin + 1 as the survival-time variable in the program, whereas model 20–53 can
be fitted by using T = ymax − Y + 1 as the survival-time variable.

Finally, all the above models can be generalized to allow variation in the coefficients � across
levels of Y , as in the polytomous logistic model (Peterson and Harrell, 1990; Greenland, 1994a;
Ananth and Kleinbaum, 1997; Cole and Ananth, 2001; Kuss, 2006). When this variation is modeled,
the adjacent-category model is known as the stereotype model.
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GENERALIZED LINEAR MODELS

Consider again the exponential risk and rate models,

R(x) = exp(α + x�) and I (x) = exp(α + x�)

and the logistic risk model,

R(x) = expit(α + x�)

We can replace the “exp” in the exponential models and the “expit” in the logistic model by other
reasonable functions. In fact, each of these models is of the general form

E(Y |X = x) = f (α + x�) [20–54]

where f (u) is a function that is smooth and strictly increasing as u increases. That is, as α+ x�
gets larger, f (α + x�) gets larger, but it never jumps or bends suddenly.

For any such function f (u), there is always an inverse function g(v) that “undoes” f (u), in the
sense that g[ f (u)] = u whenever f (u) is defined. Hence, a general form equivalent to 20–54 is

g[E(Y |X = x)] = α + x� [20–55]

A model of the form 20–55 is called a generalized linear model. The function g(v) is called the
link function for the model; thus, the link function is ln(v) for the log-linear model and logit(v) for
the logit-linear model. The term α + x� is called the linear predictor for the model and is often
abbreviated η (Greek letter eta); that is, η = α + x� by definition.

Almost all the models in the chapter are generalized linear models. Ordinary linear models (such
as the linear risk model) are the simplest examples, in which f (u) and g(v) are both the identity
function, i.e., f (u) = u and g(v) = v , so that

E(Y |X = x) = α + x�

The inverse of the exponential function exp(u) is the natural log function ln(v). Hence the
generalized-linear forms of the exponential risk and rate models are the log-linear risk and rate
models

ln[R(x)] = α + x� and ln[I (x)] = α + x�

Thus the exponential risk and rate models correspond to a natural-log link function, because
ln[exp(u)] = u. Similarly, the inverse of the logistic function expit(u) is the logit function logit(v).
Hence the generalized-linear form of the logistic-risk model is the logit-linear risk model

logit[R(x)] = α + x�

Thus the logistic model corresponds to the logit link function, because logit[expit(u)] = u.
The choices for f and g are virtually unlimited. In epidemiology, however, only the logit link

g(v) = logit(v) is in common use for risks, and only the log link g(v) = ln(v) is in common use
for rates. These link functions are almost always the software default, and are sometimes the only
options in software for risk and rate modeling. Some packages, however, allow selection of linear
risk, rate, or odds models, and some allow users to define their own link function.

The choice of link function can have a profound effect on the shape of the trend or dose–response
surface allowed by the model, especially if exposure is represented by only one or two terms. For
example, if exposure is represented by a single term β1x1 in a risk model, use of the identity link
results in a linear risk model and a linear trend for risk; use of the log link results in an exponential
(log-linear) risk model and an exponential trend for risk; and use of a logit link results in a logistic
model and an exponential trend for the odds.

Generalized linear models differ from transformed-outcome models in that they transform the
regression (conditional expectation) of Y by a link function g before imposing linearity assumptions,
rather than by transforming Y itself. The generalized linear forms (20–54 and 20–55) may thus be
applied to any type of outcome, including a discrete or continuous Y . They may even be combined
with a transformation h(Y ) of Y to create a generalized linear model for the transformed outcome,

g{E[h(Y )|X = x]} = α + x�
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and (as always) the variables in X may be transforms of the original regressors. Because of their
great flexibility, generalized linear models encompass a much broader range of forms for risks and
rates than the linear, log-linear, and logistic models. One example is the complementary log-log
risk model,

R(x) = 1 − exp[− exp(α + x�)]

which translates to the generalized linear form

ln{− ln[1 − R(x)]} = α + x�

This model corresponds to the link function ln[−ln(1 − v)] and arises naturally in certain biology
experiments. For further reading on generalized linear models, see McCullagh and Nelder (1989),
Dobson (2001), Hardin and Hilbe (2001), McCulloch and Searle (2001), and Hoffman (2003).
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Chapter 20 provided an introduction to regression concepts and basic model forms. The
present chapter provides brief introductions to the following topics: model selection; model fit-
ting; model checking; modeling of case-control, stratified, and matched data; and the more gen-
eral techniques of hierarchical and nonparametric regression, which address certain limitations of
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conventional modeling approaches. It then discusses model-based estimation of incidence, preva-
lence, and standardized (marginal) measures of effect, including inverse-probability-weighting and
confounder-scoring methods. It closes with a brief overview of longitudinal data analysis.

MODEL SEARCHING

How do we find a model or set of models that will be acceptable for our purposes? There are far
too many model forms to allow us to examine most or even much of the total realm of possibilities.
There are several systematic, mechanical, and traditional algorithms for finding models (such as
stepwise and best-subset regression) that lack logical or statistical justification and that perform
poorly in theory, simulations, and case studies; see Sclove et al. (1972), Bancroft and Han (1977),
Draper et al. (1979), Freedman (1983), Flack and Chang (1987), Freedman et al. (1988), Hurvich
and Tsai (1990), Faraway (1992), Weiss (1995), Greenland (1993b, 2000c, 2001b), Harrell (2001),
and Viallefont et al. (2001).

One serious problem is that the P-values and standard errors (SE) obtained from the final
model after variables are selected using significance-testing criteria (such as “F-to-enter” and
“F-to-remove”) will be downwardly biased, usually to a large degree. In particular, the SE esti-
mates obtained from the selected model ignore the variability induced by model selection, thus
underestimating the standard deviations (SDs) of the point estimates obtained by applying the algo-
rithms across different random samples. As a result, the final models selected by the algorithms will
tend to yield P-values that are much too small and confidence intervals that are much too narrow
(and hence fail to cover the true coefficient values with the stated frequency); see the citations in
the preceding paragraph. Unfortunately, significance-testing with no accounting for selection is the
basis for most variable-selection procedures in standard packaged software.

Other criteria for selecting variables, such as “change-in-point-estimate” criteria, do not neces-
sarily perform better than significance testing; for example, see Maldonado and Greenland (1993a).
Viable alternatives to significance testing in model selection have emerged only gradually with
advances in computing and with deeper insights into the problem of model selection. We outline
the conventional approaches after first reinforcing one of the most essential and neglected starting
points for good modeling: laying out existing information in a manner that can help avoid models
that are in conflict with established facts. In a later section, we describe an alternative to model
selection provided by hierarchical regression.

ROLE OF PRIOR INFORMATION

The dependence of regression results on the chosen model can be either an advantage or a drawback.
When simple tabular analyses (Chapters 14 through 17) require severe simplification of the analysis
variables, use of a model structure that is capable of reasonably approximating reality can improve
the accuracy of the estimates by avoiding such reduction. On the other hand, use of a model that is
incapable of even approximating reality can decrease accuracy to less than that of tabular analysis.

This trade-off underscores the desirability of using flexible (and possibly complex) models.
One should take care to avoid models that are entirely unsupported by background knowledge.
For example, in a cohort study of lung cancer, it is reasonable to restrict rates to increase with
age, because there is enormous background literature documenting that this trend is found in all
human populations. In contrast, one would want to avoid restricting cardiovascular disease (CVD)
rates to increase strictly with alcohol consumption, because there is evidence suggesting that the
alcohol–CVD relation is not strictly increasing (Maclure, 1993).

Prior knowledge about most epidemiologic relations is usually too limited to provide much
guidance in model selection. A natural response might be to use models that are as flexible as
possible (a flexible model can reproduce a wide variety of curves and surfaces). Unfortunately,
flexible models have limitations. The more flexible the model, the larger is the sample needed for
the usual estimation methods (such as maximum likelihood) to provide approximately unbiased
coefficient estimates. Also, after a certain point, increasing flexibility may increase variability of
estimates so much that the accuracy of the estimates is decreased relative to estimates from simpler
models, despite the greater faithfulness of the flexible model to reality. As a result, it is usual practice
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to employ models that are severely restrictive in arbitrary ways, such as logistic models (Robins
and Greenland, 1986).

Fortunately, estimates obtained from the most common epidemiologic regression models, ex-
ponential (log-linear) and logistic models, retain some interpretability even when the underlying
(true) regression function is not particularly close to those forms (Maldonado and Greenland, 1993b,
1994). For example, under common conditions, rate- or risk-ratio estimates obtained from those
models can be interpreted as approximate estimates of standardized rate or risk ratios, using the
total source population as the standard (Greenland and Maldonado, 1994). To ensure that such in-
terpretations are reasonable, the model used should at least be able to replicate qualitative features
of the underlying regression function. For example, if the underlying regression may have a reversal
in the slope of the exposure–response curve, we should use a model that is capable of exhibiting
such reversal (even if it cannot replicate the exact shape of the true curve).

SELECTION STRATEGIES

Even with ample prior information, there will always be an overwhelming number of model choices,
and so model search strategies are needed. Many strategies have been proposed, although none has
been fully justified.

Some strategies begin by specifying a minimal model form that is among the most simple
credible forms. Here “credible” means “compatible with available information.” Thus, we start with
a model of minimal computational or conceptual complexity that does not conflict with background
information. There may be many such models; in order to help ensure that our analysis is credible
to the intended audience, however, the starting model form should be one that most researchers will
view as a reasonable possibility.

To specify a simple yet credible model form, one needs some knowledge of the background
scientific literature on the relations under study. This knowledge includes information about relations
of potential confounders to the study exposures and study diseases, as well as relations of study
exposures to the study diseases. Thus, specification of a simple yet credible model can demand
much more initial effort than is routinely used in model specification.

Once we have specified a minimal starting model, we can add complexities that seem necessary
(by some criteria) in light of the data. Such a search process is an expanding search (Leamer,
1978). Its chief drawback is that often there are too many possible expansions to consider within
a reasonable length of time. If, however, one neglects to consider any possible expansion, one
risks missing an important shortcoming of the initial model. As a general example, if our minimal
model involves only first-order (linear) terms for 12 variables, we have

(
12
2

) = 66 possible two-
way products among these variables to consider, as well as 12 quadratic terms, for a total of 78
possible expansions with just one second-order term. An analyst may not have the time, patience, or
resources to examine all the possibilities in detail; this predicament usually leads to use of automatic
significance-testing procedures to select additional terms, which (as mentioned above) can lead to
distorted statistics.

Some strategies begin by specifying an initial model form that is flexible enough to approximate
any credible model form. A flexible starting point can be less demanding than a simple one in terms
of the need for background information. For example, rather than concern ourselves with what the
literature suggests about the shape of a dose–response curve, we can employ a starting model form
that can approximate a wide range of curves. Similarly, rather than concern ourselves with what the
literature suggests about joint effects, we can employ a form that can approximate a wide range of
joint effects. We can then search for a simpler but adequate model by removing from the flexible
model any complexities that appear to be unnecessary in light of the data. Such a search process,
based on simplifying a complex model, is a contracting or simplifying search (Leamer, 1978).

The chief drawback of a purely contracting search is that a sufficiently flexible prior model may
be too complex to fit to the available data. This drawback arises because more complex models
generally involve more parameters; with more parameters in a model, more data are needed to
produce trustworthy point and interval estimates. Conventional model-fitting methods may yield
biased estimates or may completely fail to yield any estimates (e.g., not converge) if the fitted
model is too complex. For example, if our flexible model for 12 variables contains all first- and
second-order terms, there will be 12 first-order plus 12 quadratic plus 66 product terms, for a total
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of 90 coefficients. Fitting this model by conventional methods may be well beyond what our data
can support.

Because of potential fitting problems, contracting searches begin with something much less
than a fully flexible model. Some begin with a model as flexible as can be fitted, or maximal
model. As with minimal models, maximal models are not unique. In order to produce a model
that can be fitted with conventional methods, one may have to limit flexibility of dose–response,
flexibility of joint effects, or both. It is also possible to start a model search anywhere in between
the extremes of minimal and maximal models, and proceed by expanding as seems necessary and
contracting as seems reasonable based on the data (although, again, resource limitations often lead
to mechanical use of significance tests for this process). Unsurprisingly, such stepwise searches
share some advantages and disadvantages with purely expanding and purely contracting searches.
Like other searches, care should be taken to ensure that the starting and ending points do not conflict
with prior information.

The results obtained following a model search can be very sensitive to the choice of starting
model. One can check for this problem by conducting several searches, starting at different models.
Nonetheless, there are always far too many possible models to search through them all, and with
many variables to consider, model search strategies always risk producing a misleading model
form. Modern methods to address this problem and other modeling issues can be found in the
literature on statistical learning, for example, under topics such as cross-validation, model averaging,
nonparametric regression, smoothing, and boosting (Hastie et al., 2001). There is also a large
Bayesian literature on the topic (e.g., Brown et al., 2002). Some of these methods reduce the
selection problem by merging models or their results, for example, by averaging over competing
models (Draper, 1995; Raftery, 1995; Carlin and Louis, 2000; Hastie et al., 2001; Viallefont et al.,
2001), by using inferential methods that account for the selection process (Ye, 1998; Hastie et al.,
2001; Harrell, 2001; Efron, 2004; Shen et al., 2004), or by embedding the models in a hierarchical
model that contains them all as special cases (Greenland, 1999).

The literature on model selection and averaging has focused largely on prediction problems,
but it has begun to influence causal-inference methodology (Hill and McCulloch, 2008) and has
close connections to several topics that we discuss later. As discussed in later sections, hierarchical
modeling can be used for model averaging and smoothing, and any prediction method can be used
as part of standardized effect estimation. Penalized fitting and other shrinkage methods also allow
fitting of much larger models than feasible with conventional methods, often eliminating the need
for variable selection in confounding control (Greenland, 2008).

MODEL FITTING

RESIDUAL DISTRIBUTIONS

Conventional model-fitting methods correspond to the estimation methods for categorical analyses,
as described in Chapters 13 through 16. Different fitting methods lead to different estimates, and so
in presenting results one should specify the method used to derive the estimates. The vast majority
of programs use maximum-likelihood (ML) estimation, which is based on very specific assumptions
about how the observed values of Y tend to distribute (vary) when the vector of regressors X is fixed
at a given value x . This distribution is called the (random) error distribution or residual distribution
of Y.

If Y is the person-time rate observed at a given value x of X, and T is the corresponding
observed person-time, it is conventionally assumed that the number of cases observed, A = YT,
will tend to vary according to a Poisson distribution if the person-time is fixed at its observed
value (see Chapter 14). Hence, conventional ML regression analysis of person-time rates is usually
called Poisson regression. If, on the other hand, Y is the proportion of cases observed at a given
value x of X out of a person-count total N, it is conventionally assumed that the number of cases
observed, A = YN, will tend to vary according to a binomial distribution if the number of persons
(person count) N is fixed at its observed value. Hence, conventional ML regression analysis of
prevalence or incidence proportions (average risks) is sometimes called binomial regression. Note
that if N = 1, the proportion diseased Y can be only 0 or 1; in this situation, A = YN can be only 0
or 1 and is said to have a Bernoulli distribution (which is just a binomial distribution with N = 1).
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The binomial distribution can be deduced from the homogeneity and independence assumptions
discussed in Chapter 14. As noted there, its use is inadvisable if there are important violations of
either assumption, e.g., if the disease is contagious over the study period.

If Y is the number of exposed cases in a 2 × 2 table, the conventionally assumed distribution for
Y is the hypergeometric. As discussed in Chapter 14, ML fitting in this situation is usually referred
to as conditional maximum likelihood (CML). CML fitting is closely related to partial-likelihood
methods, which are used for fitting Cox models in survival analysis. More details on maximum-
likelihood model fitting can be found in textbooks on nonlinear regression, such as McCullagh and
Nelder (1989), Clayton and Hills (1993), Hosmer and Lemeshow (2000), Agresti (2002), Dobson
(2001), Hardin and Hilbe (2001), McCulloch and Searle (2001), and Hoffman (2003).

OVERDISPERSION

What if the residual distribution of the observed Y does not follow the conventionally assumed
residual distribution? Under a broad range of conditions, it can be shown that the resulting ML-
fitted values (ML estimates) will remain approximately unbiased if no other source of bias is present
(White, 1982a, 1993; Royall, 1986). Nonetheless, the estimated SDs obtained from the program
will be biased. In particular, if the actual variance of Y given X = x (the residual variance) is
greater than that implied by the conventional distribution, Y is said to suffer from overdispersion or
extravariation, and the estimated SDs and P-values obtained from an ordinary maximum-likelihood
regression program will be too small.

In Poisson regression, overdispersion is sometimes called “extra-Poisson variation”; in binomial
regression, overdispersion is sometimes called “extra-binomial variation.” Typically, such overdis-
persion arises when there is dependence among the recorded outcomes, as when the outcome Y is
the number infected in a group, or Y is the number of times a person gets a disease. As an example,
suppose that Y is the number of eyes affected by glaucoma in an individual. In a natural population,
Y = 0 for most people and Y = 2 for most of the remainder, with Y = 1 very infrequently. In other
words, the Y values will be largely limited to the extremes of 0 and 2. In contrast, a binomially
distributed variable with the same possible values (0, 1, or 2) and the same mean as Y will have a
higher probability of 1 than 2, and hence a smaller variance than Y (these facts may be deduced
from the binomial formula in Chapter 13).

Two major approaches have been developed to cope with potential overdispersion, both of which
are based on modeling the residual distribution. One approach is to use maximum likelihood, but with
a residual distribution that allows a broader range of variation for Y, such as the negative binomial
in place of the Poisson or the beta-binomial in place of the binomial (McCullagh and Nelder,
1989). Such approaches can be computationally intensive, but they have been implemented in some
software. The second and simpler approach is to model only the residual variance of Y, rather
than specify the residual distribution completely. Fitting methods that employ this approach are
discussed by various authors under the topics of quasi-likelihood, pseudo-likelihood, and estimating-
equation methods; see McCullagh and Nelder (1989), McCullagh (1991), and Diggle et al. (2002)
for descriptions of these methods. Interestingly, Mantel-Haenszel methods can be viewed as special
cases of such methods applied to categorical data (Liang, 1987; Schouten et al., 1993).

SAMPLE-SIZE CONSIDERATIONS

One drawback of all the fitting methods discussed so far is that they depend on some sort of
“large-sample” (asymptotic) approximations, which usually require that the number of parameters
in the model be much less than (roughly, not more than 10% of) the number of cases observed
(Pike et al., 1980; Peduzzi et al., 1996), although in some examples even a 10:1 case:parameter
ratio is insufficient (Greenland et al., 2000a). When the sample size is insufficient, highly distorted
estimates (i.e., sparse-data bias) may occur without warning.

Methods that do not use large-sample approximations (exact methods) can be used to fit certain
models. These methods require the same residual-distribution assumptions as maximum-likelihood
methods, however. An example is exact logistic regression (Hirji, 2006). Unfortunately, exact fitting
methods for incidence and prevalence models are so computationally demanding that they cannot
fit models as complex as can be fit with other methods, and they incur methodologic objections
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based on their failure to constrain the size of the estimated relative risks when such constraints are
most needed (see Chapter 18). Alternative approaches are available that meet these objections and
permit fitting of incidence and prevalence models while retaining approximately valid small-sample
results. These alternatives include penalized-likelihood estimation and related “shrinkage” methods
of Stein estimation, random-coefficient regression, ridge regression, and Bayesian regression (Efron
and Morris, 1975; Copas, 1983; Titterington, 1985; Carlin and Louis, 2000; Gelman et al., 2003;
Greenland 2000c, 2001b, 2007a). Penalized likelihood can also be used for fitting hierarchical
models, and can in fact be viewed as a form of hierarchical modeling, which will be discussed
later.

DATA GROUPING AND COUNT DATA

The usual input to regression programs is in the form of an observed numerator of case counts and
a corresponding denominator of counts or person-time, one pair for each observed value x of the
vector of regressors X. It is commonly thought that rate models such as equation 20-17 require the
regressors to be grouped into categories. This is not so: Most rate-regression programs can make
use of ungrouped regressor data, in which an individual record contains an indicator of whether the
individual got disease, which serves as the case count (1 if the individual got disease, 0 if not) and
also contains the person-time at risk observed for the person. The only issue is then whether there
are sufficient data overall to allow the fitting methods to work properly (Greenland et al., 2000a).

Conversely, suppose that each component of X is a categorical (discrete) variable, such as marital
status, parity, sex, and age category. The multiway contingency table formed by cross-classifying
all subjects on each X component then has a cell for each value x of X. Such tables are often
analyzed using a log-linear model for the number of observations (subject count) Ax expected in
cell x of the table, ln(Ax) = α+ x�. Although software for log-linear count modeling is available in
some packages, count data can be easily analyzed using any program for Poisson (rate) regression,
by entering Ax as the rate numerator at regressor value x, and giving each count a person-time
denominator of 1. This approach eliminates the need for special software and provides greater
modeling flexibility than is available in many tabular-analysis packages.

MODEL CHECKING

It is important to check a fitted model against the data. The extent of these checks may depend on what
purpose we want the model to serve. At one extreme, we may only want the fitted model to provide
approximately valid summary estimates or trends for a few key relationships. For example, we may
want only to estimate the average increment in risk produced by a unit increase in exposure. At the
other extreme, we may want the model to provide approximately valid regressor-specific predictions
of outcomes, such as exposure-specific risks by age, sex, and ethnicity. The latter goal is more
demanding and requires more detailed scrutiny of results, sometimes on a subject-by-subject basis.

Model diagnostics can detect discrepancies between data and a model only within the range of
the data, and then only when there are enough observations to provide adequate diagnostic power.
For example, there has been much controversy concerning the health effects of “low-dose” radiation
exposure (exposures that are only modestly in excess of natural background levels). This controversy
arose because the natural incidence of key outcomes (such as leukemia) is low, and few cases had
been observed in “low-dose” cohorts. As a result, several proposed dose–response models “fitted
the data adequately” in the low-dose region, in that each model passed the conventional battery
of diagnostic checks. Nonetheless, the health effects predicted by these models conflicted to an
important extent.

More generally, one should bear in mind that a good-fitting model is not the same as a correct
model. In particular, a model may appear to be correct in the central range of the data but produce
grossly misleading predictions for combinations of covariate values that are poorly represented or
absent in the data.

TABULAR CHECKS

Both tabular methods (such as Mantel-Haenszel) and regression methods produce estimates by
merging assumptions about population structure (such as that of a common odds ratio or of an
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explicit regression model) with observed data. When an estimate is derived using a regression
model, especially one with many regressors, it may become difficult to judge how much the estimate
reflects the data and how much it reflects the model.

To investigate the source of results, we recommend that one compare model-based results to the
corresponding tabular (categorical-analysis) results. As an illustration, suppose we wish to check a
logistic model in which X1 is the exposure under study, and four other regressors, X2, X3, X4, and
X5, appear in the model, with X1, X2, X3 continuous, X4, X5 binary, and products among X1, X2,
and X4 in the model. Any regressor in a model must appear in the corresponding tabular analysis.
Because X2 and X4 appear in products with X1 and the model is logistic, they should be treated
as modifiers of the X1 odds ratio in the corresponding tabular analysis. X3 and X5 do not appear
in products with X1 and so should be treated as pure confounders (adjustment variables) in the
corresponding tabular analysis. Because X1, X2, X3 are continuous in the model, they must have
at least three levels in the tabular analysis, so that the results can at least crudely reflect trends seen
with the model. If all three of these regressors are categorized into four levels, the resulting table of
disease (two levels) by all regressors will have 2 · 43 · 22 = 512 cells, and perhaps many zero cells.

From this table, we can attempt to compute three (for exposure strata 1, 2, and 3 versus 0) adjusted
odds ratios (e.g., using the Mantel-Haenszel summary) for each of the 4 × 2 = 8 combinations of
X2 and X4, adjusting all 3 × 8 = 24 odds ratios for the 4 × 2 = 8 pure-confounder levels. Some of
these 24 adjusted odds ratios may be infinite or undefined as a result of small numbers, which will
indicate that the corresponding regression estimates are largely model projections. Similarly, the
tabular estimates may not exhibit a pattern seen in the regression estimates, which will suggest that
the pattern was induced by the regression model rather than the data. For example, the regression
estimates might exhibit a monotone trend with increasing exposure even if the tabular estimates did
not. Interpretation of such a conflict will depend on the context: If we are certain that dose–response
is monotone (e.g., smoking and esophageal cancer), the monotonicity of the regression estimates
will favor their use over the tabular results; in contrast, doubts about monotonicity (e.g., as with
alcohol and coronary heart disease) will lead us to use the tabular results or switch to a model that
does not impose monotonicity.

TESTS OF REGRESSION AND R2

Most programs supply a “test of regression” or “test of model,” which is a test of the hypothesis
that all the regression coefficients (except the intercept α) are zero. For instance, in the exponential
rate model

I (x) = exp(α + x�)

the “test of regression” provides a P-value for the null hypothesis that all the components of � are 0,
that is, that β1 = · · · = βn = 0. Similarly, the “test of R2” provided by linear regression programs
is just a test that all the regressor coefficients are 0. A small P-value from these tests suggests
that the variation in outcomes observed across regressor values appears improbably large under the
hypothesis that the regressors are unrelated to the outcome. Such a result suggests that at least one
of the regressors is related to the outcome. It does not, however, imply that the model fits well or is
adequate in any way.

To understand the latter point, suppose that X comprises the single indicator X1 = 1 for smokers,
0 for nonsmokers, and the outcome Y is average 20-year risk of lung cancer. In most any study
of reasonable size and validity, “the test of regression” (which here is just a test of β1 = 0) will
yield a small P-value. Nonetheless, the model is inadequate to describe variation in risk, because
it neglects amount smoked, age at start, and sex. More generally, a small P-value from the test of
regression tells us only that at least one of the regressors in the model should be included in some
form or another; it does not tell us which regressor or what form to use, nor does it tell us anything
about what has been left out of the model. Conversely, a large P-value from the “test of regression”
does not imply that all the regressors in the model are unimportant or that the model fits well. It is
always possible that transformation of those regressors will result in a small P-value, or that their
importance cannot be discerned given the random error in the data.

A closely related mistake is interpreting the squared multiple-correlation coefficient R2 for a
regression as a goodness-of-fit measure. R2 indicates only the proportion of Y variance that is
attributable to variation in the fitted mean of Y. Although R2 = 1 (the largest possible value) does
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ˆ

ˆ

ˆ

ˆ
T A B L E 2 1 – 1

Hypothetical Cohort Data Illustrating
Inappropriateness of R2 for Binary Outcomes
(See Text)

X 1 = 1 X 1 = 0

Y = 1 1,900 100
Total 100,000 100,000

Risk ratio = 19, R2 = 0.008.

correspond to a perfect fit, R2 can also be close to 0 under a correct model if the residual variance of
Y (i.e., the variance of Y around the true regression curve) is always close to the total variance of Y.

The preceding limitations of R2 apply in general. Correlational measures such as R2 can become
patently absurd measures of fit or association when the regressors and regressand are discrete or
bounded (Rosenthal and Rubin, 1979; Greenland et al., 1986; Cox and Wermuth, 1992; Greenland,
1996e). As an example, consider Table 21–1, which shows a large association of a factor with a
rare disease. The logistic model R(x) = expit(α + β1x1) fits these data perfectly because it uses
two parameters to describe only two proportions; thus, it is a saturated model. Furthermore, X1 = 1
is associated with a 19-fold increase in risk, yet the correlation coefficient for X1 and Y (derived
using standard formulas) is only 0.09, and the R2 for the regression is only 0.008.

Correlation coefficients and R2 can give even more distorted impressions when multiple regres-
sors are present (Greenland et al., 1986, 1991). For this reason, we strongly recommend against
their use as measures of association or effect when modeling incidence or prevalence.

TESTS OF FIT

Tests of model fit check for nonrandom incompatibilities between the fitted regression model and
the data. To do so, however, these tests must assume that the fitting method used was appropriate;
in particular, test validity may be sensitive to assumptions about the residual distribution that were
used in fitting. Conversely, it is possible to test assumptions about the residual distribution, but these
tests usually have little power to detect violations unless a parametric regression model is assumed.
Thus, useful model tests cannot be performed without making some assumptions.

Many tests of regression models are relative, in that they test the fit of an index model by
assuming the validity of a more elaborate reference model that contains it. A test that assumes a
relatively simple reference model (i.e., one that has only a few more coefficients than the index
model) can have much better power than a test that assumes a more complex reference model if
the simpler reference model is a good approximation to the true regression. The cost is that the test
may have much worse power if the simpler model is a poor approximation.

When models are fitted by maximum likelihood, a standard method for testing the fit of a simpler
model against a more complex model is the deviance test, also known as the log-likelihood ratio
test. Suppose that X1 represents cumulative dose of an exposure, and that the index model we want
to test is

R(x1) = expit(α + β1x1)

a simple linear-logistic model. When we fit this model, a ML program should supply either a
“residual deviance statistic” D(α̃, β̃1), or a “model log-likelihood” L(α̃, β̃1), where α̃, β̃1 are the
ML estimates for this simple model, D(α̃, β̃1) = −2L(α̃, β̃1), and L(α̃, β̃1) is the maximum of the
likelihood function (Chapter 13) for the model. Suppose we want to test the fit of the index model
taking as the reference the fractional-polynomial logistic model

R(x1) = expit(α + β1x1 + β2x1/2
1 + β3x2

1 )

of which the index model is the special case with β2 = β3 = 0. We then fit this model and get

either the residual deviance D(
∧
α,

∧
β1,

∧
β2,

∧
β3) or the log-likelihood L(

∧
α,

∧
β1,

∧
β2,

∧
β3) for the model,
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where
∧
α,

∧
β1,

∧
β2,

∧
β3) are the ML estimates for this power model. The deviance statistic for testing

the linear-logistic model against the power-logistic model (that is, for testing β2 = β3 = 0) is then

�D(β2, β3) = D(
∧
α,

∧
β1) − D(

∧
α,

∧
β1,

∧
β2,

∧
β3)

This statistic is related to the model log-likelihoods by the equation

�D(β2, β3) = −2[L(
∧
α,

∧
β1) − ∧

α,
∧
β1,

∧
β2,

∧
β3)]

If the linear-logistic model is correct (so that β2 = β3 = 0) and the sample is large enough, this
statistic has an approximately χ2 distribution with 2 degrees of freedom, which is the difference in
the number of parameters in the two models.

A small P-value from this statistic suggests that the linear-logistic model is inadequate or fits

poorly; that is, either or both the terms β2x1/2
1 and β3x2

1 capture deviations of the true regression from
the linear-logistic model. A large P-value does not, however, imply that the linear-logistic model

is adequate or fits well; it means only that no need for the terms β2x1/2
1 and β3x2

1 was detected by

the test. In particular, a large P-value from this test leaves open the possibility that β2x1/2
1 and β3x2

1

are important for describing the true regression function, but the test failed to detect this condition;
it also leaves open the possibility that some other terms that are not present in the reference model
may be important. These unexamined terms may involve X1 or other regressors.

Now consider a more general description. Suppose that we want to test an index model against
a reference model in which it is nested (contained) and that this reference model contains p more
unknown parameters (coefficients) than the index model. We fit both models and obtain either
residual deviances of Di and Dr for the index and reference models, or log-likelihoods Li and Lr .

If the sample is large enough and the index model is correct, the deviance statistic

�D = Di − Dr = −2(Li − Lr ) [21–1]

will have an approximately χ2 distribution with p degrees of freedom. Again, a small P-value
suggests that the index model does not fit well, but a large P-value does not mean that the index
model fits well, except in the very narrow sense that the test did not detect a need for the extra terms
in the reference model.

Whatever the size of the deviance P-value, its validity depends on three assumptions (in addition
to absence of study biases). First, it assumes that ML fitting of the models is appropriate; in particular,
there must be enough subjects to justify use of ML to fit the reference model, and the assumed
residual distribution must be correct. Second, it assumes that the reference regression model is
approximately correct. Third, it assumes that the index model being tested is nested within the
reference model. The third is the only assumption that is easy to check: In the previous example, we
can see that the linear-logistic model is just the special case of the power-logistic model in which
β2 = β3 = 0. In contrast, if we used the linear-logistic model as the index model (as above) but
used the power-linear model

R(x1) = α + β1x1 + β2x1/2
1 + β3x2

1

as the reference model, the resulting deviance difference would be meaningless, because the latter
model does not contain the linear-logistic model as a special case.

Comparison of nonnested models is a more difficult task. If the compared models have the
same number of parameters, it has been suggested that (absent other considerations) one should
choose the model with the highest log-likelihood (Walker and Rothman, 1982). In the general case,
other strategies include basing comparisons on measures of fit that adjust for the number of model
parameters. Examples include the Akaike information criterion (AIC), often defined as the model
deviance plus 2p, where p is the number of model parameters; the Schwarz information criterion
or Bayesian information criterion (BIC), often defined as the model deviance plus p · ln(N ), where
N is the number of observations; and criteria based on cross-validation (Hastie et al., 2001). Larger
values of these criteria suggest poorer out-of-sample predictive performance of the model. The
definitions of these criteria vary considerably across textbooks (e.g., cf. Leonard and Hsu, 1999,
p. 8); fortunately, the differences do not affect the ranking of models by each criterion.

As mentioned earlier, a major problem induced by model-selection strategies is that they invali-
date the conventional confidence intervals and P-values. Nonetheless, advances in computing have
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led to strategies that address these selection effects via bootstrapping or related methods (Hastie
et al., 2001), or that finesse the selection problem by averaging over the competing models (Draper,
1995; Raftery, 1995; Greenland, 1999; Carlin and Louis, 2000; Hastie et al., 2001; Viallefont et al.,
2001).

GLOBAL TESTS OF FIT

One special type of deviance test of fit can be performed when Y is a proportion or rate. Suppose
that, for every distinct regressor value x, at least four cases can be expected if the index model is
correct; also, if Y is a proportion, suppose that at least four noncases can be expected if the index
model is correct. (This criterion, though somewhat arbitrary, originated because it ensures that the
chance of a particular cell count being 0 is less than 2% if the cell variation is Poisson.) We can
then test our index model against the saturated regression model

E(Y |X = x) = αx [21–2]

where αx is a distinct parameter for every distinct observed value x of X; that is, αx may represent
a different number for every value x of X and may vary in any fashion as X varies. This model is
so general that it contains all other regression models as special cases.

The degrees of freedom for the test of the index model against the saturated model (equation
21–2) is the number of distinct X-values (which is the number of parameters in the saturated model)
minus the number of parameters in the index model, and is often called the residual degrees of
freedom for the model. This residual deviance test is sometimes called a “global test of fit” because
it has some power to detect any systematic incompatibility between the index model and the data.
Another well-known global test of fit is the Pearson χ2 test, which has the same degrees-of-freedom
and sample-size requirements as the saturated-model deviance test.

Suppose that we observe K distinct regressor values and we list them in some order x1, . . . , xK .
The statistic used for the Pearson test has the form of a residual sum of squares:

RSSPearson = �
k

(Yk − ∧
Yk)2/

∧
Vk = �k[(Yk − ∧

Yk)/
∧
Sk]2 [21–3]

where the sum is over all observed values 1, . . . , K , Yk is the rate or risk observed at value xk ,
∧
Yk is

the rate or risk predicted (fitted) at xk by the model,
∧
Vk is the estimated variance of Yk when X = xk ,

and
∧
Sk = ∧

V
1/2
k is the estimated SD of Yk under the model. In Poisson regression, Yk = exp(

∧
α + xk

∧
β)

and
∧
Vk = ∧

Yk/Tk , where Tk is the person-time observed at xk ; in binomial regression,Yk = expit(
∧
α+

xk
∧
β) and

∧
Vk = ∧

Yk(1 − ∧
Yk)/Nk , where Nk is the number of persons observed at xk. The quantity

(Yk − ∧
Yk)/

∧
Sk is sometimes called the standardized residual at value xk ; it is the distance between

Yk and
∧
Yk expressed in units of the estimated SD of Yk under the model.

Other global tests have been proposed that have fewer degrees of freedom and less restrictive
sample-size requirements than the deviance and Pearson tests (Hosmer and Lemeshow, 2000). A
major drawback of all global tests of fit, however, is their low power to detect model problems
(Hosmer et al., 1997). If any of the tests yields a low P-value, we can be confident that the tested
(index) model is unsatisfactory and needs modification or replacement (albeit the tests provide no
clue as to how to proceed). If, however, they all yield a high P-value, it does not mean that the model
is satisfactory. In fact, the tests are unlikely to detect any but the most gross conflicts between the
fitted model and the data. Therefore, global tests should be regarded as crude preliminary screening
tests only, to allow quick rejection of grossly unsatisfactory models.

The deviance and Pearson statistics are sometimes used directly as measures of distance between
the data and the model. Such use is most easily seen for the Pearson statistic. The second form of
the Pearson statistic shows that it is the sum of squared standardized residuals; in other words, it is
a sum of squared distances between data values and model-fitted values of Y, measured in standard-
deviation units. The deviance and Pearson global test statistics can also be transformed into measures
of prediction error under the model (McCullagh and Nelder, 1989; Hosmer and Lemeshow, 2000).

MODEL DIAGNOSTICS

Suppose now we have found a model that has passed preliminary checks such as tests for additional
terms and global tests of fit. Before adopting this model as a source of estimates, it is wise to
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check the model further against the. basic data, and assess the trustworthiness of any model-
based inferences we wish to draw. Such activity is subsumed under the topic of model diagnostics
and its subsidiary topics of residual analysis, influence analysis, and model-sensitivity analysis
(Belsley et al., 2004). These topics are vast, and we can only mention a few approaches here. In
particular, residual analysis is not discussed here, largely because its proper use involves a number
of technical complexities when dealing with the censored data and nonlinear models predominant
in epidemiology (McCullagh and Nelder, 1989).

DELTA-BETA ANALYSIS

One important form of influence analysis available in some packaged software is delta-beta (�β)
analysis. For a data set with N subjects total, estimated model coefficients (or approximations
to them) are recomputed N times over, each time deleting exactly one of the subjects from the
model fitting. Alternatively, the data set may be simplified to N groups of subjects, each group
containing subjects with a unique regressor pattern (e.g., a particular exposure–age–sex–education
combination), and the regression then recomputed deleting one group at a time. For individually
matched data comprising N matched sets, the delta-beta analysis may be done deleting one matched
set at a time. In all these approaches, the output is N different sets of coefficient estimates. These
sets are then examined to see if any one subject, group, or matched set influences the resulting
estimates to an unusual extent.

To illustrate, suppose our objective is to estimate the rate-ratio per unit increase in an exposure

X1, to be measured by exp(
∧
β1), where

∧
β1 is the estimated exposure coefficient in an exponential-rate

model. For each subject, the entire model (confounders included) is refitted without that subject.

Let
∧
β1(−i) be the estimate of β1 obtained when subject i is excluded from the data. The difference∧

β1(−i) − ∧
β1 ≡ �

∧
β1(−i) is called the delta-beta for β1 for subject i . The influence of subject i on the

results can be assessed in several ways. One way is to examine the effect on the rate-ratio estimate.
The proportionate change in the estimate from dropping subject i is

exp(
∧
β1(−i))/exp(

∧
β1) = exp(

∧
β1(−i) − ∧

β1) = exp(�
∧
β1(−i))

for which a value of 1.30 indicates that dropping subject i increases the estimate by 30%, and a
value of 0.90 indicates that dropping subject i decreases the estimate by 10%. One can also assess
the effect of dropping the subject on confidence limits, P-values, or any other quantity of interest.

Some packages compute “standardized” delta-betas of the form �
∧
β1(−i)/

∧
s1, where

∧
s1 is the esti-

mated standard error for
∧
β1. By analogy with Z -statistics, any standardized delta-beta below −1.96

or above 1.96 is often interpreted as being unusual. This interpretation can be misleading, however,

because
∧
s1 is not the standard deviation of the delta-beta �

∧
β1(−i), and so this type of standardized

delta-beta does not have a standard normal distribution.
It is possible that one or a few subjects or matched sets are so influential that deleting them alters

the conclusions of the study, even when N is in the hundreds (Pregibon, 1981). In such situations,
comparison of the records of those subjects to others may reveal unusual combinations of regressor
values among those subjects. Such unusual combinations may arise from previously undetected data
errors, and should at least lead to enhanced caution in interpretation. For instance, it may be only
mildly unusual to see a woman who reports having had a child at age 45 or a woman who reports
natural menopause at age 45. The combination in one subject, however, may arouse suspicion of
a data error in one or both regressors, a suspicion worth the labor of further data scrutiny if that
woman or her matched set disproportionately influences the results.

Delta-beta analysis must be replaced by a more complex analysis if the exposure of interest
appears in multiple model terms, such as indicator terms, power terms, product terms, or spline
terms. In that situation, one must focus on changes in estimates of specific effects or summaries,
for example, changes in estimated risk ratios.

RESAMPLING ANALYSIS AND BOOTSTRAPPING

Variability in results due to “random” vagaries of subject selection and outcome occurrence are
supposedly addressed by the confidence limits supplied by statistical programs for associational
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measures and regression coefficients. Unfortunately, these limits are usually based on distributional
assumptions or approximations whose validity may be uncertain in a given application. A less
formal but more visually immediate assessment of random variability can be obtained through
elementary resampling analysis (Simon and Burstein, 1985), in which the entire data set of N
subjects (or matched sets) is repeatedly random-sampled as if it were itself a source population.
Specifically, we may take K random samples of size N (the size of the study sample) each from the
data set by sampling with replacement (if we sampled without replacement, we would always end
up with our original sample). For each sample, we may repeat our analysis, to obtain K estimated
exposure coefficients or K estimated dose–response curves. These K results can be plotted in a
single histogram or graph. The plot provides a visual impression of the extent to which random
variability might have influenced the results.

The resampling analysis just described is the first step in nonparametric bootstrapping. Boot-
strapping employs resampling to produce better estimates, P-values, and diagnostics than are avail-
able using standard methods. It has become a vast topic area (Hall, 1992; Efron and Tibshirani, 1994;
Davison and Hinkley, 1997), although the numerous subtleties involved in proper (as opposed to
naı̈ve) bootstrapping blunted initial hopes for widespread use (Young, 1994; Carpenter and Bithell,
2000). For example, direct use of bootstrap percentiles as confidence limits is easy and popular, but
can perform poorly. Problems include instability of the estimated percentiles if K is not huge (on
the order of 10,000 or more; e.g., see Hill and Reiter, 2006), as well as finite-sample biases. One
can address these problems by estimating the variance and finite-sample bias of the effect estimate
from the bootstrap samples, then constructing the confidence interval from these estimates. More
sophisticated bootstrap procedures can address the problems thoroughly, but can be complicated
compared with naı̈ve percentile methods (Hall, 1992; Efron and Tibshirani, 1994; Davison and
Hinkley, 1997; Carpenter and Bithell, 2000). Furthermore, complexities in the sampling design
(such as nearest-neighbor matching) can invalidate bootstrap estimates based on simple random
resampling of individual records (Abadie and Imbens, 2006).

MODEL SENSITIVITY ANALYSIS

A valuable diagnostic procedure, which is often a by-product of the model-selection approaches
described in the following, is model sensitivity analysis (Leamer, 1985; Draper, 1995; Saltelli
et al., 2000). Given the variety of models available for fitting, it is inevitable that quite a few can be
found that fit reasonably well by all standard tests and diagnostics. Model sensitivity analysis seeks
to identify a spectrum of such acceptable models, and asks whether various estimates and tests are
sensitive to the choice of model used for inference. Those results that are consistent (stable) across
acceptable model-based and stratified analyses can be presented using any one of the analyses. On
the other hand, results that vary across analyses need to be reported with much more uncertainty
than is indicated by their (unstable) confidence intervals; in particular, one should report the fact
that the estimates were unstable.

The credibility, value, and results of a sensitivity analysis are themselves sensitive to the spectrum
of models investigated for acceptability. Most such analyses cover limited territory, in part because
most software has a restricted range of model forms that can be examined easily. Typically, only
exponential-Poisson and Cox models for rates and binomial-logistic models for risks are available,
although some packages supply linear rate and linear odds models. The similar restrictions imposed
by these models results in severe limitations on the range of analysis. Nonetheless, within these
limits there are vast possibilities for the terms representing the effects of exposures, confounders,
and modifiers.

MODELING IN UNMATCHED CASE-CONTROL
STUDIES AND RELATED DESIGNS

So far, we have assumed that the regressand (outcome variable) is some sort of occurrence measure
(risk, prevalence rate, incidence time) observed in a cohort or population of interest. In case-control
studies, however, we observe two disproportionate samples, one taken from cases of the study
disease and the other from the underlying population at risk. This sampling distorts the frequency
of disease in the study away from that in the source population. Nonetheless, the reasoning that
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shows we can estimate incidence ratios from case-control data (Chapter 8) also shows that, for a
broad class of models, we can validly model case-control data as if it were cohort data. The one
caution is that only the incidence ratios and attributable fractions estimated from the models are
valid; to estimate risks, rates, and their differences, some external data must be used.

MULTIPLICATIVE-INTERCEPT MODELS FOR DENSITY STUDIES

Consider an unmatched case-control study that uses density (risk-set) sampling of controls (Chapter
8). For simplicity, let us assume that the source and target populations are identical. Suppose that
rates across subpopulations of the underlying source population follow a multiplicative-intercept
model

I (x) = exp(α)r (x�) [21–4]

where r (x�) is a rate-ratio (“relative risk”) function that equals 1 when x� = 0 (Greenland, 1981;
Thomas, 1981b; Weinberg and Wacholder, 1993). The most common form uses r (x�) = exp(x�),
which yields the exponential-rate model

I (x) = exp(α + x�)

Taking r (x�) = 1+ x� instead yields the linear rate-ratio model

I (x) = exp(α)(1 + x�)

Let T (x) be the person-time at risk in the source population at value X = x over the study period.
Suppose that a fraction f of the cases is randomly sampled over the period, and controls are randomly
sampled over the period at a rate of h controls per unit person-time. Then expected numbers of
cases (A) and controls (B) observed at value X = x is

A(x) = f · exp(α)r (x�)T (x)

and

B(x) = h · T (x)

so that

A(x)/B(x) = ( f/h) exp(α)r (x�)

If we let α∗ = ln( f/h) + α, we see that

A(x)/B(x) = exp[ln( f/h) + α]r (x�)

= exp(α∗)r (x�)

Thus, A(x)/B(x) follows a multiplicative-intercept model with covariate coefficients identical to
those of the population rate model. The only difference is that the intercept α∗ is shifted away from
α by a factor ln( f/h).

Now suppose we take r (x�) = exp(x�). Let N (x) = A(x) + B(x) be the total number of study
subjects (cases and controls) expected at value X = x. The proportion of this total expected to be
cases is then

A(x)/N (x) = A(x)/[A(x) + B(x)]

= [A(x)/B(x)]/[1 + A(x)/B(x)]

= exp(α∗)r (x�)/[1 + exp(α∗)r (x�)]

= exp(α∗ + x�)/[1 + exp(α∗ + x�)]

= expit(α∗ + x�)

Thus, the ratio A(x)/N (x) follows a logistic model with covariate coefficients � identical to those of
the population rate model. As a consequence, to estimate the population coefficients � from density-
sampled case-control data under an exponential-rate model, we need only model the case-control
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data using logistic regression. In particular, the estimate
∧
β1 of a particular coefficient obtained from

the logistic model fitting is interpretable as an estimate of the change in the log rate ratio per unit
increase in Xk .

The preceding remarkable observation appeared in various forms beginning with Sheehe (1962).
More generally, valid SE estimates for the estimate of � can be obtained by modeling the case-
control data as if it were cohort data; only the estimates of the intercept term α and its standard error
are biased by the case-control sampling (Prentice and Breslow, 1978). Note that a “rare-disease”
assumption is not needed for any of these results.

Because the population rate ratios are functions of the � only, the intercept term α is not needed
for most purposes. If α is desired, however, and the case-control sampling ratio f/h is known or
can be estimated, then α can be estimated by subtracting ln( f/h) from the estimate of α∗ (Prentice
and Breslow, 1978); see below. Given estimates of α and �, one may use the fitted model to estimate
and plot the population rates (Greenland, 1981; Benichou and Wacholder, 1994). Given estimates of
only α∗ and �, one can still use the estimates of the case-control ratios exp(α∗)r (x�) as proportional
substitutes for rates in tables and plots (Greenland et al., 1999).

If we know or can estimate f/h, we can estimate α in the preceding models by substituting
our estimates of α∗ and ln( f/h) into the equation α = α∗− ln( f /h) (Prentice and Breslow, 1978;
Greenland, 1981). We can in turn estimate f/h from the overall (crude) disease rate in the source
population. To see this, let Ac be the total number of cases, let Tc be the total person-time at risk
in the source population during the study period, and let Ic = Ac/Tc . Also, let A+ and B+ be the
total number of cases and controls. We then have the expected relation

A+
B+

= f Ac

hTc

=
(

f

h

)
Ic

so that f/h = A+/(B+ Ic), the observed case-control ratio by the overall disease rate in the source
population (Greenland, 1981).

MULTIPLICATIVE-INTERCEPT MODELS FOR CUMULATIVE
AND PREVALENCE STUDIES

Suppose we have a cumulative or prevalence case-control study with random sampling of fractions
f of cases and h of noncases. If the odds in the source follows a multiplicative-intercept model
O(x) = exp(α)r (x�), the expected case-control ratio will follow the model

A(x)/B(x) = exp(α∗)r (x�)

where α∗ = α + ln( f/h). If we know or can estimate f/h, then we may obtain an estimate of α from
the equation α = α∗ − ln( f/h) (Anderson, 1972; Greenland, 1981). Given the overall (crude) odds
Oc in the source population, we can in turn estimate f/h from the equation f/h = A+/(B+Oc),
the observed case-control ratio divided by the overall odds in the source population.

Because the logistic model R(x) = expit(α+ x�) is identical to the exponential odds model
O(x) = exp(α+ x�), an argument parallel to that given for density studies shows that the proportions
expected to be cases in the study will follow the logistic model

A(x)/N (x) = expit(α∗ + x�)

(Anderson, 1972; Mantel, 1973; Prentice and Pyke, 1979). Thus, to estimate the population logistic
coefficients �, we need only model the case-control data using logistic regression as if it were a
cohort or survey. Similarly, a linear odds-ratio model O(x) = exp(α)(1 + x�) induces the additive
case-control ratio model A(x)/B(x) = exp(α∗)(1 + x�). A few software packages allow fitting
these linear odds-ratio models (some call them “additive logistic models”) to data.

OTHER MODELS FOR CASE-CONTROL STUDIES

Estimation of the selection ratio f/h allows fitting of other models to case-control data (Greenland,
1981). As an example, suppose the source population follows a linear rate model

I (x) = α + x�
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In a density case-control study, the expected numbers of cases and controls will be

A(x) = f · (α + x�)T (x)

and

B(x) = hT(x)

and the ratio will be

A(x)/B(x) = ( f/h)(α + x�) = α∗ + x�∗

where α∗ = ( f/h)α and �∗ = ( f/h)�. Thus, � will be distorted by the factor f/h in the case-
control data, and we will not be able to estimate � validly unless we know or can estimate f/h. If
we have an estimate of f/h, however, we can divide our case-control estimates of α∗ and �∗ by
our estimate of f/h to obtain estimates of α and �. Parallel arguments show that, under linear and
exponential risk models, we can estimate the covariate coefficients from cumulative or prevalence
case-control data if we know or can estimate f/h.

CASE-COHORT AND TWO-STAGE STUDIES

Suppose that a cohort is studied using a case-cohort design, with random sampling of fractions f
of cases and h of the total cohort at start of follow-up. As with a cumulative case-control study,
if the underlying cohort follows a multiplicative-intercept odds model, the ratios of expected case
and noncase numbers will also follow a multiplicative-intercept model. The bias in the intercept
will be different, however. In addition to the fraction f of all cases that composes the case sample,
a fraction h of all cases is expected to appear in the total-cohort sample. Furthermore, we expect a
fraction f of the latter cases also to appear in the case sample, so that we expect a fraction fh of all
cases to appear in both samples. Thus, the fraction of all cases with X = x who will appear in the
case-cohort study will be f + h − fh, and

α∗ = α + ln[( f + h − fh)/h] = α + ln( f/h + 1 − f )

In case-cohort studies, f and h are usually chosen by the investigator, so once α∗ is estimated,
this equation can be solved for α. If f/h is unknown, it can be estimated directly from case-cohort
data as the ratio of the numbers of cases in the case sample and the cohort sample, although this
estimate may be very unstable. Standard regression programs can be used to fit a broad range of risk
models to case-cohort data (Prentice, 1986; Schouten et al., 1993), provided the data are entered
with special formats or weights. The chief obstacle to these approaches is that they may require
extra programming to obtain correct standard-deviation estimates.

A variety of methods exist for analyzing two-stage data (Breslow and Cain, 1988; Cain and
Breslow, 1988; Flanders and Greenland, 1991; Robins et al., 1994; Breslow and Holubkov, 1997a,
1997b), but each requires special programming. Perhaps the conceptually simplest approach is to
adopt a missing-data viewpoint, in which subjects in the second-stage sample are complete subjects,
while subjects who are only in the first-stage sample are those with data missing on the second-stage
covariates (Robins et al., 1994). This approach allows analysis of two-stage data with missing-data
software. The same approach can be used to analyze case-cohort and nested case-control data when
full-cohort data are available (Wacholder, 1996).

STRATIFIED MODELS

Suppose we have data that are divided into K strata indexed by k = 1, . . . , K , with the strata defined
by potential confounders in the list Z = (z1, . . . , zm). For example, suppose we have data stratified
on Z1 = 1 if female, 0 if male and Z2 = 1 if age is 50 to 54 years, 2 if age is 55 to 59 years, 3 if age
is 60 to 64 years, and 4 if age is 64 to 69 years. Here, Z = (Z1, Z2) comprises a sex indicator and one
four-level age-category variable. Together, Z1 and Z2 define 2 × 4 = 8 sex–age strata. Suppose also
we have another list of variables X, including the study exposures and potential confounders other
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than those in Z. A stratified model is a model for the stratum-specific regressions. As discussed
below, such models are central to modeling of matched data.

To illustrate this concept, suppose we index the strata by k = 1, . . . , 8 with the above eight
sex-age strata and that X = (X1, X2). One possible stratified logistic risk model is then

Rk(x) = expit(αk + β1x1 + β2x2) [21–5]

This model asserts that, within each stratum, risk varies with X1 and X2 according to a simple
logistic model, and only the intercept of the model changes across strata. More general models
allow other parameters to change across strata. For example, the model

Rk(x) = expit(αk + β1x1 + β2x2 + γ1x1z1 + γ2x2z1)

= expit[αk + (β1 + γ1z1)x1 + (β2 + γ2z1)x2]

allows the X1 and X2 coefficients to vary with sex: For men, Z1 = 0 and so in male strata,

Rk(x) = expit(αk + β1x1 + β2x2)

For women, Z1 = 1 and so in female strata,

Rk(x) = expit[αk + (β1 + γ1)x1 + (β2 + γ2)x2]

We could also build models in which the coefficients varied with the age group (Z2 level) of the
strata, by including product terms with Z2 or with indicators of different levels of Z2.

Stratum-specific models can be defined for any outcome measure and model form. For example,
we could use a stratum-specific linear-odds model

Ok(x) = αk + β1x1 + β2x2 [21–6]

One special consideration in using stratum-specific models arises if the strata are sparse, in that
there are too few subjects per stratum to allow estimation of the intercepts αk . In those situations,
special fitting methods (known as sparse-data methods) must be used. Such methods do not provide
estimates of the intercepts αk , and they are available only for multiplicative-intercept models of the
form exp(αk)r (x�); equation 21–5 is an example, whereas equation 21–6 is not. Because sparse
stratifications are common, these methods correspond to an important application of stratified
models. Nonetheless, although these methods can reduce sparse-data problems, they are not immune
to those problems (Greenland, 2000e, Greenland et al., 2000a).

Conditional maximum-likelihood (CML) is the most common sparse-data fitting method for
stratified logistic models. CML fitting of stratified logistic models is usually called “conditional
logistic regression” (Breslow and Day, 1980; McCullagh and Nelder, 1989; Clayton and Hills, 1993;
Hosmer and Lemeshow, 2000). CML can also be used to fit the stratified linear odds-ratio model

Ok(x) = exp(αk)(1 + x�∗) [21–7]

Note, however, that this model is not equivalent to the stratified linear-odds model (model 21–6),
because model 21–7 implies that

Ok(x) = exp(αk) + exp(αk)x�∗ = exp(αk) + x�∗
k [21–8]

where �∗
k = exp(αk)�∗ varies across strata. Parallel observations apply to linear risk and rate models.

As a consequence, neither risk nor rate additivity corresponds to a stratified linear relative-risk model
(Greenland, 1993d).

CML is limited to multiplicative-intercept models for the rate or odds; it is not appropriate
for a multiplicative-intercept model for risks, such as model 21–5. Confidence intervals obtained
from standard conditional logistic programs also assume that subject outcomes are independent
within strata. To overcome these restrictions, other sparse-data fitting methods have been developed
that are generalizations of the Mantel-Haenszel methods discussed in earlier chapters. Examples
include methods for fitting logistic models to sparse data with dependent outcomes (Liang, 1987)
and methods for fitting exponential and linear risk models to sparse cohort data (Stijnen and van
Houwelingen, 1993; Greenland, 1994b).
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MODELING MATCHED DATA

The general principles for modeling in matched studies are the same as those for stratified analysis
of matched studies (see Chapter 16). Most importantly, all matching factors should be treated as
potential confounders, in that one should assess whether failure to control them will affect interval
estimates. Any matching factor for which control affects these estimates to an important degree
should be controlled. What is an “important degree” depends on the subject matter, however.

A crucial point is that complete control of the matching in matched-data modeling requires use of
a stratified model with each unique matching category defining its own stratum (which often results
in a sparse stratification). In such a model, each matching stratum (that is, each unique combination
of matching factors) is given its own unique intercept term. Consider a cumulative case-control
study of the relation of smoking X1 and alcohol use X2 to risk of laryngeal cancer, matched on sex
Z1 (Z1 = 1 female, 0 male) and age Z2 in six 5-year categories from 45–49 to 70–74, coded by
Z2 = 1, . . . , 6. There are then 2 × 6 = 12 unique matching strata, which we may index by 1–12.
A model that treats smoking and alcohol as having linear logistic relations to disease risk within
matching strata, and that also allows adjustment for any selection bias produced by the matching,
is

Rk(x1, x2) = expit(αk + β1x1 + β2x2) [21–9]

where k = 1, . . . , 12, according to the age–sex stratum.
To be more precise, suppose that the source cohort follows model 21–9 and that cases and controls

are randomly sampled within matching strata. Using arguments similar to those for unmatched data,
it can be shown that the ratios of expected case numbers Ak(x1, x2) to expected totals Nk(x1, x2)
from the matched case-control data will follow the logistic model

Ak(x1, x2)/Nk(x1, x2) = expit(α∗
k + β1x1 + β2x2)

where α∗
k = αk + ln( fk/hk) and fk and hk are the sampling fractions for cases and controls in

matching stratum k. If instead we conduct a density case-control study of the rate of laryngeal
cancer and the source population follows the stratified exponential rate model

I (x1, x2) = exp(αk + β1x1 + β2x2)

the expected data will follow the previous logistic model with α∗
k = αk + ln( fk/hk), where hk is

the control sampling rate in stratum k.
Suppose that X4 is the actual age (in years) of a subject and X3 = Z1 = 1 female, 0 male. A

model that does not allow full adjustment for the matching is

R(x) = expit(α + β1x1 + β2x2 + β3x3 + β4x4), [21–10]

where x = (x1, x2, x3, x4). Unlike the first model, this model implies that the age variable has a
linear logistic relation to risk, and that the age and sex effects on the odds are multiplicative. Even
if the underlying source population follows this model, the case-control matching on age can alter
the age trend in the expected matched data away from the linear logistic form to a highly nonlinear
form (Greenland, 1986a, 1997b). Use of a linear logistic trend for age can only be rationalized if
the model (equation 21–10) gives confidence limits for the smoking and alcohol effect estimates
that are not substantially different from those obtained using the stratified model (equation 21–9).

Sometimes a variable is not matched closely enough to prevent important confounding by the
variable within matching strata. We can address this problem in a stratified analysis by using finer
strata for the variable. For example, if age is matched in only 10-year intervals, we can split each
of these intervals into two 5-year or even five 2-year strata. We can accomplish this split with a
model that has separate intercepts for each of the finer strata. If, as a result, there are few subjects
per stratum, sparse-data fitting methods will be needed.

Modeling permits an alternative to finer stratification, however: One can model the effects of
within-stratum variation of the matching variable. For example, if the subjects are matched on sex
and on age using two 10-year strata of 55 to 64 years and 65 to 74 years, we can make a model-based
adjustment for age variation within the four matching strata by adding a term to the model for the
effect of age variation within strata. For example, define X5 to be the deviation of a person’s age
from the mean age of the controls in the person’s matching category. If the mean ages of women 55
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to 64, men 55 to 64, women 65 to 74, and men 65 to 74 are 60, 59, 70, and 68, respectively, then X5

equals age minus 60, age minus 59, age minus 70, or age minus 68, depending on which matching
category a person is in. We then add X5 directly to the stratified case-control model as β3x5, which
yields

expit(α∗
k + β1x1 + β2x2 + β3x5)

(there is no term for sex or age alone, because the latter are matching variables and thus their
stratum-specific effects are included in the intercepts α∗

k ). This process is just one of many ways to
model the within-stratum age effects.

Other models beside the logistic can be used for matched data, such as the linear odds-ratio model
(equation 21–5). We again caution, however, that the linear odds-ratio model does not correspond
to the linear odds model 21–4 (Greenland, 1993d) and therefore does not approximate the linear
risk or rate model even if the outcome is uncommon. As with unmatched data, external information
is required to fit linear rate or linear or exponential risk models to matched case-control data. The
information required is more detailed, however. In density studies we must know or estimate the
selection ratios fk/hk . These ratios can be estimated by dividing the matching-stratum-specific
rates or odds into the matching-stratum-specific case-control ratios (Greenland, 1981).

HIERARCHICAL (MULTILEVEL) REGRESSION

Often there is information about the regressors that will be valuable if not essential to incorporate
into the analysis. For example, in a study of vitamin intakes and disease, we would know that some
vitamins are water-soluble whereas others are fat-soluble; and in a study of chlorinated hydrocarbon
levels in tissues, we would know the degree of chlorination of the measured compounds. One way
to use such information is to create a model for the original regression coefficients as a function
of this information. Thus the vitamin coefficients could be regressed on an indicator of whether
they were for a water-soluble or fat-soluble vitamin; and chlorinated hydrocarbon coefficients could
be regressed on a measure of their degree of chlorination. This process is called hierarchical or
multilevel modeling, to reflect that more than one level of modeling is done (Greenland, 2000d).

Consider a case-control study of foods X and their relations to breast cancer in women (Witte
et al., 1994, 2000; Greenland, 2000c), with confounders W, and an indicator Y = 1 for cases, 0
for controls. An ordinary regression analysis would use maximum likelihood to estimate � in the
logistic model

R(x, w) = expit(α + x� + w�) [21–11]

The coefficients � in model 21–11 represent food-item effects; with density-sampled controls, each
coefficient represents the unit change in the log rate of breast cancer per unit increase in food item.

Hierarchical regression goes beyond the ordinary model (equation 21–11) to add a model for
some or all of the coefficients in � or �. In the example, a natural choice is to model the food-
item effects in � as a function of nutrient content. Suppose that for each food item Xj we have a
list (row vector) z j = (z1 j , z2 j , . . . , z pj ) of p elements giving the vitamin, mineral, fat, protein,
carbohydrate, and fiber content of each unit of the food item. For instance, if X6 is skim milk
measured in units of 250 mL (one serving), z16, z26, z36, etc. could be the thiamine, riboflavin,
niacin, etc., content of 250 mL of skim milk; such information could be obtained from nutrient
tables. We may then model the food effects βj in � in model 21–11 as a function of the nutrient
contents of the foods, for example, using linear regression:

βj = π1z1 j + π2z2 j + · · · + πpz pj + δj = z j � + δ j [21–12]

where � is the column vector containing π1, . . . , πp, and δ j is the deviation of the effect of food
item j from the sum π1z1 j + · · · + πpz pj = z j �. A term πk zk j in model 21–12 represents the linear
portion of the contribution of nutrient k to the effect β j of food item j . The deviation δ j is called
the residual effect of item j ; it represents effects of food item j that are not captured by the sum
z j �. Such residual effects can arise from interactions among the modeled nutrients, as well as from
unmeasured nutrients. These residual effects δ j are usually assumed to be independent random
quantities having means of 0 and standard deviations τ j .
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The linear model (equation 21–12) for the food-item effects in model 21–11 is called a second-
stage model or prior model, with nutrient contents Z as the second-stage regressors or prior re-
gressors. The original model 21–11 is called a first-stage model, and X and W are the first-stage
regressors. Taken together, the two models 21–11 and 21–12 constitute a two-stage hierarchical
regression model. The τ j are called second-stage standard deviations or prior standard deviations;
they may be fixed in advance using background information (Greenland, 1992a, 1993b, 1994c,
2000c, 2000d; Witte et al., 1994, 2000) or estimated using a variance model (Breslow and Clayton,
1993; Goldstein, 2003; Gelman et al., 2003; Skrondal and Raabe-Hesketh, 2004). For simplicity,
in this section we assume that the τ j are all equal to a single known value τ .

The two-stage formulation in 21–11 and 21–12 arises naturally in many epidemiologic contexts
besides food-nutrient studies. One common example is in occupational studies, in which the first-
stage exposures in X are job histories (e.g., years spent as a welder) and second-stage regressors in
Z are exposures associated with each unit of job experience (e.g., level of metal dust exposure in
the job) (Greenland, 1992a; Steenland et al., 2000; De Roos et al., 2001). Hierarchical models may
have as many stages as one desires (Good, 1983, 1987; Goldstein, 2003). For example, we could
add a third-stage model in which the nutrient effects in � depend on the chemical properties of the
nutrients (e.g., antioxidant activity, fat solubility, etc.).

In multilevel modeling terminology, model stages are called model levels (Greenland, 2000d;
Goldstein, 2003). For example, model 21–11 is a level-1 model with level-1 regressors X and
W, whereas model 21–12 is a level-2 model with level-2 regressors Z. Hierarchical models are
also known as empirical-Bayes models (Deely and Lindley, 1981; Morris, 1983; Good, 1987;
Yanagimoto and Kashiwagi, 1990; Carlin and Louis, 2000), in which case model 21–12 is sometimes
called a prior model with prior covariates Z. These models provide a logical foundation for deriving
ridge regression and other “shrinkage” estimation methods (Leamer, 1978).

Hierarchical models can be reformulated as random-coefficient models or mixed models
(Robinson, 1991; Breslow and Clayton, 1993; McCulloch and Searle, 2001; Goldstein, 2003);
in the preceding hierarchical model, the δ j are the random coefficients. In the mixed-model formu-
lation, the higher-stage models are substituted into the lower-stage models to obtain a single model
that combines elements from all stages. To illustrate, note that the second-stage model as in model
21–12 represents J equations, one for each β j . The equations may be combined into a single matrix
equation, � = Z� + �, where Z is the matrix with rows zj and � is the vector of the δ j . We may
then substitute this form of the second-stage model into model 21–11 to obtain

R(x, w) = expit[α + x(Z� + �) + w�] = expit(α + xZ� + x� + w�)

In this formulation, the random δ j become coefficients of xj . The model is “mixed” because it
contains both the “fixed” coefficients π j in � and the random δ j coefficients in �. Note, however,
that “fixed” means only that the coefficients in � have not been given explicit prior distributions in
the model. Treating the coefficients in � as fixed gives results equivalent to assigning the coefficient
a “noniformative” prior distribution, which is equivalent to assigning overly high probabilities to
contextually absurd values of � (see Chapter 18).

There are numerous methods for fitting a hierarchical model such as model 21–11 plus 21–12.
These include Monte-Carlo techniques (Gelman et al., 2003), which require special software, and
approximations such as penalized likelihood, penalized quasi-likelihood (PQL) (Breslow and Clay-
ton, 1993; Greenland, 1997b) and related methods, which can be carried out with procedures in
software such as SAS (Witte et al. 2000). When the τ j are fixed in advance, data augmentation can
be used to fit the models with any logistic regression program (Greenland, 2001b, 2007a).

WHY ADD A SECOND STAGE?

It is natural to ask what is gained by adding model 21–12 to model 21–11, or, in general, what is
gained by elaborating our ordinary models with more stages. Statistical theory, simulation studies,
and several decades of applications all yield the same answer: Addition of a second-stage model can
yield tremendous gains in the accuracy of predictions and effect estimates; for example, see Efron
and Morris (1975, 1977), Morris (1983), Brandwein and Strawderman (1990), Greenland (1993a,
1997b, 2000c, 2000d), and Witte and Greenland (1996). The chief proviso is that the second-stage
model, like the first-stage model, should be carefully formulated so that it makes efficient use of
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the available data and is scientifically reasonable. For example, the strength of model 21–12 is that
it allows us to make use of existing nutrient-content information about foods in our estimation of
food effects.

If one is interested in effects of the second-stage covariates, hierarchical models can offer more
realistic representations of effects than conventional models. Consider, for example, the conventional
model used to study nutrient effects,

R(z, w) = expit(α + c� + w�) [21–13]

where c = (c1, . . . , cp) represents the list of nutrient contents of an individual’s diet. The contents
ck are obtained from the food history by multiplying each food quantity xj by its content zk j of
nutrient k, and then summing these products across food items; that is, ck = �

j
xj zk j . The latter

equations can be combined into the single equation c = �
j

xj z j = xZ.

The conventional model makes no allowance for the possibilities that nutrients that are not in z
may affect risk, or that there may be important nonlogistic effects of nutrients. In contrast, the more
general hierarchical model (model 21–11 plus 21–12) allows for the possibility that there are food
effects beyond c� by adding to the model the random coefficients δ j . The greater generality of the
hierarchical model over the conventional model can be seen in the mixed model formulation of the
hierarchical model by noting that c� = xZ�:

R(x, z, w) = expit(α + xZ� + x� + �w)

= expit(α + c� + x� + �w) [21–14]

Here, x� = x1δ1 + · · · + xnδn represents food-item effects that are not captured by the term c� for
the measured nutrients. The conventional model for R(z, w) is thus a special case of the hierarchical
model for R(x, z, w) in which all the δ j are (dubiously) assumed to be zero.

SPECIFYING THE PRIOR STANDARD DEVIATION

Assuming that all the residual effects δ j are 0 corresponds to assuming that their common standard
deviation τ is 0. A credible analysis will employ a more reasonable (positive) value for τ . Doing so
requires careful consideration of the scientific application. In the food-nutrient example, δ j is only
one component of the log rate ratio for the effect of one unit of food item j . We expect little effect on
breast cancer from one unit of a food item (a unit such as “100 g of celery per day”); thus we expect
δ j to be rather small. For example, if we are 95% certain that the rate ratio per unit of food item j
is between 1/2 and 2, we should be at least 95% certain that δ j is within the interval ln(1/2) = −0.7
and ln(2) = 0.7. In fact, δ j represents the log rate ratio per unit of food item j after adjusting out
all the linear-logistic effects of measured nutrients. Therefore, we should be 95% certain that δ j is
in a much smaller interval, say, ln(2/3) = −0.4 to ln(3/2) = 0.4. If the δ j are normally distributed
with SD τ , saying that we are 95% certain that δ j is between −0.4 and 0.4 is equivalent to saying
that 1.96τ = 0.4, or that τ = 0.2.

When τ is fixed in advance using background scientific information, the resulting penalized-
likelihood estimates are sometimes called generalized ridge-regression or semi-Bayes estimates
(Titterington, 1985; Greenland, 1992a, 2000c). Specifying τ in advance can yield better small-
sample estimates than estimating τ , but this specification must be done carefully to avoid harming
confidence-interval coverage (Greenland, 1993b). Further discussions of specifying τ can be found
in Greenland (1992a, 1993b, 1994c, 2000d, 2001b) and Witte et al. (1994, 2000).

It is also possible to assign a prior distribution to τ instead of a single value (sometimes called
Bayes empirical-Bayes modeling; Deely and Lindley, 1981), in which case the τ is influenced by
the data, but interpretation and specification of this prior can be difficult. As a result, some authors
have used “noninformative” or “objective” priors for τ . Again, use of “noninformative” priors has
the drawback of assigning overly high probabilities to contextually absurd values of τ .

HIERARCHICAL REGRESSION AND MODEL SELECTION

Hierarchical regression and its variants (such as shrinkage estimation) can provide a solution to
much of the arbitrariness and inconsistency inherent in conventional variable selection and model



P1: TNL Printer: RRD

GRBT241-21 GRBT241-v4.cls January 19, 2008 9:7

438 Section III ● Data Analysis

selection procedures (Greenland, 2000c, 2008). Recall that backward elimination (contracting
search) procedures ideally begin with a maximal model that is flexible enough to approximate any
reasonably possible regression function. Forward selection (expanding search) procedures begin
with a minimal model that has only those terms considered essential (e.g., confounder effects), along
with one or a few simple exposure terms. Both procedures use somewhat arbitrary criteria to search
for a final model. This final model is then incorrectly treated as if it had been specified a priori, which
in turn leads to invalidly narrow confidence intervals and invalidly small P-values (Sclove et al.,
1972; Freedman, 1983; Freedman et al., 1988; Hurvich and Tsai, 1990; Greenland, 1993b; Viallefont
et al., 2001).

One hierarchical approach takes a maximal model as the first-stage model, and then specifies a
second-stage model such that, when τ = 0 (so that all δ j = 0), a minimal model holds. By fixing τ

at a scientifically reasonable positive value or by estimating it from the data, the resulting fitted hier-
archical model will represent a justifiable compromise between the maximal and minimal models.
Consider the problem of selecting product terms to include in a model. Backward elimination begins
with a maximal model that contains all the product terms among all the regressors and proceeds
to delete terms according to some criterion. Forward selection begins with a minimal model that
contains no product term and proceeds to add terms according to some criterion. With either proce-
dure, those product terms in the final model may be similar to what they would be in the maximal
model, whereas those product terms that are not in the final model have their coefficients set to 0.
Thus, these procedures may be viewed as making an “all-or-nothing” choice for each product term.

As an alternative, one can use a hierarchical approach to move (“shrink”) each product-term
coefficient part way to 0, and so compromise (average) between the extremes of putting each
coefficient completely in or completely out of the model. For example, one can use the maximal
model as the first-stage model, and then penalize the product-term coefficients for their distance
from 0. Suppose there are six binary regressors in the analysis; these yield

(
6
2

) = 15 possible product
terms. If the 15 product terms have coefficients � = (θ1, θ2, . . . , θ15) in the maximal model, one
can shrink the estimates of these coefficients toward 0 using a very simple second-stage model in
which the θ j are independent identically distributed random variables with mean 0 and standard
deviation τ . In the notation of model 21–12, this model corresponds to making θ j = δ j ; there is no
second-stage covariate.

SMOOTHING WITH HIERARCHICAL REGRESSION

Consider next the problems of trend modeling. A maximal model allows the regressand (outcome) to
depend on the regressor in an arbitrary fashion by having as many coefficients as there are values of
the regressor. A minimal model might allow only a linear dependence of the regressand on exposure,
and so have only one coefficient for the regressor. Alternatively, the minimal model might allow
a more general relation, such as a quadratic dependence (which involves two coefficients for the
regressor). In either case, a hierarchical approach uses the maximal model as the first-stage model
and then penalizes the regressor coefficients for their distance from the values predicted by the
minimal model (Greenland, 1996d).

As an example, suppose the regressor in question is age measured in 11 five-year categories
from 35–39 to 85–89, and the regressand is the logarithm of the lung cancer rate. One maximal
model for the age trend would include an intercept plus 10 indicator variables for age, e.g., one for
each category from 40–44 to 85–89 (there may also be additional terms for other regressors, such
as study exposures, smoking, sex, occupation). Let � = (γ1, . . . , γ10) be the vector of coefficients
of these indicators.

One minimal model for the age trend would include an intercept α plus a single age variable,
e.g., the midpoints 37, 42, 47, . . . , 87 of the 11 age categories (along with the terms for the other
regressors). Let θ be the coefficient of age in this model. The minimal model predicts that the
categorical coefficients from the maximal model should follow a simple linear trend,

γ j = θ · 5 j [21–15]

The product 5 j is the number of years from age 37 (the midpoint of the reference age category,
which is category 0) to the midpoint of category j .
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The hierarchical approach allows random deviations of the category-specific age terms γ j from
the simple linear model (model 21–15), so that the second-stage model is

γ j = θ · 5 j + δ j [21–16]

where the δ j are independent identically distributed random variables with a mean of 0. Under
this approach, the estimates of age-category specific rates will be pulled toward (averaged with)
the line predicted by the minimal model (21–15), and so when they are graphed they will exhibit
a much smoother trend than that produced by fitting the maximal model (which allows the γ j to
fluctuate in an arbitrary fashion). The smoothness of the curve generated from the hierarchical
modeling depends on the size of the prior standard deviation τ for the δ j . When τ is very large (>2
in exponential and logistic regression), the second-stage model is virtually ignored, and the results

are close to those from fitting the maximal model only. When τ is very small, the
∧
δj will be forced

to be near 0 and the fitted curve will be nearly the same as the curve from the minimal (log-linear)
model. By allowing use of τ of moderate size, the hierarchical approach enables fitting of models
between these extremes of roughness and oversimplification.

SUMMARY

The methods of hierarchical regression can be derived from a number of superficially disparate
approaches, among them empirical-Bayes and semi-Bayesian regression; random-coefficient re-
gression; multilevel analysis; penalized-likelihood analysis; ridge regression; and Stein estimation
(shrinkage). In addition, all the methods described in this chapter so far—including ordinary re-
gression, overdispersed regression, correlated-outcome regression, and smoothing—can be derived
as special cases of hierarchical regression. Hierarchical regression can thus be viewed as a general
approach to regression analysis to improve flexibility and accuracy of models and estimates.

MODEL-BASED ESTIMATES OF INCIDENCE AND PREVALENCE

In Chapter 20 we focused primarily on interpreting the model coefficients as differences or log ratios
of risks, rates, odds, or prevalences. These interpretations are not very useful when the exposure of
interest is represented by more than one continuous model term. To illustrate, suppose we analyze
the association of average ounces of alcohol per day X1 with the 1-year death rate in a cohort of
women, adjusting for age X2, and we use the exponential model

I (x) = exp(α + β1x1 + γ1x2
1 + β2x2)

This is equivalent to the log-linear rate model

log[I (x)] = α + β1x1 + γ1x2
1 + β2x2

The coefficient β1 does not have any straightforward interpretation. It is sometimes called the “linear
component of the alcohol effect.” It does not, however, represent the change in the log rate per unit
increase in average daily alcohol consumption, because this change also depends on the coefficient
γ1 of x2

1 and so depends on the reference level for X1. For example, under the model, the change in
log rate when moving from the X1 = 0 (nondrinker) subpopulation to the X1 = 1 subpopulation is

α + β11 + γ112 + β2x2 − (α + β10 + γ102 + β2x2) = β1 + γ1

whereas the change from X1 = 2 to X1 = 3 is

α + β13 + γ132 + β2x2 − (α + β12 + γ122 + β2x2) = β1 + 5γ1

The larger the quadratic coefficient γ1 relative to β1, the greater will be the disparity between these
two changes.

Transforming model results into a table or graph of model-based estimates can provide an easily
interpreted summary of results when exposure appears in multiple terms. As an example, consider
first a model (such as the preceding one) in which there is no product term containing both exposure
and other regressors. In this situation, one may summarize the modeling results by selecting a series
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of exposure levels and presenting model-based estimates for each selected level. Suppose in the
preceding example that alcohol use ranged from 0 to 7 oz/day in the data set. One could then present
the model-fitted rates at 0, 1, 2, 3, 5, and 7 oz/day, keeping age X2 fixed at a reference level x2. To
compute these quantities, we simply exponentiate the fitted log rates at X1 = 0, 1, 2, 3, 5, 7. These
fitted rates have the general form

∧
I (x1, x2) = exp(

∧
α + ∧

β1x1 + ∧
γ1x2

1 + ∧
β2x2)

The levels of the study exposure used in a presentation can be selected based on simplicity and
interest, but they are best kept within the range of observed exposure values. One could also
select the exposure means in the categories used in tabular (categorical) analyses; this choice
allows meaningful comparisons between the model-based and tabular estimates, and ensures that
the exposure levels are within the observed range. As rough guidelines to minimize statistical
variability of the fitted estimates, we recommend that the reference value for a continuous variable
(such as age) be close to its sample mean, while the reference value for a discrete variable (such as
ethnicity) be a value frequently observed in both cases and persons still at risk.

Suppose now that there are product terms between the focal exposure and other regressors, as
in the model

I (x) = exp(α + β1x1 + γ1x2
1 + β2x2 + γ2x1x2 + γ3x2

1 x2)

Here, the rate ratios relating alcohol use (X1) to death change with age (X2), and hence the curves
relating alcohol use to the death rate are not proportional across levels of age. To display this
phenomenon, one can tabulate or graph the model-fitted rates at several different age levels in the
study age range. These fitted rates have the form

∧
I (x1, x2) = exp(

∧
α + ∧

β1x1 + ∧
γ1x2

1 + ∧
β2x2 + ∧

γ2x1x2 + ∧
γ3x2

1 x2)

As will be discussed later, it is also straightforward to construct model-based summary effect
estimates, such as model-based standardized risk and rate ratios, and attributable-fraction estimates
(Lane and Nelder, 1982; Bruzzi et al., 1985; Flanders and Rhodes, 1987; Greenland, 1991c, 2001e,
2004a, 2004b; Greenland and Holland, 1991; Greenland and Drescher, 1993; Joffe and Greenland,
1995).

Confidence limits to accompany model-based estimates can be obtained by setting limits for
the term α + x� in the model and then transforming the limits as necessary, or by simulation or
bootstrap methods. Some packaged programs will supply a variance estimate

∧
V or a standard-

deviation estimate
∧
V 1/2 for a linear combination of model parameters. Such programs will thus

supply a variance
∧
V estimate for

∧
α +x

∧
� because α + x� is the linear combination of α and

β1, . . . , βn , with coefficients 1, x1, . . . , xn . We may then set 95% confidence limits for
∧
α +x

∧
� using

the formula

∧
α + x

∧
� ± 1.96

∧
V 1/2

(other confidence levels use another multiplier in place of 1.96). If α + x� is the log rate when
X = x, we simply take the antilog of its limits to obtain limits for the rate; if α + x� is a logit (log
odds), we take the logistic transform (expit) of its limits to obtain limits for the risk when X =
x. For further descriptions of model-based confidence limits for risk ratios, rate ratios, attributable
fractions, and other measures, see Flanders and Rhodes (1987), Greenland (1991c, 2001e, 2004a,
2004b), Benichou and Gail (1990b), Greenland and Drescher (1993), and Joffe and Greenland
(1995).

NONPARAMETRIC REGRESSION

So far the discussion has concerned only parametric trend models, in part because all can be fitted
using conventional regression software by creating the appropriate regressors (e.g., splines) from the
original data. There are, however, several methods that can provide greater model flexibility. Among
these methods are kernel regression, which generalizes the moving-weighted-average approach
described in Chapter 17; smoothing splines, which generalize the regression splines described
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in Chapter 20 (Hastie and Tibshirani, 1990; Simonoff,1996); and penalized splines, which are a
transitional form between regression splines and smoothing splines that use a hierarchical-regression
structure for smoothing, as described earlier (Wahba et al., 1995). Hastie et al. (2001) provide an
extensive overview of these topics and related approaches, while Wasserman (2006) provides an
introduction. Related hierarchical methods can be used to smooth multiway contingency tables (see
Chapter 12 of Bishop et al., 1975, and Greenland, 2006b).

A key characteristic of these techniques is that their primary output is a graph or table of trends,
rather than a summary estimate of association or effect. Nonetheless, as discussed later, it is possible
to summarize over these outputs using standardization. Kernel regression and smoothing splines are
often classified as nonparametric regression, because they do not even yield an explicit model or
formula for the regression function. Instead, they yield only a list or plot of fitted (estimated) values
for the true regression function at specific values for the regressors. This property is a strength, in
that assumptions about the shape of the regression are kept to a minimum, but it is a limitation in
that a table or graph is needed to describe fully the results from these methods.

For the latter reason, many analysts regard nonparametric regression as a useful exploratory
procedure to suggest which parametric model forms to use for trend analyses. As with variable
selection, such use of the data to select the model can invalidate P-values and confidence intervals
from the final model. Nonetheless, we believe that this exploration is valuable whenever there is a
possibility that simpler trend analyses may not be adequate. The chief obstacle to such exploration is
sample size: Nonparametric regression requires a fairly large number of subjects across the exposure
range of interest to realize its potential flexibility. Even within these limits, however, nonparametric
regression can be used for standardized estimation, as described below.

A common type of nonparametric regression is locally linear kernel regression (Fan and Gijbels,
1996; Hastie et al., 2001). Suppose that we wish to estimate the regression of Y on X, and we
assume that the graph of this function is smooth. Then, over short distances along the regressor
axes, the regression can be approximated by a linear function. (This follows from the fact that
smooth functions are differentiable.) Just how short these distances are depends on how good an
approximation we want. Also, better performance of the method is usually obtained by transforming
the regression first. For example, when examining rates, it is usually better to approximate linearly
the logarithm of the regression, ln[I (x)]; and when examining risks or proportions, it is usually
better to approximate linearly the logit of the regression, logit[R(x)], because these transforms
ensure that the approximation does not go outside logical bounds (0 for rates, 0 and 1 for risks).

Suppose that h(x) is the true value of the transformed regression function. Local linear kernel
regression produces a fitted (estimated) value ĥ(x) for each distinct regressor value x by fitting a
different weighted linear regression model for each x. In the regression at a given value x for X, the
weights vary from 0 to 1, depending on the distance of each data point from x. Any observation
with X = x receives weight 1 because it has 0 distance from x; the weights decline smoothly as one
moves across data points whose X values are farther and farther from x. Eventually, for data points
with X values very far from x, the weights may be 0 or very close to 0. The weights may also vary
inversely with the estimated variances of the outcomes.

To graph or estimate the regression (or its log or logit) in the manner just described can be
computationally intensive, because an entire regression model must be fitted for every distinct
value of X that one wishes to plot. Suppose, for example, that X contains just one regressor, X1 =
years smoked, and that we want our plot to show the fitted rate at 1-year intervals from 0 to 40.
Then we have to fit a different log-linear regression with different weights for every one of the 41
years from 0 to 40. To estimate h(0), persons with X1 = 0 have weight 1, and the weights tend to
drop off toward 0 as X1 increases; to estimate h(20), persons with X1 = 20 have weight 1, and the
weights tend to drop off toward 0 as X1 moves away from 20; and so on for all the X1 values. The
regressors X may include confounders as well as exposures of interest, so that the fitted curves can be
confounder-adjusted (in a locally linear fashion). The fitted regression may be local (nonparametric)
in one, several, or all the regressors in X. When the fitted estimates are based on a mix of local and
fully specified (parametric) elements, this approach is sometimes called “semiparametric.”

In locally linear regression, the analyst can control the “waviness” or complexity of the fitted
curves (or surface) by varying the rapidity with which the weights fall off as one moves away
from the regressor value x being fitted. In most software, this rapidity is controlled by a smoothing
parameter that gives a simpler, smoother-looking curve when set high and a more complex, wavy
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curve when set low. Typically, this parameter can be varied from 0 to 1 or from 0 to infinity. When
this parameter is 0, the fitted curve gives weight 0 to everything but observations exactly at x and
simply “connects the dots” (the observed Y values), producing a jagged, unstable graph. At the
other extreme, with a very large smoothing parameter, the resulting curve is practically the same as
that from generalized-linear regression analysis (in which the same � applies to all x).

Some software allows the analyst to experiment with the smoothing parameter to find the most
plausible-looking curve; other software estimates a “best” value for this parameter according to
some statistical criterion, such as cross-validation sum-of-squares (Hastie and Tibshirani, 1990;
Hastie et al., 2001) and plots the results. Also, the smoothing procedure may allow the smoothing
parameter to vary with X; procedures that do so are called variable-span smoothers. Usually, the
decline is made more rapid if there are many observations near x , less rapid if there are few. Examples
of variable-span smoothers are the LOWESS and LOESS procedures (Hastie and Tibshirani, 1990;
Fan and Gijbels, 1996). Because smoothing procedures encounter difficulties when X contains more
than a few regressors, most software will impose further assumptions beyond smoothness. The most
common assumption is that contributions of the separate regressors to the transformed regression
are additive; in that case the resulting model is called a generalized-additive model (Hastie and
Tibshirani, 1990; Hastie et al., 2001).

MODEL-BASED STANDARDIZATION

Suppose that the main objective of modeling is to control confounding by a vector of covariates Z =
(Z1, . . . , Z K ) while examining the association of an exposure variable X with an outcome variable
Y. A direct approach to this problem is to fit a model for the regression of Y on X and Z, which has
been the focus of discussion so far. For example, if Y is binary, the most common direct approach
fits the group-specific logistic risk model

Pr(Y = 1|X = x, Z = z) = expit(α + xβ + z�) [21–17]

then uses the odds-ratio estimate exp(
∧
β) as the Z-adjusted estimate of the association of X with Y.

In the outcome model, the association exp(β) is a Z-conditional measure, which is supposed to
represent the effect of X on Y within strata defined by values of Z, provided that Z is sufficient
for confounding control. As described in Chapter 20, if the conditional effect varies with some
component Zk in the vector Z (i.e., if Zk modifies the effect measure β), the model will at the least
need product terms between X and Zk to capture the variation, and there will be a separate effect
measure for every level of Zk . More sophisticated approaches use a hierarchical or nonparametric
regression to estimate E(Y |X , Z). These approaches can lead to a unique effect estimate for every
value of Z, perhaps with no simple systematic pattern in the estimates.

To address the complexity and potential instability of results when homogeneity is not assumed,
one can instead focus on using a model to estimate a standardized measure from the regression. It
turns out that several modern statistical methods such as marginal modeling and inverse-probability
weighting can be viewed as forms of standardized-effect estimation, and this view connects stan-
dardization to confounder scoring (below). To describe the general ideas, as in Chapter 20 let W be
a standard distribution for the vector of potential confounders and modifiers Z. W is a set of weights
w(z), one for each value z of Z, that sum or integrate to 1, that is, �

z
w(z) = 1, and the regression

of Y on X standardized to W is the average of E(Y |X = x , Z = z) weighted by the w(z),

EW (Y |X = x) = �
z

w(z)E(Y |X = x, Z = z) [21–18]

As explained in Chapter 20, risk and prevalence parameters are expected proportions, and rates
are expected counts per unit of person-time. They can thus be substituted into the standardization
formula. For example, a standardized incidence rate is IW (x) = �

z
w(z)I (x , z), and a standardized

risk is RW (x) = �
z

w(z)R(x , z). The latter is an example of a standardized probability, which has
the general form

PrW (Y = y|X = x) = �
z

w(z)Pr(Y = y|X = x, Z = z) [21–19]

The standardization methods discussed next apply with all these forms, although most of the
illustrations will be in the probability form.
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STANDARDIZATION USING OUTCOME MODELS

Suppose that we know or can validly estimate the weights w(z) for a standard. There are then
several approaches to model-based (or smoothed) standardization, depending on the type of model
employed. The most straightforward is to model the conditional (X , Z-specific) outcomes E(Y |X =
x , Z = z) or I (x , z) or Pr(Y = y|X = x , Z = z) and then use the model-fitted (predicted) outcomes
in the preceding formulas (Lane and Nelder, 1982). For example, if we fit a model for the X ,

Z-specific incidence rates I (x , z) to a cohort and obtain fitted rates
∧
I (x , z), the estimated standardized

rate is
∧
I W (x) = �

z
w(z)

∧
I (x , z). The model may be anything we choose, and in particular may contain

products between X and components of Z, and may have a hierarchical (multilevel) structure. The
specific estimates

∧
I (x , z) may even be from a fitted nonparametric regression, such as those produced

by data-driven prediction algorithms (Hastie et al., 2001).
Details of standardization of risks, rates, ratios, and attributable-fractions using parametric mod-

els are given by Lane and Nelder, 1982, Bruzzi et al., 1985, Flanders and Rhodes, 1987, Greenland,
1991c, 2001e, 2004a, 2004b; Greenland and Holland, 1991, Greenland and Drescher, 1993, and
Joffe and Greenland, 1995, among others. Most of these articles also supply variance formulas; these
formulas can be unwieldy, however, and one can instead obtain confidence limits via simulation or
bootstrapping (Greenland, 2004c). As always, the interpretation of these standardized estimates as
effect estimates assumes that no uncontrolled bias is present, and in particular that Z is sufficient for
confounding control and has a distribution unaffected by X. Again, the latter assumption is likely
to be violated when the standard W is a person-time distribution and X and Z affect Y (Chapter 4;
Greenland, 1996a)

STANDARDIZED MEASURES VERSUS COEFFICIENTS

To see the relation of standardization to the simpler approach of using a single exposure coefficient
as the summary, suppose that the outcome model is of the additive form

E(Y |X = x, Z = z) = α + xβ + g(z) [21–20]

where g(z) is any function of Z [most commonly, g(z) = z�]. Substitution of 21–20 into the
standardization formula (21–18) yields

EW (Y |X = x + 1) = �
z

w(z)[α + (x + 1)β + g(z)]

= �
z

w(z)[α + β + xβ + g(z)]

= �
z

w(z)β + �
z

w(z)[α + xβ + g(z)]

= β �
z

w(z) + EW (Y |X = x)

Because �
z

w(z) = 1, we get EW (Y |X = x + 1) = β + EW (Y |X = x) and so EW (Y |X = x + 1) −
EW (Y |X = x) = β. In other words, under an additive model for the X contribution to the conditional
outcome E(Y |X = x , Z = z), the standardized difference for a unit increase in X is equal to the X
coefficient, regardless of the weighting W.

Next, suppose that the outcome model is of the log-additive (multiplicative) form

E(Y = y|X = x, Z = z) = exp[α + xβ + g(z)] [21–21]

Substitution of 21–21 into the standardization formula 21–18 yields

EW (Y |X = x + 1) = �
z

w(z) exp[α + (x + 1)β + g(z)]

= �
z

w(z) exp(β) exp[α + xβ + g(z)]

= exp(β) �
z

w(z) exp[α + xβ + g(z)]

= exp(β) EW (Y |X = x)

and so EW (Y |X = x + 1)/EW (Y |X = x) = exp(β). In other words, under a multiplicative model
for the X contribution to E(Y |X = x , Z = z), the log-standardized ratio for a unit increase in X is
equal to the X coefficient, regardless of the weighting W.
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The preceding results show that if we are willing to make strong assumptions about homogeneity
of the X association with Y across values of Z, we can bypass weighted averaging and use model
coefficients as standardized measures. The problem with this usage is its strong dependence on the
homogeneity assumptions. With weighted averaging, we can use products of X and Z components or
even more complex regression models, and thus we need not depend on homogeneity assumptions.
Nonetheless, if we use an additive model and nonadditivity (modification of the differences by Z)
is present, the resulting X -coefficient β can be a good approximation of the population-averaged
difference with weights w(z) = Pr(Z = z), provided the Z contribution g(Z) is well modeled. In a
similar fashion, if we use a multiplicative model when modification of the ratios by Z is present,
the resulting exp(β) can be a good approximation of the population-averaged ratio, again provided
the Z contribution g(Z) is well modeled (Greenland and Maldonado, 1994).

Unfortunately, unless risk is low at all X , Z combinations, the results just described do not carry
over to logistic or linear odds models, reflecting the problem of noncollapsibility of odds ratios
discussed in Chapter 4. In particular, when β �= 0 and � �= 0 in the regression model 21–17, the
conditional odds ratio exp(β) will be farther from 1 than the odds ratio obtained by first standardizing
the risks from the model and then combining them in an odds ratio (Greenland et al., 1999b). For
similar reasons, the results do not carry over to exponential and linear rate models unless X has
negligible effect on person-time (Greenland, 1996a).

STANDARDIZATION USING FULL-DATA MODELS

From basic probability,

Pr(Y = y|X = x, Z = z) = Pr(Y = y, X = x, Z = z)/Pr(X = x, Z = z)

and

Pr(X = x, Z = z) = �
y

Pr(Y = y, X = x, Z = z)

Substitution into the standardization formula 21–19 yields

PrW (Y = y|X = x) = �
z

[w(z) Pr(Y = y, X = x, Z = z)/ �
y

Pr(Y = y, X = x, Z = z)]

[21–22]

We can thus model the full (joint) distribution Pr(Y = y, X = x , Z = z) of Y , X , and Z, and then
substitute the fitted values into this alternate standardization formula. When w(z) = Pr(Z = z) or
w(z) is the Z distribution in a special group, such as w(z) = Pr(Z = z|X > 0), the same model can
be used to estimate the weights as well, and thus can provide an integrated modeling approach to
standardization (see Chapter 4 of Bishop et al., 1975). In particular, one may use a log-linear count
model for the number of subjects expected at each combination of Y , X , and Z = z.

When Z is continuous or has many components, full modeling of Pr(Y = y, X = x , Z = z)
may become impractical or require use of unrealistically strong assumptions. In these situations,
modeling only the outcome probability Pr(Y = y|X = x , Z = z) can be far more robust than
modeling the entire joint distribution Pr(Y = y, X = x , Z = z). Other robust approaches can be
based on exposure modeling.

STANDARDIZATION USING EXPOSURE MODELS:
INVERSE-PROBABILITY WEIGHTING

Consider the probability formula

Pr(Y = y|X = x, Z = z) = Pr(Y = y, X = x, Z = z)/ Pr(Z = z) Pr(X = x |Z = z)

Substitution into the standardization formula 21–19 yields

PrW (Y = y|X = x) = �
z

w(z) Pr(Y = y, X = x, Z = z)/ Pr(Z = z) Pr(X = x |Z = z)

[21–23]
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A standardized proportion can thus be viewed as a weighted sum of the proportions Pr(Y = y, X =
x, Z = z) with weights w(z)/ Pr(Z = z) Pr(X = x |Z = z). The weights are the product of two
factors: the standardizing weight w(z) and the inverse-probability weight 1/ Pr(Z = z) Pr(X =
x |Z = z). Thus, standardization can be viewed as a modified inverse-probability weighted procedure
(IPW, also known as Horvitz-Thompson estimation) (Horvitz and Thompson, 1952; Rosenbaum,
1987; Sato and Matsuyama, 2003).

Because the term Pr(Z = z) can be difficult to estimate if Z is continuous or has many compo-
nents, the general IPW reformulation is not often used. With the total-population weighting w(z) =
Pr(Z = z), however, the IPW formulation simplifies to

PrW (Y = y|X = x) = �
z

Pr(Y = y, X = x, Z = z)/Pr(X = x |Z = z) [21–24]

(Robins et al., 2000). PrW (Y = y|X = x) can thus be estimated by first fitting a model for Pr(X =
x |Z = z), the probability of exposure X = x given covariates Z = z, then substituting the fitted
values for Pr(X = x |Z = z) into 21–24, to create a weighted summation over Z of the observed
proportions with Y = y, X = x , Z = z. The same fitted exposure model can be used to standardize
to a particular exposure group instead of the total. For example, to standardize to those with X > 0,
w(z) = Pr(Z = z|X > 0) and formula 21–23 becomes

PrW (Y = y|X = x) = �
z

Pr(Y = y, X = x, Z = z) Pr(X > 0|Z = z)/Pr(X = x |Z = z)

(Sato and Matsuyama, 2003). This formula is just a modification of formula 21–24 with the sum-
mation weight multiplied by Pr(X > 0|Z = z) = �

x>0
Pr(X = x |Z = z).

Because pure IPW estimation models only Pr(X = x |Z = z) rather than the entire joint dis-
tribution Pr(Y = y, X = x , Z = z), it can be more robust than full modeling when Z has many
values. The price, however, is that IPW estimation can be more unstable when some values of X
are uncommon, for then the weight denominator Pr(X = x |Z = z) can get quite small, making the
estimated weight highly unstable. As discussed below, some stabilization of IPW estimation can be
achieved by fitting a marginal model to the total-population standardized outcomes, using modified
weights.

Although IPW applies to any exposure variable, when X is binary Pr(X = 1|Z = z) is often
called the exposure propensity score (Rosenbaum and Rubin, 1983). Note, however, that IPW uses
Pr(X = 0|Z = z) for those with X = 0, rather than using Pr(X = 1|Z = z) for everyone, as is done
in propensity scoring (see below).

STANDARDIZATION IN CASE-CONTROL STUDIES

Suppose now that we have case-control data and sufficient external information to estimate the
selection ratio f/h for cases and controls. As discussed earlier, one can fit incidence models to the
data by modifying the coefficient estimates to reflect the selection ratios. The resulting incidence
estimates can be used in outcome-model based standardization.

Suppose next that only ratios or attributable fractions are of interest and the data are unmatched.
A simple approach treats the fitted case-control ratios as if they were incidence estimates and enters
them directly into the outcome-model formula (21–19). This approach is valid because both the
numerator and denominator will be distorted by the same factor ( f/h), which will cancel out of
the formula. Extensions to matched data are also possible (Greenland, 1987b). For cumulative or
prevalence case-control studies, these techniques assume that Pr(Y = 1|X = x , Z = z) is uniformly
small.

An alternative approach multiplies the weight of each subject by the inverse of its relative
probability of selection. This method can be used with any sampling design in which these relative
probabilities are known, such as two-stage designs (Flanders and Greenland, 1991; Chapter 15). This
approach can become unstable and inefficient (Scott and Wild, 2002), however, and modification of
the weights is needed to deal with these problems (Robins et al., 1994, 2000). Approaches based on
exposure modeling encounter further problems, as will be discussed under scoring for case-control
studies.
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MARGINAL-OUTCOME MODELING

An important refinement of IPW estimation adds an explicit model for the standardized outcomes
and fits this model with stabilized weights. For example, if Y is binary and w(z) = Pr(Z = z), the
standardized outcomes can be given a marginal logistic model such as

PrW (Y = 1|X = x) = expit(α + xβ) [21–25]

When Z is sufficient for confounding control, PrW (Y = 1|X = x) = Pr(Y = 1|Set[X = x]) and so
formula 21–25 becomes the marginal causal model

Pr(Y = 1|Set[X = x]) = expit(α + xβ)

which is commonly called a marginal structural model (MSM). This marginal model can be fitted
using IPW by using estimates of 1/Pr(X = x |Z = z) as the individual weights in a regression
program (Robins et al., 2000). Better performance, however, is obtained by using estimates of
Pr(X = x)/ Pr(X = x |Z = z) as the weights. These “stabilized” weights are estimated by modeling
Pr(X = x) as well as Pr(X = x |Z = z) and then taking the ratio of the fitted values. As before, the
approach extends easily to other weightings, e.g., with w(z) = Pr(Z = z|X > 0), marginal modeling
uses the regression weight

Pr(X = x) Pr(X > 0|Z = z)/Pr(X = x |Z = z)

The stabilized marginal modeling approach requires fitting three distinct models, so it is more
work than pure IPW modeling. It also can be less robust if the marginal model is restrictive.
Nonetheless, if Z is complicated, it can remain more robust than full modeling of the joint distribu-
tion Pr(Y = y, X = x , Z = z). General issues comparing IPW methods and modeling of Pr(Y =
y|X = x , Z = z) are discussed in the next section. Marginal structural modeling tends to produce
less stable results than does modeling outcome probabilities, but has the advantage of extending
straightforwardly to longitudinal causal modeling (Robins et al., 2000; Hernán et al., 2000).

SCORING METHODS

CONFOUNDER SCORES AND BALANCING SCORES

There has been much work on defining and estimating a function g(Z) of measured confounders Z,
called a confounder score, that can be treated as a single confounder in subsequent analyses. The
target parameter in older work was not always clearly defined. In more precise work, the goal has
been to estimate an X effect on Y standardized to the total or exposed source population.

Standardization without modeling is equivalent to taking g(Z) to be a categorical compound
variable with a distinct level for every possible value of Z. For example, if Z = (sex, age), then
g(Z) = g(sex, age) is the compound “sex–age.” This two-dimensional g(Z) has as possible values
every sex–age combination g(z), such as g(male, 60) = “male age 60 years,” and the effect measure
of interest might be a sex–age standardized risk ratio. This two-dimensional score will control all
confounding by sex and age if the latter is measured with enough accuracy.

Unfortunately, the strata of a compound variable rapidly become too sparse for analysis as the
number of possible values for Z increases. For example, if Z is composed of 8 levels for age, 4 levels
for housing density, 6 levels for income, 5 levels for education, and 2 levels for sex, it will have
1920 possible levels, far too many strata to use directly in most studies. Thus, attention has focused
on model-based construction of a simpler composite score that would control all confounding
by Z.

Consider first a score g(Z) with the property that Y and Z are independent given the exposure and
the score. In other words, suppose that when X is at a particular value x and g(Z) is at a particular
value c, Y does not depend on the value of Z:

Pr{Y = y|X = x, Z = z, g(Z) = c} = Pr{Y = y|X = x, g(Z) = c}
If a score g(Z) satisfies this equation, Y will have a “balanced” (equal) distribution across the values
of Z within strata defined by X and g(Z); hence g(Z) may be called an outcome-balancing score.
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Consider next a score g(Z) with the property that Y and X are independent given the score. In
other words, suppose that Z does not depend on the value of X when g(Z) is at a particular value c:

Pr{Z = z|X = x, g(Z) = c} = Pr {Z = z|g(Z) = c}
Such a g(Z) will on average “balance” the distribution of Z across the levels of X. An equivalent
condition is that X does not depend on the value of Z when g(Z) is at a particular value c:

Pr{X = x |Z = z, g(Z) = c} = Pr{X = x |g(Z) = c}
If a score g(Z) satisfies this condition, X will have a “balanced” (equal) distribution across the
levels of Z within strata defined by g(Z); hence, g(Z) may be called an exposure-balancing score.

Because of the balance they create, stratification on outcome-balancing or exposure-balancing
scores will be sufficient for control of confounding by Z when estimating marginal (average) effects.
Analyses that employ balancing scores may be unnecessarily complicated and inefficient, however.
For example, if there is no confounding by any component of Z, no score involving Z will be
necessary and use of such a score will unnecessarily increase variances (and possibly introduce bias
if some component of Z should not be controlled). The key issue is how to construct a score that is
at once simple and sufficient. Many regression approaches have been proposed for this purpose, and
the following subsections review several that have been have been used in epidemiologic research.

OUTCOME SCORES

Scores that are constructed to predict the outcome are called outcome scores. Early outcome-scoring
methods were based on fitting a model for the regression of the outcome Y on Z alone (e.g., Bunker
et al., 1969). For a disease indicator Y, one could fit a logistic model

Pr(Y = 1|Z = z) = expit(α∗ + z�∗)

then use the fitted probability expit (
∧
α + z ∧

� ∗) for each subject as the values g(z) of the confounder
score. This fitted probability is also known as a risk score or prognostic score. Because the fitted

probability is just a one-to-one function of the fitted linear combination z ∧
�∗, one can equivalen-

tly take g(z) = z ∧
�∗ as the confounder score.

Analyses using risk scores obtained by regressing Y on Z alone (without X ) appeared in various
forms through the 1970s. Such scores are not outcome-balancing, and adjusting for them results in
null-biased estimates of the Z-adjusted association of X on Y. This bias arises because the term z�∗
incorporates any effect of X that is confounding the Z effect, and hence adjustment for z�∗ adjusts
away part of the X effect (Miettinen, 1976b; Greenland, 1984b). If the model is correct, however,
the adjustment can give correct null P-values (Pike et al., 1979; Cook and Goldman, 1989).

To remove the bias, one may use as the confounder score the fitted value of the linear term at X = 0
from a model with both X and Z, such as g(z) = z∧

� from fitting the risk model 21–17 (Miettinen,
1976b; Pike et al., 1979). This score will be outcome balancing on average if the model is correct.
Nonetheless, because the score is estimated, the resulting standard errors may be downwardly
biased, leading to downwardly biased P-values and overly narrow confidence intervals. Thus, on
theoretical grounds as well as labor, none of these basic outcome-score approaches is clearly better

than just using exp(
∧
β) from the outcome model (21–17) as the effect estimate, nor are they better

than model-based standardization.

EXPOSURE SCORES

Scores that are constructed to predict the exposure are called exposure scores. Miettinen (1976b)
suggested creating an exposure score by regressing X on Y and Z, and then (by analogy with
risk scoring) setting Y = 0. In the context of cohort studies, Rosenbaum and Rubin (1983) argued
instead that one should model the probability of X as a function of Z only, which for a binary X
could be

Pr(X = 1|Z = z) = e1(z) = expit(ν + z�)
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They called this probability of X = 1 the propensity score for X , and showed that, if the fitted
model is correct, e1(z) is the coarsest exposure-balancing score, in that no further simplification of
the score preserves its property of balancing Z across levels of X. Note, however, that simpler scores
than e1(z) may be sufficient for control of confounding by Z. For example, if Z1 is not confounding
given the remaining covariates in Z then there is no need to balance Z1, and a score without Z1

would be sufficient and simpler.
Subsequent work showed (rather paradoxically) that if one knows the correct model for the

propensity score, using the score from fitting that model has better statistical properties than using
the true score e1(z) (Rosenbaum, 1987; Robins et al., 1992b). Thus, if the preceding model were
correct, using fitted score

∧
e1(z) = expit(

∧
ν + z�

∧
) would be better than using e1(z) = expit(ν + z�)

with the true ν and �. Although this theory shows that the propensity-score approach, taking g(z)
= ∧

e1(z), is a viable competitor to direct modeling of the regression of Y on X and Z, the propensity
model is unknown in observational studies and the theory leaves open how the exposure model
should be built. Studies suggest that the criteria for selection of variables for adjustment (inclusion
in Z) should be the same as those used for outcome regression (e.g., Brookhart et al., 2006). These
criteria can be roughly summarized by the common-sense rule that important confounders should
be forced into the model. Because the strength of confounding by a covariate Zk is determined
by its association with both X and Y, selection based on either association alone can easily select
nonconfounders over confounders.

As with analyses based on modeling Y, selection based on conventional variable-selection criteria
(e.g., coefficient P < 0.05) can be especially harmful. For example, stepwise propensity modeling
will retain a variable that is unassociated with Y if it is “significantly” associated with X, resulting
in adjustment for a nonconfounder; yet it will remove a confounder whose association with X is
“nonsignificant,” resulting in uncontrolled confounding. On the other hand, it will retain variables
that discriminate strongly between exposed and unexposed even if they have no relation to Y
other than through X and so are not confounders, thus harming the efficiency of propensity-score
stratification by reducing overlap between the exposed and unexposed groups. For similar reasons,
ability of the propensity model to discriminate between the exposed and unexposed should not be
a criterion for determining a good model; e.g., a model that discriminates perfectly will leave no
exposed and unexposed subjects in the same stratum of the fitted score.

As with any modeling procedure, once the exposure model has been fitted, checks of its adequacy
are advisable. A simple diagnostic is to check that the exposure and the covariates Z are independent
given the exposure score, as they should be if the score is adequate. This check is often done by
examining the covariate-exposure associations after stratifying the data on the fitted scores.

Given that the score appears adequate, the question is how it should be used for adjustment.
Scores have been used for stratification, matching, or as a covariate in regressions of Y on exposure
(Rosenbaum, 2002; Rubin, 2006). As noted earlier, the fitted propensity score

∧
e1(z) can also be

used to construct inverse-probability weights for marginal modeling of the dependence of Y on
X (Robins et al., 2000; Hirano et al., 2003; Lunceford and Davidian, 2004). For example, those
with X = 1 could receive weight w = 1/

∧
e1(z); those with X = 0 would then receive weight

∧
w =

1/
∧
e0(z); where

∧
e0(z) = 1 − ∧

e1(z) is the fitted value of Pr(X = 0|Z = z). In other words, a model
for the regression of Y on X is fitted in which each subject receives a weight 1/

∧
ex (z), the inverse of

the probability of getting the exposure the subject actually had.
One objection to stratification and matching on a fitted score is that they involve score catego-

rization, which may introduce residual confounding (Robins et al., 1992b; Lunceford and Davidian,
2004). Similarly, direct use of the score as a regressor in an outcome model may introduce further
model misspecification, although this problem may be minimized by modeling the association be-
tween the score and the outcome flexibly (e.g., using polynomial regression or splines). Matching
on the score can avoid these problems but can invalidate conventional interval estimates for the
effect (Hill and Reiter, 2006; Abadie and Imbens, 2006).

In contrast, weighting requires neither categorization nor specification of the score effect on
Y. It also generalizes easily to an exposure variable X with more than two levels, including time-
varying exposures (Hernán et al., 2000, 2001). Its chief drawback is that it can lead to instabilities
due to fitted probabilities near 0 (Robins et al., 2000). A related approach that does not require
categorization uses a special transform of

∧
ex (z) in a conditional-outcome model and then averages

over that model (Bang and Robins, 2005).
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Because of differences in implicit weightings, different approaches may be estimating different
parameters if there is modification of the X effect measure across levels of Z (Stürmer et al., 2005,
2006; Kurth et al., 2006). For example, standardization over propensity-score strata corresponds to
standardization by w(z) = Pr(Z = z), and use of other summaries over the strata often approximates
this standardization (Greenland and Maldonado, 1994). But propensity-score matching will alter
the cohort distribution of Z and thus lead to a different standard than simply using everyone in the
propensity-score analysis. If matching is based on taking all those with X = 1 and using their score
to select n matches with X = 0, the resulting cohort will in expectation have the Z distribution
Pr(Z = z|X = 1) of the exposed, and so that distribution will now be the standard.

In a similar fashion, weighting by 1/
∧
e1(z) and 1/

∧
e0(z) is equivalent to standardization to the

distribution in the total cohort, Pr(Z = z) (Robins et al., 2000). To standardize to the distribution in
the exposed, Pr(Z = z|X =1), the weights w(z) must be modified to

∧
e1(z)/

∧
e1(z) = 1 for the exposed

and
∧
e1(z)/

∧
e0(z) for the unexposed (Sato and Matsuyama, 2003). This standard is appropriate if the

goal is to estimate net effect that exposure had on the exposed. To standardize to the distribution in
the unexposed, Pr(Z = z|X = 0), the weights w(z) must be modified to

∧
e0(z)/

∧
e1(z) for the exposed

and
∧
e0(z)/

∧
e0(z) = 1 for the unexposed. This standard is appropriate if the goal is to estimate the

net effect that exposure would have on the unexposed.
Propensity-score and IPW methods are based on modeling the full probability Pr(X = x |Z = z)

of X given Z. When X is continuous, this task can be more difficult to do accurately than modeling
only the regression of X on Z, E(X = x |Z = z), which is the Z-conditional mean of exposure X .
E-estimation and intensity scoring are based on adjustment using a fitted model for the exposure
regression E(X = x |Z = z), subject to constraints on the conditional regression E(Y |X = x , Z = z)
(Robins et al., 1992b; Brumback et al., 2003). Like IPW, these methods generalize to time-varying
exposures and confounders, where they are known as g-estimation (see below).

OUTCOME VERSUS EXPOSURE MODELING

There has been some controversy over the relative merits of outcome modeling and exposure
modeling approaches, especially with regard to their model dependence. A few facts should be
noted at the outset. First, confounding that is not captured by the measured Z (e.g., because of
measurement error in Z or failure to include some confounders in Z) cannot be accounted for
by either approach. Thus neither approach addresses a truly intrinsic problem of observational
studies—residual confounding by mismeasured or unmeasured confounders (Rubin, 1997; Joffe
and Rosenbaum, 1999). In a similar fashion, adjustment for inappropriate covariates, such as those
affected by X or Y (e.g., intermediates) will produce bias, regardless of the approach.

If Z is a confounder, mismodeling of either E(Y |X = x , Z = z) or Pr(X = x |Z = z) can leave
residual confounding by Z. It thus is always possible that results from neither, only one, or each
approach suffers bias from mismodeling. The relative bias of the approaches may depend heavily
on the modeling strategy. As a simple example, suppose that just one covariate Zk in Z is the
only confounder in a study, and that both the outcome models will be built by selecting only those
covariates in Z with P < 0.05 in the fitted model. If Zk has P < 0.05 in the outcome model but
P > 0.05 in the exposure model, it will be selected into the outcome model and there will be no
confounding of results from that model, but it will be left out of the exposure model, resulting in
confounding of results from that model. Conversely, if Zk has P > 0.05 in the outcome model but
P < 0.05 in the exposure model, it will be left out of the outcome model, resulting in confounding
of results from that model, but it will be selected into the exposure model and there will be no
confounding of results from that model.

The specification issue is often framed as a question of how accurately we can model the
dependence of Y on X and Z versus how accurately we can model the dependence of X on Z. In
both approaches the final step may be to average (standardize) over the modeling results. In each
approach, this averaging can reduce sensitivity to mismodeling. For example, when one standardizes
model-based estimates of E(Y |X = x , Z = z) over a Z-distribution similar to that in the data, the
resulting summary estimates will be far more stable and less sensitive to misspecification than the
E(Y |X = x , Z = z) estimates. This robustness arises from the averaging of residual errors to 0 over
the data distribution of the regressors. Although this average need not be 0 within levels of X , one
can check the X -specific averages: Large values indicate that X was mismodeled.
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Early simulation studies reported higher specification robustness for propensity scoring (Drake,
1993; Drake and Fisher, 1995), but with only one confounder, no provision for model modifica-
tion or expansion (and thus no adaptivity to context), and no explicit justification of parameter
settings chosen for simulation. Use of modern modeling strategies in simulation (e.g., hierarchical
or nonparametric modeling) can change comparisons dramatically, sometimes in favor of outcome
modeling (e.g., Hill and McCulloch, 2008).

The potential accuracy and difficulty of each approach also depends heavily on context as well
as modeling strategy. For example, in a study of nutrient intakes and lung cancer, it is doubtful that
modeling of intakes (the exposures) will be any simpler or more accurate than modeling of lung
cancer risk. Exposure modeling would also be more laborious insofar as a new exposure model
would have to be be created for every nutrient we wish to examine. As an opposite example, in a
focused study of a medical procedure or prescription drug and survival, we may have far more ability
to model accurately who will receive the procedure or drug than who will survive the study period.
Thus, one cannot judge whether outcome or exposure modeling is preferable without knowledge
about the topic under study.

On the latter issue, it is frequently overlooked that adjustment via exposure modeling requires
at least two models: the exposure model for X given Z, and a model for adjustment of the X , Y
association by the fitted exposure model. The latter model may involve only Y , X , and the fitted
score, and may be far simpler than the model for E(Y |X = x , Z = z) if Z is complicated or contains
many variables. Nonetheless, that simplicity reflects only transference of complexity to modeling
Pr(X = x |Z = z).

A parallel statistical issue is the amount of sample information available for each model. In this
regard the exposure model often has an advantage in practice (Cepeda et al., 2003). To illustrate,
suppose that Y is binary and X and Z are purely categorical. If, as often happens in cohort studies,
the sample numbers with Y = 1 at each level of X , Z tend to be very small, estimates of conditional
risk Pr(Y = 1|X = x , Z = z) may require a restrictive model, or may become unstable and suffer
small-sample biases (Greenland et al., 2000a). If at the same time the numbers at each level of X ,
Z are large, stable estimates of the exposure probabilities Pr(X = x | Z = z) can still be obtained.
Note, however, that this small-sample bias advantage of exposure modeling does not lead to greater
efficiency, because the final precision of any estimate remains limited by the small numbers at
Y = 1. Note also that the advantage will switch to outcome modeling if the outcome (Y = 1) is
common but the exposure (X = 1) is rare.

The relative precision of summary estimates from outcome and exposure modeling is difficult to
evaluate because of the noncomparable models used by the two approaches. Theoretical results that
assume homogeneous exposure effects and correct specification of both models (e.g., Robins et al.,
1992b) find precision or power advantages for outcome modeling, as observed in examples and sim-
ulations (e.g., Drake and Fisher, 1995). This advantage is purchased by risk of downwardly biased
standard errors if effects are heterogeneous. This risk can be reduced by use of X–Z product terms
or more flexible outcome models, which in turn reduces the efficiency of outcome modeling. The
same theory confirms empirical reports that inclusion of nonconfounders is less harmful to precision
in exposure modeling than in outcome modeling (assuming, of course, that the nonconfounders are
unaffected by exposure; see Chapters 9 and 12), although this difference may not be enough to com-
pensate for the lower precision of exposure modeling relative to outcome modeling (Robins et al.,
1992b; Lunceford and Davidian, 2004).

Again, different approaches may be estimating different parameters, which can lead to disparate
results even when all the models are correct (Stürmer et al., 2005, 2006; Kurth et al., 2006; Austin
et al., 2007). As mentioned above, coefficients from outcome models and marginal models reflect an
approximate total-population weighting (Greenland and Maldonado, 1994), but propensity-score
matching can greatly alter the population and hence the weighting. Meaningful comparisons require
modification of the weights to give the methods the same standard, as described earlier.

MODEL COMBINATION AND DOUBLY ROBUST ESTIMATION

A straightforward resolution of the choice between outcome modeling and exposure modeling is
to do both, and if disagreement appears, to attempt to discern the reason. Another resolution is to
combine the two approaches, for example, by entering the score directly in a model for Y along with
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X and Z, or by using the propensity score for matching and then regressing Y on X and Z in the
matched sample (Rubin and Thomas, 2000; Rubin, 2006). Alternatively, one may use the inverse-
probability weights estimated from modeling Pr(X = x |Z = z) to fit the model for E(Y |X = x ,
Z = z), then standardize over the fitted expected outcomes (Kang and Schafer, 2007). Intuitively,
the idea is that if propensity scoring or IPW fails to adjust fully for Z, the regression adjustment for
Z may compensate, and vice versa.

This idea is formalized in the theory of doubly robust estimation, which shows how to combine
outcome and exposure modeling in a fashion that gives a valid estimate if either model is correct
(Scharfstein et al., 1999; Van der Laan and Robins, 2003; Kang and Schafer, 2007). The theory
justifies the IPW regression approach and leads to new approaches to marginal modeling (Bang and
Robins, 2005). The term doubly robust reflects the fact that these methods have two ways to get the
right answer, although this property does not necessarily improve performance when neither model
is correct (Kang and Schafer, 2007).

SCORING IN CASE-CONTROL STUDIES

In most case-control studies, selection probabilities are intentionally set much higher for cases
than for potential controls, and they may also vary with covariates Z as a result of matching. One
consequence is that models for Y and for X fitted to the data will be distorted relative to the
population. As discussed earlier, however, in most studies one can fit outcome models as if the data
were from a cohort study, and the distortions will cancel out of incidence-ratio and attributable-
fraction estimates from the models. If one has population data, these data can be used to remove the
distortions in the outcome models to obtain incidence estimates as well (Greenland 1981, 2004d).

Unlike outcome modeling, at present no published exposure-scoring proposal for case-control
data has strong theoretical or empirical support. The situation is complicated because the distortion
of the relation of X to Z produced by case-control sampling does not cancel out of estimation
formulas, even when there is no matching. As a result, simply fitting the propensity score to the
data without regard to outcome status or sampling will result in a biased score estimate and thus
can lead to residual confounding (Mansson et al., 2007). One naı̈ve solution to this problem is to
assume the controls are representative of the population and fit an exposure model to the controls
only (Miettinen, 1976b). Unfortunately, this practice can lead to distorted score-specific estimates
because the resulting scores will fit the controls far better than the cases. One consequence of this
distortion is the spurious appearance of variation in effect measures across levels of the propensity
score (effect-measure modification) even when there is none (Mansson et al., 2007).

One could instead fit a model for Pr(X = 1|Y = y, Z = z) to both the cases and controls, and
then use the fitted value of Pr(X = 1|Y = 0, Z = z) as the exposure score (Miettinen, 1976b). The
effectiveness of this strategy in eliminating the aforementioned distortions depends in part on the
number of product terms between Y and Z components in the model: With many outcome-covariate
products, the fitted values of Pr(X = 1|Y = 0, Z = z) will approach those obtained by fitting the
controls alone, leading back to the original distortions. Performance of this and any scoring strategy
will also depend on the method used to adjust for the estimated score.

MODELING LONGITUDINAL DATA

This section provides a brief description of certain issues that can arise in studies involving time-
dependent exposures and confounders (such as smoking, alcohol use, drug use, treatment com-
pliance, occupational exposures, diet, exercise, stress, weight, blood pressure, serum cholesterol,
cancer screening, and health insurance status) or recurrent outcomes (such as angina, back pain,
allergy attacks, asthma attacks, seizures, and depression). It focuses primarily on the problem that
a time-dependent covariate may both affect and be affected by the study exposure, and thus act
as both a confounder and an intermediate. Similarly, a recurrent outcome may both affect and be
affected by a time-dependent exposure and thus act as a confounder as well as an outcome.

Data that contain multiple measurements over time on each subject are often called repeated-
measures or longitudinal data. Although there is a voluminous literature on the analysis of such data,
most of it does not give methods that adjust properly for confounding by intermediate or outcome
variables. In particular, standard methods of time-dependent Cox modeling (Cox and Oakes, 1984;
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Kalbfleish and Prentice, 2002), random-effects regression (Stiratelli et al., 1984), and correlated
logistic regression (“GEE” analysis) (Liang and Zeger, 1986; Zeger and Liang, 1992; Diggle et al.,
2002) give biased effect estimates when exposure affects a confounder or is affected by the study
outcome (Robins et al., 1992a; Robins and Greenland, 1994; Robins et al., 1999b).

TIME-DEPENDENT EXPOSURES AND COVARIATES

All the methods for effect estimation we have considered up to now, and those considered in most
textbooks, implicitly assume that the study exposure does not affect any covariate used to create
strata or used as a regressor. As discussed in earlier chapters, they also assume that there is no
confounding within strata or within levels of other covariates in the analysis model. These two
assumptions are often incompatible when the exposure and covariates vary over time.

To illustrate, suppose that we wish to study the overall long-term effect of coffee use on my-
ocardial infarction (MI) risk. Serum cholesterol is a reasonable candidate as a confounder, because
coffee drinkers may have more unmeasured factors associated with elevated cholesterol (such as
personality traits) and because serum cholesterol is positively associated with MI risk. On the other
hand, serum cholesterol is also a reasonable candidate as an intermediate, because coffee use may
elevate serum cholesterol levels (Chapter 33).

The net effect of both the preceding scenarios will be a positive association of coffee use and
serum cholesterol. Given that serum cholesterol is also positively associated with MI, adjustment
for serum cholesterol will most likely decrease the estimated effect of coffee use on MI (indeed, this
decrease has been observed in some studies). Because coffee use and elevated serum cholesterol
may be associated through common causes, some of this decrease could be attributed to removal
of confounding by cholesterol, in which case the unadjusted estimate will be biased. Nonetheless,
because part of the coffee–cholesterol association may be due to a coffee effect on cholesterol,
part of the decrease in the estimated coffee effect may reflect adjustment for a variable (again,
cholesterol) affected by coffee use, and so will not reflect removal of confounding. This reasoning
implies that the adjusted estimate is also biased.

As one might expect, resolution of this dilemma requires that one have longitudinal data on
the exposure (here, coffee use) and every covariate that plays a dual role of confounder and inter-
mediate (here, serum cholesterol). It also requires use of an estimation method that adjusts for the
confounding effect of the covariate and no more. In particular, we do not want to adjust for the effect
of exposure on the confounder. Unfortunately, conventional methods, such as time-dependent Cox
regression and Poisson regression, cannot fulfill this requirement (Robins et al., 1992a). Robins has
developed a number of approaches that can properly adjust the estimated effect of a time-varying
exposure for a time-varying covariate if longitudinal data are available (Robins, 1987, 1989, 1993,
1997, 1999; Robins et al., 1992a). These methods may be necessary even if exposure and the co-
variate affected by exposure have no effect on risk; such situations arise when the covariate is a
proxy for unmeasured confounders.

Suppose now that we are interested only in the direct effect of coffee use on MI, apart from
any effect it has on cholesterol. That is, we may wish to estimate the part of the coffee effect
on MI that is not attributable to any increase in cholesterol it produces. Here again, conventional
adjustment methods may be biased for this direct effect (Robins and Greenland, 1992, 1994; see
Chapter 12). Fortunately, the same methods developed by Robins for adjusting for confounding by
an intermediate variable can be extended to the problem of estimating direct effects (Robins and
Greenland, 1994; Petersen et al., 2006).

The problems described above are examples of the more general problem of determining what
variables must be measured (e.g., full coffee use and cholesterol histories, versus summaries such as
average levels) and how these variables must be accounted for in the analysis, given that a particular
effect is of interest. As discussed in Chapter 12, graphical approaches to this problem have been
developed, along with explicit algorithms for making such determinations.

RECURRENT OUTCOMES

Consider next a situation in which the outcome may recur. Examples commonly arise in studies of
respiratory disease, neurologic disorders, and psychiatric conditions. For example, the outcome may
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be asthma attack (yes or no) recorded for each day of the study period, along with fixed covariates
(such as sex) and time-varying covariates (such as activity, medication, air pollution, and weather
variables). In some situations, the outcome may affect (as well as be affected by) the exposure
and other covariates. For example, having an asthma attack one day may influence a person’s
activity level the next day; furthermore, it may directly affect the risk of an asthma attack the next
day. Thus, earlier outcomes may act as confounders when estimating effects of exposures on later
outcomes.

Unfortunately, conventional methods for analyzing recurrent outcomes, such as generalized esti-
mating equation or GEE regression (Zeger and Liang, 1992; Diggle et al., 2002) and random-effects
logistic regression (Stiratelli et al., 1984), do not adjust for the effects of outcomes on exposures or
covariates, nor do they properly adjust for the effects of earlier outcomes on later outcomes (Robins
et al., 1999b). These methods assume implicitly that the outcome does not affect the exposure and
other covariates, and they impose symmetric relations between outcomes at different times (note
that causal relations are inherently asymmetric; in particular, earlier outcomes can affect later out-
comes, but not vice versa). The methods of Robins do not require such assumptions, and they can
be applied to the analysis of recurrent outcomes (Robins et al., 1999b).

STRUCTURAL MODELS AND G-ESTIMATION

Variables in a model are sometimes classified as endogenous or internal if they can be affected
by other variables in the model, exogenous or external if not (see Chapter 12). For example, in a
longitudinal study of asthma attacks, physical activity and medication variables will be endogenous
variables, whereas air pollution and weather variables will be exogenous variables. With this ter-
minology, the message of the present section can be summarized thus: Methods such as classical
standardization, correlated-outcome (random-effects and GEE) regression, and Cox regression can
give biased answers when some of the confounders are endogenous. To avoid this bias, methods
based on multiple model equations (such as those of Robins) are needed.

The topic of modeling multiple causal relations with multiple equations is known in social
sciences as structural-equations modeling. This topic is so vast that we cannot review it here. A
classic introduction to linear structural equations is Duncan (1975), while Pearl (2000) provides
a modern nonparametric perspective that is equivalent to the approach of Robins (1997). Several
issues in structural-equation modeling arise when estimating effects of time-dependent exposures.
One strong objection to the social science literature on structural equations is that the methods often
involve implausibly strong assumptions, such as linear relations among all variables (Freedman,
1985, 1987). To avoid such difficulties, Robins developed semiparametric methods that attempt to
minimize assumptions about the functional forms of the causal relations and error distributions,
and that have some robustness to violations of the assumptions that are made (Robins et al., 1992a,
1992b; Robins, 1993, 1997, 1998a, 1998b, 1999; Mark and Robins, 1993a; Robins and Greenland,
1994; Witteman et al., 1998).

Most of these methods are based on structural nested failure-time (SNFT) and structural nested
mean (SNM) models, which generalize the potential-outcome models described in Chapters 4 and
20 to longitudinal treatments (i.e., time-dependent exposures that may influence and be influenced
by other time-dependent variables). The robustness of structural nested modeling arises from the
fact that it makes no assumption about the causal relations among the covariates beyond that required
by the time ordering (causes must precede effects). The only causal dependence it models is that
of the outcome on the exposure. Along with the latter causal model, it employs another model for
the regression of the study exposure at each point in time on the exposure, covariate, and disease
history of each subject up to that point in time.

Mathematically, structural nested failure-time models are a generalization of the strong
accelerated-life model described in Chapter 20. To describe the model, suppose that a person
is actually given fixed treatment X = xa and “fails” (e.g., dies) at time Ya , where Ya is the potential
outcome of the person under X = xa . Assuming zero is a meaningful reference value for X , the
basic causal accelerated-life model assumes the survival time of the person when given X = 0
instead would have been Y0 = exp(xaβ)Ya , where Y0 is the potential outcome of the person under
X = 0, and the factor exp(xaβ) is the amount by which setting X = 0 would have expanded (if
xaβ > 0) or contracted (if xaβ < 0) survival time relative to setting X = xa .
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Suppose next that X can vary over time, and that the actual survival interval S = (0, Ya) is
partitioned into K successive intervals of length �t1, . . . , �tK , such that X = xk in interval k. A
basic structural-nested model for the survival time of the person had X been held at 0 over time is
then

Y0 = �
k

exp(xkβ) �tk

The distribution of Y0 across persons may be further modeled as a function of baseline covariates.
Structural nested models are most easily fitted using a two-step procedure called g-estimation

(Robins et al., 1992; Robins and Greenland, 1994; Robins, 1998a). To illustrate the basic idea,
assume no censoring of Y, no measurement error, and let Xk and Zk be the treatment and covariates
at interval k. Then, under the model, a hypothesized value βh for β produces for each person a
computable value Y0(βh) = �

k
exp(xkβh)�tk for Y0. Next, suppose that for all k, Y0 and Xk are

independent given the treatment history X1, . . . , Xk−1 and covariate history Z1, . . . , Zk up to time
k (as will occur if treatment is sequentially randomized given these histories). If β = βh , then
Y0(βh) = Y0 and so must be independent of Xk given the histories. One can test this conditional
independence of Y0(βh) and the Xk with any standard method. For example, one could use a
permutation test or some approximation to one, such as the log-rank test (Chapter 16) stratified on
the treatment and covariate histories.

Subject to further modeling assumptions, one could instead use a test that the coefficient of
Y0(βh) is zero in a model for the regression of Xk on Y0(βh) and the histories. In either case, the
set of all βh that have a P-value greater than α by this test form a 1 − α confidence interval for
β, and the value of βh with P = 1 (the value b for β that makes Y0(b) and the Xk conditionally
independent) is a valid estimator of β (Robins, 1998a). G-estimation can be implemented in any
package that allows preprocessing and creation of the new covariates Y0(βh) for regression analysis
(Witteman et al., 1998; Sterne et al., 2002; Tilling et al., 2002).

If (as usual) censoring is present, g-estimation becomes more complex (Robins, 1998a). As a
simpler though more restrictive approach to censored longitudinal data with time-varying treatments,
one can fit a marginal structural model (MSM) for the potential outcomes using a generalization
of inverse-probability weighting (Robins, 1998b, 1999; Robins et al., 2000; Hernán et al., 2000,
2001). Unlike standard time-dependent Cox models, both SNFT and marginal-structural model
fitting require special attention to the censoring process, but they make weaker assumptions about
that process. Their greater complexity is the price one must pay for the generality of the procedures:
Both structural nested and marginal structural models can yield unconfounded effect estimates in
situations in which standard models appear to fit well but yield very biased results (Robins et al.,
1992a, 1999b, 2000; Robins and Greenland, 1994).

One important application of g-estimation is in adjusting for noncompliance (nonadherence)
when estimating treatment effects from randomized trials (Robins and Tsiatis, 1991; Mark and
Robins, 1993ab). Typical analysis of randomized trials use the “intent-to-treat” rule, in which
subjects are compared based on their assigned treatment, regardless of compliance. Estimates of
biologic treatment effects based on this rule tend to be biased because noncompliance causes
assigned treatment to become a misclassified version of received treatment. On the other hand,
noncompliers tend to differ from compliers with respect to risk, and hence conventional analyses
of received treatment tend to be confounded. Thus, we face the dilemma (analogous to that with
confounding intermediates) of bias in either conventional analysis.

Subject to certain assumptions that are usually more plausible than those required for the validity
of conventional analyses, it is possible to escape the dilemma by using assigned treatment as a fixed
exogenous covariate and received treatment as an endogenous time-dependent exposure whose
effect is represented in a structural nested model. See Mark and Robins (1993b), White et al.
(2002), Cole and Chu (2005), and Greenland et al. (2008) for more details.

As with all statistical methods, inferences from g-estimation and marginal structural model-
ing are conditional on the model being correct, and the model is not likely to be exactly correct
even if its fit appears good. Nonetheless, the validity of the P-value for the null hypothesis β = 0
from g-estimation will be fairly insensitive to misspecification of the form of the model for Y0,
although the power of the corresponding test may be severely impaired by the misspecification
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(Robins, 1998a). Of course, in observational studies g-estimation and marginal structural modeling
share all the usual limitations of conventional methods, including the assumption that all errors are
random as described by the model (no uncontrolled confounding, selection bias, or measurement
error). In particular, inferences from the methods are only conditional on an uncertain assumption
of “no sequential confounding,” that Y0 and the Xk are independent given the treatment and co-
variate histories used for stratification or modeling of Y0 and the Xk . When this assumption is in
doubt, one will need to turn to sensitivity analysis to assess the effect of its violation (Brumback
et al., 2004).
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People who manage programs to prevent or control specific diseases need reliable information
about the status of those diseases or their antecedents in the populations they serve. The process
that is used to collect, manage, analyze, interpret, and report this information is called surveillance.
Surveillance systems are networks of people and activities that maintain this process and may
function at local to international levels. Because surveillance systems are typically operated by
public health agencies, the term “public health surveillance” is often used (Thacker and Berkelman,
1988). Locally, surveillance may provide the basis for identifying people who need treatment,
prophylaxis, or education. More broadly, surveillance can inform the management of public health
programs and the direction of public health policy (Sussman et al., 2002).

When new public health problems emerge, the rapid implementation of surveillance is critical
to an effective early response. Likewise, as public health agencies expand their domain to include a
broader spectrum of health problems, establishing surveillance is often a first step to inform priority
setting for new programs. Over time, surveillance is used to identify changes in the nature or extent
of health problems and the effectiveness of public health interventions. As a result, surveillance
systems may grow from simple ad hoc arrangements into more elaborate structures.

459
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The modern concept of surveillance was shaped by programs to combat infectious diseases,
which depended heavily on legally mandated reporting of “notifiable” diseases (Langmuir, 1963).
Health problems now monitored by surveillance reflect the diversity of epidemiologic inquiry and
public health responsibilities, including acute and chronic diseases, reproductive health, injuries,
disabilities, environmental and occupational health hazards, and health risk behaviors (Thacker
and Berkelman, 1988). An equally diverse array of methods is used to obtain information for
surveillance, ranging from traditional case reporting to adapting data collected primarily for other
purposes, such as computerized medical care records.

Surveillance systems are generally called on to provide descriptive information regarding when
and where health problems are occurring and who is affected—the basic epidemiologic parameters
of time, place, and person. The primary objective of surveillance is most commonly to monitor
the occurrence of disease over time within specific populations. When surveillance systems seek
to identify all, or a representative sample of, occurrences of a health event in a defined population,
data from surveillance can be used to calculate incidence rates and prevalence. Surveillance can
characterize persons or groups who are affected by health problems and identify groups at highest
risk. Surveillance is often used to describe health problems themselves, including their manifesta-
tions and severity, the nature of etiologic agents (e.g., antibiotic resistance of microorganisms), or
the use and effect of treatments.

Populations under surveillance are defined by the information needs of prevention or control
programs. For example, as part of a hospital’s program to monitor and prevent hospital-acquired
infections, the target population would be patients receiving care at that hospital. At the other
extreme, the population under surveillance may be defined as the global population, as is the case
for a global network of laboratories that collaborate with the World Health Organization in tracking
the emergence and spread of influenza strains (Kitler et al., 2002). For public health agencies, the
population under surveillance usually represents residents within their political jurisdiction, which
may be a city, region, or nation.

All forms of epidemiologic investigation require a balance between information needs and the
limits of feasibility in data collection. For surveillance, this balance is often the primary method-
ologic challenge. As an ongoing process, surveillance depends on long-term cooperation among
persons at different levels in the health delivery system and coordinating agencies. Asking too much
of these participants or failing to demonstrate the usefulness of their participation threatens the op-
eration of any surveillance system and wastes resources. Another dimension of this balance lies in
the interpretation of surveillance data, regardless of whether surveillance depends on primary data
collection or adaptation of data collected for other purposes. Compared with data from targeted
research studies, the advantage of surveillance data is often their timeliness and their breadth in
time, geographic coverage, or number of people represented. To be effective, surveillance must be
as streamlined as possible. As a result, surveillance data may be less detailed or precise compared
with those from research studies. Thus, analyses and interpretation of surveillance data must exploit
their unique strengths while avoiding overstatement.

HISTORY OF SURVEILLANCE

The modern concept of surveillance has been shaped by an evolution in the way health information
has been gathered and used to guide public health practice (Table 22–1) (Thacker and Berkelman,
1992; Eylenbosch and Noah, 1988). Beginning in the late 1600s and 1700s, death reports were first
used as a measure of the health of populations, a use that continues today. In the 1800s, Shattuck used
morbidity and mortality reports to relate health status to living conditions, following on the earlier
work of Chadwick, who had demonstrated the link between poverty and disease. Farr combined
data analysis and interpretation with dissemination to policy makers and the public, moving beyond
the role of an archivist to that of a public health advocate.

In the late 1800s and early 1900s, health authorities in multiple countries began to require that
physicians report specific communicable diseases to enable local prevention and control activities,
such as quarantine of exposed persons or isolation of affected persons. Eventually, local reporting
systems coalesced into national systems for tracking certain endemic and epidemic infectious
diseases, and the term surveillance evolved to describe a population-wide approach to monitoring
health and disease.
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T A B L E 2 2 – 1

Key Events in the History of Public Health Surveillance

Date Events

Late 1600s von Leibnitz calls for analysis of mortality reports in health planning.
Graunt publishes Natural and Political Observations Made upon the Bills of Mortality, which

defines disease-specific death counts and rates.
1700s Vital statistics are used in describing health increases in Europe.
1840–1850 Chadwick demonstrates relationship between poverty, environmental conditions, and

disease.
Shattuck, in report from Massachussets Sanitary Commission, relates death rates, infant and

maternal mortality, and communicable diseases to living conditions.
1839–1879 Farr collects, analyzes, and disseminates to authorities and the public data from vital statistics

for England and Wales.
Late 1800s Physicians are increasingly required to report selected communicable diseases (e.g., smallpox,

tuberculosis, cholera, plague, yellow fever) to local health authorities in European
countries and the United States.

1925 All states in the United States begin participating in national morbidity reporting.
1935 First national health survey is conducted in the United States.
1943 Cancer registry is established in Denmark.
Late 1940s Implementation of specific case definition demonstrates that malaria is no longer endemic in

the southern United States.
1955 Active surveillance for cases of poliomyelitis demonstrates that vaccine-associated cases are

limited to recipients of vaccine from one manufacturer, allowing continuation of national
immunization program.

1963 Langmuir formulates modern concept of surveillance in public health, emphasizing role in
describing health of populations.

1960s Networks of “sentinel” general practitioners are established in the United Kingdom and The
Netherlands.

Surveillance is used to target smallpox vaccination campaigns, leading to global eradication.
WHO broadens its concept of surveillance to include a full range of public health problems

(beyond communicable diseases).
1980s The introduction of microcomputers allows more effective decentralization of data analysis

and electronic linkage of participants in surveillance networks.
1990s and 2000s The Internet is used increasingly to transmit and report data. Public concerns about privacy

and confidentiality increase in parallel with the growth in information technology.
2001 Cases of anthrax associated with exposure to intentionally contaminated mail in the United

States lead to growth in “syndromic surveillance” aimed at early detection of epidemics.

Adapted from Thacker SB, Berkelman RL. History of public health surveillance. In: Halperin W, Baker EL, Monson RR. Public Health
Surveillance. New York: Van Nostrand Reinhold, 1992:1–15; and Eylenbosch WJ, Noah ND. Historical aspects. In: Eylenbosch WJ, Noah
ND, eds. Surveillance in Health and Disease. Oxford: Oxford University Press, 1988:1–8.

Important refinements in the methods of notifiable disease reporting occurred in response to
specific information needs. In the late 1940s, concern that cases of malaria were being overreported
in the southern United States led to a requirement that case reports be documented. This change in
surveillance procedures revealed that malaria was no longer endemic, permitting a shift in public
health resources and demonstrating the utility of specific case definitions. In the 1960s, the usefulness
of outreach to physicians and laboratories by public health officials to identify cases of disease
and solicit reports (active surveillance) was demonstrated by poliomyelitis surveillance during the
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implementation of a national poliomyelitis immunization program in the United States. As a result
of these efforts, cases of vaccine-associated poliomyelitis were shown to be limited to recipients
of vaccine from one manufacturer, enabling a targeted vaccine recall, calming of public fears, and
continuation of the program. The usefulness of active surveillance was further demonstrated during
the smallpox-eradication campaign, when surveillance led to a redirection of vaccination efforts
away from mass vaccinations to highly targeted vaccination programs.

Throughout the 1900s, alternatives to disease reporting were developed to monitor diseases and
a growing spectrum of public health problems, leading to an expansion in methods used to conduct
surveillance, including health surveys, disease registries, networks of “sentinel” physicians, and use
of health databases. In 1988, the Institute of Medicine in the United States defined three essential
functions of public health: assessment of the health of communities, policy development based on a
“community diagnosis,” and assurance that necessary services are provided, each of which depends
on or can be informed by surveillance (Institute of Medicine, 1988).

In the 1980s, the advent of microcomputers revolutionized surveillance practice, enabling de-
centralized data management and analysis, automated data transmission via telephone lines, and
electronic linkage of participants in surveillance networks, as pioneered in France (Valleron et al.,
1986). This automation of surveillance was accelerated in the 1990s and early 2000s by advances
in the science of informatics and growth in the use of the Internet (Yasnoff et al., 2000). In the early
2000s, the increasing threat of bioterrorism provided an impetus for the growth of systems that
emphasized the earliest possible detection of epidemics, enabling a timely and maximally effective
public health response. These systems involve automation of nearly the entire process of surveil-
lance, including harvesting health indicators from electronic records, data management, statistical
analysis to detect aberrant trends, and Internet-based display of results. Despite this emphasis on
informatics, the interpretation of results and the decision to act on surveillance still requires human
judgment (Buehler et al., 2003).

While the balance between privacy rights and governments’ access to personal information
for disease monitoring has been debated for over a century, the increasing automation of health
information, both for medical care and public health uses, has led to heightened public concerns
about potential misuse (Bayer and Fairchild, 2000; Hodges et al., 1999). This concern is exemplified
in the United States by the implementation in 2003 of the privacy rules of the Health Insurance
Portability and Accountability Act of 1996, which aim to protect privacy by strictly regulating
the use of electronic health data yet allowing for legitimate access for public health surveillance
(Centers for Disease Control and Prevention, 2003a). In the United Kingdom, the Data Protection
Act of 1998, prompted by similar concerns, has called into question the authority of public health
agencies to act on information obtained from surveillance (Lyons et al., 1999). As the power of
information technologies grow, such controversies regarding the balance between public health
objectives and individual privacy are likely to increase in parallel with the capacity to automate
public health surveillance.

OBJECTIVES OF SURVEILLANCE

DESCRIPTIVE EPIDEMIOLOGY OF HEALTH PROBLEMS

Monitoring trends, most often trends in the rate of disease occurrence, is the cornerstone objective
of most surveillance systems. The detection of an increase in adverse health events can alert health
agencies to the need for further investigation. When outbreaks or disease clusters are suspected,
surveillance can provide a historical perspective in assessing the importance of perceived or docu-
mented changes in incidence. Alternatively, trends identified through surveillance can provide an
indication of the success of interventions, even though more detailed studies may be required to
evaluate programs formally.

For example, the effectiveness of the national program to immunize children against measles in
the United States has been gauged by trends in measles incidence. Following the widespread use
of measles vaccine, measles cases declined dramatically during the 1960s. In 1989–1990, however,
a then-relatively large increase in measles cases identified vulnerabilities in prevention programs,
and subsequent declines demonstrated the success of redoubled vaccination efforts (Centers for
Disease Control and Prevention, 1996) (Fig. 22–1).
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FIGURE 22–1 ● Measles, by year of report, 1961–1996, United States. (Reproduced from Centers for
Disease Control and Prevention. Summary of notifiable diseases, United States, 1996. Morb Mortal Wkly
Rep. 1996;45:43.)

Information on the common characteristics of people with health problems permits identifi-
cation of groups at highest risk of disease, while information on specific exposures or behaviors
provides insight into etiologies or modes of spread. In this regard, surveillance can guide pre-
vention activities before the etiology of a disease is defined. This role was demonstrated in the
early 1980s, when surveillance of the acquired immunodeficiency syndrome (AIDS) provided in-
formation on the sexual, drug using, and medical histories of people with this newly recognized
syndrome. Surveillance data combined with initial epidemiologic investigations defined the modes
of human immunodeficiency virus (HIV) transmission before HIV was discovered, permitting early
prevention recommendations (Jaffe et al., 1983). Equally important, the observation that nearly all
persons with AIDS had an identified sexual, drug-related, or transfusion exposure was effective in
calming public fears about the ways in which the disease was not transmitted, i.e., that the presumed
infectious agent was not transmissible via casual contact or mosquito bites.

Detection of outbreaks is an often-cited use of surveillance. In practice, astute clinicians com-
monly detect outbreaks before public health agencies receive and analyze information on case
reports. This pattern has been often been the case for clusters of new diseases, including toxic
shock syndrome, legionnaires disease, and AIDS. Contacts between health departments and clini-
cians engendered by surveillance, however, can increase the likelihood that clinicians will inform
health departments when they suspect that outbreaks are occurring. Some outbreaks may not be
recognized if individual clinicians are unlikely to encounter a sufficient number of affected per-
sons to perceive an increase in incidence. In such instances, surveillance systems that operate on
a broad geographic basis may detect outbreaks. Such detection occurred in 1983 in Minnesota,
where laboratory-based surveillance of salmonella infections detected an increase in isolates of
a particular serotype, Salmonella newport. Subsequent investigation of these cases documented a
specific pattern of antibiotic resistance in these isolates and a link to meat from cattle that had been
fed subtherapeutic doses of antibiotics to promote growth (Holmberg, 1984). The results of this
investigation, which was triggered by findings from routine surveillance in one state, contributed to
a national reassessment of policies in the United States regarding the use of antibiotics in animals
raised for human consumption.
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The development of so-called syndromic surveillance systems to detect bioterrorism-related
epidemics as quickly as possible has emphasized automated tracking of disease indicators that may
herald the onset of an epidemic. These systems monitor nonspecific syndromes (e.g., respiratory
illness, gastrointestinal illness, febrile rash illness) and other measures (e.g., purchase of medi-
cations, school or work absenteeism, ambulance dispatches) that may increase before clinicians
recognize an unusual pattern of illness or before illnesses are diagnosed and reported. Whether
these approaches offer a substantial advantage over traditional approaches to epidemic detection
has been controversial (Reingold, 2003).

Data may also be collected on the characteristics of the disease itself, such as the duration,
severity, method of diagnosis, treatment, and outcome. This information provides a measure of
the effect of the disease and identification of groups in whom the illness may be more severe.
For example, surveillance of tetanus cases in the United States in 1989–1990 documented that
deaths were limited to persons >40 years of age and that the risk of death among persons with
tetanus increased with increasing age. This observation emphasized the importance of updating
the immunization status of adults as part of basic health services, particularly among the elderly
(Prevots et al., 1992). Among patients with end-stage kidney disease receiving care in a national
network of dialysis centers in the United States, surveillance of a simple indicator that predicts the
risk of morbidity and reflects the sufficiency of dialysis (reduction in blood urea levels following
dialysis) identified centers with subpar performance levels. For those centers with relatively poor
performance, targeted quality improvement efforts led to subsequent improvement (McClellan
et al., 2003).

By describing where most cases of a disease occur or where disease rates are highest, surveillance
provides another means for targeting public health interventions. Depicting surveillance data using
maps has long been a standard approach to illustrate geographic clustering, highlight regional
differences in prevalence or incidence, and generate or support hypotheses regarding etiology. A
classic example is the use of maps by John Snow to support his observations that cholera cases in
London in 1854 were associated with consumption of drinking water from a particular well, the
Broad Street pump (Brody et al., 2000). In the United States, men of African descent have higher
rates of prostate cancer compared with other men, and death rates for prostate cancer are highest in
the Southeast (Fig. 22–2). This observation, coupled with observations that farmers are at increased
risk for prostate cancer and that farming is a common occupation in affected states, prompted calls
for further investigation of agricultural exposures that may be linked to prostate cancer (Dosemeci
et al., 1994).

LINKS TO SERVICES

At the community level, surveillance is often an integral part of the delivery of preventive and
therapeutic services by health departments. This role is particularly true for infectious diseases for
which interventions are based on known modes of disease transmission, therapeutic or prophylactic
interventions are available, and receipt of a case report triggers a specific public health response.
For example, notification of a case of tuberculosis should trigger a public health effort to assure that
the patient completes the full course of therapy, not only to cure the disease but also to minimize
the risk of further transmission and prevent recurrence or emergence of a drug-resistant strain of
Mycobacterium tuberculosis. In countries with sufficient public health resources, such a report also
prompts efforts to identify potential contacts in the home, workplace, or school who would benefit
from screening for latent tuberculosis infection and prophylactic therapy. Likewise for certain
sexually transmitted infections, case reports trigger investigations to identify, test, counsel, and
treat sex partners. Thus, at the local level, surveillance not only provides aggregate data for health
planners, it also serves to initiate individual preventive or therapeutic actions.

LINKS TO RESEARCH

Although surveillance data can be valuable in characterizing the basic epidemiology of health prob-
lems, they seldom provide sufficient detail for probing more in-depth epidemiologic hypotheses.
Among persons reported with a disease, surveillance may permit comparisons among different
groups defined by age, gender, date of report, etc. Surveillance data alone, however, do not often
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FIGURE 22–2 ● Prostate cancer death rates, by place of residence, black males, age 70 years,
1988–1992. United States. (Reproduced from Pickle LW, Mungiole M, Jones GK, White AA. Atlas of United
States Mortality. Hyattsville, MD: National Center for Health Statistics; 1996. DHHS Publication No. (PHS)
97-1015, p. 67.)

provide a comparison group of people without the health problem in question. Nonetheless, surveil-
lance can provide an important bridge to researchers by providing clues for further investigation
and by identifying people who may participate in research studies. This sequence of events oc-
curred shortly after the detection of an epidemic of toxic shock syndrome in 1979. Rapidly initiated
surveillance illustrated that the outbreak was occurring predominantly among women and that dis-
ease onset was typically during menstruation (Davis et al., 1980). This finding led to case-control
studies that examined exposures associated with menstruation. These studies initially found an
association with tampon use and subsequently with use of a particular tampon brand. This informa-
tion led to the recall of that tampon brand and recommendations concerning tampon manufacture
(Centers for Disease Control, 1990d).

EVALUATION OF INTERVENTIONS

Evaluation of the effect of public health interventions is complex. Health planners need information
about the effectiveness of interventions, yet full-scale evaluation may not be feasible. By charting
trends in the numbers or rates of events or the characteristics of affected persons, surveillance may
provide a comparatively inexpensive and sufficient assessment of the effect of intervention efforts.
In some instances, the temporal association of changes in disease trends and interventions are so
dramatic that surveillance alone can provide simple and convincing documentation of the effect of
an intervention. Such was the case in the outbreak of toxic shock syndrome, when cases fell sharply
following removal from the market of the tampon brand associated with the disease (Fig. 22–3).

In other instances, the role of surveillance in assessing the effect of interventions is less direct.
For example, the linkage of information from birth and death certificates is an important tool in the
surveillance of infant mortality and permits monitoring of birth-weight-specific infant death rates.
This surveillance has demonstrated that in the United States, declines in infant mortality during the
latter part of the 20th century were due primarily to a reduction in deaths among small, prematurely
born infants. Indirectly, this decline is a testament to the effect of advances in specialized obstetric
and newborn care services for preterm newborns. In contrast, relatively little progress has been
made in reducing the proportion of infants who are born prematurely (Buehler et al., 2000).
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FIGURE 22–3 ● Reported cases of toxic shock syndrome, by quarter: United States, January 1,
1979, to March 31, 1990. (Reproduced from Centers for Disease Control. Reduced incidence of
menstrual toxic-shock syndrome—United States, 1980–1990. Morb Mortal Wkly Rep.
1990;39:421–424.)

Following recognition of widespread HIV transmission during the late 1980s and early 1990s in
Thailand, the Thai government instituted a multifaceted national HIV prevention program. Surveil-
lance data demonstrated that one element of this program—aggressive promotion of condom use
for commercial sex encounters—was associated with an increase in condom use and parallel de-
clines in HIV and other sexually transmitted infections among military conscripts, one of several
sentinel populations among whom HIV trends had been monitored. Although this observation pro-
vides compelling support for the effectiveness of the condom promotion strategy, it is impossible
to definitively parse attribution among various program elements and other influences on HIV risk
behaviors (Celentano et al., 1998).

PLANNING AND PROJECTIONS

Planners need to anticipate future demands for health services. Observed trends in disease incidence,
combined with other information about the population at risk or the natural history of a disease,
can be used to anticipate the effect of a disease or the need for care.

During earlier years of the global HIV epidemic, widespread transmission was not manifest
because of the long interval between the asymptomatic phase of HIV infection and the occurrence
of severe disease. In Thailand, HIV prevention programs noted earlier were prompted by findings
from a comprehensive system of HIV serologic surveys during a period when the full effect of
HIV infection on morbidity and mortality was yet to be seen. These surveys, established to monitor
HIV prevalence trends, revealed a dramatic increase in HIV infections among illicit drug users in
1988, followed by subsequent increases among female sex workers, young men entering military
service (most of whom were presumably infected through sexual contact with prostitutes), women
infected through sexual contact with their boyfriends or husbands, and newborn infants infected
through perinatal mother-to-infant transmission (Weninger et al., 1991). The implications of these
data, both for the number of future AIDS cases and the potential for extension of HIV transmission,
prompted the prevention program.

Techniques for predicting disease trends using surveillance data can range from the application
of complex epidemiologic models to relatively simple strategies, such as applying current disease
rates to future population estimates. The World Health Organization used this latter strategy to
predict global trends in diabetes through 2025, applying the most recently available age- and
country-specific diabetes prevalence estimates obtained from surveillance and other sources to
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population projections. Despite the limitations of the data used to make these calculations and of
the assumptions underlying this approach, the resulting prediction that increases in diabetes will be
greater among developing than developed countries provides a starting point for diabetes prevention
and care planners (King et al., 1998).

EDUCATION AND POLICY

The educational value of surveillance data extends from their use in alerting clinicians to commu-
nity health problems to informing policy makers about the need for prevention or care resources.
Influenza surveillance illustrates this spectrum. Local surveillance based on reporting and speci-
men collection by “sentinel” physician practices can identify the onset of the influenza season and
prevalent influenza strains (Brammer et al., 2002; Fleming et al., 2003). Public health departments
can use this information to alert clinicians to the appearance of influenza, provide timely guidance
on the evaluation of patients with respiratory illness, and inform the use of antiviral or other medi-
cations. Globally, surveillance of influenza through an international network of laboratories is used
to predict which strains are likely to be most prevalent in an upcoming season and guide vaccine
composition and manufacture (Kitler et al., 2002). Documentation of the extent of influenza-related
morbidity and mortality, combined with assessments of vaccine use and effectiveness, can shape
public debates about policies for vaccine manufacture, distribution, purchase, and administration, as
happened during the 2003–2004 influenza season in the United States, when illness peaked earlier
than usual and demand for vaccine exceeded supply (Meadows, 2004).

Surveillance and other epidemiologic or scientific evidence provide an essential perspective in
shaping public health policy and must be effectively integrated with other perspectives that are often
brought to bear in political decision making. The complexity of this process is heightened when
conflicting values about priorities or optimal interventions clash, as is evident in the development of
HIV-prevention policy. Surveillance data illustrate the extent of transmission attributable to illicit
drug use or sexual intercourse, and other studies shed light on the effectiveness of intervention
strategies such as needle–syringe exchange and drug treatment programs and promotion of condom
use and sexual abstinence (Valdiserri et al., 2003). How prevention resources are allocated among
these and other strategies is shaped not only by epidemiologic and cost-effectiveness data but also
by the values of those contributing to policy development.

SUMMARY

The primary objective of surveillance is to monitor the incidence or prevalence of specific health
problems, to document their effect in defined populations, and to characterize affected people
and those at greatest risk. At the community level, surveillance can guide health departments in
providing services to people; in the aggregate, surveillance data can be used to inform and evaluate
public health programs. Trends detected through surveillance can be used to anticipate future trends,
assisting health planners. In addition to providing basic information on the epidemiology of health
problems, surveillance can lead to hypotheses or identify participants for more detailed epidemio-
logic investigations. To be effective, surveillance data must be appropriately communicated to the
full range of constituents who can use the data, ranging from health care providers to policy makers.

ELEMENTS OF A SURVEILLANCE SYSTEM

CASE DEFINITION

Defining a case is fundamental and requires an assessment of the objectives and logistics of a
surveillance system. Surveillance definitions must balance competing needs for sensitivity, speci-
ficity, and feasibility. For diseases, requiring documentation through evidence of diagnostic tests
may be important. Equally important are the availability of tests, how they are used, and the abil-
ity of surveillance personnel to obtain and interpret results. Because of the need for simplicity,
surveillance case definitions are typically brief.

For some diseases, definitions may be stratified by the level of confirmation, e.g., probable
versus confirmed cases, depending on available information (Centers for Disease Control and
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Prevention, 1997). For surveillance of health-related behaviors or exposures, surveillance definitions
may depend on self-reports, observation, or biologic specimen collection and measurement. For an
individual disease or health problem, no single definition is ideal. Rather, appropriate definitions
vary widely in different settings, depending on information needs, methods of reporting or data
collection, staff training, and resources. For example, successful surveillance definitions for hepatitis
A, an infection that results in short-term liver dysfunction, range from “yellow eyes”—a hallmark
clinical sign of jaundice that accompanies the disease—to a definition that requires laboratory-based
documentation of infection with hepatitis A virus combined with signs of acute illness and clinical
or laboratory evidence of liver dysfunction (Buehler and Berkelman, 1991). The first definition is
very simple and could be used by field staff with minimal training, e.g., in a refugee camp, where
the occurrence of epidemic hepatitis A has been documented, where laboratory testing is not readily
available, and where the inclusion of some people with jaundice caused by other diseases will not
substantially affect the usefulness of the data. The second definition is appropriate in a developed
country where diagnostic testing is done routinely to distinguish various types of viral hepatitis
and where the clinical and public health response depends on a specific diagnosis. Requiring all
elements of this definition, however, would exclude some people who indeed have acute hepatitis
A infection, such as those with asymptomatic infection, which is common in children, or those in
whom diagnostic testing was deemed unnecessary, e.g., those with characteristic illness and a clear
history of exposure to others with documented infection. In such instances, case definitions may
be expanded to include epidemiologically linked cases. While expanding a definition in this way
increases its sensitivity and relevance to real-world situations, it may also make it more complex
and difficult to implement.

For diseases with long latency or a chronic course, developing a case definition depends on
decisions regarding which phase to monitor: asymptomatic, early disease, late disease, or death.
For example, in establishing a system to monitor ischemic heart disease, potential definitions may be
based on symptoms of angina, diagnostic tests for coronary artery occlusion, functional impairment
arising from the disease, hospital admission for myocardial infarction, or death due to myocardial
infarction. Each of these definitions would measure different segments of the population with
coronary artery disease, each would have strengths and limitations, and each would require a
unique approach and data source to implement. If death were chosen as the outcome to measure, one
approach might be to monitor death certificates that specify coronary artery disease as the underlying
cause of death. This approach has the advantage of being relatively simple and inexpensive, assuming
a satisfactory vital registration system is already well established, but it is limited by variations in
physicians’ diligence in establishing diagnoses and completing death certificates. In addition, trends
in deaths may be affected not only by trends in incidence but also by advances in care that would
avert deaths. Depending on the objectives of the proposed surveillance system and the needs of
the information users, using death certificates to monitor coronary artery disease trends may be
sufficient or completely unsatisfactory.

Ideally, surveillance case definitions should both inform and reflect clinical practice. This ob-
jective may be difficult to achieve when surveillance definitions are less inclusive than the more
intuitive criteria that clinicians often apply in diagnosing individual patients or when surveillance
taps an information source with limited detail. This dilemma arises from the role of surveil-
lance in monitoring diseases at the population level, the need for simplicity in order to facilitate
widespread use, and variations in the importance of specificity. Surveillance definitions employ
a limited set of “yes/no” criteria that can be quickly applied in a variety of settings, while clin-
icians add to such criteria additional medical knowledge and their subjective understanding of
individual patients. This difference in perspective can sometimes be perplexing to public health
personnel and clinicians alike. Similarly, confusion may arise when definitions established for
surveillance are used for purposes beyond their original intent. For example, much of the pub-
lic debate that preceded the 1993 revision of the surveillance definition for AIDS in the United
States was prompted by the Social Security Administration’s use of the surveillance definition
as a criterion for disability benefits (United States Congress Office of Technology Assessment,
1992). That many with disabling illness failed to meet AIDS surveillance criteria illustrated both
the limits of the definition as a criterion for program eligibility and the need to revise the definition
to meet surveillance objectives amidst growing awareness of the spectrum of severe HIV-related
morbidity.
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Often, monitoring disease is insufficient, and there is a need to monitor exposures or behaviors
that predispose to disease, especially when public health resources are invested in preventing these
exposures or altering behaviors. The trade-offs inherent in defining diseases extend to surveillance
definitions for environmental exposures and behaviors. For example, smoking is the leading cause
of preventable death in the United States, and thus there is a strong interest in monitoring tobacco
use. To this end, the Behavioral Risk Factor Surveillance System in the United States monitors
smoking and other health behaviors (Centers for Disease Control and Prevention, 2002). The case
definition for “current cigarette smoking” requires a “yes” response to the question, “Have you
smoked at least 100 cigarettes in your entire life?” combined with reporting smoking “every day”
or “some days” in response to the question, “Do you now smoke cigarettes every day, some days, or
not at all?” Observed trends in smoking prevalence using this definition will be affected by the cutoff
criteria built into the questions, by telephone ownership, and by participants’ ability or willingness
to respond accurately, which may reflect trends in the perceived social desirability of smoking. In
contrast, the Health Survey for England involves visits to households to conduct interviews and
collect blood specimens. The Survey has monitored levels of self-reported smoking and plasma
cotinine (a nicotine metabolite) among participants. This approach allows a more precise definition
of exposure to tobacco smoke, both among smokers and household contacts, and permits more
detailed evaluation of the effects of tobacco exposure (Jarvis et al., 2001), but it is more costly
than a telephone survey and necessarily involves many fewer participants. This example reveals
an essential polarity in surveillance: For a given cost, more detailed information can be collected
from a smaller number of people, permitting the use of more precise definitions and more detailed
analyses, or less detailed and precise information can be obtained from a larger number of people,
permitting more widespread monitoring.

POPULATION UNDER SURVEILLANCE

All surveillance systems target specific populations, which may range from people at specific
institutions (e.g., hospitals, clinics, schools, factories, prisons), to residents of local, regional, or
national jurisdictions, to persons living in multiple nations. In some instances, surveillance may seek
to identify all occurrences, or a representative sample, of specific health events within the population
of a defined geographic area (population-based systems). In other instances, target sites may be
selected for conducting surveillance, based on an a priori assessment of their representativeness,
a willingness of people at the sites to participate in a surveillance system, and the feasibility of
incorporating them into a surveillance network (convenience sampling).

Population-based surveillance systems include notifiable disease reporting systems, which re-
quire health care providers to report cases of specific diseases to health departments, and systems
based on the use of vital statistics. Other population-based surveillance systems depend on sur-
veys designed to sample a representative group of people or facilities, such as those conducted
by the National Center for Health Statistics in the United States, including surveys of outpatient
care providers, hospitals, and the population (National Center for Health Statistics, accessed 2007).
Information from these surveys can be used for national-level surveillance of a wide variety of
illnesses, provided they occur with sufficient frequency and geographic dispersion to be reliably
included in the survey data. National surveys, however, may be limited in their ability to provide
information for specific geographic subdivisions.

Despite the desirability of surveillance systems that seek to include all or a statistically rep-
resentative sample of events, in many situations such an approach is not feasible. Because of the
need to identify a group of participants with sufficient interest, willingness, and capability, some
surveillance systems are focused on groups of nonrandomly selected sites, often with intent to
include a mix of participants that represents different segments of the target population. In these
situations, the actual population under surveillance may be the group of people who receive medical
care from certain clinics, people who live in selected cities, people who work in selected factories,
etc. Examples of this approach include (a) the Centers for Disease Control and Prevention’s (CDC)
network of 122 cities that report weekly numbers of deaths attributed to pneumonia and influenza
in order to detect influenza epidemics through the recognition of excess influenza-related mortality
(Brammer et al., 2002), and (b) HIV seroprevalence surveys in the United Kingdom that sample
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persons receiving treatment for sexually transmitted infections, drug users, and pregnant women at
sentinel clinics in London and elsewhere (Nicoll et al., 2000).

CYCLE OF SURVEILLANCE

Surveillance systems can be described as information loops or cycles, with information coming
into the collecting organization and information being returned to those who need it. A typical
surveillance loop begins with the recognition of a health event, notification of a health agency
(with successive transfer of information from local to central agencies), analysis and interpretation
of aggregated data, and dissemination of the results. This process can involve varying levels of
technical sophistication ranging from manual systems to record data and transport reports by courier
to systems involving telecommunications, radio or satellite technology, or the Internet. An early
example of the use of telecommunications to support this cycle is a French network, established in
1984, that enabled participating general practitioners to report communicable diseases to national
health authorities, send messages, obtain summaries of surveillance data, and receive health bulletins
(Valleron et al., 1986). Regardless of the level of technology employed in a surveillance system,
the critical measure of success is whether information gets to the right people in time to be useful.

CONFIDENTIALITY

Personal identifying information is necessary to identify duplicate reports, obtain follow-up infor-
mation when necessary, provide services to individuals, and use surveillance as the basis for more
detailed investigations. Protecting the physical security and confidentiality of surveillance records
is both an ethical responsibility and a requirement for maintaining the trust of participants. Laws
that mandate disease reporting to health departments generally provide concomitant protections and
sanctions to prevent inappropriate release of identifying information. Procedures to protect security
include limiting access of personnel to sensitive data, adequate locks for rooms and files where
data are stored, and use of passwords, encryption, and other security measures in computer and
Internet systems. Agencies that maintain surveillance data should articulate policies that specify
the terms and conditions of access to data not only for agency staff but also for guest researchers
who may have an interest in analyzing surveillance information (Centers for Disease Control and
Prevention, 2003b). Assuring adherence to confidentiality policies and security procedures should
be an essential part of staff training and ongoing performance assessment.

As a further safeguard against violations of confidentiality, personal identifying information
should not be collected or kept when it is not needed. Surveillance data may be stored electronically
in different versions, with and without identifiers, with only the latter made accessible to users who do
not need identifiers, as is often the case for most analyses. Although personal identifying information
may be needed locally, it is generally not necessary for that information to be forwarded to more
central agencies. For example, because of the links of HIV infection to certain sexual behaviors and
intravenous drug use and because of concerns about discrimination against HIV-infected people,
the HIV/AIDS epidemic generated unprecedented attention to the protection of confidentiality in
surveillance. In the United States, cases of HIV infection and AIDS are first reported to local or
state health departments, which in turn forward reports to the CDC. Names are obtained by state
health departments to facilitate follow-back investigations when indicated, update case reports when
relevant additional information becomes available (e.g., a person with HIV infection develops AIDS
or a person with AIDS dies), and cull duplicate reports. States do not forward names to the CDC,
where monitoring national AIDS trends does not require names (Centers for Disease Control and
Prevention, 1999b).

INCENTIVES TO PARTICIPATION

Successful surveillance systems depend on effective collaborative relationships and on the use-
fulness of the information they generate. Providing information back to those who contribute to
the system is the best incentive to participation. This feedback may be in the form of reports,
seminars, or data that participants can analyze themselves. Often, individual physicians, clinics, or
hospitals are interested in knowing how they compare with others, and special reports distributed
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confidentially to individual participants may be welcomed. Documenting how surveillance data
are used to improve services or shape policy emphasizes to participants the importance of their
cooperation.

Other incentives may be more immediate, such as payment for case reports. From the perspective
of agencies conducting surveillance, payment of health care providers for case reports is undesirable
because of the cost and because it lacks the spirit of voluntary collaboration based on mutual
interests in public health. In some situations, however, payments may be appropriate and effective.
For example, during the smallpox-eradication campaign, progressively higher rewards were offered
for case reports as smallpox became increasingly rare and as the goal of eradication was approached
(Foster et al., 1980). For people who participate in surveys, respondents may be paid or provided
other incentives for their time and willingness to complete interviews or provide specimens.

Last, there may be legal incentives to participation. Requirements for reporting certain conditions
can be incorporated into licensure or certification requirements for physicians, hospitals, or laborato-
ries. Enforcing such laws, however, may create an adversarial relationship between health agencies
and those with whom long-term cooperation is desired. Alternatively, health care providers may be
liable for the adverse consequences of failing to report, e.g., permitting continued transmission of
a communicable disease.

SURVEILLANCE ETHICS

Assuring the ethical practice of public health surveillance requires an ongoing effort to achieve a
responsible balance among competing interests and risks and benefits (Bayer and Fairchild, 2000).
These competing interests include the legitimate desire of people to protect their privacy against
unwarranted government intrusion and the responsibilities of governments to protect the health of
their constituents and to obtain the information needed to direct public health interventions. The
risks of surveillance may act at the individual or group levels. People may suffer embarrassment
or discrimination if information about their health is released inappropriately. Many surveillance
systems will not publish frequencies when the total is below a critical number, such as fewer
than five, because persons contributing to so low a total might be readily identified. Conversely,
groups with high rates of disease may be stigmatized by publicity surrounding the dissemination
of surveillance data that illustrate health disparities, especially when the adverse effects of health
disparities fall on groups that suffer economic or social deprivation (Mann et al., 1999).

Reducing these individual risks requires that surveillance data be collected judiciously and
managed responsibly. Reducing the risk of stigmatization among groups with high disease rates
often depends on emphasizing that surveillance data alone do not explain the underlying reasons
for health disparities. Both individual and group risks will be countered by constructive actions to
address the problems that surveillance brings to light (Public Health Leadership Society, 2002).

Surveillance systems may or may not be subject to formal oversight by ethical review boards. For
example, in the United States, public health surveillance systems are generally managed under the
authority of public health laws. As a result, they are subject to oversight through the process of gov-
ernance that shapes those laws and are deemed to be outside the purview of regulations that govern
research, although the boundary between public health practice and research remains controversial
(MacQueen and Buehler, 2004; Fairchild and Bayer, 2004). The protocols of researchers who seek
to use surveillance data, for example, to identify cases for a case-control study, are ordinarily subject
to review by a human-subject research board because such research seeks to develop information
that can be generalized to other situations and because the scope of information collected is beyond
what is needed for immediate prevention or disease control.

SUMMARY

Surveillance systems require an operational definition of the disease or condition under surveil-
lance and of the target population. Events within the target population may be usefully monitored
by attempting to identify all occurrences, occurrences within a statistically defined sample, or
occurrences within a convenience sample. Surveillance systems encompass not only data collec-
tion but also analysis and dissemination. The “cycle” of information flow in surveillance may
depend on manual or technologically advanced methods, including the Internet. The protection of
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confidentiality is essential and requires protecting the physical security of data as well as policies
against inappropriate release. The best incentive to maintaining participation in surveillance sys-
tems is demonstration of the usefulness of the information collected. The ethical conduct of public
health surveillance requires an appreciation of both the benefits and risks of obtaining population
health information.

APPROACHES TO SURVEILLANCE

ACTIVE VERSUS PASSIVE SURVEILLANCE

The terms active and passive surveillance are used to describe two alternative approaches to surveil-
lance. An active approach means that the organization conducting surveillance initiates procedures
to obtain reports, such as regular telephone calls or visits to physicians or hospitals. A passive
approach to surveillance means that the organization conducting surveillance does not contact
potential reporters and leaves the initiative for reporting to others.

Although the terms active and passive are conceptually useful, they are insufficient for describing
a surveillance method. Instead, it is important to describe how surveillance is conducted, who is
contacted, how often the contacts are made, and what, if any, backup procedures are in place to
identify cases that are not originally reported. For example, it may not be feasible to contact all
potential reporters. Thus, in taking an active approach to surveillance, a health agency may elect to
contact routinely only large medical centers, and special investigations may be done periodically
to identify cases that had not been reported through routine procedures.

NOTIFIABLE DISEASE REPORTING

Under public health laws, certain diseases are deemed “notifiable,” meaning that physicians or
laboratories must report cases to public health officials. Traditionally, this approach has been used
mainly for infectious diseases and mortality. More recently, notifiable diseases have often included
cancers. Regulations that mandate disease reporting have varying time requirements and designate
varying levels of responsibility for reporting. For example, some diseases are of such urgency that
reporting to the local health department is required immediately or within 24 hours to allow an
effective public health response; others with less urgency can be reported less rapidly. In addition,
persons or organizations responsible for reporting vary and may include the individual physician,
the laboratory where the diagnosis is established, or the facility (clinic or hospital) where the patient
is treated.

In the United States, each state has the authority to designate which conditions are reportable
by law. The Council of State and Territorial Epidemiologists agrees on a set of conditions that
are deemed nationally reportable, and state health departments voluntarily report information on
cases of these diseases to the CDC. Tabulations of these reports are published by the CDC in the
Morbidity and Mortality Weekly Report and in an annual summary (Centers for Disease Control
and Prevention, 2004a).

LABORATORY-BASED SURVEILLANCE

Using diagnostic laboratories as the basis for surveillance can be highly effective for some diseases.
The advantages of this approach include the ability to identify patients seen by many different physi-
cians, especially when diagnostic testing for a particular condition is centralized; the availability of
detailed information about the results of the diagnostic test, e.g., the serum level of a toxin or the
antibiotic sensitivity of a bacterial pathogen; and the promotion of complete reporting through use
of laboratory licensing procedures. The disadvantages are that laboratory records alone may not
provide information on epidemiologically important patient characteristics and that patients having
laboratory tests may not be representative of all persons with the disease.

An example of the utility of laboratory-based surveillance is a 10-state project for selected bacte-
rial pathogens in the United States. Surveillance personnel routinely contact all hospital laboratories
within the target areas and thus have obtained population-based estimates of the occurrence of a va-
riety of severe infections. Data from this system have been used to monitor the effect of vaccinations
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against Streptococcus pneumoniae, inform the development of guidelines for preventing mother-to-
newborn transmission of Group B streptococcal disease, and monitor trends in food-borne illness
caused by selected bacterial pathogens (Pinner et al., 2003).

VOLUNTEER PROVIDERS

Special surveillance networks are sometimes developed to meet information needs that exceed
the capabilities of routine approaches. This situation may occur because more detailed or timely
information is required, because there is need to obtain information on a condition that is not
legally deemed to be reportable, or because there is a logical reason to focus surveillance efforts on
practitioners of a certain medical specialty.

For example, in 1976–1977, an outbreak of Guillain-Barré syndrome, a severe neurologic dis-
order, occurred in association with the swine influenza vaccination campaign in the United States.
National surveillance for Guillain-Barré syndrome was initiated in anticipation of the 1978–1979
influenza season because of continuing concerns about the safety of influenza vaccines in following
years. Persons with this syndrome are likely to be treated by neurologists, so the CDC and state
epidemiologists enlisted the assistance of members of the American Academy of Neurology. Data
from this surveillance system enabled health authorities to determine that the 1978–1979 influenza
vaccine was not associated with an elevated risk of Guillain-Barré syndrome (Hurwitz et al., 1981).

The participation of a physician, clinic, or hospital in such a surveillance network requires com-
mitment of resources and time. While obtaining a random sample of sites or providers is desirable,
the participation rate may be low and limited to those with the greatest interest or capability. In that
situation, it would be more expedient to identify volunteer participants and to enlist a representative
group of participants based on geography or the characteristics of their patient populations.

In a number of countries, physicians have organized surveillance networks to monitor illnesses
that are common in their practices and to assess their approach to diagnosis and care, comple-
menting investigations done in academic research centers. For example, the Pediatric Research in
Office Settings project, a network of over 500 pediatricians across the United States, monitored the
characteristics, evaluation, treatment, and outcomes of febrile infants and observed that physicians’
judgments led to departures from established care guidelines that were both cost-saving and ben-
eficial to patient outcomes (Pantell et al., 2004). Physician networks may collaborate with public
health agencies, as in the case of influenza surveillance in Europe (Aymard et al., 1999).

REGISTRIES

Registries are listings of all occurrences of a disease, or category of disease (e.g., cancer, birth
defects), within a defined area. Registries collect relatively detailed information and may identify
patients for long-term follow-up or for specific laboratory or epidemiologic investigation.

The Surveillance, Epidemiology, and End Result project of the National Cancer Institute in the
United States began in 1973 in five states and has grown into a wide-ranging network of statewide,
metropolitan, and rural registries that together represent approximately one fourth of the nation’s
population, including areas selected to assure inclusion of major racial and ethnic groups (National
Cancer Institute, accessed 2007). Through contacts with hospitals and pathologists, the occurrence
of incident cases of cancer is monitored, and ascertainment is estimated to be nearly complete.
Data collected on cancer patients include demographic characteristics, exposures such as smoking
and occupational histories, characteristics of the cancer (site, morphology, and stage), treatment,
and outcomes. In addition to providing a comprehensive approach to monitoring the occurrence of
specific cancers, patients identified through these centers have been enrolled in a variety of further
studies. One of these was the Cancer and Steroid Hormone Study, which examined the relation
between estrogen use and breast, ovarian, and endometrial cancer (Wingo et al., 1988).

SURVEYS

Periodic or ongoing surveys provide a method for monitoring behaviors associated with disease,
personal attributes that affect disease risk, knowledge or attitudes that influence health behaviors,
use of health services, and self-reported disease occurrence. For example, the Behavioral Risk
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Factor Surveillance System is an ongoing telephone survey that is conducted by all state health
departments in the United States and monitors behaviors associated with leading causes of morbidity
and mortality, including smoking, exercise, seat-belt use, and the use of preventive health services
(Indu et al., 2003). The survey includes a standard core of questions; over time, additional questions
have been included, with individual states adding questions of local interest. Surveys based on
in-person interviews, such as the National Health and Nutrition Examination Survey in the United
States or the Health Survey for England, include physical examinations and specimen collection
and can be used to monitor the prevalence of physiologic determinants of health risk, such as blood
pressure, cholesterol levels, and hematocrit (National Center for Health Statistics, 2007; Jarvis
et al., 2001).

In countries where vital registration systems are underdeveloped, surveys have long been used to
estimate basic population health measures, such as birth and fertility rates and infant, maternal, and
overall mortality rates, as well as trends in illnesses that are major causes of death, such as respiratory
and gastrointestinal illness (White et al., 2000). In several sub-Saharan African countries, national
health surveys have been expanded to measure HIV prevalence and to validate prevalence estimates
based on sentinel antenatal clinic surveys (World Health Organization and UNAIDS, 2003).

INFORMATION SYSTEMS

Information systems are large databases collected for general rather than disease-specific purposes,
which can be applied to surveillance. In some instances, their use for monitoring health may be
secondary to other objectives. Vital records are primarily legal documents that provide official
certification of birth and death, yet the information they provide on the characteristics of newborns
or the causes of death have long been used to monitor health. Records from hospital discharges
are computerized to monitor the use and costs of hospital services. Data on discharge diagnoses,
however, are a convenient source of information on morbidity. Insurance billing records, both
private and government-sponsored, provide information on inpatient and outpatient diagnoses and
treatments.

For example, Workers’ Compensation is a legally mandated system in the United States that
provides insurance coverage for work-related injuries and illnesses. Examination of claims in Mas-
sachusetts for work-related cases of carpal tunnel syndrome, a musculoskeletal problem aggravated
by repetitive hand-wrist movements, has been used to monitor trends of this condition and comple-
ment data from physician reports (Davis et al., 2001). In Ohio, claims data were used for surveillance
of occupational lead poisoning and identified worksites that required more intensive supervision by
regulatory investigators (Seligman et al., 1986).

Because these information systems serve multiple objectives, their use for surveillance (or re-
search) requires care. These massive systems may not be collected with stringent data quality
procedures for those items of greatest interest to epidemiologists. Furthermore, they are subject
to variability among contributing sites, and they are susceptible to systematic variations that can
artificially influence trends. For example, in many health data systems, diagnoses are classified
and coded using the International Classification of Diseases (ICD). Approximately once a decade,
the ICD is revised to reflect advancing medical knowledge, and interim codes may be introduced
between revisions when new diseases emerge. Changes in coding procedures can affect assessment
of trends. In 1987, special codes for HIV infection (categories 042.0–044.9) were implemented in
the United States. That year, analysis of vital records indicated that the number of deaths attributed
to Pneumocystis carinii pneumonia (code 136.3), a major complication of HIV infection, dropped
precipitously. This drop did not reflect an advance in the prevention or treatment of Pneumocystis
infection; rather it reflected a shift from the use of code 136.3 to 042.0 (the new code for HIV
infection with specified infections, including Pneumocystis) (Buehler et al., 1990).

In addition, methods for assigning diagnoses and ICD codes may vary among areas. Under the
9th revision of the ICD, which has been updated to the 10th revision for mortality coding, for a
person who died from an overdose of cocaine, the cause of death may have been assigned ICD
code 304.2 (cocaine dependence), code 305.6 (cocaine abuse), code 986.5 (poisoning by surface
and infiltration anesthetics, including cocaine), or code E855.2 (unintentional poisoning by local
anesthetics, including cocaine). If postmortem toxicology studies were pending when coding was
done (or if the results of toxicology tests are noted on death certificates after the preparation of
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computerized records), code 799.9 (unknown or unspecified cause) may have been assigned. Thus,
use of computerized death certificates to compare the incidence of fatal cocaine intoxication over
time or among areas may yield spurious results if coding variations are not considered (Pollock
et al., 1991).

The user of these large data sets must be careful. They may be available in “public access”
formats, but their accessibility should not blind the potential user to their intricacies.

SENTINEL EVENTS

The occurrence of a rare disease known to be associated with a specific exposure can alert health
officials to situations where others may have been exposed to a potential hazard. Such occurrences
have been termed sentinel events because they are harbingers of broader public health problems.
Surveillance for sentinel events can be used to identify situations where public health investigation
or intervention is required.

For example, in 1983, Rutstein et al. proposed a list of sentinel occupational health events to
serve as a framework for national surveillance of work-related diseases and as a guide to clinicians
in caring for persons with occupational diseases. The detection of diseases on this list should trigger
health and safety investigations of the workplace, identify settings where worker protection should
be improved, or identify workers needing medical screening or treatment. The list included the
diseases, etiologic agents, and industries or occupations where the exposure was likely (e.g., bone
cancer due to radium exposure in radium processors) (Rutstein et al., 1983).

RECORD LINKAGES

Records from different sources may be linked to extend their usefulness for surveillance by providing
information that one source alone may lack. For example, in order to monitor birth-weight-specific
infant death rates, it is necessary to link information from corresponding birth and death certificates
for individual infants. The former provides information on birth weight and other infant and maternal
characteristics (e.g., gestational age at delivery, number and timing of prenatal visits, mother’s age
and marital status, hospital where birth occurred), and the latter provides information on the age at
death (e.g., neonatal versus postneonatal) and causes of death. By combining information based on
individual-level linked birth and death records, a variety of maternal, infant, and hospital attributes
can be used to make inferences about the effectiveness of maternal and infant health programs or
to identify potential gaps in services (Buehler et al., 2000).

In addition, linkage of surveillance records to an independent data source can be used to identify
previously undetected cases and thus measure and improve the completeness of surveillance. For
example, a number of state health departments in the United States have linked computerized
hospital discharge records to AIDS case reports to evaluate the completeness of AIDS surveillance.
Hospital discharges in persons likely to have AIDS are identified using a “net” of diagnostic codes
that specify HIV infection or associated conditions. For persons identified from hospital records
who do not match to the list of reported cases, investigations are conducted to confirm whether the
people indeed have AIDS (representing previously unreported cases), whether they have signs of
HIV infection but have not yet developed AIDS, or whether they have no evidence of HIV infection
(Lafferty et al., 1988).

COMBINATIONS OF SURVEILLANCE METHODS

For many conditions, a single data source or surveillance method may be insufficient to meet in-
formation needs, and multiple approaches are used that complement one another. For example,
as already noted, influenza surveillance in the United States is based on a mix of approaches,
including monitoring of trends in deaths attributed to “pneumonia and influenza” in 122 cities,
networks of sentinel primary care physicians to monitor outpatient visits for “influenza-like ill-
ness,” targeted collection of respiratory samples to identify prevalent influenza strains, reports from
state epidemiologists to track levels of “influenza activity,” and participation in the World Health
Organization’s international network of laboratories to track the global emergence of new influenza
strains (Brammer et al., 2002).
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National diabetes surveillance in the United States tracks prevalence and incidence of diabetes,
death rates, hospitalizations, diabetes-related disabilities, the use of outpatient and emergency ser-
vices for diabetes care, the use of services for end-stage renal disease (a major complication of
diabetes), and the use of diabetes preventive services. This multifaceted surveillance system draws
on a mosaic of data sources, including four different surveys conducted by the National Center for
Health Statistics (National Health Interview Survey, National Hospital Discharge Survey, National
Ambulatory Care Survey, National Hospital Ambulatory Medical Care Survey), death certificates,
the United States Renal Data System—a surveillance system for end-stage renal disease funded by
the National Institutes of Health, the Behavioral Risk Factor Surveillance System, and the census
(Centers for Disease Control and Prevention, 1999a).

SUMMARY

A wide array of methods can be employed to conduct surveillance, with the selection of a method
depending on information needs and resources. These include notifiable disease reporting, which is
based on legally mandated reporting by health care providers; reporting from laboratories for condi-
tions diagnosed using laboratory tests; reporting from networks of volunteer health care providers;
the use of registries, which provide comprehensive population-based data for specific health events;
population surveys; information from vital records and other health data systems; and monitoring
of “sentinel” health events to detect unrecognized health hazards. The terms active and passive
surveillance describe the role that agencies conducting surveillance take in obtaining surveillance
information from reporting sources. Linkage of surveillance records to other information sources
may be used to expand the scope of surveillance data, or combinations of multiple sources may be
used to provide complementary perspectives.

ANALYSIS, INTERPRETATION, AND PRESENTATION
OF SURVEILLANCE DATA

ANALYSIS AND INTERPRETATION

The analysis of surveillance data is generally descriptive and straightforward, using standard epi-
demiologic techniques. Analysis strategies used in other forms of epidemiologic investigation are
applicable to surveillance, including standardizing rates for age or other population attributes that
may vary over time or among locations, controlling for confounding when making comparisons,
taking into account sampling strategies used in surveys, and addressing problems related to missing
data or unknown values. In addition to these concerns, there are special situations or considerations
that may arise in the analysis and interpretation of surveillance data, including the following.

Attribution of Date

In analyzing trends, a decision must often be made whether to examine trends by the date events
occurred (or were diagnosed) or the date they were reported. Using the date of report is easier
but subject to irregularities in reporting. Using the date of diagnosis provides a better measure of
disease occurrence. Analysis by date of diagnosis, however, will underestimate incidence in the
most recent intervals if there is a relatively long delay between diagnosis and report. Thus, it may
be necessary to adjust recent counts for reporting delays, based on previous reporting experience
(Karon et al., 1989).

Attribution of Place

It is often necessary to decide whether analyses will be based on where events or exposures occurred,
where people live, or where health care is provided, which may all differ. For example, if people cross
geographic boundaries to receive medical care, the places where care is provided may differ from
where people reside. The former may be more important in a surveillance system that monitors
the quality of health care, whereas the latter would be important if surveillance were used to
track the need for preventive services among people who live in different areas. Census data,
the primary source for denominators in rate calculations, are based on place of residence, and
thus place of residence is commonly used. For notifiable disease reporting systems, this requires
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cross-jurisdiction (e.g., state-to-state) reporting among health departments when an illness in a
resident of one area is diagnosed and reported in another.

Use of Geographic Information Systems (GIS)

Geographic coordinates (latitude and longitude) for the location of health events or place of resi-
dence can be entered into computerized records, allowing automated generation of maps using GIS
computer software. By combining geographic data on health events with the location of hazards,
environmental exposures, or preventive or therapeutic services, GIS can facilitate the study of spa-
tial associations between exposures or services and health outcomes (Cromley, 2003). Given the
importance of maps for presenting surveillance data, it is not surprising that the use of GIS has
grown rapidly in surveillance practice.

Detection of a Change in Trends

Surveillance uses a wide array of statistical measures to detect increases (or decreases) in the
numbers or rates of events beyond expected levels. The selection of a statistical method depends on
the underlying nature of disease trends (e.g., seasonal variations, gradual long-term declines), the
length of time for which historical reference data are available, the urgency of detecting an aberrant
trend (e.g., detecting a one-day increase versus assessing weekly, monthly, or yearly variations), and
whether the objective is to detect temporal aberrations or both temporal and geographic clustering
(Janes et al., 2000; Waller et al., 2004). For example, to identify unusually severe influenza seasons,
the CDC uses time-series methods to define expected seasonal norms for deaths attributed to
“pneumonia and influenza” and to determine when observed numbers of deaths exceed threshold
values (Fig. 22–4). Automated systems aimed at detecting the early onset of bioterrorism-related
epidemics have drawn on statistical techniques developed for industrial quality control monitoring,
such as the CUSUM method employed in the CDC’s Early Aberration Reporting System (Hutwagner
et al., 2003).

In assessing a change detected by surveillance, the first question to ask is, “Is it real?” There are
multiple artifacts that can affect trends, other than actual changes in incidence or prevalence, in-
cluding changes in staffing among those who report cases or manage surveillance systems, changes
in the use of health care services or reporting because of holidays or other events, changes in the
interest in a disease, changes in surveillance procedures, changes in screening or diagnostic criteria,
and changes in the availability of screening, diagnostic, or care services. The second question to
ask is, “Is it meaningful?” If an increase in disease is recognized informally or because a statistical
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threshold was surpassed, judgment is required to determine whether the observation reflects a poten-
tial public health problem and the extent and aggressiveness of the next-step investigations, which
may range from re-examining surveillance data to launching a full-scale epidemiologic investiga-
tion. This judgment is particularly important for systems that monitor nonspecific syndromes that
may reflect illness with minimal public health importance or the earliest stage of potentially severe
disease. “False alarms” may be common if statistical thresholds are set too low, increasing the
likelihood that alarms are triggered by random variations. Such foibles emphasize the importance
of being familiar with how data are collected and analyzed and with the local context of health care
services.

Assessing Completeness of Surveillance

If two independent surveillance or data systems are available for a particular condition and if
records for individuals represented in these systems can be linked to one another, then it is possible
to determine the number represented by both and the number included in one but not the other.
Using capture-recapture analysis, the number missed by both can be estimated, in turn allowing an
estimate of the total number of cases in the population and calculation of the proportion identified
by each (see Chapter 23). The accuracy of this approach depends on the likelihood of detection
by one system being independent of detection by the other, an assumption that is rarely met in
practice. Violations of this assumption may lead to an underestimate of the total number of cases
in a population (Hook and Regal, 2000) and thus to an overestimation of the completeness of
surveillance. This approach also depends on the accuracy of record linkages, which in turn depends
on the accuracy and specificity of the identifying information used to make linkages. If names are
not available, proxy markers for identity, such as date of birth combined with sex, may be used.
Even if names are available, they can change, be misspelled, or be listed under an alias. Software
that converts names to codes, such as Soundex, can aid in avoiding linkage errors from spelling
and punctuation. Nonetheless, other errors in recording or coding data can lead to false matches or
non-matches. In addition to matches based on complete alignment of matching criteria, standards
should be set and validated for accepting or rejecting near matches. Although computer algorithms
can accomplish most matches and provide measures of the probability that matches are correct,
manual validation of at least a sample of matched and nonmatched is advisable.

Smoothing

Graphic plots of disease numbers or rates by time or small geographic area may yield an erratic
or irregular picture owing to statistical variability, obscuring visualization of underlying trends
or geographic patterns. To solve this problem, a variety of temporal or geographic “smoothing”
techniques may be used to clarify trends or patterns (Devine, 2004).

Protection of Confidentiality

In addition to suppressing data when reporting a small number of cases or events that could enable
recognition of an individual, statistical techniques may be used to introduce perturbations into data
in a way that prevents recognition of individuals but retains overall accuracy in aggregate tabulations
or maps (Federal Committee on Statistical Methodology, 1994).

PRESENTATION

Because surveillance data have multiple uses, it is essential that they be widely and effectively
disseminated, not only to those who participate in their collection, but also to the full constituency
of persons who can use them, ranging from public health epidemiologists and program managers
to the media, public, and policy makers. The mode of presentation should be geared to the intended
audience. Tabular presentation provides a comprehensive resource to those with the time and interest
to review the data in detail. In contrast, well-designed graphs or maps can immediately convey key
points.

In addition to issuing published surveillance reports, public health agencies are increasingly using
the Internet to post reports, allowing for more frequent updates and widespread access. In addition,
interactive Internet-based utilities can allow users to obtain customized surveillance reports, based
on their interest in specific tabulations.
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Depending on the nature of surveillance findings and the disease or condition in question, the
release of surveillance reports may attract media and public interest. This eventuality should be
anticipated, if possible in collaboration with a media communications expert, to plan for media
inquiries, identify and clarify key public health messages that arise from the data (respecting both
the strengths and limits of data), and to draw attention to related steps that program managers, policy
makers, or members of the public can take to promote health.

ATTRIBUTES OF SURVEILLANCE

Surveillance systems have multiple attributes that can be used to evaluate existing systems or
to conceptualize proposed systems (Centers for Disease Control and Prevention, 2001). Because
enhancements in some attributes are likely to be offset by degradations in others, the utility and cost
of surveillance depends on how well the mix of attributes is balanced to meet information needs.
These attributes are

Sensitivity. To what extent does the system identify all targeted events? For purposes of monitoring
trends, low sensitivity may be acceptable if sensitivity is consistent over time and detected events
are representative. For purposes of assessing the impact of a health problem, high sensitivity (or
an ability to correct for under-ascertainment) is required.

Timeliness. How promptly does information flow through the cycle of surveillance, from information
collection to dissemination? The need for timeliness depends on the public health urgency of a
problem and the types of interventions that are available.

Predictive value. To what extent are reported cases really cases? Does surveillance measure what
it aims to measure?

Representativeness. To what extent do events detected through the surveillance represent persons
with the condition of interest in the target population? A lack of representativeness may lead to
misdirection of health resources.

Data quality. How accurate and complete are descriptive data in case reports, surveys, or information
systems?

Simplicity. Are surveillance procedures and processes simple or complicated? Are forms easy to
complete? Is data collection kept to a necessary minimum? Is software “user-friendly”? Are
Internet Web pages easy to navigate? Are reports presented in a straightforward manner?

Flexibility. Can the system readily adapt to new circumstances or changing information needs?
Acceptability. To what extent are participants in a surveillance system enthusiastic about the system?

Does their effort yield information that is useful to them? Does the public support allowing public
health agencies access to personal health information for surveillance purposes?

Certain attributes are likely to be closely related and mutually reinforcing. For example, simplic-
ity is likely to enhance acceptability. Others are likely to be competing. Efforts to promote timeliness
may require sacrifices in completeness or data quality. Efforts to assure complete reporting may
be compromised by inclusion of some who do not have the disease in question. This balance of
attributes is also relevant to evaluating automated surveillance systems aimed at early epidemic
detection. For example, lowering statistical thresholds to assure timely and complete detection of
possible epidemics is likely to result in more frequent “false alarms” (Centers for Disease Control
and Prevention, 2004b).

CONCLUSION

Surveillance is a process for monitoring and reporting on trends in specific health problems among
defined populations. In conducting surveillance, there are multiple options for virtually every com-
ponent of a surveillance system, from the selection of a data source to the application of statistical
analysis methods to the dissemination of results. Selecting among these options requires consider-
ation of the objectives of a particular system, the information needs of the intended users, and the
optimal mix of surveillance attributes, such as timeliness and completeness. Ultimately, the test of
a surveillance system depends on its success or failure in contributing to the prevention and control
of disease, injury, disability, or death.
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An example of such success is provided by the role of surveillance in national and international
efforts to stop the spread of severe acute respiratory syndrome (SARS) in 2003. In February 2003,
the world learned about an epidemic of severe respiratory illness in southern China that had begun in
November of the preceding year. The full threat of SARS was recognized when news reports about
the outbreak in China came to the attention of the World Health Organization, as cases appeared in
Hong Kong and Vietnam among travelers from China, and eventually as international travelers or
their contacts became ill on multiple continents. The objectives of SARS surveillance were multiple:
first, to characterize the illness, its risk of transmission, and duration of infectiousness; second, to
obtain specimens from affected persons, enabling the identification of the etiologic agent, description
of the human immune response, and development of diagnostic tests; and, third, to inform prevention
and control activities, such as the development of public education, the identification of ill and
exposed persons, and the implementation of isolation or quarantine measures commensurate with
the extent of transmission in local areas. Developing a case definition for this new disease of unknown
cause was challenging because its signs and symptoms were similar to those of other respiratory
illnesses. Sensitivity was achieved by including relatively general indicators of respiratory illness.
Specificity was achieved by requiring evidence of exposure based on travel or contact history,
by limiting the definition to relatively severe disease (even though, as with other newly discovered
diseases, there may have been an unrecognized spectrum of milder illness), and by excluding persons
with other known diagnoses. Surveillance had to be flexible as the etiologic agent was identified,
as tests were developed that allowed the diagnosis of SARS to be established or excluded, and as
the list of affected countries expanded and contracted. The World Health Organization promoted
international consistency by promulgating a standard case definition that was widely used, with
limited modifications by individual countries as indicated by the local epidemiologic situations. The
public health response to SARS also raised profound ethical questions about the balance between
individual rights and the protection of public health, ranging from familiar questions about reporting
the names of affected persons to health departments to less familiar questions in modern times about
the use of quarantine. The complexity of these questions was heightened because SARS affected
countries with widely varying traditions regarding civil liberties, the use of police powers, and
governance. Altogether, surveillance and the broader spectrum of prevention and control measure
contributed to the interruption of recognized transmission by July 2003, just months after the disease
was first recognized by the international community, averting what could have been a much more
extensive and deadly international epidemic. Based on the experience of 2003, the World Health
Organization and individual nations refined surveillance and prevention strategies in anticipation
of subsequent respiratory illness seasons and a possible re-emergence of the disease (Heyman and
Rodier, 2004; Schrag et al., 2004; Gostin et al., 2003; Weinstein, 2004).



P1: SCF/OVY P2: SCF/OVY QC: SCF/OVY T1: SCF Printer: RRD

GRBT241-23 GRBT241-v4.cls December 13, 2007 13:44

CHAPTER 23

Using Secondary Data
Jørn Olsen

Epidemiology in Ideal Circumstances 482
Analysis of Secondary Data from Complete
Populations 482
Use of Secondary Data and Validity 483
Epidemiologic Studies Based Fully on
Existing Registers 483
Examples of the Use of Secondary Data
484

Multigeneration Registers 484
Sibs and Half-Sibs 484

Stress and Pregnancy 485
Vaccines and Autism 485
Linkage of Data 486
Validation of Data 487
Data Quality 487

Quantification of Bias Related to
Misclassification 488
Monitoring 488
Ethics of Secondary Data Access 490
Conclusion 491

In this chapter we define secondary data as data generated for a purpose different from the
research activity for which they are used. This is not a very precise definition—data may be generated
for different purposes that may overlap with the objective of the study. The important issue for
research is not so much whether data are primary or secondary, but whether the data are adequate
to shed light on the research question to be studied and to assure that data with an unfilled research
potential are not destroyed.

It is never possible to design a perfect study, ensure perfect compliance with the protocol, get
error-free data, and analyze those data with appropriate statistical models. Because epidemiologists
conduct their research in the real world, we often have to settle for less than the ideal, and weigh
the pros and cons of different design options. In this decision process we sometimes have to choose
between using already existing data and generating new data. Using existing data may sometimes
be the best option available, or even the only option. For example, it has been suggested that an
influenza infection during pregnancy can increase the risk of schizophrenia in the offspring decades
later. To explore this hypothesis we could generate primary data and wait for 20 to 30 years to explore
this idea, or we could look for existing data that were generated back in time. These secondary data
could be used to scrutinize the hypothesis.

If we decide to use secondary data, we must be confident of the validity of those data or at least
have a good idea of their limitations. The same is true for primary data, but for primary data we can
build quality control into the design, whereas secondary data often must be taken as is. Secondary
data may on occasion be the best source for study data. For example, nonresponse might bias the
collection of primary data and secondary data could be available for all. More often, secondary data
might be the best source given the available resources.

Those who are charged with collecting and maintaining secondary data can enhance their utility
by ensuring that data with an unused research potential are archived in a way that makes it possible
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to find and use the data. Making data available for research is an important part of the research
structure, and some countries have a system for archiving data for research following standardized
norms for data documentation (research data archives). Furthermore, adequate meta-analyses often
require access to raw data from the studies to be included.

Keeping large stores of data, especially personally identifiable data, requires a high degree of
data security to reduce the risk of unwanted disclosure. Most countries have laws on data protection,
but it is advisable to add good practice rules to the daily work routines.

EPIDEMIOLOGY IN IDEAL CIRCUMSTANCES

Imagine a country where all citizens are given a personal identification number at birth, which
they keep for the rest of their lives, and where most written information generated by public
authorities is stored in computers and is identifiable through this identification number. Imagine
that this information includes an electronic medical file, all contacts to the health care system, all
diagnoses made, all prescribed medicines, all social benefits, all birth defects, all immunizations,
and more. Imagine that a similar registration system is used for income, work history, education,
social grouping, and residence, and then envision a register system that can link family members
together and link the members of society to huge biobanks that include everyone in the population.
Imagine that all this information is stored and kept over time. In this vision, the entire country
is a cohort. Although this scenario may provoke privacy concerns, with some justification, it also
describes an ideal world for epidemiologists, demographers, and social scientists, if the information
being collected is available for scientific use. If the health care system, as well as the social system,
is furthermore organized in the same way for the entire country, then we have a country-cohort
that allows efficient evaluation of preventives and therapies after they are introduced. In fact, some
countries have some of the resources that allow for research on complete national populations.

ANALYSIS OF SECONDARY DATA FROM
COMPLETE POPULATIONS

As discussed in Parts I and II of this book, etiologic inference must face numerous validity problems
such as confounding, selection bias, and measurement error. In a study on the entire population,
selection bias due to nonresponse is avoided. What remains are problems of evaluating accuracy of
data on exposures, diseases, confounders, adjusting for confounding as well as possible with the
data available, and potential problems with loss to follow-up. Most studies based on registers have
limited data for confounder control, measurement inaccuracy is frequently a problem, and loss to
follow-up is a concern only with substantial migration out of the population.

On the other hand, the alternative to the analysis of secondary data may well be expensive data
collection with attendant low response rates. It is not unusual that almost 50% refuse to take part in a
case-control study and more may decline to be enrolled in a long-term and time-consuming follow-up
study. Even simple cross-sectional surveys may suffer from low participation rates. Loss to follow-
up among study participants is usually much more extensive than emigration from a population.

Retrospective case-control studies are especially vulnerable to selection bias related to nonre-
sponse, because the decision to participate in a study may be a function of the case status and the
exposure experience, especially if the hypothesis is known to the subjects. Use of secondary data
in a case-control study may avoid this problem if the case-control analysis can be based entirely
on existing secondary data. Such a design may also solve problems of differential recall if the
secondary data were collected before disease onset.

In prospective studies, participants cannot base their decision to participate on an event that may
happen in the future, but nonresponse may still be related to the endpoints under study through
factors present at the time of invitation, such as social conditions, age, type of education, number
of working hours, altruistic attitudes towards research, etc. If these factors can be fully adjusted for
in the analysis, the association with nonresponse and the endpoint should disappear. Unfortunately,
the available data (whether primary or secondary) may not be complete and accurate enough to
enable such full adjustment, and so substantial bias due to nonresponse as well as self-selection for
exposure may remain. Although people in a follow-up study cannot base their decision to participate
or the length of their participation in a study on an event that will happen in the future, they are able
to base their decisions on their perceived risk of getting the disease under study. If this perceived
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risk predicts the event and their participation in the study correlates with both the risk and the
exposure under study, bias may result in a number of different scenarios. How one should classify
this type of bias is a matter of choice. It may be considered a self-selection bias, or (following
Chapters 10 and 12) the self-selection may be said to create confounding that may be impossible to
remove, e.g., confounding by unknown genetic factors. Following Hernan et al. (2004), such a bias
can be classified as confounding, if based on common causes, or selection bias if based on common
effects. Using a process-oriented terminology focuses on the selection and emphasizes the need to
make this selection as small as possible and to “blind” its conditions as much as possible. Biases
such as this may be found in studies of familial diseases, or in a study of reproductive failures in
multiparous women, who use their previous pregnancy experience to estimate their risk.

Although we want as good data as possible for our research, there may be a trade-off between
data quality and bias. It is possible that too much attention on data collection may introduce bias.
For example, if data on cardiovascular diseases are collected within a study on the use of hormones
and their cardiovascular effects, clinicians may be influenced by the hormonal hypothesis when
making the diagnosis, unless they are blinded to the exposure data. This problem may not exist
in routine clinical work, because clinicians rarely take environmental exposures into consideration
when making diagnoses (although there are exceptions, such as smoking and bronchitis, use of oral
contraceptive methods and venous diseases, high blood pressure and stroke, etc.). Data quality with
emphasis on precision may be a poorer alternative to data quality with emphasis on unbiasedness. For
example, gestational age may be determined with greater precision by using ultrasound measures
compared with gestational age data based on the last menstrual period. Ultrasound measures,
however, are based on comparing fetal size with standards of fetal growth, and in a study of
exposures that interfere with fetal growth at an early stage (before the ultrasound measure), the
estimate may be biased by the exposure. Although the error may be small and have no clinical
relevance, it may be significant for the comparisons on which the research questions rest.

USE OF SECONDARY DATA AND VALIDITY

Most epidemiologic studies rest on some use of secondary data. A follow-up study often identifies
the cohorts from existing data sources such as medical files, membership lists, occupational records,
prescription data, etc. A case-control study usually departs from an existing register of some sort
for the disease in question. For example, a case-control study of use of cellular phones and brain
cancers will usually be based on an existing register of brain cancer or based on repeated search for
new cancer cases in clinical records from relevant hospital departments. Controls may be selected
from the source population by direct sampling if a population register of some sort exists for the
time period of case ascertainment. In a case-control study on brain cancers and exposure to cellular
phones, exposure data could be based on secondary data, such as billing records. This data source
may be preferable to collecting self-reported data on phone use, because recalled data are subject to
differential recall. People with brain cancer will have searched their memories for potential causes
of the disease. This search creates an asymmetry in exposure assessment that can be avoided if
secondary data such as billing records are used.

In case-control studies the disease register (the secondary data source) may often be subject to
closer scrutiny by adding primary data to the secondary data source. Assuming we want to estimate
the association between use of cellular phones and brain cancer in a certain age stratum of the
population, we may identify the cancer cases in an existing register. Once the cancer cases have
been identified, we might ask an expert pathologist to review all clinical documents according to a
set of commonly accepted diagnostic criteria. Usually these criteria are set at strict levels in order to
exclude noncases from the case group. By restricting the study to definitive cases, some true cases
may be missed, which may reduce the precision of the study but does not necessarily lead to biased
relative effect estimates (see Chapter 8).

EPIDEMIOLOGIC STUDIES BASED FULLY ON
EXISTING REGISTERS

Generating new data is often expensive and time-consuming, and furthermore may raise concerns
about privacy and unwanted disclosure of data (any new data set carries a new risk of disclosure).
Before starting new data collection, one should therefore assure that the required data do not
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already exist in a form that allows one to address the research question either fully or partly.
At present, it may be difficult to determine whether this is the case in most countries, because
research data or administrative data are not registered nearly as well as books or scientific papers.
In addition, those who collect and maintain these data do not always comply with proper principles
of data documentation or permit open access to data. Sometimes being in custody of data is taken
to be ownership of data, which can then subsequently be sold for money or for co-authorships.
Furthermore, because administrative registers may be used to examine how public laws influence
health or how well health care systems perform, in some countries their identification may be
considered by the government to be undesirable. That is one reason why many nondemocratic
states have little epidemiologic research.

Access to public registers in order to do research has been—and still is—impossible in many
countries. This lack of access may have severe consequences: If the registers cover long time periods,
they may provide research options that can seldom be realized in ad hoc studies. This option is espe-
cially important for diseases that have an etiologic period that spans decades, such as when exposures
early in life produce susceptibility that manifests itself in an increased disease risk much later.

EXAMPLES OF THE USE OF SECONDARY DATA

MULTIGENERATION REGISTERS

The mapping of the human genome brings new research opportunities, but it does not eliminate
the need for empirical data related to family clustering of diseases. One often needs family data to
show that a disease is inherited, occurrence data are needed to show the penetrance and mode of
transmission, and family data are needed to evaluate whether the disease shows genetic anticipation.
Using existing population registers—rather than patient records—to establish a family history of a
disease will make it easier to ensure that the families are ascertained independently of their disease
profile, that family size is taken into consideration, and with known follow-up periods for all the
members of the families. The limitations lie in the fact that population registers may not have been
in operation long enough to cover two or more generations. Longevity of family members will then
determine whether, for example, grandparents were alive and registered at the time when a given
register started. The probability of identifying a grandparent or great-grandparent generation will
depend on their life expectancy, a fact that may have implications for the study designs. Furthermore,
the family history is constructed backwards in time, whereas disease occurrence is studied forward
in time. It is thus possible to use the disease experience to place cohorts in different risk strata
according to the information already available when the study is planned. Such a strategy, however,
violates the principle of not analyzing longitudinal data conditionally on what happens in the future,
and could lead to biased results.

The twins study is a special case of the family study that rests on a set of simple assumptions that,
if fulfilled, allow a disentangling of the effects of nature from those of nurture. Discordant occurrence
of a disease in monozygotic twins argues against a strong genetic component in the etiology of the
disease, although it will not refute such a mechanism because subtle genetic differences may exist
between monozygotic twins.

Concordant disease occurrence in monozygotic twins but not in dizygotic twins supports a genetic
cause of the disease, although it could also be explained by environmental intra- and extrauterine
factors that may be more compatible for monozygotic twins than for dizygotic twins. If a specific
antibody induced by a certain infection cross-reacts with fetal proteins and causes tissue damage,
such an effect will depend on cross-placental transfer and the developmental stage of the fetal
tissue, which may be more closely correlated in monozygotic than in dizygotic twins. Finally,
even in national registers the number of exposure-discordant or disease-concordant monozygotic
twins may be small, thus limiting statistical power and precision. Nonetheless, twins registers still
represent important sources of secondary data for epidemiologists.

SIBS AND HALF-SIBS

Another variant of family studies makes use of half-siblings. In some countries, men and women of-
ten change partners during their reproductive years. Should records of such events be computerized,
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and they are in many countries, we may use this data source to study genetic and environmental
determinants of diseases. In the model we used, the arguments go as follows:

Suppose that we identify the set of couples who had a child with the disease we want to study, such
as febrile seizures. The causes of this event could be not only fever (a necessary cause by definition),
but also other environmental and genetic factors. Families who had a child with febrile seizures
present themselves with a sufficient set of causes to produce the event. When the mothers have
another child, they may have less of these component causes, which would then prevent the disease.
The mother may, for example, have a child by a different father. If paternal genes played a role, we
expect the disease risk to be less for these second children compared with the risk in the offspring by
the same mother and father. We may also check the disease risk in the offspring of mothers who had
a new father for the second child and whose first child did not experience febrile convulsions. We
would expect that the risk in the second child of these mothers would be comparable or slightly
higher than for stable couples whose first child had no febrile seizures. An increased risk is expected
if paternal genes play a role, and the increased risk will be a function of the frequency of these genes
in the population in general. By using the same strategy, we could check the effect of changes in the
families’ environment (job, place of living, etc.)

These examples illustrate that family studies usually have to rely on already-existing data and
these data sources often have to be population-based, i.e., cover all in a given country or region.

STRESS AND PREGNANCY

It is a common belief that stress during pregnancy may harm the unborn child, hence most countries
provide some support for pregnant women that allows them to stop working, change working
conditions, or work reduced hours during at least part of the pregnancy. Stress is, however, a
difficult exposure to measure. Events that stress some may not stress others, and if data on stress are
collected retrospectively, it is difficult to avoid recall bias. Ask mothers who had a child with severe
congenital malformation if they felt distressed during pregnancy, and the answer could easily be
influenced by their current stress situation.

The alternative is to get prospective data on stress, which is possible at least for frequent types
of stress. Feeling distressed, or being exposed to stressful events, is, however, only to some extent
associated with being exposed to stress hormones, because the ability to cope with stress modifies
the biologic and psychologic stress response. It would be advantageous to study extreme stressors to
address questions such as “Can stress cause congenital malformations in humans?” These extreme
stressors are rare, and it may be difficult to find a sufficient number of pregnant women exposed to
them without access to a large population that experiences an earthquake, an act of war, or other
serious stressors that stress nearly all who experience it.

Losing a child is an extreme stressor. Using existing registers, it may be possible to identify a large
cohort of pregnant women who lost a child while being pregnant. It may even be possible to identify a
sufficiently large group that lost a child unexpectedly (by SIDS, accident, etc.) when the woman was
pregnant in the second or third month during the time of organogenesis. To do so, one needs a cause-
of-death register, a register of pregnancies and births, a register of congenital malformations, and
perhaps a register for social conditions. All of this information must be identifiable at the individual
level, and it must be possible to link the data from these registers. Given these conditions, we could
assess the extent to which severe life events (and thus severe stressors) can increase the prevalence
of birth defects. Should such a study show little or no relation between stress and birth defects, it
would tend to refute studies that report such a relation based on milder forms of stress. Nonetheless,
the possibility of confounding by factors related to both perinatal and childhood mortality should
be borne in mind when taking death of a child as the stressful exposure.

This example illustrates that using existing secondary data makes this study feasible. In contrast,
a primary data source would need to be very large to be informative, regardless of whether the study
was designed as a follow-up or a case-control study (both the exposure and the outcome are rare).

VACCINES AND AUTISM

Autism is a serious mental disorder with an increasing reported incidence during childhood in many
countries. The reasons for this rise are unknown, but vaccination against measles has been suggested
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as a cause. The documentation for this concern is meager but nevertheless sufficient to cause public
alarm that may jeopardize vaccination programs. Wakefield et al. (1998) reported a case series of
12 children from a clinic of gastroentorologic diseases who showed signs of both developmental
regression and gastrointestinal symptoms. Eight of these children had experienced the onset of
developmental symptoms following their measles vaccination. The authors came to the conclusion
that a new variant of inflammatory bowel disease was present in children with developmental
disorders. Although the nature of the interaction between the gut lesion and the cognitive impairment
is unclear, autoimmunity and toxic brain encephalopathy have been suggested. Because vaccination
is often recommended at the age at which signs of autism first surface, a temporal relation is expected
and often seen. None of these observations provided any strong arguments for a causal link between
vaccination and autism, but strong negative empirical evidence is nevertheless needed to diminish
public concern.

In Denmark, it was possible to identify all who had received the measles vaccination in a given
time period based on reports from the general practitioners who prescribe the vaccination. The
register is based on forms that the general practitioners send to local health authorities, and because
payment depends on these registrations, there are reasons to believe that data are accurate and
complete.

Using this register, we can define a vaccinated cohort of children and a nonvaccinated co-
hort, and study the incidence of autism in these two cohorts. If autism is also recorded in a
linkable registry, such a study can be based on register linkage and cover the entire nation in
the right age group with no loss to follow-up. The actual study showed no excess risk among
those vaccinated compared with those not vaccinated, which seems to support strongly the null
hypothesis that MFR (measles, mumps, and rubella) vaccination is not a cause of autism, or at
least not a very strong determinant of autism. The study does not preclude that some autism is
related to vaccination, however, because data are subject to misclassification for both the expo-
sure and for autism, this form of misclassification will most likely tend to attenuate a possible
effect, and adjustment for confounding factors is limited. The main confounding of concern is of
a genetic nature. It is known that children with autism have more psychiatric problems in their
families, and if families with psychiatric problems do not get their children vaccinated, the un-
vaccinated group will have a higher genetic (or at least familial) risk of autism. Such negative
confounding could mask a true association. Nevertheless, even that possibility could and should
be explored further by means of secondary data, if mental disorders can be identified for family
members.

This example illustrates how secondary data sources can be activated within a short time to
address a research question that could have a long-term effect on disease prevention. Collecting
primary data would take so long that the entire vaccination program may be jeopardized before
results become available.

LINKAGE OF DATA

In most studies, data from different sources have to be linked. Linkage is best done by using an
unambiguous identification system such as a unique personal number. Most research data are linked
by means of such a number. If data are linked by means of other sources of information, such as
date of birth, name, addresses, or genetic markers, there is usually a greater risk of error.

When data are linked according to a set of criteria that translate into a probability for a match
that is <1, the researcher has to think about the problems that uncertain linkage may generate. One
effect is that the study size shrinks, which will reduce precision, perhaps to a prohibitive level.
Perhaps a greater concern is the possibility of bias being introduced. Finding an address back in
time is often more difficult for people who move often than for those who stay in the same place.
Social conditions and health may well be related to how much people move around. If school data
are needed, then one must often need to have the name given at birth. Some people may change this
name later in life because they marry or because they want or need another name. Changing names
may well correlate with social conditions, including health.

If the probability of getting a perfect match depends on both exposures and outcomes under
study (or confounders), bias may result from incomplete linkage alone. Simulation studies may be
the only way of analyzing whether a study based on probabilistic matching is worthwhile.
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VALIDATION OF DATA

Using secondary data in research raises the issue of data quality. Are data good enough, and good
enough for what, and what does “good enough” actually mean? Often there is a sentence or two in
a paper stating that the questionnaires or registers used in the study have been validated. Usually it
is unclear what that means, or if it means anything at all of relevance for the study in question.

On the other hand, requests for validation have to be put into context. Why is it important in this
particular study, and how valid should data be (all data have errors)?

Epidemiologists study the phenotypes that clinicians call patients, people who are labeled ac-
cording to a set of diagnostic criteria. These criteria are usually based not on etiologic profiles but
on other features, such as anatomic characteristics or what responds to available treatment. Many
conditions, such as hypertension or ADHD, represent extreme values of a distribution, and we
should perhaps take more interest in what shapes the distribution rather than what determines the
outliers. Thus, it may be equally or even more informative to know the determinants of cognitive
skills in addition to the determinants of mental retardation.

A disease classification based on etiologic consideration will in many situations deviate from a
clinical definition. It may be more appropriate to classify congenital malformations according to the
time of organogenesis rather than using the current standard classification. We use epistemiologic
criteria when we write the protocol; are the diseases classified according to standardized guidelines
or not? Often, the answer is not clear. Even when guidelines are well known, they are not always
used. Using medical diagnoses even within highly specialized categories involves uncertainties
and some misclassification. An advantage of using existing medical records is that prediagnostic
exposure misclassification is usually nondifferential. In most situations, the clinician is unaware of
the putative causes of the disease when making a diagnosis, and so the disease misclassification
will also be nondifferential. That may be bad for the patients but good for epidemiologists.

DATA QUALITY

Good data quality in a disease registry may mean that the data in the registry on a given disease
actually describe the disease according to an agreed set of diagnostic criteria, and that all in the
population with this set of criteria have this label in the registry. These two conditions are often
called validity and completeness.

The validity can be examined if the patients, or at least their relevant records, are available for
further study. If the disease has a short duration and leaves no specific traits (such as a specific
antibody response), then medical records for the time period of treatment will be the only source.
If available, the records must contain useful information on the diagnostic criteria. Validity may
then be expressed as the probability of having the diagnostic criteria (D), given the presence of
the diagnostic label (D): P (D|D). Using screening terminology, this probability is similar to the
predictive value of a positive test, the “test” in this case being the code for disease in the registry
file: P(D|test positive). As in screening, this predictive value is closely associated with specificity,
which is the proportion of those without the disease who did not have the diagnostic label. The
problem of low specificity is usually larger in secondary data coming from population surveys than
in secondary data coming from hospital patients who have passed through several referral systems.

A more difficult question to answer is “How complete is the register, or what proportion of
diseased people in the population can be found in the register?” It may be possible to take a sample
of those without the diagnostic label in the register and call them in for examination to see if in fact
they qualify for the diagnosis, but usually this approach is not feasible. Furthermore, if the disease
is rare, the sample needs to be very large to be informative.

Another option may be to use the capture-recapture method, which uses two-stage sampling to
estimate an unknown size of a population. It has been widely used by biologists to estimate the
size of wild animal populations. Assume that a biologist wants to know the number of salmon in
a given lake. She cannot empty the lake and count all salmon. She may, however, get permission
to catch some salmon in the lake. Suppose she catches n1 salmon on the first round, marks these
salmon, throws them back into the lake; and then makes a second catch of n2 salmon and counts how
many of the salmon had a mark and were recaptured. Using the number n3 caught in both samples
and the number caught in either sample provides the data needed to estimate the total number
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of salmon in the lake. Assuming that (a) all those caught are marked and returned to the lake,
(b) the salmon do not differ in their probability of being caught (e.g., there are no “smart salmon”
that consistently avoid capture, and the capture method applies equally well to all the salmon),
(c) being caught once does not influence the probability of being caught again (i.e., the salmon
caught do not learn to avoid being caught again), so that the samplings are independent, and (d) N
does not change between samplings, the argument goes as follows: The probability of being in the
first sample, P1, is n1/N , where N is the total number of salmon in the lake and n1 is the number
caught in the first round. The probability of being in the second sample, P2, is n2/N , where n2 is
the number of fish caught in the second round. The number of salmon expected to be caught both
times is N × P1 × P2 = N × n1/N × n2/N ; this number is estimated by the number n3 actually
caught both times. Setting n3 = N × n1/N × n2/N and solving for N provides an estimate for N
of (n1 × n2)/n3.

In a register-based search, this method is often applied to situations in which the assumptions are
questionable. Imagine two registers, a hospital discharge register and a pathology register, covering
the same population. There may be 100 patients in the hospital register and 75 in the pathology
register, and 50 of these overlap. The estimate of the total number of patients is then (100 × 75)/50 =
150. Because 100 out of 150 were in the hospital discharge register, the investigator might conclude
that the degree of completeness in the hospital register was 100/150 = 67%. It is, however, difficult
to imagine that the two registers are independent. Most likely, there will be an oversampling of
severe patients in the two samples, because patients are referred to pathologists from the clinical
departments. The result will be to underestimate the total number with disease.

Given a registry of vaccinations in children based on clinical records from those who gave the
vaccination, one may get additional information from an independent source. For example, it may
be possible to interview the mothers in a region or look for vaccination scars on children (for
smallpox or tuberculosis, for example) and then calculate the overlap in those vaccinated between
the two data sources. Because these data sources are independent, the estimate of the coverage rate
of vaccinations in the register may be valid, provided that the data on vaccine status are accurate in
both systems.

The capture-recapture method may also be used with fewer restrictions with access to a popu-
lation survey covering the same catchment area as the hospital register. With access to more than
two sources, a dependency between registers can be taken into account in the analyses.

QUANTIFICATION OF BIAS RELATED TO MISCLASSIFICATION

Larger follow-up or case-control studies are designed to permit quality control of key elements of
crucial importance for the validity of the findings. Extensive pilot testing is done to make sure that
the study is feasible and worthwhile. Substudies are usually implemented to examine selection bias
related to nonresponders and misclassification of key exposures, endpoints, or confounders. For
studies based on secondary data, substudies may not be an option. The only alternative may be to
present sensitivity analysis (see Chapter 19) to show the likely effects of anticipated sources of bias.
Such analyses have traditionally been overlooked in favor of a preoccupation with random error,
although this convention may change if standard packages for analyzing data begin to incorporate
sensitivity analyses.

MONITORING

Routine data may be generated to monitor events over time, and studying disease frequencies
over time or between populations has been extremely useful in many respects. There is a concern
that the use of cellular phones may increase brain cancer risk by some yet-unknown mechanism.
If so, the brain cancer incidence should increase in the entire population with a given latency
time, because the exposure is widespread. Many of the ideas we have on environmental causes
of cancer stem from comparing cancer incidence from such data. We know that the burden of
diseases is extremely unevenly distributed across the world. The “big picture” shows clearly that
poverty is the main determinant of poor health worldwide and within countries with large social
inequalities. Monitoring of diseases also demonstrates the importance of lifestyle factors such as
smoking and physical inactivity. Monitoring has demonstrated that even mortality rates may change
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FIGURE 23–1 ● Relative risk of death for women in each age, period, cohort, and country, when
compared with Danish women born in 1915–1919 and aged 50 to 54 years in 1965–1969. (Reprinted with
permission from Jacobsen R, Von Euler M, Osler M, et al. Women’s death in Scandinavia—what makes
Denmark different? Eur J Epidemiol. 2004;19:117–121.)

dramatically over short time periods, as seen in Russia after the fall of the communist regime. It
also shows that emigrants often experience the disease patterns of their new homeland after one or
two generations. Monitoring of occupational mortality in the United Kingdom has been a valuable
source of information in understanding occupational diseases and social inequalities in mortality.

Longitudinal monitoring over time may also permit studies of changes in disease patterns that
affect specific birth cohorts, which is what we would expect if we study exposures that operate
only early in life and are restricted in calendar time. Age effects will be expected for most cancers,
mortality, and many other diseases. Calendar effects are expected if exposures such as environmental
pollution are localized in time and affect large segments in the population at once.

Given sufficient monitoring of a population over time, we may estimate these three effects, albeit
with some limitations, because they are mathematically interdependent. If one knows the age of a
person at a given point in calendar time, one can compute which birth cohort the person belongs to.
And if one knows the time of birth, one can compute the age at given points in calendar time. Because
of these linear dependencies, linear drifts can therefore not be attributed to a specific component of
the age, time, birth-cohort model. Nevertheless, deviations from linearity can be identified. Figure
23–1 shows that mortality is, as expected, highly age-dependent among women in Denmark (and
in most other countries). The figure also shows a higher mortality in Danish women compared with
women in Norway and Sweden, attributable largely to a deviation from the linear decline in birth
cohort mortality that started after 1910 and ended after 1930 in Denmark.

Fetal growth retardation may be key in understanding susceptibility to several diseases, and
using secondary data may provide some indication if newborns who are small for their gestational
age (SGA) come from certain birth cohorts, time periods, or maternal age groups. To overcome
the linear dependency between age, period, and cohort effects, Ananth et al. (2004) constrained the
effects of the last birth cohort (1981–1985) to zero. They analyzed SGA births in the United States
by means of logistic regression of the form

log

[
Pr(Yijk = 1)

1 − Pr(Yijk = 1)

]
= μ +

n∑
i=1

αi (agei ) +
m∑

j=1

β j (period j ) +
m∑

k= j−1

γk(cohortk)

Here Y denotes SGA status, μ is the baseline SGA rate, and the indices form age, period, and cohort
groups in the analyses. Table 23–1 shows a U-shaped association between SGA and maternal age
and a possible decline for younger birth cohorts.

In the field of asthma research, the ability to monitor diseases over time and between different
populations led to the so-called hygiene hypothesis. This hypothesis posits that the asthma epi-
demic is partly a consequence of better hygienic standards—less crowding, better houses, more
refrigerators for storing food, etc.
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ˆ

ˆ

ˆ

ˆ
T A B L E 2 3 – 1

Risk (per 100 births) of Singleton Term (≥37 weeks)
Small-for-Gestational Age Births by Maternal Age, Period of
Delivery, and Maternal Birth Cohorts among Black Women:
United States, 1975—2000.

Maternal Age (years)
Birth

Period 15–19 20–24 25–29 30–34 35–39 40–44 45–49 Cohort

19.6 1926–30
18.9 18.0 1931–35

16.7 16.6 21.3 1936–40
17.0 14.9 16.9 19.0 1941–45

18.3 15.2 15.8 17.0 14.2 1946–50
22.0 17.1 16.2 16.7 18.0 26.2 1951–55

25.3 20.6 17.7 17.2 16.7 16.7 1956–60
1975 ↗ 23.4 12.7 17.5 16.0 14.8 1961–65
1980 ↗ 21.8 18.2 15.8 13.8 1966–70
1985 ↗ 20.7 17.4 14.1 1971–75
1990 ↗ 20.5 17.2 1976–80
1995 ↗ 20.5 1981–85
2000 ↗

From Ananth CV, Balasubramanian B, Demissie K, et al. Small-for-Gestational-Age Births in the United States. An
Age-Period-Cohort Analysis. Epidemiology. 2004;15(1):28–35, Table 1.

These examples show the importance of basic descriptive morbidity and mortality. Although
epidemiologists should provide new data on proximal determinants of disease, we should not forget
to use and analyze data that illustrate the “big picture.” Disease patterns change over time and vary
greatly between different populations. To make substantial changes in health in the population it is
often necessary to modify more distal social and environmental conditions.

ETHICS OF SECONDARY DATA ACCESS

The main concern in storing data with personal identifiers is the risk of political misuse. Although
governments must collect data to govern effectively, political authorities have also used such data
sources to identify subgroups of the population and violate their human rights, even in relatively
recent times. Governments may be tempted to manipulate people or to limit their freedom to
exercise democratic rights based on data collected and stored for seemingly legitimate government
purposes. One solution is to place data sources that have this potential in the hands of independent
research organizations rather than governmental institutions, although this solution has not been
implemented in most countries with such data.

Research data should not be available for individual case administration. Thus, these data should
not be accessible by insurance companies, employers, or public, social, or health administrative
systems. People should be able to take part in research without running the risk of losing privileges,
jobs, opportunities, or any other public benefits. It is even questionable whether the participants
should have access to their own data, as suggested by some. First, a database that is constructed to
facilitate personal access to data reduces data security as a result of the way the data file has to be
organized. Second, open access makes it more difficult to deny access from other sources. Third,
open access to data increases the risk of unwanted disclosure, because many research departments
do not have the resources nor the training to make sure that people are who they claim to be.
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Personal identifiers are needed only when data are to be linked, cleaned, and documented. Once
that is done, analyses can be based on de-identified data. Ethical concerns are then limited to
the problem of identifying risk groups that may be stigmatized by the reported findings. Reporting
certain clustering of exposures or diseases in easily recognizable subgroups of this population should
be avoided unless it has important public health implications. On the other hand, it is difficult to
imagine how we can prevent the spread of HIV unless we deal with the characteristics of those who
are infected, including their sexual orientation, use of drugs, and place of living.

It is usually in the best public interests that risk factors for disease and death are identified and
that health care delivery systems are properly evaluated. For these reasons, one could argue for as
much use as possible of secondary data. There are strong arguments for making not only secondary
administrative data but also secondary research data freely available for all to use. Expensive new
data collection may be avoided if existing data can address fully or partially the research questions
posed. Primary data users rarely see all the potential for using their own data, and much of the public
data is either neglected by researchers or inaccessible to them. Open access to data could not only
generate more research but could also lead to more rapid corrections of mistakes. Open access to data
requires not only procedures for data storage and data documentation but also the implementation of
safeguards to avoid unacceptable risk of disclosure of personal data. Opponents of the open-access
principle claim that data may be poorly analyzed by people who do not understand how the data
were generated or even people who would not analyze data in good faith. These concerns are real
but exist for all data analyses. These problems may in the long run best be addressed by openness
and discussions based on data.

Research data collected with public resources should be made freely available for research once
the primary aim of the study has been fulfilled for those who took the initiative to collect the
data. Participants in research donate data for the public good, not for promoting researchers’ career
opportunities. For public registers the situation should be even more straightforward, because the
data are in the public domain. This is not to say that all should have access to the data, but data
must be made available on fair and equal terms. Given that researchers can meet the conditions
necessary to secure unwanted disclosure of data and have worthwhile research ideas, they should
have access. It is understandable that mediocre epidemiologists might want to protect the principle of
ownership of data. It is more surprising, however, that similar attitudes are evinced by some first-rank
epidemiologists. One hopes that open access to data would lead not only to more exhaustive use of the
data sources but also better quality of reporting. Large data sources provide ample opportunities for
making not only multiple comparisons but also multiple ways of classifying exposures, endpoints,
and confounders. The proper way of analyzing data sources should be to explore how robust findings
are in the light of these different classification options—to see if you can make the findings go away
by using alternative analytical strategies. It is possible that the pressure to publish, the editorial
desire for simple take-home messages, etc., lead to unjustified oversimplified presentations and
underreporting of results that did not support the key message. This problem is a serious threat to
the credibility of our discipline. Although time and expense may make it impossible or impractical to
replicate findings from large epidemiologic studies, Peng et al. (2006) have argued for an “attainable
minimum standard [of] ‘reproducibility,’ which calls for data sets and software to be made available
for verifying published findings and conducting alternative analyses.”

Open access to data sources would lead to a more cautious presentation of results, which is badly
needed. From a practical and scientific point of view, open access to data cannot always be based
on informed consent from the individuals. Withdrawal from the data source must therefore be an
option. Should such a withdrawal reach high numbers, then the people themselves will cut off the
option to conduct meaningful research. Though that would be regrettable, it would be a much more
democratic procedure than the present political barriers to using data.

CONCLUSION

Secondary data may provide research resources that can be used in meta-analyses, new studies, or
to reanalyze existing published reports. Not all secondary data have this potential, and the economic
costs in preparing, storing, and maintaining data should of course be weighed against the potentials
for use. Still, much has to be done before we have eliminated the obstacles of the use of valuable
secondary data to expand knowledge and improve human health.
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To succeed in its goals, every epidemiologic study requires sound design, execution, and
analysis. Field work encompasses all phases of study execution, from the selection and recruitment
of subjects to the completion of the database for analysis. It is the bridge between the design and
the analysis, and on it depend the validity and the precision of the effect measures to be estimated.

The underlying study population constrains or influences nearly every feature of the field meth-
ods. For example, field methods in studies in resource-poor nations will likely differ markedly from
the methods in populations with complete population registries. Studies of multiple populations
(multicenter studies) impose additional requirements. Language, culture, health status, and social
class all may influence field design choices.

Once the study population is chosen, alternative methods for selecting and recruiting subjects
can be considered. These will depend on whether the study is experimental or nonexperimental and
on the need for either future contact or retrospective exposure assessment. Ethical requirements,
privacy protections, and logistical considerations will constrain the choices. Incentives or other
methods to increase motivation may be needed to achieve adequate response rates.

In many epidemiologic studies, data collection includes questioning the subject on the telephone,
via the Internet, in writing, or in person. This questioning may be an inherent aspect of the study,
or it may rely on records for which subjects were questioned for another purpose, such as birth
certificates. Most studies also include some form of search and abstraction of data recorded in
an external source, such as death certificates or banks of records from which eligible subjects are
selected. A large and growing proportion of epidemiologic studies include the measurement of
biomarkers, and a small but growing proportion includes measures of the environment.

492
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Field work demands so much time in all but the smallest studies that the epidemiologist respon-
sible for the study seldom does all of it, relying instead on study staff. In medium-sized studies, the
daily operations of the study staff are directed by a field supervisor who is familiar with field methods
but not necessarily trained in epidemiology. In large multicenter studies with a field staff of dozens,
each center may have its own study manager as well. An experienced and capable study manager
provides enormous benefit to the study but does not relieve the epidemiologist of responsibility for
field work. The epidemiologist’s job is also facilitated by the availability of management systems;
these have improved dramatically over time, with more powerful and user-friendly software and
smaller, lighter, varied hardware.

Epidemiologists can ensure the quality of the field work in many ways. For example, the investi-
gators can often anticipate the potential weaknesses of the study, based on previous work, pretests,
and other sources. They can use previous methodologic investigations, or conduct new ones, to
compare alternative field methods to each other or, rarely, to a “gold standard.” The findings of
these methodologic investigations can help, first, in selecting the field methods and, later, in inter-
preting the likely direction and magnitude of potential study biases. In addition, the investigators
ought to participate actively in testing the study instruments and procedures.

Finally, the investigators are responsible for documenting study operations and procedures and
for incorporating quality control methods into each phase of the study. A documented quality
control plan is ideal, addressing such issues as standardization and monitoring, protocol adherence,
staff qualifications, training, data collection, procedures for ensuring the quality of biologic or
environmental samples, coding, data editing, data entry, and data analysis. The study’s level of
complexity will dictate what quality assurance issues will apply, with a focus on enhancing the
reliability and validity of the collected data.

SUBJECT IDENTIFICATION AND RECRUITMENT

VARIATIONS AMONG STUDY POPULATIONS

In typical studies conducted in industrialized countries, investigators rely on nearly universal tele-
phone service, widespread access to the Internet, and high rates of literacy. Nevertheless, in most
parts of the United States, no overall listing of the population within a defined geographic area is
available for simple survey sampling, so approximations are attempted with samples drawn from
motor vehicle registries (Titus-Ernstoff et al., 2002; Church et al., 2004), telephone directories or
random-digit dialing (Casady and Leplowski, 1993; Brick et al., 2002), or census tracts (Mon-
taquila et al., 1998). In contrast, in some developed countries (e.g., the Scandinavian countries),
complete population rosters and various population registries have been used extensively for med-
ical research purposes (Melbye et al., 1997; Laursen et al., 2004; Hall et al., 2004; Bergfeldt et
al., 2002). Similar types of studies can sometimes be accomplished within closed populations that
are completely covered by rosters, for example, within health maintenance organizations (Corley
et al., 2002; Izurieta et al., 2000; Selby et al., 2004). Access to such databases is usually tightly re-
stricted to prevent violation of privacy or other harm from the linkage of personal information across
databases.

In limited-resource settings, study methods are adapted to the technologies that are locally
accessible. Other factors to be addressed include cultural differences (language, traditions, beliefs)
and global logistics (protocol approval, specimen shipment, specimen storage, training, local laws,
communication). For example, if women give birth at home, study staff can measure birth outcomes
by keeping close track of due dates and visiting the home on the birth date with a scale and measure
(Christian et al., 2003). It may be necessary to adapt the study explanation and the process of
obtaining consent to local levels of literacy and to cultural norms. A village elder may decide
whether the entire community will participate in a study (Macintyre et al., 2003). Some devices
that are not common in the community may be feasible to use for the study if they are portable and
easily maintained. For example, laptop computers can reduce data recording errors and are feasible
in limited-resource settings. In a study examining the validity of a telephone-administered 24-hour
dietary recall interview in the rural Mississippi Delta region, households without telephones were
randomized to receive either an in-person interview or a telephone interview. In the latter case, the
subject used a cellular telephone, provided by the interviewer, to call a telephone research center
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interviewer. Thus, the dietary interviews were conducted in a standardized manner by a centralized
facility (Bogle et al., 2001).

General principles govern the protection of human research subjects. Historical events that
prompted concern about freedom of consent, disclosure of risks, and adequacy of treatment have
spurred the evolution of principled statements such as the Nuremburg Code, the Declaration of
Helsinki, the Belmont Report, and the Common Rule, which then yielded special regulations and
guidelines for researchers to follow in the protection of human subjects. Although the adaptation
of these principles and customs will vary among study populations, it is important that researchers
be aware of them when designing and conducting studies involving human subjects.

RECRUITMENT TO INTERVENTION STUDIES

In intervention studies, subjects are ideally selected from existing lists of names, with current
contact information, so that potential subjects can be approached individually. For example, in a
trial to investigate the role of diet in the recurrence of adenomatous colon polyps, the investigators
identified potential subjects by obtaining referrals from participating gastroenterologists and by
reviewing the medical records of participating endoscopy services (Schatzkin et al., 1996). A trial
of the preventive value of α-tocopherol and β-carotene against lung cancer targeted male smokers
because of their high risk of disease (Virtamo et al., 2003). Physicians were targeted for a trial of
the effect of low-dose aspirin and β-carotene on multiple health outcomes, not because of their
risk of disease but because of their interest and likely compliance with the experimental regimen
(Physicians’ Health Study, 2004). In a trial of replacement hormones and diet in relation to breast
cancer and other outcomes, investigators targeted women at elevated risk of developing breast cancer
(Writing Group for the Women’s Health Initiative Investigators, 2002; Women’s Health Initiative,
2004).

When there is no list from which to recruit subjects for intervention studies, investigators use
public notices, including the Internet, television, radio, newspapers, and posted advertising. Epi-
demiologists often solicit sponsorship or endorsement by prominent people and community or
medical organizations to increase interest. Many trials offer reimbursement for parking or other
minor costs of participating in the trial. If the time commitment or physical demands of the study
are great (e.g., if the study involves multiple blood collections), financial compensation may be
necessary. Ultimately, recruitment succeeds by persuading the subjects of the value of the trial to
themselves (e.g., they may receive a free medical examination) and to society.

Randomization typically follows recruitment. After satisfying all of the eligibility criteria and
consenting to participate, subjects are randomly assigned to one of the arms of the trial using
a random-number simulator. Because randomization cannot guarantee a balance of risk factors
across the experimental groups, the investigator typically uses a baseline questionnaire to measure
the predictors of the main outcomes. The investigator also collects information for locating the
subjects until the end of the follow-up period (e.g., names and location information for friends or
relatives), because many intervention trials require annual or other regular follow-up by mailed
questionnaire, with telephone calls to nonrespondents.

SUBJECT IDENTIFICATION FOR COMMUNITY TRIALS

With the community trial design, the investigator assigns exposure status to an entire community
rather than to individuals. The outcome may be the risk of disease or the frequency of a health be-
havior. The field work for such community trials generally includes efforts to measure the potential
confounders. Because the unit of observation is the community, the assessment of potential con-
founders can also occur at the community level. If the exposure is an education campaign aimed at
changing knowledge, attitudes, and behaviors, the investigation may encompass more than the pri-
mary health outcome. Survey components might add measures of the effect of a smoking-cessation
or weight-reduction campaign as well as measures of medical visits or hospitalizations. In general,
community trials include public health education and other types of field work not typically in-
volved in studies of individuals, even though the epidemiologic principles are the same (Glanz et al.,
2002).
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ASSEMBLY OF COHORTS

If a cohort study requires collecting the details of an exposure (timing, intensity, other exposures),
the data sources used to characterize the exposure may be the same as those needed to assemble the
cohort. Studies of occupational and medical cohorts typify the field methods used in cohort studies
in general. Large cohort studies based in general populations have become increasingly common,
and consortia that combine cohorts to produce very large study sizes have recently been formed
(National Cancer Institute, 2004).

In an occupational cohort study, the investigator assembles the cohort from the records of a
company, a union, or a professional or trade association. Many preliminary studies use union or
association records alone. In retrospective studies, these records often permit assembly of a complete
cohort but lack the detail on tasks and work locations essential to defining each individual’s jobs
and exposures. When both union and company records are available, both sources may be used to
increase completeness. The investigator might also choose to form an inception cohort to follow
prospectively. In such studies, the study staff first recruits employers, then recruits workers within
defined job categories, interviews them to collect baseline information, and conducts follow-up
over time to identify risk and disease incidence.

At the outset, the study team (typically an epidemiologist, an industrial hygienist, a study man-
ager, and one or more abstractors) visits some of the plants and the headquarters or offices in
which worker records are kept. The investigators inquire about every possible source of records,
including occupation records, payroll ledgers, union rolls, medical records, and life and health
insurance systems, both computerized and paper. Although the separate record systems will be
incomplete, together they may provide a nearly complete enumeration of the cohort. Investigators
can scan the records, creating an electronic file containing images of the documents. Files can then
be compressed and downloaded to CDs for storage, saving time, space, and money.

To uncover as many record sources as possible, the investigator interviews many potential
informants at different levels of authority, from clerical to managerial. It is necessary to ask about
record systems no longer maintained and about groups of records stored separately, such as those
from pensioners, workers terminated before pension eligibility, workers involved in litigation, or
workers under medical care. It is also critical to determine whether lists or records were modified
once created, for example, to remove decedents. Failure to recognize modifications to records that
are related to the outcome can yield immortal person-time (see Chapter 6). Once the records are
found, research staff abstract, photocopy, or scan them. Photocopying or scanning adds to the costs
of data collection but allows the investigators to review the records at the study office, check on the
quality of abstracting, and glean additional data. A modest cohort of 5,000 workers can yield 50,000
job lines (the combination of job title and department). Although straightforward in principle, the
assembly of a complete occupational cohort requires considerable effort.

The research staff first captures the work history (progression through job titles and departments)
and then classifies all job title/department combinations into jobs with common tasks and locations.
The abstractors, supervised by the study manager, typically review the individual work histories
from records and conversations with company personnel to resolve discrepancies. The industrial
hygienist collapses the job lines into jobs, based on familiarity with the work environment (Stew-
art et al., 1992). In some studies, the third task is to impute exposure levels for jobs, based on
current and historical environmental samples and details of job activities provided by workers and
supervisors.

Medical cohorts are groups of people whose exposure of interest is a disease, medical condition,
or medical treatment. The study staff selects cohort members from surveillance databases, hospital
discharge diagnosis files, pharmacy records, medical insurance data, birth certificates, or routine
activity logs kept by medical practices, clinics, and hospital departments such as pathology, surgery,
or obstetrics. Cohort assembly may be complicated if some of the needed medical records have been
destroyed, lost, or stored in inconvenient locations. Apart from logistical problems in obtaining the
medical data, the classification of exposure often presents the greatest problem because medical
records and medical exposures are complex and variable. Investigators generally make several
preliminary visits to the hospital, clinic, or practice to investigate the sources and quality of data.
Multiple record sources may be needed to determine whether a subject is eligible (e.g., surgical
pathology logs to determine the diagnosis and hospital patient files to obtain demographic data).
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Any procedures that will be used to confirm conditions or treatments should be specified in advance,
for either the entire study group or a subset of the group.

IDENTIFICATION OF SUBJECTS IN CASE-CONTROL STUDIES

A case-control study derives from an underlying source population, with the protocol describing the
population as explicitly as possible before field procedures are developed. This source population
will be chosen in light of the frequency of the disease and exposures under study, the difficulties in
diagnosing the disease, and the routine procedures for recording its occurrence. As both etiologic
research and computerization of medical data have expanded, population-based disease registries
have proliferated. Hospitals and clinics remain convenient and useful sources of cases, despite
the challenge of understanding and sampling the underlying source population. Cohorts provide a
source population for case-control studies when it would be expensive or unnecessary to acquire
data from the entire cohort. The protocol for a case-control study might, for example, define the
case group as encompassing all incident cases of ovarian cancer diagnosed in a specified period
among residents of a specified region. The control group might be defined as a sample of women
from the same population, stratified according to age and race.

Late changes in protocol occasionally occur in case-control studies (e.g., the addition of a
specialty clinic as a source of controls in a hospital-based study), but investigators ought to avoid ad
hoc changes in the composition of either the case or the control group. When logistical constraints
force modifications to the study, such modification mandates consideration of whether the case and
control group refer to the same source population. For instance, if the controls must be limited to
people with little residential mobility because investigators must infer past residential exposures
from current values, then cases must be so restricted.

Investigators can easily devise procedures for selecting cases in population-based studies if a
disease registry has already collected much of the needed diagnosis data. On the other hand, such
registries may not be suitable if the disease is rapidly fatal and collection of data from the subject
is necessary. Sometimes registries that do not routinely collect data fast enough for the purposes of
the study can accelerate ascertainment of cases.

Occasionally, a convenient population-based control group exists but there is no disease registry
for case ascertainment. In this situation, the field work consists of locating all cases occurring in
the base population. If the disease requires hospitalization or medical treatment, the study staff
must create a disease registry by reviewing the records of hospitals, pathology laboratories, etc.,
while dealing with the problems of emigration, immigration, and medical care across boundaries.
If the disease does not require hospitalization or medical treatment, the field work resembles the
follow-up phase in a cohort study, with the use of questionnaires or interviews to determine who
has had the disease of interest.

Sometimes a study can tap a fully enumerated source population from which the disease registry
draws its cases, for instance, in several Scandinavian nations or in health maintenance organizations
(see Chapter 24). More often, the source population is well defined but individual members are not
readily identifiable by name and address (e.g., all residents of a geographic area in which cancers
are reported to a central registry). In such circumstances, sampling frames are required to identify
a sample of individuals from the source. Some frames work from lists of individuals, including
listings of residents of municipalities, registered voters, licensed drivers, and persons eligible for
Medicare in the United States (i.e., those aged 65 years or older). Municipal lists are accessible
but not reliably current; licensed drivers provide an inexpensive and convenient, but incomplete,
sample of the population.

Apart from list-based samples, two commonly employed frames use two-stage sampling schemes
that begin by randomly sampling dwellings (area-based sampling) or telephone numbers (random-
digit dialing, or RDD) (Waksberg, 1978; Hartge et al., 1984; DiGaetano and Waksberg, 2002;
Brogan et al., 2001). RDD became a common technique in the 1980s, but response rates to RDD
and all types of surveys have fallen substantially since the late 1990s. Furthermore, answering
machines, mobile telephones, faxes, and data lines have added to the complexity of telephone
sampling. For these reasons, the utility of RDD has diminished. Friend controls, an inexpensive and
seemingly attractive alternative, can induce substantial bias (Flanders and Austin, 1986; Ma et al.,
2004).
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In studies based in hospitals, clinics, or medical practices, investigators gain access to a con-
venient list of potential cases (e.g., from hospital records) not linked to an enumerated underlying
population. They must impute the source population and devise a control group to approximate it.
Some studies compare hospital-based cases with controls selected from the neighborhoods of the
cases’ telephone exchanges, on the theory that such controls would be referred to the same hospitals
if they developed the disease. Another common strategy is to select controls from among patients in
other clinics within the same hospital. The protocol may specify which diagnoses are to be excluded
from the control group because they are related to the exposures of interest. Additional exclusions
often include psychiatric diagnoses or other conditions that compromise data collection. In one
design variation, a few diagnostic categories are designated for inclusion rather than selecting from
an unspecified mixture of diagnoses.

Procedures for case and control selection in hospital studies should be as precise as possible and
should remain constant from day to day and from patient to patient. Study staff assigned to select a
patient from a clinic on a certain day should, for example, be following an algorithm that dictates
which particular patient ought to be picked. Such practices not only guard against deliberate or
unconscious enrollment of particular patient types but also allow routine quality checks. Data on
patients who are unavailable or unwilling to be studied ought to be recorded so that nonresponse
can be characterized.

CROSS-SECTIONAL AND OTHER DESIGNS

Cross-sectional studies generally use a mixture of the selection and recruitment strategies needed for
trials, cohort studies, and case-control studies. The sampling issues typify those of large population-
based surveys. Smaller targeted cross-sectional studies of volunteers continue to play a key role in
epidemiology. For example, a study of the relation between family cancer history and the presence of
founder mutations in the BRCA1 and BRCA2 genes among Ashkenazi Jews began with a recruitment
campaign typical of any study of volunteers (Struewing et al., 1997).

OBTAINING HIGH RESPONSE RATES

Many investigators believe that obtaining high response rates while maintaining high data quality
has become the single largest obstacle to high-quality epidemiologic research. The specific threats
depend on study design. For instance, loss of target population at recruitment into a cohort study does
not threaten validity, but loss of follow-up of the recruited members can do so, because the rate of loss
might differ by both disease and exposure. For every mode of interviewing, the barriers to contacting
potential subjects are rising. In part, these barriers stem from changing societal perceptions of the
value of participating in epidemiologic studies, and reluctant subjects who might have participated
in the past may no longer choose to do so. The investigator needs multiple strategies for obtaining
subject cooperation and maintaining a high response rate. Achievable interview response rates
appear to be considerably higher in China (80% to 90%) than in Europe (70% to 80%) or in the
United States (60% to 70%).

Generally, recruitment will succeed if the subjects are persuaded that the study has value to them
or to society. At the outset, the investigators need a simple and clear statement of what participa-
tion entails and a persuasive argument for electing to participate. The reputation of the scientific
institution sponsoring the study may be helpful in this endeavor but is seldom sufficient. Advance
letters that come from subjects’ physicians or include the names of key sponsors from community
groups or government agencies are inexpensive aids; identifying readily available individuals who
can speak for the study is critical. For example, case-control studies of a particular disease often
include letters to the clinicians who are most likely to diagnose or treat cases.

At the beginning of the study, the investigator should consider whether an incentive will be used to
gain cooperation and reduce nonresponse. As shown in the meta-analyses by Church (Church, 1993)
and Singer (Singer, 2002), incentives do increase response rates on all kinds of surveys, although
the percentage increase varies by questionnaire mode, the study population, and the difficulty of
the study requirements. Increasingly, investigators conduct pretests to determine whether incentives
offer promise. This pilot work can also help determine whether the incentive should be monetary
or nonmonetary, what the value of the incentive should be, and whether the incentive is best paired
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ˆ
T A B L E 2 4 – 1

Selected Studies Using Incentives

Name of Study Value of
(Reference) Year Type of Study Incentive Comments

National Health and
Nutrition Examination
Surveya

1999 Cross-sectional,
including a 3- to 4-h
physical examination

Varied, $30–$100
depending on age
and acceptance of
appointment time

Effective in maintaining
high response rates.
In addition, expenses
for transportation,
interpreter, child care
arrangements covered
as necessary.

Observing Protein and
Energy Nutrition
(OPEN) Study (Subar
et al., 2003)

1999 Methodologic dietary
study requiring
ingestion of doubly
labeled water, 3 clinic
visits, and a total
commitment of 10 h

$200 Effective in maintaining
high response rate
after first visit.
Remuneration
reflected burden.

U.S. Radiologic
Technologists Study
(Doody et al., 2003)

1998 Cohort $2/$5 $2 was most effective
incentive.

Women’s Health
Questionnaire
(Whiteman et al.,
2003)

2000 Cross-sectional $1/lottery ticket Cash incentive worked
best.

Park Nicollet Clinic
Health Maintenance
System Minnesota
(Shaw et al., 2001)

2001 Community survey $2/$5 $5 incentive resulted in
higher response rate,
but $2 incentive
increased
participation too.

Binational Cohort to
Study Helicobacter
pylori infection in
children (Goodman
et al., 2003)

2003 Cohort Package of
disposable diapers,
baby books,
educational toys

Study in U.S. and
Mexico. Incentives
represent effort to
maximize compliance.

a Unpublished data, National Center for Health Statistics.

with an advance letter or a refusal-conversion letter. In some cultures, cash incentives work best
and should be paid in advance. The value of the incentive should be determined by the level
of respondent burden but should not be coercive. The literature shows enormous variation in the
resulting response-rate increases. In all settings, participation is generally lower for blood collection
than for interviewing. Studies in Europe and North America commonly use incentives of modest
value to increase participation in the interview components (amounting to 1% or 2% of the overall
cost of conducting an interview). These studies generally use either additional or slightly larger
incentives for participation in blood collection. Ongoing studies in China, Ukraine, Japan, and
Byelorussia offer small gifts, free physical examinations, and remuneration for transportation costs
(Gail et al., 1998; Mobius Research, 2003). Table 24–1 presents examples of studies that have
tested the effect of different types of monetary and nonmonetary incentives.

In addition to a clear and persuasive introduction of the study by a respected sponsor and the use
of incentives, several other field procedures can help to minimize nonresponse. For example, initial
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response can be increased through callbacks, extended data collection periods, and face-to-face
contacts. For subjects who refuse on the initial contact, the use of short questionnaires that capture
the most critical data, the selection of proxy respondents, and changes in data collection mode or
interviewer assignment can help salvage responses that would otherwise be lost. Of course, mail,
telephone, Internet, and in-person surveys require different approaches. Similarly, cohort studies,
case-control studies, clinical trials, and community-based studies demand different approaches to
subject recruitment and nonresponse.

Pretesting is essential for gauging the likely level of nonresponse, but the pretest levels often
overestimate the eventual response rate of the full-scale study. The effects of response-enhancement
strategies vary greatly; in our experience in the United States, choice of primary data collection
mode (e.g., telephone versus in-person interviewing) and length of instrument often change response
rates by 10% to 30%. Incentives have enormously variable effects, from a trivial to a major increase
in response. Callbacks and other field procedures designed to reduce first, or “soft,” refusals can
increase rates by 5% to 20%; effective refusal conversion, especially when initial refusals are high,
can have the same large effect. Combining all of these changes raises response, but seldom by the sum
of the maximum effect of each. In one common scenario, the early pretest shows a response rate of
40% to 60%, but the full-scale study response rates may be 10% lower, on average. Percentage-point
gains may be achieved with a substantial change in data collection mode or instrument length (10 to
15 points), an added financial incentive (5 points or more), additional personnel and procedures to
avoid initial refusal (5 points), and enhanced refusal conversion (5 points). Using the lower end of
the percentage-point ranges in this hypothetical scenario, the eventual response rate would threaten
the validity of the estimates. The potential selection biases are hard to overcome, because the many
ways that respondents differ from nonrespondents cannot be known. In addition, effective study
size declines with nonresponse (Groves et al., 2004; Dunn et al., 2004).

DATA COLLECTION AND DATA CAPTURE

ABSTRACTING RECORDS

Abstracts are used to distill information needed for the study from written records kept for other
purposes, such as medical charts or employment records. The “abstract” itself may be a hard-
copy form, a voice recording, an electronic Website entry using a laptop computer, or some other
format. Personal digital assistants (PDAs) or notebook computers are increasingly used to simplify
record abstraction, increase flexibility, and automate some quality control checks. The choice of such
devices for a particular study depends on the budget and technology available, the complexity of the
abstract instrument, and the skills and experience of the abstractors. Abstract design includes several
key issues, regardless of the format of the abstract. To begin, all abstracts should provide spaces
to record the subject’s identification, the dates the abstract began and ended, and the abstractor’s
identification. When abstracts are collected on hardcopy, each page should record the subject’s
identification in case pages become separated.

The larger and more variable the original record, the harder the abstract is to design. The designer
tries to make the layout clear, the wording consistent, and the path through the abstract evident. For
hardcopy abstracts, the designer uses shading, indentation, arrows, and other formatting, especially
for items that depend on an answer to another item. Typically, abstracts use closed-ended questions,
which have a prerecorded set of responses from which to select (e.g., subject’s sex). Open-ended
questions may be used to capture uncommon or more detailed responses (e.g., subject’s health
insurance provider). The form may require the abstractor to distinguish between negative findings
and absent findings for important items. For instance, some items can be grouped into one list, with
an instruction to indicate all that apply; however, if it is important to know that the abstractor looked
for and did not find mention of a particular clinical finding, the question ought to be formatted so
that an answer must always be indicated (yes/no/not found).

Medical-record abstracts can be hard to design because medical charts are complex and idiosyn-
cratic. Medical-record abstractors should receive training in the medical terminology pertinent to
the study, but they cannot be expected to glean everything from the charts that a physician spe-
cialist would. The abstract form ought to be designed to reduce the need for interpretation, even
at the expense of collecting items that may be redundant. Similarly, abstractors should be asked to
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complete items as similar as possible to the nature of the data found in the original record. For
example, abstractors should record date of birth from medical records and should not be asked to
calculate calendar age from the date of birth reported in the record.

Even if expert medical personnel will abstract the records, record-keeping practices vary among
hospitals and clinics, so the investigator may need to review typical and atypical charts in the study
sites before designing the abstract form. The designer may also need to interview some recording
physicians or other health personnel to understand recording practices. When the analysis will
exclude events before or after particular dates, the form may be designed to capture the relevant
period only or the entire history, with exclusions made in the analysis.

Devising good abstract forms may be hard, but testing them is usually easy. The investigator
abstracts several records, and then one or more of the abstractors independently abstracts the same
records. This exercise can reveal gross errors or oversight in form design. A similar process can be
used to measure interabstractor reproducibility during form development.

QUESTIONNAIRE ADMINISTRATION METHOD

Questionnaires remain the mainstay of epidemiologic investigations, but administration options have
expanded greatly. As Groves et al. have noted, “with the proliferation of new data collection methods
in recent years, largely associated with the introduction of computers to the survey process, survey
mode now encompasses a much wider variety of methods and approaches, including combinations
of different approaches or mix mode designs” (Groves et al., 2004). In addition to in-person, tele-
phone, and self-administered surveys, modes of administration include computer-assisted personal
interviewing (CAPI), computer-assisted telephone interviewing (CATI), audio computer-assisted
self-interviewing (ACASI), interactive voice response (IVR), and Internet surveys.

The overarching consideration in deciding on the methods of questionnaire administration should
be comparability between study groups, subject to the reservations regarding comparability of
information quality raised in Chapter 7. Case-control studies comparing hospitalized cases and
controls lend themselves to in-person interviews in the hospital. On the other hand, if cases are
selected from hospitals and controls are selected from among neighbors or the general population
(to approximate the referral network), interviews would be most comparable if they were conducted
with all subjects at home. If biospecimens must be collected and an interview conducted, the
protocol might specify one home visit to obtain both, home visits by two different field staff (e.g.,
an interviewer and a phlebotomist), a telephone interview and a home visit, and a home or telephone
interview and the provision of respondent instructions and a mailer for collecting and shipping the
specimen. If several modes of data collection are possible, the investigator may need to conduct a
pilot study comparing them.

If a self-administered questionnaire is used, it may be mailed to the subject, sent by e-mail,
provided at an Internet site, or delivered in person. Self-administered instruments generally cost
less than interviewer-administered instruments, but they are also the least easily monitored and the
most susceptible to misunderstood questions and skipped answers. One compromise is to rely on
the self-administered forms for most respondents and, for the few cases that are incomplete, have
study staff telephone the respondent for clarification. This approach keeps labor costs lower than
they would have been with total interviewer administration.

Self-administered questionnaires offer advantages other than cost. They may yield more accurate
data on sensitive or embarrassing topics because they are more anonymous. Because printed visual
aids can be incorporated, some topics (e.g., self-perceived body morphology) are measured more
easily in self-administered questionnaires than in telephone interviews. Self-administered ques-
tionnaires generally require a printed paper format. Optical scanning works with multiple-choice
answers or free text. For smaller studies, however, the cost of developing the scanned forms may
exceed the savings in coding and keying.

If the questions and answers are likely to need clarification, the questionnaire should be used
as the basis for an interview, with a trained interviewer asking the questions and recording the
responses. The choice between telephone and in-person surveys will be influenced by the subject’s
age, education, health, vision, and hearing; the budget; and the number and types of questions to
be asked. Some epidemiology questionnaires are still printed as hardcopy booklets, but nowadays
most are automated and administered using a computer-assisted interviewing program (CAPI,
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CATI, ACASI, or IVR). Theoretically, computerization reduces the time between data collection
and access to the data for analysis. For instruments with complex logical branching, computerization
can reduce interviewer error (Fig. 24–1). The costs of developing and deploying such instruments
continue to fall.

In-person interviews generally entail more labor costs than telephone interviews, because of
the unavoidable need to schedule appointments and travel between one interview and the next.
Nevertheless, the greater intimacy of in-person interviews may increase the subject’s willingness to
participate in the study. In-person interviewing typically increases the length of individual responses
and of the total interview, but whether this increases accuracy is unknown (Groves et al., 1989).

In-person interviews can incorporate pictures, three-dimensional models, and other memory
aids. If the questionnaire requires the respondent to recall distant events, such memory aids may
be critical. For instance, photographs of medications help the respondent recognize individual
formulations. Food models can be used to describe portion sizes in dietary interviews. Maps are
used in questions pertaining to residence or travel. Diaries, timelines, or calendar grids can improve
completeness and dating of lifetime residential, occupational, or reproductive histories. If there are
no published evaluations of the contemplated memory aids in a similar setting, a small pilot test of
such aids may help determine whether they are effective and feasible.

Telephone interviews typically elicit slightly shorter answers than in-person interviews (Groves
et al., 1989). Also, respondents tend to favor the first answer when a list of possible answers is
read to them on the telephone, but other differences between telephone and in-person interviews
are modest (Groves et al., 2004). Supervisors can monitor interviewing more easily in telephone
interviews than in-person interviews because they can listen to the conversation. Some sensitive
topics can be difficult to query by telephone, because the respondent may become suspicious of
the interviewer or the legitimacy of the study. On the other hand, once the respondent trusts the
study and the interviewer, questions about socially undesirable behaviors may be answered more
readily over the telephone than in person because of the greater social distance in a telephone call
(Bradburn et al., 2004).

CONTENT AND WORDING OF QUESTIONS

Questionnaire designers grapple with the issues of cooperation, fatigue, meaning, memory, and
honesty. Errors can be introduced by either the respondent or the interviewer, and the questionnaire
should be designed to reduce both types of error. The design of epidemiologic questionnaires ben-
efits from a vast body of survey research experience and literature (Groves et al., 2004; Bradburn
et al., 2004; Biemer et al., 1991; Tanur, 1992). In addition, hundreds of questionnaires are available
online or are easily obtained electronically. Parts of questionnaires, or modules, are readily available
for topics that occur most frequently on epidemiologic questionnaires, including basic demographic
data, common health problems, and major health-related behaviors, such as smoking, diet, and exer-
cise (see, e.g., the Internet site of the National Cancer Institute’s Division of Cancer Epidemiology
at http://dceg2.cancer.gov/QMOD or the NHANES Internet site at www.cdc.gov/nchs/nhanes.htm).

After choosing the method of administration, the investigator focuses on framing the questions.
This topic has appropriately received a large amount of attention in survey research literature
(Bradburn et al., 2004; Clark and Schober, 1992). Wording matters in all surveys because people
construe important and simple words such as anyone, most, average, never, or fairly in varied ways
(Groves et al., 1989). Medical terms with precise meanings should be explained simply; therefore,
“people related to you by blood” might be preferable to “family” and “Has a doctor ever told you
that you had. . . ?” might be preferable to “Have you had. . . ?” On the other hand, vernacular
expressions are not always preferred (e.g., “medications” ought to be used instead of “drugs” to
avoid confusion with illicit drugs).

Question length also affects response. Short questions usually are clearer, but a longer question
may improve respondent cognition. For instance, it is hard to absorb all the details of the question,
“How many hours per week do you typically use this product in the summertime on weekdays?”
The question may be more intelligible if it can be separated into specific questions to reduce the
density of concepts (Tanur, 1992) or preceded with a description of some of the concepts (e.g.,
“I’d like you to think about the summertime. I will be asking you about weekdays separately from
weekends.”).

http://dceg2.cancer.gov/QMOD
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How many questions does the investigator need to ask on a topic? One or two questions may
not gather enough information for a thorough analysis, particularly if an unexpected association
emerges. On the other hand, a long series of questions on a single topic bores the respondent and
results in missing or inaccurate answers after the first few questions. Assessments of usual diet,
lifetime occupational history, and lifetime residential history each take 10 to 20 minutes and are
particularly prone to this problem.

The order of questions can also affect response. Many questionnaires begin with questions that
are not threatening and not taxing to the memory and, if possible, are interesting to the respondent
(Bradburn et al., 2004). Questions about sensitive topics usually follow questions about related but
less sensitive topics. Some instruments precede such questions with a prologue that acknowledges
the personal nature of the question, reiterates the subject’s right not to answer, and states the
importance of the question to the survey. The format of answers matters, too. For open-ended
numerical responses (e.g., how many years), respondents often show digit preference (for 0 and 5).
For closed-ended items with an ordered list (e.g., <5, 5 to 10, 11 to 19, ≥20), some respondents
may favor a part of the range, often the central part.

Memory presents the most serious problem in epidemiologic questionnaires. First, many expo-
sures under study did not seem interesting or important to the subject at the time they happened,
let alone decades later Croyle and Loftus, 1992; Loftus et al., 1992. Second, many of the cogni-
tive interviewing techniques (Fisher and Quigley, 1992) that can improve recollection dramatically
(e.g., context reinstatement, focused retrieval, multiple representation) do not suit epidemiologic
research. Standardization of instruments and techniques does not allow interviewers to pursue a
topic as they would in an ordinary conversation or an investigative interview, but standardization
does keep data collection comparable between cases and controls or exposed and unexposed sub-
jects. Nonetheless, some recall-improving devices are applicable to epidemiology, such as using
benchmarks in the subject’s life to stimulate recall of a time period.

Standardization must be compromised at times to avoid losing data completely. For instance, a
few telephone interviews may be conducted in an in-person interview study for subjects who would
not participate otherwise. If a different data collection mode, source (e.g., a surrogate respondent), or
setting is used, this fact must be recorded. Despite efforts to maintain comparability with standard
instruments and training, differences in the quality of the data collection may arise. To detect
such differences, the investigator may compare the rates and reasons for nonresponse, the length
of the interview, the quality of understanding and response as assessed by the interviewer (poor,
adequate, excellent), and the responses to questions that are expected not to differ between the
groups (exposures or outcomes). For example, a substantially longer interview in one group raises
the possibility of differential accuracy or completeness of information.

QUESTIONNAIRES AND RESPONDENT BURDEN

How much information can the questionnaire elicit? In-person interviews commonly last 50 to
90 minutes, telephone interviews typically last 30 to 60 minutes, and self-administered question-
naires typically take 10 to 20 minutes to complete. In our experience, interviewers and respondents
report these times to be acceptable, and common sense suggests that much longer times are not
feasible. The length of the interview does little to change the subject’s willingness to agree to the
interview. Usually, the subject continues with the interview to the end. On the other hand, longer
interviews may increase the risk of breakoffs (Groves et al., 1989). Many epidemiologists find it
hard to resist including as many questions as possible, even if the quality of the answers decreases
as the interview lengthens. Some investigators place the least critical questions near the end in case
of breakoff, but the effects of this practice are not known.

Some multipurpose studies (e.g., a complex case-control study with one control group and
multiple case groups) use a modular questionnaire. A few core questions are asked of everyone,
and many other questions are asked only of a subset of the subjects. This approach can keep the
interview to a reasonable length but imposes logistical and training costs.

Special considerations arise with longitudinal studies that require repeated interviews. Timing
questionnaire arrival on a strict annual schedule tied to the subject’s birthday or the beginning of
each calendar year may improve the likelihood that subjects report only events that occurred since
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the last contact. Otherwise, it is best to avoid questions that refer to “Since we asked you last. . . ”
because of the risk of events being forgotten or repeated.

INTERVIEWING TECHNIQUES AND TRAINING

Interviewers are trained to apply standard interviewing techniques to the particular questionnaire.
In studies with components in addition to the interview, formal training sessions typically last 4 to
5 days and are followed by several weeks of practice. For a new interviewer, the interview supervisor
checks many of the initial interviews, for instance, by attending the interview or reviewing an audio
or video recording of it. After the interviewer has mastered the techniques, a fraction of his or her
interviews may be audited at random throughout the study.

The interviewer’s first job is to persuade the subject to participate. The introduction needs to
convey the scientific importance of the study and of the subject’s participation without making
subjects with particular histories more or less likely to respond. If the subject refuses at first, the
interviewer ought to make another effort to persuade the subject or learn the reason for the refusal.
The interviewer may ask the subject to talk to the supervisor or someone else before the subject
gives a firm refusal. Interviewers document nonresponses with notes that help the supervisor or
another interviewer approach the subject.

After obtaining cooperation, the interviewer proceeds with the interview or arranges an ap-
pointment. Before an in-person interview, the interviewer arranges any equipment, memory aids,
or materials. The interviewer tries to arrange the setting and timing to minimize interruptions and
distractions to the respondent. Occasionally, interviews must be stopped and resumed later. The
interviewer must note these and other deviations in the administration of the questionnaire, as well
as an assessment of the quality of the responses.

Questions that the respondent does not understand are repeated slowly verbatim, not rephrased.
If further clarification is needed, the interviewer follows the instructions given during training and
in the study manuals. If the subject’s answers are not clear or complete, the interviewer uses neutral
probes, which are also covered in training and the manuals. Interviewers should be provided with
scripted clarifications, such as definitions of medical terms. When respondents require clarifications
that are not scripted, interviewers should offer to reread the question and ask participants to answer
according to their best understanding. Nonscripted clarifications and interviewer prompts will almost
certainly be directional and may therefore bias interview results. To conclude the interview, the
interviewer quickly scans the questionnaire for omissions, thanks the respondent, and explains
that the supervisor may call the respondent to review the interviewer’s work. In some studies, the
investigator offers the subjects the opportunity to be notified of the findings.

For paper-based studies, the study supervisor reviews completed questionnaires, querying the
interviewer about any unclear entries. In many studies, the supervisor checks a small list of critical
items to be sure they were not missed by the interviewer or the respondent. If any of these is missing,
the supervisor or the interviewer attempts to retrieve the data by calling the respondent. In addition,
many studies include a brief reinterview of a random subset of all respondents. The reinterview
includes some of the questions in the questionnaire and elicits the respondent’s impression of how
long the interview took and his or her opinion of the interview.

PHYSICAL EXAMINATIONS

Epidemiologic studies can include physical examinations to measure blood pressure, count nevi,
assess body fat distribution, and so on. The order and content of these examinations is much more
explicitly prescribed than in a strictly clinical setting. Subjects with no abnormal findings whatsoever
(including most controls in case-control studies) may be fully examined and described to ensure
comparability in the epidemiologic study. If any of the findings is abnormal, the subject must be
referred for clinical evaluation.

Examination forms often have complex logical branching, and the examiner has to be able to
follow the flow and complete the form during the examination. Examination forms must usually be
subjected to extensive pretesting to make sure they are easy to use during the examination. Variation
among clinical observers remains a concern even with standardized instruments, so training and
quality control are especially important. For example, training in blood-pressure measurement often
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uses a videotape test as an objective standard. Studies of interobserver variation may be necessary
when the physical examinations are subtle or complex.

Physical examinations in epidemiologic studies may be conducted by medical or paramedical
personnel, with oversight by a physician or other expert reviewer. If the expert reviewer does not
see each subject, the examiner ought to record whether expert review occurred and distinguish the
expert’s evaluation from the original one.

BIOSPECIMEN COLLECTION

Epidemiologic studies increasingly involve laboratory components requiring collection of urine,
blood, or tissue from subjects. A typical example of requirements for blood collection is shown in
Figure 24–2. The biggest problems that arise often reflect unrecognized laboratory error. Indeed,
epidemiologists usually need to investigate the reproducibility of the assay in a pilot study. Field
problems may also arise in applying tests or assays to large-scale epidemiologic studies that previ-
ously have been conducted only on a small scale. For instance, laboratories that have developed an
assay and can achieve high reproducibility with dozens of specimens may be unable to process the
thousands of specimens required in a field study. Another typical problem arises when the inves-
tigator wishes to collect specimens for storage without a definite assay in mind, so the particular
collection and storage requirements are not certain.

The protocol for collecting, processing, labeling, storing, and shipping the specimens ought to
be documented in the manual of operations. The biospecimen collection forms record the subject,
the specimen number, whether the specimen was collected at baseline or a subsequent encounter,
results of the collection (e.g., number of tubes drawn, medical complications), and processing and
storage details (e.g., in which freezer the specimen is stored). Bar-coded labels reduce handwriting
or keying errors, and clear, detailed shipping and storage lists minimize losses in transit and aid in
tracking those that occur.

ENVIRONMENTAL SAMPLES AND GLOBAL POSITIONING SYSTEMS

Epidemiologic studies sometimes include taking direct measurements of the subject’s home or work
environment, including chemicals in drinking water, air, soil, or carpet dust and levels of ionizing
radiation, sunlight, or electromagnetic fields. These study components may dramatically improve
the accuracy of exposure assessment, if the investigator can overcome the typical hurdles. Such
issues include identifying a logistically feasible measurement technique, collecting and analyzing
samples at an acceptable cost, obtaining the subject’s permission and access to the environment for
sampling, and (generally) limiting measurement to the current rather than a past environment.

Feasibility and cost are common challenges, even when toxicologists, industrial hygienists,
radiation physicists, or other experts in the environmental exposure have developed reliable mea-
surement techniques. Established exposure indicators are not necessarily suited to the size and
settings of epidemiologic research. For example, a high-volume surface-sampler vacuum cleaner
can extract carpet dust from which pesticide residues can be measured, but at a cost prohibitive
to most studies. A convenient sample of the subject’s own used vacuum cleaner bag provides an
acceptable alternative (Colt et al., 1998). Finding feasible and inexpensive methods that produce
valid and reliable environmental measures often requires pilot studies before the field protocol can
be finalized. Because field conditions cannot always be tightly controlled in population studies, the
sampling technician should record the conditions under which the monitoring occurred.

The timing of the relevant exposure often complicates the interpretation of environmental samples
in epidemiologic studies, which typically measure current environments. The levels of exposure
at a particular place may have changed over time. The subject may have moved or changed jobs.
Occasionally, multiple old sites can be monitored. Sometimes, a cumulative environmental measure
can be obtained, such as radiation decay products that leave behind traces on glass mirrors or picture
frames. More commonly, the investigator has interview or other data on the lifetime or other long
span of exposure and links those to the current environmental measures to form various measures
of exposure status.

As awareness of environmental hazards has increased, investigators have encountered both a
greater willingness to permit environmental sampling and heightened interest in the levels found
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Venipuncture
Public Health Objectives:
Venipuncture is performed to obtain laboratory results that provide prevalence estimates of disease, risk factors

for exam components, and baseline information on health and nutritional status of the population.
Staff:
Certified Phlebotomist

Protocol:
Methods:
Blood is drawn from the examinee’s arm. In the laboratory the blood is processed, stored and shipped to

various laboratories for analysis. The complete blood count (CBC) results are reported in the MEC and all other
results are reported from NCHS to the participant. The volume of blood drawn by age follows.

• 1–2 years, 9 ml (0.3 ounces), 0.6 tablespoons
• 3–5 years, 22 ml (0.7 ounces), 1.5 tablespoons
• 6–11 years, 38 ml (1.2 ounces), 2.5 tablespoons
• 12 + 89–92 ml (3.0 ounces), 6.0 tablespoons

Time Allotment:
Depending on age of participant. Range 5–10 minutes
Health Measures:
Laboratory test results.
Eligibility:
Sample persons aged 1 year and older who do not meet any of the exclusion criteria
Exclusion Criteria:
• Hemophiliacs
• Participants who received chemotherapy within last 4 weeks
• The presence of the following on both arms: rashes, gauze dressings, casts, edema, paralysis, tubes, open sores or

wounds, withered arms or limbs missing, damaged, sclerosed or occluded veins, allergies to cleansing reagents,
burned or scarred tissue, shunt or IV.

Justification for using vulnerable populations:
• Minors are included in this component because they are an important target population group. Laboratory data

are linked to other household interview and health component data and are used to track changes that occur in
health over time.

• There is no reason to exclude mentally impaired or handicapped individuals because there is no contraindication.

Risks:
The following are known risks associated with venipuncture:
• Hematoma
• Swelling, tenderness and inflammation at the site
• Persistent bleeding
• Vasovagal response—dizziness, sweating, coldness of skin, numbness and tingling of hands and feet, nausea,

vomiting, possible visual disturbance, syncope and injury fall from fainting.
• Rare adverse effects:

Thrombosis of the vein due to trauma
Infection which results in thrombophlebitis

Special precautions:
• Sterile equipment issued with all sample persons.
• Physician on call in case an adverse affect occurs.

Report of Findings:
Reported in the MEC:

Complete Blood Count (CBC)
Reported from NCHS:

Other

Available at: www.cdc.gov/nchs/data/nhanes/blood.pdf

laboratory results

FIGURE 24–2 ● Sample protocol for blood collection. (From the National Health and Nutrition
Examination Survey.)
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and their meaning. Epidemiologic investigations routinely notify subjects with levels above any
existing standards. Most also report levels of any compound to a subject who requests the data,
accompanied by a clear statement of any known risks and the level of uncertainty.

Increasingly, epidemiologic studies include the use of inexpensive global positioning systems
(GPS) devices to record the latitude and longitude of the subject’s home or workplace. The position
can be linked to geographic information systems (GIS). Using GIS, the investigator can spatially
display environmental and epidemiologic data. Applications for GIS in epidemiologic research
include locating subjects’ addresses through geocoding, mapping the source contaminants, and in-
tegrating environmental data with disease outcome. Sometimes it is possible to reconstruct historical
exposures. With the availability of an increasing number of environmental databases, GIS and GPS
technology allow the investigator to link environmental monitoring data with the study population,
providing a better understanding of the environmental contaminants and disease outcomes (Nuckols
et al., 2004).

TRACING

Some studies do not require contact with the subject but only a determination of vital status or
date and cause of death. In the United States, relevant resources include the National Death Index
(NDI), NDI Plus, Social Security Administration files, state mortality data tapes, Pension Benefit
Information Services, driver’s license and car registration records, and Internet mortality tracing.
NDI provides the state where the death was recorded, the date of death, and the death certificate
number. NDI Plus provides cause of death in addition to the other information. Cost, coverage, and
quality vary among these sources (Doody et al., 2001).

In some Western countries, complete population, birth, and death registries greatly simplify
tracing. In some resource-poor settings (e.g., rural China), local governments have established a vital
registration system to track people for births, deaths, marriage, and migration. Specific study follow-
up tracking systems have also been established to trace participants in the Nutrition Intervention
Trial and the Shandong Intervention Trial. In these instances, the field station staff worked closely
with the local governments to ensure that all endpoints were reported and documented in a timely
manner (Li et al., 1986).

If subjects are to be questioned about outcomes or exposures (active follow-up), they must first
be located. With recent, accurate, detailed information on the subject’s name, address, telephone
number, Social Security or other identification number, parents’ names (for a child), and spouse’s
name and employer, the investigator may begin by mailing information to the last address or by
telephoning the subject. Without such detailed information, the investigator uses methods described
below to locate the subject. If many subjects have died, a vital-status search may be the first step.

The more out of date the last known address is, the more difficult the tracing will be. On the other
hand, in many countries, tracing is easier if many cohort members have died. The algorithm for
tracing depends on the composition of the cohort. In occupational cohort studies, the investigator
often knows the subject’s Social Security or other national identification number, which helps in
matching to mortality registries and other files. With medical cohorts (Griem et al., 1994; Inskip
et al., 1990, identifying data are often sparser and less accurate, so many sources may be needed
to find a large proportion of the cohort. Additional problems arise in following cohorts of women
(e.g., because of changes in surname) (Boice, 1978) or cohorts exposed before or at birth (Nash
et al., 1983).

FOLLOW-UP TECHNIQUES

For studies requiring active follow-up, subject tracing and collection of outcome data are usually
conducted in tandem. Procedures for mailing the questionnaires or interviewing by telephone or in
person are similar to those in case-control studies. One typical procedure is to mail the follow-up
questionnaire once, wait a few weeks for its return, mail a second questionnaire to nonrespondents,
and then telephone the remaining nonrespondents. The second mailing and the telephone call both
increase response markedly in most studies.

Longitudinal studies require repeated follow-ups and present special problems. In some circum-
stances, nonrespondents in one wave can be approached in subsequent waves. These subsequent
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waves are likely to achieve a greater response than the initial contact, because subjects who are
not inclined to participate usually refuse the first time. On the other hand, if the cohort has been
followed several times, motivation to answer more questions may flag. Subjects’ willingness to
participate can be enhanced with study newsletters sent before, and after, each round of follow-
up, describing findings and progress of the study. Increasingly, investigators develop Internet sites
to disseminate study findings, in the hope of encouraging subject participation in the next wave
of follow-up. In some studies, subjects who refuse are not contacted in subsequent waves. Even
with excellent response rates in each wave, the multiple opportunities for nonresponse lower the
cumulative response rate.

Often, investigators design a study that requires using data from other sources to confirm out-
comes reported by subjects or their next of kin on follow-up questionnaires. For instance, once the
fact of death is known, the cause of death can be collected from the death certificate. Serious illnesses
can also be confirmed and detailed by obtaining additional records. For cancers among residents of
an area covered by a tumor registry, the registry can often confirm a cancer reported by the subject
or next of kin (Wasserman et al., 1992). For other conditions requiring hospitalization, records can
be requested from the hospital with permission from the patient. Timing is critical because some
hospitals do not honor permission forms that were signed beyond a certain period of time.

DATA CAPTURE

Data capture means transforming the research data collected in the field into clean tables for data
analysis. In outline, the steps are receipt of data by the study center (hardcopy forms or electronic
files), followed by coding (if applicable), data entry (if applicable), and computer editing. Whether
coding, data entry, and computer editing occur during the post–data collection phase depends on
the type of data collection and whether these functions have occurred within the data collection
phase itself. With the evolution of survey technology such as CATI, CAPI, IVR, ACASI, Internet-
based, and scanning techniques, the degree of data capture or data preparation required for studies
is changing. New technology has affected the operation and data collection activities of both the
household in-person interview and the physical-examination phase of the survey. Data collection,
data editing, data cleaning, and data release can now occur nearly simultaneously (Berman et al.,
2002). With the decreasing expense of development, similar approaches are expected to be used in
the smaller epidemiologic studies of the future.

Coding, or data reduction, occurs in virtually all studies. Regardless of whether the question-
naires, abstracts, and other data collection instruments are hardcopy or computer-assisted appli-
cations, they will include items that require the assignment of codes either during or after data
collection. Whenever possible, coding should be restricted to judgmental tasks. For example, age
at interview can be coded, but can also be calculated analytically from the recorded date of birth
and recorded date of interview. Allowing age to be calculated analytically, rather than by coding,
will reduce errors in the data set. When coding is necessary, the codes may be based on coding
schemes in general use (e.g., International Classification of Diseases, Standard Industrial Classifi-
cation codes) or schemes devised for the study. Standard practices for coding data are described in
detail in other texts (Groves et al., 2004). Selection of coding schemes depends on the utility of the
scheme in analysis and the ease of use in coding. The coding manual documents the schemes used
to encode the data. If the data were collected using computer-assisted instruments, a mixed-mode
approach for data capture may be warranted during the post–data collection phase, with “other
specify” responses coded and the comments reviewed and coded as appropriate. A coding deci-
sion log documents decisions not covered by the general rules. For many types of information,
computer-assisted coding systems are available (Speizer and Buckley, 1998). Available occupa-
tional, medical, and dietary coding systems provide the investigator with different coding options.
It is up to the investigator to decide if these automated systems are a cost-effective approach to this
data preparation activity. The literature details some decision criteria that may help the investigator
decide whether to use automated coding in particular situations (Gillman, 2002). Nonautomated
coding should be performed by a person blinded to the exposure (if coding disease) or disease (if
coding exposure) status of subjects.

After the survey instruments have been coded, coded hardcopy forms are keyed. In some studies,
all forms are keyed twice, with the second data entry clerk blind to the already-keyed data. This
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practice ensures against data-entry errors but costs more than single data entry. For identifiers
and other critical items, double entry usually warrants the extra expense. Computer-assisted and
optically scanned forms do not need coding but require care in handling. Keyed, computer-assisted,
and scanned data are “cleaned” by checking the answers to be sure they fall within a range of
plausible answers (which are overridden after an out-of-range answer has been verified) and that
they are mutually consistent (“logic checks”). Inconsistent answers given by the respondent may
be flagged but not changed. Errors in recording, coding, and keying are corrected.

Finally, the numbers of respondents and nonrespondents (overall and within specific groups)
tracked by the management system during the field phase are compared and reconciled to the
numbers in the data file to be used for analysis. The response counts and rates, manuals used during
the field phase, study logs, and data collection instruments serve as essential reference documents
throughout analysis and presentation of findings.

EMERGING ISSUES

Epidemiologists will encounter three challenges in the near term: pooling and comparison of data
across sources, the growing concern for privacy and great uncertainty about how to protect it, and
the need to work in an environment that is increasingly characterized by multidisciplinary teams.
Other challenges doubtless will arise, but these three seem likely to affect the field methods applied
in modern epidemiologic research.

Data pooling, meta-analysis, multicenter studies, and research consortia all require common data
elements, and epidemiologists have typically championed efforts to standardize data collection. In
recent years, government agencies and private organizations have pushed for greater standardization
of data collection and storage, prompted by the increasing volume of health data captured in a variety
of surveys or as part of routine health care or health insurance and by advances in computing and
informatics. Epidemiologists already routinely use standard schemes for representing variables such
as sex, race, dates, residence, occupation, disease, and cause of death. Further standardization of
these variables and development of standards for many others can be expected.

When data standards can be used in specific epidemiologic studies, they offer advantages of
efficiency, for instance, in software for variable manipulation. They also allow for instructive com-
parison to other data sets. How does the distribution of disease, or social class, or ethnicity within
a study compare to the regional patterns? How do two study populations compare with each other?
On the other hand, data standards can impede research progress if the investigator uses categories
that may be appropriate for many uses but not for the hypothesis at hand.

For many studies based on interviews, recruitment has become so difficult that response rates
seriously threaten the interpretation of results. Although privacy and confidentiality concerns seem
certain to grow, it is hard to predict how legal developments and cultural shifts will influence
the epidemiologic research climate. The problems will grow if access to records becomes fur-
ther encumbered, or if public inclination to participate in research declines further. At the same
time, unprecedented research opportunities may arise from the possible linking of health and other
databases, provided that the governing agents can be assured that privacy and confidentially will be
protected.

Research into genetic susceptibility poses some novel privacy and confidentiality challenges,
inasmuch as the combination of data from a handful of genes can, in principle, identify a subject.
Epidemiologists have typically shown appropriate restraint, but new public concerns in this area
may emerge. Standards for protecting genetic data are being developed in many countries and ought
to help assure both personal protection and population research.

Compared with their peers who used the first and second editions of this text, epidemiologic
investigators are now more likely to work on teams that encompass other disciplines. The team
approach often accompanies an expanded study scope or size. In addition, there may be more
than one epidemiologist responsible for overall study design, conduct, and analysis. Indeed, many
immensely informative epidemiologic studies, especially cohort studies, have passed to their second
generation of investigators, with key design decisions having been made decades ago.

If the epidemiologists are pulled in many directions, the field effort may be the phase most
likely to be given short shrift. Fortunately, more survey researchers, clinical collaborators, and
laboratory scientists have some specialized training and experience in health studies in general and
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in epidemiology in particular. Researchers in these disciplines typically have a strong interest in
some or all of the field methods of a study. The epidemiologists need to work closely with the
rest of the team, and they need to maintain responsibility for the conduct of the study. The “field
methods”—as outlined in the study protocol, detailed in the manuals of operations and procedures,
and buttressed by quality control activities—still form the central bridge between sound design and
credible analysis.
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An ecologic or aggregate study focuses on the comparison of groups rather than individuals.
The underlying reason for this focus is that individual-level data are missing on the joint distribu-
tion of at least two and perhaps all variables within each group; in this sense, an ecologic study is
an “incomplete” design (Kleinbaum et al., 1982). Ecologic studies have been conducted by social
scientists for more than a century (Dogan and Rokkan, 1969) and have been used extensively by
epidemiologists in many research areas. Nevertheless, the distinction between individual-level and
group-level (ecologic) studies and the inferential implications are far more complicated and subtle
than they first appear. Before 1980, ecologic studies were usually presented in the first part of epi-
demiology textbooks as simple “descriptive” analyses in which disease rates are stratified by place or
time to preliminarily test hypotheses; little attention was given to statistical methods or inference—
for example, see MacMahon and Pugh (1970). In the past two decades, the methods and conduct of
ecologic studies have expanded considerably, and a dominant part of this field is now often labeled
“spatial epidemiology” (Elliott et al., 2000; Lawson, 2001). The purpose of this chapter is to provide
a methodologic overview of ecologic studies that emphasizes study design and causal inference.
Although ecologic studies are easily and inexpensively conducted, the results are often difficult to
interpret.

CONCEPTS AND RATIONALE

Before discussing the design and interpretation of ecologic studies, we must first define the concepts
of ecologic measurement, analysis, and inference.

511
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LEVELS OF MEASUREMENT

The sources of data used in epidemiologic studies typically involve direct observations of individuals
(e.g., age and blood pressure); they may also involve observations of groups, organizations, or places
(e.g., social disorganization and air pollution). These observations are then organized to measure
specific variables in the study population: Individual-level variables are properties of individuals;
and ecologic variables are properties of groups, organizations, or places. To be more specific,
ecologic measures may be classified into three types:

1. Aggregate measures are summaries (e.g., means or proportions) of observations derived from
individuals in each group (e.g., the proportion of smokers and median family income).

2. Environmental measures are physical characteristics of the place in which members of each
group live or work (e.g., air-pollution level and hours of sunlight). Note that each environmental
measure has an analog at the individual level, and these individual exposures (or doses) usually
vary among members of each group (though they may remain unmeasured).

3. Global measures are attributes of groups, organizations, or places for which there is no distinct
analog at the individual level, unlike aggregate and environmental measures (e.g., population
density, level of social disorganization, the existence of a specific law, or type of health care
system).

LEVELS OF ANALYSIS

The unit of analysis is the common level for which the data on all variables are reduced and analyzed.
In an individual-level analysis, a value for each variable is assigned to every subject in the study.
It is possible, even common in environmental epidemiology, for one or more predictor variables to
be ecologic measures. For example, the average pollution level of each county might be assigned
to every subject who is a resident of that county.

In a completely ecologic analysis, all variables (exposure, disease, and covariates) are ecologic
measures, so the unit of analysis is the group (e.g., region, worksite, school, health care facility,
demographic stratum, or time interval). Thus, within each group, we do not know the joint distribu-
tion of any combination of variables at the individual level (e.g., the frequencies of exposed cases,
unexposed cases, exposed noncases, and unexposed noncases); all we know is the marginal distri-
bution of each variable (e.g., the proportion exposed and the disease rate), i.e., the T frequencies in
Figure 25–1.

In a partially ecologic analysis of three or more variables, we have additional information on
certain joint distributions (the M , N , or A/B frequencies in Fig. 25–1); but we still do not know the
full joint distribution of all variables within each group (i.e., the ? cells in Fig. 25–1 are missing).
For example, in an ecologic study of cancer incidence by county, the joint distribution of age (a
covariate) and disease status within each county (the M frequencies in Fig. 25–1) might be obtained
from the census and a population tumor registry. From these sources, the investigator would be able
to estimate age-specific cancer rates for each county.

FIGURE 25–1 ● Joint distribution of exposure status (x = 1 vs. 0), disease status (y = 1 vs. 0), and
covariate status (z = 1 vs. 0) in each group of a simple ecologic analysis: T frequencies are the only
data available in a completely ecologic analysis of all three variables; M frequencies require additional
data on the joint distribution of z and y within each group; N frequencies require additional data on
the joint distribution of x and z within each group; A and B frequencies require additional data on the
joint distribution of x and y within each group; and ? cells are always missing in an ecologic analysis.
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Multilevel analysis is a special type of modeling technique that combines data collected at two
or more levels (Wong and Mason, 1985, 1991; Bryk and Raudenbush, 1992; Goldstein, 2003; Kreft
and de Leeuw, 1998). For example, an individual-level analysis might be conducted in each group,
followed by an ecologic analysis of all groups using the results from the individual-level analyses.
This approach is described in a later section.

LEVELS OF INFERENCE

The underlying goal of a given epidemiologic study or analysis may be to make biologic (or
biobehavioral) inferences about effects on individual risks or to make ecologic inferences about
effects on group rates (Morgenstern, 1982). The target level of causal inference, however, does not
always match the level of analysis. For example, the explicit or implicit objective of an ecologic
analysis may be to make a biologic inference about the effect of a specific exposure on individual
disease risk. As discussed later in this chapter, such cross-level inferences are particularly vulnerable
to bias.

If the objective of a study is to estimate the biologic (individual ) effect of wearing a motorcycle
helmet on the risk of motorcycle-related mortality among motorcycle riders, the target level of
causal inference is biologic. On the other hand, if the objective is to estimate the ecologic effect
of helmet-use laws on the motorcycle-related mortality rate of riders in different states, the target
level of causal inference is ecologic. Note that the magnitude of this ecologic effect depends not
only on the biologic effect of helmet use, but also on the degree and pattern of compliance with
the law in each state. Furthermore, the validity of the ecologic-effect estimate depends on our
ability to control for differences among states in the joint distribution of confounders, including
individual-level variables such as age and amount of motorcycle riding.

We might also be interested in estimating the contextual effect of an ecologic exposure on
individual risk, which is also a form of biologic inference (Valkonen, 1969; Boyd and Iversen, 1979).
If the ecologic exposure is an aggregate measure, we would generally want to separate its effect
from the effect of its individual-level analog. For example, we might estimate the contextual effect
of living in a poor area on the risk of disease, controlling for individual poverty level (Humphreys
and Carr-Hill, 1991). Contextual effects can be profound in infectious disease epidemiology, where
the risk of disease depends on the prevalence of the disease in others with whom the individual has
contact (Von Korff et al., 1992; Koopman and Longini, 1994).

In evaluating motorcycle helmet laws in the United States, we would probably not expect a
contextual effect of living in a state that mandates helmet use on the risk of motorcycle-related
mortality in riders, controlling for individual helmet use. If a rider’s helmet use does not change
after the helmet law takes effect, we would not expect his risk of motorcycle-related mortality
to change. Nevertheless, we might expect to observe a contextual association between the same
variables after the law because of differential compliance with the law within states. That is, those
riders who comply with the law, but who would not have worn helmets without the law, may be at
lower risk than are riders who do not comply with the law. Consequently, the risk of motorcycle-
related mortality among riders who do not wear helmets will be higher in states with a helmet law
than in states without such a law.

RATIONALE FOR ECOLOGIC STUDIES

There are several reasons for the widespread use of ecologic studies in epidemiology, despite
frequent cautions about their methodologic limitations:

1. Low cost and convenience. Ecologic studies are inexpensive and take little time because various
secondary data sources, each involving different information needed for the analysis, can easily
be linked at the aggregate level. For example, data obtained from population registries, vital
records, large surveys, and the census are often linked at the state, county, or census-tract level.

2. Measurement limitations of individual-level studies. In environmental epidemiology and other
research areas, we often cannot accurately measure relevant exposures or doses at the individual
level for large numbers of subjects—at least not with available time and resources. Thus, the only
practical way to measure the exposure may be ecologically (Morgenstern, 1982; Morgenstern and



P1: TNL Printer: RRD

GRBT241-25 GRBT241-v4.cls January 18, 2008 12:4

514 Section IV ● Special Topics

Thomas, 1993). This advantage is especially true when investigating apparent clusters of disease
in small areas (Walter, 1991a). Sometimes individual-level exposures, such as dietary factors,
cannot be measured accurately because of substantial within-person variability; yet ecologic
measures might accurately reflect group averages (Hiller and McMichael, 1991; Prentice and
Sheppard, 1995).

3. Design limitations of individual-level studies. Individual-level studies may not be practical for
estimating exposure effects if the exposure varies little within the study area. Ecologic studies
covering a much wider area, however, might be able to achieve substantial variation in mean
exposure across groups—for example, see Rose (1985), Prentice et al. (1988), and Plummer and
Clayton (1996).

4. Interest in ecologic effects. As noted earlier, the stated purpose of a study may be to assess
an ecologic effect; i.e., the target level of inference may be ecologic rather than biologic—to
understand differences in disease rates among populations (Rose, 1985; McMichael, 1995).
Ecologic effects are particularly relevant when evaluating the effects of social processes or
population interventions such as new programs, policies, or legislation. As discussed later in
this chapter, however, an interest in ecologic effects does not necessarily obviate the need for
individual-level data.

5. Simplicity of analysis and presentation. In large, complex studies conducted at the individ-
ual level, it may be conceptually and statistically simpler to perform ecologic analyses and to
present ecologic results than to do individual-level analyses. For example, data from large pe-
riodic surveys, such as the National Health Interview Survey, are often analyzed ecologically
by treating some combination of year, region, and demographic group as the unit of analysis.
As discussed later in this chapter, however, such simplicity of analysis and presentation often
conceals methodologic problems.

STUDY DESIGNS

In an ecologic study design, the planned unit of analysis is the group. Ecologic designs may be
classified on two dimensions: the method of exposure measurement and the method of grouping
(Kleinbaum et al., 1982; Morgenstern, 1982). Regarding the first dimension, an ecologic design is
called exploratory if there is no specific exposure of interest or the exposure of potential interest is
not measured, and it is called etiologic if the primary exposure variable is measured and included
in the analysis. In practice, this dimension is a continuum, because most ecologic studies are not
conducted to test a single hypothesis. Regarding the second dimension, the groups of an ecologic
study may be identified by place (multiple-group design), by time (time-trend design), or by a
combination of place and time (mixed design).

MULTIPLE-GROUP DESIGNS

Exploratory Study

In an exploratory multiple-group study, we compare the rate of disease among many regions during
the same period. The purpose is to search for spatial patterns that might suggest an environmental
etiology or more specific etiologic hypotheses. For example, the National Cancer Institute (NCI)
mapped the age-adjusted cancer mortality rates in the United States by county for the period 1950–
1969 (Mason et al., 1975). For oral cancers, they found a striking difference in geographic patterns
by sex: Among men, the mortality rates were greatest in the urban Northeast; but among women,
the rates were greatest in the Southeast. These findings led to the hypothesis that snuff dipping,
which is common among rural Southern women, is a risk factor for oral cancers (Blot and Fraumeni,
1977). The results of a subsequent case-control study supported this hypothesis (Winn et al., 1981).

Exploratory ecologic studies may also involve the comparison of rates between migrants and
their offspring and residents of their countries of emigration and immigration (MacMahon and
Pugh, 1970; Hiller and McMichael, 1991). If the rates differ appreciably between the countries of
emigration and immigration, migrant studies often yield results suggesting the influence of certain
types of risk factors for the disease under study. For example, if U.S. immigrants from Japan have
rates of a disease similar to U.S. whites but much lower than Japanese residents, the difference
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may be due to environmental or behavioral risk factors operating during adulthood. On the other
hand, if U.S. immigrants from Japan and their offspring have rates much lower than U.S. whites but
similar to Japanese residents, the difference may be due to genetic risk factors. Such interpretations,
however, especially in the first instance, are often limited by differences between countries in the
classification and detection of disease or cause of death.

In mapping studies, such as the NCI investigation, a simple comparison of rates across regions
is often complicated by two statistical problems. First, regions with smaller numbers of observed
cases show greater variability in the estimated rate; thus, the most extreme rates tend to be observed
for those regions with the fewest cases. Second, nearby regions tend to have more similar rates than
do distant regions (i.e., autocorrelation), because unmeasured risk factors tend to cluster in space.
Statistical methods for dealing with both problems have been developed by fitting an autoregressive
spatial model to the data and using empirical-Bayes techniques to estimate the smoothed rate for
each region (Clayton and Kaldor, 1987; Mollie and Richardson, 1991; Devine et al., 1994; Moulton
et al., 1994; Elliott et al., 2000; Banerjee et al., 2004). The degree of spatial autocorrelation or
clustering can be measured to reflect environmental effects on the rate of disease (Walter, 1992a,
1992b). The empirical Bayes approach can also be applied to data from etiologic multiple-group
studies (described next) by including covariates in the model—for example, see Clayton et al. (1993)
and Cressie (1993).

Etiologic Study

In an etiologic multiple-group study, we assess the ecologic association between the average expo-
sure level or prevalence and the rate of disease among many groups. This ecological design is the
most common; typically, the unit of analysis is a geopolitical region. For example, Hatch and Susser
(1990) examined the association between background gamma-radiation and the incidence of child-
hood cancers between 1975 and 1985 in the region surrounding a nuclear plant. Average radiation
levels for each of 69 tracts in the region were estimated from a 1976 aerial survey. The authors found
positive associations between radiation level and the incidence of leukemia (an expected finding)
as well as solid tumors (an unexpected finding).

Data analysis in this type of multiple-group study usually involves fitting a mathematical model
to the data. Ordinary least-squares procedures, however, may be inadequate because the groups
typically vary in size and much of the unexplained variability in rates across groups cannot be
attributed to sampling error alone. To address these concerns, Pocock et al. (1981) proposed a linear
model in which the unexplained variation is treated as a random effect. Model parameters were
estimated by an iteratively reweighted least-squares procedure. A similar procedure was used by
Breslow (1984) to fit log-linear models. Prentice and Sheppard (1989) proposed a linear relative
rate model, which leads readily to the estimation of rate ratios (assuming the model is properly
specified). Prentice and Thomas (1993) considered an exponential relative rate model, which they
argue may be more parsimonious than the linear-form model for specifying covariates. These
methods can be applied to data aggregated by place and/or time (to be discussed later). Recent
statistical developments in the analysis of multiple-group ecologic data emphasize the inclusion
of supplementary data and/or prior information to improve effect estimation (Chambers and Steel,
2001; Wakefield, 2004). Use of ecologic modeling to estimate exposure effects (rate ratios and
differences) is described in the next section.

TIME-TREND DESIGNS

Exploratory Study

An exploratory time-trend or time-series study involves a comparison of the disease rates over time
in one geographically defined population. In addition to providing graphical displays of temporal
trends, time-series data can also be used to forecast future rates and trends. This latter application,
which is more common in the social sciences than in epidemiology, usually involves fitting au-
toregressive integrated moving-average (ARIMA) models to the outcome data (Box and Jenkins,
1976; Ostrom, 1990; Helfenstein, 1991; Chatfield, 2001; Zeger et al., 2006). The autoregressive
component of this model accounts for the correlation among repeated outcome observations over
time in the population by allowing the outcome observed at one time to depend on past outcome



P1: TNL Printer: RRD

GRBT241-25 GRBT241-v4.cls January 18, 2008 12:4

516 Section IV ● Special Topics

observations. The net result is that the correlation between observations decays with increasing
lag between observations. The moving-average component allows for the outcome observed at
one time to depend on random disturbances in the outcome at previous times. This process allows
the correlation between observations to be large for a given lag and then drop to zero for larger
lags. The integrated (nonstationary) component of the model allows for long-term trends in the
outcome. ARIMA modeling can also be extended to evaluate the effect of a population intervention
(McDowall et al., 1980; Helfenstein, 1991), to estimate associations between two or more time-
series variables (Catalano and Serxner, 1987; Ostrom, 1990; Chatfield, 2001), and to estimate
associations in a mixed ecologic design (Sayrs, 1989; Zeger et al., 2006; and see later).

A special type of exploratory time-trend analysis that is often used by epidemiologists is age–
period–cohort analysis (or simply, cohort analysis). This approach typically involves the collection
of retrospective data from a large population over a period of 20 or more years. Through graphical
or tabular displays (e.g., Frost, 1939; Glenn, 1977) or formal modeling techniques (e.g., Mason
et al., 1973; Holford, 1991), the objective is to estimate the separate effects of three time-related
variables on the rate of disease: age, period (calendar time), and birth cohort (year of birth). By
describing the occurrence of disease in this way, the investigator attempts to gain insight about
temporal trends, which might lead to new hypotheses.

Lee et al. (1979) conducted an age–period–cohort analysis of melanoma mortality among white
men in the United States between 1951 and 1975. They concluded that the apparent increase in the
melanoma mortality rate was due primarily to a cohort effect. That is, persons born in more recent
years experienced throughout their lives a higher rate than did persons born earlier. In a subsequent
paper, Lee (1982) speculated that this cohort effect might reflect increases in sunlight exposure or
sunburning during youth, which he hypothesized is a risk factor for melanoma.

From a purely statistical perspective, there is an inherent problem in making inferences from
the results of age–period–cohort analyses because of the linear dependency among the three time-
related variables (Glenn, 1977; Goldstein, 1979; Holford, 1991). Thus, we cannot allow the value
of one variable to change when the values of the other two variables are held constant. As a result
of this “identifiability” problem, each data set has alternative interpretations with respect to the
combination of age, period, and cohort effects; there is no unique set of effect parameters when all
three variables are considered simultaneously. The only way to decide which interpretation should
be accepted is to consider the findings in light of prior knowledge and, possibly, to constrain the
model by ignoring one effect.

Etiologic Study

In an etiologic time-trend study, we assess the ecologic association between change in average
exposure level or prevalence and change in disease rate in one geographically defined population.
As with exploratory designs, this type of assessment can be done by simple graphical displays or
by time-series regression modeling—for example, see Ostrom (1990), Chatfield (2001), and Zeger
et al. (2006).

In their etiologic time-trend study, Darby and Doll (1987) examined the associations between
average annual absorbed dose of radiation fallout from weapons testing and the incidence rate of
childhood leukemia in three European countries between 1945 and 1985. Although the leukemia
rate varied over time in each country, they found no convincing evidence that these changes were
attributable to changes in fallout radiation.

Causal inference from time-trend studies is often complicated by two problems. First, changes
in disease classification and diagnostic criteria can produce distorted trends in the observed rate of
disease, which can lead to substantial bias in estimating exposure effects. Second, there may be an
appreciable induction/latent period between first exposure to a risk factor and disease detection. To
deal with the latter issue in an ecologic time-trend study, the investigator can lag observations be-
tween average exposure and disease rate by a duration assumed to reflect the average induction/latent
period of exposure-induced cases. There are two approaches for selecting the lag: (a) an a priori
method based on knowledge of the disease; and (b) empirical methods that maximize the observed
association of interest or optimize the fit of the model that includes a lag parameter. Unfortunately,
the first method is often problematic because adequate prior knowledge is lacking, and the second
method can produce results that are biologically meaningless and very misleading (Gruchow et al.,
1983).
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MIXED DESIGNS

Exploratory Study

The exploratory mixed design combines the basic features of the exploratory multiple-group study
and the exploratory time-trend study. Time-series (ARIMA) modeling or age–period–cohort anal-
ysis can be used to describe or predict trends in the disease rate for multiple populations. For
example, to test the hypothesis of Lee (1982) that changes in sunlight exposure during youth can
explain the observed increase in melanoma mortality in the United States, we might conduct an age–
period–cohort analysis, stratifying on region according to approximate sunlight exposure (without
measuring the exposure). Assuming the amounts of sunlight in the regions have not changed dif-
ferentially over the study period, we might expect the cohort effect described earlier to be stronger
for sunnier regions.

Etiologic Study

In an etiologic mixed design, we assess the association between change in average exposure level
or prevalence and change in disease rate among many groups. Thus, the interpretation of estimated
effects is enhanced because two types of comparisons are made simultaneously: change over time
within groups and differences among groups. For example, Crawford et al. (1971) evaluated the
hypothesis that hard drinking water (i.e., water with a high concentration of calcium and magnesium)
is a protective risk factor for cardiovascular disease (CVD). They compared the absolute change in
CVD mortality rate between 1948 and 1964 in 83 British towns, by water-hardness change, age,
and sex. In all sex–age groups, especially for men, the authors found an inverse association between
trends in water hardness and CVD mortality. In middle-aged men, for example, the increase in CVD
mortality was less in towns that made their water harder than in towns that made their water softer.

EFFECT ESTIMATION

A major quantitative objective of most epidemiologic studies is to estimate the effect of one or
more exposures on disease occurrence in a well-defined population at risk. A measure of effect in
this context is not just any measure of association such as a correlation coefficient; rather, it reflects
a particular causal parameter, i.e., a counterfactual contrast in disease occurrence (Rubin, 1978,
1990a; Greenland et al., 1986, 1991; Greenland, 1987a, 2000a, 2005a; Morgenstern and Thomas,
1993; Maldonado and Greenland, 2002; see Chapter 4). In studies conducted at the individual level,
effects are usually estimated by comparing the rate or risk of disease, in the form of a ratio or
difference, for exposed and unexposed populations (see Chapter 4). In multiple-group ecologic
studies, however, we cannot estimate effects directly in this way because of the missing information
on the joint distribution within groups. Instead, we regress the group-specific disease rates (Y ) on
the group-specific exposure prevalences (X ). (Note that, throughout this chapter, uppercase letters
are used to represent ecologic variables and their estimated regression coefficients; lowercase letters
are used to represent individual-level variables and their estimated regression coefficients.)

The most common model form for analyzing ecologic data is the linear model. Ordinary least-
squares methods can be used to produce the following prediction equation:

∧
Y = B0 + B1 X , where

B0 and B1 are the estimated intercept and slope. An estimate of the biologic effect of the exposure (at
the individual level) can be derived from the regression results (Goodman, 1959; Beral et al., 1979).
The predicted disease rate (

∧
Y x=1) in a group that is entirely exposed is B0 + B1(1) = B0 + B1, and

the predicted rate (
∧
Y x=0 ) in a group that is entirely unexposed is B0 + B1(0) = B0. Therefore, the

estimated rate difference is B0 + B1 − B0 = B1, and the estimated rate ratio is (B0 + B1)/B0 =
1 + B1/B0.

Alternatively, fitting a log-linear (exponential) model to the data yields the following predic-
tion equation: ln(

∧
Y ) = B0 + B1 X or

∧
Y = exp(B0 + B1 X ). Applying the same method as used for

linear models, the estimated rate ratio is
∧
Y x=1/

∧
Y x=0 = exp(B1).

As an illustration of rate-ratio estimation in an ecologic study, consider Durkheim’s (1951) ex-
amination of religion and suicide in four groups of Prussian provinces between 1883 and 1890 (Fig.
25–2). The groups were formed by ranking 13 provinces according to the proportion (X ) of the pop-
ulation that was Protestant. Using ordinary least-squares linear regression, we estimate the suicide
rate (

∧
Y , events per 105 person-years) in each group to be 3.66 + 24.0(X ). Therefore, the estimated
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FIGURE 25–2 ● Suicide rate (Y , events per 105 person-years) by proportion Protestant (X ) for
four groups of Prussian provinces, 1883–1890. The four observed points (X , Y ) are (0.30, 9.56), (0.45,
16.36), (0.785, 22.00), and (0.95, 26.46); the fitted line is based on unweighted least-squares
regression. (Adapted from Durkheim E. Suicide: A Study in Sociology. New York: Free Press; 1951.)

rate ratio, comparing Protestants with other religions, is 1 + (24.0/3.66) = 7.6. Note in Figure 25–2
that the fit of the linear model appears to be excellent (R2 = 0.97). In general, however, ecologic
tests of fit can be misleading about the underlying model at the individual level that generated the
ecologic data (Greenland and Robins, 1994).

The ecologic method of effect estimation requires that rate predictions be extrapolated to both
extreme values of the exposure variable (i.e., X = 0 and 1), which are likely to lie well beyond the
observed range of the data. It is not surprising, therefore, that different model forms (e.g., log-linear
vs. linear) can lead to very different estimates of effect (Greenland, 1992b). Fitting a linear model,
in fact, may lead to negative, and thus meaningless, estimates of the rate ratio. Other statistical
methods for estimating exposure effects in ecologic studies are discussed by Chambers and Steel
(2001), Gelman et al. (2001), and Wakefield (2004).

CONFOUNDERS AND EFFECT MODIFIERS

Two methods are used to control for confounders in multiple-group ecologic analyses. The first is to
treat ecologic measures of the confounders as covariates (Z ) in the model, e.g., percentage of men
and percentage of whites in each group. If the individual-level effects of the exposure and covariates
are additive (i.e., if the disease rates follow a linear model), then the ecologic regression of Y on
X and Z will also be linear with the same coefficients (Langbein and Lichtman, 1978; Greenland,
1992b, 2002b). That is, the estimated coefficient for the exposure variable in a linear model can be
interpreted as the rate difference adjusted for the covariates, provided the effects are truly additive
and there are no other sources of bias. To estimate the adjusted rate ratio for the exposure effect,
we must first specify values for all covariates (Z ) in the model, because the effects of X and Z are
assumed to be additive—not multiplicative. Thus, the estimated rate ratio, conditional on covariate
levels (Z ), is the predicted rate in a group that is entirely exposed (

∧
Y x=1|z) divided by the predicted

rate in a group that is entirely unexposed (
∧
Y x=0|z).

Fitting a log-linear model to the ecologic data yields an estimate of the adjusted rate ratio that
is independent of covariates—i.e.,

∧
Y x=1|z/

∧
Y x=0|z = exp(B1), where B1 is the estimated coefficient
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for the exposure. Thus, the effects of X and Z are assumed to be multiplicative. Unfortunately,
this ecologic estimate is a biased estimate of the individual-level rate ratio, even if the effects are
multiplicative at the individual level and no other source of bias is present (Richardson et al., 1987;
Greenland, 1992b).

The second method used to control for confounders in ecologic analyses is rate standardization
for these confounders (see Chapters 3 and 4), followed by regression of the standardized rates as
the outcome variable. Note that this method requires additional data on the joint distribution of
the covariate and disease within each group (i.e., the M frequencies in Fig. 25–1). Nevertheless, it
cannot be expected to reduce bias unless all predictors in the model (X and Z ) are also mutually
standardized for the same confounders (Rosenbaum and Rubin, 1984; Greenland and Morgenstern,
1989; Greenland, 1992b). Standardization of the exposure prevalences, for example, requires data
on the joint distribution of the covariate and exposure within groups (i.e., the N frequencies in Fig.
25–1); unfortunately, this information is not usually available in ecologic studies.

As in individual-level analyses, product terms (e.g., XZ) are often used in ecologic analyses
to model interaction effects, i.e., to assess effect modification. In ecologic analyses, however, the
product of X and Z (both group averages) is not, in general, equal to the average product of the
exposure (x) and covariate (z) at the individual level within groups. Assuming a linear model, XZ
will be equal to the mean xz in each group only if x and z are uncorrelated within groups (Greenland,
1992b). Thus, as pointed out in the next section, interaction (nonadditive) effects at the individual
level complicate the interpretation of ecologic results.

METHODOLOGIC PROBLEMS

Despite the many practical advantages of ecologic studies mentioned previously, there are several
methodologic problems that may severely limit causal inference, especially biologic inference.

ECOLOGIC BIAS

The major limitation of ecologic analysis for making causal inferences is ecologic bias, which
is usually interpreted as the failure of ecologic associations to reflect the biologic effect at the
individual level (Goodman, 1959; Firebaugh, 1978; Morgenstern, 1982; Richardson et al., 1987;
Greenland and Morgenstern, 1989; Greenland and Robins, 1994). More generally, ecologic bias
can be interpreted as the failure of associations seen at one level of grouping to correspond to effect
measures at the grouping level of interest. For example, relations seen in county-level data may
poorly track relations that exist at the individual level (no grouping) or at the neighborhood level
(neighborhood grouping), and so would be biased if individual-level or neighborhood-level relations
were of interest (Openshaw and Taylor, 1981; Greenland, 2001a). This failure to capture desired
effects applies also to estimating confounder effects at the level of interest, and hence threatens
validity both directly and by undermining control of confounding (Greenland, 2001a, 2004b).

In addition to the usual sources of bias that threaten individual-level analyses (see Chapter
8), the underlying problem of ecologic analyses for estimating biologic effects is heterogeneity
of exposure level and covariate levels within groups. As noted earlier, this heterogeneity is not
fully captured with ecologic data because of missing information on joint distributions (Fig. 25–1).
Robinson (1950) was the first to describe mathematically how ecologic associations may differ
from the corresponding associations at the individual level within groups of the same population.
He expressed this relation in terms of correlation coefficients, which was later extended by Duncan
et al. (1961) to regression coefficients in a linear model. The phenomenon became widely known
as the ecologic (or ecological) fallacy (Selvin, 1958), and researchers came to recognize that the
magnitude of the ecologic bias may be severe in practice (Stavraky, 1976; Connor and Gillings,
1984; Feinleib and Leaverton, 1984; Richardson et al., 1987; Stidley and Samet, 1994).

As an illustration of ecologic bias, consider again Durkheim’s (1951) data on religion and suicide
(Fig. 25–2). The estimated rate ratio of 7.6 in the ecologic analysis may not mean that the suicide
rate was nearly eight times greater in Protestants than in non-Protestants. Rather, because none of
the regions was entirely Protestant or non-Protestant, it may have been non-Protestants (primarily
Catholics) who were committing suicide in predominantly Protestant provinces. It is certainly
plausible that members of a religious minority might have been more likely to take their own lives
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than were members of the majority. The implication of this alternative explanation is that living in
a predominantly Protestant area has a contextual effect on suicide risk among non-Protestants; i.e.,
there is an interaction effect at the individual level between religion and religious composition of
one’s area of residence.

Interestingly, Durkheim (1951) compared the suicide rates (at the individual level) for Protestants,
Catholics, and Jews living in Prussia, and from his data, we find that the rate was about twice as
great in Protestants as in other religious groups. Thus, there appears to be substantial ecologic bias
(i.e., comparing rate-ratio estimates of about 2 vs. 8). Durkheim (1951), however, failed to notice
this quantitative difference because he did not actually estimate the magnitude of the effect in either
analysis.

Greenland and Morgenstern (1989) showed that ecologic bias can arise from three sources when
using simple linear regression to estimate the crude exposure effect; the first may operate in any
type of study, the latter two are unique to ecologic studies (i.e., cross-level bias) but are defined in
terms of individual-level parameters.

1. Within-group bias. Ecologic bias may result from bias within groups due to confounding, selec-
tion methods, or misclassification, even though within-group effects are not estimated. Thus, for
example, if there is positive confounding of the crude effect parameter in every group, we can
expect the crude ecologic estimate to be biased as well.

2. Confounding by group. Ecologic bias may result if the background rate of disease in the un-
exposed population varies across groups. More specifically, bias results if there is a nonzero
ecologic correlation between mean exposure level and the background rate.

3. Effect modification by group (on an additive scale). Ecologic bias may also result if the rate
difference for the exposure effect at the individual level varies across groups.

Confounding and effect modification by group (the sources of cross-level bias) can arise in three
ways: (a) extraneous risk factors (confounders or modifiers) are differentially distributed across
groups; (b) the ecologic exposure variable has a contextual effect on risk separate from the biologic
effect of its individual-level analogue, e.g., living in a predominantly Protestant area versus being
Protestant (in the suicide example); or (c) disease risk depends on the prevalence of that disease in
other members of the group, which is true of many infectious diseases (Koopman and Longini, 1994).

To appreciate the sources of cross-level bias, it is helpful to consider simple numerical il-
lustrations involving both individual-level and ecologic analyses with the same population. The
hypothetical example in Table 25–1 involves a dichotomous exposure (x) and three groups. At
the individual level, both the rate difference and rate ratio vary somewhat across the groups, but
the effect is positive in all groups; the crude and group-standardized rate ratio is 2.0. Fitting a
linear model to the ecologic data, however, we find that the slope for the exposure variable (X ) is
negative and the rate ratio is 0.50, suggesting a protective effect. The reason for such large ecologic
bias is heterogeneity of the rate difference across groups (effect modification by group). In this
example, there is no confounding by group because the unexposed rate is the same (100 events per
105 person-years) in all three groups.

The example in Table 25–2 illustrates the conditions for no cross-level bias. First, group is not
a modifier of the exposure effect at the individual level because the rate difference (100 events per
105 person-years) is uniform across groups (even though the rate ratio varies). Second, group is not
a confounder of the exposure effect because there is no ecologic correlation between the percentage
of exposed (100X ) and the unexposed rate. Thus, the individual-level and ecologic estimates of the
rate ratio are the same (1.8) and unbiased, even though the R2 for the fitted model is very low (0.029).

Unfortunately, the two conditions that produce cross-level bias cannot be checked with ecologic
data because those conditions are defined in terms of individual-level associations. This inability to
check the validity of ecologic results seriously limits biologic inference. Furthermore, the fit of the
ecologic regression model, in general, gives no indication of the presence, direction, or magnitude
of ecologic bias. Thus, a model with excellent fit may yield substantial bias, and one model with
a better fit than another model may yield more bias. For example, there was substantial bias when
fitting a linear model to Durkheim’s (1951) suicide data in Figure 25–2, despite an excellent-fitting
model (R2 = 0.97). Recall that the estimated rate ratio was 7.6, compared with a “true” rate ratio
of approximately 2. If we fit a log-linear model to the same data, we get

∧
Y = exp(1.974 + 1.418X )
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ˆ

ˆ

ˆ
T A B L E 2 5 – 1

Number of New Cases, Person-Years (P-Y) of Follow-up, and Disease Rate
(Y, per 100,000y), by Group and Exposure Status (x) (top); Summary
Parameters for Each Group (middle); and Results of Individual-Level and
Ecologic Analyses (bottom): Hypothetical Example of Ecologic Bias due to
Effect Modification by Group

Exposure Group 1 Group 2 Group 3

Status (x ) Cases P-Y Rate Cases P-Y Rate Cases P-Y Rate

Exposed (x = 1) 20 7,000 286 20 10,000 200 20 13,000 154
Unexposed (x = 0) 13 13,000 100 10 10,000 100 7 7,000 100
Total 33 20,000 165 30 20,000 150 27 20,000 135

Percentage of exposed (100X ) 35 50 65
Rate difference (per 105y) 186 100 54
Rate ratio 2.9 2.0 1.5

Individual-level analysis Ecologic analysis: linear model

Crude rate ratioa = 2.0
∧
Y = 200 − 100X (R 2 = 1)

Adjusted rate ratio (SMR)b = 2.0 Rate ratio = 0.50

a Rate ratio for the total population, unadjusted for group.
b Rate ratio standardized for group, using the exposed population as the standard.

ˆ

ˆ

ˆ

ˆ
T A B L E 2 5 – 2

Number of New Cases, Person-Years (P-Y) of Follow-up, and Disease Rate
(Y, per 100,000y), by Group and Exposure Status (x) (top); Summary
Parameters for Each Group (middle); and Results of Individual-Level and
Ecologic Analyses (bottom): Hypothetical Example of No Ecologic Bias

Exposure Group 1 Group 2 Group 3

Status (x ) Cases P-Y Rate Cases P-Y Rate Cases P-Y Rate

Exposed (x = 1) 16 8,000 200 20 10,000 300 24 12,000 200
Unexposed (x = 0) 12 12,000 100 10 10,000 200 8 8,000 100
Total 28 20,000 140 50 20,000 250 32 20,000 160

Percentage of exposed (100X ) 40 50 60
Rate difference (per 105y) 100 100 100
Rate ratio 2.0 1.5 2.0

Individual-level analysis Ecologic analysis: linear model

Crude rate ratioa = 1.8
∧
Y = 133 + 100X (R 2 = 0.029)

Adjusted rate ratio (SMR)b = 1.8 Rate ratio = 1.8

a Rate ratio for the total population, unadjusted for group.
b Rate ratio standardized for group, using the exposed population as the standard.
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and R2 = 0.91; therefore, the estimated rate ratio is exp(1.418) = 4.1. Thus, the log-linear model
produces less bias even though it has a smaller R2 than the linear model. In general, we cannot
expect to reduce bias by using better fitting models in ecologic analysis.

A potential strategy for reducing ecologic bias is to use smaller units in an ecologic study (e.g.,
counties instead of states) to make the groups more homogeneous with respect to the exposure. On
the other hand, this strategy might not be feasible because of the lack of available data aggregated
at the same level, and it can lead to another problem: greater migration between groups (see later)
(Morgenstern, 1982; Walter, 1991b).

Other methods for reducing ecologic bias rely on statistical modeling techniques that incorporate
external information, i.e., supplementary data or prior information (Elliott et al., 2000; Gelman et al.,
2001; Guthrie and Sheppard, 2001; Wakefield and Salway, 2001; Banerjee et al., 2004; Wakefield,
2004). For example, Best et al. (2001) used a Bayesian hierarchical modeling approach to estimate
the effect of environmental exposure to benzene on the incidence of childhood leukemia in Greater
London. These investigators employed three units of analysis: local authority districts, census wards,
and 1-km2 grid squares. Although Best et al. found consistent positive associations between benzene
exposure and childhood leukemia, the authors acknowledged several methodologic problems that
limited their ability to make causal inferences.

A widely cited method for eliminating ecologic bias without the use of external information
was proposed by King (1997). His approach combined the linear-regression method described
previously (Goodman, 1959) and the method of “bounds” proposed by Duncan and Davis (1953).
Early critics of King’s method maintained that it does not provide accurate estimates of individual
effects in certain datasets and that the diagnostics provided by King are not sensitive to the errors
(Freedman et al., 1998). One key problem of King’s model, in its original form, is that it assumes
no contextual effects (Wakefield, 2004). These claims have been debated in the literature (King,
1999; Freedman et al., 1999), and the method remains controversial (Cho, 1998; McCue, 2001;
Wakefield, 2004). One critic, for example, has concluded that King’s method is unlikely to reduce
ecologic bias relative to simpler models (McCue, 2001).

PROBLEMS OF CONFOUNDER CONTROL

As indicated in a previous section, covariates are included in ecologic analyses to control for
confounding, but the conditions for a covariate being a confounder are different at the ecologic
and individual levels (Greenland and Morgenstern, 1989; Greenland and Robins, 1994; Greenland,
2001a; Darby et al., 2001). At the individual level, a risk factor must be associated with the exposure
to be a confounder. In a multiple-group ecologic study, in contrast, a risk factor may produce ecologic
bias (e.g., it may be an ecologic confounder), even if it is unassociated with the exposure in every
group, if the risk factor is ecologically associated with the exposure across groups (Greenland and
Morgenstern, 1989; Greenland, 1992b). Conversely, a risk factor that is a confounder within groups
may not produce ecologic bias if it is ecologically unassociated with the exposure across groups.
For example, there is some evidence that confounding by indication in the estimation of intended
treatment effects is less severe in ecologic studies than in observational studies conducted at the
individual level (Wen and Kramer, 1999; Johnston, 2000).

In general, however, control for confounders is more problematic in ecologic analyses than in
individual-level analyses (Greenland and Morgenstern, 1989; Greenland, 1992b, 2001a, 2002b;
Greenland and Robins, 1994). Even when all variables are accurately measured for all groups, ad-
justment for extraneous risk factors may not reduce the ecologic bias produced by these risk factors.
In fact, it is possible for such ecologic adjustment to increase bias (Greenland and Morgenstern,
1989; Greenland and Robins, 1994).

It follows from the principles presented in the previous section that there will be no ecologic
bias in a multiple-linear-regression analysis if all the following conditions are met:

1. There is no residual within-group bias in exposure effect in any group because of confounding
by unmeasured risk factors, selection methods, or misclassification.

2. There is no ecologic correlation between the mean value of each predictor (exposure and covari-
ate) and the background rate of disease in the joint reference (unexposed) level of all predictors
(so that group does not confound the predictor effects).



P1: TNL Printer: RRD

GRBT241-25 GRBT241-v4.cls January 18, 2008 12:4

Chapter 25 ● Ecologic Studies 523

3. The rate difference for each predictor is uniform across levels of the other predictors within
groups (i.e., the effects are additive).

4. The rate difference for each predictor, conditional on other predictors in the model, is uniform
across groups (i.e., group does not modify the effect of each predictor on the additive scale at
the individual level).

These conditions are sufficient, but not necessary, for the ecologic estimate to be unbiased; i.e.,
there might be little or no bias even if none of these conditions is met. On the other hand, minor
deviations from the latter three conditions can produce substantial cross-level bias (Greenland,
1992b). Because the sufficient conditions for no cross-level bias cannot be checked with ecologic
data alone, the unpredictable and potentially severe nature of such bias makes biologic inference
from ecologic analyses particularly problematic.

The conditions for no cross-level bias with covariate adjustment are illustrated in the hypothetical
example in Table 25–3. Both the exposure (x) and covariate (z) are dichotomous variables, and there
are three groups. At the individual level, the covariate is not a confounder of the exposure effect
because there is no exposure–covariate association within any of the groups. Thus, the crude and
adjusted estimates of the rate ratio are nearly the same (1.3). In the ecologic analysis, however, the
covariate is a confounder because there is an inverse association between the exposure (X ) and the
covariate (Z ) across groups. Thus, although the crude ecologic estimate of the rate ratio (0.32) is
severely biased, the adjusted estimate (1.3) is unbiased. The reasons for no cross-level bias with
covariate adjustment are: (a) the rate (100 events per 105 person-years) in the joint reference group
(x = z = 0) does not vary across groups, i.e., the second condition is met; and (b) the rate difference
(100 events per 105 person-years) is uniform within groups and across groups—i.e., the third and
fourth conditions are met.

The example in Table 25–4 illustrates cross-level bias when the null hypothesis is true. At the
individual level, the covariate (z) is a strong confounder because it is a predictor of the disease in the
unexposed population and it is associated with exposure status (x) within groups. Thus, the crude
rate ratio (2.1) is biased. At the ecologic level, however, there is no association between the exposure
(X ) and the covariate (Z ), so the covariate is not an ecologic confounder. Nevertheless, both the
crude and adjusted rate ratios (8.6) are strongly biased because the rate in the joint reference category
(x = z = 0) is ecologically associated with both the exposure (X ) and the covariate (Z )—i.e., the
second condition is not met.

Lack of additivity at the individual level (refer to the third condition) is common in epidemiology,
but unmeasured modifiers do not bias results at the individual level if they are unrelated to the
exposure (Greenland, 1987a). Furthermore, statistical interactions may be readily assessed at the
individual level by including product terms as predictors in the model (e.g., xz). In ecologic analyses,
however, lack of additivity within groups is a source of ecologic bias, and this bias cannot be
eliminated by the inclusion of product terms (e.g., XZ) unless the effects are exactly multiplicative
and the two variables are uncorrelated within groups (Richardson and Hémon, 1990). If x and z
are correlated within groups, additional data on the x–z associations (the N frequencies in Fig.
25–1) can be used to improve the ecologic estimate of each predictor effect controlling for the other
(Prentice and Sheppard, 1995; Plummer and Clayton, 1996; Guthrie and Sheppard, 2001; Wakefield
and Salway, 2001; Wakefield, 2004).

Another source of ecologic bias is misspecification of confounders (Greenland and Robins,
1994). Although this problem can also arise in individual-level analyses, it is more difficult to avoid
in ecologic analyses because the relevant confounder may be the distribution of covariate histories
for all individuals within each group. In ecologic studies, therefore, adjustment for covariates derived
from available data (e.g., proportion of current smokers) may be inadequate to control confounding.
It is preferable, whenever possible, to control for more than a single summary measure of the
covariate distribution (e.g., the proportions of the group in each of several smoking categories). In
addition, because it is usually necessary to control for several confounders (among which the effects
may not be linear and additive), the best approach for reducing ecologic bias is to include covariates
for categories of their joint distribution within groups. For example, to control ecologically for
race and sex, the investigator might adjust for the proportions of white women, nonwhite men, and
nonwhite women (treating white men as the referent), rather than the conventional approach of
adjusting for the proportions of men (or women) and whites (or nonwhites).

(text continues on page 526)
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WITHIN-GROUP MISCLASSIFICATION

The principles of misclassification bias with which epidemiologists are familiar when interpret-
ing the results of analyses conducted at the individual level do not apply to ecologic analyses.
At the individual level, for example, nondifferential independent misclassification of a dichoto-
mous exposure biases the effect estimate toward the null (see Chapter 8). In multiple-group eco-
logic studies, however, this principle does not hold when the exposure variable is an aggregate
measure. Brenner et al. (1992b) have shown that nondifferential misclassification of a dichoto-
mous exposure within groups usually leads to bias away from the null and that the bias may be
severe.

As an illustration of this distinct feature of ecologic analysis, consider the two-group example
in Table 25–5, which contrasts analyses with correctly classified and misclassified exposure data
at both the individual and ecologic levels. The sensitivity and specificity of exposure classification
are assumed to be 0.9 for both cases and noncases in the population. The correct rate ratio
at the individual level is 5.0. With nondifferential exposure misclassification, the observed
rate ratio would be 3.4, which is biased toward the null. Although an ecologic analysis of the
correctly classified data yields an unbiased estimate of the rate ratio (5.0), an analysis with
misclassified data would yield an observed rate ratio of 11.0, which is strongly biased away
from the null. To appreciate the direction of the misclassification bias in this ecologic analysis,
notice that the difference in the percentage exposed (100X ) between the two groups decreases
from 40 − 20 = 20% to 42 − 26 = 16% when the exposure is misclassified (Table 25–5). Thus,
the slope in the misclassified analysis increases from 200 to 250 events per 105 person-years. In
addition, the intercept decreases from 50 to 25 events per 105 person-years. Each of these changes
causes the observed rate ratio with the misclassified data to increase (away from the null).

ˆ

ˆ

ˆ

ˆ
T A B L E 2 5 – 5

Number of New Cases, Person-Years (P-Y) of Follow-up, and Disease Rate (Y,
per 100,000y), by Group, Type of Exposure Classification (correct vs.
misclassifieda), and Exposure Status (top); Percentage of Exposed by Group
(middle); and Results of Individual-Level and Ecologic Analyses (bottom):
Hypothetical Example of Ecologic Bias away from the Null due to
Nondifferential Exposure Misclassification within Groups

Exposure Exposure Group 1 Group 2

Classification Status Cases P-Y Rate Cases P-Y Rate

Correctly Exposed (x = 1) 50 20,000 250 100 40,000 250
classified Unexposed (x = 0) 40 80,000 50 30 60,000 50

Total 90 100,000 90 130 100,00 130
Misclassifieda Exposed (x ′ = 1) 49 26,000 188 93 42,000 221

Unexposed (x ′ = 0) 41 74,000 55 37 58,000 64
Total 90 100,000 90 130 100,000 130

Percentage exposed, correctly classified (100X ) 20 40
Percentage exposed, misclassified (100X ′) 26 42

Individual-level analysis Ecologic analysis: linear models

Correct: rate ratiob = 5.0 Correct:
∧
Y = 50 + 200X ; rate ratio = 5.0

Misclassified: rate ratioc = 3.4 Misclassified:
∧
Y = 25 + 250X ′; rate ratio = 11.0

a Sensitivity = specificity = 0.9 for both cases and noncases (nondifferential misclassification).
b Common rate ratio within each group.
c Common rate ratio, using the Mantel-Haenszel method.
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It is possible to correct for nondifferential misclassification of a dichotomous exposure or dis-
ease in ecologic analyses, based on prior specifications of sensitivity and specificity (Brenner et al.,
1992a, app. 1; Greenland and Brenner, 1993). Suppose, for example, that we wish to correct for
nondifferential exposure misclassification when using simple linear regression (no covariates) to
estimate the exposure effect. The corrected estimator of the rate ratio derived from the model results
is (B0 + B1Se)/[B0 + B1(1 − Sp)], where B0 and B1 are the estimated intercept and slope from the
misclassified data, Se is the sensitivity of exposure classification, and Sp is the specificity. Green-
land and Brenner (1993) also derived a corrected estimator for the variance of the estimated rate
ratio.

In studies conducted at the individual level, misclassification of a covariate, if nondifferen-
tial with respect to both exposure and disease, will usually reduce our ability to control for that
confounder (Greenland, 1980; Savitz and Baron, 1989). That is, adjustment will not completely
eliminate the bias due to the confounder. In ecologic studies, however, nondifferential misclassi-
fication of a dichotomous confounder within groups does not affect our ability to control for that
confounder, provided there is no cross-level bias (Brenner et al., 1992a). More generally, however,
misclassification of confounders will reduce control of confounding at the ecologic as well as the
individual level.

If the outcome and all but one predictor (i.e., the exposure or a covariate) in a given analy-
sis are measured at the individual level, this partially ecologic analysis may also be regarded as
nonecologic with the ecologic variable misclassified. Thus, the resulting bias may be understood
in terms of misclassification bias operating at the individual level. Künzli and Tager (1997) have
labeled this type of design a “semi-individual study,” which they have shown to yield more valid
estimates of air-pollution effects than do pure ecologic studies (where no joint distributions are
known).

OTHER PROBLEMS

Lack of Adequate Data

Certain types of data, such as medical histories, may not be available in aggregate form; or available
data may be too crude, incomplete, or unreliable, such as sales data for measuring behaviors (Mor-
genstern, 1982; Walter, 1991b). In addition, secondary sources of data from different administrative
areas or from different periods may not be comparable. For example, disease rates may vary across
countries because of differences in disease classification or case detection. Furthermore, because
many ecologic analyses are based on mortality rather than incidence data, causal inference is further
limited because mortality reflects the course of disease as well as its occurrence (Kleinbaum et al.,
1982).

Temporal Ambiguity

In a well-designed cohort study of disease incidence, we can usually be confident that disease
occurrence did not precede the exposure. In ecologic studies, however, use of incidence data provides
no such assurance against this temporal ambiguity (Morgenstern, 1982). The problem is most
troublesome when the disease can influence exposure status in individuals (reverse causation) or
when the disease rate can influence the mean exposure in groups (through the effect of population
interventions designed to change exposure levels in areas with high disease rates).

The problem of temporal ambiguity in ecologic studies (especially time-trend studies) is further
complicated by an unknown or variable induction and latent periods between exposure and disease
detection (Gruchow et al., 1983; Walter, 1991b). The investigator can only attempt to deal with this
problem in the analysis by examining associations for which there is a specified lag between obser-
vations of average exposure and disease rate. Unfortunately, there may be little prior information
about induction and latency on which to base the lag, or appropriate data may not be available to
accommodate the desired lag.

Collinearity

Another problem with ecologic analyses is that certain predictors, such as sociodemographic and
environmental factors, tend to be more highly correlated with each other than they are at the
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individual level (Stavraky, 1976; Connor and Gillings, 1984). The implication of such collinearities
is that it is very difficult to separate the effects of these variables statistically; analyses yield
model coefficients with very large variances so effect estimates may be highly unstable. In general,
collinearity is most problematic in multiple-group ecologic analyses involving a small number of
large, heterogeneous regions (Duncan et al., 1961; Valkonen, 1969).

Migration across Groups

Migration of individuals into or out of the source population can produce selection bias in a study
conducted at the individual level because migrants and nonmigrants may differ on both exposure
prevalence and disease risk. Although it is clear that migration can also cause ecologic bias (Polissar,
1980; Kliewer, 1992), little is known about the magnitude of this bias or how it can be reduced in
ecologic studies (Morgenstern and Thomas, 1993).

INTERPRETING ECOLOGIC ASSOCIATIONS

Knowing the severe methodologic limitations of ecologic analysis for making biologic inferences,
many epidemiologists who report ecologic results argue that there can be no cross-level bias when
their primary objective is to estimate an ecologic effect (e.g., Centerwall, 1989; Casper et al.,
1992; Stewart et al., 1994). For example, we might want to estimate the ecologic effect (effec-
tiveness) of state laws requiring smoke detectors by comparing the fire-related mortality rate in
those states with the law versus other states without the law (Morgenstern, 1982). Although this
is a reasonable objective, the interpretation of observed ecologic effects is complicated by several
issues.

First, outcome events (disease or death) occur in individuals; thus, the disease or mortality rate
in a population is an aggregate, not a global, measure. Consequently, biologic inference may be
implicit to the objectives of an ecologic study unless the underlying biologic and contextual effects
are already known from previous research. Can smoke detectors placed appropriately in homes
reduce the risk of fire-related mortality in those homes by providing an early warning of smoke?
Does living in an area where most homes are properly equipped with smoke detectors reduce the
risk of fire-related mortality in homes with and without smoke detectors? The first question refers to
a possible biologic (individual) effect; the second question refers to a possible contextual effect. The
ecologic effect of smoke-detector laws depends on these biologic and contextual effects as well as
other factors, e.g., the level of enforcement, the quality of smoke-detector design and construction,
the cost and availability of smoke detectors, and their proper placement, installation, operation, and
maintenance. In an ecologic study without additional information, the ecologic effect completely
confounds biologic and contextual effects (Firebaugh, 1978; Greenland, 2002b).

Another complicating issue in interpreting observed ecologic effects as contextual effects is that
there may be a need to control for confounders measured at the individual level (Greenland, 2001a,
2004b). Even if the exposure is a global measure, such as a law, groups are seldom completely
homogeneous or comparable with respect to confounders. To make a valid comparison between
states with and without smoke-detector laws, for example, we would need to control for differences
among states in the joint distribution of extraneous risk factors, such as socioeconomic status of
residents, firefighter availability and access, building design and construction.

When contextual effects are of interest, rarely are the available ecologic data grouped in a way
that is closely relevant to the effect of interest. Typical vital statistics data on disease occurrence
are aggregated by county or another convenient geopolitical unit, which may be far too coarse to
allow valid estimation of small-area effects, e.g., at the neighborhood level. Unfortunately, ecologic
associations can be extremely sensitive to the grouping level, making claims about relations
seen at one level dubious when applied to another level of interest (Openshaw and Taylor, 1981;
Greenland, 2001a, 2002b, 2004b).

MULTILEVEL ANALYSES AND DESIGNS

One solution to the problem of separating individual and contextual effects is to incorporate both
individual-level and ecologic measures in the same analysis. This approach might include different
measures of the same factor; e.g., each subject would be characterized by his or her own exposure
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level as well as the average exposure level for all members of the group to which he or she belongs
(aggregate measure). Not only would this approach help to clarify the sources and magnitude of
ecologic and cross-level bias, it would also allow us to separate biologic, contextual, and ecologic
effects. It is especially appropriate in social epidemiology, infectious-disease epidemiology, and the
evaluation of population interventions.

There are various statistical methods for including both individual-level and ecologic measures in
the same analysis; two related methods are discussed here. The first method, often called contextual
analysis in the social sciences, is a simple extension of conventional (generalized linear) modeling
such as multiple linear regression and logistic regression (Boyd and Iversen, 1979; Iversen, 1991).
The model, which is fitted to the data at the individual level, includes both individual-level and
ecologic predictors. For example, suppose we want to estimate the effect of “herd immunity” on the
risk of an infectious disease. The risk (y) of disease might be modeled as a function of the following
linear component: b0 + b1x + b2 X + b3xX, where x is the individual’s immunity status and X is
the prevalence of immunity in the group to which that individual belongs (Von Korff et al., 1992).
Therefore, b2 represents the contextual effect of herd immunity, and b3 represents the interaction
effect, which allows the herd-immunity effect to depend on the individual’s immune status. The
interaction term is needed in this application because we expect no herd-immunity effect among
immune individuals. Note, however, that the interpretation of the interaction effect depends on the
form of the model (see Chapter 20).

An important limitation of contextual analysis is that outcomes of individuals within groups are
treated as independent. In practice, however, the outcomes of two individuals are more likely to be
similar if they come from the same group (region) than if they come from different groups, because
individuals in the same group tend to share risk factors for the outcome. Ignoring such within-group
dependence (“clustering”) generally results in estimated variances of contextual effects that are
biased downward, making confidence intervals too narrow. To handle this problem of within-group
dependence, we can add random effects to the conventional (contextual) model described earlier; this
approach is called mixed-effects modeling, multilevel modeling, or hierarchical regression (Wong
and Mason, 1985, 1991; Bryk and Raudenbush, 1992; Goldstein, 2003; Kreft and de Leeuw, 1998;
Banerjee et al., 2004; Wakefield, 2004; and see Chapter 21).

Multilevel modeling is a powerful technique with many potential applications and statistical
benefits (Greenland, 2000c, 2000d; Witte et al., 2000). It can be used to estimate contextual and
ecologic effects and to derive improved (empirical-Bayes) estimates of individual-level effects. It
can also be used to determine how much of the difference in outcome rates across groups (ecologic
effect) can be explained by differences in the distribution of individual-level risk factors (biologic
effects). For example, a two-level analysis is often used to examine individual-level and
ecologic predictors. At the first level of analysis, we might predict individual risk or health sta-
tus within each group as a function of several individual-level variables. At the second (ecologic)
level, we predict the estimated regression parameters (e.g., the intercept and slopes) from the first
level as a function of several ecologic variables. The underlying assumption is that the group-specific
regression parameters are random samples from a population of such parameters. By combining
results from both levels, we can predict individual-level outcome as a function of individual-level
predictors, ecologic predictors, and their interaction terms.

For example, Humphreys and Carr-Hill (1991) used multilevel modeling to estimate the contex-
tual effect of living in a poor area (electoral ward) on several health outcomes, controlling for the
individual’s income and other covariates. In a conventional ecologic analysis, the effects of living
in a poor area and personal income would be confounded, and ecologic estimates of effect would
be susceptible to cross-level bias. Similar findings for the effects of “neighborhood” socioeconomic
status have been reported recently by several other investigators (Pickett and Pearl, 2001).

Despite many new insights generated by multilevel analysis about the social determinants of
disease and health, this approach for analyzing observational data also poses new challenges. First,
because there are many selection factors influencing the distribution of people among neighbor-
hoods, it is difficult to control for these factors by covariate adjustment at the individual level.
Thus, estimated effects of neighborhood (ecologic) factors, especially aggregate measures, may be
confounded by unmeasured risk factors (Oakes, 2004). Second, it is often difficult to distinguish
a priori whether a given individual-level risk factor affects the ecologic exposure of interest and
is therefore a confounder that should be controlled, or whether the risk factor is an intermediate
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variable in the hypothesized causal pathway between the ecologic exposure and disease occurrence
and therefore should not be controlled (Diez Roux, 1998, 2004). Third, estimated ecologic and
contextual effects may be severely distorted when population interventions (related to the ecologic
factor) are implemented in those groups with high outcome rates (reverse causation). Fourth, the
ecologic units used in most multilevel analysis are administrative areas (e.g., census tracks), which
may not correspond to relevant social contexts for estimating neighborhood effects (Diez Roux,
1998; Greenland, 2001a). Fifth, an assumption of most multilevel analyses, based on individual
surveys, is that exposure and covariate distributions are stable over time, and this assumption will be
suspect when important trends are known to exist (Greenland, 2001a). Sixth, to the extent that neigh-
borhood characteristics (context) are determined (endogenously) by aggregating characteristics of
individuals within neighborhoods, and not by global (exogenous) interventions, causal (counter-
factual) interpretations of contextual and individual effects are problematic (especially when the
neighborhoods are small), because we cannot change an individual’s exposure status, holding con-
stant the mean exposure status (context) of the neighborhood in which that individual resides—i.e.,
individual and contextual effects are not identifiable (Greenland, 2002b; Oakes, 2004).

Multilevel analysis can be extended to more than two levels. For example, we might want
to predict certain health outcomes in nursing home residents as a function of characteristics of
the residents (e.g., age and health status), their physicians (e.g., type of specialty and country of
medical training), and the nursing homes (e.g., size and doctor-to-patient ratio). In this type of
analysis, residents are grouped by their physician (who might provide care to many residents in one
home) and by their nursing home affiliation.

The simplest design for generating multilevel analyses is a single survey of a population that is
large and diverse enough so that multiple groups (e.g., counties or ethnic groups) can be defined for
ecologic measurement and analysis. In addition to environmental and global variables for regions
or organizations, ecologic measures are derived by aggregating all subjects in each group. An
alternative, more efficient, approach is a multilevel or hybrid design in which a two-stage sampling
scheme is used first to select groups (stage 1), followed by the selection of individuals within groups
(stage 2) (Humphreys and Carr-Hill, 1991; Navidi et al., 1994; Wakefield, 2004). A hybrid design
might involve conducting a conventional multiple-group ecologic study by linking different data
sources, then obtaining supplemental data from individuals sampled randomly from each group. For
example, by estimating the exposure–covariate association in each subsample, this approach can be
used to improve the control of confounders in an ecologic analysis (Prentice and Sheppard, 1989,
1995; Navidi et al., 1994; Plummer and Clayton, 1996; Guthrie and Sheppard, 2001; Wakefield
and Salway, 2001; Wakefield, 2004). A variation of this hybrid design might involve a case-control
study as the second stage. Cases would be identified in the first (ecologic) stage, and controls would
be matched to cases on group affiliation and possibly other factors.

CONCLUSION

There are several practical advantages of ecologic studies that make them especially appealing
for doing various types of epidemiologic research. Despite these advantages, however, ecologic
analysis poses major problems of interpretation when making ecologic inferences and especially
when making biologic inferences (because of ecologic bias, etc.). From a methodologic perspective,
it is best to have individual-level data on as many relevant nonglobal measures as possible. Just
because the exposure variable is measured ecologically, for example, does not mean that other
variables should be as well. The accuracy of effect estimates from ecologic studies can often
be improved by obtaining additional data on the within-group associations between covariates,
between the exposure and covariates, or between the disease and covariates, and by incorporating
prior information.

Several epidemiologists have recently called for greater emphasis on understanding differences
in health status between populations—a return to a public-health orientation, in contrast to the
individual (reductionist) orientation of modern epidemiology (Rose, 1985; Krieger, 1994; Link and
Phelan, 1995; McMichael, 1995; Pearce, 1996; Susser and Susser, 1996; Schwartz and Carpen-
ter, 1999). This recommendation represents an important challenge for the future of epidemiol-
ogy, but it cannot be met simply by conducting ecologic studies. Multiple levels of measurement
and analysis are needed, and additional methodologic and conceptual issues must be addressed
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(Greenland, 2001a). Even when the purpose of the study is to estimate ecologic effects, individual-
level information is often essential for drawing valid inferences about these effects. Thus, to address
the underlying research questions, we typically want to estimate and control for biologic and con-
textual effects, preferably using multilevel analysis. In contemporary epidemiology, the “ecologic
fallacy” reflects the failure of the investigator to recognize the need for biologic inference and thus
for individual-level data. This need arises even when the primary exposure of interest is an ecologic
measure and the outcome of interest is the health status of entire populations.
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Social epidemiology is the study of relations between social factors and disease in populations.
It may be broadly interpreted to subsume differential occurrence of any risk factor or health outcome
across groups categorized according to any of a number of socially defined dimensions. Primary
among the axes of social distinction in contemporary Western societies are race/ethnicity, gender, and
socioeconomic class/position (Krieger et al., 1993; Lynch and Kaplan, 2000). Social epidemiology
therefore embraces a large number of questions about exposures and outcomes, and indeed one
might question whether there is any epidemiology that is not social epidemiology. The practical
distinction appears to be that social epidemiology is characterized by explicit inclusion of social,
economic, or cultural quantities in the exposure definition or the analytic model, or by explicit
reference to social science theory in the interpretation. Therefore, any exposure–disease relation
can be studied from the point of view of social epidemiology to the extent that the relation is modeled
in light of social variation in the quantities under study, or interpreted in the context of a social
theory or sociohistorical paradigm such as “social stratification,” “urbanization,” or “colonialism.”

There are two distinct types of general epidemiologic activity, both well represented in the social
epidemiologic literature: surveillance and etiologic inference. In surveillance, we merely seek to
describe accurately what the world looks like (see Chapter 22). A typical social epidemiologic
example describes the racial and social class distribution of coronary disease (Barnett et al., 1999).
Although we often seek to generalize beyond our observed sample, the purpose is entirely de-
scriptive. The focus is on occurrence of an outcome, perhaps in relation to a scaled axis—such as
time, age, or social class—but without regard to a specific exposure. The epidemiologic quantity
of interest is generally an occurrence measure itself, such as prevalence or incidence, rather than a
causal effect.

The second class of epidemiologic activity is etiologic inference, in which we seek to understand
the causal relation between a defined exposure and outcome. This activity is designed not to describe
the world as it exists, but rather how it would change under some defined, generally hypothetical,
intervention (Greenland, 2002a, 2005a; see Chapter 4). A typical social epidemiologic example
estimates the causal effect of changes in wealth on risk of mortality in the elderly (Kington and Smith,

532
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1997; Adams et al., 2003). Despite the many philosophic and methodologic dilemmas associated
with causal inference, etiologic investigations constitute the bulk of published epidemiologic work.
This result follows naturally from the fact that epidemiology is situated within the larger domain of
public health, a disciplinary identity that fixes intervention as the primary focus of epidemiologic
research (Breslow, 1998).

CAUSATION AND CONFOUNDING IN SOCIAL EPIDEMIOLOGY

Because a causal effect is defined on the basis of contrasts between potential outcomes under differ-
ent intervention regimens, many authors argue that we must immediately exclude nonmanipulable
factors, such as individual race/ethnicity and gender, from consideration as causes in this sense
(Holland, 1986; Kaufman and Cooper, 1999). This conclusion does not imply that a construct such
as race/ethnicity is not a valid focus of social epidemiologic research, only that the study design
and analytic approach must correspond to a substantively meaningful conceptualization of the ex-
posure and of the hypothesized intervention. For example, the effect of a patient’s racial/ethnic
classification on a clinician’s diagnostic judgment is a well-defined causal quantity because the
exposure can be physically manipulated in a real or imagined experiment (e.g., Loring and Powell,
1988; Schulman et al., 1999). In contrast, the effect of a patient’s racial/ethnic classification on that
same patient’s risk of incident coronary disease is not a well-defined causal quantity in this sense
and therefore has no obvious implications for intervention. Nonetheless, nonmanipulable quantities
such as individual race/ethnicity and gender can be employed sensibly as stratification variables or
effect-measure modifiers (Holland, 2001) or may be adjusted for as confounders in order to reduce
error in the estimated exposure effects of interest (Kaufman and Cooper, 2001).

Common modifiable exposures of interest in social epidemiology include factors such as income,
education, and housing quality. Although these exposures usually result from complex interactions
of social stratification and individual volition, they are potentially modified through public policy
via governmental programs of income supplementation, educational loans, and housing assistance.
Etiologic interest then lies in the contrast between outcome distributions under various intervention
regimens that fix the level (or distribution) of the exposure in the target population (Maldonado
and Greenland, 2002). For example, consider binary outcome Y = 1, defined as an incident asthma
attack within the period of observation, and the social exposure of interest, defined as residence
in privately owned housing (X = 1) versus residence in a public housing project (X = 0) during
a defined exposure period (a simple generalization would allow X to represent the proportion of
the population assigned to privately owned housing, rather than just the extremes of 1 and 0). One
causal effect of housing type on asthma would be the contrast (e.g., difference, ratio) between the
average risks of an asthma attack in the target population during the specified time period if all
households were assigned to public housing versus if all were assigned to private housing. In the
notation of Chapter 21, the first risk would be Pr[Y = 1|Set(X = 1)) and the second would be
Pr(Y = 1|Set(X = 0)].

As discussed in Chapter 4, confounding arises when the association measure in the source pop-
ulation, Pr(Y = 1|X = 1) versus Pr(Y = 1|X = 0), does not correspond to the effect measure that
would be observed under hypothetical manipulations of the social exposure in that population,
Pr[Y = 1|Set(X = 1)] versus Pr[Y = 1|Set(X = 0)]. For example, the hypothesis of a causal rela-
tion between housing type and asthma attacks is plausible, but subject-matter knowledge suggests
other influences on this health outcome from quantities—such as poverty—that also potentially
influence residential housing type. This prior knowledge implies that some part of the empirical
association observed between housing type and incident asthma attack may arise not from the
causal link between them, but rather from their mutual response to other material or psychosocial
manifestations of poverty. The crux of the problem in observational data is that we do not have
the opportunity to carry out any “settings” of the population, and so we must employ the observed
quantities in some way to estimate more validly the causal effect of interest.

One solution is to condition on measured aspects of poverty status. The logic behind this strategy
is that within the categorizations of poverty (e.g., poor and nonpoor if poverty is dichotomous and ho-
mogeneous within categories), there can be no confounding by this quantity (Greenland and Morgen-
stern, 2001; see Chapter 15). To the extent that we have enumerated and accurately measured a suf-
ficient set of common causes of exposure and outcome, this conventional epidemiologic solution is
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adequate for the specification of the desired causal effect from observational data in point-exposure
studies. Indeed, this strategy for the estimation of causal effects dominates epidemiologic analysis
of observational data, and has enjoyed some success. For social exposures, however, the prospects
are not always as hopeful, because the enumeration and accurate measurement of common causes
for multifactorial disease outcomes and complex behaviors such as residential housing choices is
a daunting task. Behaviors with dominating economic and social inputs have often proven quite
difficult to model in the social sciences (McKim and Turner, 1997). Even if we know all the factors
that determine where a person would choose to live, the task of obtaining accurate measures of these
many variables in a real dataset is formidable. For example, one must decide on some measurable
characterization of “poverty” in the preceding example, by obtaining reported information on a
limited number of material factors considered likely to influence both housing type and exposure
to other causes of an asthma attack.

EXPOSURE AND COVARIATE ASSESSMENT
IN SOCIAL EPIDEMIOLOGY

Social epidemiology is characterized primarily by the nature of the exposures that are investigated,
and techniques for defining and measuring exposures and covariates are therefore a major compo-
nent of social epidemiologic methodology. Throughout the history of the subfield, measurement has
involved a wide array of constructs. The majority of studies have considered exposures related in
some way to the primary axes of social discrimination cited previously (race/ethnicity, gender, and
social class/position), but many other studies have explored alternative quantities at the individual
level, such as marital status, material deprivation, social support, or status incongruity. Additionally,
many social epidemiologic exposures have also been defined at the aggregate level, including con-
structs such as social networks, economic inequality, social capital, and neighborhood deprivation.
Not only have a staggering number of exposures been considered, many of these have in turn been
defined and assessed in myriad different ways in different studies. Some representative and popular
methodologic approaches are described in the following.

SOCIAL FACTORS DEFINED AND MEASURED
AT THE INDIVIDUAL LEVEL

Race/Ethnicity

Racial/ethnic status is central to personal and social identity in many societies and serves as an
important determinant of material and social status as well as influencing social networks, residential
patterns, and behaviors. Although race and ethnicity are ostensibly designated in terms of ancestry
and physical characteristics, the nature of these quantities as aspects of personal identity means
that ultimately the “gold-standard” assessment is based on self-report (Kaufman, 1999). Although
analysis of highly variable regions of DNA can apportion continental ancestry with considerable
accuracy (Shriver et al, 1997), this quantity is not of social epidemiologic interest. The dominating
influences on life chances and social status arise not from biologic ancestry, but rather from the
racial/ethnic categorization recognized by others, and as a consequence, adopted by the individual
as a foundation for social affiliation and self-definition.

The continual evolution of these categorizations and their administrative management is itself
a methodologic morass (Williams, 1997). Epidemiologic studies in the United States have tradi-
tionally accepted the binary classification system of “white” and “black” that reflects the history of
slavery and de jure segregation in these terms. More recently, categorization has generally followed
definitions established for administrative purposes by the U.S. government for census data and other
demographic monitoring (Office of Management and Budget, 1977, 1997). For the year 2000 U.S.
census, respondents were for the first time permitted to report two or more racial identities, leading to
63 possible combinations of six basic racial categories: American Indian and Alaska Native, Asian,
Black or African American, Native Hawaiian and Other Pacific Islander, White and “Some Other
Race.” In addition, individuals could define their ethnicity as Hispanic or Non-Hispanic (Mays and
Ponce, 2003).
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Sex/Gender

As in the case of race/ethnicity, gender serves as an important determinant of social, environmental,
and material circumstances in all human societies and is therefore a key quantity in any social
epidemiologic analysis as a covariate, effect-measure modifier, or stratification variable. Although
gender is the social realization of biologic sex, which is ostensibly designated in terms of genotypic
and phenotypic traits, its social implications are highly dependent on culture and therefore vary
substantially with time and place (Krieger, 2003). Nonetheless, common practice for assessment
of gender is self-report into a binary categorization, although recent decades have witnessed the
increasing tendency to refer to this quantity more accurately as “gender” as opposed to “sex.”
Both theoretical work and increased awareness of substantial natural variability in physiology and
behavior have also led to growing recognition that this strict dichotomy is a convenient fiction
originating in historical convention (Dreger, 1998).

Educational Attainment

Level of achieved education is one of the oldest and most commonly used social epidemiologic
quantities and has the practical advantages of having a naturally ordered scaling and a value that
is often fixed early in adult life and reported consistently. The widespread use of this quantity also
derives from its presence in a great variety of administrative databases and other common data
sources. Educational attainment also has substantive relevance as a mechanism for achievement
of social position, as it facilitates advantageous behaviors and occupational advancement and is
therefore highly predictive of income and wealth (Miech and Hauser, 2001).

Nonetheless, the variable also has several disadvantages, both practical and theoretical. Typical
educational attainment and the economic and social benefits that accrue as a result have changed
over time, so comparison between age cohorts or across geographic regions is difficult (Liber-
atos et al., 1988). Similar incommensurabilities also complicate comparisons across gender and
racial/ethnic groups (Kaufman et al., 1997). There are also inherent discontinuities in the educa-
tion scale corresponding to completion of degrees and certifications (Oakes and Kaufman, 2006,
pp. 56–58). For example, completion of an additional year of high school beyond tenth grade may
confer little social advantage, whereas completion of an additional year beyond eleventh grade may
confer substantial advantage. This distinction leads some analysts to categorize education accord-
ing to these milestones—for example, into three categories corresponding to less than, equal to, or
greater than 12 years of education (i.e., the U.S. standard for a high school diploma). Given the
uncertain connection between educational content and years of schooling, as well as the overriding
socioeconomic significance of degree completion, the graded relationship that can be observed for
many health outcomes with years of completed education may be interpreted as evidence of the
endogenous assignment of years of schooling as a function of family resources and other personality
and environmental factors (Bowles et al., 2004).

Annual Individual or Family Income

Annual individual income is a key variable in social epidemiologic analyses for the obvious reason
that health is a commodity in market economies, and therefore financial resources are logically
expected to have a causal effect on health outcomes. Income also functions, like education, as a
sensitive marker of social position and therefore as an indicator not only of financial resources but
also of status and its social and material consequences, such as access to institutions and connections
to individuals with power and influence (Oakes and Rossi, 2003). Unlike education, income is also
fluid over time, and is therefore more responsive to changes in status over the life course. The fluid
nature of annual income also presents an analytic challenge, however, especially for measuring the
status and resources of the retired (Robert and House, 1996). It also makes income sensitive to
“reverse causality”; whereas low income facilitates negative health transitions, it is also true that
failing health lowers earnings (Smith, 1999). Indeed, the volatility of annual income itself has been
an exposure of interest, under the hypothesis that drastic changes in financial resources, such as
those associated with job loss or divorce, may be more salient for health outcomes (McDonough
et al., 1997).

Measurement of income is often by self-report in surveys, although the data may also be drawn
secondarily from administrative records (Rogot et al., 1992). For self-reported data, the data are
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often queried in broad categories in order to minimize respondent discomfort. Even so, item non-
response for income is considerably higher than for education or occupation, with roughly 10%
typically declining to answer (Liberatos et al., 1988). Use of empirical categories may limit the
ability to compare studies if these categorization boundaries differ, but the implications of absolute
income values are contextually dependent in any case, so comparison across populations may of-
ten be tenuous, even for studies with common categorizations. For statistical analysis, natural-log
transformation of income is often warranted because of the rightward skew of the distribution, and
the observation that effects on health outcomes appear more log-linear than linear (Backlund et al.,
1996). Nonlinearity in this relation is intuitively reasonable, because income changes are inherently
relative: A change of $1,000 has a much bigger effect on someone who is destitute than it does on
a millionaire.

Because families tend to share both material resources and social prestige, it is common practice
to assess not individual income, but rather household income (Oakes and Kaufman, 2006, pp. 58–
60). This quantity could be construed to subsume all financial compensation received during the
relevant period, including paid employment and value of employee benefits. Survey respondents
may need to be specifically directed to consider less obvious sources of income, including Social
Security payments, capital gains from sales of assets, interest and dividends received, receipt of
rent payments, child support and alimony payments, and receipts from government aid programs.
Measurement error can be substantial, and the error cannot be assumed to be uncorrelated with the
true value (Pedace and Bates, 2001). The ascertained value may often be scaled to the number of
people relying on the specified income, although “economies of scale” exist such that the accounting
for family size might not involve a simple division (Buhmann et al., 1988).

A related concept is “poverty,” a state of insufficient income to meet basic material needs. This
designation is a dichotomization of household income on the basis of some assessment of what is
a minimally sufficient quantity for sustaining the dependent individuals. The determination of this
value has been controversial. In the United States it has relied heavily on a method devised in 1963
by an economist at the Social Security Administration (Fisher, 1992). This definition was revised
in 1969 to allow the threshold to be linked to the Consumer Price Index, and has been subject
to further incremental modifications in subsequent years. The definition accounts for household
income, household size, and ages of individuals in the household, creating 48 distinct threshold
values. Although many critics maintain that the definition remains inadequate, it has remained a
fixture of government and public health statistics for four decades (Citro and Michael, 1995). In
addition to modeling income as a continuous quantity or as a dichotomy at the poverty line, this
definition also allows each income to be modeled in proportion to the poverty line with respect to
the specific household size and composition, solving the problem of having to scale the income to
the number of people supported. On the other hand, poverty thresholds remain undefined for many
individuals outside of households, including those in prisons, nursing homes, college dormitories,
and military barracks.

Household Wealth

Whereas income represents a flow of material resources to an individual or family, wealth represents
the accumulated stock of these resources and therefore has relevance to health outcomes as both an
indicator of achieved social position as well as a measure of the total resources that can be mobilized
in the service of health and well-being. Lower levels of assets also make individuals and families
vulnerable to income fluctuations, periods of unemployment that disrupt insurance coverage, and so
forth. Incommensurabilities between income and wealth are particularly striking when comparing
men and women, or when comparing racial/ethnic groups (Oliver and Shapiro, 1995). For example,
models that contrast outcome risks between racial/ethnic groups while adjusting for income and
education in order to control for social position leave the racial/ethnic contrast heavily confounded
by wealth (Lynch and Kaplan, 2000; Kaufman et al., 1997).

Though traditionally absent from many health surveys, wealth data are now increasingly avail-
able, albeit often in the form of a few crude indicators. Whereas assets may exist in a variety
of financial instruments (e.g., stocks, bonds, retirement accounts) and material repositories (e.g.,
home, vehicles, jewelry), the largest amount of wealth in the United States is held in the value of real
estate and vehicles, comprising >50% of privately held assets in 2000 (Orzechowski and Sepielli,
2003). Therefore, questions as simple as “Do you own your home?” can be quite informative for
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distinguishing low from high asset levels. Surveys that query the home value are even more useful
in this regard, although respondents are unlikely to distinguish between home value and equity ac-
tually held. An increasing proportion of personal wealth is held in individual retirement accounts,
stocks, and mutual fund shares, but survey protocols for the accurate collection of these data are
laborious and exist in only a few large health surveys. Where these have been analyzed with respect
to health outcomes, however, they have been shown to be highly predictive of endpoints, even
after conditioning on education and income and other socioeconomic covariates (e.g., Kington and
Smith, 1997). Methodologic obstacles include the potential for substantial measurement error and
item nonresponse, as well as the challenges posed by the large proportion of households with no
assets, and the very extended right tail of the distributions. For example, median household assets
for blacks and non-Hispanic whites in 2000 were $6,200 and $67,000, respectively, whereas mean
household assets for the same two groups were $35,000 and $198,000 (Orzechowski and Sepielli,
2003).

Occupation/Unemployment

Another historically important indicator of social class or social position has been an individual’s
current employment status, occupation, or occupational class. These measures provide not only an
indication of social prestige and the functional consequences of education and social connections, but
also a direct reflection of the circumstances relevant to health through the physical and psychologic
environment of the workplace itself (Oakes and Kaufman, 2006, pp. 49–56). Many countries,
such as the United Kingdom, continue to base their standard socioeconomic position measure
on occupational class, as opposed to the education and income measures that dominate in the
United States. The British Registrar General’s Scale, used for almost 100 years, was a hierarchy
of six categories: Social Class I (professional), Social Class II (intermediate), Social Class III-NM
(skilled nonmanual), Social Class III-M (skilled manual), Social Class IV (partly skilled), and
Social Class V (unskilled) (Marmot et al., 1991). As of 2001, this schema has been revised to
include eight categories, including a new category for the long-term unemployed, a subdivision
of professionals into higher and lower managerial positions, and a change in terminology from
“unskilled” to “routine” occupations (Elias et al., 2000).

Previously in the United States, occupational categories were commonly combined with achieved
educational level or other socioeconomic quantities to generate a summary socioeconomic index.
Various of these indices, such as the one developed by Hollingshead, experienced periods of pop-
ularity in sociology and epidemiology (Liberatos et al., 1988), although they are used to a much
lesser extent in the contemporary epidemiologic literature. Among the most influential of these
combined measures was the Duncan Socioeconomic Index (SEI), which required analysts to map
all reported occupations onto U.S. census occupation score codes, a laborious and often frustrating
task because of the ambiguity of many self-reported job descriptions (Hauser and Warren, 1997).

Like income, occupation and employment status can by dynamic throughout the life course,
and therefore these measures share the advantages and disadvantages of this potential volatility,
including the “reverse causality” of declining health leading to a diminution in occupational prestige.
Occupation also shares the problem of incommensurability of prestige and remuneration across
gender or racial/ethnic groups or across geographically distinct populations, as well as changes
over time in the social and material significance of various occupations. Furthermore, occupational
category is difficult to assign for individuals functioning outside of the wage economy, including
unpaid domestic labor and those performing informal or illegal activities (Krieger et al., 1997).

One distinct conceptualization of occupation is as an indicator of economic relations between
groups of people rather than as a measure of the characteristics of individuals considered in terms of
a continuous social hierarchy. A contemporary operationalization of this approach is to categorize
occupations in relation to the economic classes that define capitalist production (Wright, 1996). This
entails collection of information about power relations in the workplace, as well as the assets that
allow individuals to control their own production (e.g., in the case of craftspersons and artisans) or
to control the process of production involving larger groups of workers in factories or office blocks.

Discrimination and Racism

Whereas dimensions of individual identity such as race/ethnicity, gender, and sexual orientation
are not manipulable through public health interventions, the consequences of these categories as
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social labels are entirely malleable and therefore have causal meaning as exposures in the sense
described previously (Kaufman and Cooper, 2001). The key distinction is that the causal quantity
is not the identity of the individual per se, but rather the perception of this identity by others,
and the role this perception plays in influencing the behavior of individuals and institutions that the
person encounters. Differential behavior of individuals and the institutions on the basis of perceived
social categorization is broadly described as “discrimination,” including the forms of discrimination
corresponding to specific dimensions of identity, such as “racism,” “sexism,” and so forth (Krieger,
1999).

Methodology for assessment of discrimination in surveys has most often focused on self-report
of interpersonal affronts and experiences of perceived injustice (e.g., McNeilly et al., 1996). An
obvious limitation of this approach is that discrimination need not be perceived by the respondent
in order to be consequential, and indeed, structural and institutional discrimination may often be
invisible to the individual. One innovation to achieve greater sensitivity in this regard is to query
individuals not about their own experiences, but rather about the experiences faced by others who
share their identity (Taylor et al., 1990).

Another approach is to use experimental or quasi-experimental designs to isolate the effect of
perceived identity on the decision making of an individual or institutional process. For example,
“audit studies” of medical or economic encounters, such as referral for surgical procedures or appli-
cation for employment, involve comparison of cases matched (observationally or experimentally)
on individual characteristics with the exception of social category of interest (usually race and/or
gender) in order to isolate the causal effect of perceived group membership on the decision process
(Yinger, 1986; Darity, 2003). When real subjects are matched on observed covariates, the possibility
exists that imbalance persists in unmeasured attributes (Heckman, 1998). When actors are used in
place of real subjects, or when case vignettes or medical charts or job applications are artificially
created to be completely identical except for the group identifier, then the causal discrimination
effect is directly identifiable (Blank et al., 2003).

SOCIAL FACTORS DEFINED AND MEASURED
AT THE AGGREGATE LEVEL

A number of important quantities in social epidemiology are defined not at the individual or house-
hold level, but at the level of some larger aggregation, often neighborhoods, counties, states, or
nations. Neighborhoods, in particular, have been of long-standing interest in social epidemiology
(Kawachi and Berkman, 2003), despite the fact that no consensus on an operational definition for
what constitutes a neighborhood has been achieved (O’Campo, 2003). Because of the frequent
dependence on routine census data for characterizing aggregations of individuals, administrative
boundaries such as census block groups and tracts in the United States (and census enumeration
districts in the United Kingdom) are the most widely used proxies for neighborhood boundaries,
even though the locations of these boundaries are generally unknown to the inhabitants.

Deprivation

Just as the material resources of individuals and households characterize their socioeconomic po-
sition, a neighborhood’s material resources may be used to characterize the community’s degree
of deprivation. These material resources may be aggregates of individual-level data, such as the
average income or average educational level, or they may be resources that are defined only at
the neighborhood level, such as population density, the presence of health clinics or sidewalks,
the prevalence of broken windows or graffiti, or the magnitude of some summary quantity such
as “social disorganization” or “neighborhood efficacy” (Haan et al., 1987). When summary scores
are created from a number of social variables, factor-analytic or latent-variable methods are often
employed in order to find weights for the component quantities (Raudenbush and Sampson, 1999;
Oakes and Kaufman, 2006, pp. 216–226). Several scales have been defined in the literature and have
gained widespread use, such as the Townsend and Carstairs deprivation indices that were developed
in the United Kingdom. The variables employed to characterize neighborhoods are most often those
available from census and other administrative data, but direct observation of neighborhoods has
also been employed in various studies in order to provide a richer assessment of the social and
material environment (Caughy et al., 2001; Oakes and Kaufman, 2006, pp. 193–202).
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Segregation

Residential segregation is a measure of the systematic physical arrangement of individuals with
respect to some dimension of social identity, most often race/ethnicity, within communities or
larger spatial units such as cities or counties (Oakes and Kaufman, 2006, pp. 169–192). Segregation
emerges from a complex mix of factors, including voluntary choices and involuntary constraints
such as discrimination in the housing market and economic barriers to mobility. Massey and Denton
(1988) identified 20 statistical indices of residential segregation and grouped these into five distinct
dimensions: evenness, exposure, concentration, centralization, and clustering.

Evenness is simply the degree to which a minority group is distributed uniformly over space and
can be assessed statistically by the dissimilarity index:∑n

i=1 (ti |pi − P|)
2TP(1 − P)

where n is the number of spatial units, ti is the population of unit i , T is the total population of
all spatial units combined, pi is the proportion of unit i’s population that is minority, and P is the
proportion of the total population that is minority. The dissimilarity index therefore measures the
percentage of the minority group’s population that would have to change residence for each spatial
unit to have the same percentage of that group as the population has overall, with the index ranging
from 0 (no segregation) to 1 (complete segregation).

An alternative index of evenness is the Gini coefficient, which is the average absolute differ-
ence between minority-group proportions weighted across all pairs of spatial units, expressed as a
proportion of the maximum weighted average difference:∑n

i=1

∑n
j=1

(
ti t j

∣∣pi − p j

∣∣)
2T 2 P(1 − P)

where i and j are indices for spatial units, and therefore the Gini coefficient also varies from 0 to 1.
There are additional evenness measures, including Theil’s entropy (or information index), and the
Atkinson index (Iceland et al., 2002).

Exposure is the dimension of segregation that pertains to the extent of potential contact or
interaction between members of diverse social groups. Evenness and exposure are correlated but
distinct, because unlike evenness measures, exposure measures take into account the relative sizes
of the groups being compared. The two measures of exposure that were identified by Massey and
Denton (1988) represent the probability that a minority chosen at random will share a spatial unit
with a majority person (interaction index) or another minority person (isolation index). When only
two groups are considered, these two measures sum to unity.

Concentration describes the relative amount of physical space occupied by each social group. In
considering two minority groups that have equal representation in the total population, the group
that occupies the smaller physical space may be considered more highly segregated. Of the three
concentration measures identified by Massey and Denton (1988), the oldest is Hoover’s “delta,”
which represents the proportion of minorities in spatial units that have above-average density of
minorities: ∑n

i=1 |(xi/X ) − (ai/A)|
2

where xi is the minority group population and ai is the land area in spatial unit i , and X is the total
minority population and A is the total land area of all spatial units combined.

The fourth dimension of segregation is centralization, which refers to the location of the minority
population with respect to the geographic center of the larger area under consideration. A relative
measure of centralization represents the proportion of the minority population that would have to
change spatial units in order to be distributed like the majority population, whereas an absolute
measure of centralization considers the spatial distribution of the minority group alone, without
reference to the distribution of the majority group. Both relative and absolute measures range
from −1 to 1, with negative numbers indicating residence distant from the geographic center of the
larger area and positive numbers indicating residence near the center. Some authors consider the
centralization dimension to be increasingly irrelevant, as U.S. cities continue the trend of suburban



P1: TNL Printer: RRD

GRBT241-26 GRBT241-v4.cls January 18, 2008 12:5

540 Section IV ● Special Topics

growth and economic development, making a residential location that is close to or distant from the
geographic center of the metropolitan area less significant.

Finally, clustering is the dimension of segregation that represents whether or not minorities
live in contiguous spatial units. An absolute index of clustering measures the average number of
minorities in adjacent spatial units as a proportion of the total denominator population of these
units. Alternatively, a relative clustering measure compares the expected distance between any
two minority individuals chosen at random with the expected distance between any two majority
members chosen at random. Massey and Denton (1988) also propose “distance-decay interaction”
and “distance-decay isolation” measures, which represent the probabilities that the person a minority
next encounters is also member of the majority or minority group, respectively.

Inequality

Residential segregation is merely one dimension of inequality, but the differential distribution
of social and material resources in the society may be considered along any of a number of other
dimensions as well. Greatest interest has centered on economic inequality—for example, the unequal
distribution in a population of income or wealth. A research agenda relating economic inequality to
population health has been a primary focus of social epidemiologic activity for the last two decades
(Lynch et al., 2004; Oakes and Kaufman, 2006, pp. 134–168), spurred in part by increasing levels
of income and wealth inequality in industrialized societies since the 1970s. Whereas earlier papers
focused on variation in income distribution between wealthy nations, the literature quickly expanded
to include comparisons of smaller political entities such as states and provinces, as well as counties
and metropolitan areas. These studies pursued a wide variety of health outcomes, with an emphasis
on various measures of all-cause or cause-specific mortality risk. Most studies also adjusted for some
measure of absolute wealth or poverty, such as per-capita income. This adjustment was motivated
by the concern that if individuals with low incomes have higher risk of adverse outcomes and live
disproportionately in areas with greater income inequality, then the causal effect of inequality may
be confounded. This potential confounding has been described as a problem of disentangling the
“compositional” from the “contextual” effects of income inequality, and has led in the last decade
to widespread use of multilevel regression modeling in order to address this concern (Greenland,
2001a; Subramanian and Kawachi, 2004). Nonetheless, misspecification of the model (e.g., using
linear regression though the true relationship is nonlinear) will still leave inequality and health
outcomes associated, even if there is no true causal effect of inequality (Gravelle, 1998)

Several popular measures of income or wealth inequality are derived from the well-known
curve introduced by Lorenz in 1905 (Cowell, 1995). To construct the Lorenz curve, rank-order the
n individuals in the population according to the quantity of interest y—say, income—such that
y1 ≤ y2 ≤ y3 ≤ . . . ≤ yn , and pass through the population from smallest income value to largest
value. The horizontal axis of the Lorenz curve measures the cumulative proportion of individuals
passed at any point, F(y), so it runs from 0 at the left to 1 at the right. The cumulative share
of income accounted for by the ranked individuals, �(y), is similarly recorded on the vertical
axis: as one reaches an income yi while passing from left to right across the income values, the
corresponding cumulative income proportion, p, held by the individuals to the left of yi is plotted.
The resulting graph of F(y) versus �(y) is the Lorenz curve (Fig. 26–1). Because the individuals
are rank-ordered, the curve must always lie along the 45◦ diagonal (in the case of perfect equality)
or be strictly convex under the diagonal (if there is any inequality).

The Gini coefficient defined in the previous section is the most common inequality measure,
and it has the attractive property of being the proportion of the area under the diagonal that is
above the Lorenz curve. Therefore, when there is perfect equality, this area disappears, and the
Gini coefficient is 0. When there is complete inequality (the richest unit yn holds 100% of the
income in the population), then 100% of the area under the diagonal is above the Lorenz curve, and
the Gini coefficient equals unity. Despite its widespread use, the Gini coefficient has the notable
disadvantage that it entails differential weighting of transfers that occur at various locations in the
distribution. For example, a transfer of a fixed amount of income that occurs between a richer and
a poorer individual has a much larger effect on the Gini coefficient if the two individuals are near
the center of the rankings than if they are at the extremes.

A few other inequality measures have been applied in the social epidemiologic literature, includ-
ing the Robin Hood index, Atkinson’s index, and Thiel’s entropy (Cowell, 1995). The Robin Hood
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FIGURE 26–1 ● The Lorenz Curve showing
the cumulative share of income accounted for
by ranked individuals.

index is the maximum vertical distance between the 45◦ diagonal representing perfect equality and
the Lorenz curve. This can be interpreted as the proportion of the total income in the population
that would have to be transferred from individuals above the mean to individuals below the mean
in order to achieve equality in the distribution of incomes. Computation of Atkinson’s index re-
quires specification of a social-welfare constant representing the society’s aversion to inequality,
and therefore is perhaps less widely applied because of the difficulty in ascertaining this value.
Theil’s entropy index was introduced in the late 1960s and is based on information theory. Consider
an individual’s share of the total income = si = yi/ny. So, for example, if si = 1/n, everyone gets
an equal share. Then Theil’s inequality measure is

∑n

i=1
si

[
ln(si ) − ln

(
1

n

)]
= 1

n

∑n

i=1

yi

y
ln

(
yi

y

)

This index therefore has a range from 0 to ∞, with higher values representing greater entropy and
thus a more equal distribution of income.

Social Capital

Another characteristic of a community, neighborhood, or other natural aggregation of individuals is
the level of “social capital”: the totality of social organization, including networks and relationships
of trust and obligation that function to the mutual benefit or detriment of the inhabitants. This
communitarian conceptualization, which dominates contemporary epidemiologic applications, is
often attributed to work by Putnam, and contrasts with an alternate conceptualization attributed to
Bourdieu that sees social capital primarily as an attribute of individuals (Portes, 2000). According to
the dominant interpretation of social capital in public health research, bonding between individuals,
and the bridging and linking of subgroups within the larger community, act to produce society-
wide attributes of collective trust and result in an elevated level of functionality and cohesion.
Commensurate with this viewpoint, the common measures of social capital in health research have
involved measures of civic participation such as voting, or survey responses concerning the levels
of membership in voluntary organizations and levels of reported “interpersonal trust” (Baum and
Ziersch, 2003).

Closely linked to the concept of social capital is the study of social networks, which has estab-
lished methodology within sociology and yet has been applied less consistently in public health
research (Wasserman and Faust, 1994). This analytic approach adopts a view of social capital more
heavily influenced by Coleman, focusing on social structure and exchange of material and informa-
tion. Related concepts can be found in earlier work in psychosocial epidemiology around constructs
such as “social support” and “instrumental support,” based on scales summed from Likert-scale sur-
vey questions (Berkman, 1984). But in contrast to these earlier methods, analysis of social networks
is at the aggregate level, considering the structure of the links between individuals in the population
and how they function to transmit information, material assistance, or even infectious agents (Oakes
and Kaufman, 2006, pp. 267–286). Networks are represented as directed arcs between nodes, which
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give rise to parameters such as density, centralization, and clustering (or segmentation), and facilitate
statistical modeling for static or dynamic networks, such as decision-making structures, patterns of
mutual assistance, or sexual relationship structures (Morris, 2004). Notably, social network analy-
sis explicitly permits the potential responses of a unit to an exposure to depend on the treatments
assigned to other units, thus allowing violations of the “stable-unit-treatment-value assumption”
(Rubin, 1978, 1990a, 1991) used in most applications of potential-outcome models. Such analyses
require significantly greater investment in data collection, but they are obviously much better suited
to the task of providing realistic models of social phenomena than are the static, individually focused
survey questions of past eras (Koopman and Lynch, 1999)

ANALYTIC APPROACHES

MULTILEVEL MODELING

Of the statistical innovations of the past decades, none has been more intimately tied to social
epidemiology than multilevel regression modeling, also known as hierarchical regression (Chapter
21). This marriage of method and application arose in the early 1990s with roughly coincident
revolutions in theory and technology. The theoretical revelation was that social epidemiology could
not move forward without explicit accounting for hierarchical structures, a need articulated force-
fully by Susser’s metaphor of “Chinese boxes” (Susser and Susser, 1996). The “Chinese boxes”
paradigm was intended to extend the traditional epidemiologic “black box” to encompass multi-
ple and nested levels of organization, from the molecular to the individual to the societal. On the
technology side, the innovation was the advent of regression methods for clustered data in popular
statistical software, with rapid progress in the 1980s in the development and implementation of both
random-coefficient and population-average models. Early work by Mason et al. (1983) introduced
these methods to sociology, although it was another decade or more before they became common
in social epidemiologic applications (O’Campo et al., 1997).

The term multilevel model is now used so broadly as to include any statistical technique that
accommodates clustered data, but the random-coefficient model has become a common form in
social epidemiologic applications (Subramanian and Kawachi, 2004; Oakes and Kaufman, 2006,
pp. 316–340). The fundamental statistical dilemma is that epidemiologic analysts have come to
rely heavily on regression methods to condition on multiple covariates without creating sparse
cells. But standard model-fitting methods assume independent observations, an assumption that
will be false under study designs such as cluster randomized trials or cohort studies with repeated
measures, or when data are collected at several levels of a natural hierarchy, such as individuals
within neighborhoods. If, after control of covariates, the cluster variable (such as neighborhood)
still predicts the outcome, then an analysis that ignores this variable will produce biased variance
estimates for estimated coefficients of neighborhood-level predictors, and therefore lead to invalid
tests and intervals.

To illustrate the multilevel concept, consider continuous outcomes Yi j for i = 1, . . . , n individ-
uals living in j = 1, . . . , m neighborhoods, where Y is normally distributed within each neigh-
borhood with mean β0 j and variance σ 2. The random-coefficient concept applied to the intercept
(i.e., a random-intercept model) is to assume that the neighborhood-specific means β0 j can also be
described by a random distribution of known form—for example, that they are normally distributed
with mean γ00 and variance τ00. These assumptions give rise to a two-level model:

Yi j = β0 j + εi j (Level 1)

β0 j = γ00 + μ0 j (Level 2)

where εi j ∼ N (0, σ 2), μ0 j ∼ N (0, τ00
2), and COV(εi j , μ0 j ) = 0.

The combined model, replacing β0 j in Level 1 with its components from Level 2, is

Yi j = γ00 + μ0 j + εi j

which expresses each outcome as the sum of an individual deviation (εi j ) and a neighborhood-
specific deviation (μ0 j ) from a grand mean (γ00). This model is also known as a one-way random-
effects ANOVA because it partitions variability into a component due to individuals and a component
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due to neighborhoods. The relative contribution of the variance components to the total variance
may be represented by the intraclass (or intracluster) correlation coefficient, the proportion of
the variability in Y that occurs between neighborhoods, rather than between individuals within
neighborhoods:

ICC = ρ = τ 2
00

σ 2 + τ 2
00

(Bingenheimer and Raudenbush, 2004).
Multilevel models can be expanded to include fixed-coefficient and random-coefficient terms at

the individual level, at the neighborhood level, or both. A fixed coefficient takes the same value for
all neighborhoods. For example, the model

Yi j = β0 j + β1 Xi j + εi j (Level 1)

β0 j = γ00 + μ0 j and β1 = γ10 (Level 2)

implies that the expected change in Y per unit increase in X is β1for all neighborhoods. A random
coefficient for an individual-level covariate X , which allows a distribution of X effects rather than
a single effect, could be modeled as

Yi j = β0 j + β1 j Xi j + εi j (Level 1)

β0 j = γ00 + μ0 j and β1 j = γ10 + μ1 j (Level 2)

where μ0 j ∼ N (0, τ00), μ1 j ∼ N (0, τ11), and COV(μ0 j , μ1 j ) = τ01.
One can also add neighborhood-level covariates to the Level 2 equations:

β0 j = γ00 + γ01 Z j + μ0 j and β1 j = γ10 + γ11 Z j + μ1 j (Level 2)

This model implies cross-level product (interaction) terms between covariates X and Z , as well as a
product between X and random effect μ1 j , as can be seen by replacing the coefficients in the Level
1 model with their equations in the Level 2 models to form a single combined equation:

Yi j = γ00 + γ01 Z j + μ0 j + (γ10 + γ11 Z j + μ1 j )Xi j + εi j

= γ00 + γ01 Z j + γ10 Xi j + γ11 Z j Xi j + μ1 j Xi j + μ0 j + εi j

Therefore, according to this model, the effect of X on the outcome Y in a given neighborhood j
will depend on the level of Z in that neighborhood and on the random effect (Level 2 error term)
μ1 j . For units with Z = 0, this random effect μ1 j is the deviation of the X effect in neighborhood
j from the average X effect in all neighborhoods, γ10. If only β0 j is treated as random, then the
cross-level product involves only Z and X :

Yi j = γ00 + γ01 Z j + μ0 j + (γ10 + γ11 Z j )Xi j + εi j

= γ00 + γ01 Z j + γ10 Xi j + γ11 Z j Xi j + μ0 j + εi j

For example, for binary X , the expected difference between exposed (X = 1) and unexposed (X =
0) groups is (γ10 + γ11 Z j ), and so depends on the value of Z in neighborhood j .

This framework may be applied to generalized linear modeling. For example, for binary Yi j , the
Level 1 model could be logistic while the Level 2 models could remain linear (see Chapter 21 for
examples). More than two levels can be used, although applications with three or more levels are
uncommon (Goldstein et al., 2002). Regardless of the model form or number of levels, however, a
key point is that the regression coefficients in random-effects models represent within-cluster (i.e.,
cluster-conditional) relations. In this respect, their interpretation parallels those in stratified analysis
and ordinary regression . For example, in the ordinary linear model Y = β0 + β1 X + β2 Z + ε, the
coefficient β1 in the fitted model is interpreted as the expected change in Y per unit change in X ,
holding Z fixed. Similarly, in a model with a random effect such as μ0 j in Yi j = γ00 + β1 Xi j +
μ0 j + εi j , the interpretation of β1 is similarly conditional on all other variables in the model held
constant including μ0 j , a neighborhood-specific quantity that is not directly observable. Rearranging
the model as Yi j = (γ00 + μ0 j ) + β1 Xi j + εi j , it can be more readily seen that within neighborhood
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j , the regression of Y on X is linear with intercept (γ00 + μ0 j ) and X coefficient β1. Note that this
model assumes that the X coefficient is constant across neighborhoods. Considering the clusters
as analysis strata, this assumption is just a regression version of the homogeneity (uniformity)
assumption made by Mantel-Haenszel and other summary estimators discussed in Chapter 15. If
we can interpret β1 causally (and this requires absence of bias as well as correct specification of
the model), this corresponds to assuming a uniform effect of X across clusters when effects are
measured by estimated coefficients.

When a coefficient is treated as random, the cluster-specific estimates of effect are “shrunk”
toward the mean value that corresponds to what would have been estimated had the coefficient been
treated as fixed (Greenland, 2000d). For example, consider again the simplest model with a ran-
dom intercept, Yi j = γ00 + μ0 j + εi j . We observe neighborhood-specific sample means β̂0 j = Y j ,

as well as the observed marginal (total) sample mean γ̂00 = Y . In a valid cohort study, the
neighborhood-specific sample means are unbiased estimates of the population values of β0 j , but
fitting the random-intercept model instead produces estimates that are biased by being “shrunk”
toward the grand sample mean γ̂00 = Y . The extent to which they are shrunk is a function of their
precision: A neighborhood with many observations has a stable estimate of its mean and therefore
takes a value close to β̂0 j = Y j , whereas a neighborhood with fewer observations has an unstable

estimate of its population mean and therefore takes a value close to γ̂00 = Y . The inverse-variance
weighted average of these two values produces estimates that minimize mean-squared error (be-
tween the estimates and population means), and are also known as empirical-Bayes estimates.

Frequently, the application of multilevel models in social epidemiology is oriented around the
random-effects ANOVA interpretation, partitioning the variance that is due to community-level
factors (contextual effects) from that due to individual-level factors (compositional effects). For
example, the test of the null hypothesis that τ 2

00 = 0, and thus that ICC = 0, is generally taken
as evidence that the differences in outcome means observed between communities are accounted
for by the covariates included in the model. This focus creates technical difficulties because τ 2

00

cannot be negative (Self and Liang, 1987). There is also the more fundamental problem that omitted
covariates can account for residual variability at either level. For example, there can be large effects
of neighborhood characteristics even when ICC is small (Bingenheimer and Raudenbush, 2004).
Furthermore, if ICC > 0 even after inclusion of individual-level characteristics, there is no logical
way to assert that the residual between-neighborhood variability is therefore contextual in nature
(i.e., due to omitted neighborhood-level factors). Assertions of contextual effects should therefore
be based on the estimated coefficients of measured neighborhood-level variables, rather than on
variability that remains after individual-level variables have been included in the model (Oakes,
2004).

An important assumption of the multilevel model that is necessary for causal interpretation of
the estimated coefficients is that there is no residual correlation between individual-level predictors
and neighborhood-level random effects (i.e., Level 2 error terms), essentially an assumption of
no-residual confounding. Interestingly, while concern over the validity of this assumption has
preoccupied economists for decades (e.g., Hausman and Taylor, 1981), it receives considerably less
attention in biostatistics and epidemiology. Econometricians generally test for violations of this
assumption with a specification test due to Hausmann (Greene, 2003, pp. 301–303), and revert to
a fixed-effects analysis if there is evidence of such a violation. The null hypothesis of this test is
that there is no residual correlation between exposures and random effects. Under the null, both
random-effects and fixed-effects models will be unbiased, but random-effects estimates will be more
efficient (i.e., have smaller standard errors). If the null is false, however, then only the fixed-effects
estimates remain unbiased and may be preferred despite their greater cost in terms of degrees of
freedom.

MARGINAL MODELS

The models described so far exhibit the relation of Y to covariates among subjects within clusters
and hence are sometimes called “subject-specific” or “cluster-specific” models. A different class
of models, marginal models, describes the change in the mean of Y across clusters, and hence
they are often described as “population-average” models. Instead of entering cluster effects as
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random terms, these models account for cluster effects by introducing parameters for within-cluster
correlations, and by using a fitting method (generalized estimating equations, or GEE) that allows
for these correlations. This method is available in major software packages (Diggle et al., 2002,
pp. 70–80). Marginal models can be viewed as multilevel insofar as they permit inclusion of
predictors from both levels of aggregation. Unlike within-cluster models, however, they do not
directly model distributions of effects across clusters.

Suppose there are neighborhood effects beyond those captured by the modeled covariates, and
one fits a model for the outcome that is neither linear nor log-linear (e.g., a logistic regression
model). In this case, the parameters and hence estimates from marginal models will tend to differ
from the corresponding parameters and estimates from within-cluster models, especially if the
outcome Y is binary with Y = 1 common (Diggle et al., 2002, p. 131–137). The difference between
the within-cluster and population-average parameters is just a general case of the noncollapsibility
phenomenon for odds ratios illustrated in Chapter 4, and like that phenomenon it can lead to great
confusion of interpretation and usage. The choice of approach should follow from consideration of
the causal question at hand, however. Within-cluster models are suitable for estimating the effect
on Y of changes in X within clusters, albeit they may assume that those effects are homogeneous
across clusters. In contrast, marginal models are suitable for estimating the effect on Y of a change
in X in the total population (i.e., the effect on the mean of Y of a unit change in X over all clusters),
conditional on other covariates in the model. In this respect, marginal models are just generalizations
of standardization (Sato and Matsuyama, 2003; see Chapter 21).

EFFECT DECOMPOSITION

A common analytic strategy in social epidemiology is the decomposition of effects by contrasting
two adjusted effect estimates for the social exposure of interest: an estimate adjusted for potential
confounders; and an estimate adjusted for the same set of potential confounders plus one or more ad-
ditional variables hypothesized to be causal intermediates (i.e., to lie on pathway(s) through which
the exposure exerts its effect). This contrast is then typically used to distinguish the exposure’s
indirect effect, through the specified intermediate variables, from its direct effect, transmitted via
pathways that do not involve the specified intermediate variables (Fig. 26–2). If control of hypothet-
ical causal intermediates greatly attenuates an exposure’s estimated effect, it is usually inferred that
the exposure’s effect is mediated primarily through pathways involving these quantities; a small
degree of attenuation is interpreted as evidence that other pathways predominate (Szklo and Nieto,
2000, pp. 184–187).

Recent work on the formal definitions of direct and indirect effects in a potential response
framework casts some considerable suspicion on this approach, however (Robins and Greenland,
1992). One problem (described in Chapter 12) is that adjustment for an intermediate may introduce
confounding where none existed before. Another problem is that direct effects need not be smaller
in magnitude than total effects. Consider the simple example of a binary outcome of homelessness
(Y = 1) for a young man as a function of education (high school dropout = 1; high school diploma
= 0) and employment status (Z = 1 if unemployed; Z = 0 otherwise). We wish to consider the
proportion of the total effect of dropping out of high school on homelessness that is due to the
effect of dropping out on unemployment (often expressed as the extent to which unemployment
“mediates” the education effect on homelessness). This task involves the decomposition of the total
effect of X into that portion that is direct and that portion that is indirect (i.e., relayed through Z )
(Fig. 26–2).

(INDIRECT )

(DIRECT )

X Z Y

FIGURE 26–2 ● A causal graph showing an indirect effect of
X and Y, relayed through specified intermediate Z, and a direct
effect of X and Y.
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Now suppose that we have a population of young men who all have the same set of potential
responses to interventions that encourage completion of high school education, or that facilitate
employment through training or job placement: (a) whether induced to finish high school or not, they
will become unemployed (Z = 1) if there is no intervention to provide training or job placement;
(b) whether induced to finish high school or not, if denied employment (Z = 1) they will become
homeless (Y = 1); and (c) if helped to become employed (by providing training and job placement)
(Z = 0), then they will not become homeless (Y = 0) if they were induced to finish high school (X =
1), but they will become homeless (Y = 1) if they were not induced to finish high school (X = 0). In
this population, therefore, the total effect of X is Pr[Y = 1| Set(X = 1)] − Pr[Y = 1|Set(X = 0)]
= (1 − 1) = 0. However, the direct effect in the employed stratum (Z = 0) is Pr[Y = 1|Set(X = 1,

Z = 0)] − Pr[Y = 1|Set(X = 0, Z = 0)] = (1 − 0) = 1. The notion of partitioning the total effect
into its constituent direct and indirect pathways is therefore deficient, because the null effect in
this case must supposedly be partitioned into two parts, one of which is positive and the other null
(Kaufman et al., 2004).

Effect decomposition is borrowed from the social sciences, where it has served as a foundation for
path analysis and structural-equations modeling. The problem illustrated above arises when applying
this method outside the models used by the original developers. Specifically, decomposition is
interpretable when there is no additive-scale interaction between the exposure and the intermediate
(i.e., when there is homogeneity of the risk difference in strata of Z ), and when linear effect models
are employed, such as linear structural equations models. The practice in social epidemiology of
applying this approach to ratio measures of effect and over heterogeneous intermediate-stratum-
specific effects, however, is not reliably valid.

Background knowledge is often available to investigators, and this should be used in order
to specify structural models of socioeconomic exposures (Kaufman and Kaufman, 2001). When
identifiable from the specified structure, both total and controlled direct effects of exposure on an
additive scale may be estimated (Pearl, 2000, pp. 163–165). The preceding counterexample cautions
against considering the ratio between the controlled direct and total effects as the “proportion
explained” by the specified intermediate. Likewise, their difference is not generally the indirect
effect, except in the narrowly defined conditions listed above. Rather, the controlled direct effect is
the average causal effect obtained by setting the target population to different exposure states while
at the same time holding the intermediate fixed at a specified value. Unless these stratum-specific
direct effects are assumed to be homogeneous, the value at which the intermediate is to be fixed
must also be specified, because there may be as many controlled direct effects as there are strata of
the intermediate (Petersen et al., 2006).

LIFE-COURSE SES CONCEPTS

Another key social epidemiologic concept that has evolved rapidly over the last decade is the
life-course model, which seeks to account for the dynamic trajectory of social exposures over
the lifetime of the individual, rather than the simple cross-sectional association between adult
social status and adult health that is so often modeled (Kuh et al., 2004). Interest in this model
was spurred by accumulating evidence of social conditions in early life having an effect on adult
risk for chronic disease, as posited, for example, by Barker’s hypothesis, which suggests that
deprivation during the fetal or infant periods of life “programs” the individual to a higher level of
susceptibility to cardiovascular and metabolic diseases in adulthood (Barker, 1992). The life-course
model soon expanded, however, to include not just a consideration of perinatal and adult conditions,
but combinations, accumulation, and interactions of different conditions and experiences throughout
all phases of life.

Several specific analytic models to address life-course effects have been described in the lit-
erature. A “latent effects” model focuses on early-life social exposures—for example, parental
social position—often with control for adult social status, in order to estimate the direct effect of
these early life conditions on later outcomes (i.e., ignoring the indirect effect that occurs because
parental social position is a determinant of offspring’s social position). Another conceptualization is
a “pathway model” that focuses not merely on the direct effects of early-life deprivation, but rather
on the total effects of this advantage by precipitating a “social chain of risk” or “life trajectory”
in which one disadvantageous exposure predisposes to another through the life course (Marmot
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and Wilkinson, 1999). Sometimes this “life trajectory” total effect is modeled through a “social
mobility model” in which the analysis considers contrasting patterns of upward or downward social
movement, such as the contrast between those who are at a lower category of social position at
each measured point in the life course contrasted with those who rose from a lower category to a
higher category, or alternatively from a higher category to a lower category. This analytic design
allows the consideration of health selection (i.e., sick individuals declining in their social position
as a consequence of their illness) and of interaction between time points, such as in Forsdahl’s
hypothesis that the joint exposure to early-life deprivation and adult overnutrition is a particularly
potent determinant of cardiovascular disease (Forsdahl, 1978). The “social mobility” model may be
contrasted with a “cumulative model” that, like the “pathway model” described above, considers the
total cumulative effect of deprivation throughout the life course, without regard to critical periods
or specific patterns of mobility (Stansfeld and Marmot, 2002).

EXPERIMENTS AND QUASI-EXPERIMENTS

Given the potential for strong confounding in observational social epidemiology, it is natural to
consider randomization study designs. A number of successful randomized social interventions
have been conducted and reported, such as the Moving To Opportunity (MTO) study, in which
residents in poverty housing were randomly assigned to receive vouchers for nonpoverty housing
(Leventhal and Brooks-Gunn, 2003). Researchers may reap the benefits of randomization through a
variety of designs other than traditional controlled experiments, however. For example, investigators
may take advantage of a random assignment that is predictive of the exposure, even when the
exposure of interest has not been randomly assigned. Hearst and colleagues used such an approach
to estimate the effect of military service during the Vietnam War era on veterans’ mortality in the
postwar period, avoiding the selection bias associated with unmeasured determinants of service by
capitalizing on the fact that birth dates were randomly selected in a lottery in order to determine
draft eligibility (Hearst et al., 1986). This technique is referred to as “instrumental variable analysis”
and has a long tradition in econometrics (Oakes and Kaufman, 2006, pp. 429–460; see Chapter 12).
In other examples, investigators were able to find data in which nature had been so kind as to assign
the exposure of interest in an essentially random fashion, as when Costello et al. tested competing
theories of social causation versus social selection in the etiology of child psychopathology by
making use of a fortuitous financial windfall that affected a portion of the children in a longitudinal
study (Costello et al., 2003).

As discussed in Chapter 6, a primary weakness of randomized designs is one of generalizability,
because participants in trials usually differ from nonparticipants. For example, studying lottery
winners may be an ideal way to estimate the effects of income supplementation because the winners
and losers will differ only randomly with respect to potential confounders. Nonetheless, individuals
self-select to be in the experiment by purchasing a lottery ticket, and so any generalization to a
population that includes nonparticipants may be faulty. Interpretation is further complicated if there
is “noncompliance,” meaning that some participants elect not to adhere to their assigned treatment
regimen, or if the random assignment changes the behavior of the participants in other ways besides
the receipt of treatment of interest (Kaufman et al., 2003). These problems can to some extent
be addressed analytically if information on all those assigned is available, but often that is not
the case. For example, if a substantial proportion of lottery winners fail to claim their prizes, this
noncompliance is likely to introduce bias in the comparison of interest (because we expect behaviors
such as losing a ticket or failing to be aware of having won to be associated with personality traits),
and we will not likely have any idea who these noncompliers are.

In the case of randomized social interventions, changes in individual conditions may affect
the entire social context, thus violating the assumption made by most statistical methods that
one individual’s treatment does not affect others. Such a violation would occur, for example, if
an intervention such as randomly assigning individuals in poverty housing to receive vouchers
for nonpoverty housing were to change the characteristics of the various neighborhoods involved
in ways that would affect the outcomes (Sobel, 2006). There are numerous other limitations to
the conduct and interpretation of randomized studies, especially for the complex interventions of
interest to social epidemiology. Therefore, observational studies will undoubtedly remain a mainstay
of social epidemiology (Kaufman et al., 2003).



P1: TNL Printer: RRD

GRBT241-26 GRBT241-v4.cls January 18, 2008 12:5

548 Section IV ● Special Topics

NARRATIVE HISTORICAL APPROACH

The oldest and most widely used approach for examining the effect of social exposures on health is
the one that is least often used by epidemiologists: the narrative historical approach. This method
involves telling the story about exposures and outcomes in the specific sociohistorical context in
which they actually occurred, rather than in the abstract and idealized context defined by statistical
models. Narrative historical depictions can be quantitative, in that they may involve numerical sum-
maries of what happened. They may involve causal assertions, in arguing that events are the results
of specific conditions that, had these conditions not pertained, would have come out differently.
What this method avoids, however, is the seductive generality of statistical models, the results of
which are often described in universal terms, devoid of the specific context in which the data were
realized. Narrative historical accounts also present causal assertions qualitatively as opposed to
quantitatively, which avoids the illusion of numerical precision for observations that fall outside the
realm of the observed data (King and Zeng, 2007).

For example, Randall Packard’s White Plague, Black Labor (1989) describes how South African
labor policies created epidemics of tuberculosis that differentially affected black and white com-
munities. The arguments are quantitative, but no regression models are used and no statistical tests
are conducted, and to the extent that causality is asserted, it is argued substantively rather than
statistically. Many other deeply insightful and persuasive works of this nature have made great con-
tributions to the social epidemiology of a variety of conditions, from the racial disparity in sexually
transmitted diseases in the U.S. South (Thomas and Thomas, 1999) to the social class disparity in
deaths during the 1995 Chicago heat wave (Klinenberg, 2002).

Regrettably, this approach appears to suffer a distinct lack of respect within epidemiology as
a whole, as judged, for example, by the dearth of this sort of work in epidemiologic journals,
which enforce formatting and length standards that are inconsistent with this methodology. Other
social sciences recognize the narrative historical approach as an essential tool in understanding the
complex relations between human social arrangements and their biologic consequences (King et al.,
1994). If social epidemiology is to thrive in the 21st century, we must also accept that some scientific
questions will not be answered best by treating observational data as though they arose from an
experimental trial. The complexity of social arrangements may often surpass our ingenuity to model
these arrangements with the quantitative precision demanded by statistical methodology, while at
the same time validly reflecting the social system under study. Narrative methods provide a source
of theories whose richness provides a valuable counterpoint to the Spartan oversimplifications that
typify the parsimony-driven models of statistics.
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Infectious diseases are caused by transmissible agents that replicate in the affected host. Infection
occurs when a susceptible host is exposed to and acquires the agent. Agents can be acquired
from environmental sites or from other hosts that harbor the infectious agent. Many agents can
be transmitted from one host to another, leading to chains of transmission through a population,
the most distinctive feature of infectious disease epidemiology. As we shall see, the occurrence of
chains of transmission through a population over time leads to dynamic changes in rates of, and
risk factors for, transition through the states of the infectious process. These changes are known as
“time-dependent happenings.” Consequently, the outcomes of infection can be conceptualized as
occurring on two separate axes. The first is the progression axis, the events leading from exposure
to an infectious agent to clinical outcomes such as disease, cure, and death, with implications for
the personal health of the infected person. Dealing with these issues is traditionally the realm of
medicine. The second is the transmission axis, the events leading from exposure to transmission to
others, with implications for others in the community whose health may be affected by transmission
from the infected person. Dealing with transmission issues is traditionally the realm of public health.

On the progression axis, a series of events must take place for an infectious disease to occur.
This series is shown schematically in Figure 27–1A. First, the human host must be exposed to
the infectious agent. Next, exposure must lead to infection with the agent, defined as invasion into
host tissues. Finally, infection must lead to the development of the clinical signs, symptoms, and
laboratory findings that we recognize as the disease. In turn, disease is followed by cure, death, or
persistent infection or disease. For some infectious diseases, some of these stages may be transient
or may not occur; in such cases, the sequence is abbreviated. Also, in some situations, exposure
may not lead to infection, but the agent may persist on the surface of the host without causing tissue
invasion. This state is called colonization.

Similarly, on the transmission axis, a series of events must take place for an infected host to
transmit the agent to others. This series is shown schematically in Figure 27–1B. First, exposure to
the infectious agent must occur, and it must lead to colonization or infection. Next, colonization or
infection must lead to the development of infectiousness. Infectiousness may or may not coincide
with colonization, infection, or disease; the relationship of events on the transmission and progres-
sion axes varies for different infectious agents and hosts. Second, effective contact, meaning contact

549
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FIGURE 27–1 ● (A) Schematic time course of stages of progression through the infectious process from
exposure to death. (B) Schematic time course of states of transmission potential from exposure to
postinfectiousness.
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ˆ
T A B L E 2 7 – 1

Terminology for States of the Infectious Process

State of Infection Definition Alternative Terms

Progression-Related
Colonization Agent persists on host surface without tissue invasion Transient colonization
Infection Agent is present in host tissues without signs,

symptoms, or laboratory evidence of tissue damage
Subclinical infection,

asymptomatic infection
Persistent infection A state of infection that does not lead promptly to

disease or cure
Chronic infection, carrier state,

chronic carrier state
Latency A type of persistent infection in which the agent has

invaded the host and is in a nonreplicating,
noninfectious, but viable state

Latent infection, persistent
infection, chronic infection

Disease Agent is replicating in host tissues with signs,
symptoms, or laboratory evidence of tissue damage

Clinical disease, symptomatic
infection

Cure Agent has been eliminated from host tissue (may
persist on surface)

Resolution

Transmission-Related
Preinfectious Host is infected but has not become infectious Latency, preinfective period
Infectious Host is capable of transmitting agent to others Contagiousness, infective period
Postinfectious Host is no longer capable of transmission Cure, postinfective period

that leads to transmission, must occur with a susceptible host. In turn, infectiousness may or may not
resolve. For infections with agents that are not transmissible either directly or indirectly from person
to person, there is no infectious state. Table 27–1 gives definitions of both the progression-related
and transmission-related states of the infectious process.

Many terms have been used to describe the stages of progression of the infectious process. This
inconsistent vocabulary can lead to considerable confusion. For many infectious agents, the terms
infection and disease have been used interchangeably. This equivalence may be appropriate when
all infected hosts progress to disease in a brief time, but for many agents this is not the case. For
most epidemiologic studies it is important to distinguish invasion and replication of the infectious
agent without signs, symptoms, or laboratory evidence of tissue damage from replication of the
infectious agent with signs, symptoms, or laboratory evidence of tissue damage. We therefore use
the term infection exclusively to refer to the state of tissue invasion without disease and use the
term disease to refer to the state of clinical signs, symptoms, and abnormal laboratory findings,
even though “infection” is usually also present in the disease state. The terms subclinical infection
and clinical disease are sometimes used to describe what we call here infection and disease, but
these cumbersome terms imply that there are two distinct additional states, “clinical infection”
and “subclinical disease,” which do not exist. The agent usually replicates in the host during both
infection and disease, which are distinguished from each other by the absence or presence of
signs, symptoms, or laboratory evidence of tissue damage. The term latency can also be confusing,
as it has been used both for the progression-related state in which the agent is present in the
host in a nonreplicating but viable state and also for the transmission-related state that precedes
infectiousness; in this chapter we use latency for the progression-related state and preinfectiousness
for the transmission-related state.

The terms incubation period and persistent infection are used to describe specific aspects of
the basic progression-related states in Table 27–1. The incubation period of a disease is the time
from an exposure resulting in infection until the onset of disease. Because infection usually occurs
immediately after exposure, the incubation period is generally the duration of the period from
the onset of infection to the onset of disease. If infection does not lead to disease, there is no
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incubation period of disease. If infection does not occur directly after exposure but rather at some
later time, then the time from exposure to infection is the incubation period of infection and the
incubation period of disease is the period from the time of exposure to the onset of disease. For
example, meningococcal infection occurs after a variable period of meningococcal colonization of
the nasopharynx; once infection has occurred, it can proceed rapidly to meningococcal disease.
Persistent infection (also known as chronic infection) is a state of infection that does not lead
promptly to disease or cure, whereas persistent disease (also known as chronic disease) occurs
when signs, symptoms, and/or laboratory abnormalities continue without resolution. Cure is the
state of elimination of the infectious agent from the host, either through a successful immune
response or antimicrobial therapy. Cure usually implies elimination of both infection and disease,
but in some situations a host can be cured of disease but have persistent infection. Latency is a
unique type of persistent infection in which an organism is in a nonreplicating state but remains
viable within host tissues. This state occurs when the host immune system forces the agent into the
nonreplicating state, a state from which it may later reactivate. It is distinguished from colonization,
in which the agent may replicate on the surface of the host without eliciting an immune response.
There are also specific terms describing transmission-related states. The preinfectious period, the
time from exposure to the agent until the onset of infectiousness, is the transmission-related analog
of the incubation period, and the period from the onset of infectiousness until the person is no longer
infectious is the duration of infectiousness.

Transitions between progression-related states and transmission-related states may or may not
occur at the same time; persons with infection or disease may be infectious, noninfectious, or inter-
mittently infectious. States of persistent infection can be distinguished based on their infectiousness.
In latency, persistently infected persons are not infectious. When latent infection reactivates, infec-
tiousness may return, leading to secondary periods of infectiousness. For example, persons with
Herpes simplex infection are infectious during primary disease, noninfectious during latency, and
again become infectious when disease recurs. By contrast, the carrier state occurs when a host is
cured of disease but has persistent infection and the infectious agent continues to replicate, leading
to continued infectiousness. The relative length of the incubation and preinfectious periods has
important implications for the effectiveness of isolation of diseased persons in controlling transmis-
sion. When the incubation period is shorter than the preinfectious period, as for smallpox, isolation
of diseased persons can prevent contact with susceptible persons during the infectious period. On
the other hand, when the preinfectious period is shorter, as for varicella, the potential effectiveness
of quarantine is limited because the infected host has already had a period of infectiousness by the
time of disease onset.

The focus of epidemiologic studies of infectious diseases varies for different agents and changes
over time as public health problems evolve and knowledge accrues. In the field of emerging in-
fectious diseases, identifying the causative agent, the reservoir, and the factors that have led to
introduction into the human population are paramount. For known agents, the most important
epidemiologic questions concern identification of risk factors for exposure, for infection given ex-
posure, for disease given infection, and for morbidity and mortality given disease. Intervention
studies can be performed to identify ways to prevent exposure (behavior change, vector control,
etc.), to prevent infection (prophylactic antimicrobial therapy, preventive vaccines, etc.), to prevent
disease (therapeutic antimicrobial therapy, therapeutic vaccines, etc.), or to prevent death or chronic
infection (therapeutic antimicrobial therapy). Some interventions may function at several points in
this series. For example, antiretroviral human immunodeficiency virus (HIV) therapy has been
studied as an intervention to prevent infection in exposed persons, to prevent disease in infected
persons, and to prevent death in diseased persons. Integration of these parameters into models of
disease transmission can then be used to predict the effect of preventative strategies on the dynamics
of transmission of infectious agents and the burden of infectious diseases in a population.

The occurrence of outbreaks or epidemics is a distinctive feature of many infectious diseases.
Outbreaks fueled by person-to-person transmission are called propagated outbreaks. Outbreaks can
also occur as a result of mass exposure to a source of contamination, such as commonly occurs in
food-borne outbreaks. These outbreaks can be point-source outbreaks if the exposure is limited to
one place and time or ongoing exposure outbreaks if exposure is not limited. Outbreaks often require
a rapid public health response with emergency control measures, but they can also present oppor-
tunities to expand knowledge regarding the infectious agent and its spread through a population.
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Outbreak investigations can lead to the identification of infectious agents and diseases that were not
previously recognized; these are known as emerging infectious diseases. Outbreak investigations
have produced much information on risk factors for progression-related and transmission-related
states for many infectious agents. During an infectious disease outbreak, the incidence of disease
is by definition much greater than is normally expected. Thus, diseases that may be too rare to be
studied feasibly at normal times can become accessible to epidemiologic investigation during an
outbreak. However, outbreaks are also by definition unusual, so information on, for example, risk
factors for infection, may not be applicable to nonoutbreak infections. For example, investigations
of vaccine effectiveness conducted during outbreaks may be subject to outbreak bias. This bias
occurs because vaccine failures may be clustered in space and time (either because of problems
with vaccine storage or for other reasons) and because clusters of vaccine failure tend to lead to
outbreaks. When these outbreaks are investigated, the vaccine effectiveness measures will tend to
be biased toward the null (Fine and Zell, 1994).

EPIDEMIOLOGIC ISSUES IN PROGRESSION-RELATED STUDIES

MEASURES OF FREQUENCY OF INFECTION AND DISEASE

For several reasons, infection and disease caused by a given infectious agent may have characteristics
that influence measurement of incidence and prevalence. First, the diagnosis of infection or disease
may require tests that yield conclusive results only at some time after the onset of infection or
disease; thus there may be a time lag in recognition of the state and some uncertainty about the
true time of onset. Second, diagnosis of infection or disease may be uncertain. Accurate laboratory
tests are available to establish the presence or absence of many infectious agents, but there are some
notable exceptions. Mycobacterium leprae, the cause of leprosy, which has plagued humanity for
millennia, is still not readily recovered by culture techniques. Diagnosis of early leprosy is therefore
based on clinical criteria, and a firm diagnosis is often uncertain until the late stages of disease.
Lyme disease has diverse and often nonspecific clinical manifestations, and serologic tests are also
nonspecific. Therefore, the diagnosis of Lyme disease is often uncertain. Endocarditis, a disease in
which heart valves are damaged by infectious agents, is difficult to identify directly, particularly in
its early stages. Therefore, it is usually diagnosed by applying a clinical scoring system in which
patients with higher scores are more likely to have the disease (Von Reyn et al., 1981; Durack et al.,
1994). These scoring systems reflect the reality of imperfect diagnostic capability and thus represent
a potential source of misclassification. Third, repeated episodes of an infectious disease can cause
problems in estimating disease frequency, because reported incidence rates often do not distinguish
between first episodes and repeat episodes. Some infectious diseases, such as measles, generate
protective immunity such that they can only be acquired once in a lifetime, whereas others, such as
rhinoviruses that cause the common cold, generate little immunity and can be acquired many times.
Other agents, such as Streptococcus pneumoniae, the agent that causes pneumococcal pneumonia,
have multiple serotypes; infection generates protective immunity that is serotype-specific. However,
serotyping is not usually performed in the course of clinical care. As a result, recurrent episodes of
pneumoccocal pneumonia may be categorized as recurrent disease when they are actually due to a
different serotype against which the host does not have immune protection. In the extreme situation,
a single person with multiple episodes of infection or disease could theoretically account for all the
occurrences in a population.

The attack rate is defined as the risk of infection among exposed susceptible hosts. Like any risk
measure, the attack rate always refers to a period of time, usually a year if not otherwise specified, but
it does not have the dimension of inverse time, so it is not a true rate. In practice, it is often used for
the risk of disease, thus combining the risk of infection among exposed hosts and the risk of disease
among infected hosts. For situations in which nearly all infected persons develop disease, there is
little distinction between the two risks, but when considering agents for which a high proportion
of infections do not progress to disease, the alternative usage can be misleading. For example,
Figure 27–2 shows the evolution of typhoid fever, the disease caused by Salmonella serotype Typhi
infection, in experimental volunteers (Hornick et al., 1970). In this situation, all exposed hosts were
known to be susceptible. The incubation period was measured from the time of exposure to the time
of occurrence of fever, but some individuals became infected without progressing to disease. These
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FIGURE 27–2 ● Relationship among infectious dose, attack rate, and duration from infection to disease
for Salmonella typhosa, Quailes strain, in volunteers (Data from Hornick et al., 1970). Percent of exposed
persons developing disease is shown by bars; the line indicates mean incubation period of those in each
category who develop disease.

subjects were not included in the numerator in calculating the attack rate. If, as is likely, different
factors govern the risk of infection, given exposure, and the risk of disease, given infection, then
conclusions about the effect of the ingested dose of Salmonella Typhi on occurrence of infection
may have been flawed because of the exclusion of these asymptomatically infected subjects. A
subsequent analysis suggested that this was the case (Blaser and Newman, 1982).

Excluding immune hosts from the denominator of the attack rate makes intuitive sense, as inclu-
sion of persons who could not become infected if they were exposed would lead to an underestimate
of the infectivity of the agent. However, susceptibility often has a continuous rather than a dichoto-
mous distribution, so stratification of the population into susceptibles and nonsusceptibles can be a
substantial oversimplification. The consequences of this oversimplification are particularly impor-
tant among HIV-infected populations, in which immune competence of members of the population
can vary over a wide spectrum.

Uncertainty about when an infectious disease is cured can complicate estimation of disease
prevalence. For diseases of short duration this problem is minimal, but for chronic diseases it can
be substantial. A person with hepatitis C infection, detectable hepatitis C virus DNA in serum, and
persistent elevation of liver enzymes in serum for 6 months or more is considered to have chronic
disease. Treatment for hepatitis C has recently become available (Kim and Saab, 2005). If treatment
leads to elimination of the serum hepatitis C DNA and resolution of liver abnormalities, yet hepatitis
C antibody persists, the patient may be presumed to be free of disease, but is the patient free of
infection? Persistent antibody could indicate persistent infection or could merely be a marker of
prior infection. Which it represents in this case is not currently known and likely will not be known
until years of follow-up have accrued, allowing for observation of possible recrudescence of viral
DNA in treated persons.

Barriers to case identification also complicate determination of the frequency of infection and
disease. Such barriers include stigma, fear of economic loss, and limited access to diagnostic
testing. For infections and diseases that have socially disadvantageous consequences, individuals
may not present for clinical evaluation or may refuse diagnostic testing, and clinicians may be
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reluctant to report diagnosed patients to public health authorities even when reporting is legally
mandated. Patients who are diagnosed with the condition may not participate in epidemiologic
studies, either because they do not know they are eligible or because they fear discrimination as a
result of participation. Such underascertainment because of stigma is an important potential source
of bias in studies of leprosy, tuberculosis, and HIV/AIDS. Infections and diseases whose presence
in a community could have negative economic consequences, such as reduced tourism or travel
restrictions, may be downplayed or denied by government authorities. Underestimation of disease
incidence also occurs if people with mild disease do not seek medical care. Lastly, many infections
and diseases require diagnostic tools that are not generally available in much of the developing
world; thus, even as common a condition as tuberculosis disease is underdiagnosed in the majority
of the world’s population.

ASSESSING RISK OF STATES OF INFECTION

This section addresses challenges in identifying and quantifying states of the progression-related
infectious process shown in Figure 27–1A. The risk of infection is the product of the risk of exposure
and the risk of infection if exposed. Similarly, the risk of disease is the product of the risk of exposure,
the risk of infection if exposed, and the risk of disease if infected. Likewise, the risk of death if
infected is the product of the risk of disease if infected and the risk of death if diseased. When a
state, such as disease or cure, can be entered from more than one state of the infectious process, the
overall risk is the sum of the risk from each state. Thus, the overall risk of cure is the risk of cure if
infected among those who do not progress to disease plus the risk of cure if diseased times the risk
of disease if infected.

Factors Influencing the Occurrence of Exposure to Infectious Agents

Infectious agents are present in specific locations, or reservoirs, and are acquired by human hosts
through exposure to the reservoir in a manner that facilitates infection. The reservoir can be envi-
ronmental sources, such as freshwater ponds (amebae), animals (Lyme disease in white-tailed deer,
plague in prairie dogs) or humans (tuberculosis, sexually transmitted diseases). It is important to
distinguish between exposure to a reservoir and exposure to the infectious agent. In the simplest
situation, exposure to the reservoir is synonymous with exposure to the infectious agent, as in the
case of swimming in a freshwater pond and being exposed to freshwater amebae, which are almost
always present to some degree in freshwater ponds. In other situations, reservoir exposures may
or may not pose risk for infection, depending on whether the reservoir exposure leads effectively
to exposure to the infectious agent. Reservoirs may not harbor the agent at all times, or the inter-
vention of a vector may be necessary. For example, eating undercooked chicken is an important
source of exposure to Campylobacter jejuni, but not all poultry is contaminated with this organism,
so some undercooked chicken does not provide exposure to Campylobacter. Exposure to prairie
dogs carrying plague will not result in human exposure to plague unless the prairie dogs have fleas,
the necessary vector, and a person is also exposed to those fleas. Exposure to mosquitoes can lead
to exposure to malaria only if the mosquitoes have previously bitten a person with malaria. When
humans are the reservoir, exposure to the agent occurs only when the infected person harbors viable
organisms that can be presented to another person. For example, sexual contact does not lead per se
to exposure to an agent of sexually transmitted infection; the sexual contact must be with a person
harboring the infectious agent and in the infectious state.

Infectious agents can invade a human host following inhalation, ingestion, or direct penetration of
skin or mucous membranes. Any activity that facilitates contact between a host and an environmental
reservoir, vector, or infectious person can result in exposure. Exposure to sources of infectious agents
is notoriously difficult to quantify, though, particularly because most infectious agents are too small
to be visible. As a result, surrogates for exposure are commonly used—living in the same house
as an infectious patient with tuberculosis instead of number of organisms inhaled, or time spent
in a malarious area rather than number of bites by malaria-carrying mosquitoes. Individuals are
unlikely to know the infectious status of the mosquitoes that bite them, or the sexually transmitted
infection status of their sexual contacts, so misclassification of exposure to infectious disease agents
is common.
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The state of colonization is usually brief and can often be ignored in epidemiologic studies, but
when it is prolonged, it may obscure the factors leading to infection, because the risk factors for
colonization given exposure may be different for those for infection given colonization. Colonization
with Neisseria meningitidis lasts for days to weeks and may or may not progress to infection
and disease. Epidemiologic information about risk factors for colonization has been essential in
developing control methods for N. meningitidis. In contrast, Candida species can have a colonization
period that lasts months to years. Candida infection occurs when fungal organisms that are normally
only asymptomatic colonizers of the host invade tissues, often leading to the diseases pharyngitis
or vaginitis. In such cases, the exposure to an outside reservoir may have occurred well before
infection is apparent, and epidemiologic studies are likely to focus on risk factors for progression
from colonization to infection rather than from exposure to colonization.

Factors Influencing the Occurrence of Infection, Given Exposure

Once exposure has occurred, the next stage of the infectious process is infection. Factors that
influence this transition can be categorized as dose-related, agent-related, and host-related.

Dose-related factors are usually strong predictors of the risk of infection, given exposure, because
exposure to a larger number of organisms increases the likelihood of infection. The number of
organisms to which the host is exposed is rarely measured, for the same reasons discussed in the
section on risk factors for exposure. Therefore, surrogate markers of dose are commonly used,
such as amount of time in the same room as an infectious person, amount of contaminated food
consumed, or number of sexual contacts with an infected person. Behavioral characteristics of the
exposure can alter the risk of infection by reducing the dose of infectious agent to which the host
is exposed. Cooking eggs contaminated with Salmonella reduces the number of viable organisms
to which the host is exposed, reducing the risk of infection that could lead to diarrheal disease.
The use of insecticide-impregnated bed nets reduces the number of mosquito bites and thus the
dose of malaria parasites, reducing the risk of malaria. Washing hands reduces the number of
respiratory virus particles that are brought into contact with the nasopharynx, decreasing the risk
of the common cold. There is also substantial variability in the number of organisms produced by
individual infectious sources. So-called superspreaders of HIV infection, severe acute respiratory
syndrome (SARS), and tuberculosis have been identified (Clumeck et al., 1989; Fennelly et al.,
2004). In such cases, the infectious source case excretes an unusually large number of organisms.
The contacts of “superspreaders” are exposed to a higher dose of the infectious agent than the
contacts of other source cases with equivalent duration of exposure. The dose of an infectious agent
excreted by an individual may also vary substantially over time (Pilcher et al., 2004).

Agent-related factors influencing the occurrence of infection, or infectivity factors, are character-
istics of the agent that promote its ability to invade and establish infection in the human host. Most
infectivity factors, which are usually determined by the genetic composition of the agent, promote
attachment of the pathogen to host cells and penetration into these cells. Production of adhesins,
surface molecules that facilitate binding to host target cells, is the most common infectivity fac-
tor. Examples include the hemagglutinin protein of the influenza virus, the GP120 protein of HIV,
and the galactose adhesin of the parasite Entamoeba histolytica, a parasite that causes diarrhea.
Influenza viruses that do not have the requisite hemagglutinin, or Entamoebae that do not have the
galactose adhesin, cannot infect humans.

Many host-related factors, also called susceptibility factors, influence the occurrence of infection.
One of the most important host-related factors is immunity. Vaccination or previous infection with a
pathogen may provide full or partial immune protection. Persons who have previously had measles,
mumps, or hepatitis A infection have complete immune protection and will not become infected
if they are re-exposed to those agents. Persons with previous tuberculosis infection are partially
protected against reinfection with Mycobacterium tuberculosis. However, persons whose immune
system deteriorates (as happens in AIDS or with administration of immunosuppressive medications)
may lose immune protection. Malnutrition may also decrease immune defenses (Corman, 1985).
Cross-protection by immunity to a similar organism can also occur; persons with previous infection
with nontuberculous Mycobacteria have partial protection from tuberculosis infection even if they
have not previously had tuberculosis (Fine, 1995).

Host-related factors other than specific immunity may also influence susceptibility. Hosts may
have variants of receptors that pathogens use for invasion, such as the CCR5 receptor for HIV and
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the Duffy blood group antigen for Plasmodium vivax malaria. Persons who lack these receptors
have markedly reduced susceptibility to HIV and malaria, respectively (Luzzi et al., 1991; Fauci,
1996). Physiologic conditions that impair host clearance of microorganisms may also increase risk
of infection. For example, impaired gastric acid secretion decreases killing of Salmonella in the
stomach, leading to increased risk of Salmonella infection, whereas impaired mucus clearance from
the lungs decreases elimination of bacteria from the tracheobronchial tree, leading to increased risk
of infection with respiratory bacterial pathogens.

With recent advances in human genetics and genomics, the role of the genetic constitution of
the host in determining progress through the states of infection has received increased attention.
We discuss host genetics here in the context of risk for infection given exposure, but host genetics
can also influence all stages of progression and transmission. A number of inherited immune
defects, such as those associated with hypogammaglobulinemia, chronic granulomatous disease,
and Job syndrome, can predispose to infection (and disease) with many infectious agents. More
recently, specific host genetic defects that predispose to infection with particular pathogens have
been recognized, such as defects in the interferon-gamma gene and the interferon-gamma receptor
gene that predispose to mycobacterial infection (Newport et al., 1996; Holland et al., 1998; Dorman
and Holland, 1998). These inherited defects of host immunity are severe but also rare; more subtle
host immune defects may also play a role in determining progression through both the states of
the infectious process and the states of transmissibility. Susceptibility to some infections may
also be modulated by nonimmune host genetic factors, such as the structure of receptors needed
for replication by infectious agents. Examples include resistance of persons with thalassemia to
P. vivax malaria and resistance to HIV infection among persons without the CCR5 receptor.

Factors Influencing the Occurrence of Disease, Given Infection

As mentioned earlier, the proportion of infected hosts who progress from infection to disease
varies substantially for different infectious agents. After infection with poliovirus, as few as 1 in
1,000 infected people progress to poliomyelitis disease (Melnick and Ledinko, 1951; Nathanson
and Martin, 1979). In contrast, without antiretroviral therapy, nearly all persons infected with HIV
eventually progress to AIDS. Progression from infection to disease may occur over a few days
or weeks, so that the proportion of persons progressing is readily apparent, but for infections with
incubation periods of months to years, such as HIV and hepatitis C, this proportion is more difficult to
measure. For agents with long incubation periods, a cohort study with extended follow-up, as shown
in Figure 27–3, is often necessary to determine the risk and rate of progression from infection to
disease (Hessol et al., 1994). On the other hand, for infectious agents for which most infections lead
to disease after a short incubation period, such as Salmonella and Campylobacter, cross-sectional
or case-control designs can be used with little risk of misclassification of infection or disease status.
Age can be an important factor in the risk of progression from infection to disease. Children with
hepatitis A virus infection rarely develop symptomatic disease, whereas adults frequently have
prolonged illness including severe fatigue, jaundice, and occasionally death (Hadler et al., 1980).
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For some infectious diseases, difficulty in establishing that disease has occurred can lead to
failure to appreciate the true risk of progression from infection to disease. For example, Chlamydia
trachomatis infection of the female genital tract can cause chronic inflammation and scarring that
leads to infertility without causing symptoms. Although tissue damage is present, it can only be
observed with invasive procedures that are not routinely performed. Thus, the risk of progression
from Chlamydia trachomatis infection to disease has often been underestimated.

Accurate assessment of the effect of risk factors for disease, given infection, requires distin-
guishing the various components of the stages of the infectious process, as shown in Figure 27–1A.
Failure to appreciate the inherent complexity of the infectious process can lead to confounding when
intermediate transition risks are not measured. An example is the risk of tuberculosis disease at-
tributed to diabetes mellitus. Studies performed in the 1950s showed that persons with uncontrolled
diabetes had substantially greater risk of tuberculosis disease than the general population (Oscars-
son and Silwer, 1958; Opsahl et al., 1961; Boucot et al., 1952). This increased risk was attributed
to impaired immunity resulting from diabetes. Persons with uncontrolled diabetes, however, are
frequently hospitalized, and being hospitalized in the 1950s meant increased risk of exposure to
persons with active tuberculosis, who were also often hospitalized. Thus, because of their increased
risk of hospitalization, the risk for exposure to M. tuberculosis was greater for diabetics than for
the general population. Increased exposure resulting from hospitalization rather than diabetes itself
could have accounted for the increased risk of tuberculosis in diabetics. Ideally, risk factors for each
stage transition shown in Figure 27–1A should be studied independently.

Host immunity can influence the transition from infection to disease, because specific immu-
nity is frequently the mechanism for controlling infection sufficiently to prevent the development
of disease. Conversely, decreased immune system effectiveness usually increases the risk of dis-
ease, given infection. The clearest example of this phenomenon is AIDS. Because HIV infection
progressively impairs the ability of the immune system to respond to infection, patients become
more likely to progress from infection to disease with organisms such as Mycobacterium avium,
which frequently causes infection but rarely causes disease in normal hosts. Although it at first
seems counterintuitive, effective host immunity can also in some cases actually predispose to the
occurrence of disease. For example, dengue hemorrhagic fever occurs when a host with immunity
due to a previous dengue virus infection acquires a second infection with a different viral serotype.
In immunocompetent hosts, the pre-existing immunity results in an antibody response that leads to
hemorrhagic disease (Kliks et al., 1989; Halstead and O’Rourke, 1977).

Infectious agents can have endogenous properties influencing the occurrence of disease that are
analogous to the infectivity factors that influence the risk of infection, given exposure. These proper-
ties are called virulence factors, a term that encompasses not only factors involved in pathogenesis—
the development of disease—which is our focus here, but also factors that determine disease severity,
which are discussed in the next section. Toxins, proteins secreted by an organism that lead directly
to the manifestations of disease, are the most common virulence factors affecting the risk of disease
given infection. For example, strains of Corynebacterium diphtheriae that do not secrete diphtheria
toxin may cause infection but do not lead to diphtheria disease. Other virulence factors of micro-
organisms lead to disease by facilitating evasion of host immune defenses: Some organisms produce
a polysaccharide capsule that prevents ingestion by host white blood cells (e.g., Pneumococci), oth-
ers vary their surface antigen expression to avoid host antibody binding (Borreliae, trypanosomes),
secrete a protease that cleaves host antibody (Haemophilus influenzae), or produce enzymes that
prevent intracellular killing of the infectious agent by the host’s immune system (Legionella, Lis-
teria). Strains of these organisms that do not produce the virulence factor are less able or unable
to cause disease even after establishing infection. Some organisms, such as Staphlococcus aureus,
have pathogenesis factors with intermittent expression (Lowy, 1998); the factors that influence
this expression must therefore also be considered in epidemiologic analysis. For some infectious
organisms, more than one gene or gene product may influence infectivity, immunogenicity, or
pathogenicity. Within a single host, most infectious diseases are caused by a single clone of organ-
isms. Analysis of agent-related factors in progression from infection to disease can be complicated
in infections for which polyclonality is common, such as HIV infection. The dominant variant may
fluctuate over time, or new variants may arise by mutation, adding further complexity to the analysis.

When effective antimicrobial treatment is available, infection can be treated to prevent disease,
and treatment or partial treatment may modify the risk of disease, given infection. Such treatment
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is effective for acute infections such as pertussis and hepatitis B virus infection, in which antibiotic
treatment of recently infected persons can prevent progression to disease. Similarly, treatment can
be effective in chronic infections such as HIV, for which antiretrovirals can prevent AIDS, and
in hepatitis C, for which interferon and ribavirin treatment can prevent cirrhosis and liver cancer.
Antimicrobial drug resistance is an important agent-related genetic characteristic of infectious
agents that must be considered in epidemiologic studies of infectious diseases whenever effective
antibiotic therapy exists. Drug resistance has a profound effect on the ability to treat infection
and disease successfully and thus may alter the course of the infectious process by extending the
duration and severity of states on both the progression-related and transmission-related axes. As a
result, drug resistance is a major problem in controlling infectious diseases.

Most infectious agents do not have the potential for persistent infection. For those that do,
clinical features of recurrent disease and its risk factors are often distinct from those for disease
following initial infection. For infections that can establish latency, such as human herpesviruses
and M. tuberculosis, disease occurring after latency is called reactivation disease. In some cases,
reactivation disease is easily differentiated from primary disease occurring after an exposure that
results in infection. For example, chicken pox is the primary disease that occurs directly after
infection with Varicella zoster virus, and shingles is the reactivation disease that occurs after a period
of latency. In contrast, tuberculosis disease that occurs soon after an exposure resulting in infection
cannot be differentiated clinically from reactivation tuberculosis disease. Because risk factors for
the two tuberculosis disease states are different, cohort studies that enroll persons with tuberculosis
infection but no history of tuberculosis disease are essential to minimize misclassification of disease
state. Most risk factors for reactivation disease are conditions that impair host immunity, because
immunocompetence is the major determinant in keeping organisms from returning to the replicating
state. HIV-mediated immune suppression is the strongest risk factor for progression from latent
tuberculosis to tuberculosis disease; other major risk factors include immune impairment from
chronic renal disease or exogenously administered immunosuppressive medications (Horsburgh,
2004). Treatment of latent tuberculosis infection can reduce the risk of subsequent reactivation
disease by 60% to 90% (Cohn et al., 2000).

Factors Influencing the Occurrence of Cure, Death, or Persistent Infection,
Given Disease

The host may progress from disease to cure or death from the disease or may develop persistent
infection, thus returning to the state of infection (without disease). For diseases that have high
mortality, death is the most important outcome, and studies to identify risk factors for this outcome
predominate. When death is less common or occurs after a long period of disease and cure is not
possible, such as currently is the case with HIV and hepatitis C, studies focus on identifying factors
that prolong survival of the diseased person or factors that reduce morbidity (signs, symptoms,
and laboratory evidence of ongoing tissue damage), resulting in a return to the state of infection.
Surrogate markers are frequently used as endpoints in studies of such infectious processes. The
use of such markers in epidemiologic studies has been controversial because, in addition to being
outcomes, the markers are also the result of the underlying disease process and may be affected by
other variables that affect the outcome of interest (Cole et al., 2003; Robins et al., 2000). Confounding
can result. Thus, CD4 cell counts are not only a manifestation of the extent of immune destruction
caused by HIV infection but also an indicator of the receipt of effective antiretroviral therapy and
a predictor of future survival. Histologic grading of liver tissue in hepatitis C infection is both a
manifestation of the extent of hepatic damage and a predictor of survival. Despite the theoretical
disadvantage of such markers as outcome measures, surrogate markers have been widely used in
epidemiologic and interventional studies.

A number of factors can influence the probability of cure, death, or persistent infection, with
pathogen virulence and host immunity playing important roles. Prominent examples of virulence
factors that affect the severity and outcome of disease are the Group A Streptococcal toxin associated
with toxic-shock syndrome (Cone et al., 1987), the Shiga-like toxin of some Escherichia coli that
leads to hemolytic uremic syndrome (Riley et al., 1983), and the Panton-Valentine leukocidin of
S. aureus, which has been associated with a high mortality rate in patients with pneumonia caused
by this organism (Gillet et al., 2002)
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One of the most important factors influencing the probability of cure or death is antimicrobial
therapy. Since the introduction of sulfonamides in the late 1930s, many antimicrobial agents have
become available, and many infectious diseases are now treatable with therapeutic agents that can
achieve cure or that have a substantial ameliorating effect on the outcome of the disease. In the case
of tuberculosis, approximately 30% of patients with disease self-cured in the preantibiotic era, while
50% died and 20% developed chronic disease (Mitchell, 1955). Current antituberculosis antibiotic
regimens can reduce deaths to less than 1%, with over 95% of subjects cured. Unfortunately,
emergence of antibiotic resistance in M. tuberculosis is common, and it is frequently associated
with decreased cure rates and shortened survival.

For infectious agents that can establish persistent infection, either with or without latency, it
can sometimes be difficult to distinguish which state the subject is in. When latency is known
to be common, such as for human herpesviruses and tuberculosis, distinguishing between cure
and persistent infection with latency can be difficult. Latency may be firmly identified only after
reactivation disease has occurred. For practical purposes, all untreated persons who have evidence
of prior infection with agents known to have a latent state—whether laboratory evidence of infection
or a clinically recognized episode of disease—but no evidence of ongoing replication are assumed
to have persistent infection with latency. However, a substantial fraction of such persons will never
have recurrent disease, suggesting that at least some of them may never have established latency, or
may have progressed from latency to cure at some time after establishing latency. For agents that
can establish persistent infection but do not have a latent state, such as hepatitis B and C, laboratory
testing can often be used to distinguish between persistent infection and cure.

EPIDEMIOLOGIC ISSUES IN TRANSMISSION-RELATED STUDIES

MEASURES OF FREQUENCY OF INFECTIOUSNESS
AND TRANSMISSION

The state of infectiousness, shown in Figure 27–1B, is neither constant nor synonymous with any of
the states of the progression-related infectious process shown in Figure 27–1A. In fact, infectious-
ness is commonly greatest just before the onset of disease and frequently wanes well before disease
resolution. For different infectious agents, however, infected hosts can be infectious at various
progression-related stages of the infectious process. For example, the infected host may transmit
infection when colonized (Candida), infected without disease (hepatitis B), or diseased (most infec-
tious agents). By definition, transmission cannot occur during persistent infection with latency or in
the “cured” state, because replicating organisms are not present in either state, but there are numerous
examples of infections in which clinical cure is followed by a prolonged period of asymptomatic in-
fection or colonization during which continued transmission is possible. The typhoid carrier state is
the classic example. Defining the degree and duration of the infectious state is therefore an essential
feature of describing an infectious process and is a critical parameter in explaining and predicting the
spread of an infectious agent through a population. Studies of infectiousness are complicated by the
inherent difficulty in discerning whether an infected person is, in fact, infectious. Infectiousness can-
not be observed by direct observation of the infected person. It can only be inferred indirectly, when
transmission to another susceptible host occurs. However, transmission depends on a number of
factors in addition to infectiousness; infectiousness is a necessary but not sufficient condition. Surro-
gates for infectiousness, such as the recovery of the organism from the infected host, are often used in
epidemiologic studies, even though they may not be completely accurate proxies for infectiousness.

Because infectiousness cannot be measured directly in the absence of exposure to susceptible
hosts, the duration of the preinfectious and infectious periods can be difficult to define. However,
when chains of transmission occur, the time between the onset of disease of successive generations of
infected persons, termed the serial interval, can shed light on the onset of infectiousness. Assuming
average incubation periods, the serial interval reflects the amount of time elapsed between exposure
from one generation of spread to the next. Thus, the serial interval cannot be shorter than the
preinfectious period; observation of the minimum serial interval gives information about when the
preinfectious period ends.

In studies of infectiousness, a specific kind of attack rate known as the secondary attack rate is
often calculated.The secondary attack rate is the risk of infection among susceptible contacts of an
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infectious host and thus encompasses factors that affect both infectiousness and transmission given
infectiousness. It is often measured among susceptible household contacts but can be measured
among contacts of any type—community, workplace, sexual, etc. The basic reproductive number,
or R0, is a related concept that is widely used in mathematical modeling of transmission within
populations. R0 is the average number of secondary cases of an infection that occur in a completely
susceptible population following introduction of a single infectious case. Like the secondary attack
rate, R0 reflects both the inherent infectiousness of a case of infection and the factors that lead to
transmission given infectiousness.

ASSESSING RISK OF STATES OF INFECTIOUSNESS

Factors Influencing the Occurrence of Infectiousness

The occurrence and degree of infectiousness are influenced by biologic characteristics of the infec-
tious agent and by both physical and behavioral characteristics of the infected person. For example,
persons with pulmonary tuberculosis are minimally infectious unless they cough, whereas persons
with extrapulmonary tuberculosis disease are essentially noninfectious, because other persons are
very unlikely to come into contact with organisms that are sequestered in an internal tissue com-
partment. Persons with diarrhea due to Hepatitis A, which is spread primarily through fecal–oral
contact, are much more likely to be infectious than persons without diarrhea, because diarrhea
is both a marker for increased numbers of infectious organisms in the stool and a condition that
increases the risk of exposing others to the virus. There is also substantial variability in the number
of organisms produced by individual infectious sources. As noted earlier, “superspreaders” of some
infectious agents have been identified who excrete an unusually large number of organisms, with
the result that the superspreader’s contacts are exposed to a higher dose of the infectious agent than
the contacts of other source cases with equivalent duration of exposure. This can lead to a higher
secondary attack rate among contacts of these cases.

Factors Influencing the Occurrence of Transmission, Given Infectiousness

Transmission, given infectiousness, depends on both the duration of infectiousness and the number
of susceptible contacts exposed during the infectious period. Thus, for a given degree of infec-
tiousness, transmission can vary widely depending primarily on behavioral host factors and on
the immunity of the host’s contacts. Factors that prolong the infectious period can increase trans-
mission. For example, antibiotic treatment of salmonellosis is thought to prolong the shedding of
Salmonellae in stool, increasing the risk of transmission. Host behaviors that increase the contact
rate during the infectious period can also increase transmission; once they are infectious, com-
mercial sex workers, who have sexual contact with multiple partners, are more likely to transmit
sexually transmitted diseases (STDs) than equally infectious persons who have few sexual partners.
Other host behaviors, such as using condoms in this example, may decrease STD transmission,
given infectiousness. The susceptibility of the infectious host’s contacts is also a critical factor in
determining whether transmission occurs. When contacts are immune to the infectious agent, either
through previous infection or because of vaccination, transmission will not occur.

The parameters that influence transmission may vary over time. Such factors are known as
dependent happenings. Epidemiologic studies that treat these factors as static may fail to identify
important risk factors for exposure, infection, or disease. An example of the importance of dependent
happenings in transmission of infectious disease is the phenomenon known as herd immunity.
As an infection that produces protective immunity moves through a population, the proportion
of the population that is susceptible declines. Thus, the pool of susceptible persons dwindles.
Eventually, if the contact rate remains constant, the risk of encounters between infectious hosts and
susceptible persons drops to a point at which transmission ceases, even if there is no change in
the transmission-related behavior of infectious persons. When a high proportion of the population
is immune, remaining susceptibles are protected from infection to some degree, not by personal
immunity but because the likelihood of exposure to the infectious agent decreases. An excellent
example of herd immunity and cholera is shown in Table 27–2. In this analysis, the risk of cholera
among unvaccinated, and presumably susceptible, people living in an area where cholera is endemic
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ˆ

ˆ

ˆ

ˆ
T A B L E 2 7 – 2

Risk of Cholera by Level of Cholera Vaccine Coverage in a Community,
Showing Decreased Risk in Nonimmune (Unvaccinated) Persons, Associated
with Increased Levels of Protective Immunity in the Population (Herd
Immunity)

Level of Vaccine Coverage
Achieved in Population from Number of Placebo Number of Placebo Risk per 1,000
Which Placebo Vaccine Recipients Recipients Placebo
Recipients Were Drawn (Nonimmune) Developing Cholera Recipients

<28% 2,852 20 7.01
28%–35% 4,429 26 5.87
36%–40% 5,503 26 4.72
41%–50% 5,801 27 4.65
>51% 6,082 9 1.47

was inversely related to the level of vaccine coverage in the household, with 7.01 cases per 1,000
in the lowest quintile of coverage and 1.47 cases per 1,000 in the highest quintile (Ali et al., 2005).

Factors Influencing the Resolution of Infectiousness

Because the infectious period is not synonymous with the progression-related stages of colonization,
infection, or disease, specific assessment of factors that lead to cessation of infectiousness is also
important. However, factors that lead to resolution of colonization, infection, and disease on the
progression axis often also influence resolution of infectiousness. Such factors include pathogenicity
of the organism, host immunity, and antimicrobial therapy. Somewhat paradoxically, virulence
factors that increase acute mortality may decrease transmission by shortening the duration of the
infectious period. For other infections, such as hepatitis B virus, the infectious period is bimodal;
the majority of cases have a brief infectious period, whereas a prolonged infectious carrier state can
occur in as many as 10% of infected individuals.

For some infectious agents, it is also possible for a single individual to have multiple periods of
infectiousness. This situation can occur when disease that is infectious resolves and then relapses, as
can happen in tuberculosis. Often, but not always, this return to infectiousness is the result of failure
of antibiotic therapy; retreatment can then lead to resolution of the second period of infectiousness.
For infectious agents that have a latent state, periods of activity of the infection between latent
periods can produce recurrent periods of infectiousness, as in the case of herpesvirus reactivations.

Infectious Disease Transmission Models

Infectious disease transmission models are dynamic analytic systems that incorporate dependent
happenings to explain and predict the movement of infection through populations over time (Hallo-
ran, 2003). The conceptual basis of such models was developed by Sir Ronald Ross to explore the
transmission dynamics of malaria. Early mathematical formulations of transmission models were
developed by Kermack and Reed and Frost in the 1920s (Abbey, 1952; Fine, 1977). These models
consider the members of the population to fall into “compartments,” or transmission-related states,
such as “susceptible,” “infectious,” and “recovered and immune.” The simplest models use only
two or three compartments, but many compartments can be used in models of complex situations.
Parameters describing the movement between compartments are used to produce a model of trans-
mission over time. Thus, in a simple model, the number of persons becoming infectious at time
t + 1 is calculated as a function of the number of infectious persons at time t , the contact rate be-
tween infectious persons and others in the population, the probability that contact at time t is with a
susceptible person, and the probability of transmission per contact with a susceptible. Similarly, the
number of people who have recovered and are immune and noninfectious at time t + 1 is calculated
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from the number of infectious people at time t and the duration of infectiousness. The number
of people in the population who are susceptible, infected, and recovered are then calculated over
time to depict the dynamics of transmission at the population level. This simple model assumes a
number of conditions that are not usually realistic, such as that the contact rate is constant for all
people and that no one enters or leaves the population. More sophisticated transmission models
have been developed to include the possibilities of unequal mixing, varying infectiousness, varying
susceptibility over time, and migration into and out of the cohort (Longini et al., 1988). Because of
dependent happenings, it is important to avoid assumptions that transmission parameters are either
static or independent of each other.

Infectious disease transmission models are often used to predict the course of epidemics, and
they also allow investigation of the effects of changes over time in the parameters that determine
the transition from one state to another. For example, to aid in preparation for future influenza
pandemics, detailed models have been developed to predict the anticipated effects of various public
health responses, including treatment of influenza disease, distribution of prophylactic antiviral
medications, mass immunization with vaccines of varying effectiveness, school closures, travel
restrictions, and social distancing measures on transmission of influenza strains with varying R0

(Germann et al, 2006). In order to construct such models, precise measurement of the factors that
influence the transition from one stage to another is needed. The resulting transition probabilities
are then incorporated into the dynamic system and varied to identify which ones have the greatest
influence on infection and disease incidence and prevalence. Thus, construction of useful dynamic
transmission models requires a substantial amount of information about specific factors that influ-
ence the progression from one stage of infection to the next. A common goal of such a model is
estimation of the effective reproductive number of an infection. The effective reproductive number,
R, is the average number of transmissions of infection that occur from each infectious case. In
contrast to R0, which refers to a completely susceptible population, R reflects the actual level of
immunity in the population. Thus, R can vary over time as immunity changes in the population.
If susceptibles are introduced into the population, R will increase, and if the proportion of sus-
ceptibles decreases, through vaccination or the spread of infection with subsequent immunity, R
will decrease. If R < 1, then transmission will not be sustained, and infection will die out over
time as each infected person transmits the infection, on average, to fewer than one person who can
subsequently transmit. If R > 1, then transmission increases and the epidemic spreads until the
proportion of immune persons increases to the point at which R falls below 1. A major difficulty
with modeling the course of epidemics is the variability in infectiousness among transmitters; rare
events, such as the occurrence of a highly efficient transmitter or migration of an infectious host into
a nonimmune population, as can easily occur with international air travel, can cause an epidemic
to blossom.

CONCLUSIONS

Infectious diseases result from human encounters with a wide variety of organisms that cause both
acute and chronic infection and disease. This diversity leads to a wide variety of approaches to
the study of infectious disease epidemiology. Identification of the causal agent of a given disease
is usually straightforward, although when previously unrecognized agents present as emerging
infectious diseases, identification can be challenging. Legionella pneumonia (“Pontiac fever,” “le-
gionnaire’s disease”), HIV infection (“GRID,” “AIDS”), and coronavirus pneumonia (“SARS”)
all remained elusive for long enough that the diseases they cause acquired one or, in some cases,
multiple eponyms.

Once the causal agent is identified, epidemiologic attention turns to defining risk factors for
acquisition, progression or recovery, and transmission. Interventions to modify acquisition and
clinical course and decrease transmission are also explored through interventional studies, both
controlled and uncontrolled. Once these factors are reasonably well understood, models can be
constructed that allow exploration of the dynamic epidemiology of infectious agents in both human
and nonhuman populations. These analyses constitute the tools for arriving at a full understanding
of the interplay between exposures and outcomes in the study of infectious diseases.
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Since the chapter on “genetic epidemiology” was published in the second edition of Modern
Epidemiology (Khoury, 1998), rapid developments in genetic and molecular technologies have oc-
curred, including the completion of the human genome project (Collins et al., 2003; Collins and
Guttmacher, 2003). The term genomics is now used regularly with reference to “the study of the
functions and interactions of all the genes in the genome” (Guttmacher and Collins, 2002). More-
over, new “omic” disciplines have emerged to study gene expressions, products, and interactions
(e.g., proteomics [Sellers and Yates, 2003], transcriptomics [Kiechle and Holland-Stanley, 2003],
metabonomics [Nicholson et al., 2002], nutrigenomics [van Ommen and Stierum, 2002], phar-
macogenomics [Sweeney, 2004], and toxicogenomics [Tugwood et al., 2003]). The pace of gene
discovery has accelerated markedly in 2006 and 2007 with a number of large scale case-control
studies of several common chronic diseases that used genome-wide association (GWA) analyses
that provide impressive results in finding new genetic variations related to these diseases.

Before the “omic” era, epidemiology had a long history of using biologic markers (Schulte,
1993), such as antibody titers in infectious disease epidemiology, blood lipids in cardiovascular
disease epidemiology (Truett et al., 1967), and blood levels of potential toxins in environmen-
tal epidemiology. The integration of biologic markers of exposures, susceptibility, and outcomes
into epidemiologic research has been referred to as “molecular epidemiology” (Schulte and Per-
era, 2003). The term genetic epidemiology has been often used to denote the study of the role
of genetic factors in the occurrence of disease in populations (Khoury, 1993), focused largely

564
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ˆ

ˆ

ˆ

ˆ
T A B L E 2 8 – 1

Fields of Biomarker Epidemiology: The Continuum of Epidemiologic
Approaches to the Genome, Its Products, and Interactions with the
Environmenta

Field Application Types of Studies

Genetic epidemiology Gene discovery Linkage analysis, family-based association
studies

Molecular epidemiology Gene characterization
Use of other biomarkers of

exposures, susceptibility, and
outcomes

Research to characterize gene–disease
associations and gene–environment
interactions using biomarkers

Applied epidemiology/
health services research

Evaluating health effects Studies to evaluate clinical validity and
utility of genetic information in practice

a We have used the term human genome epidemiology to refer to the continuum of epidemiologic approaches to the human genome (2004).

on statistical methods for gene discovery in family studies. We are now using the term human
genome epidemiology to refer to the continuum of epidemiologic approaches to the human genome
from gene discovery to applications in medicine and public health (Khoury, 2004a) (see Table
28–1 for definitions and scope). In the next decade, the use of biomarkers in epidemiology will
reach a new level of complexity (Table 28–2), with the simultaneous study of hundreds and even
thousands of data points (e.g., DNA variants, mRNA expressions, protein patterns) for each per-
son. Increasing complexity will require rigorous approaches to study design, analysis, and inter-
pretation.

Thus, it seems natural to combine the topics of genetic and molecular epidemiology. We start
with a general section about the validation of biomarkers, followed by epidemiologic approaches
to the study of gene–disease associations and gene–gene and gene–environment interactions using
conventional epidemiologic study designs. We discuss analytic and methodologic issues applicable
to these studies, as well as emerging nonconventional epidemiologic methods that can be used as
adjuncts to traditional approaches. We present two current examples on the use of biomarkers, in
colorectal cancer and inflammatory bowel disease. We do not cover traditional genetic analyses
of human pedigrees to assess Mendelian transmission (segregation analysis) or to locate human
genes (linkage analysis/gene mapping) but rather cover emerging key areas central to the practice
of epidemiology in the 21st century. For additional information, readers are referred to the recent
book by Thomas (2004a).

ˆ

ˆ

ˆ

ˆ
T A B L E 2 8 – 2

Examples of Conventional Markers and New “Omic” Markers Used in
Epidemiologic Research, by Type of Biomarker

Type of Biomarker Conventional Biomarkers “Omic” Biomarkers

Exposure Blood levels of chemical agents Changes in gene expression in tissues as
signatures of exposure

Susceptibility DNA variant at one or more loci Genomic profile of variation in numerous genes
Outcomes Estrogen receptor status in breast

cancer
Gene expression profiles for breast cancer

prognosis
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MULTIDISCIPLINARY APPROACHES TO THE
EVALUATION OF BIOMARKERS

Whether we are dealing with traditional biomarkers such as biochemical indices of exposure,
early biologic effects (such as DNA adducts), or new “omic” approaches to genetic variants or
their products, biomarkers need validation using laboratory, epidemiology, and clinical studies.
As shown in Table 28–3, we use general terminology developed by two national genetic testing
committees (Task Force on Genetic Testing, 1997; Secretary’s Advisory Committee on Genetic
Testing, 2000; Haddow and Palomaki, 2003). Although these parameters were developed for tests
in clinical practice, they also apply to epidemiologic research.

ANALYTIC VALIDITY

The analytic validity of a biomarker refers to its accuracy in measuring what it is supposed to
measure. As in other areas of epidemiology, this includes its sensitivity and specificity, illustrated in
Table 28–4 for binary biomarkers; for continuously measured biomarkers, additional work is needed
to establish cutoffs to maximize predictive value. Genetic markers encompass a range that includes
a single nucleotide polymorphism (SNP) in one gene, a collection of SNPs on a chromosome
(haplotype), a whole collection of SNPs on a gene chip, or mRNA expression profiles or proteomic
patterns. The overall analytic validity of biomarkers depends on sample type, processing, storage,
and assay variability. Biomarkers themselves may have inherent variability (e.g., by time of day).
Initial efforts to characterize biomarkers for use have been called “transitional studies” (Hulka and
Margolin, 1992; Schulte and Perera, 1997).

In the genomics age, bundling many variants together can complicate the analytic validation
process. In addition, biomarker reliability, laboratory quality assurance, and proficiency testing
are crucially important. All in all, we are still in the infancy of a rapidly changing field of new
biomarkers.

CLINICAL VALIDITY

Once the analytic validity of a biomarker has been established, its clinical validity needs to be
assessed in clinical and epidemiologic studies. Clinical validity of a biomarker includes its sensitivity
and specificity for measuring a clinical (or subclinical) endpoint. If the biomarker is to be analyzed
as a risk factor, its validity is first established using epidemiologic study designs (as explained later).
For use as a clinical tool (e.g., for early diagnosis of a condition), its clinical sensitivity, specificity
and predictive values must be documented (for illustrations with simple biomarkers, see Table 28–4;
also see Manolio [2003] for further discussion).

ˆ

ˆ

ˆ

ˆ
T A B L E 2 8 – 3

Multidisciplinary Approaches to the Evaluation of Biomarkers

Type of Evaluationa Terms/Variables Types of Studies

Analytic validity Analytic sensitivity, specificity and
predictive values

Laboratory studies
“Transitional” studies

Clinical validity Risk of current or future health outcomes
for people with/without marker

Conventional and nonconventional study
designs

Clinical utility Risk of disease with and without using
biomarker and accompanying
interventions

a Adapted from the Task Force on Genetic Testing (1997) and the Secretary’s Advisory Committee on Genetic Testing (2000).
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ˆ

ˆ
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T A B L E 2 8 – 4

Multidisciplinary Evaluation of Biomarkersa

I. Analytic validity
Biomarker

Test Present Absent

+ A B
− C D

Analytic sensitivity: A/A + C
Analytic specificity: D/B + D

II. Clinical validity of biomarkers as risk factors and as clinical tests
Clinical Outcome

Biomarker Present Absent
+ A B
− C D

As risk factor: analysis to proceed as part of case-control analysis
Odds ratio = AD/BC
For cohort analysis: risk ratio = (A/A + B)/(C/C + D)
As a clinical tool: analysis assesses sensitivity, specificity, and predictive value.
Clinical sensitivity: A/A + C; clinical specificity: D/B + D
Positive predictive value (PPV) = A/A + B (assuming total population tested)
Negative predictive value (NPV = D/C + D) (assuming total population tested)

III. Clinical utility (an example) among persons with a + biomarker
Outcome

Intervention Sick Not
1 A B
2 C D

Analysis in the context of controlled clinical trial comparing different interven-
tions among persons with the biomarker

Risk ratio = (A/A + B)/(C/C + D) (comparing two hypothetical interventions)

a These tables are for illustration purposes only and apply to dichotomous biomarkers
(present/absent). Additional analyses involve stratification, person-time analysis in cohort
studies (see text), adjustment for confounding, and assessment of effect-measure modification.

CLINICAL UTILITY

Biomarkers proposed for use in practice should first be evaluated for clinical utility, i.e., the complete
set of positive and negative outcomes accruing from their use. For example, although tests for genetic
variants of clotting factors F5 (Factor V Leiden) and F2 (prothrombin 20210G-A) are in widespread
use, their clinical utility has yet to be established in most settings. Clinical utility is first assessed in
the context of controlled clinical trials combining use of biomarker and various interventions (see
Table 28–4 for simple illustration). For additional readings, consult Burke et al. (2002) and Pinsky
et al. (2004).

ETHICAL, LEGAL, AND SOCIAL ISSUES

The use of biomarkers in epidemiologic research raises a number of ethical, legal, and social
(ELSI) issues (Schulte et al., 1999; Schulte, 2004). The acronym ELSI has been used extensively
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in the context of genetics research and genomic medicine (Meslin et al., 1997). Ethical, legal, and
social issues around genetic information have been raised in a number of areas, including informed
consent, recruitment of subjects, returning information about study results, and the potential for
discrimination against or stigmatization of individuals and groups. Issues related to proper informed
consent in the study of genetic variants with low disease risks in population-based epidemiologic
settings have been described (Beskow et al., 2001). In consultation with a multidisciplinary group,
the Centers for Disease Control and Prevention (CDC) has published an online consent form template
and supplemental information that can be adapted by researchers for genetic epidemiologic studies
(Beskow et al., 2001; Centers for Disease Control and Prevention, 2001a, 2001b).

CONVENTIONAL EPIDEMIOLOGIC STUDIES

Biomarkers of genetic and environmental factors involved in human disease have been used in
case-control, cohort, and cross-sectional studies.

CASE-CONTROL STUDIES

The case-control approach is particularly well suited for studies of genetic variants because (a)
unlike other biologic markers of exposures (e.g., hormonal levels, DNA adducts), genetic markers
are stable indicators of host susceptibility; (b) case-control studies can provide an opportunity to do
a comprehensive search for the effects of several genes, along with other risk factors, and to look
for gene–environment interaction; and (c) case-control studies are suitable for many uncommon
disease endpoints such as birth defects and specific cancers. On the other hand, because of changes
in environmental exposures over time, cohort studies with repeated biomarkers of exposures and
intermediate outcomes may be preferable to case-control studies, unless case-control studies are
nested in an underlying cohort of a well-defined population for which biologic samples stored at
the beginning of the study are later analyzed for exposures.

Case-control studies can simultaneously support gene discovery and population-based risk char-
acterization. For example, registries of population-based incident disease cases and their families
provide a platform for conducting family-based linkage and association studies (Thomas, 2004b).
The National Cancer Institute (NCI) sponsors Cooperative Family Registries for Breast and Colorec-
tal Cancer Research that reflect this philosophy (Daly et al., 2000; Hopper, 2003). Population-based
case registries can support a number of study designs, including extended family studies, case-parent
trios (Thomas, 2004b), and case-control-family designs (Peel et al., 2000). One type of family-based
association study is the kin-cohort design in which researchers estimate the genotype-specific risk
of disease occurrence in first-degree relatives of study participants (probands), inferring genotypes
of relatives from genotypes measured in probands (Wacholder et al., 1998).

COHORT STUDIES

Efforts are now being made to integrate genomics into population-based epidemiologic cohort stud-
ies initiated in the pregenomic era to study disease incidence and prevalence, natural history, and
risk factors. Well-known cohort studies include the Framingham study (National Heart, Lung, and
Blood Institute, 2004), the Atherosclerosis Research in Communities study (ARIC Investigators,
1989), the European Prospective Investigation on Cancer (Riboli et al., 2002), and the newly de-
signed National Children Study (National Institutes of Health, 2004), a planned U.S. cohort study
of 100,000 pregnant women and their offspring to be followed from before birth to age 21 years.
In addition, the genomics era is inspiring the development of very large longitudinal cohort studies
and even studies of entire populations to establish repositories of biologic materials (“biobanks”)
for discovery and characterization of genes associated with common diseases. Table 28–5 shows a
partial listing of such studies, which range from large random samples of adult populations such as
the UK Biobank (N = 500,000; Wright et al., 2002) and the CartaGene (2004) project in Quebec
(N = 60,000) to populations of entire countries such as Iceland (N = 100,000; Hakonarson et al.,
2003) and Estonia (N = 1,000,000; Estonian Genome Project, 2004), to a cohort of twins in multiple
countries (GenomeEUtwin, 2004). These biobanks may also help epidemiologists to quantify the
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Examples of Ongoing Large-Scale Population-Based Genomics Studiesa

Study Sample Size Population Study Objectives

Decode Genetics >100,000 Iceland “To identify genetic causes of common diseases
and develop new drugs and diagnostic
tools.” Measures genes, health outcomes,
and links with genealogy database.

UK Biobank 500,000 Population sample of
persons aged
45–69 y

“To study the role of genes, environment and
lifestyle.” Link with medical records

CartaGene
(Quebec)

>60,000 Population sample of
persons aged
25–74 y

“To study genetic variation in a modern
population.” Link with health care records,
and environmental and genealogy databases.

Estonia Genome
Project

>1,000,000 Estonian population “To find genes that cause and influence
common diseases.” Link with medical records.

GenomeEUtwin ∼800,000
twin pairs

Twin cohorts from 7
European countries
+ Australia

“To characterize genetic, environmental and
lifestyle components in the background of
health problems”

a The last three projects are part of the global P3G collaboration (Public Population Project in Genomics).

occurrence of diseases in various populations and to understand their natural histories and risk
factors, including gene–environment interactions.

Longitudinal cohort studies permit repeated phenotypic and outcome measures on individuals
over time, including intermediate biochemical, physiologic, and other precursors and sequels of
disease. Cohort studies can also be used for nested case-control studies or even as an initial screening
method for case-only studies (as explained later). Such studies will produce a large amount of
data on disease risk factors, lifestyles, and environmental exposures, and provide opportunities
for data standardization, sharing, and joint analyses. An example of data standardization across
international boundaries is the global P3G (Public Population Project in Genomics, 2004), which
to date includes three international studies from Europe and North America (see Table 28–5).
“Harmonization” is crucial to create comparability across sites on measures of genetic variation,
environmental exposures, personal characteristics and behaviors, and long-term health outcomes.

CROSS-SECTIONAL STUDIES

Cross-sectional epidemiologic studies can be used to estimate allele and genotype frequencies,
exposure levels in the population, and the relationships among genotypes, exposures, and pheno-
types. Although cross-sectional studies cannot distinguish between incidence and natural history
for the purpose of causal inference, they can provide population-level data on genetic variants and
environmental exposures that may be useful for guiding research and health policy. An example of a
population-based prevalence study is the analysis of two common mutations in the hemochromato-
sis gene (C282Y and H63D variants of HFE) in the U.S. population. Steinberg et al. genotyped 5,171
samples from the CDC’s Third National Health and Nutrition Examination Survey (NHANES III),
a nationally representative survey conducted in the United States from 1992 to 1994. Genotype and
allele frequency data were cross-classified by sex, age, and race/ethnicity (Steinberg et al., 2001).
The NHANES surveys have also been analyzed by the CDC to provide an ongoing assessment
of the U.S. population’s exposure to environmental chemicals. The first National Report on Hu-
man Exposure to Environmental Chemicals was issued in 2001 and presented exposure data for 27
chemicals from NHANES 1999–2001. The second report, released in 2003, presented exposure data
for 116 environmental chemicals stratified by age, gender, and race/ethnicity (Centers for Disease



P1: TNL Printer: RRD

GRBT241-28 GRBT241-v4.cls January 19, 2008 9:8

570 Section IV ● Special Topics

Control and Prevention, 2003). Currently, in collaboration with the National Cancer Institute, the
CDC is using the NHANES III survey to measure prevalence of variants in 57 genes and correlate
the resulting genotypes with medical history, clinical, and laboratory data (Lindegren and the CDC
NHANES Working Group, 2003). When completed, such studies will provide valuable information
on the association between genetic variation and numerous health endpoints.

METHODOLOGIC ISSUES

CONFOUNDING

A crucial consideration in studies of genetic susceptibility is the choice of an appropriate compar-
ison group. The use of convenient comparison groups may lead to spurious findings as a result of
confounding caused by unmeasured genetic and environmental factors. Race/ethnicity can be an
important confounding variable in such studies (often referred to as population stratification)
(Thomas and Witte, 2002). One example is the reported association between the genetic marker
Gm3;5;13;14 and non–insulin-dependent diabetes mellitus (NIDDM) among Pima Indians
(Knowler et al., 1988). In this cross-sectional study, individuals with the genetic marker had a
higher prevalence of diabetes than those without the marker (29% vs. 8%). This marker, however,
is an index of white admixture. When the analysis was stratified by degree of admixture, the associ-
ation all but disappeared. Failure to account adequately for ethnicity in the study design or analysis
can bias estimates of genetic effects on disease risk when both the occurrence of disease and the
genotype distribution vary across groups and correlate with each other. Another way to adjust for
hidden population stratification is to use several genetic markers to index population groups (such as
the genomic control approach; Lee, 2004). Generally, in well-conducted epidemiologic studies that
control for self-reported ethnicity, the bias from population stratification in estimating genetic effects
is likely to be small, especially when there are many subgroups of the population (Wacholder et al.,
2002).

GENOTYPE AND EXPOSURE MISCLASSIFICATION

As discussed earlier, the analytic validity of a biomarker must be established before it can be used
in epidemiologic research. Unless errors are systematic (e.g., because the biomarker is related to
the outcome as well as the exposure), misclassification is likely to dilute the association between
a dichotomous biomarker and outcomes. Indirect methods have sometimes been used to classify
individual genotypes. For example, Cartwright et al. (1982) used dapsone loading followed by
urinary measurements of various metabolites in a case-control study of bladder cancer, a method
for classifying subjects as slow or fast acetylators. Nondifferential, independent misclassification
by indirect measures can bias the relative risk toward unity.

When a genotype is measured at the DNA level, misclassification can also be caused by linkage
disequilibrium. Ideally, if the gene of interest has been sequenced, the presence of one or more
mutations within the gene can be correlated with an altered gene product/function and case-control
status. Many markers, however, are linked with other markers in the same chromosomal region
(haplotypes). Investigators thus measure these markers instead of the disease susceptibility mutation
itself. Marker alleles may be in linkage disequilibrium with disease alleles if the mutation has
arisen relatively recently or if there are selective advantages of specific haplotypes. After several
generations, genetic recombination generally leads to complete independence between a marker
allele and a disease allele in the same region. In the meantime, under linkage disequilibrium, a marker
allele and disease allele occur more often together. Thus, the use of a marker allele as a proxy for
the disease allele in a case-control study presumably leads to nondifferential misclassification and
a dilution of the odds ratio. Thus, a weak association of a marker with disease may obscure a
potentially important association with the gene locus of interest.

GENE–ENVIRONMENT INTERACTION

Essentially, all human disease is caused by the interaction between genetic and environmental factors
(see Chapter 2). Thus, in the design and analysis of epidemiologic studies, gene–environment and
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Gene–Environment Interaction Analysis in a Case-Control Study

Exposure Genotype Cases Controls Odds Ratio (OR)a

− − A00 B00 OR00 = 1.0
− + A01 B01 OR01 = A01B00/(A00B01)
+ − A10 B10 OR10 = A10B00/(A00B10)
+ + A11 B11 OR11 = A11B00/(A00B11)

+, present; −, absent.
Interaction contrast (IC): OR11 − OR10 − OR01 + 1
Departure from odds ratio homogeneity: OR11/(OR10 × OR01)
a Case-only odds ratio OR: (A11A00)/(A10A01) = OR11/(OR10 × OR01) × ORco, where ORco = (B11B00)/(B10B01) (control-only

odds ratio).

gene–gene interaction need to be considered explicitly. Examining the marginal association between
a genotype and disease (or between exposure and disease) may mask the effect of biologic interaction
between the genotypes and exposures (Khoury et al., 1993).

To assess gene–environment interaction at the simplest level, researchers can display data in a
2 × 4 table (Table 28–6). Here, we assume that an exposure is classified as being either present or
absent and that the underlying susceptibility genotype is also classified as being present or absent.
This genotype may reflect the presence of one or two alleles at one locus or a combination of alleles
at multiple loci. Using unexposed subjects with no susceptibility genotype as the reference group,
one can compute odds ratios for all other groups. As discussed by Botto and Khoury (2001), such
presentation has several advantages. The role of each factor is independently assessed in terms of
both association and potential attributable fraction. In addition, the odds ratios can be examined in
terms of departure from specified models of independence (based ideally on additivity of excess
relative risk—see Chapter 5). The table also provides the distribution of the exposures among
controls, and helps evaluate the dependence of factors in the underlying population (provided the
controls are representative). Finally, a case-only odds ratio can be derived (as explained later). The
2 × 4 table approach to presenting gene–environment interactions essentially summarizes seven
2 × 2 tables (Botto and Khoury, 2001). It underscores study-size issues because cell sizes are
presented. It also favors effect estimation over statistical significance testing (see Chapter 10). To
illustrate, we use data from a case-control study of venous thromboembolism in relation to Factor
V Leiden and oral contraceptive use to show key aspects of gene–environment interaction (See
Table 28–7), including marginal and joint effects and potential population-attributable fractions
and calculation of case-only and control-only odds ratios.

From an efficiency perspective, case-control studies could be used to evaluate gene–environment
and gene–gene interactions, particularly for common exposures and genotypes. Desirable study sizes
depend on the underlying model of interaction between the genotype and the exposure. In specific
types of biologic interactions—such as when the exposure and the genotype alone do not increase
disease risks per se—the study sizes needed to assess the marginal effects of the exposure (in a 2 × 2
table) will be more than adequate to estimate interaction between the exposure and the interacting
genotype.

EMERGING ANALYTIC COMPLEXITY

The potential use of thousands of genetic variants in epidemiologic studies creates increased poten-
tial for Type I and Type II errors, especially when significance testing is overemphasized. Large-scale
data mining will unavoidably lead to numerous positive associations that are not replicated. One
reason for Type I errors is simply reliance on statistical significance testing. Wacholder et al. (2004)
has developed a Bayesian approach to assess the probability that—given a statistically significant
finding—no true association exists between a genetic variant and disease. This approach incorpo-
rates not only the observed P-value but also the prior probability of the gene–disease association
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Analysis of Oral Contraceptive Use, Presence of Factor V Leiden Mutation,
and Risk for Venous Thromboembolisma

Factor V Leiden OC Cases Controls Odds Ratio 95% CI AF-Exp (%)

− − 36 100 OR00 1.0 reference
− + 10 4 OR01 6.9 1.83, 31.80 85.6
+ − 84 63 OR10 3.7 2.18, 6.32 73.0
+ + 25 2 OR11 34.7 7.83, 310.0 97.1
Total 155 169

OC, oral contraceptives; AF-Exp (%), attributable fraction (percent) among exposed.
Interaction contrast (IC): OR11− OR10− OR01 + 1 = 34.7 − 3.7 − 6.9 + 1 = 25.1
Departure from odds ratio homogeneity: OR11/(OR10 × OR01) = 34.7/(3.7 × 6.9) = 1.4
a Case-only odds ratio OR: (A11A00)/(A10A01) = OR11/(OR10 × OR01) × ORco, (25 × 36)/(63 × 4) = 1.1 = 1.4 × 0.8

where ORco = (B11B00)/(B10B01) (control-only odds ratio) (2 × 100)/(63 × 4) = 0.8
From Botto and Khoury (2002); data from Vandenbroucke et al. (1994).

and the statistical power of the test. The problem of false positives is compounded by the obvious
tendency of authors and journals to publish statistically significant “positive” or interesting findings
(publication bias), and for all stakeholders to overemphasize results of an individual study, even
when the prior probability of the hypothesis is very low.

On the other hand, let us consider for a moment the staggering implication for epidemiology of
identifying numerous genetic risk factors. Imagine that, for a common disease, only 10 genes con-
tribute a substantial population-attributable fraction. Even if variation at each locus can be classified
in a dichotomous fashion (e.g., susceptible genotype vs. not), this classification will create 2 to the
power 10, or over a thousand possible strata. Dichotomous classification based on just 20 genes will
produce over a million strata. The analysis can get even more complicated when we consider the in-
teractions of these genes with other genes and with environmental factors. Emerging technology will
allow us to measure simultaneously hundreds and thousands of genome variations, gene expression
profiles, and protein patterns. Our epidemiologic analysis of 2 × 4 tables, stratified analyses, and
even logistic regression analysis will quickly face the limitations of small study size in an age when
a large amount of data on each individual is the rule rather than the exception (Hoh and Ott, 2003).

As a result of increasing complexity, novel analytic strategies are emerging, including hierar-
chical regression and Bayesian methods (Dunson, 2001; Greenland, 2007a; see Chapter 21). These
methods may be suited to address the problem of false-positive associations resulting from mul-
tiple comparisons. Another approach to joint analysis of multiple genes for quantitative traits is
the combinatorial partitioning method (CPM; Nelson et al., 2001), which represents an extension
of traditional analysis of variance between and within genotypes at one gene locus. An excess of
variability between the genotypes, relative to within genotypes, represents an association between
the gene and the trait. The CPM extends this concept to many genes by genotypic partitioning based
on multiple loci. An extension of CPM is the multifactor dimensionality-reduction (MDR) method
(Hahn et al., 2003). Using this approach, genotypes at multiple loci are grouped into a few cate-
gories to create high-risk and low-risk groups. This method reduces the number of genotypes from
many dimensions to one (Ritchie, 2001; Zhang et al., 2001). For example, these methods may be
able to classify persons into two or more distinct groups with respect to their propensity to “bleed’
or “coagulate” based on the combination of genotypes at multiple loci involved in maintaining a
delicate balance between bleeding and thrombosis (e.g., the cascade of Factors I through X). When
based on understanding of underlying biology, it is possible that these composite complex genotypes
may be useful for predicting disease outcomes or response to treatment. Although these methods
continue to evolve, they are still vulnerable to the problems of nonreproducibility and false positive
findings. Further research and application is needed for these methods to be useful to practicing
epidemiologists.
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NONCONVENTIONAL EPIDEMIOLOGIC STUDIES

Here, we highlight two nonconventional approaches that have recently emerged in epidemiologic
studies of genetic factors and gene–environment interaction in disease: the case-only study and the
case-parent study. These approaches involve the use of an internal control group rather than an
external one.

CASE-ONLY STUDIES

As in other areas of epidemiology, a case-series design has been gradually recognized as an approach
that can be used for multiple purposes: to evaluate gene–gene and gene–environment interaction in
disease etiology, to scan for the contribution of complex genotypes, and to assess heterogeneity in
outcomes (Botto and Khoury, 2004; Begg and Zhang, 1994; Piegorsch et al., 1994). Although the
case-only method is best known for the analysis of interactions, it may have the most limitations in
this area, and the other two applications may become more prominent, as will be discussed.

For estimating interaction effects, investigators use case subjects only to assess the magnitude
of the association between a genotype and an exposure (or another genotype). The basic setup for
analysis is a 2 × 2 table relating exposure to genotype in cases only (Table 28–6). If the genotype
and the exposures are independent in the source population from which cases arose, the expected
value of ORco becomes unity; thus the odds ratio obtained from a case-only study measures the
departure from multiplicative joint effect of the genotype and the exposure. Under the null hypoth-
esis of multiplicative effects, the expected value of ORca is unity; if the joint effect is more than
multiplicative, ORca is expected to be more than 1. This approach provides a simple tool with which
to screen for gene–gene and gene–environment interaction in disease etiology. It can be used in
the context of crude analysis of a 2 × 2 table or in the context of regression models adjusted for
other covariates. Several methodologic issues should be considered when applying the case-only
approach (Liu et al., 2004):

1. The choice of cases is still subject to the usual rules of valid case selection for any case-control
study. Ideally, incident cases from a well-defined population will enhance etiologic inference of
findings

2. Researchers must assume independence between exposure and genotype in the underlying source
population to apply this method. This assumption may seem reasonable for a wide variety of
genes and exposures. There are some genes, however, whose presence may lead to a higher
or lower likelihood of the exposure on the basis of some biologic mechanism. For example,
genetic variations in alcohol and aldehyde dehydrogenases, the main enzymes involved in al-
cohol metabolism, are suspected risk factors for alcoholism and alcohol-related liver damage.
Individuals with delayed alcohol metabolism as a result of particular genetic variants may have
an increased flushing response after alcohol ingestion and thus be less likely to use alcohol,
which could lead to a negative correlation between alcohol exposure and alcohol dehydrogenase
polymorphisms in some populations (Sherman et al., 1994).

3. The case-only approach does not allow investigators to evaluate the independent effects of the
exposure alone or the genotype alone, merely departure from multiplicative effects.

4. The measure obtained from this analysis can only be interpreted as a departure from a mul-
tiplicative relation, whereas departure from additivity may be of greater interest (see Chap-
ter 5).

In addition to the study of gene–gene and gene–environment interaction, the case-only approach
has two other relevant applications (see Table 28–8) that are especially suited for population-based
disease registries (e.g., cancer, birth defects) (Botto and Khoury, 2004):

1. One can scan for genotypes that potentially contribute most to disease occurrence in a popula-
tion. By using the concept of population-attributable fraction, case-only studies can provide an
upper estimate of the contribution of complex risk factors, including multiple genetic variants
at different loci, for disease occurrence. Genotypes comprising combinations of multiple ge-
netic variants have a low expected population frequency even when the variants are individually
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Illustration of the Contributions of the Case-Only
Epidemiologic Study Design in the Genomics Era

I. Scan for complex genotypes that could have a significant
attributable fraction

Gene variants at N loci Cases (T )
1 2 3 . . . N
− − − · · · − A
+ − − · · · − B
· · · · · · · ·
+ + + · · · + X

For complex genotypes at N loci, the expected proportion of the
population with such a combination will decrease markedly with
increasing number of loci, even if each variant is common in the
population. For example, if we have genetic variants at 10 loci each with
50% prevalence in the population, about 1 in 1,000 or fewer people are
expected to be positive for all 10. Therefore, we can use the ratio of X /T
to derive an upper bound of population-attributable fraction for complex
genotypes even in the absence of controls (for more details, consult Botto
and Khoury, 2004).

II. Assess etiologic heterogeneity and genotype–phenotype
correlation among cases

CasesRisk factor
(exposure/genotype) Phenotype 1 Phenotype 2
Yes A B
No C D

Odds ratio = AD/BC = 1 if homogeneous subgroups
Phenotypes can be based on clinical classification, use of gene expression

profiles, or protein expression markers (for examples, see text).

III. Screen for multiplicative gene–environment or gene–gene
interaction

CasesRisk factor
(exposure/genotype) Genotype 1 Genotype 2
Yes A B
No C D

Odds ratio = AD/BC = 1 if joint effects are multiplicative and >1
if supramultiplicative

common. Therefore, the case-only approach may be useful in identifying combinations of genes
to evaluate further for potential etiologic importance (Botto and Khoury, 2004).

2. One can evaluate disease etiologic, diagnostic, and prognostic heterogeneity. Genotype–
phenotype correlations can be examined among subsets of cases defined clinically, or by use of
biologic markers based on genotype, gene expression, protein products, or other features. For
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example, a recent study found that mutations of the CARD15 gene known to be associated with
Crohn disease were correlated with disease of the ileum but not the colon (Lesage et al., 2002). In
another example, Le Marchand et al. conducted a population-based study to evaluate overall and
stage-specific associations of the 870A allele of the Cyclin D1 (CCND1) gene with colorectal
cancer. They found that the allele was associated with colorectal cancer, and particularly with
more severe forms of the disease that result in higher morbidity and mortality (LeMarchand
et al., 2003). A third example is the analysis of genotype–phenotype correlation in cystic fibro-
sis, a common single-gene disorder in people of Northern European descent. More than 1,000
different mutations in the CFTR gene have been described (Mickle and Cutting, 2000), and
genotypic heterogeneity explains in part the highly variable clinical expression of cystic fibrosis.
Because lung function varies even among patients with similar CFTR genotype, other genetic
and environmental determinants also have a role (Burke, 2003).

CASE-PARENT STUDIES

In the case-parent approach, persons with specific health outcomes and their parents are used as
a triad to compare the genotypic distribution at one or more loci of the cases with the expected
distribution of genotypes based on the parental genotypes. We considered this approach as equivalent
to a matched case-control study (Khoury and Flanders, 1996), in which transmitted alleles among
cases are compared with nontransmitted alleles from the parents. This approach can be appropriately
described as equivelant to a case-cohort design (see Chapter 8). In either scenario, genetic markers
associated with increased disease risk could reflect a causal role or could be in linkage disequilibrium
with alleles at a neighboring locus (Schaid and Sommer, 1993; Spielman et al., 1993). The method
requires the availability of genotypic information on the parents of case subjects. In its simplest
form, the genotype of each case subject can be compared with the genotype of a fictitious control
formed by the nontransmitted alleles from each parent. Because this is a matched analysis, one can
construct a 2 × 2 table comparing case and control subjects with respect to the presence or absence
of the allele (or genotype). Odds ratios can be simply obtained, with the analysis following that
of a matched-pair design. This method can also be used to stratify case subjects according to the
presence or absence of the pertinent interacting exposure, and odds ratios can be derived with or
without the exposure.

Several methods of analysis have been have proposed for this type of study (Flanders and Khoury,
1996; Flanders et al., 2001; Sun et al, 1998). By and large, these methods are noniterative and lead
to a closed estimate of the risk ratios, comparing risk among those with a specific genotype to
the risk among those with a comparison genotype. Essentially, for each combination of parental
genotypes, the observed distribution of the offspring (case) genotype is compared with the distri-
bution expected on the basis of Mendelian transmission probabilities. Another analytic approach,
suggested by Weinberg et al. (1998), is log-linear Poisson regression that is fitted using a standard
software package, and that has the distinct advantage over matched analysis of using all information
efficiently, including heterozygote parents and those with missing genotypic data.

As with the case-only design, the case-parent approach does not allow assessment of the inde-
pendent effect of the environmental exposures, merely whether the effect of the genotype is different
for persons with the exposure than for persons without the exposure. As in the case-only design,
this effect-measure modification is also measured on a multiplicative scale. Nevertheless, the case-
parent design permits assessment of the effect of the genotype (with and without the exposure),
whereas the case-only approach does not. Case-parent studies have also been suggested to look for
gene–environment interactions (Lake and Laird, 2004), imprinting effects (Weinberg et al., 1998),
and parent-of-origin effects (Weinberg et al., 1998; Weinberg, 1999).

EXAMPLE 1: COLORECTAL CANCER

Colorectal cancer provides a useful illustration of new “omic” tools in epidemiology. These illustra-
tions include the use of biomarkers for improved exposure assessment, markers of genetic suscepti-
bility appropriate for large populations, new methods for cancer screening, and molecular profiles of
tumors that can predict response to therapy. The following examples illustrate how “omic” tools can
strengthen and enhance (rather than detract from or replace) conventional epidemiologic studies.
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EXPOSURE ASSESSMENT

For decades, epidemiologic studies implicated high levels of meat consumption as a risk factor for
colorectal cancer (Potter et al., 1993). Improved exposure assessment using biomarkers has revealed
many of the relevant causal pathways. Specific methods of cooking, including grilling or frying
meat to high internal temperatures, produce heterocylic amines (HCAs). HCAs are identified using
a combination of liquid chromatography and mass spectrometry (Felton et al., 2004), and can be
detected in food as well as human blood and urine. HCAs cause tumors in laboratory animals and are
classified as suspected human carcinogens (Dashwood, 2003). Toxicologists and epidemiologists
collaborated to develop an index to correlate HCA levels in food with types and cuts of meat,
method of cooking, and degree of doneness (Sinha et al., 1998). Exposure to dietary HCAs can
now be estimated in epidemiologic studies using standardized photographs of cooked meat and
food-frequency questionnaires. Using these methods, increased HCA exposure was associated with
increased risk of colorectal polyps (Sinha et al., 1999) and colon cancer (Butler et al., 2003).

HCAs as biomarkers of exposure help to address diet as a complex mixture. In human volun-
teers, intake of broccoli increased urinary excretion of one particular HCA, 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine or PhIP, and certain types of tea inhibit the mutagenicity of PhIP in
bacterial assays (Felton et al., 2004; Dashwood, 2003). Unraveling the complexity of dietary ex-
posures at the molecular level has provided important insights into the etiology of colon and other
cancers (Ketterer, 1998). Because HCA content can be lowered by changing methods of cooking
and preparing meat, HCAs as biomarkers have helped to design interventions to reduce risk of colon
and other cancers.

Previously, biomarkers such as HCAs were the province of molecular epidemiology and toxicol-
ogists. But these markers have entered mainstream epidemiology through their incorporation into
conventional epidemiologic studies (Felton et al., 2004, p. 142). In addition, because metabolism of
HCAs, isothiocyanates in broccoli, and other dietary constituents is under genetic regulation, poly-
morphisms in genes involved in metabolism of HCAs and compounds (Houlston and Tomlinson,
2001) may help to uncover additional information about the role of diet in colon cancer risk.

GENETIC SUSCEPTIBILITY

Approximately 10% of colorectal cancer patients report a history of the disease among first-degree
relatives (Lynch and de la Chapelle, 2003), and family history is associated with a two- to threefold
increase in risk of colorectal cancer (Potter et al., 1993). A portion of colorectal cancer patients
with multiple affected relatives carry rare, inherited mutations in genes that confer high lifetime
risk of colorectal cancer and are called high-penetrance mutations (Lynch and de la Chapelle,
2003). Genetic testing followed by specific clinical interventions (including increased screening and
prophylactic surgery) can lower risk of colorectal cancer in mutation carriers. These interventions,
however, apply to only a small percentage of persons in the general population. With the sequencing
of the human genome, more common sources of genetic variation (polymorphisms) have been
discovered. These inherited genetic variants have a much weaker effect, often acting in combination
with other genes and environmental factors (Vineis et al., 1999).

Colorectal cancer illustrates how molecular and genetic tools can uncover new clues about the
biologic basis of cancer, and provide insight into the multicausal nature of disease. Epidemiologic
studies incorporating genetic polymorphisms have helped to clarify the role of dietary supplements
and medication use in the etiology of colorectal cancer. Conventional epidemiologic studies of the
risk of colon cancer associated with calcium and vitamin D supplementation, and aspirin and other
nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen and acetaminophen, have yielded
inconsistent results (Potter et al., 1993). A major limitation has been the potential for confounding by
lifestyle, including diet and physical activity. By genotyping participants from epidemiologic stud-
ies, researchers showed that polymorphisms in prostaglandin synthase 2 (PTGS2) (Lin et al., 2002),
ornithine decarboxylase (ODC) (Martinez et al., 2003), cytochrome P450 2C9 (CYP2C9) and uri-
dine diphospho-glucuronosyltransferase IA6 (UGTIA6) (Bigler et al., 2001) modified the protective
effect of NSAIDS and aspirin on risk of colon polyps. Genotypes for the methylenetetrahydrofolate
reductase (MTHFR) gene modified the effects of folic acid intake on colorectal cancer (Chen et
al., 1996; Keku et al., 2002), and the protective effects of calcium supplements and vitamin D
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intake were modified by genotypes at the vitamin D receptor (VDR) locus (Kim et al., 2001). The
protein products of these genes are known to play key roles in metabolism of dietary supplements
or medications. Therefore, the presence of effect-measure modification provides evidence that the
observed protective effects of these compounds may have a biologic foundation.

CANCER SCREENING

To improve the sensitivity and specificity of colorectal cancer screening and to increase acceptability
and affordability for patients, researchers are seeking to identify stool-based genetic screening
tests for colorectal cancer. The procedures use molecular biology techniques to isolate, amplify,
and characterize specific genetic alterations in epithelial cells in stool. The genetic alterations are
acquired somatic changes that are present in tissues undergoing malignant transformation and are
not present elsewhere in the body (Hanahan and Weinberg, 2000). By developing tests for key
mutations in these genes, researchers hope to be able to detect colon cancer at an earlier stage,
when it can be more effectively treated. Stool-based genetic tests are noninvasive (do not require
endoscopy, biopsy, or sedation/anesthesia) and thus do not require specialized health care personnel.
The tests also do not require patients to maintain a controlled diet before the test. Stool samples can
be collected in a patient’s home, using procedures similar to fecal occult blood testing.

Examples of stool-based genetic tests under development for colorectal cancer screening include
somatic mutations in the APC gene (Traverso et al., 2002), K-ras (Tobi et al., 1994), P53, and BAT26
(Dong et al., 2001). Stool-based genetic tests that use multiple genetic targets may be more effective
than those based on single alterations. Comparisons need to be made of the sensitivity, specificity,
and predictive value of stool-based genetic screening tests for colorectal cancer versus fecal occult
blood testing and endoscopy. These comparisons need to be made in population-based settings,
using realistic estimates of the prevalence of disease. Estimates of predictive value derived from
matched sets of cases and controls are invalid, because the prevalence is preset ahead of time by the
investigator and cases are often detected on the basis of symptoms. As an example for another cancer,
Petricoin et al. (2003) developed a potential proteomic test for early detection of ovarian cancer.
Proteomics uses a variation of mass spectroscopy to detect and differentiate small-molecular-weight
proteins in serum. The authors found a protein fragment at higher concentration in 50 ovarian cases
compared to 66 hospital controls, and claimed a predictive value of 94%. As shown by Rockhill
(2002), a test with identical sensitivity and specificity would yield a predictive value of only 1%
when used as a screening tool in populations in which the prevalence of ovarian cancer is only 50 per
100,000. Ultimately, randomized trials using mortality as the endpoint will be needed to determine
whether stool-based genetics tests offer any advantages over conventional screening methods.

TUMOR HETEROGENEITY

Gene expression can be monitored using nucleotide arrays or gene chips (King and Sinha, 2001).
Tumors show increases and decreases in levels of gene expression compared with normal tissue,
and expression profiles can be used to categorize tumors into subtypes with clinical relevance. For
examples, gene expression profiling can be used to identify subtypes of colon cancer that respond
to specific forms of chemotherapy (Mariadason et al., 2003). In the future, it may be possible to
choose therapeutic regimens based on tumor expression profiles and design new treatments based
on the types of biologic changes that occur in cancer, but randomized trials will be needed. In the
meantime, epidemiologists can use these new tools to determine whether subtypes of cancer based
on expression profiles have different underlying etiologies.

EXAMPLE 2: INFLAMMATORY BOWEL DISEASE

GENETIC SUSCEPTIBILITY AND GENE DISCOVERY

Inflammatory bowel disease (IBD) encompasses a spectrum of chronic, relapsing intestinal diseases
that require lifelong medical and surgical management. The two major forms of IBD—ulcerative
colitis and Crohn disease—are distinguished on clinical grounds, although considerable overlap
exists and no system of diagnostic criteria has been universally adopted. Both conditions cluster in
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families without a clear pattern of inheritance, suggesting that multiple familial factors—genetic
and environmental—may influence susceptibility (Podolsky, 2002). Because relatives of people
with either Crohn disease or ulcerative colitis are at increased risk for both conditions, it appears
likely that some risk factors are shared while others are distinct (Bonen and Cho, 2003).

The inflammatory response to infection is a paradigm for gene–environment interaction, and
intestinal bacteria have long been suspected as environmental triggers for IBD. For many years,
etiologic studies focused on specific pathogens and on the immune system—especially the ma-
jor histocompatibility complex—without identifying specific causes. More recently, advances in
molecular biology have intensified the search for underlying mechanisms by investigating genetic
determinants of the immune response (Podolsky, 2002; Hugot, 2004).

In 1996, Hugot et al. reported that a genome-wide linkage study had found a susceptibility region
for Crohn disease on chromosome 16, which they termed IBD1 (Hugot et al., 1996). In 2001, Ogura
et al. identified the NOD2 gene (subsequently renamed CARD15), mapped it to chromosome 16,
and demonstrated that the corresponding protein has a role in innate immunity (Ogura et al., 2001a).
Later that year, both groups of investigators reported that CARD15/NOD2 variants were implicated
in Crohn disease (Hugot et al., 2001; Ogura et al., 2001b).

Ogura et al. selected CARD15/NOD2 as a candidate gene for Crohn disease because it mapped to
the IBD1 region and its function was consistent with etiologic hypotheses (Ogura et al., 2001b). After
identifying a single-base insertion mutation (3020insC) in three cases, they demonstrated its associ-
ation with inherited susceptibility to Crohn disease in a study of multiply affected families using the
transmission disequilibrium test. An association study found the CARD15/NOD2 (3020insC) vari-
ant in 14% (57/416) of unrelated cases and 8% (23/287) of samples obtained previously from people
without Crohn disease; 3% (11/416) of cases—but no controls—were homozygous. The authors
reported “genotype-relative risks” (estimated by odds ratios) of 1.5 for heterozygotes and 17 for
homozygotes (estimating the expected number among controls by assuming Hardy-Weinberg equi-
librium). Functional studies of the CARD15/NOD2 3020insC variant found that the corresponding
protein had reduced ability to react with bacterial components.

Hugot et al. had already examined and rejected two other candidate genes in the IBD1 region;
they turned instead to a positional cloning strategy, which ultimately yielded three SNPs associated
with Crohn disease in 235 families (Hugot et al., 2001) All three SNPs proved to be variants of
the CARD15/NOD2 gene, and the SNP with the strongest association was identical to the single-
base-pair insertion found by Ogura et al. The genotypes of 468 people with Crohn disease were
compared with those of 159 people with ulcerative colitis; 103 unaffected people were recruited
among spouses and other nonblood relatives of patients. Overall, 43% of people with Crohn disease
had at least one of the three SNPs, compared with 9% of those with ulcerative colitis and 15%
of controls; homozygous and compound heterozygous genotypes were found only in people with
Crohn disease (68/468, 15%), except for one person with ulcerative colitis. The authors reported
relative risks of 3 for simple heterozygotes and approximately 40 for compound heterozygotes
and homozygotes (estimating the expected numbers among controls by assuming Hardy-Weinberg
equilibrium).

GENERATING NEW HYPOTHESES

Within 3 years, more than 150 scientific articles had elaborated on this discovery (National Li-
brary of Medicine, 2004), offering insights into the pathobiology of Crohn disease and suggesting
potential new approaches to therapy (Elson, 2002). Published studies examined the association
of CARD15/NOD2 variants with Crohn disease in other countries and ethnic groups; documented
genotype–phenotype correlations; reported genotype-specific results of therapeutic trials; and ana-
lyzed gene–gene and gene–environment interactions.

For example, several studies quickly documented that CARD15/NOD2 variants were virtually
absent in Asian patients with Crohn disease, but were common among those of European de-
scent (Yamazaki et al., 2002; Croucher et al., 2003). Genotype–phenotype studies established that
CARD15/NOD2 variants were associated with Crohn disease of the ileum in both sporadic and
familial cases (Hampe et al., 2002; Lesage et al., 2002). Clinical trials swiftly dismissed the hypoth-
esis that CARD15/NOD2 variants would predict response to therapy with infliximab (monoclonal
antibody directed against tumor necrosis factor [TNF]) (Vermeire, 2002; Mascheretti et al., 2002).
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Investigators searched for additional clues to the pathogenesis of Crohn disease by examining po-
tential interactions between CARD15/NOD2 genotype and environmental exposures (e.g., tobacco
use; Brant et al., 2003) or biomarkers (e.g., anti-Saccharomyces cerevisiae antibodies [ASCA];
Walker et al., 2004). Others explored potential interactions between CARD15/NOD2 variants and
additional susceptibility loci for Crohn disease (Newman et al., 2004; Negoro et al., 2003; Mirza
et al., 2003). Still others examined associations of CARD15/NOD2 variants with other forms of
bowel disease (e.g., colorectal cancer; Kurzowski et al., 2004) and other disorders related to im-
mune dysregulation (e.g., psoriatic arthritis; Rahman et al., 2003).

EPIDEMIOLOGY AND COMPLEXITY

The association of CARD15/NOD2 with Crohn disease in European populations provides an unusu-
ally striking example of genetic susceptibility to complex disease. Not only are implicated variants
common among cases, the association is strong and consistent among studies. Nonetheless, the
implications of this discovery cannot be fully assessed without additional population-based in-
formation. Perhaps most important, the population-attributable fraction cannot be estimated with
confidence because population-level genotype prevalence data are not available. Most associa-
tion studies have employed convenience samples of cases and controls, and although several have
addressed potential gene–gene interactions, very few have examined interactions with potential
environmental factors. Thus, the epidemiology of CARD15/NOD2 variants remains an important
area for additional research.

New insights into the pathobiology of Crohn disease have also revealed further complexity.
Associations were found with genetic variants at the 5q31 locus known as IBD5, which contains
the cytokine gene cluster (Rioux et al., 2001). Subsequent analysis identified these with a suscep-
tibility haplotype containing variants of the OCTN1 andOCTN2 genes (also known as SLC22A4
andSLC22A5), which code for organic cation transporters, not cytokines. It has been suggested that
SLC22A4, SLC22A5, and CARD15 act in a common pathogenic pathway to cause Crohn disease
(Peltekova et al., 2004).

Molecular methods have advanced understanding of the genetics of IBD, but environmental in-
fluences remain poorly understood. Since the 1930s, incidence of both ulcerative colitis and Crohn
disease has increased steadily in Europe and North America, with evidence for recent leveling in
high-incidence areas (Loftus, 2004; Timmer, 2003). Environmental factors are clearly responsible,
yet decades of active investigation have identified only a single definitive association: smoking,
which paradoxically increases the risk and severity of Crohn disease but appears to reduce the risk
of ulcerative colitis. Many epidemiologic studies have found associations with factors such as diet,
stress, and socioeconomic status that are difficult to measure but are often shared within families and
are more generally associated with the modern Western lifestyle (Timmer, 2003). Thus, epidemio-
logic evidence suggests that the current causal model for IBD—immune dysregulation producing
a hyperactive inflammatory response to intestinal bacteria—is necessarily incomplete (Timmer,
2003). Advances in molecular biology may yet uncover additional clues in studies of bacteria,
whose genomes are under selection pressures that change with manipulation of the environment
that humans and microbes share (Hugot et al., 2003).

A comprehensive explanation of the etiology of IBD is likely to emerge only from a wide-ranging
research agenda coupled with an inclusive approach to synthesis of knowledge from diverse fields.
This challenge requires extending the scientific horizon beyond systems biology to an ecology of
interactions among humans, microbes, and their environments (Hugot et al., 2003), occurring not
only as “gene–environment interactions” at the molecular level but within families and populations.
Epidemiologists have much to contribute and to learn from this endeavor.
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The discipline of nutritional epidemiology uses epidemiologic approaches to determine relations
between dietary factors and the occurrence of specific diseases. For many years, many nutritionists
and epidemiologists thought that the difficulties of assessing the diets of free-living human beings
over extended periods of time made large-scale studies impossible. Recently, however, methods for
assessing dietary intake have been developed and validated, thus providing the underpinning for
this rapidly expanding field. Largely as a result of this effort, the potential importance of diet in the
cause and prevention of nearly all major diseases has come to be appreciated. For example, diseases
as diverse as birth defects, most forms of cancer, cardiovascular diseases, infertility, and cataracts
have important dietary determinants. Moreover, the definition of nutrient has become increasingly
unclear as the role of food constituents not normally considered to be nutrients for maintaining long-
term health has become evident. In general, nutritional epidemiologists have not felt constrained by
any formal definition of nutrition and are broadly concerned about health as it is related to food and
its components, whether they be essential nutrients, other natural constituents of food, chemicals
created in the cooking and preservation of food, or noninfectious food contaminants. Because the
major distinction between nutritional epidemiology and other areas of epidemiology is that the
exposures are aspects of diet—an extremely complex set of variables—much of this chapter is
devoted to the measurement of dietary intake. Before doing so, however, the classic epidemiologic
approaches—ecologic, case-control, and cohort studies—are discussed in the context of issues that
are particularly germane to the study of nutritional exposures.

As many of the topics considered in this chapter can be discussed only briefly, readers are referred
to a full text on the topic of nutritional epidemiology (Willett, 1998) and to cited references for
more detailed treatment.

580



P1: TNL Printer: RRD

GRBT241-29 GRBT241-v4.cls January 16, 2008 13:38

Chapter 29 ● Nutritional Epidemiology 581

EPIDEMIOLOGIC STUDIES OF NUTRITIONAL EXPOSURES

ECOLOGIC STUDIES

With few exceptions (Dawber et al., 1961), epidemiologic investigations of diet and disease before
1980 consisted largely of ecologic or correlational studies; that is, comparisons of disease rates
in populations with the population per-capita consumption of specific dietary factors. Usually, the
dietary information in such studies is based on “disappearance” data, meaning the national figures
for food produced and imported minus the food that is exported, fed to animals, or otherwise not
available for humans. Many of the correlations based on such information are remarkably strong;
for example, the correlation between meat intake and incidence of colon cancer is 0.85 for men and
0.89 for women (Armstrong and Doll, 1975).

The use of international ecologic studies to evaluate the relation between diet and disease has
several strengths. Most important, the contrasts in dietary intake are typically very large. For ex-
ample, in the United States, most individuals consume between 30% and 45% of their calories
from fat (Willett, 1987), whereas the mean fat intake for populations in various other countries has
varied from approximately 15% to 42% of calories (Goodwin and Boyd, 1987). Also, the average
of diets for persons residing in a country are likely to be more stable over time than are the diets of
individual persons within the country; for most countries, the changes in per-capita dietary intakes
over a decade or two are relatively small. Finally, the disease rates on which international studies
are based are usually derived from relatively large populations and are therefore subject to only
small random errors.

A major limitation of such ecologic studies is that many potential determinants of disease other
than the dietary factor under consideration may vary between areas with a high and low incidence of
disease (see Chapter 23). Such confounding factors can include genetic predisposition, other dietary
factors, including the availability of total food energy, and other environmental or lifestyle practices.
For example, with few exceptions, such as Japan, countries with a low incidence of colon cancer
tended to be economically undeveloped. Therefore, any variable related to industrialization will be
similarly correlated with incidence of colon cancer. Indeed, the correlation between gross national
product and colon cancer mortality rate is 0.77 for men and 0.69 for women (Armstrong and Doll,
1975). More complex analyses of such ecologic data can be conducted that control for some of the
potentially confounding factors. For example, McKeown-Eyssen and Bright-See (1985) found that
an inverse association of per-capita dietary fiber intake and national colon cancer mortality rates
decreased substantially after adjustment for fat intake.

Another major limitation of ecologic studies is their reliance on population rather than individual
characteristics (see Chapter 23). Aggregate data for a geographic unit as a whole may be only weakly
related to the diets of those individuals at risk of disease. As an extreme example, the interpretation
of ecologic data regarding alcohol intake and breast cancer is complicated because, in some cultures,
most of the alcohol is consumed by men, but it is the women who develop breast cancer. In addition,
ecologic studies of diet are often limited by the use of disappearance data that are only indirectly
related to intake and are likely to be of variable quality. For example, the higher “disappearance” of
calories per capita for the United States compared with most countries is probably related largely
to wasted food. These problems of ecologic associations and issues of data quality can potentially
be addressed by collecting information on actual dietary intake in a uniform manner from the
population subgroups of interest (Navidi et al., 1994; Sheppard and Prentice, 1995). This strategy
separates groups at a level sufficiently fine for the study objectives, and has been applied in a study
conducted in 65 geographic areas in China (Chen et al., 1990).

Another serious limitation of the international ecologic studies is that they cannot be reproduced
independently, which is an important part of the scientific process. Although the dietary information
can be improved and the analyses can be refined, the data will not really be independent even as
more information becomes available over time; the populations, their diets, and the confounding
variables will be similar. Thus, it is not likely that many new insights will be obtained from further
ecologic studies among countries.

The role of ecologic studies in nutritional epidemiology is controversial. Clearly, these analyses
have stimulated much of the current research on diet in relation to cancer and cardiovascular disease,
and in particular they have emphasized the major differences in rates of these diseases among
countries. Traditionally, such studies have been considered the weakest form of evidence, primarily
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owing to the potential for confounding by factors that are difficult to measure and control (Kinlen,
1983). Others have felt that such studies provide the strongest form of evidence for evaluating
hypotheses relating diet to cancer (Hebert and Miller, 1988; Prentice et al., 1988). On balance,
ecologic studies have clearly been useful, but they are far from conclusive regarding the relations
between dietary factors and disease and may sometimes be totally misleading (Greenland and
Robins, 1994; see Chapter 25).

SPECIAL EXPOSURE GROUPS

Subgroups within a population that consume unusual diets provide an additional opportunity to
learn about the relation of dietary factors and disease. These groups are often defined by religious
or ethnic characteristics and provide many of the same strengths as ecologic studies. In addition, the
special populations often live in the same general environment as the comparison group, which may
somewhat reduce the number of alternative explanations for any differences that might be observed.
For example, the observation that colon cancer mortality in the largely vegetarian Seventh-Day
Adventists is only about half that expected (Phillips et al., 1980) has been used to support the
hypothesis that meat consumption is a cause of colon cancer.

Findings based on special exposure groups are subject to many of the same confounding issues as
ecologic studies. Many factors, both dietary and nondietary, are likely to distinguish these special
groups from the comparison population. Thus, another possible explanation for the lower colon
cancer incidence and mortality among the Seventh-Day Adventist population is that differences
in rates are attributable to a lower intake of alcohol and rates of smoking or higher intake of
vegetables. Given the many possible alternative explanations, such studies may be particularly
useful when a hypothesized association is not observed. For example, the finding that the breast
cancer mortality rate among the Seventh-Day Adventists is not appreciably different from the rate
among the general U.S. population provides fairly strong evidence that eating meat is not a major
cause of breast cancer.

MIGRANT STUDIES AND SECULAR TRENDS

Migrant studies have been particularly useful in addressing the possibility that the correlations
observed in the ecologic studies are due to genetic factors. For most cancers, populations migrating
from an area with its own pattern of cancer incidence rates acquire rates characteristic of their
new location (Staszewski and Haenszel, 1965; Adelstein et al., 1979; McMichael and Giles, 1988;
Shimizu et al., 1991), although for a few tumor sites this change occurs only after several generations
(Haenszel et al., 1972; Buell, 1973). Therefore, genetic factors cannot be primarily responsible for
the large differences in cancer rates among these countries. Migrant studies may also be useful for
examining the latency or relevant time of exposure.

Major changes in the rates of a disease within a population over time provide evidence that
nongenetic factors play an important role in the etiology of that disease. In Japan, for example, rates
of colon cancer have risen dramatically since 1950 (Ferlay et al., 2001). These secular changes
clearly demonstrate the role of environmental factors, possibly including diet, even though genetic
factors may influence who becomes affected within a population.

CASE-CONTROL AND COHORT STUDIES

Many weaknesses of ecologic studies are potentially avoidable in case-control studies or cohort
investigations. In such studies, the confounding effects of other factors can be controlled either in
the design or in the analysis if good information has been collected on these variables. Furthermore,
dietary information can be obtained for the individuals actually affected by disease, rather than
using the average intake of the population as a whole.

Unfortunately, consistently valid results are difficult to obtain from case-control studies of dietary
factors and disease because of the inherent potential for methodologic bias in those of retrospective
design. This potential for bias is not unique for diet, but is likely to be unusually serious for several
reasons. Owing to the limited range of variation in diet within most populations and some inevitable
error in measuring intake, realistic relative risks in most studies of diet and disease are likely to be
modest, within the range of 0.5 to 2.0, even for extreme categories of intake. These relative risks
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may seem small but would be quite important because the prevalence of exposure is high. Given
typical distributions of dietary intake, these relative risks are usually based on differences in means
for cases and controls of only about 5% (Willett, 1998). Thus, a systematic error of even 2% or 3%
can seriously distort such a relation. In retrospective case-control studies, biases (due to selection
or recall) of this magnitude could easily occur, and it is extremely difficult to exclude the possibility
that this degree of bias has occurred in any specific study. Hence, it would not be surprising if
retrospective case-control studies of dietary factors provide inconsistent findings.

The selection of an appropriate control group for a study of diet and disease is also usually
problematic. One common practice in hospital-based studies is to use patients with another disease to
provide the controls, with the assumption that the exposure under study is unrelated to the condition
of this control group. Because diet may influence the incidence of many diseases, however, it is often
difficult to identify, with confidence, disease groups that are unrelated to the aspect of diet under
investigation. A common alternative is to use a sample of persons from the general population as
the control group. In many areas, particularly large cities, participation rates are low; it is common
for only 60% or 70% of eligible population controls to complete an interview (Hartge et al., 1984).
Since diet is particularly associated with the level of general health consciousness, the diets of those
who participate are likely to differ substantially from those who do not.

The potential opportunities for bias in case-control studies of diet raise a concern that incorrect
associations may frequently occur. So far, direct empiric evidence regarding the magnitude of these
biases is limited. In two large prospective cohort studies of diet and cancer, the diets of breast
cancer cases and a sample of controls were also assessed retrospectively. In one study, no evidence
of recall bias was observed (Friedenreich et al., 1991), but in the other the combination of recall and
selection bias seriously distorted associations with fat intake (Giovannucci et al., 1993). Even if many
studies arrive at correct conclusions, distortion of true associations in a substantial percentage would
produce an inconsistent body of published data, making a coherent synthesis difficult or impossible
for a specific diet-and-cancer relation. Additional sources of inconsistency may also be particularly
troublesome in nutritional epidemiology owing to the inherent biologic complexity resulting from
nutrient–nutrient interactions. Because the effect of one nutrient may depend on the level of another
(which can differ between studies and may not have been measured), interactions may result in
apparently inconsistent findings in epidemiologic studies. Thus, compounding biologic complexity
with methodologic inconsistency may result in a literature that is a challenge to interpret.

Prospective cohort studies reduce most of the potential sources of methodologic bias associated
with retrospective case-control investigations. Because the dietary information is collected before
the diagnosis of disease, illness cannot affect the recall of diet. Although losses to follow-up that vary
by level of dietary factors can result in distorted associations in a cohort study, follow-up rates tend
to be high because participants have already provided evidence of willingness to participate. Also,
in prospective studies participants may be followed passively by means of disease registries and
vital statistics listings (Stampfer et al., 1984), although information on time-dependent variables
(which might include diet) would be lost even with registry-based follow-up. In the last several
years a sufficient number of prospective cohort studies have been published to compare their results
with those of retrospective case-control investigations of the same relations. For total dietary fat
and breast cancer, the associations in retrospective case-control studies have been heterogeneous,
but in a meta-analysis (Howe et al., 1990), a small but precisely estimated positive association was
seen (see Fig. 29–1a). In contrast, prospective cohort studies on the same topic have consistently
found little relation between total fat intake and breast cancer risk, and a meta-analysis showed
no association (Hunter et al., 1996). Even more strikingly, total fat intake had been positively
associated with risk of lung cancer in several retrospective case-control studies, but the findings
were highly inconsistent (see Fig. 29–1b). In contrast, findings from prospective cohort studies have
been consistently null (Smith-Warner et al., 2002). As another example, an apparent protective effect
of fruits and vegetables had been seen so frequently in retrospective case-control studies and lung
cancer that this relation was thought to be established (World Cancer Research Fund, 1997). In
prospective cohort studies, however, the findings have been far weaker, and in a pooled analysis
there was little overall association (Smith-Warner et al., 2003). The available evidence now strongly
suggests that retrospective case-control studies of the effects of dietary factors on the risks of disease
are often misleading.

In addition to being less susceptible to bias, prospective studies provide the opportunity to obtain
repeated assessments of diet over time and to examine the effects of diet on a wide variety of diseases,
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FIGURE 29–1 ● Comparison of results for retrospective case-control studies of total dietary fat and
breast cancer (A) and of dietary fat and lung cancer (B). Retrospective case-control studies of breast cancer
were summarized by Howe et al. (1990), and prospective cohort studies were summarized by Hunter et al.
(1996). Retrospective case-control studies of lung cancer included those by Byers et al. (1987), Goodman et
al. (1988), Mohr et al. (1999), De Stefani et al. (1997), and Alavanja et al. (1993). Prospective cohort studies
of lung cancer were summarized by Smith-Warner et al. (2002).
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including total mortality, simultaneously. The primary constraints on prospective cohort studies of
diet are practical. Even for common diseases such as coronary heart disease or breast cancer, it is
necessary to enroll tens of thousands of subjects to have reasonable precision to measure effects. The
use of structured, self-administered questionnaires has made studies of this size possible, although
still expensive. For diseases of somewhat lower frequency, however, even very large cohorts will
not accumulate a sufficient number of cases within a reasonable amount of time. Therefore, case-
control studies will continue to play some role in nutritional epidemiology, but should be designed
and interpreted with the preceding limitations in mind.

EXPERIMENTAL STUDIES

The most rigorous evaluation of a dietary hypothesis is the randomized trial, optimally conducted as
a double-blind experiment. The principal strength of a randomized trial is that potentially distorting
variables should be distributed at random between the treatment and control groups, thus permitting
reliable calculation of the probability that a test statistic as large as observed or larger could have been
produced by random error alone (see Chapter 10). The investigator can reduce this probability below
any threshold he or she desires by increasing the size of the trial. In addition, it is sometimes possible
to create a larger dietary contrast between the groups being compared by use of an active intervention.
Such experiments among humans, however, are best justified after considerable nonexperimental
data have been collected to ensure that benefit is reasonably probable and that an adverse outcome
is unlikely. Experimental studies are particularly practical for evaluating hypotheses that minor
components of the diet, such as trace elements or vitamins, can prevent cancer, because these
nutrients can be formulated into pills or capsules.

Even if feasible, randomized trials of dietary factors and disease are likely to encounter several
limitations. The time between change in the level of a dietary factor and any expected change in
the incidence of disease is typically uncertain. Therefore, trials must be of long duration, and if
an effect is not found, it will usually be difficult to eliminate the possibility that the follow-up
was of insufficient duration. Compliance with the treatment diet is likely to decrease during an
extended trial, particularly if treatment involves a real change in food intake, and the comparison
group may well adopt the dietary behavior of the treatment group if the treatment diet is thought
to be beneficial. Such trends, which were found in the Multiple Risk Factor Intervention Trial of
coronary disease prevention (Multiple Risk Factor Intervention Trial Research Group, 1982), may
obscure a real benefit of the treatment.

The more recent case of the Women’s Health Initiative low-fat dietary trial provides an additional
example of the difficulty of maintaining a substantial contrast in diet between groups (Prentice et
al., 2006). The investigators expected a 14% of energy difference in fat intake between groups,
but the difference based on self-reported intake was only 9% of energy. Further, this difference is
almost certainly greater than the reality because of the general tendency of humans to overreport
compliance with interventions (Willett, 1998). Notably, two biomarkers that would be expected to
change with reductions in dietary fat, plasma levels of triglycerides and high-density lipoprotein
(HDL) cholesterol, differed little between the dietary groups during follow-up, which raises even
more serious concerns about compliance.

A related potential limitation of trials is that participants who enroll in such studies tend to be
highly selected on the basis of health consciousness and motivation. Therefore, it is likely that the
subjects at highest potential risk on the basis of their dietary intake, and who are thus susceptible
to intervention, are seriously underrepresented. For example, if low β-carotene intake is thought
to be a risk factor for lung cancer and a trial of β-carotene supplementation is conducted among
a health-conscious population that includes few individuals with low β-carotene intake, one might
see no effect simply because the study population was already receiving the maximal benefit of
this nutrient through its usual diet. In such an instance, it would be useful to measure dietary
intake of β-carotene before starting the trial. Because the effect of supplementation is likely to be
greatest among those with low dietary intakes, it would be possible either to exclude those with high
intakes (for whom supplementation would likely have little effect) either before randomization or
in subanalyses at the conclusion of the study. This approach requires a reasonable measurement of
dietary intake at the study’s outset.
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It is sometimes said that trials provide a better quantitative measurement of the effect of an
exposure or treatment because the difference in exposure between groups is better measured than in
a nonexperimental study. Although this contrast may at times be better defined in a trial (it is usually
clouded by some degree of noncompliance), trials still usually produce an imprecise measure of
the effect of exposure owing to marginally adequate study sizes and ethical considerations that
require stopping a trial after interim analyses (see Chapter 5). For example, were a trial stopped
with a P-value close to 0.05, the corresponding 95% confidence interval would likely extend from
a lower bound of a near zero effect to an upper bound indicating an implausibly strong effect.
In a nonexperimental study, interim analyses do not yield an ethical imperative to stop the study
early so long as the interim results are published. Continued accumulation of data can therefore
improve the precision of the estimated relation between exposure and disease. On the other hand,
a trial can provide information on the induction period between change in an exposure and change
in diet, whereas estimation of induction periods for dietary effects will usually be difficult in
nonexperimental studies because spontaneous changes in diet are typically not clearly demarcated
in time.

Practical or ethical reasons often preclude randomized trials in humans. For example, our knowl-
edge of the effects of cigarette smoking on risk of lung cancer is based entirely on observational
studies, and it is similarly unlikely that randomized trials could be conducted to examine the effect
of alcohol use on human breast cancer risk. It is unlikely that cancer-prevention trials of sufficient
size, duration, and degree of compliance can be conducted to evaluate many hypotheses that involve
major behavioral changes in eating patterns. For these hypotheses, nonexperimental studies will
continue to provide the best available data to understand the relation between diet and disease.

MEASUREMENT OF DIET IN EPIDEMIOLOGIC STUDIES

The complexity of the human diet represents a daunting challenge to anyone contemplating a study
of its relation to chronic diseases such as cancer. The foods we consume each day contain literally
thousands of specific chemicals, some known and well quantified, some characterized only poorly,
and others completely undescribed and presently unmeasurable. In human diets, intakes of various
components tend to be correlated. With few exceptions, all individuals are exposed; for example,
everyone eats fat, fiber, and vitamin A. Thus, dietary exposures can rarely be characterized as present
or absent; rather, they are continuous variables, often with rather limited range of variation between
persons with a common culture or geographic location. Furthermore, individuals are generally not
aware of the composition of the foods that they eat; hence, the consumption of nutrients is usually
determined indirectly.

NUTRIENTS, FOODS, AND DIETARY PATTERNS

Throughout nutrition in general and in much of the existing nutritional epidemiology literature,
diet has usually been described in terms of its nutrient content. Alternatively, diet can be described
in terms of foods, food groups, or overall dietary patterns. The primary advantage of representing
diets as specific compounds, such as nutrients, is that such information can be related directly to our
fundamental knowledge of biology. From a practical perspective, the exact structure of a compound
must usually be known if it is to be synthesized and used for supplementation. In epidemiologic
studies, measurement of total intake of a nutrient (as opposed to using the contribution of only
one food at a time) provides the most powerful test of a hypothesis, particularly if many foods
each contribute only modestly to intake of that nutrient. For example, in a particular study, it is
quite possible that total fat intake could be clearly associated with risk of disease, whereas none
of the contributions to fat intake by individual foods would be strongly related to disease on their
own.

The use of foods to represent diet also has several practical advantages when examining relations
with disease. Particularly when suspicion exists that some aspect of diet is associated with risk but
a specific hypothesis has not been formulated, an examination of the relations of foods and food
groups with risk of disease will provide a means to explore the data. Associations observed with
specific foods may lead to a hypothesis relating to a defined chemical substance. For example,
observations that higher intakes of green and yellow vegetables were associated with reduced rates
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of lung cancer led to the hypothesis that β-carotene might protect DNA from damage due to free
radicals and singlet oxygen (Peto et al., 1981). The finding by Graham et al. (1978) that intake of
cruciferous vegetables was inversely related to risk of colon cancer suggested that indole compounds
contained in these vegetables may be protective (Wattenberg and Loub, 1978).

A problem even more serious than the lack of a well-formulated hypothesis, the premature focus
on a specific nutrient that turns out to have no relation with disease, may lead to the erroneous
conclusion that diet has no effect. Mertz (1984) pointed out that foods are not fully represented by
their nutrient composition, noting as an example that milk and yogurt produce different physiologic
effects despite a similar nutrient content. Furthermore, the valid calculation of a nutrient intake
from data on food consumption requires reasonably accurate food composition information, which
markedly constrains the scope of dietary chemicals that may be investigated, because such informa-
tion exists for only several dozen commonly studied nutrients. Even then, there can be considerable
variation in nutrient composition that is not captured in standard food tables. If extreme, as in the
case of selenium, which can vary in concentration several hundred-fold in different samples of the
same food, calculated intake may be of no value (Willett, 1998).

Epidemiologic analyses based on foods, as opposed to nutrients, are generally most directly
related to dietary recommendations because individuals and institutions ultimately determine nu-
trient intake largely by their choice of foods. Even if the intake of a specific nutrient is convincingly
shown to be related to risk of disease, this relation is not sufficient information on which to make
dietary recommendations. Because foods are an extremely complex mixture of different chemicals
that may compete with, antagonize, or alter the bioavailability of any single nutrient contained in
that food, it is not possible to predict with certainty the health effects of any food solely on the basis
of its content of one specific factor. For example, there is concern that high intake of nitrates may
be deleterious, particularly with respect to gastrointestinal cancer. The primary sources of nitrates
in our diets are green, leafy vegetables, however, which, if anything, appear to be associated with
reduced risk of cancer at several sites. Similarly, because of the high cholesterol content of eggs,
their avoidance has received particular attention in diets aimed at reducing the risk of coronary heart
disease; per-capita consumption of eggs declined by 25% in the United States between 1948 and
1980 (Welsh and Marston, 1982). But eggs are more than cholesterol capsules; they provide a rich
source of essential amino acids and micronutrients and are relatively low in saturated fat. It is thus
difficult to predict the net effect of egg consumption on risk of coronary heart disease, much less
the effect on overall health, without empiric evidence.

Given the strengths and weaknesses of using nutrients or foods to represent diet, an optimal
approach to epidemiologic analyses will employ both. In this way, a potentially important finding
is less likely to be missed. Moreover, the case for causality is strengthened when an association is
observed with overall intake of a nutrient and also with more than one food source of that nutrient,
particularly when the food sources are otherwise different. This situation provides, in some sense,
multiple assessments of the potential for confounding by other nutrients; if an association was
observed for only one food source of the nutrient, other factors contained in that food would tend
to be similarly associated with disease. As an example, the hypothesis that alcohol intake causes
breast cancer was strengthened not only by observing an overall association between alcohol intake
and breast cancer risk but also by independent associations with both beer and liquor intake, thus
making it less likely that some factor other than alcohol in these beverages was responsible for the
increased risk.

One practical drawback of using foods to represent diet is their large number and complex, often
reciprocal, interrelations that are due largely to individual behavioral patterns. Many reciprocal
relations emerge upon perusal of typical datasets; for example, dark-bread eaters tend not to eat
white bread, margarine users tend not to eat butter, and skim-milk users tend not to use whole milk.
This complexity is one of the reasons to compute nutrient intakes that summarize the contributions
of all foods.

An intermediate solution to the problem posed by the complex interrelations among foods is to
use food groups or to compute the contribution of nutrient intake from various food groups. For
example, Manousos et al. (1983) combined the intakes of foods from several predefined groups to
study the relation of diet with risk of colon cancer. They observed increased risk among subjects
with high meat intake and with low consumption of vegetables. The computation of nutrient intakes
from different food groups is illustrated by a prospective study among British bank clerks conducted
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by Morris et al. (1977), who observed an inverse relation between overall fiber intake and risk of
coronary heart disease. It is well recognized that fiber is an extremely heterogeneous collection of
substances and that the available food composition data for specific types of fiber is incomplete.
Therefore, these authors computed fiber intake separately from various food groups and found that
the entire protective effect was attributable to fiber from grains; fiber from fruits or vegetables was
not associated with risk of disease. This analysis circumvents the inadequacy of food composition
databases and provides information in a form that is directly useful to individuals faced with
decisions regarding choices of foods.

In general, maximal information will be obtained when analyses are conducted at the levels of
nutrients, foods, food groups, and dietary patterns. Dietary patterns take into account the complex
interrelations of food consumption and are usually derived by empirical methods such as factor
analysis, or by creating a priori indices. The latter approach, for example, has been used to develop
a Mediterranean diet index based on specific aspects of diet; this index was then found to predict
lower mortality (Trichopoulou et al., 2003). Dietary patterns are potentially useful because they
combine multiple aspects of diet into one or two variables, but they lack direct biologic interpretation.
It is also possible to enter the distinct levels of nutrients, foods, food groups, and dietary patterns
into the same analysis through the use of hierarchical (multilevel) analysis, which allows some
degree of adjustment for effects at one level (e.g., the food level) when estimating effects at another
level (e.g., the nutrient level) and which produces more stable effect estimates (Greenland, 2000c;
see Chapter 21).

DIMENSION OF TIME

The assessment of diet in epidemiologic studies is further complicated by the dimension of time.
Because our understanding of the pathogenesis of cancers and many other diseases is limited,
considerable uncertainty exists about the period of time before diagnosis for which diet might be
relevant. For some cancers and cardiovascular disease, diet may be important during childhood, even
though the disease occurs decades later. For other diseases, diet may act as a late-stage promoting
or inhibiting factor; thus, intake near the time before diagnosis may be important. Ideally, data on
dietary intake at different periods before diagnosis could help to resolve these issues. Individuals
rarely make clear changes in their diet at identifiable points in time; more typically, eating patterns
evolve over periods of years. Thus, in case-control studies, epidemiologists often direct questions
about diet to a period several years before diagnosis of disease with the hope that diet at this
point in time will represent, or at least be correlated with, diet during the critical period in cancer
development.

Fortunately, diets of individuals do tend to be correlated from year to year, so that some im-
precision in identification of critical periods of exposure may not be serious. For most nutrients,
correlations for repeated assessments of diet at intervals from 1 year to about 5 years tend to be of the
order of 0.6 to 0.7 (Rohan and Potter, 1984; Willett et al.,1985; Byers et al., 1987), with decreasing
correlations over longer intervals (Byers et al., 1983). For scientists accustomed to measurements
made under highly controlled conditions in a laboratory, this correlation may seem like a low de-
gree of reproducibility. Nevertheless, these correlations are similar to other biologic measurements
made in free-living populations, such as serum cholesterol (Shekelle et al., 1983) and blood pressure
(Rosner et al., 1977).

Even though diets of individuals have a strong element of consistency over intervals of several
years, they are characterized by marked variation from day to day (Willett, 1998; Beaton et al.,
1979). This variation differs from nutrient to nutrient, being moderate for total energy intake but
extremely large for cholesterol and vitamin A. For this reason, even perfect information about diet
on any single day or the average of a small number of days will poorly represent long-term average
intake, which is likely to be more relevant to etiology of most diseases.

GENERAL METHODS OF DIETARY ASSESSMENT

Three general approaches have been used to assess dietary intake: information about intake of foods
that can be used directly or to calculate intake of nutrients, biochemical measurements of blood or
other body tissues that provide indicators of diet, and measures of body dimensions or composition
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that reflect the long-term effects of diet. Because the interpretation of data on diet and disease is
heavily influenced by the methods used to assess diet, features of these methods and their limitations
will be considered.

METHODS BASED ON FOOD INTAKE

Short-Term Recall and Diet Records

The 24-hour recall, in which subjects are asked to report their food intake during the previous day,
has been the most widely used dietary assessment method. It has been the basis of most national
nutrition surveys and numerous cohort studies of coronary heart disease. Interviews are conducted
by nutritionists or trained interviewers, usually using visual aids such as food models or shapes to
obtain data on quantities of foods, and are now often computer-assisted to standardize the technique
and facilitate data entry. The 24-hour recall requires about 10 to 20 minutes for an experienced
interviewer; although it is usually conducted in person, it has also been done by telephone using a
two-dimensional chart that is mailed beforehand to assist in the estimation of portion sizes (Posner
et al., 1982). This method has the advantages of requiring no training or literacy and minimal effort
on the part of the participant.

Dietary records or food diaries are detailed meal-by-meal recordings of types and quantities of
foods and beverages consumed during a specified period, typically 3 to 7 days. Ideally, subjects
weigh each portion of food before eating, although doing so is frequently impossible for all meals, as
many are eaten away from home. Alternatively, household measures can be used to estimate portion
sizes. The method places a considerable burden on the subject, thus limiting its application to those
who are literate and highly motivated. In addition, the effort involved in keeping diet records may
increase awareness of food intake and induce an alteration in diet. Nevertheless, diet recording has
the distinct advantages of not depending on memory and allowing direct measurements of portion
sizes.

The validity of 24-hour recalls has been assessed by observing the actual intake of subjects
in a controlled environment and interviewing them the next day. In such a study, Karvetti and
Knuts (1985) observed that subjects both erroneously recalled foods that were not actually eaten
and omitted foods that were eaten; correlations between nutrients calculated from observed intakes
with calculations from the recalled information ranged from 0.58 to 0.74. In a similar study among
elderly persons, Madden et al. (1976) found correlations ranging from 0.28 to 0.87. Relatively
few validation studies have been conducted of diet recordings. In a comparison of nitrogen intake
calculated by diet records kept by subjects consuming their usual diets while on a metabolic ward
with analysis of replicate meals, Bingham and Cummings (1985) found a correlation of 0.97;
however, the generalizability of this result to a free-living population is not clear.

The most serious limitation of the 24-hour-recall method is that dietary intake is highly variable
from day to day. Diet records reduce the problem of day-to-day variation, because the average of
a number of days is used. For nutrients that vary substantially, however, even a week of recording
will still not provide an accurate estimate of an individual’s intake (Beaton et al., 1979; Rimm et al.,
1992a; Rimm, 1992b). The variability in intake of specific foods is even greater than for nutrients
(Salvini et al., 1989; Geskanich et al., 1993), so that only very commonly eaten foods can be studied
by this method. The problem of day-to-day variation is not an issue if the objective of a study is to
estimate a mean intake for a population, as might be the goal in an ecologic study. In case-control
or cohort investigations, however, accurate estimation of individual intakes is necessary.

Practical considerations and issues of study design further limit the application of short-term-
recall and diet-record methods in epidemiologic studies. Because they provide information on
current diet, their use will typically be inappropriate in case-control studies, because the relevant
exposure will have occurred earlier and diet may have changed as a result of the disease or its
treatment. A few exceptions may occur, as in the case of very early tumors or premalignant lesions.
Although the average of multiple days of 24-hour recalls or diet recording could theoretically be
used in prospective cohort studies of diet, the costs are usually prohibitive because of the large
numbers of subjects required and the substantial expense involved in collecting this information
and processing it. These methods, however, can play an important role in the validation or calibration
of other methods of dietary assessment that are more practical for epidemiologic studies.
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Food-Frequency Questionnaires

Because short-term-recall and diet-record methods are generally expensive, unrepresentative of
usual intake, and inappropriate for assessment of past diet, investigators have sought alternative
methods for measuring long-term dietary intake. Burke (1947) developed a detailed dietary history
interview that attempted to assess an individual’s usual diet; this assessment included a 24-hour
recall, a menu recorded for 3 days, and a checklist of foods consumed over the preceding month.
This method was time-consuming and expensive, because a highly skilled professional was needed
for both the interview and processing of information. The checklist, however, was the forerunner
of the more structured dietary questionnaires in use today. During the 1950s, Wiehl and Reed
(1960), Heady (1961), Stephanik and Trulson (1962), and Marr (1971) developed food-frequency
questionnaires and evaluated their role in dietary assessment. In diet records collected from British
bank clerks, the frequencies with which foods were used correlated well with the total weights of the
same foods consumed over a several-day period, thus providing the theoretical basis for the food-
frequency method (Heady 1961). Similar findings were seen more recently in a U.S. population
(Humble et al., 1987). Multiple investigators have converged toward the use of food-frequency ques-
tionnaires as the method of dietary assessment best suited for most epidemiologic studies. During
recent years, substantial refinement, modification, and evaluation of food-frequency questionnaires
have occurred, so that data derived from their use have become considerably more interpretable.

A food-frequency questionnaire consists of two main components: a food list and a frequency-
response section for subjects to report how often each food was eaten (see Fig. 29–2). Questions
related to further details of quantity and composition may be appended. A fundamental decision in
designing a questionnaire is whether the objective is to measure intake of a few specific foods or
nutrients or whether to obtain a comprehensive assessment of diet. A comprehensive assessment is
generally desirable whenever possible. It is often impossible to anticipate at the beginning of a study
all the questions regarding diet that will appear important at the end of data collection; a highly
restricted food list may not have included an item that is, in retrospect, important. Furthermore,
as described later in this chapter, total food intake, represented by total energy consumption, may
confound the effects of specific nutrients or foods, or create extraneous variation in specific nutrients.
Nevertheless, epidemiologic practice is usually a compromise between the ideal and reality, and it
may simply be impossible to include a comprehensive diet assessment in a particular interview or
questionnaire, especially if diet is not the primary focus of the study.

Because diets tend to be reasonably correlated from year to year, most investigators have asked
subjects to describe the frequency of their using foods in reference to the preceding year. This

FIGURE 29–2 ● Section from a food-frequency questionnaire completed by several large cohorts of men
and women. For each food listed, participants were asked to indicate how often, on average, they had used
the amount specified during the past year. Example of calculation of daily cholesterol intake: From a food
composition table, the cholesterol contents are: 1 egg = 274 mg; 1 glass of milk = 33 mg; 1/2 cup of ice
cream = 29.5 mg. Thus, the average daily cholesterol intake for the person completing this abbreviated
questionnaire would be: (274 mg ×1) + (33 mg × 2.5) + (29.5 mg × 0.8) = 380.1 mg/d. (Reproduced with
permission from Sampson, 1985.)
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interval provides a full cycle of seasons so that, in theory, the responses should be independent of
the time of year. In retrospective case-control studies, the time frame could be in reference to a
period of a specified number of preceding years.

Typically, investigators have provided a multiple-choice response format, with the number of
options usually ranging from 5 to 10 (Fig. 29–2). Another approach is to use an open-ended format
and provide subjects the option of answering in terms of frequency per day, week, or month (Block
et al., 1986). In theory, an open-ended frequency-response format might provide for some enhanced
precision in reporting, because the frequency of use is truly a continuous rather than a categorical
variable. Nevertheless, it is unlikely that the overall increment in precision is large, because the
estimation of the frequency of use of a food is inherently an approximation.

Several options exist for collecting additional data on serving sizes. The first is to collect no
additional information on portion sizes at all—that is, to use a simple frequency questionnaire. A
second possibility is to specify a portion size as part of the question on frequency—for example,
to ask how often a glass of milk is consumed rather than only how often milk is consumed. This
technique has been termed a semiquantitative food-frequency questionnaire. A third alternative
is to include an additional question for each food to describe the usual portion size in words
(Stephanick and Trulson, 1962), using food models (Morgan et al., 1978), or using pictures of
different portion sizes (Hankin et al., 1983). Because most of the variation in intake of a food is
explained by frequency of use rather than differences in serving sizes, several investigators have
found that portion-size data are relatively unimportant (Samet et al., 1984; Pickle and Hartman,
1985; Block et al., 1990). Cummings et al. (1987) found that adding questions on portion sizes to
a simple frequency questionnaire only slightly improved estimation of calcium intake, and others
have found that the use of food models in an in-person interview did not increase the validity of
a self-administered semiquantitative food-frequency questionnaire (Hernandez-Avila et al., 1988).
These findings have practical implications, because the cost of data collection by mail or telephone
is far less than the cost of personal interviews, which are necessary if food models are to be used for
assessing portion sizes. Cohen et al. (1990) also found that the portion-size information included
in the Block questionnaire added only slightly to agreement with diet records (average correlation
of 0.41 without portion sizes and 0.43 with portion sizes).

Food-frequency questionnaires are extremely practical in epidemiologic applications because
they are easy for subjects to complete, often as a self-administered form. Processing is readily com-
puterized and inexpensive, so that their use in prospective studies involving repeated assessments
of diet among many tens of thousands of subjects is feasible.

VALIDITY OF DIETARY ASSESSMENT METHODS

The interpretation of epidemiologic data on diet and disease depends directly on the validity of the
methods used to measure dietary intake, particularly when no association is found, because one
possible explanation could be that the method used to measure diet was not able to discriminate
among persons. A substantial body of evidence has accumulated regarding the validity of food-
frequency questionnaires.

In evaluating the validity of a dietary-assessment method, the choice of a standard for comparison
is a critical issue, because no perfect standard exists. A desirable feature for the comparison method
is that its errors be independent of the method being evaluated, so that an artificial correlation
will not be observed. For this reason, biochemical indicators of diet are probably the optimal
standard. Their greatest limitation is that specific markers of diet do not exist for most of the
nutrients of current interest, such as total fat, fiber, and sucrose intake. Moreover, the available
biochemical indicators of diet are likely to be imprecise measures of diet because they are influenced
by many factors, such as differences in absorption and metabolism, short-term biologic variation,
and laboratory measurement error. Nevertheless, for biochemical indicators that are sensitive to
intake, a correlation between a questionnaire estimate of nutrient intake and the indicator can
provide a useful measure of the validity of the questionnaire estimate. Such correlations have been
reported for questionnaire estimates of a variety of nutrients (Willett et al., 1985; Willett et al., 1983;
Russell-Briefel et al., 1985; Sacks et al., 1986; Stryker et al., 1988; Silverman et al., 1990; Coates et
al., 1991; London et al., 1991; Ascherio et al., 1992; Hunter et al., 1992; Jacques et al., 1993; Selhub
et al., 1993). For example, in controlled feeding studies, dietary fat reduces blood triglyceride levels;
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thus, documentation that total fat intake assessed by a food-frequency questionnaire was inversely
associated with blood triglycerides provides important support for the validity of the questionnaire
assessment (Willett et al., 2001).

Relatively few validation studies of dietary questionnaires have been conducted by comparing
computed intakes with biochemical indicators of diet because of the limitations of these indicators.
Most validation studies have instead compared computed intakes with those based on other dietary
assessment methods. Among the possible comparison methods, diet records are particularly attrac-
tive because they do not depend on memory and, when weighing scales are used to assess portion
sizes, do not depend on perception of amounts of foods eaten. These characteristics tend to re-
duce correlated errors; because 24-hour recalls share many cognitive demands with food-frequency
questionnaires, they are, in principle, less than ideal. Although the detail of questionnaires and the
populations studied have varied substantially, the correlation between nutrients assessed by food-
frequency questionnaires and the comparison methods, when adjusted for total energy intake, have
consistently varied between 0.4 and 0.7 (Willett, 1998). Four comprehensive validation studies that
compared questionnaires completed at about a 1-year interval, with multiple diet records collected
during the intervening months, are summarized in Table 29–1 (Willett et al., 1985; Rimm et al.,
1992a; Rimm, 1992b; Pietinen et al., 1988; Goldbohm et al., 1994). Roughly similar degrees of
correlation were seen in these studies; for questionnaires completed at the end of the 1-year record-
ing of diet (which corresponds to the time frame of the questionnaires), correlations adjusted for
total energy intake tended to be mainly between 0.5 and 0.7.

Subar et al. (2003) used doubly labeled water and urinary nitrogen as biomarkers of energy
and protein intake to assess the validity of a food-frequency questionnaire and 24-hour dietary
recalls. The authors claimed that this study documented that errors in the 24-hour recalls and food-
frequency questionnaires are correlated, and therefore that earlier studies using 24-hour recalls and
food-frequency questionnaires as comparison methods have overstated validity. Subar et al. did
not, however, obtain a realistic measure of the within-person variation in their biomarkers (e.g., at
an interval of 6 to 12 months), and failure to account for this variation may have created the false
impression of correlated error (Willett, 2003).

Although the degree of measurement error associated with nutrient estimates calculated from
food-frequency questionnaires appears to be similar to that for many epidemiologic measures,
errors in the nutrient of interest tend to lead to important underestimates of relative risks, and
errors in other confounding nutrients tend to lead to loss of confounding control (see Chapter
9). Less commonly appreciated, the errors will also result in observed confidence intervals that
are inappropriately narrow. To form inferences properly cautioned by data limitations, one should
consider the entire range of possible relative risks that are reasonably compatible with the data,
and overly narrow intervals tend to lead to overstated conclusions (see Chapters 11 and 19). In
part, generated by the interest in diet and cancer and the recognized issue of measurement error
in assessing dietary intake, considerable effort has been directed to the development of methods
that provide corrected estimates of relative risks and confidence intervals based on quantitative
assessments of measurement error (Spiegelman et al., 1997). Thus, validation studies of dietary
questionnaires can provide important estimates of error that can be used to interpret quantitatively
the influence of error on observed associations. Based on such analyses, it can be shown that
important associations will generally not be missed by typical dietary questionnaires (Rosner et al.,
1989; Rosner et al., 1990), although sample sizes for studies will need to be several times larger
than those estimated assuming that measurement error did not exist (Walker and Blettner, 1985).
One valuable way to improve measurement of diet in a longitudinal study is to repeat the dietary
assessments over time. This will tend to dampen random (nonsystematic) error and will also account
for true changes in intake (Hu et al., 1999).

BIOCHEMICAL INDICATORS OF DIET

The use of biochemical measurements made on blood or other tissues as indicators of nutrient intake
is attractive because such measurements do not depend on the memory or knowledge of the subject.
Furthermore, they can be made in retrospect, for example, using blood specimens that have been
collected and stored for other purposes.
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CHOICE OF TISSUES FOR ANALYSIS

Most commonly, serum or plasma has been used in epidemiologic studies to measure biochemical
indicators of diet. Consideration should also be given, however, to red blood cells, subcutaneous fat,
hair, and nails. The choices should be governed by the ability of the tissue to reflect dietary intake
of the factor of interest; the time-integrating characteristics of the tissue; practical considerations
in collecting, transporting, and storing the specimen; and cost. These considerations are examined
in detail elsewhere for a number of dietary factors (Hunter, 1998); some general comments are
provided here.

Red Blood Cells

For some dietary factors, red cells are less sensitive to short-term fluctuations in diet than plasma
or serum and may thus provide a better index of long-term exposure. Nutrients that can be usefully
measured in red cells include fatty acids, folic acid, and selenium.

Subcutaneous Fat

Composed primarily of fatty acids, the adipose tissue turns over slowly among individuals with
relatively stable weight. For at least some fatty acids, the half-life is of the order of 600 days,
making this an ideal indicator of long-term diet in epidemiologic studies. Fat-soluble vitamins
such as retinol, vitamin E, and carotenoids are also measurable in subcutaneous fat, but these
measurements are generally not superior to food-frequency questionnaires as a measure of intake
(Kabagambe et al., 2001).

Hair and Nails

Hair and nails incorporate many elements into their matrix during formation, and for many heavy
metals these may be the tissues of choice because these elements tend to be cleared rapidly from
the blood. Nails appear to be the optimal tissue for the assessment of long-term selenium intake
owing to their capacity to integrate exposure over time (Longnecker et al., 1996). Because the hair
and nails can be cut at various times after formation (a few weeks for hair close to the scalp and
approximately 1 year for the great toe), an index of exposure can be obtained that may be little
affected by recent experiences. This information can be a particular advantage in the context of a
case-control study of diet and cancer. Contamination poses the greatest problem for measurements
in hair owing to its intense exposure to the environment and very large surface area; these problems
are generally much less for nails but still need to be considered.

LIMITATIONS OF BIOCHEMICAL INDICATORS

Although the use of biochemical indicators for assessing diet is attractive, no practical indicator
exists for many dietary factors. Even when tissue levels of a nutrient can be measured, these levels
are often highly regulated and thus poorly reflect dietary intake; blood retinol and cholesterol are
good examples. Just as with dietary intake, the blood levels of some nutrients fluctuate substantially
over time, so one measurement may not provide a good reflection of long-term intake. Furthermore,
experience has provided sobering evidence that the tissue levels of many nutrients can be affected by
the presence of cancer, even several years before diagnosis (Wald et al., 1986), rendering the use of
many biochemical indicators treacherous in most retrospective case-control studies. Despite these
limitations, careful application of biochemical indicators can provide unique information about
dietary intake, particularly for nutrients or food contaminants that cannot be accurately calculated
from data on food intake.

ANTHROPOMETRY AND MEASURES OF BODY COMPOSITION

Energy balance at various times in life has important effects on the incidence of many diseases. En-
ergy balance is better reflected by measurements of body size and composition than by assessments
based on the difference between energy intake and expenditure (largely physical activity), because
both of these variables are measured with considerable error (Willett, 1998).
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The most common use of anthropometric measurements is to calculate adiposity using either
indices such as the Quetelet or body mass index (BMI) (weight in kilograms divided by the sec-
ond power of height in meters) or relative weight (weight standardized for height). Remarkably
valid estimates of weight and height can be obtained even by questioning (Stunkard and Albaum,
1981), including their recall several decades earlier (Rhoads and Kagan, 1983; Must et al., 1993).
Thus, good estimates of adiposity can be obtained easily for large prospective investigations or
retrospectively in the context of case-control studies. The major limitation of adiposity estimates
based on height and weight is that they cannot differentiate between fat and lean body mass. Stud-
ies of the validity of the BMI as a measure of obesity have commonly used as a “gold standard”
body fat expressed as a percentage of total weight, usually determined by underwater weighing, or
more recently by dual x-ray absorptiometry (DEXA). BMI, however, is actually a measure of fat
mass adjusted for height rather than a measure of percentage body fat. When fat mass determined
from densitometry is adjusted for height and used as the standard, the correlation with BMI is
approximately 0.90 among young and middle-aged adults, indicating a substantially higher degree
of validity than has generally been appreciated (Spiegelman et al., 1992). Moreover, in the same
study, fat mass adjusted for height correlated more strongly with biologically relevant variables
such as blood pressure and fasting blood glucose than did percentage body fat. BMI may be less
valid as an index of adiposity among the elderly, however, because variation in loss of lean body
mass contributes more importantly to weight during this period of life.

The use of one or a small number of skin-fold thicknesses does not appear to be appreciably more
accurate than weight and height in the estimation of overall adiposity among young and middle-aged
adults, but it can provide additional information on the distribution of body fat. The ratio of waist-
to-hip circumference, or waist circumference alone, provides information on adiposity that adds
independently, beyond BMI alone, to predictions of obesity-related conditions (Snijder et al., 2004).
This additional prediction may be, in part, because central fat functions metabolically differently
from peripheral fat, and also because these circumference measurements help distinguish fat mass
from muscle mass.

Height has often been ignored as a variable of potential interest in epidemiologic studies, perhaps
because analysts fail to recognize that it is not addressed by control for BMI. Height can, however,
provide unique information on energy balance during the years before adulthood, a time period that
may be important in the development of some cancers that occur many years later. For example, in
many studies height has been positively associated with risk of breast cancer (van den Brandt et al.,
2000). Furthermore, this information can be valid even in the context of case-control studies, because
height will usually be unaffected even if illness has caused recent weight loss. Therefore, one should
not exclude height from consideration just because BMI or another weight-for-height-based index
is included in the analysis (Michels et al., 1998).

METHODOLOGIC ISSUES IN NUTRITIONAL EPIDEMIOLOGY

BETWEEN-PERSON VARIATION IN DIETARY INTAKE

In addition to the availability of a sufficiently precise method for measuring dietary intake, an
adequate degree of variation in diet is necessary to conduct observational studies within populations.
If no variation in diet exists among persons, no association can be observed. Some have argued
that the diets in populations such as the United States are too homogeneous to study relations with
disease (Goodwin and Boyd, 1987; Hebert and Miller, 1988; Prentice et al., 1988). The true between-
person variation in diet is difficult to measure directly, and generally cannot be measured by the
questionnaires used by epidemiologists because the observed variation will combine true differences
with those due to measurement error; more quantitative methods must be used for this purpose. The
fat content of the diet varies less among persons compared with most other nutrients (Beaton et al.,
1979); for women in one prospective study (Willett et al., 1987), the mean fat intake assessed by the
mean of four 1-week diet records for those in the top quintile was 44% of calories, while for those
in the bottom quintile it was 32% of calories. Although this range of fat intake is not large, and it
is certainly smaller than the variation among countries, it is of considerable interest because this
difference corresponds closely to the changes recommended by many organizations. Other nutrients
vary much more among persons than total fat intake (Willett, 1998; Beaton et al., 1979).
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Evidence that measurable and informative variation in diet exists within the U.S. population
is provided by several sources. First, the correlations between food-frequency questionnaires and
independent assessments of diet found in the validation studies noted previously would not have
been observed if variation in diet did not exist. For the same reason, the correlations between ques-
tionnaire estimates of nutrient intakes and biochemical indicators of intake provide solid evidence
of variation. In addition, the ability to find associations between dietary factors and incidence of
disease (particularly when based on prospective data) indicates that measurable and biologically
relevant variation exists. For example, reproducible relations have been observed between fiber
intake and risks of coronary heart disease (Hu and Willett, 2002) and diabetes (Schulze and Hu,
2005).

Although accumulated evidence has indicated that informative variation in diets exists within
the U.S. population and that these differences can be measured, it is important that findings be
interpreted in the context of that variation. For example, a lack of association with fat intake within
the range of 32% to 44% of energy should not be interpreted to mean that fat intake has no relation
to risk of disease under any circumstance. It is possible that the relation is nonlinear and that risk
changes at lower levels of fat intake (e.g., <20% of total energy) or that diet has an influence much
earlier in life.

IMPLICATIONS OF TOTAL ENERGY INTAKE

Energy balance is likely to have important associations with some cancers; however, this relation
cannot be studied directly because energy intake largely reflects factors other than over- or under-
eating in relation to requirements (Willett, 1998; Willett and Stampfer, 1986). The implications
of total energy intake can be appreciated by realizing that variation among persons is to a large
degree secondary to differences in body size and physical activity. Persons also appear to differ
in metabolic efficiency (inefficient persons requiring higher energy intake for the same level of
function); however, these differences in metabolic efficiency are not practically measurable in epi-
demiologic studies. Because virtually all nutrient intakes tend to be correlated with total energy
intake, much of the variation in intake of specific nutrients is secondary to factors that may be
unrelated to risk of disease. Nutrient intakes adjusted for total energy can be viewed conceptually
as measures of nutrient composition rather than as measures of absolute intake. Measures of nutri-
ent composition are more relevant to personal decisions and public health policy than are absolute
intakes because individuals must alter nutrient intakes primarily by manipulating the composition
of their diets rather than their total energy intake. Thus, for most purposes, measures of dietary
composition are the appropriate focus of epidemiologic studies.

When total energy intake is related to risk of disease, failure to consider total energy intake in the
analysis can be particularly serious because it can confound associations with specific nutrients. For
example, total energy intake increases with physical activity, so when physical activity is protective,
total energy intake will also be protective. The example of coronary heart disease is instructive. Risk
of coronary heart disease is inversely related to physical activity and so also to total energy intake.
Specific nutrients such as saturated fat also tend to be inversely related to risk of coronary heart
disease. Several statistical methods can be used to adjust for total energy intake, which is necessary
to avoid the misleading conclusion that saturated fat intake protects against coronary heart disease.
The most common method, division of saturated fat intake by total energy intake, which is also
called nutrient density, is not an adequate solution because the division can introduce confounding
by the inverse of energy intake. Instead, total energy intake must be included in a multiple-regression
model together with the nutrient density, Alternatively, nutrient intake residuals standardized for
total energy intake will not be confounded by total energy intake. Appropriate adjustment for
energy intake can be a nontrivial issue in some studies. Without such an adjustment, the direction
of association with a specific nutrient can be reversed, such as with the relation between saturated
fat intake and myocardial infarction (Gordon et al., 1981) and with the relation between fiber intake
and risk of colon cancer (Lyon et al., 1987). If total energy intake has not been measured or adjusted
appropriately, a useful interpretation of a finding may not be possible.

Although it is not the primary rationale for energy adjustment, this adjustment will often reduce
measurement error, which can be seen as higher correlation in validation studies or stronger asso-
ciations with biomarkers (Willett, 2002). The reason for the reduction in error can be appreciated
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by considering that the observed nutrient density is (N + eN)/(E + eE). eN and eE will tend to
be highly correlated because they are calculated from many of the same foods; for example, if
meat is overreported, both fat and total energy will be overreported. Thus, these errors will largely
cancel out, leaving an improved estimate of N/E . Jakes et al. (2004) have suggested that adjusting
for physical activity and body size provides a better adjustment for total energy intake itself than
measured energy intake. This approach will not, however, necessarily result in better control for
confounding, and it will fail to reduce measurement errors that are correlated with those in total
energy intake (Spiegelman, 2004).

CONCLUSION

The last two decades have seen enormous progress in the development of nutritional epidemiology
methods. Work by many investigators has provided clear support for the essential underpinnings of
this field. Substantial between-person variation in consumption of most dietary factors in populations
has been demonstrated, methods to measure diet applicable to epidemiologic studies have been
developed, and their validity has been documented. Based on this evidence, many large prospective
cohort studies have been established that are providing a wealth of data on many outcomes that
will be reported during the next decade. In addition, methods to account for errors in measurement
of dietary intake have been developed and are beginning to be applied in reporting findings from
studies of diet and disease.

Nutritional epidemiology has contributed importantly to understanding the etiology of many
diseases. Low intake of fruits and vegetables has been shown to be related to increased risk of
cardiovascular disease. Also, a substantial amount of epidemiologic evidence has accumulated
indicating that replacing saturated and trans fats with unsaturated fats can play an important role
in the prevention of coronary heart disease and type 2 diabetes. Many diseases—as diverse as
cataracts, neural-tube defects, and macular degeneration—that were not thought to be nutritionally
related have been found to have important dietary determinants. Nonetheless, much more needs
to be learned regarding other diet and disease relations, and the dimensions of time and ranges
of dietary intakes need to be expanded further. Furthermore, new products are constantly being
introduced into the food supply, which will require continued epidemiologic vigilance.

The development and evaluation of additional methods to measure dietary factors, particularly
those using biochemical methods to assess long-term intake, can contribute substantially to im-
provements in the capacity to assess diet and disease relations. Also, the capacity to identify those
persons at genetically increased risk of disease will allow the study of gene–nutrient interactions
that are almost sure to exist. The challenges posed by the complexities of nutritional exposures are
likely to spur methodologic developments. Such developments have already occurred with respect
to measurement error. The insights gained will have benefits throughout the field of epidemiology.
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THE DOMAIN OF ENVIRONMENTAL EPIDEMIOLOGY

One of the earliest published environmental epidemiology studies was Baker’s report on the “en-
demial colic of Devonshire” (1767). Physicians had puzzled for 50 years about why those who
drank cider in Devonshire became seriously ill, experienced seizures, and sometimes died, whereas
cider drinkers elsewhere drank with impunity. Baker concluded that “the cause of this Colic is
not. . . in the pure Cyder; but in some, either fraudulent, or accidental adulteration.” Inspections of
the presses revealed abundant use of lead in Devonshire, but not elsewhere. Baker then chemically
tested the cider and found lead precipitated only in Devonshire samples. Like many environmental
epidemiology studies, the investigation began with observations of regional differences in disease
rates, proceeded to a more careful examination of symptoms and circumstances and discovery of
a suspect cause, and finally confirmed the cause acting in the high-incidence county but not the
low-incidence counties.

For our purposes, the environment will be defined as factors that are exogenous to and nonessential
for the normal functioning of human beings and that alter patterns of disease and health. It therefore
includes physical, chemical, and biologic agents, as well as social, political, cultural, and engineer-
ing or architectural factors affecting human contact with such agents. Previously, environmental
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epidemiology focused on biologic agents and factors such as water distribution systems, sewage
collection, and food handling. The delivery of sanitary water, construction of comprehensive sewage
systems, and passage of laws governing the handling of food were environmental measures that
substantially reduced morbidity and mortality from infectious agents. In many developing countries,
these basic issues are still the primary environmental health concern.

Beginning around the 1960s and 1970s, the focus of environmental epidemiology shifted largely
to chemical and physical agents such as volatile organic compounds, metals, particulate mat-
ter, pesticides, and radiation. Sources can be industrial and motor-vehicle emissions; hormones
added to animal feed; pesticide residues in food and in runoff reaching drinking-water reservoirs;
chemical spills during production or transportation; hazardous waste sites; radon from naturally
occurring geologic sources; minerals in groundwater—both naturally occurring (e.g., arsenic)
and added through human activity (e.g., lead, fluoride)—and household products contacting the
skin, such as cleaning agents, cosmetics, and hair dyes. Environmental epidemiology also exam-
ines patterns of disease in populations struck by disasters, including war, floods, tsunamis, and
earthquakes, and most recently has begun tackling the “built” environment and global climate
change.

This chapter does not seek to cover a litany of exposures and what has been learned through
epidemiology. Instead, it focuses on key methodologic issues currently facing the field, problems
that feature more prominently in environmental epidemiology than in other substantive areas. In
addition, it provides a flavor of how the field has made progress over time.

The focus on chemical and physical agents links environmental with occupational epidemiology.
Adverse effects observed at high exposure levels in work settings (e.g., dust in mines) raise the
possibility of analogous effects at community-level exposures. The continual introduction of new
chemicals fuels concern by the lay and scientific communities.

Toxicology also interfaces with environmental epidemiology: Hypotheses are generated by ani-
mal experiments, but only an epidemiologic study can establish relevance to humans and determine
the harmful doses. Alternatively, an epidemiologic association is reported, but plausibility is ques-
tioned until a controlled animal experiment demonstrates similar outcomes or an in vitro study
uncovers a pathogenic mechanism. Limited human data may trigger molecular biologists to de-
velop a knock-out strain using genetic engineering technology and to describe the full range of
effects or pathways, opening new avenues for epidemiologic research.

Environmental epidemiology studies may seek to characterize the health effects of a known
exposure. Conversely, a disease pattern is observed and the epidemiologist sets out to determine
the causes. In either case, definitiveness of the findings will depend on the quality of the exposure
assessment. Evidence can be strengthened by distinguishing persons receiving large versus small
exposures or by identifying a susceptible time period when exposure can affect the relevant tissue.

Although environment can refer to all nongenetic factors, this chapter presumes the more com-
monly used, restricted definition given earlier. Dietary habits are excluded, even though they are
often geographically circumscribed, some deficiency diseases are environmentally determined (cre-
tinism caused by lack of dietary iodine; DeLong, 1993), and nutritional epidemiology (Chapter 29)
may suggest effect modifiers of the environment/disease association (e.g., calcium deficiency in-
creases lead absorption from the gastrointestinal tract; Goyer, 1995).

Exposure to environmental agents is frequently determined by where one lives, works, socializes,
or obtains food. The social, political, and economic contexts are integral to most environmental
epidemiology problems, aspects that have often been underappreciated. For purposes of this chapter,
social class will be treated as a potential confounder, effect modifier, or antecedent and determinant
of exposure.

Environmental exposures are often largely involuntary, e.g., noise pollution from a local airport
or perchloroethylene in groundwater from a nearby dry-cleaning establishment. The presence or
magnitude of such exposures may be subject to legal restrictions or influenced by political or
economic pressures. Because an industrial or commercial party may be responsible for the pollution,
policy implications of many environmental epidemiology studies are often immediate. Results may
be used as evidence in litigation or as the basis for risk assessment and regulatory policy decisions.
Epidemiologists may conduct quantitative risk assessments to assist policy makers (Hertz-Picciotto,
1995; Kunzli et al., 2000; Cifuentes et al., 2001). The need for the work to withstand intense scientific
and public scrutiny thus underscores the importance of rigorous methodology.
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The remainder of this chapter is organized as follows. The presentation begins with exposure
assessment because of the critical role it plays in this field. Next, study designs and issues related
specifically to investigations of environmental factors are discussed. Analytic methods for such
investigations are addressed, including Poisson regression, time-space analyses, and clustering. The
chapter continues with discussions of environmental health surveillance, some historical examples,
and an exposition of new global environmental challenges, and concludes with brief remarks about
future needs, both practical and conceptual.

EXPOSURE ASSESSMENT

The quality of exposure measurement is often the most critical determinant of the validity of
an environmental epidemiology study. Moreover, the existing exposure data or the available and
feasible methods for its collection are often the determinant of the design to be used. For this reason,
exposure assessment is placed at the start of this exposition.

Exposure may be measured using sophisticated instruments, or it may be inferred from databases
or questionnaires about the presence or use of the agents of concern. Crude categorization (yes/no
or high/low) is often not adequate because of uncertainty in the assignment and the wide variabil-
ity within groups. Ordinal categories provide the opportunity to assess dose–response relations.
Optimally, the quantification on a continuous scale of exposure from the relevant time period will
endow a study with the greatest sensitivity. Quantified measures also allow researchers to assess
comparability across studies and can provide the basis for regulatory decision making.

It is useful to distinguish among an exposure setting, a complex mixture, and a single agent. An
exposure setting involves a specific situation and a mix of exposures that may change over time
or from place to place. Coal burning produces a different mix of air pollutants than combustion
of automotive fuel. Pollutants from automotive exhaust vary by type of fuel, air temperature, and
sunshine; the fuel composition has itself changed over time. Sidestream and mainstream smoke
differ in composition, and both vary by source of tobacco and additives. The investigator should
be clear on whether the hypothesis concerns a setting, a mix, or a single exposure, and needs to
select the appropriate study design and exposure assessment strategy. Inferences about a mix of
exposures or a specific setting can be equally valid as those pertaining to individual agents. They
may also have more predictive and public health value, because interventions frequently affect an
overall exposure scenario rather than a single agent. The potency of a mix may be greater or less
than the sum of the potencies of the component parts owing to synergistic or antagonistic relations
between the factors (Germolec et al., 1989; Hertz-Picciotto et al., 1992).

The relevant timing for an exposure assessment is specific to the etiologic hypothesis and disease
outcome. Timing can be measured in relation to when a health effect should be observed or to
when the organism is likely to be susceptible. The former is related to the induction period, the
time between exposure and disease occurrence. This interval may be minutes or hours for acute
poisonings, hours or days for respiratory conditions, months or years for developmental disorders,
or decades for carcinogenic or cardiovascular effects. Susceptibility, on the other hand, is frequently
related to a period in development, such as the time when neural networks are forming in the cerebral
cortex, when infant production of IgG begins, or when an adolescent growth spurt is occurring.
Timing may also be defined by presence of a cofactor that magnifies or reduces the effect of the
exposure: physical activity (e.g., during exercise) or a health condition (viral infection).

TYPES OF EXPOSURE DATA

Instruments for exposure assessment include (a) databases on sales or use of products; (b) interviews,
questionnaires, and structured diaries; (c) measurements in external media (macroenvironment)
either from existing records or conducted expressly for the epidemiologic investigation (e.g., levels
of chlorination by-products measured at the water company’s reservoir); (d) concentrations in
the personal or microenvironment (e.g., carbon monoxide in indoor air or trihalomethanes in tap
water); (e) individual doses (e.g., using personal air monitors, or combining measurements at the
tap with self-reported water consumption and hot shower use); (f) measurements of concentrations
in human tissues (blood lead or polychlorinated biphenyls [PCBs] in breast milk) or metabolic
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products (dimethylarsinic acid in urine after arsenic exposure); and (g) markers of physiologic
effects (e.g., protein adducts induced by β-naphthylamine in cigarette smoke).

All questionnaires and interviews rely on human knowledge and memory, and hence are subject
to error. Personal or telephone interviews may also elicit underreporting of many phenomena and are
susceptible to “desirability” of the activity being reported. Self-administered questionnaires avoid
interviewer influences, but they typically have lower response rates and may not be suitable for
obtaining complex information, whereas an interviewer can check that the respondent understands
the questions and follows skip patterns (Armstrong et al., 1992). Use of proxy respondents results
in greater errors.

A distinction is made between an exposure measured in the external environment and a dose
measured either in human tissue or at the point of contact between the subject and the environment
(e.g., using a personal monitor or breath sampler). The difference between the two depends on human
activity patterns, physiologic characteristics, and variation in the external exposures themselves over
time and space. Measurements in external media yield an ecologic measure and are useful when the
exposures are widespread in some but not all geographic areas or time periods under study or, more
specifically, when group differences outweigh interindividual differences. If trihalomethanes or
arsenic in the drinking water are 10 times higher in one community than in other areas, interindividual
variation in doses based on water consumption might be far outweighed by the between-community
differences, and the benefit of collecting extensive water-consumption data would then be small.
Macroenvironment measures are also useful when the overall exposure setting rather than individual
pollutants are of concern, for instance, if regulatory action levels are to be determined. Direct
methods of external exposure measurement must be validated through both a quality control or
quality assurance program and a logical relation between the sampling strategy and the biodynamics
of the pollutant in the environment (Seifert, 1995).

Duration of contact (or potential contact) may be employed as a surrogate quantitative exposure
measure. This measure, however, can be problematic if intensity of exposure varies across individu-
als and across time, and is a strong determinant of the effect. In this case, real associations could be
obscured (see “Issues in Exposure Assessment”). A lack of data on exposure changes over time is dif-
ficult to overcome. When external measurements are available, they can be combined with duration
and timing of residence and activity-pattern information (time spent indoors and outdoors, quantity
of water ingested, etc.) to assign quantitative or semiquantitative exposure estimates for individuals.

When measurements on each individual are infeasible, a surrogate can be constructed using
dosimetric modeling (Lebret, 1995). Measurements at the source of exposure are combined with
information about physicochemical properties and often also with field measurements in multiple
locations. Examples include dispersion models for air pollutants, hydrogeologic modeling of wa-
terborne exposures, and isopleth modeling of soil contaminants. Because a model is simply a set
of structured assumptions, dosimetric models should be validated in the relevant locations before
being introduced into epidemiologic studies (Seifert, 1995).

Estimated individual measures could be a poor surrogate for individual absorbed doses because
of variability by breathing rate, age, sex, medical conditions, and so on. The pertinent dose at the
target tissue further depends on pharmacokinetics, that is, distribution to various body compartments
(bloodstream, kidney, brain, etc.), metabolic rates and pathways that could either produce the active
compound or detoxify it, storage or retention times, and elimination rates. Individual differences in
pharmacokinetics influence the dose at the target site and its time course. Tissue concentrations may
be better than external measures and activity data, but in some situations could be a poor indication of
long-term exposure. For advantages and disadvantages of various exposure measurement methods,
see Armstrong et al. (1992) and Nieuwenhuijsen (2003).

Biologic markers, which are alterations at the cellular, biochemical, or molecular level, may
provide clues about past exposure. These can indicate absorbed dose or be used to estimate target-
tissue doses, hence supplementing personal recall data. Biologic markers are usually divided into
markers of exposure, markers of susceptibility and markers of early disease, but the dividing lines
are often blurry, as those with greater susceptibility may absorb or retain the compounds for longer,
or may already be exhibiting early stages of disease. The investigation of biomarkers is focused
largely on illuminating mechanisms of disease, beginning with exposure, through internal dose,
bioactive dose (e.g., at the target tissue, or the metabolite believed to cause damage), evidence of
altered physiology, and early signs of disease. To be useful for this purpose, links must be made
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both with exposure and with the disease outcome. For instance, C-reactive protein, produced in
response to infection or local injury, has been hypothesized to be a causal risk factor for coronary
heart disease (Pai et al., 2004). This result opens the door to determining environmental, genetic or
nutritional factors that influence C-reactive protein levels.

Biomarkers are sometimes measured in tissue that is not involved in the causal pathway because
organs of interest are inaccessible (brain, lung, liver, etc.): DNA adducts measured in white blood
cells are surrogates for DNA damage in relevant tissue. Biomarkers are also useful for exploring
gene–environment interactions. For instance, GSTM1 genotype among breast cancer cases was
associated with PAH adducts in those who drank alcohol but not in those who abstained (Rundle et
al., 2003). Life stage appears to influence adduct frequency, as newborns have been reported to have
higher adduct frequencies compared with their mothers, even though gene mutations at the HPRT
locus were lower (Perera et al., 2002). This apparent paradox is explained by a longer lifetime of the
adducts in the neonates, underscoring that the time frame of exposure reflected by any biomarker
must be understood in order to avoid flawed conclusions.

ISSUES IN EXPOSURE ASSESSMENT

Whether planning a study or evaluating a body of literature, epidemiologists must grapple with
uncertainty regarding the best exposure metric for the outcome under study. Cumulative exposures
are often assumed to be the biologically relevant quantity, but this assumption is usually not verifi-
able. Cumulative exposure in case-control and some cohort studies requires reconstruction of past
exposures, a process fraught with problems of recall, incomplete measurements in external media,
or inaccurate records that can no longer be validated. Reproductive and developmental outcomes
are frequently related to relatively short critical time windows. If the representation chosen is not the
biologically relevant one, the resulting misclassification could cause biased estimates of association.

A measure of the misclassification that results from using too broad a time window is the ratio
of overall exposure prevalence to prevalence within a specific time window, abbreviated as the
overall:time-window (OTW) ratio (Hertz-Picciotto et al., 1996). This measure ranges, in the limit,
from 1 to ∞. High values indicate variability in exposures over time; a value of 1 implies no such
variability, i.e., those exposed at one point in time, or during a specific, possibly critical, window are
exposed throughout the period in which exposure is assessed. In a study of fetal deaths, the low OTW
for cigarette smoking (1.1 or 1.2) indicated that those who smoked tended to do so throughout the
pregnancy, whereas the OTW for pesticide exposures at work ranged from 2.1 to 3.2, indicating that
those exposed in one trimester tended not to be exposed in other trimesters, and that considerable
misclassification would occur by assuming homogeneous exposures throughout pregnancy.

Exposures or residences at times in the past are more appropriate for studying diseases that
have long induction periods or are caused by long-term chronic insults. Extensive investigations of
leukemia clustering around the Sellafield nuclear facility in West Cumbria, England, found an excess
among children born in the village but not among those who moved into the area, suggesting that if
an exposure was responsible, it operated before the birth (Gardner et al., 1987). Cognitive function
in the elderly might be related to lifetime lead exposure, which is better assessed by measurements
of bone lead (with a half-life of 10 to 15 years) than blood lead (half-life of 45 days). In contrast, for
a study of the effect of in utero lead exposure on the fetus, the mother’s cumulative exposure is less
relevant than the amount reaching fetal circulation; hence, maternal blood lead during pregnancy
(which readily crosses the placenta) might be superior to a single measurement of bone lead.

For acute or moderately short-term effects (e.g., air pollution–induced asthma episodes, certain
adverse reproductive outcomes), the critical period may be easier to identify, and the payoff from
collection of detailed timing information may be great. Bell et al. (2001a, 2001b) found that the
strength of association between pesticides and late fetal deaths from congenital anomalies was
greatest for weeks 3 through 8, the period of organogenesis. This study took advantage of the
known critical window for that outcome. When information on timing of exposure is collected but
the critical time window is not known, analyses with several different choices may be instructive
(see Chapter 16), as long as there is variability in exposure between time periods and across persons
(Bell et al., 2001c).

A related issue is that of retention time. Even though external exposures may have ended years
earlier, a compound with a long half-life will be present in certain organs. The tragic incidents
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known as Yusho (“oil disease”) in Japan and Yu-Cheng in Taiwan involved consumption of cooking
oil contaminated with PCB compounds (Kuratsune et al., 1972; Chen et al., 1994). Children born
years later to women who had been poisoned suffered severe developmental deficits as a result
of their prenatal exposures to the mother’s body burden (Chen et al., 1994). The persistence of
organochlorine pesticides in fat tissue enables inferences about exposures in earlier periods, an
advantage for case-control studies.

More broadly, in developing a plan for exposure assessment, epidemiologists will need to con-
sider the lengths of the induction and latency periods. Although there are different traditions in
different specialty areas, for our purposes here, we consider that, when exposure occurs at only
one point in time, the induction period represents the time between exposure and the initiation of
disease. The latency period then represents the time from initiation to clinical detection of disease.
For protracted exposures, the combined induction and latency periods span from the time when
exposure reaches a critical threshold until the time when disease is clinically manifested. The point
when exposure reaches a critical threshold will not usually be known: It occurs at some point when
the cumulative exposure or exposure intensity surpasses the threshold that the organism can tolerate.
It could even occur beyond the period of external exposure, if internal stores continue to “expose”
the target tissues as a result of long retention times (Hertz-Picciotto et al., 2004). For protracted
exposures, epidemiologists have often used the time between initiation of exposure and detection
of disease, but this interval is only a proxy for the true combined induction and latency periods and
may lead to misclassification bias.

For a substantial proportion of diseases, environment interacts with genetics (see Chapter 2).
At the individual level, exposures affect those who are genetically susceptible, such that the suffi-
cient set of causes includes both the exposure and genes. Thus, disease is caused jointly by both
the genetic inheritance and the exogenous exposures the individuals encountered, and would not
develop without both. For certain diseases, this will be true of all, or nearly all, cases, implying a
(nearly) 100% attributable fraction for genetic causes and the same for environmental causes. Nev-
ertheless, when epidemiologists attempt to measure the contribution of widespread environmental
factors, the estimates can be very wrong. If exposures tend to be homogeneous (low variability),
their effects will be underestimated or even completely obscured. All study designs may fail to
detect an association with the environmental exposure and will primarily identify markers of sus-
ceptibility (Rose, 1985). Other scenarios could also produce this problem. For example, even if
exposures are widespread and vary, exposure-induced disease may occur below the level at which
most people are exposed (i.e., exposures exceed the threshold that influences disease risk). Here,
studies will not be able to observe an association with exposure, even though it is omnipresent
and universally causal, and even though the study was designed to assess gene–environment
interactions.

The importance of exposure assessment in environmental epidemiology cannot be overstated.
Not only are errors often substantial, additionally the researchers sometimes do not know what the
toxic exposures are or what the route of exposure is (inhalation, ingestion, dermal absorption). Even
when the exposure and route are known, personal exposure levels are often not assessed in spite of
potentially high variability. Of course, expense is often a barrier.

Errors in measurement of exposure introduce both bias and imprecision into the estimates of
their health effects (Brunekreef et al., 1987). Repetition of measurements can improve precision
in exposure estimates, thereby reducing bias in effect measures (Brunekreef et al., 1987; Liu et
al., 1978). Note also that when intraindividual variability is great, macro-level exposure measures
may be preferred over personal or biologic measures, because the former will tend to give better
estimates of average exposures (Rappaport et al., 1995). Sheppard and colleagues point out that in
time-series studies of air pollution, when nonambient sources of pollution are ignored, if they are
independent of the ambient sources, the resulting error in exposure assessment will not introduce bias
in the estimation of effect (Sheppard et al., 2004). The literature on measurement error is abundant
(Thurigen et al., 2000; Sturmer et al., 2002; Spiegelman et al., 2005), with entire textbooks devoted
to this topic, ranging to levels that are highly technical (e.g., Carroll et al., 2006). Chapter 9 discusses
basic concepts and consequences of such error.

Other perspectives on improving exposure assessment focus on integration of a wide range of
variables through geographic information systems (GIS), software that provides data management,
mapping, and statistical analysis capabilities for incorporating spatial attributes of data (Cromley
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and McLafferty, 2002). These systems can superimpose maps of topographic (e.g., land cover, soil
type, watershed), meteorologic, sociodemographic, health services infrastructure, and other data.
Applications have included determination of landscape elements that explain vector abundance of
Anopheles albimanus in Chiapas, Mexico (Beck et al., 1994); analysis of childhood cancer incidence
at the level of census tracts in relation to hazardous air-pollutant exposures from various sources
(Reynolds et al., 2003); and identification of the areas within a county where children with high
lead levels were concentrated, in order to plan targeted screening (Reissman et al., 2001).

In study planning, the utility of existing measurements from administrative or surveillance
databases and the decisions of how many and what kind of measurements to make are critical. Both
require a close examination of variability within and across individuals over time, as well as sources
of error and uncertainty.

STUDY DESIGNS FOR ENVIRONMENTAL EPIDEMIOLOGY

Environmental epidemiology uses all of the standard study designs: cohort, cross-sectional, case-
control, ecologic, community intervention, and occasionally, randomized trials. For example, early
studies of chronic low-level lead exposure and mental development in children included cohort
(de la Burde and Choate, 1975) and case-control (Youroukos et al., 1978) designs, and in a classic
cross-sectional study, Needleman et al. (1979) estimated cumulative childhood exposure by mea-
suring the dentin lead content of their deciduous teeth, establishing that, after adjustment for many
confounders, higher lifetime lead exposure was associated with lower IQ and more behavior prob-
lems. Longitudinal follow-up showed further that early lead exposure predicted failure to complete
high school, and poorer scores on reading, vocabulary, hand–eye coordination, and reaction-time
tests (Needleman et al., 1990). Bellinger et al. (1994a) similarly found that dentin lead in deciduous
teeth was associated with problem behaviors in 8-year-old children, whereas prenatal exposure,
measured by cord blood lead, was not. In adolescents, executive function and self-regulation were
found to be adversely affected by lead exposure (Bellinger et al., 1994b). Thus, a series of studies
of different designs builds a compelling body of evidence.

Community intervention studies are exemplified by trials of fluoridation of public water supply
systems. These trials demonstrated that addition of fluoride had the same effect as naturally occurring
fluoride in the prevention of dental caries, reducing the number of decayed, missing, or filled teeth
per child by 48% to 70% (Ast 1962).

Environmental epidemiology has provided impetus for methodologic development of two rel-
atively new designs: two-stage, randomized recruitment in case-control studies (Weinberg and
Sandler, 1991) and case-crossover studies (MacClure, 1991; Levy et al., 2001; Janes et al., 2005).

RANDOMIZED RECRUITMENT

Two-stage case-control designs (Walker, 1982a; White, 1982b; see Chapters 8 and 15) are useful
(a) for studying rare exposures in relation to rare diseases (e.g., late fetal deaths and occupational
exposures in a population-based cohort), or (b) whenever some cases are much more informative
than others, as occurs when the majority of cases are attributable to a known risk factor that is not of
interest to the investigators. An example of the latter is a case-control study of nonsmoking causes
of lung cancer. In a two-stage design, some readily available variables are obtained on all potential
subjects, while the costly collection of other data is limited to the second-stage subjects who are
chosen on the basis of both disease status and other first-stage variables. The major advantage of
the two-stage design is substantial reduction of data-collection costs.

In randomized recruitment, the desired second-stage probabilities for selection are applied to
strata based on first-stage variables to determine if recruitment is attempted on the potential subject.
These probabilities are precalculated to maximize efficiency (similar to a more standard matched
design), for instance, by assigning a high probability to a nonsmoking case and a low probability to a
smoking case or nonsmoking control. This design does not require that an enumeration of potential
controls be available in advance, and thus controls can be recruited simultaneously as cases accrue.
Further advantages are that the distribution of the matching factor in the general population need
not be known in advance, and the effect of the “matching” or first-stage screening factors can be
assessed.
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CASE-CROSSOVER DESIGN

Case-crossover designs were introduced in the early 1990s (Maclure, 1991) for estimating a short-
term, transient effect of intermittent exposures on acute-onset diseases. For each event occurrence,
the exposure status in the period just preceding it (case period) is compared with exposures of the
same person in one or more control or referent periods. Confounding from individual time-invariant
characteristics is completely controlled, as the individual supplies his or her own referent periods.
This design can be used for both one-time events (death) and recurrent events (asthma episodes,
respiratory illnesses). The analysis may be done using person-time methods if exposure is recorded
continuously, or by conditional logistic regression if exposure is known only at sampled times,
given the matching of cases to their own “controls” (that is, self-matched control time periods);
see Chapters 8 and 16 for further discussion of the design and its analysis. In the last decade, this
design has been commonly applied to air-pollution health-effect studies.

Several sampling strategies for referent periods have been proposed and evaluated. Some of
these are shown in Figure 30–1. The choice of an appropriate “referent” period will depend on the
major sources of bias in a particular study. Challenges include time trends in exposure, seasonal
variation, day-of-the-week effects, auto-correlation with nearby referent periods, and bias due to
(incorrect) use of conditional maximum likelihood when symmetric bidirectional sampling is used.
Levy et al. (2001) demonstrated that unidirectional sampling, i.e., selecting only referent periods
before the event, produced biased estimates of exposure effects, primarily owing to the long-term
trend of declining exposures. They also showed that the selection of a symmetric set of referent
periods, for instance, 2 days, one occurring 7 days before and the other 7 days after the case
event-day, rendered the conditional-likelihood function used for estimation of coefficients in a
logistic regression incorrect (as the true likelihood function is constant and equal to 1). This design
therefore yields biased results. A couple of solutions have been proposed. Navidi and Weinhandl
(2002) proposed a “semisymmetric bidirectional design,” using days both before and after, then
randomly selecting only one of them, basing their derivation on the theory of risk-set sampling.
Janes et al. (2005) refer to “overlap bias,” when referent periods are not chosen a priori and
are functions of the observed event times, and demonstrate for which referent-selection strategies
conditional logistic regression will produce unbiased results. They recommend “time-stratified”
referent periods, the solution proposed by Levy et al. (2001), in which the time period is divided
into fixed strata (e.g., calendar months) and referent days are selected within each stratum. With this
design, cases occurring early in the month will have most referent days later and cases near the end
of the month will have most referent days earlier (Fig. 30–1C). Case-crossover designs can be very
useful in environmental epidemiology of transient exposures, but they must be applied cautiously.
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FIGURE 30–1 ● Sampling strategies for referent times in case-crossover designs. A: Two referent
days are selected for comparison with case-day exposures, one before and one after the case date, using
the same day of the week (symmetric bidirectional). B: Referent day for exposure is 1 week preceding case
date (restricted unidirectional). C: Referent days are all days in the calendar month that fall on the same
day of the week (time-stratified). This design is recommended by Janes et al. (2005).
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ECOLOGIC STUDIES

Ecologic studies have featured prominently in environmental epidemiology, because exposures
are often already measured at the group level or because limited resources for conducting the
study prohibit collection of individual-level data. Ecologic studies may be the best or only way to
address many policy questions, which are sometimes at the heart of environmental epidemiologic
investigations. That is, a policy affects the group as a whole: If technology reduces the emissions
from tailpipes of motor vehicles, air mixing leads to changes in pollutant levels breathed throughout
the state or country, and any health effects will be observed population-wide. If the policy is
implemented at different time points in different locations, the effect of confounding from other
changes will be reduced, so long as confounding variables do not change in parallel (e.g., because
of similar staggering of policy or other changes).

Note that if only one variable is being measured at the group level, typically the exposure, the
analysis can be considered an individual-level analysis with measurement error in the one variable.
A detailed discussion of ecologic studies and associated biases is given in Chapter 25.

Susser (1994) presents a four-level hierarchy for ecologic studies and illustrates circumstances
in which this design is (a) “obligate and apt,” (b) “optional and apt,” (c) “optional, not apt, but
convenient,” and (d) maladroit. At the top of this hierarchy are studies for which the goal is to
determine the effectiveness of programs, policies, or regulations that are implemented at the ecologic
level, such that the exposure is homogeneous across individuals and the outcomes are meaningful
primarily for the group. In the second category, one might place studies in which exposure itself
is defined at the group level and cannot be measured at the individual level, such as neighborhood
density of liquor stores, or median income or percent employment in the census block, or type of
hospital (teaching, referral, etc.). Ecologic studies can also be useful when a field is new and the goal
is to screen hypotheses inexpensively (time trend, birth cohort, and mapping studies might apply) or
when interindividual variation is outweighed by between-group differences (see, for example, the
preceding discussion of trihalomethanes in drinking water). These examples might fall in Susser’s
third group, as it would be convenient to do such studies at the ecologic level, even though an
individual level study would be more convincing.

Common ecologic approaches include exploration of regional variations through mapping,
changes through time-trend or time-series analyses, and either differences in time trends across
regions or changes in spatial patterns over time. In each of these, descriptive analyses can then pro-
ceed to the fitting of models that use regional or time-period attributes to predict disease rates. Tools
that link space and time variation in exposure with space and time variation in health outcomes have
undergone tremendous development; sophisticated geographic information systems (GIS) permit
overlay of numerous, diverse databases with spatially linked variables.

TIME PATTERNS

There are three main types of time-related disease patterns: time clustering, cyclic patterns, and
longitudinal trends. Time clustering usually occurs when an agent is newly introduced into the
human environment or when a human behavior suddenly brings the population into contact with
an exposure or pathogen that is not commonly encountered on as large a scale. Examples include
the occurrence of several cases of an extremely rare malformation syndrome in one hospital in
Australia within a short period of time, which led to the identification of thalidomide as a human
teratogen (Taussig, 1962); an outbreak of thousands of cases of paralysis in Meknes, Morocco,
which led to the identification of a batch of olive oil that had been contaminated with cresyl
phosphates used in lubricating oils (Smith and Spalding, 1959); and ordinary food poisonings,
which often result from improper food handling that introduces bacterial contaminants such as
salmonella and which involve time clustering when a large number of persons congregate to eat
or the food is disseminated widely. Accidents such as shipwrecks, plane crashes, and fires; natural
disasters such as earthquakes, heat waves, floods, or tsunamis; and political and social upheavals
such as wars and forced migration may also produce time (and space) clusters of injury and death.
When the cause is known, the focus of epidemiologic studies may be on documenting the at-
tributable fraction, or identifying cofactors associated with higher or lower than typical risk. An
analysis of deaths from the 1999 earthquake in Taiwan demonstrated, for instance, that those with
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FIGURE 30–2 ● Prostate versus lung cancer incidence, all races, males, 1975–2001.
Source: SEER 9 areas. Rates are age-adjusted to the 2000 U.S. standard million population by
5-year age groups. Regression lines are calculated using the Joinpoint Regression Program
Version 2.7, September 2003, National Cancer Institute.

mental illness, physical disability, or low socioeconomic status were at highest risk (Chou et al.,
2004).

Clustering can also occur when a new diagnostic tool comes into medical practice, resulting in
a surge in diagnoses, often at an earlier stage than was previously possible. After the introduction
of a diagnostic test, the PSA (prostate-specific antigen), prostate cancer incidence showed a clear
clustering (Fig. 30–2): a sharp rise and fall between 1989 and 1995 with a peak at 1992, overlaid
above a steady increase (SEER Cancer Statistics Review, 1975–2001). The peak can be understood
as the “iceberg” of undiagnosed preclinical cases detected by PSA; the linear slope before 1988 is
similar to that after 1995, but the later one is higher (it has a larger intercept). This difference (the
vertical distance between those two lines) represents the incidence of cases that went undiagnosed
in the earlier period.

Cyclic patterns characterize a number of diseases. These patterns are not surprising, given well-
known cycles in the size and activities of vector populations, in changes in the physical environment
that influence exposure, and in many human physiologic functions and behaviors. Cardiovascular,
cerebrovascular, and respiratory disease deaths rise in winter and decline in summer (Anderson
and Le Riche, 1970; Bull and Morton, 1975), but extreme heat waves also cause increases in these
deaths, usually peaking over only a few days (Gover, 1938; Poumadere et al., 2005). Finding a
cycle in incidence implies a cyclic cause and is often viewed as evidence for a possible infectious
etiology, although many potential causes, such as temperature, sunlight, behaviors, fertility, seasonal
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environmental factors (e.g., use of certain pesticides), and even magnetic fields are also cyclic. An
interesting case example is that of seasonality and schizophrenia. Late-winter births (February and
March) were reported to be more common among over 16,000 schizophrenics than in the general
population in Sweden (Dalen, 1968). Attempts to replicate this finding or to assess births exposed
to influenza epidemics yielded mixed results (e.g., Hare et al., 1974, vs. Krupinski et al., 1976), and
by the 1980s, researchers were concluding that seasonality was likely an artifact due to errors in
design and interpretation (Fananas et al., 1989). Most recently, however, serologic evidence from
maternal serum specimens collected during pregnancy indicated a sevenfold higher incidence of
first-trimester influenza infection in schizophrenics than others (Brown et al., 2004).

Most methods to evaluate cyclic occurrence involve fitting a sine curve to the frequencies or
rates during a single cycle. If the cycle is annual, analysis of the cyclic pattern is often referred
to as “seasonal analysis.” Regression modeling that incorporates trigonometric terms to describe
cyclic patterns are described as “periodic regression.” Many factors that can confound other types
of epidemiologic analysis, such as age, socioeconomic status, smoking habits, and so forth, do not
confound seasonal analysis because these factors tend to vary little by season. This phenomenon and
the stability of denominators during a cycle simplify the analysis of seasonal patterns. From monthly
(or other periodic) frequencies, one can estimate the ratio of peak-to-trough occurrence during a
cycle, which measures the intensity of the cyclic pattern and the timing of the peak (Edwards, 1961).
These results are easily obtained from a simple spreadsheet program (http://members.aol.com/
krothman/episheet.xls).

The examination of morbidity and mortality patterns over longer time periods (i.e., years or
decades) is commonly used to generate hypotheses about nongenetic causal factors: in heart disease
(Marmot, 1992), breast cancer (Tarone and Chu, 1992), and asthma (Arrighi, 1995). The increase
in incidence of autism has been cited as evidence for an environmental contribution, although
improved diagnosis and a changed attitude among parents in bringing their children to the attention
of the medical community undoubtedly play a part in these statistics (California Department of
Developmental Services, 2003).

Inferences about the causes of longitudinal trends can be problematic. Confounding factors
include changes in diagnostic procedures and accuracy, in survival time due to more efficacious
treatments (hence affecting studies of prevalence and of mortality), and in health care–seeking
behavior for less life-threatening conditions (Devesa et al., 1984). Nevertheless, time trends provide
a source of etiologic clues. When gender differences in time trends are seen, factors on which men
and women tend to differ (e.g., occupations, smoking, alcohol, etc.) are more suspect. Conversely,
when no gender difference is observed, exposures in common are more plausible.

Behavioral or other exposure changes that occur population-wide over calendar time give rise
to a period effect; changes occurring across generations (persons born later behaving differently or
being exposed to new environmental factors) result in a birth-cohort effect. Because age, period,
and cohort are linearly dependent, a full model incorporating all three factors is nonidentifiable,
meaning that there is no way to estimate uniquely all three effects at once without making further
assumptions. Birth-cohort analysis is particularly useful when the exposures are short-lived or
change nonmonotonically over time (e.g., Frost, 1939).

MAPPING

Mapping of disease rates serves a similar function as time-trend or birth-cohort analysis. As early as
the 1790s, spot maps of yellow-fever cases along the eastern seaboard of the United States played
a role in the debate between contagionists and anticontagionists (Howe, 1989). Snow’s map of
cholera cases surrounding the Broad Street pump illuminated the proximate cause (1855). Mapping
of endemic disease came later. For a history of disease mapping and its use in the study of 19th-
and 20-century epidemics, see Howe (1989).

Three important characteristics of a map are (a) whether the locations are points or regions,
(b) if regions, whether they are regular or irregular, and (c) whether the variable being mapped is
continuous or discrete. Constructing maps for continuous data, such as disease rates or mean life
expectancies in states or counties, typically involves (a) dividing the geographic region of concern
into discrete areas (often predefined by the administrative units that collect the data), (b) calculating
standardized rates or means in each area, (c) categorizing these rates or means, and (d) associating

http://members.aol.com/krothman/episheet.xls
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a color or shading scheme to represent the ordered categories. The result is a chloropleth map of
the rates or means.

Decisions must be made regarding the choices of boundaries, method of standardization, number
of categories of rates, where to make the cutpoints, and whether cutpoints should vary among maps
within a set (Smans and Esteve, 1992). See Chapters 3, 4, and 15 for methods of standardization. The
number of categories should be chosen to maximize the information to be conveyed to the reader.
See Chapters 13, 15, and 17 for discussions of choice of categories. Cromley and McLafferty
(2002) discuss these and numerous other decisions that can either obscure or highlight information
in environmental health maps.

A far more difficult problem is that of rare diseases. Because the size of the underlying population
will almost always differ among the areas, many of the high-rate areas will have very few cases.
The greater the instability of rates, the stronger is the likelihood of an extremely high rate. Maps of
either crude or standardized disease rates will therefore predominantly draw attention to elevated
but unstable risks in sparsely populated areas. An alternative is to map the P-values, but because
P-values reflect both strength of association and precision, this approach tends to highlight large
regions that have relatively small elevations in risk, focusing attention on population size rather
than magnitude of risk.

The most viable solutions to this problem fall under the rubric of “shrinkage” or Bayes methods,
which combine “prior” information with the empirical data to derive an improved posterior estimate.
In the mapping application, the underlying rate in the total map serves as the prior information.
Because this underlying rate is also unknown and it is replaced with an estimate from the data,
the method is referred to as “empirical Bayes.” The term “shrinkage” refers to replacing each rate
with an adjusted rate that is closer to the mean rate for all locations—a shrinkage (or increase)
toward the overall mean. For disease mapping, variation in population sizes is a nuisance source of
heterogeneity, and empirical Bayes methods are smoothing techniques based on three assumptions:
(a) the overall rate is unbiased and should not be altered; (b) shrinkage of an individual rate should
increase as the variance increases; and (c) the distribution of incidence rates follows a probability
distribution (Cromley and McLafferty, 2002). Elliott et al. (1992, see color plate 4) shows how
mapping rates that have been stabilized via empirical Bayes techniques can filter out noise and
highlight noteworthy geographic patterns of disease. Although not all artifacts of mapping can be
removed (Gelman and Price, 1999), these methods offer major advantages over maps of crude rates
(Moulton et al., 1994).

Maps can stimulate etiologic research, including focused case-control or cohort studies. The
United States county-specific maps published by the National Cancer Institute (NCI) in the 1970s
(Mason et al., 1976) were used for surveillance and led to targeted case-control studies that ultimately
identified high mortality rates from nasal cancer in areas with furniture-manufacturing industries
(Brinton et al., 1977), lung cancer in counties with petrochemical manufacturing (Blot and Fraumeni,
1976), bladder cancer where chemical industries were located (Hoover et al., 1975), and oral cancer
in regions where snuff use was common (Blot and Fraumeni, 1977).

Even for studies of determinants of disease that are not obviously spatial in nature, geographic
location may need to be controlled because important confounders that are hard or infeasible to
measure may cluster spatially. Examples include physician diagnostic practices or local customs
that propel persons to seek medical attention. Cressie (1991) demonstrated the use of techniques to
remove spatial trends in data and thereby control spatially related confounders.

COMPARISON OF TIME-TREND AND SPATIAL-DATA ANALYSIS

Unlike spatial analyses, temporal comparisons may require only event data, if it is reasonable to
assume no important temporal change in baseline risk factors or in the size of the population at risk.
In contrast, spatial comparisons almost invariably require data on both the events and the population
at risk—that is, its size, age, and sex distributions, etc.

Crucial to both temporal and spatial data is the scale of data. The time scale for tracking measles
epidemics is days to weeks, whereas cardiovascular disease mortality shows trends covering decades
(Uemura and Piša, 1988), as well as seasonal variation (Anderson and Le Riche, 1970). Obviously,
both the exposure and the disease will dictate what time scale is important. Time-trend analyses,
regardless of scale, are most useful when the exposures of concern are widespread, because one can
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aggregate over sizable regions to obtain time-specific rates. The stability of associations with disease
will depend on the population size, the background disease rate, and the width of the time periods of
interest. Studies of shorter time periods require larger population sizes or higher background rates.

For spatial data, however, the problem of scale frequently raises additional methodologic prob-
lems. When exposures are localized, the investigator will be interested in small areas where disease
rates will tend to be unstable. Stability might be achieved if these localized exposures (e.g., chem-
icals migrating from a hazardous waste site) were present and documented for extended periods
of time and appropriate outcome data could be obtained. Issues surrounding variable and small
geographically defined populations are addressed by the literature on small-area analysis (Elliott
et al., 1992; Richardson et al., 2004).

ANALYSIS AND METHODOLOGIC CHALLENGES
IN ENVIRONMENTAL EPIDEMIOLOGY

When studying disease rates in relation to geography or time period, epidemiologists will want
to adjust for multivariate confounding and may want to model exposure–response relations quan-
titatively. In longitudinal studies, repeated measures will require adjustment for auto-correlation,
whereas geographic studies may require special methods such as empirical Bayes, or kriging, adja-
cency, and distance-based techniques. Generalized linear models provide an overall framework that
can encompass both group-level and individual-level data, cross-sectionally, over time or across
space. For group-level data, namely, disease rates, Poisson regression (see Chapter 21) is frequently
the method of choice (Checkoway et al., 2004) and can be applied to data in which time and space
are central factors defining the units of observation. When the disease is more common, binomial
regression or survival analysis is more appropriate. The interrelationships among these three meth-
ods are discussed by Pearce et al. (1988). In Poisson regression, the counts or rates of events are
described as a function of exposure, spatial, time-period, demographic, and other variables. The
method is commonly used when the predictor variables (regressors) are categorical (nominal or
ordinal) but need not be limited to such variables. Within cells constructed by cross-classification
across predictor variables, events are enumerated, and in most cases it will also be necessary to
obtain the person-time or expected count associated with each cell. The data collected from time
series or geographic regions can be organized into cells such as days, weeks, years, etc., counties,
states, regions of the world, etc., or space-time units such as county-years, etc.

In typical exponential (log-linear) Poisson regression models, assumptions include that (a) the
logarithm of the disease rate changes linearly with equal-increment increases in the exposure vari-
able; (b) changes in the rate from the combined effects of different exposures or risk factors are
multiplicative; (c) at each level of the covariates, the number of cases has variance equal to its mean;
and (d) observations are independent. Methods to detect and deal with violations of assumptions
(a) and (b) are similar to those used for other exponential models (e.g., logistic, proportional haz-
ards) (see Greenland, 1989b; McCullagh and Nelder, 1989; and Chapter 20). Methods to identify
violations of assumption (c), that is, to determine whether there is overdispersion (variances are
too large) or underdispersion (too small), include plots of residuals versus the mean at different
levels of the predictor variable. Methods for dealing with violation of the Poisson assumptions are
discussed by Breslow (1984) and by McCullagh and Nelder (1989).

In spatial or time-trend studies, the assumption of independence may be violated. In time series,
the numbers of events (e.g., deaths, hospital admissions, etc.) occurring on a given day i may be
correlated with the numbers of events on days i − 1, i − 2, etc., not because of the correlation in
explanatory variables (cold weather, for instance) but for unknown or unmeasured reasons. Similar
lack of independence can occur with spatial data. Similarity of disease rates in a given geographic
region with rates in contiguous regions could be due to person-to-person transmission, the presence
of the same vectors or sources of exposure, or the influence of physician diagnostic practices.
Auto-correlation models can incorporate these nonindependent observations.

TIME-SERIES ANALYSES: CONFOUNDING AND AUTO-REGRESSION

Time series analyses follow a given community or region through time, usually without covari-
ate data on individuals. Although outcomes can include means of continuous measures made on
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individuals, such as pulmonary function, they are often rates of binary events (death, hospital
admission, symptom present, etc.) and are well suited for Poisson regression.

As stated earlier, within-community comparisons, in contrast to spatial comparisons, obviate
the need for denominator data when the population composition and size do not change over the
time period of interest. This approach is particularly advantageous where the catchment area is
unclear, say, for hospital-based studies in densely populated areas where not all hospitals can be
included, counts of admissions or outpatients might be comparable for high- versus low-pollution
days. Thus, time-based comparisons within a population are convenient to assess acute effects
from community-wide exposures and may provide more valid estimates than comparisons between
communities.

Although individual-level confounders are not a problem in such studies, confounding can occur
as a result of infectious agents, correlated pollutants, time trends in mortality, and meteorologic
factors. Temperature, humidity, and seasonal fluctuations may correlate with both pollution and
health outcomes. High correlations among individual pollutants (particulates, acid aerosols, ozone,
etc.) are not a problem if the mixture is of interest but are a challenge if the goal is to identify the
precise factor responsible for adverse health effects, or to distinguish the relative roles of different
components of the mixture. In theory, these difficulties can be overcome by studying areas or time
periods in which correlations are low or vary across regions. Borja-Aburto et al. (1997) focused on
Mexico City, where ozone levels are not as highly correlated with sulfur dioxide, temperature, or
total suspended particles as they are in most cities in the United States.

Long-term trends in mortality can also be a problem in a long time series. Adjustment for such
trends, however, should be undertaken with caution. If there has been a long-term trend in the
exposure (increases or declines in pollution levels), then adjustment could introduce bias toward
the null in measures of pollution effects. On the other hand, time can be a true confounder. In
particular, when longer time periods are being addressed, patterns of migration, shifting diagnostic
practices, changes in behavior, and other important sources of drift or bias gain importance.

SOCIAL CLASS AS A CONFOUNDER IN
INTERCOMMUNITY COMPARISONS

A common study design compares disease rates in communities that have high exposure with rates
in low-exposure communities. This design is appropriate when exposures are spread throughout a
community, but not where point sources pollute very small areas within a community. Although
many intercommunity comparison studies are ecologic, a more valid design (not subject to ecologic
biases) involves measuring covariates and outcome at the individual level, even if exposure can
only be feasibly measured at the group level. Intercommunity comparisons are particularly useful
for evaluating the effect of chronic ongoing exposures that vary primarily between rather than
within communities. However, social, cultural, and economic factors may similarly vary across
communities, introducing serious difficulty in achieving complete control for confounding.

Social class is strongly associated with a broad range of diseases (Krieger and Fee, 1994), and
systematic inequities in environmental pollution with regard to poverty or race are well documented
(United Church of Christ Commission on Racial Justice, 1987; United States Environmental Protec-
tion Agency, 1992; Evans and Kantrowitz, 2002). These disparities are not new, even if research has
lagged behind. The concentrations of DDT, its metabolites, and PCBs in San Francisco Bay Area
residents were substantially higher among African Americans than among whites during the 1960s
(James et al., 2002). Similarly, data collected in 1976–1980 for the Second National Health and
Nutrition Examination Survey (NHANES) demonstrated much higher levels of blood lead among
African Americans and among those of low education, compared with whites and those of higher
education (Mahaffey et al., 1982).

Given strong associations of socioeconomic status with both environmental exposures and health
outcomes, the potential for confounding is great. Typically, because income is difficult to obtain,
epidemiologists use education to capture social class, and occasionally, occupation. Adjustment for
these factors may be inadequate owing to residual confounding arising in multiple ways, including
the use of broad categories for education or socioeconomic status (Kaufman et al., 1997) and lack
of data on resources or social capital, factors that operate at the individual, household/family, or
neighborhood level and that influence host susceptibility and access to medical or preventive care;
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see Chapter 26. Neighborhood characteristics appear to predict health even after controlling for
individual-level factors. Potentially relevant census-derived neighborhood factors include percent-
age unemployed, percent owner-occupied housing, and median income; others are the availability
of supermarkets with fresh produce (Fitzgibbon and Stolley, 2004), density of liquor stores (LaVeist
and Wallace, 2000), and crime rates (Cinat et al., 2004).

Inadequately measured confounders can result in biased estimates of associations between the
main exposure and outcome, even after adjustment for these confounders (see Chapter 9). Such
errors can be substantial but would not be detectable in standard analysis that lacks data on the degree
of measurement error of the confounder (social class). Moreover, even when the misclassification
(of confounders) is nondifferential, the adjusted measure could be more biased than the crude one
(Greenland, 1980; Brenner, 1993). Hence one may need to go beyond the usual surrogates for this
important determinant of health status.

Although socioeconomic status is a profound predictor of health, treating it as a confounder
could be incorrect if some of the disparities in health outcomes attributed to socioeconomics are
actually a consequence of environmental exposures (Bellinger, 2004). Investigators need to address
social class in the design, data-collection, and analysis phases of a study. Use of directed acyclic
graphs (Hernan et al., 2002; Greenland et al., 1999a; Pearl, 2000) in conjunction with the existing
literature can help clarify the factors involved and how they fit into a conceptual causal model; see
Chapter 12 for further details.

ANALYSIS OF CLUSTERS

A disease cluster is defined as an unusual aggregation, in time or space or both, of occurrences of a
disease. To understand what is unusual, one first needs to look outside the particular time, space, or
time and space that is of interest to determine what is usual. These “usual” rates will come from the
distribution of occurrences in the same location at other time periods, in one or more other similar
locations at the same time periods, or in larger areas than the locale of interest. For spatial clustering,
the distributions of noncases (or the population at risk) over the same time and space is needed. De-
riving denominators may be a formidable task when the regions of homogeneous exposures may not
correspond to the regions for which population or health data are available (Hertz-Picciotto, 1996).

Investigations of single clusters are usually not fruitful, whereas research on generalized clus-
tering over large areas (Does this disease tend to occur in clusters? Where are the hotspots for
this disease?) can serve as surveillance to provide information on what is “usual” and generate
hypotheses when areas of high and/or low incidence are observed.

Some cluster investigation methods rely on case-only data. Others require either population
denominators or a control group sampled randomly from the population. In general, the scale at
which data are collected will often be a major determinant of what type of analysis can be used
and of the ability to uncover meaningful patterns. Three classes of analytic approaches for studying
geographic variation are cell count, adjacency, and distance or nearest-neighbor methods.

Cell-count methods compare observed counts of events in cells, usually defined by geographic
areas, with expected counts of events, usually under the assumption of a Poisson distribution.
Methods have recently been developed that do not suffer from the problems of arbitrary but fixed
boundaries and regions or time intervals that are either too small or too large relative to the scale at
which events cluster. One class of such methods is the “scan” statistics. Zones of cells for which the
centroids fall within prespecified regions are examined, and likelihood-ratio statistics are calculated
to identify the most likely clusters (Kulldorff, 1997).

An extension of cell-count approaches is adjacency methods, which examine whether areas of
high rates of disease are likely to be adjacent to other high-rate areas. If exact locations of cases
are not known and/or the scale of clustering is unknown or spans multiple cells, adjacency methods
are appropriate. These techniques examine the degree to which areas with higher-than-expected
counts tend to cluster, using tools from geography known as spatial auto-correlation statistics,
which measure the extent to which the value of a variable at one location depends on values of this
variable at nearby locations. “Nearby” can be defined in various ways, e.g., the number of residents
in one region who work in the neighboring one, etc.

Distance or nearest-neighbor methods compare physical distances between cases to expected
distances. These analyses intrinsically avoid imposing arbitrary regional boundaries, require no
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prespecification of how close cases need to be to constitute a cluster, and usually do not require
denominator data. Distances between cases and nearest other cases can be used in a number of
types of analyses (Besag, 1989; Besag and Newell, 1991). Nearest-neighbor analyses are useful
for case-control studies; relative clustering can be defined using distances between cases versus
distances between controls, with numerous elaborations (Rogerson, 2006).

ANALYSIS OF CLUSTERING AROUND POINT SOURCES

A conventional approach to address clustering around known pollutant sources is a variant of the
cell-count method that involves drawing boundaries around the site to include a nearby exposed
population, calculation of the disease rate, and comparison with state or national rates. Problems
with this approach include (a) indeterminate population sizes, (b) arbitrariness of the boundaries, and
(c) difficulties if the area chosen is too large (effect is swamped) or too small (low power) (Bithell
and Stone, 1989). Another problem is the lack of sociodemographic comparability between the
exposed and referent populations.

Some of these problems are overcome by distance-measure methods that avoid arbitrary defi-
nitions of the affected area and do not require equal population sizes. The method of Besag and
Newell (1991) involves creation of zones ordered by distance from an exposure source. The source
need not be a point; it could be a river or a coastline, with distance defined appropriately.

GENERAL CONSIDERATIONS IN THE INVESTIGATION OF CLUSTERS

Reports of perceived clusters are frequently made to local, state, and federal agencies by concerned
citizens, physicians, or other health practictioners, sometimes overwhelming local, state, or federal
agencies. The Centers for Disease Control (1990b) guidelines for investigation of clusters calls for
an integrated approach that seeks to be responsive to community concerns, and at the same time
recognizes that most such reports do not lead to identification of a common causal exposure for the
events of interest. Frequently, there simply is no excess of cases. Second, the reported cases may
be too diverse to be reasonably suspected of arising from the same cause. Third, even if there is
an excess, the number of cases may be too small for meaningful statistical analysis. Fourth, there
may be no identified suspect exposure, or the exposure(s) suggested by the community may not be
a plausible cause or set of causes for the outcome reported.

In general, it is difficult to draw a conclusion regarding clustering from a single cluster, no
matter how unusual. Cluster investigations are most fruitful when (a) the outcome is rare and
occurs primarily by a single mechanism or (b) the rate of disease increases rapidly (Rothman,
1990b). Health professionals who communicate with the lay public need to recognize the culture
gap between scientists and nonscientists regarding how evidence is evaluated. This gap can only be
bridged through two-way communication: listening to the concerns and ideas of those outside the
profession and respectfully explaining the rationale for choices made. Bringing the community into
the process of evaluating health and exposure information will go a long way toward overcoming
the differences in perspectives.

SURVEILLANCE AND RISK ASSESSMENT OF
ENVIRONMENTAL HAZARDS

ENVIRONMENTAL HEALTH SURVEILLANCE

Environmental health surveillance involves the systematic collection, linkage, and analysis of both
environmental and health data, in order to identify those exposures that are adversely affecting the
well-being of the population so that rational public policy can be developed. Despite regulations
governing chemicals introduced into the environment, not all functions or systems are studied
for long-term chronic effects. Neurodevelopmental toxicity testing, for instance, is not required,
even though it may occur at lower exposures than other toxicities. In the absence of adequate
prerelease testing, systematic monitoring for adverse health effects is rational and appropriate.
Disease surveillance is discussed extensively in Chapter 22, but surveillance for environmental
hazards requires additional elements (Hertz-Picciotto, 1996).
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An ideal surveillance system for environmentally induced disease would have the following
elements: (a) high-quality mortality and morbidity data with residence information; (b) timely pop-
ulation data for denominators to calculate rates with adjustment for migration between censuses;
(c) timely, high-quality emissions and environmental monitoring data for air, water, soil, food,
and other exposure media, characterized geographically and temporally; (d) personal monitoring,
biomonitoring, and exposure modeling data to capture transport and transmission; (e) tools to link
these various types of data; (f) compatible standards across data sources and standardized vocabu-
laries; (g) fine enough resolution to be useful for observing effects of localized exposures on small
communities; and (h) systems for dissemination of such data (Hertz-Picciotto, 1996; McGeehin
et al., 2004). Although costly, the benefits of such a surveillance system would include information
on long-term trends; an early-warning capability, that is, the ability to detect unusually high inci-
dence of diseases covered by the system; avoidance of public anxiety and costly investigations of
situations in which no excess risk is ascertained; and the potential for increased public confidence
in the commitment of government and health scientists to protect the population’s health.

Recently, initiatives in the United States and other countries have begun to address the need for
integrated surveillance systems. In the United States, the Pew Environmental Health Commission
(2000) called for establishment of a Nationwide Health Tracking Network that would monitor and
establish relations between environmental hazards and disease. The report cited the absence of
information on auto-immune diseases, developmental disabilities, diabetes and other endocrino-
logic disorders, asthma, and birth defects. Initial steps appear to be underway, involving several
health and environmental agencies (McGeehin et al., 2004). Given newer environmental health
challenges described later, these systems will also need to integrate large-scale global changes,
such as stratospheric ozone and climatic factors.

RISK ASSESSMENT

Risk assessment, an interface between environmental epidemiology and environmental health pol-
icy, involves estimation of risks for situations in which they cannot be measured or observed directly,
either because the risks are too low, the population is too small, the exposures do not occur in iso-
lation from other hazardous exposures, the exposure scenario is projected but has not yet occurred,
or a sufficient induction period since exposure has not yet passed. The U.S. National Academy of
Sciences (1983) defined risk assessment as “the use of the factual base to define the health effects of
exposure of individuals or populations to hazardous materials and situations.” This definition, how-
ever, falls short of depicting the true state of the art: The factual base is usually not fully adequate,
and hence, some assumptions are made that are not directly testable. Because decisions may need
to be made before the evidence is complete, policymakers and the public seek estimates of what the
health costs are from certain societal actions or inactions. Without input from epidemiology (and
toxicology), the regulatory approaches may be influenced by economic pressures alone.

The four steps in risk assessment are (National Research Council, 1983; U.S. Environmental
Protection Agency, 1986)

1. Hazard identification: Is there evidence that the agent is capable of harming the health of the
exposed population?

2. Exposure assessment: Who is exposed; through what medium, such as air, water, food, etc.; at
what dose; and for how long?

3. Dose–response: What is the response rate for doses in the observable range, and what is the
predicted response at the lower levels?

4. Risk characterization: Given the exposed population and their estimated or actual exposure and
given the extrapolated dose–response relation, what is the predicted population health impact?
Risk assessment has a long history of being used informally as a natural part of preventive health
practice.

Epidemiologic data have been used to quantify risks for environmentally induced cancer and
cardiorespiratory mortality (Hertz-Picciotto and Hu, 1994; Hertz-Picciotto, 1995; Kunzli et al.,
2000, 2001) and for checking plausibility of animal-based risk extrapolations (Hertz-Picciotto and
Hu, 1994; Hertz-Picciotto, 1995).
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Faced with new challenges such as global transport of air pollutants, climate change, depletion
of the ozone layer, and so forth, there may be much from “traditional” risk assessment that can be
useful as we face unknown risks and scenarios that can be only partially predicted.

HISTORICAL LESSONS IN ENVIRONMENTAL EPIDEMIOLOGY

In its early period, environmental epidemiology was concerned largely with biologic agents and
environmental factors that altered human contact with such agents. This section provides a few
historical examples, beginning with lessons from Snow (1855) on water contamination, then turning
to ambient air pollution and concluding with persistent organic pollutants.

WATER CONTAMINATION

The classic work of John Snow (1855), On the Mode of Communication of Cholera, presented an
array of evidence that fecal matter from infected patients carried the “morbid poison,” that ingestion
of very small quantities was the mode of transmission, and that mixing of sewage and drinking-water
sources enabled such transmission on a wide scale. The method proceeded from a case series tracing
the introduction of the epidemic into a municipality to mapping of cases and ecologic comparisons
among districts of London for the 1832, 1849, and 1853 outbreaks, to a natural experiment (a cohort
design in which exposure is assigned as if at random, see Chapter 6). The ecologic intercommunity
comparisons of districts in London were accompanied by property-value data to show the lack of
correspondence between water source and wealth, thereby providing evidence that the association
was not due to this potential confounder. The natural experiment was a serendipitous occurrence,
but Snow strengthened the findings by incorporating individual confirmation of exposure. In fact,
Snow himself (and one assistant) visited the homes of all cholera victims and asked the survivors for
the name of their water company. If written documentation of the water supplier could not be found,
Snow collected a vial of tap water. Although he could not test for the microorganism itself (because
it had yet to be identified), the contaminated water from downstream, which contained London’s
sewage, had 40 times the quantity of sodium chloride. Addition of silver nitrate could distinguish
the two sources of water, by precipitating a far greater amount of silver chloride in the contaminated
water than in the cleaner water that was drawn farther upstream, beyond the reach of the sewage of
London (Snow, 1855, p.78). Exposure of each case’s household was thereby determined with high
accuracy.

Snow’s accounts examined in detail the consistency of a wide range of information with the
hypothesized mode of transmission. He noted that wherever the general water supply was not
contaminated, cholera was seen primarily in crowded areas where the poor and laboring classes
lived, but that in districts near the Broad Street pump, the disease had struck the wealthier and
poorer houses equally. Although it may be difficult for today’s epidemiologists to appreciate the
skepticism with which Snow’s theory of epidemic transmission was received, Snow’s clarity and
unrelenting thoroughness as he sought to reconcile every detail of the cholera epidemics with an
unpopular theory serve as a model for present-day environmental epidemiology.

AIR POLLUTION

Research on health effects of air pollution has progressed through several stages, each addressing
the problem using distinct designs. Episodes with extremely high levels of air pollution produced
by meteorologic inversions in the Meuse Valley of Belgium in 1930 (Firket, 1931), in Donora,
Pennsylvania, in 1948 (Schrenk et al., 1949), and in London in the winter of 1952 focused attention
on the dramatic effect on deaths from respiratory- and cardiovascular-related causes (Logan, 1953).
These studies resembled the reports of infectious disease epidemics that filled the epidemiology
and public health journals of the time: within-community comparisons using a before-and-after
design. This within-community comparison is ideal for effects of short induction time, that is, as
little as a few hours to a few weeks or months, where migration is not extensive, and when a clear
line demarcates unexposed from exposed time periods.

Subsequent research in the 1950s and 1960s was concerned with less extreme levels of pollution
and typically compared communities with higher versus lower pollutant levels (Lave and Seskin,
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1970). The greatest problem in these between-community studies was the strong correlation between
socioeconomic level and air pollution level. However, despite weaknesses, these air pollution studies
contributed to the establishment of air standards, including the passage of the Clean Air Act of
1970 in the United States, which attempted to provide comprehensive protection to the general
population from air pollution. (See Luneberg, 1995, for a historical account of the legal framework
of environmental protection in the United States.)

The third set of air pollution studies used within-community time-series analyses to examine how
fluctuations in pollutant levels over time in a single region influence mortality or morbidity. This
design avoided problems from confounders that differ across individuals yet tend to remain constant
over the time periods of interest. For instance, smoking prevalence or distributions of social class
and age tend not to change markedly within a community over short time periods, and even if they do
(e.g., for a 3-year study), the changes are unlikely to mirror short-term contrasts in air pollution that
occur in a period of a few weeks. Similarity of findings across health outcomes (cardiopulmonary
deaths, hospital admissions, self-reported symptoms, and exacerbations of asthma) in both intra-
and intercommunity study designs strengthens the evidence for causality. The fourth generation
of studies, largely cohorts in which individual-level data are integrated with community-based
exposure data or in which more refined measures of exposure are made, will likely provide further
understanding regarding mechanisms of susceptibility, effects related to developmental stages, and
more specific indications of the pollutants that are most harmful.

PERSISTENT ORGANIC POLLUTANTS

In the 1990s, Theo Colborn published Our Stolen Future (Colborn, 1996) which eloquently made
the case that certain classes of industrially produced chemicals are highly persistent, disrupt hor-
mone regulation, and have permeated the environment, harming wildlife populations throughout
the world. The possibility that human populations may also have been affected generated concern
among the public and the media, and over the next few years, health and environmental agencies
in the United States and Europe began funding expanded research into the effects of “endocrine-
disrupting chemicals.” Some of these studies focused on chemicals with estrogenic, antiestrogenic,
androgenic, or antiandrogenic activity, and health outcomes such as breast and testicular cancer,
cryptorchidism, sperm counts, and sex ratio of births. Standard designs, e.g., case-control studies of
rare diseases or conditions, have sometimes used serum measures of body burdens that represent cu-
mulative exposures over long time periods, in some cases, decades. For example, dozens of studies
searched for differences in serum PCB concentrations between breast cancer patients and unaffected
controls, but the findings have been largely null. A few meta-analyses reporting a decline in sperm
counts over the period when endocrine-disrupting chemicals were increasing have been consider-
ably debated. Causal inference is hampered by the inherent problems with documenting compa-
rability of historical measurements when laboratory variability and interindividual variability are
substantial.

Others have examined metabolic disorders such as diabetes (Longnecker and Daniels, 2001)
or developmental deficits possibly mediated through thyroid hormone disruption (Winneke et
al., 2002). The literature on these outcomes is growing but still inconclusive. In contrast, re-
search in wildlife populations has uncovered striking associations. In Florida, alligators exposed
to organochlorine pesticides from a chemical waste site showed developmental abnormalities of
the reproductive tract, including reduced penis size in males (Guillette et al., 1999; Semenza et al.,
1997). Snapping turtles in Ontario, Canada, displayed changes in sexually dimorphic characteristics
such that males resembled females (de Solla et al., 1998). Intersex gonads and sex-ratio reversal
were seen in PCB- and polychlorodibenzofuran PCDF)-exposed cricket frogs (Reeder et al., 1998).
Laboratory studies in numerous species demonstrate that PCBs, dioxins, and other endocrine dis-
ruptors cause altered behavior, as well as structure and function changes, in several organ systems
(Birnbaum and Tuomisto, 2000; Birnbaum and Fenton, 2003). Evidence from human studies is
less conclusive, but again, the literature suggests involvement of multiple pathologic processes and
organ systems (Longnecker et al., 1997; Hertz-Picciotto et al., 2003). Phthalates, which are present
in a wide range of consumer products, may alter male reproductive-tract development, and several
epidemiologic investigations suggest adverse effects on respiratory health (Hauser and Calafat,
2005).
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Colborn (2004) outlines a number of reasons for the much stronger associations in wildlife
than are observed in epidemiologic studies. Because the major effects from these chemicals arise
in association with prenatal exposures, the much lower reproductive rate in human populations
and much longer interval to sexual maturity render epidemiologic studies much less statistically
powerful than wildlife investigations. Many wildlife species, for instance, reproduce annually, such
that most or all females (as compared with ∼1% in humans) produce offspring during a short
period of time each year. Colborn hypothesizes that even with a high reproductive rate, if birds were
continuous breeders such that the births were spread out over the year, many of the reproductive
problems might never have been noticed.

The field of research on endocrine disruption is relatively young, and outcomes such as de-
velopmental deficits can be subtle. The parallels and differences between wildlife biology and
epidemiology are instructive. Both involve nonexperimental research and hence must confront
problems of confounding and mixtures of chemicals. Fortunately, experimental studies also sup-
plement the work on wildlife, and studies can be designed to replicate the findings and identify the
causal exposures as well as mechanisms of action. The field will also benefit from further work to
identify tests for human behavioral and developmental effects that are sensitive to environmental
toxins (Bellinger, 2003, 2004b).

NEW ENVIRONMENTAL HEALTH CHALLENGES

In recent years, “globalization” has become a buzzword throughout society; its ramifications for
environmental epidemiology are not difficult to see. First, issues that were of high priority only
in Western countries are now on the agendas of less industrialized nations (e.g., motor-vehicle
exhaust). Second, pollution does not respect national borders, as the industrial waste poured into
the rivers, lakes, and oceans of one country washes up on the shores of many others, and toxins
released into the air (e.g., chlorinated hydrocarbons) are deposited thousands of miles away. Third,
localized problems, such as overuse of fertilizers, are frequently repeated in one region after another.
As for future directions, several themes are emerging for the 21st century.

Infectious diseases are re-emerging as major threats to public health, sometimes linked in com-
plex ways to problematic chemical toxins and physical hazards. For instance, hundreds of thousands
of tube wells dug during the 1970s in India, Bangladesh, and elsewhere to combat water-borne dis-
eases have resulted in high arsenic exposure for millions of people, at levels that increase risks for
cancer, and possibly also respiratory and other adverse effects (Smith et al., 2000; Mazumder et al.,
1998; Chowdhury, 2004; Wasserman et al., 2004; von Ehrenstein et al., 2005).

Major planetary changes with a potential for large-scale health effects are underway. The deple-
tion of stratospheric ozone resulting from the dissemination of chlorofluorocarbons is expected to
increase exposure to UV-B radiation, which in turn may bring about increased rates of skin cancer
and cataracts, and changes in immune function over the next century (Armstrong, 1994; Lloyd,
1993). Already, short episodes of high radiation in areas of southern Chile have produced increased
incidences of sunburn (Abarca et al., 2002), and scientists are predicting a combined effect of ozone
depletion with climate change (van der Leun, 2002; Diffey, 2004).

Predictions of climatologists regarding global climate change may already have begun to surface
(Fig. 30–3). A rise in global mean temperature of between 1 and 3.5◦C by the year 2100, along with
more frequent extreme events (heavy rains and storms, drought, and heat waves) in some latitudes
are expected scenarios (Martens, 1998; Haines et al., 2000; Patz, 2000). Although current models
cannot predict the precise geographic and temporal pattern of these changes, a 0.4◦C increase has
already occurred over the last 25 years. Was the summer 2003 heat wave in Europe that killed
nearly 15,000 in France alone (Vandentorren et al., 2004; Ledrans et al., 2003) an episode in this
trajectory or a random event? What about the 2002 flooding of the Danube and Vltava rivers, the
latter being the worst in over 100 years for the city of Prague? Or the heavy storms that flooded
Los Angeles in December 2003–January 2004, with more rain in 2 weeks than occurs on average
in a year, based on data since the late 1800s? Was the intensity of Hurricane Katrina influenced by
rising sea temperatures (Webster et al., 2005)?

Global warming is also predicted to cause changes in the distribution of vector-borne diseases
such as malaria and tick-borne encephalitis (Lindsay and Martens, 1998; Kovats et al., 1999; Patz,
2000), alterations in food productivity, a possible rise in the oceans and a consequent flooding of
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FIGURE 30–3 ● Departures of the earth’s surface temperature from average. (Copyright 2001,
Intergovernmental Panel on Climate Change.)

coastal areas, where a substantial portion of the world’s population resides, and numerous other
indirect consequences of increased climatic variability (McMichael, 2001; Patz et al., 2000). Com-
plex ecosystem relationships may compound the health consequences: A majority of water-borne
disease outbreaks occurring between 1948 and 1994 in the United States were temporally related
to heavy rains (Curriero et al., 2001). Similarly, population displacement may alter land-use pat-
terns, which may bring about further changes in temperature and rainfall, and hence, distribution
of disease vectors.

Deforestation of a large proportion of the earth’s land mass is predicted to change weather
patterns. Overuse of fresh water is lowering water tables in many areas of the world, potentially
threatening sustainable food production. These environmental alterations are co-occurring with
major demographic migrational shifts, in which the populations of cities in less developed regions
of the world are swelling far beyond the capacity of the infrastructure to provide clean water,
adequate housing, and sanitation (McMichael, 2000). Massive changes in both the physical and
social environments may significantly alter patterns of health and disease (McMichael et al., 1998).

The appropriate epidemiologic and public health responses to these changes have yet to be
delineated. One thing is clear, however: New scientific data are needed. Surveillance systems need
to be created to document changes in time and space of both health outcomes and exposure, broadly
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defined to include not only the standard suspects of chemicals and radiation, but also climate and
ecosystems (Intergovernmental Panel on Climate Change, 2001). In tandem with the development
of extensive databases will be a second need: for creative epidemiologic methods that will enable us
to both understand these phenomena and to devise policies that can prevent potentially catastrophic
effects on human health and well-being. As some potential adverse health effects of “global change”
cannot yet be observed, forward-looking strategies may include “scenario epidemiology” that will
allow us to make reliable, quantitative estimates of the effects on population health from future global
changes in climate, land use, and social conditions (Sieswerda et al., 2001; Cifuentes et al., 2001).
Although future-oriented models are more frequently used in infectious-disease epidemiology,
where they play a role in policy and planning by state and federal agencies, the time may be ripe
for their incorporation into environmental epidemiology.

FUTURE NEEDS

Although the 21st century will herald new challenges, traditional environmental epidemiology will
probably remain a major part of our field. Themes likely to be of continued importance include
advances in environmental-exposure assessment, integration of biologic markers, and understand-
ing of time-related issues such as critical windows, induction, and latency. Combined effects from
mixed, multiple exposures raise the possibility of unpredictable interactions. An obstacle to analysis
of multiple exposures is the near-impossibility of separating induction periods, dose–response, and
interactive effects from one another (Thomas, 1983; Greenland, 1993a). Moreover, these multiple
exposures include not only the traditional chemical and physical agents, they extend to social and
population-level factors as potential effect modifiers. More interaction between epidemiology and
several other disciplines would benefit all concerned. These would include toxicologists, wildlife
biologists, environmental scientists, sociologists, climatologists, oceanographers, molecular biolo-
gists, and geneticists, to name a few.

At the same time, good public policies require scientific input from epidemiologists to help those
outside our field distinguish real from imagined hazards and important from negligible risks and
can pave the way for a more rational allocation of intervention resources to reduce environmentally
induced disease. This chapter began with a description of George Baker’s investigation of lead in
the cider of Devonshire. Baker (1767) went on to disseminate his report to the people of Devonshire
in order to provide them “the earliest intimation of their danger; in order that they may take the
proper steps to preserve their health.”
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GENERAL CONSIDERATIONS

Reproductive epidemiology encompasses a wide range of topics, from the development of repro-
ductive systems to conception and pregnancy, to delivery and health of the offspring, to reproductive
senescence. The epidemiologic study of reproduction is complicated by some important method-
ologic problems that are not often seen in other areas of epidemiology. We begin by introducing
some of the major practical and conceptual issues.

1. Reproductive function can be abnormal with no overt signs of disease. For instance, infertile
couples are usually not ill in any easily identifiable sense, and they may not even be aware
that they are infertile. Their inherently private problem may never come to medical attention.
Selection bias in ascertainment of infertile cases can arise from self-selection related to the
highly personal decisions people make about birth control and about when (and whether) to
seek medical help.

2. As is often the case in epidemiology, phenomena that clinicians may tend to dichotomize (as in
the diagnosis of “habitual abortors,” see Gladen (1986)) can be described more accurately as
falling on a continuum, with heterogeneity across individuals. Heterogeneity in risk is a general
phenomenon in epidemiology, but it is especially important in reproduction because individuals
(and couples) can have repeated opportunities to experience reproductive outcomes.

3. Heterogeneity in risk among couples can lead to population sorting in ways that can lead
the investigator badly astray. For example, couples with a long history of using an unreliable
method of contraception (such as spermicide) who then attempt conception may have lower
fecundability than couples who have previously relied on oral contraception. This difference
occurs because oral contraception is more effective than spermicides. If one carries out a

620
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prospective comparative fertility study based on sampling couples who are currently attempting
pregnancy, one should recognize that the cohort of couples with a history of spermicide use
has already been depleted of its most fertile couples; they reached their desired family size by
unintended pregnancies. If one ignores this sorting, one can conclude that history of spermicide
use has a deleterious effect on fertility. This attrition-related bias can plague both retrospective
and prospective studies of fertility (Baird et al., 1994).

4. Many of the endpoints of interest to the reproductive epidemiologist are not independent and
may compete directly with one another. For example, approximately 25% of pregnancies are
lost before clinical recognition (Wilcox et al., 1988). Suppose that an exposure increases the risk
of very early pregnancy loss by accelerating the death of conceptuses that would otherwise have
failed later in pregnancy as clinically recognized spontaneous abortions. If we were to study
only recognized spontaneous abortions, such an exposure would mask some recognized losses
by converting them to occult losses and could even appear to be protective against spontaneous
abortion, when it only “protects” against detection of spontaneous abortion. The dose–response
relation for this exposure could consequently show a paradoxical downturn at the higher levels
(Selevan and Lemasters, 1987). This artifact can distort inference if we fail to recognize that
studies of just one endpoint examine only one piece of a larger picture. As another example, birth
defects can compete with spontaneous abortion: The reported “incidence” of trisomy is nearly
always its prevalence at birth (and not its incidence measured from the time of conception)
(Warburton et al., 1983; Khoury et al., 1989b), and trisomy 21 is more common than other
trisomies primarily because it is unusually compatible with survival to delivery.

5. Because reproductive outcomes (e.g., pregnancy complications or spontaneous abortion) are
relatively common, are incompletely ascertained, and often have a short time between exposure
and effect, the usual advantages of case-control studies are less applicable for reproductive
epidemiology, and cohort studies play a relatively more important role.

6. For many reproductive endpoints, the proper unit of study is the couple and not an individual
person. The woman carries the pregnancy, but the father provides half of the nuclear genetic
material. The paternal genome is especially important to the development of the placenta
(Marx, 1988). Thus exposures and characteristics of both parents are relevant to reproductive
studies. In particular, because of shared parental factors, the father’s exposures can be strong
confounders in studies of the mother’s exposures, and vice versa. The role of genetics in the
family introduces further complexities. During gestation, the genomes of mother and fetus can
respond synergistically to exposures, which can influence the pregnancy outcome. (The genetic
structure of families also provides new opportunities for studies—see later.)

7. Reproductive events are (to varying degrees) under the control of the person studied. The
resulting dependencies can sometimes produce highly nonstandard forms of confounding. For
example, time can be a confounder. If one studies a group of women of reproductive age
using a cross-sectional design, the apparent risk of spontaneous abortion in their most recent
pregnancy will be highest for pregnancies that ended closest to the time of interview (Weinberg
et al., 1994a). This pattern arises because a spontaneous abortion that occurred a year ago or
more is more likely than a live birth to have been followed by another pregnancy (and thus no
longer be “most recent”). If the investigator fails to recognize the resulting pseudo-time effect
and to adjust for it in the analysis, spurious associations can arise between risk of spontaneous
abortion and any exposure that has itself changed over recent time. Another example involves
women who change partners between pregnancies, which can be taken as a surrogate for changes
in her environment, her immune system’s new exposure to antigenically different sperm, or a
relatively long interpregnancy interval (Basso et al., 2001).

8. Denominators can easily be miscounted in reproductive studies. For example, a study of early
pregnancy loss ideally requires that all conceptions be identified, because the set of all concep-
tions is the risk set. This goal is not achievable, however, because present techniques cannot
identify conceptions that fail before implantation. A more feasible goal is to identify all con-
ceptions that survive long enough to implant and produce measurable levels of the pregnancy
hormone, human chorionic gonadotropin (hCG). Unfortunately, algorithms that use hormonal
assays to identify short-lived conceptions can yield many false positives and false negatives
(Weinberg et al., 1992; Cho et al., 2002). As another example, in studies of recognized spon-
taneous abortions, the woman herself needs to be aware of the pregnancy to be able to report
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a spontaneous abortion, and a woman’s attentiveness to the possibility of conception may be
associated with variables under investigation. There is also the problem of how induced abor-
tions should be counted (Hilden et al., 1991).

9. Reverse causality readily distorts reproductive studies. For example, women with pregnancy
complications may schedule more prenatal obstetric visits because of heightened concern,
producing bias in assessing the effect of prenatal care. (Econometricians call this phenomenon
endogeneity. It can also be thought of as confounding by indication.) As another example,
women who have not had a successful pregnancy are more likely to remain in the workforce
and may consequently have more opportunity for occupational exposure than women with
young children who stay at home. This phenomenon, termed the infertile worker effect (or the
reproductively unhealthy worker effect), can lead to spurious associations between occupational
exposures and adverse reproductive outcomes (Joffe, 1985).

10. The availability of repeated outcomes for a woman or couple (or a family over multiple gen-
erations) offers research opportunities that are not seen in many other areas of epidemiology.
One of the strongest risk factors for adverse reproductive outcomes is the occurrence of the
same outcome in a woman’s earlier pregnancy. This pattern opens new possibilities for analytic
studies. For example, it is possible to explore the relative contributions of environmental and
genetic causes in a given setting by studying recurrence risk in women who do or do not change
partners between pregnancies, or who keep the same partner but do or do not change some
crucial environmental exposure (Lie et al., 1994). Another opportunity lies in the conduct of
clinical trials among high-risk women. Clinical trials of women who had earlier delivered a
baby with a neural-tube defect provided efficient proof of the benefit of folic acid in preventing
this defect (Laurence et al., 1981), leading eventually to changes in prenatal recommenda-
tions for all women. The strong patterns of recurrence risk also present analytic traps. Some
investigators have adjusted for these prior outcomes in assessing etiologic associations. This
adjustment itself can produce bias if the exposures under study influenced both current and past
risk (Weinberg, 1993).

With these general problems in mind, we turn to specific reproductive endpoints. In this chap-
ter, we discuss puberty and menopause, the menstrual cycle, fertility, pregnancy loss, pregnancy
complications, birth weight, and birth defects.

PUBERTY AND MENOPAUSE

The age at puberty or menopause may be related to diet, exercise, genetics, and environmental tox-
icants. For example, the onset of puberty can be accelerated (e.g., by hormonally active chemicals)
or retarded (e.g., by inadequate nutrition). Menopause can be accelerated by exposures that are
toxic to the ovary (Gold et al., 2001). We consider menopause in some detail, but most of the issues
apply to the onset of puberty as well.

Both milestones present the investigator with definitional problems. Puberty for girls involves a
series of hormonal and physical changes, but the onset of menarche provides a convenient, though
crude, marker. The timing of puberty for boys is more difficult to pinpoint. Both transitions can be
studied by categorizing children according to Tanner stages (Marshall and Tanner, 1969; Marshall
and Tanner, 1970; Rockette et al., 2004) as they progress through the successive levels of sexual
maturation.

Though medically well defined (for a woman who has not had her uterus removed) as the time
when the woman stops menstruating, menopause and age at menopause can also be hard to define in
an epidemiologic study. The usual definition of menopause is that it has occurred following at least
1 year without a menstrual period. Menstruation can sometimes resume after a year of amenorrhea,
however. Also, women who experience natural menopause remain unclassifiable for a full year. A
woman who has a hysterectomy 11 months after her natural menopause may falsely be considered
to have had a surgical menopause. If a woman is in a case-control study for myocardial infarction
because she died of a heart attack at that 11-month point, she may be falsely coded as premenopausal
at the time of death.

If the age distribution of any life event is estimated only with data from those who have already
experienced the event, the result is biased by differential inclusion of those for whom the event
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was early. For example, in a cross-sectional study of age at menopause, premenopausal women
who are over the mean age at menopause will not be able to contribute to the estimate, biasing
the average age at menopause downward. Age at menopause for premenopausal women has been
“censored” at their observed age. Hysterectomy, which serves as a competing risk, can also be
a censoring mechanism. A premenopausal woman who has a hysterectomy at age 50 years was
nonetheless at risk of natural menopause at each age up to 50. Information for women who are
premenopausal or who were premenopausal at the time of hysterectomy needs to be included
through survival-analytic methods. One can estimate the age distribution for natural menopause
based on cross-sectional (Krailo and Pike, 1983; Gold et al., 2001) or prospective (Brambilla and
McKinlay 1989) data. Both approaches depend on a parametric model for the distribution of age at
natural menopause, and both presume a linear relation between age and risk of surgical menopause.

THE MENSTRUAL CYCLE

In women of reproductive age, the reproductive system goes through cyclic changes under neuroen-
docrine control. About once each month, one (or sometimes more) mature egg (ovum) is released
from the ovary and picked up by the oviduct for transport to the uterus, in a process called ovulation.
If it is not rapidly fertilized by a sperm, the egg dies, and menstruation begins about 2 weeks later.
The recruitment and maturation of the egg and the development of the uterine lining are stimulated
by pituitary and ovarian hormones under the neural oversight of the hypothalamus. The usual length
of the menstrual cycle, defined for convenience as the number of days from the first day of one
menstrual bleed to the first day of the next, is about a month.

Although the menstrual cycle is described in medical textbooks as lasting 28 days, with ovulation
on day 14, there is considerable variability in its length and in the timing of ovulation (Baird et al.,
1994). The extent of the variability in cycle length, both within and among women, has been well
demonstrated in the extraordinary longitudinal study launched by Alan Treloar, who maintained a
cohort of women throughout their reproductive life span (Treloar et al., 1967).

Certain exposures and physiologic states (such as intense physical training or emaciation) can
produce anovulation (failure to ovulate). Less extreme forms of the same conditions would also
be expected to produce measurable changes in the menstrual cycle, perhaps by lengthening it or
increasing its variability. The menstrual cycle is fairly easy to study noninvasively and prospectively,
and menstrual-cycle characteristics can be informative as a marker for female reproductive function
(Harlow and Zeger, 1991; Hornsby et al., 1994). Characteristics of interest include the mean length
of the menstrual cycle, the variability in the cycle lengths, the mean duration of menses, and the
mean amount of blood lost (Harlow and Ephross, 1995).

The modeling of data based on “diary” menstrual-cycle data presents special statistical prob-
lems. One can apply longitudinal methods for studying cycle length, based on the occurrence or
nonoccurrence of abnormally long cycles (Harlow and Zeger, 1991). Differences among women in
their menstrual-cycle patterns create complex dependencies in the data. More methodologic work
is needed to make full use of the cycle-length data for comparing exposed with unexposed women
(Murphy et al., 1995; Lisabeth et al., 2004).

If diary data show that an exposure lengthens or increases the variability of the menstrual cycle,
a study based on daily biologic samples may be warranted. Metabolites of luteinizing hormone, a
pituitary hormone, and the ovarian hormones estrogen and progesterone can easily be assayed in
daily urine specimens to study reproductive hormonal patterns (Baird et al., 1991, 1994). Saliva
carries transudates of serum hormones (Lu et al., 1999), and current techniques also allow one to
use saliva or urine to collect DNA for genetic assays (Taylor and Ilyia, 2002; vanNoord, 2003; Ng
et al., 2004).

SEMEN QUALITY

While characteristics of the menstrual cycle and the onset of menarche and menopause can serve
as convenient markers of female reproductive function, women provide no ready access to their ga-
metes, except in unusual clinical settings such as in vitro fertilization. Male reproductive function, in
contrast, can be assessed through studies of semen quality, men having a bountiful excess of gamete
production, and automated methods are available to quantify semen quality. Semen characteristics
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are in turn related to a man’s fertility (Larsen, Scheike et al. 2000). Care must be taken, however,
to require that a few days have transpired since the man’s previous ejaculation, because abstinence
time can have a strong influence on the results. Additional sources of variability from specimen to
specimen can be reduced by repeated sampling.

Because data on semen quality have been recorded for some time, e.g., at sperm banks, analyses
have been carried out to look for trends over time, and these suggest a decline over recent decades
(Carlsen et al., 1992; Swan et al., 2000). Although these trends can be questioned on the basis of
changes in methods of analysis and sample selection over time, some investigators have related them
to apparently parallel increases in cryptorchidism, hypospadias, and testis cancer in the developed
world and have speculated that there may be environmental causes (Sharpe and Skakkebaek, 2003).
The possible influence of environmental factors is supported by studies showing regional variation
in measures of semen quality (Jorgensen et al., 2001), and recent evidence suggests a prenatal effect
of maternal smoking on the male fetus (Storgaard et al., 2003; Jensen et al., 2004). Some have
suggested that, in response to concern about evidence of deterioration in male reproductive health,
we should systematically monitor semen quality as a method of population surveillance; concern in
Denmark has risen to a level at which such a program has now been instituted (Jensen et al., 2002).
For use in assessing possible reproductive effects of specific exposures encountered, for example,
in an occupational setting, we caution that there are difficulties in persuading men to participate in
the process of producing a specimen for research, and one can expect to encounter low recruitment
rates (Selevan et al., 2000).

FERTILITY

The most direct indicator of reproductive health is the capacity of a couple to produce a healthy baby.
The word fertility is used in different ways by clinicians, demographers, and the general public.
Clinicians who refer to “involuntary infertility” as a syndrome imply the existence of voluntary
infertility, that is, couples who have no children by choice. In a similar usage, demographers and
health statisticians refer to “fertility” in a population, e.g., as the number of offspring per year per
1,000 women of child-bearing age. By contrast, “fertility” for the general public (and for most
clinicians) means the biologic capacity to reproduce, with “infertility” and “subfertility” referring
to the involuntary impairment of that capacity. We will use the terms in this way.

Reduced fertility as an endpoint integrates many possible reproductive impairments. Problems
in gametogenesis, sperm transport, tubal patency, hormonal preparation of the uterine lining, im-
plantation, and viability of the conceptus will all make it hard to achieve a recognized pregnancy.
A couple in the United States is considered to be clinically infertile after at least 1 year without
contraception and without pregnancy.

Traditional case-control methods can be used to study clinical infertility. One advantage of
studying clinic-identified cases is that one can differentiate them by their proximal medical cause,
such as ovulatory dysfunction, occlusion of the oviducts, or antisperm antibodies. Clinically distinct
categories may be etiologically distinct, and aggregating them into a single “infertile” category
may obscure disparate etiologies. In practice, however, the diagnoses are often derived from an
incomplete medical evaluation and must be regarded as provisional, overlapping, and uncertain.
The diagnostic process is often itself cut short by the occurrence of pregnancy.

While the case-control design can offer important practical advantages over other approaches, the
method is not as useful here as in studies of rare and well-defined outcomes such as cancer (Weinberg,
1990). One problem involves defining clinically infertile “cases.” This clinical categorization is
based primarily on waiting time, with no requirement of any documented physiologic dysfunction.
Thus, some couples may be diagnosed as infertile who are normal but unlucky, and others with
low fertility but better luck might be miscategorized as normal. Spontaneous “cures” are common:
Most couples who go for a year without conception do eventually achieve pregnancy, even without
medical intervention. Thus case status in this context is an elusive concept.

The most serious issues with case-control studies of infertility involve validity. Such studies often
rely on infertility clinics for case identification, and there is no convenient source of appropriate
controls. Although almost all babies in the United States are delivered in hospitals, providing a ready
population of normal couples to sample, only about half of infertile couples seek medical help (US
Congress, 1988). Thus there is a strong potential for ascertainment bias in identifying “cases”



P1: TNL Printer: RRD

GRBT241-31 GRBT241-v4.cls January 16, 2008 13:40

Chapter 31 ● Methodologic Issues in Reproductive Epidemiology 625

through the medical system, particularly when studying lifestyle factors. For example, couples with
a history of sexually transmitted disease may have become inured to medical interventions and
consequently may be more willing to seek medical help when confronted with infertility.

To understand approaches other than the case-control design, one must first recognize that the
clinical dichotomy of fertile and infertile is an oversimplification. Biologically, there is a wide range
of reproductive capacity, even among couples who achieve pregnancy. The proportion of couples
conceiving in a given cycle will be referred to as the conception rate. When couples who discontinue
contraception in order to begin a pregnancy are followed prospectively, around one third conceive
in the first menstrual cycle at risk. Among those remaining at risk in the second menstrual cycle, the
proportion conceiving is lower, perhaps one fourth. As time goes on, the conception rate continues to
decline (Tietze, 1968). This declining pattern is seen (albeit with higher conception rates) even if the
couples who do not eventually conceive (including those who are simply sterile) are subtracted from
all the denominators (Baird and Wilcox, 1985; Weinberg and Gladen, 1986). The declining concep-
tion rate is not a true time effect, but rather evidence of sorting among a population who are heteroge-
neous in their capacity to conceive: The most highly fertile couples conceive early and are therefore
absent from subsequent risk sets. In this way, the successive cohorts remaining at risk are more and
more dominated by relatively subfertile couples, and the conception rate inexorably declines.

Heterogeneity among couples raises the possibility that some of this variation may be explained
by identifiable factors. If so, preventable causes of subfertility might be discovered by comparative
studies of exposed and unexposed couples.

TIME-TO-PREGNANCY STUDIES

Studies of time to pregnancy, or waiting time to conception (Baird, Wilcox et al. 1986), have proved
fruitful in identifying male and female exposures with adverse effects on fertility. Such studies
make use of more detailed time information beyond the usual clinical dichotomy. Survival-analytic
methods allow dropouts (e.g., those who change their mind about wanting a pregnancy) to contribute
information appropriately.

Women who intend to become pregnant or who are currently attempting to become pregnant can
be enrolled in a prospective cohort study, in which exposures are ascertained and then participants
are followed until they become pregnant, change their mind and resume contraception, or reach a
certain maximum follow-up time without pregnancy. Alternatively, women (or their partners) can
be asked to reconstruct their time to pregnancy retrospectively for a particular pregnancy. In this
retrospective approach, both the exposures and the time to an index (nonaccidental) pregnancy are
based on recall. Certain biases, such as differential persistence in trying, can be a problem (Basso
et al., 2000), but much has been learned from such studies. Women are evidently able to recall
these durations many years later with surprising accuracy (Basso et al., 2000). Men are also able to
provide usable data on time to most recent pregnancy (Nguyen and Baird, 2004). When the exposure
of interest is rare, or the available population is fixed, as in an occupational study, the retrospective
time-to-pregnancy study may be the only feasible way to study fertility, because it allows a much
larger fraction of persons to contribute information than would a prospective cohort study.

Retrospective and prospective approaches do not, however, yield the same data for time to
pregnancy. In a prospective cohort study, the sampling unit is the attempt at pregnancy; in the
retrospective time-to-pregnancy study, the sampling unit is typically the pregnancy itself. If every
attempt at pregnancy ended in pregnancy, the two designs would generate equivalent data. In fact,
couples who are unknowingly sterile will be present in cohort studies but not in retrospective
studies. Thus an exposure that caused complete sterility in a subpopulation and had no effect on
the remainder would be missed by the retrospective time-to-pregnancy design. One way to allow
sterile couples to contribute information is to base the sampling on couples rather than pregnancies,
and to ascertain for each the length of the most recent waiting time (i.e., the interval during which
the couple was having unprotected intercourse, whether or not the waiting time culminated in a
pregnancy (Bolumar et al., 1996). If the couple had stopped trying or was still trying at the time of
interview, the data would be considered right-censored at that point. Nonetheless, pregnancy-based
retrospective time-to-pregnancy studies should be adequate for exploratory studies, because most
reproductive toxicants can be expected to cause subfertility among the exposed who have not been
rendered sterile.
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Each menstrual cycle provides a single ovulatory opportunity for conception. Thus, time to
pregnancy is inherently discrete (taking only integer values), with the menstrual cycle serving as
the natural counting unit of time. In a prospective study, menstrual cycles are enumerated directly
through diary records. Ideally, the method for diagnosing pregnancy would be objective and stan-
dardized (e.g., a commercially available home test kit, with a well-defined protocol).

In a retrospective time-to-pregnancy study (e.g. one based on the most recent nonaccidental
pregnancy), the wording of the question can strongly affect the data. It is ambiguous to ask women
how many menstrual cycles it took them to conceive. Some women who conceived in their first
cycle may answer that they took zero cycles, and others may respond one (Joffe et al., 1993). This
reporting inconsistency can be avoided by asking women whether the pregnancy occurred in the
very first menstrual cycle after discontinuing contraception, and if not, whether it occurred in the
second or third. For times longer than three cycles, one can ascertain the calendar time between
when contraception was discontinued up to the last menstrual period preceding conception. One
then must divide this interval by the usual cycle length and add 1, to allow for the cycle when
conception actually occurred. Women can give credible answers (Baird et al., 1991) to a short series
of questions about their time to the most recent pregnancy, and retrospective data agree reasonably
well with data on the same pregnancies that have been gathered prospectively in a cohort study
many years before (Joffe et al., 1993).

What are the options for analyzing such data? Each couple has a certain average probability
of conception in a menstrual cycle during which they use no contraception. This probability is
called their fecundability. Couple-specific fecundability varies across couples, as discussed earlier,
and one can model the distribution of fecundabilities parametrically (Sheps and Mencken, 1973;
Weinberg and Gladen, 1986).

If we assume simple random sampling, the fraction of couples who conceive in the first cycle
after discontinuing contraception provides an unbiased estimate of the mean fecundability without
parametric model assumptions (assuming that the method of contraception has had no residual
effect). The very simplest comparative fecundability study would estimate the fractions for exposed
and unexposed couples and compute a fecundability ratio (dividing one fraction by the other). The
fecundability ratio defined in this way is simply a risk ratio, although the word risk is misleading
in this setting, in which conception is a desired outcome.

This approach does not, however, take full advantage of the data. A natural extension is to
use all cycles by stratifying on each cycle number (not just cycle 1) and assuming a fixed ratio
of fecundabilities across strata of cycle time (Weinberg et al., 1994c). This model can be seen as
a discrete analog of the Cox proportional hazards model (Cox and Oakes, 1984), in which one
models the probability of conception and assumes that an exposure imposes a fixed multiplier on
that probability, the fecundability ratio. The fecundability ratio is the cycle-specific probability of
conception among the exposed divided by that among the unexposed. For example, a fecundability
ratio of 0.3 means that the exposed are only 30% as likely as the unexposed to conceive in each
menstrual cycle at risk. It is easy to extend such a model to incorporate adjustments for potential
confounders. (See the Appendix at the end of this chapter for technical details.)

Practical issues arise in fitting and interpreting these models for time-to-pregnancy data. First,
if a prospective cohort study is undertaken, it is usually inconvenient and too restrictive to limit
participation to couples who are just about to discontinue contraception. Thus, investigators usually
choose to include couples who have already been trying for a while. It is important to ascertain the
prior attempt time for such couples, so that they can be delay-entered into the appropriate risk set
for their first observed menstrual cycle in the study. The situation is analogous to the usual survival
analyses, where those who enter late contribute “left-censored” data to the analysis. The biologically
relevant time scale is time from when contraception was discontinued, and not time in the study.
A couple who has already been trying for three cycles before recruitment should contribute data
beginning at cycle 4 (not cycle 1). If prior-attempt time is not taken into account, bias can result.
This issue is particularly important if the timing of joining the study cohort is related to exposure.
For example, exposed individuals who have already been trying for some time may be more likely
to participate than unexposed individuals who have been trying for a similar length of time.

A second practical problem in time-to-pregnancy studies is accounting for possible effects of
medical interventions. Such interventions could be differential by exposures under study. In a
prospective cohort study, one can determine at what point a couple seeks medical help and simply



P1: TNL Printer: RRD

GRBT241-31 GRBT241-v4.cls January 16, 2008 13:40

Chapter 31 ● Methodologic Issues in Reproductive Epidemiology 627

censor their data as of that cycle. Lacking such detailed information, it is customary to truncate the
analysis at about a year because medical interventions typically begin after a year. With this trunca-
tion, couples who begin in the study at cycle 1 and do not conceive until 2 years later contribute their
first 12 months of failures to the analysis; their higher cycle numbers are not included in the analysis.

Third, a prospective study of couples attempting pregnancy potentially allows collection of
exposure data specific to the month or day. Such time-varying exposures can be used directly in
fecundability modeling. In a retrospective time-to-pregnancy study, such precision is usually not
possible. Exposures can be ascertained with reference to a single point in time, but one must choose
this reference date carefully. If one asks about exposures around the time of conception, there could
be bias from behavioral changes caused by a fertility problem. Thus, for example, a woman who
has been trying to conceive for a long time might be motivated to give up smoking, reduce her
consumption of caffeine, etc., which could bias the results for any modifiable factor that women
regard as unhealthy. This problem can be avoided by instead choosing a reference date for exposures
around the time when contraception was first discontinued.

In retrospective studies of time to pregnancy, there is a potential for bias if one of the exposures or
confounders has changed in prevalence over calendar time. This problem was noticed in the context
of a study of female dental assistants, in which the wearing of latex gloves was found to enhance
fertility (Weinberg et al., 1993). This puzzling finding was presumably an artifact: The exposure
reference dates for pregnancies in the study spanned the first decade of the acquired immune
deficiency syndrome (AIDS) epidemic, during which time dental assistants rapidly adopted the use
of latex gloves in response to concerns about infection. Women with long times to pregnancy tended
to have begun their attempt at a time when glove use was relatively uncommon in dental offices;
those with short times to pregnancy tended to have begun their attempt more recently, when glove
use was common. There is not a ready-made solution to this problem in a retrospective time-to-
pregnancy design: Adjustment for calendar time when the attempt began does not solve the problem
(Weinberg et al., 1993). Treating the exposure as time-dependent does not solve it either, because
the opportunity for exposure is still correlated with the outcome. If external data are available on
exposure prevalence over time, certain ad hoc remedies can be employed (Weinberg et al., 1993).
Otherwise, one must rely on sensitivity analyses that estimate the extent of the bias under plausible
assumptions regarding changes in the exposure over calendar time.

Other, more subtle sources of bias in fertility studies can be equally damaging (Weinberg et al.,
1994c; Juul et al., 2000). For example, there is evidence that smokers as a group have more accidental
pregnancies than nonsmokers (Schwingl, 1992). If one were to compare the fertility of smokers
and nonsmokers, smokers might appear to be less fertile than nonsmokers because relatively more
of the highly fertile smokers have had all the pregnancies they want as birth-control failures and
are consequently absent from the cohort of couples having planned pregnancies. This bias afflicts
both retrospective and prospective studies of time to pregnancy (Baird et al., 1994). There is no
secure protection against it; however, some reassurance can be gained in a retrospective study by
ascertaining exposure information from women whose most recent pregnancy was unintended.
Similarly, in a prospective cohort study, one can ask about unintended pregnancies in the past (e.g.,
as indicated by history of induced abortions). If the exposed and unexposed women have similar
histories of contraceptive use and induced abortions, we may be justified in assuming that this bias
is not important.

Another source of bias involves the definition of a birth-control failure in a retrospective study.
Analysis is necessarily restricted to nonaccidental pregnancies. There may be systematic differ-
ences in how couples interpret a birth-control failure after the fact. Consequently, conceptions that
reportedly occurred during the first menstrual cycle at risk may include pregnancies that another
couple would have characterized as accidental. If misclassification of accidents as intentional cycle
1 conceptions is differential by exposure status, there may be bias in either direction. One way to
protect against this bias is to reanalyze the data with all cycle 1 outcomes omitted (i.e., beginning
the analysis at cycle 2). If results are similar to those with the entire data set, this “definitional bias”
probably does not account for the results (Weinberg et al., 1994c).

Another source of bias alluded to earlier arises because of the reproductively unhealthy worker
effect. Women who are reproductively healthy tend to have children, and women with young
children tend to leave the salaried workforce. Women with underlying reproductive problems are
more likely to remain in the workforce. Thus, the comparison of reproductive endpoints for employed
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and unemployed cohorts of women needs to account for this phenomenon. Even within a working
population, the same selective process could cause job seniority (hence cumulative exposure) to be
associated with poor reproductive capacity. In this way, working status and job seniority can become
confounders in such studies. Further difficulties may arise because work status and seniority may
have been indirectly affected by the exposure, via effects on fertility, in the kind of complex causal
pathway with feedback discussed by Robins (1986, 1987, 1997, 1998) and Robins et al. (1992).

In summary, time-to-pregnancy studies may reveal a great deal about factors that affect human
fertility, but there are unique pitfalls and sources of bias that must be taken into account in the
interpretation of such studies.

PREGNANCY LOSS

Like infertility, pregnancy loss is not a rare event. About 10% to 15% of recognized pregnancies
end in spontaneous abortion. If very early occult loss is included, the total is one third or more
of all conceptions (Wilcox et al., 1988). There are doubtless additional losses due to conceptuses
that fail to implant, but these cannot be detected by currently available methods. Although some
couples may have markedly elevated risk for pregnancy loss, there is likely a continuum of risk
across couples and not a simple dichotomy between high-risk and low-risk couples.

RECOGNIZED LOSS

Clinically recognized pregnancy loss in the first 20 or 24 weeks of pregnancy is referred to variously
as spontaneous abortion, miscarriage, or (less commonly) early fetal loss. The design of studies to
identify risk factors for miscarriage continues to be challenging. If a woman contributes several
pregnancies in a study, these events are not statistically independent; a woman with one miscarriage
is at increased risk for another, presumably reflecting heterogeneity in exposures and in innate risk
across members of the population. Thus, methods that assume independence of outcomes are not
strictly valid. Some investigators have solved this problem by studying a random pregnancy for
each woman. Such strategies, however, are not practical for self-administered questionnaires, waste
valuable information, and may seem odd and frustrating to the women being interviewed.

Methods have been proposed for analyzing reproductive history data based on “random effects”
logistic regression models. In this approach, which can be applied using commercially available
software, the logit of the risk depends on a linear function of covariates plus a “random” intercept
specific to the woman. Another approach available in commercial software is GEE logistic regres-
sion, which explicitly allows dependent outcomes within each woman’s history. For mathematical
reasons, the latter approach generally gives odds-ratio estimates closer to 1, but both methods tend
to give similar P-values (Diggle et al., 2002). However, GEE becomes invalid if the cluster size is
“informative” (Hoffman et al., 2001). This informativeness would hold, for example, if women with
a higher risk of loss have more pregnancies in order to achieve their desired family size. Thus, de-
spite its continuing use (Louis et al., 2006), GEE has limited application in this setting. Furthermore,
random-effects and GEE methods can both be misleading if earlier pregnancy outcomes affect later
outcomes, for example because earlier outcomes influenced later exposures (Robins et al., 1999b).

Case-control approaches to the study of miscarriage risk raise questions about case definition
and sampling strategy. If one compares hospitalized cases of spontaneous abortion with hospitalized
live births, one must recognize that many women with spontaneous abortion are not hospitalized,
whereas most women delivering an infant are. Thus, there is potential for case self-selection, and
study validity can be called into question. One innovative design in which chromosomally abnormal
hospitalized miscarriages serve as “controls” for chromosomally normal hospitalized miscarriages
avoids this problem (Kline et al., 1989).

The investigator designing a study of spontaneous abortion must have a particular biologic entity
in mind. If the unit of study is the pregnancy (as in a hospital-based study), then usual methods can
be applied to evaluate the influence of particular exposures experienced early in that pregnancy.
Alternatively, if the unit of study is the woman (or the couple), then case definition could take
the whole reproductive history into account, rather than the outcome of a single pregnancy. The
couple having a spontaneous abortion whose previous two pregnancies ended in live birth has
far less evidence for disability than the couple having their third spontaneous abortion, with no
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previous live births. As with infertility, case definition is unavoidably related to chance. A couple
with two spontaneous abortions may have the same intrinsic risk as another couple with two live
births. There may be no meaningful dichotomy between normal and abnormal (despite the clinical
entity of “habitual aborters”), and epidemiologic methods premised on the existence of a definable
dichotomous disease are unavoidably problematic.

A third issue with miscarriage studies involves possible bias related to the gestational age at which
the woman would first consider herself to be pregnant. Some women, perhaps especially those who
have a history of spontaneous abortion or have been trying to conceive for some time, tend to
recognize their pregnancies early. Sensitive home diagnostic test kits are now widely available.
Because most pregnancy loss occurs early in pregnancy, women who test themselves early will
appear to have higher rates of loss than women who wait. Variations in self-testing behavior can be
an important source of bias if time of recognition is not taken into account.

If time of recognition is ascertained in a prospective study, then survival-analytic methods (see
Chapter 16) can be used to include only woman-weeks when the woman was at risk of a recognized
loss during follow-up. In this way, a woman who did not realize she was pregnant until the eighth
week will not inappropriately contribute earlier weeks to the analysis. The prospective cohort
study also allows pregnancies that end in induced abortion to contribute information from the time
of recognition to the time of censoring at abortion. Exposure information can also be collected
repeatedly, allowing exposure effects to be targeted to the corresponding time in gestation. Finally,
exposures can be ascertained before the outcomes, avoiding potential for differential recall.

Alternatively, if one can identify a cohort of pregnancies at the time of diagnosis (for example,
through a health maintenance organization), then a case-cohort approach (Chapter 8) can be used,
although this requires special analysis methods (see Chapters 14 and 21). Pregnancies that end in
spontaneous abortion are identified as cases, and a random sample of the cohort as a whole serves as
the “subcohort” pregnancies. Unless exposure information is available from prospectively recorded
records (e.g., medical records), the information must be ascertained retrospectively (Hertz-Picciotto
et al., 1989).

An alternative retrospective type of study ascertains the outcome of the most recent pregnancy
and relates this outcome to exposures at that time. This outcome is a particularly convenient endpoint
for studies of a rare exposure or a small fixed population, such as an occupational cohort, in which
few women will be currently pregnant and available for a prospective cohort study. A problem
with this design arises because a wanted pregnancy ending in loss is likely to be replaced by other
pregnancies until a viable one is conceived (Weinberg et al., 1994a). This selective masking can
produce the appearance of change of risk over time (see point 7 “General Considerations”). Thus,
the interval of time between conception and interview can act as a confounder and must be taken
into account when studying an exposure that may have changed in prevalence over time.

Pregnancy replacement can also produce biases when comparing groups of women. For example,
couples who use contraception fastidiously and who carefully plan all their pregnancies will appear
to have a lower risk of spontaneous abortion than couples with similar inherent risk who use
contraception sporadically and have most of their pregnancies unintentionally. This difference
arises because the planners very quickly replace a spontaneous abortion, and thus such outcomes
retain their “most recent” status for only a relatively short time. If related to the exposure under
study, the bias produced by this kind of differential history can be almost impossible to control in
a study that collects information related only to the most recent pregnancy.

Finally, in deciding what to include as potential confounders in the analysis of spontaneous
abortion data, it may seem natural to include gravidity, which is often associated with risk in the
current pregnancy. Nonetheless, adjustment or stratification on gravidity can introduce serious
distortions (Wilcox and Gladen, 1982; Gladen, 1986; Weinberg, 1993). Similarly, prior spontaneous
abortion is also a “risk factor,” in the sense that women who have a spontaneous abortion are at
increased risk of a recurrence in subsequent pregnancies. If the earlier spontaneous abortion was
caused in part by earlier exposure to the factor under study, adjusting for it can seriously distort
the estimated risk ratio based on the current pregnancy (Weinberg 1993). Causal diagrams can be
particularly useful in this context (Greenland et al., 1999a; Howards et al., 2007; see Chapter 12).

One feature to keep in mind when studying pregnancy loss is that not only the time of exposure
but the time of loss in gestation may be closely related to the cause of loss. Thus the time of loss can
help differentiate distinct mechanisms of loss. Chromosomal abnormalities may represent a much
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higher fraction of early losses than of later losses, for example (Kline, Stein et al. 1989). Exposures
that are spindle poisons and cause aneuploidy may cause losses that occur right around the time of
failed implantation and are accordingly impossible to detect without preconception enrollment.

Returning to the multiple-outcomes issue, suppose that one has access to reproductive and
exposure history data that can be linked, and one wants to estimate odds ratios in a way that
uses all the pregnancies but does not need to assume independence among pregnancies within the
same woman. Hierarchical mixed-model methods can serve well to address dependencies among
reproductive outcomes (Watier et al., 1997). This approach has been criticized, however, because
reproductive decisions that couples (and their physicians) make are highly dependent on their
experiences, implying that the within-couple dependency structure may not be adequately captured
by a mixed model (Olsen and Andersen, 1998) and that it may be preferable to focus instead on a
single pregnancy, e.g., the first.

Other methods for handling clustered binary outcomes have since been developed, which can
handle complex dependency structures and informative cluster size. One approach is to sample one
pregnancy from each woman, fit a risk model, e.g., using logistic regression, save the estimated
coefficients and standard errors, and then repeat the same sampling and analysis many times.
To estimate a coefficient, β, and its standard error SE, using all (I = 1, . . . , I ) of the I resample-

specific estimates,
∧
β i and SEi , one takes the mean of the

∧
β i and estimates the variance as follows

(Hoffman et al., 2001): ∑
i

(SEi )
2

I
− (I − 1)

I
S2

where S2 is the estimated variance among the resample-based
∧
β i . The resampling approach is

robust to informative cluster size (as may occur, for example, if a couple susceptible to miscarriage
requires many pregnancies to achieve their desired family size) and complex dependencies among
the outcomes. A weighted estimating equation approach (Williamson et al., 2003) is equivalent
to the resampling approach asymptotically, but may work better when studies are small. As with
random-effects models, however, effect estimation may be somewhat biased if earlier outcomes
influence later exposures (Robins et al., 1999b).

EARLY (SUBCLINICAL) PREGNANCY LOSS

Pregnancy can be detected as early as 6 to 9 days following ovulation, using highly sensitive and
specific urinary assays for the pregnancy hormone, human chorionic gonadotropin (hCG) (Wilcox
et al., 1999). This period corresponds to the time when the developing conceptus is invading the
uterine wall and first establishing its vascular interchange with the mother. In an idealized 28-day
menstrual cycle, this time corresponds to day 21–24, several days before the next period is expected.
For pregnancy to be detected at this stage, women who are trying to conceive must collect daily
first-morning urine specimens, a demanding protocol that is feasible only in some populations.
Such studies can provide a detailed record of the hormonal events corresponding to the initial
establishment of pregnancy (Wilcox et al., 1988). Bleeding that accompanies very early losses
begins around the time of the expected menstrual period, an experience seldom recognized by the
woman as a lost pregnancy. Figure 31–1 shows an example of early loss.

Studies of spontaneous abortion (recognized pregnancy loss) necessarily overlook such short-
lived pregnancies altogether, as do fertility studies based on time to recognized conception. Although
each early loss will prolong the time to recognized conception, fertility studies may not be efficient
for detecting group differences in risk of such events. For example, a doubling of the risk of
unmeasured early loss (say, from 0.2 to 0.4) would cause a couple’s apparent fecundability to be
reduced by only 25% (relative fecundability = (1 − 0.4)/(1 − 0.2) = (0.6)/(0.8) = 0.75).

Direct studies of early pregnancy loss are difficult to carry out. For the sake of study efficiency
(i.e., a high yield of pregnancies for a given number of couples), women should be recruited early
in their attempt at conception, ideally at the time they first stop their use of birth control. Later
enrollment produces a lower yield of pregnancies per observed cycle. Current methods require the
daily collection of urine specimens, which must be refrigerated or frozen for later assay. This kind
of study can be done only with a well-motivated group of participants.

Because the pattern of rise and fall of hCG levels with an early loss usually brackets the onset
of the accompanying bleeding (as in Fig. 31–1), one can detect most early losses by analyzing
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FIGURE 31–1 ● Hormonal data for a woman who participated in the Early Pregnancy Study (Wilcox
et al., 1988) for 25 weeks. The vertical shaded bars correspond to menses. The solid curve in the first panel
shows the levels of a major estrogen metabolite, whereas the broken curve shows levels of a progesterone
metabolite, both corrected for creatinine excretion to control for urinary diluteness. The day of ovulation was
estimated by an algorithm that captures the rapid descent in the ratio of the two metabolites that
accompanies luteinization of the ovarian follicle around the time of ovulation (Baird et al., 1991). The
estimated days of ovulation are shown as vertical broken lines through each menstrual cycle. The pregnancy
hormone, hCG, evinces the occurrence of an early loss followed by a clinical pregnancy.

specimens for only a few days in each cycle (Weinberg et al., 1992). If necessary, sample collection
could be limited to the first 6 days of the menstrual cycle; this timing is adequate to detect most
early losses, provided the laboratory assay is sufficiently sensitive and specific for hCG.

One concern raised in the context of studies of early pregnancy loss is that most assay-based
algorithms for defining short-lived pregnancies have specificity less than 1.0. Imperfect specificity
can seriously bias the findings, with false positives included as pregnancies in both the numerator and
denominator. For example, if one group is subfertile, a higher proportion of apparent conceptions
will end in early loss, even if there is no difference in risk of loss between groups. This difference
arises because the subfertile group contributes a higher proportion of nonconception cycles, hence
a greater opportunity for false positives. This “fertility bias” can be substantial unless the diagnostic
specificity is very close to 1.0 (Weinberg et al., 1992). To protect against this bias, studies of
early pregnancy loss should include a control group of women who are known to be invulnerable
to pregnancy, such as women with tubal ligation. Urine specimens from this group should be
interspersed with those from the main study, so that the criteria for diagnosing pregnancy are strict
enough to have very high specificity (producing few or no false positives in the sterile group).

Urine can also be used to measure metabolites of the ovarian hormones, estrogen and proges-
terone, and the pituitary hormone, luteinizing hormone (LH). These hormones allow the time of
ovulation to be estimated (Baird et al., 1995), and may also provide more subtle clues about the
fertile potential of each menstrual cycle. Kits are now available that can permit a woman to identify
the surge in LH that comes right before ovulation and can potentially obviate the need to collect
daily specimens. If women record days with unprotected intercourse, the timing of intercourse in
relation to ovulation can be taken into account in assessing the risk of pregnancy (Weinberg et al.,
1994b; Zhou and Weinberg, 1996; Dunson and Weinberg, 2000).
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PREGNANCY COMPLICATIONS

In trying to identify factors that adversely influence pregnancy, one must be especially careful about
the direction and path of causality. As an example, if high consumption of coffee during pregnancy
were associated with a particular complication, would this be compelling evidence for a deleterious
effect of coffee? Or could it be that healthy pregnancies produce enough nausea to discourage
coffee consumption? As another example, a pregnancy biomarker that predicts the occurrence of
pre-eclampsia may be an early preclinical manifestation of pre-eclampsia that has little to do with its
etiology. (Such a marker could still, of course, be of prognostic value.) In general, it is not enough to
establish that the putative cause occurs before the diagnosis or before the adverse event under study.

One must also resist the temptation to adjust for intermediate variables, or for epiphenomena
associated with the exposure under study. For example, smoking during pregnancy reduces birth
weight, but low birth weight should not simply be controlled in an analysis of smoking in relation
to perinatal mortality. We shall return to this issue later.

Preterm delivery is one of the most significant common complications, occurring in about 5%
to 10% of pregnancies. This adverse outcome is usually defined as delivery before 37 completed
weeks of gestation, when gestation is measured from the start of the last menstrual period. The
most valid (and usually most costly) approach to studying preterm delivery is a prospective cohort
study. Survival-analytic methods allow all pregnancies to be fully used in the analysis (see Part III
of this book), where survival refers to the continuation of the pregnancy. Pregnancies should be
left-censored by entering them at the time that a termination of the pregnancy would have been
identified as an event in the study. One can then truncate the analysis at a prespecified definition
of full-term gestation (e.g., 37 completed weeks), after which, by definition, no one is at risk.
Interventions such as induction of labor and caesarian section should be treated as right-censoring
events (events that terminate follow-up). Nevertheless, this censoring may distort the analysis if the
interventions are in response to fetal distress (as is often the case), which may itself have otherwise
increased the risk of spontaneous preterm delivery.

A related problem arises when specific pathologic mechanisms leading to prematurity are under
study, for example, the premature rupture of membranes (PROM). If preterm deliveries without
PROM are treated as independent censoring events, this implicitly assumes that the pregnancies
ending in preterm delivery without rupture of the membranes would not have been at increased risk
for PROM if the observed preterm delivery could have been prevented. This implicit assumption is
not necessarily true.

Although prematurity is not a rare outcome, one can potentially improve study efficiency by
sampling all preterm deliveries in some defined population of pregnancies and recording exposures
experienced during these pregnancies and also in a random subcohort of pregnancies. This design
would be straightforward, for example, in a health maintenance organization. Case-cohort methods
of analysis are then needed to analyze the gestational survival of the pregnancy up to a cutoff at
37 weeks, in analogy with what has been proposed for studies of spontaneous abortion (Hertz-
Picciotto et al., 1989). Such survival methods allow the investigator to model gestational-time-
specific exposure effects.

Assessment of exposures specific to gestational time can be important if there are specific win-
dows of embryologic and fetal vulnerability to adverse effects. Ascertaining only crudely whether
an exposure was experienced sometime during pregnancy can lead to de facto exposure misclassi-
fication and bias (Hertz-Picciotto et al., 1996). One obvious problem is that pregnancies that last
longer have a greater opportunity to have been exposed than pregnancies that end early. This bias
can be avoided by treating exposure as time-dependent in a survival analysis, so that current hazard
is not permitted to depend in any way on future exposures. A more detailed treatment of issues
related to the study of pregnancy complications is provided by Olsen and Basso (2004).

BIRTH WEIGHT

A newborn’s weight predicts its survival better than any other characteristic. The smallest babies
not only have the highest mortality, they are at increased risk of long-term morbidity, including
neurologic deficits and behavior problems (Illsley and Mitchell, 1984; Hack et al., 1994). Because
birth weight is easily measured and routinely recorded for nearly every newborn, it has become a
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commonly used variable in perinatal research. Nonetheless, the epidemiologic use of birth weight
as a surrogate for perinatal health presents some difficulties. Recent observations have heightened
interest in birth weight by suggesting a role of prenatal experiences, as reflected in birth weight, in
the development of susceptibility to diseases such as hypertension in later life (the “fetal origins of
adult disease” hypothesis; (Barker, 1995)).

DICHOTOMIZED BIRTH WEIGHT

Birth weight is often dichotomized at 2,500 g, into babies of low birth weight (LBW), who have an
elevated mortality and morbidity, and babies of higher weight, who are at lower risk. The prevalence
of LBW varies widely across regions, ranging from 7% in Europe to 14% in Africa to 31% in middle
south Asia (Control, 1984).

For many years, premature delivery was assumed to account for the high mortality of LBW
babies. Indeed, prematurity and LBW were regarded as functionally equivalent; before 1961, the
official World Health Organization (WHO) definition of prematurity was birth weight less than
2,500 g.

As better data on gestational age accumulated, however, it became clear that half or more of LBW
babies are not premature according to their length of gestation (Chamberlain, 1975). The recognition
that there are many term births among LBW infants was quickly followed by the observation that
small term babies carry an excess risk of mortality. Prematurity could not explain their risk, so a
new designation was created. Full-term babies that were small came to be regarded as “growth-
retarded.” A variant of the LBW dichotomy is to identify the smallest babies at each gestational
age (usually based on tenth percentiles of a standard population). These babies are characterized
as small for gestational age (SGA) or intrauterine growth-retarded (IUGR). One problem with a
definition based on current percentiles is that the incidence rate for such a syndrome is fixed. Any
change in incidence becomes logically impossible.

The term growth retardation implicitly attributes the smallness of IUGR babies to abnormal
prenatal development. A short logical leap leads to the presumption that low weight per se is
a meaningful pathology, analogous to high blood pressure. If smallness is harmful and perhaps
preventable, then it becomes natural to look for public health interventions that produce bigger
(hence “healthier”) babies. Nevertheless, other evidence suggests that the causal pathway may not
be so simple.

PARADOXES

Comparisons of LBW among populations can lead to paradoxes. First, an excess of LBW in a
population does not necessarily mean that the population will have higher infant mortality. More
girls are born LBW than boys, for example, but girls have better survival than boys. Second, when
comparing LBW infants from two different populations, the LBW group with the lower mortality
is often from the population with the higher overall mortality. For example, at each specific weight
under 2,500 g, African American babies have lower mortality than white babies, even though overall
mortality for African American babies is twice that for white babies (Wilcox and Russell, 1990).
The same is true in comparisons of infants of mothers who smoke and mothers who don’t smoke
(Wilcox, 1993), twins compared to singletons (Buekens and Wilcox, 1993), and others (Skjaerven
et al., 1988; Wilcox and Skjaerven, 1992). These paradoxes raise questions about the underlying
relation between birth weight and survival.

In considering the causal pathway, it is obvious that low birth weight per se does not cause adverse
outcomes, but that it serves as a biomarker for the truly causal factors. The question, therefore, is
whether birth weight is a faithful correlate for some factor, such as impaired growth, that is on the
causal pathway to disability and death. To pursue this question, we will examine more closely the
relation of birth weight to survival.

WEIGHT-SPECIFIC MORTALITY

Figure 31–2 shows a typical pattern of neonatal mortality (i.e., death within the first month among
live births) as a function of birth weight. Risk approaches 100% for the smallest babies and declines
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FIGURE 31–2 ● Birth-weight-
specific neonatal mortality and
frequency distribution of birth weight
for white singleton births, for Colorado
and the United States, 1984.
(Reproduced with permission from
Wilcox, 1993. Birth weight and
perinatal mortality: the effect of
maternal smoking. Am J Epidemiol.
1993;137:1098–1104.)

to less than 1% in the mid-range of weights. Risk then rises again slightly for the largest weights.
This pattern of weight-specific mortality is consistently seen in diverse populations. The pattern
is not simply a reflection of preterm births at the lowest weights or postterm births at the highest
weights; the same pattern is seen within each gestational-age stratum (Wilcox and Skjaerven, 1992).

If birth weight were the ideal biomarker for risk of perinatal mortality, then variations in birth
weight would closely parallel changes in risk. An exposure that depressed fetal growth and lowered
birth weights would predictably increase risk. We could estimate the likely effect of such an exposure
by simply applying the weight-specific mortalities for the general population to the new distribution
of birth weights.

In fact, when comparing groups of babies, the relation between birth weight and mortality does
not behave according to this expected pattern. As the birth-weight distribution shifts to higher or
lower weights, the corresponding mortality curve moves with it, shifting to the same extent. For
example, in Colorado (where the average oxygen pressure is reduced because of high altitudes),
babies have reduced birth weights compared with babies in the United States as a whole. At the same
time, the corresponding mortality curve for these babies has shifted to the left to precisely the same
extent (Fig. 31–2), so that the overall mortality of Colorado babies is unchanged (Wilcox, 1993).
The matching lateral shifts in the distribution of birth weight and in the corresponding weight-
specific mortality curve explain a seemingly paradoxical result: LBW is increased in Colorado, but
mortality is not. The shift in the mortality curve is not what one would expect if birth weight were
on the causal pathway or were a faithful surrogate for risk. Instead, the data suggest that birth weight
is a factor that is susceptible to disturbance by exposures (here, gestation in Colorado) that do not
affect risk, and that factors that shift the birth-weight distribution need not produce a corresponding
effect on risk.
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A more complicated but related phenomenon is seen with maternal smoking. Mothers who
smoke have smaller babies, and their babies have higher neonatal mortality. Nonetheless, this
higher mortality is not necessarily due, even in part, to smoking-induced smallness. Inspection of
weight-specific mortality rates for babies of mothers who smoke shows that (as with the previous
example) the mortality curve shifts laterally to the same extent as the birth-weight distribution.
Superimposed on this shifted mortality curve is an upward shift, such that weight-specific mortality
rates are increased across all birth weights. This comparison suggests that the increased perinatal
mortality associated with smoking during pregnancy is not due to the lowering of birth weight but
due to separate mechanisms. In fact, (Basso et al., 2006) have shown that one can reproduce the
weight-specific mortality curve for full-term infants by a pure-confounding model: In this model,
one rare factor produces a marked increase in mortality and independently a decrease in birth weight,
while another rare factor produces an increase in mortality and independently an increase in birth
weight.

Little may be accomplished by trying to increase birth weights to reduce neonatal mortality. We
know of no example in which the weight-specific mortality rates stay fixed while the birth weight
distribution as a whole shifts. This is not to say that exposures that affect birth weight should not
be a concern. Exposures that decrease birth weights might also have morbid effects (e.g., subtle
impairment of brain development) that are not as easy to detect as neonatal death.

RELATIVE BIRTH WEIGHT

The paradoxes associated with application of a rigid cutoff for LBW, together with the observed
tendency of the mortality curve to realign itself to the location of the birth-weight distribution,
has led to alternative approaches (Wilcox, 2001). One can measure relative weight in place of
absolute weight by expressing the birth weight in standard deviations away from the population (or
subpopulation) mean. A corresponding category of high-risk babies can then be defined according to
some cutoff, such as 2 standard deviations below the mean (Rooth, 1980). This approach resembles
the 10% criterion used to define small for gestational age (SGA) but allows for possible displacement
of the birth-weight distribution by factors other than gestational age. Estimates of the standard
deviation of birth weight are exaggerated to a degree by the presence of small (preterm) births in the
lower tail of the distribution. Methods to avoid this exaggeration by basing the standard-deviation
estimate on the predominant part of the distribution have been developed (Wilcox and Russell,
1983; Umbach and Wilcox, 1996).

BIRTH-WEIGHT SUMMARY

The fact that birth weight is highly predictive is not sufficient evidence that birth weight determines
neonatal survival. As has been shown, the relation between the birth-weight distribution and weight-
specific mortality reveals that factors that shift birth weight do not have readily predictable effects on
mortality. As a result, the analysis of birth weight as a surrogate for mortality risk can be misleading.
Furthermore, adjustment for birth weight in the analysis of other variables, as if it were a confounder,
can actually produce confounding and distort results (Wilcox and Russell, 1983; Weinberg, 1993).

Birth weight has been a favored topic of study because of its accessibility, its precision, and its
apparently close relation to newborn health. The assumption, however, that birth weight offers the
reproductive epidemiologist a readily interpretable marker for newborn health is overly simplistic.
Birth weight may be less relevant to our understanding of perinatal mortality and morbidity than,
for example, preterm delivery.

PERINATAL MORTALITY

The transition from intrauterine to extrauterine life is dangerous, with the highest risk occurring
during labor and the immediate postpartum period. This risk is commonly divided into two distinct
outcomes: stillbirth and neonatal mortality. Neonatal mortality is a straightforward concept, defined
as any death in the first 28 days after birth. Stillbirth mortality (late fetal death) is not so easily
specified.
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Stillbirth implies the death of a viable fetus before delivery. Because the “viability” of a fetus
who has died can only be inferred, there is no standard definition in vital statistics (and thus in
epidemiology). For many years, viability was defined as a pregnancy that has advanced to at least
28 completed weeks of gestation. Modern medical interventions have moved the lower boundary
of viability downward, so that today it is not uncommon for babies to survive at 24 weeks and even
earlier. As a consequence, the legal definition of stillbirth now varies widely across jurisdictions
(e.g., 16, 20, 22, 24, 28 weeks), and sometimes includes a birth-weight criterion as well (e.g., 350,
400, 500, 1,000 g) (Gourbin and Masuy-Stroobant, 1995; Kowaleski, 1997).

There are other complications in the definition of stillbirth mortality. There is often little to
distinguish a fetal death during labor from death shortly thereafter. Signs of life may be uncertain and
left to the discretion of the birth attendant. Regional or cultural differences in defining a borderline
death as stillbirth or neonatal death may therefore bias both outcomes. Gestational age itself is hard to
determine, and population differences in the methods of determining gestational age (for example,
last menstrual period dating versus early ultrasound examination) may affect the proportion of
fetal deaths defined as stillbirth. For all these reasons, valid comparisons of stillbirth rates across
populations require that similar definitions are being used in all groups. This point applies also to
the analysis of perinatal mortality, which is the combination of stillbirth and neonatal mortality.

BIRTH-WEIGHT OR GESTATIONAL-AGE-SPECIFIC MORTALITY

Birth weight and gestational age are both powerful predictors of perinatal survival. As a consequence,
there is an extensive literature on the analysis of perinatal mortality stratified or adjusted by these
variables. Special problems arise, however, when stillbirth or neonatal mortality is stratified by birth
weight and gestational age. Analysis of stillbirth mortality by birth weight is complicated by the fact
that some fetal deaths might occur days before delivery. In these cases, there is presumably loss of
weight between the death and the expulsion of the fetus, contributing to an association between low
birth weight and stillbirth mortality on the basis of reverse causation. The extent of this problem
in the observed high risk of late fetal death among small fetuses is not known. The conundrum
could be avoided by limiting attention to those fetuses who died during labor. Unfortunately, such
information is not routinely available in vital statistics, the routine source of stillbirth data for
epidemiologic purposes.

Stratification of stillbirth mortality by gestational age is even more problematic. Such mortality
has been routinely defined as the number of stillbirths divided by the total number of live and
stillbirths at a given gestational age. Some have argued (Cheung, 2004; Platt, 2004) that the proper
denominator should include all pregnancies that are continuing, because those fetuses were also at
risk of fetal death at the given gestational age. Both approaches have limitations. In general, analyses
of stillbirth mortality that stratify by birth weight or gestational age should be undertaken with close
attention to the underlying biologic hypotheses being addressed (Wilcox and Weinberg, 2004).

BIRTH DEFECTS

In 1941, Gregg linked an outbreak of rubella to a rare eye defect in newborn infants (Gregg, 1941),
which led to the discovery of the rubella syndrome and dethroned the medical dogma that the fetus
is shielded by the placenta from adverse influences. In 1961, another dogma fell when the link
between thalidomide and limb-reduction defects was recognized. This effect became a paradigm
for the damage that could be done to a fetus by toxicants that are benign in other mammalian species
and benign (or even therapeutic) to the mother (Brent, 1986). Perhaps most disturbing of all was
the recognition in 1971 that diethylstilbestrol (DES) is a transplacental carcinogen, leading to a
rare cancer in adulthood (Herbst et al., 1971). This finding demonstrated the possibility of harmful
effects on the fetus that might not become apparent for decades.

Despite these discoveries and the resulting expansion of epidemiologic research related to birth
defects, little is known about the causes of most defects. Methodologic difficulties persistently
frustrate research in this area. Perhaps the single most important difficulty is estimating rates. True
biologic incidence is impossible to determine because most birth defects originate in the earliest
stages of pregnancy, when direct observation is virtually impossible. Many embryos with defects
do not survive early pregnancy; the prevalence of the defect at birth is therefore a function not just
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of embryologic incidence but of intrauterine survival. Survival may be affected by the severity of
the defect (with maternal mechanisms possibly leading to selective rejection of defective fetuses;
(Warkany, 1978)), and by diagnostic screening leading to elective abortion. Elective abortion is a
particularly likely source of bias for certain birth defects, because access to prenatal diagnosis (and
the decision to use it) is not random. Thus, even perfect ascertainment at birth would produce rates
subject to distortion by differential selection and survival, which may vary by exposure.

Ascertainment of defects at birth is itself problematic. Birth defects are highly heterogeneous in
presentation, and not all are apparent at delivery. Many heart defects, for example, do not manifest
themselves until after initial discharge from hospital, and some may go undiagnosed until well
into adulthood. Mental retardation may not be apparent until long after birth, and more subtle
abnormalities of neurologic development may never be recognized as prenatal in origin. The skill
of the examiner and the thoroughness of examination can have a large effect on the apparent birth
prevalence for a particular defect. With careful examination, major birth defects can be found
among an estimated 3% of babies at birth and among another 3% later (Kalter and Warkany, 1983).
Minor defects are at least as common. Population registries that depend on routine examination of
newborns find overall prevalence in the range of 2 to 3%.

Most studies of birth defects fall into two general categories: descriptive studies based on popu-
lation registries and case-control studies (which may be based on clinic or registry data). Although
registries have not uncovered evidence of powerful new teratogens being introduced into the en-
vironment, registries are limited in their power to detect new teratogens with moderate effects, or
that affect small subgroups of the population (Khoury and Holtzman, 1987).

Even the most common birth defects occur in only 1 to 4 per 1,000 babies, so that the rarity of the
outcome renders the case-control approach particularly advantageous. The overriding methodologic
question in case-control studies of birth defects has been whether a couple with a defective infant
will be motivated (by guilt or concern) to report more or fewer adverse exposures than a couple with
a normal infant (MacKenzie and Lippman, 1989; Werler et al., 1989; Swan et al., 1992; Rockenbauer
et al., 2001), and whether the additional reporting is spurious or of greater accuracy than for other
couples.

One controversial remedy for this potential recall bias is to use babies with other birth defects
as controls. There is a practical advantage as well: Parents of babies with birth defects are easier to
recruit than parents of normal infants. Controls with defects can often be taken conveniently from
the same clinic or birth-defect registry as the cases. A problem with such controls is that—if they
share etiologies with the cases (Khoury et al., 1992)—the effect measure can be biased toward the
null.

Moreover, the available evidence suggests that recall bias is not necessarily an important problem
in case-control studies of birth defects. A comparison of odds ratios using the two types of control
groups provided no evidence that differential recall of exposure is an important concern in such
studies (Khoury et al., 1994).

Case-control studies of birth defects can take advantage of short latencies for teratogenic effects.
The relevant window of exposure for most defects is within the first trimester of pregnancy. Although
this timing is within months of the identification of the defect in most cases, timing of exposure even
within that interval of fetal development can be crucially important. Teratogens may have an effect
only during a very brief stage of organogenesis. This precision of timing is difficult to establish with
recall, which weakens the power of a study to detect an effect (Khoury et al., 1992). Associations
could also be weakened by etiologic heterogeneity. Even well-defined defects have many possible
causes; a single teratogen may cause only a fraction of the observed cases.

Amidst this uncertainty over etiology, we do know that there are specific genetic and environmen-
tal factors that play a role in most defects, presumably in interaction with each other. Concordance
rates in monozygotic twins are elevated, as are recurrence risks in families that have already had a
child with a birth defect (Lie et al., 1995; Basso et al., 1999). New methods of design and analysis
can help elucidate effects of particular susceptibility genes.

GENETIC FACTORS IN REPRODUCTIVE EPIDEMIOLOGY

Because birth defects and pregnancy complications (and some diseases with early onset, such
as autism and acute lymphoblastic leukemia) have their origins during prenatal life, the mother’s
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genome can play a major role by influencing the prenatal environment (Mitchell, 1997). For example,
the mother’s genotype may impair her ability to metabolize toxicants during pregnancy. Thus, when
exploring the genetic components of risk, one should consider both individuals and think of the
affected unit as the maternal/fetal pair. If one studies only the baby’s genotype, or only the mother’s
genotype, the potential for confounding is strong because of the high correlation between maternal
and fetal genotypes (Mitchell, 2004). Thus, a carefully designed case-control study would include
mother–child case pairs and mother–child control pairs.

An alternative design can be particularly useful when studying birth defects, pregnancy com-
plications, and conditions with onset early in the child’s life. In this design, affected offspring and
their two parents (and possibly their four grandparents (Weinberg, 2003)) are genotyped. Alleles
associated with risk can be identified because they will be found in affected offspring more often
than Mendelian transmission would predict (see also Chapter 28). Geneticists have made use of this
apparent distortion by comparing the total number of transmissions from heterozygous parents to
affected offspring with a binomial (probability 1/2) distribution, in a chi-squared procedure called
the transmission disequilibrium test (TDT) (Spielman et al., 1993).

A family-based analysis is also possible. Consider a di-allelic locus, so that each person carries
0, 1, or 2 copies of the variant allele (it does not matter which allele is designated as the “variant”).
Based on the trio of genotypes for the mother, father, and child, each family is categorized into
one of 15 possible cells in a contingency table of family-based genetic outcomes. The resulting
multinomial counts can be analyzed by stratified Poisson regression (Weinberg et al., 1998), which
yields estimates of the two relative risk parameters associated with 2 copies or 1 copy, respectively,
of the variant allele inherited by the affected offspring, treating the 0-copy offspring as the referent
category. Despite the absence of controls, statistical power for this approach often exceeds that
of the TDT (Weinberg et al., 1998), and is similar to that of a case-control study with the same
number of cases and an equal-size control group (Lee, 2004). Thus, compared with a case-control
design that studies both cases and their mothers, the case-parent approach provides about the same
precision and power while requiring a smaller total number of genotyped individuals.

Methods based on parents also avoid worries about bias related to control selection, because the
biologic parents are always inherently well-matched controls for genetic effects. On the other hand,
because Mendelianism serves as the leveraging assumption for parent-based methods, for validity
one must be able to assume not only Mendelian assortment for the gametes, but that survival of
affected offspring to the point of study does not depend on genotype, conditional on the parents’
genotypes.

To develop intuition for why the log-linear approach works, suppose that families with one
child per couple are randomly sampled from families in which both parents are heterozygous. By
Mendelian genetics, the offspring should have 0, 1, or 2 copies, with expected cell counts showing
a ratio of 1:2:1. If instead we sample families in which the child has a particular birth defect, one
can show that the expected counts will show a ratio of 1:2R1:R2, where R1 and R2 are the relative
risks associated with inheriting 1 or 2 copies of the variant allele. This pattern is multiplicative
in the expected count, corresponding to a log-linear Poisson regression model (see Chapter 21),
which means that maximum-likelihood estimates and confidence intervals can be obtained for the
relative-risk parameters using widely available statistical packages.

What if there are maternally mediated genetic effects, through which the mother’s phenotype
during gestation affects her offspring? This kind of causal mechanism will produce asymmetry
between the parents, in which mothers of affected offspring carry more copies of the susceptibility
allele than do fathers. There would be no distortion in transmissions to affected offspring. A simple
extension of the same Poisson model accommodates such maternally-mediated effects and allows
them to be distinguished from direct effects due to the child’s inherited genotype (Wilcox et al.,
1998). Families in which the genotype for a parent is missing (e.g., due to nonparticipation or due
to misidentified paternity) can also be fully used (Weinberg, 1999).

The case-parent approach has several practical and theoretical advantages over a case-control
design. First, it requires only affected families, who are usually willing to be studied. This design
also obviates selecting a comparable control group, always one of the most problematic aspects
of case-control studies. Second, the case-parent approach is relatively robust against bias due to
self-selection. Genetic “population stratification” (which occurs when subgroups tend to avoid
reproducing with other subgroups and also differ in prevalence of the allele and the baseline risk
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of disease) is one of the potential sources of confounding avoided by the case-parents design,
provided the analysis is conditional on parental genotypes. (Some investigators suggest that genetic
stratification is not an important source of bias in diverse populations (Wacholder et al., 2002).)
One can also extend the model to look at effects due to imprinting, which occurs when a copy of
the variant allele can be expressed differently depending on whether it came from the mother or the
father (Weinberg, 1999). Evidence is mounting, for example, that imprinting plays a role in autism
(Nurmi et al., 2003). Finally, statistical missing-data methods can be used to make full use of the
data from incomplete triads (Weinberg, 1999), even if the missing-data mechanism depends on the
missing genotype (Allen et al., 2003; Chen, 2004).

Regarding the maternal/fetal pair as the unit at risk leads naturally to questions about the potential
for synergistic effects of the fetal and maternal genotypes. The example of Rh-factor maternal–fetal
incompatibility is well known: If the mother is Rh-negative (double null) and has previously been
sensitized by an Rh-positive fetus, and the fetus of the current pregnancy is Rh-positive, the baby
can suffer hemolytic disease of the newborn. The log-linear model has been extended to detect such
interactive causal mechanisms (Sinsheimer et al., 2003). Incompatible maternal/fetal genotypes may
also be related to risk of schizophrenia in the offspring (Palmer et al., 2002). Thus, the case-parent
design offers the opportunity to study maternal effects, parent-of-origin effects, and fetal–maternal
interactions that would be difficult to elucidate with a case-control design.

An extension of the log-linear model also allows the investigator to explore gene-by-environment
interaction on the multiplicative scale (Umbach and Weinberg, 2000). Note, however, that the
case-parent design does not permit the study of the “main” effects of exposures without adding
population controls. Nonetheless, one can estimate the main effects of the fetal/maternal genotypes
and assess departures from multiplicative joint effects between genotypes and categorical exposures
using Poisson regression. Either the mother or the fetus/offspring, or both, may be exposed to the
relevant factor.

Interactions between genotypes and continuous exposures, such as number of cigarettes smoked,
can be studied in a closely related framework by looking for apparent “effects” of the offspring
exposure on the patterns of allele transmission from parents to affected offspring (Kistner and
Weinberg, 2004), assessed by polytomous logistic regression (see Chapter 20). Note that the design
is retrospective, and the exposure obviously does not actually influence the transmission of alleles.
Rather, the occurrence of the disease (our basis for sampling) potentially reflects the prior transmis-
sion of risk alleles and the co-occurrence of deleterious exposures, which may together have led to
the condition and hence to sampling.

The case-parents design suffers from its inability to estimate exposure “main” effects, although it
can be used to study multiplicative gene-by-environment interactions. A third alternative is a hybrid
design, which exploits the best features of the case-parents approach and the population-based case-
control approach. One recruits cases and their parents and also unrelated controls and their parents.
The parents of controls are genotyped, but not the controls themselves, who provide only nongenetic
information to the study (Weinberg and Umbach, 2005). Under the assumption that the disease is
rare and that Mendelian transmission rates apply in the general population, this design permits
efficient estimation of all risk-related parameters of interest under a multiplicative formulation.

Quantitative traits such as birth weight can also be studied in place of dichotomous outcomes by
using the same polytomous logistic regression described for assessing gene-by-exposure interaction,
but with the trait in place of the exposure. In such analysis, the outcome is the number of copies
carried by the offspring, conditional on the parental genotypes, in relation to the value of the trait
(Kistner and Weinberg, 2004; Laird and Lange, 2006). A convenient feature of this approach is that
one need not assume Mendelian inheritance under the null, and thus one gains robustness against
potential effects of the gene (and any genetic correlates) on gestational survival. The inference is
based on whether the distribution of offspring genotypes, conditional on parental genotypes, varies
across levels of the quantitative trait. Extensions also allow for the incorporation of trait data from
multiple offspring from the same family (Kistner and Weinberg, 2004).

The availability of tools for genotyping will no doubt lead to still other options for the design of
epidemiologic studies. As new biologic hypotheses are framed, the opportunities will expand for
analysis of the interplay of genetic and environmental factors. This expanded research may have
powerful implications for the way we understand not just birth defects but many other problems of
reproduction, pregnancy, and development.
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APPENDIX

Formally, the proportional probabilities model for analysis of retrospective (pregnancy-based or
attempt-based) or prospective (cohort study-based) time-to-pregnancy data is based on outcomes
at each woman-cycle of observation:

ln {conception rate at cycle i, given E, X1, X2, . . . , X P} = ci + βE + β1 X1 + β2 X2 + βP X P

where ln denotes the natural logarithm; the conception rate is the cycle-specific probability of
pregnancy, given the couple is still at risk; E is the exposure of interest; and X1, X2, . . . , X P denote
P potential confounders. The parameter ci denotes the baseline conception rate for the i th cycle;
in effect, we establish a set of baseline stratum parameters to allow for the above-described decline
in conception rate with attempt cycle. The fecundability ratio is estimated by exponentiating the
estimated β based on this model. Confidence intervals can be obtained by exponentiating the upper
and lower confidence limits based on the estimated coefficient � and its estimated standard error.

Because this is a generalized linear model (see Chapter 20), it can be fitted using standard software
(GLIM, or SAS using the GENMOD procedure); however, one must force extra iterations to ensure
that convergence has been achieved. One annoying feature of this model is that it can sometimes
result in fitted probabilities that exceed 1.0 for individual couples, which occurs whenever their
fitted linear predictor (the right-hand side of the above equation) exceeds 0. Although this feature
is undesirable in a model and can interfere with estimation of parameters, such invalid excursions
seem to be rare in practice, unless the model is overparameterized or there are covariate outliers.

Other models can be used. The discrete-time model proposed by Cox (Cox and Oakes, 1984)
uses as the link function the log odds of the conception rate instead of its logarithm. Otherwise,
the preceding formulation is unchanged. This alternative formulation is a logistic model and can
be fitted using standard software, provided attempt cycle is entered as an unordered categorical (in
SAS a class) variable. It is important, however, to be aware that when this Cox discrete-time model
is used, the parameter being estimated by exponentiating β is now the fecundability-odds ratio, not
the fecundability ratio. The fecundability ratio will always be closer to 1.0 than the fecundability-
odds ratio, just as the risk ratio is closer than the odds ratio to 1.0. Because the outcome here is
not rare, the two parameters may be quite different. The assumption that the fecundability ratio or,
alternatively, the fecundability-odds ratio, is constant across time can be checked by examining in
the respective model the coefficient for a product of the exposure and cycle time.
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Clinical epidemiology is the study of the variation in the outcome of illness and of the reasons
for that variation. The overall strategy used in clinical epidemiology is exactly that used in other
areas of epidemiology: observations of events in groups of individuals who share a particular
characteristic, comparisons of rates of the events among groups, and then inferences regarding the
basis for any differences seen. In clinical epidemiologic studies, the characteristic that defines the
group can be a symptom, a sign, an illness, or a diagnostic procedure or treatment given for the
symptom, sign, or illness.

The ways in which the observations in clinical epidemiology are structured are also similar to
those of epidemiology per se. There are studies in which randomization is employed and others in
which it is not. Among the nonrandomized studies, there may be comparisons of aggregated patient
data across geographic areas or time periods, or there may be cohort, case-control, or cross-sectional
studies of individual patients. Relative to epidemiologic studies, those in clinical epidemiology more
often tend to involve randomization, because:

1. The “exposure,” often a therapy, lends itself to randomization more than do the exposures under
consideration in most epidemiologic studies (e.g., diet, tobacco or alcohol consumption, or
characteristics of a person or his/her environment);

2. The illness outcomes considered in clinical epidemiologic studies—usually disease progres-
sion, complications, or mortality—are often relatively frequent within the patient groups being
compared, which makes randomized studies more feasible; and

3. In clinical epidemiologic studies, there is a particularly great potential for confounding in the
absence of randomization. In many nonrandomized studies of therapy in which an association
has been found, it is uncertain whether it was the treatment or the type of patient to whom
that treatment was administered that was related to the altered risk for disease progression,
complications, or mortality.

641
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STUDIES OF THE NATURAL HISTORY OF ILLNESS

Studies of the natural history of illness (or any abnormality that comes to the attention of a health
care provider, including symptoms and signs of illness) measure health outcomes in ill persons who
are not receiving a therapy that influences the presence or rate of these outcomes. Unless the natural
history is adverse relative to the experience of unaffected persons, there would be little purpose
in seeking to identify and treat the illness, symptom, or sign. For example, among infants with a
fever of unknown cause, the decision to identify an infecting organism that may be responsible for
the fever (e.g., via blood culture) or to treat the possible infection (e.g., with antibiotics) would be
based in part on the knowledge of the frequency with which these febrile infants developed one or
more important complications of the presumed infection (e.g., meningitis). As another example,
among men with localized cancer of the prostate, the decision to treat (perhaps with local radiation
or radical prostatectomy) would be influenced by the probability of death from prostate cancer in
such individuals in the absence of therapy.

Data from cohort studies (see Chapter 7) are the major source of information on the natural his-
tory of a condition. For example, in Sweden during the late 1970s and early 1980s, men over 75 years
of age with localized prostate cancer and younger men with highly differentiated localized tumors
received no specific treatment for their tumor (Johansson et al., 1992). Their experiences were evalu-
ated in a 10-year cohort study in which 19 of 223 such patients died of prostate cancer, corresponding
to a relative survival (i.e., survival taking into account mortality from other causes) of about 87%.

Case-control studies (see Chapter 8) also can be used for studying natural history. For example,
echocardiographic evaluations of persons under 45 years of age who had sustained an ischemic
stroke and controls of similar age revealed a nearly identical prevalence of mitral valve prolapse
in the two groups (Gilon et al., 1999). These results argue that stroke prophylaxis need not be
preferentially recommended for persons with mitral valve prolapse. Case-control studies can play
a role as well in the identification of subgroups of patients with a given illness who are at altered
risk of the outcome under study. For example, Dornan et al. (1982) sought to characterize insulin-
dependent diabetics who are resistant to the development of retinopathy. They compared persons
with long-standing diabetes who had normal eyes with diabetic controls who had retinopathy,
matched for duration and age at onset of diabetes, with regard to such characteristics as weight,
blood pressure, and smoking habits.

STUDIES OF DIAGNOSTIC AND SCREENING TESTS

Diagnostic or screening tests are done to obtain information that can guide a health care provider’s
decision to initiate or continue a therapeutic intervention. Tests performed in persons with a symptom
or sign of an illness are usually termed diagnostic, whereas those done in individuals with no such
symptom or sign are referred to as screening. The underlying rationale as to when a test ought to
be applied, however, is identical for these two types. That rationale requires a judgment that among
patients to whom the test is administered, the costs of the illness, both monetary and physical, along
with the cost of the test and the errors that arise when it does not classify patients accurately, will
be exceeded by the costs of the illness (both monetary and physical) had the test not been done. A
positive test result can lead to the introduction of therapy when it might not otherwise have been
considered, such as prostatectomy following a positive test for serum prostate-specific antigen that
leads to a diagnosis of cancer. Alternatively, a negative test can lead to the decision not to initiate
therapy when it otherwise would have been given (see the example below).

To assess a test’s validity, the results it provides can be compared either with a “true” measure
of the physiologic, biochemical, or pathologic state the test is seeking to characterize or with the
occurrence of disease progression or a disease complication that the test result seeks to predict.
For example, arterial blood pressure as assessed via a sphygmomanometer can be compared either
with readings obtained from direct intra-arterial pressure measurements or with the subsequent
occurrence of stroke or other forms of cardiovascular disease. In clinical epidemiology, particular
interest lies in the test’s ability to predict progression or complications.

The following example will introduce the ways in which the validity of a test can be measured.
Although the majority of persons undergoing an acute myocardial infarction (MI) experience

chest pain, most persons with chest pain have another basis for their symptoms. Because of the
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ˆ

ˆ

ˆ

ˆ
T A B L E 3 2 – 1

Validity of Emergency Room Criteria for
Myocardial Infarction

MI PresentEmergency Room
Criteria for MI Yes No Total

Positive 50 91 141
Negative 5 211 216
Total 55 302 357

potential lethality of a MI, however, physicians hospitalize many patients with chest pain for a
period of time until they are reasonably certain that a MI has not occurred. In an attempt to avoid
hospitalization for those patients with chest pain but not infarction, several investigators (Goldman et
al., 1982) sought to develop clinical criteria to predict better the presence of MI. For all patients with
chest pain who were seen in an emergency room over a period of several months; they obtained
information on characteristics at the time the patient was first seen and on each patient’s status
6 to 10 months later. To some extent, the presence of MI, determined during hospitalization or
the follow-up period by electrocardiographic (ECG) changes, elevated serum levels of cardiac
enzymes, or abnormalities on radionuclide testing, was predicted by an algorithm that considered
ECG abnormalities present during the emergency room visit, the nature and duration of symptoms
present at that time, and the patient’s age. Persons classified as positive or negative according to the
algorithm had experienced a MI as shown in Table 32–1.

The validity of the clinical criteria (the “test”) could be described in terms of the degree to which
persons with and without the condition under study (MI) are correctly categorized. So the percentage
of persons with an infarction who tested positive by the clinical criteria—the “sensitivity” of the
criteria—was 50/55 = 90.9%. The percentage of persons without an infarction who were correctly
categorized as negative by the criteria—the “specificity”—was 211/302 = 69.9%.

Alternatively, the validity of the criteria could be expressed as the extent to which being catego-
rized as positive or negative actually predicts the presence of MI. In this example, the percentage
of persons who were deemed clinically positive and who were found to have an infarction—the
predictive value of a positive test (PV+)—was 50/141 = 35.5%. The percentage who were clini-
cally negative and who truly had no infarction—the predictive value of a negative test (PV−)—was
211/216 = 97.7%. These measures are summarized in Table 32–2.

Because the predictive values—the probabilities that a person who tests positive (or negative)
has or will develop the disease or complication—provide the results that most directly apply to the
decision to use or not use a given test, it is important to be able to estimate these even when the
data have not been gathered in such a way as to calculate them directly. In the following example,
data from a hypothetical case-control study of predictors of MI are presented, in which 33 cases
and 33 noncases have been chosen for study. Table 32–3 shows what happens when the proportions
of clinically positive and clinically negative patients among cases and noncases mirror those of the
patients with chest pain in the emergency room [(50/55) ×33 = 30 cases and (91/302) ×33 = 10
noncases testing positive].

It would be incorrect to calculate PV+ as 30/40 or PV− as 23/26. The predictive values depend
on the relative number of persons in the groups with and without infarction, and in this example,
these numbers have been set arbitrarily (one control per one patient with infarction). The sensitivity
and specificity of the screening criteria, however, can be accurately determined (each is calculated
within the group of MI cases and noncases, respectively). If the frequency of the condition for which
screening is being performed can be estimated, both predictive values can be estimated as well. The
following formulas are used to do this.

PV+ = Pr(D)

Pr(D) + 1 − Pr(D)

L R+
[32–1]
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ˆ

ˆ

ˆ

ˆ
T A B L E 3 2 – 2

Measures of the Validity of a Diagnostic or Screening Test

Reference Criterion Reference Criterion

Test Result Positive Negative Test Result Infarction No Infarction

Positive a b a + b Positive 50 91 141
Negative c d c + d Negative 5 211 216

a + c b + d n 55 302 357

Term General Example Definition

Sensitivity a /(a + c ) 50/55 (90.9%) Proportion of those with the condition who have a
positive test

Specificity d /(b + d ) 211/302 (69.9%) Proportion of those without the condition who have
a negative test

PV+ a /(a + b )a 50/141 (35.5%) Proportion of those with a positive test who have
the condition

PV− d /(c + d )a 211/216 (97.7%) Proportion of those with a negative test who do not
have the condition

a Meaningful only if (a + b )/n represents the actual proportion of the positives in the relevant population.

where Pr(D) is the relative frequency of the condition for which testing is being performed and
LR+, the likelihood ratio for a positive test, is

sensitivity

1 − specificity

The second formula is

PV− = Pr(1 − D)

Pr(1 − D) + (Pr(D) × L R−)
[32–2]

where Pr(1 −D) is the relative frequency of patients who do not have the condition and LR−, the
likelihood ratio for a negative test, is

1 − sensitivity

specificity

ˆ

ˆ

ˆ

ˆ
T A B L E 3 2 – 3

Results of a Hypothetical Case-Control
Study of Testing for MI

MI

Test Result Yes No Total

Positive 30 10 40
Negative 3 23 26
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In the present example,

Pr(D) = 55/357 = 0.1541, Pr(1 − D) = 302/357 = 0.8459

From the case control data, we estimate

LR+ = 30/33

1 − (23/33)
= 3.0

LR− = 1 − (30/33)

23/33
= 0.1304

Thus,

PV+ = 0.1541

0.1541 + 1 − 0.1541

3.0

= 0.353

and

PV− = 0.8459

0.8459 + (0.1541)(0.1304)
= 0.977

Except for rounding, these values are identical to those obtained from the complete patient group
(Table 32–1).

The results of many forms of medical testing are available not only as a dichotomy—positive
versus negative—but as a graded characteristic (e.g., a serum sodium concentration). For purposes
of medical decision making, however, we generally consider the results of tests such as these in no
more than several categories, even if that means lumping together persons whose test results are
only broadly similar to one another. For instance, the algorithm used by Goldman et al. to predict
the presence of an MI in persons with chest pain undoubtedly produced a wide range of scores, but
the decision confronting the physician treating a patient with chest pain—to hospitalize that person
or not to do so—encouraged combining scores to obtain a dichotomous result. Still, some of the
measures of test accuracy presented earlier apply even if there are more than two possible results
of the test. As an example, the results of the algorithm that characterized persons with chest pain
conceivably could have been used to classify them into three groups: “strongly positive,” “borderline
positive,” and “negative.”

Suppose the presence of an MI in these persons were as shown in Table 32–4. Among per-
sons who, based on their signs and symptoms, were “strongly positive,” 46.3% had a myocardial
infarction. The corresponding values for “borderline positive” and “negative” persons are 20.3%
and 2.3%, respectively. Each of these predictive values can be compared not only to one another,
but also to the probability of an MI being present without considering the results of the algorithm
(55/357 = 15.4%). In a case-control design, an accurate estimate of these predictive values can be

ˆ

ˆ

ˆ

ˆ
T A B L E 3 2 – 4

Hypothetical Performance of a Three-Level Test to
Predict the Presence of MI

MI

Test Result Yes No Total

Strongly positive 38 (46.3%) 44 (53.7%) 82
Borderline positive 12 (20.3%) 47 (79.7%) 59
Negative 5 (2.3%) 211 (97.7%) 216

55 (15.4%) 302 (84.6%) 357
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obtained by the use of likelihood ratios and an estimate of the true prevalence of the condition that
the test seeks to identify (Weiss, 2006).

One or more measures of the validity of a test may be estimated erroneously if (a) in terms of
severity, the patients with the condition (e.g., MI) for whom data are available are not typical of
patients with the condition in the population for whom the test is intended, or (b) for diagnostic
tests, if the proportions of study subjects who do and do not receive the test fail to reflect those
of the patients in which the results are to be applied. These issues are discussed in greater detail
elsewhere (Begg, 1987; Weiss, 2006).

The ability of a test to lead to improved illness outcomes in a given population is influenced by
the frequency of the condition or abnormality being sought, the degree to which the test allows that
condition or abnormality to be detected before it or its consequences would otherwise be evident,
and the degree to which early treatment of the condition or abnormality is better than late (or no)
treatment. For most tests, information regarding each of these is generated in separate studies. For
example, the value of blood-pressure screening in reducing mortality from cardiovascular disease
was determined by conducting three types of study:

1. Surveys of the prevalence of high blood pressure
2. Investigations of the relative increase in mortality from cardiovascular disease in persons with

high blood pressure
3. Comparisons of treated and untreated hypertensives with respect to mortality from cardiovascular

disease

A single study that attempts to determine whether all requirements are met (a “one-step” study;
Weiss, 2006) is usually far less feasible than each of the component investigations. A one-step study
would compare the rates of disease progression or disease complications between two groups of
persons:

1. Those who received the test and then received treatment based on the test result
2. Persons who did not receive the test and thus whose treatment (or lack thereof) was not guided

by the test result

These one-step studies attempt to assess in aggregate the effects of test accuracy and early-
treatment efficacy. Typically, they need a large number of subjects because, as a rule, most individuals
do not test positive or do not have the condition being sought. Nonetheless, studies of this sort are
required when all (or nearly all) patients who are found to be positive on a certain test receive
treatment as a result (thus precluding study type 3 above). This situation is common for cancer
screening tests. For example, a woman who tests positive on a mammogram, or who is found to
have a rectal tumor during a screening sigmoidoscopy, will not have treatment withheld from her; no
comparison of treatment versus nontreatment of screen-detected breast or rectal cancer can be made.

One-step studies can employ any of the traditional designs. For example, the ability of screening
for colorectal cancer to reduce mortality from that disease has been evaluated by randomized
controlled trials (individuals randomly assigned to receive or not receive fecal occult blood testing),
cohort studies (comparison of colorectal cancer mortality among persons who did and did not receive
screening sigmoidoscopy), and case-control studies (a comparison of fatal cases of colorectal cancer
and controls for a history of prior sigmoidoscopy). Ecologic studies also have the potential to assist
in the evaluation of screening efficacy. For example, arguably the most convincing data that bear on
the efficacy of cervical cancer screening come from a comparison of mortality from cervical cancer
in those Nordic countries that did and those that did not introduce such screening on a wide scale
(Day, 1984).

STUDIES OF THERAPY—RANDOMIZED CONTROLLED TRIALS

Randomized controlled trials of therapeutic interventions are ones in which (a) patients are assigned
to one of two or more groups to be offered different therapeutic measures; (b) chance alone dictates
whether a particular patient will be assigned to a particular group; and (c) patients in each group
are monitored for the abatement of their illness, the occurrence of the event(s) that the therapy
seeks to prevent, or the occurrence of untoward effects. Although randomized controlled trials have
an important role to play in identifying adverse effects of therapy that are relatively common and
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occur relatively soon after therapy has been initiated, the primary role of these trials is to assess the
efficacy of therapy. Randomized trials provide results that can be interpreted relatively easily, for
the common concern in nonrandomized studies of treatment efficacy—that the various treatment
groups had inherently unequal probabilities of doing well—is much less an issue when it is only
chance that determines the membership of the groups.

Relative to studies of patient groups in which randomization has not taken place, randomized
controlled trials are labor-intensive and generally entail a high cost per patient. This relatively high
cost, in addition to the difficulties that can occur in encouraging patients and their physicians to
participate actively in a study, prevents many randomized trials from enrolling a large number of
participants. Often, such studies include a few dozen to a few hundred patients. Trials of this size can
assess large differences between treatments but may have inadequate statistical precision to evaluate
a true small or moderate influence of treatment. For this reason, persons planning a randomized trial
often endeavor to incorporate one or more design features that will increase the trial’s sensitivity
(ability to detect a treatment effect). Such an increase may be possible by careful attention to the
selection of subjects, the intervention measure, and the definition of study endpoints. In addition,
a design in which patients serve as their own controls sometimes can lead to greater efficiency.
Despite these methods to enhance efficiency, few randomized trials are large enough to evaluate
rare adverse outcomes related to the treatment. As described later, such adverse outcomes are often
discovered from spontaneous reporting systems or from nonrandomized studies conducted after
therapies are widely adopted.

SELECTION OF SUBJECTS

A study conducted in England and Wales randomized 1,017 50- to 69-year-old female survivors of
a first MI to receive estradiol valerate (2 mg/day) or a placebo for 2 years beginning at the time of
hospital discharge (The Esprit team, 2002). Despite the investigators’ efforts to restrict participation
in the trial to women who would adhere to their assigned regimen—potential subjects were visited
twice while in the hospital and provided with detailed information about the study—nonadherence
after randomization was high. As of 3 months after discharge, only 74% of women were taking
their assigned preparation, and as of 1 year only 59% were doing so. Because of this low level of
adherence, the trial’s finding of no difference in MI recurrence and cardiac death between women in
the two treatment arms has two plausible interpretations: (a) There is no effect of estradiol valerate at
this dose on these cardiac outcomes; versus (b) A true modest effect of the drug was underestimated
because of the high proportion of participants who did not receive the interventions for an adequate
duration.

In an effort to keep the effect of nonadherence to a minimum, many randomized controlled trials
begin with a run-in phase in which all potential subjects are given a placebo or a control therapy.
Their adherence with the regimen is determined, and only those with good adherence are entered
into the randomized portion of the study. Measurement of adherence can take many forms (pill
counts, biochemical tests, etc.). The goal, however, is to identify and eliminate, before the start
of the study, patients who have a high likelihood of not adhering to the regimen offered, because
nonadherence can greatly complicate proper analysis and interpretation of a randomized trial. Only
the assigned (original) treatment category is randomized, and subjects switch to other treatments
in a nonrandom fashion. Hence there is great potential for confounding in comparisons based only
on actual (received) treatment.

There are several methods for dealing with this confounding problem, each with strengths
and weaknesses. The most commonly used method is called intent-to-treat analysis, in which
nonadherence is ignored and subjects are compared based on their assigned treatment category. The
advantage of this method is that it eliminates the confounding described above. The drawback of an
intent-to-treat analysis is that it will tend to underestimate the size of the effect that a treatment may
have. Essentially, assigned treatment is a misclassified measure of received treatment and so cannot
be expected to produce unbiased estimates of the effect of received treatment (see Chapter 9), i.e.,
of treatment “efficacy.” To the extent that the level of nonadherence in the trial reflects that present
in the target population—arguably, this is not a common occurrence—intent-to-treat estimates will
be a good measure of “effectiveness,” i.e., the effect of the intervention in all to whom it is offered.
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Nonadherence in some randomized trials plausibly is not due to the study participants’ perception
of lack of treatment efficacy, nor to an untoward effect of the treatment. For example, among persons
assigned to receive a given treatment there may be some who do not receive it at all. In such
instances, steps can be taken to remove the bias that would otherwise be present in an intent-to-treat
analysis. One approach involves monitoring the occurrence of outcome events in both adherers and
nonadhererers, and then using these data to estimate the size of the difference in outcome occurrence
among treatment adherers and their hypothetical counterparts in the control arm of the trial (Sommer
and Zeger, 1991; Cuzick et al., 1997; Greenland, 2000b). These methods are discussed in Chapter
12 under the heading of instrumental variables. A related approach is discussed in Chapter 21 under
the topic of g-estimation for problems of nonadherence.

Conventional analytic methods that are based on actual treatment rather than on the treatment
assigned by the original randomization (“as treated” analysis) are subject to bias from factors that
influence whether subjects in the study adhere with the treatment assigned by randomization. To
reduce such bias, the investigator can adjust for confounding by controlling variables thought to
affect both adherence (hence received treatment) and outcome. The problem with this approach is
that (as in many nonexperimental studies) one can rarely if ever be confident that one has properly
recorded and controlled a sufficient set of confounders.

Another approach is simply to eliminate nonadherers from the analysis (“per-protocol” analysis),
which is subject to even more confounding than “as-treated” analysis. If adherence is affected by
treatment and by uncontrolled risk factors for the outcome, then treatment will become associated
with (and hence confounded by) those factors among the adherers (see Chapter 9). For instance,
there are therapies that, if effective, are expected to produce demonstrable improvement in the
patient’s status before the full course of therapy is finished. It would be expected that patients who
do not complete the full course will be disproportionately numerous in the group assigned to the
therapy that is truly less effective. In such situations, the elimination of patients with an incomplete
course of therapy from the analysis will diminish the estimated efficacy of the superior therapy. In
other examples, elimination of nonadherers can inflate estimated efficacy.

Even when the treatment or the outcome does not influence adherence in such a direct way, the
failure to take account of the originally assigned groups can lead to a biased result. An instructive
example comes from a randomized trial in which, in an effort to reduce cardiac mortality, clofibrate
(an agent that lowers the concentration of serum cholesterol) or a placebo was prescribed to patients
who had sustained a MI (Coronary Drug Project Research Group, 1980). During the 5-year period
of the study, adherence to the prescribed regimen was monitored in both treatment and placebo
groups. Cumulative mortality was found not to differ between the two groups. About 15% of those
who had adhered to the assigned treatment (adhered 80% or more of the time) subsequently died,
regardless of which regimen had been prescribed. The mortality in persons who were less than 80%
adherent was about 27%. If in the analysis the investigators had placed the nonadherent clofibrate
patients into the placebo group, they would have found a spurious association of favorable outcomes
with use of clofibrate.

Sometimes the nature of the treatment being evaluated does not lend itself to a run-in phase (e.g.,
a surgical procedure). In such studies, the randomization of patients should be as close as possible
to the time of the actual administration of the therapy. Consider, for example, a randomized trial
of “second-look” surgery in women with initially advanced ovarian cancer who were in clinical
remission following surgery plus chemotherapy (Luesley et al., 1988). Interpretation of this trial
was hindered by the relatively early randomization of women—it occurred before the response to
the initial chemotherapy had been determined and before all patients had agreed to participate in
the study—and led to a sizable fraction of women not receiving the treatment to which they had
been randomized.

SELECTION OF THE INTERVENTION MEASURE

It is important to make the actual intervention selected for study as different as possible from
whatever treatment will be received by control patients, within the range of what is believed to be
possible and ethical for a particular condition. For example, in a randomized trial whose purpose is
to measure the extent to which a low-saturated-fat diet can reduce the recurrence of MI, it would
be desirable to seek a dietary modification that is a substantial one. It is easier for a randomized
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trial (or for any epidemiologic or clinical epidemiologic study) to document a large than a small
association, and if the risk of MI recurrence does indeed vary monotonically with saturated-fat
intake, the bigger the dietary difference is, the bigger the effect on risk.

DEFINITION OF STUDY ENDPOINTS

Some conditions that one is attempting to treat or prevent have measurable antecedents. For example,
following treatment for cancer, a death from that cancer is usually preceded by tumor recurrence or
metastasis. Death from ventricular arrhythmia following MI is often preceded by nonfatal episodes
of ventricular arrhythmia. Neonatal death can be a consequence of prematurity. Because one of the
factors limiting the power of a randomized study is the number of endpoints observed, and because
these antecedent conditions often occur more commonly than do the endpoints themselves, the
monitoring and analysis of these antecedents should increase the study’s statistical efficiency.

We should be pleased to accept this increase in efficiency as long as the analysis of the occurrence
of such an antecedent condition leads to the same conclusion as would a study of a larger number of
subjects in which the endpoint itself was measured. It is necessary, however, to be highly judicious
in the selection of such endpoints: In a number of instances, it has been learned that antecedent
conditions that plausibly were highly related to a particular endpoint of interest turned out not to
be so. For example, some agents that can reduce the occurrence of one form of cardiac arrhythmia,
ventricular premature depolarizations, actually increase mortality from cardiac arrhythmia (Echt et
al., 1991).

USING PATIENTS AS THEIR OWN CONTROLS (CROSSOVER STUDIES)

Studies of the efficacy of therapies intended to reduce the frequency or severity of chronic, recurrent
problems, such as seizures, arthritic pain, or menopausal hot flashes, can lead to more precise
estimates if the subject can serve as his or her own control (Hills and Armitage, 1979). By evaluating
the same subject at different times in the presence and absence of the therapy under study, the
variability among subjects in the frequency or severity of the problem will not blur true differences
in efficacy. This goal can be achieved experimentally in a crossover design, in which patients receive
different therapies during different periods of time. The particular therapy to be administered first
is selected at random for each patient. The rates of outcome events (e.g., seizures) or levels of
symptoms (e.g., joint pain) that are present during or at the end of the periods of time are compared
within individual study subjects. Sufficient time is allowed between treatment periods to permit
the effects of the intervention administered previously to dissipate. Thus, crossover studies are
appropriate for evaluating the efficacy of therapeutic measures only when the effect fades rapidly
after discontinuation.

It is also possible to conduct studies of individual patients over the course of several randomly
chosen periods during which either a treatment or control intervention is provided. Such an “N of
1” study (Guyatt et al., 1986; McLeod et al., 1986) would contrast the aggregate experience of that
patient (e.g., with respect to symptoms) during or immediately after treatment and control intervals,
and would have the potential to determine what therapy is most successful in him or her.

STUDIES OF THERAPY—NONRANDOMIZED STUDIES

Many important unintended effects of therapy (side effects) neither are common nor occur within a
short time (i.e., less than several weeks) following receipt of the therapy. As mentioned earlier, most
randomized trials are not of the size or duration to evaluate such effects, so it is necessary to rely on
other means if we are to learn of their existence. Adverse events that are reported to pharmaceutical
manufacturers by patients who have used a particular product (and/or by their physicians) often
serve as clues as to the presence of a negative unintended effect. If there are substantial numbers of
reports pertaining to an otherwise quite uncommon condition—such as the hundreds of reports of
hepatic injury in users of the diuretic ticrynofen that led to withdrawal of this drug from the market
within 1 year of its introduction (Zimmerman et al., 1984)—formal pharmacoepidemiologic study
of the question may not be necessary to form a judgment of a cause–effect relation. In other circum-
stances, a comparison of adverse events reported for different drugs with a similar indication and
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similar time of entry into the market, combined with sales data on the drugs, can be informative. For
example, the nearly 100-fold higher frequency of reports of rhabdomyolysis in users of cerivastatin
compared with atorvastatin, taking into account the estimated number of users of each drug, pro-
vided compelling evidence of a particular hazard associated with use of cerivastatin (Staffa et al.,
2002).

Nonetheless, in most instances, formal nonrandomized studies are needed to document the safety
of therapies. Fortunately, the factors that influence the need for or choice of therapy for a particular
patient often are unrelated to that patient’s risk of developing the unintended effect. For example, the
patients who happened to receive cerivastatin rather than atorvastatin were probably not otherwise
predisposed to rhabdomyolysis. Thus, many follow-up and case-control studies can provide a valid
estimate of the relative frequency of unintended health outcomes in recipients of a given treatment.
With the advent of computerized data on use of prescription medications and health events among
persons enrolled in health insurance plans, it has become particularly feasible to assess potential
unintended effects of medication use (Ray, 2003; Strom, 2000).

Only infrequently can nonrandomized studies provide a valid estimate of the efficacy of a
treatment. In most situations, the measured differences between the experiences of patient groups
receiving alternative therapies are primarily the result of underlying differences between the groups
regarding the chances of progression or complications. In other words, patients are selected for
different therapies based on clinical indications. If, as one would expect, these indications are also
prognostic factors, the estimates of treatment efficacy become confounded by these factors. This
phenomenon is often referred to as confounding by indication (Strom, 2000 MacMahon, 2003). To
alleviate this problem, strategies to prevent and control confounding (such as restriction, matching,
and stratification; see Chapters 11 and 15) must be deployed, although these strategies can work
only to the extent that the relevant factors can be measured accurately.

A problem that can afflict all studies (whether of intended or unintended outcomes) is that patients
receiving different therapies may be monitored differently (differential outcome ascertainment).
This problem can result in spurious differences in outcomes, but it can be avoided if steps can be
taken to ensure comparable monitoring of the various treatment groups. Even if the monitoring is
identical across compared groups, however, the observed associations will be biased by incomplete
ascertainment (a form of nondifferential outcome measurement; see Chapter 9), usually toward the
null.

The above problems often cannot be completely addressed by design and analysis methods.
Nonetheless, the study results may have some value if the size of the observed difference in outcome
among the treatment groups substantially exceeds that which could be expected on the basis of
inherent differences among the groups with respect to prognostic factors (e.g., illness severity)
or bias due to outcome misclassification. Sensitivity analysis (see Chapter 19) may be needed in
making such arguments, however.

To illustrate this point, consider the following two examples. The first provides a result that cannot
be regarded as a valid estimate of therapeutic efficacy. Among 106 women with advanced ovarian
cancer who underwent primary surgery followed by chemotherapy, 32 later underwent secondary
cytoreductive operations (Berek et al., 1983). In 12 women, the cytoreduction was “optimal” (i.e.,
diameter of largest residual tumor mass <1.5 cm), and among them the median survival was 20
months. In the remaining 20 women, the procedure was “nonoptimal,” and among them the median
survival was 5 months. The authors’ conclusion was that “resection of macroscopic disease that
persists after completion of chemotherapy enhances survival.” The conclusion is unduly optimistic:
The better survival in the “optimal” group just as easily could have been the result of their inherently
better prognosis as the influence of the surgery itself.

Contrast the preceding example with an evaluation of bone-marrow transplantation in 24 children
who had a relapse after an initial course of chemotherapy for acute lymphoblastic leukemia (Johnson
et al., 1981). At the end of a mean follow-up period of about 2 years, 11 of these children were alive,
in contrast to only 2 of 21 children who had relapsed but received only additional chemotherapy.
The children had not been randomly assigned to the two treatment groups; rather, those who had
an HLA-identical donor available were offered marrow transplantation, whereas the others were
not. Because there is no reason to believe that the availability of an HLA-identical donor correlates
much, if at all, with survival in this disease, it seems very likely that the difference in survival is
almost entirely the result of a difference in the efficacy of the two therapeutic approaches.
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SELECTED READING

A number of books have been written that contain the words “clinical epidemiology” in their title,
or that deal heavily with this topic, including Feinstein (1985), Fletcher and Fletcher, 2005, Hulley
et al. (2001), Katz (2001), Kramer (1988), Sackett et al. (1991), and Weiss (2006). Probably as
testimony to the relative youth of clinical epidemiology as an identified entity, these books differ
considerably from one another not only in their emphasis but in their content.
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PRELIMINARIES

THE NATURE OF META-ANALYSIS

Meta-analysis refers to the analysis of multiple studies, including statistical techniques for merging
and contrasting results across studies. Synonyms and related terms include research synthesis, cross-
design synthesis, systematic review, systematic overview, pooling, and scientific audit. Some use
meta-analysis to refer only to the quantitative aspects of the review. Whatever the term, these methods
focus on contrasting and combining results from different studies, in the hopes of identifying patterns
among study results, sources of disagreement among those results, or other interesting relationships
that may come to light in the context of multiple studies. Such methods have been an integral part
of educational, social science, policy, and medical research for decades (Louis et al., 1985; Yusuf
et al., 1987; Sacks et al., 1987; L’Abbe et al., 1987; Mosteller and Chalmers, 1992), and books on
meta-analysis in medical care have been available for some time (Eddy et al., 1992; Pettiti, 1994a;
Chalmers and Altman, 1995; Mulrow and Cook, 1998; Glasziou et al., 2001, Egger et al., 2001).

652
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Meta-analysis has not been as integral to epidemiology, in part because of objections (Shapiro,
1994) and in part because of less obvious pressing need. Social science and medical topics often
involve hundreds of studies, from which policy researchers must often distill a few simple recom-
mendations (Eddy et al., 1992; Pettiti, 1994a). As a result, there has been greater pressure to refine
summarization techniques in those fields. In contrast, epidemiologic studies of specific topics have
tended to be fewer, and the epidemiologic community appears to be more hospitable to tentative,
limited inferences based on narrative reviews. Nonetheless, to neglect quantitative aspects of review
would be akin to presenting a study and supplying only a narrative discussion of the raw data, with
no attempt to group and compare subject outcomes.

Meta-analysis can be viewed as the transference of good analytic practice from the single-study
to the multiple-study context. It begins with thorough and critical evaluation of the available data in
a manner that is explicit and fully replicable by others. The need to identify, abstract, and analyze
data from multiple studies parallels the need of single studies to identify eligible subjects, abstract
their information, and analyze the resulting data by summarizing information across subjects.

There are, however, crucial differences between analyzing a single study and conducting a meta-
analysis. In any credible single study, a single explicit protocol is applied to locating and recruiting
subjects, and to data collection. Indeed, the homogeneity of the study protocol is presumed by
standard statistical methods, such as those described in Part III of this book. In contrast, the opposite
extreme holds in a meta-analysis. Studies are undertaken for various reasons, which may or may
not be related to the question of interest to the meta-analyst. Different studies may employ vastly
different protocols to collect, analyze, and report their data. The result is that the meta-analyst is
faced with a collection of data with remarkable heterogeneity, sometimes so much that application
of standard statistical methods is unjustifiable if not impossible. For example, in a review of the
relation of socioeconomic status (SES) to childhood leukemia, Poole et al. (2006) found such large
difference in SES definition and measurement that they could justify only qualitative contrasts
among study results.

The meta-analytic situation is analogous to an individual study in which every subject is selected
according to a different eligibility criterion, and had data obtained by a different method—some
from face-to-face interview, some from mail-in questionnaire, some from records, with different
forms used for each subject. Thus, one should not expect the analytic tasks to be as simple in a
meta-analysis as in a single study, and one should expect the results to be affected by sources of
uncertainty (such as between-study protocol differences) that are absent in single studies. These
extra sources of uncertainty need to be explicitly acknowledged and addressed.

The diversity of study methods can be viewed as an opportunity for discovering the extent to
which study context and methods influence study results—making the meta-analysis a study of
studies and their results. In the SES and childhood-leukemia example, there was a clear divergence
between early ecologic studies (which largely showed positive associations) and later case-control
studies (which largely showed inverse associations). Even if no pattern emerges, documenting that
the current literature supports no inference is valuable.

The present chapter provides an overview and illustration of basic principles and quantitative
methods for reviewing typical epidemiologic literature. The examples concern nonexperimental
studies of easily defined antecedent variables and discrete, nonrecurrent outcomes (although easily
defined does not necessarily imply easily measured). We focus on situations in which most or all
of the research results are available only in the form of journal articles, and therefore in which
crucial details of certain studies are lacking. We will not address randomized-trial meta-analyses
or overviews in which original data are accumulated and reanalyzed as a pooled dataset, although
many of the same primary concerns and methods apply (Sutton et al., 2000; Senn, 2002; Whitehead,
2002).

WHEN IS META-ANALYSIS NEEDED?

Most researchers want to see individual studies placed in the context of previous studies, as evinced
by the inclusion of a literature review section in almost all published research reports. Meta-analysis
offers a more rigorous and coherent treatment of past research work than typical narrative reviews.
Some commentators have even suggested that no randomized-trial result should be published with-
out the inclusion of a meta-analysis in place of the narrative literature review section (O’Rourke and
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Detsky, 1989). Similarly, because of the rapid growth of epidemiologic literature, the traditional
narrative review may no longer be a reliable way to summarize research in certain areas.

Although we have no doubt that a well-conducted meta-analysis provides valuable information
to put a new study in context and guide its design and interpretation, the thought and effort needed
to conduct a reliable meta-analysis may be far too excessive to demand of authors of those studies.
These authors will also have an intrinsic conflict of interest given their involvement in the new
study that needs to be critically evaluated in the context of all other studies. This practical limitation
has led some commentators to suggest that reports of single studies should be relieved of the tasks
of formulating conclusions, and thus of reviewing the literature in detail. Instead, they suggest
that single-study reports should focus on describing their methods and data in as much detail
as feasible, to facilitate later meta-analyses of the topic (Greenland et al., 2004). Meta-analyses
conducted separately from a single study reduce the risk that the meta-analysis will be heavily
influenced by that study, and can be published as a separate article providing far more detail of the
literature and the meta-analysis than could be put in combination with the single study’s report.

Another issue is the idea that authors of a relevant study will have an intrinsic conflict of interest
for meta-analysis, given that their study will need to be critically evaluated relative to other studies.
Although authors involved in a relevant study may be the most qualified to undertake the meta-
analysis, it has been recommended that their meta-analysis should acknowledge this possible conflict
by indicating their authorship of studies considered for inclusion in the meta-analysis (Stelfox
et al., 1998).

GOALS OF META-ANALYSIS

An important controversy concerns whether the primary objective of a meta-analysis should be the
estimation of an average effect across studies (a synthetic goal) or the identification and estimation of
differences among study-specific effects (an analytic goal) (Maclure, 1993). The synthetic approach
is well established in the clinical-trial literature but has come under harsh criticism by various
authors, especially in epidemiology (O’Rourke and Detsky, 1989; Greenland, 1994d, 1994e, 1994f;
Shapiro, 1994; Thompson, 1994). Regardless of approach, a sound meta-analysis needs to assess
each study’s limitations as well as gaps in the entire literature being assessed.

A major problem with a purely synthetic meta-analysis is that it can give a false impression of
consistency across study results, especially when the individual study results are too imprecise to
reveal inconsistencies between studies. Thus there should be no compulsion to produce a combined
estimate, especially when background information suggests that no such estimate could capture the
diversity of study results. Instead, one should seek to identify systematic variation (heterogeneity)
in study results. Averaging should be limited to those results that could be reasonably expected to be
similar among the studies. As with many guidelines for meta-analysis, the same caution applies to
analysis of individual studies. For example, in a single study it would be inappropriate to combine
sex-specific estimates of effects of hormonally based cancer therapies.

No meta-analysis can compensate for the inherent limits of nonexperimental data for making
inferences about causal effects. Even if one approaches a meta-analysis with a synthetic goal
foremost in mind, it is nonetheless imperative to search for systematic variations in estimates across
studies and study designs and to report any suggestive patterns (as always, regardless of whether
they are “statistically significant”). The meta-analyst should remember that even if the variations
across studies appear to be no more than random, it remains possible that all studies suffered similar
systematic errors, or have net error in the same direction.

One should also bear in mind that the collection of all studies on a topic is haphazard, with
some poorly done, others possibly misreported, and yet others not published at all. Each study
should be viewed critically with an eye to contradictions as well as omissions. Sometimes data
that are unfavorable to a research sponsor or a researcher’s pet hypothesis are hidden (Berenson,
2005). In other cases, data may go unpublished or be hard to find simply because they were
not of primary interest. For example, in many studies SES is collected secondarily as a potential
confounder, and hence is reported only descriptively, if at all (Poole et al., 2006). Also, far too many
studies report only “statistically significant” associations. As a consequence, critical nonsignificant
results go unpublished, and the associations reported may be those from the most “significant”
analysis, making them unrepresentative of all available data. This type of selection bias has been
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well documented in randomized clinical trials (Chan et al., 2004). Therefore, one of the goals of
meta-analysis must be to evaluate the extent of such bias, a topic to which we will return under the
heading of publication bias.

CONDUCTING A SOUND AND CREDIBLE META-ANALYSIS

Like any scientific study, an ideal meta-analysis would follow an explicit protocol that is fully
replicable by others. This ideal can be hard to attain, but meeting certain conditions can enhance
soundness (validity) and credibility (believability). Among these conditions we include the follow-
ing:

1. A clearly defined set of research questions to address.
2. An explicit and detailed working protocol.
3. A replicable literature-search strategy.
4. Explicit study inclusion and exclusion criteria, with a rationale for each.
5. Nonoverlap of included studies (use of separate subjects in different included studies), or use

of statistical methods that account for overlap.
6. Reanalysis of included studies as needed and feasible (which may involve requests for more

information from study authors).
7. A listing or graphical display of individual study results or inputs, along with a listing of what

is believed to be the most relevant clinical and methodologic differences between studies, so
that the analyses can be easily replicated by others.

8. Explanatory analysis of differences among study results, with the aim of finding any systematic
relations between study properties and study results. Study properties include biologic and
clinical characteristics of the study population (e.g., studies of men vs. studies of women), as
well as methodologic properties (e.g., study design, methods of measurement, susceptibility to
measurement error, and manner and extent of confounder control).

9. Avoidance of invalid analytic methods, even if those methods are popular (such as those based
on effect sizes or standardized coefficients).

10. A summary of limitations and shortcomings known to the meta-analysts, along with some
indication (if not analysis) of how these problems may have affected the meta-analytic results.

Though not necessarily relevant to the validity of a meta-analysis, it can also be helpful to for-
mulate suggestions for future research to help overcome the limitations and shortcomings identified
in item 10, along with possibly promising research opportunities that may have become apparent.

The following sections discuss most of these considerations in detail. We will illustrate points
with a relatively transparent meta-analysis of the association of coffee consumption with coronary
heart disease (Greenland, 1993e). This illustration is now dated, but it is used here for simplicity
and convenience, although the points made would apply to any newer analysis of this topic.

INITIAL TASKS OF A META-ANALYSIS

When determining the tasks needed in a meta-analysis, it is important to define clearly the main
components. Poorly focused research questions can lead to poor decisions about what research to
include and how to summarize it. There are several key components to a well-formulated question.
A clearly defined question will be reasonably precise in specifying the exposures and outcomes
under study, and the populations to which the meta-analysis will apply (e.g., children, fertile women,
the elderly, etc.).

SPECIFYING THE STUDY VARIABLES

Outcome

The outcome “coronary heart disease” subsumes such heterogeneous endpoints as sudden car-
diac death, myocardial infarction, coronary insufficiency, and angina pectoris. Furthermore, these
subcategories represent neither mutually exclusive nor completely exhaustive subdivisions of the
outcome. Coffee drinking might affect risk of one or some but not all of these subcategories, in
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which case its effect on the gross outcome of coronary heart disease would be a dilute echo of its
primary effect. On the other hand, coffee effects might be similar across these categories, in which
case maximum precision would be obtained by taking all coronary heart disease as the outcome.
After considering these possibilities, the reviewer must decide whether to narrow the review to only
one subcategory (say, acute myocardial infarction) and acknowledge the potential irrelevance of
the findings for other subcategories (say, angina), or to perform a meta-analysis on several or all
subcategories.

Exposure

Another item requiring precise specification is the antecedent variable or exposure under study. For
example, many studies of diet and health in fact focus on nutrients (e.g., calcium and β-carotene)
rather than on dietary factors (e.g., milk and vegetables). Each is a legitimate study topic, but which
is chosen has profound implications for issues such as confounding and measurement error. Taking
again the coffee–heart disease issue, one must decide whether to study an effect of caffeine or of
coffee. A study of caffeine would demand consideration of type of coffee consumed (ordinary or
decaffeinated), as well as tea and cola consumption.

Confounders

Having precisely specified the study exposure and outcome, one will be in a position to identify
potential confounders. In identifying confounders, we note that just because a variable has a potential
to confound does not mean that failure to control it leads to important bias. Nevertheless, some
confounders may be generally recognized as so important that any report that fails to fully adjust
for them will be immediately suspect. An example is cigarette smoking in the study of coffee and
heart disease.

Intermediates

Although this issue is often neglected, it can be important to identify certain potential intermediates
(variables along a possible causal pathway from exposure to outcome). Intermediate variables, if
controlled in an analysis, bias effect estimates, typically, though not necessarily, toward the null
(i.e., toward finding no effect); see Chapters 9 and 12. Despite these problems, in many topic areas,
studies routinely report effect estimates adjusted for potential intermediates. For example, in the
coffee–heart disease literature, serum cholesterol is often used for adjustment, despite the potential
effects of coffee on serum lipids (Jacobsen and Thelle, 1987; Stensvold et al., 1989; Pietinen et al.,
1990; Zock et al., 1990; Salvaggio et al., 1991).

Modifiers of the Effect Measure

Finally, one should also attempt to identify potentially important modifiers of the effect measure
under study, especially qualitative effect modifiers, that is, variables for which the study factor has
an effect within some but not all categories or has opposite effects across categories. Identification
of quantitative effect-measure modifiers will depend on which effect measure is reported.

STUDY IDENTIFICATION

A difficult but crucial task is identifying studies that recorded the exposure and outcome of interest.
A search of computerized databases (e.g., MEDLINE) may provide a reasonable start but is often
insufficient because not all studies are entered in such databases. In particular, some studies may
go unpublished, some may be published only as abstracts or in journals that are not included in the
database, and others may obtain relevant data but do not publish those data. Of course, identifying all
such data may be impossible, but one should search through each identified report to find references
to as yet unidentified reports. One may also inquire among researchers in the topic area to see if
they know of unpublished data on the topic.

A systematic relation between study results and chance of inclusion in the meta-analysis (whether
through inappropriate exclusion criteria or failure to search thoroughly for studies) will be a source
of bias in the meta-analysis. Such study-selection bias is the analogue of subject-selection bias in
individual studies and is a major concern in some topic areas. A specific and common form of study-
selection bias, described earlier, is publication bias, which is the systematic failure to publish or
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report certain types of results. There is evidence that publication bias is common in epidemiology
(Min and Dickersin, 2005), and it will be discussed further in a later section. Restricting one’s
analysis to published articles may only aggravate this source of study-selection bias. The only
safeguard against such biases is to diligently seek out unpublished results, as well as published
ones, through methods such as direct inquiry among researchers in the area.

QUANTIFICATION OF EFFECTS

To quantify effects, one needs to specify how effects will be measured. A measure of effect quantifies
the change in the occurrence of the study outcome that would result from shifting an entire target
population of interest from one exposure level to another (see Chapter 4). The measures used in the
overwhelming majority of epidemiologic reports are relative risks, which measure the proportionate
change in incidence produced by moving from one exposure level to another. Thus, the relative
risk for the effect on myocardial infarction incidence of drinking five cups of coffee per day versus
none might be specified as the rate ratio, the proportionate increase in incidence rate produced by
coffee drinking among drinkers of five cups per day in a specific cohort after 12 years of follow-up.
This effect would ideally be consistently estimated by an adjusted rate ratio for the cohort, were it
possible to adjust perfectly for all confounding, misclassification, and loss to follow-up. Of course,
other effect measures may be of greater interest—for example, the risk difference is more closely
related to models for biologic interaction and public health issues (see Chapter 5)—but few are as
commonly reported or as easy to extract from published data as relative-risk estimates.

If the outcome under study is rare in all populations and subgroups under review, one can
generally ignore the distinctions among the various measures of relative risk (e.g., risk ratios, rate
ratios, and odds ratios). These distinctions can be important, however, when considering common
outcomes, especially in case-control design and analysis; see Chapter 4 for more details.

The specification of the population and follow-up in the definition of effect is necessary because
there is rarely any basis for believing the effect will be identical across different populations or
follow-up periods. Nonetheless, the assumption that a particular effect measure is homogeneous
across populations and follow-up periods is often implicit in informal reviews. Given that assump-
tion, the objective of a meta-analysis can be concisely stated as, for example, to estimate the relative
risk for the exposure effect on the outcome. Often, the homogeneity assumption is weakened slightly
to allow the true (causal) logarithm of the relative risk to vary in a symmetric but random fashion
across studies; under this random-effects assumption, the objective usually becomes to estimate the
geometric mean relative risk. Occasionally, some measure of spread or variability of relative risks
may be of equal or more interest.

Because many factors (both methodologic and biologic) that could affect relative risk estimates
will vary across studies, the homogeneity assumption is at best a convenient fiction. Similarly,
the variation in these factors will tend to be systematic, making a random distribution for effects
a fiction, and any measure of average or spread of relative risks potentially misleading. Thus one
should be prepared to question and discard these assumptions, especially if distributions of suspected
effect-measure modifiers vary across the source populations of the studies. For example, one study
of coffee and myocardial infarction was restricted to women aged 30 to 49 years (Rosenberg et al.,
1980). The assumption that the effect estimated from this study equals that found in unrestricted
studies (or in studies of men only) should be discarded if much variation in the effect across sex or
age is expected or observed. Furthermore, if such variation exists, it is (by definition) systematic
variation across sex and age, and therefore not a random effect.

Methodologic variation will also lead to systematic variation in the quantities estimated by
different studies. For example, interview data is subject to measurement errors quite different from
those of medical record data. Methodologic variation, however, entails variation in bias rather than
the actual effect under study, and so is not effect-measure modification. Additionally, unlike actual
treatment effect variation, methodologic variation is not of any intrinsic biologic interest for the
underlying science or clinical application.

Although the homogeneity assumption can be statistically tested (as described later), the tests
have little power in most epidemiologic settings (Greenland, 1983). Consequently, a “nonsignifi-
cant” P-value (P > 0.05) provides no justification for the assumption. This problem is sometimes
partially addressed by requiring a higher cutoff (e.g., P > 0.20) before using the assumption.
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A more thoughtful approach considers interval estimates for the magnitude of effect-measure varia-
tion, as well as contextual expectations (prior information) about whether the chosen effect measure
is likely to vary much across studies.

REGRESSION MODELS

Relative risks are convenient to work with when the effects of dichotomous variables are being
examined, such as seatbelt use in a study of crash injuries. Nonetheless, when the exposure of
interest is a quantity, such as coffee consumption, it is best to take account of differing average
exposure levels across the “exposed” categories in different studies (Hertz-Picciotto and Neutra,
1994; Greenland, 1995b). Regression analysis is the easiest way to do this. Chapters 20 and 21
review regression models and methods in general; here we focus on some aspects that are important
to meta-analysis.

Specifying a model for effect measures is an important step in a meta-analysis (Greenland, 1987d;
Rubin, 1990b). This step need not be highly technical but should be reasonably precise. Within a
regression context, the effect measure is the coefficient (or coefficients) for exposure. Consider a
follow-up study of coffee and myocardial infarction, with coffee use measured as average cups of
coffee per day. Using a proportional-hazards model with coffee coefficient β, eβ is the rate ratio
(proportionate change in the rate) incurred by a one-cup-a-day increase in coffee use; similarly, eβ

from a logistic model is the odds ratio (proportionate change in the odds) incurred by a one-cup-a-
day increase in coffee use (see Chapter 20). Of course, these causal interpretations presume that all
important confounders have been adequately controlled, which may be true in some (but usually not
all) studies; even when it is true, selection biases and measurement error will distort the resulting
estimate.

In most epidemiologic situations (e.g., rare diseases), the logistic coefficient can be treated as
an approximation to the Cox model coefficient (Green and Symons, 1983; Efron, 1988). In either
formulation, the coefficient β of exposure in the model is the effect measure. Thus, one could
state the primary objectives of a meta-analysis of relative risk as (1) to determine if the exposure
coefficient β is nonzero in any of the study populations, and (2) to measure and explain variation
in β across studies.

Both the Cox and logistic models are types of exponential (multiplicative) models. Absence of
product terms in such models automatically implies a multiplicative relation between exposure and
covariate effects, in the following sense: Given a baseline (reference) value x0 for exposure, the
disease rate at exposure level x1 relative to the rate at exposure level x0 will always be exp[β(x1 −
x0)], no matter what the values of the covariates. This relation implies that in a report comparing
only two levels of exposure, say, x1 and x0, and providing an adjusted estimate of relative risk, RRa,
an estimate b of the regression coefficient β is given by (ln RRa)/(x1 − x0), where “ln” is the natural
logarithm. For example, in a study of coffee consumption and myocardial infarction that compared
only drinkers of five cups per day with nondrinkers and gave an adjusted rate-ratio estimate of 2.5,
an estimate of the Cox regression coefficient would be b = (ln 2.5)/(5 − 0) = 0.18.

Although exponential models are convenient to work with, the relations they imply may poorly
represent the actual exposure and covariate effects. For example, multiplicative exposure–covariate
effects are not always biologically realistic. The models also imply exponential dose–response
relations between the regressor variables and the incidence measure, which are rarely plausible.
For example, the Cox model given earlier for the effect of coffee on myocardial infarction implies
that the infarction rate increases exponentially with coffee consumption (holding the other variables
constant).

Ideally, the multiplicative-exponential model should be evaluated against various alternative
models. If the model fails to hold, however, it can still be used as a device for estimating summary
relative risks. Within the central range of the regressors (independent variable and covariates) under
study, a fitted model can provide acceptably accurate estimates of relative risks if the latter are
not too large, even if the model itself is moderately violated overall (Maldonado and Greenland,
1993b; Greenland and Maldonado, 1994). For example, suppose that the coffee effect on myocardial
infarction risk is linear (risk = α + βx) but that an exponential risk model = exp(α + βx) is fitted
to the data, and suppose that in the data substantial proportions of the subjects consume zero cups
of coffee per day and five or more cups per day. Then, in typical datasets, exp(b5), the estimate
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of relative risk for five cups versus zero cups obtained from the exponential model, will not be far
from the result that would have been obtained using the (correct) linear model. On the other hand,
if few or no subjects drank 10 or more cups per day, there would usually be upward bias in the
estimate exp(b10) of the relative risk for 10 cups versus zero cups obtained from the model.

STATISTICAL REANALYSIS OF INDIVIDUAL STUDIES

Ideally, one would obtain the raw data from every study that recorded the exposure and outcome of
interest, transform these data sets into a common format, merge the datasets together, and analyze the
merged data set in a pooled analysis. These tasks would require some guidelines. For example, one
would have to include a variable that identified the study from which each subject came; this variable
would allow one to analyze effect variation across studies. One might also have to devote much labor
to producing a common format for data from different studies, especially given the very different
and often extensive database problems across studies. For example, some variables (e.g., smoking
habits) might not be recorded in some studies, and one would have to assign all subjects from those
studies a missing-value code for the unrecorded variables. Nonetheless, statistical methods used for
single studies could be applied to the merged data, as long as one handled the missing data properly
and analyzed the study identifier as a potential modifying variable (examining products of the study
indicators with the exposure variables). More involved methods may be required for continuous
outcomes (Higgins et al., 2001).

Unfortunately, the preceding ideal is often unattainable in epidemiologic settings. Original study
data may have been discarded, or investigators may refuse to supply their data. Even if they do supply
what they believe was the finalized study data, later editing may have made it impossible to replicate
closely their earlier published findings and establish any confidence in what they have supplied.
Often personnel have changed and the original care taken to ensure data and analysis validity
in the published study submission was not fully documented. If (as is more usual) unpublished
data cannot be obtained, the meta-analysis has to rely on data available in circulated research
reports (e.g., published articles). Because research reports usually present only data reductions and
summary statistics rather than complete data, one must resort to rather crude methods for extracting
or constructing summary estimates and their standard errors from each study.

EXTRACTION OF ESTIMATES

A large proportion of research reports neither present nor permit extraction of estimates other than
of relative risks and multiplicative-exponential model coefficients. Consequently, the remainder of
this chapter will treat the objective of the meta-analysis as estimation of either log relative risks or
multiplicative-exponential model coefficients.

Extracting an estimate from a published report may involve no more than copying it out of
the report, if the report gives the desired estimate and its standard-error estimate. Nonetheless,
it is best to check the reported values against other pieces of information both in the text and in
graphs. Inconsistencies occur, and may indicate errors in the reported estimates. Garcia-Berthou
and Alcaraz (2004) found inconsistencies in over 10% of the computations reported in a sample of
articles from Nature and the British Medical Journal.

If confidence limits are given instead of a standard error (SE), extra computation is required.
Consider a relative risk estimate RR with a given 95% lower limit of RR and upper limit of RR. If
the confidence limits are proportionally symmetric about the ratio (i.e., if RR/RR = RR/RR), an
estimate SE of the standard error is given by SE = (ln RR− ln RR)/3.92, where 3.92 = 2 · 1.96 is
twice the normal percentile for 95% limits (for 90% confidence limits, the divisor in this formula
should be 2 · 1.645 = 3.29). For a coefficient estimate b and 95% confidence limits of b and b, the
estimated standard error would be (b− b)/3.92. See Follmann et al. (1992) for a method applicable
to analyses of continuous outcomes.

Often, a P-value for the null hypothesis is given instead of a standard error or confidence interval.
If the given value is accurate enough (to at least two significant digits if P > 0.1 and one digit if
P < 0.1), one can compute a “test-based” standard-error estimate from SE = (ln RR)/Z p or SE =
b/Z p, where Z p is the value of a standard-normal test statistic corresponding to the P-value (e.g.,
Z p = 1.96 if P = 0.05, two-tailed test). Unfortunately, because many reports use few significant
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digits in presenting P-values, this method can be highly unstable for near-null results, and it breaks
down completely if ln RR or b is zero. For example, given RR = 1.1, P = 0.9 (two-sided), one
can only infer that the estimated RR is between 1.05 and 1.15 and that P is between 0.85 and 0.95,
implying that Z p is between 0.063 and 0.188; consequently, the original data could yield a standard
error for b of anywhere from (ln 1.05)/0.188 = 0.26 to (ln 1.15)/0.063 = 2.22, compared with the
test-based estimate of (ln 1.1)/0.126 = 0.76.

Another problem with the test-based method is that it gives a biased standard-error estimate when
the point estimate is far from the null (Halperin, 1977). For odds ratios and logistic coefficients,
this bias will be small in most applications; for other measures, however, such as standardized
mortality ratios, the bias can be substantial (Greenland, 1984a). In any case, the applicability of the
test-based method is limited by the fact that most reports do not precisely specify P-values unless
P is between 0.01 and 0.10, and often not even then.

The remainder of this section presents quantitative methods for extracting estimates from re-
ports with incomplete information. Most of these methods are quite rough and should be regarded
as appropriate only when a report does not give sufficient information to allow use of more accurate
statistical methods. Nevertheless, even these rough methods require certain minimum pieces of
information, and some reports may have to be excluded from a meta-analysis on the basis of inad-
equate data presentation, or used only in a qualitative analysis of observed direction of association
(as in Poole et al., 2006). In such cases, however, it may be possible to contact the authors for
additional information. Contact may also be worthwhile if there is doubt about the accuracy of the
following methods.

ADJUSTMENTS USING EXTERNAL ESTIMATES OF CONFOUNDING

One frequently finds published results that are partially or wholly unadjusted for known or suspected
important confounders. Examples include the lack of adjustment for smoking in the published data
of several studies of coffee and heart disease (Yano et al., 1977) and in other reports on the same
topic in which smoking adjustment involved only very broad categories (Paul et al., 1968; Jick et al.,
1973). In these situations we must estimate the residual confounding left by this lack of confounder
control. Such estimation must necessarily be based on those studies of the same outcome that
provided data on the effects of the putative confounder. In practice, this adjustment usually requires
that one use estimates of confounding derived from data external to the study under review, thus
greatly adding to the uncertainty of the results (see Chapter 19).

Factorization of the Relative Risk

One approach to external adjustment is to write the unadjusted (or partially adjusted) relative risk
RRu from the study under review as a product of two terms: RRu = RRa U , where RRa is what the
relative risk would be after full adjustment for the putative confounder or confounders and U is the
multiplicative bias produced by having failed to fully control for the factor (Bross, 1967). Given
U , a fully adjusted estimate can be derived from the unadjusted estimate via the equation RRa =
RRu/U .

The problem confronting the reviewer is how to get an acceptable estimate of the bias factor U.
Chapter 19 described how one could estimate U from estimates of confounder prevalence and the
strength of confounder association with the study exposure and disease, and more generally estimate
a distribution for U from prior information about these quantities. Another, simpler approach
assumes that one has external data that provide estimates of RRu and RRa; one can then estimate U
via the equation U = RRu/RRa. This estimate will be valid only to the extent that the confounding
effect (U ) of the covariate in question is similar in both the external data and the study under review.
Even if it is valid, the estimate of U will itself be subject to statistical error, which in some cases
can be estimated and incorporated into the final adjustment (Greenland and Mickey, 1988).

Consider the study by Jick et al. (1973) of coffee and discharge diagnosis of myocardial infarction:
An adjusted odds ratio of 2.2 was given for the effect of drinking six or more cups per day versus
none, but smoking was treated as the trichotomy ex-smoker/current smoker/other. This treatment
raises the possibility that residual confounding by smoking remains because of failure to adjust for
the amount smoked by current and former smokers. No comparable published data exist that allow
estimation of the confounding effect of amount smoked in the study by Jick et al. Thus, an estimate
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of this effect will be derived from the study by Rosenberg et al. (1980) on coffee and hospital
admission for first myocardial infarction.

From the data in Table 3 of Rosenberg et al. (1980), one can calculate an odds ratio of RRu = 1.7
for the effect of drinking five or more cups per day versus none, adjusted for smoking in the same
trichotomy used by Jick et al. (1973). When the adjustment is based on the full smoking detail given
in the table (nonsmoker, ex-smoker, smokers of 1 to 14, 15 to 24, 25 to 34, 35 to 44, or 45 or more
cigarettes per day), the odds ratio drops to RRa = 1.4. Thus, for the Rosenberg et al. data, the estimate
of the confounding produced by controlling smoking only as a trichotomy is U = 1.7/1.4 = 1.2.

For the Jick et al. study, RRu = 2.2, which may be divided by the external estimate of U , 1.2, to
obtain the externally adjusted estimate for the Jick et al. study, RRa = 2.2/1.2 = 1.8.

RRa is an estimate of what would have been obtained from the Jick et al. study had smoking
been controlled in the same detail as in the Rosenberg et al. study. It will be accurate if the joint
distributions of coffee, cigarettes, and infarction are similar in both studies. Both studies used
hospitalized subjects from the northeastern United States, but the subjects of Jick et al. were 40- to
69-year-old whites and mostly male, whereas the subjects of Rosenberg et al. were 30- to 49-year-
old females and 88% white. Furthermore, the exposure and outcome variables are not identical in
the two studies: In the Jick et al. study, the exposure is six or more cups per day of any coffee, and
the outcome is hospital discharge after hospitalization for myocardial infarction, whereas in the
Rosenberg et al. study, the exposure is five or more cups per day of caffeine-containing coffee, and
the outcome is hospital admission for myocardial infarction.

As shown in Chapter 19, U depends on the prevalence of the confounder and the associations
of the confounder with the study factor and the outcome. In the preceding example, there is no
basis for believing that the coffee–smoking association was the same in the two studies, given the
associations of coffee use and smoking with age and sex. Thus, the externally adjusted estimate of
1.8 may be considerably overadjusted or underadjusted for smoking, and would have to be regarded
as inferior to an estimate that was fully adjusted for smoking and depended only on more complete
smoking data in the original Jick et al. study, were it available.

Coefficient Adjustment

To translate the preceding adjustment into an adjustment for a Cox or logistic regression coefficient,
let x be the exposure, bu the unadjusted (or partially adjusted) x coefficient estimate, and ba the
fully adjusted estimate from a study or set of studies. The estimated confounding in estimating the
effect of one unit of x is then U = RRu/RRa = exp(bu)/exp(ba) = exp(bu − ba), where RRa and
RRu now represent the estimated increase in the rate produced by one unit of x . Taking logs, we
see that ln(U ) = bu − ba. Thus, to externally adjust an estimate from a study under review, one
must obtain an estimate of ln(U ) from another study (or studies) and subtract this estimate from the
coefficient estimate being adjusted.

Continuing the preceding example, an estimate of the logistic regression coefficient for coffee
(in cups per day) in the Jick et al. (1973) study is 0.110. This estimate is adjusted for numerous
confounders but is adjusted for smoking using only the trichotomy described earlier. The coefficient
estimate computed from Table 3 of Rosenberg et al. (1980) is 0.073 after adjustment for smoking in
the trichotomy used by Jick et al., but it decreases to 0.046 when adjustment for smoking includes
categories of cigarettes per day. Thus, in the Rosenberg et al. study, ln(U ) = 0.073 − 0.046 = 0.027.
This correction factor applied to the Jick et al. study yields an externally adjusted coefficient of
0.110 − 0.027 = 0.083. All the caveats discussed for the externally adjusted odds ratio apply to
this coefficient estimate as well.

Standard Error of the Externally Adjusted Estimate

Let VU be an estimate of the variance of ln(U ), and SE the estimated standard error for the unadjusted
estimate ln RRu or bu from the study under review. An estimate of the standard error of the externally
adjusted estimate ln(RRu/U ) or bu− ln(U) is then (VU + SE2)1/2. Suppose that RRc is the crude
relative-risk estimate from external data, RRa is a common relative-risk estimate from the same
data (e.g., a Mantel-Haenszel odds ratio or a logistic regression–based odds ratio), U = RRc/RRa,
and Vc and Va are variance estimates for ln RRc and ln RRa. Then VU may be estimated by Va − Vc,
provided that this quantity is positive (Greenland and Mickey, 1988).
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Unfortunately, if one of Va or Vc is unavailable (as in the examples given here), one will have
to employ the crude SE as the standard error of the externally adjusted estimate, and the result-
ing confidence interval will understate the uncertainty one should have about the final estimate.
Nonetheless, there will usually be much more uncertainty about the difference in confounding fac-
tors U between the two studies (the one supplying the estimate of U and the one being adjusted),
and that uncertainty will be much larger than indicated by the variance estimate VU.

Bounds for Confounding

As discussed in Chapter 19, one can conduct a sensitivity analysis (seeing how U varies over plausi-
ble values for its components) or a Bayesian analysis (averaging results over plausible values for the
U components) to take account of this uncertainty. One simple sensitivity analysis places bounds
on confounding based on plausible values for the associations that determine the confounding. Con-
sider bounds for the magnitude of confounding in studies involving a dichotomous exposure and a
dichotomous confounder. For case-control studies, the bounds are a function of the odds ratios for
the associations of the confounder with the exposure and the disease (see Chapter 19). In Rosenberg
et al. (1980), the association of current smoking versus nonsmoking seen among nondrinkers of
caffeine-containing coffee is around an odds ratio of 3, and the association of current smoking with
drinking caffeine-containing coffee among the controls is around an odds ratio of 2. From Table 1 of
Yanagawa (1984), a dichotomous confounder with an effect corresponding to an odds ratio of 3 and
an association with exposure corresponding to an odds ratio of 2 produce at most a 20% inflation in
the odds ratio relating exposure to outcome. This result suggests that the confounding factor U due
to current smoking versus nonsmoking must be less than 1.2. Nonetheless, this calculation does not
address additional confounding by amount smoked.

Unfortunately, the utility of such confounding bounds is limited. First, for small effects (relative
risks less than 2), even a small amount of confounding can be critical; second, in order to compute
the bounds, one must know the confounder–exposure association in the source population and the
confounder–outcome association conditional on exposure; third, the extent of confounding produced
by several variables or a single variable with more than two levels can greatly exceed the bounds
computed when treating the exposure variable as a single dichotomy. The data of Rosenberg et al.
(1980) provide an example: The crude odds ratio comparing five or more cups per day versus none is
2.0, whereas after logistic-regression adjustment for multiple variables (including multiple smoking
levels) it decreases to 1.4. In contrast, the 20% upper bound on confounding based on treating the
confounder as a single dichotomy is 1.2(1.4) = 1.7. Thus, the amount of confounding appears to be
much greater than that indicated by the computations for a dichotomous confounder. Note that there
is no limit on the amount of confounding that can be produced by a single dichotomous confounder
(Greenland, 2003c). Rather, the discrepancy occurs because dichotomization of a confounder with
multiple levels can make the degree of confounding appear much less than it actually is.

ADJUSTMENT FOR SELECTION BIAS AND MISCLASSIFICATION

Selection Bias

In rare situations, one can estimate exposure-specific selection probabilities and correct for selection
bias from available data (Chapter 19). Occasionally, one may be able to reduce bias in a study by
applying more strict exclusion criteria to the subjects and then reanalyzing the study using only
the subjects that meet the new criteria. For example, it has been observed that persons who are
hospitalized for chronic conditions exhibit lower coffee consumption than either persons hospital-
ized for acute conditions or persons in the general population (Rosenberg et al., 1981; Silverman et
al., 1983). On this basis, one might wish to reanalyze hospital-based case-control studies of coffee
effects after excluding controls hospitalized for chronic conditions.

In most situations, there will be sufficient information to reanalyze only the crude data, but in
such cases one can parallel external adjustment for confounding. Given a crude log relative-risk
(or coefficient) estimate bc, an uncorrected adjusted estimate ba, and a corrected crude estimate bcc

(e.g., the crude computed after restrictions), one can use Uc = bc − bcc as a correction factor to
obtain a corrected adjusted estimate ba − Uc. The assumption underlying this method is that the
selection bias in the crude estimate bc and the adjusted estimate ba are the same.
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The first Boston Collaborative Drug Surveillance Program study (1972) and the Jick et al.
study (1973) of coffee and myocardial infarction were criticized for their use of general hospital
control groups. Such control groups, it was argued, would underrepresent coffee consumption in the
source population because of reduced coffee consumption among controls with digestive disorders.
Rosenberg et al. (1981) and Silverman et al. (1983) offered evidence in support of this hypothesis,
showing lower coffee consumption among patients hospitalized for chronic conditions than among
patients hospitalized for acute conditions (e.g., fractures). Jick (1981) responded to these criticisms
by publishing a comparison of coffee consumption among controls with chronic conditions and
those with acute conditions in the Jick et al. study (1973). The data in Jick (1981, Table 1) exhibit
an average rate of drinking one to five cups per day that is higher among the acute controls: The
(exposure) odds of drinking one to five cups versus none is 3.65 among the acute controls versus
2.61 among all the controls. For six or more cups per day versus none, these figures become 0.44 and
0.45, respectively. The crude logistic coefficient when only the acute controls are used is 0.104, as
opposed to 0.108 when all controls are used, indicating a net upward bias of 0.004 when all controls
are used. This quantity can be subtracted as a selection-bias correction from the coefficients in
the Boston Collaborative Drug Surveillance Program study and the Jick et al. study. When this
correction is added to the smoking correction factor of −0.027 estimated in example 2, the total
correction becomes −0.031, yielding 0.11 − 0.031 = 0.079 for Jick et al. in Table 2. The small
value of the selection-bias correction is actually in accord with the findings of Rosenberg et al.
(1981), because the differences in coffee consumption between acute and chronic controls in the
latter report were also not large enough to alter importantly the Jick et al. results.

In theory, the selection-bias correction U can be estimated from other studies, but if the pa-
rameters determining bias (here, the selection probabilities and their associations with the study
factors) vary across studies, external correction could increase bias. Nevertheless, external estimates
may still serve as a starting point for a sensitivity analysis of selection bias, in which one experi-
ments with various plausible values for the selection probabilities to assess the likely effect of bias
(Chapter 19).

Misclassification

Given estimates of the classification rates of key measures used in a study and a detailed tabulation of
the original data, one can apply correction formulas for misclassification to the tabulation and obtain
corrected effect estimates from the resulting corrected tabulations (Chapter 19). If this correction
cannot be done, one may of course resort to more informal speculation about the direction and
magnitude of the bias. Such speculation may be based on a sensitivity analysis, in which one
experiments with plausible values for the data tabulations and classification rates in order to assess
the likely effect of misclassification of exposure, disease, or confounders; again, see Chapter 19
for details. Note that confounder misclassification can be as important as exposure and disease
misclassification, because misclassification of confounders will introduce confounding into adjusted
estimates (Greenland, 1980; see Chapter 9).

REGRESSION ON RATES AND RATIOS

Results concerning an ordered exposure variable are often presented in terms of exposure-level-
specific rates or ratios, and these ratios are usually computed without taking account of the ordering
of exposure levels. It is often possible to estimate an exposure coefficient from such presentations
using approximate inverse-variance weighted methods. The relevant criterion for application of
these methods is that the study-specific estimates (log-rate, logit-risk, or log-ratio estimates) are
approximately normally distributed. Simulation studies (Howe, 1983; Walker, 1985) indicate that
such a criterion will be approximated if the expectations of the counts contributing to the rates
or ratios are 4 or greater. Analysis of studies too small to meet such a criterion will be discussed
later.

Rates and Risks

If crude or adjusted incidence rates or proportions and their estimated standard errors are given, the
coefficient for exposure in an exponential or logistic model may be estimated by weighted linear
regression of log rate or logit risk on exposure level. For log person-time rates, the appropriate
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weights are (R/SE)2, where R is the exposure-specific rate and SE is its standard error on the
original (untransformed) scale. For the logit of a proportion, ln[R/(l − R)], the appropriate weights
are [R(1 − R)/SE]2, where R is the exposure-specific proportion (risk). If 95% confidence limits
are given instead of standard errors and the limits are arithmetically symmetric about the rates, that
is, if R − R = R− R, the standard errors may be estimated as SE = (R− R)/3.92, where R and R
are the upper and lower confidence limits. If 95% confidence limits are given and the limits appear
proportionally symmetric about the rates, that is, if R/R = R/R, the standard errors for the rates
may be estimated as SE = R[ln(R/R)/3.92].

Often, no standard error or confidence interval for the rates is given. If, however, the report gives
the size of the denominator for the rate in each exposure group, ad hoc approximate standard errors
can be computed in the following manner:

1. If N is the amount of person-time contributing to person-time rate R in a group, an ad hoc
standard error for R is (R/N )1/2, yielding a weight of RN for ln(R).

2. If N and R instead represent the number of persons and proportion with the outcome in a group,
an ad hoc standard error for R is [R(1 − R)/N ]1/2, yielding a weight of R(1 − R)N for logit(R).

These estimates are appropriate if the rates under consideration are crude (unadjusted) rates; other-
wise, they may incorporate considerable absolute bias. Because only relative weighting is important
for point estimation, no error in the coefficient estimate will arise even if there are biases in the
weights, as long as these biases are proportional across exposure levels. Even if the biases are not
proportional, they must be large in order to produce large error in the coefficient estimate. Biases
in the estimated weights may, however, produce bias in the standard error of the coefficient as
computed by the regression program, even if the bias is uniform across exposure groups.

When computing the weighted regression estimates discussed here, the coefficient standard
error supplied by standard linear least-squares regression programs will not be valid (Greenland
and Engleman, 1988). For univariate regressions, a valid large-sample standard-error estimate may
be computed as the inverse square root of the weighted sum of squared deviations of the regressor
from its weighted mean. This approach is illustrated next.

The following data on coffee consumption and myocardial infarction incidence are derived from
Table 1 of Yano et al. (1977):

Directly Age-Standardized
Cups of Coffee per Day Coffee Code Persons (N ) Incidence (per 1,000)

0 0.0 1,235 14.5
1–2 1.8 2,484 17.2
3–4 3.4 2,068 19.7
5+ 7.0 1,918 16.9

The ad hoc standard-error estimate for the zero-cup incidence of 14.5/1,000 = 0.0145 is
[0.0145(1 − 0.0145)/1,235]1/2 = 0.00340, yielding a weight of 0.0145(1 − 0.0145)1,235 = 17.6;
the weights for the remaining incidences are 42.0, 39.9, and 31.9, respectively.

The logit of the zero-cup incidence is ln[0.145/(1 − 0.0145)] = −4.22; the logits of the re-
maining incidences are −4.05, −3.91, and −4.06, respectively. Use of these weights for a linear
regression of the logits on coffee consumption (coding 1 to 2 cups as 1.8, 3 to 4 cups as 3.4, and 5+
cups as 7, a coding scheme based on the histogram of coffee consumption given in Table 1 of Yano et
al.) yields a coefficient estimate of 0.012. The sum of the weights is 131.4; the weighted mean coffee
consumption is [17.6(0.0) + 42.0(1.8) + 39.9(3.4) + 31.9(7.0)]/131.4 = 3.31; and the weighted
sum of squared deviations from this mean is [17.6(0.0 − 3.31)2 + . . . + 31.9(7.0 − 3.31)2] = 723.
This sum yields an estimated standard error for the coffee coefficient of 1/7231/2 = 0.0372.

Standardized Morbidity Ratios Derived Using an External Reference
Population

A standardized morbidity ratio (SMR), or observed/expected ratio, is often constructed by com-
puting the expected values based on some external reference population. These external reference
rates are usually assumed to be known without error, such as general U.S. population rates. In such
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instances, an estimate of the exposure coefficient in an exponential regression may be obtained
from a weighted linear regression of ln(SMR) on exposure. The appropriate weighting for such a
regression is 1/SE2, where SE is the standard error of ln(SMR). If proportionally symmetric 95%
confidence intervals are given for each SMR, the standard error for ln(SMR) may be estimated as
SE = ln(SMR/SMR)/3.92, where SMR and SMR are the upper and lower confidence limits. If the
report gives no standard error or confidence interval but gives A, the number of cases observed in
each exposure group, 1/A will estimate the squared standard error of ln(SMR), and so A may be
taken as the regression weight.

Suppose now that the report does not give standard errors or confidence intervals for SMR or
ln(SMR), or the number of cases in each exposure group. If the report gives A+, the total number of
cases of the outcome under study, and for each exposure group gives N , the number of person-years
or persons in the group, one can compute a crude “null” weight for each ln(SMR) as NA+/N+,
where N+ is the total of the N across groups.

As an example, the initial Framingham report on coffee and heart disease (Dawber et al., 1974)
did not provide the total number of cases in each exposure or outcome category. Although the coffee-
specific numbers of cases were no longer available, Dr. Paul Sorlie of the National Heart, Lung,
and Blood Institute kindly provided an estimate of the total number of myocardial infarction cases.
This estimated total number of cases, A+ = 138, and the total number of men starting follow-up,
N+ = 1,992, were then used to construct crude estimates of the total number of cases expected in
each coffee-consumption category under the null hypothesis of no association between coffee and
myocardial infarction. For example, the number of drinkers of two cups of coffee per day out of
the total starting follow-up was 486 (Dawber et al., 1974, Table 4); the crude null expected number
of infarction cases among drinkers of two cups per day is thus 138(486)/1,992 = 33.7, which
is taken as the weight for the ln(SMR) for myocardial infarction among drinkers of two cups
per day.

An “indirectly adjusted” rate is often defined as the exposure-specific SMR multiplied by the
overall crude rate in the reference population (Porta, 2008). Therefore, the aforementioned SMR
techniques (and weights) may also be applied with the indirectly adjusted rate replacing SMR. Note
that ln(SMR) = ln(R j )− ln(R+), where R j is the exposure-specific indirectly adjusted rate and
R+ is the overall crude rate in the reference population. As a consequence, the coefficients from a
regression using indirectly adjusted rates are the same as from SMR regression; only the intercept
is changed.

Strictly speaking, comparisons of standardized morbidity ratios (and thus indirectly adjusted
rates) with one another are invalid unless all stratum-specific study population rates are a constant
multiple of the specific reference population rates (Breslow et al., 1983). Thus, regressions using
ln(SMR) as the outcome will be biased unless the latter condition holds. The extent of this bias
will be small, however, unless large departures from multiplicativity are present (Breslow et al.,
1983).

Ratios Derived Using an Internal Reference Group

When a report presents results in terms of relative-risk estimates that are computed using an internal
exposure group as referent, one can perform a weighted linear regression of the log relative risk on
exposure. Because the log relative risk for the reference level is necessarily 0 (corresponding to a
relative risk of 1), the computations employ only the nonreference exposure groups, and the fitted
line must be forced to pass through 0 when the exposure is at the reference level. The latter is easily
accomplished with most regression programs by recoding (if necessary) the exposure values so that
the reference level is 0 and specifying “no intercept” or “intercept = 0” in the program.

Because the numbers in the reference group are subject to statistical error and are employed
in all the log relative-risk estimates, the estimates derived from these numbers will have nonzero
covariances. The optimal weighting scheme would take account of these covariances (and would
require matrix inversion for derivation), but in most cases the data are not presented in sufficient detail
to allow computation of these covariances. If they were, one could merely reanalyze the whole data
set by using a nonlinear regression program. The regression may still be performed (with possible
bias and loss in efficiency) by weighting each log relative-risk estimate by 1/SE2 (where SE is its
estimated standard error) and ignoring the covariances among the estimates. Alternatively, one may
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estimate the covariances using a procedure given by Greenland and Longnecker (1992); see Orsini
et al. (2006) for a Stata program to do this.

ESTIMATION FROM REPORTS EMPLOYING ONLY BROAD
EXPOSURE CATEGORIES

Many reports treat continuous exposures in a categorical fashion and provide relative-risk estimates
only for broad categories of exposure. For example, the study of coffee and myocardial infarction by
Klatsky et al. (1973) recorded and analyzed coffee consumption as “six or fewer cups per day/over
six cups per day.” In such cases, it is necessary to assign numeric values (codes) to the categories
before estimating the exposure coefficient from the study. When the categories are broad, results
may be sensitive to the method of assignment (Greenland, 1995b, 1995c).

One needs to know the distributions of exposure within categories to make a good assignment,
especially when attempting to estimate a nonlinear regression coefficient (as in Cox and logistic
models) (Greenland, 1995b, 1995c). If these distributions are unknown, a common method is to
assign category midpoints to categories; unfortunately, this method gives no answer for open-ended
categories (e.g., “over six cups per day”). An alternative is to assume a distributional shape for
exposure (e.g., normality); one can then calculate category means from the category boundaries
(Chene and Thompson, 1996).

Suppose now that one has a detailed frequency distribution for exposure, preferably from the
data in question but, if not, then from a study of a population with a similar exposure distribution.
One may then use this distribution to estimate category means. Consider the distribution of coffee
consumption among men in the original Framingham cohort (Dawber et al., 1974; Table 4):

Cups/day 0 1 2 3 4 5 6 7+
Men (N ) 170 363 486 381 220 141 102 129

From these data, we see that the mean coffee consumption among drinkers of zero to six cups
per day was about 2.5 in the Framingham study. We may use this value as an external estimate of
the mean consumption among drinkers of zero to six cups per day in the Klatsky et al. study (1973).
This estimate assumes that the distributions in the two studies had similar means among drinkers
of zero to six cups per day.

Suppose now that we estimate the mean consumptions in the Klatsky et al. study to be 2.5 in
the category zero to six cups and 8.5 in the category 7+ cups. The Mantel-Haenszel odds ratio for
seven or more cups versus six or fewer cups was 0.77 in the study (the estimate was computed from
the “risk” controls and percentages given in Table 2 of Klatsky et al.). This odds ratio is an estimate
of the effect of 8.5 cups versus 2.5 cups per day. We thus solve the equation exp[b(8.5 − 2.5)] =
0.77 to obtain the coefficient estimate b = ln(0.77)/(8.5 − 2.5) = −0.044.

An indication of the sensitivity of the results to the assignments is given by noting that if one had
assigned 3 (the category midpoint) to six or fewer cups and 7 to seven or more cups, the coefficient
estimate would have been b = ln(0.77)/(7 − 3) = −0.065, or 50% greater. This sensitivity points
out the need to use the best information available in making assignments. Note that means are not
necessarily the “best” assignment values: Even if one had the true category means, the resulting
estimate could still be biased by the categorization (Greenland, 1995c).

ESTIMATION OF COEFFICIENTS FROM REPORTS PRESENTING
ONLY MEAN EXPOSURE LEVELS

Before 1980, many reports presented results for continuous exposures in terms of mean exposure
levels among cases and noncases, rather than in modern terms of relative-risk estimates or relative-
risk functions; such reports still occasionally appear. If such a report supplies a cross-classification
of the data by exposure levels and outcome status, crude relative-risk and coefficient estimates can
be computed from this cross-classification. If no such cross-classification is reported but standard
errors for the means are given, crude logistic coefficient estimates can be constructed by the linear
discriminant-function method (Cornfield, 1962). See Greenland (1987d) and Chene and Thompson
(1996) for further details and an illustration of this method.
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REPORTING THE RESULTS

It is important that a meta-analyst presents the basic details of each study supplying data on the
topic under study. This requirement can be met in a table that provides essentials such as the primary
author, year, design, crude data, and derived summary estimates of each study, as in Table 33–1. The
inclusion of the individual study results allows readers to check the summaries used against what
was given in the original reports, and to check meta-analytic results against their own impression

ˆ

ˆ

ˆ

ˆ
T A B L E 3 3 – 1

Summary of Reanalyses for Cohort Studies of Coffee and Myocardial
Infarction or Coronary Death up to 1992

Cases % ≥ n Standard Rate Ratio, Follow-up
Study Outcome (n) Cupsa Coeffb Errorb Weight 5 Cups/d (y)

Klatsky et al.
(1973)c

M 464 22 ≥ 7 −44 29 1,171 0.80 6

Dawber et al.
(1974)

M 322 15 ≥ 5 −39d 40 625 0.82 12

Wilhelmsene

et al. (1977)
M 60 50 ≥ 5 109 153 43 1.72 12

Heyden et al.
(1978)

D 36 13 ≥ 5 −44d 76 5 0.80 4.5

Murray et al.
(1981)

D 721 31 ≥ 5 −4 19 2,921 0.98 11.5

La Croix et al.
(1986)

C 37 13 ≥ 5 86 58 294 1.54 25

Jacobsen et
al.e (1986)

D 941 37 ≥ 5 −3 19 2,887 0.99 11.5

Yano et al.
(1987)

C 730 25 ≥ 5 49 36 766 1.28 15

LeGrady et al.
(1987)

D 232 53 ≥ 4 82 27 1,351 1.51 19

Klatsky et al.
(1990)

M 724 17 ≥ 4 68 19 2,746 1.40 5

Grobbee et al.
(1990)

DM 221 20 ≥ 4 4 30 1,076 1.02 2

Tverdal et al.e

(1990)
D 184 57 ≥ 5 86 35 825 1.54 6.4

Rosengren and
Wilhelmsene

(1991)

DM 399 44 ≥ 5 31 26 1,504 1.17 7.1

Lindsted et al.
(1992)

D NG 10 ≥ 3 86 21 2,166 1.53 26

C, coronary disease incidence; D, coronary death; DM, coronary death or myocardial infarction; M, myocardial infarction (La Croix et al.,
1986, included angina); NG, quantity not given in study report.

a Percentage of cohort drinking at least given number of cups per day; for example, 22 ≥ 5 indicates 22% of subjects reported drinking five
or more cups per day.

b Times 1,000, rounded to nearest thousandth. Coefficients represent estimated increments in log rate or logit risk per cup of coffee per day.
c Case-control within cohort (nested case-control) study.
d “Corrected” coefficient: uncorrected coefficient plus external adjustment.
e Scandinavian study.
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or analysis of the table. Reanalysis by others can be especially important in literature overviews,
as meta-analyses can be done many ways and need not resolve conflicts and controversies. A
prominent example of a failed replication of a published meta-analysis involved mammographic
screening for breast cancer, in which a reanalysis attributed all the negative conclusions of the
original meta-analysis to errors in the latter (Freedman et al., 2004).

STATISTICAL METHODS FOR META-ANALYSIS

The fundamental meta-analytic approach emphasized here is based on weighted regression, which
treats each study result b (where b is either a log relative risk or coefficient estimate) as the dependent
variable with an accompanying weight. If sufficient data from each study are available, a likelihood-
based approach can be used, but the weighted approach is simpler to understand and to apply, and
the required computations can be carried out more easily (Chapter 8.4 of Cox, 2006). Furthermore,
if the study likelihoods are approximately normal—which will be the situation when all the studies
have adequate size—the results of the two approaches will be close.

The conventional statistical component of a study weight, w , is the inverse variance or precision
of the result, computed from the estimated standard error, SE, as 1/SE2. This quantity need not
(and arguably should not) be the only component of the weight; for example, discarded studies are
studies with zero weight, regardless of the value of 1/SE2. There can sometimes be good reason
for downweighting but not discarding a study, as when the uncertainty of a result is not entirely
reflected by the computed standard-error estimate (Cox, 1982). This added uncertainty can be
especially large when there are uncontrolled sources of potential bias. For example, after external
adjustment, one could legitimately argue that the weight of the corrected coefficient should be less
than that computed from the standard error of the original unadjusted estimate, because the original
standard error reflects neither the error in estimating the correction term nor the bias from applying
the correction to a new, noncomparable study setting. Decisions to discard or downweight studies
based on unquantified problems (e.g., questions of case identification) need careful explanation
in the report, however, and should best be made before the statistical meta-analysis, lest they be
influenced by the results of the latter.

It can be problematic to determine the appropriate degree of downweighting. Although suspect
results or extreme “outliers” among the results can often be identified, one usually cannot quantify all
the error beyond that reflected in the original standard-error estimate. Furthermore, downweighting
cannot rectify problems that tend toward a particular direction, such as biases from simple forms of
classification error. These problems can be dealt with to some extent via sensitivity and influence
analysis, as discussed in Chapter 19 and at the end of this section, respectively. An alternative to
downweighting that does account for directional problems is bias analysis using prior distributions
for study-specific bias parameters in the meta-analysis (Eddy et al., 1992; Greenland, 2003c, 2005b;
Chapter 19).

BASIC METHODS

Descriptive and Graphical Analyses

In addition to study description (e.g., number of cases and noncases), a review should present a
table of the results of the study reanalyses, showing at least the point estimate, net correction, and
standard error or confidence interval from each study. Such tables can make it easy to detect patterns
in the results as well as facilitate reanalysis of the meta-analysis by third parties. When there are
many studies, a graphical picture can be provided by a weighted histogram of the study results
(Greenland, 1987d) or by a plot of the study-specific confidence intervals (Walker et al., 1988) or
other study-specific summaries.

Tables 33–1 and 33–2 present the results of reanalyses of studies of coffee consumption and
myocardial infarction or sudden coronary death published up to 1992, and one unpublished study by
Ulrik Gerdes from the same period; it omits one small case-control study of 64 myocardial infarction
patients (Mann and Thorogood, 1975). Details of the studies and their selection are omitted here;
see Greenland (1993e) for further information, as well as a discussion of the studies through 1992
as they pertain to possible effects of coffee on heart disease. Studies of this topic continue to be
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ˆ

ˆ

ˆ

ˆ
T A B L E 3 3 – 2

Summary of Reanalyses for Case-Control Studies of Coffee and Myocardial
Infarction or Coronary Death up to 1992

Cases % ≥ n Standard Rate Ratio,
Study Outcome (n) Cupsa Coeffb Errorb Weight 5 cups/d

Boston Collaborative (1972) M 276 9 ≥ 6 66 36 772 1.39
Jick et al. (1973) M 440 11 ≥ 6 79 24 1,736 1.48
Hennekens et al. (1976) D 649 NG 30 43 538 1.16
Wilhelmsen et al.c (1977) M 230 50 ≥ 5 62 23 1,890 1.36
Rosenberg et al. (1987) M 491 22 ≥ 5 70 22 2,141 1.42
Rosenberg et al. (1988) M 1541 28 ≥ 5 74 15 4,526 1.45
La Vecchia et al. (1989) M 262 23 ≥ 4 120 46 465 1.82
Gerdesc (1992) M 57 61 ≥ 5 31 52 367 1.17

D, coronary death; M, myocardial infarction.
a Percentage of controls drinking at least given number of cups per day; for example, 22 ≥ 5 indicates 22% of subjects reported drinking five

or more cups per day.
b Times 1,000, rounded to nearest thousandth. Coefficients represent estimated increments in log rate or logit risk per cup of coffee per day.
c Scandinavian study.

published and continue to exhibit somewhat conflicting results (e.g., Klag et al., 1994; Palmer et
al., 1995; Willett et al., 1996; and Stensvold et al., 1996).

The studies in Tables 33–1 and 33–2 were reanalyzed as necessary by the methods described
earlier. Net correction values represent estimated corrections to the original coefficients, primarily
for incomplete smoking adjustment. Because of space limitations, the derivations of all the quantities
in the tables are not given here; the earlier examples provide representative illustrations. The findings
of this meta-analysis are insensitive to the exact values of these quantities.

One can construct and compare separate tables, histograms, and plots for different subgroups
of studies (e.g., case-control vs. cohort studies). If the studies have associated quantitative char-
acteristics (e.g., year of conduct), their point and interval estimates can be plotted against these
characteristics. Bimodal (or multimodal) distributions are indicative of two (or multiple) distinct
sets of studies with different expectations for their effect estimates; one may be able to identify a
factor associated with proximity to a particular mode. Similarly, outlier studies may be identified
in a histogram or graph, and one may be able to identify some characteristics unique to the outlier
as possible explanations of the results.

One may sometimes be alerted to bias in the identification of studies by the shape of the histogram
of study results (Light and Pillemer, 1984). For example, if a review is based solely on published
reports and there is a bias against publishing studies that report no effect, the histogram of results
from published reports will be depressed in the region of zero effect. As a consequence, if the
study exposure has no effect, the histogram will likely show a bimodal distribution with clusters of
positive and negative estimates; if the study exposure has an effect, the histogram will likely show a
distribution skewed away from 0. In either case, one should expect to see the pattern most strongly
among studies with smaller weight, such as small studies, because small studies are more likely to
go unpublished (Dickersin, 1990).

Another graphical method of identifying possible divergence in study results is the funnel display
(Light and Pillemer, 1984), in which results are plotted against a measure of precision, such as sample
size or weight. If all studies are estimating a similar value for the effect, the spread of results should
become narrow as precision increases, forming a funnel-like shape if enough studies are plotted. As
with histograms, such displays may also signal the existence of a bias in the identification of studies
via gaps in the display. For example, underrepresentation of studies reporting no effect will result
in a gap or sparsity of the display in the region around zero effect and low precision. Unfortunately,
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large numbers of studies are needed to distinguish actual from imagined patterns (Dickersin and
Berlin, 1992; Greenland, 1994d). A test for publication bias in a funnel display is given by Begg
and Mazumdar (1994); unfortunately this test has very low power in typical settings. Model-based
methods for sensitivity analysis of certain types of publication bias have also been proposed (Copas,
1999; Shi and Copas, 2002).

One can graphically summarize studies by plotting the point estimates and confidence intervals.
Some care is needed in the scaling of such a plot. The relative-risk scale has the disadvantage
of making a confidence interval from, say, 0.2 to 1.0 appear much more precise than a confidence
interval from 1.0 to 5.0, even though both intervals would arise from the same degree of imprecision
(statistical variability) on the log scale. This problem can be avoided by plotting the relative risks
on a logarithmic scale (Rifat, 1990). (Note that logistic and Cox model coefficients correspond to
log relative-risk estimates, and so require no transformation before plotting.) See Chapter 17 for
further discussion of plot scaling. Walker et al. (1988) have studied the statistical properties of
certain summaries derived by plotting relative-risk confidence intervals.

Weighted Averages

A weighted mean (or pooled summary) b of the study results is a weighted sum of the results,∑
wb, divided by the sum of the weights,

∑
w . Table 33–3 gives b, separately calculated using

precision (inverse-variance) weights w = 1/SE2 for the cohort studies and case-control studies. It
also provides the conversion of each b into a rate-ratio estimate for the effect of five cups per day
versus none via the formula exp[b(5 − 0)].

The appropriateness of the precision-weighted mean as a meta-analytic summary of the effect
under study depends on a very stringent homogeneity assumption. This assumption states that the
studies are estimating the same value for the effect; that is, after considering the extent of real
effect and bias in each study, the studies should on average yield the same value, so that differences
between the estimates are due entirely to random error. Under this assumption, the precision-
weighted mean is an appropriate estimate of the (common) value being estimated by the studies,
and an estimate s of the standard error of this mean is the inverse of the square root of the sum of
the weights, s = 1/(

∑
w)1/2. Approximate 95% confidence limits for the assumed common value

are given by exp(b ± 1.96s). A test statistic for whether the assumed common value is 0 is given by
Z = b/s, which has an approximate standard normal distribution if the assumed common value is 0.

ˆ

ˆ

ˆ

ˆ
T A B L E 3 3 – 3

Summary Statistics for Meta-Analysis

All Cohort Cohort

Case-Control Fixeda Random Later (≥ 1986) Earlier (≤ 1981)

Average coefficient (b )b 70.20 31.40 32.50 48.50 −17.40
Standard error (SE) of (b )b 9.00 7.40 13.30 8.60 14.50
Rate ratio (RR) for 5 cups/dc 1.42 1.17 1.18 1.27 0.92
95% Confidence limits for RR 1.30, 1.55 1.09, 1.26 1.03, 1.34 1.17, 1.39 0.80, 1.06
Z -statistic (b /SE) 7.83 4.26 2.46 5.65 −1.20
Homogeneity chi-squared 2.93 35.10 17.40 2.34
Degrees of freedom 7 13 8 4
Homogeneity P -value 0.89 0.0008 0.03 0.67

All computations are based on the corrected coefficients. “Fixed” refers to fixed-effects mean; “random” to random-effects mean.
a Valid only under homogeneity hypothesis.
b Times 1,000; b is weighted-average coefficient using inverse-variance weights; SE is square root of inverse sum of weights.
c Estimated weighted geometric mean rate ratio exp(5b ).
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Table 33–3 also provides these statistics separately for the case-control and cohort studies in Tables
33–1 and 33–2.

If tabular data are available from each study, one may be able to construct summary estimates of
a common effect via Mantel-Haenszel or maximum-likelihood methods (see Chapter 15). Although
based on the same homogeneity assumption as the precision-weighted mean b, these estimates have
better statistical properties than b when several of the studies are very small. Unfortunately, many
reports do not provide enough information to allow them to contribute directly to a summary based
on these methods.

Homogeneity Assumptions versus Reality

As many authors have stressed, analysis of heterogeneity can be the most important function of meta-
analysis, often more important than computing a fictional common or “average” effect (Pearson,
1904; Light and Pillemer, 1984; Greenland, 1987d, 1994d; L’Abbe et al., 1987; Bailey, 1987; Rubin
1990b, 1992; Dickersin and Berlin, 1992; Hertz-Picciotto and Neutra, 1994; Thompson, 1994;
Pettiti, 1994b; Berlin, 1995). Finding or confirming systematic variation in study results, along
with exploring such variation, can be particularly valuable in planning further studies, because one
might want to concentrate resources on populations in which effects are strongest and to identify
study designs that give the most accurate results for the problem at hand.

There is ordinarily no basis for assuming that the true relative risk or coefficient is constant
across study populations. In fact, many situations imply heterogeneity instead; for example, simple
variation in background rates can produce large variation in the rate ratio, if the exposure effect is
to add a constant amount to the background rate (see Chapters 4 and 15). Thus, whereas the pooled
statistics given thus far may be useful for detecting the existence of an effect, it will always be
more accurate to picture the effect as a function of other variables rather than as a single number
(Greenland, 1987d; Rubin, 1992). The typical range of this function may be a useful summary but
cannot in general be estimated accurately. Unfortunately, the standard error and confidence limits
given earlier for the common effect will not adequately reflect the variability and range of effects
if important heterogeneity is present.

Even if the effect of a single well-defined exposure is assumed constant across every study
population, there will still be little reason to assume that the estimates will not vary systematically
across studies, because some bias is usually present in nonexperimental studies and this bias will
vary across studies. In addition, the exposure being studied will usually vary somewhat across
studies, and this will contribute to variation in effect. For example, some studies of coffee and
myocardial infarction measured coffee consumption at a baseline examination, whereas other studies
measured coffee consumption immediately before the outcome event. This is not just a difference
in measurement, but a difference in the actual exposure being measured. Despite such differences,
both types of study address the same general issue of whether coffee consumption affects infarction
risk and so would be included in the same review.

To summarize, one should regard any homogeneity assumption as extremely unlikely to be
satisfied, given the differences in covariates, bias, and exposure variables among the studies. The
question at issue in employing the assumption is whether the existing heterogeneity is small enough
relative to other sources of variation to be reasonably ignored. A statistical test of homogeneity can
serve as a warning light with high specificity but low sensitivity: Small P-values indicate that the
heterogeneity should not be ignored, but large P-values do not indicate that it can be safely ignored.
The same warning applies to tests of publication bias, and for that matter, to all statistical tests; see
Chapter 10.

Basic Statistical Analysis of Heterogeneity

The most elementary form of heterogeneity analysis involves pairwise comparisons of studies. Given
a pair of studies, the difference between their results has a standard error equal to the square root of
the sum of the squared standard errors of the two results. This standard error of the difference can
be used to construct confidence limits and a test statistic for the difference between the two studies.

In Table 33–2, the difference in the coefficient estimates from the Jick et al. (1973) and Hennekens
et al. (1976) studies is 0.079 − 0.031 = 0.048; this has a standard-error estimate of (0.0242 +
0.0432)1/2 = 0.049. The point estimate for the ratio of the estimated effects of x = five cups per
day from the two studies is then exp[0.048(5)] = 1.3, with 95% confidence limits of exp{[0.048 ±
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1.96(0.049)]5}= 0.79, 2.1. The Z -statistic is 0.048/0.049 = 0.98, which yields P = 0.3. This type
of finding, essentially indeterminate with respect to homogeneity, is probably the most common
outcome of single-study comparisons. More helpful results can often be obtained by grouping of
studies or by meta-regression, as discussed below.

For multiple studies, a statistical test of the homogeneity assumption is given by X2
h = ∑

w(b −
b)2, which, if the studies are estimating the same value for the effect, has a chi-squared distribution
with degrees of freedom one less than the number of studies. When only two studies are being
tested, X2

h is just the square of the Z -statistic for comparing two studies. For all the studies in Tables
33–1 and 33–2, X2

h = 49 on 21 degrees of freedom (P = 0.0005). Table 33–3 gives X2
h and the

corresponding degrees of freedom and P value for the cohort and case-control studies considered
separately. The P value from all studies is very small, in part because of the disparity between the
cohort and case-control results and in part because of the heterogeneity among the cohort-study
results.

Because a large P-value should not be taken as justifying the homogeneity assumption, one
should always refer to the tabular and visual displays to see if the spread of results appears consis-
tent with the notion of only random differences among the studies. A graphical check of statistical
variation in the results can be obtained by placing the Z -scores, (b − b)/SE, in a histogram; under
the hypothesis of only random differences among the studies, this histogram should have an ap-
proximately normal shape. Large absolute Z -scores can signal important departures of individual
studies from the average result.

The homogeneity assumption can be further assessed by partitioning the studies along character-
istics likely to be associated with heterogeneity. For instance, suppose that the studies are partitioned
into K groups numbered 1 to K (e.g., two groups: group 1 consisting of the cohort studies and group
2 consisting of the case-control studies), within which the homogeneity assumption is thought to
hold approximately. Let bk be the precision-weighted mean result within group k, wk the sum of

weights from group k, and sk = 1/w1/2
k the estimated standard error of bk . The estimated difference

between the quantities being estimated in groups i and j is di j = bi − b j under the assumption of
within-group homogeneity, this has a standard-error estimate sd = (1/wi + 1/w j )

1/2. If x repre-

sents an exposure difference of interest, then exp(di j x) is a point estimate of the ratio of the relative

risks from the two groups, and exp[(di j ± 1.96sd)x] is a 95% confidence interval for this ratio; a

Z -statistic for the hypothesis of no difference between the groups is Zg = di j/sd.

The difference between the case-control and cohort results in Tables 33–1 and 33–2 is d21 = b2 −
b1 = (0.070 − 0.031) = 0.039, with standard-error estimate sd = (1/18,380 + 1/12,435)1/2 =
0.012. The point estimate and 95% confidence limits, respectively, for the ratio of the case-
control and cohort estimated effects of x = five cups per day are then exp[0.039(5)] = 1.2 and
exp([0.039 ± 1.96(0.012)]5) = 1.1, 1.4. The Z -statistic is 0.039/0.012 = 3.3, yielding P = 0.001.
These results indicate that the case-control studies have tended to estimate a larger value for the cof-
fee effect than the cohort studies. Nevertheless, the confidence interval is too narrow because of the
severe heterogeneity among the cohort studies, which results in sd = 0.012 being an underestimate.

A global test statistic for any difference among groups is given by X2
g = ∑

wk(bk − b)2, where
b is the precision-weighted mean of all the studies. If all the studies are estimating a common value,
X2

g will have a chi-squared distribution with degrees of freedom equal to one less than the number
of groups. Note that b can be computed directly from the bk via the formula b = ∑

wk bk/
∑

wk ,
where the sums are over k; the standard-error estimate for b is s = 1/(

∑
wk)1/2. From Table 33–3,

X2
g = 18,380(0.031 − 0.047)2 + 12,435(0.070 − 0.047)2 = 11, with one degree of freedom, which

yields P = 0.001. To within rounding error, X2
g is the square of Zg = 3.3 from the last example,

and b = 0.047 = [18,380(0.031) + 12,435(0.070)]/(18,380 + 12,435).
If there is important within-group heterogeneity (i.e., heterogeneity unaccounted for by the

grouping variable), sd will tend to underestimate the true standard error of di j ; as a consequence,
the confidence interval and test based on sd will not be valid. One may test for within-group
heterogeneity by computing the residual-heterogeneity chi-squared X2

r = X2
h − X2

g. The degrees of
freedom for X2

r is equal to the difference between the number of studies and the number of groups.
For the studies in Tables 33–1 and 33–2, X2

r = 49 − 11 = 38 on 22 − 2 = 20 degrees of freedom,
P = 0.001, strongly indicative of heterogeneity within the case-control or cohort groups. As may
be apparent from Tables 33–1 and 33–2, this result is attributable to severe heterogeneity among the



P1: TNL Printer: RRD

GRBT241-33 GRBT241-v4.cls January 30, 2008 1:27

Chapter 33 ● Meta-Analysis 673

cohort studies, especially between the earlier (pre-1982) and later (post-1985) cohort studies. There
is no more heterogeneity among the case-control studies than one would expect from sampling
variation.

META-REGRESSION METHODS

If more than two groups of studies have been formed and the characteristic used for grouping is
ordered, greater power to identify sources of heterogeneity may be obtained by regressing study
results on the characteristic. Such meta-regression or effect-size modeling also allows simultaneous
examination of multiple characteristics.

With meta-regression, it is not necessary or even desirable to group the studies. Instead, the
individual study results can be entered directly in the analysis. For example, suppose that for each
cohort study one has the follow-up time t , in addition to a coefficient estimate b and a weight w .
Consider a simple linear model for the dependence of the study-specific expected coefficient on
time t : E(b|t) = μ + θ t . The parameters in this model can be estimated using any standard linear-
regression program that allows the use of weights. Each study becomes a “subject” (observed unit)
in the input data file. In this meta-analysis file, the coefficient estimate b is the outcome or dependent
variable for each study, and the follow-up time t is the independent variable. The coefficient estimate∧
θ given by the program then serves as an estimate of the “meta-coefficient” θ in the linear model for
E(b|t). If x is an exposure difference of interest and b represents change in log rate or logit risk per
unit change in exposure, exp(

∧
θ�t x) is an estimate of the ratio of the relative risk being estimated

by studies with a follow-up time of t + �t to the relative risk estimated by studies with a follow-up
time of t .

Two useful quantities produced by a meta-regression are the residual degrees of freedom and
the residual sum of squares. The residual degrees of freedom df is the number of studies used in
the regression minus the number of parameters in the model (intercept and meta-coefficients). In
a regression of the cohort-study estimates in Table 33–1 on follow-up time, df would be 12:14
studies minus two parameters, μ and θ . The weighted residual sum of squares, RSS, from the
meta-regression is the weighted sum of the squared residuals,

RSS =
∑

wk(bk − ∧
bk)2

where
∧
bk is the fitted (predicted) value of the coefficient in study k and the sum is over all the

studies in the regression. In a regression of estimates on follow-up times,
∧
bk = ∧

μ + ∧
θ tk , where

tk is the follow-up time for study k. Some regression programs provide a residual mean square
(RMS) instead of a residual sum of squares, which varies somewhat in its definition (Greenland
and Engelman, 1988) but is usually RSS/df.

The residual sum of squares may be used as a chi-squared statistic (with df degrees-of-freedom)
for the fit of the preceding model. Large values of the residual sum of squares may arise if E(b|t)
depends on t in a nonlinear fashion or if E(b|t) is heterogeneous within levels of t . Although a
small P-value from this statistic indicates that the model is insufficient to account for the observed
variation in the study results, a large P-value should not be interpreted to mean that the model
adequately explains all of this variation.

Under the assumption that the regression model is correct,
∧
θ has an approximate standard-

error estimate of
∧
σ = sθ /(RMS)1/2, where sθ is the standard error of

∧
θ given by the program and

RMS is the residual mean square given by the program (Wallenstein and Bodian, 1987). From
these quantities, approximate 95% confidence intervals can be constructed as

∧
θ ± 1.96

∧
σ , and an

approximate Z (standard normal)-statistic can be constructed as
∧
θ/

∧
σ . If, however, the regression

model is inadequate (as would be indicated by a large value for RSS),
∧
σ will tend to underestimate

the standard error of
∧
θ , and the interval and P-value based on

∧
σ will not be valid. In such cases,

one should seek other regression variables that explain the residual variation.
The regression approach can be used to compare results of a study or a group of studies with

the remaining studies by adding to the meta-regression an indicator variable for the study or group
of studies. The estimated meta-coefficient of this variable is an estimate of the difference between
the value estimated by that study or group and the value estimated by the remaining studies; the
standard error of the meta-coefficient equals the estimated standard error of this difference.
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To compare case-control with cohort results in Table 33–1, one could perform a meta-regression
of study results on an indicator variable coded 1 = cohort, 0 = case-control. The estimated coefficient
for this variable,

∧
θ , would be the difference, −0.039, between the average fixed-effects coefficients

of the cohort and the case-control studies. The estimated standard error of the coefficient,
∧
σ , would

equal the estimated standard error of this difference, sd = 0.012, as calculated earlier.
Indicators can simultaneously be added for several groups of studies; the meta-coefficients of

these indicators represent differences between group average coefficients and the average coeffi-
cients for the studies not coded into a group. Heterogeneity across several characteristics can also
be simultaneously analyzed by employing weighted multiple regression of results on the character-
istics. Such analyses may reveal and adjust for confounding among the characteristics.

As can be seen in Tables 33–1 and 33–3, among the cohort studies, publication year is strongly
associated with the magnitude of relative-risk estimate. Because this association is difficult to
explain, it is of special interest to see whether it is reduced by adjustment for other factors. To
this end, the cohort study coefficients b were regressed simultaneously on study location (1 =
Scandinavian; 0 = other), length of follow-up, and publication year, using a standard multiple
regression program. The fit of the model with only these variables was excellent (RSS = 9.7 on
14 − 4 = 10 df, P = 0.47). Table 33–4 summarizes the model results. The P values for fit and for
publication year cannot be regarded as valid because the data led to the recognition and inclusion
of publication year. Nevertheless, the results do suggest that much of the heterogeneity seen in the
earlier examples cannot be “explained” (in the statistical sense) by differences in study location or
follow-up time.

Regression methods are not limited to examining simple linear dependencies. For example, one
can transform the dependent variable b or the regressors before doing the meta-regression by using
ln(t) in the previous formulas; or one can add terms to the meta-regression such as a quadratic term
t2. In fact, the full range of regression models and methods (Chapters 20 and 21) may be employed
in meta-analysis, with limitations arising chiefly from lack of data. For example, the dependency
of relative risks on background (unexposed) risks cannot be examined among case-control studies,
because the latter usually do not provide information on background risks.

Greenland and Longnecker (1992) discuss methods for dose–response meta-analysis when
category-specific relative-risk estimates are available from a number of studies. They focus on
evaluation of quadratic components of trend. A more general approach involves the use of scatter-
plot smoothers (Hastie and Tibshirani, 1990; Hastie et al., 2001), which impose no shape restriction
on the dose–response curve other than smoothness (see Chapters 17 and 21). Currently, the chief
drawback of such analyses is the need for special software for implementation. See Greenland

ˆ

ˆ

ˆ

ˆ
T A B L E 3 3 – 4

Results of Multiple-Linear Regression Analysis of Cohort-Study Coefficients

Locationa Follow-up (y) Publication Year (minus 1973)

Meta-coefficient (
∧
θ )b −26.8 1.08 6.41

Standard error (∧σ )b 17.0 1.04 1.39
Estimated ratio of rate ratiosc 0.87 1.10 1.67

95% Confidence limits 0.74, 1.03 0.92, 1.33 1.34, 2.08
Z-statistic (

∧
θ /∧σ ) −1.58 1.04 4.60

P -Value from Z 0.12 0.30 <0.0001

Residual chi-squared = 9.7 on 10 df, P = 0.47.
a 1, if Scandinavia; 0, otherwise.
b Times 1,000.
c Estimated ratio of rate ratios for the effect of five cups a day of coffee. Compares Scandinavian versus non-Scandinavian studies for location,

20 years versus 2 years for follow-up, and 1990 versus 1974 for publication year; computed as exp[
∧
θ (5)] for location, exp[

∧
θ (18)5] for

follow-up, and exp[
∧
θ (16)5] for publication year.
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(1994d) for an example of a smoother applied to the coffee–coronary heart disease studies in
Table 33–1.

Sensitivity and Influence Analysis

Given the regression format, regression diagnostic procedures (e.g., residual analysis) can be used
to improve the meta-analysis. Two methods of particular utility are sensitivity analysis and influence
analysis.

As discussed in Chapter 19, sensitivity analysis examines how inferences change with variations
in or violations of assumptions, corrections, and models. For example, one may have externally
controlled for cigarette smoking in all studies that failed to control for smoking by subtracting a
bias-correction factor from the unadjusted coefficients in those studies. The sensitivity of inferences
to the assumptions about the bias produced by failure to control for smoking can be checked by
repeating the meta-analysis using other plausible values of the bias, or by varying the correction
across studies. If such reanalysis produces little change in the confidence interval, one can say that
the limits appear to be insensitive to assumptions about confounding by smoking. On the other
hand, one may find that the interval appears to be deceptively precise relative to the variation that
can be produced by varying assumptions, and thus choose to base the meta-analysis only on those
studies that present results adjusted for smoking. In the present example, the disparity between
the case-control and cohort results is not much changed by dropping the correction factors or
inflating them by 50%; in other words, the observation of a disparity is fairly insensitive to the
correction factors. Likewise, the disparity is fairly insensitive to the values of the standard-error
estimates.

In influence analysis, the extent to which inferences depend on a particular study or group of
studies is examined; this can be accomplished by varying the weight of that study or group. Thus, in
looking at the influence of a study, one could repeat the meta-analysis without the study, or perhaps
with half its usual weight. In looking at the influence of a group of studies, say, all case-control
studies, one can again repeat the meta-analysis without them, or give them a smaller weight. If
change in weight of a study produces little change in an inference, inclusion of the study cannot
produce a serious problem, even if unquantified biases exist in the study. On the other hand, if
an inference hinges on a single study or group of studies, one should refrain from making that
inference. In the present example, the disparity between the case-control and cohort results is not
much changed by dropping any one study; in other words, the observation of a disparity was not
unduly influenced by any one study.

Random-Effects Models

The models used earlier are fixed-effects models, in that within groups or levels of the regressors,
each study is assumed to be estimating the same value for β, the exposure coefficient. This is
essentially a within-group homogeneity assumption, and as such cannot be realistic. If a large amount
of unexplained heterogeneity remains after fixed-effect regression modeling (e.g., as indicated by
failure to find a good-fitting and sensible fixed-effects model), one should consider turning to
random-effects models, in which the meta-regression model is augmented by the addition of a term
representing unexplained sources of between-study heterogeneity (DerSimonian and Laird, 1986;
Stijnen and van Houwelingen, 1990; Berlin et al., 1993).

As an example, the earlier model for the dependence of the expected study coefficient on follow-
up time could become

E(b|t) = μ + θ t + ε

where ε is a normal (Gaussian) random variable with mean 0 and unknown variance τ 2; ε is
assumed to be independent with identical variance across studies. Here, ε represents the component
of between-study variation (modification) of the coffee log risk ratio that is unaccounted for by
linear effects θ t of follow-up time. In the context of meta-analysis, a random effect such as ε is
more accurately viewed as random-effect modification, random bias, or some combination of the
two.

The assumption that both modification (heterogeneity) and bias are randomly distributed across
the studies is a strong one, and (as with the fixed-effects model) the model does not account for
systematic variation in effects or bias across studies. Nonetheless, the fixed-effects analysis is
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essentially a special case of the random-effects analysis, with the added assumption that τ 2 = 0
(or, equivalently, that all the ε are 0), which is the homogeneity assumption within levels of the
regressor t ; it is thus based on the same strong assumptions, and more.

Random-effects meta-regression requires an iterative procedure in which the study weights w
are updated at each cycle. In addition, one must make corrections to the estimated standard errors
to take account of uncertainty about the residual variance τ 2. See, for example, Stijnen and van
Houwelingen (1990) for details.

The random-effects extension usually does little to change the point estimates from meta-
regression but can considerably widen the confidence intervals (Dickersin and Berlin, 1992).
Nonetheless, it is possible for the random-effects coefficient to move far enough away from the
null (e.g., as a result of publication bias) so that the exposure or treatment P-value becomes
smaller than in the fixed-effects analysis (Poole and Greenland, 1999). An indication of whether
a random-effects approach will appreciably widen the interval can be obtained by examining
the quantity (RSS/df)1/2 from the final fixed-effects regression model. This quantity indicates
roughly the degree to which confidence intervals would be expanded by adding a random ef-
fect to the final model. For example, averaging over all cohort studies in Table 33–1, we see in
Table 33–3 that the fixed-effects estimate for the effect of five cups a day versus none is 1.17,
with 95% confidence limits of 1.17 exp[±1.96(0.00738)5] = 1.09, 1.26. These estimates assume
the model E(b) = μ. Under this model, however, (RSS/df)1/2 = (35.1/13)1/2 = 1.64, which sug-
gests that using the random-effects model E(b) = μ + ε instead would produce 95% confidence
limits of 1.17 exp[±1.96(1.64)(0.00738)5] = 1.04, 1.32. The actual estimate and limits under this
random-effects model are 1.18 and 1.03, 1.34. On the other hand, for the regression in Table 33–4,
(RSS/df)1/2 = (9.7/10)1/2 = 0.98, indicating that the normal confidence intervals from the fixed-
effects and random-effects models would be nearly identical (as indeed they are).

Several cautions should be borne in mind when considering random-effects models for meta-
analysis.

1. In situations in which addition of a random effect to the model yields important changes in
inferences, the degree of heterogeneity present will often (if not usually) be so large as to nullify
the value of the summary estimates (with or without the random effects). Such a situation is
indicative of the need to explore further sources of conflict among the study results (Greenland,
1994d).

2. Specific distributional forms for the random effects have no empirical, epidemiologic, or biologic
justification in typical applications. Therefore, use of methods that specify the random-effects
distribution should be accompanied by checks on the assumed distributional form, such as a

histogram of the residuals (which would be the bk − ∧
μ − ∧

θ t in the preceding example). As
always, these checks are one-directional in logic: Although they may detect problems, failure to
detect a problem does not mean that the assumption is correct.

3. The summary estimate obtained from a random-effects model has no population-specific in-
terpretation; it instead represents the mean of a distribution that generates effects. Unlike a
standardized rate ratio, it does not correspond to an average effect in an actual population.

4. Random-effects summaries give proportionally greater weight to small studies than do fixed-

effects summaries: The random-effects weight is 1/(SE2 + ∧
τ 2), which varies less across studies

than the fixed-effects weight 1/SE2. As a consequence, random-effects summaries will be more
affected by biases that more strongly affect small studies, such as publication bias (Thompson
and Pocock, 1991; Poole and Greenland, 1999; O’Rourke, 2001).

5. Unlike fixed-effects statistics, standard normal-theory random-effects tests and confidence limits
depend on having a “large” number of studies. To address possible deficiencies in this regard, one
may use a t-multiplier instead of a normal multiplier when constructing P-values and confidence
intervals (Follmann and Proschan, 1999). Thus, for a random-effects regression paralleling that
of Table 33–4, one would use a t-distribution with 10 degrees of freedom, which has a 97.5th

percentile of 2.23, rather than the normal percentile of 1.96.

We emphasize that a random-effects model replaces a doubtful homogeneity assumption (that
ε = 0 for all studies) with a fictitious random distribution of effects (allowing ε to vary across studies,
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but only in a purely random fashion). The advantage purchased by this generalization is that the
standard errors and confidence limits can more accurately reflect uncertainty about unaccounted-for
sources of variation in study results (e.g., measurement variation) than can estimates from fixed-
effects models. Drawbacks are that some simplicity of interpretation is lost and that more weight is
given to small studies.

When residual heterogeneity is small relative to study-specific variance (so that, say, residual
sum of squares ends up smaller than its degrees of freedom), similar conclusions should result from
either a fixed-effects or a random-effects approach. Nonetheless, a much smaller than expected
variance may signal serious problems, for example, computational errors; multiple publication of
the same group of patients being entered as separate studies in the analysis; or “conformity bias,” a
form of publication bias wherein authors preferentially publish analyses that give estimates similar
to those already published.

A more general approach for multiple meta-regression that includes the fixed- and random-effects
models as special cases is provided by random-coefficient or mixed models, which are also known
as mixed-effects, empirical-Bayes, hierarchical, or multilevel models (see Chapter 21; Raudenbush
and Bryk, 1985; Stram, 1996; Greenland and O’Rourke, 2001; Skrondal and Rabe-Hesketh, 2004).
In these models the multiple meta-coefficients are given a distribution instead of being treated
as fixed. In the simplest applications of these models, the estimated meta-coefficients of the study
characteristics are shifted toward 0 (their null value) by an amount that is directly dependent on their
estimated variances. The resulting “shrunken” meta-coefficient estimates have smaller variances and
smaller mean-squared error than the original estimates. See the section on hierarchical regression
in Chapter 21 and the references therein for further discussion of these methods.

PROBLEMS IN APPLICATION OF METHODS

OVERCONCLUSIVENESS

Like large epidemiologic studies, meta-analyses run the risk of appearing to give results that are
more precise and conclusive than are warranted (Egger et al., 1998). The large number of sub-
jects contributing to a meta-analysis will often lead to very narrow confidence intervals for the
effect estimate. It is thus crucial to remember that these intervals take no account of average bias
across studies, and take account of between-study variation in effect or bias only under restrictive
assumptions. When uncertainties about bias sources are included, interval estimates will expand
dramatically (Greenland, 2005b; see Chapter 19).

Consider again the coffee–myocardial infarction example. Suppose that no cohort study had
been done and that only the case-control results in Table 33–2 were available for analysis. The
meta-analysis would then supply only the first column in Table 33–3, which makes it appear that
five cups per day of coffee consumption probably increases the myocardial infarction rate by 30% to
55%. Without the cohort data, these results might be misinterpreted in just this fashion. Instead, the
appearance of precise results implies only that random error alone is no longer the major source of
uncertainty. One must then shift one’s focus to bias considerations and emphasize that the ordinary
statistics do not address these considerations. In this example, one would have to emphasize that the
confidence intervals do not account for possible recall bias, selection bias, or residual confounding
(e.g., due to inadequate control of lifestyle factors) in the case-control results.

If one instead focused only on the cohort studies, one would be alerted to the fact that biases are
probably operating, because of the gross conflict among those studies. Again, however, one must
resist the temptation to overinterpret statistical summaries, such as the random-effects summary
from the cohort studies, because these summaries blend together study results without regard to
possible unmeasured differences in validity among the studies. For example, the analyses in Tables
33–2 and 33–4 did not account for differences in measurement accuracy among the cohort studies.

The major point is that failure to properly and fully emphasize the nonrandom sources of un-
certainty in a meta-analysis may encourage and even support faulty conclusions and bad policy
decisions; examples are provided by disturbing conflicts between observational and randomized
trial evidence (Lawlor et al., 2004a, 2004b; Pettiti, 2004). One approach to avoiding this type of
problem is to apply methods of uncertainty (bias) analysis to the meta-analysis (Eddy et al., 1992;
Greenland, 2005b; see Chapter 19).
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AGGREGATION BIAS

The previously described methods of regressing study results on study characteristics are ecologic
regression methods (i.e., regressing area or group outcome rates on group exposure means or rates).
It is well known that ecologic regression methods can yield misleading results, in that the relation
between group rates or means may not resemble the relation between individual values of exposure
and outcome (Chapter 25). This phenomenon is known as aggregation bias or ecologic bias. Such
problems can arise in meta-analysis and need to be considered when interpreting meta-analytic
results. Further bias can arise from regressing adjusted study results on unadjusted average values
for covariates (Rosenbaum and Rubin, 1984). Such bias is a potential problem unless the covariates
under study are not associated with the adjustment factors.

PUBLICATION BIAS

Meta-analytic corrections for publication bias are generally insufficient for bias removal; neverthe-
less, as discussed previously, some meta-analytic methods are useful for detecting and analyzing
such biases (Light and Pillemer, 1984; Dear and Begg, 1992; Begg and Mazumdar, 1994; Copas,
1999; Copas and Jackson, 2004; Copas and Shi, 2000a, 2000b, 2004; Shi and Copas, 2002).

Several sources of publication bias have provoked serious concern. The classic source may be
termed significance bias, the tendency of investigators to preferentially report (and in some cases,
of editors to preferentially accept) associations that are “statistically significant” at the 0.05 level
(P < 0.05). Such associations tend to be farther from the null than nonsignificant associations;
consequently, if significant associations are preferentially published, the average published result
will be farther from the null than the average result overall. Thus, significance bias is a bias away
from the null. There is empirical evidence that significance bias is severe in some health science
literature (Dickersin, 1990; Min and Dickersin, 2005). It is not a problem in all situations, however:
In some topic areas, any finding from a sound study may be of great interest, especially when the
association under study is controversial.

Significance bias results in size bias, the preferential submission and acceptance of larger studies,
because the latter have more power (i.e., have a higher probability of significance if an association
is present). Size bias also occurs directly—for example, when editors preferentially accept larger
“null” studies on the grounds that those rule out important effects. If there are many small studies
and few large ones, this bias against smaller studies can result in a substantial portion of the totality
of relevant data being unavailable or difficult to locate.

Another form of publication bias may be termed suppression bias, in which certain types of
results are intentionally not submitted (suppressed) because they do not conform to the desires
of research sponsors. This concern has been raised in areas (such as occupational, environmental,
and pharmaceutical epidemiology) in which private industry funds a major portion of research.
Some research contracts allow the sponsor to veto publication, a veto presumably exercised when
the results (for example) show an association of the sponsor’s products or pollutants with adverse
health events. Even when veto power is not present, some research groups may be dependent enough
on funding from the industry, government, or other funding agencies to suppress reporting of adverse
results or exaggerate evidence for promising results, in order to ensure continued funding. Other
research, conducted directly by industry, is likely to be published selectively. This selectivity has
been common in the pharmaceutical industry (Berenson, 2005), and is a source of bias toward the
null in the published literature on adverse side effects.

As with selection bias in single studies, study-selection biases such as publication bias tend to be
difficult if not impossible to remedy. Methods that estimate the number of undetected null studies
needed to “refute” a non-null meta-analytic result can be misleading. Such methods overlook the
fact that failure to include null studies cannot bias a pooled estimate if the parameter being estimated
by all studies is null, for in the latter case one should expect equal numbers of negative (inverse)
associations and positive associations. Similarly, one should expect a non-null pooled estimate to
remain non-null no matter how many null studies are added (although of course it will become
attenuated, possibly becoming almost null). Thus, failure to locate all null studies by itself cannot
easily explain a non-null summary estimate. Among other explanations to consider is systematic
failure to publish studies with results in a particular direction. Such directional publication bias
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can warp a null reality into a predominantly non-null literature or vice versa, and even make the
literature tend to the direction opposite reality (Jackson, 2006).

Because small studies tend to display more publication bias, some authors have attempted to
avoid or minimize the problem by excluding studies below a certain size. The strategy would make
an important difference only when the excluded studies contain (in aggregate) a large portion of the
observed data. One problem with the strategy is that the exact size limit for inclusion is arbitrary.
Another is that, in some fields, all or almost all studies are small, so that the strategy would exclude
most observations on the topic. Yet another problem is the possibility that the small studies might
be the more valid of those available; for example, if the large studies are from administrative data
bases while the small studies generate their own data through record abstraction and medical exams,
the latter might have less bias from measurement error (Harbord et al., 2006).

An alternative to exclusion based on size is to include all studies but check for publication bias
using the methods discussed earlier, such as funnel plots. For further discussion of publication bias,
see Begg and Berlin (1988), Dickersin (1990), Copas and Shi (2000a), and Phillips (2004).

ISSUES OF STUDY SIZE

The weighted-averaging and regression methods presented above assume that each study is large
enough to yield an effect estimate with an approximately normal distribution. As mentioned earlier,
simulations indicate that, for log relative risks, studies with expected cell sizes as small as four can
be large enough for practical purposes.

Normality of log relative-risk estimates computed by Mantel-Haenszel or conditional-likelihood
methods depends on special summations across strata rather than on cell sizes. Simulation studies
indicate that the relevant sums need not be very large when the true relative risk is not large; for
example, if the true odds ratio is between 0.3 and 3.3, as few as 25 cases in a 1:4 matched case-
control study can be sufficient for approximate normality of the Mantel-Haenszel log odds ratio
(Robins et al., 1986c).

For studies so small that it is unreasonable to assume normality of the estimate, precise spec-
ification of the proper statistical weight for the study will be unimportant if the study contributes
little to the total weight. Nevertheless, when a large proportion of the total weight comes from very
small studies, the heterogeneity and regression statistics described earlier may no longer follow
their large-sample (normal or chi-squared) distributions. In such cases, one will need study-specific
cell counts and have to employ sparse-data or exact methods (see Chapters 15 and 21) to an-
alyze the combined data, using “study” as a stratifying variable. Similarly, to contrast properly
results from a small study with results from other studies, sparse-data or exact methods may be
required.

BIAS IN EXCLUSION OF STUDIES

Exclusion of studies is a controversial practice. Some authors exclude unpublished studies from
meta-analyses on the grounds that such studies tend to be of lower quality and that only a biased
sample of such studies can be located. On the other hand, it can be argued that exclusion of unpub-
lished studies aggravates publication bias. Other authors exclude studies based on methodologic
features or low quality scores. It can be argued that such exclusions can lead to selection based on
prejudice against certain methods (e.g., case-control studies) and mere speculations about bias. By
controlling for quality items in the analysis, one can test these bias hypotheses rather than rely on
exclusions, and efficiently estimate the relation of quality items to the estimated effect of exposure
on outcome.

Three uncontroversial observations can be made: First, any weighting or decision to exclude a
study should not be based on the results of the study, such as the point or interval estimates, lest it
bias the meta-analysis (Yates and Cochran, 1938; Sacks et al., 1987). Second, even if one wants to
include all studies, some studies may have to be excluded because the presentation of results is too
uninformative to allow extraction of a credible effect estimate or weight. In such a case, an analysis
constrained to qualitative results (e.g., direction) may allow the inclusion of more studies, and can
be compared with a more quantitative but restrictive analysis. Third, all exclusions and reasons for
them should be noted in the review.
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SOME METHODS TO AVOID

QUALITATIVE TALLY (VOTE COUNTING)

In many traditional, qualitative reviews, one can find the explicit or implicit use of a qualitative
tally or vote count. Consider a hypothetical literature summary stating, “of 17 studies to date,
five have found a positive association, 11 have found no association, and one has found a negative
association; thus, the preponderance of evidence favors no association.” Such a tally can be extremely
misleading, even if every single study is methodologically flawless, every study is included, and
all the studies are comparable in every relevant aspect (Light and Pillemer, 1984). For example,
the 11 studies counted as finding no association may have tended on the average toward a positive
(if “nonsignificant”) association, the single negative association may have been weak, and the five
positive results may have ranged from weak to very strong—so that the average association across
the studies might have been unequivocally positive. Mere lack of power might cause most or all of
the study results to be erroneously reported as null (Hedges and Olkin, 1980).

Taking “nonsignificant” results as evidence for the null is a common fallacy involving the
improper use of significance testing (Chapter 10). As usual, the best way to avoid such misin-
terpretations is to base interpretation on estimates, rather than on tests and tallies. Because of
its lack of power, a tally can also miss important sources of heterogeneity. More serious still,
a quick tally completely obscures the role of bias. In the preceding example, perhaps the posi-
tive studies were the least biased ones, or perhaps all the studies were positively biased, and the
true association is negative. Thus, unless no further analysis is feasible, a qualitative tally should
not serve as anything more than a provocative introduction to a more detailed and thoughtful
analysis.

In cases in which the available data are so crude that a qualitative tally is the only feasible
analysis, it is sometimes recommended that one use a binomial test of the proportion π of studies
that are “positive” according to some criterion. Such tests can be done using the methods given in
Chapter 13. If the criterion for positivity is merely that the observed association is in the positive
direction (regardless of its size or P-value), half the studies would be expected to be positive under
the null hypothesis of no effect or bias; this test of π = 1/2 is traditionally called a sign test. If the
criterion for positivity is that the association is in the positive direction and also significant at the
0.05 level (P < 0.05) by a two-sided test, the null value of π would be 0.05/2 = 0.025. Regardless
of the criterion, if H is the number of “positive” studies and K is the total number of studies,
the score statistic to test that π = p is χscore = (H − Kp)/[Kp(1 − p)]1/2. One can use the same
method to test the proportion of studies that are “negative” according to some criterion; H then
becomes the number of studies negative by chosen criterion.

Under the criterion that “positive” means a positive association significant at the two-sided 0.05
level, finding H = 5 of K = 17 studies to be positive would result in a score statistic for π = 0.025
of

χscore = [5 − 17(0.025)]/[17(0.025)(0.975)]1/2 = 7.1

From a normal table the value of 7.1 yields a “vote count” P < 0.0001, indicating that there are
far more positive studies than one should expect under the null. Note that many researchers would
misinterpret having “only” 5 of 17 studies significant and positive to mean that the preponderance
of evidence favors the null; the test shows how mistaken this judgment is. Under the null hypothesis
we should expect only 1 in 20 to be “significant” at the 0.05 level in either direction, and only 1 in
40 to be significant and positive. Thus, seeing 5 out of 17 studies significant and positive would be
extremely unusual if there were no effect or bias in any of the studies.

Although the previous lesson is valuable, we still emphasize that the binomial test lacks power
because it dichotomizes the continuum of information contained in the study-specific P-values.
A much more powerful qualitative test of the null can be constructed by combining the P-values
from the individual studies. There are various ways to define and combine P-values (Pk) from the
individual studies, depending on the alternative hypothesis against which one wishes to maximize
power. For an alternative in one direction (e.g., “studies tend to report positive associations more
than expected by chance alone”), a one-sided P-value in the stated direction would be computed
from each study and then combined. On the other hand, if the alternative were nondirectional (e.g.,
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“studies tend to report associations more than expected by chance alone”), two-sided P-values
would be computed and combined. Perhaps the best known method for combining P-values uses
−2

∑
k ln(Pk), which has approximately a chi-squared distribution with 2K degrees of freedom

under the null hypothesis that there is no association in any study (Fisher, 1932, p. 99; Cox and
Hinkley, 1974, p. 80).

SCATTERPLOTS OF TEST STATISTICS

Cox and Hinkley (1974) warn against the practice of plotting test statistics (e.g., chi-squared or
Z -values) versus explanatory variables, because the magnitude of the test statistics depends on study
size and so cannot be taken as a measure of association or “distance” from the null value. Identical
objections apply to scatterplots of P-values. This objection does not apply to simple histograms
of test statistics or P-values; these have known distributions under the null hypothesis and can be
examined for departures from those distributions (Cox and Hinkley, 1974).

STANDARDIZED COEFFICIENTS, CORRELATIONS, AND EFFECT SIZES

Detailed arguments have been given against the use of so-called standardized coefficients, cor-
relations, variance explained, and related measures based on the use of standard-deviation units
(Greenland et al., 1986, 1991). A key problem with such measures is that the so-called stan-
dard unit used to construct them actually varies across studies, rendering them noncomparable
and useless for meta-analysis. Unfortunately, a fair portion of the meta-analysis literature in the
social sciences has focused on an index of this sort, the effect size, defined as the difference in
mean outcomes of the exposed (treated) and unexposed (control) groups, divided by the standard
deviation of the outcome in the unexposed group; some authors divide by the pooled standard
deviation.

It has been claimed that “expressing the effect sizes in standard deviation limits makes it possible
to compare outcomes across different studies” (Light and Pillemer, 1984, p. 56). In fact, the opposite
is the case: By expressing effects in standard-deviation units, one can make studies with identical
results spuriously appear to yield different results; one can even reverse the order of strength of
results (Greenland et al., 1986). These are severe distortions, and they imply that use of standard-
ized coefficients, correlations, variance explained, and effect size (as defined in the meta-analytic
literature) should be avoided (Greenland et al., 1991). Effect estimates should be expressed in a
substantively meaningful unit that is uniform across studies, not in standard-deviation units. If
this cannot be done credibly, one can limit statistical analysis to examining only the direction of
association (Poole et al., 2006).

QUALITY SCORING

A very common practice is to weight studies or regress studies on a “quality score,” usually based
on some subjective assignment of points based on features of the studies. For example, one might
score the studies in Table 33–1 by giving 10 quality points for a cohort design, 8 points for a nested
case-control design, and 4 points for a population-based case-control design. The studies could then
receive 2, 3, or 4 points if they controlled for smoking as a dichotomy, trichotomy, or in four or
more categories. One would then use this score in the weighting (e.g., study weight = score/SE2)
or regress study estimates on the score.

Unfortunately, quality scoring submerges important information by combining disparate study
features into a single score (Greenland, 1994d, 1994e; Greenland and O’Rourke, 2001). It also
introduces an unnecessary and somewhat arbitrary subjective element into the analysis via the
scoring scheme. Quality scoring can and should be replaced by direct categorical and regression
analyses of the effect of each quality item (e.g., study design), as illustrated earlier (Greenland,
1994d, 1994e, 1994f). Such item-specific analyses let the data, rather than the investigator, indicate
the importance of each item in determining the estimated effect. It is possible to reconstruct quality
scores to reflect prior expectations about heterogeneity and use the resulting scores in a hierarchical
meta-regression (Greenland and O’Rourke, 2001), but such usage also includes the contributing
quality items as separate factors in the regression.
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ROLE AND LIMITATIONS OF META-ANALYSIS

Meta-analytic and narrative (qualitative) aspects of research review can and should be complemen-
tary. A review is like a report of a single study, in that both quantitative and narrative elements
will be necessary to convey a balanced picture of the material (Light and Pillemer, 1984). A purely
statistical analysis cannot convey all the caveats or address all the shortcomings of the material,
nor can it convey explanations of results in terms of biology and bias, whereas a purely qualitative
analysis will lack precision and can easily miss small (but important) associations or subtle patterns
in the material. Thus, where possible, a review should attempt some sort of meta-analysis and
give explicit reasons for limiting attempts, just as an epidemiologic report should provide at least
descriptive statistics.

In recognizing the necessity of meta-analysis, one should also be aware of its limitations. In
particular, causal explanation of similarities and differences among study results noted in meta-
analysis is a qualitative aspect of the review and thus outside the realm of ordinary statistical meta-
analysis. This limitation is entirely analogous to the fact that causal explanation of associations
noted in statistical analysis of basic data is beyond the scope of ordinary statistics. In either case,
the statistics serve as fallible pattern-recognition devices; explanation of the origin of observed
patterns is beyond the scope of these devices.

Meta-analytic methods do not provide a means for directly evaluating the bias of the individual
studies considered in a review. As illustrated earlier, ad hoc corrections may be performed in an
attempt to account for quantifiable biases, and one can analyze the effect of features that are thought
to affect bias. It is also possible to employ more elaborate bias models for the analysis, along with
formal prior distributions for the bias components (Greenland, 2005b; Chapter 19). Nevertheless,
many problems will remain unquantified, and these problems will contribute to the observed patterns
among study results. Again, explanation of the observed heterogeneity in terms of such unquantified
problems (e.g., use of different case definitions, use of different sources of controls) will depend
on the amount of detail in the reports and the skill of the reviewer, and is beyond the scope of
meta-analytic methods.

CONCLUSION

This chapter has provided an exposition of basic considerations and quantitative methods for litera-
ture review, including methods that are useful in constructing statistical summaries and comparisons
of studies. These methods cannot address unquantified problems that affect study results. Neverthe-
less, the methods provide a means of quantitatively comparing and (in some instances) summarizing
study results, thus aiding in assessment of a literature.

Most meta-analyses will require from each study both a point estimate of effect and an estimate
of its standard error. The actual study data would arguably be preferable, if correctly coded and
documented adequately. Therefore, in the interest of facilitating reviews, authors, referees, and
editors should consider making the study data available with the least restrictions on availability
as is ethically possible (some funding agencies may even require funding recipients to make data
available). At the very least, published abstracts and reports should provide both the point estimate
for an association and its standard error or confidence limits (from which an accurate standard-error
estimate can easily be recovered). A point estimate with a P-value may not provide an accurate
standard error, and so should not be considered sufficient for reporting purposes.
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standardized, 67

unbiased, 191

validity of, 128–129

Associational ratio, confounding and, 60

Asymptotic methods. See Large-sample methods

Atkinson index, segregation, 539

Attack rate, 40

as risk measure, 553

Attributable fractions, 54, 62–67, 295–297, 385, 387, 440.

See also Preventable fractions

estimation, 295–297, 430, 440, 443, 445

etiologic fraction v., 63–64, 297–298

exposure pattern and, 67

model-based, 440

probability of causation v., 64–65, 297–298

population, 67, 295–297

terminology and, 65–66

Attributable proportion, 13–15, 67. See also Attributable

fractions

population disease impact, 65–67

Attributable risk, 63. See also Attributable fractions

Attributable risk percent, 63. See also Attributable fractions

Levin and, 65

Attrition-related bias, fertility and, 621

Audio computer-assisted self-interviewing (ACASI), 500

“Audit studies,”538

Autism, vaccines and, secondary data, 485–486

Auto-regression, time-series analyses, 610–611

Autoregressive integrated moving-average (ARIMA)

models, 515, 516

Auxiliary hypotheses, 23

Average age

at death, 34

at event, 48–49

Average exposure assignment schema, 106

Average exposure measures, 103

Average incidence time, survival proportion

v., 45

Average intensity, and alternatives, 106

Average risk, 40, 73, 101

case-cohort studies, 123

effects on incidence rates v., 67

response-type distributions v., 77–78

Average survival time, estimation of, 293–294

Back-door paths, 192

Backward deletion, Backward elimination, 262, 438 See
also Contracting model search

Bacon, Francis, philosophy of, 18

Bacterial pathogens, laboratory-based surveillance,

472–473

Baker, George, 619

Balancing scores, 446–447. See also Confounder scores

Barker’s hypothesis, 546

Base priors, sensitivity analyses, 380

Baseline adjustment, bias and, 206, 207, 207f, 208f
Baseline incidence proportion, 13

Baseline values, bias and, 206, 207f
Basic reproductive number, state of infectiousness, 550f,

560

Bayes empirical-Bayes modeling, 437

Bayesian analysis, 165–167, 230–231, 328–344, 388–389.

See also Bayesianism; Hierarchical regression;

Semi-Bayes analysis; Subjective probability

bias analysis, 378–380

criticism summary, 333

frequentist methods v., 166–167, 331–333, 388–389

in genetics, 571–572

intervals, 165–167, 330–335

likelihoods in, 230–231

regression, 329, 344, 388

reverse, 338–339

semi-Bayes v., 337

sensitivity analyses, 342

Bayesian information criterion (BIC), 426

Bayesian intervals, Bayesian limits 165–167, 330–335 See
also Prior intervals; Posterior intervals

calibrated, 166

Bayesian regression, 329, 344, 388

frequentist regression v., 388–389

Bayesian statistics. See Bayesian analysis

Bayesianism, 22–24, 165–167, 329–333. See also
Bayesian analysis; Subjective probability

objective, 343

subjective, 165–166, 328–333

Bayes’ theorem, 166, 330, 331, 333

Behavioral Risk Factor Surveillance System (BRFSS),

473–474

Berksonian bias, 135–136, 185, 197. See also Collider

bias; Selection bias

Bernoulli distribution, model fitting and, 421

Beta error. See Type II error

Between-community studies, air pollution, 616

Bias, 128. See also specific entries, e.g., ecologic bias
baseline values, 206–207

complete populations, 483

confounder-selection strategies, 263

control groups and, 122

control of, graphical representation of, 191–209

equal accuracy principle, 121

exposure misclassification, 301

exposures assessment, 603

friend controls and, 120

intentional selection, 196–198

misclassification and, quantification of, 488–490

missing-data categories, 199–200

missing-data indicators, 199–200

outcome definition and, 144

overmatching and, 180–181

parameters, distributions of results, as output, 345

quantification, residual confounding and, 198–199

recognized fetal loss, 629

time-to-pregnancy studies, 627–628

Bias analysis, 345–380. See also specific topics, e.g.,
Confounding; Misclassification; Selection bias

Bayesian, 378–380

caveats, 347–348

need for, 346–347
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Biasing path, 191

BIC. See Bayesian information criterion

Binary exposure variables, 131

notification for risks, 73t
potential outcomes and, 75, 76t

Binary regression, 383–384. See also Binomial regression;

Logistic models

Binomial coefficient, 223

Binomial distribution (model), 225, 245, 246, 421

Binomial likelihood, 246

Binomial regression, 421–422. See also Logistic models

extravariation, 422

Binomial test, the null and, 680

Biochemical indicators, nutrient intake,592, 594

Biologic effect, ecologic effect v., 513

Biologic gradient, causal inference and, 28

Biologic inferences, individual risks and, 513

Biologic interaction, 13, 17, 74–83. See also Additive risk

model; Additivity conditions; Statistical

interaction; Synergism

additivity conditions and, 298–299

analysis of, 298–299

qualitative statistical interactions v., 299

regression models and, 406–407

statistical interaction v., 82–83

in sufficient cause model, 13,17,80–81

Biomarker epidemiology, 565–568, 565t, 619

Biomarkers

evaluation of, 566–568, 566t
exposure assessment, 601–602

validation, 565–566

Biospecimen collection, epidemiologic studies, 505, 506f
Bioterrorism-related epidemics, syndromic surveillance

systems and, 464

Birth cohort, 38

Birth cohort analysis, mapping, 608

Birth control definitions, 627

Birth defects, 636–637

Birth weight, 632–633

distribution shifts, 634

mortality and, 636

summaries, 633, 635

Blinding, clinical trials and, 90–91

Blocked randomization, 174

Blood collection, protocol, 505, 506f
Bonferroni method, 236. See also Multiple comparisons

Bootstrapping, 369, 427, 428–429, 440, 443. See also
Resampling

BRFSS. See Behavioral Risk Factor Surveillance System

Calibrated confidence levels, 231

Caliper matching, 120, 284

Callbacks, refusal conversion, 499

Cancer

causes, 14–15

migrant studies, nutritional exposures, 581–582

screening, “Omic” tools, 577

Candida infection, colonization of, 556

CAPI. See Computer-assisted personal interviewing;

Computer-assisted telephone interviewing

Carcinogenesis, cause, 16

Case definition, surveillance systems, 467–469

Case fatality rate, 41

Case fatality ratio, 41

Case selection, source population and, 115

Case surveillance data, estimation from, 286

Case-cohort studies, 114, 123–124

analysis of, 252–253, 280–281, 432

for pregnancy complications, 632

Case-control data, 250–252, 269

Case-control ratios. See Pseudo-rates

graphing, 308–309

Case-control studies, 88, 95, 111–127, 136, 137. See also
Case-cohort studies; Case-crossover studies;

Case-only studies; Case-specular studies; Odds

ratio; Two-stage studies

birth defects, 637

common elements of, 113–122

cost reduction and, 109

disease registers, epidemiologic studies, 483

ecologic studies, nutritional exposures, 582–583, 584f,
585

gene-environment interaction analysis, methodologic

issues in, 571, 572t
genetic variants, conventional epidemiologic studies,

568

GWA analysis, 564

illness, natural history of, 642

matching in, 175–176

analysis, 283–288, 434–435

benefits, 178–179

cost of, 178

efficiency in, 176

selection bias and, 205, 205f
models for, 431–432

nested, 114, 122–123, 432

prevalent, 97, 127

reproductive epidemiology, 624–625

scoring methods, 451

standardization in, 445

subject identification, 496–497

variants of, 122–127

with prevalent cases, 127

Case-crossover studies, 125–126, 605

analysis, 288–289

Case fatality rate, 41

Case-load reduction, 83, 296. See also Excess caseload

Case-only studies, 125–126, 573–575. See also
Case-crossover studies; Case-specular studies

analysis, 288–289

Case-parent studies, 575, 638

Case-specular studies, 125–126

analysis, 288–289

Categorical models, power models v., 410

Categorical regressors, 407–408

Categorical statistics, 238–257

Categorical trends, multiple regression, 409–410

Categorization of variables, 303–305. See also Category

Category

boundaries, variable, 217–218

choice of, 217–218

codes, in trend models, 409

contingency table, 217

external information and, 304

horizontal scaling and, 312, 313f
indicator variables, 407

means, horizontal scaling and, 312

medians, horizontal scaling and, 312
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Category (Contd.)
midpoints, 410

scores

horizontal scaling and, 312–313, 313f
regression with, 410

Category matching, 120, 284

Category-specific relative-risk estimates, dose-response,

308

meta analysis and, 674

Causal criteria, 26–31

Causal diagrams, 183–209

applications, 194

bias and, 191–209

confounding path, 193f
instrumental variables, 202, 202f
no confounding, 186f
preliminaries for, 183–186

residual confounding and, 198

unconfounded direct effect, 201, 201f
Causal effects, 6–10, 59. See also Cause; Effect;

Preventive effects; Potential outcomes

definition of, 52

bias analyses and, 347

conditioning sets identifying, 192

social epidemiology, 532–533

Causal exposure, 65

Causal graphs. See Causal diagrams

Causal inference, 25–31. See also Bias analysis; Causal

diagrams; Causation; Confounding

Hill’s considerations for, 26–31

post hoc ergo propter hoc fallacy, 19

Causal Markov assumption (CMA), 190

Causal mechanisms, 15

Causal models. See specific models, e.g., Causal diagrams;

Marginal-structural models; Potential outcomes;

Structural nested models; Sufficient-cause model

Causal monotonicity, 208

Causal odds ratios, 53, 62

Causal path, 186

Causal rate difference, 52, 53

Causal rate ratio, 53

Causal ratio of disease-free time, 53

Causal relationships, association v., 59–60, 185

Causal risk difference, 52, 53

Causal risk ratio, 53

Causal structure. See Causal diagrams; Structural equations

Causation, 5–18, 59–60, 185, 385–388. See also Causal

effects; Causal inference; Effects; Potential

outcomes; Sufficient-cause model

association v., 59–60, 185, 383, 385–386, 533–534

regression v., 383, 385–386

in social epidemiology, 533–534

Cause, 6, 9–10. See also Causal effects; Causation; Effect;

Biologic interaction

component, 6

interaction among, 13

sufficient, 6

CDC (Centers for Disease Control and Prevention)

confidentiality, surveillance systems, 469, 470

consent form template, on-line, 568

notifiable disease reporting, 472

rates of events, 477f
Censoring, 34–35, 45, 289–293. See also Competing risks;

Loss to follow-up; Survival analysis

g-estimation and, 454

risk-estimation and, 289–293

Centering of variables, 392

Centers for Disease Control and Prevention. See CDC

Centers for Epidemiologic Studies Depression scale

(CESD), 206

Centralization, segregation, 539

Certainties, 165, 338t, 343. See also Bayesian analysis;

Bayesianism; Uncertainty

CES-D. See Centers for Epidemiologic Studies Depression

scale

Chance variation, 17, 88. See also Random error; Random

sampling; Randomization

Change-in-estimate criteria. See also Collapsibility

selecting confounders for control, 261–263, 419

Chi-square, 216

Chlamydia trachomatis, incubation periods, infection

occurrence, 558

Cholera, Snow’s study of, 94, 608, 615

Chronic exposure, 103–104

Chronic infection. See Persistent infection

Cigarette smoking, surveillance systems, 469

Classification error, 138. See also Misclassification; Bias

analysis

Climatologists, global climate change, 617, 618f
Clinical disease, subclinical infection v., 551, 641–651

Clinical fertility, 624

Clinical trials, 87, 89–92, 240

cohort studies, 100

field trials v., 92

Clinical validity, of biomarker, 566, 567t
Clinic-based controls, 118–119

Closed cohort, 101

Closed populations, 36–37, 37t, 41, 101

event times and intervals, 42f, 42t
open populations v., 38

Closed-cohort studies, 240

Cluster randomized trials, community intervention trials

and, 92–93

Clustered binary outcomes, recognized loss, 630

Clustering segregation, 540

Clusters, analysis of, 611–613

Cluster-specific models, 544

CMA. See Causal Markov assumption

CMLE. See Conditional maximum-likelihood estimate

Coaction, causal, 80. See also Biologic Interaction; Synergism

Coding, 508

incremental, in trend models, 409

schemes, choosing, 408

Coefficient(s). See also Regression modeling

adjustment, external, 661

standardized measures v., 443–444

Coherence, causal inference and, 29

Coherence of probability assessments, 166. See also
Bayesianism

Cohorts, 38, 100–103

assembly of, 495–496

defining for study, 100–107

populations v., 38

response types and, 77

Cohort studies, 88, 94–95, 100–110

case-control study designs v., 111–127

cost reduction, 108–109

disease, nondifferential misclassification, 142–143
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ecologic studies, nutritional exposures, 582–583, 585

expense, 108

genetic variants, conventional epidemiologic studies,

568–569, 569t
hypothetical data from, P-value and, 158t
illness, natural history of, 642

mapping, 609

matched risk factors, stratification in, 284

matching in, 174–175

odds ratios, 352

selection bias, 136–137

tracing subjects, 109

Collapsibility, 261–263. See also Noncollapsibility

Collider, 187

unconditional d-separation, 187–188

Collider bias, 137, 185–186, 193, 193f. See also
Berksonian bias; Selection bias

Collinearity, ecologic studies, 527–528

Colorectal cancer, “Omic” tools, 575–577

Combinatorial argument, 222

Combinatorial coefficient, 223

Common exposures, cohort studies and, 110

Community diagnosis, surveillance, 462

Community intervention trials, 87

fluoride supplementation and, 1

Community trials, subject identification, 494

Comparative analysis, Monte-Carlo analyses and, 376,

377t, 378

Compatibility, in causal graphs, 189–191

Competing causes, 322

Competing risks, 39, 44–45, 55–56, 68, 289–290. See also
Censoring; Competing causes; Survival analysis

attributable fractions, problems with, 296

effects mediated by, 55–56

removal, problems with, 45, 55–56, 296

Competitive interaction, 76

Complementary component cause, 7

Complementary log-log model, 417

Complete populations, secondary data analysis, 482–483

Complete-subject analysis, 219

Complex disease, epidemiology and, examples, 579

Compliance, in clinical trials, 90, 202–204, 647–648

Component causes, 6, 9, 16

defining, 7

Computer-assisted interviewing, 500, 501, 502f
Concentration, segregation, 539

Conception, 620

Concordant pairs, 288

Conditional analysis, unconditional analysis v., 272–273

Conditional association, 184, 261. See also Association;

Conditional probability

Conditional d-separation, 188–189

Conditional likelihood, 257, 272–273, 422, 433

Conditional logistic regression, 433

Conditional maximum likelihood(CML), 257, 272–273,

422, 433

Conditional probability, 184–185. See also Probability

Conditional risk, 44

independent-censoring assumption, 289

Conditioning bias, on descendant of outcome, 204–205,

205f
Conditioning sets, causal effects and, 192

Confidence band, 310

surveillance systems, 472

Confidence intervals and limits, 157–158, 221, 238, 239,

267–269. See also specific estimates, e.g., Risk

ratio, and specific methods, e.g., Wald limits

hypothesis tests v., 157–158

in meta-analysis, 671–673

model-based, 440

P-value function, 158–159

plotting, 309–310

problems with, 163

significance tests v., 157–158

statistical estimation and, 156–157

Confidence levels, 157, 234–235

Confidence region, 324

Confidentiality, surveillance systems, 470, 478

Confounded trial, diagram for, 203f
Confounders, 58–59, 129, 193–196. See also

Confounding, Control of Confounding

as extraneous risk factors, 131

identifying, 194–196

intercommunity comparisons, 611–612

misclassification of, 359–360

in ecologic analysis, 518–519, 522–523, 527

properties of, 139

scores, 446

selecting for control, 261–263

study variables, meta-analysis, 656

surrogate confounders, 130–131

in propensity scores, 448

in trend models, 409

unmeasured, 348–352

Confounder categories, 218, 305. See also Measured

confounders

selecting, 263–264

Confounder-disease associations, 352

Confounder scores, 446–451. See also Doubly robust

estimation; Exposure scores; Outcome scores;

Prognostic scores; Propensity scores

Confounding, 28, 57–60, 129–134, 137, 193–196, 570.

See also Confounders, Control of

Confounding

adjustment for, 202–204, 265–278, 336, 348–352,

365–370, 442–455

assessment of, 260–264

association and, 56–60

associational ratio, 60

bounds for, 352, 662

causal diagrams and, 186f, 641

collapsibility and, 261–263

contingency table, 217

conventional rules, unreliability of,

194–196

design options for control, 168–169

external estimates of, adjustments using, meta-analysis,

660–662

factor, criteria for, 132–134

genetic susceptibility, 570

by group, ecologic bias, 520

heterogeneity v., 259

by indication, 650

matching and, 171–176

as mixing of effects, 129

noncollapsibility v., 62

path, 193

causal diagrams, 193f
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Confounding (Contd.)
population causal relations and, multiple bias analyses

and, 363

randomized controlled trials, 647

selection bias v., 136–137, 192–194

time-series analyses, 610–611

variable, misclassification of, 144–145

Congenital malformations, 127. See also Birth defects,

reproductive epidemiology

incidence of, 47

prevalence and, 47

Conjecture and refutation model

hypothesis and, 20–21

science and, 20

Connectors in graphs, 187

Consensus, naturalism and, 21–22

Consent form template, on-line, CDC, 568

Consistency, causal inference, 27

Constant across strata, 61. See also Homogeneity;

Homogeneity assumptions

Constant models, 391

Contextual analysis, 529

Contextual association, 513

Contextual effect, 513

Contingency tables, data analysis and, 216

Continuation-ratio model, 415

Continuity corrections, 232–233

Contracting model search, 420–421, 438

Control of confounding, 58–59. See also Confounding,

adjustment; External adjustment; Mantel-Haenszel;

Standardization

design options for, 168–169, 171

matching and, 171–175

scoring methods, 446–451

Control groups,

number of, 121

sources, 117–120

Control sampling fractions, 123

Controlled direct effect, 200

Control selection, 112, 115–120

fallacies, 117

Controlled trials. See Clinical trials

Conventional statistical analysis, 213

flaws of, 343

random error and, 364

randomized controlled trials, 648

Correlated error, 138, 378. See also Dependent error

Correlation coefficients, 70, 424–425

meta-analysis and, 681

Correlated-outcome logistic regression, 452

Corynebacterium diphtheriae, infectivity and, 558

Cost efficiency

case-control studies and, 109

complete populations, 482–483

ecologic studies, 513

overmatching and, 181

Count data

incidence and survival proportions, 40–41

classification of subjects, 218–219

large sample methods, 245–252

small sample statistics for, 255–257

standardization of, 265–270

Mantel-Haenszel estimation, 274–276

model fitting, 423

Count regression, 423, 444. See also Log-linear

models

Counterfactual outcomes, 54–55, 129. See also Potential

outcomes

in confounding, 57–58

Counterfactual models of causation, 18, 54–55. See also
Potential outcomes

Countermatching, 177

Couple-specific fecundability, 626

Covariate, 383. See also Confounder; Regressor

categorical, 407–410

time-dependent, 397–398, 452

Cox (proportional-hazards) model, Cox regression

397–398, 422, 429, 451–453, 626

accelerated failure-time models v., 397

in meta-analysis, 658

structural nested models v., 453–454

time-dependent, 397–398, 451–453

Credible model form, 420. See also Model specification

Crohn’s disease, 578–579

Cross-level bias, 520, 521t, 523, 524t. See also Ecologic

bias; Ecologic studies

Cross-level inferences, 513. See also Ecologic studies

Crossover studies, 648–649

Cross-product ratio, 114. See Odds ratio

Cross-sectional studies, 88, 97, 497, 569–570

Cross-validation sum of squares, 442

Crude analysis, 239–257

Cubic spline, 411–412

Cumulative case-control studies, 125

Cumulative exposure assignment schema, 106

Cumulative exposures, exposures assessment,

602–604

Cumulative incidence, 44

Cumulative odds model, 415

Cyclic patterns, 606, 607–608

DAG. See Directed acyclic graph

Data. See also Computerized databases; Data collection;

Exposure assessment; Sparse data

description and summarization of, 216–219

discussion of, 341

editing, 213, 214–215

fitted model v., 423

interpretation, 214

lack of, ecologic studies, 527

pooling, 509, 652

quality

complete populations, 483

secondary data, 487–488

surveillance systems, 479

sparse, bias from, 263, 386, 422, 433

sparse, methods for, 272–278, 280–281, 283–288, 294,

296, 314, 316, 381, 386, 425, 433–435, 446–451

summarization, 214

tabulation, 216

Data analysis, 213–215. See also specific topics, e.g.,
categorization, stratified analysis, regression

analysis

Data and Safety Monitoring Board (DSMB), 91

Data capture, 499–509

Data coding questionnaires, 214

Data collection, 499–510

errors in, 214–216
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epidemiologic investigation, 460

methods of, epidemiologic studies, 492

Data editing, 214–216

Data entry, questionnaires, 214

Data grouping, model fitting and, 423

Data priors, 337–342. See also Priors

as diagnostic device, 338–339, 341–342

frequentist interpretation, 337–338

methods, extensions, 340

and reverse-Bayes analysis, 338–339

Data probability. See Probability

Databases, study populations, 482–483, 493

Dead controls, 120

Dead subjects, proportional mortality studies and, 97–99

Death. See also Occurrence of death

sufficient-component cause model and, 9

Death certificates, surveillance, 474–475

Declaration of Helsinki, 89

Decomposition of effects, 200–202, 545–546

Deforestation, weather patterns and, 618

Delta-beta analysis, 428

Denominators. See Count data; Incidence proportion;

Incidence rate; Person time

case-control studies and, 113

exposure affected, 68, 296–297

reproductive epidemiology, 621

Density sampling, 116. See also Risk-set sampling

Density studies

case-control studies, 124–125

multiplicative-intercept models, 430–431

Dental caries, community intervention trials, 1, 92

Dependent error, 138, 143, 145, 360. See also Correlated

error

Dependent happenings, transmission, 561

Dependent variables. See also Outcome variables;

Regressand simulation generation, 371–372

Depression score, 32, 206

Deprivation, 538

DES. See Diethystilbestrol

Descriptive statistics, 216–219

meta-analysis and, 668–670

Descriptive studies, birth defects, 637

Design strategies, 85–99, 168–182

ecologic studies, 514–517

genetic studies, 568–570, 573–575

study accuracy and, 168–182

Detection bias, 25–26

Deviance statistics, 229, 425–427. See also Likelihood

functions; Likelihood ratios

model checking, 425–426

Diabetes, global trends, 466–467

Diagnostic laboratories, laboratory-based surveillance,

472–473

Diagnostic tests, accuracy of, 642–646

“Diary” menstrual cycle data, 623

Dichotomous-outcome analysis, multiple outcomes

analysis, 322

Diet. See also Food intake assessment; Nutritional

epidemiology

biochemical indicators, 592, 594

pattern measurement, 586–588

records, 589

Dietary-assessment methods, 588–592

Diethylstilbestrol, 16

Difference measures, 52–53, 53. See also specific
measures, e.g., Rate difference; Risk

difference

Differential misclassification, 138, 373–374

Direct effect, 187

controlled, 200

estimating, complications in, 200–202

intermediate adjustment, 200–202

natural, 200–201

pure, 200–201

Directed acyclic graph (DAG), 187. See also Causal

diagrams

assumptions, statistical implications of, 189t
Directed-graph separation rules. See d-Separation rules

Directed path, 186

Directional statistics, 156

Discordant pairs, 286–288

Discrete variables, 138

Discrete-time model, 640

Discrimination, social, 537–538

Disease. See also CDC; Confounder-disease associations;

Genetic epidemiology; Infectious disease;

Mapping; Multiple diseases; Notifiable disease;

Public health; specific diseases, e.g., Crohn’s

disease

causal mechanisms and, 80

chronic, surveillance systems, 468

cohort studies and, 111, 112

confounding factor and, 132

control selection and, 119

exposure on, 325

effects of, 51

field trials and, 92

frequency of, 33

induction period, 15

infection v., infectious agents and, 551

intensity, 34

measures of frequency, 45, 553–555

misclassification, 358–359

monitoring, 488–490, 490f
nondifferential misclassification, 142–143

occurrence, 41

potential confounder v., 131

presence, binary regression, 384

prevalence, cross-sectional studies, 97

proportion, sufficient-cause mechanisms, 13–15

rare, mapping, 609

rates, population estimates v., 466

registers, 483–484

self-reported, 473

sufficient-causes of, 6, 6f, 63, 63f
surveillance and, 459

Disease-confounder associations, 352

Disjoint category coding, 407

in trend models, 409

Dissimilarity index, segregation, 539

Distributions. See also Probability distributions and

densities

of disease and health events, 32–34, 41, 46, 66–67

standard, 49–50, 68–69, 265–266

Dose-response. See also Trend

analysis, 314–317

causal criterion, 28

graphing, 308–314



P1: TNL/OTB P2: IML/OTB QC: IML/OTB T1: IML Printer: RRD

GRBT241-INDEX GRBT241-v4.cls February 5, 2008 14:38

740 Index

Dose-response (Contd.)
modeling, 404–405

in meta-analysis, 674

zero exposure handling, 317

Dosimetric model, 601

“Double loss” of subjects, 284

Double-blind studies, 91

Doubly robust estimation, 450–451

d-Separation rules, 187–191

statistical independence and, 189–190

DSMB. See Data and Safety Monitoring Board

Duhem-Quine thesis, 21

Duration of contact, 601

Duration of disease, and prevalence 47–48

Dynamic population. See Open population

Ecologic analysis. See Ecologic studies

Ecologic bias, ecologic fallacy, 519–522. See also
Cross-level bias

Ecologic inference, 513

Ecologic studies, 88, 99, 511–531, 606

analysis, 517–530

biases, 519–528

concepts and rationale, 511–514

designs, 514–517

interpretation problems, 528, 530–531

methodologic problems, 519–528

nutritional exposures, 581–586

rationale for, 513–514

Edges in graphs, 187

Education, 467, 535

E-estimation, 449

Effects, 5–8. See also Causal effects; Causality; Causation; Effect

measures; Effect-measure modification; Interaction

direct,187, 200

generalized definitions of, 66–67

indirect, 13, 200

preventive, 8, 9, 17, 54, 59, 65

public health, 14,

strength of, 10–13

Effect decomposition, direct-indirect, 200–202, 545–546

Effect estimation. See specific topics, e.g., Bias; Bias

analysis; Confounding; Maximum likelihood;

Precision; Selection bias; Study design; Validity

Effect measures, 51–56, 59–70. See also Causal effects;

Effects; Effect-measure modification

defining exposure in, 55

generalized, 66–67

measures of association v., 59–60, 59t, 185, 385–388

null state and, 54–56

regression, 385–386

relations among, 60–62

standardized, 67–69, 386–388

theoretical nature of, 54–55

Effective reproductive number, infectious disease, 563

Effect-measure modification, 61–62, 72–74, 76. See also
Heterogeneity; Statistical interaction

confounding v., 259

by group, ecologic bias, 520

Effect modification. See Effect-measure modification

Effect size, divided by standard deviation, 681

Effect-size modeling, 673–677

Efficiency. See also Cost efficiency

cohort study v. case-control study, 93, 112

definition of, 168

matching and, in cohort studies, 174–175

matching and, in case-control studies, 176–181

statistical, 169–171

study 150

Efficient score statistic, maximum-likelihood estimate

(MLE), 226

Eligibility criteria, meta-analysis, 653

ELSI (Ethical, legal, and social issues), biomarkers,

epidemiologic research, 567–568

Empirical-Bayes modeling, 331, 337, 436, 439. See also
Hierarchical regression

Empirical priors, 331–332

Endocarditis, culture technique and, 553

Endogeneity, 622

Endogenous variables, 186, 453

Endometrial cancer and estrogens, 2

Berksonian bias and, 135–136, 137

Energy adjustment, 596

Entamoeba histolytica, infection occurrence, 556

Environment, 598

causation and, 15

exposure assessment, 619

measures, ecologic studies, 512

surveillance, 460

Environmental epidemiology, 598–619

domain of, 598–600

study designs for, 604–610

Environmental hazards

health surveillance, 613–614

risk assessment, 614–615

Environmental reservoir, human host and, 555

Environmental samples, 505

Environmental trials, 93

Epidemic case-control studies, 125

Epidemic curves, 39–40

Epidemic outbreaks, 552

Epidemiologic data analysis. See Data; Data analysis

Epidemiologic investigation, 460. See also Investigator

Epidemiologic studies. See also specific e.g.,
case-crossover studies

case-control studies, 95, 111–127

clinical trials, 88

cohort studies, 94, 100–110

existing registers, 483–484

genetics, methodologic issues, 570–573

measurement of diet, 586–594

physical examinations and, 504–505

precision and statistics, 148–167

target population, 146

types, 87–99

validity in, 128–147

Epidemiology

criticism of, 2

defined, 32

field methods, 492–510

Equal accuracy principle, 121

Equally spaced boundaries, percentiles v., 304

Equipoise, 89–90

Equivalence testing, 156

Equivalent models, 390

Error

alpha, 153

beta, 153
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classification, 137, 352–353. See also Misclassification

In disease onset, 359

measurement, 137–138, 346, 352–353, 361

random, 148–149, 213, 332–333, 346, 364, 366–369,

376, 379

type I, 153

type II, 153

Estimating equations, 422. See also Generalized

estimating equations

Estimability, graphical, 192

Estimation, 128

accuracy of, 128, 213, 231, 314, 331, 419, 436

analysis and, 214

effect of errors and, 346

methods of, 219–234

Estrogens, 2, 565t, 616, 623, 631. See also Endometrial

cancer and estrogens

Ethics

nonexperimental studies, 93

secondary data access, 490–491

validity v., human subjects, 89

Etiologic fractions, 63–66, 297–298

Etiologic mixed design, 517

Etiologic multiple-group study, 515

Etiologic time-trend study, 516

Event time, 33. See also Incidence time

Evidence of absence of an effect, 159–162

Exact 2X2 programs, application

person-time data and, 257

single-group data and, 257

Exact confidence levels, mid-P v., 231

Exact logistic regression, 422

Exact statistics, 220–225, 231, 256. See also Small-sample

methods

Examination forms, 504–505

Excess caseload, 63, 83

Excess causal rate ratio, 53–54

Excess fractions, 63, 65. See also Attributable fractions;

Rate fractions

etiologic fractions v., 64, 297–298

probability of causation v., 64–65, 297–298

Excess relative risks, 53

Excess risk, 52, 54

Exogenous variables, 186, 453

Expanding model search, 419, 438

Expected years-of-life-lost, 53, 70

Expense, cohort studies and, 108

Experimental epidemiology, 87

Experimental evidence, causal inference and, 29

Experimental studies, 87–93, 168–169

ecologic studies, nutritional exposures, 585–586

human subjects, validity v. ethical considerations,

89

social epidemiology, 547

Exploratory study designs, 514–515

Exploratory time-trend study, ecologic studies, 515–516

Exponential curve, exponential risk model, 404

Exponential decay, 37

Exponential formula, 43–44

Exponential function, natural log function v., 416

Exponential models. See also Log-linear models;

Multiplicative models

for counts, 423, 444

for incidence times, 396

for odds, 394

for rates, 396–398

for risks, 393–394

exponential curve and, 404

for risks, 393–394, 398

Exposed subjects, unexposed time in, 104

Exposure(s), 92. See also Exposure assessment

average risk and, 61

case-crossover studies, 126

categories of, 105–106, 105f, 142, 305

chronic, 103–104

classification, predictive values, 357, 641

data, types of, 600–602

differential misclassification, 138

dose v., 601

effect measures, 55

analyses of, 300

matching factor and, 175, 176t
occurrence of disease and, 51

environmental, 598–600

etiologic fractions, 63f, 64

frequencies, 11t
groups

defining, 100–107

person time and, 101

special, nutritional exposures, 582

herd immunity and, 561, 562t
history, 119

infection occurrence, factors influencing, 556–557

intensity, 106

measurement error, 137–138

in meta-analysis, 656

misclassification, 137–146

nondifferential misclassification, 139–145

nonexperimental studies, 93

patterns, 66–67

person-time, 102–103, 218–219

PMR study and, 97

scaling, 313, 392–393

segregation, 539

social, 534–542

standardization, 265

standardized measures, 259

susceptibility, 64–65

summaries, 101–102

weighting distribution and, 266

zero level, 316–317

Exposure assessment, 598–604. See also Data collection;

Exposure; Measurement

“Omic” tools, 575–57

Exposure lagging, 301

Exposure level

definition of, 103

trend graphing, 308

Exposure measure, induction periods, 300–302

Exposure misclassification, 137–142, 353–355. See also
Misclassification

bias from, 301

epidemiologic studies and, genetics, 570

Exposure models

adjustment via, 450

IPW, standardization using, 444–445

outcome models v., 449–450

standardization using, 444–445
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Exposure occurrence, infectious agents, factors

influencing, 555–556

Exposure odds ratio, 114

Exposure opportunity, 117

Exposure patterns. See Patterns of exposure

Exposure prevalence, equations, 354

Exposure scores. See also Confounder scores; Propensity

scores

for confounder control, 447–449

for exposure categories, 314

Exposure status, 104

Exposure values, percentile boundaries v., 304

Exposure variable

data and, 217

polytomous exposure, 305, 306–307, 306t
Exposure-balancing score, 447

Exposure-disease association, 56–57, 281, 323

cross-sectional studies and, 97

P-value, 340

Exposure-probability modeling, confounder-selection

strategies, 263

External adjustment for confounding, 348–352, 363,

660–662

External reference population, SMR and, 664–665

External validity, 128. See Generalizability

Extra-binomial variation, 422

Extraneous risk factors, confounders, 131. See also
Confounders

Extra-Poisson variation, 422

Failure time, 33. See also Incidence time

Failure-time analysis, 41

Failure-time model, 33, 396

Faithfulness assumption in causal diagrams, 191

Fallacy of affirming the consequent, 19

False-negative probability, 138

False-positive associations, gene-disease association, 572

False-positive probability, 138

Falsificationism, 20

Family based analysis, genetic factors, 638

Fatal Accident Reporting System (FARS), 286

Fatality ratio, 41

Fecundability ratio, 640

Fecundability, 626

Fertility

attrition-related bias, 621

reproductive epidemiology, 624–625

Fetal growth retardation, monitoring, 489

Field methods, in epidemiology, 492–510

Field trials, 87

clinical trials v., 92

cluster randomized trials, 92–93

First-stage model, 436. See also Hierarchical

regression

Fisher P-value, 223. See also Exact statistics

Fisher’s exact test, 256

Fitted model, 389

data v., 423

Fitted scores, 448

Fitted second-stage frequentist model, 332

Fixed cohorts, 38, 101

Floating absolute risk, 310

Follow-up, 103–108. See also Censoring; Losses to

follow-up

data, person-time analysis, 287

disease prevalence, estimation of, 554

losses, basic survival analysis, 289

studies needing, 240

techniques, 507–508

Food intake assessment methods, 589

Food-frequency questionnaires, 589–591

dietary-assessment methods v., 593t
Foods, measurement of, 586–588

Force of morbidity, force of mortality, 34. See also Hazard

rate; Incidence rate

Forward selection, 438. See also Expanding model search

Fractional polynomial models, 410. See also Smoothers

and Smoothing; Spline models

Framingham Heart Study, 1

Frequency matching, 171

Frequency of outcome, 170

Frequency-based priors, 332

Frequentist methods. See also specific methods, e.g.,
Confidence intervals, P-values, Significance tests

Bayesian interpretation v., 335–336

Bayesian regression v., 388–389

interpretations, 163

regression, 382–383

subjective Bayesianism v., 329–333

Friend controls, 119–120, 496

G-computation algorithm, 208. See G-estimation

GEE. See Generalized estimating equations

Gene discovery, inflammatory bowel disease study,

577–578

Gene-environment interaction, 15, 639

epidemiologic studies and, methodologic issues in,

570–571, 571t, 572t
Gene-disease associations, epidemiologic study designs,

565

Gene-gene-environment interactions, epidemiologic study

designs, 565

Generalizability, 128, 129, 146–147. See also accuracy

and, 146–147

of randomized trials, 90

Generalized additive models, 442

Generalized estimating equations (GEE) logistic

regression, 452, 628

structural-nested modeling v. 453

Generalized linear models, 416–417, 640

outcome transformation v., 400

General population

cohorts, 109–110

information, cost reduction and, 109

Genetic epidemiology, 564–579

Genetic population stratification, 638–639

Genetic susceptibility

colorectal cancer, “Omic” tools, 575–576

inflammatory bowel disease study, 577–578

privacy issues, 509

Genetic variants

case-control studies, conventional epidemiologic

studies, 568

cohort studies, conventional epidemiologic studies,

568–569, 569t
cross-sectional studies, conventional epidemiologic

studies, 569–570

Type I and II errors, 571
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Genetics

causal mechanisms and, 15

exposure assessment, 603

factors, 637–639

studies, 125–126

Genome-wide association analysis (GWA analysis),

case-control studies, 564

Genomics, 564

infection occurrence, 556

Genotype misclassification, epidemiologic studies and, 570

Genotype-phenotype correlations, 574

Genotyping tools, genetic factors, 639

Geographic clustering, 464

Geographic information systems (GIS)

epidemiologic studies, 507

exposures assessment, 603

surveillance data, 477

Gestation, recognized loss, 629

Gestational-age-specific mortality, 636

G-estimation, 208, 302, 396, 449, 453–455. See also
Structural nested models

Gini coefficient, 539, 540

GIS. See Geographic information systems; Global

positioning systems

Global climate change, climatologists, 617, 618f
Global measures, ecologic studies, 512

Global positioning systems (GIS), epidemiologic studies,

507

Global Tests of fit, model checking and, 427

Global warming, 617, 618f
Graphical analyses. See also Causal diagrams; Smoothers

and Smoothing

meta-analysis and, 668–670

of confounding, 192–194

of selection bias, 192–194, 196

surveillance data, 478–479

of trends, 308–314

Graphical models. See Causal diagrams

Greenwood’s formula, 290

Group-specific models, 442

Growth retardation, 633

GWA analysis. See Genome-wide association analysis

Haack, Susan, philosophy of, 24

Hair biomarker measurements, 594

Hazard of outcome at time, 397. See also Cox model

Hazard rate, 34, 397

Health

epidemiologic studies and, 1

problems, descriptive epidemiology of, 462–467

services, planning and projections, 466–467

surveillance, 110, 457

Health-related behavior, 468

Health-related exposure, 468

Healthy worker effect, 109, 135, 622

Herd immunity

exposure and, 561, 562t
transmission, 561

Heritability indices, limitations of, 15

Heterogeneity, 61–62, 258–259. See also Effect-measure

modification; Statistical Interaction

of association, 259

confounding v., 259

of effect, 61–62, 72–74, 259

in meta-analysis, 671–673

tests for, 270, 279–280

Hierarchical regression, 337, 435–439, 529, 630. See also
Bayesian analysis

confounder control and, 263

model selection and, 437–438

multiple comparisons and, 237

smoothing with, 438–439

Hierarchy principle, in modeling, 405, 406

Hill’s considerations for causal inference, 26–31

Historical ascertainment, 96

Historical cohorts, 109

HIV (Human immunodeficiency virus)

confidentiality, 470

incubation periods, 557f
infection occurrence, 557

factors influencing, 556

infectivity and, 558

surveillance, 463

data, 466

record linkages, 475

Homogeneity. See also Heterogeneity

assumptions, 239–240, 258, 259, 270

of effect, 61–62, 72, 259

estimation assuming, 270–276

in meta-analysis, 657, 671

tests assuming, 277–278

tests, of, 270, 279–280

Horizontal scaling of graphs, 312–313, 313f
Hormonal events, subclinical pregnancy loss, 630, 631f
Horvitz-Thompson estimation, 445

Hospital-based case-control studies, 23, 118–119, 496

Hospitalization records, follow-up techniques, 508

Host immunity, infectivity and, 558

Host-related factors, infection occurrence, 556

Household wealth, 536–537

Human chorionic gonadotropin (hCG), subclinical

pregnancy loss, 630, 631f
Human genome epidemiology, 565

Human hosts, infectious agents and, 555

Human subjects, validity v. ethical considerations, 88–89

Hume, David, philosophy of, 19

Hybrid (multilevel) design, and ecologic analyses, 530

Hypergeometric distribution, 256, 272, 422

Hypothesis, 88. See also Alternative hypothesis; Joint

hypothesis; Null hypothesis; Test hypothesis

competing, 25–26

conjecture and refutation, 20–21

Hypothesis generation, 99

Hypothesis testing, 150–158, 213–214, 236. See also
Neyman-Pearson hypothesis tests; Null hypothesis;

P-values; Significance testing

confidence intervals v., 157–158

Hypothesis-screening studies, 99

IC. See Interaction contrast

ICD codes, cocaine, surveillance, 474

Identifiability, graphical 192

instrumental variables and, 202

Identifiers, entry of, 509

Illness. See Disease

Illness, natural history of, studies of, 642

Illness outcomes, 641

Immortal person-time, 106–107
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Impact fractions, 67. See also Attributable fractions;

Imprinting, 639

Incentives, 498, 498t
Incidence, 47–48

model-based estimates, 439–440

Incidence density. See Incidence rate

Incidence measures, 33–36, 40–45

prevalence v., 46

relations among, 41–45

Incidence odds, 41

case-control studies, 113

risk-based measures and, 58

models, 394–395

Incidence proportion, 33, 40–41. See also Risk

case-control studies, 113–122

causes and, 11, 11t
component causes and, 12, 12t
case-cohort study of, 123–124

models. See Risk models

Incidence rate, 33, 34–35, 40, 41, 42

absolute, 40

case-control studies, 113

incidence times v., in special populations, 37f, 39

models, 395–398

person time and, 34, 101

of population, 34

proper interpretation of, 35–36

of recurrent events, 36

Incidence rate difference. See Rate difference

Incidence rate ratio. See Rate ratio

Incidence studies. See Cohort studies

Incidence time, 33–34

models, 396–398

ratios, 53, 397

Incident case-control studies, 94. See Case-control

studies

Income, 535

Incomplete matching, 177. See also Marginal matching;

Partial matching

Incremental plots (Slope plots), 311–312, 312f
Incubation periods, 551

agents with, infection occurrence, 557, 557f
persistent infection v., progression-related states, 551

Independence. See also Association; D-Separation

conditional, 190

marginal, 184,188

statistical, 184–185

Independent censoring, 34–35, 45, 289–290

Independent competing risks, 44–45, 289–290

Independent error, 138

Independent outcome, 239

Independent variables. See also Covariate; Regressor

in regression, 383

statistically, 184–185

Index condition, counterfactual measures and, 55

Index level, regressors and, 407

Indicator variables, 407–408

Indirect adjustment. See Standardized morbidity ratio

Indirect effects, 200

direct effect v., 545, 545f
sufficient cause model and, 13

Indirectly adjusted rate, 665

Individual matching, 170–171, 178

Individual risks, 40

Individual studies, statistical reanalysis of, meta-analysis,

659–668

Individual-level analysis, 512

Induction period, 15–17, 603

analysis of, 300–302

Induction, 18–19

Inductivism, 18–19

Refutationism v., 20

Inequality, 540–541

Infection, 549. See also Preinfectiousness; Subclinical

infection

cure, factors influencing, 559–560

death from, factors influencing, 559–560

disease v., infectious agents and, 551

factors influencing, 557–559

measures of frequency, 553–555

occurrence of, factors influencing, 557–559

occurrence of exposure, 556–557

persistent, factors influencing, 559–560

subclinical, 551

transmission, factors influencing, 561–562

transmission-related states, 551, 552

Infectious agents

exposure occurrence, factors influencing,

555–556

persistent infection, 559

Infectious disease

emerging, outbreak investigations, 553

epidemiology, 549–563

process, states of, 551

progression axis, 549, 550f
public health, 617

surveillance and, 460

transmission models, 562–563

Infectivity factors, infection occurrence, 556

Inferential statistics, 221. See also Confidence limits;

P-values

data descriptors v., 216

Infertile worker effect, 622

Infertility, 624–628

Inflammatory bowel disease, genetic susceptibility,

577–578

Influence analysis, 221

meta-analysis and, 675

sensitivity, 221–222

Information

accuracy, comparability of, 121

needs, epidemiologic investigation, 460

systems, surveillance, 474

weighting, 334–337

Information bias, 137–146. See also Misclassification

Information-weighted averaging, 334–337. See also
Inverse-variance weighting

Informative cluster size, recognized loss, 630

Informed consent, 90

Initiator, in carcinogensis, 16

In-person interviews, questionnaires and, 503

Instrumental variables, 91, 202–204

Instrument-outcome association, 203

Intensity of disease, 34. See also hazard, incidence

rate

Intensity scoring, 449

Intentional selection, bias from, 196–198

Intent-to-treat analysis (ITT), 203, 647
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Interaction, 10, 13, 71–83. See also Biologic Interaction;

Public health interaction; Statistical interaction;

Synergism

analysis of, 298–300

Interaction contrast (IC), 75–79, 298–299

Interaction response types, 79–80, 80t
Interaction terms, 406. See also Product terms

Interactive voice response (IVR), 500

Intercept. See Zero level, special handling in trend

evaluation

Intercommunity comparisons, social class, 611–612

Intermediate variables, 131–134, 186–188, 545–546

adjusting for, problems of, 131–134, 200–202, 260,

545–546

in meta-analysis, 656

Internal reference group, ratios derived, meta-analysis,

665–666

Internal validity, 128–129

International ecologic studies, limitations, 581

Internet. See also Software

sites, follow-up techniques, 508

surveillance data, 478

surveillance systems, 471

Interval estimation, 157–158, 163–167. See also Bayesian

intervals; Confidence intervals; Likelihood intervals

Intervening variables. See Intermediate variables

Intervention measure, 648–649

Intervention studies, recruitment to, 494

Interview response rates, epidemiologic research,

497–498

Interviews. See also Recall bias

longitudinal studies, 503–504

response rates and, 509

techniques and training, 504

Inverse-probability weighting (IPW), 266, 444–445, 449.

See also Doubly robust estimation; Marginal

models; Model-based standardization

exposure models, standardization using, 444–445

and propensity scores, 445

stabilized, 446

Inverse-variance weighting, 334–337, 670–671. See also
Information-weighted averaging

IP. See Incidence proportion

IPW. See Inverse-probability weighting

Item non-response. See Missing values, handling

ITT association. See Intent-to-treat association

IVR. See Interactive voice response

Join points, of spline, 411

Joint action, 82. See also Interaction, concepts of

Joint analysis, of multiple exposure levels,

323

Joint confidence regions, 235–236, 324, 324f
Joint effects, model searching, 419

Joint hypothesis, 237, 307, 322–327

Joint null hypothesis, Pearson χ2 statistic, 307

Joint P-value, 235

Joint trend statistic, 326

Kaplan-Meier formula, 42–43, 290–292

censoring and, 45, 290

Kernels, 314, 318–320, 440, 441

Knots, of spline, 411

Kuhn, Thomas, philosophy of, 21

Laboratory-based surveillance, 472–473

Lagged analysis, 301

Large-sample methods, 216, 220, 225–230, 240–253, 263,

267–282, 307, 314–316, 422

and model fitting, 422–423

person-time data, 240–245

pure count data, 245–253

sparse data and, 263

trend statistics, 314–316

Latency

of effects, 16, 603

preinfectiousness v., transmission-related states,

551

reactivation disease, 559

Latency periods, exposure assessment, 603

Latent effects model, 546

Latent period, 16, 603. See also Induction period

Levels of analysis, ecologic studies, 512–513

Levels of inference, ecologic studies, 513

Levels of measurement, ecologic studies, 512

Life-course model, 546

Life expectancy, 34

“Life trajectory” effect, 547

Life-table analysis, 37, 290. See also Log-rank test;

Product-limit estimator

Likelihood function, 164, 165f, 227–228

conditional, 257, 272–273, 422, 433

partial, 422

statistical theory and, 227–229

Likelihood inference, pure, 164–165,

227–229

Likelihood intervals, pure, 164–165, 229

Likelihood ratio, 228–231, 425–426

in Bayesian analysis, 230–231

confidence limits, 229–230

statistics, 229–230

tests, 229–230, 425–426

Linear hypothesis, 314

Linear models, 392, 395, 396, 398. See also Generalized

linear models

in ecologic analysis, 517, 520

in hierarchical regression, 436

for odds, 395

for rates, 396

for risks, 392

for trends, 398, 402–403

Linear predictor, 416

Linear risk models, 392, 395, 398,

402–403

Linear spline, 411

trend, 411

Link function

generalized linear models, 416

secondary data, 486

Linkage analysis, 565

List-based sampling, 496

Locally linear regression, 441

LOESS procedures, 442

Log additive model. See Log-linear model, Multiplicative

model

Logarithmic curve, 398

Logarithmic plot scales, 310–313, 313f
Logic checks, 215, 509

Logistic distributions, 370



P1: TNL/OTB P2: IML/OTB QC: IML/OTB T1: IML Printer: RRD

GRBT241-INDEX GRBT241-v4.cls February 5, 2008 14:38

746 Index

Logistic models, 394–395, 399, 414–415, 442

adjacent-category, 414–415

conditional, 433

continuation ratio, 415

cumulative-odds, 415

group-specific, 442

exact, 422

hierarchical, 435–439

marginal, 446

for matched data, 434

ordinal, 414–415

polytomous, 413–414

proportional-odds, 415

stratified, 433

Logistic transform, 246, 391

Logit-logistic distribution, 371

Logit-normal distribution, 371

Logit, 231, 246, 391

Logit models, 395, 414–415. See also Logistic models

Log-likelihood function, 165

Log-linear hypothesis, 314

Log-linear models, 395, 416, 420. See also Multiplicative

models

for counts, 423, 444

ecologic studies and, 517

genetic factors, 638

for incidence times, 396

for odds, 394, 416

for rates, 396, 416

for risks, 393, 416

Log-log risk model, 417

Log-rank test, 295

Log-risk scale, 74

Longitudinal causal modeling, 46, 453–455

Longitudinal cohort studies, 569. See also Cohort studies

Longitudinal data, 46

modeling, 451–455

Longitudinal monitoring, 489

Longitudinal sampling, 116. See also Density

sampling

Longitudinal studies. See also Cohort studies

follow-up techniques, 507–508

interviews, 503–504

Longitudinal trends, 606, 608

Log-likelihoods. See Deviance statistics; Likelihood

functions; Likelihood ratios

Log-rank test, 295

Lorenz curve, 540, 541f, 542

Loss to follow-up, 100–101, 108–109, 289. See also
Censoring

Low birth-weight paradox, 633

Lower P-value, 220

Lower-tailed P-value, 152, 220

LOWESS procedures, 442

Lung cancer, 18, 103, 263, 604, 607f,
609

Lyme disease, culture technique and, 553

“M” diagram, 188f
Malformations, prevalence and, 47

Mantel trend statistic, 314–316

Mantel-Haenszel methods, 271

case-cohort, 281

homogeneity assumption, 271

model fitting, 433

odds ratio, 276, 276t
rate difference, 273

rate ratio, 273

risk difference, 274–275

risk ratio 274–275, 281, 285

sparse-data, 272, 275, 281

statistic for person-time data, 277

statistic for pure-count data, 278

statistic for polytomous exposures, 307

study size, 679

survival analysis, 294–295

two-stage data, 282

Mapping, disease rates, 608–609

Marginal averages, 387

Marginal independence, 184

Marginal matching, 182

Marginal models, 442, 446, 447, 450, 451, 544–545. See
also Inverse probability weighting; Marginal

structural models; Model based standardization

Marginal structural models (MSM), 208, 446,

454–455

Marginally unbiased, 191

Marginal outcome modeling, 446

Markov-chain Monte Carlo (MCMC), 342

Matched data. See also Matched pair; Matching

analysis of, 283–288

modeling, 434–435

Matched designs, 171–182. See also Matching

Matched pair

analysis, 284–288

case-control data, 287–288

cohort data, 284–287

odds ratio, 287–288

risk ratio, 285

test, 286

Matched randomization, 175

Matching, 171–179. See also Matched data; Matched

pairs; Overmatching

in case-control studies, 175–179

cost of, 178

selection bias and, 174–176, 205, 205f
in cohort studies, 174–175

effect of, 171–174, 205

information accuracy, indicators of, 181

marginal, 182

partial, 177, 182

purpose of, 171–174

stratification variables, 150

Matrix adjustment methods for misclassification,

360–361

Maximum likelihood estimate (MLE), 164, 221, 228,

271–272. See also Likelihood function; Likelihood

ratio

homogeneity assumption, 271

of homogenous measure, 271

model fitting and, 421, 425

overdispersion and, 422

priors, 342

score statistic and, 226

Maximum likelihood test statistic, 230. See Wald statistic

Maximal models, 421

MCMC. See Markov-chain Monte Carlo program

McNemar test statistic, 286, 288
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MCSA. See Monte-Carlo sensitivity analysis of biases

MDR method. See Multifactor dimensionality-reduction

method

Measles vaccine

prevention programs and, 462, 463f
register, secondary data, 485–486

Measurement error, 137–138, 346, 352–353, 361. See also
Misclassification

in dietary and nutritional assessment, 591–592, 595,

596–597

Measures of association, 51–70, 57. See also Association

Measures of effect v., 59–60, 59t, 185, 385–388

standardized measures of, 67–69

Measures of body composition, anthropometry, 594–595

Measures of occurrence, 33–35, 40, 46

Measures of effect, 51–56, 59–70; See also Causal effects;

Effects; Effect-measure modification

defining exposure in, 55

generalized, 66–67

measures of association v., 59–60, 59t, 185, 385–388

null state and, 54–56

regression, 385–386

relations among, 60–62

standardized, 67–69, 386–388

theoretical nature of, 54–55

Measures of frequency, infection and disease, 553–555

Median-unbiased estimates, 221, 224, 253, 255, 257

Mediating variables. See Intermediate variables

Medical testing, 643, 644t
Medical-record abstracts, 499

Mendelian transmission, 565

Menopause, 622–623

Menstrual cycle, 623

Meta-analysis, 652–682. See also Publication bias

goals of, 654–655

nature of, 652–653

protocol for, 655

quality scores, 679, 681

quantification of effects, 657–658

role and limitations, 681

statistical methods, 668–677

study identification, 656–657

summary statistics for, 670t
vote counting, 680–681

Meta-regression methods, 673–677

Methods, classes of, 220

Mid-P-values, 232–233, 255–257

v. continuity corrections, 232–233

Migrant studies, nutritional exposures, 582

Migration across groups, ecologic studies, 527

Mill, John Stuart, philosophy of, 19

Minimally sufficient conditioning sets, 192

Minimal models, 420–421

Miscarriage studies, 629

Misclassification, 138–144

analysis of, 352–361, 372

bias related to, quantification of, 352–361, 488

of confounders, 144–145

dependent, 138, 143, 145, 360

of multiple variables, 360

in meta-analysis, 662–663

multiple-bias analyses and, 363

Misspecification. See Model specification; Specification

bias; Specification error

Missing at random (MAR), 219

Missing completely at random (MCAR), 219

Missing data, 215, 219

bias, 199–200, 200f, 346

methods, 219

Missing-data indicators, bias from, 199–200, 219

Mixed effects model, 130, 529. See also Hierarchical

regression

in meta regression, 677

MLE. See Maximum-likelihood estimate

Mobility. See Social mobility

Model accuracy, 389–390, 419, 449–450

Model averaging, 427

Model-based estimates, 424, 439–440

Model-based standardization, 442–446; See also Inverse

probability weighting; Marginal modeling;

Regression standardization

Model checking, 423–429, 425t
Model combination, doubly robust estimation, 450–451

Model diagnostics, model checking and, 423,

427–428

Model fitting, 389–390, 421–423

background example, 390

Model parameter, 389

Model selection, 419–421

hierarchical regression and, 437–438

confounder scoring and, 449–450

Model sensitivity analysis, 346, 429

Model specification, 382, 389–390, 420–421, 449–450.

See also Model selection

Modifiers. See Effect measure modification

Modular questionnaire, multipurpose studies and, 503

Molecular epidemiology, 564–579

Monitoring of disease, 488–490, 490f
Monotone trend, 308

Monte-Carlo sensitivity analysis (MCSA), 364–378

Bayesian analysis v., 378–380

combined, 376–378

intervals, 365

probabilistic bias analysis and, 364

simulation histograms, 368f
Mortality rates

follow-up, 109–110

monitoring disease, 488–490, 489f
patterns of, 33, 33t
time-series analyses, 611

Mosquito, environmental reservoir, 555

Moving To Opportunity study (MTO study), 547

Moving averages, 317–321. See also Smoothers and

Smoothing categorical estimates as, 321

MRFIT. See Multiple Risk Factor Intervention Trial

MSM. See Marginal structural model

MTO study. See Moving To Opportunity study

Multidimensional outcome, 56

Multifactor dimensionality-reduction (MDR) method,

gene-disease association, 572

Multifactorial causation and etiology, 5, 14

Multigeneration registers, secondary data, 484

Multilevel analyses, 513

and designs, ecologic studies, 528–530

Multilevel modeling, 337, 435–439, 529, 530, 542–544.

See also Hierarchical regression

Multi-linear regression, 674t
Multiple bias analyses, 363–364, 376–378
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Multiple comparisons, 234–237, 322–327

hierarchical regression and, 237

single-comparisons v., 326–327

in trend analyses, 307, 326

Multiple control groups, case-control studies, 122, 322

Multiple correlation, 424–425

Multiple diseases, analysis of. See Multiple outcomes

analysis

Multiple group designs, ecologic studies, 514

Multiple group ecologic analysis, confounders, 518–519

Multiple group ecologic studies, within-group

misclassification, 526

Multiple imputation, 219

Multiple inference procedures. See Multiple comparisons

Multiple logistic model, 401. See also Logistic models

extensions of, 413–416

single-logistic model v., 401

Multiple outcomes analysis, 321–323, 322t, 325–326. See
also Longitudinal data; Recurrent events

simultaneous analysis of, 325, 325t
Multiple probabilistic bias analysis, Monte-Carlo analyses

and, 376, 377t, 378

Multiple regression, 384

models, 400–408. See also specific models, e.g., Logistic

models

trend models, 408–413

Multiple Risk Factor Intervention Trial (MRFIT), 92

Multiple testing. See Multiple comparisons

Multiplicative models, 404–405. See also Exponential

models; Log-linear models

Multiplicative-intercept models

conditional fitting, 433

cumulative studies, 431

density studies, 430–431

prevalence studies, 431

Multipurpose studies, modular questionnaire, 503

Multistage model, 82

Multivariable modeling. See Multiple regression;

Multivariate regression

Multivariate outcome, with competing risks, 56

Multivariate regression, 388

Mycobacterium avium, infectivity and, 558

Mycobacterium leprae, culture technique and, 553

Mycobacterium tuberculosis
infection occurrence, 556

surveillance, 464

Nails, biochemical measurements, 594

Naive direct-effect analysis, 201

Narrative historical approach, 548

National Death Index (NDI), tracing, epidemiologic

studies, 507

National genetic testing committees, terminology by, 566,

566t
National Health and Nutrition Examination Survey. See

NHANES survey

Natural direct effect, 200–201

Natural log function, exponential function v., 416

Naturalism, consensus and, 21–22

NDI. See National Death Index

Nearest-neighbor windows, 321

Necessary cause, 7, 9

Negative adjustments, treatment of, in bias analysis, 373

Neighborhood controls, 117, 121

Neisseria meningitidis, colonization of, 556

Nelson-Aalen estimator, 292. See also Exponential

formula; Kaplan-Meier formula

Neonatal mortality, 633–635, 634f
Nested case-control studies, 114, 122–123

and missing data models, 432

Nested confidence intervals, 157f
Nested indicator coding, 407

Next-step investigations, surveillance data, 478

Neyman-Pearson hypothesis testing, 150, 153–155. See
also Hypothesis test; P-values; Statistical

significance

statistical estimation and, 157–158

NHANES survey (National Health and Nutrition

Examination Survey), 569, 611

surveillance, 474

Nodes. See Vertices

Nominal-scale variables, 214

Nonadherence. See adherence

Noncausal associations, 26

Noncollapsibility, 58, 62. See also Collapsibility

confounding v., 62

Noncompliance. See compliance

g-estimation and, 454

Nondependent error, 138. See Independent error

Nondifferential misclassification, 139, 372–373

of disease, 142–143

of exposure, 139–142

incidence-rate difference and, incidence-rate ratio and,

139t
pervasiveness of misinterpretation, 143

requirements for, 355–356

with three exposure categories, 141t
with two exposure categories, 140t

Nonexperimental studies, 93–99

types of, 87–88

Noninformative priors, 167, 335–337, 343, 348,

379–380

Nonnested models, 426

Non-normal priors, 340, 370–372

Nonparametric bootstrapping, model checking and,

429

Nonparametric regression, 421, 440–442. See also
Smoothers and Smoothing

Nonrandomized clinical studies, 641, 650

Nonsignificance of a statistical test, proper interpretation

of, 151–152

In meta-analysis, 657, 680

Notifiable disease

reporting, 472

surveillance and, 460

Novum Organum, scientific method and, 18

Null hypergeometric distribution, 256, 257

Null hypothesis, 60, 88, 151, 156, 314

bias and, 144

P-value, 153, 315, 454

test for, 158

true, cross-level bias, 523, 525t
Null state, effect measure and, 54–56

Null studies, publication bias and, meta-analysis and,

678–679

Nutrient content, measurement of, epidemiologic studies,

586–588

Nutrient, definition complexity, 580
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Nutritional epidemiology, 580–597

methodological issues, 595–597

Nutritional exposures, 581–586

Observational studies, 19, 87–88, 332–333

confounding and, 129

Occam’s razor, 389

Occupation, as social variable, 537

Occupational cohort study, 495

Occupational epidemiology, 599

Occurrence measures, 33–50

Occurrence time, 33. See also Incidence time

Odds models, 394–395

Odds ratio, 61, 62, 74

case-control studies, 127

pseudo-frequencies and, 113–114

Oil disease, 603

“Omic” tools, 564–566

One step study, 646

One-sided P-value, 156

One-sided tests, 156

One-tailed P-value, 152

Open populations, 38, 101. See also Dynamic population

closed populations v., 38

steady state, 38–39

Open-ended categories, confounder stratification, 218,

304–305, 410

“Optimal” control distribution, case-control studies, 176,

177

Ordered variables, categorization of, 303–305

Ordering of classification, multiple-bias analyses and, 363

Ordinal logistic models, 414–415

Ordinal category scores, 312–313, 410

Outbreak bias, 553

Outbreak investigations, emerging infectious diseases, 553

Outcome events. See also Causal effects; Effects; Outcome

variables

sufficient-component cause model and, 9

timing of, exposure category and, 107–108

Outcome measures. See specific measures, e.g., Incidence

times; Rates

Outcome models

exposure models v., 449–450

standardization using, 443

Outcome scores, 447–448. See also Confounder scores

Outcome transformations, 400

Outcome variables, 382–383. See also Causal effects;

Effects; Outcome events; Regressand

in meta-analysis, 655–656

in regression v. causation, 383

transformed, 400

Outliers, 410

Overadjustment, 181, 260

Overconclusiveness, meta-analysis and, 677

Overdispersion, 422

Overmatching, 179–181, 260

bias and, 180–181

cost efficiency, 181

statistical efficiency and, 179–180

Ovulation, 623

Pair matching, 283–289

Pairwise blocking, 174

Parallel linear trends, 404

Partial likelihood, 422

Partial-Bayes analysis. See Semi-Bayes analysis

Partial matching, 177, 182

Partially ecologic analysis, 512, 512f
Passive surveillance, 476

active surveillance v., 472

Pathway model, 546

Patterns of exposure, 66

attributable fractions, 67

distinguishing, 67

Pearson global test statistics, 427

Pearson χ2 statistic, 307

Penalized splines, 440–441

Penalized estimation, 271, 331, 341, 421, 423, 436,

437–439. See also Hierarchical regression;

Shrinkage estimation

maximum likelihood v., 271

Per protocol analysis, randomized controlled trials, 648

Percentile boundaries, problems with, 217–218, 264,

303–305

Perfect compatibility, in causal graphs, 191

Perinatal mortality, 635–636

Period effect, 606, 608

Persistent infection (Chronic infection), 552

incubation period v., progression-related states, 551

infectious agents and, 559

Persistent organic pollutants, 616–617

Personal identifiers, secondary data access, ethics of, 491

Person-count cohort data, 240

Person-time, 294. See also Follow-up

analysis, follow-up data, 287

classifying, 102–103

data

large-sample methods, 240–245

small-sample methods, 253–255

unstratified data with, 243, 243t
distribution, 49–50, 68

exposure, 106

follow-up data, disease misclassification, 358–359

immortal, 106–107

rate, 34

at risk, 34, 39

units, classification of, 218–219

weights, Mantel-Haenszel estimation, 275

Physical examinations, epidemiologic studies, 504–505

Placebo, 91

equipoise and, 89

response, 91

Plausibility, causal inference and, 28–29

PMR. See Proportional mortality ratio

Point estimate, 156

Point prevalence, 46

Point sources, clustering analysis, 613

Point-source outbreaks, epidemic outbreaks, 552

Poisson distribution (model), 241–243

clusters, 612

Poisson regression, 421–422. See also Exponential models

for rates

case-parent studies, genotype distribution and,

575

extravariation, 422

genetic factors, 638

Policy, and bias analysis, 347, 380

Policy, surveillance data, 467
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Polynomial regression, 410

Polytomous exposures, and outcomes, analysis of,

303–327

Polytomous logistic models, 413–414

Pooled estimate, 271

Popper, Karl, philosophy of, 20

Population. See also Case selection; Complete

populations; Confounding; General-population;

Impact fractions; Incidence rate; Population-based

case-control studies; Source population;

Superpopulation; Target population

closed, 36–37

cohorts v., 38

concepts of, 383

individual rates and, 34–35

open, 38, 101

regression, 383

at risk, 34

of recurrent events, 36

steady state, 38–39

source, 114–115, 128–129, 383

target, 60, 90, 146–147, 383, 471

under surveillance, 460

types of, 36–39

Population-attributable fractions, 67,

295–297

Population-attributable risk percent, 67

Population-average models, 544–545

Population-averaged regression, 387

Population-based case-control studies, 114, 123

See also Nested case-control studies

Population-based prevalence study, 569

Population-based surveillance systems, 469–470

Population effects, 52

Population incidence rate, 34, 35

Population time at risk, 34

Post hoc ergo propter hoc fallacy, 19

Posterior probability, 23, 166–167, 330–331, 337, 345,

364, 379–380

Postexposure events, person-time allocation, 107

Potential biases. See Systematic errors

Potential outcomes, 54, 385–386. See also Counterfactual

outcomes

binary exposure variables and, 75, 76t
causal models and, 60

causation, 18

model, 59–60, 59t
in regression, 385–388

in standardization, 387–388

sufficient-cause models v., 81–82, 81f
Poverty, 536

Power models, 410

Power of statistical test, 153–154

Pr. See Probability

Precision

data stratification and, 150

definition of, 1498–149

statistical significance and, 162, 162f
weighting, 271, 334–337, 670–671. See also

Information-weighted averaging

Prediction, 421

Prediction accuracy, 389–390, 436

Predictive values

diagnostic tests, 643–644,644t

exposure misclassification, 138, 353–354

negative, 138, 353, 643–644,644t

positive, 138, 353, 643–644, 644t

screening tests, 643–644, 644t
sensitivity and specificity v., 357–358, 643–644,

644t
surveillance systems, 479

Pregnancy. See also Subclinical pregnancy loss

complications, 632

hormone, 621

loss, 628–631

reproductive epidemiology, 620, 621

Preinfectiousness, latency v., 551. See also Infection

Pretesting, nonresponse and, 499

Prevalence, 46–48

case-control studies, 97, 127

duration of disease, 47–48

etiologic research and, 46–47

model-based estimates, 439–440

multiplicative-intercept models, 431

odds, 48

pool, 46, 47

proportion, 46, 47

rate, 46

ratios, 69

studies, 88, 97

Preventable fractions, 54, 67. See also Attributable

fractions

Prevention programs, measles vaccine and, 462, 463f
Preventive effects, 8, 9, 17, 54, 59, 65. See also Causal

effects; Potential outcomes

Primary base study, 114–115

Primary data, secondary data v., 481

Prior data, 337–342. See also Data priors; Priors

Prior information, in model searching, 419–420. See also
Bayesian analysis; Priors

Prior limits, 330. See also Priors

Prior model, in hierarchical regression, 436

Prior probability. See Priors

Prior parameters, Bayesian analysis and, 330

Prior standard deviation, hierarchical regression, 436–437

Prior data, 337–342

as diagnostic device, 338–339, 341–342

frequentist interpretation, 337–338

methods, extensions, 340

and reverse Bayes analysis, 338–339

Priors, 23, 166–167, 330–332, 337–343, 366–373,

378–380. See also Prior data; Probability;

Probability distributions

cautions, 342–343

correlated, 371–372

noninformative, 167, 335–337, 343, 348, 379–380

reference, 343

realistic, 335–336, 337, 365, 369–370, 371, 373

Privacy rights, surveillance, 462

Probabilistic bias analysis, 364–380

Probabilistic sensitivity analysis (PSA), 364–365.

See also Monte-Carlo sensitivity analysis

Bayesian analysis v., 378–380

Probability, 9–10. See also Likelihood; Probability

distributions and densities; Risk

conditional, 184–185

data, 331

frequency, 10, 331–332
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in graphs, 187–190

marginal, 184

mass functions, 378

models for counts, 240–247

population, 184–185, 387

posterior, 23, 166–167, 330–331, 337, 345, 364,

379–380

prior, 23, 166–167, 330–332, 337–343, 366–373,

378–380

propensity, 10

standardized, 442–445

subjective, 10, 23–24, 165–167, 330–331

unconditional, 184

Probability distributions and densities, 184–185, 222–225,

370–372, 378–380

binomial, 223–225, 245–247, 254

graphical models for, 186–195

exact statistics and, 222–225

log F, 370

logistic, 367f, 370

logit logistic, 371

log normal, 371

logit normal, 371

normal, 367f
parameter, 223

Poisson, 241–245

population, 184–185, 387

posterior, 23, 166–167, 330–331, 337, 345, 364,

379–380

prior, 23, 166–167, 330–332, 337–343, 366–373,

378–380

trapezoidal, 367f, 371

uniform, 365, 369

Probability of causation (of a case), 64–65,

297–298

Probit model, 395

Product terms, 402–407. See also Statistical interaction

biologic interactions v., 407

interpreting, 405–406

trends and, 404–405

Product-limit estimator, 290–292

Nelson-Aalen estimator v., 292

Product-limit formula, 42–43, 42f, 42t, 43, 290–292

censoring and, 45, 290

Prognostic scores, 447. See also Confounder scores;

Outcome scores

Progression axis, infectious disease and, 549, 550f
Progression-related studies, 553–560

Promoter, in carcinogenesis, 16

Propagated outbreaks, epidemic outbreaks, 552

Propensity scores, 445, 448–450. See also Confounder

scores; Doubly robust estimation; Exposure scores

inverse-weighting by, 445, 448

Proportional hazards model. See Cox model

Proportional mortality ratio (PMR), 97–98

Proportional mortality studies, 97–99, 127

Proportional odds model, 415

Prospective ascertainment, 96

Prospective studies, retrospective studies v., 95–97

Prostate cancer, surveillance, 464, 465f
PSA. See Probabilistic sensitivity analysis

Pseudo-denominators, in case-cohort studies, 252–253

Pseudo-frequencies, 113–114, 125

Pseudo-likelihood, 422

Pseudo-rates, 113–114

Pseudo-risks, 123–124

Puberty, 622–623

Public health

bias analysis and, 347, 380

effects, 14

functions of, 462

interaction, 83

interventions, evaluation, 465–466, 466f
laws, notifiable disease reporting, 472

services, planning and projections, 466–467

surveillance, history of, 460–462, 461t
Public resources, secondary data access, ethics of, 491

Publication bias

In meta-analysis, 656–657, 678–679

from study exclusion, 679

Pure count data. See Count Data

Pure direct effect, 200–201

Pure likelihood equation, 230

Pure likelihood inference, 228

Pure likelihood limits, 229

P-values, 151–153, 156–163, 364. See also Confidence

intervals and limits; Evidence of absence of an

effect; Hypothesis tests; Joint P-value;

Lower-P-value; Mantel trend P-value;

Mid-P-values; Nonsignificance; One-sided

P-value; Significance tests; Two-sided P-value

Bayesian theory and, 166

confidence intervals and, 158–159

continuity corrected, 232

data and, 216

deviance, 229–230

exact, 220

function, 158–159, 160, 160f, 161f, 239

hypothetical data, 158t
interpretation, 151–152, 159–163

likelihood ratio, 229–230

linear hypothesis, 314–316

lower-tailed, 152

Mantel trend, 314–316

mid, 232–233

misinterpretations, 151–152

multiple testing, 234–237, 322–327

null hypothesis and, 153, 315, 454

one-sided, 156

from Pearson χ2 statistic, 307

practice guidelines, 162–163

random error and, 156

score, 225–226

test statistics, 220–221

trend, 314–316

two-sided, 156, 221, 234

two-tailed, 152

types, 152–153

upper-tailed, 152

Wald, 220, 226–227

Quadratic model, 398

Quadratic spline, 411–412

Qualitative statistical interaction, 79–80

biologic interaction v., 299

Qualitative tally (vote counting), in meta-analysis,

680

Quality scoring, 681
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Quantification of effects, 51–52. See also Effect measures

in meta-analysis, 657–658

Quantiles, 217–218, 304

Quantitative criterion, variables and, 261

Quasi-experiments, 88–89, 547

Quasi-likelihood, 422

Questionnaires. See also Data coding questionnaires; Data

entry questionnaires; Food-frequency

questionnaires; Modular questionnaire;

Self-administered questionnaires; Semiquantitative

food-frequency questionnaires

administration method, 500–501

data and, 214

modular, multipurpose studies, 503

respondent burden, 503–504

R. See Effective reproductive number (R)

R2, 424–425

Race/ethnicity, as social variable, 534–535

Racism, 537–538

Random allocation. See Randomization

Random coefficient models, 331, 423, 426, 427, 439. See
also Hierarchical regression

Random digit dialing (RDD), 117–118, 496

Random effects models, 452, 542–544, 628. See also
Hierarchical regression

in meta-analysis, 675–677

Random error, 24, 128, 148–167, 332–333; See also
Confidence Limits; Probability distributions;

P-values; Random sampling

adjustment for, in bias analysis, 346, 366–369,

376, 379

conventional statistical analysis, 364

distributions, 222–225, 241–247, 421

P-values, 151–153, 156

P-value functions, 158–159

statistical precision and, 148–149

study size and, 149–150

systematic errors v., 346

Random sampling, 10, 213, 220, 222, 224, 346.

See also Sampling error; Selection

bias

of cases, case-control studies, 115

of controls, case-control studies, 114, 122–123

for validation data, 361

Random variation, components, 148–149. See also
Random error

Randomization (Random allocation), 88–89

clinical studies, 641

d-separated unconditionally v., 187

experiments and, 168–169

of exposure assignment, 346

intervention studies, recruitment to, 494

Randomized experiments. See Experimental studies

Randomized recruitment, 604

Randomized trials, 18, 203f. See also Experimental studies

dietary hypothesis, 585–586

subject selection, 647–648

therapeutic interventions and, 646–649

Rare disease assumption in case-control studies, 114,

125

Rate fractions, 54, 63. See also Attributable fractions

etiologic fractions v., 63–64, 297–298

probability of causation v., 64–65, 297–298

Rate, 34–36, 39–40. See also specific types, e.g., Case

fatality rate; Incidence rate; Prevalence; Mortality

rates

standardized, 49–50

Rate difference, 52–53, 277

crude data, 243, 244, 245

Mantel-Haenszel, 273–274

standardized, 67–69, 266–267

Rate models, 395–398

in meta-analysis, 663

Rate ratio (RR), 61, 62, 116, 241

crude data, 243, 244, 245, 251, 254–255

ecologic studies and, 517, 518f

Mantel-Haenszel, 273–274

relation to other ratio measures, 250

standardized, 67–69, 267–269

unconditional v. conditional, 272

Ratio measures, 53. See also Rate ratio; Relative risk; Risk

ratio

relations among, 250

Rationally coherent probability assessments, 166.

See also Bayesianism

RDD. See Random-digit dialing

Reactivation disease, latency and, 559

Reanalysis, for meta-analysis and, 659–668,

669t
Recall, in interviews, 96

Recall bias, 111, 112, 138, 356–357

birth defects, 637

Recentering variables, 392

Recognized loss, 628–630

Record abstraction, 499

Record linkage, 486

in surveillance, 475, 476

Record-level adjustment, in bias analysis, 373

Recurrent events, recurrent outcomes, 36, 452–453.

See also Longitudinal data

Red blood cells, biochemical measurements, 594

Reference level, regressors and, 407

Reference model, in checking model fit, 425

Reference priors, 343. See also Noninformative priors

Referent, for causes, 7

Refutationism, 20–21, 24, 30

Registries, use of in epidemiologic research,

481–491

surveillance, 473

of vaccinations, 488

Regressand, 383–384. See also Outcome variables

in multivariate regression, 388

Regression, 382

Bayesian, 388

binary, 383–384

causal, 385–386

frequentist, 382–383, 388–389

hierarchical, 237, 263, 435–439, 529, 630

meta-analytic, 673–677

multiple, 384

multivariate, 388

ridge, 331, 423, 436, 437, 439. See also Shrinkage

estimation

standardization, 386–388, 442–445

Regression analysis, 381–382, 418–456

Regression measures of effect, 385–388

Regression functions, 382–389
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Regression models, 381–417. See also specific entries,
e.g., Generalized linear models; Linear models;

Logistic models; Log-linear models

biologic interactions and, 406–407

contingency table data and, 216

in meta-analysis, 658–659, 673–677

smoothed curves and, 321

transformed, 400

Regression splines, 410–412. See also Nonparametric

regression; Power models; Smoothers and

Smoothing

Regressor, 383–384

transformed, 398–400

Regressor-specific predictions, fitted model v.,

423

Relative birth weight, 635

Relative difference, 54, 65

Relative effect measures, 52

Relative excess measures, 53–54

Relative risk scale, meta-analysis and, 670

Relative risk (RR), 53, 67. See also Rate ratio; Risk ratio

adjustment of, in Bayesian-analysis, 336

factorization of, meta-analysis, 660–661

relations among ratio effect measures, 60–61

single two-way table, 334–335, 334t
Relative tests of regression models, 425

Repeated-measures, 451

Representativeness

generalizability and, 146–147

in case-control studies, 120–121

surveillance systems, 479

Reproductive endpoints, 621–622

Reproductive epidemiology, 620–641

Reproductive systems, 620

Reproductively unhealthy worker effect, 622

Resampling, 368–369, 376

model checking and, 428–429

Rescaling variables, 392–393

Research

biomarkers, ELSI and, 567–568

conduct, 21

links to, surveillance, 464–465

objective, 32–33

questions, meta-analysis, 655

resources, secondary data access, 491

secondary data access, ethics of, 490–491

sponsors, suppression bias and, 678

staff, occupational cohort study, 495

Research synthesis. See Bias analysis; Meta-analysis

Reservoirs, infectious agents and, 555

Residual confounding, 69, 198–199, 199f, 259

bias quantification and, 198–199

Residual degrees of freedom

global tests of fit, 427

meta-regression methods, 673

Residual distributions, model fitting and, 421–422

Residual effects, 435

Residual sum of squares, 427

meta-regression, 673

Register-based search, secondary data, 488

Respondent burden of questionnaires, 503–504

Response rates

epidemiologic research, 497–499

interviews and, 509

Response types, causal and preventive, 59–60

and additivity, 78–79

cohorts and, equivalent interaction contrast and,

80t
sufficient cause models and, 82

Restriction in study design, 169

Retention time of toxic exposures, 602–603

Retrospective ascertainment, 96, 112. See also Recall bias

Retrospective cohort selection, 109

Retrospective studies, prospective studies v., 95–97, 112

Reference event, in incidence times, 33

Reverse causation, 28, 30, 622

Reverse-Bayes analysis, 338–339

Reverse-continuation-ratio model, 415

Ridge regression, 331, 423, 436, 437, 439. See also
Hierarchical regression; Shrinkage estimation

Risk, 9–10

analysis, 347

assessment, 347

difference, 52–53

environmental hazards, 614

estimation, 290–293

fraction, 54, 65

history, 41, 42f
models, 395

ratio, 61, 73, 116

score, 447

standardized, 49–50

Risk difference, 52–53, 260–261

crude data, 247, 249, 250

Mantel-Haenszel, 274–276

standardized, 68, 266–267

Risk-difference additivity, biologic interactions and,

78–79, 298–299, 406

Risk factors

coronary heart disease, 14

lung cancer, 18

non-causal, 28

Risk fraction, 54. See also Excess fraction

Risk models, 393–395, 417

Risk period, 33, 34

Risk ratio, 61, 73, 116

case-cohort data, 252–253, 280–281

crude data, 246, 247, 250

Mantel-Haenszel, 274–276

standardized, 68, 267–269

Risk scores, 447. See also Confounder scores, Outcome

scores

Risk-set sampling, 124, 125

RR. See Rate ratio; Relative risk; Risk ratio

Run-in phase, subject selection, randomized controlled

trials, 647

Running mean, 317

Running-weighted regression curve, 321. See also
Nonparametric regression; Smoothers and

Smoothing

Russell, Bertrand, philosophy of, 19

Salk vaccine field trial, 1

Salmonella, infection occurrence, factors influencing,

556

Salmonella newport, surveillance, 463

Sample-size, considerations, 239. See also Study size

model fitting and, 422–423
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Sampling

error, 149, 346. See also Random error; Random

sampling; Selection bias

fractions, case-control studies, 115, 123–125, 430–432

rates, case-control studies, 113, 430

variation, 149

SARS. See Severe acute respiratory syndrome

Saturated regression model, 427

Scale dependence

of effect-measure modification, 72–74

of regression coefficients, 392–393

Scaling,

of graphs, 310–311, 312–313,

of regressors, 392–393

Scanned forms, 500

Scatterplot smoothers, 321. See also Nonparametric

regression; Smoothers and Smoothing

Scatterplots, 216, 321

of test statistics, 681

Schwarz information criterion. See Bayesian information

criterion

Scientific inference, philosophy of, 18–25

Scientific proof, impossibility of, 24–25

Score limits, 226

Score statistics, 225–226. See also Mantel-Haenszel

statistics

for case-cohort data, 252

for case-control data, 251

for person-time data, 242–245

for pure count data, 245–250

Score test, 225–226

Scoring methods for confounder control. See Confounder

scoring

Scoring of categories, 312–313, 410

Screening tests, studies, 642–646

SD. See Standard deviation

SE. See Standard error

Seasonal variation, 605, 608, 609, 611. See also Cyclic

patterns

Second stage model, hierarchical regression and, 438

Second stage standard deviations, hierarchical regression,

436

Secondary attack rate, 560–561

Secondary data, 481–491

access, ethics of, 490–491

analysis, complete populations, 482–483

use of, examples, 484

validity and, 483

Second-stage model, 435–437. See also Hierarchical

regression

Secular trends, migrant studies and, nutritional exposures,

582

Segregation analysis, genetic, 565

Segregation, racial/social, 539

Selection bias, 2, 134–137, 186, 193, 193f, 194, 362–363.

See also Berksonian bias; Collider bias;

Publication bias; Sampling error; Source

population; Target population

analysis of, 362–363, 375–376, 662–663

case-control studies, matching, 205, 205f
complete populations, 482–483

confounding v., 136–137

graphical representation and analysis, 192–198

and publication bias, 654–655

quantitatively v. qualitatively, 136

substudies and, 488

Selection time, study design and, 122

Self-administered questionnaires, 500

Self-reported disease, surveillance, 473

Self-selection bias, 134

Semen quality, 623–624

Semi-Bayes analysis, 337, 345, 378–380, 437, 439. See
also Bayesian analysis; Hierarchical regression;

Shrinkage estimation

biases and, 378–380

Semilogarithmic plotting, 310, 311f
Semiquantitative food-frequency questionnaires, 591

Sensitivity

in bias analysis, 354–360

of diagnostic or screening test, 643–644

of exposure measurement method, 138

influence analysis and, 221–222

in probabilistic bias analysis, 372–375

relation of predictive values to, 357–358

surveillance systems, 479

Sensitivity analysis, 208, 355, 488. See also Bias analysis

base priors and, 380

Bayesian analysis, 342, 378–380

external adjustment process and, 351, 351t
meta-analysis, 661–662, 675

multiple bias analyses and, 363

unmeasured confounders, 349

Sentinel events, surveillance, 475

Sequelae prevention, clinical trials and, 90

Serial interval, state of infectiousness, 550f, 560

Serotyping, 553

Seroconversion, HIV, 557

Seventh Day Adventists studies, 582

Severe acute respiratory syndrome (SARS), infection

occurrence, factors influencing, 556

Sex/gender, as social variable, 535

Sharp null hypothesis, 60

Shep’s relative difference, 65

Short-term recall, food intake, 589

Shrinkage estimation, 331, 337, 423, 436, 437, 439.

See also Bayesian analysis; Hierarchical regression

confounder control and, 263

Siblings records, secondary data, 484

Side effects of treatments. See Adverse events

Sign test, 680

Significance tests, 150, 151–153

confidence intervals v., 157–158

model searching and, 419

Simplifying search, model searching, 419

Simulation intervals, 365

Simultaneous analysis, 323–327. See also Multiple

comparisons

of exposure levels, 323–324

of multiple outcomes, 325–327

single-comparison v., 326–327

of trends, 326

Simultaneous misclassification, 145–146

Sine curve, cyclic patterns, 608

Single study group

large-sample methods, 245–247, 247t
person-time data, large-sample methods,

240–243

small-sample statistics, person time data and, 253–254
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Single-regression models, 401

multiple-regression models v., 401–402

SIRs. See Standardized incidence ratios

Small-sample methods, 220, 239, 253–257, 276. See also
Exact statistics; Sparse data

person-time data, 253–255

count data, 255–257

Smoking 1, 2, 8–10, 13–14, 24, 26–30, 52, 55–56, 64–66,

117, 118, 119, 121, 122, 251, 263, 264, 266–267,

274, 280, 424, 483, 488, 608, 616

in pregnancy, 602, 624, 632, 634, 635

Smoothed curves, 319–321, 410–412

Smoothers and Smoothing, 313–14, 317–321, 410–412,

421, 438–442. See also Moving averages;

Nonparametric regression; Power models; Spline

models

fractional polynomial, 410

graphical, 313–314

with hierarchical regression, 438–439

kernels, 314, 318–320, 440, 441

locally linear, 441

power model, 410

regression splines, 410–412

for surveillance data, 478

variable span, 321, 442

windows, 317–321

Smoothing parameter, 441–442

Smoothing splines, 440–441. See also Nonparametric

regression; Spline models

SMR. See Standardized morbidity ratio

SNFT. See Structural nested failure-time models

SNM models. See Structural nested mean models

Snow’s natural experiment, 94, 95. See also Cholera,

Snow’s study of

Social capital, 541–542

Social class, 537, 548

intercommunity comparisons, 611–612

Social epidemiology, 532–548

analytic approaches, 542–548

covariate assessment, 534–542

exposure, 534–542

Social factors, 534–542

aggregate level, 538–542

individual level, 534–542

Social mobility, 539, 547

Software

for Bayesian analysis, 338

for hierarchical modeling, 436

problems in distinguishing models, 402

Source population, 114–115, 128–129, 383. See also
Sampling error; Selection bias; Superpopulation;

Target population

confounding and, 129–133

subject identification, 496

target population v., 129, 383

Sparse data. See also Small-sample methods

bias from, 263, 386, 422, 433

methods for, 272–278, 280–281, 283–288, 294, 296,

314, 316, 381, 386, 425, 433–435, 446–451

Spatial-data analysis, time-trend designs v., 609–610

Special-exposure cohorts, 109–110

Specification accuracy, 449–450

Specification biases, 346

Specification error, 346

Specificity, as causal criterion, 27–28

Specificity

in bias analysis, 354–360

of diagnostic or screening test, 643–644

of exposure measurement method, 138

in probabilistic bias analysis, 372–375

relation to predictive values, 357–358

Spline models, 410–412, 440–441. See also
Nonparametric regression; Power models;

Smoothers and Smoothing

Spontaneous abortion, 621, 628

Square-root model, 398

Stability assumption in causal diagrams, 191

Standard, choice of, 266

Standard deviation (SD). See also Variance

flaws in conventional estimates, 239, 346–347

flaws in rescaling by, 393, 681

Standard distribution, 49–50, 68–69, 265–266, 386–388.

See also Standardization

Standard error (SE). See also specific estimates, e.g., Risk

ratio

of externally adjusted estimates, meta-analysis,

661–662

impact of model searching on, 419

Standardization, 49–50, 67–69, 265–269, 386–388,

442–445. See also Inverse-probability weighting;

Standard distribution; Standardized measures;

Standardized morbidity ratio

in case-control studies, 269, 445

by exposure models, 444–445

by full-data models, 444

by outcome models, 443

of regression, 386–388

Standardized coefficients, 681. See also Standard

deviation, flaws in rescaling by

Standardized incidence ratio (SIR), 68. See Standardized

morbidity ratio

Standardized measures, 33, 386–388. See also
Standardization

of association, 67–69

of effect, 67–69, 386–388

of outcome, 33, 387

probability, 442–445

rate, 49, 67, 265, 442

rate difference, 68, 266

rate ratio, 68, 267, 269

regression, 386–388, 442–445

risk, 50, 265

risk difference, 68, 266

risk ratio, 68, 267

regression coefficients v., 443–444

Standardized morbidity ratio (SMR), 68–69, 241–242,

267, 269, 664–665

Standardized mortality ratio, 68. See Standardized

morbidity ratio

State of infectiousness, 550f, 560

assessing risk of, 561–563

progression-related infectious process and, 550f, 560

Stationary population, 38–39, 47

Statistical approximations, accuracy of, 220, 225, 227–229,

243, 245, 247, 249, 250, 324, 334, 340, 342

Statistical biases, variable selection, 263, 419

Statistical efficiency, overmatching and, 176t, 179–180

Statistical estimation, 156–167
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Statistical independence, 184–185

absence of open paths and, rules linking, 187–190

and d-separation rules, 189–190

Statistical inference, philosophies of. See Bayesianism;

Frequentist methods; Pure likelihood inference

Statistical interaction, 72–74, 402–404. See also
Effect-measure modification; Heterogeneity;

Product terms

and biologic interactions, 82–83, 298–300, 407

effect-measure modification v., 72

qualitative, 79–80

Statistical precision, 149

Statistical significance, 151. See also Hypothesis tests;

P-values; Significance tests;

inference and, 160f, 161

Statistical tests. See Hypothesis tests; P-values;

Significance tests

Statistics, epidemiology and, 167

Steady state population, 38–39

Stein estimation, 331, 423, 439. See also Bayesian

analysis; Hierarchical regression; Shrinkage

estimation

Stepwise model searching, 419, 420

Stereotype model, 415

Stillbirth mortality, 635–636

Stratification of data, and precision, 150

Stratified analysis, 258–302

problems with, 179

Stratified count data, polytomous exposure, 305,

306t
Stratified logistic model, 433

Stratified models, 432–433

Stratified null hypothesis, P-values, 277–278

Stratified person-count data. See Stratified count data,

polytomous exposure

Stratified person-time data, polytomous exposure, 305,

305t
Stratified pure count data, P-values, 278

Stratum-specific

estimates, 258, 264–265

measures, overall measures v., 62

models, 433

Strength associations, causal inference, 26–27

Strength of effects, 6f, 10–13, 14t
Streptococcus pneumoniae, laboratory-based surveillance,

472–473

Stress, during pregnancy, 485

Structural equations, 60, 208, 453

Structural nested models, 453–455. See also G-estimation

Structural nested failure-time (SNFT) models,

453–454

Structural nested mean (SNM) models, 453

Study. See also Epidemiologic studies

base, in case-control studies, 112

efficiency, 150

apportionment ratios and, 169–171

endpoints, 648–649

exposure, levels of, 440

hypothesis, person-time and, 102

populations, variations, 493–494

primary base, secondary base v., 114–115

size

binomial likelihood, 247

formulas, 149–150

meta-analysis and, 679

random error and, 149–150

small, publication bias and, 679

variables, in meta-analysis, 655–656

Subclinical infection, clinical disease v., 551

Subclinical pregnancy loss, 630–631, 631f
Subcutaneous fat, biochemical measurements, 594

Subinterval-specific incidence rates, survival proportion

and, 45

Subject selection

case-control studies, 120–121, 496–497

community trials, 494

and recruitment, epidemiologic studies, 493–499

run-in phase, randomized controlled trials, 647

Subject tracing, 109, 157

Subjective Bayesianism, 165–166, 328–333. See also
Bayesianism; Subjective probability

frequentism v., 166–167, 329–333

Subjective probability, 10, 23–24, 165–167, 330–331

Subjects, classification of, 218–219

Subject-selection bias, meta-analysis, 656–657

Subject-specific models, 544. See also Group-specific

models

Substudies, selection bias and, 488

Sufficient cause, 13

disease and, 6, 6f
mechanisms, disease proportion and, 13–15

Sufficient component cause model, 6–18

biologic interactions under, 80–81

epidemiology and, 8–9, 8f
indirect effects and, 13

potential-outcome v., 81–82, 81f
scope of, 17–18

Sufficient conditioning sets, 192

Superpopulation, 151, 152, 383

for regression, 383

“Superspreaders,” infection occurrence, 556

Suppression bias, 678

Surgeon General’s Smoking and Health, 29

Surrogate confounders, 130

Surveillance, 459–480

approaches to, 472–476

history of, 460–462, 461t
objectives, 462–467

Surveillance data

analysis and interpretation, 476–478

assessing completeness, 478

education and policy, 467

presentation of, 478–479

Surveillance methods, combinations of, 475–476

Surveillance reports, surveillance data, 478

Surveillance systems, 459

attributes of, 479

cycles of, 470

elements of, 467–472

participation incentives, 470–471

SARS, 480

Surveys, 473. See also Cross-sectional studies; Prevalence

studies

Survival analysis, 41, 290–294, 291t. See also Accelerated

failure-time model; Cox model

average incidence time v., 45

subinterval-specific incidence rates and, 45

Survival proportion, 40
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Survival time. See Incidence time

Survivor bias, 198

Susceptibility measures, 64–65

Susceptibility factors, infection occurrence, 556

Syndromic surveillance systems, bioterrorism-related

epidemics and, 464

Synergism, 76–82. See also Biologic interaction

Synthetic meta-analysis, problem with, 654

Systematic errors (biases), 128–146, 345–380

random errors v., 346

Tabular analysis. See stratified analysis

Tabular checks, regression model checking and, 423–424

Tabular data, simultaneous statistics for, 323

Tabular presentation, surveillance data, 478–479

Target population, 60, 90, 146–147, 383. See also Source

population; Sampling error; Selection bias

confounding and, 60

generalizability of trial results, 90

matching, 172

source population v., 129, 383

surveillance systems, 471

TDT. See Transmission disequilibrium test

Temporal ambiguity, ecologic studies, 527

Temporality, causal inference and, 28

Test hypothesis, 152–154, 156, 165, 220. See also Null

hypothesis

Test of fit, 425–427

Test statistics, 152, 219–237

Test validity, screening tests, 642, 643, 643t. See also
Misclassification

Test-based method for extraction of estimates,

meta-analysis, 660

Tetanus, surveillance, 464

Therapy, studies of, 646–650

Time at risk, 102

time of exposure v., 102

Time clustering, 606–607, 607f
Time unit, incidence rates and, 36

Time windows, induction analysis, 300–302

Time-dependent exposures, 300–302, 397–398, 452. See
also Longitudinal data

Time-dependent covariates, 397–398, 452

Time-related disease patterns, 606–608

Time-series analyses, 517, 610–611

Time-stratified referent periods, case-crossover studies,

605, 605f
Time-to-pregnancy studies, 625–628

Time-trend designs

ecologic studies, 515–517

spatial-data analysis v., 609–610

Time-varying covariates, 397–398, 452. See also
Longitudinal data

Tissue analysis, biochemical measurements, 594

Tobacco. See Smoking

Total energy intake, dietary intake and, 596–597

Townsend and Carstairs deprivation indices, 538

Toxic shock syndrome, surveillance, 465, 466f
Tracing, epidemiologic studies, 109, 507

Transformed regressors, 398–400

Transformed-outcome models, 400

generalized linear models v., 416

Transmission axis, 549, 550f
Transmission disequilibrium test (TDT), 638

Transmission, factors influencing, 561

Transmission-related states, infection and, 551, 552

Transmission-related studies, epidemiologic issues in,

560–563

Trapezoidal distribution, 371

Treatment assignment, clinical trials and, 90

Trend. See also Dose response

analysis, 314–317

dose-response and, 308–314, 308t
graphing, 308–14

modeling, product terms and, 404–405

P-value, 314–316

in surveillance data, 477–478, 477f
Trend models, 398–399, 408–413

category codes in, 409

hierarchical, 438

trend variation models, 412–413

Trend statistics, 314–316

Triple-blind studies, 91

Tumor heterogeneity, 577

Tumor promoter, 16

Twin studies, 15, 568–569

Two-binomial model

large-sample methods, 247–250

Wald confidence limits, 250

Two-by-two tables, 247, 247t, 345. See also Contingency

tables, data analysis and

Two-phase studies. See Two-stage studies

Two-Poisson model, 245

Two-sided confidence interval, 158, 221

Two-sided P-value, 156, 221

Two-stage studies, 127, 496, 604

analysis of, 281–282, 432

Two-tailed P-value, 152

Type I error (alpha error), 153, 154

DSMB and, 91

gene-disease association, 571–572

Type II error (beta error), 153, 154, 155f
Typhoid fever, evolution of, 553, 554f

Uncertainty, 329, 331, 346–347, 364–365, 370, 376, 378,

379, 380

Uncertainty analysis, 346–347. See also Bayesian analysis;

Bias analysis; Uncertainty

Unconditional analysis, conditional analysis v., 272–273

Unconditional d-separation, 187–188. See also
d-Separation

Unconditionally unbiased, in causal diagrams, 191

Unconditional probability, 184. See also Probability

Uncontrolled confounders, analysis of, 348–352, 365–371

Unconfounded dependence, in causal diagrams, 193

Unconfounded direct effect, diagram, 201f
Unemployment, 537

Unexposed group, bias and, in trend evaluation, 317

Unexposed time in exposed subjects, cohort studies, 104

Unhealthy worker effect, 622. See also Healthy worker

effect

Uniformity of effect measures, 61, 259. See also
Homogeneity

Uniform prior distributions, 365, 369

Univariate analysis. See Descriptive statistics

Univariate exposure transforms, 398–399

Unmatched case-control studies, modeling in,

429–432
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Upper P-value, 220

Upper-tailed P-value, 152, 220

U.S. Surgeon General’s Smoking and Health,
29

UV-B radiation, cancer and, 617

Vaccines

and autism, secondary data, 485–486

Vacuous models, 390–391

Validation data, 361

dietary assessment methods, 591–592

secondary data, 487

Validity. See also Bias; Generalizability; Precision; specific
validity topics, e.g., Confounding; Selection bias;

Sparse-data bias

of biomarkers, 566

external, 128

in epidemiologic studies, 128–147

of estimation, 128–129

ethical considerations v., 89

internal, 128

secondary data and, 483

Variables. See also specific types, e.g., Regressors

in causal graphs, 186–187

in regression and causation, 383

Variable selection, 261–263, 419–421

Variable-span smoothers, 321, 442. See also
Nonparametric regression; Smoothers and

Smoothing

Variance. See also specific estimates, e.g., Standardized

estimates

bootstrap estimation, 429, 443

and confounder scores, 447

estimates, 149, 225, 226, 231, 243, 246, 248, 253, 254,

256, 422, 440, 443

model, 436

residual, 422, 425

Variance component models. See Hierarchical regression

Vectors, 384–385

Vertical scaling of graphs, 310–311

Vertices, in causal diagrams, 187

Virulence factors, 558

Volunteer providers, surveillance networks,

473

Vote counting, in meta-analysis, 680–681

Waiting time, 39. See also Incidence time

Wald limits, 227

for binomial data, 246

for case-cohort data, 252–253

for case-control data, 250–252

for person-time data, 240–245

for pure count data, 245–250

Wald statistic, 220, 226–227, 279

Wald test, 227

Weighted averaging

for Bayesian analysis, 334–337

by information, 334–337

for pooling across strata, 271

for smoothing, 318–319, 441

for meta-analysis, 670–671

by inverse probability of selection. See
inverse-probability weighting

by inverse variance, 271, 334–337, 670–671

by precision, 271, 334–337, 670–671

by quality scores, 681

in standardization, 49–50, 67–69, 265–269,

386–388

Weighted regression, 441. See also Inverse-probability

weighting in meta-analysis, 663, 668

Weights

in meta-analysis, 670–671, 681

in standardization, 49–50, 67–69, 265–267,

386–388

Weight-specific mortality, 633–635,

634f
WHO. See World Health Organization

Windows, See also Smoothers and Smoothing

in smoothing, 317–321

Within-community time-series analysis, air pollution, 616

Within-group bias, ecologic studies, 520

Within-group misclassification, ecologic studies, 526–527,

526f
Withdrawals. See Loss to follow-up; Censoring

Woolf method for pooling, 271. See also
Information-weighted averaging

World Health Organization (WHO) surveillance, 466, 474

Zero level, in trend evaluation, 316–317

Z-ratio, 220. See Wald statistic

Z-score. See Wald statistic; Z-ratio
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