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About Richard Feynman

Born in 1918 in New York City, Richard P. Feynman received his Ph.D.
from Princeton in 1942. Despite his youth, he played an important part in the
Manhattan Project at Los Alamos during World War II. Subsequently, he taught
at Cornell and at the California Institute of Technology. In 1965 he received the
Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger, for
his work in quantum electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving problems with the
theory of quantum electrodynamics. He also created a mathematical theory that
accounts for the phenomenon of superfluidity in liquid helium. Thereafter, with
Murray Gell-Mann, he did fundamental work in the area of weak interactions such
as beta decay. In later years Feynman played a key role in the development of
quark theory by putting forward his parton model of high energy proton collision
processes.

Beyond these achievements, Dr. Feynman introduced basic new computa-
tional techniques and notations into physics—above all, the ubiquitous Feynman
diagrams that, perhaps more than any other formalism in recent scientific history,
have changed the way in which basic physical processes are conceptualized and
calculated.

Feynman was a remarkably effective educator. Of all his numerous awards,
he was especially proud of the Oersted Medal for Teaching, which he won in
1972. The Feynman Lectures on Physics, originally published in 1963, were
described by a reviewer in Scientific American as “tough, but nourishing and full
of flavor. After 25 years it is the guide for teachers and for the best of beginning
students.” In order to increase the understanding of physics among the lay public,
Dr. Feynman wrote The Character of Physical Law and QED: The Strange
Theory of Light and Matter. He also authored a number of advanced publications
that have become classic references and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on the Challenger
commission is well known, especially his famous demonstration of the susceptibility
of the O-rings to cold, an elegant experiment which required nothing more than
a glass of ice water and a C-clamp. Less well known were Dr. Feynman’s efforts
on the California State Curriculum Committee in the 1960s, where he protested
the mediocrity of textbooks.
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A recital of Richard Feynman’s myriad scientific and educational accomplish-
ments cannot adequately capture the essence of the man. As any reader of
even his most technical publications knows, Feynman’s lively and multi-sided
personality shines through all his work. Besides being a physicist, he was at
various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo
player, and even a decipherer of Mayan Hieroglyphics. Perpetually curious about
his world, he was an exemplary empiricist.

Richard Feynman died on February 15, 1988, in Los Angeles.
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Preface to the New Millennium Edition

Nearly fifty years have passed since Richard Feynman taught the introductory
physics course at Caltech that gave rise to these three volumes, The Feynman
Lectures on Physics. In those fifty years our understanding of the physical
world has changed greatly, but The Feynman Lectures on Physics has endured.
Feynman’s lectures are as powerful today as when first published, thanks to
Feynman’s unique physics insights and pedagogy. They have been studied
worldwide by novices and mature physicists alike; they have been translated
into at least a dozen languages with more than 1.5 millions copies printed in the
English language alone. Perhaps no other set of physics books has had such wide
impact, for so long.

This New Millennium Edition ushers in a new era for The Feynman Lectures
on Physics (FLP): the twenty-first century era of electronic publishing. FLP
has been converted to eFLP, with the text and equations expressed in the LATEX
electronic typesetting language, and all figures redone using modern drawing
software.

The consequences for the print version of this edition are not startling; it
looks almost the same as the original red books that physics students have known
and loved for decades. The main differences are an expanded and improved index,
the correction of 885 errata found by readers over the five years since the first
printing of the previous edition, and the ease of correcting errata that future
readers may find. To this I shall return below.

The eBook Version of this edition, and the Enhanced Electronic Version are
electronic innovations. By contrast with most eBook versions of 20th century tech-
nical books, whose equations, figures and sometimes even text become pixellated
when one tries to enlarge them, the LATEX manuscript of the New Millennium
Edition makes it possible to create eBooks of the highest quality, in which all
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features on the page (except photographs) can be enlarged without bound and
retain their precise shapes and sharpness. And the Enhanced Electronic Version,
with its audio and blackboard photos from Feynman’s original lectures, and its
links to other resources, is an innovation that would have given Feynman great
pleasure.

Memories of Feynman’s Lectures

These three volumes are a self-contained pedagogical treatise. They are also a
historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
required of all Caltech freshmen and sophomores regardless of their majors.

Readers may wonder, as I have, how Feynman’s lectures impacted the students
who attended them. Feynman, in his Preface to these volumes, offered a somewhat
negative view. “I don’t think I did very well by the students,” he wrote. Matthew
Sands, in his memoir in Feynman’s Tips on Physics expressed a far more positive
view. Out of curiosity, in spring 2005 I emailed or talked to a quasi-random set
of 17 students (out of about 150) from Feynman’s 1961–63 class—some who had
great difficulty with the class, and some who mastered it with ease; majors in
biology, chemistry, engineering, geology, mathematics and astronomy, as well as
in physics.

The intervening years might have glazed their memories with a euphoric tint,
but about 80 percent recall Feynman’s lectures as highlights of their college years.
“It was like going to church.” The lectures were “a transformational experience,”
“the experience of a lifetime, probably the most important thing I got from
Caltech.” “I was a biology major but Feynman’s lectures stand out as a high
point in my undergraduate experience . . . though I must admit I couldn’t do
the homework at the time and I hardly turned any of it in.” “I was among the
least promising of students in this course, and I never missed a lecture. . . . I
remember and can still feel Feynman’s joy of discovery. . . . His lectures had an
. . . emotional impact that was probably lost in the printed Lectures.”

By contrast, several of the students have negative memories due largely to two
issues: (i) “You couldn’t learn to work the homework problems by attending the
lectures. Feynman was too slick—he knew tricks and what approximations could
be made, and had intuition based on experience and genius that a beginning
student does not possess.” Feynman and colleagues, aware of this flaw in the
course, addressed it in part with materials that have been incorporated into
Feynman’s Tips on Physics: three problem-solving lectures by Feynman, and
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a set of exercises and answers assembled by Robert B. Leighton and Rochus
Vogt. (ii) “The insecurity of not knowing what was likely to be discussed in
the next lecture, the lack of a text book or reference with any connection to
the lecture material, and consequent inability for us to read ahead, were very
frustrating. . . . I found the lectures exciting and understandable in the hall, but
they were Sanskrit outside [when I tried to reconstruct the details].” This problem,
of course, was solved by these three volumes, the printed version of The Feynman
Lectures on Physics. They became the textbook from which Caltech students
studied for many years thereafter, and they live on today as one of Feynman’s
greatest legacies.

A History of Errata

The Feynman Lectures on Physics was produced very quickly by Feynman
and his co-authors, Robert B. Leighton and Matthew Sands, working from
and expanding on tape recordings and blackboard photos of Feynman’s course
lectures* (both of which are incorporated into the Enhanced Electronic Version
of this New Millennium Edition). Given the high speed at which Feynman,
Leighton and Sands worked, it was inevitable that many errors crept into the first
edition. Feynman accumulated long lists of claimed errata over the subsequent
years—errata found by students and faculty at Caltech and by readers around
the world. In the 1960’s and early 70’s, Feynman made time in his intense life
to check most but not all of the claimed errata for Volumes I and II, and insert
corrections into subsequent printings. But Feynman’s sense of duty never rose
high enough above the excitement of discovering new things to make him deal
with the errata in Volume III.† After his untimely death in 1988, lists of errata
for all three volumes were deposited in the Caltech Archives, and there they lay
forgotten.

In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
Feynman) informed me of the old errata and a new long list compiled by Ralph’s

* For descriptions of the genesis of Feynman’s lectures and of these volumes, see Feynman’s
Preface and the Forewords to each of the three volumes, and also Matt Sands’ Memoir in
Feynman’s Tips on Physics, and the Special Preface to the Commemorative Edition of FLP,
written in 1989 by David Goodstein and Gerry Neugebauer, which also appears in the 2005
Definitive Edition.

† In 1975, he started checking errata for Volume III but got distracted by other things and
never finished the task, so no corrections were made.
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friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition
of The Feynman Lectures with all errata corrected, and publish it alongside a new
volume of auxiliary material, Feynman’s Tips on Physics, which he and Gottlieb
were preparing.

Feynman was my hero and a close personal friend. When I saw the lists of
errata and the content of the proposed new volume, I quickly agreed to oversee
this project on behalf of Caltech (Feynman’s long-time academic home, to which
he, Leighton and Sands had entrusted all rights and responsibilities for The
Feynman Lectures). After a year and a half of meticulous work by Gottlieb, and
careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who vetted
all errata plus the new volume), the 2005 Definitive Edition of The Feynman
Lectures on Physics was born, with about 200 errata corrected and accompanied
by Feynman’s Tips on Physics by Feynman, Gottlieb and Leighton.

I thought that edition was going to be “Definitive”. What I did not antic-
ipate was the enthusiastic response of readers around the world to an appeal
from Gottlieb to identify further errata, and submit them via a website that
Gottlieb created and continues to maintain, The Feynman Lectures Website,
www.feynmanlectures.info. In the five years since then, 965 new errata have
been submitted and survived the meticulous scrutiny of Gottlieb, Hartl, and Nate
Bode (an outstanding Caltech physics graduate student, who succeeded Hartl
as Caltech’s vetter of errata). Of these, 965 vetted errata, 80 were corrected in
the fourth printing of the Definitive Edition (August 2006) and the remaining
885 are corrected in the first printing of this New Millennium Edition (332 in
volume I, 263 in volume II, and 200 in volume III). For details of the errata, see
www.feynmanlectures.info.

Clearly, making The Feynman Lectures on Physics error-free has become a
world-wide community enterprise. On behalf of Caltech I thank the 50 readers
who have contributed since 2005 and the many more who may contribute over the
coming years. The names of all contributors are posted at www.feynmanlectures.
info/flp_errata.html.

Almost all the errata have been of three types: (i) typographical errors
in prose; (ii) typographical and mathematical errors in equations, tables and
figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and missing
subscripts, summation signs, parentheses and terms in equations; (iii) incorrect
cross references to chapters, tables and figures. These kinds of errors, though
not terribly serious to a mature physicist, can be frustrating and confusing to
Feynman’s primary audience: students.
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It is remarkable that among the 1165 errata corrected under my auspices,
only several do I regard as true errors in physics. An example is Volume II,
page 5-9, which now says “. . . no static distribution of charges inside a closed
grounded conductor can produce any [electric] fields outside” (the word grounded
was omitted in previous editions). This error was pointed out to Feynman by a
number of readers, including Beulah Elizabeth Cox, a student at The College of
William and Mary, who had relied on Feynman’s erroneous passage in an exam.
To Ms. Cox, Feynman wrote in 1975,* “Your instructor was right not to give
you any points, for your answer was wrong, as he demonstrated using Gauss’s
law. You should, in science, believe logic and arguments, carefully drawn, and
not authorities. You also read the book correctly and understood it. I made a
mistake, so the book is wrong. I probably was thinking of a grounded conducting
sphere, or else of the fact that moving the charges around in different places
inside does not affect things on the outside. I am not sure how I did it, but I
goofed. And you goofed, too, for believing me.”

How this New Millennium Edition Came to Be

Between November 2005 and July 2006, 340 errata were submitted to The
Feynman Lectures Website www.feynmanlectures.info. Remarkably, the bulk
of these came from one person: Dr. Rudolf Pfeiffer, then a physics postdoctoral
fellow at the University of Vienna, Austria. The publisher, Addison Wesley, fixed
80 errata, but balked at fixing more because of cost: the books were being printed
by a photo-offset process, working from photographic images of the pages from
the 1960s. Correcting an error involved re-typesetting the entire page, and to
ensure no new errors crept in, the page was re-typeset twice by two different
people, then compared and proofread by several other people—a very costly
process indeed, when hundreds of errata are involved.

Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
formulated a plan aimed at facilitating the repair of all errata, and also aimed
at producing eBook and enhanced electronic versions of The Feynman Lectures
on Physics. They proposed their plan to me, as Caltech’s representative, in
2007. I was enthusiastic but cautious. After seeing further details, including a
one-chapter demonstration of the Enhanced Electronic Version, I recommended

* Pages 288–289 of Perfectly Reasonable Deviations from the Beaten Track, The Letters of
Richard P. Feynman, ed. Michelle Feynman (Basic Books, New York, 2005).
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that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the execution of
their plan. The plan was approved by three successive chairs of Caltech’s Division
of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew Lange, and
Tom Soifer—and the complex legal and contractual details were worked out by
Caltech’s Intellectual Property Counsel, Adam Cochran. With the publication of
this New Millennium Edition, the plan has been executed successfully, despite
its complexity. Specifically:

Pfeiffer and Gottlieb have converted into LATEX all three volumes of FLP
(and also more than 1000 exercises from the Feynman course for incorporation
into Feynman’s Tips on Physics). The FLP figures were redrawn in modern
electronic form in India, under guidance of the FLP German translator, Henning
Heinze, for use in the German edition. Gottlieb and Pfeiffer traded non-exclusive
use of their LATEX equations in the German edition (published by Oldenbourg)
for non-exclusive use of Heinze’s figures in this New Millennium English edition.
Pfeiffer and Gottlieb have meticulously checked all the LATEX text and equations
and all the redrawn figures, and made corrections as needed. Nate Bode and
I, on behalf of Caltech, have done spot checks of text, equations, and figures;
and remarkably, we have found no errors. Pfeiffer and Gottlieb are unbelievably
meticulous and accurate. Gottlieb and Pfeiffer arranged for John Sullivan at the
Huntington Library to digitize the photos of Feynman’s 1962–64 blackboards,
and for George Blood Audio to digitize the lecture tapes—with financial support
and encouragement from Caltech Professor Carver Mead, logistical support from
Caltech Archivist Shelley Erwin, and legal support from Cochran.

The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
rights to publish the print edition, and in the 1990s, rights to distribute the audio
of Feynman’s lectures and a variant of an electronic edition. In the 2000s, through
a sequence of acquisitions of those licenses, the print rights were transferred to
the Pearson publishing group, while rights to the audio and the electronic version
were transferred to the Perseus publishing group. Cochran, with the aid of Ike
Williams, an attorney who specializes in publishing, succeeded in uniting all of
these rights with Perseus (Basic Books), making possible this New Millennium
Edition.
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Feynman’s Preface

These are the lectures in physics that I gave last year and the year before
to the freshman and sophomore classes at Caltech. The lectures are, of course,
not verbatim—they have been edited, sometimes extensively and sometimes less
so. The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain
the interest of the very enthusiastic and rather smart students coming out of
the high schools and into Caltech. They have heard a lot about how interesting
and exciting physics is—the theory of relativity, quantum mechanics, and other
modern ideas. By the end of two years of our previous course, many would be
very discouraged because there were really very few grand, new, modern ideas
presented to them. They were made to study inclined planes, electrostatics, and
so forth, and after two years it was quite stultifying. The problem was whether
or not we could make a course which would save the more advanced and excited
student by maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. I thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of
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applications of the ideas and concepts in various directions outside the main line
of attack. For this reason, though, I tried very hard to make all the statements
as accurate as possible, to point out in every case where the equations and ideas
fitted into the body of physics, and how—when they learned more—things would
be modified. I also felt that for such students it is important to indicate what
it is that they should—if they are sufficiently clever—be able to understand by
deduction from what has been said before, and what is being put in as something
new. When new ideas came in, I would try either to deduce them if they were
deducible, or to explain that it was a new idea which hadn’t any basis in terms of
things they had already learned and which was not supposed to be provable—but
was just added in.

At the start of these lectures, I assumed that the students knew something
when they came out of high school—such things as geometrical optics, simple
chemistry ideas, and so on. I also didn’t see that there was any reason to make the
lectures in a definite order, in the sense that I would not be allowed to mention
something until I was ready to discuss it in detail. There was a great deal of
mention of things to come, without complete discussions. These more complete
discussions would come later when the preparation became more advanced.
Examples are the discussions of inductance, and of energy levels, which are at
first brought in in a very qualitative way and are later developed more completely.

At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side applications are
merely disquieting and who cannot be expected to learn most of the material
in the lecture at all. For such students I wanted there to be at least a central
core or backbone of material which he could get. Even if he didn’t understand
everything in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to
understand everything, but only the central and most direct features. It takes,
of course, a certain intelligence on his part to see which are the central theorems
and central ideas, and which are the more advanced side issues and applications
which he may understand only in later years.

In giving these lectures there was one serious difficulty: in the way the course
was given, there wasn’t any feedback from the students to the lecturer to indicate
how well the lectures were going over. This is indeed a very serious difficulty, and
I don’t know how good the lectures really are. The whole thing was essentially
an experiment. And if I did it again I wouldn’t do it the same way—I hope I
don’t have to do it again! I think, though, that things worked out—so far as the
physics is concerned—quite satisfactorily in the first year.
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In the second year I was not so satisfied. In the first part of the course, dealing
with electricity and magnetism, I couldn’t think of any really unique or different
way of doing it—of any way that would be particularly more exciting than the
usual way of presenting it. So I don’t think I did very much in the lectures on
electricity and magnetism. At the end of the second year I had originally intended
to go on, after the electricity and magnetism, by giving some more lectures on
the properties of materials, but mainly to take up things like fundamental modes,
solutions of the diffusion equation, vibrating systems, orthogonal functions, . . .
developing the first stages of what are usually called “the mathematical methods
of physics.” In retrospect, I think that if I were doing it again I would go back
to that original idea. But since it was not planned that I would be giving these
lectures again, it was suggested that it might be a good idea to try to give an
introduction to the quantum mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can wait until
their third year for quantum mechanics. On the other hand, the argument was
made that many of the students in our course study physics as a background for
their primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of students
because they have to take so long to learn it. Yet, in its real applications—
especially in its more complex applications, such as in electrical engineering
and chemistry—the full machinery of the differential equation approach is not
actually used. So I tried to describe the principles of quantum mechanics in
a way which wouldn’t require that one first know the mathematics of partial
differential equations. Even for a physicist I think that is an interesting thing
to try to do—to present quantum mechanics in this reverse fashion—for several
reasons which may be apparent in the lectures themselves. However, I think that
the experiment in the quantum mechanics part was not completely successful—in
large part because I really did not have enough time at the end (I should, for
instance, have had three or four more lectures in order to deal more completely
with such matters as energy bands and the spatial dependence of amplitudes).
Also, I had never presented the subject this way before, so the lack of feedback was
particularly serious. I now believe the quantum mechanics should be given at a
later time. Maybe I’ll have a chance to do it again someday. Then I’ll do it right.

The reason there are no lectures on how to solve problems is because there
were recitation sections. Although I did put in three lectures in the first year on
how to solve problems, they are not included here. Also there was a lecture on
inertial guidance which certainly belongs after the lecture on rotating systems,
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but which was, unfortunately, omitted. The fifth and sixth lectures are actually
due to Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the people
who worked with the students—is pessimistic. I don’t think I did very well by
the students. When I look at the way the majority of the students handled the
problems on the examinations, I think that the system is a failure. Of course,
my friends point out to me that there were one or two dozen students who—very
surprisingly—understood almost everything in all of the lectures, and who were
quite active in working with the material and worrying about the many points
in an excited and interested way. These people have now, I believe, a first-rate
background in physics—and they are, after all, the ones I was trying to get at.
But then, “The power of instruction is seldom of much efficacy except in those
happy dispositions where it is almost superfluous.” (Gibbon)

Still, I didn’t want to leave any student completely behind, as perhaps I did.
I think one way we could help the students more would be by putting more hard
work into developing a set of problems which would elucidate some of the ideas
in the lectures. Problems give a good opportunity to fill out the material of the
lectures and make more realistic, more complete, and more settled in the mind
the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of education
other than to realize that the best teaching can be done only when there is a
direct individual relationship between a student and a good teacher—a situation
in which the student discusses the ideas, thinks about the things, and talks about
the things. It’s impossible to learn very much by simply sitting in a lecture, or
even by simply doing problems that are assigned. But in our modern times we
have so many students to teach that we have to try to find some substitute for
the ideal. Perhaps my lectures can make some contribution. Perhaps in some
small place where there are individual teachers and students, they may get some
inspiration or some ideas from the lectures. Perhaps they will have fun thinking
them through—or going on to develop some of the ideas further.

Richard P. Feynman
June, 1963
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Foreword

This book is based upon a course of lectures in introductory physics given
by Prof. R. P. Feynman at the California Institute of Technology during the
academic year 1961–62; it covers the first year of the two-year introductory course
taken by all Caltech freshmen and sophomores, and was followed in 1962–63 by
a similar series covering the second year. The lectures constitute a major part of
a fundamental revision of the introductory course, carried out over a four-year
period.

The need for a basic revision arose both from the rapid development of physics
in recent decades and from the fact that entering freshmen have shown a steady
increase in mathematical ability as a result of improvements in high school mathe-
matics course content. We hoped to take advantage of this improved mathematical
background, and also to introduce enough modern subject matter to make the
course challenging, interesting, and more representative of present-day physics.

In order to generate a variety of ideas on what material to include and how to
present it, a substantial number of the physics faculty were encouraged to offer
their ideas in the form of topical outlines for a revised course. Several of these were
presented and were thoroughly and critically discussed. It was agreed almost at
once that a basic revision of the course could not be accomplished either by merely
adopting a different textbook, or even by writing one ab initio, but that the new
course should be centered about a set of lectures, to be presented at the rate of
two or three per week; the appropriate text material would then be produced as a
secondary operation as the course developed, and suitable laboratory experiments
would also be arranged to fit the lecture material. Accordingly, a rough outline of
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the course was established, but this was recognized as being incomplete, tentative,
and subject to considerable modification by whoever was to bear the responsibility
for actually preparing the lectures.

Concerning the mechanism by which the course would finally be brought
to life, several plans were considered. These plans were mostly rather similar,
involving a cooperative effort by N staff members who would share the total
burden symmetrically and equally: each man would take responsibility for 1/N of
the material, deliver the lectures, and write text material for his part. However,
the unavailability of sufficient staff, and the difficulty of maintaining a uniform
point of view because of differences in personality and philosophy of individual
participants, made such plans seem unworkable.

The realization that we actually possessed the means to create not just a
new and different physics course, but possibly a unique one, came as a happy
inspiration to Professor Sands. He suggested that Professor R. P. Feynman pre-
pare and deliver the lectures, and that these be tape-recorded. When transcribed
and edited, they would then become the textbook for the new course. This is
essentially the plan that was adopted.

It was expected that the necessary editing would be minor, mainly consisting
of supplying figures, and checking punctuation and grammar; it was to be done by
one or two graduate students on a part-time basis. Unfortunately, this expectation
was short-lived. It was, in fact, a major editorial operation to transform the
verbatim transcript into readable form, even without the reorganization or revision
of the subject matter that was sometimes required. Furthermore, it was not a job
for a technical editor or for a graduate student, but one that required the close
attention of a professional physicist for from ten to twenty hours per lecture!

The difficulty of the editorial task, together with the need to place the material
in the hands of the students as soon as possible, set a strict limit upon the amount
of “polishing” of the material that could be accomplished, and thus we were
forced to aim toward a preliminary but technically correct product that could
be used immediately, rather than one that might be considered final or finished.
Because of an urgent need for more copies for our students, and a heartening
interest on the part of instructors and students at several other institutions, we
decided to publish the material in its preliminary form rather than wait for a
further major revision which might never occur. We have no illusions as to the
completeness, smoothness, or logical organization of the material; in fact, we
plan several minor modifications in the course in the immediate future, and we
hope that it will not become static in form or content.
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In addition to the lectures, which constitute a centrally important part of the
course, it was necessary also to provide suitable exercises to develop the students’
experience and ability, and suitable experiments to provide first-hand contact
with the lecture material in the laboratory. Neither of these aspects is in as
advanced a state as the lecture material, but considerable progress has been made.
Some exercises were made up as the lectures progressed, and these were expanded
and amplified for use in the following year. However, because we are not yet
satisfied that the exercises provide sufficient variety and depth of application of
the lecture material to make the student fully aware of the tremendous power
being placed at his disposal, the exercises are published separately in a less
permanent form in order to encourage frequent revision.

A number of new experiments for the new course have been devised by
Professor H. V. Neher. Among these are several which utilize the extremely
low friction exhibited by a gas bearing: a novel linear air trough, with which
quantitative measurements of one-dimensional motion, impacts, and harmonic
motion can be made, and an air-supported, air-driven Maxwell top, with which
accelerated rotational motion and gyroscopic precession and nutation can be
studied. The development of new laboratory experiments is expected to continue
for a considerable period of time.

The revision program was under the direction of Professors R. B. Leighton,
H. V. Neher, and M. Sands. Officially participating in the program were Professors
R. P. Feynman, G. Neugebauer, R. M. Sutton, H. P. Stabler,* F. Strong, and R.
Vogt, from the division of Physics, Mathematics and Astronomy, and Professors
T. Caughey, M. Plesset, and C. H. Wilts from the division of Engineering Science.
The valuable assistance of all those contributing to the revision program is
gratefully acknowledged. We are particularly indebted to the Ford Foundation,
without whose financial assistance this program could not have been carried out.

Robert B. Leighton
July, 1963

* 1961–62, while on leave from Williams College, Williamstown, Mass.
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1

Atoms in Motion

1-1 Introduction

This two-year course in physics is presented from the point of view that you,
the reader, are going to be a physicist. This is not necessarily the case of course,
but that is what every professor in every subject assumes! If you are going to be
a physicist, you will have a lot to study: two hundred years of the most rapidly
developing field of knowledge that there is. So much knowledge, in fact, that you
might think that you cannot learn all of it in four years, and truly you cannot;
you will have to go to graduate school too!

Surprisingly enough, in spite of the tremendous amount of work that has been
done for all this time it is possible to condense the enormous mass of results to
a large extent—that is, to find laws which summarize all our knowledge. Even
so, the laws are so hard to grasp that it is unfair to you to start exploring this
tremendous subject without some kind of map or outline of the relationship of one
part of the subject of science to another. Following these preliminary remarks,
the first three chapters will therefore outline the relation of physics to the rest
of the sciences, the relations of the sciences to each other, and the meaning of
science, to help us develop a “feel” for the subject.

You might ask why we cannot teach physics by just giving the basic laws on
page one and then showing how they work in all possible circumstances, as we
do in Euclidean geometry, where we state the axioms and then make all sorts of
deductions. (So, not satisfied to learn physics in four years, you want to learn it
in four minutes?) We cannot do it in this way for two reasons. First, we do not
yet know all the basic laws: there is an expanding frontier of ignorance. Second,
the correct statement of the laws of physics involves some very unfamiliar ideas
which require advanced mathematics for their description. Therefore, one needs a
considerable amount of preparatory training even to learn what the words mean.
No, it is not possible to do it that way. We can only do it piece by piece.
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Each piece, or part, of the whole of nature is always merely an approximation
to the complete truth, or the complete truth so far as we know it. In fact,
everything we know is only some kind of approximation, because we know that
we do not know all the laws as yet. Therefore, things must be learned only to be
unlearned again or, more likely, to be corrected.

The principle of science, the definition, almost, is the following: The test of
all knowledge is experiment. Experiment is the sole judge of scientific “truth.”
But what is the source of knowledge? Where do the laws that are to be tested
come from? Experiment, itself, helps to produce these laws, in the sense that it
gives us hints. But also needed is imagination to create from these hints the great
generalizations—to guess at the wonderful, simple, but very strange patterns
beneath them all, and then to experiment to check again whether we have made
the right guess. This imagining process is so difficult that there is a division of
labor in physics: there are theoretical physicists who imagine, deduce, and guess
at new laws, but do not experiment; and then there are experimental physicists
who experiment, imagine, deduce, and guess.

We said that the laws of nature are approximate: that we first find the “wrong”
ones, and then we find the “right” ones. Now, how can an experiment be “wrong”?
First, in a trivial way: if something is wrong with the apparatus that you did
not notice. But these things are easily fixed, and checked back and forth. So
without snatching at such minor things, how can the results of an experiment
be wrong? Only by being inaccurate. For example, the mass of an object never
seems to change: a spinning top has the same weight as a still one. So a “law”
was invented: mass is constant, independent of speed. That “law” is now found
to be incorrect. Mass is found to increase with velocity, but appreciable increases
require velocities near that of light. A true law is: if an object moves with a
speed of less than one hundred miles a second the mass is constant to within one
part in a million. In some such approximate form this is a correct law. So in
practice one might think that the new law makes no significant difference. Well,
yes and no. For ordinary speeds we can certainly forget it and use the simple
constant-mass law as a good approximation. But for high speeds we are wrong,
and the higher the speed, the more wrong we are.

Finally, and most interesting, philosophically we are completely wrong with
the approximate law. Our entire picture of the world has to be altered even
though the mass changes only by a little bit. This is a very peculiar thing about
the philosophy, or the ideas, behind the laws. Even a very small effect sometimes
requires profound changes in our ideas.
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Now, what should we teach first? Should we teach the correct but unfamiliar
law with its strange and difficult conceptual ideas, for example the theory of
relativity, four-dimensional space-time, and so on? Or should we first teach the
simple “constant-mass” law, which is only approximate, but does not involve such
difficult ideas? The first is more exciting, more wonderful, and more fun, but
the second is easier to get at first, and is a first step to a real understanding of
the first idea. This point arises again and again in teaching physics. At different
times we shall have to resolve it in different ways, but at each stage it is worth
learning what is now known, how accurate it is, how it fits into everything else,
and how it may be changed when we learn more.

Let us now proceed with our outline, or general map, of our understanding of
science today (in particular, physics, but also of other sciences on the periphery),
so that when we later concentrate on some particular point we will have some
idea of the background, why that particular point is interesting, and how it fits
into the big structure. So, what is our over-all picture of the world?

1-2 Matter is made of atoms

If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generations of creatures, what statement
would contain the most information in the fewest words? I believe it is the
atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all
things are made of atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence, you will see, there is an
enormous amount of information about the world, if just a little imagination and
thinking are applied.

To illustrate the power of the atomic idea, suppose that we have a drop
of water a quarter of an inch on the side. If we look at it very closely we see
nothing but water—smooth, continuous water. Even if we magnify it with the
best optical microscope available—roughly two thousand times—then the water
drop will be roughly forty feet across, about as big as a large room, and if we
looked rather closely, we would still see relatively smooth water—but here and
there small football-shaped things swimming back and forth. Very interesting.
These are paramecia. You may stop at this point and get so curious about the
paramecia with their wiggling cilia and twisting bodies that you go no further,
except perhaps to magnify the paramecia still more and see inside. This, of
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WATER MAGNIFIED ONE BILLION TIMES

Figure 1-1

course, is a subject for biology, but for the present we pass on and look still
more closely at the water material itself, magnifying it two thousand times again.
Now the drop of water extends about fifteen miles across, and if we look very
closely at it we see a kind of teeming, something which no longer has a smooth
appearance—it looks something like a crowd at a football game as seen from a
very great distance. In order to see what this teeming is about, we will magnify
it another two hundred and fifty times and we will see something similar to what
is shown in Fig. 1-1. This is a picture of water magnified a billion times, but
idealized in several ways. In the first place, the particles are drawn in a simple
manner with sharp edges, which is inaccurate. Secondly, for simplicity, they are
sketched almost schematically in a two-dimensional arrangement, but of course
they are moving around in three dimensions. Notice that there are two kinds of
“blobs” or circles to represent the atoms of oxygen (black) and hydrogen (white),
and that each oxygen has two hydrogens tied to it. (Each little group of an
oxygen with its two hydrogens is called a molecule.) The picture is idealized
further in that the real particles in nature are continually jiggling and bouncing,
turning and twisting around one another. You will have to imagine this as a
dynamic rather than a static picture. Another thing that cannot be illustrated in
a drawing is the fact that the particles are “stuck together”—that they attract
each other, this one pulled by that one, etc. The whole group is “glued together,”
so to speak. On the other hand, the particles do not squeeze through each other.
If you try to squeeze two of them too close together, they repel.

The atoms are 1 or 2×10−8 cm in radius. Now 10−8 cm is called an angstrom
(just as another name), so we say they are 1 or 2 angstroms (Å) in radius. Another
way to remember their size is this: if an apple is magnified to the size of the earth,
then the atoms in the apple are approximately the size of the original apple.
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Now imagine this great drop of water with all of these jiggling particles stuck
together and tagging along with each other. The water keeps its volume; it does
not fall apart, because of the attraction of the molecules for each other. If the
drop is on a slope, where it can move from one place to another, the water will
flow, but it does not just disappear—things do not just fly apart—because of the
molecular attraction. Now the jiggling motion is what we represent as heat: when
we increase the temperature, we increase the motion. If we heat the water, the
jiggling increases and the volume between the atoms increases, and if the heating
continues there comes a time when the pull between the molecules is not enough
to hold them together and they do fly apart and become separated from one
another. Of course, this is how we manufacture steam out of water—by increasing
the temperature; the particles fly apart because of the increased motion.

STEAM

Figure 1-2

In Fig. 1-2 we have a picture of steam. This picture of steam fails in one
respect: at ordinary atmospheric pressure there certainly would not be as many
as three water molecules in this figure. Most squares this size would contain
none—but we accidentally have two and a half or three in the picture (just
so it would not be completely blank). Now in the case of steam we see the
characteristic molecules more clearly than in the case of water. For simplicity, the
molecules are drawn so that there is a 120◦ angle between the hydrogen atoms. In
actual fact the angle is 105◦3′, and the distance between the center of a hydrogen
and the center of the oxygen is 0.957 Å, so we know this molecule very well.

Let us see what some of the properties of steam vapor or any other gas are.
The molecules, being separated from one another, will bounce against the walls.
Imagine a room with a number of tennis balls (a hundred or so) bouncing around
in perpetual motion. When they bombard the wall, this pushes the wall away.
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Figure 1-3

(Of course we would have to push the wall back.) This means that the gas exerts
a jittery force which our coarse senses (not being ourselves magnified a billion
times) feel only as an average push. In order to confine a gas we must apply
a pressure. Figure 1-3 shows a standard vessel for holding gases (used in all
textbooks), a cylinder with a piston in it. Now, it makes no difference what the
shapes of water molecules are, so for simplicity we shall draw them as tennis balls
or little dots. These things are in perpetual motion in all directions. So many of
them are hitting the top piston all the time that to keep it from being patiently
knocked out of the tank by this continuous banging, we shall have to hold the
piston down by a certain force, which we call the pressure (really, the pressure
times the area is the force). Clearly, the force is proportional to the area, for if
we increase the area but keep the number of molecules per cubic centimeter the
same, we increase the number of collisions with the piston in the same proportion
as the area was increased.

Now let us put twice as many molecules in this tank, so as to double the
density, and let them have the same speed, i.e., the same temperature. Then, to
a close approximation, the number of collisions will be doubled, and since each
will be just as “energetic” as before, the pressure is proportional to the density.
If we consider the true nature of the forces between the atoms, we would expect
a slight decrease in pressure because of the attraction between the atoms, and
a slight increase because of the finite volume they occupy. Nevertheless, to an
excellent approximation, if the density is low enough that there are not many
atoms, the pressure is proportional to the density.

We can also see something else: If we increase the temperature without
changing the density of the gas, i.e., if we increase the speed of the atoms, what
is going to happen to the pressure? Well, the atoms hit harder because they are
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moving faster, and in addition they hit more often, so the pressure increases.
You see how simple the ideas of atomic theory are.

Let us consider another situation. Suppose that the piston moves inward, so
that the atoms are slowly compressed into a smaller space. What happens when
an atom hits the moving piston? Evidently it picks up speed from the collision.
You can try it by bouncing a ping-pong ball from a forward-moving paddle, for
example, and you will find that it comes off with more speed than that with
which it struck. (Special example: if an atom happens to be standing still and
the piston hits it, it will certainly move.) So the atoms are “hotter” when they
come away from the piston than they were before they struck it. Therefore all
the atoms which are in the vessel will have picked up speed. This means that
when we compress a gas slowly, the temperature of the gas increases. So, under
slow compression, a gas will increase in temperature, and under slow expansion
it will decrease in temperature.

We now return to our drop of water and look in another direction. Suppose
that we decrease the temperature of our drop of water. Suppose that the jiggling
of the molecules of the atoms in the water is steadily decreasing. We know that
there are forces of attraction between the atoms, so that after a while they will
not be able to jiggle so well. What will happen at very low temperatures is
indicated in Fig. 1-4: the molecules lock into a new pattern which is ice. This
particular schematic diagram of ice is wrong because it is in two dimensions, but
it is right qualitatively. The interesting point is that the material has a definite
place for every atom, and you can easily appreciate that if somehow or other
we were to hold all the atoms at one end of the drop in a certain arrangement,
each atom in a certain place, then because of the structure of interconnections,
which is rigid, the other end miles away (at our magnified scale) will have a

ICE

Figure 1-4
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definite location. So if we hold a needle of ice at one end, the other end resists
our pushing it aside, unlike the case of water, in which the structure is broken
down because of the increased jiggling so that the atoms all move around in
different ways. The difference between solids and liquids is, then, that in a solid
the atoms are arranged in some kind of an array, called a crystalline array, and
they do not have a random position at long distances; the position of the atoms
on one side of the crystal is determined by that of other atoms millions of atoms
away on the other side of the crystal. Figure 1-4 is an invented arrangement for
ice, and although it contains many of the correct features of ice, it is not the true
arrangement. One of the correct features is that there is a part of the symmetry
that is hexagonal. You can see that if we turn the picture around an axis by 60◦,
the picture returns to itself. So there is a symmetry in the ice which accounts for
the six-sided appearance of snowflakes. Another thing we can see from Fig. 1-4 is
why ice shrinks when it melts. The particular crystal pattern of ice shown here
has many “holes” in it, as does the true ice structure. When the organization
breaks down, these holes can be occupied by molecules. Most simple substances,
with the exception of water and type metal, expand upon melting, because the
atoms are closely packed in the solid crystal and upon melting need more room
to jiggle around, but an open structure collapses, as in the case of water.

Now although ice has a “rigid” crystalline form, its temperature can change—
ice has heat. If we wish, we can change the amount of heat. What is the heat in
the case of ice? The atoms are not standing still. They are jiggling and vibrating.
So even though there is a definite order to the crystal—a definite structure—all of
the atoms are vibrating “in place.” As we increase the temperature, they vibrate
with greater and greater amplitude, until they shake themselves out of place. We
call this melting. As we decrease the temperature, the vibration decreases and
decreases until, at absolute zero, there is a minimum amount of vibration that
the atoms can have, but not zero. This minimum amount of motion that atoms
can have is not enough to melt a substance, with one exception: helium. Helium
merely decreases the atomic motions as much as it can, but even at absolute zero
there is still enough motion to keep it from freezing. Helium, even at absolute
zero, does not freeze, unless the pressure is made so great as to make the atoms
squash together. If we increase the pressure, we can make it solidify.

1-3 Atomic processes
So much for the description of solids, liquids, and gases from the atomic point

of view. However, the atomic hypothesis also describes processes, and so we shall
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WATER EVAPORATING IN AIR

OXYGEN HYDROGEN NITROGEN

Figure 1-5

now look at a number of processes from an atomic standpoint. The first process
that we shall look at is associated with the surface of the water. What happens at
the surface of the water? We shall now make the picture more complicated—and
more realistic—by imagining that the surface is in air. Figure 1-5 shows the
surface of water in air. We see the water molecules as before, forming a body of
liquid water, but now we also see the surface of the water. Above the surface
we find a number of things: First of all there are water molecules, as in steam.
This is water vapor, which is always found above liquid water. (There is an
equilibrium between the steam vapor and the water which will be described later.)
In addition we find some other molecules—here two oxygen atoms stuck together
by themselves, forming an oxygen molecule, there two nitrogen atoms also stuck
together to make a nitrogen molecule. Air consists almost entirely of nitrogen,
oxygen, some water vapor, and lesser amounts of carbon dioxide, argon, and
other things. So above the water surface is the air, a gas, containing some water
vapor. Now what is happening in this picture? The molecules in the water are
always jiggling around. From time to time, one on the surface happens to be hit a
little harder than usual, and gets knocked away. It is hard to see that happening
in the picture because it is a still picture. But we can imagine that one molecule
near the surface has just been hit and is flying out, or perhaps another one has
been hit and is flying out. Thus, molecule by molecule, the water disappears—it
evaporates. But if we close the vessel above, after a while we shall find a large
number of molecules of water amongst the air molecules. From time to time, one
of these vapor molecules comes flying down to the water and gets stuck again.
So we see that what looks like a dead, uninteresting thing—a glass of water with
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a cover, that has been sitting there for perhaps twenty years—really contains
a dynamic and interesting phenomenon which is going on all the time. To our
eyes, our crude eyes, nothing is changing, but if we could see it a billion times
magnified, we would see that from its own point of view it is always changing:
molecules are leaving the surface, molecules are coming back.

Why do we see no change? Because just as many molecules are leaving as are
coming back! In the long run “nothing happens.” If we then take the top of the
vessel off and blow the moist air away, replacing it with dry air, then the number
of molecules leaving is just the same as it was before, because this depends on
the jiggling of the water, but the number coming back is greatly reduced because
there are so many fewer water molecules above the water. Therefore there are
more going out than coming in, and the water evaporates. Hence, if you wish to
evaporate water turn on the fan!

Here is something else: Which molecules leave? When a molecule leaves it
is due to an accidental, extra accumulation of a little bit more than ordinary
energy, which it needs if it is to break away from the attractions of its neighbors.
Therefore, since those that leave have more energy than the average, the ones that
are left have less average motion than they had before. So the liquid gradually
cools if it evaporates. Of course, when a molecule of vapor comes from the air to
the water below there is a sudden great attraction as the molecule approaches the
surface. This speeds up the incoming molecule and results in generation of heat.
So when they leave they take away heat; when they come back they generate
heat. Of course when there is no net evaporation the result is nothing—the
water is not changing temperature. If we blow on the water so as to maintain a
continuous preponderance in the number evaporating, then the water is cooled.
Hence, blow on soup to cool it!

Of course you should realize that the processes just described are more
complicated than we have indicated. Not only does the water go into the air, but
also, from time to time, one of the oxygen or nitrogen molecules will come in and
“get lost” in the mass of water molecules, and work its way into the water. Thus
the air dissolves in the water; oxygen and nitrogen molecules will work their way
into the water and the water will contain air. If we suddenly take the air away
from the vessel, then the air molecules will leave more rapidly than they come in,
and in doing so will make bubbles. This is very bad for divers, as you may know.

Now we go on to another process. In Fig. 1-6 we see, from an atomic point of
view, a solid dissolving in water. If we put a crystal of salt in the water, what
will happen? Salt is a solid, a crystal, an organized arrangement of “salt atoms.”
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SALT DISSOLVING IN WATER

CHLORINE SODIUM

Figure 1-6

Figure 1-7 is an illustration of the three-dimensional structure of common salt,
sodium chloride. Strictly speaking, the crystal is not made of atoms, but of what
we call ions. An ion is an atom which either has a few extra electrons or has lost
a few electrons. In a salt crystal we find chlorine ions (chlorine atoms with an
extra electron) and sodium ions (sodium atoms with one electron missing). The
ions all stick together by electrical attraction in the solid salt, but when we put
them in the water we find, because of the attractions of the negative oxygen and
positive hydrogen for the ions, that some of the ions jiggle loose. In Fig. 1-6 we
see a chlorine ion getting loose, and other atoms floating in the water in the form
of ions. This picture was made with some care. Notice, for example, that the
hydrogen ends of the water molecules are more likely to be near the chlorine ion,
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Figure 1-7
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while near the sodium ion we are more likely to find the oxygen end, because the
sodium is positive and the oxygen end of the water is negative, and they attract
electrically. Can we tell from this picture whether the salt is dissolving in water
or crystallizing out of water? Of course we cannot tell, because while some of
the atoms are leaving the crystal other atoms are rejoining it. The process is a
dynamic one, just as in the case of evaporation, and it depends on whether there
is more or less salt in the water than the amount needed for equilibrium. By
equilibrium we mean that situation in which the rate at which atoms are leaving
just matches the rate at which they are coming back. If there is almost no salt in
the water, more atoms leave than return, and the salt dissolves. If, on the other
hand, there are too many “salt atoms,” more return than leave, and the salt is
crystallizing.

In passing, we mention that the concept of a molecule of a substance is only
approximate and exists only for a certain class of substances. It is clear in the
case of water that the three atoms are actually stuck together. It is not so clear in
the case of sodium chloride in the solid. There is just an arrangement of sodium
and chlorine ions in a cubic pattern. There is no natural way to group them as
“molecules of salt.”

Returning to our discussion of solution and precipitation, if we increase the
temperature of the salt solution, then the rate at which atoms are taken away
is increased, and so is the rate at which atoms are brought back. It turns out
to be very difficult, in general, to predict which way it is going to go, whether
more or less of the solid will dissolve. Most substances dissolve more, but some
substances dissolve less, as the temperature increases.

1-4 Chemical reactions

In all of the processes which have been described so far, the atoms and the
ions have not changed partners, but of course there are circumstances in which
the atoms do change combinations, forming new molecules. This is illustrated in
Fig. 1-8. A process in which the rearrangement of the atomic partners occurs is
what we call a chemical reaction. The other processes so far described are called
physical processes, but there is no sharp distinction between the two. (Nature
does not care what we call it, she just keeps on doing it.) This figure is supposed
to represent carbon burning in oxygen. In the case of oxygen, two oxygen atoms
stick together very strongly. (Why do not three or even four stick together? That
is one of the very peculiar characteristics of such atomic processes. Atoms are
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CARBON BURNING IN OXYGEN

Figure 1-8

very special: they like certain particular partners, certain particular directions,
and so on. It is the job of physics to analyze why each one wants what it wants.
At any rate, two oxygen atoms form, saturated and happy, a molecule.)

The carbon atoms are supposed to be in a solid crystal (which could be
graphite or diamond*). Now, for example, one of the oxygen molecules can come
over to the carbon, and each atom can pick up a carbon atom and go flying off
in a new combination—“carbon-oxygen”—which is a molecule of the gas called
carbon monoxide. It is given the chemical name CO. It is very simple: the letters
“CO” are practically a picture of that molecule. But carbon attracts oxygen
much more than oxygen attracts oxygen or carbon attracts carbon. Therefore
in this process the oxygen may arrive with only a little energy, but the oxygen
and carbon will snap together with a tremendous vengeance and commotion, and
everything near them will pick up the energy. A large amount of motion energy,
kinetic energy, is thus generated. This of course is burning; we are getting heat
from the combination of oxygen and carbon. The heat is ordinarily in the form
of the molecular motion of the hot gas, but in certain circumstances it can be so
enormous that it generates light. That is how one gets flames.

In addition, the carbon monoxide is not quite satisfied. It is possible for it to
attach another oxygen, so that we might have a much more complicated reaction
in which the oxygen is combining with the carbon, while at the same time there
happens to be a collision with a carbon monoxide molecule. One oxygen atom
could attach itself to the CO and ultimately form a molecule, composed of one
carbon and two oxygens, which is designated CO2 and called carbon dioxide. If
we burn the carbon with very little oxygen in a very rapid reaction (for example,
in an automobile engine, where the explosion is so fast that there is not time

* One can burn a diamond in air.
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for it to make carbon dioxide) a considerable amount of carbon monoxide is
formed. In many such rearrangements, a very large amount of energy is released,
forming explosions, flames, etc., depending on the reactions. Chemists have
studied these arrangements of the atoms, and found that every substance is some
type of arrangement of atoms.

To illustrate this idea, let us consider another example. If we go into a field
of small violets, we know what “that smell” is. It is some kind of molecule, or
arrangement of atoms, that has worked its way into our noses. First of all, how
did it work its way in? That is rather easy. If the smell is some kind of molecule
in the air, jiggling around and being knocked every which way, it might have
accidentally worked its way into the nose. Certainly it has no particular desire to
get into our nose. It is merely one helpless part of a jostling crowd of molecules,
and in its aimless wanderings this particular chunk of matter happens to find
itself in the nose.

Now chemists can take special molecules like the odor of violets, and analyze
them and tell us the exact arrangement of the atoms in space. We know that
the carbon dioxide molecule is straight and symmetrical: O—C—O. (That can
be determined easily, too, by physical methods.) However, even for the vastly
more complicated arrangements of atoms that there are in chemistry, one can,
by a long, remarkable process of detective work, find the arrangements of the
atoms. Figure 1-9 is a picture of the air in the neighborhood of a violet; again
we find nitrogen and oxygen in the air, and water vapor. (Why is there water
vapor? Because the violet is wet. All plants transpire.) However, we also see
a “monster” composed of carbon atoms, hydrogen atoms, and oxygen atoms,
which have picked a certain particular pattern in which to be arranged. It is
a much more complicated arrangement than that of carbon dioxide; in fact, it

ODOR OF VIOLETS

Figure 1-9
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Fig. 1-10. The substance pictured is α-irone.

is an enormously complicated arrangement. Unfortunately, we cannot picture
all that is really known about it chemically, because the precise arrangement
of all the atoms is actually known in three dimensions, while our picture is in
only two dimensions. The six carbons which form a ring do not form a flat ring,
but a kind of “puckered” ring. All of the angles and distances are known. So a
chemical formula is merely a picture of such a molecule. When the chemist writes
such a thing on the blackboard, he is trying to “draw,” roughly speaking, in two
dimensions. For example, we see a “ring” of six carbons, and a “chain” of carbons
hanging on the end, with an oxygen second from the end, three hydrogens tied
to that carbon, two carbons and three hydrogens sticking up here, etc.

How does the chemist find what the arrangement is? He mixes bottles full of
stuff together, and if it turns red, it tells him that it consists of one hydrogen
and two carbons tied on here; if it turns blue, on the other hand, that is not
the way it is at all. This is one of the most fantastic pieces of detective work
that has ever been done—organic chemistry. To discover the arrangement of the
atoms in these enormously complicated arrays the chemist looks at what happens
when he mixes two different substances together. The physicist could never quite
believe that the chemist knew what he was talking about when he described
the arrangement of the atoms. For about twenty years it has been possible, in
some cases, to look at such molecules (not quite as complicated as this one, but
some which contain parts of it) by a physical method, and it has been possible
to locate every atom, not by looking at colors, but by measuring where they are.
And lo and behold!, the chemists are almost always correct.

It turns out, in fact, that in the odor of violets there are three slightly different
molecules, which differ only in the arrangement of the hydrogen atoms.

One problem of chemistry is to name a substance, so that we will know what
it is. Find a name for this shape! Not only must the name tell the shape, but
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it must also tell that here is an oxygen atom, there a hydrogen—exactly what
and where each atom is. So we can appreciate that the chemical names must
be complex in order to be complete. You see that the name of this thing in
the more complete form that will tell you the structure of it is 4-(2, 2, 3, 6
tetramethyl-5-cyclohexenyl)-3-buten-2-one, and that tells you that this is the
arrangement. We can appreciate the difficulties that the chemists have, and also
appreciate the reason for such long names. It is not that they wish to be obscure,
but they have an extremely difficult problem in trying to describe the molecules
in words!

How do we know that there are atoms? By one of the tricks mentioned earlier:
we make the hypothesis that there are atoms, and one after the other results come
out the way we predict, as they ought to if things are made of atoms. There is
also somewhat more direct evidence, a good example of which is the following:
The atoms are so small that you cannot see them with a light microscope—in
fact, not even with an electron microscope. (With a light microscope you can
only see things which are much bigger.) Now if the atoms are always in motion,
say in water, and we put a big ball of something in the water, a ball much bigger
than the atoms, the ball will jiggle around—much as in a push ball game, where
a great big ball is pushed around by a lot of people. The people are pushing in
various directions, and the ball moves around the field in an irregular fashion.
So, in the same way, the “large ball” will move because of the inequalities of the
collisions on one side to the other, from one moment to the next. Therefore, if we
look at very tiny particles (colloids) in water through an excellent microscope, we
see a perpetual jiggling of the particles, which is the result of the bombardment
of the atoms. This is called the Brownian motion.

We can see further evidence for atoms in the structure of crystals. In many
cases the structures deduced by x-ray analysis agree in their spatial “shapes”
with the forms actually exhibited by crystals as they occur in nature. The angles
between the various “faces” of a crystal agree, within seconds of arc, with angles
deduced on the assumption that a crystal is made of many “layers” of atoms.

Everything is made of atoms. That is the key hypothesis. The most important
hypothesis in all of biology, for example, is that everything that animals do, atoms
do. In other words, there is nothing that living things do that cannot be understood
from the point of view that they are made of atoms acting according to the laws
of physics. This was not known from the beginning: it took some experimenting
and theorizing to suggest this hypothesis, but now it is accepted, and it is the
most useful theory for producing new ideas in the field of biology.
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If a piece of steel or a piece of salt, consisting of atoms one next to the other,
can have such interesting properties; if water—which is nothing but these little
blobs, mile upon mile of the same thing over the earth—can form waves and
foam, and make rushing noises and strange patterns as it runs over cement; if all
of this, all the life of a stream of water, can be nothing but a pile of atoms, how
much more is possible? If instead of arranging the atoms in some definite pattern,
again and again repeated, on and on, or even forming little lumps of complexity
like the odor of violets, we make an arrangement which is always different from
place to place, with different kinds of atoms arranged in many ways, continually
changing, not repeating, how much more marvelously is it possible that this thing
might behave? Is it possible that that “thing” walking back and forth in front of
you, talking to you, is a great glob of these atoms in a very complex arrangement,
such that the sheer complexity of it staggers the imagination as to what it can
do? When we say we are a pile of atoms, we do not mean we are merely a pile
of atoms, because a pile of atoms which is not repeated from one to the other
might well have the possibilities which you see before you in the mirror.
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2

Basic Physics

2-1 Introduction

In this chapter, we shall examine the most fundamental ideas that we have
about physics—the nature of things as we see them at the present time. We shall
not discuss the history of how we know that all these ideas are true; you will
learn these details in due time.

The things with which we concern ourselves in science appear in myriad forms,
and with a multitude of attributes. For example, if we stand on the shore and
look at the sea, we see the water, the waves breaking, the foam, the sloshing
motion of the water, the sound, the air, the winds and the clouds, the sun and
the blue sky, and light; there is sand and there are rocks of various hardness
and permanence, color and texture. There are animals and seaweed, hunger and
disease, and the observer on the beach; there may be even happiness and thought.
Any other spot in nature has a similar variety of things and influences. It is always
as complicated as that, no matter where it is. Curiosity demands that we ask
questions, that we try to put things together and try to understand this multitude
of aspects as perhaps resulting from the action of a relatively small number of
elemental things and forces acting in an infinite variety of combinations.

For example: Is the sand other than the rocks? That is, is the sand perhaps
nothing but a great number of very tiny stones? Is the moon a great rock? If
we understood rocks, would we also understand the sand and the moon? Is the
wind a sloshing of the air analogous to the sloshing motion of the water in the
sea? What common features do different movements have? What is common to
different kinds of sound? How many different colors are there? And so on. In
this way we try gradually to analyze all things, to put together things which at
first sight look different, with the hope that we may be able to reduce the number
of different things and thereby understand them better.
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A few hundred years ago, a method was devised to find partial answers to
such questions. Observation, reason, and experiment make up what we call the
scientific method. We shall have to limit ourselves to a bare description of our
basic view of what is sometimes called fundamental physics, or fundamental ideas
which have arisen from the application of the scientific method.

What do we mean by “understanding” something? We can imagine that this
complicated array of moving things which constitutes “the world” is something
like a great chess game being played by the gods, and we are observers of the
game. We do not know what the rules of the game are; all we are allowed to do
is to watch the playing. Of course, if we watch long enough, we may eventually
catch on to a few of the rules. The rules of the game are what we mean by
fundamental physics. Even if we knew every rule, however, we might not be able
to understand why a particular move is made in the game, merely because it is
too complicated and our minds are limited. If you play chess you must know
that it is easy to learn all the rules, and yet it is often very hard to select the
best move or to understand why a player moves as he does. So it is in nature,
only much more so; but we may be able at least to find all the rules. Actually,
we do not have all the rules now. (Every once in a while something like castling
is going on that we still do not understand.) Aside from not knowing all of the
rules, what we really can explain in terms of those rules is very limited, because
almost all situations are so enormously complicated that we cannot follow the
plays of the game using the rules, much less tell what is going to happen next.
We must, therefore, limit ourselves to the more basic question of the rules of the
game. If we know the rules, we consider that we “understand” the world.

How can we tell whether the rules which we “guess” at are really right if we
cannot analyze the game very well? There are, roughly speaking, three ways.
First, there may be situations where nature has arranged, or we arrange nature,
to be simple and to have so few parts that we can predict exactly what will
happen, and thus we can check how our rules work. (In one corner of the board
there may be only a few chess pieces at work, and that we can figure out exactly.)

A second good way to check rules is in terms of less specific rules derived from
them. For example, the rule on the move of a bishop on a chessboard is that it
moves only on the diagonal. One can deduce, no matter how many moves may
be made, that a certain bishop will always be on a red square. So, without being
able to follow the details, we can always check our idea about the bishop’s motion
by finding out whether it is always on a red square. Of course it will be, for a long
time, until all of a sudden we find that it is on a black square (what happened of
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course, is that in the meantime it was captured, another pawn crossed for queening,
and it turned into a bishop on a black square). That is the way it is in physics.
For a long time we will have a rule that works excellently in an over-all way, even
when we cannot follow the details, and then some time we may discover a new
rule. From the point of view of basic physics, the most interesting phenomena
are of course in the new places, the places where the rules do not work—not the
places where they do work! That is the way in which we discover new rules.

The third way to tell whether our ideas are right is relatively crude but
probably the most powerful of them all. That is, by rough approximation. While
we may not be able to tell why Alekhine moves this particular piece, perhaps we
can roughly understand that he is gathering his pieces around the king to protect
it, more or less, since that is the sensible thing to do in the circumstances. In
the same way, we can often understand nature, more or less, without being able
to see what every little piece is doing, in terms of our understanding of the game.

At first the phenomena of nature were roughly divided into classes, like heat,
electricity, mechanics, magnetism, properties of substances, chemical phenomena,
light or optics, x-rays, nuclear physics, gravitation, meson phenomena, etc.
However, the aim is to see complete nature as different aspects of one set of
phenomena. That is the problem in basic theoretical physics, today—to find
the laws behind experiment; to amalgamate these classes. Historically, we have
always been able to amalgamate them, but as time goes on new things are found.
We were amalgamating very well, when all of a sudden x-rays were found. Then
we amalgamated some more, and mesons were found. Therefore, at any stage
of the game, it always looks rather messy. A great deal is amalgamated, but
there are always many wires or threads hanging out in all directions. That is the
situation today, which we shall try to describe.

Some historic examples of amalgamation are the following. First, take heat
and mechanics. When atoms are in motion, the more motion, the more heat the
system contains, and so heat and all temperature effects can be represented by
the laws of mechanics. Another tremendous amalgamation was the discovery of
the relation between electricity, magnetism, and light, which were found to be
different aspects of the same thing, which we call today the electromagnetic field.
Another amalgamation is the unification of chemical phenomena, the various
properties of various substances, and the behavior of atomic particles, which is
in the quantum mechanics of chemistry.

The question is, of course, is it going to be possible to amalgamate everything,
and merely discover that this world represents different aspects of one thing?
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Nobody knows. All we know is that as we go along, we find that we can amalga-
mate pieces, and then we find some pieces that do not fit, and we keep trying to
put the jigsaw puzzle together. Whether there are a finite number of pieces, and
whether there is even a border to the puzzle, is of course unknown. It will never
be known until we finish the picture, if ever. What we wish to do here is to see
to what extent this amalgamation process has gone on, and what the situation
is at present, in understanding basic phenomena in terms of the smallest set of
principles. To express it in a simple manner, what are things made of and how
few elements are there?

2-2 Physics before 1920

It is a little difficult to begin at once with the present view, so we shall first
see how things looked in about 1920 and then take a few things out of that
picture. Before 1920, our world picture was something like this: The “stage” on
which the universe goes is the three-dimensional space of geometry, as described
by Euclid, and things change in a medium called time. The elements on the
stage are particles, for example the atoms, which have some properties. First, the
property of inertia: if a particle is moving it keeps on going in the same direction
unless forces act upon it. The second element, then, is forces, which were then
thought to be of two varieties: First, an enormously complicated, detailed kind
of interaction force which held the various atoms in different combinations in a
complicated way, which determined whether salt would dissolve faster or slower
when we raise the temperature. The other force that was known was a long-range
interaction—a smooth and quiet attraction—which varied inversely as the square
of the distance, and was called gravitation. This law was known and was very
simple. Why things remain in motion when they are moving, or why there is a
law of gravitation was, of course, not known.

A description of nature is what we are concerned with here. From this point
of view, then, a gas, and indeed all matter, is a myriad of moving particles. Thus
many of the things we saw while standing at the seashore can immediately be
connected. First the pressure: this comes from the collisions of the atoms with the
walls or whatever; the drift of the atoms, if they are all moving in one direction
on the average, is wind; the random internal motions are the heat. There are
waves of excess density, where too many particles have collected, and so as they
rush off they push up piles of particles farther out, and so on. This wave of excess
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density is sound. It is a tremendous achievement to be able to understand so
much. Some of these things were described in the previous chapter.

What kinds of particles are there? There were considered to be 92 at that
time: 92 different kinds of atoms were ultimately discovered. They had different
names associated with their chemical properties.

The next part of the problem was, what are the short-range forces? Why does
carbon attract one oxygen or perhaps two oxygens, but not three oxygens? What
is the machinery of interaction between atoms? Is it gravitation? The answer
is no. Gravity is entirely too weak. But imagine a force analogous to gravity,
varying inversely with the square of the distance, but enormously more powerful
and having one difference. In gravity everything attracts everything else, but
now imagine that there are two kinds of “things,” and that this new force (which
is the electrical force, of course) has the property that likes repel but unlikes
attract. The “thing” that carries this strong interaction is called charge.

Then what do we have? Suppose that we have two unlikes that attract each
other, a plus and a minus, and that they stick very close together. Suppose we
have another charge some distance away. Would it feel any attraction? It would
feel practically none, because if the first two are equal in size, the attraction for
the one and the repulsion for the other balance out. Therefore there is very little
force at any appreciable distance. On the other hand, if we get very close with
the extra charge, attraction arises, because the repulsion of likes and attraction
of unlikes will tend to bring unlikes closer together and push likes farther apart.
Then the repulsion will be less than the attraction. This is the reason why the
atoms, which are constituted out of plus and minus electric charges, feel very
little force when they are separated by appreciable distance (aside from gravity).
When they come close together, they can “see inside” each other and rearrange
their charges, with the result that they have a very strong interaction. The
ultimate basis of an interaction between the atoms is electrical. Since this force
is so enormous, all the plusses and all minuses will normally come together in
as intimate a combination as they can. All things, even ourselves, are made of
fine-grained, enormously strongly interacting plus and minus parts, all neatly
balanced out. Once in a while, by accident, we may rub off a few minuses or a
few plusses (usually it is easier to rub off minuses), and in those circumstances
we find the force of electricity unbalanced, and we can then see the effects of these
electrical attractions.

To give an idea of how much stronger electricity is than gravitation, consider
two grains of sand, a millimeter across, thirty meters apart. If the force between
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them were not balanced, if everything attracted everything else instead of likes
repelling, so that there were no cancellation, how much force would there be?
There would be a force of three million tons between the two! You see, there is
very, very little excess or deficit of the number of negative or positive charges
necessary to produce appreciable electrical effects. This is, of course, the reason
why you cannot see the difference between an electrically charged or uncharged
thing—so few particles are involved that they hardly make a difference in the
weight or size of an object.

With this picture the atoms were easier to understand. They were thought
to have a “nucleus” at the center, which is positively electrically charged and
very massive, and the nucleus is surrounded by a certain number of “electrons”
which are very light and negatively charged. Now we go a little ahead in our
story to remark that in the nucleus itself there were found two kinds of particles,
protons and neutrons, almost of the same weight and very heavy. The protons
are electrically charged and the neutrons are neutral. If we have an atom with six
protons inside its nucleus, and this is surrounded by six electrons (the negative
particles in the ordinary world of matter are all electrons, and these are very
light compared with the protons and neutrons which make nuclei), this would be
atom number six in the chemical table, and it is called carbon. Atom number
eight is called oxygen, etc., because the chemical properties depend upon the
electrons on the outside, and in fact only upon how many electrons there are. So
the chemical properties of a substance depend only on a number, the number
of electrons. (The whole list of elements of the chemists really could have been
called 1, 2, 3, 4, 5, etc. Instead of saying “carbon,” we could say “element six,”
meaning six electrons, but of course, when the elements were first discovered, it
was not known that they could be numbered that way, and secondly, it would
make everything look rather complicated. It is better to have names and symbols
for these things, rather than to call everything by number.)

More was discovered about the electrical force. The natural interpretation of
electrical interaction is that two objects simply attract each other: plus against
minus. However, this was discovered to be an inadequate idea to represent it.
A more adequate representation of the situation is to say that the existence of
the positive charge, in some sense, distorts, or creates a “condition” in space,
so that when we put the negative charge in, it feels a force. This potentiality
for producing a force is called an electric field. When we put an electron in an
electric field, we say it is “pulled.” We then have two rules: (a) charges make a
field, and (b) charges in fields have forces on them and move. The reason for
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this will become clear when we discuss the following phenomena: If we were
to charge a body, say a comb, electrically, and then place a charged piece of
paper at a distance and move the comb back and forth, the paper will respond by
always pointing to the comb. If we shake it faster, it will be discovered that the
paper is a little behind, there is a delay in the action. (At the first stage, when
we move the comb rather slowly, we find a complication which is magnetism.
Magnetic influences have to do with charges in relative motion, so magnetic
forces and electric forces can really be attributed to one field, as two different
aspects of exactly the same thing. A changing electric field cannot exist without
magnetism.) If we move the charged paper farther out, the delay is greater. Then
an interesting thing is observed. Although the forces between two charged objects
should go inversely as the square of the distance, it is found, when we shake a
charge, that the influence extends very much farther out than we would guess at
first sight. That is, the effect falls off more slowly than the inverse square.

Here is an analogy: If we are in a pool of water and there is a floating cork
very close by, we can move it “directly” by pushing the water with another
cork. If you looked only at the two corks, all you would see would be that one
moved immediately in response to the motion of the other—there is some kind of
“interaction” between them. Of course, what we really do is to disturb the water ;
the water then disturbs the other cork. We could make up a “law” that if you
pushed the water a little bit, an object close by in the water would move. If it
were farther away, of course, the second cork would scarcely move, for we move
the water locally. On the other hand, if we jiggle the cork a new phenomenon
is involved, in which the motion of the water moves the water there, etc., and
waves travel away, so that by jiggling, there is an influence very much farther out,
an oscillatory influence, that cannot be understood from the direct interaction.
Therefore the idea of direct interaction must be replaced with the existence of
the water, or in the electrical case, with what we call the electromagnetic field.

The electromagnetic field can carry waves; some of these waves are light,
others are used in radio broadcasts, but the general name is electromagnetic
waves. These oscillatory waves can have various frequencies. The only thing that
is really different from one wave to another is the frequency of oscillation. If we
shake a charge back and forth more and more rapidly, and look at the effects, we
get a whole series of different kinds of effects, which are all unified by specifying
but one number, the number of oscillations per second. The usual “pickup” that
we get from electric currents in the circuits in the walls of a building have a
frequency of about one hundred cycles per second. If we increase the frequency to
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Table 2-1

The Electromagnetic Spectrum

Frequency in Rough
oscillations/sec Name behavior

102 Electrical disturbance Field

5× 105 – 106 Radio broadcast
Waves

108 FM—TV
1010 Radar

5× 1014 – 1015 Light

1018 X-rays
Particle

1021 γ-rays, nuclear
1024 γ-rays, “artificial”
1027 γ-rays, in cosmic rays

500 or 1000 kilocycles (1 kilocycle = 1000 cycles) per second, we are “on the air,”
for this is the frequency range which is used for radio broadcasts. (Of course it
has nothing to do with the air! We can have radio broadcasts without any air.) If
we again increase the frequency, we come into the range that is used for FM and
TV. Going still further, we use certain short waves, for example for radar. Still
higher, and we do not need an instrument to “see” the stuff, we can see it with
the human eye. In the range of frequency from 5× 1014 to 1015 cycles per second
our eyes would see the oscillation of the charged comb, if we could shake it that
fast, as red, blue, or violet light, depending on the frequency. Frequencies below
this range are called infrared, and above it, ultraviolet. The fact that we can see
in a particular frequency range makes that part of the electromagnetic spectrum
no more impressive than the other parts from a physicist’s standpoint, but from
a human standpoint, of course, it is more interesting. If we go up even higher in
frequency, we get x-rays. X-rays are nothing but very high-frequency light. If we
go still higher, we get gamma rays. These two terms, x-rays and gamma rays,
are used almost synonymously. Usually electromagnetic rays coming from nuclei
are called gamma rays, while those of high energy from atoms are called x-rays,
but at the same frequency they are indistinguishable physically, no matter what
their source. If we go to still higher frequencies, say to 1024 cycles per second, we
find that we can make those waves artificially, for example with the synchrotron
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here at Caltech. We can find electromagnetic waves with stupendously high
frequencies—with even a thousand times more rapid oscillation—in the waves
found in cosmic rays. These waves cannot be controlled by us.

2-3 Quantum physics

Having described the idea of the electromagnetic field, and that this field
can carry waves, we soon learn that these waves actually behave in a strange
way which seems very unwavelike. At higher frequencies they behave much
more like particles! It is quantum mechanics, discovered just after 1920, which
explains this strange behavior. In the years before 1920, the picture of space
as a three-dimensional space, and of time as a separate thing, was changed by
Einstein, first into a combination which we call space-time, and then still further
into a curved space-time to represent gravitation. So the “stage” is changed
into space-time, and gravitation is presumably a modification of space-time.
Then it was also found that the rules for the motions of particles were incorrect.
The mechanical rules of “inertia” and “forces” are wrong—Newton’s laws are
wrong—in the world of atoms. Instead, it was discovered that things on a small
scale behave nothing like things on a large scale. That is what makes physics
difficult—and very interesting. It is hard because the way things behave on a
small scale is so “unnatural”; we have no direct experience with it. Here things
behave like nothing we know of, so that it is impossible to describe this behavior
in any other than analytic ways. It is difficult, and takes a lot of imagination.

Quantum mechanics has many aspects. In the first place, the idea that a
particle has a definite location and a definite speed is no longer allowed; that is
wrong. To give an example of how wrong classical physics is, there is a rule in
quantum mechanics that says that one cannot know both where something is and
how fast it is moving. The uncertainty of the momentum and the uncertainty
of the position are complementary, and the product of the two is bounded by
a small constant. We can write the law like this: ∆x∆p ≥ ~/2, but we shall
explain it in more detail later. This rule is the explanation of a very mysterious
paradox: if the atoms are made out of plus and minus charges, why don’t the
minus charges simply sit on top of the plus charges (they attract each other) and
get so close as to completely cancel them out? Why are atoms so big? Why is the
nucleus at the center with the electrons around it? It was first thought that this
was because the nucleus was so big; but no, the nucleus is very small. An atom
has a diameter of about 10−8 cm. The nucleus has a diameter of about 10−13 cm.
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If we had an atom and wished to see the nucleus, we would have to magnify it
until the whole atom was the size of a large room, and then the nucleus would
be a bare speck which you could just about make out with the eye, but very
nearly all the weight of the atom is in that infinitesimal nucleus. What keeps the
electrons from simply falling in? This principle: If they were in the nucleus, we
would know their position precisely, and the uncertainty principle would then
require that they have a very large (but uncertain) momentum, i.e., a very large
kinetic energy. With this energy they would break away from the nucleus. They
make a compromise: they leave themselves a little room for this uncertainty and
then jiggle with a certain amount of minimum motion in accordance with this
rule. (Remember that when a crystal is cooled to absolute zero, we said that the
atoms do not stop moving, they still jiggle. Why? If they stopped moving, we
would know where they were and that they had zero motion, and that is against
the uncertainty principle. We cannot know where they are and how fast they are
moving, so they must be continually wiggling in there!)

Another most interesting change in the ideas and philosophy of science brought
about by quantum mechanics is this: it is not possible to predict exactly what will
happen in any circumstance. For example, it is possible to arrange an atom which
is ready to emit light, and we can measure when it has emitted light by picking up
a photon particle, which we shall describe shortly. We cannot, however, predict
when it is going to emit the light or, with several atoms, which one is going to.
You may say that this is because there are some internal “wheels” which we have
not looked at closely enough. No, there are no internal wheels; nature, as we
understand it today, behaves in such a way that it is fundamentally impossible
to make a precise prediction of exactly what will happen in a given experiment.
This is a horrible thing; in fact, philosophers have said before that one of the
fundamental requisites of science is that whenever you set up the same conditions,
the same thing must happen. This is simply not true, it is not a fundamental
condition of science. The fact is that the same thing does not happen, that we
can find only an average, statistically, as to what happens. Nevertheless, science
has not completely collapsed. Philosophers, incidentally, say a great deal about
what is absolutely necessary for science, and it is always, so far as one can see,
rather naive, and probably wrong. For example, some philosopher or other said
it is fundamental to the scientific effort that if an experiment is performed in, say,
Stockholm, and then the same experiment is done in, say, Quito, the same results
must occur. That is quite false. It is not necessary that science do that; it may be
a fact of experience, but it is not necessary. For example, if one of the experiments
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is to look out at the sky and see the aurora borealis in Stockholm, you do not see it
in Quito; that is a different phenomenon. “But,” you say, “that is something that
has to do with the outside; can you close yourself up in a box in Stockholm and
pull down the shade and get any difference?” Surely. If we take a pendulum on
a universal joint, and pull it out and let go, then the pendulum will swing almost
in a plane, but not quite. Slowly the plane keeps changing in Stockholm, but not
in Quito. The blinds are down, too. The fact that this happened does not bring
on the destruction of science. What is the fundamental hypothesis of science,
the fundamental philosophy? We stated it in the first chapter: the sole test of
the validity of any idea is experiment. If it turns out that most experiments work
out the same in Quito as they do in Stockholm, then those “most experiments”
will be used to formulate some general law, and those experiments which do not
come out the same we will say were a result of the environment near Stockholm.
We will invent some way to summarize the results of the experiment, and we do
not have to be told ahead of time what this way will look like. If we are told that
the same experiment will always produce the same result, that is all very well,
but if when we try it, it does not, then it does not. We just have to take what we
see, and then formulate all the rest of our ideas in terms of our actual experience.

Returning again to quantum mechanics and fundamental physics, we cannot go
into details of the quantum-mechanical principles at this time, of course, because
these are rather difficult to understand. We shall assume that they are there, and
go on to describe what some of the consequences are. One of the consequences is
that things which we used to consider as waves also behave like particles, and
particles behave like waves; in fact everything behaves the same way. There is
no distinction between a wave and a particle. So quantum mechanics unifies the
idea of the field and its waves, and the particles, all into one. Now it is true that
when the frequency is low, the field aspect of the phenomenon is more evident, or
more useful as an approximate description in terms of everyday experiences. But
as the frequency increases, the particle aspects of the phenomenon become more
evident with the equipment with which we usually make the measurements. In
fact, although we mentioned many frequencies, no phenomenon directly involving
a frequency has yet been detected above approximately 1012 cycles per second.
We only deduce the higher frequencies from the energy of the particles, by a rule
which assumes that the particle-wave idea of quantum mechanics is valid.

Thus we have a new view of electromagnetic interaction. We have a new kind
of particle to add to the electron, the proton, and the neutron. That new particle
is called a photon. The new view of the interaction of electrons and photons that
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is electromagnetic theory, but with everything quantum-mechanically correct, is
called quantum electrodynamics. This fundamental theory of the interaction of
light and matter, or electric field and charges, is our greatest success so far in
physics. In this one theory we have the basic rules for all ordinary phenomena
except for gravitation and nuclear processes. For example, out of quantum
electrodynamics come all known electrical, mechanical, and chemical laws: the
laws for the collision of billiard balls, the motions of wires in magnetic fields,
the specific heat of carbon monoxide, the color of neon signs, the density of salt,
and the reactions of hydrogen and oxygen to make water are all consequences
of this one law. All these details can be worked out if the situation is simple
enough for us to make an approximation, which is almost never, but often we can
understand more or less what is happening. At the present time no exceptions
are found to the quantum-electrodynamic laws outside the nucleus, and there we
do not know whether there is an exception because we simply do not know what
is going on in the nucleus.

In principle, then, quantum electrodynamics is the theory of all chemistry,
and of life, if life is ultimately reduced to chemistry and therefore just to physics
because chemistry is already reduced (the part of physics which is involved in
chemistry being already known). Furthermore, the same quantum electrodynam-
ics, this great thing, predicts a lot of new things. In the first place, it tells the
properties of very high-energy photons, gamma rays, etc. It predicted another
very remarkable thing: besides the electron, there should be another particle of
the same mass, but of opposite charge, called a positron, and these two, coming
together, could annihilate each other with the emission of light or gamma rays.
(After all, light and gamma rays are all the same, they are just different points
on a frequency scale.) The generalization of this, that for each particle there is an
antiparticle, turns out to be true. In the case of electrons, the antiparticle has an-
other name—it is called a positron, but for most other particles, it is called anti-so-
and-so, like antiproton or antineutron. In quantum electrodynamics, two numbers
are put in and most of the other numbers in the world are supposed to come out.
The two numbers that are put in are called the mass of the electron and the charge
of the electron. Actually, that is not quite true, for we have a whole set of numbers
for chemistry which tells how heavy the nuclei are. That leads us to the next part.

2-4 Nuclei and particles
What are the nuclei made of, and how are they held together? It is found

that the nuclei are held together by enormous forces. When these are released,
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the energy released is tremendous compared with chemical energy, in the same
ratio as the atomic bomb explosion is to a TNT explosion, because, of course,
the atomic bomb has to do with changes inside the nucleus, while the explosion
of TNT has to do with the changes of the electrons on the outside of the atoms.
The question is, what are the forces which hold the protons and neutrons together
in the nucleus? Just as the electrical interaction can be connected to a particle,
a photon, Yukawa suggested that the forces between neutrons and protons also
have a field of some kind, and that when this field jiggles it behaves like a
particle. Thus there could be some other particles in the world besides protons
and neutrons, and he was able to deduce the properties of these particles from
the already known characteristics of nuclear forces. For example, he predicted
they should have a mass of two or three hundred times that of an electron; and lo
and behold, in cosmic rays there was discovered a particle of the right mass! But
it later turned out to be the wrong particle. It was called a µ-meson, or muon.

However, a little while later, in 1947 or 1948, another particle was found, the
π-meson, or pion, which satisfied Yukawa’s criterion. Besides the proton and
the neutron, then, in order to get nuclear forces we must add the pion. Now,
you say, “Oh great!, with this theory we make quantum nucleodynamics using
the pions just like Yukawa wanted to do, and see if it works, and everything will
be explained.” Bad luck. It turns out that the calculations that are involved in
this theory are so difficult that no one has ever been able to figure out what the
consequences of the theory are, or to check it against experiment, and this has
been going on now for almost twenty years!

So we are stuck with a theory, and we do not know whether it is right or
wrong, but we do know that it is a little wrong, or at least incomplete. While we
have been dawdling around theoretically, trying to calculate the consequences of
this theory, the experimentalists have been discovering some things. For example,
they had already discovered this µ-meson or muon, and we do not yet know where
it fits. Also, in cosmic rays, a large number of other “extra” particles were found.
It turns out that today we have approximately thirty particles, and it is very
difficult to understand the relationships of all these particles, and what nature
wants them for, or what the connections are from one to another. We do not
today understand these various particles as different aspects of the same thing,
and the fact that we have so many unconnected particles is a representation of
the fact that we have so much unconnected information without a good theory.
After the great successes of quantum electrodynamics, there is a certain amount
of knowledge of nuclear physics which is rough knowledge, sort of half experience

2-13



and half theory, assuming a type of force between protons and neutrons and seeing
what will happen, but not really understanding where the force comes from. Aside
from that, we have made very little progress. We have collected an enormous
number of chemical elements. In the chemical case, there suddenly appeared a
relationship among these elements which was unexpected, and which is embodied
in the periodic table of Mendeleev. For example, sodium and potassium are
about the same in their chemical properties and are found in the same column
in the Mendeleev chart. We have been seeking a Mendeleev-type chart for the
new particles. One such chart of the new particles was made independently by
Gell-Mann in the U.S.A. and Nishijima in Japan. The basis of their classification
is a new number, like the electric charge, which can be assigned to each particle,
called its “strangeness,” S. This number is conserved, like the electric charge, in
reactions which take place by nuclear forces.

In Table 2-2 are listed all the particles. We cannot discuss them much at this
stage, but the table will at least show you how much we do not know. Underneath
each particle its mass is given in a certain unit, called the MeV. One MeV is
equal to 1.783× 10−27 gram. The reason this unit was chosen is historical, and
we shall not go into it now. More massive particles are put higher up on the
chart; we see that a neutron and a proton have almost the same mass. In vertical
columns we have put the particles with the same electrical charge, all neutral
objects in one column, all positively charged ones to the right of this one, and all
negatively charged objects to the left.

Particles are shown with a solid line and “resonances” with a dashed one.
Several particles have been omitted from the table. These include the important
zero-mass, zero-charge particles, the photon and the graviton, which do not fall
into the baryon-meson-lepton classification scheme, and also some of the newer
resonances (K∗, φ, η). The antiparticles of the mesons are listed in the table, but
the antiparticles of the leptons and baryons would have to be listed in another
table which would look exactly like this one reflected on the zero-charge column.
Although all of the particles except the electron, neutrino, photon, graviton, and
proton are unstable, decay products have been shown only for the resonances.
Strangeness assignments are not applicable for leptons, since they do not interact
strongly with nuclei.

All particles which are together with the neutrons and protons are called
baryons, and the following ones exist: There is a “lambda,” with a mass of
1115 MeV, and three others, called sigmas, minus, neutral, and plus, with several
masses almost the same. There are groups or multiplets with almost the same
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Table 2-2

Elementary Particles

MASS
in MeV −e

CHARGE
0 +e

GROUPING &
STRANGENESS

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

e−

0.51

µ−

105.6

π−

139.6

K−

494

ρ−→π+π

Σ−

1196

Ξ−

1319

Y−1→Λ0+π−

ν0

0

π0

135.0

K0K0

ρ0→π+π

ω0→π+π+π

498

n
939

Λ0

1115

Σ0

1191

Ξ0
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Y0
1→Λ0+π0

π+
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K+

494

ρ+→π+π

p
938

Σ+
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Y+
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1395
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S=0

S=0

S=0
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mass, within one or two percent. Each particle in a multiplet has the same
strangeness. The first multiplet is the proton-neutron doublet, and then there is
a singlet (the lambda) then the sigma triplet, and finally the xi doublet. Very
recently, in 1961, even a few more particles were found. Or are they particles?
They live so short a time, they disintegrate almost instantaneously, as soon as
they are formed, that we do not know whether they should be considered as new
particles, or some kind of “resonance” interaction of a certain definite energy
between the Λ and π products into which they disintegrate.

In addition to the baryons the other particles which are involved in the nuclear
interaction are called mesons. There are first the pions, which come in three
varieties, positive, negative, and neutral; they form another multiplet. We have
also found some new things called K-mesons, and they occur as a doublet, K+

and K0. Also, every particle has its antiparticle, unless a particle is its own
antiparticle. For example, the π− and the π+ are antiparticles, but the π0 is
its own antiparticle. The K− and K+ are antiparticles, and the K0 and K0.
In addition, in 1961 we also found some more mesons or maybe mesons which
disintegrate almost immediately. A thing called ω which goes into three pions
has a mass 780 on this scale, and somewhat less certain is an object which
disintegrates into two pions. These particles, called mesons and baryons, and
the antiparticles of the mesons are on the same chart, but the antiparticles of
the baryons must be put on another chart, “reflected” through the charge-zero
column.

Just as Mendeleev’s chart was very good, except for the fact that there were
a number of rare earth elements which were hanging out loose from it, so we have
a number of things hanging out loose from this chart—particles which do not
interact strongly in nuclei, have nothing to do with a nuclear interaction, and do
not have a strong interaction (I mean the powerful kind of interaction of nuclear
energy). These are called leptons, and they are the following: there is the electron,
which has a very small mass on this scale, only 0.510 MeV. Then there is that
other, the µ-meson, the muon, which has a mass much higher, 206 times as heavy
as an electron. So far as we can tell, by all experiments so far, the difference
between the electron and the muon is nothing but the mass. Everything works
exactly the same for the muon as for the electron, except that one is heavier than
the other. Why is there another one heavier; what is the use for it? We do not
know. In addition, there is a lepton which is neutral, called a neutrino, and this
particle has zero mass. In fact, it is now known that there are two different kinds
of neutrinos, one related to electrons and the other related to muons.
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Finally, we have two other particles which do not interact strongly with the
nuclear ones: one is a photon, and perhaps, if the field of gravity also has a
quantum-mechanical analog (a quantum theory of gravitation has not yet been
worked out), then there will be a particle, a graviton, which will have zero mass.

What is this “zero mass”? The masses given here are the masses of the
particles at rest. The fact that a particle has zero mass means, in a way, that it
cannot be at rest. A photon is never at rest, it is always moving at 186,000 miles
a second. We will understand more what mass means when we understand the
theory of relativity, which will come in due time.

Thus we are confronted with a large number of particles, which together seem
to be the fundamental constituents of matter. Fortunately, these particles are
not all different in their interactions with one another. In fact, there seem to be
just four kinds of interaction between particles which, in the order of decreasing
strength, are the nuclear force, electrical interactions, the beta-decay interaction,
and gravity. The photon is coupled to all charged particles and the strength of the
interaction is measured by some number, which is 1/137. The detailed law of this
coupling is known, that is quantum electrodynamics. Gravity is coupled to all
energy, but its coupling is extremely weak, much weaker than that of electricity.
This law is also known. Then there are the so-called weak decays—beta decay,
which causes the neutron to disintegrate into proton, electron, and neutrino,
relatively slowly. This law is only partly known. The so-called strong interaction,
the meson-baryon interaction, has a strength of 1 in this scale, and the law is
completely unknown, although there are a number of known rules, such as that
the number of baryons does not change in any reaction.

Table 2-3. Elementary Interactions

Coupling Strength* Law

Photon to charged particles ∼ 10−2 Law known

Gravity to all energy ∼ 10−40 Law known

Weak decays ∼ 10−5 Law partly known

Mesons to baryons ∼ 1 Law unknown (some rules known)
* The “strength” is a dimensionless measure of the coupling constant involved
in each interaction (∼ means “of the order”).
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This then, is the horrible condition of our physics today. To summarize it,
I would say this: outside the nucleus, we seem to know all; inside it, quantum
mechanics is valid—the principles of quantum mechanics have not been found to
fail. The stage on which we put all of our knowledge, we would say, is relativistic
space-time; perhaps gravity is involved in space-time. We do not know how the
universe got started, and we have never made experiments which check our ideas
of space and time accurately, below some tiny distance, so we only know that our
ideas work above that distance. We should also add that the rules of the game
are the quantum-mechanical principles, and those principles apply, so far as we
can tell, to the new particles as well as to the old. The origin of the forces in
nuclei leads us to new particles, but unfortunately they appear in great profusion
and we lack a complete understanding of their interrelationship, although we
already know that there are some very surprising relationships among them. We
seem gradually to be groping toward an understanding of the world of subatomic
particles, but we really do not know how far we have yet to go in this task.
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3

The Relation of Physics to Other Sciences

3-1 Introduction

Physics is the most fundamental and all-inclusive of the sciences, and has had
a profound effect on all scientific development. In fact, physics is the present-day
equivalent of what used to be called natural philosophy, from which most of our
modern sciences arose. Students of many fields find themselves studying physics
because of the basic role it plays in all phenomena. In this chapter we shall
try to explain what the fundamental problems in the other sciences are, but of
course it is impossible in so small a space really to deal with the complex, subtle,
beautiful matters in these other fields. Lack of space also prevents our discussing
the relation of physics to engineering, industry, society, and war, or even the
most remarkable relationship between mathematics and physics. (Mathematics is
not a science from our point of view, in the sense that it is not a natural science.
The test of its validity is not experiment.) We must, incidentally, make it clear
from the beginning that if a thing is not a science, it is not necessarily bad. For
example, love is not a science. So, if something is said not to be a science, it does
not mean that there is something wrong with it; it just means that it is not a
science.

3-2 Chemistry

The science which is perhaps the most deeply affected by physics is chemistry.
Historically, the early days of chemistry dealt almost entirely with what we now
call inorganic chemistry, the chemistry of substances which are not associated
with living things. Considerable analysis was required to discover the existence of
the many elements and their relationships—how they make the various relatively
simple compounds found in rocks, earth, etc. This early chemistry was very
important for physics. The interaction between the two sciences was very great
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because the theory of atoms was substantiated to a large extent by experiments
in chemistry. The theory of chemistry, i.e., of the reactions themselves, was
summarized to a large extent in the periodic chart of Mendeleev, which brings out
many strange relationships among the various elements, and it was the collection
of rules as to which substance is combined with which, and how, that constituted
inorganic chemistry. All these rules were ultimately explained in principle by
quantum mechanics, so that theoretical chemistry is in fact physics. On the
other hand, it must be emphasized that this explanation is in principle. We have
already discussed the difference between knowing the rules of the game of chess,
and being able to play. So it is that we may know the rules, but we cannot play
very well. It turns out to be very difficult to predict precisely what will happen in
a given chemical reaction; nevertheless, the deepest part of theoretical chemistry
must end up in quantum mechanics.

There is also a branch of physics and chemistry which was developed by
both sciences together, and which is extremely important. This is the method
of statistics applied in a situation in which there are mechanical laws, which is
aptly called statistical mechanics. In any chemical situation a large number of
atoms are involved, and we have seen that the atoms are all jiggling around in
a very random and complicated way. If we could analyze each collision, and be
able to follow in detail the motion of each molecule, we might hope to figure out
what would happen, but the many numbers needed to keep track of all these
molecules exceeds so enormously the capacity of any computer, and certainly
the capacity of the mind, that it was important to develop a method for dealing
with such complicated situations. Statistical mechanics, then, is the science of
the phenomena of heat, or thermodynamics. Inorganic chemistry is, as a science,
now reduced essentially to what are called physical chemistry and quantum
chemistry; physical chemistry to study the rates at which reactions occur and
what is happening in detail (How do the molecules hit? Which pieces fly off first?,
etc.), and quantum chemistry to help us understand what happens in terms of
the physical laws.

The other branch of chemistry is organic chemistry, the chemistry of the
substances which are associated with living things. For a time it was believed that
the substances which are associated with living things were so marvelous that
they could not be made by hand, from inorganic materials. This is not at all true—
they are just the same as the substances made in inorganic chemistry, but more
complicated arrangements of atoms are involved. Organic chemistry obviously
has a very close relationship to the biology which supplies its substances, and

3-2



to industry, and furthermore, much physical chemistry and quantum mechanics
can be applied to organic as well as to inorganic compounds. However, the main
problems of organic chemistry are not in these aspects, but rather in the analysis
and synthesis of the substances which are formed in biological systems, in living
things. This leads imperceptibly, in steps, toward biochemistry, and then into
biology itself, or molecular biology.

3-3 Biology

Thus we come to the science of biology, which is the study of living things. In
the early days of biology, the biologists had to deal with the purely descriptive
problem of finding out what living things there were, and so they just had to
count such things as the hairs of the limbs of fleas. After these matters were
worked out with a great deal of interest, the biologists went into the machinery
inside the living bodies, first from a gross standpoint, naturally, because it takes
some effort to get into the finer details.

There was an interesting early relationship between physics and biology in
which biology helped physics in the discovery of the conservation of energy, which
was first demonstrated by Mayer in connection with the amount of heat taken in
and given out by a living creature.

If we look at the processes of biology of living animals more closely, we see
many physical phenomena: the circulation of blood, pumps, pressure, etc. There
are nerves: we know what is happening when we step on a sharp stone, and
that somehow or other the information goes from the leg up. It is interesting
how that happens. In their study of nerves, the biologists have come to the
conclusion that nerves are very fine tubes with a complex wall which is very
thin; through this wall the cell pumps ions, so that there are positive ions on the
outside and negative ions on the inside, like a capacitor. Now this membrane has
an interesting property; if it “discharges” in one place, i.e., if some of the ions
were able to move through one place, so that the electric voltage is reduced there,
that electrical influence makes itself felt on the ions in the neighborhood, and it
affects the membrane in such a way that it lets the ions through at neighboring
points also. This in turn affects it farther along, etc., and so there is a wave of
“penetrability” of the membrane which runs down the fiber when it is “excited”
at one end by stepping on the sharp stone. This wave is somewhat analogous
to a long sequence of vertical dominoes; if the end one is pushed over, that one
pushes the next, etc. Of course this will transmit only one message unless the
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dominoes are set up again; and similarly in the nerve cell, there are processes
which pump the ions slowly out again, to get the nerve ready for the next impulse.
So it is that we know what we are doing (or at least where we are). Of course
the electrical effects associated with this nerve impulse can be picked up with
electrical instruments, and because there are electrical effects, obviously the
physics of electrical effects has had a great deal of influence on understanding
the phenomenon.

The opposite effect is that, from somewhere in the brain, a message is sent
out along a nerve. What happens at the end of the nerve? There the nerve
branches out into fine little things, connected to a structure near a muscle, called
an endplate. For reasons which are not exactly understood, when the impulse
reaches the end of the nerve, little packets of a chemical called acetylcholine are
shot off (five or ten molecules at a time) and they affect the muscle fiber and make
it contract—how simple! What makes a muscle contract? A muscle is a very
large number of fibers close together, containing two different substances, myosin
and actomyosin, but the machinery by which the chemical reaction induced by
acetylcholine can modify the dimensions of the muscle is not yet known. Thus
the fundamental processes in the muscle that make mechanical motions are not
known.

Biology is such an enormously wide field that there are hosts of other problems
that we cannot mention at all—problems on how vision works (what the light
does in the eye), how hearing works, etc. (The way in which thinking works we
shall discuss later under psychology.) Now, these things concerning biology which
we have just discussed are, from a biological standpoint, really not fundamental,
at the bottom of life, in the sense that even if we understood them we still would
not understand life itself. To illustrate: the men who study nerves feel their work
is very important, because after all you cannot have animals without nerves. But
you can have life without nerves. Plants have neither nerves nor muscles, but
they are working, they are alive, just the same. So for the fundamental problems
of biology we must look deeper; when we do, we discover that all living things
have a great many characteristics in common. The most common feature is that
they are made of cells, within each of which is complex machinery for doing
things chemically. In plant cells, for example, there is machinery for picking up
light and generating glucose, which is consumed in the dark to keep the plant
alive. When the plant is eaten the glucose itself generates in the animal a series
of chemical reactions very closely related to photosynthesis (and its opposite
effect in the dark) in plants.
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In the cells of living systems there are many elaborate chemical reactions,
in which one compound is changed into another and another. To give some
impression of the enormous efforts that have gone into the study of biochemistry,
the chart in Fig. 3-1 summarizes our knowledge to date on just one small part of
the many series of reactions which occur in cells, perhaps a percent or so of it.

Here we see a whole series of molecules which change from one to another in a
sequence or cycle of rather small steps. It is called the Krebs cycle, the respiratory
cycle. Each of the chemicals and each of the steps is fairly simple, in terms of
what change is made in the molecule, but—and this is a centrally important
discovery in biochemistry—these changes are relatively difficult to accomplish
in a laboratory. If we have one substance and another very similar substance,
the one does not just turn into the other, because the two forms are usually
separated by an energy barrier or “hill.” Consider this analogy: If we wanted
to take an object from one place to another, at the same level but on the other
side of a hill, we could push it over the top, but to do so requires the addition of
some energy. Thus most chemical reactions do not occur, because there is what
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is called an activation energy in the way. In order to add an extra atom to our
chemical requires that we get it close enough that some rearrangement can occur;
then it will stick. But if we cannot give it enough energy to get it close enough,
it will not go to completion, it will just go part way up the “hill” and back down
again. However, if we could literally take the molecules in our hands and push
and pull the atoms around in such a way as to open a hole to let the new atom
in, and then let it snap back, we would have found another way, around the hill,
which would not require extra energy, and the reaction would go easily. Now
there actually are, in the cells, very large molecules, much larger than the ones
whose changes we have been describing, which in some complicated way hold
the smaller molecules just right, so that the reaction can occur easily. These
very large and complicated things are called enzymes. (They were first called
ferments, because they were originally discovered in the fermentation of sugar.
In fact, some of the first reactions in the cycle were discovered there.) In the
presence of an enzyme the reaction will go.

An enzyme is made of another substance called protein. Enzymes are very
big and complicated, and each one is different, each being built to control a
certain special reaction. The names of the enzymes are written in Fig. 3-1 at each
reaction. (Sometimes the same enzyme may control two reactions.) We emphasize
that the enzymes themselves are not involved in the reaction directly. They do
not change; they merely let an atom go from one place to another. Having done
so, the enzyme is ready to do it to the next molecule, like a machine in a factory.
Of course, there must be a supply of certain atoms and a way of disposing of
other atoms. Take hydrogen, for example: there are enzymes which have special
units on them which carry the hydrogen for all chemical reactions. For example,
there are three or four hydrogen-reducing enzymes which are used all over our
cycle in different places. It is interesting that the machinery which liberates some
hydrogen at one place will take that hydrogen and use it somewhere else.

The most important feature of the cycle of Fig. 3-1 is the transformation
from GDP to GTP (guanosine-di-phosphate to guanosine-tri-phosphate) because
the one substance has much more energy in it than the other. Just as there
is a “box” in certain enzymes for carrying hydrogen atoms around, there are
special energy-carrying “boxes” which involve the triphosphate group. So, GTP
has more energy than GDP and if the cycle is going one way, we are producing
molecules which have extra energy and which can go drive some other cycle
which requires energy, for example the contraction of muscle. The muscle will
not contract unless there is GTP. We can take muscle fiber, put it in water, and
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add GTP, and the fibers contract, changing GTP to GDP if the right enzymes
are present. So the real system is in the GDP-GTP transformation; in the dark
the GTP which has been stored up during the day is used to run the whole cycle
around the other way. An enzyme, you see, does not care in which direction the
reaction goes, for if it did it would violate one of the laws of physics.

Physics is of great importance in biology and other sciences for still another
reason, that has to do with experimental techniques. In fact, if it were not for
the great development of experimental physics, these biochemistry charts would
not be known today. The reason is that the most useful tool of all for analyzing
this fantastically complex system is to label the atoms which are used in the
reactions. Thus, if we could introduce into the cycle some carbon dioxide which
has a “green mark” on it, and then measure after three seconds where the green
mark is, and again measure after ten seconds, etc., we could trace out the course
of the reactions. What are the “green marks”? They are different isotopes. We
recall that the chemical properties of atoms are determined by the number of
electrons, not by the mass of the nucleus. But there can be, for example in
carbon, six neutrons or seven neutrons, together with the six protons which all
carbon nuclei have. Chemically, the two atoms C12 and C13 are the same, but
they differ in weight and they have different nuclear properties, and so they are
distinguishable. By using these isotopes of different weights, or even radioactive
isotopes like C14, which provide a more sensitive means for tracing very small
quantities, it is possible to trace the reactions.

Now, we return to the description of enzymes and proteins. All proteins are
not enzymes, but all enzymes are proteins. There are many proteins, such as the
proteins in muscle, the structural proteins which are, for example, in cartilage
and hair, skin, etc., that are not themselves enzymes. However, proteins are a
very characteristic substance of life: first of all they make up all the enzymes, and
second, they make up much of the rest of living material. Proteins have a very
interesting and simple structure. They are a series, or chain, of different amino
acids. There are twenty different amino acids, and they all can combine with each
other to form chains in which the backbone is CO-NH, etc. Proteins are nothing
but chains of various ones of these twenty amino acids. Each of the amino acids
probably serves some special purpose. Some, for example, have a sulfur atom
at a certain place; when two sulfur atoms are in the same protein, they form a
bond, that is, they tie the chain together at two points and form a loop. Another
has extra oxygen atoms which make it an acidic substance, another has a basic
characteristic. Some of them have big groups hanging out to one side, so that
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they take up a lot of space. One of the amino acids, called proline, is not really an
amino acid, but imino acid. There is a slight difference, with the result that when
proline is in the chain, there is a kink in the chain. If we wished to manufacture
a particular protein, we would give these instructions: put one of those sulfur
hooks here; next, add something to take up space; then attach something to
put a kink in the chain. In this way, we will get a complicated-looking chain,
hooked together and having some complex structure; this is presumably just the
manner in which all the various enzymes are made. One of the great triumphs
in recent times (since 1960), was at last to discover the exact spatial atomic
arrangement of certain proteins, which involve some fifty-six or sixty amino acids
in a row. Over a thousand atoms (more nearly two thousand, if we count the
hydrogen atoms) have been located in a complex pattern in two proteins. The
first was hemoglobin. One of the sad aspects of this discovery is that we cannot
see anything from the pattern; we do not understand why it works the way it
does. Of course, that is the next problem to be attacked.

Another problem is how do the enzymes know what to be? A red-eyed fly
makes a red-eyed fly baby, and so the information for the whole pattern of
enzymes to make red pigment must be passed from one fly to the next. This is
done by a substance in the nucleus of the cell, not a protein, called DNA (short
for des-oxyribose nucleic acid). This is the key substance which is passed from one
cell to another (for instance sperm cells consist mostly of DNA) and carries the
information as to how to make the enzymes. DNA is the “blueprint.” What does
the blueprint look like and how does it work? First, the blueprint must be able
to reproduce itself. Secondly, it must be able to instruct the protein. Concerning
the reproduction, we might think that this proceeds like cell reproduction. Cells
simply grow bigger and then divide in half. Must it be thus with DNA molecules,
then, that they too grow bigger and divide in half? Every atom certainly does
not grow bigger and divide in half! No, it is impossible to reproduce a molecule
except by some more clever way.

The structure of the substance DNA was studied for a long time, first chemi-
cally to find the composition, and then with x-rays to find the pattern in space.
The result was the following remarkable discovery: The DNA molecule is a pair
of chains, twisted upon each other. The backbone of each of these chains, which
are analogous to the chains of proteins but chemically quite different, is a series
of sugar and phosphate groups, as shown in Fig. 3-2. Now we see how the chain
can contain instructions, for if we could split this chain down the middle, we
would have a series BAADC . . . and every living thing could have a different
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Fig. 3-2. Schematic diagram of DNA.

series. Thus perhaps, in some way, the specific instructions for the manufacture
of proteins are contained in the specific series of the DNA.

Attached to each sugar along the line, and linking the two chains together,
are certain pairs of cross-links. However, they are not all of the same kind; there
are four kinds, called adenine, thymine, cytosine, and guanine, but let us call
them A, B, C, and D. The interesting thing is that only certain pairs can sit
opposite each other, for example A with B and C with D. These pairs are put on
the two chains in such a way that they “fit together,” and have a strong energy
of interaction. However, C will not fit with A, and B will not fit with C; they
will only fit in pairs, A against B and C against D. Therefore if one is C, the
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other must be D, etc. Whatever the letters may be in one chain, each one must
have its specific complementary letter on the other chain.

What then about reproduction? Suppose we split this chain in two. How can
we make another one just like it? If, in the substances of the cells, there is a
manufacturing department which brings up phosphate, sugar, and A, B, C, D
units not connected in a chain, the only ones which will attach to our split chain
will be the correct ones, the complements of BAADC . . ., namely, ABBCD . . .
Thus what happens is that the chain splits down the middle during cell division,
one half ultimately to go with one cell, the other half to end up in the other cell;
when separated, a new complementary chain is made by each half-chain.

Next comes the question, precisely how does the order of the A, B, C, D units
determine the arrangement of the amino acids in the protein? This is the central
unsolved problem in biology today. The first clues, or pieces of information,
however, are these: There are in the cell tiny particles called ribosomes, and it is
now known that that is the place where proteins are made. But the ribosomes
are not in the nucleus, where the DNA and its instructions are. Something seems
to be the matter. However, it is also known that little molecule pieces come off
the DNA—not as long as the big DNA molecule that carries all the information
itself, but like a small section of it. This is called RNA, but that is not essential.
It is a kind of copy of the DNA, a short copy. The RNA, which somehow carries
a message as to what kind of protein to make goes over to the ribosome; that is
known. When it gets there, protein is synthesized at the ribosome. That is also
known. However, the details of how the amino acids come in and are arranged in
accordance with a code that is on the RNA are, as yet, still unknown. We do
not know how to read it. If we knew, for example, the “lineup” A, B, C, C, A,
we could not tell you what protein is to be made.

Certainly no subject or field is making more progress on so many fronts at
the present moment, than biology, and if we were to name the most powerful
assumption of all, which leads one on and on in an attempt to understand life, it
is that all things are made of atoms, and that everything that living things do
can be understood in terms of the jigglings and wigglings of atoms.

3-4 Astronomy

In this rapid-fire explanation of the whole world, we must now turn to astron-
omy. Astronomy is older than physics. In fact, it got physics started by showing
the beautiful simplicity of the motion of the stars and planets, the understanding

3-10



of which was the beginning of physics. But the most remarkable discovery in all
of astronomy is that the stars are made of atoms of the same kind as those on the
earth.* How was this done? Atoms liberate light which has definite frequencies,
something like the timbre of a musical instrument, which has definite pitches or
frequencies of sound. When we are listening to several different tones we can tell
them apart, but when we look with our eyes at a mixture of colors we cannot tell
the parts from which it was made, because the eye is nowhere near as discerning
as the ear in this connection. However, with a spectroscope we can analyze the fre-
quencies of the light waves and in this way we can see the very tunes of the atoms
that are in the different stars. As a matter of fact, two of the chemical elements
were discovered on a star before they were discovered on the earth. Helium was
discovered on the sun, whence its name, and technetium was discovered in certain
cool stars. This, of course, permits us to make headway in understanding the
stars, because they are made of the same kinds of atoms which are on the earth.
Now we know a great deal about the atoms, especially concerning their behavior
under conditions of high temperature but not very great density, so that we
can analyze by statistical mechanics the behavior of the stellar substance. Even
though we cannot reproduce the conditions on the earth, using the basic physical
laws we often can tell precisely, or very closely, what will happen. So it is that
physics aids astronomy. Strange as it may seem, we understand the distribution of
matter in the interior of the sun far better than we understand the interior of the
earth. What goes on inside a star is better understood than one might guess from
the difficulty of having to look at a little dot of light through a telescope, because
we can calculate what the atoms in the stars should do in most circumstances.

One of the most impressive discoveries was the origin of the energy of the
stars, that makes them continue to burn. One of the men who discovered this

* How I’m rushing through this! How much each sentence in this brief story contains. “The
stars are made of the same atoms as the earth.” I usually pick one small topic like this to give a
lecture on. Poets say science takes away from the beauty of the stars—mere globs of gas atoms.
Nothing is “mere.” I too can see the stars on a desert night, and feel them. But do I see less
or more? The vastness of the heavens stretches my imagination—stuck on this carousel my
little eye can catch one-million-year-old light. A vast pattern—of which I am a part—perhaps
my stuff was belched from some forgotten star, as one is belching there. Or see them with the
greater eye of Palomar, rushing all apart from some common starting point when they were
perhaps all together. What is the pattern, or the meaning, or the why? It does not do harm to
the mystery to know a little about it. For far more marvelous is the truth than any artists of
the past imagined! Why do the poets of the present not speak of it? What men are poets who
can speak of Jupiter if he were like a man, but if he is an immense spinning sphere of methane
and ammonia must be silent?
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was out with his girl friend the night after he realized that nuclear reactions
must be going on in the stars in order to make them shine. She said “Look at
how pretty the stars shine!” He said “Yes, and right now I am the only man in
the world who knows why they shine.” She merely laughed at him. She was not
impressed with being out with the only man who, at that moment, knew why
stars shine. Well, it is sad to be alone, but that is the way it is in this world.

It is the nuclear “burning” of hydrogen which supplies the energy of the sun;
the hydrogen is converted into helium. Furthermore, ultimately, the manufacture
of various chemical elements proceeds in the centers of the stars, from hydrogen.
The stuff of which we are made, was “cooked” once, in a star, and spit out. How
do we know? Because there is a clue. The proportion of the different isotopes—
how much C12, how much C13, etc., is something which is never changed by
chemical reactions, because the chemical reactions are so much the same for the
two. The proportions are purely the result of nuclear reactions. By looking
at the proportions of the isotopes in the cold, dead ember which we are, we
can discover what the furnace was like in which the stuff of which we are made
was formed. That furnace was like the stars, and so it is very likely that our
elements were “made” in the stars and spit out in the explosions which we call
novae and supernovae. Astronomy is so close to physics that we shall study many
astronomical things as we go along.

3-5 Geology

We turn now to what are called earth sciences, or geology. First, meteorology
and the weather. Of course the instruments of meteorology are physical instru-
ments, and the development of experimental physics made these instruments
possible, as was explained before. However, the theory of meteorology has never
been satisfactorily worked out by the physicist. “Well,” you say, “there is nothing
but air, and we know the equations of the motions of air.” Yes we do. “So if we
know the condition of air today, why can’t we figure out the condition of the air
tomorrow?” First, we do not really know what the condition is today, because
the air is swirling and twisting everywhere. It turns out to be very sensitive, and
even unstable. If you have ever seen water run smoothly over a dam, and then
turn into a large number of blobs and drops as it falls, you will understand what
I mean by unstable. You know the condition of the water before it goes over the
spillway; it is perfectly smooth; but the moment it begins to fall, where do the
drops begin? What determines how big the lumps are going to be and where
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they will be? That is not known, because the water is unstable. Even a smooth
moving mass of air, in going over a mountain turns into complex whirlpools and
eddies. In many fields we find this situation of turbulent flow that we cannot
analyze today. Quickly we leave the subject of weather, and discuss geology!

The question basic to geology is, what makes the earth the way it is? The
most obvious processes are in front of your very eyes, the erosion processes of
the rivers, the winds, etc. It is easy enough to understand these, but for every
bit of erosion there is an equal amount of something else going on. Mountains
are no lower today, on the average, than they were in the past. There must
be mountain-forming processes. You will find, if you study geology, that there
are mountain-forming processes and volcanism, which nobody understands but
which is half of geology. The phenomenon of volcanoes is really not understood.
What makes an earthquake is, ultimately, not understood. It is understood
that if something is pushing something else, it snaps and will slide—that is all
right. But what pushes, and why? The theory is that there are currents inside
the earth—circulating currents, due to the difference in temperature inside and
outside—which, in their motion, push the surface slightly. Thus if there are two
opposite circulations next to each other, the matter will collect in the region
where they meet and make belts of mountains which are in unhappy stressed
conditions, and so produce volcanoes and earthquakes.

What about the inside of the earth? A great deal is known about the speed of
earthquake waves through the earth and the density of distribution of the earth.
However, physicists have been unable to get a good theory as to how dense a
substance should be at the pressures that would be expected at the center of the
earth. In other words, we cannot figure out the properties of matter very well in
these circumstances. We do much less well with the earth than we do with the
conditions of matter in the stars. The mathematics involved seems a little too
difficult, so far, but perhaps it will not be too long before someone realizes that
it is an important problem, and really works it out. The other aspect, of course,
is that even if we did know the density, we cannot figure out the circulating
currents. Nor can we really work out the properties of rocks at high pressure.
We cannot tell how fast the rocks should “give”; that must all be worked out by
experiment.

3-6 Psychology
Next, we consider the science of psychology. Incidentally, psychoanalysis

is not a science: it is at best a medical process, and perhaps even more like
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witch-doctoring. It has a theory as to what causes disease—lots of different
“spirits,” etc. The witch doctor has a theory that a disease like malaria is caused
by a spirit which comes into the air; it is not cured by shaking a snake over it,
but quinine does help malaria. So, if you are sick, I would advise that you go to
the witch doctor because he is the man in the tribe who knows the most about
the disease; on the other hand, his knowledge is not science. Psychoanalysis has
not been checked carefully by experiment, and there is no way to find a list of
the number of cases in which it works, the number of cases in which it does not
work, etc.

The other branches of psychology, which involve things like the physiology
of sensation—what happens in the eye, and what happens in the brain—are, if
you wish, less interesting. But some small but real progress has been made in
studying them. One of the most interesting technical problems may or may not
be called psychology. The central problem of the mind, if you will, or the nervous
system, is this: when an animal learns something, it can do something different
than it could before, and its brain cell must have changed too, if it is made out
of atoms. In what way is it different? We do not know where to look, or what
to look for, when something is memorized. We do not know what it means, or
what change there is in the nervous system, when a fact is learned. This is a
very important problem which has not been solved at all. Assuming, however,
that there is some kind of memory thing, the brain is such an enormous mass
of interconnecting wires and nerves that it probably cannot be analyzed in a
straightforward manner. There is an analog of this to computing machines and
computing elements, in that they also have a lot of lines, and they have some
kind of element, analogous, perhaps, to the synapse, or connection of one nerve
to another. This is a very interesting subject which we have not the time to
discuss further—the relationship between thinking and computing machines. It
must be appreciated, of course, that this subject will tell us very little about the
real complexities of ordinary human behavior. All human beings are so different.
It will be a long time before we get there. We must start much further back. If
we could even figure out how a dog works, we would have gone pretty far. Dogs
are easier to understand, but nobody yet knows how dogs work.

3-7 How did it get that way?

In order for physics to be useful to other sciences in a theoretical way, other
than in the invention of instruments, the science in question must supply to the
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physicist a description of the object in a physicist’s language. They can say “why
does a frog jump?,” and the physicist cannot answer. If they tell him what a frog
is, that there are so many molecules, there is a nerve here, etc., that is different.
If they will tell us, more or less, what the earth or the stars are like, then we
can figure it out. In order for physical theory to be of any use, we must know
where the atoms are located. In order to understand the chemistry, we must
know exactly what atoms are present, for otherwise we cannot analyze it. That
is but one limitation, of course.

There is another kind of problem in the sister sciences which does not exist in
physics; we might call it, for lack of a better term, the historical question. How
did it get that way? If we understand all about biology, we will want to know how
all the things which are on the earth got there. There is the theory of evolution,
an important part of biology. In geology, we not only want to know how the
mountains are forming, but how the entire earth was formed in the beginning,
the origin of the solar system, etc. That, of course, leads us to want to know
what kind of matter there was in the world. How did the stars evolve? What
were the initial conditions? That is the problem of astronomical history. A great
deal has been found out about the formation of stars, the formation of elements
from which we were made, and even a little about the origin of the universe.

There is no historical question being studied in physics at the present time.
We do not have a question, “Here are the laws of physics, how did they get that
way?” We do not imagine, at the moment, that the laws of physics are somehow
changing with time, that they were different in the past than they are at present.
Of course they may be, and the moment we find they are, the historical question
of physics will be wrapped up with the rest of the history of the universe, and then
the physicist will be talking about the same problems as astronomers, geologists,
and biologists.

Finally, there is a physical problem that is common to many fields, that is very
old, and that has not been solved. It is not the problem of finding new fundamental
particles, but something left over from a long time ago—over a hundred years.
Nobody in physics has really been able to analyze it mathematically satisfactorily
in spite of its importance to the sister sciences. It is the analysis of circulating or
turbulent fluids. If we watch the evolution of a star, there comes a point where we
can deduce that it is going to start convection, and thereafter we can no longer
deduce what should happen. A few million years later the star explodes, but we
cannot figure out the reason. We cannot analyze the weather. We do not know
the patterns of motions that there should be inside the earth. The simplest form
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of the problem is to take a pipe that is very long and push water through it at
high speed. We ask: to push a given amount of water through that pipe, how
much pressure is needed? No one can analyze it from first principles and the
properties of water. If the water flows very slowly, or if we use a thick goo like
honey, then we can do it nicely. You will find that in your textbook. What we
really cannot do is deal with actual, wet water running through a pipe. That is
the central problem which we ought to solve some day, and we have not.

A poet once said, “The whole universe is in a glass of wine.” We will probably
never know in what sense he meant that, for poets do not write to be understood.
But it is true that if we look at a glass of wine closely enough we see the
entire universe. There are the things of physics: the twisting liquid which
evaporates depending on the wind and weather, the reflections in the glass, and
our imagination adds the atoms. The glass is a distillation of the earth’s rocks,
and in its composition we see the secrets of the universe’s age, and the evolution
of stars. What strange array of chemicals are in the wine? How did they come
to be? There are the ferments, the enzymes, the substrates, and the products.
There in wine is found the great generalization: all life is fermentation. Nobody
can discover the chemistry of wine without discovering, as did Louis Pasteur, the
cause of much disease. How vivid is the claret, pressing its existence into the
consciousness that watches it! If our small minds, for some convenience, divide
this glass of wine, this universe, into parts—physics, biology, geology, astronomy,
psychology, and so on—remember that nature does not know it! So let us put
it all back together, not forgetting ultimately what it is for. Let it give us one
more final pleasure: drink it and forget it all!
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4

Conservation of Energy

4-1 What is energy?

In this chapter, we begin our more detailed study of the different aspects of
physics, having finished our description of things in general. To illustrate the
ideas and the kind of reasoning that might be used in theoretical physics, we shall
now examine one of the most basic laws of physics, the conservation of energy.

There is a fact, or if you wish, a law, governing all natural phenomena that
are known to date. There is no known exception to this law—it is exact so far as
we know. The law is called the conservation of energy. It states that there is
a certain quantity, which we call energy, that does not change in the manifold
changes which nature undergoes. That is a most abstract idea, because it is a
mathematical principle; it says that there is a numerical quantity which does
not change when something happens. It is not a description of a mechanism, or
anything concrete; it is just a strange fact that we can calculate some number and
when we finish watching nature go through her tricks and calculate the number
again, it is the same. (Something like the bishop on a red square, and after a
number of moves—details unknown—it is still on some red square. It is a law of
this nature.) Since it is an abstract idea, we shall illustrate the meaning of it by
an analogy.

Imagine a child, perhaps “Dennis the Menace,” who has blocks which are
absolutely indestructible, and cannot be divided into pieces. Each is the same
as the other. Let us suppose that he has 28 blocks. His mother puts him with
his 28 blocks into a room at the beginning of the day. At the end of the day,
being curious, she counts the blocks very carefully, and discovers a phenomenal
law—no matter what he does with the blocks, there are always 28 remaining!
This continues for a number of days, until one day there are only 27 blocks,
but a little investigating shows that there is one under the rug—she must look
everywhere to be sure that the number of blocks has not changed. One day,
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however, the number appears to change—there are only 26 blocks. Careful
investigation indicates that the window was open, and upon looking outside, the
other two blocks are found. Another day, careful count indicates that there are
30 blocks! This causes considerable consternation, until it is realized that Bruce
came to visit, bringing his blocks with him, and he left a few at Dennis’ house.
After she has disposed of the extra blocks, she closes the window, does not let
Bruce in, and then everything is going along all right, until one time she counts
and finds only 25 blocks. However, there is a box in the room, a toy box, and
the mother goes to open the toy box, but the boy says “No, do not open my toy
box,” and screams. Mother is not allowed to open the toy box. Being extremely
curious, and somewhat ingenious, she invents a scheme! She knows that a block
weighs three ounces, so she weighs the box at a time when she sees 28 blocks,
and it weighs 16 ounces. The next time she wishes to check, she weighs the box
again, subtracts sixteen ounces and divides by three. She discovers the following:(

number of
blocks seen

)
+ (weight of box)− 16 ounces

3 ounces = constant. (4.1)

There then appear to be some new deviations, but careful study indicates that
the dirty water in the bathtub is changing its level. The child is throwing blocks
into the water, and she cannot see them because it is so dirty, but she can find
out how many blocks are in the water by adding another term to her formula.
Since the original height of the water was 6 inches and each block raises the water
a quarter of an inch, this new formula would be:(

number of
blocks seen

)
+ (weight of box)− 16 ounces

3 ounces

+ (height of water)− 6 inches
1/4 inch = constant. (4.2)

In the gradual increase in the complexity of her world, she finds a whole series
of terms representing ways of calculating how many blocks are in places where
she is not allowed to look. As a result, she finds a complex formula, a quantity
which has to be computed, which always stays the same in her situation.

What is the analogy of this to the conservation of energy? The most remark-
able aspect that must be abstracted from this picture is that there are no blocks.
Take away the first terms in (4.1) and (4.2) and we find ourselves calculating
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more or less abstract things. The analogy has the following points. First, when
we are calculating the energy, sometimes some of it leaves the system and goes
away, or sometimes some comes in. In order to verify the conservation of energy,
we must be careful that we have not put any in or taken any out. Second, the
energy has a large number of different forms, and there is a formula for each
one. These are: gravitational energy, kinetic energy, heat energy, elastic energy,
electrical energy, chemical energy, radiant energy, nuclear energy, mass energy.
If we total up the formulas for each of these contributions, it will not change
except for energy going in and out.

It is important to realize that in physics today, we have no knowledge of what
energy is. We do not have a picture that energy comes in little blobs of a definite
amount. It is not that way. However, there are formulas for calculating some
numerical quantity, and when we add it all together it gives “28”—always the
same number. It is an abstract thing in that it does not tell us the mechanism
or the reasons for the various formulas.

4-2 Gravitational potential energy

Conservation of energy can be understood only if we have the formula for
all of its forms. I wish to discuss the formula for gravitational energy near the
surface of the Earth, and I wish to derive this formula in a way which has nothing
to do with history but is simply a line of reasoning invented for this particular
lecture to give you an illustration of the remarkable fact that a great deal about
nature can be extracted from a few facts and close reasoning. It is an illustration
of the kind of work theoretical physicists become involved in. It is patterned after
a most excellent argument by Mr. Carnot on the efficiency of steam engines.*

Consider weight-lifting machines—machines which have the property that
they lift one weight by lowering another. Let us also make a hypothesis: that
there is no such thing as perpetual motion with these weight-lifting machines. (In
fact, that there is no perpetual motion at all is a general statement of the law of
conservation of energy.) We must be careful to define perpetual motion. First,
let us do it for weight-lifting machines. If, when we have lifted and lowered a lot
of weights and restored the machine to the original condition, we find that the
net result is to have lifted a weight, then we have a perpetual motion machine
because we can use that lifted weight to run something else. That is, provided the

* Our point here is not so much the result, (4.3), which in fact you may already know, as
the possibility of arriving at it by theoretical reasoning.

4-3



Fig. 4-1. Simple weight-lifting machine.

machine which lifted the weight is brought back to its exact original condition,
and furthermore that it is completely self-contained—that it has not received
the energy to lift that weight from some external source—like Bruce’s blocks.

A very simple weight-lifting machine is shown in Fig. 4-1. This machine lifts
weights three units “strong.” We place three units on one balance pan, and one
unit on the other. However, in order to get it actually to work, we must lift a
little weight off the left pan. On the other hand, we could lift a one-unit weight
by lowering the three-unit weight, if we cheat a little by lifting a little weight
off the other pan. Of course, we realize that with any actual lifting machine, we
must add a little extra to get it to run. This we disregard, temporarily. Ideal
machines, although they do not exist, do not require anything extra. A machine
that we actually use can be, in a sense, almost reversible: that is, if it will lift
the weight of three by lowering a weight of one, then it will also lift nearly the
weight of one the same amount by lowering the weight of three.

We imagine that there are two classes of machines, those that are not reversible,
which includes all real machines, and those that are reversible, which of course
are actually not attainable no matter how careful we may be in our design
of bearings, levers, etc. We suppose, however, that there is such a thing—a
reversible machine—which lowers one unit of weight (a pound or any other unit)
by one unit of distance, and at the same time lifts a three-unit weight. Call this
reversible machine, Machine A. Suppose this particular reversible machine lifts
the three-unit weight a distance X. Then suppose we have another machine,
Machine B, which is not necessarily reversible, which also lowers a unit weight a
unit distance, but which lifts three units a distance Y . We can now prove that
Y is not higher than X; that is, it is impossible to build a machine that will lift
a weight any higher than it will be lifted by a reversible machine. Let us see
why. Let us suppose that Y were higher than X. We take a one-unit weight and
lower it one unit height with Machine B, and that lifts the three-unit weight up
a distance Y . Then we could lower the weight from Y to X, obtaining free power,
and use the reversible Machine A, running backwards, to lower the three-unit
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weight a distance X and lift the one-unit weight by one unit height. This will
put the one-unit weight back where it was before, and leave both machines ready
to be used again! We would therefore have perpetual motion if Y were higher
than X, which we assumed was impossible. With those assumptions, we thus
deduce that Y is not higher than X, so that of all machines that can be designed,
the reversible machine is the best.

We can also see that all reversible machines must lift to exactly the same
height. Suppose that B were really reversible also. The argument that Y is not
higher than X is, of course, just as good as it was before, but we can also make
our argument the other way around, using the machines in the opposite order, and
prove that X is not higher than Y . This, then, is a very remarkable observation
because it permits us to analyze the height to which different machines are
going to lift something without looking at the interior mechanism. We know at
once that if somebody makes an enormously elaborate series of levers that lift
three units a certain distance by lowering one unit by one unit distance, and we
compare it with a simple lever which does the same thing and is fundamentally
reversible, his machine will lift it no higher, but perhaps less high. If his machine
is reversible, we also know exactly how high it will lift. To summarize: every
reversible machine, no matter how it operates, which drops one pound one foot
and lifts a three-pound weight always lifts it the same distance, X. This is clearly
a universal law of great utility. The next question is, of course, what is X?

Suppose we have a reversible machine which is going to lift this distance X,
three for one. We set up three balls in a rack which does not move, as shown
in Fig. 4-2. One ball is held on a stage at a distance one foot above the ground.
The machine can lift three balls, lowering one by a distance 1. Now, we have
arranged that the platform which holds three balls has a floor and two shelves,
exactly spaced at distance X, and further, that the rack which holds the balls
is spaced at distance X, (a). First we roll the balls horizontally from the rack
to the shelves, (b), and we suppose that this takes no energy because we do not
change the height. The reversible machine then operates: it lowers the single
ball to the floor, and it lifts the rack a distance X, (c). Now we have ingeniously
arranged the rack so that these balls are again even with the platforms. Thus we
unload the balls onto the rack, (d); having unloaded the balls, we can restore the
machine to its original condition. Now we have three balls on the upper three
shelves and one at the bottom. But the strange thing is that, in a certain way
of speaking, we have not lifted two of them at all because, after all, there were
balls on shelves 2 and 3 before. The resulting effect has been to lift one ball a
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(a) START (b) LOAD BALLS

(c) 1 lb. LIFTS 3 lb. A
DISTANCE X

(d) UNLOAD BALLS

(e) REARRANGE (f) END

X

X

3X

1 ft.

3X

1 ft.

Fig. 4-2. A reversible machine.

distance 3X. Now, if 3X exceeds one foot, then we can lower the ball to return
the machine to the initial condition, (f), and we can run the apparatus again.
Therefore 3X cannot exceed one foot, for if 3X exceeds one foot we can make
perpetual motion. Likewise, we can prove that one foot cannot exceed 3X, by
making the whole machine run the opposite way, since it is a reversible machine.
Therefore 3X is neither greater nor less than a foot, and we discover then, by
argument alone, the law that X = 1

3 foot. The generalization is clear: one pound
falls a certain distance in operating a reversible machine; then the machine can
lift p pounds this distance divided by p. Another way of putting the result is
that three pounds times the height lifted, which in our problem was X, is equal
to one pound times the distance lowered, which is one foot in this case. If we
take all the weights and multiply them by the heights at which they are now,
above the floor, let the machine operate, and then multiply all the weights by all
the heights again, there will be no change. (We have to generalize the example
where we moved only one weight to the case where when we lower one we lift
several different ones—but that is easy.)
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We call the sum of the weights times the heights gravitational potential energy—
the energy which an object has because of its relationship in space, relative to
the earth. The formula for gravitational energy, then, so long as we are not too
far from the earth (the force weakens as we go higher) isgravitational

potential energy
for one object

 = (weight)× (height). (4.3)

It is a very beautiful line of reasoning. The only problem is that perhaps it is
not true. (After all, nature does not have to go along with our reasoning.) For
example, perhaps perpetual motion is, in fact, possible. Some of the assumptions
may be wrong, or we may have made a mistake in reasoning, so it is always
necessary to check. It turns out experimentally, in fact, to be true.

The general name of energy which has to do with location relative to something
else is called potential energy. In this particular case, of course, we call it
gravitational potential energy. If it is a question of electrical forces against which
we are working, instead of gravitational forces, if we are “lifting” charges away
from other charges with a lot of levers, then the energy content is called electrical
potential energy. The general principle is that the change in the energy is the
force times the distance that the force is pushed, and that this is a change in
energy in general:(

change in
energy

)
= (force)×

(
distance force
acts through

)
. (4.4)

We will return to many of these other kinds of energy as we continue the course.
The principle of the conservation of energy is very useful for deducing what

will happen in a number of circumstances. In high school we learned a lot of
laws about pulleys and levers used in different ways. We can now see that these
“laws” are all the same thing, and that we did not have to memorize 75 rules to
figure it out. A simple example is a smooth inclined plane which is, happily, a
three-four-five triangle (Fig. 4-3). We hang a one-pound weight on the inclined
plane with a pulley, and on the other side of the pulley, a weight W . We want
to know how heavy W must be to balance the one pound on the plane. How
can we figure that out? If we say it is just balanced, it is reversible and so can
move up and down, and we can consider the following situation. In the initial
circumstance, (a), the one pound weight is at the bottom and weight W is at
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(a) (b)

Fig. 4-3. Inclined plane.

the top. When W has slipped down in a reversible way, we have a one-pound
weight at the top and the weight W the slant distance, (b), or five feet, from the
plane in which it was before. We lifted the one-pound weight only three feet and
we lowered W pounds by five feet. Therefore W = 3

5 of a pound. Note that we
deduced this from the conservation of energy, and not from force components.
Cleverness, however, is relative. It can be deduced in a way which is even more
brilliant, discovered by Stevinus and inscribed on his tombstone. Figure 4-4
explains that it has to be 3

5 of a pound, because the chain does not go around.
It is evident that the lower part of the chain is balanced by itself, so that the
pull of the five weights on one side must balance the pull of three weights on the
other, or whatever the ratio of the legs. You see, by looking at this diagram, that
W must be 3

5 of a pound. (If you get an epitaph like that on your gravestone,
you are doing fine.)

Let us now illustrate the energy principle with a more complicated problem,
the screw jack shown in Fig. 4-5. A handle 20 inches long is used to turn the

Fig. 4-4. The epitaph of Stevinus.
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1 TON

10 THREADS/
INCH

20′′

Fig. 4-5. A screw jack.

screw, which has 10 threads to the inch. We would like to know how much force
would be needed at the handle to lift one ton (2000 pounds). If we want to lift
the ton one inch, say, then we must turn the handle around ten times. When it
goes around once it goes approximately 126 inches. The handle must thus travel
1260 inches, and if we used various pulleys, etc., we would be lifting our one ton
with an unknown smaller weight W applied to the end of the handle. So we find
out that W is about 1.6 pounds. This is a result of the conservation of energy.

60 100

W

2′
4′

8′

Fig. 4-6. Weighted rod supported on one end.

Take now the somewhat more complicated example shown in Fig. 4-6. A rod
or bar, 8 feet long, is supported at one end. In the middle of the bar is a weight
of 60 pounds, and at a distance of two feet from the support there is a weight of
100 pounds. How hard do we have to lift the end of the bar in order to keep it
balanced, disregarding the weight of the bar? Suppose we put a pulley at one end
and hang a weight on the pulley. How big would the weightW have to be in order
for it to balance? We imagine that the weight falls any arbitrary distance—to
make it easy for ourselves suppose it goes down 4 inches—how high would the
two load weights rise? The center rises 2 inches, and the point a quarter of the
way from the fixed end lifts 1 inch. Therefore, the principle that the sum of
the heights times the weights does not change tells us that the weight W times
4 inches down, plus 60 pounds times 2 inches up, plus 100 pounds times 1 inch
has to add up to nothing:

− 4W + (2)(60) + (1)(100) = 0, W = 55 lb. (4.5)
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Thus we must have a 55-pound weight to balance the bar. In this way we can
work out the laws of “balance”—the statics of complicated bridge arrangements,
and so on. This approach is called the principle of virtual work, because in order
to apply this argument we had to imagine that the structure moves a little—even
though it is not really moving or even movable. We use the very small imagined
motion to apply the principle of conservation of energy.

4-3 Kinetic energy

To illustrate another type of energy we consider a pendulum (Fig. 4-7). If we
pull the mass aside and release it, it swings back and forth. In its motion, it loses
height in going from either end to the center. Where does the potential energy
go? Gravitational energy disappears when it is down at the bottom; nevertheless,
it will climb up again. The gravitational energy must have gone into another
form. Evidently it is by virtue of its motion that it is able to climb up again,
so we have the conversion of gravitational energy into some other form when it
reaches the bottom.

Fig. 4-7. Pendulum.

We must get a formula for the energy of motion. Now, recalling our arguments
about reversible machines, we can easily see that in the motion at the bottom
must be a quantity of energy which permits it to rise a certain height, and which
has nothing to do with the machinery by which it comes up or the path by which
it comes up. So we have an equivalence formula something like the one we wrote
for the child’s blocks. We have another form to represent the energy. It is easy
to say what it is. The kinetic energy at the bottom equals the weight times the
height that it could go, corresponding to its velocity: K.E. = WH. What we
need is the formula which tells us the height by some rule that has to do with the
motion of objects. If we start something out with a certain velocity, say straight
up, it will reach a certain height; we do not know what it is yet, but it depends
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on the velocity—there is a formula for that. Then to find the formula for kinetic
energy for an object moving with velocity V , we must calculate the height that
it could reach, and multiply by the weight. We shall soon find that we can write
it this way:

K.E. = WV 2/2g. (4.6)

Of course, the fact that motion has energy has nothing to do with the fact that
we are in a gravitational field. It makes no difference where the motion came
from. This is a general formula for various velocities. Both (4.3) and (4.6) are
approximate formulas, the first because it is incorrect when the heights are great,
i.e., when the heights are so high that gravity is weakening; the second, because
of the relativistic correction at high speeds. However, when we do finally get the
exact formula for the energy, then the law of conservation of energy is correct.

4-4 Other forms of energy

We can continue in this way to illustrate the existence of energy in other forms.
First, consider elastic energy. If we pull down on a spring, we must do some work,
for when we have it down, we can lift weights with it. Therefore in its stretched
condition it has a possibility of doing some work. If we were to evaluate the sums
of weights times heights, it would not check out—we must add something else
to account for the fact that the spring is under tension. Elastic energy is the
formula for a spring when it is stretched. How much energy is it? If we let go, the
elastic energy, as the spring passes through the equilibrium point, is converted
to kinetic energy and it goes back and forth between compressing or stretching
the spring and kinetic energy of motion. (There is also some gravitational energy
going in and out, but we can do this experiment “sideways” if we like.) It keeps
going until the losses—Aha! We have cheated all the way through by putting
on little weights to move things or saying that the machines are reversible, or
that they go on forever, but we can see that things do stop, eventually. Where is
the energy when the spring has finished moving up and down? This brings in
another form of energy: heat energy.

Inside a spring or a lever there are crystals which are made up of lots of atoms,
and with great care and delicacy in the arrangement of the parts one can try to
adjust things so that as something rolls on something else, none of the atoms do
any jiggling at all. But one must be very careful. Ordinarily when things roll,
there is bumping and jiggling because of the irregularities of the material, and
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the atoms start to wiggle inside. So we lose track of that energy; we find the
atoms are wiggling inside in a random and confused manner after the motion
slows down. There is still kinetic energy, all right, but it is not associated with
visible motion. What a dream! How do we know there is still kinetic energy? It
turns out that with thermometers you can find out that, in fact, the spring or
the lever is warmer, and that there is really an increase of kinetic energy by a
definite amount. We call this form of energy heat energy, but we know that it
is not really a new form, it is just kinetic energy—internal motion. (One of the
difficulties with all these experiments with matter that we do on a large scale
is that we cannot really demonstrate the conservation of energy and we cannot
really make our reversible machines, because every time we move a large clump of
stuff, the atoms do not remain absolutely undisturbed, and so a certain amount
of random motion goes into the atomic system. We cannot see it, but we can
measure it with thermometers, etc.)

There are many other forms of energy, and of course we cannot describe
them in any more detail just now. There is electrical energy, which has to
do with pushing and pulling by electric charges. There is radiant energy, the
energy of light, which we know is a form of electrical energy because light can be
represented as wigglings in the electromagnetic field. There is chemical energy,
the energy which is released in chemical reactions. Actually, elastic energy is,
to a certain extent, like chemical energy, because chemical energy is the energy
of the attraction of the atoms, one for the other, and so is elastic energy. Our
modern understanding is the following: chemical energy has two parts, kinetic
energy of the electrons inside the atoms, so part of it is kinetic, and electrical
energy of interaction of the electrons and the protons—the rest of it, therefore,
is electrical. Next we come to nuclear energy, the energy which is involved with
the arrangement of particles inside the nucleus, and we have formulas for that,
but we do not have the fundamental laws. We know that it is not electrical, not
gravitational, and not purely chemical, but we do not know what it is. It seems
to be an additional form of energy. Finally, associated with the relativity theory,
there is a modification of the laws of kinetic energy, or whatever you wish to call
it, so that kinetic energy is combined with another thing called mass energy. An
object has energy from its sheer existence. If I have a positron and an electron,
standing still doing nothing—never mind gravity, never mind anything—and
they come together and disappear, radiant energy will be liberated, in a definite
amount, and the amount can be calculated. All we need know is the mass of the
object. It does not depend on what it is—we make two things disappear, and

4-12



we get a certain amount of energy. The formula was first found by Einstein; it
is E = mc2.

It is obvious from our discussion that the law of conservation of energy is
enormously useful in making analyses, as we have illustrated in a few examples
without knowing all the formulas. If we had all the formulas for all kinds of
energy, we could analyze how many processes should work without having to go
into the details. Therefore conservation laws are very interesting. The question
naturally arises as to what other conservation laws there are in physics. There
are two other conservation laws which are analogous to the conservation of energy.
One is called the conservation of linear momentum. The other is called the
conservation of angular momentum. We will find out more about these later.
In the last analysis, we do not understand the conservation laws deeply. We do
not understand the conservation of energy. We do not understand energy as a
certain number of little blobs. You may have heard that photons come out in
blobs and that the energy of a photon is Planck’s constant times the frequency.
That is true, but since the frequency of light can be anything, there is no law
that says that energy has to be a certain definite amount. Unlike Dennis’ blocks,
there can be any amount of energy, at least as presently understood. So we do
not understand this energy as counting something at the moment, but just as a
mathematical quantity, which is an abstract and rather peculiar circumstance.
In quantum mechanics it turns out that the conservation of energy is very closely
related to another important property of the world, things do not depend on
the absolute time. We can set up an experiment at a given moment and try it
out, and then do the same experiment at a later moment, and it will behave in
exactly the same way. Whether this is strictly true or not, we do not know. If
we assume that it is true, and add the principles of quantum mechanics, then we
can deduce the principle of the conservation of energy. It is a rather subtle and
interesting thing, and it is not easy to explain. The other conservation laws are
also linked together. The conservation of momentum is associated in quantum
mechanics with the proposition that it makes no difference where you do the
experiment, the results will always be the same. As independence in space has
to do with the conservation of momentum, independence of time has to do with
the conservation of energy, and finally, if we turn our apparatus, this too makes
no difference, and so the invariance of the world to angular orientation is related
to the conservation of angular momentum. Besides these, there are three other
conservation laws, that are exact so far as we can tell today, which are much
simpler to understand because they are in the nature of counting blocks.
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The first of the three is the conservation of charge, and that merely means
that you count how many positive, minus how many negative electrical charges
you have, and the number is never changed. You may get rid of a positive with a
negative, but you do not create any net excess of positives over negatives. Two
other laws are analogous to this one—one is called the conservation of baryons.
There are a number of strange particles, a neutron and a proton are examples,
which are called baryons. In any reaction whatever in nature, if we count how
many baryons are coming into a process, the number of baryons* which come
out will be exactly the same. There is another law, the conservation of leptons.
We can say that the group of particles called leptons are: electron, mu meson,
and neutrino. There is an antielectron which is a positron, that is, a −1 lepton.
Counting the total number of leptons in a reaction reveals that the number in
and out never changes, at least so far as we know at present.

These are the six conservation laws, three of them subtle, involving space and
time, and three of them simple, in the sense of counting something.

With regard to the conservation of energy, we should note that available
energy is another matter—there is a lot of jiggling around in the atoms of the
water of the sea, because the sea has a certain temperature, but it is impossible
to get them herded into a definite motion without taking energy from somewhere
else. That is, although we know for a fact that energy is conserved, the energy
available for human utility is not conserved so easily. The laws which govern how
much energy is available are called the laws of thermodynamics and involve a
concept called entropy for irreversible thermodynamic processes.

Finally, we remark on the question of where we can get our supplies of energy
today. Our supplies of energy are from the sun, rain, coal, uranium, and hydrogen.
The sun makes the rain, and the coal also, so that all these are from the sun.
Although energy is conserved, nature does not seem to be interested in it; she
liberates a lot of energy from the sun, but only one part in two billion falls on the
earth. Nature has conservation of energy, but does not really care; she spends a
lot of it in all directions. We have already obtained energy from uranium; we can
also get energy from hydrogen, but at present only in an explosive and dangerous
condition. If it can be controlled in thermonuclear reactions, it turns out that
the energy that can be obtained from 10 quarts of water per second is equal to
all of the electrical power generated in the United States. With 150 gallons of
running water a minute, you have enough fuel to supply all the energy which is

* Counting antibaryons as −1 baryon.
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used in the United States today! Therefore it is up to the physicist to figure out
how to liberate us from the need for having energy. It can be done.
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5

Time and Distance

5-1 Motion

In this chapter we shall consider some aspects of the concepts of time and
distance. It has been emphasized earlier that physics, as do all the sciences,
depends on observation. One might also say that the development of the physical
sciences to their present form has depended to a large extent on the emphasis
which has been placed on the making of quantitative observations. Only with
quantitative observations can one arrive at quantitative relationships, which are
the heart of physics.

Many people would like to place the beginnings of physics with the work done
350 years ago by Galileo, and to call him the first physicist. Until that time, the
study of motion had been a philosophical one based on arguments that could be
thought up in one’s head. Most of the arguments had been presented by Aristotle
and other Greek philosophers, and were taken as “proven.” Galileo was skeptical,
and did an experiment on motion which was essentially this: He allowed a ball
to roll down an inclined trough and observed the motion. He did not, however,
just look; he measured how far the ball went in how long a time.

The way to measure a distance was well known long before Galileo, but there
were no accurate ways of measuring time, particularly short times. Although
he later devised more satisfactory clocks (though not like the ones we know),
Galileo’s first experiments on motion were done by using his pulse to count off
equal intervals of time. Let us do the same.

We may count off beats of a pulse as the ball rolls down the track: “one . . .
two . . . three . . . four . . . five . . . six . . . seven . . . eight . . . ” We ask a friend to
make a small mark at the location of the ball at each count; we can then measure
the distance the ball travelled from the point of release in one, or two, or three,
etc., equal intervals of time. Galileo expressed the result of his observations in
this way: if the location of the ball is marked at 1, 2, 3, 4, . . . units of time
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Fig. 5-1. A ball rolls down an inclined track.

from the instant of its release, those marks are distant from the starting point in
proportion to the numbers 1, 4, 9, 16, . . . Today we would say the distance is
proportional to the square of the time:

D ∝ t2.

The study of motion, which is basic to all of physics, treats with the questions:
where? and when?

5-2 Time

Let us consider first what we mean by time. What is time? It would be nice
if we could find a good definition of time. Webster defines “a time” as “a period,”
and the latter as “a time,” which doesn’t seem to be very useful. Perhaps we
should say: “Time is what happens when nothing else happens.” Which also
doesn’t get us very far. Maybe it is just as well if we face the fact that time is
one of the things we probably cannot define (in the dictionary sense), and just
say that it is what we already know it to be: it is how long we wait!

What really matters anyway is not how we define time, but how we measure
it. One way of measuring time is to utilize something which happens over and
over again in a regular fashion—something which is periodic. For example, a day.
A day seems to happen over and over again. But when you begin to think about
it, you might well ask: “Are days periodic; are they regular? Are all days the
same length?” One certainly has the impression that days in summer are longer
than days in winter. Of course, some of the days in winter seem to get awfully
long if one is very bored. You have certainly heard someone say, “My, but this
has been a long day!”

It does seem, however, that days are about the same length on the average.
Is there any way we can test whether the days are the same length—either from
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one day to the next, or at least on the average? One way is to make a comparison
with some other periodic phenomenon. Let us see how such a comparison might
be made with an hour glass. With an hour glass, we can “create” a periodic
occurrence if we have someone standing by it day and night to turn it over
whenever the last grain of sand runs out.

We could then count the turnings of the glass from each morning to the next.
We would find, this time, that the number of “hours” (i.e., turnings of the glass)
was not the same each “day.” We should distrust the sun, or the glass, or both.
After some thought, it might occur to us to count the “hours” from noon to noon.
(Noon is here defined not as 12:00 o’clock, but that instant when the sun is at its
highest point.) We would find, this time, that the number of “hours” each day is
the same.

We now have some confidence that both the “hour” and the “day” have a
regular periodicity, i.e., mark off successive equal intervals of time, although we
have not proved that either one is “really” periodic. Someone might question
whether there might not be some omnipotent being who would slow down the
flow of sand every night and speed it up during the day. Our experiment does
not, of course, give us an answer to this sort of question. All we can say is that
we find that a regularity of one kind fits together with a regularity of another
kind. We can just say that we base our definition of time on the repetition of
some apparently periodic event.

5-3 Short times

We should now notice that in the process of checking on the reproducibility
of the day, we have received an important by-product. We have found a way of
measuring, more accurately, fractions of a day. We have found a way of counting
time in smaller pieces. Can we carry the process further, and learn to measure
even smaller intervals of time?

Galileo decided that a given pendulum always swings back and forth in equal
intervals of time so long as the size of the swing is kept small. A test comparing
the number of swings of a pendulum in one “hour” shows that such is indeed
the case. We can in this way mark fractions of an hour. If we use a mechanical
device to count the swings—and to keep them going—we have the pendulum
clock of our grandfathers.

Let us agree that if our pendulum oscillates 3600 times in one hour (and if
there are 24 such hours in a day), we shall call each period of the pendulum
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one “second.” We have then divided our original unit of time into approximately
105 parts. We can apply the same principles to divide the second into smaller
and smaller intervals. It is, you will realize, not practical to make mechanical
pendulums which go arbitrarily fast, but we can now make electrical pendulums,
called oscillators, which can provide a periodic occurrence with a very short
period of swing. In these electronic oscillators it is an electrical current which
swings to and fro, in a manner analogous to the swinging of the bob of the
pendulum.

We can make a series of such electronic oscillators, each with a period 10 times
shorter than the previous one. We may “calibrate” each oscillator against the next
slower one by counting the number of swings it makes for one swing of the slower
oscillator. When the period of oscillation of our clock is shorter than a fraction
of a second, we cannot count the oscillations without the help of some device
which extends our powers of observation. One such device is the electron-beam
oscilloscope, which acts as a sort of microscope for short times. This device plots
on a fluorescent screen a graph of electrical current (or voltage) versus time. By
connecting the oscilloscope to two of our oscillators in sequence, so that it plots a
graph first of the current in one of our oscillators and then of the current in the
other, we get two graphs like those shown in Fig. 5-2. We can readily determine
the number of periods of the faster oscillator in one period of the slower oscillator.

With modern electronic techniques, oscillators have been built with periods
as short as about 10−12 second, and they have been calibrated (by comparison
methods such as we have described) in terms of our standard unit of time, the
second. With the invention and perfection of the “laser,” or light amplifier, in the
past few years, it has become possible to make oscillators with even shorter periods
than 10−12 second, but it has not yet been possible to calibrate them by the
methods which have been described, although it will no doubt soon be possible.

Times shorter than 10−12 second have been measured, but by a different
technique. In effect, a different definition of “time” has been used. One way has
been to observe the distance between two happenings on a moving object. If, for
example, the headlights of a moving automobile are turned on and then off, we
can figure out how long the lights were on if we know where they were turned on
and off and how fast the car was moving. The time is the distance over which
the lights were on divided by the speed.

Within the past few years, just such a technique was used to measure the
lifetime of the π0-meson. By observing in a microscope the minute tracks left in
a photographic emulsion in which π0-mesons had been created one saw that a
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Fig. 5-2. Two views of an oscilloscope screen. In (a) the oscilloscope
is connected to one oscillator, in (b) it is connected to an oscillator with
a period one-tenth as long.

π0-meson (known to be travelling at a certain speed nearly that of light) went
a distance of about 10−7 meter, on the average, before disintegrating. It lived
for only about 10−16 sec. It should be emphasized that we have here used a
somewhat different definition of “time” than before. So long as there are no
inconsistencies in our understanding, however, we feel fairly confident that our
definitions are sufficiently equivalent.
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By extending our techniques—and if necessary our definitions—still further
we can infer the time duration of still faster physical events. We can speak of
the period of a nuclear vibration. We can speak of the lifetime of the newly
discovered strange resonances (particles) mentioned in Chapter 2. Their complete
life occupies a time span of only 10−24 second, approximately the time it would
take light (which moves at the fastest known speed) to cross the nucleus of
hydrogen (the smallest known object).

What about still smaller times? Does “time” exist on a still smaller scale?
Does it make any sense to speak of smaller times if we cannot measure—or
perhaps even think sensibly about—something which happens in a shorter time?
Perhaps not. These are some of the open questions which you will be asking and
perhaps answering in the next twenty or thirty years.

5-4 Long times

Let us now consider times longer than one day. Measurement of longer times
is easy; we just count the days—so long as there is someone around to do the
counting. First we find that there is another natural periodicity: the year, about
365 days. We have also discovered that nature has sometimes provided a counter
for the years, in the form of tree rings or river-bottom sediments. In some cases
we can use these natural time markers to determine the time which has passed
since some early event.

When we cannot count the years for the measurement of long times, we
must look for other ways to measure. One of the most successful is the use of
radioactive material as a “clock.” In this case we do not have a periodic occurrence,
as for the day or the pendulum, but a new kind of “regularity.” We find that the
radioactivity of a particular sample of material decreases by the same fraction
for successive equal increases in its age. If we plot a graph of the radioactivity
observed as a function of time (say in days), we obtain a curve like that shown
in Fig. 5-3. We observe that if the radioactivity decreases to one-half in T days
(called the “half-life”), then it decreases to one-quarter in another T days, and so
on. In an arbitrary time interval t there are t/T “half-lives,” and the fraction
left after this time t is ( 1

2 )t/T .
If we knew that a piece of material, say a piece of wood, had contained an

amount A of radioactive material when it was formed, and we found out by a
direct measurement that it now contains the amount B, we could compute the
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Fig. 5-3. The decrease with time of radioactivity. The activity de-
creases by one-half in each “half-life,” T .

age of the object, t, by solving the equation

( 1
2 )t/T = B/A.

There are, fortunately, cases in which we can know the amount of radioactivity
that was in an object when it was formed. We know, for example, that the carbon
dioxide in the air contains a certain small fraction of the radioactive carbon
isotope C14 (replenished continuously by the action of cosmic rays). If we measure
the total carbon content of an object, we know that a certain fraction of that
amount was originally the radioactive C14; we know, therefore, the starting
amount A to use in the formula above. Carbon-14 has a half-life of 5000 years.
By careful measurements we can measure the amount left after 20 half-lives or
so and can therefore “date” organic objects which grew as long as 100,000 years
ago.

We would like to know, and we think we do know, the life of still older things.
Much of our knowledge is based on the measurements of other radioactive isotopes
which have different half-lives. If we make measurements with an isotope with a
longer half-life, then we are able to measure longer times. Uranium, for example,
has an isotope whose half-life is about 109 years, so that if some material was
formed with uranium in it 109 years ago, only half the uranium would remain
today. When the uranium disintegrates, it changes into lead. Consider a piece of
rock which was formed a long time ago in some chemical process. Lead, being of
a chemical nature different from uranium, would appear in one part of the rock
and uranium would appear in another part of the rock. The uranium and lead
would be separate. If we look at that piece of rock today, where there should only
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be uranium we will now find a certain fraction of uranium and a certain fraction
of lead. By comparing these fractions, we can tell what percent of the uranium
disappeared and changed into lead. By this method, the age of certain rocks has
been determined to be several billion years. An extension of this method, not
using particular rocks but looking at the uranium and lead in the oceans and
using averages over the earth, has been used to determine (within the past few
years) that the age of the earth itself is approximately 4.5 billion years.

It is encouraging that the age of the earth is found to be the same as the age
of the meteorites which land on the earth, as determined by the uranium method.
It appears that the earth was formed out of rocks floating in space, and that the
meteorites are, quite likely, some of that material left over. At some time more
than five billion years ago, the universe started. It is now believed that at least
our part of the universe had its beginning about ten or twelve billion years ago.
We do not know what happened before then. In fact, we may well ask again:
Does the question make any sense? Does an earlier time have any meaning?

5-5 Units and standards of time

We have implied that it is convenient if we start with some standard unit of
time, say a day or a second, and refer all other times to some multiple or fraction
of this unit. What shall we take as our basic standard of time? Shall we take the
human pulse? If we compare pulses, we find that they seem to vary a lot. On
comparing two clocks, one finds they do not vary so much. You might then say,
well, let us take a clock. But whose clock? There is a story of a Swiss boy who
wanted all of the clocks in his town to ring noon at the same time. So he went
around trying to convince everyone of the value of this. Everyone thought it was
a marvelous idea so long as all of the other clocks rang noon when his did! It is
rather difficult to decide whose clock we should take as a standard. Fortunately,
we all share one clock—the earth. For a long time the rotational period of the
earth has been taken as the basic standard of time. As measurements have been
made more and more precise, however, it has been found that the rotation of the
earth is not exactly periodic, when measured in terms of the best clocks. These
“best” clocks are those which we have reason to believe are accurate because they
agree with each other. We now believe that, for various reasons, some days are
longer than others, some days are shorter, and on the average the period of the
earth becomes a little longer as the centuries pass.
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Until very recently we had found nothing much better than the earth’s period,
so all clocks have been related to the length of the day, and the second has been
defined as 1/86,400 of an average day. Recently we have been gaining experience
with some natural oscillators which we now believe would provide a more constant
time reference than the earth, and which are also based on a natural phenomenon
available to everyone. These are the so-called “atomic clocks.” Their basic internal
period is that of an atomic vibration which is very insensitive to the temperature
or any other external effects. These clocks keep time to an accuracy of one part
in 109 or better. Within the past two years an improved atomic clock which
operates on the vibration of the hydrogen atom has been designed and built by
Professor Norman Ramsey at Harvard University. He believes that this clock
might be 100 times more accurate still. Measurements now in progress will show
whether this is true or not.

We may expect that since it has been possible to build clocks much more
accurate than astronomical time, there will soon be an agreement among scientists
to define the unit of time in terms of one of the atomic clock standards.

5-6 Large distances

Let us now turn to the question of distance. How far, or how big, are things?
Everybody knows that the way you measure distance is to start with a stick and
count. Or start with a thumb and count. You begin with a unit and count. How
does one measure smaller things? How does one subdivide distance? In the same
way that we subdivided time: we take a smaller unit and count the number of
such units it takes to make up the longer unit. So we can measure smaller and
smaller lengths.

But we do not always mean by distance what one gets by counting off with
a meter stick. It would be difficult to measure the horizontal distance between
two mountain tops using only a meter stick. We have found by experience that
distance can be measured in another fashion: by triangulation. Although this
means that we are really using a different definition of distance, when they can
both be used they agree with each other. Space is more or less what Euclid
thought it was, so the two types of definitions of distance agree. Since they do
agree on the earth it gives us some confidence in using triangulation for still larger
distances. For example, we were able to use triangulation to measure the height
of the first Sputnik. We found that it was roughly 5× 105 meters high. By more
careful measurements the distance to the moon can be measured in the same
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Fig. 5-4. The height of a Sputnik is determined by triangulation.

way. Two telescopes at different places on the earth can give us the two angles
we need. It has been found in this way that the moon is 4× 108 meters away.

We cannot do the same with the sun, or at least no one has been able to yet.
The accuracy with which one can focus on a given point on the sun and with which
one can measure angles is not good enough to permit us to measure the distance
to the sun. Then how can we measure the distance to the sun? We must invent an
extension of the idea of triangulation. We measure the relative distances of all the
planets by astronomical observations of where the planets appear to be, and we
get a picture of the solar system with the proper relative distances of everything,
but with no absolute distance. One absolute measurement is then required, which
has been obtained in a number of ways. One of the ways, which was believed
until recently to be the most accurate, was to measure the distance from the
earth to Eros, one of the small planetoids which passes near the earth every now
and then. By triangulation on this little object, one could get the one required
scale measurement. Knowing the relative distances of the rest, we can then tell
the distance, for example, from the earth to the sun, or from the earth to Pluto.

Within the past year there has been a big improvement in our knowledge of
the scale of the solar system. At the Jet Propulsion Laboratory the distance from
the earth to Venus was measured quite accurately by a direct radar observation.
This, of course, is a still different type of inferred distance. We say we know the
speed at which light travels (and therefore, at which radar waves travel), and we
assume that it is the same speed everywhere between the earth and Venus. We
send the radio wave out, and count the time until the reflected wave comes back.
From the time we infer a distance, assuming we know the speed. We have really
another definition of a measurement of distance.

How do we measure the distance to a star, which is much farther away?
Fortunately, we can go back to our triangulation method, because the earth
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Fig. 5-5. The distance of nearby stars can be measured by triangula-
tion, using the diameter of the earth’s orbit as a baseline.

moving around the sun gives us a large baseline for measurements of objects
outside the solar system. If we focus a telescope on a star in summer and in
winter, we might hope to determine these two angles accurately enough to be
able to measure the distance to a star.

What if the stars are too far away for us to use triangulation? Astronomers
are always inventing new ways of measuring distance. They find, for example,
that they can estimate the size and brightness of a star by its color. The color and
brightness of many nearby stars—whose distances are known by triangulation—
have been measured, and it is found that there is a smooth relationship between the
color and the intrinsic brightness of stars (in most cases). If one now measures the
color of a distant star, one may use the color-brightness relationship to determine
the intrinsic brightness of the star. By measuring how bright the star appears to
us at the earth (or perhaps we should say how dim it appears), we can compute
how far away it is. (For a given intrinsic brightness, the apparent brightness
decreases with the square of the distance.) A nice confirmation of the correctness
of this method of measuring stellar distances is given by the results obtained for
groups of stars known as globular clusters. A photograph of such a group is shown
in Fig. 5-6. Just from looking at the photograph one is convinced that these
stars are all together. The same result is obtained from distance measurements
by the color-brightness method.

A study of many globular clusters gives another important bit of information.
It is found that there is a high concentration of such clusters in a certain part of
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Fig. 5-6. A cluster of stars near the center of our galaxy. Their
distance from the earth is 30,000 light-years, or about 3× 1020 meters.

the sky and that most of them are about the same distance from us. Coupling
this information with other evidence, we conclude that this concentration of
clusters marks the center of our galaxy. We then know the distance to the center
of the galaxy—about 1020 meters.

Knowing the size of our own galaxy, we have a key to the measurement of
still larger distances—the distances to other galaxies. Figure 5-7 is a photograph
of a galaxy, which has much the same shape as our own. Probably it is the
same size, too. (Other evidence supports the idea that galaxies are all about the
same size.) If it is the same size as ours, we can tell its distance. We measure
the angle it subtends in the sky; we know its diameter, and we compute its
distance—triangulation again!

Photographs of exceedingly distant galaxies have recently been obtained with
the giant Palomar telescope. One is shown in Fig. 5-8. It is now believed that
some of these galaxies are about halfway to the limit of the universe—1026 meters
away—the largest distance we can contemplate!
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Fig. 5-7. A spiral galaxy like our own. Presuming that its diameter
is similar to that of our own galaxy, we may compute its distance from
its apparent size. It is 30 million light-years (3× 1023 meters) from the
earth.

5-7 Short distances

Now let’s think about smaller distances. Subdividing the meter is easy.
Without much difficulty we can mark off one thousand equal spaces which add up
to one meter. With somewhat more difficulty, but in a similar way (using a good
microscope), we can mark off a thousand equal subdivisions of the millimeter
to make a scale of microns (millionths of a meter). It is difficult to continue to
smaller scales, because we cannot “see” objects smaller than the wavelength of
visible light (about 5× 10−7 meter).

We need not stop, however, at what we can see. With an electron microscope,
we can continue the process by making photographs on a still smaller scale,
say down to 10−8 meter (Fig. 5-9). By indirect measurements—by a kind of
triangulation on a microscopic scale—we can continue to measure to smaller and
smaller scales. First, from an observation of the way light of short wavelength (x-
radiation) is reflected from a pattern of marks of known separation, we determine
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Fig. 5-8. The most distant object, 3C295 in BOOTES (indicated by
the arrow), measured by the 200-inch telescope to date (1960).

the wavelength of the light vibrations. Then, from the pattern of the scattering
of the same light from a crystal, we can determine the relative location of the
atoms in the crystal, obtaining results which agree with the atomic spacings also
determined by chemical means. We find in this way that atoms have a diameter
of about 10−10 meter.

There is a large “gap” in physical sizes between the typical atomic dimension
of about 10−10 meter and the nuclear dimensions 10−15 meter, 10−5 times smaller.
For nuclear sizes, a different way of measuring size becomes convenient. We
measure the apparent area, σ, called the effective cross section. If we wish the
radius, we can obtain it from σ = πr2, since nuclei are nearly spherical.

Measurement of a nuclear cross section can be made by passing a beam of
high-energy particles through a thin slab of material and observing the number
of particles which do not get through. These high-energy particles will plow right
through the thin cloud of electrons and will be stopped or deflected only if they
hit the concentrated weight of a nucleus. Suppose we have a piece of material
1 centimeter thick. There will be about 108 atomic layers. But the nuclei are
so small that there is little chance that any nucleus will lie behind another. We
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Fig. 5-9. Electron micrograph of some virus molecules. The “large”
sphere is for calibration and is known to have a diameter of 2×10−7 meter
(2000 Å).

might imagine that a highly magnified view of the situation—looking along the
particle beam—would look like Fig. 5-10.

Fig. 5-10. Imagined view through a block of carbon 1 cm thick if only
the nuclei were observed.

The chance that a very small particle will hit a nucleus on the trip through is
just the total area covered by the profiles of the nuclei divided by the total area
in the picture. Suppose that we know that in an area A of our slab of material
there are N atoms (each with one nucleus, of course). Then the fraction of the
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area “covered” by the nuclei is Nσ/A. Now let the number of particles of our
beam which arrive at the slab be n1 and the number which come out the other
side be n2. The fraction which do not get through is (n1 − n2)/n1, which should
just equal the fraction of the area covered. We can obtain the radius of the
nucleus from the equation*

πr2 = σ = A

N

n1 − n2

n1
.

From such an experiment we find that the radii of the nuclei are from about
1 to 6 times 10−15 meter. The length unit 10−15 meter is called the fermi, in
honor of Enrico Fermi (1901–1954).

What do we find if we go to smaller distances? Can we measure smaller
distances? Such questions are not yet answerable. It has been suggested that
the still unsolved mystery of nuclear forces may be unravelled only by some
modification of our idea of space, or measurement, at such small distances.

It might be thought that it would be a good idea to use some natural length as
our unit of length—say the radius of the earth or some fraction of it. The meter
was originally intended to be such a unit and was defined to be (π/2)×10−7 times
the earth’s radius. It is neither convenient nor very accurate to determine the
unit of length in this way. For a long time it has been agreed internationally that
the meter would be defined as the distance between two scratches on a bar kept
in a special laboratory in France. More recently, it has been realized that this
definition is neither as precise as would be useful, nor as permanent or universal as
one would like. It is currently being considered that a new definition be adopted,
an agreed-upon (arbitrary) number of wavelengths of a chosen spectral line.

Measurements of distance and of time give results which depend on the
observer. Two observers moving with respect to each other will not measure
the same distances and times when measuring what appear to be the same
things. Distances and time intervals have different magnitudes, depending on the
coordinate system (or “frame of reference”) used for making the measurements.
We shall study this subject in more detail in a later chapter.

* This equation is right only if the area covered by the nuclei is a small fraction of the total,
i.e., if (n1 − n2)/n1 is much less than 1. Otherwise we must make a correction for the fact that
some nuclei will be partly obscured by the nuclei in front of them.
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Perfectly precise measurements of distances or times are not permitted by
the laws of nature. We have mentioned earlier that the errors in a measurement
of the position of an object must be at least as large as

∆x ≥ ~/2∆p,

where ~ is a small fundamental physical constant called the reduced Planck
constant and ∆p is the error in our knowledge of the momentum (mass times
velocity) of the object whose position we are measuring. It was also mentioned
that the uncertainty in position measurements is related to the wave nature of
particles.

The relativity of space and time implies that time measurements have also a
minimum error, given in fact by

∆t ≥ ~/2∆E,

where ∆E is the error in our knowledge of the energy of the process whose time
period we are measuring. If we wish to know more precisely when something
happened we must know less about what happened, because our knowledge of
the energy involved will be less. The time uncertainty is also related to the wave
nature of matter.
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6

Probability

“The true logic of this world is in the calculus of probabilities.”
—James Clerk Maxwell

6-1 Chance and likelihood

“Chance” is a word which is in common use in everyday living. The radio
reports speaking of tomorrow’s weather may say: “There is a sixty percent chance
of rain.” You might say: “There is a small chance that I shall live to be one
hundred years old.” Scientists also use the word chance. A seismologist may be
interested in the question: “What is the chance that there will be an earthquake
of a certain size in Southern California next year?” A physicist might ask the
question: “What is the chance that a particular geiger counter will register twenty
counts in the next ten seconds?” A politician or statesman might be interested
in the question: “What is the chance that there will be a nuclear war within
the next ten years?” You may be interested in the chance that you will learn
something from this chapter.

By chance, we mean something like a guess. Why do we make guesses? We
make guesses when we wish to make a judgment but have incomplete information
or uncertain knowledge. We want to make a guess as to what things are, or what
things are likely to happen. Often we wish to make a guess because we have to
make a decision. For example: Shall I take my raincoat with me tomorrow? For
what earth movement should I design a new building? Shall I build myself a
fallout shelter? Shall I change my stand in international negotiations? Shall I go
to class today?

Sometimes we make guesses because we wish, with our limited knowledge,
to say as much as we can about some situation. Really, any generalization is
in the nature of a guess. Any physical theory is a kind of guesswork. There
are good guesses and there are bad guesses. The theory of probability is a
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system for making better guesses. The language of probability allows us to speak
quantitatively about some situation which may be highly variable, but which
does have some consistent average behavior.

Let us consider the flipping of a coin. If the toss—and the coin—are “honest,”
we have no way of knowing what to expect for the outcome of any particular toss.
Yet we would feel that in a large number of tosses there should be about equal
numbers of heads and tails. We say: “The probability that a toss will land heads
is 0.5.”

We speak of probability only for observations that we contemplate being made
in the future. By the “probability” of a particular outcome of an observation we
mean our estimate for the most likely fraction of a number of repeated observations
that will yield that particular outcome. If we imagine repeating an observation—
such as looking at a freshly tossed coin—N times, and if we call NA our estimate
of the most likely number of our observations that will give some specified result A,
say the result “heads,” then by P (A), the probability of observing A, we mean

P (A) = NA/N. (6.1)

Our definition requires several comments. First of all, we may speak of a
probability of something happening only if the occurrence is a possible outcome
of some repeatable observation. It is not clear that it would make any sense to
ask: “What is the probability that there is a ghost in that house?”

You may object that no situation is exactly repeatable. That is right. Every
different observation must at least be at a different time or place. All we can say
is that the “repeated” observations should, for our intended purposes, appear
to be equivalent. We should assume, at least, that each observation was made
from an equivalently prepared situation, and especially with the same degree of
ignorance at the start. (If we sneak a look at an opponent’s hand in a card game,
our estimate of our chances of winning are different than if we do not!)

We should emphasize that N and NA in Eq. (6.1) are not intended to rep-
resent numbers based on actual observations. NA is our best estimate of what
would occur in N imagined observations. Probability depends, therefore, on our
knowledge and on our ability to make estimates. In effect, on our common sense!
Fortunately, there is a certain amount of agreement in the common sense of many
things, so that different people will make the same estimate. Probabilities need
not, however, be “absolute” numbers. Since they depend on our ignorance, they
may become different if our knowledge changes.
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You may have noticed another rather “subjective” aspect of our definition of
probability. We have referred to NA as “our estimate of the most likely number
. . . ” We do not mean that we expect to observe exactly NA, but that we expect
a number near NA, and that the number NA is more likely than any other
number in the vicinity. If we toss a coin, say, 30 times, we should expect that the
number of heads would not be very likely to be exactly 15, but rather only some
number near to 15, say 12, 13, 14, 15, 16, or 17. However, if we must choose,
we would decide that 15 heads is more likely than any other number. We would
write P (heads) = 0.5.

Why did we choose 15 as more likely than any other number? We must have
argued with ourselves in the following manner: If the most likely number of heads
is NH in a total number of tosses N , then the most likely number of tails NT
is (N −NH). (We are assuming that every toss gives either heads or tails, and
no “other” result!) But if the coin is “honest,” there is no preference for heads or
tails. Until we have some reason to think the coin (or toss) is dishonest, we must
give equal likelihoods for heads and tails. So we must set NT = NH . It follows
that NT = NH = N/2, or P (H) = P (T ) = 0.5.

We can generalize our reasoning to any situation in which there arem different
but “equivalent” (that is, equally likely) possible results of an observation. If
an observation can yield m different results, and we have reason to believe that
any one of them is as likely as any other, then the probability of a particular
outcome A is P (A) = 1/m.

If there are seven different-colored balls in an opaque box and we pick one
out “at random” (that is, without looking), the probability of getting a ball
of a particular color is 1

7 . The probability that a “blind draw” from a shuffled
deck of 52 cards will show the ten of hearts is 1

52 . The probability of throwing a
double-one with dice is 1

36 .

In Chapter 5 we described the size of a nucleus in terms of its apparent area, or
“cross section.” When we did so we were really talking about probabilities. When we
shoot a high-energy particle at a thin slab of material, there is some chance that it will
pass right through and some chance that it will hit a nucleus. (Since the nucleus is so
small that we cannot see it, we cannot aim right at a nucleus. We must “shoot blind.”)
If there are n atoms in our slab and the nucleus of each atom has a cross-sectional
area σ, then the total area “shadowed” by the nuclei is nσ. In a large number N of
random shots, we expect that the number of hits NC of some nucleus will be in the
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ratio to N as the shadowed area is to the total area of the slab:

NC/N = nσ/A. (6.2)

We may say, therefore, that the probability that any one projectile particle will suffer a
collision in passing through the slab is

PC = n

A
σ, (6.3)

where n/A is the number of atoms per unit area in our slab.

6-2 Fluctuations

We would like now to use our ideas about probability to consider in some
greater detail the question: “How many heads do I really expect to get if I toss a
coin N times?” Before answering the question, however, let us look at what does
happen in such an “experiment.” Figure 6-1 shows the results obtained in the first
three “runs” of such an experiment in which N = 30. The sequences of “heads”
and “tails” are shown just as they were obtained. The first game gave 11 heads;
the second also 11; the third 16. In three trials we did not once get 15 heads.
Should we begin to suspect the coin? Or were we wrong in thinking that the
most likely number of “heads” in such a game is 15? Ninety-seven more runs
were made to obtain a total of 100 experiments of 30 tosses each. The results of
the experiments are given in Table 6-1.*

H

T

H

T

H

T

11

19

11

19

16

14

x x x xxx x xx x x
xx x x xxxxxxxxx xx xx x x

x x x x xxx x x x x
xxxx xxxx x x xxxx xx x xx

x xxx xx x xxx xx x xx x
x xx x xx xx xx x x x x

Fig. 6-1. Observed sequences of heads and tails in three games of
30 tosses each.

* After the first three games, the experiment was actually done by shaking 30 pennies
violently in a box and then counting the number of heads that showed.
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Table 6-1

Number of heads in successive trials of 30 tosses of a coin.

11 16 17 15 17 16 19 18 15 13

100 trials

11 17 17 12 20 23 11 16 17 14
16 12 15 10 18 17 13 15 14 15
16 12 11 22 12 20 12 15 16 12
16 10 15 13 14 16 15 16 13 18
14 14 13 16 15 19 21 14 12 15
16 11 16 14 17 14 11 16 17 16
19 15 14 12 18 15 14 21 11 16
17 17 12 13 14 17 9 13 19 13
14 12 15 17 14 10 17 17 12 11

PROBABLE NUMBER

OBSERVED IN THIS
EXPERIMENT

k = NUMBER OF HEADS

0 5 10
15

20 25 30
0

5

10

15

NUMBER OF
GAMES IN
WHICH THE
SCORE WAS
OBTAINED

Fig. 6-2. Summary of the results of 100 games of 30 tosses each.
The vertical bars show the number of games in which a score of k heads
was obtained. The dashed curve shows the expected numbers of games
with the score k obtained by a probability computation.
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Looking at the numbers in Table 6-1, we see that most of the results are
“near” 15, in that they are between 12 and 18. We can get a better feeling for
the details of these results if we plot a graph of the distribution of the results.
We count the number of games in which a score of k was obtained, and plot this
number for each k. Such a graph is shown in Fig. 6-2. A score of 15 heads was
obtained in 13 games. A score of 14 heads was also obtained 13 times. Scores of
16 and 17 were each obtained more than 13 times. Are we to conclude that there
is some bias toward heads? Was our “best estimate” not good enough? Should
we conclude now that the “most likely” score for a run of 30 tosses is really
16 heads? But wait! In all the games taken together, there were 3000 tosses.
And the total number of heads obtained was 1493. The fraction of tosses that
gave heads is 0.498, very nearly, but slightly less than half. We should certainly
not assume that the probability of throwing heads is greater than 0.5! The fact
that one particular set of observations gave 16 heads most often, is a fluctuation.
We still expect that the most likely number of heads is 15.

We may ask the question: “What is the probability that a game of 30 tosses
will yield 15 heads—or 16, or any other number?” We have said that in a game
of one toss, the probability of obtaining one head is 0.5, and the probability of
obtaining no head is 0.5. In a game of two tosses there are four possible outcomes:
HH, HT , TH, TT . Since each of these sequences is equally likely, we conclude
that (a) the probability of a score of two heads is 1

4 , (b) the probability of a score
of one head is 2

4 , (c) the probability of a zero score is 1
4 . There are two ways of

obtaining one head, but only one of obtaining either zero or two heads.
Consider now a game of 3 tosses. The third toss is equally likely to be heads

or tails. There is only one way to obtain 3 heads: we must have obtained 2 heads
on the first two tosses, and then heads on the last. There are, however, three
ways of obtaining 2 heads. We could throw tails after having thrown two heads
(one way) or we could throw heads after throwing only one head in the first two
tosses (two ways). So for scores of 3-H, 2-H, 1-H, 0-H we have that the number
of equally likely ways is 1, 3, 3, 1, with a total of 8 different possible sequences.
The probabilities are 1

8 ,
3
8 ,

3
8 ,

1
8 .

The argument we have been making can be summarized by a diagram like
that in Fig. 6-3. It is clear how the diagram should be continued for games with
a larger number of tosses. Figure 6-4 shows such a diagram for a game of 6 tosses.
The number of “ways” to any point on the diagram is just the number of different
“paths” (sequences of heads and tails) which can be taken from the starting point.
The vertical position gives us the total number of heads thrown. The set of
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FIRST
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Fig. 6-3. A diagram for showing the number of ways a score of 0, 1,
2, or 3 heads can be obtained in a game of 3 tosses.
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5

1

1

6

15

20

15

6

1

SCORE
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5

4

3
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1

0

Fig. 6-4. A diagram like that of Fig. 6-3, for a game of 6 tosses.

numbers which appears in such a diagram is known as Pascal’s triangle. The
numbers are also known as the binomial coefficients, because they also appear in
the expansion of (a+ b)n. If we call n the number of tosses and k the number of
heads thrown, then the numbers in the diagram are usually designated by the
symbol

(
n
k

)
. We may remark in passing that the binomial coefficients can also be

computed from (
n

k

)
= n!
k!(n− k)! , (6.4)

where n!, called “n-factorial,” represents the product (n)(n−1)(n−2) · · · (3)(2)(1).
We are now ready to compute the probability P (k, n) of throwing k heads in

n tosses, using our definition Eq. (6.1). The total number of possible sequences
is 2n (since there are 2 outcomes for each toss), and the number of ways of
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obtaining k heads is
(
n
k

)
, all equally likely, so we have

P (k, n) =
(
n
k

)
2n . (6.5)

Since P (k, n) is the fraction of games which we expect to yield k heads, then
in 100 games we should expect to find k heads 100 · P (k, n) times. The dashed
curve in Fig. 6-2 passes through the points computed from 100 · P (k, 30). We
see that we expect to obtain a score of 15 heads in 14 or 15 games, whereas this
score was observed in 13 games. We expect a score of 16 in 13 or 14 games, but
we obtained that score in 16 games. Such fluctuations are “part of the game.”

The method we have just used can be applied to the most general situation
in which there are only two possible outcomes of a single observation. Let us
designate the two outcomes by W (for “win”) and L (for “lose”). In the general
case, the probability of W or L in a single event need not be equal. Let p
be the probability of obtaining the result W . Then q, the probability of L, is
necessarily (1− p). In a set of n trials, the probability P (k, n) that W will be
obtained k times is

P (k, n) =
(
n
k

)
pkqn−k. (6.6)

This probability function is called the Bernoulli or, also, the binomial probability.

6-3 The random walk

There is another interesting problem in which the idea of probability is
required. It is the problem of the “random walk.” In its simplest version, we
imagine a “game” in which a “player” starts at the point x = 0 and at each “move”
is required to take a step either forward (toward +x) or backward (toward −x).
The choice is to be made randomly, determined, for example, by the toss of a coin.
How shall we describe the resulting motion? In its general form the problem is
related to the motion of atoms (or other particles) in a gas—called Brownian
motion—and also to the combination of errors in measurements. You will see
that the random-walk problem is closely related to the coin-tossing problem we
have already discussed.

First, let us look at a few examples of a random walk. We may characterize
the walker’s progress by the net distance DN traveled in N steps. We show in
the graph of Fig. 6-5 three examples of the path of a random walker. (We have
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−10
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Fig. 6-5. The progress made in a random walk. The horizontal coor-
dinate N is the total number of steps taken; the vertical coordinate DN

is the net distance moved from the starting position.

used for the random sequence of choices the results of the coin tosses shown in
Fig. 6-1.)

What can we say about such a motion? We might first ask: “How far does he
get on the average?” We must expect that his average progress will be zero, since
he is equally likely to go either forward or backward. But we have the feeling
that as N increases, he is more likely to have strayed farther from the starting
point. We might, therefore, ask what is his average distance travelled in absolute
value, that is, what is the average of |D|. It is, however, more convenient to deal
with another measure of “progress,” the square of the distance: D2 is positive
for either positive or negative motion, and is therefore a reasonable measure of
such random wandering.

We can show that the expected value of D2
N is just N , the number of steps

taken. By “expected value” we mean the probable value (our best guess), which
we can think of as the expected average behavior in many repeated sequences. We
represent such an expected value by 〈D2

N 〉, and may refer to it also as the “mean
square distance.” After one step, D2 is always +1, so we have certainly 〈D2

1〉 = 1.
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(All distances will be measured in terms of a unit of one step. We shall not
continue to write the units of distance.)

The expected value of D2
N for N > 1 can be obtained from DN−1. If, after

(N − 1) steps, we have DN−1, then after N steps we have DN = DN−1 + 1
or DN = DN−1 − 1. For the squares,

D2
N =


D2
N−1 + 2DN−1 + 1,

or

D2
N−1 − 2DN−1 + 1.

(6.7)

In a number of independent sequences, we expect to obtain each value one-half
of the time, so our average expectation is just the average of the two possible
values. The expected value of D2

N is then D2
N−1 + 1. In general, we should expect

for D2
N−1 its “expected value” 〈D2

N−1〉 (by definition!). So

〈D2
N 〉 = 〈D2

N−1〉+ 1. (6.8)

We have already shown that 〈D2
1〉 = 1; it follows then that

〈D2
N 〉 = N, (6.9)

a particularly simple result!
If we wish a number like a distance, rather than a distance squared, to

represent the “progress made away from the origin” in a random walk, we can
use the “root-mean-square distance” Drms:

Drms =
√
〈D2〉 =

√
N. (6.10)

We have pointed out that the random walk is closely similar in its mathematics
to the coin-tossing game we considered at the beginning of the chapter. If we
imagine the direction of each step to be in correspondence with the appearance of
heads or tails in a coin toss, then D is just NH−NT , the difference in the number
of heads and tails. Since NH +NT = N , the total number of steps (and tosses),
we have D = 2NH −N . We have derived earlier an expression for the expected
distribution of NH (also called k) and obtained the result of Eq. (6.5). Since N
is just a constant, we have the corresponding distribution for D. (Since for every
head more than N/2 there is a tail “missing,” we have the factor of 2 between
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NH and D.) The graph of Fig. 6-2 represents the distribution of distances we
might get in 30 random steps (where k = 15 is to be read D = 0; k = 16, D = 2;
etc.).

The variation of NH from its expected value N/2 is

NH −
N

2 = D

2 . (6.11)

The rms deviation is (
NH −

N

2

)
rms

= 1
2

√
N. (6.12)

According to our result for Drms, we expect that the “typical” distance in
30 steps ought to be

√
30 = 5.5, or a typical k should be about 5.5/2 = 2.8 units

from 15. We see that the “width” of the curve in Fig. 6-2, measured from the
center, is just about 3 units, in agreement with this result.

We are now in a position to consider a question we have avoided until now.
How shall we tell whether a coin is “honest” or “loaded”? We can give now at
least a partial answer. For an honest coin, we expect the fraction of the times
heads appears to be 0.5, that is,

〈NH〉
N

= 0.5. (6.13)

We also expect an actual NH to deviate from N/2 by about
√
N/2, or the fraction

to deviate by
1
N

√
N

2 = 1
2
√
N
.

The larger N is, the closer we expect the fraction NH/N to be to one-half.
In Fig. 6-6 we have plotted the fraction NH/N for the coin tosses reported ear-

lier in this chapter. We see the tendency for the fraction of heads to approach 0.5
for large N . Unfortunately, for any given run or combination of runs there is no
guarantee that the observed deviation will be even near the expected deviation.
There is always the finite chance that a large fluctuation—a long string of heads
or tails—will give an arbitrarily large deviation. All we can say is that if the
deviation is near the expected 1/2

√
N (say within a factor of 2 or 3), we have

no reason to suspect the honesty of the coin. If it is much larger, we may be
suspicious, but cannot prove, that the coin is loaded (or that the tosser is clever!).
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Fig. 6-6. The fraction of the tosses that gave heads in a particular
sequence of N tosses of a penny.

We have also not considered how we should treat the case of a “coin” or
some similar “chancy” object (say a stone that always lands in either of two
positions) that we have good reason to believe should have a different probability
for heads and tails. We have defined P (H) = 〈NH〉/N . How shall we know what
to expect for NH? In some cases, the best we can do is to observe the number
of heads obtained in large numbers of tosses. For want of anything better, we
must set 〈NH〉 = NH(observed). (How could we expect anything else?) We must
understand, however, that in such a case a different experiment, or a different
observer, might conclude that P (H) was different. We would expect, however,
that the various answers should agree within the deviation 1/2

√
N [if P (H) is

near one-half]. An experimental physicist usually says that an “experimentally
determined” probability has an “error,” and writes

P (H) = NH
N
± 1

2
√
N
. (6.14)

There is an implication in such an expression that there is a “true” or “correct”
probability which could be computed if we knew enough, and that the observation
may be in “error” due to a fluctuation. There is, however, no way to make such
thinking logically consistent. It is probably better to realize that the probability
concept is in a sense subjective, that it is always based on uncertain knowledge,
and that its quantitative evaluation is subject to change as we obtain more
information.
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6-4 A probability distribution

Let us return now to the random walk and consider a modification of it.
Suppose that in addition to a random choice of the direction (+ or −) of each
step, the length of each step also varied in some unpredictable way, the only
condition being that on the average the step length was one unit. This case is
more representative of something like the thermal motion of a molecule in a gas.
If we call the length of a step S, then S may have any value at all, but most often
will be “near” 1. To be specific, we shall let 〈S2〉 = 1 or, equivalently, Srms = 1.
Our derivation for 〈D2〉 would proceed as before except that Eq. (6.8) would be
changed now to read

〈D2
N 〉 = 〈D2

N−1〉+ 〈S2〉 = 〈D2
N−1〉+ 1. (6.15)

We have, as before, that
〈D2

N 〉 = N. (6.16)

What would we expect now for the distribution of distances D? What is, for
example, the probability that D = 0 after 30 steps? The answer is zero! The
probability is zero that D will be any particular value, since there is no chance at
all that the sum of the backward steps (of varying lengths) would exactly equal
the sum of forward steps. We cannot plot a graph like that of Fig. 6-2.

We can, however, obtain a representation similar to that of Fig. 6-2, if we ask,
not what is the probability of obtaining D exactly equal to 0, 1, or 2, but instead
what is the probability of obtaining D near 0, 1, or 2. Let us define P (x,∆x)
as the probability that D will lie in the interval ∆x located at x (say from x
to x+ ∆x). We expect that for small ∆x the chance of D landing in the interval
is proportional to ∆x, the width of the interval. So we can write

P (x,∆x) = p(x) ∆x. (6.17)

The function p(x) is called the probability density.
The form of p(x) will depend on N , the number of steps taken, and also on the

distribution of individual step lengths. We cannot demonstrate the proofs here,
but for large N , p(x) is the same for all reasonable distributions in individual
step lengths, and depends only on N . We plot p(x) for three values of N in
Fig. 6-7. You will notice that the “half-widths” (typical spread from x = 0) of
these curves is

√
N , as we have shown it should be.
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Fig. 6-7. The probability density for ending up at the distance D from
the starting place in a random walk of N steps. (D is measured in units
of the rms step length.)

You may notice also that the value of p(x) near zero is inversely proportional
to
√
N . This comes about because the curves are all of a similar shape and their

areas under the curves must all be equal. Since p(x) ∆x is the probability of
finding D in ∆x when ∆x is small, we can determine the chance of finding D
somewhere inside an arbitrary interval from x1 to x2, by cutting the interval in
a number of small increments ∆x and evaluating the sum of the terms p(x) ∆x
for each increment. The probability that D lands somewhere between x1 and x2,
which we may write P (x1 < D < x2), is equal to the shaded area in Fig. 6-8.
The smaller we take the increments ∆x, the more correct is our result. We can
write, therefore,

P (x1 < D < x2) =
∑

p(x) ∆x =
∫ x2

x1

p(x) dx. (6.18)

The area under the whole curve is the probability that D lands somewhere
(that is, has some value between x = −∞ and x = +∞). That probability is
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xx1 x2

∆x

p(x)

Fig. 6-8. The probability that the distance D traveled in a random
walk is between x1 and x2 is the area under the curve of p(x) from x1
to x2.

surely 1. We must have that ∫ +∞

−∞
p(x) dx = 1. (6.19)

Since the curves in Fig. 6-7 get wider in proportion to
√
N , their heights must

be proportional to 1/
√
N to maintain the total area equal to 1.

The probability density function we have been describing is one that is
encountered most commonly. It is known as the normal or gaussian probability
density. It has the mathematical form

p(x) = 1
σ
√

2π
e−x

2/2σ2
, (6.20)

where σ is called the standard deviation and is given, in our case, by σ =
√
N or,

if the rms step size is different from 1, by σ =
√
NSrms.

We remarked earlier that the motion of a molecule, or of any particle, in a
gas is like a random walk. Suppose we open a bottle of an organic compound
and let some of its vapor escape into the air. If there are air currents, so that
the air is circulating, the currents will also carry the vapor with them. But even
in perfectly still air, the vapor will gradually spread out—will diffuse—until it
has penetrated throughout the room. We might detect it by its color or odor.
The individual molecules of the organic vapor spread out in still air because of
the molecular motions caused by collisions with other molecules. If we know the
average “step” size, and the number of steps taken per second, we can find the
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probability that one, or several, molecules will be found at some distance from
their starting point after any particular passage of time. As time passes, more
steps are taken and the gas spreads out as in the successive curves of Fig. 6-7.
In a later chapter, we shall find out how the step sizes and step frequencies are
related to the temperature and pressure of a gas.

Earlier, we said that the pressure of a gas is due to the molecules bouncing
against the walls of the container. When we come later to make a more quanti-
tative description, we will wish to know how fast the molecules are going when
they bounce, since the impact they make will depend on that speed. We cannot,
however, speak of the speed of the molecules. It is necessary to use a probability
description. A molecule may have any speed, but some speeds are more likely
than others. We describe what is going on by saying that the probability that
any particular molecule will have a speed between v and v + ∆v is p(v) ∆v,
where p(v), a probability density, is a given function of the speed v. We shall see
later how Maxwell, using common sense and the ideas of probability, was able to
find a mathematical expression for p(v). The form* of the function p(v) is shown
in Fig. 6-9. Velocities may have any value, but are most likely to be near the
most probable value vp.

vvp v1 v2

p(v)

or

N · p(v)

Fig. 6-9. The distribution of velocities of the molecules in a gas.

We often think of the curve of Fig. 6-9 in a somewhat different way. If
we consider the molecules in a typical container (with a volume of, say, one
liter), then there are a very large number N of molecules present (N ≈ 1022).
Since p(v) ∆v is the probability that one molecule will have its velocity in ∆v,

* Maxwell’s expression is p(v) = Cv2e−av
2 , where a is a constant related to the temperature

and C is chosen so that the total probability is one.
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by our definition of probability we mean that the expected number 〈∆N〉 to be
found with a velocity in the interval ∆v is given by

〈∆N〉 = N p(v) ∆v. (6.21)

We call N p(v) the “distribution in velocity.” The area under the curve between
two velocities v1 and v2, for example the shaded area in Fig. 6-9, represents [for
the curve N p(v)] the expected number of molecules with velocities between v1
and v2. Since with a gas we are usually dealing with large numbers of molecules,
we expect the deviations from the expected numbers to be small (like 1/

√
N), so

we often neglect to say the “expected” number, and say instead: “The number of
molecules with velocities between v1 and v2 is the area under the curve.” We should
remember, however, that such statements are always about probable numbers.

6-5 The uncertainty principle

The ideas of probability are certainly useful in describing the behavior of
the 1022 or so molecules in a sample of a gas, for it is clearly impractical even to
attempt to write down the position or velocity of each molecule. When probability
was first applied to such problems, it was considered to be a convenience—a
way of dealing with very complex situations. We now believe that the ideas of
probability are essential to a description of atomic happenings. According to
quantum mechanics, the mathematical theory of particles, there is always some
uncertainty in the specification of positions and velocities. We can, at best, say
that there is a certain probability that any particle will have a position near some
coordinate x.

We can give a probability density p1(x), such that p1(x) ∆x is the probability
that the particle will be found between x and x+∆x. If the particle is reasonably
well localized, say near x0, the function p1(x) might be given by the graph of
Fig. 6-10(a). Similarly, we must specify the velocity of the particle by means of
a probability density p2(v), with p2(v) ∆v the probability that the velocity will
be found between v and v + ∆v.

It is one of the fundamental results of quantum mechanics that the two
functions p1(x) and p2(v) cannot be chosen independently and, in particular,
cannot both be made arbitrarily narrow. If we call the typical “width” of the
p1(x) curve [∆x], and that of the p2(v) curve [∆v] (as shown in the figure),
nature demands that the product of the two widths be at least as big as the
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[∆v ]

Fig. 6-10. Probability densities for observation of the position and
velocity of a particle.

number ~/2m, where m is the mass of the particle. We may write this basic
relationship as

[∆x] · [∆v] ≥ ~/2m. (6.22)

This equation is a statement of the Heisenberg uncertainty principle that we
mentioned earlier.

Since the right-hand side of Eq. (6.22) is a constant, this equation says that
if we try to “pin down” a particle by forcing it to be at a particular place, it
ends up by having a high speed. Or if we try to force it to go very slowly, or at a
precise velocity, it “spreads out” so that we do not know very well just where it
is. Particles behave in a funny way!

The uncertainty principle describes an inherent fuzziness that must exist in
any attempt to describe nature. Our most precise description of nature must
be in terms of probabilities. There are some people who do not like this way of
describing nature. They feel somehow that if they could only tell what is really
going on with a particle, they could know its speed and position simultaneously.
In the early days of the development of quantum mechanics, Einstein was quite
worried about this problem. He used to shake his head and say, “But, surely God
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Fig. 6-11. A way of visualizing a hydrogen atom. The density (white-
ness) of the cloud represents the probability density for observing the
electron.

does not throw dice in determining how electrons should go!” He worried about
that problem for a long time and he probably never really reconciled himself to
the fact that this is the best description of nature that one can give. There are
still one or two physicists who are working on the problem who have an intuitive
conviction that it is possible somehow to describe the world in a different way
and that all of this uncertainty about the way things are can be removed. No
one has yet been successful.

The necessary uncertainty in our specification of the position of a particle
becomes most important when we wish to describe the structure of atoms. In the
hydrogen atom, which has a nucleus of one proton with one electron outside of
the nucleus, the uncertainty in the position of the electron is as large as the atom
itself! We cannot, therefore, properly speak of the electron moving in some “orbit”
around the proton. The most we can say is that there is a certain chance p(r) ∆V ,
of observing the electron in an element of volume ∆V at the distance r from
the proton. The probability density p(r) is given by quantum mechanics. For
an undisturbed hydrogen atom p(r) = Ae−2r/a. The number a is the “typical”
radius, where the function is decreasing rapidly. Since there is a small probability
of finding the electron at distances from the nucleus much greater than a, we
may think of a as “the radius of the atom,” about 10−10 meter.

We can form an image of the hydrogen atom by imagining a “cloud” whose
density is proportional to the probability density for observing the electron. A
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sample of such a cloud is shown in Fig. 6-11. Thus our best “picture” of a
hydrogen atom is a nucleus surrounded by an “electron cloud” (although we
really mean a “probability cloud”). The electron is there somewhere, but nature
permits us to know only the chance of finding it at any particular place.

In its efforts to learn as much as possible about nature, modern physics has
found that certain things can never be “known” with certainty. Much of our
knowledge must always remain uncertain. The most we can know is in terms of
probabilities.
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7

The Theory of Gravitation

7-1 Planetary motions

In this chapter we shall discuss one of the most far-reaching generalizations of
the human mind. While we are admiring the human mind, we should take some
time off to stand in awe of a nature that could follow with such completeness
and generality such an elegantly simple principle as the law of gravitation. What
is this law of gravitation? It is that every object in the universe attracts every
other object with a force which for any two bodies is proportional to the mass
of each and varies inversely as the square of the distance between them. This
statement can be expressed mathematically by the equation

F = G
mm′

r2 .

If to this we add the fact that an object responds to a force by accelerating in
the direction of the force by an amount that is inversely proportional to the mass
of the object, we shall have said everything required, for a sufficiently talented
mathematician could then deduce all the consequences of these two principles.
However, since you are not assumed to be sufficiently talented yet, we shall
discuss the consequences in more detail, and not just leave you with only these
two bare principles. We shall briefly relate the story of the discovery of the
law of gravitation and discuss some of its consequences, its effects on history,
the mysteries that such a law entails, and some refinements of the law made
by Einstein; we shall also discuss the relationships of the law to the other laws
of physics. All this cannot be done in one chapter, but these subjects will be
treated in due time in subsequent chapters.

The story begins with the ancients observing the motions of planets among
the stars, and finally deducing that they went around the sun, a fact that was
rediscovered later by Copernicus. Exactly how the planets went around the sun,
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with exactly what motion, took a little more work to discover. In the beginning
of the fifteenth century there were great debates as to whether they really went
around the sun or not. Tycho Brahe had an idea that was different from anything
proposed by the ancients: his idea was that these debates about the nature of the
motions of the planets would best be resolved if the actual positions of the planets
in the sky were measured sufficiently accurately. If measurement showed exactly
how the planets moved, then perhaps it would be possible to establish one or
another viewpoint. This was a tremendous idea—that to find something out, it is
better to perform some careful experiments than to carry on deep philosophical
arguments. Pursuing this idea, Tycho Brahe studied the positions of the planets
for many years in his observatory on the island of Hven, near Copenhagen. He
made voluminous tables, which were then studied by the mathematician Kepler,
after Tycho’s death. Kepler discovered from the data some very beautiful and
remarkable, but simple, laws regarding planetary motion.

7-2 Kepler’s laws

First of all, Kepler found that each planet goes around the sun in a curve
called an ellipse, with the sun at a focus of the ellipse. An ellipse is not just an
oval, but is a very specific and precise curve that can be obtained by using two
tacks, one at each focus, a loop of string, and a pencil; more mathematically, it
is the locus of all points the sum of whose distances from two fixed points (the
foci) is a constant. Or, if you will, it is a foreshortened circle (Fig. 7-1).

2b

2a

r1 r2

r1 + r2 = 2a

Fig. 7-1. An ellipse.

Kepler’s second observation was that the planets do not go around the sun at
a uniform speed, but move faster when they are nearer the sun and more slowly
when they are farther from the sun, in precisely this way: Suppose a planet
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∆t

∆t

Fig. 7-2. Kepler’s law of areas.

is observed at any two successive times, let us say a week apart, and that the
radius vector* is drawn to the planet for each observed position. The orbital arc
traversed by the planet during the week, and the two radius vectors, bound a
certain plane area, the shaded area shown in Fig. 7-2. If two similar observations
are made a week apart, at a part of the orbit farther from the sun (where the
planet moves more slowly), the similarly bounded area is exactly the same as in
the first case. So, in accordance with the second law, the orbital speed of each
planet is such that the radius “sweeps out” equal areas in equal times.

Finally, a third law was discovered by Kepler much later; this law is of a
different category from the other two, because it deals not with only a single
planet, but relates one planet to another. This law says that when the orbital
period and orbit size of any two planets are compared, the periods are proportional
to the 3/2 power of the orbit size. In this statement the period is the time interval
it takes a planet to go completely around its orbit, and the size is measured by
the length of the greatest diameter of the elliptical orbit, technically known as
the major axis. More simply, if the planets went in circles, as they nearly do, the
time required to go around the circle would be proportional to the 3/2 power of
the diameter (or radius). Thus Kepler’s three laws are:

I. Each planet moves around the sun in an ellipse, with the sun at one focus.
II. The radius vector from the sun to the planet sweeps out equal areas in

equal intervals of time.
III. The squares of the periods of any two planets are proportional to the cubes

of the semimajor axes of their respective orbits: T ∝ a3/2.

* A radius vector is a line drawn from the sun to any point in a planet’s orbit.
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7-3 Development of dynamics

While Kepler was discovering these laws, Galileo was studying the laws of
motion. The problem was, what makes the planets go around? (In those days,
one of the theories proposed was that the planets went around because behind
them were invisible angels, beating their wings and driving the planets forward.
You will see that this theory is now modified! It turns out that in order to keep the
planets going around, the invisible angels must fly in a different direction and they
have no wings. Otherwise, it is a somewhat similar theory!) Galileo discovered a
very remarkable fact about motion, which was essential for understanding these
laws. That is the principle of inertia—if something is moving, with nothing
touching it and completely undisturbed, it will go on forever, coasting at a
uniform speed in a straight line. (Why does it keep on coasting? We do not
know, but that is the way it is.)

Newton modified this idea, saying that the only way to change the motion
of a body is to use force. If the body speeds up, a force has been applied in
the direction of motion. On the other hand, if its motion is changed to a new
direction, a force has been applied sideways. Newton thus added the idea that
a force is needed to change the speed or the direction of motion of a body. For
example, if a stone is attached to a string and is whirling around in a circle, it
takes a force to keep it in the circle. We have to pull on the string. In fact, the
law is that the acceleration produced by the force is inversely proportional to the
mass, or the force is proportional to the mass times the acceleration. The more
massive a thing is, the stronger the force required to produce a given acceleration.
(The mass can be measured by putting other stones on the end of the same string
and making them go around the same circle at the same speed. In this way it
is found that more or less force is required, the more massive object requiring
more force.) The brilliant idea resulting from these considerations is that no
tangential force is needed to keep a planet in its orbit (the angels do not have to
fly tangentially) because the planet would coast in that direction anyway. If there
were nothing at all to disturb it, the planet would go off in a straight line. But
the actual motion deviates from the line on which the body would have gone if
there were no force, the deviation being essentially at right angles to the motion,
not in the direction of the motion. In other words, because of the principle of
inertia, the force needed to control the motion of a planet around the sun is not
a force around the sun but toward the sun. (If there is a force toward the sun,
the sun might be the angel, of course!)
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7-4 Newton’s law of gravitation

From his better understanding of the theory of motion, Newton appreciated
that the sun could be the seat or organization of forces that govern the motion of
the planets. Newton proved to himself (and perhaps we shall be able to prove it
soon) that the very fact that equal areas are swept out in equal times is a precise
sign post of the proposition that all deviations are precisely radial—that the law
of areas is a direct consequence of the idea that all of the forces are directed
exactly toward the sun.

Next, by analyzing Kepler’s third law it is possible to show that the farther
away the planet, the weaker the forces. If two planets at different distances
from the sun are compared, the analysis shows that the forces are inversely
proportional to the squares of the respective distances. With the combination
of the two laws, Newton concluded that there must be a force, inversely as the
square of the distance, directed in a line between the two objects.

Being a man of considerable feeling for generalities, Newton supposed, of
course, that this relationship applied more generally than just to the sun holding
the planets. It was already known, for example, that the planet Jupiter had
moons going around it as the moon of the earth goes around the earth, and
Newton felt certain that each planet held its moons with a force. He already knew
of the force holding us on the earth, so he proposed that this was a universal
force—that everything pulls everything else.

The next problem was whether the pull of the earth on its people was the
“same” as its pull on the moon, i.e., inversely as the square of the distance. If
an object on the surface of the earth falls 16 feet in the first second after it is
released from rest, how far does the moon fall in the same time? We might say
that the moon does not fall at all. But if there were no force on the moon, it
would go off in a straight line, whereas it goes in a circle instead, so it really
falls in from where it would have been if there were no force at all. We can
calculate from the radius of the moon’s orbit (which is about 240,000 miles) and
how long it takes to go around the earth (approximately 29 days), how far the
moon moves in its orbit in 1 second, and can then calculate how far it falls in
one second.* This distance turns out to be roughly 1/20 of an inch in a second.
That fits very well with the inverse square law, because the earth’s radius is
4000 miles, and if something which is 4000 miles from the center of the earth

* That is, how far the circle of the moon’s orbit falls below the straight line tangent to it at
the point where the moon was one second before.
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falls 16 feet in a second, something 240,000 miles, or 60 times as far away, should
fall only 1/3600 of 16 feet, which also is roughly 1/20 of an inch. Wishing to
put this theory of gravitation to a test by similar calculations, Newton made his
calculations very carefully and found a discrepancy so large that he regarded the
theory as contradicted by facts, and did not publish his results. Six years later
a new measurement of the size of the earth showed that the astronomers had
been using an incorrect distance to the moon. When Newton heard of this, he
made the calculation again, with the corrected figures, and obtained beautiful
agreement.

This idea that the moon “falls” is somewhat confusing, because, as you see,
it does not come any closer. The idea is sufficiently interesting to merit further
explanation: the moon falls in the sense that it falls away from the straight line
that it would pursue if there were no forces. Let us take an example on the surface
of the earth. An object released near the earth’s surface will fall 16 feet in the
first second. An object shot out horizontally will also fall 16 feet; even though it
is moving horizontally, it still falls the same 16 feet in the same time. Figure 7-3
shows an apparatus which demonstrates this. On the horizontal track is a ball
which is going to be driven forward a little distance away. At the same height is
a ball which is going to fall vertically, and there is an electrical switch arranged
so that at the moment the first ball leaves the track, the second ball is released.
That they come to the same depth at the same time is witnessed by the fact
that they collide in midair. An object like a bullet, shot horizontally, might go
a long way in one second—perhaps 2000 feet—but it will still fall 16 feet if it
is aimed horizontally. What happens if we shoot a bullet faster and faster? Do
not forget that the earth’s surface is curved. If we shoot it fast enough, then

ELECTROMAGNET

COLLISION!
h1

h2

h1 = h2

Fig. 7-3. Apparatus for showing the independence of vertical and
horizontal motions.
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Fig. 7-4. Acceleration toward the center of a circular path. From
plane geometry, x/S = (2R − S)/x ≈ 2R/x , where R is the radius of
the earth, 4000 miles; x is the distance “travelled horizontally” in one
second; and S is the distance “fallen” in one second (16 feet).

when it falls 16 feet it may be at just the same height above the ground as it
was before. How can that be? It still falls, but the earth curves away, so it falls
“around” the earth. The question is, how far does it have to go in one second so
that the earth is 16 feet below the horizon? In Fig. 7-4 we see the earth with
its 4000-mile radius, and the tangential, straight line path that the bullet would
take if there were no force. Now, if we use one of those wonderful theorems in
geometry, which says that our tangent is the mean proportional between the two
parts of the diameter cut by an equal chord, we see that the horizontal distance
travelled is the mean proportional between the 16 feet fallen and the 8000-mile
diameter of the earth. The square root of (16/5280)× 8000 comes out very close
to 5 miles. Thus we see that if the bullet moves at 5 miles a second, it then will
continue to fall toward the earth at the same rate of 16 feet each second, but will
never get any closer because the earth keeps curving away from it. Thus it was
that Mr. Gagarin maintained himself in space while going 25,000 miles around
the earth at approximately 5 miles per second. (He took a little longer because
he was a little higher.)

Any great discovery of a new law is useful only if we can take more out than
we put in. Now, Newton used the second and third of Kepler’s laws to deduce
his law of gravitation. What did he predict? First, his analysis of the moon’s
motion was a prediction because it connected the falling of objects on the earth’s
surface with that of the moon. Second, the question is, is the orbit an ellipse?
We shall see in a later chapter how it is possible to calculate the motion exactly,
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and indeed one can prove that it should be an ellipse,* so no extra fact is needed
to explain Kepler’s first law. Thus Newton made his first powerful prediction.

The law of gravitation explains many phenomena not previously understood.
For example, the pull of the moon on the earth causes the tides, hitherto mys-
terious. The moon pulls the water up under it and makes the tides—people
had thought of that before, but they were not as clever as Newton, and so they
thought there ought to be only one tide during the day. The reasoning was that
the moon pulls the water up under it, making a high tide and a low tide, and since
the earth spins underneath, that makes the tide at one station go up and down
every 24 hours. Actually the tide goes up and down in 12 hours. Another school
of thought claimed that the high tide should be on the other side of the earth
because, so they argued, the moon pulls the earth away from the water! Both of
these theories are wrong. It actually works like this: the pull of the moon for the
earth and for the water is “balanced” at the center. But the water which is closer
to the moon is pulled more than the average and the water which is farther away
from it is pulled less than the average. Furthermore, the water can flow while the
more rigid earth cannot. The true picture is a combination of these two things.

What do we mean by “balanced”? What balances? If the moon pulls the
whole earth toward it, why doesn’t the earth fall right “up” to the moon? Because
the earth does the same trick as the moon, it goes in a circle around a point
which is inside the earth but not at its center. The moon does not just go around
the earth, the earth and the moon both go around a central position, each falling
toward this common position, as shown in Fig. 7-5. This motion around the

MOON

EARTH

H2O

A

B

C POINT AROUND WHICH
EARTH & MOON ROTATE

Fig. 7-5. The earth-moon system, with tides.

* The proof is not given in this course.
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common center is what balances the fall of each. So the earth is not going in a
straight line either; it travels in a circle. The water on the far side is “unbalanced”
because the moon’s attraction there is weaker than it is at the center of the
earth, where it just balances the “centrifugal force.” The result of this imbalance
is that the water rises up, away from the center of the earth. On the near side,
the attraction from the moon is stronger, and the imbalance is in the opposite
direction in space, but again away from the center of the earth. The net result is
that we get two tidal bulges.

7-5 Universal gravitation

What else can we understand when we understand gravity? Everyone knows
the earth is round. Why is the earth round? That is easy; it is due to gravitation.
The earth can be understood to be round merely because everything attracts
everything else and so it has attracted itself together as far as it can! If we go
even further, the earth is not exactly a sphere because it is rotating, and this
brings in centrifugal effects which tend to oppose gravity near the equator. It
turns out that the earth should be elliptical, and we even get the right shape for
the ellipse. We can thus deduce that the sun, the moon, and the earth should be
(nearly) spheres, just from the law of gravitation.

What else can you do with the law of gravitation? If we look at the moons
of Jupiter we can understand everything about the way they move around that
planet. Incidentally, there was once a certain difficulty with the moons of Jupiter
that is worth remarking on. These satellites were studied very carefully by
Roemer, who noticed that the moons sometimes seemed to be ahead of schedule,
and sometimes behind. (One can find their schedules by waiting a very long time
and finding out how long it takes on the average for the moons to go around.)
Now they were ahead when Jupiter was particularly close to the earth and they
were behind when Jupiter was farther from the earth. This would have been
a very difficult thing to explain according to the law of gravitation—it would
have been, in fact, the death of this wonderful theory if there were no other
explanation. If a law does not work even in one place where it ought to, it is
just wrong. But the reason for this discrepancy was very simple and beautiful: it
takes a little while to see the moons of Jupiter because of the time it takes light
to travel from Jupiter to the earth. When Jupiter is closer to the earth the time
is a little less, and when it is farther from the earth, the time is more. This is why
moons appear to be, on the average, a little ahead or a little behind, depending
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on whether they are closer to or farther from the earth. This phenomenon showed
that light does not travel instantaneously, and furnished the first estimate of the
speed of light. This was done in 1656.

If all of the planets push and pull on each other, the force which controls,
let us say, Jupiter in going around the sun is not just the force from the sun;
there is also a pull from, say, Saturn. This force is not really strong, since the
sun is much more massive than Saturn, but there is some pull, so the orbit
of Jupiter should not be a perfect ellipse, and it is not; it is slightly off, and
“wobbles” around the correct elliptical orbit. Such a motion is a little more
complicated. Attempts were made to analyze the motions of Jupiter, Saturn,
and Uranus on the basis of the law of gravitation. The effects of each of these
planets on each other were calculated to see whether or not the tiny deviations
and irregularities in these motions could be completely understood from this
one law. Lo and behold, for Jupiter and Saturn, all was well, but Uranus was
“weird.” It behaved in a very peculiar manner. It was not travelling in an exact
ellipse, but that was understandable, because of the attractions of Jupiter and
Saturn. But even if allowance were made for these attractions, Uranus still was
not going right, so the laws of gravitation were in danger of being overturned,
a possibility that could not be ruled out. Two men, Adams and Le Verrier, in
England and France, independently, arrived at another possibility: perhaps there
is another planet, dark and invisible, which men had not seen. This planet, N ,
could pull on Uranus. They calculated where such a planet would have to be in
order to cause the observed perturbations. They sent messages to the respective
observatories, saying, “Gentlemen, point your telescope to such and such a place,
and you will see a new planet.” It often depends on with whom you are working
as to whether they pay any attention to you or not. They did pay attention to
Le Verrier; they looked, and there planet N was! The other observatory then
also looked very quickly in the next few days and saw it too.

This discovery shows that Newton’s laws are absolutely right in the solar
system; but do they extend beyond the relatively small distances of the nearest
planets? The first test lies in the question, do stars attract each other as well as
planets? We have definite evidence that they do in the double stars. Figure 7-6
shows a double star—two stars very close together (there is also a third star in
the picture so that we will know that the photograph was not turned). The stars
are also shown as they appeared several years later. We see that, relative to the
“fixed” star, the axis of the pair has rotated, i.e., the two stars are going around
each other. Do they rotate according to Newton’s laws? Careful measurements
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Fig. 7-6. A double-star system.
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of the relative positions of one such double star system are shown in Fig. 7-7.
There we see a beautiful ellipse, the measures starting in 1862 and going all the
way around to 1904 (by now it must have gone around once more). Everything
coincides with Newton’s laws, except that the star Sirius A is not at the focus.
Why should that be? Because the plane of the ellipse is not in the “plane of the
sky.” We are not looking at right angles to the orbit plane, and when an ellipse is
viewed at a tilt, it remains an ellipse but the focus is no longer at the same place.
Thus we can analyze double stars, moving about each other, according to the
requirements of the gravitational law.

Fig. 7-8. A globular star cluster.

That the law of gravitation is true at even bigger distances is indicated in
Fig. 7-8. If one cannot see gravitation acting here, he has no soul. This figure
shows one of the most beautiful things in the sky—a globular star cluster. All
of the dots are stars. Although they look as if they are packed solid toward the
center, that is due to the fallibility of our instruments. Actually, the distances
between even the centermost stars are very great and they very rarely collide.
There are more stars in the interior than farther out, and as we move outward
there are fewer and fewer. It is obvious that there is an attraction among these
stars. It is clear that gravitation exists at these enormous dimensions, perhaps
100,000 times the size of the solar system. Let us now go further, and look at an

7-12



Fig. 7-9. A galaxy.

entire galaxy, shown in Fig. 7-9. The shape of this galaxy indicates an obvious
tendency for its matter to agglomerate. Of course we cannot prove that the
law here is precisely inverse square, only that there is still an attraction, at this
enormous dimension, that holds the whole thing together. One may say, “Well,
that is all very clever but why is it not just a ball?” Because it is spinning and
has angular momentum which it cannot give up as it contracts; it must contract
mostly in a plane. (Incidentally, if you are looking for a good problem, the
exact details of how the arms are formed and what determines the shapes of
these galaxies has not been worked out.) It is, however, clear that the shape of
the galaxy is due to gravitation even though the complexities of its structure
have not yet allowed us to analyze it completely. In a galaxy we have a scale
of perhaps 50,000 to 100,000 light years. The earth’s distance from the sun is
8 1

3 light minutes, so you can see how large these dimensions are.
Gravity appears to exist at even bigger dimensions, as indicated by Fig. 7-10,

which shows many “little” things clustered together. This is a cluster of galaxies,
just like a star cluster. Thus galaxies attract each other at such distances that
they too are agglomerated into clusters. Perhaps gravitation exists even over
distances of tens of millions of light years; so far as we now know, gravity seems
to go out forever inversely as the square of the distance.
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Fig. 7-10. A cluster of galaxies.

Fig. 7-11. An interstellar dust cloud.
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Fig. 7-12. The formation of new stars?

Not only can we understand the nebulae, but from the law of gravitation we
can even get some ideas about the origin of the stars. If we have a big cloud of
dust and gas, as indicated in Fig. 7-11, the gravitational attractions of the pieces
of dust for one another might make them form little lumps. Barely visible in the
figure are “little” black spots which may be the beginning of the accumulations
of dust and gases which, due to their gravitation, begin to form stars. Whether
we have ever seen a star form or not is still debatable. Figure 7-12 shows the one
piece of evidence which suggests that we have. At the left is a picture of a region
of gas with some stars in it taken in 1947, and at the right is another picture,
taken only 7 years later, which shows two new bright spots. Has gas accumulated,
has gravity acted hard enough and collected it into a ball big enough that the
stellar nuclear reaction starts in the interior and turns it into a star? Perhaps,
and perhaps not. It is unreasonable that in only seven years we should be so
lucky as to see a star change itself into visible form; it is much less probable that
we should see two!

7-6 Cavendish’s experiment

Gravitation, therefore, extends over enormous distances. But if there is a
force between any pair of objects, we ought to be able to measure the force
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between our own objects. Instead of having to watch the stars go around each
other, why can we not take a ball of lead and a marble and watch the marble go
toward the ball of lead? The difficulty of this experiment when done in such a
simple manner is the very weakness or delicacy of the force. It must be done with
extreme care, which means covering the apparatus to keep the air out, making
sure it is not electrically charged, and so on; then the force can be measured.
It was first measured by Cavendish with an apparatus which is schematically
indicated in Fig. 7-13. This first demonstrated the direct force between two large,
fixed balls of lead and two smaller balls of lead on the ends of an arm supported
by a very fine fiber, called a torsion fiber. By measuring how much the fiber
gets twisted, one can measure the strength of the force, verify that it is inversely
proportional to the square of the distance, and determine how strong it is. Thus,
one may accurately determine the coefficient G in the formula

F = G
mm′

r2 .

All the masses and distances are known. You say, “We knew it already for
the earth.” Yes, but we did not know the mass of the earth. By knowing G
from this experiment and by knowing how strongly the earth attracts, we can
indirectly learn how great is the mass of the earth! This experiment has been
called “weighing the earth” by some people, and it can be used to determine the
coefficient G of the gravity law. This is the only way in which the mass of the

M
M

Fig. 7-13. A simplified diagram of the apparatus used by Cavendish to
verify the law of universal gravitation for small objects and to measure
the gravitational constant G.
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earth can be determined. G turns out to be

6.670× 10−11 newton ·m2/kg2.

It is hard to exaggerate the importance of the effect on the history of science
produced by this great success of the theory of gravitation. Compare the confusion,
the lack of confidence, the incomplete knowledge that prevailed in the earlier ages,
when there were endless debates and paradoxes, with the clarity and simplicity
of this law—this fact that all the moons and planets and stars have such a simple
rule to govern them, and further that man could understand it and deduce how
the planets should move! This is the reason for the success of the sciences in
following years, for it gave hope that the other phenomena of the world might
also have such beautifully simple laws.

7-7 What is gravity?

But is this such a simple law? What about the machinery of it? All we have
done is to describe how the earth moves around the sun, but we have not said
what makes it go. Newton made no hypotheses about this; he was satisfied to find
what it did without getting into the machinery of it. No one has since given any
machinery. It is characteristic of the physical laws that they have this abstract
character. The law of conservation of energy is a theorem concerning quantities
that have to be calculated and added together, with no mention of the machinery,
and likewise the great laws of mechanics are quantitative mathematical laws for
which no machinery is available. Why can we use mathematics to describe nature
without a mechanism behind it? No one knows. We have to keep going because
we find out more that way.

Many mechanisms for gravitation have been suggested. It is interesting to
consider one of these, which many people have thought of from time to time. At
first, one is quite excited and happy when he “discovers” it, but he soon finds
that it is not correct. It was first discovered about 1750. Suppose there were
many particles moving in space at a very high speed in all directions and being
only slightly absorbed in going through matter. When they are absorbed, they
give an impulse to the earth. However, since there are as many going one way
as another, the impulses all balance. But when the sun is nearby, the particles
coming toward the earth through the sun are partially absorbed, so fewer of them
are coming from the sun than are coming from the other side. Therefore, the
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earth feels a net impulse toward the sun and it does not take one long to see
that it is inversely as the square of the distance—because of the variation of the
solid angle that the sun subtends as we vary the distance. What is wrong with
that machinery? It involves some new consequences which are not true. This
particular idea has the following trouble: the earth, in moving around the sun,
would impinge on more particles which are coming from its forward side than
from its hind side (when you run in the rain, the rain in your face is stronger
than that on the back of your head!). Therefore there would be more impulse
given the earth from the front, and the earth would feel a resistance to motion
and would be slowing up in its orbit. One can calculate how long it would take
for the earth to stop as a result of this resistance, and it would not take long
enough for the earth to still be in its orbit, so this mechanism does not work. No
machinery has ever been invented that “explains” gravity without also predicting
some other phenomenon that does not exist.

Next we shall discuss the possible relation of gravitation to other forces. There
is no explanation of gravitation in terms of other forces at the present time. It
is not an aspect of electricity or anything like that, so we have no explanation.
However, gravitation and other forces are very similar, and it is interesting to
note analogies. For example, the force of electricity between two charged objects
looks just like the law of gravitation: the force of electricity is a constant, with a
minus sign, times the product of the charges, and varies inversely as the square
of the distance. It is in the opposite direction—likes repel. But is it still not very
remarkable that the two laws involve the same function of distance? Perhaps
gravitation and electricity are much more closely related than we think. Many
attempts have been made to unify them; the so-called unified field theory is only
a very elegant attempt to combine electricity and gravitation; but, in comparing
gravitation and electricity, the most interesting thing is the relative strengths of
the forces. Any theory that contains them both must also deduce how strong the
gravity is.

If we take, in some natural units, the repulsion of two electrons (nature’s
universal charge) due to electricity, and the attraction of two electrons due to
their masses, we can measure the ratio of electrical repulsion to the gravitational
attraction. The ratio is independent of the distance and is a fundamental constant
of nature. The ratio is shown in Fig. 7-14. The gravitational attraction relative
to the electrical repulsion between two electrons is 1 divided by 4.17× 1042! The
question is, where does such a large number come from? It is not accidental, like
the ratio of the volume of the earth to the volume of a flea. We have considered
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Fig. 7-14. The relative strengths of electrical and gravitational inter-
actions between two electrons.

two natural aspects of the same thing, an electron. This fantastic number is a
natural constant, so it involves something deep in nature. Where could such
a tremendous number come from? Some say that we shall one day find the
“universal equation,” and in it, one of the roots will be this number. It is very
difficult to find an equation for which such a fantastic number is a natural root.
Other possibilities have been thought of; one is to relate it to the age of the
universe. Clearly, we have to find another large number somewhere. But do
we mean the age of the universe in years? No, because years are not “natural”;
they were devised by men. As an example of something natural, let us consider
the time it takes light to go across a proton, 10−24 second. If we compare this
time with the age of the universe, 2 × 1010 years, the answer is 10−42. It has
about the same number of zeros going off it, so it has been proposed that the
gravitational constant is related to the age of the universe. If that were the case,
the gravitational constant would change with time, because as the universe got
older the ratio of the age of the universe to the time which it takes for light to go
across a proton would be gradually increasing. Is it possible that the gravitational
constant is changing with time? Of course the changes would be so small that it
is quite difficult to be sure.

One test which we can think of is to determine what would have been the
effect of the change during the past 109 years, which is approximately the age
from the earliest life on the earth to now, and one-tenth of the age of the universe.
In this time, the gravity constant would have increased by about 10 percent.
It turns out that if we consider the structure of the sun—the balance between
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the weight of its material and the rate at which radiant energy is generated
inside it—we can deduce that if the gravity were 10 percent stronger, the sun
would be much more than 10 percent brighter—by the sixth power of the gravity
constant! If we calculate what happens to the orbit of the earth when the gravity
is changing, we find that the earth was then closer in. Altogether, the earth
would be about 100 degrees centigrade hotter, and all of the water would not
have been in the sea, but vapor in the air, so life would not have started in the
sea. So we do not now believe that the gravity constant is changing with the age
of the universe. But such arguments as the one we have just given are not very
convincing, and the subject is not completely closed.

It is a fact that the force of gravitation is proportional to the mass, the
quantity which is fundamentally a measure of inertia—of how hard it is to hold
something which is going around in a circle. Therefore two objects, one heavy
and one light, going around a larger object in the same circle at the same speed
because of gravity, will stay together because to go in a circle requires a force
which is stronger for a bigger mass. That is, the gravity is stronger for a given
mass in just the right proportion so that the two objects will go around together.
If one object were inside the other it would stay inside; it is a perfect balance.
Therefore, Gagarin or Titov would find things “weightless” inside a space ship; if
they happened to let go of a piece of chalk, for example, it would go around the
earth in exactly the same way as the whole space ship, and so it would appear
to remain suspended before them in space. It is very interesting that this force
is exactly proportional to the mass with great precision, because if it were not
exactly proportional there would be some effect by which inertia and weight
would differ. The absence of such an effect has been checked with great accuracy
by an experiment done first by Eötvös in 1909 and more recently by Dicke. For
all substances tried, the masses and weights are exactly proportional within 1
part in 1,000,000,000, or less. This is a remarkable experiment.

7-8 Gravity and relativity

Another topic deserving discussion is Einstein’s modification of Newton’s law
of gravitation. In spite of all the excitement it created, Newton’s law of gravitation
is not correct! It was modified by Einstein to take into account the theory of
relativity. According to Newton, the gravitational effect is instantaneous, that
is, if we were to move a mass, we would at once feel a new force because of the
new position of that mass; by such means we could send signals at infinite speed.
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Einstein advanced arguments which suggest that we cannot send signals faster
than the speed of light, so the law of gravitation must be wrong. By correcting
it to take the delays into account, we have a new law, called Einstein’s law of
gravitation. One feature of this new law which is quite easy to understand is this:
In the Einstein relativity theory, anything which has energy has mass—mass in
the sense that it is attracted gravitationally. Even light, which has an energy,
has a “mass.” When a light beam, which has energy in it, comes past the sun
there is an attraction on it by the sun. Thus the light does not go straight, but is
deflected. During the eclipse of the sun, for example, the stars which are around
the sun should appear displaced from where they would be if the sun were not
there, and this has been observed.

Finally, let us compare gravitation with other theories. In recent years we have
discovered that all mass is made of tiny particles and that there are several kinds
of interactions, such as nuclear forces, etc. None of these nuclear or electrical
forces has yet been found to explain gravitation. The quantum-mechanical aspects
of nature have not yet been carried over to gravitation. When the scale is so
small that we need the quantum effects, the gravitational effects are so weak
that the need for a quantum theory of gravitation has not yet developed. On
the other hand, for consistency in our physical theories it would be important to
see whether Newton’s law modified to Einstein’s law can be further modified to
be consistent with the uncertainty principle. This last modification has not yet
been completed.
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8

Motion

8-1 Description of motion

In order to find the laws governing the various changes that take place in
bodies as time goes on, we must be able to describe the changes and have some
way to record them. The simplest change to observe in a body is the apparent
change in its position with time, which we call motion. Let us consider some solid
object with a permanent mark, which we shall call a point, that we can observe.
We shall discuss the motion of the little marker, which might be the radiator cap
of an automobile or the center of a falling ball, and shall try to describe the fact
that it moves and how it moves.

These examples may sound trivial, but many subtleties enter into the descrip-
tion of change. Some changes are more difficult to describe than the motion of a
point on a solid object, for example the speed of drift of a cloud that is drifting
very slowly, but rapidly forming or evaporating, or the change of a woman’s mind.
We do not know a simple way to analyze a change of mind, but since the cloud
can be represented or described by many molecules, perhaps we can describe the
motion of the cloud in principle by describing the motion of all its individual
molecules. Likewise, perhaps even the changes in the mind may have a parallel
in changes of the atoms inside the brain, but we have no such knowledge yet.

At any rate, that is why we begin with the motion of points; perhaps we
should think of them as atom, but it is probably better to be more rough in
the beginning and simply to think of some kind of small objects—small, that
is, compared with the distance moved. For instance, in describing the motion
of a car that is going a hundred miles, we do not have to distinguish between
the front and the back of the car. To be sure, there are slight differences, but
for rough purposes we say “the car,” and likewise it does not matter that our
points are not absolute points; for our present purposes it is not necessary to be
extremely precise. Also, while we take a first look at this subject we are going
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Table 8-1

t (min) s (ft)
0 0
1 1200
2 4000
3 9000
4 9500
5 9600
6 13000
7 18000
8 23500
9 24000
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Fig. 8-1. Graph of distance versus time for the car.

to forget about the three dimensions of the world. We shall just concentrate
on moving in one direction, as in a car on one road. We shall return to three
dimensions after we see how to describe motion in one dimension. Now, you may
say, “This is all some kind of trivia,” and indeed it is. How can we describe such a
one-dimensional motion—let us say, of a car? Nothing could be simpler. Among
many possible ways, one would be the following. To determine the position of
the car at different times, we measure its distance from the starting point and
record all the observations. In Table 8-1, s represents the distance of the car, in
feet, from the starting point, and t represents the time in minutes. The first line
in the table represents zero distance and zero time—the car has not started yet.
After one minute it has started and has gone 1200 feet. Then in two minutes, it
goes farther—notice that it picked up more distance in the second minute—it
has accelerated; but something happened between 3 and 4 and even more so
at 5—it stopped at a light perhaps? Then it speeds up again and goes 13,000 feet
by the end of 6 minutes, 18,000 feet at the end of 7 minutes, and 23,500 feet in
8 minutes; at 9 minutes it has advanced to only 24,000 feet, because in the last
minute it was stopped by a cop.

That is one way to describe the motion. Another way is by means of a
graph. If we plot the time horizontally and the distance vertically, we obtain a
curve something like that shown in Fig. 8-1. As the time increases, the distance
increases, at first very slowly and then more rapidly, and very slowly again for a
little while at 4 minutes; then it increases again for a few minutes and finally,
at 9 minutes, appears to have stopped increasing. These observations can be
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Table 8-2

t (sec) s (ft)
0 0
1 16
2 64
3 144
4 256
5 400
6 576
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Fig. 8-2. Graph of distance versus time for a falling
body.

made from the graph, without a table. Obviously, for a complete description
one would have to know where the car is at the half-minute marks, too, but we
suppose that the graph means something, that the car has some position at all
the intermediate times.

The motion of a car is complicated. For another example we take something
that moves in a simpler manner, following more simple laws: a falling ball.
Table 8-2 gives the time in seconds and the distance in feet for a falling body.
At zero seconds the ball starts out at zero feet, and at the end of 1 second it
has fallen 16 feet. At the end of 2 seconds, it has fallen 64 feet, at the end of
3 seconds, 144 feet, and so on; if the tabulated numbers are plotted, we get the
nice parabolic curve shown in Fig. 8-2. The formula for this curve can be written
as

s = 16t2. (8.1)

This formula enables us to calculate the distances at any time. You might say
there ought to be a formula for the first graph too. Actually, one may write such
a formula abstractly, as

s = f(t), (8.2)

meaning that s is some quantity depending on t or, in mathematical phraseology,
s is a function of t. Since we do not know what the function is, there is no way
we can write it in definite algebraic form.

We have now seen two examples of motion, adequately described with very
simple ideas, no subtleties. However, there are subtleties—several of them. In
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the first place, what do we mean by time and space? It turns out that these deep
philosophical questions have to be analyzed very carefully in physics, and this
is not so easy to do. The theory of relativity shows that our ideas of space and
time are not as simple as one might think at first sight. However, for our present
purposes, for the accuracy that we need at first, we need not be very careful
about defining things precisely. Perhaps you say, “That’s a terrible thing—I
learned that in science we have to define everything precisely.” We cannot define
anything precisely! If we attempt to, we get into that paralysis of thought that
comes to philosophers, who sit opposite each other, one saying to the other, “You
don’t know what you are talking about!” The second one says, “What do you
mean by know? What do you mean by talking? What do you mean by you?,”
and so on. In order to be able to talk constructively, we just have to agree that
we are talking about roughly the same thing. You know as much about time as
we need for the present, but remember that there are some subtleties that have
to be discussed; we shall discuss them later.

Another subtlety involved, and already mentioned, is that it should be possible
to imagine that the moving point we are observing is always located somewhere.
(Of course when we are looking at it, there it is, but maybe when we look away it
isn’t there.) It turns out that in the motion of atoms, that idea also is false—we
cannot find a marker on an atom and watch it move. That subtlety we shall
have to get around in quantum mechanics. But we are first going to learn what
the problems are before introducing the complications, and then we shall be in a
better position to make corrections, in the light of the more recent knowledge
of the subject. We shall, therefore, take a simple point of view about time and
space. We know what these concepts are in a rough way, and those who have
driven a car know what speed means.

8-2 Speed

Even though we know roughly what “speed” means, there are still some
rather deep subtleties; consider that the learned Greeks were never able to
adequately describe problems involving velocity. The subtlety comes when we try
to comprehend exactly what is meant by “speed.” The Greeks got very confused
about this, and a new branch of mathematics had to be discovered beyond the
geometry and algebra of the Greeks, Arabs, and Babylonians. As an illustration
of the difficulty, try to solve this problem by sheer algebra: A balloon is being
inflated so that the volume of the balloon is increasing at the rate of 100 cm3
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per second; at what speed is the radius increasing when the volume is 1000 cm3?
The Greeks were somewhat confused by such problems, being helped, of course,
by some very confusing Greeks. To show that there were difficulties in reasoning
about speed at the time, Zeno produced a large number of paradoxes, of which
we shall mention one to illustrate his point that there are obvious difficulties in
thinking about motion. “Listen,” he says, “to the following argument: Achilles
runs 10 times as fast as a tortoise, nevertheless he can never catch the tortoise.
For, suppose that they start in a race where the tortoise is 100 meters ahead
of Achilles; then when Achilles has run the 100 meters to the place where the
tortoise was, the tortoise has proceeded 10 meters, having run one-tenth as fast.
Now, Achilles has to run another 10 meters to catch up with the tortoise, but on
arriving at the end of that run, he finds that the tortoise is still 1 meter ahead
of him; running another meter, he finds the tortoise 10 centimeters ahead, and
so on, ad infinitum. Therefore, at any moment the tortoise is always ahead of
Achilles and Achilles can never catch, up with the tortoise.” What is wrong with
that? It is that a finite amount of time can be divided into an infinite number of
pieces, just as a length of line can be divided into an infinite number of pieces
by dividing repeatedly by two. And so, although there are an infinite number
of steps (in the argument) to the point at which Achilles reaches the tortoise,
it doesn’t mean that there is an infinite amount of time. We can see from this
example that there are indeed some subtleties in reasoning about speed.

In order to get to the subtleties in a clearer fashion, we remind you of a
joke which you surely must have heard. At the point where the lady in the car
is caught by a cop, the cop comes up to her and says, “Lady, you were going
60 miles an hour!” She says, “That’s impossible, sir, I was travelling for only
seven minutes. It is ridiculous—how can I go 60 miles an hour when I wasn’t
going an hour?” How would you answer her if you were the cop? Of course, if
you were really the cop, then no subtleties are involved; it is very simple: you say,
“Tell that to the judge!” But let us suppose that we do not have that escape and
we make a more honest, intellectual attack on the problem, and try to explain to
this lady what we mean by the idea that she was going 60 miles an hour. Just
what do we mean? We say, “What we mean, lady, is this: if you kept on going
the same way as you are going now, in the next hour you would go 60 miles.” She
could say, “Well, my foot was off the accelerator and the car was slowing down,
so if I kept on going that way it would not go 60 miles.” Or consider the falling
ball and suppose we want to know its speed at the time three seconds if the ball
kept on going the way it is going. What does that mean—kept on accelerating,
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going faster? No—kept on going with the same velocity. But that is what we are
trying to define! For if the ball keeps on going the way it is going, it will just
keep on going the way it is going. Thus we need to define the velocity better.
What has to be kept the same? The lady can also argue this way: “If I kept on
going the way I’m going for one more hour, I would run into that wall at the end
of the street!” It is not so easy to say what we mean.

Many physicists think that measurement is the only definition of anything.
Obviously, then, we should use the instrument that measures the speed—the
speedometer—and say, “Look, lady, your speedometer reads 60.” So she says,
“My speedometer is broken and didn’t read at all.” Does that mean the car is
standing still? We believe that there is something to measure before we build
the speedometer. Only then can we say, for example, “The speedometer isn’t
working right,” or “the speedometer is broken.” That would be a meaningless
sentence if the velocity had no meaning independent of the speedometer. So we
have in our minds, obviously, an idea that is independent of the speedometer,
and the speedometer is meant only to measure this idea. So let us see if we can
get a better definition of the idea. We say, “Yes, of course, before you went an
hour, you would hit that wall, but if you went one second, you would go 88 feet;
lady, you were going 88 feet per second, and if you kept on going, the next second
it would be 88 feet, and the wall down there is farther away than that.” She says,
“Yes, but there’s no law against going 88 feet per second! There is only a law
against going 60 miles an hour.” “But,” we reply, “it’s the same thing.” If it is
the same thing, it should not be necessary to go into this circumlocution about
88 feet per second. In fact, the falling ball could not keep going the same way
even one second because it would be changing speed, and we shall have to define
speed somehow.

Now we seem to be getting on the right track; it goes something like this: If
the lady kept on going for another 1/1000 of an hour, she would go 1/1000 of
60 miles. In other words, she does not have to keep on going for the whole hour;
the point is that for a moment she is going at that speed. Now what that means
is that if she went just a little bit more in time, the extra distance she goes would
be the same as that of a car that goes at a steady speed of 60 miles an hour.
Perhaps the idea of the 88 feet per second is right; we see how far she went in
the last second, divide by 88 feet, and if it comes out 1 the speed was 60 miles
an hour. In other words, we can find the speed in this way: We ask, how far
do we go in a very short time? We divide that distance by the time, and that
gives the speed. But the time should be made as short as possible, the shorter
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the better, because some change could take place during that time. If we take
the time of a falling body as an hour, the idea is ridiculous. If we take it as a
second, the result is pretty good for a car, because there is not much change in
speed, but not for a falling body; so in order to get the speed more and more
accurately, we should take a smaller and smaller time interval. What we should
do is take a millionth of a second, and divide that distance by a millionth of a
second. The result gives the distance per second, which is what we mean by the
velocity, so we can define it that way. That is a successful answer for the lady, or
rather, that is the definition that we are going to use.

The foregoing definition involves a new idea, an idea that was not available to
the Greeks in a general form. That idea was to take an infinitesimal distance and
the corresponding infinitesimal time, form the ratio, and watch what happens
to that ratio as the time that we use gets smaller and smaller and smaller. In
other words, take a limit of the distance travelled divided by the time required,
as the time taken gets smaller and smaller, ad infinitum. This idea was invented
by Newton and by Leibniz, independently, and is the beginning of a new branch
of mathematics, called the differential calculus. Calculus was invented in order
to describe motion, and its first application was to the problem of defining what
is meant by going “60 miles an hour.”

Let us try to define velocity a little better. Suppose that in a short time, ε,
the car or other body goes a short distance x; then the velocity, v, is defined as

v = x/ε,

an approximation that becomes better and better as the ε is taken smaller and
smaller. If a mathematical expression is desired, we can say that the velocity
equals the limit as the ε is made to go smaller and smaller in the expression x/ε,
or

v = lim
ε→0

x

ε
. (8.3)

We cannot do the same thing with the lady in the car, because the table is
incomplete. We know only where she was at intervals of one minute; we can
get a rough idea that she was going 5000 ft/min during the 7th minute, but we
do not know, at exactly the moment 7 minutes, whether she had been speeding
up and the speed was 4900 ft/min at the beginning of the 6th minute, and is
now 5100 ft/min, or something else, because we do not have the exact details in
between. So only if the table were completed with an infinite number of entries
could we really calculate the velocity from such a table. On the other hand,
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when we have a complete mathematical formula, as in the case of a falling body
(Eq. 8.1), then it is possible to calculate the velocity, because we can calculate
the position at any time whatsoever.

Let us take as an example the problem of determining the velocity of the
falling ball at the particular time 5 seconds. One way to do this is to see from
Table 8-2 what it did in the 5th second; it went 400− 256 = 144 ft, so it is going
144 ft/sec; however, that is wrong, because the speed is changing; on the average
it is 144 ft/sec during this interval, but the ball is speeding up and is really going
faster than 144 ft/sec. We want to find out exactly how fast. The technique
involved in this process is the following: We know where the ball was at 5 sec.
At 5.1 sec, the distance that it has gone all together is 16(5.1)2 = 416.16 ft (see
Eq. 8.1). At 5 sec it had already fallen 400 ft; in the last tenth of a second it
fell 416.16− 400 = 16.16 ft. Since 16.16 ft in 0.1 sec is the same as 161.6 ft/sec,
that is the speed more or less, but it is not exactly correct. Is that the speed
at 5, or at 5.1, or halfway between at 5.05 sec, or when is that the speed? Never
mind—the problem was to find the speed at 5 seconds, and we do not have exactly
that; we have to do a better job. So, we take one-thousandth of a second more
than 5 sec, or 5.001 sec, and calculate the total fall as

s = 16(5.001)2 = 16(25.010001) = 400.160016 ft.

In the last 0.001 sec the ball fell 0.160016 ft, and if we divide this number by
0.001 sec we obtain the speed as 160.016 ft/sec. That is closer, very close, but it is
still not exact. It should now be evident what we must do to find the speed exactly.
To perform the mathematics we state the problem a little more abstractly: to
find the velocity at a special time, t0, which in the original problem was 5 sec.
Now the distance at t0, which we call s0, is 16t20, or 400 ft in this case. In order
to find the velocity, we ask, “At the time t0 + (a little bit), or t0 + ε, where is
the body?” The new position is 16(t0 + ε)2 = 16t20 + 32t0ε+ 16ε2. So it is farther
along than it was before, because before it was only 16t20. This distance we shall
call s0 + (a little bit more), or s0 + x (if x is the extra bit). Now if we subtract
the distance at t0 from the distance at t0 + ε, we get x, the extra distance gone,
as x = 32t0 · ε+ 16ε2. Our first approximation to the velocity is

v = x

ε
= 32t0 + 16ε. (8.4)

The true velocity is the value of this ratio, x/ε, when ε becomes vanishingly small.
In other words, after forming the ratio, we take the limit as ε gets smaller and
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smaller, that is, approaches 0. The equation reduces to,

v (at time t0) = 32t0.

In our problem, t0 = 5 sec, so the solution is v = 32× 5 = 160 ft/sec. A few lines
above, where we took ε as 0.1 and 0.001 sec successively, the value we got for v
was a little more than this, but now we see that the actual velocity is precisely
160 ft/sec.

8-3 Speed as a derivative

The procedure we have just carried out is performed so often in mathematics
that for convenience special notations have been assigned to our quantities ε
and x. In this notation, the ε used above becomes ∆t and x becomes ∆s. This
∆t means “an extra bit of t,” and carries an implication that it can be made
smaller. The prefix ∆ is not a multiplier, any more than sin θ means s · i · n · θ—it
simply defines a time increment, and reminds us of its special character. ∆s has
an analogous meaning for the distance s. Since ∆ is not a factor, it cannot be
cancelled in the ratio ∆s/∆t to give s/t, any more than the ratio sin θ/ sin 2θ
can be reduced to 1/2 by cancellation. In this notation, velocity is equal to the
limit of ∆s/∆t when ∆t gets smaller, or

v = lim
∆t→0

∆s
∆t . (8.5)

This is really the same as our previous expression (8.3) with ε and x, but it has
the advantage of showing that something is changing, and it keeps track of what
is changing.

Incidentally, to a good approximation we have another law, which says that
the change in distance of a moving point is the velocity times the time interval,
or ∆s = v∆t. This statement is true only if the velocity is not changing during
that time interval, and this condition is true only in the limit as ∆t goes to 0.
Physicists like to write it ds = v dt, because by dt they mean ∆t in circumstances
in which it is very small; with this understanding, the expression is valid to a close
approximation. If ∆t is too long, the velocity might change during the interval,
and the approximation would become less accurate. For a time dt, approaching
zero, ds = v dt precisely. In this notation we can write (8.5) as

v = lim
∆t→0

∆s
∆t = ds

dt
.
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The quantity ds/dt which we found above is called the “derivative of s with
respect to t” (this language helps to keep track of what was changed), and the
complicated process of finding it is called finding a derivative, or differentiating.
The ds’s and dt’s which appear separately are called differentials. To familiarize
you with the words, we say we found the derivative of the function 16t2, or the
derivative (with respect to t) of 16t2 is 32t. When we get used to the words, the
ideas are more easily understood. For practice, let us find the derivative of a more
complicated function. We shall consider the formula s = At3 +Bt+ C, which
might describe the motion of a point. The letters A, B, and C represent constant
numbers, as in the familiar general form of a quadratic equation. Starting from
the formula for the motion, we wish to find the velocity at any time. To find the
velocity in the more elegant manner, we change t to t+ ∆t and note that s is
then changed to s+ some ∆s; then we find the ∆s in terms of ∆t. That is to say,

s+ ∆s = A(t+ ∆t)3 +B(t+ ∆t) + C

= At3 +Bt+ C + 3At2 ∆t+B∆t+ 3At(∆t)2 +A(∆t)3,

but since
s = At3 +Bt+ C,

we find that
∆s = 3At2 ∆t+B∆t+ 3At(∆t)2 +A(∆t)3.

But we do not want ∆s—we want ∆s divided by ∆t. We divide the preceding
equation by ∆t, getting

∆s
∆t = 3At2 +B + 3At(∆t) +A(∆t)2.

As ∆t goes toward 0 the limit of ∆s/∆t is ds/dt and is equal to
ds

dt
= 3At2 +B.

This is the fundamental process of calculus, differentiating functions. The process
is even more simple than it appears. Observe that when these expansions contain
any term with a square or a cube or any higher power of ∆t, such terms may be
dropped at once, since they will go to 0 when the limit is taken. After a little
practice the process gets easier because one knows what to leave out. There are
many rules or formulas for differentiating various types of functions. These can
be memorized, or can be found in tables. A short list is found in Table 8-3.
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Table 8-3. A Short Table of Derivatives

s, u, v, w are arbitrary functions of t; a, b, c, and n are arbitrary constants

Function Derivative

s = tn
ds

dt
= ntn−1

s = cu
ds

dt
= c

du

dt

s = u+ v + w + · · · ds

dt
= du

dt
+ dv

dt
+ dw

dt
+ · · ·

s = c
ds

dt
= 0

s = uavbwc · · · ds

dt
= s

(
a

u

du

dt
+ b

v

dv

dt
+ c

w

dw

dt
+ · · ·

)

8-4 Distance as an integral

Now we have to discuss the inverse problem. Suppose that instead of a table of
distances, we have a table of speeds at different times, starting from zero. For the
falling ball, such speeds and times are shown in Table 8-4. A similar table could
be constructed for the velocity of the car, by recording the speedometer reading
every minute or half-minute. If we know how fast the car is going at any time,
can we determine how far it goes? This problem is just the inverse of the one
solved above; we are given the velocity and asked to find the distance. How can
we find the distance if we know the speed? If the speed of the car is not constant,
and the lady goes sixty miles an hour for a moment, then slows down, speeds up,

Table 8-4

Velocity of a Falling Ball

t (sec) v (ft/sec)
0 0
1 32
2 64
3 96
4 128
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and so on, how can we determine how far she has gone? That is easy. We use
the same idea, and express the distance in terms of infinitesimals. Let us say, “In
the first second her speed was such and such, and from the formula ∆s = v∆t
we can calculate how far the car went the first second at that speed.” Now in the
next second her speed is nearly the same, but slightly different; we can calculate
how far she went in the next second by taking the new speed times the time.
We proceed similarly for each second, to the end of the run. We now have a
number of little distances, and the total distance will be the sum of all these little
pieces. That is, the distance will be the sum of the velocities times the times,
or s =

∑
v∆t, where the Greek letter

∑
(sigma) is used to denote addition. To

be more precise, it is the sum of the velocity at a certain time, let us say the
i-th time, multiplied by ∆t.

s =
∑
i

v(ti) ∆t. (8.6)

The rule for the times is that ti+1 = ti + ∆t. However, the distance we obtain by
this method will not be correct, because the velocity changes during the time
interval ∆t. If we take the times short enough, the sum is precise, so we take
them smaller and smaller until we obtain the desired accuracy. The true s is

s = lim
∆t→0

∑
i

v(ti) ∆t. (8.7)

The mathematicians have invented a symbol for this limit, analogous to the
symbol for the differential. The ∆ turns into a d to remind us that the time is as
small as it can be; the velocity is then called v at the time t, and the addition is
written as a sum with a great “s,”

∫
(from the Latin summa), which has become

distorted and is now unfortunately just called an integral sign. Thus we write

s =
∫
v(t) dt. (8.8)

This process of adding all these terms together is called integration, and it is
the opposite process to differentiation. The derivative of this integral is v, so
one operator (d) undoes the other (

∫
). One can get formulas for integrals by

taking the formulas for derivatives and running them backwards, because they are
related to each other inversely. Thus one can work out his own table of integrals
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by differentiating all sorts of functions. For every formula with a differential, we
get an integral formula if we turn it around.

Every function can be differentiated analytically, i.e., the process can be
carried out algebraically, and leads to a definite function. But it is not possible
in a simple manner to write an analytical value for any integral at will. You can
calculate it, for instance, by doing the above sum, and then doing it again with a
finer interval ∆t and again with a finer interval until you have it nearly right. In
general, given some particular function, it is not possible to find, analytically, what
the integral is. One may always try to find a function which, when differentiated,
gives some desired function; but one may not find it, and it may not exist, in
the sense of being expressible in terms of functions that have already been given
names.

8-5 Acceleration

The next step in developing the equations of motion is to introduce another
idea which goes beyond the concept of velocity to that of change of velocity,
and we now ask, “How does the velocity change?” In previous chapters we have
discussed cases in which forces produce changes in velocity. You may have heard
with great excitement about some car that can get from rest to 60 miles an hour
in ten seconds flat. From such a performance we can see how fast the speed
changes, but only on the average. What we shall now discuss is the next level of
complexity, which is how fast the velocity is changing. In other words, by how
many feet per second does the velocity change in a second, that is, how many
feet per second, per second? We previously derived the formula for the velocity
of a falling body as v = 32t, which is charted in Table 8-4, and now we want to
find out how much the velocity changes per second; this quantity is called the
acceleration.

Acceleration is defined as the time rate of change of velocity. From the
preceding discussion we know enough already to write the acceleration as the
derivative dv/dt, in the same way that the velocity is the derivative of the distance.
If we now differentiate the formula v = 32t we obtain, for a falling body,

a = dv

dt
= 32. (8.9)

[To differentiate the term 32t we can utilize the result obtained in a previous
problem, where we found that the derivative of Bt is simply B (a constant). So
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by letting B = 32, we have at once that the derivative of 32t is 32.] This means
that the velocity of a falling body is changing by 32 feet per second, per second
always. We also see from Table 8-4 that the velocity increases by 32 ft/sec in each
second. This is a very simple case, for accelerations are usually not constant. The
reason the acceleration is constant here is that the force on the falling body is
constant, and Newton’s law says that the acceleration is proportional to the force.

As a further example, let us find the acceleration in the problem we have
already solved for the velocity. Starting with

s = At3 +Bt+ C

we obtained, for v = ds/dt,
v = 3At2 +B.

Since acceleration is the derivative of the velocity with respect to the time, we
need to differentiate the last expression above. Recall the rule that the derivative
of the two terms on the right equals the sum of the derivatives of the individual
terms. To differentiate the first of these terms, instead of going through the
fundamental process again we note that we have already differentiated a quadratic
term when we differentiated 16t2, and the effect was to double the numerical
coefficient and change the t2 to t; let us assume that the same thing will happen
this time, and you can check the result yourself. The derivative of 3At2 will
then be 6At. Next we differentiate B, a constant term; but by a rule stated
previously, the derivative of B is zero; hence this term contributes nothing to
the acceleration. The final result, therefore, is a = dv/dt = 6At.

For reference, we state two very useful formulas, which can be obtained by
integration. If a body starts from rest and moves with a constant acceleration, g,
its velocity v at any time t is given by

v = gt.

The distance it covers in the same time is
s = 1

2gt
2.

Various mathematical notations are used in writing derivatives. Since velocity
is ds/dt and acceleration is the time derivative of the velocity, we can also write

a = d

dt

(
ds

dt

)
= d2s

dt2
, (8.10)

which are common ways of writing a second derivative.
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We have another law that the velocity is equal to the integral of the acceleration.
This is just the opposite of a = dv/dt; we have already seen that distance is
the integral of the velocity, so distance can be found by twice integrating the
acceleration.

In the foregoing discussion the motion was in only one dimension, and
space permits only a brief discussion of motion in three dimensions. Consider a
particle P which moves in three dimensions in any manner whatsoever. At the
beginning of this chapter, we opened our discussion of the one-dimensional case
of a moving car by observing the distance of the car from its starting point at
various times. We then discussed velocity in terms of changes of these distances
with time, and acceleration in terms of changes in velocity. We can treat three-
dimensional motion analogously. It will be simpler to illustrate the motion on a
two-dimensional diagram, and then extend the ideas to three dimensions. We
establish a pair of axes at right angles to each other, and determine the position
of the particle at any moment by measuring how far it is from each of the two
axes. Thus each position is given in terms of an x-distance and a y-distance, and
the motion can be described by constructing a table in which both these distances
are given as functions of time. (Extension of this process to three dimensions
requires only another axis, at right angles to the first two, and measuring a third
distance, the z-distance. The distances are now measured from coordinate planes
instead of lines.) Having constructed a table with x- and y-distances, how can
we determine the velocity? We first find the components of velocity in each
direction. The horizontal part of the velocity, or x-component, is the derivative
of the x-distance with respect to the time, or

vx = dx/dt. (8.11)

Similarly, the vertical part of the velocity, or y-component, is

vy = dy/dt. (8.12)
In the third dimension,

vz = dz/dt. (8.13)

Now, given the components of velocity, how can we find the velocity along
the actual path of motion? In the two-dimensional case, consider two successive
positions of the particle, separated by a short distance ∆s and a short time
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x

y
∆s ≈

√
(∆x)2 + (∆y)2

t1

t2∆y ≈ vy ∆t

∆x ≈ vx ∆t

Fig. 8-3. Description of the motion of a body in two dimensions and
the computation of its velocity.

interval t2 − t1 = ∆t. In the time ∆t the particle moves horizontally a dis-
tance ∆x ≈ vx ∆t, and vertically a distance ∆y ≈ vy ∆t. (The symbol “≈” is
read “is approximately.”) The actual distance moved is approximately

∆s ≈
√

(∆x)2 + (∆y)2, (8.14)

as shown in Fig. 8-3. The approximate velocity during this interval can be
obtained by dividing by ∆t and by letting ∆t go to 0, as at the beginning of the
chapter. We then get the velocity as

v = ds

dt
=
√

(dx/dt)2 + (dy/dt)2 =
√
v2
x + v2

y. (8.15)

For three dimensions the result is

v =
√
v2
x + v2

y + v2
z . (8.16)

In the same way as we defined velocities, we can define accelerations: we have
an x-component of acceleration ax, which is the derivative of vx, the x-component
of the velocity (that is, ax = d2x/dt2, the second derivative of x with respect
to t), and so on.

Let us consider one nice example of compound motion in a plane. We shall
take a motion in which a ball moves horizontally with a constant velocity u, and
at the same time goes vertically downward with a constant acceleration −g; what
is the motion? We can say dx/dt = vx = u. Since the velocity vx is constant,

x = ut, (8.17)
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and since the downward acceleration −g is constant, the distance y the object
falls can be written as

y = − 1
2gt

2. (8.18)

What is the curve of its path, i.e., what is the relation between y and x? We can
eliminate t from Eq. (8.18), since t = x/u. When we make this substitution we
find that

y = − g

2u2 x
2. (8.19)

This relation between y and x may be considered as the equation of the path of
the moving ball. When this equation is plotted we obtain a curve that is called a
parabola; any freely falling body that is shot out in any direction will travel in a
parabola, as shown in Fig. 8-4.

x
y

Fig. 8-4. The parabola described by a falling body with an initial
horizontal velocity.
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9

Newton’s Laws of Dynamics

9-1 Momentum and force

The discovery of the laws of dynamics, or the laws of motion, was a dramatic
moment in the history of science. Before Newton’s time, the motions of things like
the planets were a mystery, but after Newton there was complete understanding.
Even the slight deviations from Kepler’s laws, due to the perturbations of the
planets, were computable. The motions of pendulums, oscillators with springs
and weights in them, and so on, could all be analyzed completely after Newton’s
laws were enunciated. So it is with this chapter: before this chapter we could
not calculate how a mass on a spring would move; much less could we calculate
the perturbations on the planet Uranus due to Jupiter and Saturn. After this
chapter we will be able to compute not only the motion of the oscillating mass,
but also the perturbations on the planet Uranus produced by Jupiter and Saturn!

Galileo made a great advance in the understanding of motion when he dis-
covered the principle of inertia: if an object is left alone, is not disturbed, it
continues to move with a constant velocity in a straight line if it was originally
moving, or it continues to stand still if it was just standing still. Of course this
never appears to be the case in nature, for if we slide a block across a table it
stops, but that is because it is not left to itself—it is rubbing against the table.
It required a certain imagination to find the right rule, and that imagination was
supplied by Galileo.

Of course, the next thing which is needed is a rule for finding how an object
changes its speed if something is affecting it. That is, the contribution of Newton.
Newton wrote down three laws: The First Law was a mere restatement of the
Galilean principle of inertia just described. The Second Law gave a specific way
of determining how the velocity changes under different influences called forces.
The Third Law describes the forces to some extent, and we shall discuss that
at another time. Here we shall discuss only the Second Law, which asserts that
the motion of an object is changed by forces in this way: the time-rate-of-change
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of a quantity called momentum is proportional to the force. We shall state this
mathematically shortly, but let us first explain the idea.

Momentum is not the same as velocity. A lot of words are used in physics,
and they all have precise meanings in physics, although they may not have such
precise meanings in everyday language. Momentum is an example, and we must
define it precisely. If we exert a certain push with our arms on an object that
is light, it moves easily; if we push just as hard on another object that is much
heavier in the usual sense, then it moves much less rapidly. Actually, we must
change the words from “light” and “heavy” to less massive and more massive,
because there is a difference to be understood between the weight of an object
and its inertia. (How hard it is to get it going is one thing, and how much it
weighs is something else.) Weight and inertia are proportional, and on the earth’s
surface are often taken to be numerically equal, which causes a certain confusion
to the student. On Mars, weights would be different but the amount of force
needed to overcome inertia would be the same.

We use the term mass as a quantitative measure of inertia, and we may
measure mass, for example, by swinging an object in a circle at a certain speed
and measuring how much force we need to keep it in the circle. In this way we
find a certain quantity of mass for every object. Now the momentum of an object
is a product of two parts: its mass and its velocity. Thus Newton’s Second Law
may be written mathematically this way:

F = d

dt
(mv). (9.1)

Now there are several points to be considered. In writing down any law such as
this, we use many intuitive ideas, implications, and assumptions which are at
first combined approximately into our “law.” Later we may have to come back
and study in greater detail exactly what each term means, but if we try to do this
too soon we shall get confused. Thus at the beginning we take several things for
granted. First, that the mass of an object is constant; it isn’t really, but we shall
start out with the Newtonian approximation that mass is constant, the same all
the time, and that, further, when we put two objects together, their masses add.
These ideas were of course implied by Newton when he wrote his equation, for
otherwise it is meaningless. For example, suppose the mass varied inversely as
the velocity; then the momentum would never change in any circumstance, so
the law means nothing unless you know how the mass changes with velocity. At
first we say, it does not change.
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Then there are some implications concerning force. As a rough approximation
we think of force as a kind of push or pull that we make with our muscles, but
we can define it more accurately now that we have this law of motion. The most
important thing to realize is that this relationship involves not only changes in
the magnitude of the momentum or of the velocity but also in their direction. If
the mass is constant, then Eq. (9.1) can also be written as

F = m
dv

dt
= ma. (9.2)

The acceleration a is the rate of change of the velocity, and Newton’s Second
Law says more than that the effect of a given force varies inversely as the mass;
it says also that the direction of the change in the velocity and the direction of
the force are the same. Thus we must understand that a change in a velocity, or
an acceleration, has a wider meaning than in common language: The velocity
of a moving object can change by its speeding up, slowing down (when it slows
down, we say it accelerates with a negative acceleration), or changing its direction
of motion. An acceleration at right angles to the velocity was discussed in
Chapter 7. There we saw that an object moving in a circle of radius R with a
certain speed v along the circle falls away from a straightline path by a distance
equal to 1

2 (v2/R)t2 if t is very small. Thus the formula for acceleration at right
angles to the motion is

a = v2/R, (9.3)

and a force at right angles to the velocity will cause an object to move in a curved
path whose radius of curvature can be found by dividing the force by the mass
to get the acceleration, and then using (9.3).

9-2 Speed and velocity

In order to make our language more precise, we shall make one further
definition in our use of the words speed and velocity. Ordinarily we think of speed
and velocity as being the same, and in ordinary language they are the same. But
in physics we have taken advantage of the fact that there are two words and have
chosen to use them to distinguish two ideas. We carefully distinguish velocity,
which has both magnitude and direction, from speed, which we choose to mean
the magnitude of the velocity, but which does not include the direction. We can
formulate this more precisely by describing how the x-, y-, and z-coordinates
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Fig. 9-1. A small displacement of an object.

of an object change with time. Suppose, for example, that at a certain instant
an object is moving as shown in Fig. 9-1. In a given small interval of time ∆t
it will move a certain distance ∆x in the x-direction, ∆y in the y-direction,
and ∆z in the z-direction. The total effect of these three coordinate changes is a
displacement ∆s along the diagonal of a parallelepiped whose sides are ∆x, ∆y,
and ∆z. In terms of the velocity, the displacement ∆x is the x-component of the
velocity times ∆t, and similarly for ∆y and ∆z:

∆x = vx ∆t, ∆y = vy ∆t, ∆z = vz ∆t. (9.4)

9-3 Components of velocity, acceleration, and force

In Eq. (9.4) we have resolved the velocity into components by telling how fast
the object is moving in the x-direction, the y-direction, and the z-direction. The
velocity is completely specified, both as to magnitude and direction, if we give
the numerical values of its three rectangular components:

vx = dx/dt, vy = dy/dt, vz = dz/dt. (9.5)

On the other hand, the speed of the object is

ds/dt = |v| =
√
v2
x + v2

y + v2
z . (9.6)

Next, suppose that, because of the action of a force, the velocity changes
to some other direction and a different magnitude, as shown in Fig. 9-2. We
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Fig. 9-2. A change in velocity in which both the magnitude and
direction change.

can analyze this apparently complex situation rather simply if we evaluate the
changes in the x-, y-, and z-components of velocity. The change in the component
of the velocity in the x-direction in a time ∆t is ∆vx = ax ∆t, where ax is what
we call the x-component of the acceleration. Similarly, we see that ∆vy = ay ∆t
and ∆vz = az ∆t. In these terms, we see that Newton’s Second Law, in saying
that the force is in the same direction as the acceleration, is really three laws, in
the sense that the component of the force in the x-, y-, or z-direction is equal to
the mass times the rate of change of the corresponding component of velocity:

Fx = m(dvx/dt) = m(d2x/dt2) = max,

Fy = m(dvy/dt) = m(d2y/dt2) = may ,

Fz = m(dvz/dt) = m(d2z/dt2) = maz .

(9.7)

Just as the velocity and acceleration have been resolved into components by
projecting a line segment representing the quantity, and its direction onto three
coordinate axes, so, in the same way, a force in a given direction is represented
by certain components in the x-, y-, and z-directions:

Fx = F cos (x, F ),
Fy = F cos (y, F ),
Fz = F cos (z, F ),

(9.8)
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where F is the magnitude of the force and (x, F ) represents the angle between
the x-axis and the direction of F , etc.

Newton’s Second Law is given in complete form in Eq. (9.7). If we know
the forces on an object and resolve them into x-, y-, and z-components, then
we can find the motion of the object from these equations. Let us consider a
simple example. Suppose there are no forces in the y- and z-directions, the only
force being in the x-direction, say vertically. Equation (9.7) tells us that there
would be changes in the velocity in the vertical direction, but no changes in
the horizontal direction. This was demonstrated with a special apparatus in
Chapter 7 (see Fig. 7-3). A falling body moves horizontally without any change
in horizontal motion, while it moves vertically the same way as it would move
if the horizontal motion were zero. In other words, motions in the x-, y-, and
z-directions are independent if the forces are not connected.

9-4 What is the force?

In order to use Newton’s laws, we have to have some formula for the force;
these laws say pay attention to the forces. If an object is accelerating, some
agency is at work; find it. Our program for the future of dynamics must be to
find the laws for the force. Newton himself went on to give some examples. In the
case of gravity he gave a specific formula for the force. In the case of other forces
he gave some part of the information in his Third Law, which we will study in
the next chapter, having to do with the equality of action and reaction.

Extending our previous example, what are the forces on objects near the
earth’s surface? Near the earth’s surface, the force in the vertical direction due to
gravity is proportional to the mass of the object and is nearly independent of height
for heights small compared with the earth’s radius R: F = GmM/R2 = mg,
where g = GM/R2 is called the acceleration of gravity. Thus the law of gravity
tells us that weight is proportional to mass; the force is in the vertical direction
and is the mass times g. Again we find that the motion in the horizontal direction
is at constant velocity. The interesting motion is in the vertical direction, and
Newton’s Second Law tells us

mg = m(d2x/dt2). (9.9)

Cancelling the m’s, we find that the acceleration in the x-direction is constant
and equal to g. This is of course the well known law of free fall under gravity,
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which leads to the equations

vx = v0 + gt,

x = x0 + v0t+ 1
2gt

2. (9.10)

As another example, let us suppose that we have been able to build a gad-
get (Fig. 9-3) which applies a force proportional to the distance and directed
oppositely—a spring. If we forget about gravity, which is of course balanced out
by the initial stretch of the spring, and talk only about excess forces, we see that
if we pull the mass down, the spring pulls up, while if we push it up the spring
pulls down. This machine has been designed carefully so that the force is greater,
the more we pull it up, in exact proportion to the displacement from the balanced
condition, and the force upward is similarly proportional to how far we pull down.
If we watch the dynamics of this machine, we see a rather beautiful motion—up,
down, up, down, . . . The question is, will Newton’s equations correctly describe
this motion? Let us see whether we can exactly calculate how it moves with this
periodic oscillation, by applying Newton’s law (9.7). In the present instance, the
equation is

− kx = m(dvx/dt). (9.11)

Here we have a situation where the velocity in the x-direction changes at a rate
proportional to x. Nothing will be gained by retaining numerous constants, so
we shall imagine either that the scale of time has changed or that there is an
accident in the units, so that we happen to have k/m = 1. Thus we shall try to
solve the equation

dvx/dt = −x. (9.12)

To proceed, we must know what vx is, but of course we know that the velocity is
the rate of change of the position.
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9-5 Meaning of the dynamical equations

Now let us try to analyze just what Eq. (9.12) means. Suppose that at a given
time t the object has a certain velocity vx and position x. What is the velocity
and what is the position at a slightly later time t + ε? If we can answer this
question our problem is solved, for then we can start with the given condition and
compute how it changes for the first instant, the next instant, the next instant,
and so on, and in this way we gradually evolve the motion. To be specific, let us
suppose that at the time t = 0 we are given that x = 1 and vx = 0. Why does
the object move at all? Because there is a force on it when it is at any position
except x = 0. If x > 0, that force is upward. Therefore the velocity which is
zero starts to change, because of the law of motion. Once it starts to build up
some velocity the object starts to move up, and so on. Now at any time t, if ε is
very small, we may express the position at time t+ ε in terms of the position at
time t and the velocity at time t to a very good approximation as

x(t+ ε) = x(t) + εvx(t). (9.13)

The smaller the ε, the more accurate this expression is, but it is still usefully
accurate even if ε is not vanishingly small. Now what about the velocity? In
order to get the velocity later, the velocity at the time t+ ε, we need to know
how the velocity changes, the acceleration. And how are we going to find the
acceleration? That is where the law of dynamics comes in. The law of dynamics
tells us what the acceleration is. It says the acceleration is −x.

vx(t+ ε) = vx(t) + εax(t) (9.14)
= vx(t)− εx(t). (9.15)

Equation (9.14) is merely kinematics; it says that a velocity changes because of
the presence of acceleration. But Eq. (9.15) is dynamics, because it relates the
acceleration to the force; it says that at this particular time for this particular
problem, you can replace the acceleration by −x(t). Therefore, if we know both
the x and v at a given time, we know the acceleration, which tells us the new
velocity, and we know the new position—this is how the machinery works. The
velocity changes a little bit because of the force, and the position changes a little
bit because of the velocity.
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9-6 Numerical solution of the equations

Now let us really solve the problem. Suppose that we take ε = 0.100 sec. After
we do all the work if we find that this is not small enough we may have to go back
and do it again with ε = 0.010 sec. Starting with our initial value x(0) = 1.00,
what is x(0.1)? It is the old position x(0) plus the velocity (which is zero) times
0.10 sec. Thus x(0.1) is still 1.00 because it has not yet started to move. But
the new velocity at 0.10 sec will be the old velocity v(0) = 0 plus ε times the
acceleration. The acceleration is −x(0) = −1.00. Thus

v(0.1) = 0.00− 0.10× 1.00 = −0.10.
Now at 0.20 sec

x(0.2) = x(0.1) + εv(0.1)
= 1.00− 0.10× 0.10 = 0.99

and
v(0.2) = v(0.1) + εa(0.1)

= −0.10− 0.10× 1.00 = −0.20.

And so, on and on and on, we can calculate the rest of the motion, and that is just
what we shall do. However, for practical purposes there are some little tricks by
which we can increase the accuracy. If we continued this calculation as we have
started it, we would find the motion only rather crudely because ε = 0.100 sec
is rather crude, and we would have to go to a very small interval, say ε = 0.01.
Then to go through a reasonable total time interval would take a lot of cycles
of computation. So we shall organize the work in a way that will increase the
precision of our calculations, using the same coarse interval ε = 0.10 sec. This
can be done if we make a subtle improvement in the technique of the analysis.

Notice that the new position is the old position plus the time interval ε times
the velocity. But the velocity when? The velocity at the beginning of the time
interval is one velocity and the velocity at the end of the time interval is another
velocity. Our improvement is to use the velocity halfway between. If we know
the speed now, but the speed is changing, then we are not going to get the right
answer by going at the same speed as now. We should use some speed between
the “now” speed and the “then” speed at the end of the interval. The same
considerations also apply to the velocity: to compute the velocity changes, we
should use the acceleration midway between the two times at which the velocity
is to be found. Thus the equations that we shall actually use will be something
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Table 9-1

Solution of dvx/dt = −x
Interval: ε = 0.10 sec

t x vx ax
0.0 1.000 0.000 −1.000

−0.050
0.1 0.995 −0.995

−0.150
0.2 0.980 −0.980

−0.248
0.3 0.955 −0.955

−0.343
0.4 0.921 −0.921

−0.435
0.5 0.877 −0.877

−0.523
0.6 0.825 −0.825

−0.605
0.7 0.764 −0.764

−0.682
0.8 0.696 −0.696

−0.751
0.9 0.621 −0.621

−0.814
1.0 0.540 −0.540

−0.868
1.1 0.453 −0.453

−0.913
1.2 0.362 −0.362

−0.949
1.3 0.267 −0.267

−0.976
1.4 0.169 −0.169

−0.993
1.5 0.070 −0.070

−1.000
1.6 −0.030 +0.030
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like this: the position later is equal to the position before plus ε times the velocity
at the time in the middle of the interval. Similarly, the velocity at this halfway
point is the velocity at a time ε before (which is in the middle of the previous
interval) plus ε times the acceleration at the time t. That is, we use the equations

x(t+ ε) = x(t) + εv(t+ ε/2),
v(t+ ε/2) = v(t− ε/2) + εa(t),

a(t) = −x(t).
(9.16)

There remains only one slight problem: what is v(ε/2)? At the start, we are
given v(0), not v(−ε/2). To get our calculation started, we shall use a special
equation, namely, v(ε/2) = v(0) + (ε/2)a(0).

Now we are ready to carry through our calculation. For convenience, we
may arrange the work in the form of a table, with columns for the time, the
position, the velocity, and the acceleration, and the in-between lines for the
velocity, as shown in Table 9-1. Such a table is, of course, just a convenient way
of representing the numerical values obtained from the set of equations (9.16),
and in fact the equations themselves need never be written. We just fill in the
various spaces in the table one by one. This table now gives us a very good idea
of the motion: it starts from rest, first picks up a little upward (negative) velocity
and it loses some of its distance. The acceleration is then a little bit less but
it is still gaining speed. But as it goes on it gains speed more and more slowly,
until as it passes x = 0 at about t = 1.50 sec we can confidently predict that it
will keep going, but now it will be on the other side; the position x will become
negative, the acceleration therefore positive. Thus the speed decreases. It is
interesting to compare these numbers with the function x = cos t, which is done
in Fig. 9-4. The agreement is within the three significant figure accuracy of our
calculation! We shall see later that x = cos t is the exact mathematical solution
of our equation of motion, but it is an impressive illustration of the power of
numerical analysis that such an easy calculation should give such precise results.

9-7 Planetary motions

The above analysis is very nice for the motion of an oscillating spring, but can
we analyze the motion of a planet around the sun? Let us see whether we can
arrive at an approximation to an ellipse for the orbit. We shall suppose that the
sun is infinitely heavy, in the sense that we shall not include its motion. Suppose

9-11



0

0.5

1.0

x

0.5 1.0 1.5 t (sec)

Fig. 9-4. Graph of the motion of a mass on a spring.

a planet starts at a certain place and is moving with a certain velocity; it goes
around the sun in some curve, and we shall try to analyze, by Newton’s laws of
motion and his law of gravitation, what the curve is. How? At a given moment it
is at some position in space. If the radial distance from the sun to this position
is called r, then we know that there is a force directed inward which, according
to the law of gravity, is equal to a constant times the product of the sun’s mass
and the planet’s mass divided by the square of the distance. To analyze this
further we must find out what acceleration will be produced by this force. We
shall need the components of the acceleration along two directions, which we call
x and y. Thus if we specify the position of the planet at a given moment by
giving x and y (we shall suppose that z is always zero because there is no force
in the z-direction and, if there is no initial velocity vz, there will be nothing to
make z other than zero), the force is directed along the line joining the planet to
the sun, as shown in Fig. 9-5.

SUN x

y
Fx PLANET (x, y)

FyF

Fig. 9-5. The force of gravity on a planet.
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From this figure we see that the horizontal component of the force is related
to the complete force in the same manner as the horizontal distance x is to the
complete hypotenuse r, because the two triangles are similar. Also, if x is positive,
Fx is negative. That is, Fx/|F | = −x/r, or Fx = −|F |x/r = −GMmx/r3. Now
we use the dynamical law to find that this force component is equal to the mass
of the planet times the rate of change of its velocity in the x-direction. Thus we
find the following laws:

m(dvx/dt) = −GMmx/r3,

m(dvy/dt) = −GMmy/r3,

r =
√
x2 + y2.

(9.17)

This, then, is the set of equations we must solve. Again, in order to simplify
the numerical work, we shall suppose that the unit of time, or the mass of the
sun, has been so adjusted (or luck is with us) that GM ≡ 1. For our specific
example we shall suppose that the initial position of the planet is at x = 0.500
and y = 0.000, and that the velocity is all in the, y-direction at the start, and
is of magnitude 1.630. Now how do we make the calculation? We again make
a table with columns for the time, the x-position, the x-velocity vx, and the
x-acceleration ax; then, separated by a double line, three columns for position,
velocity, and acceleration in the y-direction. In order to get the accelerations we
are going to need Eq. (9.17); it tells us that the acceleration in the x-direction
is −x/r3, and the acceleration in the y-direction is −y/r3, and that r is the
square root of x2 +y2. Thus, given x and y, we must do a little calculating on the
side, taking the square root of the sum of the squares to find r and then, to get
ready to calculate the two accelerations, it is useful also to evaluate 1/r3. This
work can be done rather easily by using a table of squares, cubes, and reciprocals:
then we need only multiply x by 1/r3, which we do on a slide rule.

Our calculation thus proceeds by the following steps, using time intervals ε =
0.100: Initial values at t = 0:

x(0) = 0.500 y(0) = 0.000
vx(0) = 0.000 vy(0) = +1.630

From these we find:

r(0) = 0.500 1/r3(0) = 8.000
ax = −4.000 ay = 0.000
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Thus we may calculate the velocities vx(0.05) and vy(0.05):

vx(0.05) = 0.000− 4.000× 0.050 = −0.200;
vy(0.05) = 1.630 + 0.000× 0.050 = 1.630.

Now our main calculations begin:

x(0.1) = 0.500− 0.20× 0.1 = 0.480
y(0.1) = 0.0 + 1.63× 0.1 = 0.163

r =
√

0.4802 + 0.1632 = 0.507
1/r3 = 7.677

ax(0.1) = −0.480× 7.677 = −3.685
ay(0.1) = −0.163× 7.677 = −1.250
vx(0.15) = −0.200− 3.685× 0.1 = −0.568
vy(0.15) = 1.630− 1.250× 0.1 = 1.505
x(0.2) = 0.480− 0.568× 0.1 = 0.423
y(0.2) = 0.163 + 1.505× 0.1 = 0.313

etc.

In this way we obtain the values given in Table 9-2, and in 20 steps or so we
have chased the planet halfway around the sun! In Fig. 9-6 are plotted the x-
and y-coordinates given in Table 9-2. The dots represent the positions at the
succession of times a tenth of a unit apart; we see that at the start the planet
moves rapidly and at the end it moves slowly, and so the shape of the curve is
determined. Thus we see that we really do know how to calculate the motion of
planets!

Table 9-2

Solution of dvx/dt = −x/r3, dvy/dt = −y/r3, r =
√
x2 + y2.

Interval: ε = 0.100
Orbit vy = 1.63 vx = 0 x = 0.5 y = 0 at t = 0

t x vx ax y vy ay r 1/r3

0.0 0.500 −4.000 0.000 0.000 0.500 8.000
−0.200 1.630
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Table 9-2

t x vx ax y vy ay r 1/r3

0.1 0.480 −3.685 0.163 −1.251 0.507 7.677
−0.568 1.505

0.2 0.423 −2.897 0.313 −2.146 0.527 6.847
−0.858 1.290

0.3 0.337 −1.958 0.443 −2.569 0.556 5.805
−1.054 1.033

0.4 0.232 −1.112 0.546 −2.617 0.593 4.794
−1.165 0.772

0.5 0.115 −0.454 0.623 −2.449 0.634 3.931
−1.211 0.527

0.6 −0.006 +0.018 0.676 −2.190 0.676 3.241
−1.209 0.308

0.7 −0.127 +0.342 0.706 −1.911 0.718 2.705
−1.175 0.117

0.8 −0.244 +0.559 0.718 −1.646 0.758 2.292
−1.119 −0.048

0.9 −0.356 +0.702 0.713 −1.408 0.797 1.974
−1.048 −0.189

1.0 −0.461 +0.796 0.694 −1.200 0.833 1.728
−0.969 −0.309

1.1 −0.558 +0.856 0.664 −1.019 0.867 1.536
−0.883 −0.411

1.2 −0.646 +0.895 0.623 −0.862 0.897 1.385
−0.794 −0.497

1.3 −0.725 +0.919 0.573 −0.726 0.924 1.267
−0.702 −0.569

1.4 −0.795 +0.933 0.516 −0.605 0.948 1.174
−0.608 −0.630

1.5 −0.856 +0.942 0.453 −0.498 0.969 1.100
−0.514 −0.680

1.6 −0.908 +0.947 0.385 −0.402 0.986 1.043
−0.420 −0.720

1.7 −0.950 +0.950 0.313 −0.313 1.000 1.000
−0.325 −0.751

1.8 −0.982 +0.952 0.238 −0.230 1.010 0.969
−0.229 −0.774

1.9 −1.005 +0.953 0.160 −0.152 1.018 0.949
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Table 9-2

t x vx ax y vy ay r 1/r3

−0.134 −0.790
2.0 −1.018 +0.955 0.081 −0.076 1.022 0.938

−0.038 −0.797
2.1 −1.022 +0.957 0.002 −0.002 1.022 0.936

+0.057 −0.797
2.2 −1.017 +0.959 −0.078 +0.074 1.020 0.944

−0.790
2.3

Crossed x-axis at 2.101 sec, ∴ period = 4.20 sec.
vx = 0 at 2.086 sec.
Cross x at −1.022, ∴ semimajor axis = 1.022 + 0.500

2 = 0.761.
vy = 0.797.

Predicted time π(0.761)3/2 = π(0.663) = 2.082.

SUN−1.0 −0.5 0.5 x

0.5

y

t = 0

t = 0.5
t = 1.0

t = 1.5

t = 2.0

Fig. 9-6. The calculated motion of a planet around the sun.

Now let us see how we can calculate the motion of Neptune, Jupiter, Uranus,
or any other planet. If we have a great many planets, and let the sun move
too, can we do the same thing? Of course we can. We calculate the force on
a particular planet, let us say planet number i, which has a position xi, yi, zi
(i = 1 may represent the sun, i = 2 Mercury, i = 3 Venus, and so on). We must
know the positions of all the planets. The force acting on one is due to all the
other bodies which are located, let us say, at positions xj , yj , zj . Therefore the

9-16



equations are

mi
dvix
dt

=
N∑
j=1
−Gmimj(xi − xj)

r3
ij

,

mi
dviy
dt

=
N∑
j=1
−Gmimj(yi − yj )

r3
ij

, (9.18)

mi
dviz
dt

=
N∑
j=1
−Gmimj(zi − zj )

r3
ij

.

Further, we define rij as the distance between the two planets i and j; this is
equal to

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (9.19)

Also,
∑

means a sum over all values of j—all other bodies—except, of course,
for j = i. Thus all we have to do is to make more columns, lots more columns.
We need nine columns for the motions of Jupiter, nine for the motions of Saturn,
and so on. Then when we have all initial positions and velocities we can calculate
all the accelerations from Eq. (9.18) by first calculating all the distances, using
Eq. (9.19). How long will it take to do it? If you do it at home, it will take a
very long time! But in modern times we have machines which do arithmetic
very rapidly; a very good computing machine may take 1 microsecond, that is, a
millionth of a second, to do an addition. To do a multiplication takes longer, say
10 microseconds. It may be that in one cycle of calculation, depending on the
problem, we may have 30 multiplications, or something like that, so one cycle will
take 300 microseconds. That means that we can do 3000 cycles of computation
per second. In order to get an accuracy, of, say, one part in a billion, we would
need 4× 105 cycles to correspond to one revolution of a planet around the sun.
That corresponds to a computation time of 130 seconds or about two minutes.
Thus it take only two minutes to follow Jupiter around the sun, with all the
perturbations of all the planets correct to one part in a billion, by this method!
(It turns out that the error varies about as the square of the interval ε. If we
make the interval a thousand times smaller, it is a million times more accurate.
So, let us make the interval 10,000 times smaller.)

So, as we said, we began this chapter not knowing how to calculate even
the motion of a mass on a spring. Now, armed with the tremendous power of
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Newton’s laws, we can not only calculate such simple motions but also, given
only a machine to handle the arithmetic, even the tremendously complex motions
of the planets, to as high a degree of precision as we wish!
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10

Conservation of Momentum

10-1 Newton’s Third Law

On the basis of Newton’s second law of motion, which gives the relation
between the acceleration of any body and the force acting on it, any problem in
mechanics can be solved in principle. For example, to determine the motion of
a few particles, one can use the numerical method developed in the preceding
chapter. But there are good reasons to make a further study of Newton’s laws.
First, there are quite simple cases of motion which can be analyzed not only
by numerical methods, but also by direct mathematical analysis. For example,
although we know that the acceleration of a falling body is 32 ft/sec2, and
from this fact could calculate the motion by numerical methods, it is much
easier and more satisfactory to analyze the motion and find the general solution,
s = s0 + v0t+ 16t2. In the same way, although we can work out the positions of a
harmonic oscillator by numerical methods, it is also possible to show analytically
that the general solution is a simple cosine function of t, and so it is unnecessary
to go to all that arithmetical trouble when there is a simple and more accurate
way to get the result. In the same manner, although the motion of one body
around the sun, determined by gravitation, can be calculated point by point by
the numerical methods of Chapter 9, which show the general shape of the orbit,
it is nice also to get the exact shape, which analysis reveals as a perfect ellipse.

Unfortunately, there are really very few problems which can be solved exactly
by analysis. In the case of the harmonic oscillator, for example, if the spring
force is not proportional to the displacement, but is something more complicated,
one must fall back on the numerical method. Or if there are two bodies going
around the sun, so that the total number of bodies is three, then analysis cannot
produce a simple formula for the motion, and in practice the problem must
be done numerically. That is the famous three-body problem, which so long
challenged human powers of analysis; it is very interesting how long it took
people to appreciate the fact that perhaps the powers of mathematical analysis
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were limited and it might be necessary to use the numerical methods. Today an
enormous number of problems that cannot be done analytically are solved by
numerical methods, and the old three-body problem, which was supposed to be
so difficult, is solved as a matter of routine in exactly the same manner that was
described in the preceding chapter, namely, by doing enough arithmetic. However,
there are also situations where both methods fail: the simple problems we can
do by analysis, and the moderately difficult problems by numerical, arithmetical
methods, but the very complicated problems we cannot do by either method. A
complicated problem is, for example, the collision of two automobiles, or even
the motion of the molecules of a gas. There are countless particles in a cubic
millimeter of gas, and it would be ridiculous to try to make calculations with
so many variables (about 1017—a hundred million billion). Anything like the
motion of the molecules or atoms of a gas or a block or iron, or the motion of
the stars in a globular cluster, instead of just two or three planets going around
the sun—such problems we cannot do directly, so we have to seek other means.

In the situations in which we cannot follow details, we need to know some
general properties, that is, general theorems or principles which are consequences
of Newton’s laws. One of these is the principle of conservation of energy, which
was discussed in Chapter 4. Another is the principle of conservation of momentum,
the subject of this chapter. Another reason for studying mechanics further is
that there are certain patterns of motion that are repeated in many different
circumstances, so it is good to study these patterns in one particular circumstance.
For example, we shall study collisions; different kinds of collisions have much
in common. In the flow of fluids, it does not make much difference what the
fluid is, the laws of the flow are similar. Other problems that we shall study
are vibrations and oscillations and, in particular, the peculiar phenomena of
mechanical waves—sound, vibrations of rods, and so on.

In our discussion of Newton’s laws it was explained that these laws are a kind
of program that says “Pay attention to the forces,” and that Newton told us only
two things about the nature of forces. In the case of gravitation, he gave us the
complete law of the force. In the case of the very complicated forces between
atoms, he was not aware of the right laws for the forces; however, he discovered
one rule, one general property of forces, which is expressed in his Third Law, and
that is the total knowledge that Newton had about the nature of forces—the law
of gravitation and this principle, but no other details.

This principle is that action equals reaction.
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What is meant is something of this kind: Suppose we have two small bodies,
say particles, and suppose that the first one exerts a force on the second one,
pushing it with a certain force. Then, simultaneously, according to Newton’s
Third Law, the second particle will push on the first with an equal force, in
the opposite direction; furthermore, these forces effectively act in the same line.
This is the hypothesis, or law, that Newton proposed, and it seems to be quite
accurate, though not exact (we shall discuss the errors later). For the moment
we shall take it to be true that action equals reaction. Of course, if there is a
third particle, not on the same line as the other two, the law does not mean that
the total force on the first one is equal to the total force on the second, since
the third particle, for instance, exerts its own push on each of the other two.
The result is that the total effect on the first two is in some other direction, and
the forces on the first two particles are, in general, neither equal nor opposite.
However, the forces on each particle can be resolved into parts, there being one
contribution or part due to each other interacting particle. Then each pair of
particles has corresponding components of mutual interaction that are equal in
magnitude and opposite in direction.

10-2 Conservation of momentum

Now what are the interesting consequences of the above relationship? Suppose,
for simplicity, that we have just two interacting particles, possibly of different
mass, and numbered 1 and 2. The forces between them are equal and opposite;
what are the consequences? According to Newton’s Second Law, force is the
time rate of change of the momentum, so we conclude that the rate of change of
momentum p1 of particle 1 is equal to minus the rate of change of momentum p2
of particle 2, or

dp1/dt = −dp2/dt. (10.1)
Now if the rate of change is always equal and opposite, it follows that the total
change in the momentum of particle 1 is equal and opposite to the total change
in the momentum of particle 2; this means that if we add the momentum of
particle 1 to the momentum of particle 2, the rate of change of the sum of these,
due to the mutual forces (called internal forces) between particles, is zero; that is

d(p1 + p2)/dt = 0. (10.2)

There is assumed to be no other force in the problem. If the rate of change of this
sum is always zero, that is just another way of saying that the quantity (p1 + p2)
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does not change. (This quantity is also written m1v1 +m2v2, and is called the
total momentum of the two particles.) We have now obtained the result that the
total momentum of the two particles does not change because of any mutual
interactions between them. This statement expresses the law of conservation of
momentum in that particular example. We conclude that if there is any kind
of force, no matter how complicated, between two particles, and we measure or
calculate m1v1 +m2v2, that is, the sum of the two momenta, both before and
after the forces act, the results should be equal, i.e., the total momentum is a
constant.

If we extend the argument to three or more interacting particles in more
complicated circumstances, it is evident that so far as internal forces are concerned,
the total momentum of all the particles stays constant, since an increase in
momentum of one, due to another, is exactly compensated by the decrease of
the second, due to the first. That is, all the internal forces will balance out, and
therefore cannot change the total momentum of the particles. Then if there are
no forces from the outside (external forces), there are no forces that can change
the total momentum; hence the total momentum is a constant.

It is worth describing what happens if there are forces that do not come from
the mutual actions of the particles in question: suppose we isolate the interacting
particles. If there are only mutual forces, then, as before, the total momentum
of the particles does not change, no matter how complicated the forces. On the
other hand, suppose there are also forces coming from the particles outside the
isolated group. Any force exerted by outside bodies on inside bodies, we call an
external force. We shall later demonstrate that the sum of all external forces
equals the rate of change of the total momentum of all the particles inside, a
very useful theorem.

The conservation of the total momentum of a number of interacting particles
can be expressed as

m1v1 +m2v2 +m3v3 + · · · = a constant, (10.3)

if there are no net external forces. Here the masses and corresponding velocities
of the particles are numbered 1, 2, 3, 4, . . . The general statement of Newton’s
Second Law for each particle,

F = d

dt
(mv), (10.4)

is true specifically for the components of force and momentum in any given
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direction; thus the x-component of the force on a particle is equal to the x-
component of the rate of change of momentum of that particle, or

Fx = d

dt
(mvx), (10.5)

and similarly for the y- and z-directions. Therefore Eq. (10.3) is really three
equations, one for each direction.

In addition to the law of conservation of momentum, there is another interest-
ing consequence of Newton’s Second Law, to be proved later, but merely stated
now. This principle is that the laws of physics will look the same whether we are
standing still or moving with a uniform speed in a straight line. For example,
a child bouncing a ball in an airplane finds that the ball bounces the same as
though he were bouncing it on the ground. Even though the airplane is moving
with a very high velocity, unless it changes its velocity, the laws look the same
to the child as they do when the airplane is standing still. This is the so-called
relativity principle. As we use it here we shall call it “Galilean relativity” to
distinguish it from the more careful analysis made by Einstein, which we shall
study later.

We have just derived the law of conservation of momentum from Newton’s
laws, and we could go on from here to find the special laws that describe impacts
and collisions. But for the sake of variety, and also as an illustration of a kind of
reasoning that can be used in physics in other circumstances where, for example,
one might not know Newton’s laws and might take a different approach, we shall
discuss the laws of impacts and collisions from a completely different point of
view. We shall base our discussion on the principle of Galilean relativity, stated
above, and shall end up with the law of conservation of momentum.

We shall start by assuming that nature would look the same if we run along at
a certain speed and watch it as it would if we were standing still. Before discussing
collisions in which two bodies collide and stick together, or come together and
bounce apart, we shall first consider two bodies that are held together by a spring
or something else, and are then suddenly released and pushed by the spring or
perhaps by a little explosion. Further, we shall consider motion in only one
direction. First, let us suppose that the two objects are exactly the same, are nice
symmetrical objects, and then we have a little explosion between them. After the
explosion, one of the bodies will be moving, let us say toward the right, with a
velocity v. Then it appears reasonable that the other body is moving toward the
left with a velocity v, because if the objects are alike there is no reason for right
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or left to be preferred and so the bodies would do something that is symmetrical.
This is an illustration of a kind of thinking that is very useful in many problems
but would not be brought out if we just started with the formulas.

The first result from our experiment is that equal objects will have equal
speed, but now suppose that we have two objects made of different materials, say
copper and aluminum, and we make the two masses equal. We shall now suppose
that if we do the experiment with two masses that are equal, even though the
objects are not identical, the velocities will be equal. Someone might object:
“But you know, you could do it backwards, you did not have to suppose that. You
could define equal masses to mean two masses that acquire equal velocities in
this experiment.” We follow that suggestion and make a little explosion between
the copper and a very large piece of aluminum, so heavy that the copper flies out
and the aluminum hardly budges. That is too much aluminum, so we reduce the
amount until there is just a very tiny piece, then when we make the explosion the
aluminum goes flying away, and the copper hardly budges. That is not enough
aluminum. Evidently there is some right amount in between; so we keep adjusting
the amount until the velocities come out equal. Very well then—let us turn it
around, and say that when the velocities are equal, the masses are equal. This
appears to be just a definition, and it seems remarkable that we can transform
physical laws into mere definitions. Nevertheless, there are some physical laws
involved, and if we accept this definition of equal masses, we immediately find
one of the laws, as follows.

Suppose we know from the foregoing experiment that two pieces of matter,
A and B (of copper and aluminum), have equal masses, and we compare a
third body, say a piece of gold, with the copper in the same manner as above,
making sure that its mass is equal to the mass of the copper. If we now make
the experiment between the aluminum and the gold, there is nothing in logic
that says these masses must be equal; however, the experiment shows that they
actually are. So now, by experiment, we have found a new law. A statement of
this law might be: If two masses are each equal to a third mass (as determined
by equal velocities in this experiment), then they are equal to each other. (This
statement does not follow at all from a similar statement used as a postulate
regarding mathematical quantities.) From this example we can see how quickly we
start to infer things if we are careless. It is not just a definition to say the masses
are equal when the velocities are equal, because to say the masses are equal is to
imply the mathematical laws of equality, which in turn makes a prediction about
an experiment.
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As a second example, suppose that A and B are found to be equal by doing
the experiment with one strength of explosion, which gives a certain velocity; if
we then use a stronger explosion, will it be true or not true that the velocities
now obtained are equal? Again, in logic there is nothing that can decide this
question, but experiment shows that it is true. So, here is another law, which
might be stated: If two bodies have equal masses, as measured by equal velocities
at one velocity, they will have equal masses when measured at another velocity.
From these examples we see that what appeared to be only a definition really
involved some laws of physics.

In the development that follows we shall assume it is true that equal masses
have equal and opposite velocities when an explosion occurs between them. We
shall make another assumption in the inverse case: If two identical objects,
moving in opposite directions with equal velocities, collide and stick together by
some kind of glue, then which way will they be moving after the collision? This
is again a symmetrical situation, with no preference between right and left, so
we assume that they stand still. We shall also suppose that any two objects of
equal mass, even if the objects are made of different materials, which collide and
stick together, when moving with the same velocity in opposite directions will
come to rest after the collision.

10-3 Momentum is conserved!

We can verify the above assumptions experimentally: first, that if two sta-
tionary objects of equal mass are separated by an explosion they will move apart
with the same speed, and second, if two objects of equal mass, coming together
with the same speed, collide and stick together they will stop. This we can
do by means of a marvelous invention called an air trough,* which gets rid of
friction, the thing which continually bothered Galileo (Fig. 10-1). He could not

GLIDER SMALL HOLES
(JETS)

COMPRESSED
AIR SUPPLY

Fig. 10-1. End view of linear air trough.

* H. V. Neher and R. B. Leighton, Amer. Jour. of Phys. 31, 255 (1963).
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BUMPER SPRING TOY PISTOL CAP

SPARK ELECTRODE

CYLINDER PISTON BUMPER SPRING

Fig. 10-2. Sectional view of gliders with explosive interaction cylinder
attachment.

do experiments by sliding things because they do not slide freely, but, by adding
a magic touch, we can today get rid of friction. Our objects will slide without
difficulty, on and on at a constant velocity, as advertised by Galileo. This is
done by supporting the objects on air. Because air has very low friction, an
object glides along with practically constant velocity when there is no applied
force. First, we use two glide blocks which have been made carefully to have
the same weight, or mass (their weight was measured really, but we know that
this weight is proportional to the mass), and we place a small explosive cap in
a closed cylinder between the two blocks (Fig. 10-2). We shall start the blocks
from rest at the center point of the track and force them apart by exploding the
cap with an electric spark. What should happen? If the speeds are equal when
they fly apart, they should arrive at the ends of the trough at the same time. On
reaching the ends they will both bounce back with practically opposite velocity,
and will come together and stop at the center where they started. It is a good
test; when it is actually done the result is just as we have described (Fig. 10-3).

(a)

(b)

(c)

(d)

(e)

v = 0

−v v

v −v

v = 0

Fig. 10-3. Schematic view of action-reaction experiment with equal
masses.

10-8



BEFORE COLLISION

AFTER COLLISION

VIEW FROM
CENTER OF MASS

VIEW FROM
MOVING CAR

(CAR VELOCITY = −v)

m m m m

m m m m

v −v 2v 0

v = 0 v

Fig. 10-4. Two views of an inelastic collision between equal masses.

Now the next thing we would like to figure out is what happens in a less
simple situation. Suppose we have two equal masses, one moving with velocity v
and the other standing still, and they collide and stick; what is going to happen?
There is a mass 2m altogether when we are finished, drifting with an unknown
velocity. What velocity? That is the problem. To find the answer, we make the
assumption that if we ride along in a car, physics will look the same as if we
are standing still. We start with the knowledge that two equal masses, moving
in opposite directions with equal speeds v, will stop dead when they collide.
Now suppose that while this happens, we are riding by in an automobile, at a
velocity −v. Then what does it look like? Since we are riding along with one
of the two masses which are coming together, that one appears to us to have
zero velocity. The other mass, however, going the other way with velocity v, will
appear to be coming toward us at a velocity 2v (Fig. 10-4). Finally, the combined
masses after collision will seem to be passing by with velocity v. We therefore
conclude that an object with velocity 2v, hitting an equal one at rest, will end
up with velocity v, or what is mathematically exactly the same, an object with
velocity v hitting and sticking to one at rest will produce an object moving with
velocity v/2. Note that if we multiply the mass and the velocity beforehand and
add them together, mv + 0, we get the same answer as when we multiply the
mass and the velocity of everything afterwards, 2m times v/2. So that tells us
what happens when a mass of velocity v hits one standing still.

In exactly the same manner we can deduce what happens when equal objects
having any two velocities hit each other.

Suppose we have two equal bodies with velocities v1 and v2, respectively,
which collide and stick together. What is their velocity v after the collision?
Again we ride by in an automobile, say at velocity v2, so that one body appears
to be at rest. The other then appears to have a velocity v1 − v2, and we have
the same case that we had before. When it is all finished they will be moving
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BEFORE COLLISION

AFTER COLLISION

VIEW FROM “LAB” VIEW FROM CAR

m m m m

m m m m

v1 v2 v1 − v2 0

v 1/2(v1 − v2)

Fig. 10-5. Two views of another inelastic collision between equal
masses.

at 1
2 (v1 − v2) with respect to the car. What then is the actual speed on the

ground?
It is v = 1

2 (v1 − v2) + v2 or 1
2 (v1 + v2) (Fig. 10-5). Again we note that

mv1 +mv2 = 2m(v1 + v2)/2. (10.6)

Thus, using this principle, we can analyze any kind of collision in which two
bodies of equal mass hit each other and stick. In fact, although we have worked
only in one dimension, we can find out a great deal about much more complicated
collisions by imagining that we are riding by in a car in some oblique direction.
The principle is the same, but the details get somewhat complicated.

In order to test experimentally whether an object moving with velocity v,
colliding with an equal one at rest, forms an object moving with velocity v/2,
we may perform the following experiment with our air-trough apparatus. We
place in the trough three equally massive objects, two of which are initially joined
together with our explosive cylinder device, the third being very near to but
slightly separated from these and provided with a sticky bumper so that it will
stick to another object which hits it. Now, a moment after the explosion, we have
two objects of mass m moving with equal and opposite velocities v. A moment
after that, one of these collides with the third object and makes an object of
mass 2m moving, so we believe, with velocity v/2. How do we test whether it
is really v/2? By arranging the initial positions of the masses on the trough so
that the distances to the ends are not equal, but are in the ratio 2 : 1. Thus our
first mass, which continues to move with velocity v, should cover twice as much
distance in a given time as the two which are stuck together (allowing for the
small distance travelled by the second object before it collided with the third).
The mass m and the mass 2m should reach the ends at the same time, and when
we try it, we find that they do (Fig. 10-6).
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m m m

m m m

m 2m

−v v 0

−v v ′

Fig. 10-6. An experiment to verify that a mass m with velocity v
striking a mass m with zero velocity gives 2m with velocity v/2.

The next problem that we want to work out is what happens if we have two
different masses. Let us take a mass m and a mass 2m and apply our explosive
interaction. What will happen then? If, as a result of the explosion, m moves
with velocity v, with what velocity does 2m move? The experiment we have
just done may be repeated with zero separation between the second and third
masses, and when we try it we get the same result, namely, the reacting masses
m and 2m attain velocities −v and v/2. Thus the direct reaction between m
and 2m gives the same result as the symmetrical reaction between m and m,
followed by a collision between m and a third mass m in which they stick together.
Furthermore, we find that the masses m and 2m returning from the ends of the
trough, with their velocities (nearly) exactly reversed, stop dead if they stick
together.

Now the next question we may ask is this. What will happen if a mass m
with velocity v, say, hits and sticks to another mass 2m at rest? This is very
easy to answer using our principle of Galilean relativity, for we simply watch
the collision which we have just described from a car moving with velocity −v/2
(Fig. 10-7). From the car, the velocities are

v′1 = v − v(car) = v + v/2 = 3v/2
and

v′2 = −v/2− v(car) = −v/2 + v/2 = 0.

After the collision, the mass 3m appears to us to be moving with velocity v/2.
Thus we have the answer, i.e., the ratio of velocities before and after collision
is 3 to 1: if an object of mass m collides with a stationary object of mass 2m,
then the whole thing moves off, stuck together, with a velocity 1/3 as much. The
general rule again is that the sum of the products of the masses and the velocities
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BEFORE COLLISION

AFTER COLLISION

VIEW FROM
CM SYSTEM

VIEW FROM
CAR

m 2m m 2m

3m 3m

v −v/2 3v/2 0

0 v/2

Fig. 10-7. Two views of an inelastic collision between m and 2m.

stays the same: mv + 0 equals 3m times v/3, so we are gradually building up
the theorem of the conservation of momentum, piece by piece.

Now we have one against two. Using the same arguments, we can predict the
result of one against three, two against three, etc. The case of two against three,
starting from rest, is shown in Fig. 10-8.

0 0 0 0 0
m m m m m

0 −v v 0 0
m m m m m

−v/2 v/2 0

m m m m m

−v/2 v/3

m m m m m

Fig. 10-8. Action and reaction between 2m and 3m.

In every case we find that the mass of the first object times its velocity, plus
the mass of the second object times its velocity, is equal to the total mass of the
final object times its velocity. These are all examples, then, of the conservation
of momentum. Starting from simple, symmetrical cases, we have demonstrated
the law for more complex cases. We could, in fact, do it for any rational mass
ratio, and since every ratio is exceedingly close to a rational ratio, we can handle
every ratio as precisely as we wish.

10-4 Momentum and energy

All the foregoing examples are simple cases where the bodies collide and stick
together, or were initially stuck together and later separated by an explosion.
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However, there are situations in which the bodies do not cohere, as, for example,
two bodies of equal mass which collide with equal speeds and then rebound. For
a brief moment they are in contact and both are compressed. At the instant of
maximum compression they both have zero velocity and energy is stored in the
elastic bodies, as in a compressed spring. This energy is derived from the kinetic
energy the bodies had before the collision, which becomes zero at the instant
their velocity is zero. The loss of kinetic energy is only momentary, however. The
compressed condition is analogous to the cap that releases energy in an explosion.
The bodies are immediately decompressed in a kind of explosion, and fly apart
again; but we already know that case—the bodies fly apart with equal speeds.
However, this speed of rebound is less, in general, than the initial speed, because
not all the energy is available for the explosion, depending on the material. If
the material is putty no kinetic energy is recovered, but if it is something more
rigid, some kinetic energy is usually regained. In the collision the rest of the
kinetic energy is transformed into heat and vibrational energy—the bodies are
hot and vibrating. The vibrational energy also is soon transformed into heat. It
is possible to make the colliding bodies from highly elastic materials, such as
steel, with carefully designed spring bumpers, so that the collision generates very
little heat and vibration. In these circumstances the velocities of rebound are
practically equal to the initial velocities; such a collision is called elastic.

That the speeds before and after an elastic collision are equal is not a matter of
conservation of momentum, but a matter of conservation of kinetic energy. That
the velocities of the bodies rebounding after a symmetrical collision are equal to
and opposite each other, however, is a matter of conservation of momentum.

We might similarly analyze collisions between bodies of different masses,
different initial velocities, and various degrees of elasticity, and determine the
final velocities and the loss of kinetic energy, but we shall not go into the details
of these processes.

Elastic collisions are especially interesting for systems that have no internal
“gears, wheels, or parts.” Then when there is a collision there is nowhere for the
energy to be impounded, because the objects that move apart are in the same
condition as when they collided. Therefore, between very elementary objects,
the collisions are always elastic or very nearly elastic. For instance, the collisions
between atoms or molecules in a gas are said to be perfectly elastic. Although
this is an excellent approximation, even such collisions are not perfectly elastic;
otherwise one could not understand how energy in the form of light or heat
radiation could come out of a gas. Once in a while, in a gas collision, a low-energy
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infrared ray is emitted, but this occurrence is very rare and the energy emitted is
very small. So, for most purposes, collisions of molecules in gases are considered
to be perfectly elastic.

As an interesting example, let us consider an elastic collision between two
objects of equal mass. If they come together with the same speed, they would
come apart at that same speed, by symmetry. But now look at this in another
circumstance, in which one of them is moving with velocity v and the other one
is at rest. What happens? We have been through this before. We watch the
symmetrical collision from a car moving along with one of the objects, and we
find that if a stationary body is struck elastically by another body of exactly the
same mass, the moving body stops, and the one that was standing still now moves
away with the same speed that the other one had; the bodies simply exchange
velocities. This behavior can easily be demonstrated with a suitable impact
apparatus. More generally, if both bodies are moving, with different velocities,
they simply exchange velocity at impact.

Another example of an almost elastic interaction is magnetism. If we arrange
a pair of U-shaped magnets in our glide blocks, so that they repel each other,
when one drifts quietly up to the other, it pushes it away and stands perfectly
still, and now the other goes along, frictionlessly.

The principle of conservation of momentum is very useful, because it enables
us to solve many problems without knowing the details. We did not know the
details of the gas motions in the cap explosion, yet we could predict the velocities
with which the bodies came apart, for example. Another interesting example is
rocket propulsion. A rocket of large mass, M , ejects a small piece, of mass m,
with a terrific velocity V relative to the rocket. After this the rocket, if it were
originally standing still, will be moving with a small velocity, v. Using the
principle of conservation of momentum, we can calculate this velocity to be

v = m

M
· V.

So long as material is being ejected, the rocket continues to pick up speed. Rocket
propulsion is essentially the same as the recoil of a gun: there is no need for any
air to push against.

10-5 Relativistic momentum

In modern times the law of conservation of momentum has undergone certain
modifications. However, the law is still true today, the modifications being mainly
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in the definitions of things. In the theory of relativity it turns out that we do have
conservation of momentum; the particles have mass and the momentum is still
given by mv, the mass times the velocity, but the mass changes with the velocity,
hence the momentum also changes. The mass varies with velocity according to
the law

m = m0√
1− v2/c2

, (10.7)

where m0 is the mass of the body at rest and c is the speed of light. It is easy to
see from the formula that there is negligible difference between m and m0 unless
v is very large, and that for ordinary velocities the expression for momentum
reduces to the old formula.

The components of momentum for a single particle are written as

px = m0vx√
1− v2/c2

, py = m0vy√
1− v2/c2

, pz = m0vz√
1− v2/c2

, (10.8)

where v2 = v2
x+v2

y +v2
z . If the x-components are summed over all the interacting

particles, both before and after a collision, the sums are equal; that is, momentum
is conserved in the x-direction. The same holds true in any direction.

In Chapter 4 we saw that the law of conservation of energy is not valid unless
we recognize that energy appears in different forms, electrical energy, mechanical
energy, radiant energy, heat energy, and so on. In some of these cases, heat
energy for example, the energy might be said to be “hidden.” This example
might suggest the question, “Are there also hidden forms of momentum—perhaps
heat momentum?” The answer is that it is very hard to hide momentum for the
following reasons.

The random motions of the atoms of a body furnish a measure of heat energy,
if the squares of the velocities are summed. This sum will be a positive result,
having no directional character. The heat is there, whether or not the body moves
as a whole, and conservation of energy in the form of heat is not very obvious.
On the other hand, if one sums the velocities, which have direction, and finds a
result that is not zero, that means that there is a drift of the entire body in some
particular direction, and such a gross momentum is readily observed. Thus there
is no random internal lost momentum, because the body has net momentum only
when it moves as a whole. Therefore momentum, as a mechanical quantity, is
difficult to hide. Nevertheless, momentum can be hidden—in the electromagnetic
field, for example. This case is another effect of relativity.
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One of the propositions of Newton was that interactions at a distance are
instantaneous. It turns out that such is not the case; in situations involving elec-
trical forces, for instance, if an electrical charge at one location is suddenly moved,
the effects on another charge, at another place, do not appear instantaneously—
there is a little delay. In those circumstances, even if the forces are equal the
momentum will not check out; there will be a short time during which there will
be trouble, because for a while the first charge will feel a certain reaction force,
say, and will pick up some momentum, but the second charge has felt nothing
and has not yet changed its momentum. It takes time for the influence to cross
the intervening distance, which it does at 186,000 miles a second. In that tiny
time the momentum of the particles is not conserved. Of course after the second
charge has felt the effect of the first one and all is quieted down, the momentum
equation will check out all right, but during that small interval momentum is not
conserved. We represent this by saying that during this interval there is another
kind of momentum besides that of the particle, mv, and that is momentum in
the electromagnetic field. If we add the field momentum to the momentum of
the particles, then momentum is conserved at any moment all the time. The
fact that the electromagnetic field can possess momentum and energy makes that
field very real, and so, for better understanding, the original idea that there are
just the forces between particles has to be modified to the idea that a particle
makes a field, and a field acts on another particle, and the field itself has such
familiar properties as energy content and momentum, just as particles can have.
To take another example: an electromagnetic field has waves, which we call light;
it turns out that light also carries momentum with it, so when light impinges
on an object it carries in a certain amount of momentum per second; this is
equivalent to a force, because if the illuminated object is picking up a certain
amount of momentum per second, its momentum is changing and the situation
is exactly the same as if there were a force on it. Light can exert pressure by
bombarding an object; this pressure is very small, but with sufficiently delicate
apparatus it is measurable.

Now in quantum mechanics it turns out that momentum is a different thing—
it is no longer mv. It is hard to define exactly what is meant by the velocity of a
particle, but momentum still exists. In quantum mechanics the difference is that
when the particles are represented as particles, the momentum is still mv, but
when the particles are represented as waves, the momentum is measured by the
number of waves per centimeter: the greater this number of waves, the greater
the momentum. In spite of the differences, the law of conservation of momentum
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holds also in quantum mechanics. Even though the law F = ma is false, and
all the derivations of Newton were wrong for the conservation of momentum, in
quantum mechanics, nevertheless, in the end, that particular law maintains itself!

10-17



11

Vectors

11-1 Symmetry in physics

In this chapter we introduce a subject that is technically known in physics
as symmetry in physical law. The word “symmetry” is used here with a special
meaning, and therefore needs to be defined. When is a thing symmetrical—how
can we define it? When we have a picture that is symmetrical, one side is
somehow the same as the other side. Professor Hermann Weyl has given this
definition of symmetry: a thing is symmetrical if one can subject it to a certain
operation and it appears exactly the same after the operation. For instance, if
we look at a silhouette of a vase that is left-and-right symmetrical, then turn it
180◦ around the vertical axis, it looks the same. We shall adopt the definition
of symmetry in Weyl’s more general form, and in that form we shall discuss
symmetry of physical laws.

Suppose we build a complex machine in a certain place, with a lot of compli-
cated interactions, and balls bouncing around with forces between them, and so
on. Now suppose we build exactly the same kind of equipment at some other
place, matching part by part, with the same dimensions and the same orientation,
everything the same only displaced laterally by some distance. Then, if we start
the two machines in the same initial circumstances, in exact correspondence, we
ask: will one machine behave exactly the same as the other? Will it follow all the
motions in exact parallelism? Of course the answer may well be no, because if we
choose the wrong place for our machine it might be inside a wall and interferences
from the wall would make the machine not work.

All of our ideas in physics require a certain amount of common sense in their
application; they are not purely mathematical or abstract ideas. We have to
understand what we mean when we say that the phenomena are the same when
we move the apparatus to a new position. We mean that we move everything
that we believe is relevant; if the phenomenon is not the same, we suggest that
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something relevant has not been moved, and we proceed to look for it. If we
never find it, then we claim that the laws of physics do not have this symmetry.
On the other hand, we may find it—we expect to find it—if the laws of physics
do have this symmetry; looking around, we may discover, for instance, that the
wall is pushing on the apparatus. The basic question is, if we define things well
enough, if all the essential forces are included inside the apparatus, if all the
relevant parts are moved from one place to another, will the laws be the same?
Will the machinery work the same way?

It is clear that what we want to do is to move all the equipment and essential
influences, but not everything in the world—planets, stars, and all—for if we
do that, we have the same phenomenon again for the trivial reason that we are
right back where we started. No, we cannot move everything. But it turns out
in practice that with a certain amount of intelligence about what to move, the
machinery will work. In other words, if we do not go inside a wall, if we know
the origin of the outside forces, and arrange that those are moved too, then the
machinery will work the same in one location as in another.

11-2 Translations

We shall limit our analysis to just mechanics, for which we now have sufficient
knowledge. In previous chapters we have seen that the laws of mechanics can be
summarized by a set of three equations for each particle:

m(d2x/dt2) = Fx, m(d2y/dt2) = Fy, m(d2z/dt2) = Fz. (11.1)

Now this means that there exists a way to measure x, y, and z on three perpen-
dicular axes, and the forces along those directions, such that these laws are true.
These must be measured from some origin, but where do we put the origin? All
that Newton would tell us at first is that there is some place that we can measure
from, perhaps the center of the universe, such that these laws are correct. But we
can show immediately that we can never find the center, because if we use some
other origin it would make no difference. In other words, suppose that there are
two people—Joe, who has an origin in one place, and Moe, who has a parallel
system whose origin is somewhere else (Fig. 11-1). Now when Joe measures the
location of the point in space, he finds it at x, y, and z (we shall usually leave z
out because it is too confusing to draw in a picture). Moe, on the other hand,
when measuring the same point, will obtain a different x (in order to distinguish
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Fig. 11-1. Two parallel coordinate systems.

it, we will call it x′), and in principle a different y, although in our example they
are numerically equal. So we have

x′ = x− a, y′ = y, z′ = z. (11.2)

Now in order to complete our analysis we must know what Moe would obtain for
the forces. The force is supposed to act along some line, and by the force in the
x-direction we mean the part of the total which is in the x-direction, which is
the magnitude of the force times this cosine of its angle with the x-axis. Now
we see that Moe would use exactly the same projection as Joe would use, so we
have a set of equations

Fx′ = Fx, Fy′ = Fy, Fz′ = Fz. (11.3)

These would be the relationships between quantities as seen by Joe and Moe.
The question is, if Joe knows Newton’s laws, and if Moe tries to write

down Newton’s laws, will they also be correct for him? Does it make any
difference from which origin we measure the points? In other words, assuming
that equations (11.1) are true, and the Eqs. (11.2) and (11.3) give the relationship
of the measurements, is it or is it not true that

(a) m(d2x′/dt2) = Fx′ ,

(b) m(d2y′/dt2) = Fy′ ,

(c) m(d2z′/dt2) = Fz′ ?
(11.4)

In order to test these equations we shall differentiate the formula for x′ twice.
First of all

dx′

dt
= d

dt
(x− a) = dx

dt
− da

dt
.
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Now we shall assume that Moe’s origin is fixed (not moving) relative to Joe’s;
therefore a is a constant and da/dt = 0, so we find that

dx′/dt = dx/dt

and therefore
d2x′/dt2 = d2x/dt2;

therefore we know that Eq. (11.4a) becomes

m(d2x/dt2) = Fx′ .

(We also suppose that the masses measured by Joe and Moe are equal.) Thus
the acceleration times the mass is the same as the other fellow’s. We have also
found the formula for Fx′ , for, substituting from Eq. (11.1), we find that

Fx′ = Fx.

Therefore the laws as seen by Moe appear the same; he can write Newton’s
laws too, with different coordinates, and they will still be right. That means that
there is no unique way to define the origin of the world, because the laws will
appear the same, from whatever position they are observed.

This is also true: if there is a piece of equipment in one place with a certain
kind of machinery in it, the same equipment in another place will behave in the
same way. Why? Because one machine, when analyzed by Moe, has exactly the
same equations as the other one, analyzed by Joe. Since the equations are the
same, the phenomena appear the same. So the proof that an apparatus in a new
position behaves the same as it did in the old position is the same as the proof
that the equations when displaced in space reproduce themselves. Therefore
we say that the laws of physics are symmetrical for translational displacements,
symmetrical in the sense that the laws do not change when we make a translation
of our coordinates. Of course it is quite obvious intuitively that this is true, but
it is interesting and entertaining to discuss the mathematics of it.

11-3 Rotations

The above is the first of a series of ever more complicated propositions
concerning the symmetry of a physical law. The next proposition is that it should
make no difference in which direction we choose the axes. In other words, if we
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build a piece of equipment in some place and watch it operate, and nearby we
build the same kind of apparatus but put it up on an angle, will it operate in the
same way? Obviously it will not if it is a Grandfather clock, for example! If a
pendulum clock stands upright, it works fine, but if it is tilted the pendulum falls
against the side of the case and nothing happens. The theorem is then false in
the case of the pendulum clock, unless we include the earth, which is pulling on
the pendulum. Therefore we can make a prediction about pendulum clocks if we
believe in the symmetry of physical law for rotation: something else is involved in
the operation of a pendulum clock besides the machinery of the clock, something
outside it that we should look for. We may also predict that pendulum clocks will
not work the same way when located in different places relative to this mysterious
source of asymmetry, perhaps the earth. Indeed, we know that a pendulum clock
up in an artificial satellite, for example, would not tick either, because there is no
effective force, and on Mars it would go at a different rate. Pendulum clocks do
involve something more than just the machinery inside, they involve something
on the outside. Once we recognize this factor, we see that we must turn the earth
along with the apparatus. Of course we do not have to worry about that, it is easy
to do; one simply waits a moment or two and the earth turns; then the pendulum
clock ticks again in the new position the same as it did before. While we are
rotating in space our angles are always changing, absolutely; this change does not
seem to bother us very much, for in the new position we seem to be in the same
condition as in the old. This has a certain tendency to confuse one, because it
is true that in the new turned position the laws are the same as in the unturned
position, but it is not true that as we turn a thing it follows the same laws as it
does when we are not turning it. If we perform sufficiently delicate experiments,
we can tell that the earth is rotating, but not that it had rotated. In other words,
we cannot locate its angular position, but we can tell that it is changing.

Now we may discuss the effects of angular orientation upon physical laws.
Let us find out whether the same game with Joe and Moe works again. This
time, to avoid needless complication, we shall suppose that Joe and Moe use the
same origin (we have already shown that the axes can be moved by translation
to another place). Assume that Moe’s axes have rotated relative to Joe’s by an
angle θ. The two coordinate systems are shown in Fig. 11-2, which is restricted
to two dimensions. Consider any point P having coordinates (x, y) in Joe’s
system and (x′, y′) in Moe’s system. We shall begin, as in the previous case, by
expressing the coordinates x′ and y′ in terms of x, y, and θ. To do so, we first
drop perpendiculars from P to all four axes and draw AB perpendicular to PQ.
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Fig. 11-2. Two coordinate systems having different angular orienta-
tions.

Inspection of the figure shows that x′ can be written as the sum of two lengths
along the x′-axis, and y′ as the difference of two lengths along AB. All these
lengths are expressed in terms of x, y, and θ in equations (11.5), to which we
have added an equation for the third dimension.

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,
z′ = z.

(11.5)

The next step is to analyze the relationship of forces as seen by the two observers,
following the same general method as before. Let us assume that a force F , which
has already been analyzed as having components Fx and Fy (as seen by Joe), is
acting on a particle of mass m, located at point P in Fig. 11-2. For simplicity,
let us move both sets of axes so that the origin is at P , as shown in Fig. 11-3.
Moe sees the components of F along his axes as Fx′ and Fy′ . Fx has components
along both the x′- and y′-axes, and Fy likewise has components along both these
axes. To express Fx′ in terms of Fx and Fy, we sum these components along the
x′-axis, and in a like manner we can express Fy′ in terms of Fx and Fy. The
results are

Fx′ = Fx cos θ + Fy sin θ,
Fy′ = Fy cos θ − Fx sin θ,
Fz′ = Fz .

(11.6)

It is interesting to note an accident of sorts, which is of extreme importance: the
formulas (11.5) and (11.6), for coordinates of P and components of F , respectively,
are of identical form.
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Fig. 11-3. Components of a force in the two systems.

As before, Newton’s laws are assumed to be true in Joe’s system, and are
expressed by equations (11.1). The question, again, is whether Moe can apply
Newton’s laws—will the results be correct for his system of rotated axes? In
other words, if we assume that Eqs. (11.5) and (11.6) give the relationship of the
measurements, is it true or not true that

m(d2x′/dt2) = Fx′ ,

m(d2y′/dt2) = Fy′ ,

m(d2z′/dt2) = Fz′?
(11.7)

To test these equations, we calculate the left and right sides independently, and
compare the results. To calculate the left sides, we multiply equations (11.5)
by m, and differentiate twice with respect to time, assuming the angle θ to be
constant. This gives

m(d2x′/dt2) = m(d2x/dt2) cos θ +m(d2y/dt2) sin θ,
m(d2y′/dt2) = m(d2y/dt2) cos θ −m(d2x/dt2) sin θ,
m(d2z′/dt2) = m(d2z/dt2).

(11.8)

We calculate the right sides of equations (11.7) by substituting equations (11.1)
into equations (11.6). This gives

Fx′ = m(d2x/dt2) cos θ +m(d2y/dt2) sin θ,
Fy′ = m(d2y/dt2) cos θ −m(d2x/dt2) sin θ,
Fz′ = m(d2z/dt2).

(11.9)
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Behold! The right sides of Eqs. (11.8) and (11.9) are identical, so we conclude
that if Newton’s laws are correct on one set of axes, they are also valid on
any other set of axes. This result, which has now been established for both
translation and rotation of axes, has certain consequences: first, no one can
claim his particular axes are unique, but of course they can be more convenient
for certain particular problems. For example, it is handy to have gravity along
one axis, but this is not physically necessary. Second, it means that any piece
of equipment which is completely self-contained, with all the force-generating
equipment completely inside the apparatus, would work the same when turned
at an angle.

11-4 Vectors

Not only Newton’s laws, but also the other laws of physics, so far as we know
today, have the two properties which we call invariance (or symmetry) under
translation of axes and rotation of axes. These properties are so important that a
mathematical technique has been developed to take advantage of them in writing
and using physical laws.

The foregoing analysis involved considerable tedious mathematical work. To
reduce the details to a minimum in the analysis of such questions, a very powerful
mathematical machinery has been devised. This system, called vector analysis,
supplies the title of this chapter; strictly speaking, however, this is a chapter on
the symmetry of physical laws. By the methods of the preceding analysis we
were able to do everything required for obtaining the results that we sought, but
in practice we should like to do things more easily and rapidly, so we employ the
vector technique.

We began by noting some characteristics of two kinds of quantities that are
important in physics. (Actually there are more than two, but let us start out
with two.) One of them, like the number of potatoes in a sack, we call an ordinary
quantity, or an undirected quantity, or a scalar . Temperature is an example of
such a quantity. Other quantities that are important in physics do have direction,
for instance velocity: we have to keep track of which way a body is going, not
just its speed. Momentum and force also have direction, as does displacement:
when someone steps from one place to another in space, we can keep track of
how far he went, but if we wish also to know where he went, we have to specify a
direction.

All quantities that have a direction, like a step in space, are called vectors.
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A vector is three numbers. In order to represent a step in space, say from the
origin to some particular point P whose location is (x, y, z), we really need three
numbers, but we are going to invent a single mathematical symbol, r, which is
unlike any other mathematical symbols we have so far used.* It is not a single
number, it represents three numbers: x, y, and z. It means three numbers, but not
really only those three numbers, because if we were to use a different coordinate
system, the three numbers would be changed to x′, y′, and z′. However, we want
to keep our mathematics simple and so we are going to use the same mark to
represent the three numbers (x, y, z) and the three numbers (x′, y′, z′). That
is, we use the same mark to represent the first set of three numbers for one
coordinate system, but the second set of three numbers if we are using the other
coordinate system. This has the advantage that when we change the coordinate
system, we do not have to change the letters of our equations. If we write an
equation in terms of x, y, z, and then use another system, we have to change to
x′, y′, z′, but we shall just write r, with the convention that it represents (x, y, z)
if we use one set of axes, or (x′, y′, z′) if we use another set of axes, and so on.
The three numbers which describe the quantity in a given coordinate system are
called the components of the vector in the direction of the coordinate axes of that
system. That is, we use the same symbol for the three letters that correspond
to the same object, as seen from different axes. The very fact that we can say
“the same object” implies a physical intuition about the reality of a step in space,
that is independent of the components in terms of which we measure it. So the
symbol r will represent the same thing no matter how we turn the axes.

Now suppose there is another directed physical quantity, any other quantity,
which also has three numbers associated with it, like force, and these three
numbers change to three other numbers by a certain mathematical rule, if we
change the axes. It must be the same rule that changes (x, y, z) into (x′, y′, z′). In
other words, any physical quantity associated with three numbers which transform
as do the components of a step in space is a vector. An equation like

F = r

would thus be true in any coordinate system if it were true in one. This equation,
of course, stands for the three equations

Fx = x, Fy = y, Fz = z,

* In type, vectors are represented by boldface; in handwritten form an arrow is used: ~r.
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or, alternatively, for
Fx′ = x′, Fy′ = y′, Fz′ = z′.

The fact that a physical relationship can be expressed as a vector equation assures
us the relationship is unchanged by a mere rotation of the coordinate system.
That is the reason why vectors are so useful in physics.

Now let us examine some of the properties of vectors. As examples of vectors
we may mention velocity, momentum, force, and acceleration. For many purposes
it is convenient to represent a vector quantity by an arrow that indicates the
direction in which it is acting. Why can we represent force, say, by an arrow?
Because it has the same mathematical transformation properties as a “step in
space.” We thus represent it in a diagram as if it were a step, using a scale such
that one unit of force, or one newton, corresponds to a certain convenient length.
Once we have done this, all forces can be represented as lengths, because an
equation like

F = kr,

where k is some constant, is a perfectly legitimate equation. Thus we can always
represent forces by lines, which is very convenient, because once we have drawn
the line we no longer need the axes. Of course, we can quickly calculate the
three components as they change upon turning the axes, because that is just a
geometric problem.

11-5 Vector algebra

Now we must describe the laws, or rules, for combining vectors in various ways.
The first such combination is the addition of two vectors: suppose that a is a vector
which in some particular coordinate system has the three components (ax, ay, az),
and that b is another vector which has the three components (bx, by, bz). Now
let us invent three new numbers (ax + bx, ay + by, az + bz). Do these form a
vector? “Well,” we might say, “they are three numbers, and every three numbers
form a vector.” No, not every three numbers form a vector! In order for it to be
a vector, not only must there be three numbers, but these must be associated
with a coordinate system in such a way that if we turn the coordinate system,
the three numbers “revolve” on each other, get “mixed up” in each other, by
the precise laws we have already described. So the question is, if we now rotate
the coordinate system so that (ax, ay, az) become (ax′ , ay′ , az′) and (bx, by, bz)
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become (bx′ , by′ , bz′), what do (ax+ bx, ay + by, az + bz) become? Do they become
(ax′ + bx′ , ay′ + by′ , az′ + bz′) or not? The answer is, of course, yes, because
the prototype transformations of Eq. (11.5) constitute what we call a linear
transformation. If we apply those transformations to ax and bx to get ax′ + bx′ ,
we find that the transformed ax + bx is indeed the same as ax′ + bx′ . When a
and b are “added together” in this sense, they will form a vector which we may
call c. We would write this as

c = a+ b.

Now c has the interesting property

c = b+ a,

as we can immediately see from its components. Thus also,

a+ (b+ c) = (a+ b) + c.

We can add vectors in any order.
What is the geometric significance of a + b? Suppose that a and b were

represented by lines on a piece of paper, what would c look like? This is shown
in Fig. 11-4. We see that we can add the components of b to those of a most
conveniently if we place the rectangle representing the components of b next to
that representing the components of a in the manner indicated. Since b just
“fits” into its rectangle, as does a into its rectangle, this is the same as putting
the “tail” of b on the “head” of a, the arrow from the “tail” of a to the “head”
of b being the vector c. Of course, if we added a to b the other way around, we

a

b

c

x

y

Fig. 11-4. The addition of vectors.
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would put the “tail” of a on the “head” of b, and by the geometrical properties
of parallelograms we would get the same result for c. Note that vectors can be
added in this way without reference to any coordinate axes.

Suppose we multiply a vector by a number α, what does this mean? We
define it to mean a new vector whose components are αax, αay, and αaz. We
leave it as a problem for the student to prove that it is a vector.

Now let us consider vector subtraction. We may define subtraction in the
same way as addition, but instead of adding, we subtract the components. Or
we might define subtraction by defining a negative vector, −b = −1b, and then
we would add the components. It comes to the same thing. The result is shown
in Fig. 11-5. This figure shows d = a − b = a + (−b); we also note that the
difference a− b can be found very easily from a and b by using the equivalent
relation a = b+ d. Thus the difference is even easier to find than the sum: we
just draw the vector from b to a, to get a− b!

a
b

d

−b

d = a − b

Fig. 11-5. The subtraction of vectors.

Next we discuss velocity. Why is velocity a vector? If position is given
by the three coordinates (x, y, z), what is the velocity? The velocity is given
by dx/dt, dy/dt, and dz/dt. Is that a vector, or not? We can find out by
differentiating the expressions in Eq. (11.5) to find out whether dx′/dt transforms
in the right way. We see that the components dx/dt and dy/dt do transform
according to the same law as x and y, and therefore the time derivative is a
vector. So the velocity is a vector. We can write the velocity in an interesting
way as

v = dr/dt.

What the velocity is, and why it is a vector, can also be understood more
pictorially: How far does a particle move in a short time ∆t? Answer: ∆r, so if
a particle is “here” at one instant and “there” at another instant, then the vector
difference of the positions ∆r = r2 − r1, which is in the direction of motion
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shown in Fig. 11-6, divided by the time interval ∆t = t2 − t1, is the “average
velocity” vector.

O

1

2

r1

r2

∆r = r2 − r1

Fig. 11-6. The displacement of a particle in a short time interval ∆t =

t2 − t1.

In other words, by vector velocity we mean the limit, as ∆t goes to 0, of the
difference between the radius vectors at the time t+ ∆t and the time t, divided
by ∆t:

v = lim
∆t→0

(∆r/∆t) = dr/dt. (11.10)

Thus velocity is a vector because it is the difference of two vectors. It is also the
right definition of velocity because its components are dx/dt, dy/dt, and dz/dt.
In fact, we see from this argument that if we differentiate any vector with respect
to time we produce a new vector. So we have several ways of producing new
vectors: (1) multiply by a constant, (2) differentiate with respect to time, (3) add
or subtract two vectors.

11-6 Newton’s laws in vector notation

In order to write Newton’s laws in vector form, we have to go just one step
further, and define the acceleration vector. This is the time derivative of the
velocity vector, and it is easy to demonstrate that its components are the second
derivatives of x, y, and z with respect to t:

a = dv

dt
=
(
d

dt

)(
dr

dt

)
= d2r

dt2
, (11.11)

ax = dvx
dt

= d2x

dt2
, ay = dvy

dt
= d2y

dt2
, az = dvz

dt
= d2z

dt2
. (11.12)
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With this definition, then, Newton’s laws can be written in this way:

ma = F (11.13)
or

m(d2r/dt2) = F . (11.14)

Now the problem of proving the invariance of Newton’s laws under rotation
of coordinates is this: prove that a is a vector; this we have just done. Prove
that F is a vector; we suppose it is. So if force is a vector, then, since we know
acceleration is a vector, Eq. (11.13) will look the same in any coordinate system.
Writing it in a form which does not explicitly contain x’s, y’s, and z’s has the
advantage that from now on we need not write three laws every time we write
Newton’s equations or other laws of physics. We write what looks like one law,
but really, of course, it is the three laws for any particular set of axes, because
any vector equation involves the statement that each of the components is equal.

O
∆θ

r1
r2

v1

v2

∆v
s

R

Fig. 11-7. A curved trajectory.

The fact that the acceleration is the rate of change of the vector velocity
helps us to calculate the acceleration in some rather complicated circumstances.
Suppose, for instance, that a particle is moving on some complicated curve
(Fig. 11-7) and that, at a given instant t, it had a certain velocity v1, but that
when we go to another instant t2 a little later, it has a different velocity v2. What
is the acceleration? Answer: Acceleration is the difference in the velocity divided
by the small time interval, so we need the difference of the two velocities. How
do we get the difference of the velocities? To subtract two vectors, we put the
vector across the ends of v2 and v1; that is, we draw ∆v as the difference of the
two vectors, right? No! That only works when the tails of the vectors are in the
same place! It has no meaning if we move the vector somewhere else and then
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∆θ

v1

v2

∆v∆v⊥

∆v‖

Fig. 11-8. Diagram for calculating the acceleration.

draw a line across, so watch out! We have to draw a new diagram to subtract
the vectors. In Fig. 11-8, v1 and v2 are both drawn parallel and equal to their
counterparts in Fig. 11-7, and now we can discuss the acceleration. Of course the
acceleration is simply ∆v/∆t. It is interesting to note that we can compose the
velocity difference out of two parts; we can think of acceleration as having two
components, ∆v‖, in the direction tangent to the path and ∆v⊥ at right angles
to the path, as indicated in Fig. 11-8. The acceleration tangent to the path is, of
course, just the change in the length of the vector, i.e., the change in the speed v:

a‖ = dv/dt. (11.15)

The other component of acceleration, at right angles to the curve, is easy to
calculate, using Figs. 11-7 and 11-8. In the short time ∆t let the change in angle
between v1 and v2 be the small angle ∆θ. If the magnitude of the velocity is
called v, then of course

∆v⊥ = v∆θ
and the acceleration a will be

a⊥ = v (∆θ/∆t).

Now we need to know ∆θ/∆t, which can be found this way: If, at the given
moment, the curve is approximated as a circle of a certain radius R, then in a
time ∆t the distance s is, of course, v∆t, where v is the speed.

∆θ = (v∆t)/R, or ∆θ/∆t = v/R.

Therefore, we find
a⊥ = v2/R, (11.16)

as we have seen before.

11-7 Scalar product of vectors

Now let us examine a little further the properties of vectors. It is easy to see
that the length of a step in space would be the same in any coordinate system.
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That is, if a particular step r is represented by x, y, z, in one coordinate system,
and by x′, y′, z′ in another coordinate system, surely the distance r = |r| would
be the same in both. Now

r =
√
x2 + y2 + z2

and also
r′ =

√
x′2 + y′2 + z′2.

So what we wish to verify is that these two quantities are equal. It is much more
convenient not to bother to take the square root, so let us talk about the square
of the distance; that is, let us find out whether

x2 + y2 + z2 = x′2 + y′2 + z′2. (11.17)

It had better be—and if we substitute Eq. (11.5) we do indeed find that it is.
So we see that there are other kinds of equations which are true for any two
coordinate systems.

Something new is involved. We can produce a new quantity, a function of
x, y, and z, called a scalar function, a quantity which has no direction but which
is the same in both systems. Out of a vector we can make a scalar. We have to
find a general rule for that. It is clear what the rule is for the case just considered:
add the squares of the components. Let us now define a new thing, which we
call a · a. This is not a vector, but a scalar; it is a number that is the same in all
coordinate systems, and it is defined to be the sum of the squares of the three
components of the vector:

a · a = a2
x + a2

y + a2
z. (11.18)

Now you say, “But with what axes?” It does not depend on the axes, the answer is
the same in every set of axes. So we have a new kind of quantity, a new invariant
or scalar produced by one vector “squared.” If we now define the following quantity
for any two vectors a and b:

a · b = axbx + ayby + azbz, (11.19)

we find that this quantity, calculated in the primed and unprimed systems, also
stays the same. To prove it we note that it is true of a · a, b · b, and c · c, where

11-16



c = a+ b. Therefore the sum of the squares (ax + bx)2 + (ay + by)2 + (az + bz)2

will be invariant:

(ax + bx)2 + (ay + by)2 + (az + bz)2 = (ax′ + bx′)2

+ (ay′ + by′)2 + (az′ + bz′)2. (11.20)

If both sides of this equation are expanded, there will be cross products of just the
type appearing in Eq. (11.19), as well as the sums of squares of the components
of a and b. The invariance of terms of the form of Eq. (11.18) then leaves the
cross product terms (11.19) invariant also.

The quantity a · b is called the scalar product of two vectors, a and b, and it
has many interesting and useful properties. For instance, it is easily proved that

a · (b+ c) = a · b+ a · c. (11.21)

Also, there is a simple geometrical way to calculate a · b, without having to
calculate the components of a and b: a · b is the product of the length of a and
the length of b times the cosine of the angle between them. Why? Suppose
that we choose a special coordinate system in which the x-axis lies along a; in
those circumstances, the only component of a that will be there is ax, which is
of course the whole length of a. Thus Eq. (11.19) reduces to a · b = axbx for this
case, and this is the length of a times the component of b in the direction of a,
that is, b cos θ:

a · b = ab cos θ.
Therefore, in that special coordinate system, we have proved that a · b is the
length of a times the length of b times cos θ. But if it is true in one coordinate
system, it is true in all, because a · b is independent of the coordinate system;
that is our argument.

What good is the dot product? Are there any cases in physics where we
need it? Yes, we need it all the time. For instance, in Chapter 4 the kinetic
energy was called 1

2mv
2, but if the object is moving in space it should be the

velocity squared in the x-direction, the y-direction, and the z-direction, and so
the formula for kinetic energy according to vector analysis is

K.E. = 1
2m(v · v) = 1

2m(v2
x + v2

y + v2
z). (11.22)

Energy does not have direction. Momentum has direction; it is a vector, and it
is the mass times the velocity vector.
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Another example of a dot product is the work done by a force when something
is pushed from one place to the other. We have not yet defined work, but it is
equivalent to the energy change, the weights lifted, when a force F acts through
a distance s:

Work = F · s. (11.23)

It is sometimes very convenient to talk about the component of a vector in
a certain direction (say the vertical direction because that is the direction of
gravity). For such purposes, it is useful to invent what we call a unit vector in
the direction that we want to study. By a unit vector we mean one whose dot
product with itself is equal to unity. Let us call this unit vector i; then i · i = 1.
Then, if we want the component of some vector in the direction of i, we see that
the dot product a · i will be a cos θ, i.e., the component of a in the direction
of i. This is a nice way to get the component; in fact, it permits us to get all
the components and to write a rather amusing formula. Suppose that in a given
system of coordinates, x, y, and z, we invent three vectors: i, a unit vector in
the direction x; j, a unit vector in the direction y; and k, a unit vector in the
direction z. Note first that i · i = 1. What is i · j? When two vectors are at right
angles, their dot product is zero. Thus

i · i = 1
i · j = 0 j · j = 1
i · k = 0 j · k = 0 k · k = 1 (11.24)

Now with these definitions, any vector whatsoever can be written this way:

a = axi+ ayj + azk. (11.25)

By this means we can go from the components of a vector to the vector itself.
This discussion of vectors is by no means complete. However, rather than try

to go more deeply into the subject now, we shall first learn to use in physical
situations some of the ideas so far discussed. Then, when we have properly
mastered this basic material, we shall find it easier to penetrate more deeply into
the subject without getting too confused. We shall later find that it is useful
to define another kind of product of two vectors, called the vector product, and
written as a× b. However, we shall undertake a discussion of such matters in a
later chapter.
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12

Characteristics of Force

12-1 What is a force?

Although it is interesting and worth while to study the physical laws simply
because they help us to understand and to use nature, one ought to stop every
once in a while and think, “What do they really mean?” The meaning of any
statement is a subject that has interested and troubled philosophers from time
immemorial, and the meaning of physical laws is even more interesting, because
it is generally believed that these laws represent some kind of real knowledge.
The meaning of knowledge is a deep problem in philosophy, and it is always
important to ask, “What does it mean?”

Let us ask, “What is the meaning of the physical laws of Newton, which we
write as F = ma? What is the meaning of force, mass, and acceleration?” Well,
we can intuitively sense the meaning of mass, and we can define acceleration if
we know the meaning of position and time. We shall not discuss those meanings,
but shall concentrate on the new concept of force. The answer is equally simple:
“If a body is accelerating, then there is a force on it.” That is what Newton’s laws
say, so the most precise and beautiful definition of force imaginable might simply
be to say that force is the mass of an object times the acceleration. Suppose we
have a law which says that the conservation of momentum is valid if the sum
of all the external forces is zero; then the question arises, “What does it mean,
that the sum of all the external forces is zero?” A pleasant way to define that
statement would be: “When the total momentum is a constant, then the sum of
the external forces is zero.” There must be something wrong with that, because it
is just not saying anything new. If we have discovered a fundamental law, which
asserts that the force is equal to the mass times the acceleration, and then define
the force to be the mass times the acceleration, we have found out nothing. We
could also define force to mean that a moving object with no force acting on it
continues to move with constant velocity in a straight line. If we then observe an
object not moving in a straight line with a constant velocity, we might say that
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there is a force on it. Now such things certainly cannot be the content of physics,
because they are definitions going in a circle. The Newtonian statement above,
however, seems to be a most precise definition of force, and one that appeals to
the mathematician; nevertheless, it is completely useless, because no prediction
whatsoever can be made from a definition. One might sit in an armchair all
day long and define words at will, but to find out what happens when two balls
push against each other, or when a weight is hung on a spring, is another matter
altogether, because the way the bodies behave is something completely outside
any choice of definitions.

For example, if we were to choose to say that an object left to itself keeps its
position and does not move, then when we see something drifting, we could say
that must be due to a “gorce”—a gorce is the rate of change of position. Now we
have a wonderful new law, everything stands still except when a gorce is acting.
You see, that would be analogous to the above definition of force, and it would
contain no information. The real content of Newton’s laws is this: that the force
is supposed to have some independent properties, in addition to the law F = ma;
but the specific independent properties that the force has were not completely
described by Newton or by anybody else, and therefore the physical law F = ma is
an incomplete law. It implies that if we study the mass times the acceleration and
call the product the force, i.e., if we study the characteristics of force as a program
of interest, then we shall find that forces have some simplicity; the law is a good
program for analyzing nature, it is a suggestion that the forces will be simple.

Now the first example of such forces was the complete law of gravitation,
which was given by Newton, and in stating the law he answered the question,
“What is the force?” If there were nothing but gravitation, then the combination
of this law and the force law (second law of motion) would be a complete theory,
but there is much more than gravitation, and we want to use Newton’s laws in
many different situations. Therefore in order to proceed we have to tell something
about the properties of force.

For example, in dealing with force the tacit assumption is always made that
the force is equal to zero unless some physical body is present, that if we find a
force that is not equal to zero we also find something in the neighborhood that is
a source of the force. This assumption is entirely different from the case of the
“gorce” that we introduced above. One of the most important characteristics of
force is that it has a material origin, and this is not just a definition.

Newton also gave one rule about the force: that the forces between interacting
bodies are equal and opposite—action equals reaction; that rule, it turns out,
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is not exactly true. In fact, the law F = ma is not exactly true; if it were a
definition we should have to say that it is always exactly true; but it is not.

The student may object, “I do not like this imprecision, I should like to have
everything defined exactly; in fact, it says in some books that any science is
an exact subject, in which everything is defined.” If you insist upon a precise
definition of force, you will never get it! First, because Newton’s Second Law is
not exact, and second, because in order to understand physical laws you must
understand that they are all some kind of approximation.

Any simple idea is approximate; as an illustration, consider an object, . . . what
is an object? Philosophers are always saying, “Well, just take a chair for example.”
The moment they say that, you know that they do not know what they are talking
about any more. What is a chair? Well, a chair is a certain thing over there . . .
certain?, how certain? The atoms are evaporating from it from time to time—not
many atoms, but a few—dirt falls on it and gets dissolved in the paint; so to
define a chair precisely, to say exactly which atoms are chair, and which atoms are
air, or which atoms are dirt, or which atoms are paint that belongs to the chair is
impossible. So the mass of a chair can be defined only approximately. In the same
way, to define the mass of a single object is impossible, because there are not any
single, left-alone objects in the world—every object is a mixture of a lot of things,
so we can deal with it only as a series of approximations and idealizations.

The trick is the idealizations. To an excellent approximation of perhaps one
part in 1010, the number of atoms in the chair does not change in a minute, and
if we are not too precise we may idealize the chair as a definite thing; in the same
way we shall learn about the characteristics of force, in an ideal fashion, if we
are not too precise. One may be dissatisfied with the approximate view of nature
that physics tries to obtain (the attempt is always to increase the accuracy of the
approximation), and may prefer a mathematical definition; but mathematical
definitions can never work in the real world. A mathematical definition will be
good for mathematics, in which all the logic can be followed out completely, but
the physical world is complex, as we have indicated in a number of examples, such
as those of the ocean waves and a glass of wine. When we try to isolate pieces of it,
to talk about one mass, the wine and the glass, how can we know which is which,
when one dissolves in the other? The forces on a single thing already involve
approximation, and if we have a system of discourse about the real world, then that
system, at least for the present day, must involve approximations of some kind.

This system is quite unlike the case of mathematics, in which everything can
be defined, and then we do not know what we are talking about. In fact, the glory
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of mathematics is that we do not have to say what we are talking about. The glory
is that the laws, the arguments, and the logic are independent of what “it” is. If
we have any other set of objects that obey the same system of axioms as Euclid’s
geometry, then if we make new definitions and follow them out with correct logic,
all the consequences will be correct, and it makes no difference what the subject
was. In nature, however, when we draw a line or establish a line by using a light
beam and a theodolite, as we do in surveying, are we measuring a line in the sense
of Euclid? No, we are making an approximation; the cross hair has some width,
but a geometrical line has no width, and so, whether Euclidean geometry can be
used for surveying or not is a physical question, not a mathematical question.
However, from an experimental standpoint, not a mathematical standpoint, we
need to know whether the laws of Euclid apply to the kind of geometry that we
use in measuring land; so we make a hypothesis that it does, and it works pretty
well; but it is not precise, because our surveying lines are not really geometrical
lines. Whether or not those lines of Euclid, which are really abstract, apply to
the lines of experience is a question for experience; it is not a question that can
be answered by sheer reason.

In the same way, we cannot just call F = ma a definition, deduce everything
purely mathematically, and make mechanics a mathematical theory, when me-
chanics is a description of nature. By establishing suitable postulates it is always
possible to make a system of mathematics, just as Euclid did, but we cannot make
a mathematics of the world, because sooner or later we have to find out whether
the axioms are valid for the objects of nature. Thus we immediately get involved
with these complicated and “dirty” objects of nature, but with approximations
ever increasing in accuracy.

12-2 Friction

The foregoing considerations show that a true understanding of Newton’s laws
requires a discussion of forces, and it is the purpose of this chapter to introduce
such a discussion, as a kind of completion of Newton’s laws. We have already
studied the definitions of acceleration and related ideas, but now we have to
study the properties of force, and this chapter, unlike the previous chapters, will
not be very precise, because forces are quite complicated.

To begin with a particular force, let us consider the drag on an airplane flying
through the air. What is the law for that force? (Surely there is a law for every
force, we must have a law!) One can hardly think that the law for that force will
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be simple. Try to imagine what makes a drag on an airplane flying through the
air—the air rushing over the wings, the swirling in the back, the changes going
on around the fuselage, and many other complications, and you see that there is
not going to be a simple law. On the other hand, it is a remarkable fact that the
drag force on an airplane is approximately a constant times the square of the
velocity, or F ≈ cv2.

Now what is the status of such a law, is it analogous to F = ma? Not at
all, because in the first place this law is an empirical thing that is obtained
roughly by tests in a wind tunnel. You say, “Well F = ma might be empirical
too.” That is not the reason that there is a difference. The difference is not that
it is empirical, but that, as we understand nature, this law is the result of an
enormous complexity of events and is not, fundamentally, a simple thing. If
we continue to study it more and more, measuring more and more accurately,
the law will continue to become more complicated, not less. In other words, as
we study this law of the drag on an airplane more and more closely, we find
out that it is “falser” and “falser,” and the more deeply we study it, and the
more accurately we measure, the more complicated the truth becomes; so in that
sense we consider it not to result from a simple, fundamental process, which
agrees with our original surmise. For example, if the velocity is extremely low,
so low that an ordinary airplane is not flying, as when the airplane is dragged
slowly through the air, then the law changes, and the drag friction depends more
nearly linearly on the velocity. To take another example, the frictional drag on
a ball or a bubble or anything that is moving slowly through a viscous liquid
like honey, is proportional to the velocity, but for motion so fast that the fluid
swirls around (honey does not but water and air do) then the drag becomes more
nearly proportional to the square of the velocity (F = cv2), and if the velocity
continues to increase, then even this law begins to fail. People who say, “Well
the coefficient changes slightly,” are dodging the issue. Second, there are other
great complications: can this force on the airplane be divided or analyzed as a
force on the wings, a force on the front, and so on? Indeed, this can be done,
if we are concerned about the torques here and there, but then we have to get
special laws for the force on the wings, and so on. It is an amazing fact that
the force on a wing depends upon the other wing: in other words, if we take
the airplane apart and put just one wing in the air, then the force is not the
same as if the rest of the plane were there. The reason, of course, is that some
of the wind that hits the front goes around to the wings and changes the force
on the wings. It seems a miracle that there is such a simple, rough, empirical
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law that can be used in the design of airplanes, but this law is not in the same
class as the basic laws of physics, and further study of it will only make it more
and more complicated. A study of how the coefficient c depends on the shape
of the front of the airplane is, to put it mildly, frustrating. There just is no
simple law for determining the coefficient in terms of the shape of the airplane.
In contrast, the law of gravitation is simple, and further study only indicates its
greater simplicity.

We have just discussed two cases of friction, resulting from fast movement in
air and slow movement in honey. There is another kind of friction, called dry
friction or sliding friction, which occurs when one solid body slides on another.
In this case a force is needed to maintain motion. This is called a frictional force,
and its origin, also, is a very complicated matter. Both surfaces of contact are
irregular, on an atomic level. There are many points of contact where the atoms
seem to cling together, and then, as the sliding body is pulled along, the atoms
snap apart and vibration ensues; something like that has to happen. Formerly
the mechanism of this friction was thought to be very simple, that the surfaces
were merely full of irregularities and the friction originated in lifting the slider
over the bumps; but this cannot be, for there is no loss of energy in that process,
whereas power is in fact consumed. The mechanism of power loss is that as
the slider snaps over the bumps, the bumps deform and then generate waves
and atomic motions and, after a while, heat, in the two bodies. Now it is very
remarkable that again, empirically, this friction can be described approximately
by a simple law. This law is that the force needed to overcome friction and to
drag one object over another depends upon the normal force (i.e., perpendicular
to the surface) between the two surfaces that are in contact. Actually, to a fairly
good approximation, the frictional force is proportional to this normal force, and
has a more or less constant coefficient; that is,

F = µN, (12.1)

where µ is called the coefficient of friction (Fig. 12-1). Although this coefficient
is not exactly constant, the formula is a good empirical rule for judging approxi-
mately the amount of force that will be needed in certain practical or engineering
circumstances. If the normal force or the speed of motion gets too big, the law
fails because of the excessive heat generated. It is important to realize that each
of these empirical laws has its limitations, beyond which it does not really work.

That the formula F = µN is approximately correct can be demonstrated by
a simple experiment. We set up a plane, inclined at a small angle θ, and place a
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Fig. 12-1. The relation between frictional force and the normal force
for sliding contact.

block of weight W on the plane. We then tilt the plane at a steeper angle, until
the block just begins to slide from its own weight. The component of the weight
downward along the plane is W sin θ, and this must equal the frictional force F
when the block is sliding uniformly. The component of the weight normal to the
plane is W cos θ, and this is the normal force N . With these values, the formula
becomes W sin θ = µW cos θ, from which we get µ = sin θ/ cos θ = tan θ. If this
law were exactly true, an object would start to slide at some definite inclination.
If the same block is loaded by putting extra weight on it, then, although W is
increased, all the forces in the formula are increased in the same proportion,
and W cancels out. If µ stays constant, the loaded block will slide again at the
same slope. When the angle θ is determined by trial with the original weight, it
is found that with the greater weight the block will slide at about the same angle.
This will be true even when one weight is many times as great as the other, and
so we conclude that the coefficient of friction is independent of the weight.

In performing this experiment it is noticeable that when the plane is tilted
at about the correct angle θ, the block does not slide steadily but in a halting
fashion. At one place it may stop, at another it may move with acceleration. This
behavior indicates that the coefficient of friction is only roughly a constant, and
varies from place to place along the plane. The same erratic behavior is observed
whether the block is loaded or not. Such variations are caused by different degrees
of smoothness or hardness of the plane, and perhaps dirt, oxides, or other foreign
matter. The tables that list purported values of µ for “steel on steel,” “copper
on copper,” and the like, are all false, because they ignore the factors mentioned
above, which really determine µ. The friction is never due to “copper on copper,”
etc., but to the impurities clinging to the copper.

In experiments of the type described above, the friction is nearly independent
of the velocity. Many people believe that the friction to be overcome to get
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something started (static friction) exceeds the force required to keep it sliding
(sliding friction), but with dry metals it is very hard to show any difference. The
opinion probably arises from experiences where small bits of oil or lubricant are
present, or where blocks, for example, are supported by springs or other flexible
supports so that they appear to bind.

It is quite difficult to do accurate quantitative experiments in friction, and
the laws of friction are still not analyzed very well, in spite of the enormous
engineering value of an accurate analysis. Although the law F = µN is fairly
accurate once the surfaces are standardized, the reason for this form of the law
is not really understood. To show that the coefficient µ is nearly independent of
velocity requires some delicate experimentation, because the apparent friction is
much reduced if the lower surface vibrates very fast. When the experiment is done
at very high speed, care must be taken that the objects do not vibrate relative
to one another, since apparent decreases of the friction at high speed are often
due to vibrations. At any rate, this friction law is another of those semiempirical
laws that are not thoroughly understood, and in view of all the work that has
been done it is surprising that more understanding of this phenomenon has not
come about. At the present time, in fact, it is impossible even to estimate the
coefficient of friction between two substances.

It was pointed out above that attempts to measure µ by sliding pure substances
such as copper on copper will lead to spurious results, because the surfaces in
contact are not pure copper, but are mixtures of oxides and other impurities. If
we try to get absolutely pure copper, if we clean and polish the surfaces, outgas
the materials in a vacuum, and take every conceivable precaution, we still do
not get µ. For if we tilt the apparatus even to a vertical position, the slider will
not fall off—the two pieces of copper stick together! The coefficient µ, which is
ordinarily less than unity for reasonably hard surfaces, becomes several times
unity! The reason for this unexpected behavior is that when the atoms in contact
are all of the same kind, there is no way for the atoms to “know” that they are in
different pieces of copper. When there are other atoms, in the oxides and greases
and more complicated thin surface layers of contaminants in between, the atoms
“know” when they are not on the same part. When we consider that it is forces
between atoms that hold the copper together as a solid, it should become clear
that it is impossible to get the right coefficient of friction for pure metals.

The same phenomenon can be observed in a simple home-made experiment
with a flat glass plate and a glass tumbler. If the tumbler is placed on the plate
and pulled along with a loop of string, it slides fairly well and one can feel the
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coefficient of friction; it is a little irregular, but it is a coefficient. If we now wet
the glass plate and the bottom of the tumbler and pull again, we find that it
binds, and if we look closely we shall find scratches, because the water is able
to lift the grease and the other contaminants off the surface, and then we really
have a glass-to-glass contact; this contact is so good that it holds tight and resists
separation so much that the glass is torn apart; that is, it makes scratches.

12-3 Molecular forces

We shall next discuss the characteristics of molecular forces. These are forces
between the atoms, and are the ultimate origin of friction. Molecular forces have
never been satisfactorily explained on a basis of classical physics; it takes quantum
mechanics to understand them fully. Empirically, however, the force between
atoms is illustrated schematically in Fig. 12-2, where the force F between two
atoms is plotted as a function of the distance r between them. There are different
cases: in the water molecule, for example, the negative charges sit more on the
oxygen, and the mean positions of the negative charges and of the positive charges
are not at the same point; consequently, another molecule nearby feels a relatively
large force, which is called a dipole-dipole force. However, for many systems the
charges are very much better balanced, in particular for oxygen gas, which is
perfectly symmetrical. In this case, although the minus charges and the plus
charges are dispersed over the molecule, the distribution is such that the center
of the minus charges and the center of the plus charges coincide. A molecule
where the centers do not coincide is called a polar molecule, and charge times
the separation between centers is called the dipole moment. A nonpolar molecule

F

r
0

F = k/r7

d

REPULSION

ATTRACTION

Fig. 12-2. The force between two atoms as a function of their distance
of separation.
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is one in which the centers of the charges coincide. For all nonpolar molecules, in
which all the electrical forces are neutralized, it nevertheless turns out that the
force at very large distances is an attraction and varies inversely as the seventh
power of the distance, or F = k/r7, where k is a constant that depends on the
molecules. Why this is we shall learn only when we learn quantum mechanics.
When there are dipoles the forces are greater. When atoms or molecules get too
close they repel with a very large repulsion; that is what keeps us from falling
through the floor!

These molecular forces can be demonstrated in a fairly direct way: one of
these is the friction experiment with a sliding glass tumbler; another is to take
two very carefully ground and lapped surfaces which are very accurately flat,
so that the surfaces can be brought very close together. An example of such
surfaces is the Johansson blocks that are used in machine shops as standards for
making accurate length measurements. If one such block is slid over another very
carefully and the upper one is lifted, the other one will adhere and also be lifted
by the molecular forces, exemplifying the direct attraction between the atoms on
one block for the atoms on the other block.

Nevertheless these molecular forces of attraction are still not fundamental in
the sense that gravitation is fundamental; they are due to the vastly complex
interactions of all the electrons and nuclei in one molecule with all the electrons
and nuclei in another. Any simple-looking formula we get represents a summation
of complications, so we still have not got the fundamental phenomena.

Since the molecular forces attract at large distances and repel at short distances,
as shown in Fig. 12-2, we can make up solids in which all the atoms are held
together by their attractions and held apart by the repulsion that sets in when
they are too close together. At a certain distance d (where the graph in Fig. 12-2
crosses the axis) the forces are zero, which means that they are all balanced, so
that the molecules stay that distance apart from one another. If the molecules are
pushed closer together than the distance d they all show a repulsion, represented
by the portion of the graph above the r-axis. To push the molecules only slightly
closer together requires a great force, because the molecular repulsion rapidly
becomes very great at distances less than d. If the molecules are pulled slightly
apart there is a slight attraction, which increases as the separation increases. If
they are pulled sufficiently hard, they will separate permanently—the bond is
broken.

If the molecules are pushed only a very small distance closer, or pulled only
a very small distance farther than d, the corresponding distance along the curve
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of Fig. 12-2 is also very small, and can then be approximated by a straight line.
Therefore, in many circumstances, if the displacement is not too great the force
is proportional to the displacement. This principle is known as Hooke’s law, or
the law of elasticity, which says that the force in a body which tries to restore the
body to its original condition when it is distorted is proportional to the distortion.
This law, of course, holds true only if the distortion is relatively small; when it
gets too large the body will be torn apart or crushed, depending on the kind of
distortion. The amount of force for which Hooke’s law is valid depends upon
the material; for instance, for dough or putty the force is very small, but for
steel it is relatively large. Hooke’s law can be nicely demonstrated with a long
coil spring, made of steel and suspended vertically. A suitable weight hung on
the lower end of the spring produces a tiny twist throughout the length of the
wire, which results in a small vertical deflection in each turn and adds up to a
large displacement if there are many turns. If the total elongation produced,
say, by a 100-gram weight, is measured, it is found that additional weights of
100 grams will each produce an additional elongation that is very nearly equal
to the stretch that was measured for the first 100 grams. This constant ratio
of force to displacement begins to change when the spring is overloaded, i.e.,
Hooke’s law no longer holds.

12-4 Fundamental forces. Fields

We shall now discuss the only remaining forces that are fundamental. We
call them fundamental in the sense that their laws are fundamentally simple. We
shall first discuss electrical force. Objects carry electrical charges which consist
simply of electrons or protons. If any two bodies are electrically charged, there
is an electrical force between them, and if the magnitudes of the charges are
q1 and q2, respectively, the force varies inversely as the square of the distance
between the charges, or F = (const)q1q2/r

2. For unlike charges, this law is like
the law of gravitation, but for like charges the force is repulsive and the sign
(direction) is reversed. The charges q1 and q2 can be intrinsically either positive
or negative, and in any specific application of the formula the direction of the
force will come out right if the q’s are given the proper plus or minus sign; the
force is directed along the line between the two charges. The constant in the
formula depends, of course, upon what units are used for the force, the charge,
and the distance. In current practice the charge is measured in coulombs, the
distance in meters, and the force in newtons. Then, in order to get the force

12-11



to come out properly in newtons, the constant (which for historical reasons is
written 1/4πε0) takes the numerical value

ε0 = 8.854× 10−12 coul2/newton ·m2

or
1/4πε0 = 8.99× 109 N ·m2/coul2.

Thus the force law for static charges is

F = q1q2r/4πε0r3. (12.2)

In nature, the most important charge of all is the charge on a single elec-
tron, which is 1.60× 10−19 coulomb. In working with electrical forces between
fundamental particles rather than with large charges, many people prefer the
combination (qel)2/4πε0, in which qel is defined as the charge on an electron. This
combination occurs frequently, and to simplify calculations it has been defined
by the symbol e2; its numerical value in the mks system of units turns out to
be (1.52× 10−14)2. The advantage of using the constant in this form is that the
force between two electrons in newtons can then be written simply as e2/r2, with
r in meters, without all the individual constants. Electrical forces are much more
complicated than this simple formula indicates, since the formula gives the force
between two objects only when the objects are standing still. We shall consider
the more general case shortly.

In the analysis of forces of the more fundamental kinds (not such forces as
friction, but the electrical force or the gravitational force), an interesting and very
important concept has been developed. Since at first sight the forces are very
much more complicated than is indicated by the inverse-square laws and these
laws hold true only when the interacting bodies are standing still, an improved
method is needed to deal with the very complex forces that ensue when the bodies
start to move in a complicated way. Experience has shown that an approach
known as the concept of a “field” is of great utility for the analysis of forces of
this type. To illustrate the idea for, say, electrical force, suppose we have two
electrical charges, q1 and q2, located at points P and R respectively. Then the
force between the charges is given by

F = q1q2r/4πε0r3. (12.3)

To analyze this force by means of the field concept, we say that the charge q1
at P produces a “condition” at R, such that when the charge q2 is placed at R
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it “feels” the force. This is one way, strange perhaps, of describing it; we say
that the force F on q2 at R can be written in two parts. It is q2 multiplied by a
quantity E that would be there whether q2 were there or not (provided we keep
all the other charges in their right places). E is the “condition” produced by q1,
we say, and F is the response of q2 to E. E is called an electric field, and it is a
vector. The formula for the electric field E that is produced at R by a charge q1
at P is the charge q1 times the constant 1/4πε0 divided by r2 (r is the distance
from P to R), and it is acting in the direction of the radius vector (the radius
vector r divided by its own length). The expression for E is thus

E = q1r/4πε0r3. (12.4)
We then write

F = q2E, (12.5)

which expresses the force, the field, and the charge in the field. What is the point
of all this? The point is to divide the analysis into two parts. One part says that
something produces a field. The other part says that something is acted on by
the field. By allowing us to look at the two parts independently, this separation
of the analysis simplifies the calculation of a problem in many situations. If many
charges are present, we first work out the total electric field produced at R by all
the charges, and then, knowing the charge that is placed at R, we find the force
on it.

In the case of gravitation, we can do exactly the same thing. In this case,
where the force F = −Gm1m2r/r

3, we can make an analogous analysis, as
follows: the force on a body in a gravitational field is the mass of that body
times the field C. The force on m2 is the mass m2 times the field C produced
by m1; that is, F = m2C. Then the field C produced by a body of mass m1
is C = −Gm1r/r

3 and it is directed radially, as in the electrical case.
In spite of how it might at first seem, this separation of one part from another

is not a triviality. It would be trivial, just another way of writing the same
thing, if the laws of force were simple, but the laws of force are so complicated
that it turns out that the fields have a reality that is almost independent of
the objects which create them. One can do something like shake a charge and
produce an effect, a field, at a distance; if one then stops moving the charge, the
field keeps track of all the past, because the interaction between two particles is
not instantaneous. It is desirable to have some way to remember what happened
previously. If the force upon some charge depends upon where another charge
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was yesterday, which it does, then we need machinery to keep track of what went
on yesterday, and that is the character of a field. So when the forces get more
complicated, the field becomes more and more real, and this technique becomes
less and less of an artificial separation.

In analyzing forces by the use of fields, we need two kinds of laws pertaining
to fields. The first is the response to a field, and that gives the equations of
motion. For example, the law of response of a mass to a gravitational field is
that the force is equal to the mass times the gravitational field; or, if there is
also a charge on the body, the response of the charge to the electric field equals
the charge times the electric field. The second part of the analysis of nature in
these situations is to formulate the laws which determine the strength of the
field and how it is produced. These laws are sometimes called the field equations.
We shall learn more about them in due time, but shall write down a few things
about them now.

First, the most remarkable fact of all, which is true exactly and which can be
easily understood, is that the total electric field produced by a number of sources
is the vector sum of the electric fields produced by the first source, the second
source, and so on. In other words, if we have numerous charges making a field,
and if all by itself one of them would make the field E1, another would make the
field E2, and so on, then we merely add the vectors to get the total field. This
principle can be expressed as

E = E1 +E2 +E3 + · · · (12.6)

or, in view of the definition given above,

E =
∑
i

qiri
4πε0r3

i

. (12.7)

Can the same methods be applied to gravitation? The force between two
masses m1 and m2 was expressed by Newton as F = −Gm1m2r/r

3. But
according to the field concept, we may say that m1 creates a field C in all the
surrounding space, such that the force on m2 is given by

F = m2C. (12.8)

By complete analogy with the electrical case,

Ci = −Gmiri/r
3
i (12.9)
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and the gravitational field produced by several masses is

C = C1 +C2 +C3 + · · · (12.10)

In Chapter 9, in working out a case of planetary motion, we used this principle
in essence. We simply added all the force vectors to get the resultant force on a
planet. If we divide out the mass of the planet in question, we get Eq. (12.10).

Equations (12.6) and (12.10) express what is known as the principle of
superposition of fields. This principle states that the total field due to all the
sources is the sum of the fields due to each source. So far as we know today,
for electricity this is an absolutely guaranteed law, which is true even when
the force law is complicated because of the motions of the charges. There are
apparent violations, but more careful analysis has always shown these to be due
to the overlooking of certain moving charges. However, although the principle of
superposition applies exactly for electrical forces, it is not exact for gravity if the
field is too strong, and Newton’s equation (12.10) is only approximate, according
to Einstein’s gravitational theory.

Closely related to electrical force is another kind, called magnetic force, and
this too is analyzed in terms of a field. Some of the qualitative relations between
electrical and magnetic forces can be illustrated by an experiment with an electron-
ray tube (Fig. 12-3). At one end of such a tube is a source that emits a stream
of electrons. Within the tube are arrangements for accelerating the electrons to
a high speed and sending some of them in a narrow beam to a fluorescent screen
at the other end of the tube. A spot of light glows in the center of the screen
where the electrons strike, and this enables us to trace the electron path. On the
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Fig. 12-3. An electron-beam tube.
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way to the screen the electron beam passes through a narrow space between a
pair of parallel metal plates, which are arranged, say, horizontally. A voltage can
be applied across the plates, so that either plate can be made negative at will.
When such a voltage is present, there is an electric field between the plates.

The first part of the experiment is to apply a negative voltage to the lower
plate, which means that extra electrons have been placed on the lower plate.
Since like charges repel, the light spot on the screen instantly shifts upward.
(We could also say this in another way—that the electrons “felt” the field, and
responded by deflecting upward.) We next reverse the voltage, making the upper
plate negative. The light spot on the screen now jumps below the center, showing
that the electrons in the beam were repelled by those in the plate above them.
(Or we could say again that the electrons had “responded” to the field, which is
now in the reverse direction.)

The second part of the experiment is to disconnect the voltage from the plates
and test the effect of a magnetic field on the electron beam. This is done by means
of a horseshoe magnet, whose poles are far enough apart to more or less straddle
the tube. Suppose we hold the magnet below the tube in the same orientation
as the letter U, with its poles up and part of the tube in between. We note that
the light spot is deflected, say, upward, as the magnet approaches the tube from
below. So it appears that the magnet repels the electron beam. However, it is not
that simple, for if we invert the magnet without reversing the poles side-for-side,
and now approach the tube from above, the spot still moves upward, so the
electron beam is not repelled; instead, it appears to be attracted this time. Now
we start again, restoring the magnet to its original U orientation and holding
it below the tube, as before. Yes, the spot is still deflected upward; but now turn
the magnet 180 degrees around a vertical axis, so that it is still in the U position
but the poles are reversed side-for-side. Behold, the spot now jumps downward,
and stays down, even if we invert the magnet and approach from above, as before.

To understand this peculiar behavior, we have to have a new combination of
forces. We explain it thus: Across the magnet from one pole to the other there is a
magnetic field. This field has a direction which is always away from one particular
pole (which we could mark) and toward the other. Inverting the magnet did
not change the direction of the field, but reversing the poles side-for-side did
reverse its direction. For example, if the electron velocity were horizontal in the
x-direction and the magnetic field were also horizontal but in the y-direction, the
magnetic force on the moving electrons would be in the z-direction, i.e., up or
down, depending on whether the field was in the positive or negative y-direction.

12-16



Although we shall not at the present time give the correct law of force between
charges moving in an arbitrary manner, one relative to the other, because it is
too complicated, we shall give one aspect of it: the complete law of the forces
if the fields are known. The force on a charged object depends upon its motion;
if, when the object is standing still at a given place, there is some force, this
is taken to be proportional to the charge, the coefficient being what we call
the electric field. When the object moves the force may be different, and the
correction, the new “piece” of force, turns out to be dependent exactly linearly
on the velocity, but at right angles to v and to another vector quantity which we
call the magnetic induction B. If the components of the electric field E and the
magnetic induction B are, respectively, (Ex, Ey, Ez) and (Bx, By, Bz), and if the
velocity v has the components (vx, vy, vz), then the total electric and magnetic
force on a moving charge q has the components

Fx = q(Ex + vyBz − vzBy),
Fy = q(Ey + vzBx − vxBz ),
Fz = q(Ez + vxBy − vyBx).

(12.11)

If, for instance, the only component of the magnetic field were By and the only
component of the velocity were vx, then the only term left in the magnetic force
would be a force in the z-direction, at right angles to both B and v.

12-5 Pseudo forces

The next kind of force we shall discuss might be called a pseudo force. In
Chapter 11 we discussed the relationship between two people, Joe and Moe, who
use different coordinate systems. Let us suppose that the positions of a particle
as measured by Joe are x and by Moe are x′; then the laws are as follows:

x = x′ + s, y = y′, z = z′,

where s is the displacement of Moe’s system relative to Joe’s. If we suppose that
the laws of motion are correct for Joe, how do they look for Moe? We find first,
that

dx/dt = dx′/dt+ ds/dt.

Previously, we considered the case where s was constant, and we found that s
made no difference in the laws of motion, since ds/dt = 0; ultimately, therefore,
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the laws of physics were the same in both systems. But another case we can
take is that s = ut, where u is a uniform velocity in a straight line. Then
s is not constant, and ds/dt is not zero, but is u, a constant. However, the
acceleration d2x/dt2 is still the same as d2x′/dt2, because du/dt = 0. This proves
the law that we used in Chapter 10, namely, that if we move in a straight line
with uniform velocity the laws of physics will look the same to us as when we are
standing still. That is the Galilean transformation. But we wish to discuss the
interesting case where s is still more complicated, say s = at2/2. Then ds/dt = at
and d2s/dt2 = a, a uniform acceleration; or in a still more complicated case, the
acceleration might be a function of time. This means that although the laws of
motion from the point of view of Joe would look like

m
d2x

dt2
= Fx,

the laws of motion as looked upon by Moe would appear as

m
d2x′

dt2
= Fx′ = Fx −ma.

That is, since Moe’s coordinate system is accelerating with respect to Joe’s, the
extra term ma comes in, and Moe will have to correct his forces by that amount
in order to get Newton’s laws to work. In other words, here is an apparent,
mysterious new force of unknown origin which arises, of course, because Moe
has the wrong coordinate system. This is an example of a pseudo force; other
examples occur in coordinate systems that are rotating.

Another example of pseudo force is what is often called “centrifugal force.”
An observer in a rotating coordinate system, e.g., in a rotating box, will find
mysterious forces, not accounted for by any known origin of force, throwing
things outward toward the walls. These forces are due merely to the fact that
the observer does not have Newton’s coordinate system, which is the simplest
coordinate system.

Pseudo force can be illustrated by an interesting experiment in which we
push a jar of water along a table, with acceleration. Gravity, of course, acts
downward on the water, but because of the horizontal acceleration there is also a
pseudo force acting horizontally and in a direction opposite to the acceleration.
The resultant of gravity and pseudo force makes an angle with the vertical, and
during the acceleration the surface of the water will be perpendicular to the

12-18



resultant force, i.e., inclined at an angle with the table, with the water standing
higher in the rearward side of the jar. When the push on the jar stops and the
jar decelerates because of friction, the pseudo force is reversed, and the water
stands higher in the forward side of the jar (Fig. 12-4).

a a

g g

Fig. 12-4. Illustration of a pseudo force.

One very important feature of pseudo forces is that they are always propor-
tional to the masses; the same is true of gravity. The possibility exists, therefore,
that gravity itself is a pseudo force. Is it not possible that perhaps gravitation is
due simply to the fact that we do not have the right coordinate system? After
all, we can always get a force proportional to the mass if we imagine that a
body is accelerating. For instance, a man shut up in a box that is standing
still on the earth finds himself held to the floor of the box with a certain force
that is proportional to his mass. But if there were no earth at all and the box
were standing still, the man inside would float in space. On the other hand, if
there were no earth at all and something were pulling the box along with an
acceleration g, then the man in the box, analyzing physics, would find a pseudo
force which would pull him to the floor, just as gravity does.

Einstein put forward the famous hypothesis that accelerations give an imitation
of gravitation, that the forces of acceleration (the pseudo forces) cannot be
distinguished from those of gravity; it is not possible to tell how much of a given
force is gravity and how much is pseudo force.

It might seem all right to consider gravity to be a pseudo force, to say that we
are all held down because we are accelerating upward, but how about the people
in Madagascar, on the other side of the earth—are they accelerating too? Einstein
found that gravity could be considered a pseudo force only at one point at a time,
and was led by his considerations to suggest that the geometry of the world is
more complicated than ordinary Euclidean geometry. The present discussion is
only qualitative, and does not pretend to convey anything more than the general
idea. To give a rough idea of how gravitation could be the result of pseudo forces,
we present an illustration which is purely geometrical and does not represent the
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real situation. Suppose that we all lived in two dimensions, and knew nothing of
a third. We think we are on a plane, but suppose we are really on the surface of a
sphere. And suppose that we shoot an object along the ground, with no forces on
it. Where will it go? It will appear to go in a straight line, but it has to remain
on the surface of a sphere, where the shortest distance between two points is
along a great circle; so it goes along a great circle. If we shoot another object
similarly, but in another direction, it goes along another great circle. Because
we think we are on a plane, we expect that these two bodies will continue to
diverge linearly with time, but careful observation will show that if they go far
enough they move closer together again, as though they were attracting each
other. But they are not attracting each other—there is just something “weird”
about this geometry. This particular illustration does not describe correctly the
way in which Einstein’s geometry is “weird,” but it illustrates that if we distort
the geometry sufficiently it is possible that all gravitation is related in some way
to pseudo forces; that is the general idea of the Einsteinian theory of gravitation.

12-6 Nuclear forces

We conclude this chapter with a brief discussion of the only other known
forces, which are called nuclear forces. These forces are within the nuclei of
atoms, and although they are much discussed, no one has ever calculated the
force between two nuclei, and indeed at present there is no known law for nuclear
forces. These forces have a very tiny range which is just about the same as
the size of the nucleus, perhaps 10−13 centimeter. With particles so small and
at such a tiny distance, only the quantum-mechanical laws are valid, not the
Newtonian laws. In nuclear analysis we no longer think in terms of forces, and in
fact we can replace the force concept with a concept of the energy of interaction
of two particles, a subject that will be discussed later. Any formula that can
be written for nuclear forces is a rather crude approximation which omits many
complications; one might be somewhat as follows: forces within a nucleus do
not vary inversely as the square of the distance, but die off exponentially over a
certain distance r, as expressed by F = (1/r2) exp(−r/r0), where the distance r0
is of the order of 10−13 centimeter. In other words, the forces disappear as soon
as the particles are any great distance apart, although they are very strong
within the 10−13 centimeter range. So far as they are understood today, the laws
of nuclear force are very complex; we do not understand them in any simple
way, and the whole problem of analyzing the fundamental machinery behind
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nuclear forces is unsolved. Attempts at a solution have led to the discovery of
numerous strange particles, the π-mesons, for example, but the origin of these
forces remains obscure.
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13

Work and Potential Energy (A)

13-1 Energy of a falling body

In Chapter 4 we discussed the conservation of energy. In that discussion, we
did not use Newton’s laws, but it is, of course, of great interest to see how it
comes about that energy is in fact conserved in accordance with these laws. For
clarity we shall start with the simplest possible example, and then develop harder
and harder examples.

The simplest example of the conservation of energy is a vertically falling
object, one that moves only in a vertical direction. An object which changes its
height under the influence of gravity alone has a kinetic energy T (or K.E.) due
to its motion during the fall, and a potential energy mgh, abbreviated U (or
P.E.), whose sum is constant:

1
2mv

2

K.E.
+mgh

P.E.
= const,

or
T + U = const. (13.1)

Now we would like to show that this statement is true. What do we mean, show it
is true? From Newton’s Second Law we can easily tell how the object moves, and
it is easy to find out how the velocity varies with time, namely, that it increases
proportionally with the time, and that the height varies as the square of the time.
So if we measure the height from a zero point where the object is stationary, it
is no miracle that the height turns out to be equal to the square of the velocity
times a number of constants. However, let us look at it a little more closely.

Let us find out directly from Newton’s Second Law how the kinetic energy
should change, by taking the derivative of the kinetic energy with respect to time
and then using Newton’s laws. When we differentiate 1

2mv
2 with respect to time,

we obtain
dT

dt
= d

dt
( 1

2mv
2) = 1

2m2v dv
dt

= mv
dv

dt
, (13.2)
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since m is assumed constant. But from Newton’s Second Law, m(dv/dt) = F , so
that

dT/dt = Fv. (13.3)

In general, it will come out to be F · v, but in our one-dimensional case let us
leave it as the force times the velocity.

Now in our simple example the force is constant, equal to −mg, a vertical
force (the minus sign means that it acts downward), and the velocity, of course,
is the rate of change of the vertical position, or height h, with time. Thus the
rate of change of the kinetic energy is −mg(dh/dt), which quantity, miracle of
miracles, is minus the rate of change of something else! It is minus the time rate
of change of mgh! Therefore, as time goes on, the changes in kinetic energy and
in the quantity mgh are equal and opposite, so that the sum of the two quantities
remains constant. Q.E.D.

We have shown, from Newton’s second law of motion, that energy is con-
served for constant forces when we add the potential energy mgh to the kinetic
energy 1

2mv
2. Now let us look into this further and see whether it can be gener-

alized, and thus advance our understanding. Does it work only for a freely falling
body, or is it more general? We expect from our discussion of the conservation
of energy that it would work for an object moving from one point to another
in some kind of frictionless curve, under the influence of gravity (Fig. 13-1). If
the object reaches a certain height h from the original height H, then the same
formula should again be right, even though the velocity is now in some direction
other than the vertical. We would like to understand why the law is still correct.
Let us follow the same analysis, finding the time rate of change of the kinetic
energy. This will again be mv(dv/dt), but m(dv/dt) is the rate of change of
the magnitude of the momentum, i.e., the force in the direction of motion—the

x

h

θ dh/dtv

Fig. 13-1. An object moving on a frictionless curve under the influence
of gravity.
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tangential force Ft. Thus

dT

dt
= mv

dv

dt
= Ftv.

Now the speed is the rate of change of distance along the curve, ds/dt, and
the tangential force Ft is not −mg but is weaker by the ratio of the vertical
distance dh to the distance ds along the path. In other words,

Ft = −mg sin θ = −mg dh
ds
,

so that

Ft
ds

dt
= −mg

(
dh

ds

)(
ds

dt

)
= −mg dh

dt
,

since the ds’s cancel. Thus we get −mg(dh/dt), which is equal to the rate of
change of −mgh, as before.

In order to understand exactly how the conservation of energy works in general
in mechanics, we shall now discuss a number of concepts which will help us to
analyze it.

First, we discuss the rate of change of kinetic energy in general in three
dimensions. The kinetic energy in three dimensions is

T = 1
2m(v2

x + v2
y + v2

z).

When we differentiate this with respect to time, we get three terrifying terms:

dT

dt
= m

(
vx
dvx
dt

+ vy
dvy
dt

+ vz
dvz
dt

)
. (13.4)

But m(dvx/dt) is the force Fx acting on the object in the x-direction. Thus the
right side of Eq. (13.4) is Fxvx + Fyvy + Fzvz. We recall our vector analysis and
recognize this as F · v; therefore

dT/dt = F · v. (13.5)

This result can be derived more quickly as follows: if a and b are two vectors,
both of which may depend upon the time, the derivative of a · b is, in general,

d(a · b)/dt = a · (db/dt) + (da/dt) · b. (13.6)
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We then use this in the form a = b = v:
d( 1

2mv
2)

dt
=
d( 1

2mv · v)
dt

= m
dv

dt
· v = F · v = F · ds

dt
. (13.7)

Because the concepts of kinetic energy, and energy in general, are so important,
various names have been given to the important terms in equations such as these.
1
2mv

2 is, as we know, called kinetic energy. F ·v is called power : the force acting
on an object times the velocity of the object (vector “dot” product) is the power
being delivered to the object by that force. We thus have a marvelous theorem:
the rate of change of kinetic energy of an object is equal to the power expended
by the forces acting on it.

However, to study the conservation of energy, we want to analyze this still
more closely. Let us evaluate the change in kinetic energy in a very short time dt.
If we multiply both sides of Eq. (13.7) by dt, we find that the differential change
in the kinetic energy is the force “dot” the differential distance moved:

dT = F · ds. (13.8)

If we now integrate, we get

∆T =
∫ 2

1
F · ds. (13.9)

What does this mean? It means that if an object is moving in any way under
the influence of a force, moving in some kind of curved path, then the change
in K.E. when it goes from one point to another along the curve is equal to the
integral of the component of the force along the curve times the differential
displacement ds, the integral being carried out from one point to the other. This
integral also has a name; it is called the work done by the force on the object. We
see immediately that power equals work done per second. We also see that it is
only a component of force in the direction of motion that contributes to the work
done. In our simple example the forces were only vertical, and had only a single
component, say Fz, equal to −mg. No matter how the object moves in those
circumstances, falling in a parabola for example, F · s, which can be written
as Fx dx+ Fy dy + Fz dz, has nothing left of it but Fz dz = −mg dz, because the
other components of force are zero. Therefore, in our simple case,∫ 2

1
F · ds =

∫ z2

z1

−mg dz = −mg(z2 − z1), (13.10)
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so again we find that it is only the vertical height from which the object falls
that counts toward the potential energy.

A word about units. Since forces are measured in newtons, and we multiply
by a distance in order to obtain work, work is measured in newton ·meters (N ·m),
but people do not like to say newton-meters, they prefer to say joules (J). A
newton-meter is called a joule; work is measured in joules. Power, then, is joules
per second, and that is also called a watt (W). If we multiply watts by time, the
result is the work done. The work done by the electrical company in our houses,
technically, is equal to the watts times the time. That is where we get things like
kilowatt hours, 1000 watts times 3600 seconds, or 3.6× 106 joules.

Now we take another example of the law of conservation of energy. Consider
an object which initially has kinetic energy and is moving very fast, and which
slides against the floor with friction. It stops. At the start the kinetic energy
is not zero, but at the end it is zero; there is work done by the forces, because
whenever there is friction there is always a component of force in a direction
opposite to that of the motion, and so energy is steadily lost. But now let us
take a mass on the end of a pivot swinging in a vertical plane in a gravitational
field with no friction. What happens here is different, because when the mass is
going up the force is downward, and when it is coming down, the force is also
downward. Thus F · ds has one sign going up and another sign coming down. At
each corresponding point of the downward and upward paths the values of F · ds
are exactly equal in size but of opposite sign, so the net result of the integral
will be zero for this case. Thus the kinetic energy with which the mass comes
back to the bottom is the same as it had when it left; that is the principle of the
conservation of energy. (Note that when there are friction forces the conservation
of energy seems at first sight to be invalid. We have to find another form of
energy. It turns out, in fact, that heat is generated in an object when it rubs
another with friction, but at the moment we supposedly do not know that.)

13-2 Work done by gravity

The next problem to be discussed is much more difficult than the above; it
has to do with the case when the forces are not constant, or simply vertical, as
they were in the cases we have worked out. We want to consider a planet, for
example, moving around the sun, or a satellite in the space around the earth.

We shall first consider the motion of an object which starts at some point 1
and falls, say, directly toward the sun or toward the earth (Fig. 13-2). Will there
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M m

12

Fig. 13-2. A small mass m falls under the influence of gravity toward
a large mass M .

be a law of conservation of energy in these circumstances? The only difference is
that in this case, the force is changing as we go along, it is not just a constant.
As we know, the force is −GM/r2 times the mass m, where m is the mass that
moves. Now certainly when a body falls toward the earth, the kinetic energy
increases as the distance fallen increases, just as it does when we do not worry
about the variation of force with height. The question is whether it is possible to
find another formula for potential energy different from mgh, a different function
of distance away from the earth, so that conservation of energy will still be true.

This one-dimensional case is easy to treat because we know that the change
in the kinetic energy is equal to the integral, from one end of the motion to the
other, of −GMm/r2 times the displacement dr:

T2 − T1 = −
∫ 2

1
GMm

dr

r2 . (13.11)

There are no cosines needed for this case because the force and the displacement
are in the same direction. It is easy to integrate dr/r2; the result is −1/r, so
Eq. (13.11) becomes

T2 − T1 = +GMm

(
1
r2
− 1
r1

)
. (13.12)

Thus we have a different formula for potential energy. Equation (13.12) tells us
that the quantity ( 1

2mv
2 −GMm/r) calculated at point 1, at point 2, or at any

other place, has a constant value.
We now have the formula for the potential energy in a gravitational field for

vertical motion. Now we have an interesting problem. Can we make perpetual
motion in a gravitational field? The gravitational field varies; in different places
it is in different directions and has different strengths. Could we do something
like this, using a fixed, frictionless track: start at some point and lift an object
out to some other point, then move it around an arc to a third point, then lower
it a certain distance, then move it in at a certain slope and pull it out some other
way, so that when we bring it back to the starting point, a certain amount of work
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has been done by the gravitational force, and the kinetic energy of the object
is increased? Can we design the curve so that it comes back moving a little bit
faster than it did before, so that it goes around and around and around, and gives
us perpetual motion? Since perpetual motion is impossible, we ought to find
out that this is also impossible. We ought to discover the following proposition:
since there is no friction the object should come back with neither higher nor
lower velocity—it should be able to keep going around and around any closed
path. Stated in another way, the total work done in going around a complete
cycle should be zero for gravity forces, because if it is not zero we can get energy
out by going around. (If the work turns out to be less than zero, so that we
get less speed when we go around one way, then we merely go around the other
way, because the forces, of course, depend only upon the position, not upon the
direction; if one way is plus, the other way would be minus, so unless it is zero
we will get perpetual motion by going around either way.)

M

m

1

2

3
4

5 6

7

8

Fig. 13-3. A closed path in a gravitational field.

Is the work really zero? Let us try to demonstrate that it is. First we shall
explain more or less why it is zero, and then we shall examine it a little better
mathematically. Suppose that we use a simple path such as that shown in
Fig. 13-3, in which a small mass is carried from point 1 to point 2, and then is
made to go around a circle to 3, back to 4, then to 5, 6, 7, and 8, and finally
back to 1. All of the lines are either purely radial or circular, with M as the
center. How much work is done in carrying m around this path? Between points
1 and 2, it is GMm times the difference of 1/r between these two points:

W12 =
∫ 2

1
F · ds =

∫ 2

1
−GMm

dr

r2 = GMm

(
1
r2
− 1
r1

)
.

From 2 to 3 the force is exactly at right angles to the curve, so that W23 ≡ 0.
The work from 3 to 4 is

W34 =
∫ 4

3
F · ds = GMm

(
1
r4
− 1
r3

)
.
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In the same fashion, we find that W45 = 0, W56 = GMm(1/r6 − 1/r5), W67 = 0,
W78 = GMm(1/r8 − 1/r7), and W81 = 0. Thus

W = GMm

(
1
r2
− 1
r1

+ 1
r4
− 1
r3

+ 1
r6
− 1
r5

+ 1
r8
− 1
r7

)
.

But we note that r2 = r3, r4 = r5, r6 = r7, and r8 = r1. Therefore W = 0.

M

a

bc θ

y

x

sF

Fig. 13-4. A “smooth” closed path, showing a magnified segment of
it approximated by a series of radial and circumferential steps, and an
enlarged view of one step.

Of course we may wonder whether this is too trivial a curve. What if we use
a real curve? Let us try it on a real curve. First of all, we might like to assert
that a real curve could always be imitated sufficiently well by a series of sawtooth
jiggles like those of Fig. 13-4, and that therefore, etc., Q.E.D., but without a
little analysis, it is not obvious at first that the work done going around even a
small triangle is zero. Let us magnify one of the triangles, as shown in Fig. 13-4.
Is the work done in going from a to b and b to c on a triangle the same as the
work done in going directly from a to c? Suppose that the force is acting in a
certain direction; let us take the triangle such that the side bc is in this direction,
just as an example. We also suppose that the triangle is so small that the force
is essentially constant over the entire triangle. What is the work done in going
from a to c? It is

Wac =
∫ c

a

F · ds = Fs cos θ,

since the force is constant. Now let us calculate the work done in going around the
other two sides of the triangle. On the vertical side ab the force is perpendicular
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to ds, so that here the work is zero. On the horizontal side bc,

Wbc =
∫ c

b

F · ds = Fx.

Thus we see that the work done in going along the sides of a small triangle is
the same as that done going on a slant, because s cos θ is equal to x. We have
proved previously that the answer is zero for any path composed of a series of
notches like those of Fig. 13-3, and also that we do the same work if we cut across
the corners instead of going along the notches (so long as the notches are fine
enough, and we can always make them very fine); therefore, the work done in
going around any path in a gravitational field is zero.

This is a very remarkable result. It tells us something we did not previously
know about planetary motion. It tells us that when a planet moves around the
sun (without any other objects around, no other forces) it moves in such a manner
that the square of the speed at any point minus some constants divided by the
radius at that point is always the same at every point on the orbit. For example,
the closer the planet is to the sun, the faster it is going, but by how much? By
the following amount: if instead of letting the planet go around the sun, we were
to change the direction (but not the magnitude) of its velocity and make it move
radially, and then we let it fall from some special radius to the radius of interest,
the new speed would be the same as the speed it had in the actual orbit, because
this is just another example of a complicated path. So long as we come back to
the same distance, the kinetic energy will be the same. So, whether the motion is
the real, undisturbed one, or is changed in direction by channels, by frictionless
constraints, the kinetic energy with which the planet arrives at a point will be
the same.

Thus, when we make a numerical analysis of the motion of the planet in its
orbit, as we did earlier, we can check whether or not we are making appreciable
errors by calculating this constant quantity, the energy, at every step, and it
should not change. For the orbit of Table 9-2 the energy does change,* it changes
by some 1.5 percent from the beginning to the end. Why? Either because for
the numerical method we use finite intervals, or else because we made a slight
mistake somewhere in arithmetic.

Let us consider the energy in another case: the problem of a mass on a spring.
When we displace the mass from its balanced position, the restoring force is

* The energy per unit mass is 1
2 (v2

x + v2
y) − 1/r in the units of Table 9-2.
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proportional to the displacement. In those circumstances, can we work out a law
for conservation of energy? Yes, because the work done by such a force is

W =
∫ x

0
F dx =

∫ x

0
−kx dx = − 1

2kx
2. (13.13)

Therefore, for a mass on a spring we have that the kinetic energy of the oscillating
mass plus 1

2kx
2 is a constant. Let us see how this works. We pull the mass down;

it is standing still and so its speed is zero. But x is not zero, x is at its maximum,
so there is some energy, the potential energy, of course. Now we release the mass
and things begin to happen (the details not to be discussed), but at any instant
the kinetic plus potential energy must be a constant. For example, after the mass
is on its way past the original equilibrium point, the position x equals zero, but
that is when it has its biggest v2, and as it gets more x2 it gets less v2, and so
on. So the balance of x2 and v2 is maintained as the mass goes up and down.
Thus we have another rule now, that the potential energy for a spring is 1

2kx
2, if

the force is −kx.

13-3 Summation of energy

Now we go on to the more general consideration of what happens when there
are large numbers of objects. Suppose we have the complicated problem of many
objects, which we label i = 1, 2, 3, . . . , all exerting gravitational pulls on each
other. What happens then? We shall prove that if we add the kinetic energies
of all the particles, and add to this the sum, over all pairs of particles, of their
mutual gravitational potential energy, −GMm/rij , the total is a constant:∑

i

1
2miv

2
i +

∑
(pairs ij)

−Gmimj

rij
= const. (13.14)

How do we prove it? We differentiate each side with respect to time and get
zero. When we differentiate 1

2miv
2
i , we find derivatives of the velocity that are

the forces, just as in Eq. (13.5). We replace these forces by the law of force that
we know from Newton’s law of gravity and then we notice that what is left is
minus the time derivative of ∑

pairs
−Gmimj

rij
.
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The time derivative of the kinetic energy is
d

dt

∑
i

1
2miv

2
i =

∑
i

mi
dvi
dt
· vi

=
∑
i

F i · vi

=
∑
i

(∑
j

−Gmimjrij
r3
ij

)
· vi.

(13.15)

The time derivative of the potential energy is

d

dt

∑
pairs
−Gmimj

rij
=
∑
pairs

(
+Gmimj

r2
ij

)(
drij
dt

)
.

But
rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2,

so that
drij
dt

= 1
2rij

[
2(xi − xj)

(
dxi
dt
− dxj

dt

)
+ 2(yi − yj )

(
dyi
dt
− dyj

dt

)
+ 2(zi − zj )

(
dzi
dt
− dzj

dt

)]
= rij ·

vi − vj
rij

= rij ·
vi
rij

+ rji ·
vj
rji
,

since rij = −rji, while rij = rji. Thus

d

dt

∑
pairs
−Gmimj

rij
=
∑
pairs

[
Gmimjrij

r3
ij

· vi + Gmjmirji
r3
ji

· vj
]
. (13.16)

Now we must note carefully what
∑
i

{
∑
j

} and
∑
pairs

mean. In Eq. (13.15),
∑
i

{
∑
j

}

means that i takes on all values i = 1, 2, 3, . . . in turn, and for each value of i,
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the index j takes on all values except i. Thus if i = 3, j takes on the values 1, 2,
4, . . .

In Eq. (13.16), on the other hand,
∑
pairs

means that given values of i and j

occur only once. Thus the particle pair 1 and 3 contributes only one term to the
sum. To keep track of this, we might agree to let i range over all values 1, 2,
3, . . . , and for each i let j range only over values greater than i. Thus if i = 3, j
could only have values 4, 5, 6, . . . But we notice that for each i, j value there are
two contributions to the sum, one involving vi, and the other vj , and that these
terms have the same appearance as those of Eq. (13.15), where all values of i
and j (except i = j) are included in the sum. Therefore, by matching the terms
one by one, we see that Eqs. (13.16) and (13.15) are precisely the same, but of
opposite sign, so that the time derivative of the kinetic plus potential energy is
indeed zero. Thus we see that, for many objects, the kinetic energy is the sum
of the contributions from each individual object, and that the potential energy
is also simple, it being also just a sum of contributions, the energies between
all the pairs. We can understand why it should be the energy of every pair this
way: Suppose that we want to find the total amount of work that must be done
to bring the objects to certain distances from each other. We may do this in
several steps, bringing them in from infinity where there is no force, one by one.
First we bring in number one, which requires no work, since no other objects
are yet present to exert force on it. Next we bring in number two, which does
take some work, namely W12 = −Gm1m2/r12. Now, and this is an important
point, suppose we bring in the next object to position three. At any moment the
force on number 3 can be written as the sum of two forces—the force exerted by
number 1 and that exerted by number 2. Therefore the work done is the sum of
the works done by each, because if F 3 can be resolved into the sum of two forces,

F 3 = F 13 + F 23,

then the work is∫
F 3 · ds =

∫
F 13 · ds+

∫
F 23 · ds = W13 +W23.

That is, the work done is the sum of the work done against the first force and the
second force, as if each acted independently. Proceeding in this way, we see that
the total work required to assemble the given configuration of objects is precisely
the value given in Eq. (13.14) as the potential energy. It is because gravity obeys
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the principle of superposition of forces that we can write the potential energy as
a sum over each pair of particles.

13-4 Gravitational field of large objects

Now we shall calculate the fields which are met in a few physical circumstances
involving distributions of mass. We have not so far considered distributions of
mass, only particles, so it is interesting to calculate the forces when they are
produced by more than just one particle. First we shall find the gravitational
force on a mass that is produced by a plane sheet of material, infinite in extent.
The force on a unit mass at a given point P , produced by this sheet of material
(Fig. 13-5), will of course be directed toward the sheet. Let the distance of the
point from the sheet be a, and let the amount of mass per unit area of this huge
sheet be µ. We shall suppose µ to be constant; it is a uniform sheet of material.
Now, what small field dC is produced by the mass dm lying between ρ and ρ+dρ
from the point O of the sheet nearest point P ? Answer: dC = −G(dm r/r3). But
this field is directed along r, and we know that only the x-component of it will
remain when we add all the little vector dC’s to produce C. The x-component
of dC is

dCx = −G dmrx
r3 = −G dma

r3 .

Now all masses dm which are at the same distance r from P will yield the
same dCx, so we may at once write for dm the total mass in the ring between ρ
and ρ+ dρ, namely dm = µ2πρ dρ (2πρ dρ is the area of a ring of radius ρ and
width dρ, if dρ� ρ). Thus

dCx = −Gµ2πρ dρ a
r3 .

dρ ρ O

dm
C

dCx

a

P

x

r

dC

Fig. 13-5. The gravitational field C at a mass point produced by an
infinite plane sheet of matter.
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Then, since r2 = ρ2 + a2, ρ dρ = r dr. Therefore,

Cx = −2πGµa
∫ ∞
a

dr

r2 = −2πGµa
(1
a
− 1
∞

)
= −2πGµ. (13.17)

Thus the force is independent of distance a! Why? Have we made a mistake?
One might think that the farther away we go, the weaker the force would be. But
no! If we are close, most of the matter is pulling at an unfavorable angle; if we
are far away, more of the matter is situated more favorably to exert a pull toward
the plane. At any distance, the matter which is most effective lies in a certain
cone. When we are farther away the force is smaller by the inverse square, but
in the same cone, in the same angle, there is much more matter, larger by just
the square of the distance! This analysis can be made rigorous by just noticing
that the differential contribution in any given cone is in fact independent of the
distance, because of the reciprocal variation of the strength of the force from a
given mass, and the amount of mass included in the cone, with changing distance.
The force is not really constant of course, because when we go on the other side
of the sheet it is reversed in sign.

We have also, in effect, solved an electrical problem: if we have an electrically
charged plate, with an amount σ of charge per unit area, then the electric field
at a point outside the sheet is equal to σ/2ε0, and is in the outward direction if
the sheet is positively charged, and inward if the sheet is negatively charged. To
prove this, we merely note that −G, for gravity, plays the same role as 1/4πε0
for electricity.

Now suppose that we have two plates, with a positive charge +σ on one and
a negative charge −σ on another at a distance D from the first. What is the
field? Outside the two plates it is zero. Why? Because one attracts and the other
repels, the force being independent of distance, so that the two balance out! Also,
the field between the two plates is clearly twice as great as that from one plate,
namely E = σ/ε0, and is directed from the positive plate to the negative one.

Now we come to a most interesting and important problem, whose solution
we have been assuming all the time, namely, that the force produced by the earth
at a point on the surface or outside it is the same as if all the mass of the earth
were located at its center. The validity of this assumption is not obvious, because
when we are close, some of the mass is very close to us, and some is farther away,
and so on. When we add the effects all together, it seems a miracle that the net
force is exactly the same as we would get if we put all the mass in the middle!
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Fig. 13-6. A thin spherical shell of mass or charge.

We now demonstrate the correctness of this miracle. In order to do so,
however, we shall consider a thin uniform hollow shell instead of the whole earth.
Let the total mass of the shell be m, and let us calculate the potential energy of
a particle of mass m′ a distance R away from the center of the sphere (Fig. 13-6)
and show that the potential energy is the same as it would be if the mass m were
a point at the center. (The potential energy is easier to work with than is the
field because we do not have to worry about angles, we merely add the potential
energies of all the pieces of mass.) If we call x the distance of a certain plane
section from the center, then all the mass that is in a slice dx is at the same
distance r from P , and the potential energy due to this ring is −Gm′ dm/r. How
much mass is in the small slice dx? An amount

dm = 2πyµ ds = 2πyµ dx
sin θ = 2πyµ dx a

y
= 2πaµ dx,

where µ = m/4πa2 is the surface density of mass on the spherical shell. (It is a
general rule that the area of a zone of a sphere is proportional to its axial width.)
Therefore the potential energy due to dm is

dW = −Gm
′ dm

r
= −Gm

′2πaµ dx
r

.

But we see that
r2 = y2 + (R− x)2 = y2 + x2 +R2 − 2Rx

= a2 +R2 − 2Rx.
Thus

2r dr = −2Rdx
or

dx

r
= −dr

R
.
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Therefore,

dW = Gm′2πaµ dr
R

,

and so
W = Gm′2πaµ

R

∫ R−a

R+a
dr

= −Gm
′2πaµ
R

2a = −Gm
′(4πa2µ)
R

= −Gm
′m

R
. (13.18)

Thus, for a thin spherical shell, the potential energy of a mass m′, external to
the shell, is the same as though the mass of the shell were concentrated at its
center. The earth can be imagined as a series of spherical shells, each one of
which contributes an energy which depends only on its mass and the distance
from its center to the particle; adding them all together we get the total mass,
and therefore the earth acts as though all the material were at the center!

But notice what happens if our point is on the inside of the shell. Making
the same calculation, but with P on the inside, we still get the difference of the
two r’s, but now in the form a−R− (a+R) = −2R, or minus twice the distance
from the center. In other words, W comes out to be W = −Gm′m/a, which is
independent of R and independent of position, i.e., the same energy no matter
where we are inside. Therefore no force; no work is done when we move about
inside. If the potential energy is the same no matter where an object is placed
inside the sphere, there can be no force on it. So there is no force inside, there is
only a force outside, and the force outside is the same as though the mass were
all at the center.
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14

Work and Potential Energy (conclusion)

14-1 Work

In the preceding chapter we have presented a great many new ideas and
results that play a central role in physics. These ideas are so important that it
seems worth while to devote a whole chapter to a closer examination of them.
In the present chapter we shall not repeat the “proofs” or the specific tricks by
which the results were obtained, but shall concentrate instead upon a discussion
of the ideas themselves.

In learning any subject of a technical nature where mathematics plays a role,
one is confronted with the task of understanding and storing away in the memory
a huge body of facts and ideas, held together by certain relationships which can
be “proved” or “shown” to exist between them. It is easy to confuse the proof
itself with the relationship which it establishes. Clearly, the important thing
to learn and to remember is the relationship, not the proof. In any particular
circumstance we can either say “it can be shown that” such and such is true, or
we can show it. In almost all cases, the particular proof that is used is concocted,
first of all, in such form that it can be written quickly and easily on the chalkboard
or on paper, and so that it will be as smooth-looking as possible. Consequently,
the proof may look deceptively simple, when in fact, the author might have
worked for hours trying different ways of calculating the same thing until he has
found the neatest way, so as to be able to show that it can be shown in the
shortest amount of time! The thing to be remembered, when seeing a proof, is
not the proof itself, but rather that it can be shown that such and such is true.
Of course, if the proof involves some mathematical procedures or “tricks” that
one has not seen before, attention should be given not to the trick exactly, but
to the mathematical idea involved.

It is certain that in all the demonstrations that are made in a course such
as this, not one has been remembered from the time when the author studied
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freshman physics. Quite the contrary: he merely remembers that such and such
is true, and to explain how it can be shown he invents a demonstration at the
moment it is needed. Anyone who has really learned a subject should be able
to follow a similar procedure, but it is no use remembering the proofs. That is
why, in this chapter, we shall avoid the proofs of the various statements made
previously, and merely summarize the results.

The first idea that has to be digested is work done by a force. The physical
word “work” is not the word in the ordinary sense of “Workers of the world
unite!,” but is a different idea. Physical work is expressed as

∫
F · ds, called “the

line integral of F dot ds,” which means that if the force, for instance, is in one
direction and the object on which the force is working is displaced in a certain
direction, then only the component of force in the direction of the displacement
does any work. If, for instance, the force were constant and the displacement
were a finite distance ∆s, then the work done in moving the object through that
distance is only the component of force along ∆s times ∆s. The rule is “force
times distance,” but we really mean only the component of force in the direction
of the displacement times ∆s or, equivalently, the component of displacement in
the direction of force times F . It is evident that no work whatsoever is done by
a force which is at right angles to the displacement.

Now if the vector displacement ∆s is resolved into components, in other
words, if the actual displacement is ∆s and we want to consider it effectively
as a component of displacement ∆x in the x-direction, ∆y in the y-direction,
and ∆z in the z-direction, then the work done in carrying an object from one
place to another can be calculated in three parts, by calculating the work done
along x, along y, and along z. The work done in going along x involves only that
component of force, namely Fx, and so on, so the work is Fx ∆x+Fy ∆y+Fz ∆z.
When the force is not constant, and we have a complicated curved motion, then
we must resolve the path into a lot of little ∆s’s, add the work done in carrying
the object along each ∆s, and take the limit as ∆s goes to zero. This is the
meaning of the “line integral.”

Everything we have just said is contained in the formula W =
∫
F · ds. It

is all very well to say that it is a marvelous formula, but it is another thing to
understand what it means, or what some of the consequences are.

The word “work” in physics has a meaning so different from that of the word
as it is used in ordinary circumstances that it must be observed carefully that
there are some peculiar circumstances in which it appears not to be the same.
For example, according to the physical definition of work, if one holds a hundred-
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pound weight off the ground for a while, he is doing no work. Nevertheless,
everyone knows that he begins to sweat, shake, and breathe harder, as if he were
running up a flight of stairs. Yet running upstairs is considered as doing work
(in running downstairs, one gets work out of the world, according to physics),
but in simply holding an object in a fixed position, no work is done. Clearly, the
physical definition of work differs from the physiological definition, for reasons
we shall briefly explore.

It is a fact that when one holds a weight he has to do “physiological” work.
Why should he sweat? Why should he need to consume food to hold the weight
up? Why is the machinery inside him operating at full throttle, just to hold
the weight up? Actually, the weight could be held up with no effort by just
placing it on a table; then the table, quietly and calmly, without any supply of
energy, is able to maintain the same weight at the same height! The physiological
situation is something like the following. There are two kinds of muscles in the
human body and in other animals: one kind, called striated or skeletal muscle, is
the type of muscle we have in our arms, for example, which is under voluntary
control; the other kind, called smooth muscle, is like the muscle in the intestines
or, in the clam, the greater adductor muscle that closes the shell. The smooth
muscles work very slowly, but they can hold a “set”; that is to say, if the clam
tries to close its shell in a certain position, it will hold that position, even if there
is a very great force trying to change it. It will hold a position under load for
hours and hours without getting tired because it is very much like a table holding
up a weight, it “sets” into a certain position, and the molecules just lock there
temporarily with no work being done, no effort being generated by the clam.
The fact that we have to generate effort to hold up a weight is simply due to the
design of striated muscle. What happens is that when a nerve impulse reaches a
muscle fiber, the fiber gives a little twitch and then relaxes, so that when we hold
something up, enormous volleys of nerve impulses are coming in to the muscle,
large numbers of twitches are maintaining the weight, while the other fibers relax.
We can see this, of course: when we hold a heavy weight and get tired, we begin
to shake. The reason is that the volleys are coming irregularly, and the muscle
is tired and not reacting fast enough. Why such an inefficient scheme? We do
not know exactly why, but evolution has not been able to develop fast smooth
muscle. Smooth muscle would be much more effective for holding up weights
because you could just stand there and it would lock in; there would be no work
involved and no energy would be required. However, it has the disadvantage that
it is very slow-operating.
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Returning now to physics, we may ask why we want to calculate the work
done. The answer is that it is interesting and useful to do so, since the work done
on a particle by the resultant of all the forces acting on it is exactly equal to the
change in kinetic energy of that particle. That is, if an object is being pushed, it
picks up speed, and

∆(v2) = 2
m
F ·∆s.

14-2 Constrained motion

Another interesting feature of forces and work is this: suppose that we have
a sloping or a curved track, and a particle that must move along the track, but
without friction. Or we may have a pendulum with a string and a weight; the
string constrains the weight to move in a circle about the pivot point. The pivot
point may be changed by having the string hit a peg, so that the path of the
weight is along two circles of different radii. These are examples of what we call
fixed, frictionless constraints.

In motion with a fixed frictionless constraint, no work is done by the constraint
because the forces of constraint are always at right angles to the motion. By
the “forces of constraint” we mean those forces which are applied to the object
directly by the constraint itself—the contact force with the track, or the tension
in the string.

The forces involved in the motion of a particle on a slope moving under the
influence of gravity are quite complicated, since there is a constraint force, a
gravitational force, and so on. However, if we base our calculation of the motion
on conservation of energy and the gravitational force alone, we get the right result.
This seems rather strange, because it is not strictly the right way to do it—we
should use the resultant force. Nevertheless, the work done by the gravitational
force alone will turn out to be the change in the kinetic energy, because the work
done by the constraint part of the force is zero (Fig. 14-1).

FORCE OF
CONSTRAINT FORCE OF

GRAVITY

DIRECTION OF MOTION

Fig. 14-1. Forces acting on a sliding body (no friction).
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The important feature here is that if a force can be analyzed as the sum of
two or more “pieces” then the work done by the resultant force in going along a
certain curve is the sum of the works done by the various “component” forces into
which the force is analyzed. Thus if we analyze the force as being the vector sum
of several effects, gravitational plus constraint forces, etc., or the x-component of
all forces and the y-component of all forces, or any other way that we wish to
split it up, then the work done by the net force is equal to the sum of the works
done by all the parts into which we have divided the force in making the analysis.

14-3 Conservative forces

In nature there are certain forces, that of gravity, for example, which have a
very remarkable property which we call “conservative” (no political ideas involved,
it is again one of those “crazy words”). If we calculate how much work is done
by a force in moving an object from one point to another along some curved
path, in general the work depends upon the curve, but in special cases it does
not. If it does not depend upon the curve, we say that the force is a conservative
force. In other words, if the integral of the force times the distance in going from
position 1 to position 2 in Fig. 14-2 is calculated along curve A and then along B,
we get the same number of joules, and if this is true for this pair of points on
every curve, and if the same proposition works no matter which pair of points
we use, then we say the force is conservative. In such circumstances, the work
integral going from 1 to 2 can be evaluated in a simple manner, and we can give
a formula for the result. Ordinarily it is not this easy, because we also have to
specify the curve, but when we have a case where the work does not depend on
the curve, then, of course, the work depends only upon the positions of 1 and 2.

P

1

2

A

B

Fig. 14-2. Possible paths between two points in a field of force.

To demonstrate this idea, consider the following. We take a “standard”
point P , at an arbitrary location (Fig. 14-2). Then, the work line-integral from 1
to 2, which we want to calculate, can be evaluated as the work done in going
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from 1 to P plus the work done in going from P to 2, because the forces are
conservative and the work does not depend upon the curve. Now, the work done
in going from position P to a particular position in space is a function of that
position in space. Of course it really depends on P also, but we hold the arbitrary
point P fixed permanently for the analysis. If that is done, then the work done
in going from point P to point 2 is some function of the final position of 2. It
depends upon where 2 is; if we go to some other point we get a different answer.

We shall call this function of position −U(x, y, z), and when we wish to refer
to some particular point 2 whose coordinates are (x2, y2, z2), we shall write U(2),
as an abbreviation for U(x2, y2, z2). The work done in going from point 1 to
point P can be written also by going the other way along the integral, reversing
all the ds’s. That is, the work done in going from 1 to P is minus the work done
in going from the point P to 1:∫ P

1
F · ds =

∫ 1

P

F · (−ds) = −
∫ 1

P

F · ds.

Thus the work done in going from P to 1 is −U(1), and from P to 2 the work
is −U(2). Therefore the integral from 1 to 2 is equal to −U(2) plus [−U(1)
backwards], or +U(1)− U(2):

U(1) = −
∫ 1

P

F · ds, U(2) = −
∫ 2

P

F · ds,∫ 2

1
F · ds = U(1)− U(2). (14.1)

The quantity U(1) − U(2) is called the change in the potential energy, and
we call U the potential energy. We shall say that when the object is located
at position 2, it has potential energy U(2) and at position 1 it has potential
energy U(1). If it is located at position P , it has zero potential energy. If we had
used any other point, say Q, instead of P , it would turn out (and we shall leave it
to you to demonstrate) that the potential energy is changed only by the addition
of a constant. Since the conservation of energy depends only upon changes, it
does not matter if we add a constant to the potential energy. Thus the point P
is arbitrary.

Now, we have the following two propositions: (1) that the work done by a force
is equal to the change in kinetic energy of the particle, but (2) mathematically,
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for a conservative force, the work done is minus the change in a function U which
we call the potential energy. As a consequence of these two, we arrive at the
proposition that if only conservative forces act, the kinetic energy T plus the
potential energy U remains constant:

T + U = constant. (14.2)

Let us now discuss the formulas for the potential energy for a number of cases.
If we have a gravitational field that is uniform, if we are not going to heights
comparable with the radius of the earth, then the force is a constant vertical
force and the work done is simply the force times the vertical distance. Thus

U(z) = mgz, (14.3)

and the point P which corresponds to zero potential energy happens to be any
point in the plane z = 0. We could also have said that the potential energy
is mg(z− 6) if we had wanted to—all the results would, of course, be the same in
our analysis except that the value of the potential energy at z = 0 would be −mg6.
It makes no difference, because only differences in potential energy count.

The energy needed to compress a linear spring a distance x from an equilibrium
point is

U(x) = 1
2kx

2, (14.4)

and the zero of potential energy is at the point x = 0, the equilibrium position of
the spring. Again we could add any constant we wish.

The potential energy of gravitation for point masses M and m, a distance r
apart, is

U(r) = −GMm/r. (14.5)

The constant has been chosen here so that the potential is zero at infinity. Of
course the same formula applies to electrical charges, because it is the same law:

U(r) = q1q2/4πε0r. (14.6)

Now let us actually use one of these formulas, to see whether we understand
what it means. Question: How fast do we have to shoot a rocket away from the
earth in order for it to leave? Solution: The kinetic plus potential energy must
be a constant; when it “leaves,” it will be millions of miles away, and if it is just
barely able to leave, we may suppose that it is moving with zero speed out there,
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just barely going. Let a be the radius of the earth, and M its mass. The kinetic
plus potential energy is then initially given by 1

2mv
2 −GmM/a. At the end of

the motion the two energies must be equal. The kinetic energy is taken to be zero
at the end of the motion, because it is supposed to be just barely drifting away
at essentially zero speed, and the potential energy is GmM divided by infinity,
which is zero. So everything is zero on one side and that tells us that the square
of the velocity must be 2GM/a. But GM/a2 is what we call the acceleration of
gravity, g. Thus

v2 = 2ga.

At what speed must a satellite travel in order to keep going around the earth?
We worked this out long ago and found that v2 = GM/a. Therefore to go away
from the earth, we need

√
2 times the velocity we need to just go around the

earth near its surface. We need, in other words, twice as much energy (because
energy goes as the square of the velocity) to leave the earth as we do to go around
it. Therefore the first thing that was done historically with satellites was to get
one to go around the earth, which requires a speed of five miles per second. The
next thing was to send a satellite away from the earth permanently; this required
twice the energy, or about seven miles per second.

Now, continuing our discussion of the characteristics of potential energy, let
us consider the interaction of two molecules, or two atoms, two oxygen atoms
for instance. When they are very far apart, the force is one of attraction, which
varies as the inverse seventh power of the distance, and when they are very close
the force is a very large repulsion. If we integrate the inverse seventh power to
find the work done, we find that the potential energy U , which is a function of
the radial distance between the two oxygen atoms, varies as the inverse sixth
power of the distance for large distances.

If we sketch the curve of the potential energy U(r) as in Fig. 14-3, we thus
start out at large r with an inverse sixth power, but if we come in sufficiently
near we reach a point d where there is a minimum of potential energy. The
minimum of potential energy at r = d means this: if we start at d and move
a small distance, a very small distance, the work done, which is the change in
potential energy when we move this distance, is nearly zero, because there is
very little change in potential energy at the bottom of the curve. Thus there is
no force at this point, and so it is the equilibrium point. Another way to see
that it is the equilibrium point is that it takes work to move away from d in
either direction. When the two oxygen atoms have settled down, so that no more
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r

U(r)

d

U(r) ∝ 1/r6
(IF r � d)

Fig. 14-3. The potential energy between two atoms as a function of
the distance between them.

energy can be liberated from the force between them, they are in the lowest
energy state, and they will be at this separation d. This is the way an oxygen
molecule looks when it is cold. When we heat it up, the atoms shake and move
farther apart, and we can in fact break them apart, but to do so takes a certain
amount of work or energy, which is the potential energy difference between r = d
and r =∞. When we try to push the atoms very close together the energy goes
up very rapidly, because they repel each other.

The reason we bring this out is that the idea of force is not particularly
suitable for quantum mechanics; there the idea of energy is most natural. We find
that although forces and velocities “dissolve” and disappear when we consider
the more advanced forces between nuclear matter and between molecules and so
on, the energy concept remains. Therefore we find curves of potential energy in
quantum mechanics books, but very rarely do we ever see a curve for the force
between two molecules, because by that time people who are doing analyses are
thinking in terms of energy rather than of force.

Next we note that if several conservative forces are acting on an object at the
same time, then the potential energy of the object is the sum of the potential
energies from each of the separate forces. This is the same proposition that we
mentioned before, because if the force can be represented as a vector sum of
forces, then the work done by the total force is the sum of the works done by
the partial forces, and it can therefore be analyzed as changes in the potential
energies of each of them separately. Thus the total potential energy is the sum
of all the little pieces.

We could generalize this to the case of a system of many objects interacting
with one another, like Jupiter, Saturn, Uranus, etc., or oxygen, nitrogen, carbon,
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etc., which are acting with respect to one another in pairs due to forces all of
which are conservative. In these circumstances the kinetic energy in the entire
system is simply the sum of the kinetic energies of all of the particular atoms or
planets or whatever, and the potential energy of the system is the sum, over the
pairs of particles, of the potential energy of mutual interaction of a single pair,
as though the others were not there. (This is really not true for molecular forces,
and the formula is somewhat more complicated; it certainly is true for Newtonian
gravitation, and it is true as an approximation for molecular forces. For molecular
forces there is a potential energy, but it is sometimes a more complicated function
of the positions of the atoms than simply a sum of terms from pairs.) In the
special case of gravity, therefore, the potential energy is the sum, over all the
pairs i and j, of −Gmimj/rij , as was indicated in Eq. (13.14). Equation (13.14)
expressed mathematically the following proposition: that the total kinetic energy
plus the total potential energy does not change with time. As the various planets
wheel about, and turn and twist and so on, if we calculate the total kinetic energy
and the total potential energy we find that the total remains constant.

14-4 Nonconservative forces

We have spent a considerable time discussing conservative forces; what about
nonconservative forces? We shall take a deeper view of this than is usual, and state
that there are no nonconservative forces! As a matter of fact, all the fundamental
forces in nature appear to be conservative. This is not a consequence of Newton’s
laws. In fact, so far as Newton himself knew, the forces could be nonconservative,
as friction apparently is. When we say friction apparently is, we are taking a
modern view, in which it has been discovered that all the deep forces, the forces
between the particles at the most fundamental level, are conservative.

If, for example, we analyze a system like that great globular star cluster that
we saw a picture of, with the thousands of stars all interacting, then the formula
for the total potential energy is simply one term plus another term, etc., summed
over all pairs of stars, and the kinetic energy is the sum of the kinetic energies of
all the individual stars. But the globular cluster as a whole is drifting in space
too, and, if we were far enough away from it and did not see the details, could
be thought of as a single object. Then if forces were applied to it, some of those
forces might end up driving it forward as a whole, and we would see the center
of the whole thing moving. On the other hand, some of the forces can be, so to
speak, “wasted” in increasing the kinetic or potential energy of the “particles”
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inside. Let us suppose, for instance, that the action of these forces expands the
whole cluster and makes the particles move faster. The total energy of the whole
thing is really conserved, but seen from the outside with our crude eyes which
cannot see the confusion of motions inside, and just thinking of the kinetic energy
of the motion of the whole object as though it were a single particle, it would
appear that energy is not conserved, but this is due to a lack of appreciation of
what it is that we see. And that, it turns out, is the case: the total energy of the
world, kinetic plus potential, is a constant when we look closely enough.

When we study matter in the finest detail at the atomic level, it is not always
easy to separate the total energy of a thing into two parts, kinetic energy and
potential energy, and such separation is not always necessary. It is almost always
possible to do it, so let us say that it is always possible, and that the potential-
plus-kinetic energy of the world is constant. Thus the total potential-plus-kinetic
energy inside the whole world is constant, and if the “world” is a piece of isolated
material, the energy is constant if there are no external forces. But as we have
seen, some of the kinetic and potential energy of a thing may be internal, for
instance the internal molecular motions, in the sense that we do not notice it.
We know that in a glass of water everything is jiggling around, all the parts are
moving all the time, so there is a certain kinetic energy inside, which we ordinarily
may not pay any attention to. We do not notice the motion of the atoms, which
produces heat, and so we do not call it kinetic energy, but heat is primarily
kinetic energy. Internal potential energy may also be in the form, for instance, of
chemical energy: when we burn gasoline energy is liberated because the potential
energies of the atoms in the new atomic arrangement are lower than in the old
arrangement. It is not strictly possible to treat heat as being pure kinetic energy,
for a little of the potential gets in, and vice versa for chemical energy, so we
put the two together and say that the total kinetic and potential energy inside
an object is partly heat, partly chemical energy, and so on. Anyway, all these
different forms of internal energy are sometimes considered as “lost” energy in the
sense described above; this will be made clearer when we study thermodynamics.

As another example, when friction is present it is not true that kinetic energy
is lost, even though a sliding object stops and the kinetic energy seems to be lost.
The kinetic energy is not lost because, of course, the atoms inside are jiggling
with a greater amount of kinetic energy than before, and although we cannot
see that, we can measure it by determining the temperature. Of course if we
disregard the heat energy, then the conservation of energy theorem will appear
to be false.
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Another situation in which energy conservation appears to be false is when
we study only part of a system. Naturally, the conservation of energy theorem
will appear not to be true if something is interacting with something else on the
outside and we neglect to take that interaction into account.

In classical physics potential energy involved only gravitation and electricity,
but now we have nuclear energy and other energies also. Light, for example,
would involve a new form of energy in the classical theory, but we can also, if we
want to, imagine that the energy of light is the kinetic energy of a photon, and
then our formula (14.2) would still be right.

14-5 Potentials and fields

We shall now discuss a few of the ideas associated with potential energy and
with the idea of a field. Suppose we have two large objects A and B and a
third very small one which is attracted gravitationally by the two, with some
resultant force F . We have already noted in Chapter 12 that the gravitational
force on a particle can be written as its mass, m, times another vector, C, which
is dependent only upon the position of the particle:

F = mC.

We can analyze gravitation, then, by imagining that there is a certain vector C
at every position in space which “acts” upon a mass which we may place there,
but which is there itself whether we actually supply a mass for it to “act” on
or not. C has three components, and each of those components is a function
of (x, y, z), a function of position in space. Such a thing we call a field, and we
say that the objects A and B generate the field, i.e., they “make” the vector C.
When an object is put in a field, the force on it is equal to its mass times the
value of the field vector at the point where the object is put.

We can also do the same with the potential energy. Since the potential
energy, the integral of (−force) · (ds) can be written as m times the integral of
(−field) · (ds), a mere change of scale, we see that the potential energy U(x, y, z)
of an object located at a point (x, y, z) in space can be written as m times another
function which we may call the potential Ψ. The integral

∫
C · ds = −Ψ, just

as
∫
F · ds = −U ; there is only a scale factor between the two:

U = −
∫
F · ds = −m

∫
C · ds = mΨ. (14.7)
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By having this function Ψ(x, y, z) at every point in space, we can immedi-
ately calculate the potential energy of an object at any point in space, namely,
U(x, y, z) = mΨ(x, y, z)—rather a trivial business, it seems. But it is not really
trivial, because it is sometimes much nicer to describe the field by giving the
value of Ψ everywhere in space instead of having to give C. Instead of having to
write three complicated components of a vector function, we can give instead the
scalar function Ψ. Furthermore, it is much easier to calculate Ψ than any given
component of C when the field is produced by a number of masses, for since
the potential is a scalar we merely add, without worrying about direction. Also,
the field C can be recovered easily from Ψ, as we shall shortly see. Suppose we
have point masses m1, m2, . . . at the points 1, 2, . . . and we wish to know the
potential Ψ at some arbitrary point p. This is simply the sum of the potentials
at p due to the individual masses taken one by one:

Ψ(p) =
∑
i

−Gmi

rip
, i = 1, 2, . . . (14.8)

In the last chapter we used this formula, that the potential is the sum of
the potentials from all the different objects, to calculate the potential due to a
spherical shell of matter by adding the contributions to the potential at a point
from all parts of the shell. The result of this calculation is shown graphically
in Fig. 14-4. It is negative, having the value zero at r =∞ and varying as 1/r
down to the radius a, and then is constant inside the shell. Outside the shell
the potential is −Gm/r, where m is the mass of the shell, which is exactly the
same as it would have been if all the mass were located at the center. But it is
not everywhere exactly the same, for inside the shell the potential turns out to
be −Gm/a, and is a constant! When the potential is constant, there is no field,
or when the potential energy is constant there is no force, because if we move an

φ(r) = CONSTANT = −Gm/a

φ(r) = −Gm/r

a
φ

r

Fig. 14-4. Potential due to a spherical shell of radius a.
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object from one place to another anywhere inside the sphere the work done by
the force is exactly zero. Why? Because the work done in moving the object from
one place to the other is equal to minus the change in the potential energy (or,
the corresponding field integral is the change of the potential). But the potential
energy is the same at any two points inside, so there is zero change in potential
energy, and therefore no work is done in going between any two points inside the
shell. The only way the work can be zero for all directions of displacement is
that there is no force at all.

This gives us a clue as to how we can obtain the force or the field, given the
potential energy. Let us suppose that the potential energy of an object is known
at the position (x, y, z) and we want to know what the force on the object is.
It will not do to know the potential at only this one point, as we shall see; it
requires knowledge of the potential at neighboring points as well. Why? How
can we calculate the x-component of the force? (If we can do this, of course, we
can also find the y- and z-components, and we will then know the whole force.)
Now, if we were to move the object a small distance ∆x, the work done by the
force on the object would be the x-component of the force times ∆x, if ∆x is
sufficiently small, and this should equal the change in potential energy in going
from one point to the other:

∆W = −∆U = Fx ∆x. (14.9)

We have merely used the formula
∫
F · ds = −∆U , but for a very short path.

Now we divide by ∆x and so find that the force is

Fx = −∆U/∆x. (14.10)

Of course this is not exact. What we really want is the limit of (14.10)
as ∆x gets smaller and smaller, because it is only exactly right in the limit of
infinitesimal ∆x. This we recognize as the derivative of U with respect to x,
and we would be inclined, therefore, to write −dU/dx. But U depends on x, y,
and z, and the mathematicians have invented a different symbol to remind us to
be very careful when we are differentiating such a function, so as to remember
that we are considering that only x varies, and y and z do not vary. Instead
of a d they simply make a “backwards 6,” or ∂. (A ∂ should have been used
in the beginning of calculus because we always want to cancel that d, but we
never want to cancel a ∂!) So they write ∂U/∂x, and furthermore, in moments of
duress, if they want to be very careful, they put a line beside it with a little yz
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at the bottom (∂U/∂x|yz), which means “Take the derivative of U with respect
to x, keeping y and z constant.” Most often we leave out the remark about what
is kept constant because it is usually evident from the context, so we usually do
not use the line with the y and z. However, always use a ∂ instead of a d as a
warning that it is a derivative with some other variables kept constant. This is
called a partial derivative; it is a derivative in which we vary only x.

Therefore, we find that the force in the x-direction is minus the partial
derivative of U with respect to x:

Fx = −∂U/∂x. (14.11)

In a similar way, the force in the y-direction can be found by differentiating U
with respect to y, keeping x and z constant, and the third component, of course,
is the derivative with respect to z, keeping y and x constant:

Fy = −∂U/∂y, Fz = −∂U/∂z. (14.12)

This is the way to get from the potential energy to the force. We get the field
from the potential in exactly the same way:

Cx = −∂Ψ/∂x, Cy = −∂Ψ/∂y, Cz = −∂Ψ/∂z. (14.13)

Incidentally, we shall mention here another notation, which we shall not
actually use for quite a while: SinceC is a vector and has x-, y-, and z-components,
the symbolized ∂/∂x, ∂/∂y, and ∂/∂z which produce the x-, y-, and z-components
are something like vectors. The mathematicians have invented a glorious new
symbol, ∇, called “grad” or “gradient”, which is not a quantity but an operator
that makes a vector from a scalar. It has the following “components”: The x-
component of this “grad” is ∂/∂x the y-component is ∂/∂y, and the z-component
is ∂/∂z, and then we have the fun of writing our formulas this way:

F = −∇U, C = −∇Ψ. (14.14)

Using ∇ gives us a quick way of testing whether we have a real vector equation
or not, but actually Eqs. (14.14) mean precisely the same as Eqs. (14.11), (14.12)
and (14.13); it is just another way of writing them, and since we do not want to
write three equations every time, we just write ∇U instead.

One more example of fields and potentials has to do with the electrical case.
In the case of electricity the force on a stationary object is the charge times the
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electric field: F = qE. (In general, of course, the x-component of force in an
electrical problem has also a part which depends on the magnetic field. It is easy
to show from Eq. (12.11) that the force on a particle due to magnetic fields is
always at right angles to its velocity, and also at right angles to the field. Since
the force due to magnetism on a moving charge is at right angles to the velocity,
no work is done by the magnetism on the moving charge because the motion is at
right angles to the force. Therefore, in calculating theorems of kinetic energy in
electric and magnetic fields we can disregard the contribution from the magnetic
field, since it does not change the kinetic energy.) We suppose that there is only
an electric field. Then we can calculate the energy, or work done, in the same way
as for gravity, and calculate a quantity φ which is minus the integral of E · ds,
from the arbitrary fixed point to the point where we make the calculation, and
then the potential energy in an electric field is just charge times this quantity φ:

φ(r) = −
∫
E · ds,

U = qφ.

Let us take, as an example, the case of two parallel metal plates, each with a
surface charge of ±σ per unit area. This is called a parallel-plate capacitor. We
found previously that there is zero force outside the plates and that there is a
constant electric field between them, directed from + to − and of magnitude σ/ε0
(Fig. 14-5). We would like to know how much work would be done in carrying a
charge from one plate to the other. The work would be the (force) · (ds) integral,
which can be written as charge times the potential value at plate 1 minus that at
plate 2:

W =
∫ 2

1
F · ds = q(φ1 − φ2).

We can actually work out the integral because the force is constant, and if we

+ + + + + + +

− − − − − − −

1

2

dE

Fig. 14-5. Field between parallel plates.
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call the separation of the plates d, then the integral is easy:∫ 2

1
F · ds = qσ

ε0

∫ 2

1
dx = qσd

ε0
.

The difference in potential, ∆φ = σd/ε0, is called the voltage difference, and φ is
measured in volts. When we say a pair of plates is charged to a certain voltage,
what we mean is that the difference in electrical potential of the two plates is
so-and-so many volts. For a capacitor made of two parallel plates carrying a
surface charge ±σ, the voltage, or difference in potential, of the pair of plates
is σd/ε0.
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15

The Special Theory of Relativity

15-1 The principle of relativity

For over 200 years the equations of motion enunciated by Newton were believed
to describe nature correctly, and the first time that an error in these laws was
discovered, the way to correct it was also discovered. Both the error and its
correction were discovered by Einstein in 1905.

Newton’s Second Law, which we have expressed by the equation

F = d(mv)/dt,

was stated with the tacit assumption that m is a constant, but we now know
that this is not true, and that the mass of a body increases with velocity. In
Einstein’s corrected formula m has the value

m = m0√
1− v2/c2

, (15.1)

where the “rest mass” m0 represents the mass of a body that is not moving and c
is the speed of light, which is about 3× 105 km · sec−1 or about 186,000 mi · sec−1.

For those who want to learn just enough about it so they can solve problems,
that is all there is to the theory of relativity—it just changes Newton’s laws by
introducing a correction factor to the mass. From the formula itself it is easy
to see that this mass increase is very small in ordinary circumstances. If the
velocity is even as great as that of a satellite, which goes around the earth at
5 mi/sec, then v/c = 5/186,000: putting this value into the formula shows that
the correction to the mass is only one part in two to three billion, which is nearly
impossible to observe. Actually, the correctness of the formula has been amply
confirmed by the observation of many kinds of particles, moving at speeds ranging
up to practically the speed of light. However, because the effect is ordinarily
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so small, it seems remarkable that it was discovered theoretically before it was
discovered experimentally. Empirically, at a sufficiently high velocity, the effect
is very large, but it was not discovered that way. Therefore it is interesting to see
how a law that involved so delicate a modification (at the time when it was first
discovered) was brought to light by a combination of experiments and physical
reasoning. Contributions to the discovery were made by a number of people, the
final result of whose work was Einstein’s discovery.

There are really two Einstein theories of relativity. This chapter is concerned
with the Special Theory of Relativity, which dates from 1905. In 1915 Einstein
published an additional theory, called the General Theory of Relativity. This
latter theory deals with the extension of the Special Theory to the case of the
law of gravitation; we shall not discuss the General Theory here.

The principle of relativity was first stated by Newton, in one of his corollaries
to the laws of motion: “The motions of bodies included in a given space are
the same among themselves, whether that space is at rest or moves uniformly
forward in a straight line.” This means, for example, that if a space ship is drifting
along at a uniform speed, all experiments performed in the space ship and all the
phenomena in the space ship will appear the same as if the ship were not moving,
provided, of course, that one does not look outside. That is the meaning of the
principle of relativity. This is a simple enough idea, and the only question is
whether it is true that in all experiments performed inside a moving system the
laws of physics will appear the same as they would if the system were standing
still. Let us first investigate whether Newton’s laws appear the same in the
moving system.

Suppose that Moe is moving in the x-direction with a uniform velocity u, and
he measures the position of a certain point, shown in Fig. 15-1. He designates
the “x-distance” of the point in his coordinate system as x′. Joe is at rest, and

y y ′

x x ′

ut

JOE MOE (x ′, y ′, z ′)
P or
(x, y , z)

u

Fig. 15-1. Two coordinate systems in uniform relative motion along
their x-axes.
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measures the position of the same point, designating its x-coordinate in his
system as x. The relationship of the coordinates in the two systems is clear from
the diagram. After time t Moe’s origin has moved a distance ut, and if the two
systems originally coincided,

x′ = x− ut,
y′ = y,

z′ = z,

t′ = t.

(15.2)

If we substitute this transformation of coordinates into Newton’s laws we find
that these laws transform to the same laws in the primed system; that is, the laws
of Newton are of the same form in a moving system as in a stationary system,
and therefore it is impossible to tell, by making mechanical experiments, whether
the system is moving or not.

The principle of relativity has been used in mechanics for a long time. It
was employed by various people, in particular Huygens, to obtain the rules for
the collision of billiard balls, in much the same way as we used it in Chapter 10
to discuss the conservation of momentum. In the 19th century interest in it
was heightened as the result of investigations into the phenomena of electricity,
magnetism, and light. A long series of careful studies of these phenomena by
many people culminated in Maxwell’s equations of the electromagnetic field,
which describe electricity, magnetism, and light in one uniform system. However,
the Maxwell equations did not seem to obey the principle of relativity. That
is, if we transform Maxwell’s equations by the substitution of equations (15.2),
their form does not remain the same; therefore, in a moving space ship the
electrical and optical phenomena should be different from those in a stationary
ship. Thus one could use these optical phenomena to determine the speed of
the ship; in particular, one could determine the absolute speed of the ship by
making suitable optical or electrical measurements. One of the consequences of
Maxwell’s equations is that if there is a disturbance in the field such that light is
generated, these electromagnetic waves go out in all directions equally and at
the same speed c, or 186,000 mi/sec. Another consequence of the equations is
that if the source of the disturbance is moving, the light emitted goes through
space at the same speed c. This is analogous to the case of sound, the speed of
sound waves being likewise independent of the motion of the source.

This independence of the motion of the source, in the case of light, brings up
an interesting problem:
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Suppose we are riding in a car that is going at a speed u, and light from the
rear is going past the car with speed c. Differentiating the first equation in (15.2)
gives

dx′/dt = dx/dt− u,
which means that according to the Galilean transformation the apparent speed
of the passing light, as we measure it in the car, should not be c but should
be c − u. For instance, if the car is going 100,000 mi/sec, and the light is
going 186,000 mi/sec, then apparently the light going past the car should go
86,000 mi/sec. In any case, by measuring the speed of the light going past the car
(if the Galilean transformation is correct for light), one could determine the speed
of the car. A number of experiments based on this general idea were performed to
determine the velocity of the earth, but they all failed—they gave no velocity at
all. We shall discuss one of these experiments in detail, to show exactly what was
done and what was the matter; something was the matter, of course, something
was wrong with the equations of physics. What could it be?

15-2 The Lorentz transformation

When the failure of the equations of physics in the above case came to light,
the first thought that occurred was that the trouble must lie in the new Maxwell
equations of electrodynamics, which were only 20 years old at the time. It seemed
almost obvious that these equations must be wrong, so the thing to do was to
change them in such a way that under the Galilean transformation the principle
of relativity would be satisfied. When this was tried, the new terms that had to
be put into the equations led to predictions of new electrical phenomena that did
not exist at all when tested experimentally, so this attempt had to be abandoned.
Then it gradually became apparent that Maxwell’s laws of electrodynamics were
correct, and the trouble must be sought elsewhere.

In the meantime, H. A. Lorentz noticed a remarkable and curious thing when
he made the following substitutions in the Maxwell equations:

x′ = x− ut√
1− u2/c2

,

y′ = y,

z′ = z,

t′ = t− ux/c2√
1− u2/c2

,

(15.3)
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namely, Maxwell’s equations remain in the same form when this transformation
is applied to them! Equations (15.3) are known as a Lorentz transformation.
Einstein, following a suggestion originally made by Poincaré, then proposed that
all the physical laws should be of such a kind that they remain unchanged under
a Lorentz transformation. In other words, we should change, not the laws of
electrodynamics, but the laws of mechanics. How shall we change Newton’s laws
so that they will remain unchanged by the Lorentz transformation? If this goal is
set, we then have to rewrite Newton’s equations in such a way that the conditions
we have imposed are satisfied. As it turned out, the only requirement is that the
mass m in Newton’s equations must be replaced by the form shown in Eq. (15.1).
When this change is made, Newton’s laws and the laws of electrodynamics will
harmonize. Then if we use the Lorentz transformation in comparing Moe’s
measurements with Joe’s, we shall never be able to detect whether either is
moving, because the form of all the equations will be the same in both coordinate
systems!

It is interesting to discuss what it means that we replace the old transformation
between the coordinates and time with a new one, because the old one (Galilean)
seems to be self-evident, and the new one (Lorentz) looks peculiar. We wish
to know whether it is logically and experimentally possible that the new, and
not the old, transformation can be correct. To find that out, it is not enough
to study the laws of mechanics but, as Einstein did, we too must analyze our
ideas of space and time in order to understand this transformation. We shall
have to discuss these ideas and their implications for mechanics at some length,
so we say in advance that the effort will be justified, since the results agree with
experiment.

15-3 The Michelson-Morley experiment

As mentioned above, attempts were made to determine the absolute velocity
of the earth through the hypothetical “ether” that was supposed to pervade all
space. The most famous of these experiments is one performed by Michelson and
Morley in 1887. It was 18 years later before the negative results of the experiment
were finally explained, by Einstein.

The Michelson-Morley experiment was performed with an apparatus like that
shown schematically in Fig. 15-2. This apparatus is essentially comprised of a
light source A, a partially silvered glass plate B, and two mirrors C and E, all
mounted on a rigid base. The mirrors are placed at equal distances L from B.
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Fig. 15-2. Schematic diagram of the Michelson-Morley experiment.

The plate B splits an oncoming beam of light, and the two resulting beams
continue in mutually perpendicular directions to the mirrors, where they are
reflected back to B. On arriving back at B, the two beams are recombined as
two superposed beams, D and F . If the time taken for the light to go from B
to E and back is the same as the time from B to C and back, the emerging
beams D and F will be in phase and will reinforce each other, but if the two
times differ slightly, the beams will be slightly out of phase and interference will
result. If the apparatus is “at rest” in the ether, the times should be precisely
equal, but if it is moving toward the right with a velocity u, there should be a
difference in the times. Let us see why.

First, let us calculate the time required for the light to go from B to E and
back. Let us say that the time for light to go from plate B to mirror E is t1,
and the time for the return is t2. Now, while the light is on its way from B
to the mirror, the apparatus moves a distance ut1, so the light must traverse a
distance L+ ut1, at the speed c. We can also express this distance as ct1, so we
have

ct1 = L+ ut1, or t1 = L/(c− u).

(This result is also obvious from the point of view that the velocity of light relative
to the apparatus is c− u, so the time is the length L divided by c− u.) In a like
manner, the time t2 can be calculated. During this time the plate B advances a
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distance ut2, so the return distance of the light is L− ut2. Then we have

ct2 = L− ut2, or t2 = L/(c+ u).

Then the total time is
t1 + t2 = 2Lc/(c2 − u2).

For convenience in later comparison of times we write this as

t1 + t2 = 2L/c
1− u2/c2

. (15.4)

Our second calculation will be of the time t3 for the light to go from B to
the mirror C. As before, during time t3 the mirror C moves to the right a
distance ut3 to the position C ′; in the same time, the light travels a distance ct3
along the hypotenuse of a triangle, which is BC ′. For this right triangle we have

(ct3)2 = L2 + (ut3)2

or
L2 = c2t23 − u2t23 = (c2 − u2)t23,

from which we get
t3 = L/

√
c2 − u2.

For the return trip from C ′ the distance is the same, as can be seen from the
symmetry of the figure; therefore the return time is also the same, and the total
time is 2t3. With a little rearrangement of the form we can write

2t3 = 2L√
c2 − u2

= 2L/c√
1− u2/c2

. (15.5)

We are now able to compare the times taken by the two beams of light. In
expressions (15.4) and (15.5) the numerators are identical, and represent the
time that would be taken if the apparatus were at rest. In the denominators, the
term u2/c2 will be small, unless u is comparable in size to c. The denominators
represent the modifications in the times caused by the motion of the apparatus.
And behold, these modifications are not the same—the time to go to C and
back is a little less than the time to E and back, even though the mirrors are
equidistant from B, and all we have to do is to measure that difference with
precision.
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Here a minor technical point arises—suppose the two lengths L are not exactly
equal? In fact, we surely cannot make them exactly equal. In that case we simply
turn the apparatus 90 degrees, so that BC is in the line of motion and BE
is perpendicular to the motion. Any small difference in length then becomes
unimportant, and what we look for is a shift in the interference fringes when we
rotate the apparatus.

In carrying out the experiment, Michelson and Morley oriented the apparatus
so that the line BE was nearly parallel to the earth’s motion in its orbit (at
certain times of the day and night). This orbital speed is about 18 miles per
second, and any “ether drift” should be at least that much at some time of the day
or night and at some time during the year. The apparatus was amply sensitive
to observe such an effect, but no time difference was found—the velocity of the
earth through the ether could not be detected. The result of the experiment was
null.

The result of the Michelson-Morley experiment was very puzzling and most
disturbing. The first fruitful idea for finding a way out of the impasse came from
Lorentz. He suggested that material bodies contract when they are moving, and
that this foreshortening is only in the direction of the motion, and also, that if
the length is L0 when a body is at rest, then when it moves with speed u parallel
to its length, the new length, which we call L‖ (L-parallel), is given by

L‖ = L0
√

1− u2/c2. (15.6)

When this modification is applied to the Michelson-Morley interferometer appa-
ratus the distance from B to C does not change, but the distance from B to E
is shortened to L

√
1− u2/c2. Therefore Eq. (15.5) is not changed, but the L of

Eq. (15.4) must be changed in accordance with Eq. (15.6). When this is done we
obtain

t1 + t2 = (2L/c)
√

1− u2/c2

1− u2/c2
= 2L/c√

1− u2/c2
. (15.7)

Comparing this result with Eq. (15.5), we see that t1+t2 = 2t3. So if the apparatus
shrinks in the manner just described, we have a way of understanding why the
Michelson-Morley experiment gives no effect at all. Although the contraction
hypothesis successfully accounted for the negative result of the experiment, it was
open to the objection that it was invented for the express purpose of explaining
away the difficulty, and was too artificial. However, in many other experiments
to discover an ether wind, similar difficulties arose, until it appeared that nature
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was in a “conspiracy” to thwart man by introducing some new phenomenon to
undo every phenomenon that he thought would permit a measurement of u.

It was ultimately recognized, as Poincaré pointed out, that a complete con-
spiracy is itself a law of nature! Poincaré then proposed that there is such a law
of nature, that it is not possible to discover an ether wind by any experiment;
that is, there is no way to determine an absolute velocity.

15-4 Transformation of time

In checking out whether the contraction idea is in harmony with the facts
in other experiments, it turns out that everything is correct provided that the
times are also modified, in the manner expressed in the fourth equation of the
set (15.3). That is because the time t3, calculated for the trip from B to C and
back, is not the same when calculated by a man performing the experiment in a
moving space ship as when calculated by a stationary observer who is watching
the space ship. To the man in the ship the time is simply 2L/c, but to the other
observer it is (2L/c)/

√
1− u2/c2 (Eq. 15.5). In other words, when the outsider

sees the man in the space ship lighting a cigar, all the actions appear to be
slower than normal, while to the man inside, everything moves at a normal rate.
So not only must the lengths shorten, but also the time-measuring instruments
(“clocks”) must apparently slow down. That is, when the clock in the space ship
records 1 second elapsed, as seen by the man in the ship, it shows 1/

√
1− u2/c2

second to the man outside.
This slowing of the clocks in a moving system is a very peculiar phenomenon,

and is worth an explanation. In order to understand this, we have to watch the
machinery of the clock and see what happens when it is moving. Since that is
rather difficult, we shall take a very simple kind of clock. The one we choose is
rather a silly kind of clock, but it will work in principle: it is a rod (meter stick)
with a mirror at each end, and when we start a light signal between the mirrors,
the light keeps going up and down, making a click every time it comes down,
like a standard ticking clock. We build two such clocks, with exactly the same
lengths, and synchronize them by starting them together; then they agree always
thereafter, because they are the same in length, and light always travels with
speed c. We give one of these clocks to the man to take along in his space ship,
and he mounts the rod perpendicular to the direction of motion of the ship; then
the length of the rod will not change. How do we know that perpendicular lengths
do not change? The men can agree to make marks on each other’s y-meter stick
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as they pass each other. By symmetry, the two marks must come at the same y-
and y′-coordinates, since otherwise, when they get together to compare results,
one mark will be above or below the other, and so we could tell who was really
moving.

Now let us see what happens to the moving clock. Before the man took it
aboard, he agreed that it was a nice, standard clock, and when he goes along in
the space ship he will not see anything peculiar. If he did, he would know he
was moving—if anything at all changed because of the motion, he could tell he
was moving. But the principle of relativity says this is impossible in a uniformly
moving system, so nothing has changed. On the other hand, when the external
observer looks at the clock going by, he sees that the light, in going from mirror
to mirror, is “really” taking a zigzag path, since the rod is moving sidewise all
the while. We have already analyzed such a zigzag motion in connection with
the Michelson-Morley experiment. If in a given time the rod moves forward
a distance proportional to u in Fig. 15-3, the distance the light travels in the
same time is proportional to c, and the vertical distance is therefore proportional
to
√
c2 − u2.

That is, it takes a longer time for light to go from end to end in the moving
clock than in the stationary clock. Therefore the apparent time between clicks is
longer for the moving clock, in the same proportion as shown in the hypotenuse
of the triangle (that is the source of the square root expressions in our equations).
From the figure it is also apparent that the greater u is, the more slowly the
moving clock appears to run. Not only does this particular kind of clock run
more slowly, but if the theory of relativity is correct, any other clock, operating
on any principle whatsoever, would also appear to run slower, and in the same
proportion—we can say this without further analysis. Why is this so?

To answer the above question, suppose we had two other clocks made exactly
alike with wheels and gears, or perhaps based on radioactive decay, or something
else. Then we adjust these clocks so they both run in precise synchronism with
our first clocks. When light goes up and back in the first clocks and announces
its arrival with a click, the new models also complete some sort of cycle, which
they simultaneously announce by some doubly coincident flash, or bong, or other
signal. One of these clocks is taken into the space ship, along with the first kind.
Perhaps this clock will not run slower, but will continue to keep the same time
as its stationary counterpart, and thus disagree with the other moving clock. Ah
no, if that should happen, the man in the ship could use this mismatch between
his two clocks to determine the speed of his ship, which we have been supposing
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is impossible. We need not know anything about the machinery of the new clock
that might cause the effect—we simply know that whatever the reason, it will
appear to run slow, just like the first one.

Now if all moving clocks run slower, if no way of measuring time gives anything
but a slower rate, we shall just have to say, in a certain sense, that time itself
appears to be slower in a space ship. All the phenomena there—the man’s
pulse rate, his thought processes, the time he takes to light a cigar, how long it
takes to grow up and get old—all these things must be slowed down in the same
proportion, because he cannot tell he is moving. The biologists and medical men
sometimes say it is not quite certain that the time it takes for a cancer to develop
will be longer in a space ship, but from the viewpoint of a modern physicist
it is nearly certain; otherwise one could use the rate of cancer development to
determine the speed of the ship!

A very interesting example of the slowing of time with motion is furnished by
mu-mesons (muons), which are particles that disintegrate spontaneously after an
average lifetime of 2.2× 10−6 sec. They come to the earth in cosmic rays, and
can also be produced artificially in the laboratory. Some of them disintegrate
in midair, but the remainder disintegrate only after they encounter a piece of
material and stop. It is clear that in its short lifetime a muon cannot travel,
even at the speed of light, much more than 600 meters. But although the muons
are created at the top of the atmosphere, some 10 kilometers up, yet they are
actually found in a laboratory down here, in cosmic rays. How can that be?
The answer is that different muons move at various speeds, some of which are
very close to the speed of light. While from their own point of view they live
only about 2 µsec, from our point of view they live considerably longer—enough
longer that they may reach the earth. The factor by which the time is increased
has already been given as 1/

√
1− u2/c2. The average life has been measured

quite accurately for muons of different velocities, and the values agree closely
with the formula.

We do not know why the meson disintegrates or what its machinery is, but
we do know its behavior satisfies the principle of relativity. That is the utility of
the principle of relativity—it permits us to make predictions, even about things
that otherwise we do not know much about. For example, before we have any
idea at all about what makes the meson disintegrate, we can still predict that
when it is moving at nine-tenths of the speed of light, the apparent length of time
that it lasts is (2.2× 10−6)/

√
1− 92/102 sec; and our prediction works—that is

the good thing about it.
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15-5 The Lorentz contraction

Now let us return to the Lorentz transformation (15.3) and try to get a better
understanding of the relationship between the (x, y, z, t) and the (x′, y′, z′, t′)
coordinate systems, which we shall call the S and S′ systems, or Joe and Moe
systems, respectively. We have already noted that the first equation is based on
the Lorentz suggestion of contraction along the x-direction; how can we prove
that a contraction takes place? In the Michelson-Morley experiment, we now
appreciate that the transverse arm BC cannot change length, by the principle
of relativity; yet the null result of the experiment demands that the times must
be equal. So, in order for the experiment to give a null result, the longitudinal
arm BE must appear shorter, by the square root

√
1− u2/c2. What does this

contraction mean, in terms of measurements made by Joe and Moe? Suppose
that Moe, moving with the S′ system in the x-direction, is measuring the x′-
coordinate of some point with a meter stick. He lays the stick down x′ times, so
he thinks the distance is x′ meters. From the viewpoint of Joe in the S system,
however, Moe is using a foreshortened ruler, so the “real” distance measured is
x′
√

1− u2/c2 meters. Then if the S′ system has travelled a distance ut away
from the S system, the S observer would say that the same point, measured in
his coordinates, is at a distance x = x′

√
1− u2/c2 + ut, or

x′ = x− ut√
1− u2/c2

,

which is the first equation of the Lorentz transformation.

15-6 Simultaneity

In an analogous way, because of the difference in time scales, the denominator
expression is introduced into the fourth equation of the Lorentz transformation.
The most interesting term in that equation is the ux/c2 in the numerator, because
that is quite new and unexpected. Now what does that mean? If we look at the
situation carefully we see that events that occur at two separated places at the
same time, as seen by Moe in S′, do not happen at the same time as viewed by
Joe in S. If one event occurs at point x1 at time t0 and the other event at x2
and t0 (the same time), we find that the two corresponding times t′1 and t′2 differ
by an amount

t′2 − t′1 = u(x1 − x2)/c2√
1− u2/c2

.
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This circumstance is called “failure of simultaneity at a distance,” and to make
the idea a little clearer let us consider the following experiment.

Suppose that a man moving in a space ship (system S′) has placed a clock at
each end of the ship and is interested in making sure that the two clocks are in
synchronism. How can the clocks be synchronized? There are many ways. One
way, involving very little calculation, would be first to locate exactly the midpoint
between the clocks. Then from this station we send out a light signal which will
go both ways at the same speed and will arrive at both clocks, clearly, at the
same time. This simultaneous arrival of the signals can be used to synchronize
the clocks. Let us then suppose that the man in S′ synchronizes his clocks by
this particular method. Let us see whether an observer in system S would agree
that the two clocks are synchronous. The man in S′ has a right to believe they
are, because he does not know that he is moving. But the man in S reasons that
since the ship is moving forward, the clock in the front end was running away
from the light signal, hence the light had to go more than halfway in order to
catch up; the rear clock, however, was advancing to meet the light signal, so this
distance was shorter. Therefore the signal reached the rear clock first, although
the man in S′ thought that the signals arrived simultaneously. We thus see that
when a man in a space ship thinks the times at two locations are simultaneous,
equal values of t′ in his coordinate system must correspond to different values
of t in the other coordinate system!

15-7 Four-vectors

Let us see what else we can discover in the Lorentz transformation. It is
interesting to note that the transformation between the x’s and t’s is analogous
in form to the transformation of the x’s and y’s that we studied in Chapter 11
for a rotation of coordinates. We then had

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,

(15.8)

in which the new x′ mixes the old x and y, and the new y′ also mixes the old
x and y; similarly, in the Lorentz transformation we find a new x′ which is a
mixture of x and t, and a new t′ which is a mixture of t and x. So the Lorentz
transformation is analogous to a rotation, only it is a “rotation” in space and
time, which appears to be a strange concept. A check of the analogy to rotation
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can be made by calculating the quantity

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2. (15.9)

In this equation the first three terms on each side represent, in three-dimensional
geometry, the square of the distance between a point and the origin (surface
of a sphere) which remains unchanged (invariant) regardless of rotation of the
coordinate axes. Similarly, Eq. (15.9) shows that there is a certain combination
which includes time, that is invariant to a Lorentz transformation. Thus, the
analogy to a rotation is complete, and is of such a kind that vectors, i.e., quantities
involving “components” which transform the same way as the coordinates and
time, are also useful in connection with relativity.

Thus we contemplate an extension of the idea of vectors, which we have so far
considered to have only space components, to include a time component. That
is, we expect that there will be vectors with four components, three of which are
like the components of an ordinary vector, and with these will be associated a
fourth component, which is the analog of the time part.

This concept will be analyzed further in the next chapters, where we shall
find that if the ideas of the preceding paragraph are applied to momentum,
the transformation gives three space parts that are like ordinary momentum
components, and a fourth component, the time part, which is the energy.

15-8 Relativistic dynamics

We are now ready to investigate, more generally, what form the laws of
mechanics take under the Lorentz transformation. [We have thus far explained
how length and time change, but not how we get the modified formula for m
(Eq. 15.1). We shall do this in the next chapter.] To see the consequences
of Einstein’s modification of m for Newtonian mechanics, we start with the
Newtonian law that force is the rate of change of momentum, or

F = d(mv)/dt.

Momentum is still given by mv, but when we use the new m this becomes

p = mv = m0v√
1− v2/c2

. (15.10)
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This is Einstein’s modification of Newton’s laws. Under this modification, if
action and reaction are still equal (which they may not be in detail, but are in
the long run), there will be conservation of momentum in the same way as before,
but the quantity that is being conserved is not the old mv with its constant mass,
but instead is the quantity shown in (15.10), which has the modified mass. When
this change is made in the formula for momentum, conservation of momentum
still works.

Now let us see how momentum varies with speed. In Newtonian mechanics it
is proportional to the speed and, according (15.10), over a considerable range of
speed, but small compared with c, it is nearly the same in relativistic mechanics,
because the square-root expression differs only slightly from 1. But when v is
almost equal to c, the square-root expression approaches zero, and the momentum
therefore goes toward infinity.

What happens if a constant force acts on a body for a long time? In Newtonian
mechanics the body keeps picking up speed until it goes faster than light. But
this is impossible in relativistic mechanics. In relativity, the body keeps picking
up, not speed, but momentum, which can continually increase because the mass
is increasing. After a while there is practically no acceleration in the sense of a
change of velocity, but the momentum continues to increase. Of course, whenever
a force produces very little change in the velocity of a body, we say that the body
has a great deal of inertia, and that is exactly what our formula for relativistic
mass says (see Eq. 15.10)—it says that the inertia is very great when v is nearly
as great as c. As an example of this effect, to deflect the high-speed electrons
in the synchrotron that is used here at Caltech, we need a magnetic field that
is 2000 times stronger than would be expected on the basis of Newton’s laws.
In other words, the mass of the electrons in the synchrotron is 2000 times as
great as their normal mass, and is as great as that of a proton! That m should
be 2000 times m0 means that 1 − v2/c2 must be 1/4,000,000, and that means
that v differs from c by one part in 8,000,000, so the electrons are getting pretty
close to the speed of light. If the electrons and light were both to start from
the synchrotron (estimated as 700 feet away) and rush out to Bridge Lab, which
would arrive first? The light, of course, because light always travels faster.* How
much earlier? That is too hard to tell—instead, we tell by what distance the
light is ahead: it is about 1/1000 of an inch, or 1

4 the thickness of a piece of

* The electrons would actually win the race versus visible light because of the index of
refraction of air. A gamma ray would make out better.
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paper! When the electrons are going that fast their masses are enormous, but
their speed cannot exceed the speed of light.

Now let us look at some further consequences of relativistic change of mass.
Consider the motion of the molecules in a small tank of gas. When the gas
is heated, the speed of the molecules is increased, and therefore the mass is
also increased and the gas is heavier. An approximate formula to express the
increase of mass, for the case when the velocity is small, can be found by
expanding m0/

√
1− v2/c2 = m0(1 − v2/c2)−1/2 in a power series, using the

binomial theorem. We get

m0(1− v2/c2)−1/2 = m0(1 + 1
2v

2/c2 + 3
8v

4/c4 + · · · ).

We see clearly from the formula that the series converges rapidly when v is small,
and the terms after the first two or three are negligible. So we can write

m ∼= m0 + 1
2m0v

2
(

1
c2

)
(15.11)

in which the second term on the right expresses the increase of mass due to
molecular velocity. When the temperature increases the v2 increases proportion-
ately, so we can say that the increase in mass is proportional to the increase
in temperature. But since 1

2m0v
2 is the kinetic energy in the old-fashioned

Newtonian sense, we can also say that the increase in mass of all this body of gas
is equal to the increase in kinetic energy divided by c2, or ∆m = ∆(K.E.)/c2.

15-9 Equivalence of mass and energy

The above observation led Einstein to the suggestion that the mass of a body
can be expressed more simply than by the formula (15.1), if we say that the mass
is equal to the total energy content divided by c2. If Eq. (15.11) is multiplied
by c2 the result is

mc2 = m0c
2 + 1

2m0v
2 + · · · (15.12)

Here, the term on the left expresses the total energy of a body, and we recognize
the last term as the ordinary kinetic energy. Einstein interpreted the large
constant term, m0c

2, to be part of the total energy of the body, an intrinsic
energy known as the “rest energy.”

Let us follow out the consequences of assuming, with Einstein, that the
energy of a body always equals mc2. As an interesting result, we shall find the
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formula (15.1) for the variation of mass with speed, which we have merely assumed
up to now. We start with the body at rest, when its energy is m0c

2. Then we
apply a force to the body, which starts it moving and gives it kinetic energy;
therefore, since the energy has increased, the mass has increased—this is implicit
in the original assumption. So long as the force continues, the energy and the
mass both continue to increase. We have already seen (Chapter 13) that the rate
of change of energy with time equals the force times the velocity, or

dE

dt
= F · v. (15.13)

We also have (Chapter 9, Eq. 9.1) that F = d(mv)/dt. When these relations are
put together with the definition of E, Eq. (15.13) becomes

d(mc2)
dt

= v · d(mv)
dt

. (15.14)

We wish to solve this equation for m. To do this we first use the mathematical
trick of multiplying both sides by 2m, which changes the equation to

c2(2m) dm
dt

= 2mv · d(mv)
dt

. (15.15)

We need to get rid of the derivatives, which can be accomplished by integrating
both sides. The quantity (2m) dm/dt can be recognized as the time derivative
of m2, and (2mv) · d(mv)/dt is the time derivative of (mv)2. So, Eq. (15.15) is
the same as

c2
d(m2)
dt

= d(m2v2)
dt

. (15.16)

If the derivatives of two quantities are equal, the quantities themselves differ at
most by a constant, say C. This permits us to write

m2c2 = m2v2 + C. (15.17)

We need to define the constant C more explicitly. Since Eq. (15.17) must be true
for all velocities, we can choose a special case where v = 0, and say that in this
case the mass is m0. Substituting these values into Eq. (15.17) gives

m2
0c

2 = 0 + C.
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We can now use this value of C in Eq. (15.17), which becomes

m2c2 = m2v2 +m2
0c

2. (15.18)

Dividing by c2 and rearranging terms gives

m2(1− v2/c2) = m2
0,

from which we get
m = m0/

√
1− v2/c2. (15.19)

This is the formula (15.1), and is exactly what is necessary for the agreement
between mass and energy in Eq. (15.12).

Ordinarily these energy changes represent extremely slight changes in mass,
because most of the time we cannot generate much energy from a given amount
of material; but in an atomic bomb of explosive energy equivalent to 20 kilotons
of TNT, for example, it can be shown that the dirt after the explosion is lighter
by 1 gram than the initial mass of the reacting material, because of the energy
that was released, i.e., the released energy had a mass of 1 gram, according to
the relationship ∆E = ∆(mc2). This theory of equivalence of mass and energy
has been beautifully verified by experiments in which matter is annihilated—
converted totally to energy: An electron and a positron come together at rest,
each with a rest mass m0. When they come together they disintegrate and two
gamma rays emerge, each with the measured energy of m0c

2. This experiment
furnishes a direct determination of the energy associated with the existence of
the rest mass of a particle.
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16

Relativistic Energy and Momentum

16-1 Relativity and the philosophers

In this chapter we shall continue to discuss the principle of relativity of
Einstein and Poincaré, as it affects our ideas of physics and other branches of
human thought.

Poincaré made the following statement of the principle of relativity: “Ac-
cording to the principle of relativity, the laws of physical phenomena must be
the same for a fixed observer as for an observer who has a uniform motion of
translation relative to him, so that we have not, nor can we possibly have, any
means of discerning whether or not we are carried along in such a motion.”

When this idea descended upon the world, it caused a great stir among
philosophers, particularly the “cocktail-party philosophers,” who say, “Oh, it is
very simple: Einstein’s theory says all is relative!” In fact, a surprisingly large
number of philosophers, not only those found at cocktail parties (but rather than
embarrass them, we shall just call them “cocktail-party philosophers”), will say,
“That all is relative is a consequence of Einstein, and it has profound influences
on our ideas.” In addition, they say “It has been demonstrated in physics that
phenomena depend upon your frame of reference.” We hear that a great deal,
but it is difficult to find out what it means. Probably the frames of reference
that were originally referred to were the coordinate systems which we use in the
analysis of the theory of relativity. So the fact that “things depend upon your
frame of reference” is supposed to have had a profound effect on modern thought.
One might well wonder why, because, after all, that things depend upon one’s
point of view is so simple an idea that it certainly cannot have been necessary to
go to all the trouble of the physical relativity theory in order to discover it. That
what one sees depends upon his frame of reference is certainly known to anybody
who walks around, because he sees an approaching pedestrian first from the
front and then from the back; there is nothing deeper in most of the philosophy
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which is said to have come from the theory of relativity than the remark that “A
person looks different from the front than from the back.” The old story about
the elephant that several blind men describe in different ways is another example,
perhaps, of the theory of relativity from the philosopher’s point of view.

But certainly there must be deeper things in the theory of relativity than
just this simple remark that “A person looks different from the front than from
the back.” Of course relativity is deeper than this, because we can make definite
predictions with it. It certainly would be rather remarkable if we could predict
the behavior of nature from such a simple observation alone.

There is another school of philosophers who feel very uncomfortable about the
theory of relativity, which asserts that we cannot determine our absolute velocity
without looking at something outside, and who would say, “It is obvious that
one cannot measure his velocity without looking outside. It is self-evident that it
is meaningless to talk about the velocity of a thing without looking outside; the
physicists are rather stupid for having thought otherwise, but it has just dawned on
them that this is the case. If only we philosophers had realized what the problems
were that the physicists had, we could have decided immediately by brainwork
that it is impossible to tell how fast one is moving without looking outside, and
we could have made an enormous contribution to physics.” These philosophers
are always with us, struggling in the periphery to try to tell us something, but
they never really understand the subtleties and depths of the problem.

Our inability to detect absolute motion is a result of experiment and not a
result of plain thought, as we can easily illustrate. In the first place, Newton
believed that it was true that one could not tell how fast he is going if he is
moving with uniform velocity in a straight line. In fact, Newton first stated
the principle of relativity, and one quotation made in the last chapter was a
statement of Newton’s. Why then did the philosophers not make all this fuss
about “all is relative,” or whatever, in Newton’s time? Because it was not until
Maxwell’s theory of electrodynamics was developed that there were physical laws
that suggested that one could measure his velocity without looking outside; soon
it was found experimentally that one could not.

Now, is it absolutely, definitely, philosophically necessary that one should
not be able to tell how fast he is moving without looking outside? One of the
consequences of relativity was the development of a philosophy which said, “You
can only define what you can measure! Since it is self-evident that one cannot
measure a velocity without seeing what he is measuring it relative to, therefore
it is clear that there is no meaning to absolute velocity. The physicists should
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have realized that they can talk only about what they can measure.” But that
is the whole problem: whether or not one can define absolute velocity is the
same as the problem of whether or not one can detect in an experiment, without
looking outside, whether he is moving. In other words, whether or not a thing
is measurable is not something to be decided a priori by thought alone, but
something that can be decided only by experiment. Given the fact that the
velocity of light is 186,000 mi/sec, one will find few philosophers who will calmly
state that it is self-evident that if light goes 186,000 mi/sec inside a car, and
the car is going 100,000 mi/sec, that the light also goes 186,000 mi/sec past an
observer on the ground. That is a shocking fact to them; the very ones who claim
it is obvious find, when you give them a specific fact, that it is not obvious.

Finally, there is even a philosophy which says that one cannot detect any
motion except by looking outside. It is simply not true in physics. True, one
cannot perceive a uniform motion in a straight line, but if the whole room were
rotating we would certainly know it, for everybody would be thrown to the wall—
there would be all kinds of “centrifugal” effects. That the earth is turning on its
axis can be determined without looking at the stars, by means of the so-called
Foucault pendulum, for example. Therefore it is not true that “all is relative”; it
is only uniform velocity that cannot be detected without looking outside. Uniform
rotation about a fixed axis can be. When this is told to a philosopher, he is very
upset that he did not really understand it, because to him it seems impossible
that one should be able to determine rotation about an axis without looking
outside. If the philosopher is good enough, after some time he may come back
and say, “I understand. We really do not have such a thing as absolute rotation;
we are really rotating relative to the stars, you see. And so some influence exerted
by the stars on the object must cause the centrifugal force.”

Now, for all we know, that is true; we have no way, at the present time, of
telling whether there would have been centrifugal force if there were no stars and
nebulae around. We have not been able to do the experiment of removing all the
nebulae and then measuring our rotation, so we simply do not know. We must
admit that the philosopher may be right. He comes back, therefore, in delight and
says, “It is absolutely necessary that the world ultimately turn out to be this way:
absolute rotation means nothing; it is only relative to the nebulae.” Then we say to
him, “Now, my friend, is it or is it not obvious that uniform velocity in a straight
line, relative to the nebulae should produce no effects inside a car?” Now that the
motion is no longer absolute, but is a motion relative to the nebulae, it becomes
a mysterious question, and a question that can be answered only by experiment.
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What, then, are the philosophic influences of the theory of relativity? If we
limit ourselves to influences in the sense of what kind of new ideas and suggestions
are made to the physicist by the principle of relativity, we could describe some of
them as follows. The first discovery is, essentially, that even those ideas which
have been held for a very long time and which have been very accurately verified
might be wrong. It was a shocking discovery, of course, that Newton’s laws are
wrong, after all the years in which they seemed to be accurate. Of course it is
clear, not that the experiments were wrong, but that they were done over only a
limited range of velocities, so small that the relativistic effects would not have
been evident. But nevertheless, we now have a much more humble point of view
of our physical laws—everything can be wrong!

Secondly, if we have a set of “strange” ideas, such as that time goes slower
when one moves, and so forth, whether we like them or do not like them is an
irrelevant question. The only relevant question is whether the ideas are consistent
with what is found experimentally. In other words, the “strange ideas” need only
agree with experiment, and the only reason that we have to discuss the behavior
of clocks and so forth is to demonstrate that although the notion of the time
dilation is strange, it is consistent with the way we measure time.

Finally, there is a third suggestion which is a little more technical but which
has turned out to be of enormous utility in our study of other physical laws,
and that is to look at the symmetry of the laws or, more specifically, to look for
the ways in which the laws can be transformed and leave their form the same.
When we discussed the theory of vectors, we noted that the fundamental laws
of motion are not changed when we rotate the coordinate system, and now we
learn that they are not changed when we change the space and time variables in
a particular way, given by the Lorentz transformation. So this idea of studying
the patterns or operations under which the fundamental laws are not changed
has proved to be a very useful one.

16-2 The twin paradox

To continue our discussion of the Lorentz transformation and relativistic
effects, we consider a famous so-called “paradox” of Peter and Paul, who are
supposed to be twins, born at the same time. When they are old enough to
drive a space ship, Paul flies away at very high speed. Because Peter, who is left
on the ground, sees Paul going so fast, all of Paul’s clocks appear to go slower,
his heart beats go slower, his thoughts go slower, everything goes slower, from
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Peter’s point of view. Of course, Paul notices nothing unusual, but if he travels
around and about for a while and then comes back, he will be younger than Peter,
the man on the ground! That is actually right; it is one of the consequences
of the theory of relativity which has been clearly demonstrated. Just as the
mu-mesons last longer when they are moving, so also will Paul last longer when
he is moving. This is called a “paradox” only by the people who believe that the
principle of relativity means that all motion is relative; they say, “Heh, heh, heh,
from the point of view of Paul, can’t we say that Peter was moving and should
therefore appear to age more slowly? By symmetry, the only possible result is
that both should be the same age when they meet.” But in order for them to
come back together and make the comparison, Paul must either stop at the end
of the trip and make a comparison of clocks or, more simply, he has to come
back, and the one who comes back must be the man who was moving, and he
knows this, because he had to turn around. When he turned around, all kinds of
unusual things happened in his space ship—the rockets went off, things jammed
up against one wall, and so on—while Peter felt nothing.

So the way to state the rule is to say that the man who has felt the accelerations,
who has seen things fall against the walls, and so on, is the one who would be
the younger; that is the difference between them in an “absolute” sense, and it
is certainly correct. When we discussed the fact that moving mu-mesons live
longer, we used as an example their straight-line motion in the atmosphere. But
we can also make mu-mesons in a laboratory and cause them to go in a curve
with a magnet, and even under this accelerated motion, they last exactly as much
longer as they do when they are moving in a straight line. Although no one has
arranged an experiment explicitly so that we can get rid of the paradox, one
could compare a mu-meson which is left standing with one that had gone around
a complete circle, and it would surely be found that the one that went around
the circle lasted longer. Although we have not actually carried out an experiment
using a complete circle, it is really not necessary, of course, because everything
fits together all right. This may not satisfy those who insist that every single fact
be demonstrated directly, but we confidently predict the result of the experiment
in which Paul goes in a complete circle.

16-3 Transformation of velocities

The main difference between the relativity of Einstein and the relativity of
Newton is that the laws of transformation connecting the coordinates and times
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between relatively moving systems are different. The correct transformation law,
that of Lorentz, is

x′ = x− ut√
1− u2/c2

,

y′ = y,

z′ = z,

t′ = t− ux/c2√
1− u2/c2

.

(16.1)

These equations correspond to the relatively simple case in which the relative
motion of the two observers is along their common x-axes. Of course other
directions of motion are possible, but the most general Lorentz transformation is
rather complicated, with all four quantities mixed up together. We shall continue
to use this simpler form, since it contains all the essential features of relativity.

Let us now discuss more of the consequences of this transformation. First, it
is interesting to solve these equations in reverse. That is, here is a set of linear
equations, four equations with four unknowns, and they can be solved in reverse,
for x, y, z, t in terms of x′, y′, z′, t′. The result is very interesting, since it tells us
how a system of coordinates “at rest” looks from the point of view of one that is
“moving.” Of course, since the motions are relative and of uniform velocity, the
man who is “moving” can say, if he wishes, that it is really the other fellow who
is moving and he himself who is at rest. And since he is moving in the opposite
direction, he should get the same transformation, but with the opposite sign of
velocity. That is precisely what we find by manipulation, so that is consistent. If
it did not come out that way, we would have real cause to worry!

x = x′ + ut′√
1− u2/c2

,

y = y′,

z = z′,

t = t′ + ux′/c2√
1− u2/c2

.

(16.2)

Next we discuss the interesting problem of the addition of velocities in relativity.
We recall that one of the original puzzles was that light travels at 186,000 mi/sec
in all systems, even when they are in relative motion. This is a special case of
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the more general problem exemplified by the following. Suppose that an object
inside a space ship is going at 100,000 mi/sec and the space ship itself is going at
100,000 mi/sec; how fast is the object inside the space ship moving from the point
of view of an observer outside? We might want to say 200,000 mi/sec, which is
faster than the speed of light. This is very unnerving, because it is not supposed
to be going faster than the speed of light! The general problem is as follows.

Let us suppose that the object inside the ship, from the point of view of
the man inside, is moving with velocity v, and that the space ship itself has a
velocity u with respect to the ground. We want to know with what velocity vx
this object is moving from the point of view of the man on the ground. This is,
of course, still but a special case in which the motion is in the x-direction. There
will also be a transformation for velocities in the y-direction, or for any angle;
these can be worked out as needed. Inside the space ship the velocity is vx′ ,
which means that the displacement x′ is equal to the velocity times the time:

x′ = vx′t′. (16.3)

Now we have only to calculate what the position and time are from the point of
view of the outside observer for an object which has the relation (16.2) between
x′ and t′. So we simply substitute (16.3) into (16.2), and obtain

x = vx′t′ + ut′√
1− u2/c2

. (16.4)

But here we find x expressed in terms of t′. In order to get the velocity as seen
by the man on the outside, we must divide his distance by his time, not by the
other man’s time! So we must also calculate the time as seen from the outside,
which is

t = t′ + u(vx′t′)/c2√
1− u2/c2

. (16.5)

Now we must find the ratio of x to t, which is

vx = x

t
= u+ vx′

1 + uvx′/c2
, (16.6)

the square roots having cancelled. This is the law that we seek: the resultant
velocity, the “summing” of two velocities, is not just the algebraic sum of two
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velocities (we know that it cannot be or we get in trouble), but is “corrected”
by 1 + uv/c2.

Now let us see what happens. Suppose that you are moving inside the space
ship at half the speed of light, and that the space ship itself is going at half the
speed of light. Thus u is 1

2c and v is 1
2c, but in the denominator uv is one-fourth,

so that
v =

1
2c+ 1

2c

1 + 1
4

= 4c
5 .

So, in relativity, “half” and “half” does not make “one,” it makes only “4/5.” Of
course low velocities can be added quite easily in the familiar way, because so
long as the velocities are small compared with the speed of light we can forget
about the (1 + uv/c2) factor; but things are quite different and quite interesting
at high velocity.

Let us take a limiting case. Just for fun, suppose that inside the space ship
the man was observing light itself. In other words, v = c, and yet the space ship
is moving. How will it look to the man on the ground? The answer will be

v = u+ c

1 + uc/c2
= c

u+ c

u+ c
= c.

Therefore, if something is moving at the speed of light inside the ship, it will
appear to be moving at the speed of light from the point of view of the man
on the ground too! This is good, for it is, in fact, what the Einstein theory of
relativity was designed to do in the first place—so it had better work!

Of course, there are cases in which the motion is not in the direction of the
uniform translation. For example, there may be an object inside the ship which
is just moving “upward” with the velocity vy′ with respect to the ship, and the
ship is moving “horizontally.” Now, we simply go through the same thing, only
using y’s instead of x’s, with the result

y = y′ = vy′t′,

so that if vx′ = 0,
vy = y

t
= vy′

√
1− u2/c2. (16.7)

Thus a sidewise velocity is no longer vy′ , but vy′
√

1− u2/c2. We found this
result by substituting and combining the transformation equations, but we can
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Fig. 16-1. Trajectories described by a light ray and particle inside a
moving clock.

also see the result directly from the principle of relativity for the following reason
(it is always good to look again to see whether we can see the reason). We have
already (Fig. 15-3) seen how a possible clock might work when it is moving; the
light appears to travel at an angle at the speed c in the fixed system, while it
simply goes vertically with the same speed in the moving system. We found that
the vertical component of the velocity in the fixed system is less than that of
light by the factor

√
1− u2/c2 (see Eq. 15.3). But now suppose that we let a

material particle go back and forth in this same “clock,” but at some integral
fraction 1/n of the speed of light (Fig. 16-1). Then when the particle has gone
back and forth once, the light will have gone exactly n times. That is, each “click”
of the “particle” clock will coincide with each nth “click” of the light clock. This
fact must still be true when the whole system is moving, because the physical
phenomenon of coincidence will be a coincidence in any frame. Therefore, since
the speed cy is less than the speed of light, the speed vy of the particle must be
slower than the corresponding speed by the same square-root ratio! That is why
the square root appears in any vertical velocity.

16-4 Relativistic mass

We learned in the last chapter that the mass of an object increases with
velocity, but no demonstration of this was given, in the sense that we made no
arguments analogous to those about the way clocks have to behave. However,
we can show that, as a consequence of relativity plus a few other reasonable
assumptions, the mass must vary in this way. (We have to say “a few other
assumptions” because we cannot prove anything unless we have some laws which
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we assume to be true, if we expect to make meaningful deductions.) To avoid
the need to study the transformation laws of force, we shall analyze a collision,
where we need know nothing about the laws of force, except that we shall assume
the conservation of momentum and energy. Also, we shall assume that the
momentum of a particle which is moving is a vector and is always directed in the
direction of the velocity. However, we shall not assume that the momentum is a
constant times the velocity, as Newton did, but only that it is some function of
velocity. We thus write the momentum vector as a certain coefficient times the
vector velocity:

p = mvv. (16.8)

We put a subscript v on the coefficient to remind us that it is a function of
velocity, and we shall agree to call this coefficient mv the “mass.” Of course,
when the velocity is small, it is the same mass that we would measure in the
slow-moving experiments that we are used to. Now we shall try to demonstrate
that the formula for mv must be m0/

√
1− v2/c2, by arguing from the principle

of relativity that the laws of physics must be the same in every coordinate system.

(a)

1

1

2

2

θ

θ

(b)

x

z

1 1

2 2

θ/2 θ/2

θ/2 θ/2

Fig. 16-2. Two views of an elastic collision between equal objects
moving at the same speed in opposite directions.

Suppose that we have two particles, like two protons, that are absolutely equal,
and they are moving toward each other with exactly equal velocities. Their total
momentum is zero. Now what can happen? After the collision, their directions
of motion must be exactly opposite to each other, because if they are not exactly
opposite, there will be a nonzero total vector momentum, and momentum would
not have been conserved. Also they must have the same speeds, since they are
exactly similar objects; in fact, they must have the same speed they started with,
since we suppose that the energy is conserved in these collisions. So the diagram
of an elastic collision, a reversible collision, will look like Fig. 16-2(a): all the
arrows are the same length, all the speeds are equal. We shall suppose that such

16-10



collisions can always be arranged, that any angle θ can occur, and that any speed
could be used in such a collision. Next, we notice that this same collision can be
viewed differently by turning the axes, and just for convenience we shall turn
the axes, so that the horizontal splits it evenly, as in Fig. 16-2(b). It is the same
collision redrawn, only with the axes turned.

(a)

x ′

z ′

1 1

2 2

w

w

u u
α α
v v

(b)

x ′′

z ′′

1 1

2 2
w

w

u u
α α
v v

Fig. 16-3. Two more views of the collision, from moving cars.

Now here is the real trick: let us look at this collision from the point of view of
someone riding along in a car that is moving with a speed equal to the horizontal
component of the velocity of one particle. Then how does the collision look?
It looks as though particle 1 is just going straight up, because it has lost its
horizontal component, and it comes straight down again, also because it does
not have that component. That is, the collision appears as shown in Fig. 16-3(a).
Particle 2, however, was going the other way, and as we ride past it appears to
fly by at some terrific speed and at a smaller angle, but we can appreciate that
the angles before and after the collision are the same. Let us denote by u the
horizontal component of the velocity of particle 2, and by w the vertical velocity
of particle 1.

Now the question is, what is the vertical velocity u tanα? If we knew that, we
could get the correct expression for the momentum, using the law of conservation
of momentum in the vertical direction. Clearly, the horizontal component of the
momentum is conserved: it is the same before and after the collision for both
particles, and is zero for particle 1. So we need use the conservation law only
for the upward velocity u tanα. But we can get the upward velocity, simply by
looking at the same collision going the other way! If we look at the collision of
Fig. 16-3(a) from a car moving to the left with speed u, we see the same collision,
except “turned over,” as shown in Fig. 16-3(b). Now particle 2 is the one that goes
up and down with speed w, and particle 1 has picked up the horizontal speed u.
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Of course, now we know what the velocity u tanα is: it is w
√

1− u2/c2 (see
Eq. 16.7). We know that the change in the vertical momentum of the vertically
moving particle is

∆p = 2mww

(2, because it moves up and back down). The obliquely moving particle has a
certain velocity v whose components we have found to be u and w

√
1− u2/c2,

and whose mass is mv. The change in vertical momentum of this particle is
therefore ∆p′ = 2mvw

√
1− u2/c2 because, in accordance with our assumed

law (16.8), the momentum component is always the mass corresponding to the
magnitude of the velocity times the component of the velocity in the direction of
interest. Thus in order for the total momentum to be zero the vertical momenta
must cancel and the ratio of the mass moving with speed v and the mass moving
with speed w must therefore be

mw

mv
=
√

1− u2/c2. (16.9)

Let us take the limiting case that w is infinitesimal. If w is very tiny indeed, it
is clear that v and u are practically equal. In this case, mw → m0 and mv → mu.
The grand result is

mu = m0√
1− u2/c2

. (16.10)

It is an interesting exercise now to check whether or not Eq. (16.9) is indeed true
for arbitrary values of w, assuming that Eq. (16.10) is the right formula for the
mass. Note that the velocity v needed in Eq. (16.9) can be calculated from the
right-angle triangle:

v2 = u2 + w2(1− u2/c2).

It will be found to check out automatically, although we used it only in the limit
of small w.

Now, let us accept that momentum is conserved and that the mass depends
upon the velocity according to (16.10) and go on to find what else we can conclude.
Let us consider what is commonly called an inelastic collision. For simplicity, we
shall suppose that two objects of the same kind, moving oppositely with equal
speeds w, hit each other and stick together, to become some new, stationary
object, as shown in Fig. 16-4(a). The mass m of each corresponds to w, which, as
we know, is m0/

√
1− w2/c2. If we assume the conservation of momentum and
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Fig. 16-4. Two views of an inelastic collision between equally massive
objects.

the principle of relativity, we can demonstrate an interesting fact about the mass
of the new object which has been formed. We imagine an infinitesimal velocity u
at right angles to w (we can do the same with finite values of u, but it is easier to
understand with an infinitesimal velocity), then look at this same collision as we
ride by in an elevator at the velocity −u. What we see is shown in Fig. 16-4(b).
The composite object has an unknown mass M . Now object 1 moves with an
upward component of velocity u and a horizontal component which is practically
equal to w, and so also does object 2. After the collision we have the mass M
moving upward with velocity u, considered very small compared with the speed
of light, and also small compared with w. Momentum must be conserved, so let
us estimate the momentum in the upward direction before and after the collision.
Before the collision we have p ≈ 2mwu, and after the collision the momentum is
evidently p′ = Muu, but Mu is essentially the same as M0 because u is so small.
These momenta must be equal because of the conservation of momentum, and
therefore

M0 = 2mw. (16.11)

The mass of the object which is formed when two equal objects collide must be
twice the mass of the objects which come together. You might say, “Yes, of course,
that is the conservation of mass.” But not “Yes, of course,” so easily, because
these masses have been enhanced over the masses that they would be if they were
standing still, yet they still contribute, to the total M , not the mass they have
when standing still, but more. Astonishing as that may seem, in order for the
conservation of momentum to work when two objects come together, the mass
that they form must be greater than the rest masses of the objects, even though
the objects are at rest after the collision!

16-5 Relativistic energy

In the last chapter we demonstrated that as a result of the dependence of
the mass on velocity and Newton’s laws, the changes in the kinetic energy of an
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object resulting from the total work done by the forces on it always comes out to
be

∆T = (mu −m0)c2 = m0c
2√

1− u2/c2
−m0c

2. (16.12)

We even went further, and guessed that the total energy is the total mass times c2.
Now we continue this discussion.

Suppose that our two equally massive objects that collide can still be “seen”
inside M . For instance, a proton and a neutron are “stuck together,” but are still
moving about inside ofM . Then, although we might at first expect the massM to
be 2m0, we have found that it is not 2m0, but 2mw. Since 2mw is what is put in,
but 2m0 are the rest masses of the things inside, the excess mass of the composite
object is equal to the kinetic energy brought in. This means, of course, that energy
has inertia. In the last chapter we discussed the heating of a gas, and showed that
because the gas molecules are moving and moving things are heavier, when we put
energy into the gas its molecules move faster and so the gas gets heavier. But in
fact the argument is completely general, and our discussion of the inelastic collision
shows that the mass is there whether or not it is kinetic energy. In other words, if
two particles come together and produce potential or any other form of energy; if
the pieces are slowed down by climbing hills, doing work against internal forces, or
whatever; then it is still true that the mass is the total energy that has been put in.
So we see that the conservation of mass which we have deduced above is equivalent
to the conservation of energy, and therefore there is no place in the theory of
relativity for strictly inelastic collisions, as there was in Newtonian mechanics.
According to Newtonian mechanics it is all right for two things to collide and so
form an object of mass 2m0 which is in no way distinct from the one that would
result from putting them together slowly. Of course we know from the law of
conservation of energy that there is more kinetic energy inside, but that does not
affect the mass, according to Newton’s laws. But now we see that this is impossible;
because of the kinetic energy involved in the collision, the resulting object will
be heavier; therefore, it will be a different object. When we put the objects
together gently they make something whose mass is 2m0; when we put them
together forcefully, they make something whose mass is greater. When the mass is
different, we can tell that it is different. So, necessarily, the conservation of energy
must go along with the conservation of momentum in the theory of relativity.

This has interesting consequences. For example, suppose that we have an
object whose massM is measured, and suppose something happens so that it flies
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into two equal pieces moving with speed w, so that they each have a mass mw.
Now suppose that these pieces encounter enough material to slow them up until
they stop; then they will have mass m0. How much energy will they have given
to the material when they have stopped? Each will give an amount (mw−m0)c2,
by the theorem that we proved before. This much energy is left in the material
in some form, as heat, potential energy, or whatever. Now 2mw = M , so the
liberated energy is E = (M − 2m0)c2. This equation was used to estimate how
much energy would be liberated under fission in the atomic bomb, for example.
(Although the fragments are not exactly equal, they are nearly equal.) The mass
of the uranium atom was known—it had been measured ahead of time—and the
atoms into which it split, iodine, xenon, and so on, all were of known mass. By
masses, we do not mean the masses while the atoms are moving, we mean the
masses when the atoms are at rest. In other words, both M and m0 are known.
So by subtracting the two numbers one can calculate how much energy will be
released if M can be made to split in “half.” For this reason poor old Einstein
was called the “father” of the atomic bomb in all the newspapers. Of course, all
that meant was that he could tell us ahead of time how much energy would be
released if we told him what process would occur. The energy that should be
liberated when an atom of uranium undergoes fission was estimated about six
months before the first direct test, and as soon as the energy was in fact liberated,
someone measured it directly (and if Einstein’s formula had not worked, they
would have measured it anyway), and the moment they measured it they no
longer needed the formula. Of course, we should not belittle Einstein, but rather
should criticize the newspapers and many popular descriptions of what causes
what in the history of physics and technology. The problem of how to get the
thing to occur in an effective and rapid manner is a completely different matter.

The result is just as significant in chemistry. For instance, if we were to weigh
the carbon dioxide molecule and compare its mass with that of the carbon and
the oxygen, we could find out how much energy would be liberated when carbon
and oxygen form carbon dioxide. The only trouble here is that the differences in
masses are so small that it is technically very difficult to do.

Now let us turn to the question of whether we should add m0c
2 to the kinetic

energy and say from now on that the total energy of an object is mc2. First, if we
can still see the component pieces of rest mass m0 inside M , then we could say
that some of the mass M of the compound object is the mechanical rest mass of
the parts, part of it is kinetic energy of the parts, and part of it is potential energy
of the parts. But we have discovered, in nature, particles of various kinds which
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undergo reactions just like the one we have treated above, in which with all the
study in the world, we cannot see the parts inside. For instance, when a K-meson
disintegrates into two pions it does so according to the law (16.11), but the idea
that a K is made out of 2 π’s is a useless idea, because it also disintegrates into
3 π’s!

Therefore we have a new idea: we do not have to know what things are made
of inside; we cannot and need not identify, inside a particle, which of the energy is
rest energy of the parts into which it is going to disintegrate. It is not convenient
and often not possible to separate the total mc2 energy of an object into rest
energy of the inside pieces, kinetic energy of the pieces, and potential energy of
the pieces; instead, we simply speak of the total energy of the particle. We “shift
the origin” of energy by adding a constant m0c

2 to everything, and say that the
total energy of a particle is the mass in motion times c2, and when the object is
standing still, the energy is the mass at rest times c2.

Finally, we find that the velocity v, momentum P , and total energy E are
related in a rather simple way. That the mass in motion at speed v is the mass m0
at rest divided by

√
1− v2/c2, surprisingly enough, is rarely used. Instead, the

following relations are easily proved, and turn out to be very useful:

E2 − P 2c2 = m2
0c

4 (16.13)
and

Pc = Ev/c. (16.14)
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17

Space-Time

17-1 The geometry of space-time

The theory of relativity shows us that the relationships of positions and
times as measured in one coordinate system and another are not what we would
have expected on the basis of our intuitive ideas. It is very important that we
thoroughly understand the relations of space and time implied by the Lorentz
transformation, and therefore we shall consider this matter more deeply in this
chapter.

The Lorentz transformation between the positions and times (x, y, z, t) as
measured by an observer “standing still,” and the corresponding coordinates and
time (x′, y′, z′, t′) measured inside a “moving” space ship, moving with velocity u
are

x′ = x− ut√
1− u2/c2

,

y′ = y,

z′ = z,

t′ = t− ux/c2√
1− u2/c2

.

(17.1)

Let us compare these equations with Eq. (11.5), which also relates measurements
in two systems, one of which in this instance is rotated relative to the other:

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,
z′ = z.

(17.2)

In this particular case, Moe and Joe are measuring with axes having an angle θ
between the x′- and x-axes. In each case, we note that the “primed” quantities
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are “mixtures” of the “unprimed” ones: the new x′ is a mixture of x and y, and
the new y′ is also a mixture of x and y.

An analogy is useful: When we look at an object, there is an obvious thing we
might call the “apparent width,” and another we might call the “depth.” But the
two ideas, width and depth, are not fundamental properties of the object, because
if we step aside and look at the same thing from a different angle, we get a different
width and a different depth, and we may develop some formulas for computing the
new ones from the old ones and the angles involved. Equations (17.2) are these
formulas. One might say that a given depth is a kind of “mixture” of all depth
and all width. If it were impossible ever to move, and we always saw a given
object from the same position, then this whole business would be irrelevant—we
would always see the “true” width and the “true” depth, and they would appear
to have quite different qualities, because one appears as a subtended optical angle
and the other involves some focusing of the eyes or even intuition; they would
seem to be very different things and would never get mixed up. It is because we
can walk around that we realize that depth and width are, somehow or other,
just two different aspects of the same thing.

Can we not look at the Lorentz transformations in the same way? Here also
we have a mixture—of positions and the time. A difference between a space
measurement and a time measurement produces a new space measurement. In
other words, in the space measurements of one man there is mixed in a little bit
of the time, as seen by the other. Our analogy permits us to generate this idea:
The “reality” of an object that we are looking at is somehow greater (speaking
crudely and intuitively) than its “width” and its “depth” because they depend
upon how we look at it; when we move to a new position, our brain immediately
recalculates the width and the depth. But our brain does not immediately
recalculate coordinates and time when we move at high speed, because we have
had no effective experience of going nearly as fast as light to appreciate the
fact that time and space are also of the same nature. It is as though we were
always stuck in the position of having to look at just the width of something,
not being able to move our heads appreciably one way or the other; if we could,
we understand now, we would see some of the other man’s time—we would see
“behind,” so to speak, a little bit.

Thus we shall try to think of objects in a new kind of world, of space and time
mixed together, in the same sense that the objects in our ordinary space-world are
real, and can be looked at from different directions. We shall then consider that
objects occupying space and lasting for a certain length of time occupy a kind of
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Fig. 17-1. Three particle paths in space-time: (a) a particle at rest
at x = x0; (b) a particle which starts at x = x0 and moves with constant
speed; (c) a particle which starts at high speed but slows down; (d) a
light path.

a “blob” in a new kind of world, and that we look at this “blob” from different
points of view when we are moving at different velocities. This new world, this
geometrical entity in which the “blobs” exist by occupying position and taking
up a certain amount of time, is called space-time. A given point (x, y, z, t) in
space-time is called an event. Imagine, for example, that we plot the x-positions
horizontally, y and z in two other directions, both mutually at “right angles” and
at “right angles” to the paper (!), and time, vertically. Now, how does a moving
particle, say, look on such a diagram? If the particle is standing still, then it has
a certain x, and as time goes on, it has the same x, the same x, the same x; so
its “path” is a line that runs parallel to the t-axis (Fig. 17-1 a). On the other
hand, if it drifts outward, then as the time goes on x increases (Fig. 17-1 b).
So a particle, for example, which starts to drift out and then slows up should
have a motion something like that shown in Fig. 17-1(c). A particle, in other
words, which is permanent and does not disintegrate is represented by a line in
space-time. A particle which disintegrates would be represented by a forked line,
because it would turn into two other things which would start from that point.

What about light? Light travels at the speed c, and that would be represented
by a line having a certain fixed slope (Fig. 17-1 d).

Now according to our new idea, if a given event occurs to a particle, say if
it suddenly disintegrates at a certain space-time point into two new ones which
follow some new tracks, and this interesting event occurred at a certain value
of x and a certain value of t, then we would expect that, if this makes any sense,
we just have to take a new pair of axes and turn them, and that will give us the
new t and the new x in our new system, as shown in Fig. 17-2(a). But this is
wrong, because Eq. (17.1) is not exactly the same mathematical transformation
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Fig. 17-2. Two views of a disintegrating particle.

as Eq. (17.2). Note, for example, the difference in sign between the two, and the
fact that one is written in terms of cos θ and sin θ, while the other is written with
algebraic quantities. (Of course, it is not impossible that the algebraic quantities
could be written as cosine and sine, but actually they cannot.) But still, the two
expressions are very similar. As we shall see, it is not really possible to think
of space-time as a real, ordinary geometry because of that difference in sign. In
fact, although we shall not emphasize this point, it turns out that a man who is
moving has to use a set of axes which are inclined equally to the light ray, using
a special kind of projection parallel to the x′- and t′-axes, for his x′ and t′, as
shown in Fig. 17-2(b). We shall not deal with the geometry, since it does not
help much; it is easier to work with the equations.

17-2 Space-time intervals

Although the geometry of space-time is not Euclidean in the ordinary sense,
there is a geometry which is very similar, but peculiar in certain respects. If
this idea of geometry is right, there ought to be some functions of coordinates
and time which are independent of the coordinate system. For example, under
ordinary rotations, if we take two points, one at the origin, for simplicity, and
the other one somewhere else, both systems would have the same origin, and
the distance from here to the other point is the same in both. That is one
property that is independent of the particular way of measuring it. The square
of the distance is x2 + y2 + z2. Now what about space-time? It is not hard to
demonstrate that we have here, also, something which stays the same, namely, the
combination c2t2 − x2 − y2 − z2 is the same before and after the transformation:

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2. (17.3)

This quantity is therefore something which, like the distance, is “real” in some
sense; it is called the interval between the two space-time points, one of which is,
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in this case, at the origin. (Actually, of course, it is the interval squared, just
as x2 + y2 + z2 is the distance squared.) We give it a different name because it
is in a different geometry, but the interesting thing is only that some signs are
reversed and there is a c in it.

Let us get rid of the c; that is an absurdity if we are going to have a wonderful
space with x’s and y’s that can be interchanged. One of the confusions that could
be caused by someone with no experience would be to measure widths, say, by the
angle subtended at the eye, and measure depth in a different way, like the strain
on the muscles needed to focus them, so that the depths would be measured in
feet and the widths in meters. Then one would get an enormously complicated
mess of equations in making transformations such as (17.2), and would not be
able to see the clarity and simplicity of the thing for a very simple technical
reason, that the same thing is being measured in two different units. Now in Eqs.
(17.1) and (17.3) nature is telling us that time and space are equivalent; time
becomes space; they should be measured in the same units. What distance is a
“second”? It is easy to figure out from (17.3) what it is. It is 3× 108 meters, the
distance that light would go in one second. In other words, if we were to measure
all distances and times in the same units, seconds, then our unit of distance
would be 3× 108 meters, and the equations would be simpler. Or another way
that we could make the units equal is to measure time in meters. What is a
meter of time? A meter of time is the time it takes for light to go one meter,
and is therefore 1/3× 10−8 sec, or 3.3 billionths of a second! We would like, in
other words, to put all our equations in a system of units in which c = 1. If time
and space are measured in the same units, as suggested, then the equations are
obviously much simplified. They are

x′ = x− ut√
1− u2

,

y′ = y,

z′ = z,

t′ = t− ux√
1− u2

.

(17.4)

t′2 − x′2 − y′2 − z′2 = t2 − x2 − y2 − z2. (17.5)

If we are ever unsure or “frightened” that after we have this system with c = 1
we shall never be able to get our equations right again, the answer is quite the
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opposite. It is much easier to remember them without the c’s in them, and it is
always easy to put the c’s back, by looking after the dimensions. For instance,
in
√

1− u2, we know that we cannot subtract a velocity squared, which has units,
from the pure number 1, so we know that we must divide u2 by c2 in order to
make that unitless, and that is the way it goes.

The difference between space-time and ordinary space, and the character of an
interval as related to the distance, is very interesting. According to formula (17.5),
if we consider a point which in a given coordinate system had zero time, and
only space, then the interval squared would be negative and we would have an
imaginary interval, the square root of a negative number. Intervals can be either
real or imaginary in the theory. The square of an interval may be either positive
or negative, unlike distance, which has a positive square. When an interval is
imaginary, we say that the two points have a space-like interval between them
(instead of imaginary), because the interval is more like space than like time. On
the other hand, if two objects are at the same place in a given coordinate system,
but differ only in time, then the square of the time is positive and the distances
are zero and the interval squared is positive; this is called a time-like interval. In
our diagram of space-time, therefore, we would have a representation something
like this: at 45◦ there are two lines (actually, in four dimensions these will be
“cones,” called light cones and points on these lines are all at zero interval from
the origin. Where light goes from a given point is always separated from it by a
zero interval, as we see from Eq. (17.5). Incidentally, we have just proved that
if light travels with speed c in one system, it travels with speed c in another,
for if the interval is the same in both systems, i.e., zero in one and zero in the
other, then to state that the propagation speed of light is invariant is the same
as saying that the interval is zero.

17-3 Past, present, and future

The space-time region surrounding a given space-time point can be separated
into three regions, as shown in Fig. 17-3. In one region we have space-like
intervals, and in two regions, time-like intervals. Physically, these three regions
into which space-time around a given point is divided have an interesting physical
relationship to that point: a physical object or a signal can get from a point in
region 2 to the event O by moving along at a speed less than the speed of light.
Therefore events in this region can affect the point O, can have an influence
on it from the past. In fact, of course, an object at P on the negative t-axis is
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Fig. 17-3. The space-time region surrounding a point at the origin.

precisely in the “past” with respect to O; it is the same space-point as O, only
earlier. What happened there then, affects O now. (Unfortunately, that is the
way life is.) Another object at Q can get to O by moving with a certain speed
less than c, so if this object were in a space ship and moving, it would be, again,
the past of the same space-point. That is, in another coordinate system, the axis
of time might go through both O and Q. So all points of region 2 are in the
“past” of O, and anything that happens in this region can affect O. Therefore
region 2 is sometimes called the affective past, or affecting past; it is the locus of
all events which can affect point O in any way.

Region 3, on the other hand, is a region which we can affect from O, we can
“hit” things by shooting “bullets” out at speeds less than c. So this is the world
whose future can be affected by us, and we may call that the affective future.
Now the interesting thing about all the rest of space-time, i.e., region 1, is that we
can neither affect it now from O, nor can it affect us now at O, because nothing
can go faster than the speed of light. Of course, what happens at R can affect us
later ; that is, if the sun is exploding “right now,” it takes eight minutes before
we know about it, and it cannot possibly affect us before then.

What we mean by “right now” is a mysterious thing which we cannot define
and we cannot affect, but it can affect us later, or we could have affected it if
we had done something far enough in the past. When we look at the star Alpha
Centauri, we see it as it was four years ago; we might wonder what it is like
“now.” “Now” means at the same time from our special coordinate system. We
can only see Alpha Centauri by the light that has come from our past, up to four
years ago, but we do not know what it is doing “now”; it will take four years
before what it is doing “now” can affect us. Alpha Centauri “now” is an idea
or concept of our mind; it is not something that is really definable physically
at the moment, because we have to wait to observe it; we cannot even define it
right “now.” Furthermore, the “now” depends on the coordinate system. If, for
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example, Alpha Centauri were moving, an observer there would not agree with
us because he would put his axes at an angle, and his “now” would be a different
time. We have already talked about the fact that simultaneity is not a unique
thing.

There are fortune tellers, or people who tell us they can know the future, and
there are many wonderful stories about the man who suddenly discovers that
he has knowledge about the affective future. Well, there are lots of paradoxes
produced by that because if we know something is going to happen, then we can
make sure we will avoid it by doing the right thing at the right time, and so on.
But actually there is no fortune teller who can even tell us the present! There
is no one who can tell us what is really happening right now, at any reasonable
distance, because that is unobservable. We might ask ourselves this question,
which we leave to the student to try to answer: Would any paradox be produced
if it were suddenly to become possible to know things that are in the space-like
intervals of region 1?

17-4 More about four-vectors

Let us now return to our consideration of the analogy of the Lorentz transfor-
mation and rotations of the space axes. We have learned the utility of collecting
together other quantities which have the same transformation properties as the
coordinates, to form what we call vectors, directed lines. In the case of ordinary
rotations, there are many quantities that transform the same way as x, y, and z
under rotation: for example, the velocity has three components, an x, y, and z-
component; when seen in a different coordinate system, none of the components
is the same, instead they are all transformed to new values. But, somehow or
other, the velocity “itself” has a greater reality than do any of its particular
components, and we represent it by a directed line.

We therefore ask: Is it or is it not true that there are quantities which
transform, or which are related, in a moving system and in a nonmoving system,
in the same way as x, y, z, and t? From our experience with vectors, we know that
three of the quantities, like x, y, z, would constitute the three components of an
ordinary space-vector, but the fourth quantity would look like an ordinary scalar
under space rotation, because it does not change so long as we do not go into
a moving coordinate system. Is it possible, then, to associate with some of our
known “three-vectors” a fourth object, that we could call the “time component,”
in such a manner that the four objects together would “rotate” the same way
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as position and time in space-time? We shall now show that there is, indeed, at
least one such thing (there are many of them, in fact): the three components of
momentum, and the energy as the time component, transform together to make
what we call a “four-vector.” In demonstrating this, since it is quite inconvenient
to have to write c’s everywhere, we shall use the same trick concerning units of
the energy, the mass, and the momentum, that we used in Eq. (17.4). Energy
and mass, for example, differ only by a factor c2 which is merely a question of
units, so we can say energy is the mass. Instead of having to write the c2, we
put E = m, and then, of course, if there were any trouble we would put in the
right amounts of c so that the units would straighten out in the last equation,
but not in the intermediate ones.

Thus our equations for energy and momentum are

E = m = m0/
√

1− v2,

p = mv = m0v/
√

1− v2.
(17.6)

Also in these units, we have
E2 − p2 = m2

0. (17.7)

For example, if we measure energy in electron volts, what does a mass of 1 electron
volt mean? It means the mass whose rest energy is 1 electron volt, that is, m0c

2

is one electron volt. For example, the rest mass of an electron is 0.511× 106 eV.
Now what would the momentum and energy look like in a new coordinate

system? To find out, we shall have to transform Eq. (17.6), which we can do
because we know how the velocity transforms. Suppose that, as we measure it,
an object has a velocity v, but we look upon the same object from the point of
view of a space ship which itself is moving with a velocity u, and in that system
we use a prime to designate the corresponding thing. In order to simplify things
at first, we shall take the case that the velocity v is in the direction of u. (Later,
we can do the more general case.) What is v′, the velocity as seen from the space
ship? It is the composite velocity, the “difference” between v and u. By the law
which we worked out before,

v′ = v − u
1− uv . (17.8)

Now let us calculate the new energy E′, the energy as the fellow in the space
ship would see it. He would use the same rest mass, of course, but he would
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use v′ for the velocity. What we have to do is square v′, subtract it from one,
take the square root, and take the reciprocal:

v′2 = v2 − 2uv + u2

1− 2uv + u2v2 ,

1− v′2 = 1− 2uv + u2v2 − v2 + 2uv − u2

1− 2uv + u2v2 ,

= 1− v2 − u2 + u2v2

1− 2uv + u2v2 ,

= (1− v2)(1− u2)
(1− uv)2 .

Therefore
1√

1− v′2
= 1− uv√

1− v2
√

1− u2
. (17.9)

The energy E′ is then simply m0 times the above expression. But we want
to express the energy in terms of the unprimed energy and momentum, and we
note that

E′ = m0 −m0uv√
1− v2

√
1− u2

= (m0/
√

1− v2)− (m0v/
√

1− v2)u√
1− u2

,

or
E′ = E − upx√

1− u2
, (17.10)

which we recognize as being exactly of the same form as

t′ = t− ux√
1− u2

.

Next we must find the new momentum p′x. This is just the energy E′ times v′,
and is also simply expressed in terms of E and p:

p′x = E′v′ = m0(1− uv)√
1− v2

√
1− u2

· v − u
(1− uv) = m0v −m0u√

1− v2
√

1− u2
.

Thus
p′x = px − uE√

1− u2
, (17.11)
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which we recognize as being of precisely the same form as

x′ = x− ut√
1− u2

.

Thus the transformations for the new energy and momentum in terms of the
old energy and momentum are exactly the same as the transformations for t′ in
terms of t and x, and x′ in terms of x and t: all we have to do is, every time we
see t in (17.4) substitute E, and every time we see x substitute px, and then the
equations (17.4) will become the same as Eqs. (17.10) and (17.11). This would
imply, if everything works right, an additional rule that p′y = py and that p′z = pz.
To prove this would require our going back and studying the case of motion up
and down. Actually, we did study the case of motion up and down in the last
chapter. We analyzed a complicated collision and we noticed that, in fact, the
transverse momentum is not changed when viewed from a moving system; so we
have already verified that p′y = py and p′z = pz. The complete transformation,
then, is

p′x = px − uE√
1− u2

,

p′y = py,

p′z = pz,

E′ = E − upx√
1− u2

.

(17.12)

In these transformations, therefore, we have discovered four quantities which
transform like x, y, z, and t, and which we call the four-vector momentum. Since
the momentum is a four-vector, it can be represented on a space-time diagram
of a moving particle as an “arrow” tangent to the path, as shown in Fig. 17-4.
This arrow has a time component equal to the energy, and its space components

x

t

pµ

Fig. 17-4. The four-vector momentum of a particle.
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represent its three-vector momentum; this arrow is more “real” than either the
energy or the momentum, because those just depend on how we look at the
diagram.

17-5 Four-vector algebra

The notation for four-vectors is different than it is for three-vectors. In
the case of three-vectors, if we were to talk about the ordinary three-vector
momentum we would write it p. If we wanted to be more specific, we could say
it has three components which are, for the axes in question, px, py, and pz, or
we could simply refer to a general component as pi, and say that i could either
be x, y, or z, and that these are the three components; that is, imagine that i is
any one of three directions, x, y, or z. The notation that we use for four-vectors
is analogous to this: we write pµ for the four-vector, and µ stands for the four
possible directions t, x, y, or z.

We could, of course, use any notation we want; do not laugh at notations;
invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations. The whole idea of a four-vector, in fact, is an
improvement in notation so that the transformations can be remembered easily.
Aµ, then, is a general four-vector, but for the special case of momentum, the pt
is identified as the energy, px is the momentum in the x-direction, py is that in
the y-direction, and pz is that in the z-direction. To add four-vectors, we add
the corresponding components.

If there is an equation among four-vectors, then the equation is true for each
component. For instance, if the law of conservation of three-vector momentum is
to be true in particle collisions, i.e., if the sum of the momenta for a large number
of interacting or colliding particles is to be a constant, that must mean that the
sums of all momenta in the x-direction, in the y-direction, and in the z-direction,
for all the particles, must each be constant. This law alone would be impossible
in relativity because it is incomplete; it is like talking about only two of the
components of a three-vector. It is incomplete because if we rotate the axes, we
mix the various components, so we must include all three components in our law.
Thus, in relativity, we must complete the law of conservation of momentum by
extending it to include the time component. This is absolutely necessary to go
with the other three, or there cannot be relativistic invariance. The conservation
of energy is the fourth equation which goes with the conservation of momentum
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to make a valid four-vector relationship in the geometry of space and time. Thus
the law of conservation of energy and momentum in four-dimensional notation is∑

particles
in

pµ =
∑

particles
out

pµ (17.13)

or, in a slightly different notation∑
i

piµ =
∑
j

pjµ, (17.14)

where i = 1, 2, . . . refers to the particles going into the collision, j = 1, 2, . . .
refers to the particles coming out of the collision, and µ = x, y, z, or t. You say,
“In which axes?” It makes no difference. The law is true for each component,
using any axes.

In vector analysis we discussed one other thing, the dot product of two vectors.
Let us now consider the corresponding thing in space-time. In ordinary rotation
we discovered there was an unchanged quantity x2 + y2 + z2. In four dimensions,
we find that the corresponding quantity is t2 − x2 − y2 − z2 (Eq. 17.3). How can
we write that? One way would be to write some kind of four-dimensional thing
with a square dot between, like Aµ �Bµ; one of the notations which is actually
used is ∑′

µ

AµAµ = A2
t −A2

x −A2
y −A2

z. (17.15)

The prime on
∑

means that the first term, the “time” term, is positive, but the
other three terms have minus signs. This quantity, then, will be the same in any
coordinate system, and we may call it the square of the length of the four-vector.
For instance, what is the square of the length of the four-vector momentum of
a single particle? This will be equal to p2

t − p2
x − p2

y − p2
z or, in other words,

E2 − p2, because we know that pt is E. What is E2 − p2? It must be something
which is the same in every coordinate system. In particular, it must be the same
for a coordinate system which is moving right along with the particle, in which
the particle is standing still. If the particle is standing still, it would have no
momentum. So in that coordinate system, it is purely its energy, which is the
same as its rest mass. Thus E2 − p2 = m2

0. So we see that the square of the
length of this vector, the four-vector momentum, is equal to m2

0.
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From the square of a vector, we can go on to invent the “dot product,” or the
product which is a scalar: if aµ is one four-vector and bµ is another four-vector,
then the scalar product is∑′

aµbµ = atbt − axbx − ayby − azbz. (17.16)

It is the same in all coordinate systems.
Finally, we shall mention certain things whose rest mass m0 is zero. A photon

of light, for example. A photon is like a particle, in that it carries an energy
and a momentum. The energy of a photon is a certain constant, called Planck’s
constant, times the frequency of the photon: E = hν. Such a photon also carries
a momentum, and the momentum of a photon (or of any other particle, in fact)
is h divided by the wavelength: p = h/λ. But, for a photon, there is a definite
relationship between the frequency and the wavelength: ν = c/λ. (The number
of waves per second, times the wavelength of each, is the distance that the light
goes in one second, which, of course, is c.) Thus we see immediately that the
energy of a photon must be the momentum times c, or if c = 1, the energy and
momentum are equal. That is to say, the rest mass is zero. Let us look at that
again; that is quite curious. If it is a particle of zero rest mass, what happens
when it stops? It never stops! It always goes at the speed c. The usual formula
for energy is m0/

√
1− v2. Now can we say that m0 = 0 and v = 1, so the energy

is 0? We cannot say that it is zero; the photon really can (and does) have energy
even though it has no rest mass, but this it possesses by perpetually going at the
speed of light!

We also know that the momentum of any particle is equal to its total energy
times its velocity: if c = 1, p = vE or, in ordinary units, p = vE/c2. For any
particle moving at the speed of light, p = E if c = 1. The formulas for the energy
of a photon as seen from a moving system are, of course, given by Eq. (17.12),
but for the momentum we must substitute the energy times c (or times 1 in this
case). The different energies after transformation means that there are different
frequencies. This is called the Doppler effect, and one can calculate it easily from
Eq. (17.12), using also E = p and E = hν.

As Minkowski said, “Space of itself, and time of itself will sink into mere
shadows, and only a kind of union between them shall survive.”
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18

Rotation in Two Dimensions

18-1 The center of mass

In the previous chapters we have been studying the mechanics of points, or
small particles whose internal structure does not concern us. For the next few
chapters we shall study the application of Newton’s laws to more complicated
things. When the world becomes more complicated, it also becomes more
interesting, and we shall find that the phenomena associated with the mechanics
of a more complex object than just a point are really quite striking. Of course
these phenomena involve nothing but combinations of Newton’s laws, but it is
sometimes hard to believe that only F = ma is at work.

The more complicated objects we deal with can be of several kinds: water
flowing, galaxies whirling, and so on. The simplest “complicated” object to
analyze, at the start, is what we call a rigid body, a solid object that is turning
as it moves about. However, even such a simple object may have a most complex
motion, and we shall therefore first consider the simplest aspects of such motion,
in which an extended body rotates about a fixed axis. A given point on such a
body then moves in a plane perpendicular to this axis. Such rotation of a body
about a fixed axis is called plane rotation or rotation in two dimensions. We
shall later generalize the results to three dimensions, but in doing so we shall
find that, unlike the case of ordinary particle mechanics, rotations are subtle and
hard to understand unless we first get a solid grounding in two dimensions.

The first interesting theorem concerning the motion of complicated objects
can be observed at work if we throw an object made of a lot of blocks and spokes,
held together by strings, into the air. Of course we know it goes in a parabola,
because we studied that for a particle. But now our object is not a particle; it
wobbles and it jiggles, and so on. It does go in a parabola though; one can see
that. What goes in a parabola? Certainly not the point on the corner of the
block, because that is jiggling about; neither is it the end of the wooden stick,
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or the middle of the wooden stick, or the middle of the block. But something
goes in a parabola, there is an effective “center” which moves in a parabola. So
our first theorem about complicated objects is to demonstrate that there is a
mean position which is mathematically definable, but not necessarily a point of
the material itself, which goes in a parabola. That is called the theorem of the
center of the mass, and the proof of it is as follows.

We may consider any object as being made of lots of little particles, the atoms,
with various forces among them. Let i represent an index which defines one of
the particles. (There are millions of them, so i goes to 1023, or something.) Then
the force on the ith particle is, of course, the mass times the acceleration of that
particle:

F i = mi(d2ri/dt
2). (18.1)

In the next few chapters our moving objects will be ones in which all the
parts are moving at speeds very much slower than the speed of light, and we shall
use the nonrelativistic approximation for all quantities. In these circumstances
the mass is constant, so that

F i = d2(miri)/dt2. (18.2)

If we now add the force on all the particles, that is, if we take the sum of all
the F i’s for all the different indexes, we get the total force, F . On the other
side of the equation, we get the same thing as though we added before the
differentiation: ∑

i

F i = F = d2(
∑
imiri)
dt2

. (18.3)

Therefore the total force is the second derivative of the masses times their
positions, added together.

Now the total force on all the particles is the same as the external force. Why?
Although there are all kinds of forces on the particles because of the strings, the
wigglings, the pullings and pushings, and the atomic forces, and who knows what,
and we have to add all these together, we are rescued by Newton’s Third Law.
Between any two particles the action and reaction are equal, so that when we
add all the equations together, if any two particles have forces between them it
cancels out in the sum; therefore the net result is only those forces which arise
from other particles which are not included in whatever object we decide to sum
over. So if Eq. (18.3) is the sum over a certain number of the particles, which
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together are called “the object,” then the external force on the total object is
equal to the sum of all the forces on all its constituent particles.

Now it would be nice if we could write Eq. (18.3) as the total mass times
some acceleration. We can. Let us say M is the sum of all the masses, i.e., the
total mass. Then if we define a certain vector R to be

R =
∑
i

miri/M, (18.4)

Eq. (18.3) will be simply

F = d2(MR)/dt2 = M(d2R/dt2), (18.5)

since M is a constant. Thus we find that the external force is the total mass
times the acceleration of an imaginary point whose location is R. This point is
called the center of mass of the body. It is a point somewhere in the “middle”
of the object, a kind of average r in which the different ri’s have weights or
importances proportional to the masses.

We shall discuss this important theorem in more detail in a later chapter, and
we shall therefore limit our remarks to two points: First, if the external forces are
zero, if the object were floating in empty space, it might whirl, and jiggle, and
twist, and do all kinds of things. But the center of mass, this artificially invented,
calculated position, somewhere in the middle, will move with a constant velocity.
In particular, if it is initially at rest, it will stay at rest. So if we have some kind
of a box, perhaps a space ship, with people in it, and we calculate the location
of the center of mass and find it is standing still, then the center of mass will
continue to stand still if no external forces are acting on the box. Of course, the
space ship may move a little in space, but that is because the people are walking
back and forth inside; when one walks toward the front, the ship goes toward
the back so as to keep the average position of all the masses in exactly the same
place.

Is rocket propulsion therefore absolutely impossible because one cannot move
the center of mass? No; but of course we find that to propel an interesting part
of the rocket, an uninteresting part must be thrown away. In other words, if we
start with a rocket at zero velocity and we spit some gas out the back end, then
this little blob of gas goes one way as the rocket ship goes the other, but the
center of mass is still exactly where it was before. So we simply move the part
that we are interested in against the part we are not interested in.
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The second point concerning the center of mass, which is the reason we
introduced it into our discussion at this time, is that it may be treated separately
from the “internal” motions of an object, and may therefore be ignored in our
discussion of rotation.

18-2 Rotation of a rigid body

Now let us discuss rotations. Of course an ordinary object does not simply
rotate, it wobbles, shakes, and bends, so to simplify matters we shall discuss the
motion of a nonexistent ideal object which we call a rigid body. This means an
object in which the forces between the atoms are so strong, and of such character,
that the little forces that are needed to move it do not bend it. Its shape stays
essentially the same as it moves about. If we wish to study the motion of such a
body, and agree to ignore the motion of its center of mass, there is only one thing
left for it to do, and that is to turn. We have to describe that. How? Suppose
there is some line in the body which stays put (perhaps it includes the center of
mass and perhaps not), and the body is rotating about this particular line as
an axis. How do we define the rotation? That is easy enough, for if we mark a
point somewhere on the object, anywhere except on the axis, we can always tell
exactly where the object is, if we only know where this point has gone to. The
only thing needed to describe the position of that point is an angle. So rotation
consists of a study of the variations of the angle with time.

In order to study rotation, we observe the angle through which a body has
turned. Of course, we are not referring to any particular angle inside the object
itself; it is not that we draw some angle on the object. We are talking about the
angular change of the position of the whole thing, from one time to another.

First, let us study the kinematics of rotations. The angle will change with
time, and just as we talked about position and velocity in one dimension, we
may talk about angular position and angular velocity in plane rotation. In fact,
there is a very interesting relationship between rotation in two dimensions and
one-dimensional displacement, in which almost every quantity has its analog.
First, we have the angle θ which defines how far the body has gone around; this
replaces the distance y, which defines how far it has gone along. In the same
manner, we have a velocity of turning, ω = dθ/dt, which tells us how much the
angle changes in a second, just as v = ds/dt describes how fast a thing moves,
or how far it moves in a second. If the angle is measured in radians, then the
angular velocity ω will be so and so many radians per second. The greater the
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angular velocity, the faster the object is turning, the faster the angle changes.
We can go on: we can differentiate the angular velocity with respect to time, and
we can call α = dω/dt = d2θ/dt2 the angular acceleration. That would be the
analog of the ordinary acceleration.

x

y

x

y

θ

∆θ r

O

P (x, y)

Q θ

vx

vyv

Fig. 18-1. Kinematics of two-dimensional rotation.

Now of course we shall have to relate the dynamics of rotation to the laws of
dynamics of the particles of which the object is made, so we must find out how
a particular particle moves when the angular velocity is such and such. To do
this, let us take a certain particle which is located at a distance r from the axis
and say it is in a certain location P (x, y) at a given instant, in the usual manner
(Fig. 18-1). If at a moment ∆t later the angle of the whole object has turned
through ∆θ, then this particle is carried with it. It is at the same radius away
from O as it was before, but is carried to Q. The first thing we would like to know
is how much the distance x changes and how much the distance y changes. If OP
is called r, then the length PQ is r∆θ, because of the way angles are defined.
The change in x, then, is simply the projection of r∆θ in the x-direction:

∆x = −PQ sin θ = −r∆θ · (y/r) = −y∆θ. (18.6)
Similarly,

∆y = +x∆θ. (18.7)

If the object is turning with a given angular velocity ω, we find, by dividing both
sides of (18.6) and (18.7) by ∆t, that the velocity of the particle is

vx = −ωy and vy = +ωx. (18.8)

Of course if we want to find the magnitude of the velocity, we just write

v =
√
v2
x + v2

y =
√
ω2y2 + ω2x2 = ω

√
x2 + y2 = ωr. (18.9)
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It should not be mysterious that the value of the magnitude of this velocity is ωr;
in fact, it should be self-evident, because the distance that it moves is r∆θ and
the distance it moves per second is r∆θ/∆t, or rω.

Let us now move on to consider the dynamics of rotation. Here a new concept,
force, must be introduced. Let us inquire whether we can invent something which
we shall call the torque (L. torquere, to twist) which bears the same relationship to
rotation as force does to linear movement. A force is the thing that is needed to
make linear motion, and the thing that makes something rotate is a “rotary force”
or a “twisting force,” i.e., a torque. Qualitatively, a torque is a “twist”; what is a
torque quantitatively? We shall get to the theory of torques quantitatively by
studying the work done in turning an object, for one very nice way of defining a
force is to say how much work it does when it acts through a given displacement.
We are going to try to maintain the analogy between linear and angular quantities
by equating the work that we do when we turn something a little bit when there
are forces acting on it, to the torque times the angle it turns through. In other
words, the definition of the torque is going to be so arranged that the theorem of
work has an absolute analog: force times distance is work, and torque times angle
is going to be work. That tells us what torque is. Consider, for instance, a rigid
body of some kind with various forces acting on it, and an axis about which the
body rotates. Let us at first concentrate on one force and suppose that this force
is applied at a certain point (x, y). How much work would be done if we were to
turn the object through a very small angle? That is easy. The work done is

∆W = Fx ∆x+ Fy ∆y. (18.10)

We need only to substitute Eqs. (18.6) and (18.7) for ∆x and ∆y to obtain

∆W = (xFy − yFx)∆θ. (18.11)

That is, the amount of work that we have done is, in fact, equal to the angle
through which we have turned the object, multiplied by a strange-looking combi-
nation of the force and the distance. This “strange combination” is what we call
the torque. So, defining the change in work as the torque times the angle, we
now have the formula for torque in terms of the forces. (Obviously, torque is not
a completely new idea independent of Newtonian mechanics—torque must have
a definite definition in terms of the force.)

When there are several forces acting, the work that is done is, of course, the
sum of the works done by all the forces, so that ∆W will be a whole lot of terms,
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all added together, for all the forces, each of which is proportional, however,
to ∆θ. We can take the ∆θ outside and therefore can say that the change in the
work is equal to the sum of all the torques due to all the different forces that are
acting, times ∆θ. This sum we might call the total torque, τ . Thus torques add
by the ordinary laws of algebra, but we shall later see that this is only because
we are working in a plane. It is like one-dimensional kinematics, where the forces
simply add algebraically, but only because they are all in the same direction. It
is more complicated in three dimensions. Thus, for two-dimensional rotation,

τi = xiFyi − yiFxi (18.12)
and

τ =
∑

τi. (18.13)

It must be emphasized that the torque is about a given axis. If a different axis is
chosen, so that all the xi and yi are changed, the value of the torque is (usually)
changed too.

Now we pause briefly to note that our foregoing introduction of torque, through
the idea of work, gives us a most important result for an object in equilibrium: if
all the forces on an object are in balance both for translation and rotation, not
only is the net force zero, but the total of all the torques is also zero, because if an
object is in equilibrium, no work is done by the forces for a small displacement.
Therefore, since ∆W = τ ∆θ = 0, the sum of all the torques must be zero. So
there are two conditions for equilibrium: that the sum of the forces is zero, and
that the sum of the torques is zero. Prove that it suffices to be sure that the sum
of torques about any one axis (in two dimensions) is zero.

Now let us consider a single force, and try to figure out, geometrically, what
this strange thing xFy − yFx amounts to. In Fig. 18-2 we see a force F acting at
a point r. When the object has rotated through a small angle ∆θ, the work done,
of course, is the component of force in the direction of the displacement times the

O

P
S

α
α

∆θrr0

r ∆θ

Ft

Fr

F

Fig. 18-2. The torque produced by a force.
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displacement. In other words, it is only the tangential component of the force
that counts, and this must be multiplied by the distance r∆θ. Therefore we see
that the torque is also equal to the tangential component of force (perpendicular
to the radius) times the radius. That makes sense in terms of our ordinary idea
of the torque, because if the force were completely radial, it would not put any
“twist” on the body; it is evident that the twisting effect should involve only the
part of the force which is not pulling out from the center, and that means the
tangential component. Furthermore, it is clear that a given force is more effective
on a long arm than near the axis. In fact, if we take the case where we push right
on the axis, we are not twisting at all! So it makes sense that the amount of
twist, or torque, is proportional both to the radial distance and to the tangential
component of the force.

There is still a third formula for the torque which is very interesting. We
have just seen that the torque is the force times the radius times the sine of the
angle α, in Fig. 18-2. But if we extend the line of action of the force and draw
the line OS, the perpendicular distance to the line of action of the force (the
lever arm of the force) we notice that this lever arm is shorter than r in just the
same proportion as the tangential part of the force is less than the total force.
Therefore the formula for the torque can also be written as the magnitude of the
force times the length of the lever arm.

The torque is also often called the moment of the force. The origin of this
term is obscure, but it may be related to the fact that “moment” is derived from
the Latin movimentum, and that the capability of a force to move an object
(using the force on a lever or crowbar) increases with the length of the lever arm.
In mathematics “moment” means weighted by how far away it is from an axis.

18-3 Angular momentum

Although we have so far considered only the special case of a rigid body,
the properties of torques and their mathematical relationships are interesting
also even when an object is not rigid. In fact, we can prove a very remarkable
theorem: just as external force is the rate of change of a quantity p, which we
call the total momentum of a collection of particles, so the external torque is the
rate of change of a quantity L which we call the angular momentum of the group
of particles.

To prove this, we shall suppose that there is a system of particles on which
there are some forces acting and find out what happens to the system as a result
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Fig. 18-3. A particle moves about an axis O.

of the torques due to these forces. First, of course, we should consider just one
particle. In Fig. 18-3 is one particle of mass m, and an axis O; the particle is not
necessarily rotating in a circle about O, it may be moving in an ellipse, like a
planet going around the sun, or in some other curve. It is moving somehow, and
there are forces on it, and it accelerates according to the usual formula that the
x-component of force is the mass times the x-component of acceleration, etc. But
let us see what the torque does. The torque equals xFy − yFx, and the force in
the x- or y-direction is the mass times the acceleration in the x- or y-direction:

τ = xFy − yFx =
= xm(d2y/dt2)− ym(d2x/dt2). (18.14)

Now, although this does not appear to be the derivative of any simple quantity,
it is in fact the derivative of the quantity xm(dy/dt)− ym(dx/dt):

d

dt

[
xm

(
dy

dt

)
− ym

(
dx

dt

)]
= xm

(
d2y

dt2

)
+
(
dx

dt

)
m

(
dy

dt

)
−ym

(
d2x

dt2

)
−
(
dy

dt

)
m

(
dx

dt

)
= xm

(
d2y

dt2

)
− ym

(
d2x

dt2

)
.

(18.15)

So it is true that the torque is the rate of change of something with time! So we
pay attention to the “something,” we give it a name: we call it L, the angular
momentum:

L = xm(dy/dt)− ym(dx/dt)
= xpy − ypx. (18.16)

Although our present discussion is nonrelativistic, the second form for L given
above is relativistically correct. So we have found that there is also a rotational
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analog for the momentum, and that this analog, the angular momentum, is given
by an expression in terms of the components of linear momentum that is just
like the formula for torque in terms of the force components! Thus, if we want
to know the angular momentum of a particle about an axis, we take only the
component of the momentum that is tangential, and multiply it by the radius. In
other words, what counts for angular momentum is not how fast it is going away
from the origin, but how much it is going around the origin. Only the tangential
part of the momentum counts for angular momentum. Furthermore, the farther
out the line of the momentum extends, the greater the angular momentum. And
also, because the geometrical facts are the same whether the quantity is labeled
p or F , it is true that there is a lever arm (not the same as the lever arm of the
force on the particle!) which is obtained by extending the line of the momentum
and finding the perpendicular distance to the axis. Thus the angular momentum
is the magnitude of the momentum times the momentum lever arm. So we have
three formulas for angular momentum, just as we have three formulas for the
torque:

L = xpy − ypx
= rptang

= p · lever arm. (18.17)

Like torque, angular momentum depends upon the position of the axis about
which it is to be calculated.

Before proceeding to a treatment of more than one particle, let us apply the
above results to a planet going around the sun. In which direction is the force?
The force is toward the sun. What, then, is the torque on the object? Of course,
this depends upon where we take the axis, but we get a very simple result if
we take it at the sun itself, for the torque is the force times the lever arm, or
the component of force perpendicular to r, times r. But there is no tangential
force, so there is no torque about an axis at the sun! Therefore, the angular
momentum of the planet going around the sun must remain constant. Let us see
what that means. The tangential component of velocity, times the mass, times
the radius, will be constant, because that is the angular momentum, and the
rate of change of the angular momentum is the torque, and, in this problem,
the torque is zero. Of course since the mass is also a constant, this means that
the tangential velocity times the radius is a constant. But this is something we
already knew for the motion of a planet. Suppose we consider a small amount of

18-10



time ∆t. How far will the planet move when it moves from P to Q (Fig. 18-3)?
How much area will it sweep through? Disregarding the very tiny area QQ′P
compared with the much larger area OPQ, it is simply half the base PQ times
the height, OR. In other words, the area that is swept through in unit time will
be equal to the velocity times the lever arm of the velocity (times one-half). Thus
the rate of change of area is proportional to the angular momentum, which is
constant. So Kepler’s law about equal areas in equal times is a word description
of the statement of the law of conservation of angular momentum, when there is
no torque produced by the force.

18-4 Conservation of angular momentum

Now we shall go on to consider what happens when there is a large number
of particles, when an object is made of many pieces with many forces acting
between them and on them from the outside. Of course, we already know that,
about any given fixed axis, the torque on the ith particle (which is the force on
the ith particle times the lever arm of that force) is equal to the rate of change of
the angular momentum of that particle, and that the angular momentum of the
ith particle is its momentum times its momentum lever arm. Now suppose we
add the torques τi for all the particles and call it the total torque τ . Then this will
be the rate of change of the sum of the angular momenta of all the particles Li,
and that defines a new quantity which we call the total angular momentum L.
Just as the total momentum of an object is the sum of the momenta of all the
parts, so the angular momentum is the sum of the angular momenta of all the
parts. Then the rate of change of the total L is the total torque:

τ =
∑

τi =
∑ dLi

dt
= dL

dt
. (18.18)

Now it might seem that the total torque is a complicated thing. There are all
those internal forces and all the outside forces to be considered. But, if we
take Newton’s law of action and reaction to say, not simply that the action
and reaction are equal, but also that they are directed exactly oppositely along
the same line (Newton may or may not actually have said this, but he tacitly
assumed it), then the two torques on the reacting objects, due to their mutual
interaction, will be equal and opposite because the lever arms for any axis are
equal. Therefore the internal torques balance out pair by pair, and so we have
the remarkable theorem that the rate of change of the total angular momentum
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about any axis is equal to the external torque about that axis!

τ =
∑

τi = τext = dL/dt. (18.19)

Thus we have a very powerful theorem concerning the motion of large collections
of particles, which permits us to study the over-all motion without having to
look at the detailed machinery inside. This theorem is true for any collection of
objects, whether they form a rigid body or not.

One extremely important case of the above theorem is the law of conservation
of angular momentum: if no external torques act upon a system of particles, the
angular momentum remains constant.

A special case of great importance is that of a rigid body, that is, an object
of a definite shape that is just turning around. Consider an object that is fixed
in its geometrical dimensions, and which is rotating about a fixed axis. Various
parts of the object bear the same relationship to one another at all times. Now
let us try to find the total angular momentum of this object. If the mass of one
of its particles is mi, and its position or location is at (xi, yi), then the problem
is to find the angular momentum of that particle, because the total angular
momentum is the sum of the angular momenta of all such particles in the body.
For an object going around in a circle, the angular momentum, of course, is the
mass times the velocity times the distance from the axis, and the velocity is equal
to the angular velocity times the distance from the axis:

Li = miviri = mir
2
i ω, (18.20)

or, summing over all the particles i, we get

L = Iω, (18.21)
where

I =
∑
i

mir
2
i . (18.22)

This is the analog of the law that the momentum is mass times velocity.
Velocity is replaced by angular velocity, and we see that the mass is replaced
by a new thing which we call the moment of inertia I, which is analogous to
the mass. Equations (18.21) and (18.22) say that a body has inertia for turning
which depends, not just on the masses, but on how far away they are from the
axis. So, if we have two objects of the same mass, when we put the masses
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Fig. 18-4. The “inertia for turning” depends upon the lever arm of the
masses.

farther away from the axis, the inertia for turning will be higher. This is easily
demonstrated by the apparatus shown in Fig. 18-4, where a weight M is kept
from falling very fast because it has to turn the large weighted rod. At first, the
masses m are close to the axis, and M speeds up at a certain rate. But when
we change the moment of inertia by putting the two masses m much farther
away from the axis, then we see that M accelerates much less rapidly than it did
before, because the body has much more inertia against turning. The moment of
inertia is the inertia against turning, and is the sum of the contributions of all
the masses, times their distances squared, from the axis.

There is one important difference between mass and moment of inertia which
is very dramatic. The mass of an object never changes, but its moment of inertia
can be changed. If we stand on a frictionless rotatable stand with our arms
outstretched, and hold some weights in our hands as we rotate slowly, we may
change our moment of inertia by drawing our arms in, but our mass does not
change. When we do this, all kinds of wonderful things happen, because of the
law of the conservation of angular momentum: If the external torque is zero, then
the angular momentum, the moment of inertia times omega, remains constant.
Initially, we were rotating with a large moment of inertia I1 at a low angular
velocity ω1, and the angular momentum was I1ω1. Then we changed our moment
of inertia by pulling our arms in, say to a smaller value I2. Then the product Iω,
which has to stay the same because the total angular momentum has to stay the
same, was I2ω2. So I1ω1 = I2ω2. That is, if we reduce the moment of inertia, we
have to increase the angular velocity.
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19

Center of Mass; Moment of Inertia

19-1 Properties of the center of mass

In the previous chapter we found that if a great many forces are acting on a
complicated mass of particles, whether the particles comprise a rigid or a nonrigid
body, or a cloud of stars, or anything else, and we find the sum of all the forces
(that is, of course, the external forces, because the internal forces balance out),
then if we consider the body as a whole, and say it has a total mass M , there is
a certain point “inside” the body, called the center of mass, such that the net
resulting external force produces an acceleration of this point, just as though the
whole mass were concentrated there. Let us now discuss the center of mass in a
little more detail.

The location of the center of mass (abbreviated CM) is given by the equation

RCM =
∑
miri∑
mi

. (19.1)

This is, of course, a vector equation which is really three equations, one for
each of the three directions. We shall consider only the x-direction, because
if we can understand that one, we can understand the other two. What does
XCM =

∑
mixi/

∑
mi mean? Suppose for a moment that the object is divided

into little pieces, all of which have the same mass m; then the total mass is
simply the number N of pieces times the mass of one piece, say one gram, or any
unit. Then this equation simply says that we add all the x’s, and then divide
by the number of things that we have added: XCM = m

∑
xi/mN =

∑
xi/N .

In other words, XCM is the average of all the x’s, if the masses are equal. But
suppose one of them were twice as heavy as the others. Then in the sum, that x
would come in twice. This is easy to understand, for we can think of this double
mass as being split into two equal ones, just like the others; then in taking the
average, of course, we have to count that x twice because there are two masses
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there. Thus X is the average position, in the x-direction, of all the masses, every
mass being counted a number of times proportional to the mass, as though it
were divided into “little grams.” From this it is easy to prove that X must be
somewhere between the largest and the smallest x, and, therefore lies inside the
envelope including the entire body. It does not have to be in the material of the
body, for the body could be a circle, like a hoop, and the center of mass is in the
center of the hoop, not in the hoop itself.

Of course, if an object is symmetrical in some way, for instance, a rectangle,
so that it has a plane of symmetry, the center of mass lies somewhere on the
plane of symmetry. In the case of a rectangle there are two planes, and that
locates it uniquely. But if it is just any symmetrical object, then the center of
gravity lies somewhere on the axis of symmetry, because in those circumstances
there are as many positive as negative x’s.

A

B

CM

Fig. 19-1. The CM of a compound body lies on the line joining the
CM’s of the two composite parts.

Another interesting proposition is the following very curious one. Suppose
that we imagine an object to be made of two pieces, A and B (Fig. 19-1). Then
the center of mass of the whole object can be calculated as follows. First, find the
center of mass of piece A, and then of piece B. Also, find the total mass of each
piece, MA and MB . Then consider a new problem, in which a point mass MA is
at the center of mass of object A, and another point mass MB is at the center
of mass of object B. The center of mass of these two point masses is then the
center of mass of the whole object. In other words, if the centers of mass of
various parts of an object have been worked out, we do not have to start all over
again to find the center of mass of the whole object; we just have to put the
pieces together, treating each one as a point mass situated at the center of mass
of that piece. Let us see why that is. Suppose that we wanted to calculate the
center of mass of a complete object, some of whose particles are considered to
be members of object A and some members of object B. The total sum

∑
mixi
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can then be split into two pieces—the sum
∑
Amixi for the A object only, and

the sum
∑
Bmixi for object B only. Now if we were computing the center of

mass of object A alone, we would have exactly the first of these sums, and we
know that this by itself is MAXA, the total mass of all the particles in A times
the position of the center of mass of A, because that is the theorem of the center
of mass, applied to object A. In the same manner, just by looking at object B,
we get MBXB , and of course, adding the two yields MXCM:

MXCM =
∑
A

mixi +
∑
B

mixi

= MAXA +MBXB . (19.2)

Now since M is evidently the sum of MA and MB, we see that Eq. (19.2) can
be interpreted as a special example of the center of mass formula for two point
objects, one of mass MA located at XA and the other of mass MB located at XB .

The theorem concerning the motion of the center of mass is very interesting,
and has played an important part in the development of our understanding of
physics. Suppose we assume that Newton’s law is right for the small component
parts of a much larger object. Then this theorem shows that Newton’s law is also
correct for the larger object, even if we do not study the details of the object, but
only the total force acting on it and its mass. In other words, Newton’s law has
the peculiar property that if it is right on a certain small scale, then it will be
right on a larger scale. If we do not consider a baseball as a tremendously complex
thing, made of myriads of interacting particles, but study only the motion of the
center of mass and the external forces on the ball, we find F = ma, where F
is the external force on the baseball, m is its mass, and a is the acceleration of
its center of mass. So F = ma is a law which reproduces itself on a larger scale.
(There ought to be a good word, out of the Greek, perhaps, to describe a law
which reproduces the same law on a larger scale.)

Of course, one might suspect that the first laws that would be discovered
by human beings would be those that would reproduce themselves on a larger
scale. Why? Because the actual scale of the fundamental gears and wheels of the
universe are of atomic dimensions, which are so much finer than our observations
that we are nowhere near that scale in our ordinary observations. So the first
things that we would discover must be true for objects of no special size relative to
an atomic scale. If the laws for small particles did not reproduce themselves on a
larger scale, we would not discover those laws very easily. What about the reverse
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problem? Must the laws on a small scale be the same as those on a larger scale?
Of course it is not necessarily so in nature, that at an atomic level the laws have
to be the same as on a large scale. Suppose that the true laws of motion of atoms
were given by some strange equation which does not have the property that when
we go to a larger scale we reproduce the same law, but instead has the property
that if we go to a larger scale, we can approximate it by a certain expression such
that, if we extend that expression up and up, it keeps reproducing itself on a
larger and larger scale. That is possible, and in fact that is the way it works.
Newton’s laws are the “tail end” of the atomic laws, extrapolated to a very large
size. The actual laws of motion of particles on a fine scale are very peculiar, but
if we take large numbers of them and compound them, they approximate, but
only approximate, Newton’s laws. Newton’s laws then permit us to go on to a
higher and higher scale, and it still seems to be the same law. In fact, it becomes
more and more accurate as the scale gets larger and larger. This self-reproducing
factor of Newton’s laws is thus really not a fundamental feature of nature, but
is an important historical feature. We would never discover the fundamental
laws of the atomic particles at first observation because the first observations
are much too crude. In fact, it turns out that the fundamental atomic laws,
which we call quantum mechanics, are quite different from Newton’s laws, and
are difficult to understand because all our direct experiences are with large-scale
objects and the small-scale atoms behave like nothing we see on a large scale. So
we cannot say, “An atom is just like a planet going around the sun,” or anything
like that. It is like nothing we are familiar with because there is nothing like
it. As we apply quantum mechanics to larger and larger things, the laws about
the behavior of many atoms together do not reproduce themselves, but produce
new laws, which are Newton’s laws, which then continue to reproduce themselves
from, say, micro-microgram size, which still is billions and billions of atoms, on
up to the size of the earth, and above.

Let us now return to the center of mass. The center of mass is sometimes
called the center of gravity, for the reason that, in many cases, gravity may be
considered uniform. Let us suppose that we have small enough dimensions that the
gravitational force is not only proportional to the mass, but is everywhere parallel
to some fixed line. Then consider an object in which there are gravitational forces
on each of its constituent masses. Let mi be the mass of one part. Then the
gravitational force on that part is mi times g. Now the question is, where can we
apply a single force to balance the gravitational force on the whole thing, so that
the entire object, if it is a rigid body, will not turn? The answer is that this force
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must go through the center of mass, and we show this in the following way. In
order that the body will not turn, the torque produced by all the forces must add
up to zero, because if there is a torque, there is a change of angular momentum,
and thus a rotation. So we must calculate the total of all the torques on all the
particles, and see how much torque there is about any given axis; it should be
zero if this axis is at the center of mass. Now, measuring x horizontally and y
vertically, we know that the torques are the forces in the y-direction, times the
lever arm x (that is to say, the force times the lever arm around which we want
to measure the torque). Now the total torque is the sum

τ =
∑

migxi = g
∑

mixi, (19.3)

so if the total torque is to be zero, the sum
∑
mixi must be zero. But

∑
mixi =

MXCM, the total mass times the distance of the center of mass from the axis.
Thus the x-distance of the center of mass from the axis is zero.

Of course, we have checked the result only for the x-distance, but if we use
the true center of mass the object will balance in any position, because if we
turned it 90 degrees, we would have y’s instead of x’s. In other words, when an
object is supported at its center of mass, there is no torque on it because of a
parallel gravitational field. In case the object is so large that the nonparallelism
of the gravitational forces is significant, then the center where one must apply
the balancing force is not simple to describe, and it departs slightly from the
center of mass. That is why one must distinguish between the center of mass and
the center of gravity. The fact that an object supported exactly at the center of
mass will balance in all positions has another interesting consequence. If, instead
of gravitation, we have a pseudo force due to acceleration, we may use exactly
the same mathematical procedure to find the position to support it so that there
are no torques produced by the inertial force of acceleration. Suppose that the
object is held in some manner inside a box, and that the box, and everything
contained in it, is accelerating. We know that, from the point of view of someone
at rest relative to this accelerating box, there will be an effective force due to
inertia. That is, to make the object go along with the box, we have to push on it
to accelerate it, and this force is “balanced” by the “force of inertia,” which is a
pseudo force equal to the mass times the acceleration of the box. To the man in
the box, this is the same situation as if the object were in a uniform gravitational
field whose “g” value is equal to the acceleration a. Thus the inertial force due
to accelerating an object has no torque about the center of mass.
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This fact has a very interesting consequence. In an inertial frame that is
not accelerating, the torque is always equal to the rate of change of the angular
momentum. However, about an axis through the center of mass of an object
which is accelerating, it is still true that the torque is equal to the rate of change
of the angular momentum. Even if the center of mass is accelerating, we may
still choose one special axis, namely, one passing through the center of mass, such
that it will still be true that the torque is equal to the rate of change of angular
momentum around that axis. Thus the theorem that torque equals the rate of
change of angular momentum is true in two general cases: (1) a fixed axis in
inertial space, (2) an axis through the center of mass, even though the object
may be accelerating.

19-2 Locating the center of mass

The mathematical techniques for the calculation of centers of mass are in the
province of a mathematics course, and such problems provide good exercise in
integral calculus. After one has learned calculus, however, and wants to know
how to locate centers of mass, it is nice to know certain tricks which can be used
to do so. One such trick makes use of what is called the theorem of Pappus. It
works like this: if we take any closed area in a plane and generate a solid by
moving it through space such that each point is always moved perpendicular to
the plane of the area, the resulting solid has a total volume equal to the area of
the cross section times the distance that the center of mass moved! Certainly
this is true if we move the area in a straight line perpendicular to itself, but if
we move it in a circle or in some other curve, then it generates a rather peculiar
volume. For a curved path, the outside goes around farther, and the inside goes
around less, and these effects balance out. So if we want to locate the center
of mass of a plane sheet of uniform density, we can remember that the volume
generated by spinning it about an axis is the distance that the center of mass
goes around, times the area of the sheet.

For example, if we wish to find the center of mass of a right triangle of
base D and height H (Fig. 19-2), we might solve the problem in the following
way. Imagine an axis along H, and rotate the triangle about that axis through
a full 360 degrees. This generates a cone. The distance that the x-coordinate
of the center of mass has moved is 2πx. The area which is being moved is the
area of the triangle, 1

2HD. So the x-distance of the center of mass times the
area of the triangle is the volume swept out, which is of course πD2H/3. Thus
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D
x

Fig. 19-2. A right triangle and a right circular cone generated by
rotating the triangle.

(2πx)( 1
2HD) = πD2H/3, or x = D/3. In a similar manner, by rotating about

the other axis, or by symmetry, we find y = H/3. In fact, the center of mass
of any uniform triangular area is where the three medians, the lines from the
vertices through the centers of the opposite sides, all meet. That point is 1/3
of the way along each median. Clue: Slice the triangle up into a lot of little
pieces, each parallel to a base. Note that the median line bisects every piece, and
therefore the center of mass must lie on this line.

Now let us try a more complicated figure. Suppose that it is desired to find
the position of the center of mass of a uniform semicircular disc—a disc sliced in
half. Where is the center of mass? For a full disc, it is at the center, of course,
but a half-disc is more difficult. Let r be the radius and x be the distance of the
center of mass from the straight edge of the disc. Spin it around this edge as axis
to generate a sphere. Then the center of mass has gone around 2πx, the area
is πr2/2 (because it is only half a circle). The volume generated is, of course,
4πr3/3, from which we find that

(2πx)( 1
2πr

2) = 4πr3/3,
or

x = 4r/3π.

There is another theorem of Pappus which is a special case of the above one,
and therefore equally true. Suppose that, instead of the solid semicircular disc,
we have a semicircular piece of wire with uniform mass density along the wire,
and we want to find its center of mass. In this case there is no mass in the
interior, only on the wire. Then it turns out that the area which is swept by
a plane curved line, when it moves as before, is the distance that the center of
mass moves times the length of the line. (The line can be thought of as a very
narrow area, and the previous theorem can be applied to it.)
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19-3 Finding the moment of inertia

Now let us discuss the problem of finding the moments of inertia of various
objects. The formula for the moment of inertia about the z-axis of an object is

I =
∑

mi(x2
i + y2

i )
or

I =
∫

(x2 + y2) dm =
∫

(x2 + y2)ρ dV. (19.4)

That is, we must sum the masses, each one multiplied by the square of its
distance (x2

i + y2
i ) from the axis. Note that it is not the three-dimensional

distance, only the two-dimensional distance squared, even for a three-dimensional
object. For the most part, we shall restrict ourselves to two-dimensional objects,
but the formula for rotation about the z-axis is just the same in three dimensions.

dxx

L

Fig. 19-3. A straight rod of length L rotating about an axis through
one end.

As a simple example, consider a rod rotating about a perpendicular axis
through one end (Fig. 19-3). Now we must sum all the masses times the x-
distances squared (the y’s being all zero in this case). What we mean by “the
sum,” of course, is the integral of x2 times the little elements of mass. If we
divide the rod into small elements of length dx, the corresponding elements of
mass are proportional to dx, and if dx were the length of the whole rod the mass
would be M . Therefore

dm = M dx/L

and so

I =
∫ L

0
x2 M dx

L
= M

L

∫ L

0
x2 dx = ML2

3 . (19.5)

The dimensions of moment of inertia are always mass times length squared, so
all we really had to work out was the factor 1/3.
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Now what is I if the rotation axis is at the center of the rod? We could just
do the integral over again, letting x range from − 1

2L to + 1
2L. But let us notice

a few things about the moment of inertia. We can imagine the rod as two rods,
each of mass M/2 and length L/2; the moments of inertia of the two small rods
are equal, and are both given by the formula (19.5). Therefore the moment of
inertia is

I = 2(M/2)(L/2)2

3 = ML2

12 . (19.6)

Thus it is much easier to turn a rod about its center, than to swing it around an
end.

Of course, we could go on to compute the moments of inertia of various other
bodies of interest. However, while such computations provide a certain amount of
important exercise in the calculus, they are not basically of interest to us as such.
There is, however, an interesting theorem which is very useful. Suppose we have
an object, and we want to find its moment of inertia around some axis. That
means we want the inertia needed to carry it by rotation about that axis. Now if
we support the object on pivots at the center of mass, so that the object does not
turn as it rotates about the axis (because there is no torque on it from inertial
effects, and therefore it will not turn when we start moving it), then the forces
needed to swing it around are the same as though all the mass were concentrated
at the center of mass, and the moment of inertia would be simply I1 = MR2

CM,
where RCM is the distance from the axis to the center of mass. But of course
that is not the right formula for the moment of inertia of an object which is really
being rotated as it revolves, because not only is the center of it moving in a circle,
which would contribute an amount I1 to the moment of inertia, but also we must
turn it about its center of mass. So it is not unreasonable that we must add to I1
the moment of inertia Ic about the center of mass. So it is a good guess that the
total moment of inertia about any axis will be

I = Ic +MR2
CM. (19.7)

This theorem is called the parallel-axis theorem, and may be easily proved.
The moment of inertia about any axis is the mass times the sum of the xi’s and
the yi’s, each squared: I =

∑
(x2
i + y2

i )mi. We shall concentrate on the x’s, but
of course the y’s work the same way. Now x is the distance of a particular point
mass from the origin, but let us consider how it would look if we measured x′
from the CM, instead of x from the origin. To get ready for this analysis, we
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write
xi = x′i +XCM.

Then we just square this to find

x2
i = x′2i + 2XCMx

′
i +X2

CM.

So, when this is multiplied by mi and summed over all i, what happens? Taking
the constants outside the summation sign, we get

Ix =
∑

mix
′2
i + 2XCM

∑
mix

′
i +X2

CM
∑

mi.

The third sum is easy; it is just MX2
CM. In the second sum there are two pieces,

one of them is
∑
mix

′
i, which is the total mass times the x′-coordinate of the

center of mass. But this contributes nothing, because x′ is measured from the
center of mass, and in these axes the average position of all the particles, weighted
by the masses, is zero. The first sum, of course, is the x part of Ic. Thus we
arrive at Eq. (19.7), just as we guessed.

Let us check (19.7) for one example. Let us just see whether it works for the
rod. For an axis through one end, the moment of inertia should beML2/3, for we
calculated that. The center of mass of a rod, of course, is in the center of the rod,
at a distance L/2. Therefore we should find that ML2/3 = ML2/12 +M(L/2)2.
Since one-quarter plus one-twelfth is one-third, we have made no fundamental
error.

Incidentally, we did not really need to use an integral to find the moment of
inertia (19.5). If we simply assume that it isML2 times γ, an unknown coefficient,
and then use the argument about the two halves to get 1

4γ for (19.6), then from
our argument about transferring the axes we could prove that γ = 1

4γ + 1
4 , so γ

must be 1/3. There is always another way to do it!
In applying the parallel-axis theorem, it is of course important to remember

that the axis for Ic must be parallel to the axis about which the moment of inertia
is wanted.

One further property of the moment of inertia is worth mentioning because it
is often helpful in finding the moment of inertia of certain kinds of objects. This
property is that if one has a plane figure and a set of coordinate axes with origin
in the plane and z-axis perpendicular to the plane, then the moment of inertia of
this figure about the z-axis is equal to the sum of the moments of inertia about
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the x- and y-axes. This is easily proved by noting that

Ix =
∑

mi(y2
i + z2

i ) =
∑

miy
2
i

(since zi = 0). Similarly,
Iy =

∑
mi(x2

i + z2
i ) =

∑
mix

2
i ,

but
Iz =

∑
mi(x2

i + y2
i ) =

∑
mix

2
i +

∑
miy

2
i

= Ix + Iy.

As an example, the moment of inertia of a uniform rectangular plate of massM ,
width w, and length L, about an axis perpendicular to the plate and through
its center is simply

I = M(w2 + L2)/12,
because its moment of inertia about an axis in its plane and parallel to its length
is Mw2/12, i.e., just as for a rod of length w, and the moment of inertia about
the other axis in its plane is ML2/12, just as for a rod of length L.

To summarize, the moment of inertia of an object about a given axis, which
we shall call the z-axis, has the following properties:

(1) The moment of inertia is

Iz =
∑
i

mi(x2
i + y2

i ) =
∫

(x2 + y2) dm.

(2) If the object is made of a number of parts, each of whose moment of inertia
is known, the total moment of inertia is the sum of the moments of inertia
of the pieces.

(3) The moment of inertia about any given axis is equal to the moment of
inertia about a parallel axis through the CM plus the total mass times the
square of the distance from the axis to the CM.

(4) If the object is a plane figure, the moment of inertia about an axis perpen-
dicular to the plane is equal to the sum of the moments of inertia about
any two mutually perpendicular axes lying in the plane and intersecting at
the perpendicular axis.
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The moments of inertia of a number of elementary shapes having uniform
mass densities are given in Table 19-1, and the moments of inertia of some other
objects, which may be deduced from Table 19-1, using the above properties, are
given in Table 19-2.

Table 19-1

Object z-axis Iz

Thin rod, length L ⊥ rod at center ML2/12
Thin concentric
circular ring, radii ⊥ ring at center M(r2

1 + r2
2)/2

r1 and r2

Sphere, radius r through center 2Mr2/5

Table 19-2

Object z-axis Iz

Rect. sheet, sides a, b ‖ b at center Ma2/12
Rect. sheet, sides a, b ⊥ sheet at M(a2 + b2)/12

center
Thin annular ring, any diameter M(r2

1 + r2
2)/4

radii r1, r2

Rect. parallelepiped, ‖ c, through M(a2 + b2)/12
sides a, b, c center

Rt. circ. cyl., radius ‖ L, through Mr2/2
r, length L center

Rt. circ. cyl., radius ⊥ L, through M(r2/4 + L2/12)
r, length L center

19-4 Rotational kinetic energy

Now let us go on to discuss dynamics further. In the analogy between linear
motion and angular motion that we discussed in Chapter 18, we used the work
theorem, but we did not talk about kinetic energy. What is the kinetic energy of
a rigid body, rotating about a certain axis with an angular velocity ω? We can
immediately guess the correct answer by using our analogies. The moment of
inertia corresponds to the mass, angular velocity corresponds to velocity, and so
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the kinetic energy ought to be 1
2Iω

2, and indeed it is, as will now be demonstrated.
Suppose the object is rotating about some axis so that each point has a velocity
whose magnitude is ωri, where ri is the radius from the particular point to the
axis. Then if mi is the mass of that point, the total kinetic energy of the whole
thing is just the sum of the kinetic energies of all of the little pieces:

T = 1
2

∑
miv

2
i = 1

2

∑
mi(riω)2.

Now ω2 is a constant, the same for all points. Thus

T = 1
2ω

2
∑

mir
2
i = 1

2Iω
2. (19.8)

At the end of Chapter 18 we pointed out that there are some interesting
phenomena associated with an object which is not rigid, but which changes from
one rigid condition with a definite moment of inertia, to another rigid condition.
Namely, in our example of the turntable, we had a certain moment of inertia I1
with our arms stretched out, and a certain angular velocity ω1. When we pulled
our arms in, we had a different moment of inertia, I2, and a different angular
velocity, ω2, but again we were “rigid.” The angular momentum remained constant,
since there was no torque about the vertical axis of the turntable. This means
that I1ω1 = I2ω2. Now what about the energy? That is an interesting question.
With our arms pulled in, we turn faster, but our moment of inertia is less, and it
looks as though the energies might be equal. But they are not, because what
does balance is Iω, not Iω2. So if we compare the kinetic energy before and
after, the kinetic energy before is 1

2I1ω
2
1 = 1

2Lω1, where L = I1ω1 = I2ω2 is the
angular momentum. Afterward, by the same argument, we have T = 1

2Lω2 and
since ω2 > ω1 the kinetic energy of rotation is greater than it was before. So we
had a certain energy when our arms were out, and when we pulled them in, we
were turning faster and had more kinetic energy. What happened to the theorem
of the conservation of energy? Somebody must have done some work. We did
work! When did we do any work? When we move a weight horizontally, we do
not do any work. If we hold a thing out and pull it in, we do not do any work.
But that is when we are not rotating! When we are rotating, there is centrifugal
force on the weights. They are trying to fly out, so when we are going around
we have to pull the weights in against the centrifugal force. So, the work we
do against the centrifugal force ought to agree with the difference in rotational
energy, and of course it does. That is where the extra kinetic energy comes from.
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There is still another interesting feature which we can treat only descriptively,
as a matter of general interest. This feature is a little more advanced, but is
worth pointing out because it is quite curious and produces many interesting
effects.

Consider that turntable experiment again. Consider the body and the arms
separately, from the point of view of the man who is rotating. After the weights
are pulled in, the whole object is spinning faster, but observe, the central part
of the body is not changed, yet it is turning faster after the event than before.
So, if we were to draw a circle around the inner body, and consider only objects
inside the circle, their angular momentum would change; they are going faster.
Therefore there must be a torque exerted on the body while we pull in our arms.
No torque can be exerted by the centrifugal force, because that is radial. So that
means that among the forces that are developed in a rotating system, centrifugal
force is not the entire story, there is another force. This other force is called
Coriolis force, and it has the very strange property that when we move something
in a rotating system, it seems to be pushed sidewise. Like the centrifugal force,
it is an apparent force. But if we live in a system that is rotating, and move
something radially, we find that we must also push it sidewise to move it radially.
This sidewise push which we have to exert is what turned our body around.

Now let us develop a formula to show how this Coriolis force really works.
Suppose Moe is sitting on a carousel that appears to him to be stationary. But
from the point of view of Joe, who is standing on the ground and who knows
the right laws of mechanics, the carousel is going around. Suppose that we have
drawn a radial line on the carousel, and that Moe is moving some mass radially
along this line. We would like to demonstrate that a sidewise force is required to
do that. We can do this by paying attention to the angular momentum of the
mass. It is always going around with the same angular velocity ω, so that the
angular momentum is

L = mvtangr = mωr · r = mωr2.

So when the mass is close to the center, it has relatively little angular momentum,
but if we move it to a new position farther out, if we increase r, m has more
angular momentum, so a torque must be exerted in order to move it along the
radius. (To walk along the radius in a carousel, one has to lean over and push
sidewise. Try it sometime.) The torque that is required is the rate of change of L
with time as m moves along the radius. If m moves only along the radius, omega
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stays constant, so that the torque is

τ = Fcr = dL

dt
= d(mωr2)

dt
= 2mωr dr

dt
,

where Fc is the Coriolis force. What we really want to know is what sidewise
force has to be exerted by Moe in order to move m out at speed vr = dr/dt. This
is Fc = τ/r = 2mωvr.

Now that we have a formula for the Coriolis force, let us look at the situation
a little more carefully, to see whether we can understand the origin of this force
from a more elementary point of view. We note that the Coriolis force is the same
at every radius, and is evidently present even at the origin! But it is especially
easy to understand it at the origin, just by looking at what happens from the
inertial system of Joe, who is standing on the ground. Figure 19-4 shows three
successive views of m just as it passes the origin at t = 0. Because of the rotation
of the carousel, we see that m does not move in a straight line, but in a curved
path tangent to a diameter of the carousel where r = 0. In order for m to go
in a curve, there must be a force to accelerate it in absolute space. This is the
Coriolis force.

1
1

1

2
2

2

3

3
3

Fig. 19-4. Three successive views of a point moving radially on a
rotating turntable.

This is not the only case in which the Coriolis force occurs. We can also
show that if an object is moving with constant speed around the circumference
of a circle, there is also a Coriolis force. Why? Moe sees a velocity vM around
the circle. On the other hand, Joe sees m going around the circle with the
velocity vJ = vM + ωr, because m is also carried by the carousel. Therefore
we know what the force really is, namely, the total centripetal force due to the
velocity vJ , or mv2

J/r; that is the actual force. Now from Moe’s point of view,
this centripetal force has three pieces. We may write it all out as follows:

Fr = −mv
2
J

r
= −mv

2
M

r
− 2mvMω −mω2r.
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Now, Fr is the force that Moe would see. Let us try to understand it. Would Moe
appreciate the first term? “Yes,” he would say, “even if I were not turning, there
would be a centripetal force if I were to run around a circle with velocity vM .”
This is simply the centripetal force that Moe would expect, having nothing to do
with rotation. In addition, Moe is quite aware that there is another centripetal
force that would act even on objects which are standing still on his carousel. This
is the third term. But there is another term in addition to these, namely the
second term, which is again 2mωv. The Coriolis force Fc was tangential when
the velocity was radial, and now it is radial when the velocity is tangential. In
fact, one expression has a minus sign relative to the other. The force is always
in the same direction, relative to the velocity, no matter in which direction the
velocity is. The force is at right angles to the velocity, and of magnitude 2mωv.
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20

Rotation in space

20-1 Torques in three dimensions

In this chapter we shall discuss one of the most remarkable and amusing
consequences of mechanics, the behavior of a rotating wheel. In order to do
this we must first extend the mathematical formulation of rotational motion,
the principles of angular momentum, torque, and so on, to three-dimensional
space. We shall not use these equations in all their generality and study all their
consequences, because this would take many years, and we must soon turn to
other subjects. In an introductory course we can present only the fundamental
laws and apply them to a very few situations of special interest.

First, we notice that if we have a rotation in three dimensions, whether of a
rigid body or any other system, what we deduced for two dimensions is still right.
That is, it is still true that xFy − yFx is the torque “in the xy-plane,” or the
torque “around the z-axis.” It also turns out that this torque is still equal to the
rate of change of xpy − ypx, for if we go back over the derivation of Eq. (18.15)
from Newton’s laws we see that we did not have to assume that the motion was in
a plane; when we differentiate xpy−ypx, we get xFy−yFx, so this theorem is still
right. The quantity xpy − ypx, then, we call the angular momentum belonging
to the xy-plane, or the angular momentum about the z-axis. This being true, we
can use any other pair of axes and get another equation. For instance, we can use
the yz-plane, and it is clear from symmetry that if we just substitute y for x and z
for y, we would find yFz− zFy for the torque and ypz− zpy would be the angular
momentum associated with the yz-plane. Of course we could have another plane,
the zx-plane, and for this we would find zFx − xFz = d/dt (zpx − xpz).

That these three equations can be deduced for the motion of a single particle
is quite clear. Furthermore, if we added such things as xpy − ypx together for
many particles and called it the total angular momentum, we would have three
kinds for the three planes xy, yz, and zx, and if we did the same with the forces,
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we would talk about the torque in the planes xy, yz, and zx also. Thus we would
have laws that the external torque associated with any plane is equal to the rate
of change of the angular momentum associated with that plane. This is just a
generalization of what we wrote in two dimensions.

But now one may say, “Ah, but there are more planes; after all, can we not take
some other plane at some angle, and calculate the torque on that plane from the
forces? Since we would have to write another set of equations for every such plane,
we would have a lot of equations!” Interestingly enough, it turns out that if we
were to work out the combination x′Fy′ − y′Fx′ for another plane, measuring the
x′, Fy′ , etc., in that plane, the result can be written as some combination of the
three expressions for the xy-, yz- and zx-planes. There is nothing new. In other
words, if we know what the three torques in the xy-, yz-, and zx-planes are, then
the torque in any other plane, and correspondingly the angular momentum also,
can be written as some combination of these: six percent of one and ninety-two
percent of another, and so on. This property we shall now analyze.

Suppose that in the xyz-axes, Joe has worked out all his torques and his
angular momenta in his planes. But Moe has axes x′, y′, z′ in some other direction.
To make it a little easier, we shall suppose that only the x- and y-axes have
been turned. Moe’s x′ and y′ are new, but his z′ happens to be the same. That
is, he has new planes, let us say, for yz and zx. He therefore has new torques
and angular momenta which he would work out. For example, his torque in the
x′y′-plane would be equal to x′Fy′ − y′Fx′ and so forth. What we must now do
is to find the relationship between the new torques and the old torques, so we
will be able to make a connection from one set of axes to the other. Someone
may say, “That looks just like what we did with vectors.” And indeed, that is
exactly what we are intending to do. Then he may say, “Well, isn’t torque just a
vector?” It does turn out to be a vector, but we do not know that right away
without making an analysis. So in the following steps we shall make the analysis.
We shall not discuss every step in detail, since we only want to illustrate how it
works. The torques calculated by Joe are

τxy = xFy − yFx,
τyz = yFz − zFy ,
τzx = zFx − xFz .

(20.1)

We digress at this point to note that in such cases as this one may get the wrong
sign for some quantity if the coordinates are not handled in the right way. Why not
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write τyz = zFy − yFz? The problem arises from the fact that a coordinate system may
be either “right-handed” or “left-handed.” Having chosen (arbitrarily) a sign for, say
τxy, then the correct expressions for the other two quantities may always be found by
interchanging the letters xyz in either order

x

yz

or x

yz

Moe now calculates the torques in his system:

τx′y′ = x′Fy′ − y′Fx′ ,

τy′z′ = y′Fz′ − z′Fy′ ,

τz′x′ = z′Fx′ − x′Fz′ .

(20.2)

Now we suppose that one coordinate system is rotated by a fixed angle θ, such
that the z- and z′-axes are the same. (This angle θ has nothing to do with
rotating objects or what is going on inside the coordinate system. It is merely
the relationship between the axes used by one man and the axes used by the
other, and is supposedly constant.) Thus the coordinates of the two systems are
related by

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,
z′ = z.

(20.3)

Likewise, because force is a vector it transforms into the new system in the
same way as do x, y, and z, since a thing is a vector if and only if the various
components transform in the same way as x, y, and z:

Fx′ = Fx cos θ + Fy sin θ,
Fy′ = Fy cos θ − Fx sin θ,
Fz′ = Fz .

(20.4)

Now we can find out how the torque transforms by merely substituting for
x′, y′, and z′ the expressions (20.3), and for Fx′ , Fy′ , Fz′ those given by (20.4),
all into (20.2). So, we have a rather long string of terms for τx′y′ and (rather
surprisingly at first) it turns out that it comes right down to xFy − yFx, which
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we recognize to be the torque in the xy-plane:

τx′y′ = (x cos θ + y sin θ)(Fy cos θ − Fx sin θ)
− (y cos θ − x sin θ)(Fx cos θ + Fy sin θ)

= xFy(cos2 θ + sin2 θ)− yFx(sin2 θ + cos2 θ)
+ xFx(− sin θ cos θ + sin θ cos θ)
+ yFy(sin θ cos θ − sin θ cos θ)

= xFy − yFx = τxy. (20.5)

That result is clear, for if we only turn our axes in the plane, the twist around z
in that plane is no different than it was before, because it is the same plane!
What will be more interesting is the expression for τy′z′ , because that is a new
plane. We now do exactly the same thing with the y′z′-plane, and it comes out
as follows:

τy′z′ = (y cos θ − x sin θ)Fz
− z(Fy cos θ − Fx sin θ)

= (yFz − zFy) cos θ + (zFx − xFz) sin θ
= τyz cos θ + τzx sin θ. (20.6)

Finally, we do it for z′x′:

τz′x′ = z(Fx cos θ + Fy sin θ)
− (x cos θ + y sin θ)Fz

= (zFx − xFz) cos θ − (yFz − zFy) sin θ
= τzx cos θ − τyz sin θ. (20.7)

We wanted to get a rule for finding torques in new axes in terms of torques in
old axes, and now we have the rule. How can we ever remember that rule? If we
look carefully at (20.5), (20.6), and (20.7), we see that there is a close relationship
between these equations and the equations for x, y, and z. If, somehow, we could
call τxy the z-component of something, let us call it the z-component of τ , then it
would be all right; we would understand (20.5) as a vector transformation, since
the z-component would be unchanged, as it should be. Likewise, if we associate
with the yz-plane the x-component of our newly invented vector, and with the
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zx-plane, the y-component, then these transformation expressions would read

τz′ = τz ,

τx′ = τx cos θ + τy sin θ,
τy′ = τy cos θ − τx sin θ,

(20.8)

which is just the rule for vectors!
Therefore we have proved that we may identify the combination of xFy − yFx

with what we ordinarily call the z-component of a certain artificially invented
vector. Although a torque is a twist on a plane, and it has no a priori vector
character, mathematically it does behave like a vector. This vector is at right
angles to the plane of the twist, and its length is proportional to the strength
of the twist. The three components of such a quantity will transform like a real
vector.

So we represent torques by vectors; with each plane on which the torque is
supposed to be acting, we associate a line at right angles, by a rule. But “at
right angles” leaves the sign unspecified. To get the sign right, we must adopt a
rule which will tell us that if the torque were in a certain sense on the xy-plane,
then the axis that we want to associate with it is in the “up” z-direction. That is,
somebody has to define “right” and “left” for us. Supposing that the coordinate
system is x, y, z in a right-hand system, then the rule will be the following: if
we think of the twist as if we were turning a screw having a right-hand thread,
then the direction of the vector that we will associate with that twist is in the
direction that the screw would advance.

Why is torque a vector? It is a miracle of good luck that we can associate a
single axis with a plane, and therefore that we can associate a vector with the
torque; it is a special property of three-dimensional space. In two dimensions, the
torque is an ordinary scalar, and there need be no direction associated with it. In
three dimensions, it is a vector. If we had four dimensions, we would be in great
difficulty, because (if we had time, for example, as the fourth dimension) we would
not only have planes like xy, yz, and zx, we would also have tx-, ty-, and tz-
planes. There would be six of them, and one cannot represent six quantities as
one vector in four dimensions.

We will be living in three dimensions for a long time, so it is well to notice
that the foregoing mathematical treatment did not depend upon the fact that x
was position and F was force; it only depended on the transformation laws for
vectors. Therefore if, instead of x, we used the x-component of some other vector,
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it is not going to make any difference. In other words, if we were to calculate
axby − aybx, where a and b are vectors, and call it the z-component of some new
quantity c, then these new quantities form a vector c. We need a mathematical
notation for the relationship of the new vector, with its three components, to
the vectors a and b. The notation that has been devised for this is c = a× b.
We have then, in addition to the ordinary scalar product in the theory of vector
analysis, a new kind of product, called the vector product. Thus, if c = a× b,
this is the same as writing

cx = aybz − azby ,
cy = azbx − axbz ,
cz = axby − aybx.

(20.9)

If we reverse the order of a and b, calling a, b and b, a, we would have the sign of c
reversed, because cz would be bxay − byax. Therefore the cross product is unlike
ordinary multiplication, where ab = ba; for the cross product, b× a = −a× b.
From this, we can prove at once that if a = b, the cross product is zero. Thus,
a× a = 0.

The cross product is very important for representing the features of rotation,
and it is important that we understand the geometrical relationship of the three
vectors a, b, and c. Of course the relationship in components is given in Eq. (20.9)
and from that one can determine what the relationship is in geometry. The
answer is, first, that the vector c is perpendicular to both a and b. (Try to
calculate c · a, and see if it does not reduce to zero.) Second, the magnitude of c
turns out to be the magnitude of a times the magnitude of b times the sine of
the angle between the two. In which direction does c point? Imagine that we
turn a into b through an angle less than 180◦; a screw with a right-hand thread
turning in this way will advance in the direction of c. The fact that we say a
right-hand screw instead of a left-hand screw is a convention, and is a perpetual
reminder that if a and b are “honest” vectors in the ordinary sense, the new kind
of “vector” which we have created by a× b is artificial, or slightly different in its
character from a and b, because it was made up with a special rule. If a and b
are called ordinary vectors, we have a special name for them, we call them polar
vectors. Examples of such vectors are the coordinate r, force F , momentum p,
velocity v, electric field E, etc.; these are ordinary polar vectors. Vectors which
involve just one cross product in their definition are called axial vectors or pseudo
vectors. Examples of pseudo vectors are, of course, torque τ and the angular

20-6



momentum L. It also turns out that the angular velocity ω is a pseudo vector,
as is the magnetic field B.

In order to complete the mathematical properties of vectors, we should know
all the rules for their multiplication, using dot and cross products. In our
applications at the moment, we will need very little of this, but for the sake of
completeness we shall write down all of the rules for vector multiplication so that
we can use the results later. These are

(a) a× (b+ c) = a× b+ a× c,
(b) (αa)× b = α(a× b),
(c) a · (b× c) = (a× b) · c,
(d) a× (b× c) = b(a · c)− c(a · b),
(e) a× a = 0,
(f) a · (a× b) = 0.

(20.10)

20-2 The rotation equations using cross products

Now let us ask whether any equations in physics can be written using the
cross product. The answer, of course, is that a great many equations can be so
written. For instance, we see immediately that the torque is equal to the position
vector cross the force:

τ = r × F . (20.11)

This is a vector summary of the three equations τx = yFz − zFy, etc. By the
same token, the angular momentum vector, if there is only one particle present,
is the distance from the origin multiplied by the vector momentum:

L = r × p. (20.12)

For three-dimensional space rotation, the dynamical law analogous to the law F =
dp/dt of Newton, is that the torque vector is the rate of change with time of the
angular momentum vector:

τ = dL/dt. (20.13)

If we sum (20.13) over many particles, the external torque on a system is the
rate of change of the total angular momentum:

τ ext = dLtot/dt. (20.14)
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Another theorem: If the total external torque is zero, then the total vector
angular momentum of the system is a constant. This is called the law of conser-
vation of angular momentum. If there is no torque on a given system, its angular
momentum cannot change.

What about angular velocity? Is it a vector? We have already discussed
turning a solid object about a fixed axis, but for a moment suppose that we are
turning it simultaneously about two axes. It might be turning about an axis
inside a box, while the box is turning about some other axis. The net result of
such combined motions is that the object simply turns about some new axis!
The wonderful thing about this new axis is that it can be figured out this way.
If the rate of turning in the xy-plane is written as a vector in the z-direction
whose length is equal to the rate of rotation in the plane, and if another vector is
drawn in the y-direction, say, which is the rate of rotation in the zx-plane, then
if we add these together as a vector, the magnitude of the result tells us how
fast the object is turning, and the direction tells us in what plane, by the rule of
the parallelogram. That is to say, simply, angular velocity is a vector, where we
draw the magnitudes of the rotations in the three planes as projections at right
angles to those planes.*

As a simple application of the use of the angular velocity vector, we may
evaluate the power being expended by the torque acting on a rigid body. The
power, of course, is the rate of change of work with time; in three dimensions,
the power turns out to be P = τ · ω.

All the formulas that we wrote for plane rotation can be generalized to three
dimensions. For example, if a rigid body is turning about a certain axis with
angular velocity ω, we might ask, “What is the velocity of a point at a certain
radial position r?” We shall leave it as a problem for the student to show that
the velocity of a particle in a rigid body is given by v = ω × r, where ω is
the angular velocity and r is the position. Also, as another example of cross
products, we had a formula for Coriolis force, which can also be written using
cross products: F c = 2mv × ω. That is, if a particle is moving with velocity v
in a coordinate system which is, in fact, rotating with angular velocity ω, and
we want to think in terms of the rotating coordinate system, then we have to
add the pseudo force F c.

* That this is true can be derived by compounding the displacements of the particles of
the body during an infinitesimal time ∆t. It is not self-evident, and is left to those who are
interested to try to figure it out.
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20-3 The gyroscope

Let us now return to the law of conservation of angular momentum. This law
may be demonstrated with a rapidly spinning wheel, or gyroscope, as follows
(see Fig. 20-1). If we sit on a swivel chair and hold the spinning wheel with
its axis horizontal, the wheel has an angular momentum about the horizontal
axis. Angular momentum around a vertical axis cannot change because of the
(frictionless) pivot of the chair, so if we turn the axis of the wheel into the vertical,
then the wheel would have angular momentum about the vertical axis, because it
is now spinning about this axis. But the system (wheel, ourself, and chair) cannot
have a vertical component, so we and the chair have to turn in the direction
opposite to the spin of the wheel, to balance it.

BEFORE AFTER

Fig. 20-1. Before: axis is horizontal; moment about vertical axis = 0.
After: axis is vertical; momentum about vertical axis is still zero; man
and chair spin in direction opposite to spin of the wheel.

First let us analyze in more detail the thing we have just described. What is
surprising, and what we must understand, is the origin of the forces which turn
us and the chair around as we turn the axis of the gyroscope toward the vertical.
Figure 20-2 shows the wheel spinning rapidly about the y-axis. Therefore its
angular velocity is about that axis and, it turns out, its angular momentum is
likewise in that direction. Now suppose that we wish to rotate the wheel about
the x-axis at a small angular velocity Ω; what forces are required? After a short
time ∆t, the axis has turned to a new position, tilted at an angle ∆θ with the
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Fig. 20-2. A gyroscope.

horizontal. Since the major part of the angular momentum is due to the spin on
the axis (very little is contributed by the slow turning), we see that the angular
momentum vector has changed. What is the change in angular momentum? The
angular momentum does not change in magnitude, but it does change in direction
by an amount ∆θ. The magnitude of the vector ∆L is thus ∆L = L0 ∆θ, so
that the torque, which is the time rate of change of the angular momentum, is
τ = ∆L/∆t = L0 ∆θ/∆t = L0Ω. Taking the directions of the various quantities
into account, we see that

τ = Ω×L0. (20.15)
Thus, if Ω and L0 are both horizontal, as shown in the figure, τ is vertical. To
produce such a torque, horizontal forces F and −F must be applied at the ends
of the axle. How are these forces applied? By our hands, as we try to rotate the
axis of the wheel into the vertical direction. But Newton’s Third Law demands
that equal and opposite forces (and equal and opposite torques) act on us. This
causes us to rotate in the opposite sense about the vertical axis z.

This result can be generalized for a rapidly spinning top. In the familiar case
of a spinning top, gravity acting on its center of mass furnishes a torque about
the point of contact with the floor (see Fig. 20-3). This torque is in the horizontal
direction, and causes the top to precess with its axis moving in a circular cone
about the vertical. If Ω is the (vertical) angular velocity of precession, we again
find that

τ = dL/dt = Ω×L0.

Thus, when we apply a torque to a rapidly spinning top, the direction of the
precessional motion is in the direction of the torque, or at right angles to the
forces producing the torque.

We may now claim to understand the precession of gyroscopes, and indeed
we do, mathematically. However, this is a mathematical thing which, in a sense,
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Fig. 20-3. A rapidly spinning top. Note that the direction of the
torque vector is the direction of the precession.

appears as a “miracle.” It will turn out, as we go to more and more advanced
physics, that many simple things can be deduced mathematically more rapidly
than they can be really understood in a fundamental or simple sense. This is a
strange characteristic, and as we get into more and more advanced work there are
circumstances in which mathematics will produce results which no one has really
been able to understand in any direct fashion. An example is the Dirac equation,
which appears in a very simple and beautiful form, but whose consequences are
hard to understand. In our particular case, the precession of a top looks like some
kind of a miracle involving right angles and circles, and twists and right-hand
screws. What we should try to do is to understand it in a more physical way.

How can we explain the torque in terms of the real forces and the accelerations?
We note that when the wheel is precessing, the particles that are going around
the wheel are not really moving in a plane because the wheel is precessing
(see Fig. 20-4). As we explained previously (Fig. 19-4), the particles which are
crossing through the precession axis are moving in curved paths, and this requires
application of a lateral force. This is supplied by our pushing on the axle, which

LATER

NOW

EARLIER

Fig. 20-4. The motion of particles in the spinning wheel of Fig. 20-2,
whose axis is turning, is in curved lines.
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then communicates the force to the rim through the spokes. “Wait,” someone
says, “what about the particles that are going back on the other side?” It does
not take long to decide that there must be a force in the opposite direction on
that side. The net force that we have to apply is therefore zero. The forces
balance out, but one of them must be applied at one side of the wheel, and the
other must be applied at the other side of the wheel. We could apply these forces
directly, but because the wheel is solid we are allowed to do it by pushing on the
axle, since forces can be carried up through the spokes.

What we have so far proved is that if the wheel is precessing, it can balance
the torque due to gravity or some other applied torque. But all we have shown is
that this is a solution of an equation. That is, if the torque is given, and if we
get the spinning started right, then the wheel will precess smoothly and uniformly.
But we have not proved (and it is not true) that a uniform precession is the
most general motion a spinning body can undergo as the result of a given torque.
The general motion involves also a “wobbling” about the mean precession. This
“wobbling” is called nutation.

Some people like to say that when one exerts a torque on a gyroscope, it turns
and it precesses, and that the torque produces the precession. It is very strange
that when one suddenly lets go of a gyroscope, it does not fall under the action
of gravity, but moves sidewise instead! Why is it that the downward force of the
gravity, which we know and feel, makes it go sidewise? All the formulas in the
world like (20.15) are not going to tell us, because (20.15) is a special equation,
valid only after the gyroscope is precessing nicely. What really happens, in detail,
is the following. If we were to hold the axis absolutely fixed, so that it cannot
precess in any manner (but the top is spinning) then there is no torque acting,
not even a torque from gravity, because it is balanced by our fingers. But if we
suddenly let go, then there will instantaneously be a torque from gravity. Anyone
in his right mind would think that the top would fall, and that is what it starts
to do, as can be seen if the top is not spinning too fast.

The gyro actually does fall, as we would expect. But as soon as it falls, it is
then turning, and if this turning were to continue, a torque would be required. In
the absence of a torque in this direction, the gyro begins to “fall” in the direction
opposite that of the missing force. This gives the gyro a component of motion
around the vertical axis, as it would have in steady precession. But the actual
motion “overshoots” the steady precessional velocity, and the axis actually rises
again to the level from which it started. The path followed by the end of the
axle is a cycloid (the path followed by a pebble that is stuck in the tread of an
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automobile tire). Ordinarily, this motion is too quick for the eye to follow, and it
damps out quickly because of the friction in the gimbal bearings, leaving only
the steady precessional drift (Fig. 20-5). The slower the wheel spins, the more
obvious the nutation is.

Fig. 20-5. Actual motion of tip of axis of gyroscope under gravity just
after releasing axis previously held fixed.

When the motion settles down, the axis of the gyro is a little bit lower than
it was at the start. Why? (These are the more complicated details, but we bring
them in because we do not want the reader to get the idea that the gyroscope is
an absolute miracle. It is a wonderful thing, but it is not a miracle.) If we were
holding the axis absolutely horizontally, and suddenly let go, then the simple
precession equation would tell us that it precesses, that it goes around in a
horizontal plane. But that is impossible! Although we neglected it before, it is
true that the wheel has some moment of inertia about the precession axis, and
if it is moving about that axis, even slowly, it has a weak angular momentum
about the axis. Where did it come from? If the pivots are perfect, there is no
torque about the vertical axis. How then does it get to precess if there is no
change in the angular momentum? The answer is that the cycloidal motion of
the end of the axis damps down to the average, steady motion of the center of
the equivalent rolling circle. That is, it settles down a little bit low. Because it is
low, the spin angular momentum now has a small vertical component, which is
exactly what is needed for the precession. So you see it has to go down a little,
in order to go around. It has to yield a little bit to the gravity; by turning its
axis down a little bit, it maintains the rotation about the vertical axis. That,
then, is the way a gyroscope works.
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20-4 Angular momentum of a solid body

Before we leave the subject of rotations in three dimensions, we shall discuss,
at least qualitatively, a few effects that occur in three-dimensional rotations that
are not self-evident. The main effect is that, in general, the angular momentum
of a rigid body is not necessarily in the same direction as the angular velocity.
Consider a wheel that is fastened onto a shaft in a lopsided fashion, but with
the axis through the center of gravity, to be sure (Fig. 20-6). When we spin
the wheel around the axis, anybody knows that there will be shaking at the
bearings because of the lopsided way we have it mounted. Qualitatively, we
know that in the rotating system there is centrifugal force acting on the wheel,
trying to throw its mass as far as possible from the axis. This tends to line
up the plane of the wheel so that it is perpendicular to the axis. To resist this
tendency, a torque is exerted by the bearings. If there is a torque exerted by the
bearings, there must be a rate of change of angular momentum. How can there
be a rate of change of angular momentum when we are simply turning the wheel
about the axis? Suppose we break the angular velocity ω into components ω1
and ω2 perpendicular and parallel to the plane of the wheel. What is the angular
momentum? The moments of inertia about these two axes are different, so the
angular momentum components, which (in these particular, special axes only)
are equal to the moments of inertia times the corresponding angular velocity
components, are in a different ratio than are the angular velocity components.
Therefore the angular momentum vector is in a direction in space not along the
axis. When we turn the object, we have to turn the angular momentum vector
in space, so we must exert torques on the shaft.

ω

L

L1 = I1ω1
ω1

L2 = I2ω2
ω2

Fig. 20-6. The angular momentum of a rotating body is not necessarily
parallel to the angular velocity.

Although it is much too complicated to prove here, there is a very important
and interesting property of the moment of inertia which is easy to describe and to
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use, and which is the basis of our above analysis. This property is the following:
Any rigid body, even an irregular one like a potato, possesses three mutually
perpendicular axes through the CM, such that the moment of inertia about one
of these axes has the greatest possible value for any axis through the CM, the
moment of inertia about another of the axes has the minimum possible value,
and the moment of inertia about the third axis is intermediate between these two
(or equal to one of them). These axes are called the principal axes of the body,
and they have the important property that if the body is rotating about one
of them, its angular momentum is in the same direction as the angular velocity.
For a body having axes of symmetry, the principal axes are along the symmetry
axes.

x

y

L

ω

ωx
ωy

ωz

Aωx

Bωy

Cωz

Fig. 20-7. The angular velocity and angular momentum of a rigid
body (A > B > C).

If we take the x-, y-, and z-axes along the principal axes, and call the
corresponding principal moments of inertia A, B, and C, we may easily evaluate
the angular momentum and the kinetic energy of rotation of the body for any
angular velocity ω. If we resolve ω into components ωx, ωy, and ωz along the
x-, y-, z-axes, and use unit vectors i, j, k, also along x, y, z, we may write the
angular momentum as

L = Aωxi+Bωyj + Cωzk. (20.16)

20-15



The kinetic energy of rotation is

KE = 1
2 (Aω2

x +Bω2
y + Cω2

z) (20.17)
= 1

2L · ω.
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21

The Harmonic Oscillator

21-1 Linear differential equations

In the study of physics, usually the course is divided into a series of subjects,
such as mechanics, electricity, optics, etc., and one studies one subject after the
other. For example, this course has so far dealt mostly with mechanics. But a
strange thing occurs again and again: the equations which appear in different
fields of physics, and even in other sciences, are often almost exactly the same,
so that many phenomena have analogs in these different fields. To take the
simplest example, the propagation of sound waves is in many ways analogous to
the propagation of light waves. If we study acoustics in great detail we discover
that much of the work is the same as it would be if we were studying optics in
great detail. So the study of a phenomenon in one field may permit an extension
of our knowledge in another field. It is best to realize from the first that such
extensions are possible, for otherwise one might not understand the reason for
spending a great deal of time and energy on what appears to be only a small
part of mechanics.

The harmonic oscillator, which we are about to study, has close analogs in
many other fields; although we start with a mechanical example of a weight on a
spring, or a pendulum with a small swing, or certain other mechanical devices, we
are really studying a certain differential equation. This equation appears again
and again in physics and in other sciences, and in fact it is a part of so many
phenomena that its close study is well worth our while. Some of the phenomena
involving this equation are the oscillations of a mass on a spring; the oscillations
of charge flowing back and forth in an electrical circuit; the vibrations of a tuning
fork which is generating sound waves; the analogous vibrations of the electrons
in an atom, which generate light waves; the equations for the operation of a
servosystem, such as a thermostat trying to adjust a temperature; complicated
interactions in chemical reactions; the growth of a colony of bacteria in interaction
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with the food supply and the poisons the bacteria produce; foxes eating rabbits
eating grass, and so on; all these phenomena follow equations which are very
similar to one another, and this is the reason why we study the mechanical
oscillator in such detail. The equations are called linear differential equations
with constant coefficients. A linear differential equation with constant coefficients
is a differential equation consisting of a sum of several terms, each term being a
derivative of the dependent variable with respect to the independent variable,
and multiplied by some constant. Thus

an d
nx/dtn + an−1 d

n−1x/dtn−1 + · · ·+ a1 dx/dt+ a0x = f(t) (21.1)

is called a linear differential equation of order n with constant coefficients (each
ai is constant).

21-2 The harmonic oscillator

Perhaps the simplest mechanical system whose motion follows a linear differ-
ential equation with constant coefficients is a mass on a spring: first the spring
stretches to balance the gravity; once it is balanced, we then discuss the vertical
displacement of the mass from its equilibrium position (Fig. 21-1). We shall
call this upward displacement x, and we shall also suppose that the spring is
perfectly linear, in which case the force pulling back when the spring is stretched
is precisely proportional to the amount of stretch. That is, the force is −kx
(with a minus sign to remind us that it pulls back). Thus the mass times the
acceleration must equal −kx:

md2x/dt2 = −kx. (21.2)

m x

0

Fig. 21-1. A mass on a spring: a simple example of a harmonic
oscillator.
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For simplicity, suppose it happens (or we change our unit of time measurement)
that the ratio k/m = 1. We shall first study the equation

d2x/dt2 = −x. (21.3)

Later we shall come back to Eq. (21.2) with the k and m explicitly present.
We have already analyzed Eq. (21.3) in detail numerically; when we first

introduced the subject of mechanics we solved this equation (see Eq. 9.12) to
find the motion. By numerical integration we found a curve (Fig. 9-4) which
showed that if m was initially displaced, but at rest, it would come down and go
through zero; we did not then follow it any farther, but of course we know that
it just keeps going up and down—it oscillates. When we calculated the motion
numerically, we found that it went through the equilibrium point at t = 1.570.
The length of the whole cycle is four times this long, or t0 = 6.28 “sec.” This
was found numerically, before we knew much calculus. We assume that in the
meantime the Mathematics Department has brought forth a function which,
when differentiated twice, is equal to itself with a minus sign. (There are, of
course, ways of getting at this function in a direct fashion, but they are more
complicated than already knowing what the answer is.) The function is x = cos t.
If we differentiate this we find dx/dt = − sin t and d2x/dt2 = − cos t = −x. The
function x = cos t starts, at t = 0, with x = 1, and no initial velocity; that was
the situation with which we started when we did our numerical work. Now that
we know that x = cos t, we can calculate a precise value for the time at which it
should pass x = 0. The answer is t = π/2, or 1.57080. We were wrong in the last
figure because of the errors of numerical analysis, but it was very close!

Now to go further with the original problem, we restore the time units to real
seconds. What is the solution then? First of all, we might think that we can get the
constants k andm in by multiplying cos t by something. So let us try the equation
x = A cos t; then we find dx/dt = −A sin t, and d2x/dt2 = −A cos t = −x. Thus
we discover to our horror that we did not succeed in solving Eq. (21.2), but we
got Eq. (21.3) again! That fact illustrates one of the most important properties
of linear differential equations: if we multiply a solution of the equation by any
constant, it is again a solution. The mathematical reason for this is clear. If x is
a solution, and we multiply both sides of the equation, say by A, we see that all
derivatives are also multiplied by A, and therefore Ax is just as good a solution
of the original equation as x was. The physics of it is the following. If we have a
weight on a spring, and pull it down twice as far, the force is twice as much, the
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resulting acceleration is twice as great, the velocity it acquires in a given time is
twice as great, the distance covered in a given time is twice as great; but it has
to cover twice as great a distance in order to get back to the origin because it is
pulled down twice as far. So it takes the same time to get back to the origin,
irrespective of the initial displacement. In other words, with a linear equation,
the motion has the same time pattern, no matter how “strong” it is.

That was the wrong thing to do—it only taught us that we can multiply
the solution by anything, and it satisfies the same equation, but not a different
equation. After a little cut and try to get to an equation with a different constant
multiplying x, we find that we must alter the scale of time. In other words,
Eq. (21.2) has a solution of the form

x = cosω0t. (21.4)

(It is important to realize that in the present case, ω0 is not an angular velocity
of a spinning body, but we run out of letters if we are not allowed to use the same
letter for more than one thing.) The reason we put a subscript “0” on ω is that we
are going to have more omegas before long; let us remember that ω0 refers to the
natural motion of this oscillator. Now we try Eq. (21.4) and this time we are more
successful, because dx/dt = −ω0 sinω0t and d2x/dt2 = −ω2

0 cosω0t = −ω2
0x. So

at last we have solved the equation that we really wanted to solve. The equation
d2x/dt2 = −ω2

0x is the same as Eq. (21.2) if ω2
0 = k/m.

The next thing we must investigate is the physical significance of ω0. We
know that the cosine function repeats itself when the angle it refers to is 2π. So
x = cosω0t will repeat its motion, it will go through a complete cycle, when the
“angle” changes by 2π. The quantity ω0t is often called the phase of the motion.
In order to change ω0t by 2π, the time must change by an amount t0, called
the period of one complete oscillation; of course t0 must be such that ω0t0 = 2π.
That is, ω0t0 must account for one cycle of the angle, and then everything will
repeat itself—if we increase t by t0, we add 2π to the phase. Thus

t0 = 2π/ω0 = 2π
√
m/k. (21.5)

Thus if we had a heavier mass, it would take longer to oscillate back and forth
on a spring. That is because it has more inertia, and so, while the forces are the
same, it takes longer to get the mass moving. Or, if the spring is stronger, it will
move more quickly, and that is right: the period is less if the spring is stronger.

Note that the period of oscillation of a mass on a spring does not depend
in any way on how it has been started, how far down we pull it. The period
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is determined, but the amplitude of the oscillation is not determined by the
equation of motion (21.2). The amplitude is determined, in fact, by how we let
go of it, by what we call the initial conditions or starting conditions.

Actually, we have not quite found the most general possible solution of
Eq. (21.2). There are other solutions. It should be clear why: because all of the
cases covered by x = a cosω0t start with an initial displacement and no initial
velocity. But it is possible, for instance, for the mass to start at x = 0, and we
may then give it an impulsive kick, so that it has some speed at t = 0. Such
a motion is not represented by a cosine—it is represented by a sine. To put it
another way, if x = cosω0t is a solution, then is it not obvious that if we were
to happen to walk into the room at some time (which we would call “t = 0”)
and saw the mass as it was passing x = 0, it would keep on going just the same?
Therefore, x = cosω0t cannot be the most general solution; it must be possible
to shift the beginning of time, so to speak. As an example, we could write the
solution this way: x = a cosω0(t − t1), where t1 is some constant. This also
corresponds to shifting the origin of time to some new instant. Furthermore, we
may expand

cos (ω0t+ ∆) = cosω0t cos ∆− sinω0t sin ∆,
and write

x = A cosω0t+B sinω0t,

where A = a cos ∆ and B = −a sin ∆. Any one of these forms is a possible way
to write the complete, general solution of (21.2): that is, every solution of the
differential equation d2x/dt2 = −ω2

0x that exists in the world can be written as

(a) x = a cosω0(t− t1),
or

(b) x = a cos (ω0t+ ∆), (21.6)
or

(c) x = A cosω0t+B sinω0t.

Some of the quantities in (21.6) have names: ω0 is called the angular frequency;
it is the number of radians by which the phase changes in a second. That is
determined by the differential equation. The other constants are not determined
by the equation, but by how the motion is started. Of these constants, a measures
the maximum displacement attained by the mass, and is called the amplitude
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of oscillation. The constant ∆ is sometimes called the phase of the oscillation,
but that is a confusion, because other people call ω0t + ∆ the phase, and say
the phase changes with time. We might say that ∆ is a phase shift from some
defined zero. Let us put it differently. Different ∆’s correspond to motions in
different phases. That is true, but whether we want to call ∆ the phase, or not,
is another question.

21-3 Harmonic motion and circular motion

The fact that cosines are involved in the solution of Eq. (21.2) suggests that
there might be some relationship to circles. This is artificial, of course, because
there is no circle actually involved in the linear motion—it just goes up and down.
We may point out that we have, in fact, already solved that differential equation
when we were studying the mechanics of circular motion. If a particle moves in
a circle with a constant speed v, the radius vector from the center of the circle
to the particle turns through an angle whose size is proportional to the time. If
we call this angle θ = vt/R (Fig. 21-2) then dθ/dt = ω0 = v/R. We know that
there is an acceleration a = v2/R = ω2

0R toward the center. Now we also know
that the position x, at a given moment, is the radius of the circle times cos θ,
and that y is the radius times sin θ:

x = R cos θ, y = R sin θ.

Now what about the acceleration? What is the x-component of acceleration,
d2x/dt2? We have already worked that out geometrically; it is the magnitude
of the acceleration times the cosine of the projection angle, with a minus sign
because it is toward the center.

ax = −a cos θ = −ω2
0R cos θ = −ω2

0x. (21.7)

x

y

θ
R

v

a

Fig. 21-2. A particle moving in a circular path at constant speed.
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In other words, when a particle is moving in a circle, the horizontal component of
its motion has an acceleration which is proportional to the horizontal displacement
from the center. Of course we also have the solution for motion in a circle:
x = R cosω0t. Equation (21.7) does not depend upon the radius of the circle, so
for a circle of any radius, one finds the same equation for a given ω0. Thus, for
several reasons, we expect that the displacement of a mass on a spring will turn
out to be proportional to cosω0t, and will, in fact, be exactly the same motion
as we would see if we looked at the x-component of the position of an object
rotating in a circle with angular velocity ω0. As a check on this, one can devise
an experiment to show that the up-and-down motion of a mass on a spring is the
same as that of a point going around in a circle. In Fig. 21-3 an arc light projected
on a screen casts shadows of a crank pin on a shaft and of a vertically oscillating
mass, side by side. If we let go of the mass at the right time from the right place,
and if the shaft speed is carefully adjusted so that the frequencies match, each
should follow the other exactly. One can also check the numerical solution we
obtained earlier with the cosine function, and see whether that agrees very well.

Light

from

Projector Shadows

Screen

ω0

m 12 1
2

Fig. 21-3. Demonstration of the equivalence between simple harmonic
motion and uniform circular motion.

Here we may point out that because uniform motion in a circle is so closely
related mathematically to oscillatory up-and-down motion, we can analyze oscil-
latory motion in a simpler way if we imagine it to be a projection of something
going in a circle. In other words, although the distance y means nothing in the
oscillator problem, we may still artificially supplement Eq. (21.2) with another
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equation using y, and put the two together. If we do this, we will be able to
analyze our one-dimensional oscillator with circular motions, which is a lot easier
than having to solve a differential equation. The trick in doing this is to use
complex numbers, a procedure we shall introduce in the next chapter.

21-4 Initial conditions

Now let us consider what determines the constants A and B, or a and ∆. Of
course these are determined by how we start the motion. If we start the motion
with just a small displacement, that is one type of oscillation; if we start with
an initial displacement and then push up when we let go, we get still a different
motion. The constants A and B, or a and ∆, or any other way of putting it, are
determined, of course, by the way the motion started, not by any other features
of the situation. These are called the initial conditions. We would like to connect
the initial conditions with the constants. Although this can be done using any
one of the forms (21.6), it turns out to be easiest if we use Eq. (21.6c). Suppose
that at t = 0 we have started with an initial displacement x0 and a certain
velocity v0. This is the most general way we can start the motion. (We cannot
specify the acceleration with which it started, true, because that is determined
by the spring, once we specify x0.) Now let us calculate A and B. We start with
the equation for x,

x = A cosω0t+B sinω0t.

Since we shall later need the velocity also, we differentiate x and obtain

v = −ω0A sinω0t+ ω0B cosω0t.

These expressions are valid for all t, but we have special knowledge about x and v
at t = 0. So if we put t = 0 into these equations, on the left we get x0 and v0,
because that is what x and v are at t = 0; also, we know that the cosine of zero
is unity, and the sine of zero is zero. Therefore we get

x0 = A · 1 +B · 0 = A

and
v0 = −ω0A · 0 + ω0B · 1 = ω0B.

So for this particular case we find that

A = x0, B = v0/ω0.

From these values of A and B, we can get a and ∆ if we wish.
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That is the end of our solution, but there is one physically interesting thing
to check, and that is the conservation of energy. Since there are no frictional
losses, energy ought to be conserved. Let us use the formula

x = a cos (ω0t+ ∆);
then

v = −ω0a sin (ω0t+ ∆).

Now let us find out what the kinetic energy T is, and what the potential energy U
is. The potential energy at any moment is 1

2kx
2, where x is the displacement

and k is the constant of the spring. If we substitute for x, using our expression
above, we get

U = 1
2kx

2 = 1
2ka

2 cos2 (ω0t+ ∆).
Of course the potential energy is not constant; the potential never becomes
negative, naturally—there is always some energy in the spring, but the amount
of energy fluctuates with x. The kinetic energy, on the other hand, is 1

2mv
2, and

by substituting for v we get

T = 1
2mv

2 = 1
2mω

2
0a

2 sin2 (ω0t+ ∆).

Now the kinetic energy is zero when x is at the maximum, because then there
is no velocity; on the other hand, it is maximal when x is passing through zero,
because then it is moving fastest. This variation of the kinetic energy is just
the opposite of that of the potential energy. But the total energy ought to be a
constant. If we note that k = mω2

0 , we see that

T + U = 1
2mω

2
0a

2[cos2 (ω0t+ ∆) + sin2 (ω0t+ ∆)] = 1
2mω

2
0a

2.

The energy is dependent on the square of the amplitude; if we have twice the
amplitude, we get an oscillation which has four times the energy. The average
potential energy is half the maximum and, therefore, half the total, and the
average kinetic energy is likewise half the total energy.

21-5 Forced oscillations

Next we shall discuss the forced harmonic oscillator, i.e., one in which there
is an external driving force acting. The equation then is the following:

md2x/dt2 = −kx+ F (t). (21.8)
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We would like to find out what happens in these circumstances. The external
driving force can have various kinds of functional dependence on the time; the
first one that we shall analyze is very simple—we shall suppose that the force is
oscillating:

F (t) = F0 cosωt. (21.9)
Notice, however, that this ω is not necessarily ω0: we have ω under our control;
the forcing may be done at different frequencies. So we try to solve Eq. (21.8)
with the special force (21.9). What is the solution of (21.8)? One special solution,
(we shall discuss the more general cases later) is

x = C cosωt, (21.10)

where the constant is to be determined. In other words, we might suppose that
if we kept pushing back and forth, the mass would follow back and forth in step
with the force. We can try it anyway. So we put (21.10) and (21.9) into (21.8),
and get

−mω2C cosωt = −mω2
0C cosωt+ F0 cosωt. (21.11)

We have also put in k = mω2
0 , so that we will understand the equation better at

the end. Now because the cosine appears everywhere, we can divide it out, and
that shows that (21.10) is, in fact, a solution, provided we pick C just right. The
answer is that C must be

C = F0/m(ω2
0 − ω2). (21.12)

That is, m oscillates at the same frequency as the force, but with an amplitude
which depends on the frequency of the force, and also upon the frequency of the
natural motion of the oscillator. It means, first, that if ω is very small compared
with ω0, then the displacement and the force are in the same direction. On the
other hand, if we shake it back and forth very fast, then (21.12) tells us that C is
negative if ω is above the natural frequency ω0 of the harmonic oscillator. (We
will call ω0 the natural frequency of the harmonic oscillator, and ω the applied
frequency.) At very high frequency the denominator may become very large, and
there is then not much amplitude.

Of course the solution we have found is the solution only if things are started
just right, for otherwise there is a part which usually dies out after a while. This
other part is called the transient response to F (t), while (21.10) and (21.12) are
called the steady-state response.
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According to our formula (21.12), a very remarkable thing should also occur:
if ω is almost exactly the same as ω0, then C should approach infinity. So if we
adjust the frequency of the force to be “in time” with the natural frequency, then
we should get an enormous displacement. This is well known to anybody who
has pushed a child on a swing. It does not work very well to close our eyes and
push at a certain speed at random. If we happen to get the right timing, then
the swing goes very high, but if we have the wrong timing, then sometimes we
may be pushing when we should be pulling, and so on, and it does not work.

If we make ω exactly equal to ω0, we find that it should oscillate at an
infinite amplitude, which is, of course, impossible. The reason it does not is that
something goes wrong with the equation, there are some other frictional terms,
and other forces, which are not in (21.8) but which occur in the real world. So
the amplitude does not reach infinity for some reason; it may be that the spring
breaks!
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22

Algebra

22-1 Addition and multiplication

In our study of oscillating systems we shall have occasion to use one of the
most remarkable, almost astounding, formulas in all of mathematics. From the
physicist’s point of view we could bring forth this formula in two minutes or
so, and be done with it. But science is as much for intellectual enjoyment as
for practical utility, so instead of just spending a few minutes on this amazing
jewel, we shall surround the jewel by its proper setting in the grand design of
that branch of mathematics which is called elementary algebra.

Now you may ask, “What is mathematics doing in a physics lecture?” We
have several possible excuses: first, of course, mathematics is an important tool,
but that would only excuse us for giving the formula in two minutes. On the
other hand, in theoretical physics we discover that all our laws can be written in
mathematical form; and that this has a certain simplicity and beauty about it.
So, ultimately, in order to understand nature it may be necessary to have a deeper
understanding of mathematical relationships. But the real reason is that the
subject is enjoyable, and although we humans cut nature up in different ways, and
we have different courses in different departments, such compartmentalization is
really artificial, and we should take our intellectual pleasures where we find them.

Another reason for looking more carefully at algebra now, even though most
of us studied algebra in high school, is that that was the first time we studied it;
all the equations were unfamiliar, and it was hard work, just as physics is now.
Every so often it is a great pleasure to look back to see what territory has been
covered, and what the great map or plan of the whole thing is. Perhaps some day
somebody in the Mathematics Department will present a lecture on mechanics in
such a way as to show what it was we were trying to learn in the physics course!

The subject of algebra will not be developed from the point of view of a
mathematician, exactly, because the mathematicians are mainly interested in how
various mathematical facts are demonstrated, and how many assumptions are
absolutely required, and what is not required. They are not so interested in the
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result of what they prove. For example, we may find the Pythagorean theorem
quite interesting, that the sum of the squares of the sides of a right triangle is
equal to the square of the hypotenuse; that is an interesting fact, a curiously
simple thing, which may be appreciated without discussing the question of how
to prove it, or what axioms are required. So, in the same spirit, we shall describe
qualitatively, if we may put it that way, the system of elementary algebra. We
say elementary algebra because there is a branch of mathematics called modern
algebra in which some of the rules such as ab = ba, are abandoned, and it is still
called algebra, but we shall not discuss that.

To discuss this subject we start in the middle. We suppose that we already
know what integers are, what zero is, and what it means to increase a number
by one unit. You may say, “That is not in the middle!” But it is the middle from
a mathematical standpoint, because we could go even further back and describe
the theory of sets in order to derive some of these properties of integers. But we
are not going in that direction, the direction of mathematical philosophy and
mathematical logic, but rather in the other direction, from the assumption that
we know what integers are and we know how to count.

If we start with a certain number a, an integer, and we count successively
one unit b times, the number we arrive at we call a+ b, and that defines addition
of integers.

Once we have defined addition, then we can consider this: if we start with
nothing and add a to it, b times in succession, we call the result multiplication of
integers; we call it b times a.

Now we can also have a succession of multiplications: if we start with 1 and
multiply by a, b times in succession, we call that raising to a power: ab.

Now as a consequence of these definitions it can be easily shown that all of
the following relationships are true:

(a) a+ b = b+ a (b) a+ (b+ c) = (a+ b) + c

(c) ab = ba (d) a(b+ c) = ab+ ac

(e) (ab)c = a(bc) (f) (ab)c = acbc

(g) abac = a(b+c) (h) (ab)c = a(bc)

(i) a+ 0 = a (j) a · 1 = a

(k) a1 = a

(22.1)

These results are well known and we shall not belabor the point, we merely list
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them. Of course, 1 and 0 have special properties; for example, a+ 0 is a, a times
1 = a, and a to the first power is a.

In this discussion we must also assume a few other properties like continuity
and ordering, which are very hard to define; we will let the rigorous theory do it.
Furthermore, it is definitely true that we have written down too many “rules”;
some of them may be deducible from the others, but we shall not worry about
such matters.

22-2 The inverse operations

In addition to the direct operations of addition, multiplication, and raising to
a power, we have also the inverse operations, which are defined as follows. Let us
assume that a and c are given, and that we wish to find what values of b satisfy
such equations as a+b = c, ab = c, ba = c. If a+b = c, b is defined as c−a, which
is called subtraction. The operation called division is also clear: if ab = c, then
b = c/a defines division—a solution of the equation ab = c “backwards.” Now if
we have a power ba = c and we ask ourselves, “What is b?,” it is called the ath root
of c: b = a

√
c. For instance, if we ask ourselves the following question, “What

integer, raised to the third power, equals 8?,” then the answer is called the cube
root of 8; it is 2. Because ba and ab are not equal, there are two inverse problems
associated with powers, and the other inverse problem would be, “To what power
must we raise 2 to get 8?” This is called taking the logarithm. If ab = c, we write
b = loga c. The fact that it has a cumbersome notation relative to the others does
not mean that it is any less elementary, at least applied to integers, than the other
processes. Although logarithms come late in an algebra class, in practice they are,
of course, just as simple as roots; they are just a different kind of solution of an
algebraic equation. The direct and inverse operations are summarized as follows:

(a) addition (a′) subtraction
a+ b = c b = c− a

(b) multiplication (b′) division
ab = c b = c/a

(c) power (c′) root
ba = c b = a

√
c

(d) power (d′) logarithm
ab = c b = loga c

(22.2)
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Now here is the idea. These relationships, or rules, are correct for integers,
since they follow from the definitions of addition, multiplication, and raising to a
power. We are going to discuss whether or not we can broaden the class of objects
which a, b, and c represent so that they will obey these same rules, although the
processes for a+ b, and so on, will not be definable in terms of the direct action
of adding 1, for instance, or successive multiplications by integers.

22-3 Abstraction and generalization

When we try to solve simple algebraic equations using all these definitions,
we soon discover some insoluble problems, such as the following. Suppose that
we try to solve the equation b = 3 − 5. That means, according to our def-
inition of subtraction, that we must find a number which, when added to 5,
gives 3. And of course there is no such number, because we consider only
positive integers; this is an insoluble problem. However, the plan, the great
idea, is this: abstraction and generalization. From the whole structure of al-
gebra, rules plus integers, we abstract the original definitions of addition and
multiplication, but we leave the rules (22.1) and (22.2), and assume these to
be true in general on a wider class of numbers, even though they are originally
derived on a smaller class. Thus, rather than using integers symbolically to
define the rules, we use the rules as the definition of the symbols, which then
represent a more general kind of number. As an example, by working with
the rules alone we can show that 3 − 5 = 0 − 2. In fact we can show that
one can make all subtractions, provided we define a whole set of new num-
bers: 0 − 1, 0 − 2, 0 − 3, 0 − 4, and so on, called the negative integers. Then
we may use all the other rules, like a(b + c) = ab + ac and so forth, to find
what the rules are for multiplying negative numbers, and we will discover, in
fact, that all of the rules can be maintained with negative as well as positive
integers.

So we have increased the range of objects over which the rules work, but the
meaning of the symbols is different.

One cannot say, for instance, that −2 times 5 really means to add 5 together
successively −2 times. That means nothing. But nevertheless everything will
work out all right according to the rules.

An interesting problem comes up in taking powers. Suppose that we wish
to discover what a(3−5) means. We know only that 3 − 5 is a solution of the
problem, (3− 5) + 5 = 3. Knowing that, we know that a(3−5)a5 = a3. Therefore
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a(3−5) = a3/a5, by the definition of division. With a little more work, this can
be reduced to 1/a2. So we find that the negative powers are the reciprocals of
the positive powers, but 1/a2 is a meaningless symbol, because if a is a positive
or negative integer, the square of it is greater than 1, and we do not yet know
what we mean by 1 divided by a number greater than 1!

Onward! The great plan is to continue the process of generalization; whenever
we find another problem that we cannot solve we extend our realm of numbers.
Consider division: we cannot find a number which is an integer, even a negative
integer, which is equal to the result of dividing 3 by 5. But if we suppose that all
fractional numbers also satisfy the rules, then we can talk about multiplying and
adding fractions, and everything works as well as it did before.

Take another example of powers: what is a3/5? We know only that (3/5)5 = 3,
since that was the definition of 3/5. So we know also that (a(3/5))5 = a(3/5)(5) =
a3, because this is one of the rules. Then by the definition of roots we find that
a(3/5) = 5

√
a3.

In this way, then, we can define what we mean by putting fractions in the
various symbols, by using the rules themselves to help us determine the definition—
it is not arbitrary. It is a remarkable fact that all the rules still work for positive
and negative integers, as well as for fractions!

We go on in the process of generalization. Are there any other equations
we cannot solve? Yes, there are. For example, it is impossible to solve this
equation: b = 21/2 =

√
2. It is impossible to find a number which is rational (a

fraction) whose square is equal to 2. It is very easy for us in modern days to
answer this question. We know the decimal system, and so we have no difficulty
in appreciating the meaning of an unending decimal as a type of approximation
to the square root of 2. Historically, this idea presented great difficulty to the
Greeks. To really define precisely what is meant here requires that we add some
substance of continuity and ordering, and it is, in fact, quite the most difficult
step in the processes of generalization just at this point. It was made, formally
and rigorously, by Dedekind. However, without worrying about the mathematical
rigor of the thing, it is quite easy to understand that what we mean is that we are
going to find a whole sequence of approximate fractions, perfect fractions (because
any decimal, when stopped somewhere, is of course rational), which just keeps
on going, getting closer and closer to the desired result. That is good enough
for what we wish to discuss, and it permits us to involve ourselves in irrational
numbers, and to calculate things like the square root of 2 to any accuracy that
we desire, with enough work.
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22-4 Approximating irrational numbers

The next problem comes with what happens with the irrational powers.
Suppose that we want to define, for instance, 10

√
2. In principle, the answer is

simple enough. If we approximate the square root of 2 to a certain number of
decimal places, then the power is rational, and we can take the approximate root,
using the above method, and get an approximation to 10

√
2. Then we may run it

up a few more decimal places (it is again rational), take the appropriate root,
this time a much higher root because there is a much bigger denominator in the
fraction, and get a better approximation. Of course we are going to get some
enormously high roots involved here, and the work is quite difficult. How can we
cope with this problem?

In the computations of square roots, cube roots, and other small roots, there
is an arithmetical process available by which we can get one decimal place after
another. But the amount of labor needed to calculate irrational powers and
the logarithms that go with them (the inverse problem) is so great that there
is no simple arithmetical process we can use. Therefore tables have been built
up which permit us to calculate these powers, and these are called the tables
of logarithms, or the tables of powers, depending on which way the table is set
up. It is merely a question of saving time; if we must raise some number to an
irrational power, we can look it up rather than having to compute it. Of course,
such a computation is just a technical problem, but it is an interesting one, and
of great historical value. In the first place, not only do we have the problem of
solving x = 10

√
2, but we also have the problem of solving 10x = 2, or x = log10 2.

This is not a problem where we have to define a new kind of number for the
result, it is merely a computational problem. The answer is simply an irrational
number, an unending decimal, not a new kind of a number.

Let us now discuss the problem of calculating solutions of such equations.
The general idea is really very simple. If we could calculate 101, and 104/10, and
101/100, and 104/1000 and so on, and multiply them all together, we would get
101.414... or 10

√
2, and that is the general idea on which things work. But instead

of calculating 101/10 and so on, we shall calculate 101/2, 101/4, and so on. Before
we start, we should explain why we make so much work with 10, instead of some
other number. Of course, we realize that logarithm tables are of great practical
utility, quite aside from the mathematical problem of taking roots, since with
any base at all,

logb(ac) = logb a+ logb c. (22.3)
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We are all familiar with the fact that one can use this fact in a practical way to
multiply numbers if we have a table of logarithms. The only question is, with
what base b shall we compute? It makes no difference what base is used; we
can use the same principle all the time, and if we are using logarithms to any
particular base, we can find logarithms to any other base merely by a change
in scale, a multiplying factor. If we multiply Eq. (22.3) by 61, it is just as true,
and if we had a table of logs with a base b, and somebody else multiplied all of
our table by 61, there would be no essential difference. Suppose that we know
the logarithms of all the numbers to the base b. In other words, we can solve
the equation ba = c for any c because we have a table. The problem is to find
the logarithm of the same number c to some other base, let us say the base x.
We would like to solve xa′ = c. It is easy to do, because we can always write
x = bt, which defines t, knowing x and b. As a matter of fact, t = logb x. Then
if we put that in and solve for a′, we see that (bt)a′ = ba

′t = c. In other words,
ta′ is the logarithm of c in base b. Thus a′ = a/t. Thus logs to base x are just
1/t, which is a constant, times the logs to the base, b. Therefore any log table is
equivalent to any other log table if we multiply by a constant, and the constant
is 1/ logb x. This permits us to choose a particular base, and for convenience we
take the base 10. (The question may arise as to whether there is any natural
base, any base in which things are somehow simpler, and we shall try to find an
answer to that later. At the moment we shall just use the base 10.)

Now let us see how to calculate logarithms. We begin by computing successive
square roots of 10, by cut and try. The results are shown in Table 22-1. The
powers of 10 are given in the first column, and the result, 10s, is given in the
third column. Thus 101 = 10. The one-half power of 10 we can easily work out,
because that is the square root of 10, and there is a known, simple process for
taking square roots of any number.* Using this process, we find the first square
root to be 3.16228. What good is that? It already tells us something, it tells
us how to take 100.5, so we now know at least one logarithm, if we happen to
need the logarithm of 3.16228, we know the answer is close to 0.50000. But we
must do a little bit better than that; we clearly need more information. So we
take the square root again, and find 101/4, which is 1.77828. Now we have the
logarithm of more numbers than we had before, 1.250 is the logarithm of 17.78

* There is a definite arithmetic procedure, but the easiest way to find the square root of any
number N is to choose some a fairly close, find N/a, average a′ = 1

2 [a+ (N/a)], and use this
average a′ for the next choice for a. The convergence is very rapid—the number of significant
figures doubles each time.
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Table 22-1

Successive Square Roots of Ten

Power s 1024 s 10s (10s − 1)/s

1 1024 10.00000 9.00
1/2 512 3.16228 4.32
1/4 256 1.77828 3.113
1/8 128 1.33352 2.668
1/16 64 1.15478 2.476
1/32 32 1.074607 2.3874
1/64 16 1.036633 2.3445
1/128 8 1.018152 2.3234211

1/256 4 1.0090350 2.3130104

1/512 2 1.0045073 2.3077 53

1/1024 1 1.0022511 2.3051 26y 26

∆/1024 ∆ 1 + 0.0022486∆←−2.3025
(∆→ 0)

and, incidentally, if it happens that somebody asks for 100.75, we can get it,
because that is 10(0.5+0.25); it is therefore the product of the second and third
numbers. If we can get enough numbers in column s to be able to make up
almost any number, then by multiplying the proper things in column 3, we can
get 10 to any power; that is the plan. So we evaluate ten successive square roots
of 10, and that is the main work which is involved in the calculations.

Why don’t we keep on going for more and more accuracy? Because we begin
to notice something. When we raise 10 to a very small power, we get 1 plus
a small amount. The reason for this is clear, because we are going to have to
take the 1000th power of 101/1000 to get back to 10, so we had better not start
with too big a number; it has to be close to 1. What we notice is that the small
numbers that are added to 1 begin to look as though we are merely dividing
by 2 each time; we see 1815 becomes 903, then 450, 225; so it is clear that, to an
excellent approximation, if we take another root, we shall get 1.00112 something,
and rather than actually take all the square roots, we guess at the ultimate
limit. When we take a small fraction ∆/1024 as ∆ approaches zero, what will
the answer be? Of course it will be some number close to 1 + 0.0022511 ∆. Not
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exactly 1 + 0.0022511 ∆, however—we can get a better value by the following
trick: we subtract the 1, and then divide by the power s. This ought to correct
all the excesses to the same value. We see that they are very closely equal. At
the top of the table they are not equal, but as they come down, they get closer
and closer to a constant value. What is the value? Again we look to see how the
series is going, how it has changed with s. It changed by 211, by 104, by 53, by
26. These changes are obviously half of each other, very closely, as we go down.
Therefore, if we kept going, the changes would be 13, 7, 3, 2 and 1, more or less,
or a total of 26. Thus we have only 26 more to go, and so we find that the true
number is 2.3025. (Actually, we shall later see that the exact number should
be 2.3026, but to keep it realistic, we shall not alter anything in the arithmetic.)
From this table we can now calculate any power of 10, by compounding the power
out of 1024ths.

Let us now actually calculate a logarithm, because the process we shall use is
where logarithm tables actually come from. The procedure is shown in Table 22-2,
and the numerical values are shown in Table 22-1 (columns 2 and 3).

Table 22-2

Calculation of a logarithm: log10 2

2÷ 1.77828 = 1.124682
1.124682÷ 1.074607 = 1.046598, etc.
∴ 2 = (1.77828)(1.074607)(1.036633)(1.0090350)(1.000573)

= 10
[

1
1024(256 + 32 + 16 + 4 + 0.254)

]
= 10

[
308.254

1024

]
= 100.30103

(
573
2249 = 0.254

)
∴ log10 2 = 0.30103

Suppose we want the logarithm of 2. That is, we want to know to what power
we must raise 10 to get 2. Can we raise 10 to the 1/2 power? No; that is too big.
In other words, we can see that the answer is going to be bigger than 1/4, and
less than 1/2. Let us take the factor 101/4 out; we divide 2 by 1.778 . . . , and get
1.124 . . . , and so on, and now we know that we have taken away 0.250000 from
the logarithm. The number 1.124 . . . , is now the number whose logarithm we
need. When we are finished we shall add back the 1/4, or 256/1024. Now we
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look in the table for the next number just below 1.124 . . . , and that is 1.074607.
We therefore divide by 1.074607 and get 1.046598. From that we discover that 2
can be made up of a product of numbers that are in Table 22-1, as follows:

2 = (1.77828)(1.074607)(1.036633)(1.0090350)(1.000573).

There was one factor (1.000573) left over, naturally, which is beyond the range of
our table. To get the logarithm of this factor, we use our result that 10∆/1024 ≈
1 + 2.3025∆/1024. We find ∆ = 0.254. Therefore our answer is 10 to the
following power: (256 + 32 + 16 + 4 + 0.254)/1024. Adding those together, we get
308.254/1024. Dividing, we get 0.30103, so we know that the log10 2 = 0.30103,
which happens to be right to 5 figures!

This is how logarithms were originally computed by Mr. Briggs of Halifax,
in 1620. He said, “I computed successively 54 square roots of 10.” We know he
really computed only the first 27, because the rest of them can be obtained by this
trick with ∆. His work involved calculating the square root of 10 twenty-seven
times, which is not much more than the ten times we did; however, it was more
work because he calculated to sixteen decimal places, and then reduced his answer
to fourteen when he published it, so that there were no rounding errors. He
made tables of logarithms to fourteen decimal places by this method, which is
quite tedious. But all logarithm tables for three hundred years were borrowed
from Mr. Briggs’ tables by reducing the number of decimal places. Only in
modern times, with the WPA and computing machines, have new tables been
independently computed. There are much more efficient methods of computing
logarithms today, using certain series expansions.

In the above process, we discovered something rather interesting, and that
is that for very small powers ε we can calculate 10ε easily; we have discovered
that 10ε = 1 + 2.3025ε, by sheer numerical analysis. Of course this also means
that 10n/2.3025 = 1 + n if n is very small. Now logarithms to any other base
are merely multiples of logarithms to the base 10. The base 10 was used only
because we have 10 fingers, and the arithmetic of it is easy, but if we ask for a
mathematically natural base, one that has nothing to do with the number of
fingers on human beings, we might try to change our scale of logarithms in some
convenient and natural manner, and the method which people have chosen is
to redefine the logarithms by multiplying all the logarithms to the base 10 by
2.3025 . . . This then corresponds to using some other base, and this is called the
natural base, or base e. Note that loge(1 + n) ≈ n, or en ≈ 1 + n as n→ 0.

22-10



It is easy enough to find out what e is: e = 101/2.3025 or 100.434294..., an
irrational power. Our table of the successive square roots of 10 can be used
to compute, not just logarithms, but also 10 to any power, so let us use it to
calculate this natural base e. For convenience we transform 0.434294 . . . into
444.73/1024. Now, 444.73 is 256 + 128 + 32 + 16 + 8 + 4 + 0.73. Therefore e,
since it is an exponent of a sum, will be a product of the numbers

(1.77828)(1.33352)(1.074607)(1.036633)(1.018152)(1.009035)(1.001643) = 2.7184.

(The only problem is the last one, which is 0.73, and which is not in the table,
but we know that if ∆ is small enough, the answer is 1 + 2.3025 ∆.) When we
multiply all these together, we get 2.7184 (it should be 2.7183, but it is good
enough). The use of such tables, then, is the way in which irrational powers and
the logarithms of irrational numbers are all calculated. That takes care of the
irrationals.

22-5 Complex numbers

Now it turns out that after all that work we still cannot solve every equation!
For instance, what is the square root of −1? Suppose we have to find x2 = −1.
The square of no rational, of no irrational, of nothing that we have discovered so
far, is equal to −1. So we again have to generalize our numbers to a still wider
class. Let us suppose that a specific solution of x2 = −1 is called something, we
shall call it i; i has the property, by definition, that its square is −1. That is
about all we are going to say about it; of course, there is more than one root
of the equation x2 = −1. Someone could write i, but another could say, “No,
I prefer −i. My i is minus your i.” It is just as good a solution, and since the
only definition that i has is that i2 = −1, it must be true that any equation we
can write is equally true if the sign of i is changed everywhere. This is called
taking the complex conjugate. Now we are going to make up numbers by adding
successive i’s, and multiplying i’s by numbers, and adding other numbers, and
so on, according to all of our rules. In this way we find that numbers can all be
written in the form p+ iq, where p and q are what we call real numbers, i.e., the
numbers we have been defining up until now. The number i is called the unit
imaginary number. Any real multiple of i is called pure imaginary. The most
general number, a, is of the form p+ iq and is called a complex number. Things
do not get any worse if, for instance, we multiply two such numbers, let us say
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(r + is)(p+ iq). Then, using the rules, we get

(r + is)(p+ iq) = rp+ r(iq) + (is)p+ (is)(iq)
= rp+ i(rq) + i(sp) + (ii)(sq)
= (rp− sq) + i(rq + sp), (22.4)

since ii = i2 = −1. Therefore all the numbers that now belong in the rules (22.1)
have this mathematical form.

Now you say, “This can go on forever! We have defined powers of imaginaries
and all the rest, and when we are all finished, somebody else will come along with
another equation which cannot be solved, like x6 + 3x2 = −2. Then we have to
generalize all over again!” But it turns out that with this one more invention, just
the square root of −1, every algebraic equation can be solved! This is a fantastic
fact, which we must leave to the Mathematics Department to prove. The proofs
are very beautiful and very interesting, but certainly not self-evident. In fact,
the most obvious supposition is that we are going to have to invent again and
again and again. But the greatest miracle of all is that we do not. This is the
last invention. After this invention of complex numbers, we find that the rules
still work with complex numbers, and we are finished inventing new things. We
can find the complex power of any complex number, we can solve any equation
that is written algebraically, in terms of a finite number of those symbols. We
do not find any new numbers. The square root of i, for instance, has a definite
result, it is not something new; and ii is something. We will discuss that now.

We have already discussed multiplication, and addition is also easy; if we add
two complex numbers, (p+ iq) + (r + is), the answer is (p+ r) + i(q + s). Now
we can add and multiply complex numbers. But the real problem, of course, is
to compute complex powers of complex numbers. It turns out that the problem
is actually no more difficult than computing complex powers of real numbers. So
let us concentrate now on the problem of calculating 10 to a complex power, not
just an irrational power, but 10(r+is). Of course, we must at all times use our
rules (22.1) and (22.2). Thus

10(r+is) = 10r10is. (22.5)

But 10r we already know how to compute, and we can always multiply anything
by anything else; therefore the problem is to compute only 10is. Let us call it
some complex number, x+ iy. Problem: given s, find x, find y. Now if

10is = x+ iy,
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then the complex conjugate of this equation must also be true, so that

10−is = x− iy.

(Thus we see that we can deduce a number of things without actually computing
anything, by using our rules.) We deduce another interesting thing by multiplying
these together:

10is10−is = 100 = 1 = (x+ iy)(x− iy) = x2 + y2. (22.6)

Thus if we find x, we have y also.
Now the problem is how to compute 10 to an imaginary power. What guide

is there? We may work over our rules until we can go no further, but here is a
reasonable guide: if we can compute it for any particular s, we can get it for all
the rest. If we know 10is for any one s and then we want it for twice that s, we
can square the number, and so on. But how can we find 10is for even one special
value of s? To do so we shall make one additional assumption, which is not quite
in the category of all the other rules, but which leads to reasonable results and
permits us to make progress: when the power is small, we shall suppose that the
“law” 10ε = 1 + 2.3025ε is right, as ε gets very small, not only for real ε, but for
complex ε as well. Therefore, we begin with the supposition that this law is true
in general, and that tells us that 10is = 1 + 2.3025 · is, for s→ 0. So we assume
that if s is very small, say one part in 1024, we have a rather good approximation
to 10is.

Now we make a table by which we can compute all the imaginary powers
of 10, that is, compute x and y. It is done as follows. The first power we start
with is the 1/1024 power, which we presume is very nearly 1 + 2.3025i/1024.
Thus we start with

10i/1024 = 1.00000 + 0.0022486i, (22.7)
and if we keep multiplying the number by itself, we can get to a higher imaginary
power. In fact, we may just reverse the procedure we used in making our logarithm
table, and calculate the square, 4th power, 8th power, etc., of (22.7), and thus
build up the values shown in Table 22-3. We notice an interesting thing, that
the x numbers are positive at first, but then swing negative. We shall look into
that a little bit more in a moment. But first we may be curious to find for what
number s the real part of 10is is zero. The y-value would be 1, and so we would
have 10is = 1i, or is = log10 i. As an example of how to use this table, just as
we calculated log10 2 before, let us now use Table 22-3 to find log10 i.
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Table 22-3

Successive Squares of 10i/1024 = 1 + 0.0022486i

Power is 1024s 10is

i/1024 1 1.00000 + 0.00225i*
i/512 2 1.00000 + 0.00450i
i/256 4 0.99996 + 0.00900i
i/128 8 0.99984 + 0.01800i
i/64 16 0.99936 + 0.03599i
i/32 32 0.99742 + 0.07193i
i/16 64 0.98967 + 0.14349i
i/8 128 0.95885 + 0.28402i
i/4 256 0.83872 + 0.54467i
i/2 512 0.40679 + 0.91365i
i/1 1024 −0.66928 + 0.74332i

* Should be 0.0022486i

Which of the numbers in Table 22-3 do we have to multiply together to
get a pure imaginary result? After a little trial and error, we discover that to
reduce x the most, it is best to multiply “512” by “128.” This gives 0.13056 +
0.99159i. Then we discover that we should multiply this by a number whose
imaginary part is about equal to the size of the real part we are trying to remove.
Thus we choose “64” whose y-value is 0.14349, since that is closest to 0.13056.
This then gives −0.01308 + 1.00008i. Now we have overshot, and must divide
by 0.99996 + 0.00900i. How do we do that? By changing the sign of i and
multiplying by 0.99996− 0.00900i (which works if x2 + y2 = 1). Continuing in
this way, we find that the entire power to which 10 must be raised to give i is
i(512 + 128 + 64 − 4 − 2 + 0.20)/1024, or 698.20i/1024. If we raise 10 to that
power, we can get i. Therefore log10 i = 0.68184i.

22-6 Imaginary exponents

To further investigate the subject of taking complex imaginary powers, let
us look at the powers of 10 taking successive powers, not doubling the power
each time, in order to follow Table 22-3 further and to see what happens to those
minus signs. This is shown in Table 22-4, in which we take 10i/8, and just keep
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Table 22-4

Successive Powers of 10i/8

p = power · 8/i 10ip/8

0 1.00000 + 0.00000i
1 0.95882 + 0.28402i
2 0.83867 + 0.54465i
3 0.64944 + 0.76042i
4 0.40672 + 0.91356i
5 0.13050 + 0.99146i
6 −0.15647 + 0.98770i
7 −0.43055 + 0.90260i
8 −0.66917 + 0.74315i
9 −0.85268 + 0.52249i

10 −0.96596 + 0.25880i
11 −0.99969− 0.02620i
12 −0.95104− 0.30905i
14 −0.62928− 0.77717i
16 −0.10447− 0.99453i
18 +0.45454− 0.89098i
20 +0.86648− 0.49967i
22 +0.99884 + 0.05287i
24 +0.80890 + 0.58836i

multiplying it. We see that x decreases, passes through zero, swings almost to −1
(if we could get in between p = 10 and p = 11 it would obviously swing to −1),
and swings back. The y-value is going back and forth too.

In Fig. 22-1 the dots represent the numbers that appear in Table 22-4, and
the lines are just drawn to help you visually. So we see that the numbers x and y
oscillate; 10is repeats itself, it is a periodic thing, and as such, it is easy enough
to explain, because if a certain power is i, then the fourth power of that would
be i2 squared. It would be +1 again, and therefore, since 100.68i is equal to i, by
taking the fourth power we discover that 102.72i is equal to +1. Therefore, if we
wanted 103.00i, for instance, we could write it as 102.72i times 100.28i. In other
words, it has a period, it repeats. Of course, we recognize what the curves look
like! They look like the sine and cosine, and we shall call them, for a while, the
algebraic sine and algebraic cosine. However, instead of using the base 10, we
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shall put them into our natural base, which only changes the horizontal scale;
so we denote 2.3025s by t, and write 10is = eit, where t is a real number. Now
eit = x+ iy, and we shall write this as the algebraic cosine of t plus i times the
algebraic sine of t. Thus

eit = cos t+ i sin t. (22.8)

What are the properties of cos t and sin t? First, we know, for instance, that
x2 + y2 must be 1; we have proved that before, and it is just as true for base e
as for base 10. Therefore cos2 t + sin2 t = 1. We also know that, for small
t, eit = 1 + it, and therefore cos t is nearly 1, and sin t is nearly t, and so it
goes, that all of the various properties of these remarkable functions, which
come from taking imaginary powers, are the same as the sine and cosine of
trigonometry.

Is the period the same? Let us find out. e to what power is equal to i? What
is the logarithm of i to the base e? We worked it out before, in the base 10
it was 0.68184i, but when we change our logarithmic scale to e, we have to
multiply by 2.3025, and if we do that it comes out 1.570. So this will be called
“algebraic π/2.” But, we see, it differs from the regular π/2 by only one place
in the last point, and that, of course, is the result of errors in our arithmetic!
So we have created two new functions in a purely algebraic manner, the cosine
and the sine, which belong to algebra, and only to algebra. We wake up at the
end to discover the very functions that are natural to geometry. So there is a
connection, ultimately, between algebra and geometry.

We summarize with this, the most remarkable formula in mathematics:

eiθ = cos θ + i sin θ. (22.9)
This is our jewel.
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We may relate the geometry to the algebra by representing complex numbers
in a plane; the horizontal position of a point is x, the vertical position of a point
is y (Fig. 22-2). We represent every complex number, x+ iy. Then if the radial
distance to this point is called r and the angle is called θ, the algebraic law is that
x+ iy is written in the form reiθ, where the geometrical relationships between
x, y, r, and θ are as shown. This, then, is the unification of algebra and geometry.

x

y

x

yr

θ

Fig. 22-2. x + iy = re iθ.

When we began this chapter, armed only with the basic notions of integers
and counting, we had little idea of the power of the processes of abstraction
and generalization. Using the set of algebraic “laws,” or properties of numbers,
Eq. (22.1), and the definitions of inverse operations (22.2), we have been able
here, ourselves, to manufacture not only numbers but useful things like tables of
logarithms, powers, and trigonometric functions (for these are what the imaginary
powers of real numbers are), all merely by extracting ten successive square roots
of ten!
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23

Resonance

23-1 Complex numbers and harmonic motion

In the present chapter we shall continue our discussion of the harmonic
oscillator and, in particular, the forced harmonic oscillator, using a new technique
in the analysis. In the preceding chapter we introduced the idea of complex
numbers, which have real and imaginary parts and which can be represented
on a diagram in which the ordinate represents the imaginary part and the
abscissa represents the real part. If a is a complex number, we may write it as
a = ar + iai, where the subscript r means the real part of a, and the subscript i
means the imaginary part of a. Referring to Fig. 23-1, we see that we may
also write a complex number a = x + iy in the form x + iy = reiθ, where
r2 = x2 + y2 = (x + iy)(x − iy) = aa∗. (The complex conjugate of a, written
a∗, is obtained by reversing the sign of i in a.) So we shall represent a complex
number in either of two forms, a real plus an imaginary part, or a magnitude r and
a phase angle θ, so-called. Given r and θ, x and y are clearly r cos θ and r sin θ
and, in reverse, given a complex number x+ iy, r =

√
x2 + y2 and tan θ = y/x,

the ratio of the imaginary to the real part.

REAL AXIS

IMAGINARY
AXIS

a

x

yr

θ

Fig. 23-1. A complex number may be represented by a point in the
“complex plane.”
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We are going to apply complex numbers to our analysis of physical phenomena
by the following trick. We have examples of things that oscillate; the oscillation
may have a driving force which is a certain constant times cosωt. Now such a force,
F = F0 cosωt, can be written as the real part of a complex number F = F0e

iωt

because eiωt = cosωt+ i sinωt. The reason we do this is that it is easier to work
with an exponential function than with a cosine. So the whole trick is to represent
our oscillatory functions as the real parts of certain complex functions. The
complex number F that we have so defined is not a real physical force, because
no force in physics is really complex; actual forces have no imaginary part, only
a real part. We shall, however, speak of the “force” F0e

iωt, but of course the
actual force is the real part of that expression.

Let us take another example. Suppose we want to represent a force which
is a cosine wave that is out of phase with a delayed phase ∆. This, of course,
would be the real part of F0e

i(ωt−∆), but exponentials being what they are, we
may write ei(ωt−∆) = eiωte−i∆. Thus we see that the algebra of exponentials is
much easier than that of sines and cosines; this is the reason we choose to use
complex numbers. We shall often write

F = F0e
−i∆eiωt = F̂ eiωt. (23.1)

We write a little caret (ˆ) over the F to remind ourselves that this quantity is a
complex number: here the number is

F̂ = F0e
−i∆.

Now let us solve an equation, using complex numbers, to see whether we can
work out a problem for some real case. For example, let us try to solve

d2x

dt2
+ kx

m
= F

m
= F0

m
cosωt, (23.2)

where F is the force which drives the oscillator and x is the displacement. Now,
absurd though it may seem, let us suppose that x and F are actually complex
numbers, for a mathematical purpose only. That is to say, x has a real part and
an imaginary part times i, and F has a real part and an imaginary part times i.
Now if we had a solution of (23.2) with complex numbers, and substituted the
complex numbers in the equation, we would get

d2(xr + ixi)
dt2

+ k(xr + ixi)
m

= Fr + iFi
m
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or
d2xr
dt2

+ kxr
m

+ i

(
d2xi
dt2

+ kxi
m

)
= Fr
m

+ iFi
m
.

Now, since if two complex numbers are equal, their real parts must be equal and
their imaginary parts must be equal, we deduce that the real part of x satisfies
the equation with the real part of the force. We must emphasize, however, that
this separation into a real part and an imaginary part is not valid in general,
but is valid only for equations which are linear, that is, for equations in which x
appears in every term only in the first power or the zeroth power. For instance,
if there were in the equation a term λx2, then when we substitute xr + ixi, we
would get λ(xr + ixi)2, but when separated into real and imaginary parts this
would yield λ(x2

r −x2
i ) as the real part and 2iλxrxi as the imaginary part. So we

see that the real part of the equation would not involve just λx2
r, but also −λx2

i .
In this case we get a different equation than the one we wanted to solve, with xi,
the completely artificial thing we introduced in our analysis, mixed in.

Let us now try our new method for the problem of the forced oscillator, that
we already know how to solve. We want to solve Eq. (23.2) as before, but we say
that we are going to try to solve

d2x

dt2
+ kx

m
= F̂ eiωt

m
, (23.3)

where F̂ eiωt is a complex number. Of course x will also be complex, but remember
the rule: take the real part to find out what is really going on. So we try to
solve (23.3) for the forced solution; we shall discuss other solutions later. The
forced solution has the same frequency as the applied force, and has some
amplitude of oscillation and some phase, and so it can be represented also
by some complex number x̂ whose magnitude represents the swing of x and
whose phase represents the time delay in the same way as for the force. Now
a wonderful feature of an exponential function is that d(x̂eiωt)/dt = iωx̂eiωt.
When we differentiate an exponential function, we bring down the exponent as
a simple multiplier. The second derivative does the same thing, it brings down
another iω, and so it is very simple to write immediately, by inspection, what the
equation is for x̂: every time we see a differentiation, we simply multiply by iω.
(Differentiation is now as easy as multiplication! This idea of using exponentials
in linear differential equations is almost as great as the invention of logarithms,

23-3



in which multiplication is replaced by addition. Here differentiation is replaced
by multiplication.) Thus our equation becomes

(iω)2x̂+ (kx̂/m) = F̂ /m. (23.4)

(We have cancelled the common factor eiωt.) See how simple it is! Differential
equations are immediately converted, by sight, into mere algebraic equations; we
virtually have the solution by sight, that

x̂ = F̂ /m

(k/m)− ω2 ,

since (iω)2 = −ω2. This maybe slightly simplified by substituting k/m = ω2
0 ,

which gives
x̂ = F̂ /m(ω2

0 − ω2). (23.5)
This, of course, is the solution we had before; for since m(ω2

0 − ω2) is a real
number, the phase angles of F̂ and of x̂ are the same (or perhaps 180◦ apart, if
ω2 > ω2

0), as advertised previously. The magnitude of x̂, which measures how far
it oscillates, is related to the size of the F̂ by the factor 1/m(ω2

0 − ω2), and this
factor becomes enormous when ω is nearly equal to ω0. So we get a very strong
response when we apply the right frequency ω (if we hold a pendulum on the
end of a string and shake it at just the right frequency, we can make it swing
very high).

23-2 The forced oscillator with damping

That, then, is how we analyze oscillatory motion with the more elegant
mathematical technique. But the elegance of the technique is not at all exhibited
in such a problem that can be solved easily by other methods. It is only exhibited
when one applies it to more difficult problems. Let us therefore solve another,
more difficult problem, which furthermore adds a relatively realistic feature to
the previous one. Equation (23.5) tells us that if the frequency ω were exactly
equal to ω0, we would have an infinite response. Actually, of course, no such
infinite response occurs because some other things, like friction, which we have
so far ignored, limits the response. Let us therefore add to Eq. (23.2) a friction
term.

Ordinarily such a problem is very difficult because of the character and
complexity of the frictional term. There are, however, many circumstances in
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which the frictional force is proportional to the speed with which the object moves.
An example of such friction is the friction for slow motion of an object in oil or
a thick liquid. There is no force when it is just standing still, but the faster it
moves the faster the oil has to go past the object, and the greater is the resistance.
So we shall assume that there is, in addition to the terms in (23.2), another
term, a resistance force proportional to the velocity: Ff = −c dx/dt. It will be
convenient, in our mathematical analysis, to write the constant c as m times γ
to simplify the equation a little. This is just the same trick we use with k when
we replace it by mω2

0 , just to simplify the algebra. Thus our equation will be

m(d2x/dt2) + c(dx/dt) + kx = F (23.6)

or, writing c = mγ and k = mω2
0 and dividing out the mass m,

(d2x/dt2) + γ(dx/dt) + ω2
0x = F/m. (23.6a)

Now we have the equation in the most convenient form to solve. If γ is very
small, that represents very little friction; if γ is very large, there is a tremendous
amount of friction. How do we solve this new linear differential equation? Suppose
that the driving force is equal to F0 cos (ωt+ ∆); we could put this into (23.6a)
and try to solve it, but we shall instead solve it by our new method. Thus we
write F as the real part of F̂ eiωt and x as the real part of x̂eiωt, and substitute
these into Eq. (23.6a). It is not even necessary to do the actual substituting, for
we can see by inspection that the equation would become

[(iω)2x̂+ γ(iω)x̂+ ω2
0 x̂]eiωt = (F̂ /m)eiωt. (23.7)

[As a matter of fact, if we tried to solve Eq. (23.6a) by our old straightforward
way, we would really appreciate the magic of the “complex” method.] If we divide
by eiωt on both sides, then we can obtain the response x̂ to the given force F̂ ; it
is

x̂ = F̂ /m(ω2
0 − ω2 + iγω). (23.8)

Thus again x̂ is given by F̂ times a certain factor. There is no technical name
for this factor, no particular letter for it, but we may call it R for discussion
purposes:

R = 1
m(ω2

0 − ω2 + iγω)
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and
x̂ = F̂R. (23.9)

(Although the letters γ and ω0 are in very common use, this R has no particular
name.) This factor R can either be written as p+ iq, or as a certain magnitude ρ
times eiθ. If it is written as a certain magnitude times eiθ, let us see what it
means. Now F̂ = F0e

i∆, and the actual force F is the real part of F0e
i∆eiωt, that

is, F0 cos (ωt+ ∆). Next, Eq. (23.9) tells us that x̂ is equal to F̂R. So, writing
R = ρeiθ as another name for R, we get

x̂ = RF̂ = ρeiθF0e
i∆ = ρF0e

i(θ+∆).

Finally, going even further back, we see that the physical x, which is the real part
of the complex x̂eiωt, is equal to the real part of ρF0e

i(θ+∆)eiωt. But ρ and F0
are real, and the real part of ei(θ+∆+ωt) is simply cos (ωt+ ∆ + θ). Thus

x = ρF0 cos (ωt+ ∆ + θ). (23.10)

This tells us that the amplitude of the response is the magnitude of the force F
multiplied by a certain magnification factor, ρ; this gives us the “amount” of
oscillation. It also tells us, however, that x is not oscillating in phase with the
force, which has the phase ∆, but is shifted by an extra amount θ. Therefore ρ
and θ represent the size of the response and the phase shift of the response.

Now let us work out what ρ is. If we have a complex number, the square of
the magnitude is equal to the number times its complex conjugate; thus

ρ2 = 1
m2(ω2

0 − ω2 + iγω)(ω2
0 − ω2 − iγω)

= 1
m2[(ω2 − ω2

0)2 + γ2ω2] .
(23.11)

In addition, the phase angle θ is easy to find, for if we write

1/R = 1/ρeiθ = (1/ρ)e−iθ = m(ω2
0 − ω2 + iγω),

we see that
tan θ = −γω/(ω2

0 − ω2). (23.12)

It is minus because tan(−θ) = − tan θ. A negative value for θ results for all ω,
and this corresponds to the displacement x lagging the force F .
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Fig. 23-2. Plot of ρ2 versus ω.
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Fig. 23-3. Plot of θ versus ω.

Figure 23-2 shows how ρ2 varies as a function of frequency (ρ2 is physically
more interesting than ρ, because ρ2 is proportional to the square of the amplitude,
or more or less to the energy that is developed in the oscillator by the force). We
see that if γ is very small, then 1/(ω2

0 − ω2)2 is the most important term, and
the response tries to go up toward infinity when ω equals ω0. Now the “infinity”
is not actually infinite because if ω = ω0, then 1/γ2ω2 is still there. The phase
shift varies as shown in Fig. 23-3.

In certain circumstances we get a slightly different formula than (23.8), also
called a “resonance” formula, and one might think that it represents a different
phenomenon, but it does not. The reason is that if γ is very small the most
interesting part of the curve is near ω = ω0, and we may replace (23.8) by
an approximate formula which is very accurate if γ is small and ω is near ω0.
Since ω2

0 − ω2 = (ω0 − ω)(ω0 + ω), if ω is near ω0 this is nearly the same as
2ω0(ω0−ω) and γω is nearly the same as γω0. Using these in (23.8), we see that
ω2

0 − ω2 + iγω ≈ 2ω0(ω0 − ω + iγ/2), so that

x̂ ≈ F̂ /2mω0(ω0 − ω + iγ/2) if γ � ω0 and ω ≈ ω0. (23.13)
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It is easy to find the corresponding formula for ρ2. It is

ρ2 ≈ 1/4m2ω2
0 [(ω0 − ω)2 + γ2/4].

We shall leave it to the student to show the following: if we call the maximum
height of the curve of ρ2 vs. ω one unit, and we ask for the width ∆ω of the curve,
at one half the maximum height, the full width at half the maximum height of
the curve is ∆ω = γ, supposing that γ is small. The resonance is sharper and
sharper as the frictional effects are made smaller and smaller.

As another measure of the width, some people use a quantity Q which is
defined as Q = ω0/γ. The narrower the resonance, the higher the Q: Q = 1000
means a resonance whose width is only 1000th of the frequency scale. The Q of
the resonance curve shown in Fig. 23-2 is 5.

The importance of the resonance phenomenon is that it occurs in many other
circumstances, and so the rest of this chapter will describe some of these other
circumstances.

23-3 Electrical resonance

The simplest and broadest technical applications of resonance are in electricity.
In the electrical world there are a number of objects which can be connected to
make electric circuits. These passive circuit elements, as they are often called,
are of three main types, although each one has a little bit of the other two mixed
in. Before describing them in greater detail, let us note that the whole idea of our
mechanical oscillator being a mass on the end of a spring is only an approximation.
All the mass is not actually at the “mass”; some of the mass is in the inertia of
the spring. Similarly, all of the spring is not at the “spring”; the mass itself has a
little elasticity, and although it may appear so, it is not absolutely rigid, and as it
goes up and down, it flexes ever so slightly under the action of the spring pulling
it. The same thing is true in electricity. There is an approximation in which we
can lump things into “circuit elements” which are assumed to have pure, ideal
characteristics. It is not the proper time to discuss that approximation here, we
shall simply assume that it is true in the circumstances.

The three main kinds of circuit elements are the following. The first is called a
capacitor (Fig. 23-4); an example is two plane metallic plates spaced a very small
distance apart by an insulating material. When the plates are charged there is
a certain voltage difference, that is, a certain difference in potential, between
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Fig. 23-4. The three passive circuit elements.

them. The same difference of potential appears between the terminals A and B,
because if there were any difference along the connecting wire, electricity would
flow right away. So there is a certain voltage difference V between the plates if
there is a certain electric charge +q and −q on them, respectively. Between the
plates there will be a certain electric field; we have even found a formula for it
(Chapters 13 and 14):

V = σd/ε0 = qd/ε0A, (23.14)

where d is the spacing and A is the area of the plates. Note that the potential
difference is a linear function of the charge. If we do not have parallel plates,
but insulated electrodes which are of any other shape, the difference in potential
is still precisely proportional to the charge, but the constant of proportionality
may not be so easy to compute. However, all we need to know is that the
potential difference across a capacitor is proportional to the charge: V = q/C;
the proportionality constant is 1/C, where C is the capacitance of the object.

The second kind of circuit element is called a resistor ; it offers resistance to
the flow of electrical current. It turns out that metallic wires and many other
substances resist the flow of electricity in this manner: if there is a voltage
difference across a piece of some substance, there exists an electric current I =
dq/dt that is proportional to the electric voltage difference:

V = RI = Rdq/dt (23.15)

The proportionality coefficient is called the resistance R. This relationship may
already be familiar to you; it is Ohm’s law.

If we think of the charge q on a capacitor as being analogous to the displace-
ment x of a mechanical system, we see that the current, I = dq/dt, is analogous
to velocity, 1/C is analogous to a spring constant k, and R is analogous to the
resistive coefficient c = mγ in Eq. (23.6). Now it is very interesting that there

23-9



exists another circuit element which is the analog of mass! This is a coil which
builds up a magnetic field within itself when there is a current in it. A changing
magnetic field develops in the coil a voltage that is proportional to dI/dt (this
is how a transformer works, in fact). The magnetic field is proportional to a
current, and the induced voltage (so-called) in such a coil is proportional to the
rate of change of the current:

V = LdI/dt = Ld2q/dt2. (23.16)

The coefficient L is the self-inductance, and is analogous to the mass in a
mechanical oscillating circuit.

1 2
V

L

R

C

Fig. 23-5. An oscillatory electrical circuit with resistance, inductance,
and capacitance.

Suppose we make a circuit in which we have connected the three circuit
elements in series (Fig. 23-5); then the voltage across the whole thing from 1
to 2 is the work done in carrying a charge through, and it consists of the sum
of several pieces: across the inductor, VL = Ld2q/dt2; across the resistance,
VR = Rdq/dt; across the capacitor, VC = q/C. The sum of these is equal to the
applied voltage, V :

Ld2q/dt2 +Rdq/dt+ q/C = V (t). (23.17)

Now we see that this equation is exactly the same as the mechanical equa-
tion (23.6), and of course it can be solved in exactly the same manner. We
suppose that V (t) is oscillatory: we are driving the circuit with a generator with
a pure sine wave oscillation. Then we can write our V (t) as a complex V̂ with
the understanding that it must be ultimately multiplied by eiωt, and the real part
taken in order to find the true V . Likewise, the charge q can thus be analyzed,
and then in exactly the same manner as in Eq. (23.8) we write the corresponding
equation: the second derivative of q̂ is (iω)2q̂; the first derivative is (iω)q̂. Thus
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Eq. (23.17) translates to [
L(iω)2 +R(iω) + 1

C

]
q̂ = V̂

or
q̂ = V̂

L(iω)2 +R(iω) + 1
C

which we can write in the form

q̂ = V̂ /L(ω2
0 − ω2 + iγω), (23.18)

where ω2
0 = 1/LC and γ = R/L. It is exactly the same denominator as we had

in the mechanical case, with exactly the same resonance properties! The corre-
spondence between the electrical and mechanical cases is outlined in Table 23-1.

Table 23-1

General Mechanical Electrical
characteristic property property

indep. variable time (t) time (t)
dep. variable position (x) charge (q)
inertia mass (m) inductance (L)
resistance drag coeff. (c = γm) resistance (R = γL)
stiffness stiffness (k) (capacitance)−1 (1/C)
resonant frequency ω2

0 = k/m ω2
0 = 1/LC

period t0 = 2π
√
m/k t0 = 2π

√
LC

figure of merit Q = ω0/γ Q = ω0L/R

We must mention a small technical point. In the electrical literature, a
different notation is used. (From one field to another, the subject is not really
any different, but the way of writing the notations is often different.) First, j
is commonly used instead of i in electrical engineering, to denote

√
−1. (After

all, i must be the current!) Also, the engineers would rather have a relationship
between V̂ and Î than between V̂ and q̂, just because they are more used to it
that way. Thus, since Î = dq̂/dt = iωq̂, we can just substitute Î/iω for q̂ and get

V̂ = (iωL+R+ 1/iωC)Î = ẐÎ. (23.19)
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Another way is to rewrite Eq. (23.17), so that it looks more familiar; one often
sees it written this way:

LdI/dt+RI + (1/C)
∫ t

I dt = V (t). (23.20)

At any rate, we find the relation (23.19) between voltage V̂ and current Î which
is just the same as (23.18) except divided by iω, and that produces Eq. (23.19).
The quantity R + iωL + 1/iωC is a complex number, and is used so much in
electrical engineering that it has a name: it is called the complex impedance,
Ẑ. Thus we can write V̂ = ẐÎ. The reason that the engineers like to do this
is that they learned something when they were young: V = RI for resistances,
when they only knew about resistances and dc. Now they have become more
educated and have ac circuits, so they want the equation to look the same. Thus
they write V̂ = ẐÎ, the only difference being that the resistance is replaced by a
more complicated thing, a complex quantity. So they insist that they cannot use
what everyone else in the world uses for imaginary numbers, they have to use a j
for that; it is a miracle that they did not insist also that the letter Z be an R!
(Then they get into trouble when they talk about current densities, for which
they also use j. The difficulties of science are to a large extent the difficulties of
notations, the units, and all the other artificialities which are invented by man,
not by nature.)

23-4 Resonance in nature

Although we have discussed the electrical case in detail, we could also bring
up case after case in many fields, and show exactly how the resonance equation
is the same. There are many circumstances in nature in which something is
“oscillating” and in which the resonance phenomenon occurs. We said that in
an earlier chapter; let us now demonstrate it. If we walk around our study,
pulling books off the shelves and simply looking through them to find an example
of a curve that corresponds to Fig. 23-2 and comes from the same equation,
what do we find? Just to demonstrate the wide range obtained by taking the
smallest possible sample, it takes only five or six books to produce quite a series
of phenomena which show resonances.

The first two are from mechanics, the first on a large scale: the atmosphere of
the whole earth. If the atmosphere, which we suppose surrounds the earth evenly
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Fig. 23-6. Response of the atmosphere to external excitation. a is
the required response if the atmospheric S2-tide is of gravitational origin;
peak amplification is 100 : 1. b is derived from observed magnification
and phase of M2-tide. [Munk and MacDonald, “Rotation of the Earth,”
Cambridge University Press (1960)]

on all sides, is pulled to one side by the moon or, rather, squashed prolate into a
double tide, and if we could then let it go, it would go sloshing up and down; it is
an oscillator. This oscillator is driven by the moon, which is effectively revolving
about the earth; any one component of the force, say in the x-direction, has a
cosine component, and so the response of the earth’s atmosphere to the tidal pull
of the moon is that of an oscillator. The expected response of the atmosphere is
shown in Fig. 23-6, curve b (curve a is another theoretical curve under discussion
in the book from which this is taken out of context). Now one might think
that we only have one point on this resonance curve, since we only have the one
frequency, corresponding to the rotation of the earth under the moon, which
occurs at a period of 12.42 hours—12 hours for the earth (the tide is a double
bump), plus a little more because the moon is going around. But from the size of
the atmospheric tides, and from the phase, the amount of delay, we can get both
ρ and θ. From those we can get ω0 and γ, and thus draw the entire curve! This is
an example of very poor science. From two numbers we obtain two numbers, and
from those two numbers we draw a beautiful curve, which of course goes through
the very point that determined the curve! It is of no use unless we can measure
something else, and in the case of geophysics that is often very difficult. But in
this particular case there is another thing which we can show theoretically must
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have the same timing as the natural frequency ω0: that is, if someone disturbed
the atmosphere, it would oscillate with the frequency ω0. Now there was such a
sharp disturbance in 1883; the Krakatoa volcano exploded and half the island
blew off, and it made such a terrific explosion in the atmosphere that the period
of oscillation of the atmosphere could be measured. It came out to 10 1

2 hours.
The ω0 obtained from Fig. 23-6 comes out 10 hours and 20 minutes, so there we
have at least one check on the reality of our understanding of the atmospheric
tides.

Next we go to the small scale of mechanical oscillation. This time we take a
sodium chloride crystal, which has sodium ions and chlorine ions next to each
other, as we described in an early chapter. These ions are electrically charged,
alternately plus and minus. Now there is an interesting oscillation possible.
Suppose that we could drive all the plus charges to the right and all the negative
charges to the left, and let go; they would then oscillate back and forth, the
sodium lattice against the chlorine lattice. How can we ever drive such a thing?
That is easy, for if we apply an electric field on the crystal, it will push the plus
charge one way and the minus charge the other way! So, by having an external
electric field we can perhaps get the crystal to oscillate. The frequency of the
electric field needed is so high, however, that it corresponds to infrared radiation!
So we try to find a resonance curve by measuring the absorption of infrared light
by sodium chloride. Such a curve is shown in Fig. 23-7. The abscissa is not
frequency, but is given in terms of wavelength, but that is just a technical matter,
of course, since for a wave there is a definite relation between frequency and
wavelength; so it is really a frequency scale, and a certain frequency corresponds
to the resonant frequency.

But what about the width? What determines the width? There are many
cases in which the width that is seen on the curve is not really the natural width γ
that one would have theoretically. There are two reasons why there can be a
wider curve than the theoretical curve. If the objects do not all have the same
frequency, as might happen if the crystal were strained in certain regions, so that
in those regions the oscillation frequency were slightly different than in other
regions, then what we have is many resonance curves on top of each other; so we
apparently get a wider curve. The other kind of width is simply this: perhaps
we cannot measure the frequency precisely enough—if we open the slit of the
spectrometer fairly wide, so although we thought we had only one frequency,
we actually had a certain range ∆ω, then we may not have the resolving power
needed to see a narrow curve. Offhand, we cannot say whether the width in
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Fig. 23-7. Transmission of infrared radiation through a thin (0.17 µ)
sodium chloride film. [After R. B. Barnes, Z. Physik 75, 723 (1932).
Kittel, Introduction to Solid State Physics, Wiley, 1956.]

Fig. 23-7 is natural, or whether it is due to inhomogeneities in the crystal or the
finite width of the slit of the spectrometer.

Now we turn to a more esoteric example, and that is the swinging of a magnet.
If we have a magnet, with north and south poles, in a constant magnetic field,
the N end of the magnet will be pulled one way and the S end the other way, and
there will in general be a torque on it, so it will vibrate about its equilibrium
position, like a compass needle. However, the magnets we are talking about are
atoms. These atoms have an angular momentum, the torque does not produce a
simple motion in the direction of the field, but instead, of course, a precession.
Now, looked at from the side, any one component is “swinging,” and we can
disturb or drive that swinging and measure an absorption. The curve in Fig. 23-8
represents a typical such resonance curve. What has been done here is slightly
different technically. The frequency of the lateral field that is used to drive
this swinging is always kept the same, while we would have expected that the
investigators would vary that and plot the curve. They could have done it that
way, but technically it was easier for them to leave the frequency ω fixed, and
change the strength of the constant magnetic field, which corresponds to changing
ω0 in our formula. They have plotted the resonance curve against ω0. Anyway,
this is a typical resonance with a certain ω0 and γ.

Now we go still further. Our next example has to do with atomic nuclei. The
motions of protons and neutrons in nuclei are oscillatory in certain ways, and we
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Fig. 23-8. Magnetic energy loss in paramagnetic organic compound
as function of applied magnetic field intensity. [Holden et al., Phys.
Rev. 75, 1614 (1949)]

can demonstrate this by the following experiment. We bombard a lithium atom
with protons, and we discover that a certain reaction, producing γ-rays, actually
has a very sharp maximum typical of resonance. We note in Fig. 23-9, however,
one difference from other cases: the horizontal scale is not a frequency, it is an
energy! The reason is that in quantum mechanics what we think of classically as
the energy will turn out to be really related to a frequency of a wave amplitude.
When we analyze something which in simple large-scale physics has to do with a
frequency, we find that when we do quantum-mechanical experiments with atomic
matter, we get the corresponding curve as a function of energy. In fact, this
curve is a demonstration of this relationship, in a sense. It shows that frequency
and energy have some deep interrelationship, which of course they do.

Now we turn to another example which also involves a nuclear energy level,
but now a much, much narrower one. The ω0 in Fig. 23-10 corresponds to an
energy of 100,000 electron volts, while the width γ is approximately 10−5 electron
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volt; in other words, this has a Q of 1010! When this curve was measured it was
the largest Q of any oscillator that had ever been measured. It was measured by
Dr. Mössbauer, and it was the basis of his Nobel prize. The horizontal scale here
is velocity, because the technique for obtaining the slightly different frequencies
was to use the Doppler effect, by moving the source relative to the absorber. One
can see how delicate the experiment is when we realize that the speed involved is
a few centimeters per second! On the actual scale of the figure, zero frequency
would correspond to a point about 1010 cm to the left—slightly off the paper!
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(a)
K−+p→ Λ+π++π−

(b)
K−+p→ K0+n

Fig. 23-11. Momentum dependence of the cross section for the
reactions (a) K− + p → Λ + π+ + π− and (b) K− + p → K0 + n.
The lower curves in (a) and (b) represent the presumed nonresonant
backgrounds, while the upper curves contain in addition the superposed
resonance. [Ferro-Luzzi et al., Phys. Rev. Lett. 8, 28 (1962)]

Finally, if we look in an issue of the Physical Review, say that of January 1,
1962, will we find a resonance curve? Every issue has a resonance curve, and
Fig. 23-11 is the resonance curve for this one. This resonance curve turns out to
be very interesting. It is the resonance found in a certain reaction among strange
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particles, a reaction in which a K− and a proton interact. The resonance is
detected by seeing how many of some kinds of particles come out, and depending
on what and how many come out, one gets different curves, but of the same
shape and with the peak at the same energy. We thus determine that there is a
resonance at a certain energy for the K− meson. That presumably means that
there is some kind of a state, or condition, corresponding to this resonance, which
can be attained by putting together a K− and a proton. This is a new particle,
or resonance. Today we do not know whether to call a bump like this a “particle”
or simply a resonance. When there is a very sharp resonance, it corresponds to a
very definite energy, just as though there were a particle of that energy present
in nature. When the resonance gets wider, then we do not know whether to
say there is a particle which does not last very long, or simply a resonance in
the reaction probability. In the second chapter, this point is made about the
particles, but when the second chapter was written this resonance was not known,
so our chart should now have still another particle in it!
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24

Transients

24-1 The energy of an oscillator

Although this chapter is entitled “transients,” certain parts of it are, in a
way, part of the last chapter on forced oscillation. One of the features of a forced
oscillation which we have not yet discussed is the energy in the oscillation. Let
us now consider that energy.

In a mechanical oscillator, how much kinetic energy is there? It is proportional
to the square of the velocity. Now we come to an important point. Consider an
arbitrary quantity A, which may be the velocity or something else that we want
to discuss. When we write A = Âeiωt, a complex number, the true and honest
A, in the physical world, is only the real part; therefore if, for some reason, we
want to use the square of A, it is not right to square the complex number and
then take the real part, because the real part of the square of a complex number
is not just the square of the real part, but also involves the imaginary part. So
when we wish to find the energy we have to get away from the complex notation
for a while to see what the inner workings are.

Now the true physical A is the real part of A0e
i(ωt+∆), that is, A = A0 cos (ωt+

∆), where Â, the complex number, is written as A0e
i∆. Now the square of this

real physical quantity is A2 = A2
0 cos2 (ωt+ ∆). The square of the quantity, then,

goes up and down from a maximum to zero, like the square of the cosine. The
square of the cosine has a maximum of 1 and a minimum of 0, and its average
value is 1/2.

In many circumstances we are not interested in the energy at any specific
moment during the oscillation; for a large number of applications we merely
want the average of A2, the mean of the square of A over a period of time large
compared with the period of oscillation. In those circumstances, the average
of the cosine squared may be used, so we have the following theorem: if A is
represented by a complex number, then the mean of A2 is equal to 1

2A
2
0. Now A2

0
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is the square of the magnitude of the complex Â. (This can be written in many
ways—some people like to write |Â|2; others write, ÂÂ∗, Â times its complex
conjugate.) We shall use this theorem several times.

Now let us consider the energy in a forced oscillator. The equation for the
forced oscillator is

md2x/dt2 + γmdx/dt+mω2
0x = F (t). (24.1)

In our problem, of course, F (t) is a cosine function of t. Now let us analyze the
situation: how much work is done by the outside force F ? The work done by the
force per second, i.e., the power, is the force times the velocity. (We know that
the differential work in a time dt is F dx, and the power is F dx/dt.) Thus

P = F
dx

dt
= m

[(
dx

dt

)(
d2x

dt2

)
+ ω2

0x

(
dx

dt

)]
+ γm

(
dx

dt

)2
. (24.2)

But the first two terms on the right can also be written as d/dt[ 1
2m(dx/dt)2 +

1
2mω

2
0x

2], as is immediately verified by differentiating. That is to say, the term in
brackets is a pure derivative of two terms that are easy to understand—one is the
kinetic energy of motion, and the other is the potential energy of the spring. Let
us call this quantity the stored energy, that is, the energy stored in the oscillation.
Suppose that we want the average power over many cycles when the oscillator is
being forced and has been running for a long time. In the long run, the stored
energy does not change—its derivative gives zero average effect. In other words,
if we average the power in the long run, all the energy ultimately ends up in the
resistive term γm(dx/dt)2. There is some energy stored in the oscillation, but
that does not change with time, if we average over many cycles. Therefore the
mean power 〈P 〉 is

〈P 〉 = 〈γm(dx/dt)2〉. (24.3)

Using our method of writing complex numbers, and our theorem that 〈A2〉 =
1
2A

2
0, we may find this mean power. Thus if x = x̂eiωt, then dx/dt = iωx̂eiωt.

Therefore, in these circumstances, the average power could be written as

〈P 〉 = 1
2γmω

2x2
0. (24.4)

In the notation for electrical circuits, dx/dt is replaced by the current I (I is
dq/dt, where q corresponds to x), and mγ corresponds to the resistance R. Thus
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the rate of the energy loss—the power used up by the forcing function—is the
resistance in the circuit times the average square of the current:

〈P 〉 = R〈I2〉 = R · 1
2I

2
0 . (24.5)

This energy, of course, goes into heating the resistor; it is sometimes called the
heating loss or the Joule heating.

Another interesting feature to discuss is how much energy is stored. That is
not the same as the power, because although power was at first used to store up
some energy, after that the system keeps on absorbing power, insofar as there
are any heating (resistive) losses. At any moment there is a certain amount of
stored energy, so we would like to calculate the mean stored energy 〈E〉 also. We
have already calculated what the average of (dx/dt)2 is, so we find

〈E〉 = 1
2m〈(dx/dt)

2〉+ 1
2mω

2
0〈x2〉

= 1
2m(ω2 + ω2

0) 1
2x

2
0.

(24.6)

Now, when an oscillator is very efficient, and if ω is near ω0, so that |x̂| is large,
the stored energy is very high—we can get a large stored energy from a relatively
small force. The force does a great deal of work in getting the oscillation going,
but then to keep it steady, all it has to do is to fight the friction. The oscillator
can have a great deal of energy if the friction is very low, and even though it is
oscillating strongly, not much energy is being lost. The efficiency of an oscillator
can be measured by how much energy is stored, compared with how much work
the force does per oscillation.

How does the stored energy compare with the amount of work that is done in
one cycle? This is called the Q of the system, and Q is defined as 2π times the
mean stored energy, divided by the work done per cycle. (If we were to say the
work done per radian instead of per cycle, then the 2π disappears.)

Q = 2π
1
2m(ω2 + ω2

0) · 〈x2〉
γmω2〈x2〉 · 2π/ω = ω2 + ω2

0
2γω . (24.7)

Q is not a very useful number unless it is very large. When it is relatively large,
it gives a measure of how good the oscillator is. People have tried to define Q
in the simplest and most useful way; various definitions differ a bit from one
another, but if Q is very large, all definitions are in agreement. The most generally
accepted definition is Eq. (24.7), which depends on ω. For a good oscillator, close
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to resonance, we can simplify (24.7) a little by setting ω = ω0, and we then have
Q = ω0/γ, which is the definition of Q that we used before.

What is Q for an electrical circuit? To find out, we merely have to translate
L for m, R for mγ, and 1/C for mω2

0 (see Table 23-1). The Q at resonance is
Lω/R, where ω is the resonance frequency. If we consider a circuit with a high
Q, that means that the amount of energy stored in the oscillation is very large
compared with the amount of work done per cycle by the machinery that drives
the oscillations.

24-2 Damped oscillations

We now turn to our main topic of discussion: transients. By a transient is
meant a solution of the differential equation when there is no force present, but
when the system is not simply at rest. (Of course, if it is standing still at the
origin with no force acting, that is a nice problem—it stays there!) Suppose the
oscillation starts another way: say it was driven by a force for a while, and then
we turn off the force. What happens then? Let us first get a rough idea of what
will happen for a very high Q system. So long as a force is acting, the stored
energy stays the same, and there is a certain amount of work done to maintain
it. Now suppose we turn off the force, and no more work is being done; then the
losses which are eating up the energy of the supply are no longer eating up its
energy—there is no more driver. The losses will have to consume, so to speak,
the energy that is stored. Let us suppose that Q/2π = 1000. Then the work
done per cycle is 1/1000 of the stored energy. Is it not reasonable, since it is
oscillating with no driving force, that in one cycle the system will still lose a
thousandth of its energy E, which ordinarily would have been supplied from the
outside, and that it will continue oscillating, always losing 1/1000 of its energy
per cycle? So, as a guess, for a relatively high Q system, we would suppose that
the following equation might be roughly right (we will later do it exactly, and it
will turn out that it was right!):

dE/dt = −ωE/Q. (24.8)

This is rough because it is true only for large Q. In each radian the system loses a
fraction 1/Q of the stored energy E. Thus in a given amount of time dt the energy
will change by an amount ω dt/Q, since the number of radians associated with
the time dt is ω dt. What is the frequency? Let us suppose that the system moves
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so nicely, with hardly any force, that if we let go it will oscillate at essentially the
same frequency all by itself. So we will guess that ω is the resonant frequency ω0.
Then we deduce from Eq. (24.8) that the stored energy will vary as

E = E0e
−ω0t/Q = E0e

−γt. (24.9)

This would be the measure of the energy at any moment. What would the
formula be, roughly, for the amplitude of the oscillation as a function of the
time? The same? No! The amount of energy in a spring, say, goes as the square
of the displacement; the kinetic energy goes as the square of the velocity; so
the total energy goes as the square of the displacement. Thus the displacement,
the amplitude of oscillation, will decrease half as fast because of the square. In
other words, we guess that the solution for the damped transient motion will
be an oscillation of frequency close to the resonance frequency ω0, in which the
amplitude of the sine-wave motion will diminish as e−γt/2:

x = A0e
−γt/2 cosω0t. (24.10)

This equation and Fig. 24-1 give us an idea of what we should expect; now let
us try to analyze the motion precisely by solving the differential equation of the
motion itself.

x

t

e−γt/2

e−γt/2 cosω0t

Fig. 24-1. A damped cosine oscillation.

So, starting with Eq. (24.1), with no outside force, how do we solve it? Being
physicists, we do not have to worry about the method as much as we do about
what the solution is. Armed with our previous experience, let us try as a solution
an exponential curve, x = Aeiαt. (Why do we try this? It is the easiest thing to
differentiate!) We put this into (24.1) (with F (t) = 0), using the rule that each
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time we differentiate x with respect to time, we multiply by iα. So it is really
quite simple to substitute. Thus our equation looks like this:

(−α2 + iγα+ ω2
0)Aeiαt = 0. (24.11)

The net result must be zero for all times, which is impossible unless (a) A = 0,
which is no solution at all—it stands still, or (b)

− α2 + iαγ + ω2
0 = 0. (24.12)

If we can solve this and find an α, then we will have a solution in which A need
not be zero!

α = iγ/2±
√
ω2

0 − γ2/4. (24.13)

For a while we shall assume that γ is fairly small compared with ω0, so that
ω2

0 − γ2/4 is definitely positive, and there is nothing the matter with taking the
square root. The only bothersome thing is that we get two solutions! Thus

α1 = iγ/2 +
√
ω2

0 − γ2/4 = iγ/2 + ωγ (24.14)
and

α2 = iγ/2−
√
ω2

0 − γ2/4 = iγ/2− ωγ . (24.15)

Let us consider the first one, supposing that we had not noticed that the square
root has two possible values. Then we know that a solution for x is x1 = Aeiα1t,
where A is any constant whatever. Now, in substituting α1, because it is going to
come so many times and it takes so long to write, we shall call

√
ω2

0 − γ2/4 = ωγ .
Thus iα1 = −γ/2 + iωγ , and we get x = Ae(−γ/2+iωγ)t, or what is the same,
because of the wonderful properties of an exponential,

x1 = Ae−γt/2eiωγt. (24.16)

First, we recognize this as an oscillation, an oscillation at a frequency ωγ , which
is not exactly the frequency ω0, but is rather close to ω0 if it is a good system.
Second, the amplitude of the oscillation is decreasing exponentially! If we take,
for instance, the real part of (24.16), we get

x1 = Ae−γt/2 cosωγt. (24.17)
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This is very much like our guessed-at solution (24.10), except that the frequency
really is ωγ . This is the only error, so it is the same thing—we have the right
idea. But everything is not all right! What is not all right is that there is another
solution.

The other solution is α2, and we see that the difference is only that the sign
of ωγ is reversed:

x2 = Be−γt/2e−iωγt. (24.18)
What does this mean? We shall soon prove that if x1 and x2 are each a possible
solution of Eq. (24.1) with F = 0, then x1 + x2 is also a solution of the same
equation! So the general solution x is of the mathematical form

x = e−γt/2(Aeiωγt +Be−iωγt). (24.19)

Now we may wonder why we bother to give this other solution, since we were
so happy with the first one all by itself. What is the extra one for, because
of course we know we should only take the real part? We know that we must
take the real part, but how did the mathematics know that we only wanted the
real part? When we had a nonzero driving force F (t), we put in an artificial
force to go with it, and the imaginary part of the equation, so to speak, was
driven in a definite way. But when we put F (t) ≡ 0, our convention that x
should be only the real part of whatever we write down is purely our own, and
the mathematical equations do not know it yet. The physical world has a real
solution, but the answer that we were so happy with before is not real, it is
complex. The equation does not know that we are arbitrarily going to take the
real part, so it has to present us, so to speak, with a complex conjugate type of
solution, so that by putting them together we can make a truly real solution;
that is what α2 is doing for us. In order for x to be real, Be−ωγt will have to be
the complex conjugate of Aeωγt that the imaginary parts disappear. So it turns
out that B is the complex conjugate of A, and our real solution is

x = e−γt/2(Aeiωγt +A∗e−iωγt). (24.20)

So our real solution is an oscillation with a phase shift and a damping—just as
advertised.

24-3 Electrical transients

Now let us see if the above really works. We construct the electrical circuit
shown in Fig. 24-2, in which we apply to an oscilloscope the voltage across the
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Fig. 24-2. An electrical circuit for demonstrating transients.

inductance L after we suddenly turn on a voltage by closing the switch S. It is an
oscillatory circuit, and it generates a transient of some kind. It corresponds to a
circumstance in which we suddenly apply a force and the system starts to oscillate.
It is the electrical analog of a damped mechanical oscillator, and we watch the
oscillation on an oscilloscope, where we should see the curves that we were trying
to analyze. (The horizontal motion of the oscilloscope is driven at a uniform speed,
while the vertical motion is the voltage across the inductor. The rest of the circuit
is only a technical detail. We would like to repeat the experiment many, many
times, since the persistence of vision is not good enough to see only one trace
on the screen. So we do the experiment again and again by closing the switch
60 times a second; each time we close the switch, we also start the oscilloscope
horizontal sweep, and it draws the curve over and over.) In Figs. 24-3 to 24-6 we
see examples of damped oscillations, actually photographed on an oscilloscope
screen. Figure 24-3 shows a damped oscillation in a circuit which has a high Q, a
small γ. It does not die out very fast; it oscillates many times on the way down.

But let us see what happens as we decrease Q, so that the oscillation dies out
more rapidly. We can decrease Q by increasing the resistance R in the circuit.
When we increase the resistance in the circuit, it dies out faster (Fig. 24-4).
Then if we increase the resistance in the circuit still more, it dies out faster still
(Fig. 24-5). But when we put in more than a certain amount, we cannot see any
oscillation at all! The question is, is this because our eyes are not good enough?
If we increase the resistance still more, we get a curve like that of Fig. 24-6, which
does not appear to have any oscillations, except perhaps one. Now, how can we
explain that by mathematics?

The resistance is, of course, proportional to the γ term in the mechanical
device. Specifically, γ is R/L. Now if we increase the γ in the solutions (24.14)
and (24.15) that we were so happy with before, chaos sets in when γ/2 exceeds
ω0; we must write it a different way, as

iγ/2 + i
√
γ2/4− ω2

0 and iγ/2− i
√
γ2/4− ω2

0 .
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Figure 24-3

Figure 24-4

Figure 24-5

Figure 24-6
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Those are now the two solutions and, following the same line of mathematical
reasoning as previously, we again find two solutions: eiα1t and eiα2t. If we now
substitute for α1, we get

x = Ae−(γ/2+
√
γ2/4−ω2

0)t,

a nice exponential decay with no oscillations. Likewise, the other solution is

x = Be−(γ/2−
√
γ2/4−ω2

0)t.

Note that the square root cannot exceed γ/2, because even if ω0 = 0, one term
just equals the other. But ω2

0 is taken away from γ2/4, so the square root is less
than γ/2, and the term in parentheses is, therefore, always a positive number.
Thank goodness! Why? Because if it were negative, we would find e raised to a
positive factor times t, which would mean it was exploding! In putting more and
more resistance into the circuit, we know it is not going to explode—quite the
contrary. So now we have two solutions, each one by itself a dying exponential,
but one having a much faster “dying rate” than the other. The general solution is
of course a combination of the two; the coefficients in the combination depending
upon how the motion starts—what the initial conditions of the problem are. In
the particular way this circuit happens to be starting, the A is negative and the
B is positive, so we get the difference of two exponential curves.

Now let us discuss how we can find the two coefficients A and B (or A and A∗),
if we know how the motion was started.

Suppose that at t = 0 we know that x = x0, and dx/dt = v0. If we put t = 0,
x = x0, and dx/dt = v0 into the expressions

x = e−γt/2(Aeiωγt +A∗e−iωγt),
dx/dt = e−γt/2[(−γ/2 + iωγ)Aeiωγt + (−γ/2− iωγ)A∗e−iωγt],

we find, since e0 = ei0 = 1,

x0 = A+A∗ = 2AR,
v0 = −(γ/2)(A+A∗) + iωγ(A−A∗)

= −γx0/2 + iωγ(2iAI),

where A = AR + iAI , and A∗ = AR − iAI . Thus we find

AR = x0/2
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and
AI = −(v0 + γx0/2)/2ωγ . (24.21)

This completely determines A and A∗, and therefore the complete curve of the
transient solution, in terms of how it begins. Incidentally, we can write the
solution another way if we note that

eiθ + e−iθ = 2 cos θ and eiθ − e−iθ = 2i sin θ.

We may then write the complete solution as

x = e−γt/2
[
x0 cosωγt+ v0 + γx0/2

ωγ
sinωγt

]
, (24.22)

where ωγ = +
√
ω2

0 − γ2/4. This is the mathematical expression for the way an
oscillation dies out. We shall not make direct use of it, but there are a number
of points we should like to emphasize that are true in more general cases.

First of all the behavior of such a system with no external force is expressed by a
sum, or superposition, of pure exponentials in time (which we wrote as eiαt). This
is a good solution to try in such circumstances. The values of α may be complex
in general, the imaginary parts representing damping. Finally the intimate
mathematical relation of the sinusoidal and exponential function discussed in
Chapter 22 often appears physically as a change from oscillatory to exponential
behavior when some physical parameter (in this case resistance, γ) exceeds some
critical value.
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25

Linear Systems and Review

25-1 Linear differential equations

In this chapter we shall discuss certain aspects of oscillating systems that are
found somewhat more generally than just in the particular systems we have been
discussing. For our particular system, the differential equation that we have been
solving is

m
d2x

dt2
+ γm

dx

dt
+mω2

0x = F (t). (25.1)

Now this particular combination of “operations” on the variable x has the
interesting property that if we substitute (x+y) for x, then we get the sum of the
same operations on x and y; or, if we multiply x by a, then we get just a times
the same combination. This is easy to prove. Just as a “shorthand” notation,
because we get tired of writing down all those letters in (25.1), we shall use the
symbol L(x) instead. When we see this, it means the left-hand side of (25.1),
with x substituted in. With this system of writing, L(x + y) would mean the
following:

L(x+ y) = m
d2(x+ y)

dt2
+ γm

d(x+ y)
dt

+mω2
0(x+ y). (25.2)

(We underline the L so as to remind ourselves that it is not an ordinary function.)
We sometimes call this an operator notation, but it makes no difference what we
call it, it is just “shorthand.”

Our first statement was that

L(x+ y) = L(x) + L(y), (25.3)

which of course follows from the fact that a(x + y) = ax + ay, d(x + y)/dt =
dx/dt+ dy/dt, etc.

25-1



Our second statement was, for constant a,

L(ax) = aL(x). (25.4)

[Actually, (25.3) and (25.4) are very closely related, because if we put x + x
into (25.3), this is the same as setting a = 2 in (25.4), and so on.]

In more complicated problems, there may be more derivatives, and more
terms in L; the question of interest is whether the two equations (25.3) and (25.4)
are maintained or not. If they are, we call such a problem a linear problem. In
this chapter we shall discuss some of the properties that exist because the system
is linear, to appreciate the generality of some of the results that we have obtained
in our special analysis of a special equation.

Now let us study some of the properties of linear differential equations, having
illustrated them already with the specific equation (25.1) that we have studied
so closely. The first property of interest is this: suppose that we have to solve
the differential equation for a transient, the free oscillation with no driving force.
That is, we want to solve

L(x) = 0. (25.5)
Suppose that, by some hook or crook, we have found a particular solution, which
we shall call x1. That is, we have an x1 for which L(x1) = 0. Now we notice
that ax1, is also a solution to the same equation; we can multiply this special
solution by any constant whatever, and get a new solution. In other words, if we
had a motion of a certain “size,” then a motion twice as “big” is again a solution.
Proof: L(ax1) = aL(x1) = a · 0 = 0.

Next, suppose that, by hook or by crook, we have not only found one solu-
tion x1, but also another solution, x2. (Remember that when we substituted
x = eiαt for finding the transients, we found two values for α, that is, two solutions,
x1 and x2.) Now let us show that the combination (x1 + x2) is also a solution. In
other words, if we put x = x1 + x2, x is again a solution of the equation. Why?
Because, if L(x1) = 0 and L(x2) = 0, then L(x1+x2) = L(x1)+L(x2) = 0+0 = 0.
So if we have found a number of solutions for the motion of a linear system we
can add them together.

Combining these two ideas, we see, of course, that we can also add six of
one and two of the other: if x1 is a solution, so is αx1. Therefore any sum of
these two solutions, such as (αx1 + βx2), is also a solution. If we happen to
be able to find three solutions, then we find that any combination of the three
solutions is again a solution, and so on. It turns out that the number of what
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we call independent solutions* that we have obtained for our oscillator problem
is only two. The number of independent solutions that one finds in the general
case depends upon what is called the number of degrees of freedom. We shall
not discuss this in detail now, but if we have a second-order differential equation,
there are only two independent solutions, and we have found both of them; so
we have the most general solution.

Now let us go on to another proposition, which applies to the situation in
which the system is subjected to an outside force. Suppose the equation is

L(x) = F (t), (25.6)

and suppose that we have found a special solution of it. Let us say that Joe’s
solution is xJ , and that L(xJ) = F (t). Suppose we want to find yet another
solution; suppose we add to Joe’s solution one of those that was a solution of the
free equation (25.5), say x1. Then we see by (25.3) that

L(xJ + x1) = L(xJ) + L(x1) = F (t) + 0 = F (t). (25.7)

Therefore, to the “forced” solution we can add any “free” solution, and we still
have a solution. The free solution is called a transient solution.

When we have no force acting, and suddenly turn one on, we do not imme-
diately get the steady solution that we solved for with the sine wave solution,
but for a while there is a transient which sooner or later dies out, if we wait long
enough. The “forced” solution does not die out, since it keeps on being driven
by the force. Ultimately, for long periods of time, the solution is unique, but
initially the motions are different for different circumstances, depending on how
the system was started.

25-2 Superposition of solutions

Now we come to another interesting proposition. Suppose that we have a
certain particular driving force Fa (let us say an oscillatory one with a certain
ω = ωa, but our conclusions will be true for any functional form of Fa) and we
have solved for the forced motion (with or without the transients; it makes no
difference). Now suppose some other force is acting, let us say Fb, and we solve

* Solutions which cannot be expressed as linear combinations of each other are called
independent.
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the same problem, but for this different force. Then suppose someone comes
along and says, “I have a new problem for you to solve; I have the force Fa +Fb.”
Can we do it? Of course we can do it, because the solution is the sum of the
two solutions xa and xb for the forces taken separately—a most remarkable
circumstance indeed. If we use (25.3), we see that

L(xa + xb) = L(xa) + L(xb) = Fa(t) + Fb(t). (25.8)

This is an example of what is called the principle of superposition for linear
systems, and it is very important. It means the following: if we have a complicated
force which can be broken up in any convenient manner into a sum of separate
pieces, each of which is in some way simple, in the sense that for each special
piece into which we have divided the force we can solve the equation, then the
answer is available for the whole force, because we may simply add the pieces of
the solution back together, in the same manner as the total force is compounded
out of pieces (Fig. 25-1).

Fa + Fb

Fa

Fb

xa + xb

xa

xb

Fig. 25-1. An example of the principle of superposition for linear
systems.
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Let us give another example of the principle of superposition. In Chapter 12
we said that it was one of the great facts of the laws of electricity that if we have
a certain distribution of charges qa and calculate the electric field Ea arising from
these charges at a certain place P , and if, on the other hand, we have another
set of charges qb and we calculate the field Eb due to these at the corresponding
place, then if both charge distributions are present at the same time, the field E
at P is the sum of Ea due to one set plus Eb due to the other. In other words,
if we know the field due to a certain charge, then the field due to many charges
is merely the vector sum of the fields of these charges taken individually. This
is exactly analogous to the above proposition that if we know the result of two
given forces taken at one time, then if the force is considered as a sum of them,
the response is a sum of the corresponding individual responses.

Ea
Eb

E

qa

qb

Fig. 25-2. The principle of superposition in electrostatics.

The reason why this is true in electricity is that the great laws of electricity,
Maxwell’s equations, which determine the electric field, turn out to be differential
equations which are linear, i.e., which have the property (25.3). What corresponds
to the force is the charge generating the electric field, and the equation which
determines the electric field in terms of the charge is linear.

As another interesting example of this proposition, let us ask how it is possible
to “tune in” to a particular radio station at the same time as all the radio stations
are broadcasting. The radio station transmits, fundamentally, an oscillating
electric field of very high frequency which acts on our radio antenna. It is true
that the amplitude of the oscillation of the field is changed, modulated, to carry
the signal of the voice, but that is very slow, and we are not going to worry about
it. When one hears “This station is broadcasting at a frequency of 780 kilocycles,”
this indicates that 780,000 oscillations per second is the frequency of the electric
field of the station antenna, and this drives the electrons up and down at that
frequency in our antenna. Now at the same time we may have another radio
station in the same town radiating at a different frequency, say 550 kilocycles per
second; then the electrons in our antenna are also being driven by that frequency.
Now the question is, how is it that we can separate the signals coming into the
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one radio at 780 kilocycles from those coming in at 550 kilocycles? We certainly
do not hear both stations at the same time.

By the principle of superposition, the response of the electric circuit in the
radio, the first part of which is a linear circuit, to the forces that are acting due
to the electric field Fa +Fb, is xa + xb. It therefore looks as though we will never
disentangle them. In fact, the very proposition of superposition seems to insist
that we cannot avoid having both of them in our system. But remember, for a
resonant circuit, the response curve, the amount of x per unit F , as a function of
the frequency, looks like Fig. 25-3. If it were a very high Q circuit, the response
would show a very sharp maximum. Now suppose that the two stations are
comparable in strength, that is, the two forces are of the same magnitude. The
response that we get is the sum of xa and xb. But, in Fig. 25-3, xa is tremendous,
while xb is small. So, in spite of the fact that the two signals are equal in strength,
when they go through the sharp resonant circuit of the radio tuned for ωa, the
frequency of the transmission of one station, then the response to this station
is much greater than to the other. Therefore the complete response, with both
signals acting, is almost all made up of ωa, and we have selected the station we
want.

ωωb ωc ωa

|x |

xb

xa

Fig. 25-3. A sharply tuned resonance curve.

Now what about the tuning? How do we tune it? We change ω0 by changing
the L or the C of the circuit, because the frequency of the circuit has to do with
the combination of L and C. In particular, most radios are built so that one can
change the capacitance. When we retune the radio, we can make a new setting
of the dial, so that the natural frequency of the circuit is shifted, say, to ωc. In
those circumstances we hear neither one station nor the other; we get silence,
provided there is no other station at frequency ωc. If we keep on changing the
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capacitance until the resonance curve is at ωb, then of course we hear the other
station. That is how radio tuning works; it is again the principle of superposition,
combined with a resonant response.*

To conclude this discussion, let us describe qualitatively what happens if we
proceed further in analyzing a linear problem with a given force, when the force is
quite complicated. Out of the many possible procedures, there are two especially
useful general ways that we can solve the problem. One is this: suppose that we
can solve it for special known forces, such as sine waves of different frequencies.
We know it is child’s play to solve it for sine waves. So we have the so-called
“child’s play” cases. Now the question is whether our very complicated force
can be represented as the sum of two or more “child’s play” forces. In Fig. 25-1
we already had a fairly complicated curve, and of course we can make it more
complicated still if we add in more sine waves. So it is certainly possible to
obtain very complicated curves. And, in fact, the reverse is also true: practically
every curve can be obtained by adding together infinite numbers of sine waves of
different wavelengths (or frequencies) for each one of which we know the answer.
We just have to know how much of each sine wave to put in to make the given F ,
and then our answer, x, is the corresponding sum of the F sine waves, each
multiplied by its effective ratio of x to F . This method of solution is called
the method of Fourier transforms or Fourier analysis. We are not going to
actually carry out such an analysis just now; we only wish to describe the idea
involved.

Another way in which our complicated problem can be solved is the following
very interesting one. Suppose that, by some tremendous mental effort, it were
possible to solve our problem for a special force, namely an impulse. The force is
quickly turned on and then off; it is all over. Actually we need only solve for an
impulse of some unit strength, any other strength can be gotten by multiplication
by an appropriate factor. We know that the response x for an impulse is a
damped oscillation. Now what can we say about some other force, for instance a
force like that of Fig. 25-4?

Such a force can be likened to a succession of blows with a hammer. First there
is no force, and all of a sudden there is a steady force—impulse, impulse, impulse,

* In modern superheterodyne receivers the actual operation is more complex. The amplifiers
are all tuned to a fixed frequency (called IF frequency) and an oscillator of variable tunable
frequency is combined with the input signal in a nonlinear circuit to produce a new frequency
(the difference of signal and oscillator frequency) equal to the IF frequency, which is then
amplified. This will be discussed in Chapter 50.
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F

Fig. 25-4. A complicated force may be treated as a succession of
sharp impulses.

impulse, . . . and then it stops. In other words, we imagine the continuous force
to be a series of impulses, very close together. Now, we know the result for an
impulse, so the result for a whole series of impulses will be a whole series of
damped oscillations: it will be the curve for the first impulse, and then (slightly
later) we add to that the curve for the second impulse, and the curve for the
third impulse, and so on. Thus we can represent, mathematically, the complete
solution for arbitrary functions if we know the answer for an impulse. We get
the answer for any other force simply by integrating. This method is called the
Green’s function method. A Green’s function is a response to an impulse, and
the method of analyzing any force by putting together the response of impulses
is called the Green’s function method.

The physical principles involved in both of these schemes are so simple,
involving just the linear equation, that they can be readily understood, but the
mathematical problems that are involved, the complicated integrations and so on,
are a little too advanced for us to attack right now. You will most likely return
to this some day when you have had more practice in mathematics. But the idea
is very simple indeed.

Finally, we make some remarks on why linear systems are so important. The
answer is simple: because we can solve them! So most of the time we solve linear
problems. Second (and most important), it turns out that the fundamental laws
of physics are often linear. The Maxwell equations for the laws of electricity are
linear, for example. The great laws of quantum mechanics turn out, so far as
we know, to be linear equations. That is why we spend so much time on linear
equations: because if we understand linear equations, we are ready, in principle,
to understand a lot of things.

We mention another situation where linear equations are found. When
displacements are small, many functions can be approximated linearly. For
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example, if we have a simple pendulum, the correct equation for its motion is

d2θ/dt2 = −(g/L) sin θ. (25.9)

This equation can be solved by elliptic functions, but the easiest way to solve it is
numerically, as was shown in Chapter 9 on Newton’s Laws of Motion. A nonlinear
equation cannot be solved, ordinarily, any other way but numerically. Now for
small θ, sin θ is practically equal to θ, and we have a linear equation. It turns
out that there are many circumstances where small effects are linear: for the
example here the swing of a pendulum through small arcs. As another example,
if we pull a little bit on a spring, the force is proportional to the extension. If we
pull hard, we break the spring, and the force is a completely different function of
the distance! Linear equations are important. In fact they are so important that
perhaps fifty percent of the time we are solving linear equations in physics and
in engineering.

25-3 Oscillations in linear systems

Let us now review the things we have been talking about in the past few
chapters. It is very easy for the physics of oscillators to become obscured by
the mathematics. The physics is actually very simple, and if we may forget the
mathematics for a moment we shall see that we can understand almost everything
that happens in an oscillating system. First, if we have only the spring and the
weight, it is easy to understand why the system oscillates—it is a consequence
of inertia. We pull the mass down and the force pulls it back up; as it passes
zero, which is the place it likes to be, it cannot just suddenly stop; because of its
momentum it keeps on going and swings to the other side, and back and forth.
So, if there were no friction, we would surely expect an oscillatory motion, and
indeed we get one. But if there is even a little bit of friction, then on the return
cycle, the swing will not be quite as high as it was the first time.

Now what happens, cycle by cycle? That depends on the kind and amount
of friction. Suppose that we could concoct a kind of friction force that always
remains in the same proportion to the other forces, of inertia and in the spring,
as the amplitude of oscillation varies. In other words, for smaller oscillations
the friction should be weaker than for big oscillations. Ordinary friction does
not have this property, so a special kind of friction must be carefully invented
for the very purpose of creating a friction that is directly proportional to the
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velocity—so that for big oscillations it is stronger and for small oscillations it
is weaker. If we happen to have that kind of friction, then at the end of each
successive cycle the system is in the same condition as it was at the start, except
a little bit smaller. All the forces are smaller in the same proportion: the spring
force is reduced, the inertial effects are lower because the accelerations are now
weaker, and the friction is less too, by our careful design. When we actually
have that kind of friction, we find that each oscillation is exactly the same as the
first one, except reduced in amplitude. If the first cycle dropped the amplitude,
say, to 90 percent of what it was at the start, the next will drop it to 90 percent
of 90 percent, and so on: the sizes of the oscillations are reduced by the same
fraction of themselves in every cycle. An exponential function is a curve which
does just that. It changes by the same factor in each equal interval of time. That
is to say, if the amplitude of one cycle, relative to the preceding one, is called a,
then the amplitude of the next is a2, and of the next, a3. So the amplitude is
some constant raised to a power equal to the number of cycles traversed:

A = A0a
n. (25.10)

But of course n ∝ t, so it is perfectly clear that the general solution will be some
kind of an oscillation, sine or cosine ωt, times an amplitude which goes as bt
more or less. But b can be written as e−c, if b is positive and less than 1. So this
is why the solution looks like e−ct cosω0t. It is very simple.

What happens if the friction is not so artificial; for example, ordinary rubbing
on a table, so that the friction force is a certain constant amount, and is indepen-
dent of the size of the oscillation that reverses its direction each half-cycle? Then
the equation is no longer linear, it becomes hard to solve, and must be solved
by the numerical method given in Chapter 9, or by considering each half-cycle
separately. The numerical method is the most powerful method of all, and can
solve any equation. It is only when we have a simple problem that we can use
mathematical analysis.

Mathematical analysis is not the grand thing it is said to be; it solves only
the simplest possible equations. As soon as the equations get a little more
complicated, just a shade—they cannot be solved analytically. But the numerical
method, which was advertised at the beginning of the course, can take care of
any equation of physical interest.

Next, what about the resonance curve? Why is there a resonance? First,
imagine for a moment that there is no friction, and we have something which
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could oscillate by itself. If we tapped the pendulum just right each time it went
by, of course we could make it go like mad. But if we close our eyes and do
not watch it, and tap at arbitrary equal intervals, what is going to happen?
Sometimes we will find ourselves tapping when it is going the wrong way. When
we happen to have the timing just right, of course, each tap is given at just the
right time, and so it goes higher and higher and higher. So without friction we
get a curve which looks like the solid curve in Fig. 25-5 for different frequencies.
Qualitatively, we understand the resonance curve; in order to get the exact shape
of the curve it is probably just as well to do the mathematics. The curve goes
toward infinity as ω → ω0, where ω0 is the natural frequency of the oscillator.

ω

x0

ω0

Fig. 25-5. Resonance curves with various amounts of friction present.

Now suppose there is a little bit of friction; then when the displacement of
the oscillator is small, the friction does not affect it much; the resonance curve
is the same, except when we are near resonance. Instead of becoming infinite
near resonance, the curve is only going to get so high that the work done by
our tapping each time is enough to compensate for the loss of energy by friction
during the cycle. So the top of the curve is rounded off—it does not go to infinity.
If there is more friction, the top of the curve is rounded off still more. Now
someone might say, “I thought the widths of the curves depended on the friction.”
That is because the curve is usually plotted so that the top of the curve is called
one unit. However, the mathematical expression is even simpler to understand if
we just plot all the curves on the same scale; then all that happens is that the
friction cuts down the top! If there is less friction, we can go farther up into that
little pinnacle before the friction cuts it off, so it looks relatively narrow. That is,
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the higher the peak of the curve, the narrower the width at half the maximum
height.

Finally, we take the case where there is an enormous amount of friction. It
turns out that if there is too much friction, the system does not oscillate at all.
The energy in the spring is barely able to move it against the frictional force,
and so it slowly oozes down to the equilibrium point.

25-4 Analogs in physics

The next aspect of this review is to note that masses and springs are not the
only linear systems; there are others. In particular, there are electrical systems
called linear circuits, in which we find a complete analog to mechanical systems.
We did not learn exactly why each of the objects in an electrical circuit works in
the way it does—that is not to be understood at the present moment; we may
assert it as an experimentally verifiable fact that they behave as stated.

For example, let us take the simplest possible circumstance. We have a piece
of wire, which is just a resistance, and we have applied to it a difference in
potential, V . Now the V means this: if we carry a charge q through the wire
from one terminal to another terminal, the work done is qV . The higher the
voltage difference, the more work was done when the charge, as we say, “falls”
from the high potential end of the terminal to the low potential end. So charges
release energy in going from one end to the other. Now the charges do not simply
fly from one end straight to the other end; the atoms in the wire offer some
resistance to the current, and this resistance obeys the following law for almost
all ordinary substances: if there is a current I, that is, so and so many charges
per second tumbling down, the number per second that comes tumbling through
the wire is proportional to how hard we push them—in other words, proportional
to how much voltage there is:

V = IR = R(dq/dt). (25.11)

The coefficient R is called the resistance, and the equation is called Ohm’s Law.
The unit of resistance is the ohm; it is equal to one volt per ampere. In mechanical
situations, to get such a frictional force in proportion to the velocity is difficult;
in an electrical system it is very easy, and this law is extremely accurate for most
metals.

We are often interested in how much work is done per second, the power loss,
or the energy liberated by the charges as they tumble down the wire. When
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we carry a charge q through a voltage V , the work is qV , so the work done per
second would be V (dq/dt), which is the same as V I, or also IR · I = I2R. This
is called the heating loss—this is how much heat is generated in the resistance
per second, by the conservation of energy. It is this heat that makes an ordinary
incandescent light bulb work.

Of course, there are other interesting properties of mechanical systems, such
as the mass (inertia), and it turns out that there is an electrical analog to inertia
also. It is possible to make something called an inductor , having a property
called inductance, such that a current, once started through the inductance, does
not want to stop. It requires a voltage in order to change the current! If the
current is constant, there is no voltage across an inductance. dc circuits do not
know anything about inductance; it is only when we change the current that the
effects of inductance show up. The equation is

V = L(dI/dt) = L(d2q/dt2), (25.12)

and the unit of inductance, called the henry, is such that one volt applied to
an inductance of one henry produces a change of one ampere per second in the
current. Equation (25.12) is the analog of Newton’s law for electricity, if we wish:
V corresponds to F , L corresponds to m, and I corresponds to velocity! All of the
consequent equations for the two kinds of systems will have the same derivations
because, in all the equations, we can change any letter to its corresponding
analog letter and we get the same equation; everything we deduce will have a
correspondence in the two systems.

Now what electrical thing corresponds to the mechanical spring, in which
there was a force proportional to the stretch? If we start with F = kx and replace
F → V and x→ q, we get V = αq. It turns out that there is such a thing, in fact
it is the only one of the three circuit elements we can really understand, because
we did study a pair of parallel plates, and we found that if there were a charge of
certain equal, opposite amounts on each plate, the electric field between them
would be proportional to the size of the charge. So the work done in moving a
unit charge across the gap from one plate to the other is precisely proportional to
the charge. This work is the definition of the voltage difference, and it is the line
integral of the electric field from one plate to another. It turns out, for historical
reasons, that the constant of proportionality is not called C, but 1/C. It could
have been called C, but it was not. So we have

V = q/C. (25.13)
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The unit of capacitance, C, is the farad; a charge of one coulomb on each plate
of a one-farad capacitor yields a voltage difference of one volt.

There are our analogies, and the equation corresponding to the oscillating
circuit becomes the following, by direct substitution of L for m, q for x, etc:

m(d2x/dt2) + γm(dx/dt) + kx = F, (25.14)

L(d2q/dt2) +R(dq/dt) + q/C = V. (25.15)

Now everything we learned about (25.14) can be transformed to apply to (25.15).
Every consequence is the same; so much the same that there is a brilliant thing
we can do.

Suppose we have a mechanical system which is quite complicated, not just
one mass on a spring, but several masses on several springs, all hooked together.
What do we do? Solve it? Perhaps; but look, we can make an electrical circuit
which will have the same equations as the thing we are trying to analyze! For
instance, if we wanted to analyze a mass on a spring, why can we not build
an electrical circuit in which we use an inductance proportional to the mass, a
resistance proportional to the corresponding mγ, 1/C proportional to k, all in
the same ratio? Then, of course, this electrical circuit will be the exact analog
of our mechanical one, in the sense that whatever q does, in response to V
(V also is made to correspond to the forces that are acting), so the x would
do in response to the force! So if we have a complicated thing with a whole
lot of interconnecting elements, we can interconnect a whole lot of resistances,
inductances, and capacitances, to imitate the mechanically complicated system.
What is the advantage to that? One problem is just as hard (or as easy) as
the other, because they are exactly equivalent. The advantage is not that it is
any easier to solve the mathematical equations after we discover that we have an
electrical circuit (although that is the method used by electrical engineers!), but
instead, the real reason for looking at the analog is that it is easier to make the
electrical circuit, and to change something in the system.

Suppose we have designed an automobile, and want to know how much it
is going to shake when it goes over a certain kind of bumpy road. We build an
electrical circuit with inductances to represent the inertia of the wheels, spring
constants as capacitances to represent the springs of the wheels, and resistors to
represent the shock absorbers, and so on for the other parts of the automobile.
Then we need a bumpy road. All right, we apply a voltage from a generator,
which represents such and such a kind of bump, and then look at how the left
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wheel jiggles by measuring the charge on some capacitor. Having measured it
(it is easy to do), we find that it is bumping too much. Do we need more shock
absorber, or less shock absorber? With a complicated thing like an automobile,
do we actually change the shock absorber, and solve it all over again? No!, we
simply turn a dial; dial number ten is shock absorber number three, so we put in
more shock absorber. The bumps are worse—all right, we try less. The bumps
are still worse; we change the stiffness of the spring (dial 17), and we adjust all
these things electrically, with merely the turn of a knob.

This is called an analog computer . It is a device which imitates the problem
that we want to solve by making another problem, which has the same equation,
but in another circumstance of nature, and which is easier to build, to measure,
to adjust, and to destroy!

25-5 Series and parallel impedances

Finally, there is an important item which is not quite in the nature of review.
This has to do with an electrical circuit in which there is more than one circuit
element. For example, when we have an inductor, a resistor, and a capacitor
connected as in Fig. 24-2, we note that all the charge went through every one
of the three, so that the current in such a singly connected thing is the same at
all points along the wire. Since the current is the same in each one, the voltage
across R is IR, the voltage across L is L(dI/dt), and so on. So, the total voltage
drop is the sum of these, and this leads to Eq. (25.15). Using complex numbers,
we found that we could solve the equation for the steady-state motion in response
to a sinusoidal force. We thus found that V̂ = ẐÎ. Now Ẑ is called the impedance
of this particular circuit. It tells us that if we apply a sinusoidal voltage, V̂ , we
get a current Î.

Now suppose we have a more complicated circuit which has two pieces,
which by themselves have certain impedances, Ẑ1 and Ẑ2 and we put them in

Z1 Z2

Z1

Z2

1 2 1 2

(a) Series (b) Parallel

Fig. 25-6. Two impedances, connected in series and in parallel.
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series (Fig. 25-6a) and apply a voltage. What happens? It is now a little more
complicated, but if Î is the current through Ẑ1, the voltage difference across Ẑ1,
is V̂1 = ÎẐ1; similarly, the voltage across Ẑ2 is V̂2 = ÎẐ2. The same current goes
through both. Therefore the total voltage is the sum of the voltages across the
two sections and is equal to V̂ = V̂1 + V̂2 = (Ẑ1 + Ẑ2)Î. This means that the
voltage on the complete circuit can be written V̂ = ÎẐs, where the Ẑs of the
combined system in series is the sum of the two Ẑ’s of the separate pieces:

Ẑs = Ẑ1 + Ẑ2. (25.16)

This is not the only way things may be connected. We may also connect
them in another way, called a parallel connection (Fig. 25-6b). Now we see that a
given voltage across the terminals, if the connecting wires are perfect conductors,
is effectively applied to both of the impedances, and will cause currents in each
independently. Therefore the current through Ẑ1 is equal to Î1 = V̂ /Ẑ1. The
current in Ẑ2 is Î2 = V̂ /Ẑ2. It is the same voltage. Now the total current
which is supplied to the terminals is the sum of the currents in the two sections:
Î = V̂ /Ẑ1 + V̂ /Ẑ2. This can be written as

V̂ = Î

(1/Ẑ1) + (1/Ẑ2)
= ÎẐp.

Thus
1/Ẑp = 1/Ẑ1 + 1/Ẑ2. (25.17)

More complicated circuits can sometimes be simplified by taking pieces of
them, working out the succession of impedances of the pieces, and combining
the circuit together step by step, using the above rules. If we have any kind of
circuit with many impedances connected in all kinds of ways, and if we include
the voltages in the form of little generators having no impedance (when we pass
charge through it, the generator adds a voltage V ), then the following principles
apply: (1) At any junction, the sum of the currents into a junction is zero.
That is, all the current which comes in must come back out. (2) If we carry a
charge around any loop, and back to where it started, the net work done is zero.
These rules are called Kirchhoff’s laws for electrical circuits. Their systematic
application to complicated circuits often simplifies the analysis of such circuits.
We mention them here in conjunction with Eqs. (25.16) and (25.17), in case you
have already come across such circuits that you need to analyze in laboratory
work. They will be discussed again in more detail next year.
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26

Optics: The Principle of Least Time

26-1 Light

This is the first of a number of chapters on the subject of electromagnetic
radiation. Light, with which we see, is only one small part of a vast spectrum of
the same kind of thing, the various parts of this spectrum being distinguished by
different values of a certain quantity which varies. This variable quantity could be
called the “wavelength.” As it varies in the visible spectrum, the light apparently
changes color from red to violet. If we explore the spectrum systematically, from
long wavelengths toward shorter ones, we would begin with what are usually called
radiowaves. Radiowaves are technically available in a wide range of wavelengths,
some even longer than those used in regular broadcasts; regular broadcasts have
wavelengths corresponding to about 500 meters. Then there are the so-called
“short waves,” i.e., radar waves, millimeter waves, and so on. There are no actual
boundaries between one range of wavelengths and another, because nature did
not present us with sharp edges. The number associated with a given name for
the waves are only approximate and, of course, so are the names we give to the
different ranges.

Then, a long way down through the millimeter waves, we come to what
we call the infrared, and thence to the visible spectrum. Then going in the
other direction, we get into a region which is called the ultraviolet. Where the
ultraviolet stops, the x-rays begin, but we cannot define precisely where this
is; it is roughly at 10−8 m, or 10−2 µ. These are “soft” x-rays; then there are
ordinary x-rays and very hard x-rays; then γ-rays, and so on, for smaller and
smaller values of this dimension called the wavelength.

Within this vast range of wavelengths, there are three or more regions of
approximation which are especially interesting. In one of these, a condition exists
in which the wavelengths involved are very small compared with the dimensions
of the equipment available for their study; furthermore, the photon energies,
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using the quantum theory, are small compared with the energy sensitivity of the
equipment. Under these conditions we can make a rough first approximation
by a method called geometrical optics. If, on the other hand, the wavelengths
are comparable to the dimensions of the equipment, which is difficult to arrange
with visible light but easier with radiowaves, and if the photon energies are still
negligibly small, then a very useful approximation can be made by studying the
behavior of the waves, still disregarding the quantum mechanics. This method is
based on the classical theory of electromagnetic radiation, which will be discussed
in a later chapter. Next, if we go to very short wavelengths, where we can
disregard the wave character but the photons have a very large energy compared
with the sensitivity of our equipment, things get simple again. This is the simple
photon picture, which we will describe only very roughly. The complete picture,
which unifies the whole thing into one model, will not be available to us for a
long time.

In this chapter our discussion is limited to the geometrical optics region, in
which we forget about the wavelength and the photon character of the light,
which will all be explained in due time. We do not even bother to say what
the light is, but just find out how it behaves on a large scale compared with
the dimensions of interest. All this must be said in order to emphasize the fact
that what we are going to talk about is only a very crude approximation; this
is one of the chapters that we shall have to “unlearn” again. But we shall very
quickly unlearn it, because we shall almost immediately go on to a more accurate
method.

Although geometrical optics is just an approximation, it is of very great
importance technically and of great interest historically. We shall present this
subject more historically than some of the others in order to give some idea of
the development of a physical theory or physical idea.

First, light is, of course, familiar to everybody, and has been familiar since
time immemorial. Now one problem is, by what process do we see light? There
have been many theories, but it finally settled down to one, which is that there
is something which enters the eye—which bounces off objects into the eye. We
have heard that idea so long that we accept it, and it is almost impossible for
us to realize that very intelligent men have proposed contrary theories—that
something comes out of the eye and feels for the object, for example. Some other
important observations are that, as light goes from one place to another, it goes
in straight lines, if there is nothing in the way, and that the rays do not seem
to interfere with one another. That is, light is crisscrossing in all directions in
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the room, but the light that is passing across our line of vision does not affect
the light that comes to us from some object. This was once a most powerful
argument against the corpuscular theory; it was used by Huygens. If light were
like a lot of arrows shooting along, how could other arrows go through them so
easily? Such philosophical arguments are not of much weight. One could always
say that light is made up of arrows which go through each other!

26-2 Reflection and refraction

The discussion above gives enough of the basic idea of geometrical optics—now
we have to go a little further into the quantitative features. Thus far we have light
going only in straight lines between two points; now let us study the behavior
of light when it hits various materials. The simplest object is a mirror, and the
law for a mirror is that when the light hits the mirror, it does not continue in a
straight line, but bounces off the mirror into a new straight line, which changes
when we change the inclination of the mirror. The question for the ancients
was, what is the relation between the two angles involved? This is a very simple
relation, discovered long ago. The light striking a mirror travels in such a way
that the two angles, between each beam and the mirror, are equal. For some
reason it is customary to measure the angles from the normal to the mirror
surface. Thus the so-called law of reflection is

θi = θr. (26.1)

That is a simple enough proposition, but a more difficult problem is encoun-
tered when light goes from one medium into another, for example from air into
water; here also, we see that it does not go in a straight line. In the water the
ray is at an inclination to its path in the air; if we change the angle θi so that
it comes down more nearly vertically, then the angle of “breakage” is not as

θi θr

Fig. 26-1. The angle of incidence is equal to the angle of reflection.
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θi

θr

Fig. 26-2. A light ray is refracted when it posses from one medium
into another.

Table 26-1

Angle in air Angle in water

10◦ 8◦
20◦ 15-1/2◦
30◦ 22-1/2◦
40◦ 29◦
50◦ 35◦
60◦ 40-1/2◦
70◦ 45-1/2◦
80◦ 50◦

Table 26-2

Angle in air Angle in water

10◦ 7-1/2◦
20◦ 15◦
30◦ 22◦
40◦ 29◦
50◦ 35◦
60◦ 40-1/2◦
70◦ 45◦
80◦ 48◦

great. But if we tilt the beam of light at quite an angle, then the deviation angle
is very large. The question is, what is the relation of one angle to the other?
This also puzzled the ancients for a long time, and here they never found the
answer! It is, however, one of the few places in all of Greek physics that one
may find any experimental results listed. Claudius Ptolemy made a list of the
angle in water for each of a number of different angles in air. Table 26-1 shows
the angles in the air, in degrees, and the corresponding angle as measured in
the water. (Ordinarily it is said that Greek scientists never did any experiments.
But it would be impossible to obtain this table of values without knowing the
right law, except by experiment. It should be noted, however, that these do
not represent independent careful measurements for each angle but only some
numbers interpolated from a few measurements, for they all fit perfectly on a
parabola.)
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This, then, is one of the important steps in the development of physical law:
first we observe an effect, then we measure it and list it in a table; then we try
to find the rule by which one thing can be connected with another. The above
numerical table was made in 140 a.d., but it was not until 1621 that someone
finally found the rule connecting the two angles! The rule, found by Willebrord
Snell, a Dutch mathematician, is as follows: if θi is the angle in air and θr is the
angle in the water, then it turns out that the sine of θi is equal to some constant
multiple of the sine of θr:

sin θi = n sin θr. (26.2)

For water the number n is approximately 1.33. Equation (26.2) is called Snell’s
law; it permits us to predict how the light is going to bend when it goes from air
into water. Table 26-2 shows the angles in air and in water according to Snell’s
law. Note the remarkable agreement with Ptolemy’s list.

26-3 Fermat’s principle of least time

Now in the further development of science, we want more than just a formula.
First we have an observation, then we have numbers that we measure, then we
have a law which summarizes all the numbers. But the real glory of science is
that we can find a way of thinking such that the law is evident.

The first way of thinking that made the law about the behavior of light evident
was discovered by Fermat in about 1650, and it is called the principle of least
time, or Fermat’s principle. His idea is this: that out of all possible paths that it
might take to get from one point to another, light takes the path which requires
the shortest time.

Let us first show that this is true for the case of the mirror, that this simple
principle contains both the law of straight-line propagation and the law for the
mirror. So, we are growing in our understanding! Let us try to find the solution
to the following problem. In Fig. 26-3 are shown two points, A and B, and a
plane mirror, MM ′. What is the way to get from A to B in the shortest time?
The answer is to go straight from A to B! But if we add the extra rule that the
light has to strike the mirror and come back in the shortest time, the answer is
not so easy. One way would be to go as quickly as possible to the mirror and
then go to B, on the path ADB. Of course, we then have a long path DB. If we
move over a little to the right, to E, we slightly increase the first distance, but
we greatly decrease the second one, and so the total path length, and therefore
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Fig. 26-3. Illustration of the principle of least time.

the travel time, is less. How can we find the point C for which the time is the
shortest? We can find it very nicely by a geometrical trick.

We construct on the other side of MM ′ an artificial point B′, which is the
same distance below the plane MM ′ as the point B is above the plane. Then
we draw the line EB′. Now because BFM is a right angle and BF = FB′, EB
is equal to EB′. Therefore the sum of the two distances, AE + EB, which is
proportional to the time it will take if the light travels with constant velocity,
is also the sum of the two lengths AE + EB′. Therefore the problem becomes,
when is the sum of these two lengths the least? The answer is easy: when the
line goes through point C as a straight line from A to B′! In other words, we
have to find the point where we go toward the artificial point, and that will be
the correct one. Now if ACB′ is a straight line, then angle BCF is equal to
angle B′CF and thence to angle ACM . Thus the statement that the angle of
incidence equals the angle of reflection is equivalent to the statement that the
light goes to the mirror in such a way that it comes back to the point B in the
least possible time. Originally, the statement was made by Hero of Alexandria
that the light travels in such a way that it goes to the mirror and to the other
point in the shortest possible distance, so it is not a modern theory. It was this
that inspired Fermat to suggest to himself that perhaps refraction operated on a
similar basis. But for refraction, light obviously does not use the path of shortest
distance, so Fermat tried the idea that it takes the shortest time.

Before we go on to analyze refraction, we should make one more remark about
the mirror. If we have a source of light at the point B and it sends light to
ward the mirror, then we see that the light which goes to A from the point B
comes to A in exactly the same manner as it would have come to A if there were
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an object at B′, and no mirror. Now of course the eye detects only the light
which enters it physically, so if we have an object at B and a mirror which makes
the light come into the eye in exactly the same manner as it would have come
into the eye if the object were at B′, then the eye-brain system interprets that,
assuming it does not know too much, as being an object at B′. So the illusion
that there is an object behind the mirror is merely due to the fact that the light
which is entering the eye is entering in exactly the same manner, physically, as it
would have entered had there been an object back there (except for the dirt on
the mirror, and our knowledge of the existence of the mirror, and so on, which is
corrected in the brain).

Now let us demonstrate that the principle of least time will give Snell’s law
of refraction. We must, however, make an assumption about the speed of light in
water. We shall assume that the speed of light in water is lower than the speed
of light in air by a certain factor, n.

x
AIR
WATER

N

N ′

A

B

C
E

X
F

Fig. 26-4. Illustration of Fermat’s principle for refraction.

In Fig. 26-4, our problem is again to go from A to B in the shortest time.
To illustrate that the best thing to do is not just to go in a straight line, let us
imagine that a beautiful girl has fallen out of a boat, and she is screaming for
help in the water at point B. The line marked x is the shoreline. We are at
point A on land, and we see the accident, and we can run and can also swim.
But we can run faster than we can swim. What do we do? Do we go in a straight
line? (Yes, no doubt!) However, by using a little more intelligence we would
realize that it would be advantageous to travel a little greater distance on land
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Fig. 26-5. The minimum time corresponds to point C, but nearby
points correspond to nearly the same time.

in order to decrease the distance in the water, because we go so much slower in
the water. (Following this line of reasoning out, we would say the right thing
to do is to compute very carefully what should be done!) At any rate, let us try
to show that the final solution to the problem is the path ACB, and that this
path takes the shortest time of all possible ones. If it is the shortest path, that
means that if we take any other, it will be longer. So, if we were to plot the time
it takes against the position of point X, we would get a curve something like
that shown in Fig. 26-5, where point C corresponds to the shortest of all possible
times. This means that if we move the point X to points near C, in the first
approximation there is essentially no change in time because the slope is zero
at the bottom of the curve. So our way of finding the law will be to consider
that we move the place by a very small amount, and to demand that there be
essentially no change in time. (Of course there is an infinitesimal change of a
second order; we ought to have a positive increase for displacements in either
direction from C.) So we consider a nearby point X and we calculate how long
it would take to go from A to B by the two paths, and compare the new path
with the old path. It is very easy to do. We want the difference, of course, to be
nearly zero if the distance XC is short. First, look at the path on land. If we
draw a perpendicular XE, we see that this path is shortened by the amount EC.
Let us say we gain by not having to go that extra distance. On the other hand,
in the water, by drawing a corresponding perpendicular, CF , we find that we
have to go the extra distance XF , and that is what we lose. Or, in time, we
gain the time it would have taken to go the distance EC, but we lose the time it
would have taken to go the distance XF . Those times must be equal since, in
the first approximation, there is to be no change in time. But supposing that in
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the water the speed is 1/n times as fast as in air, then we must have

EC = n ·XF. (26.3)

Therefore we see that when we have the right point, XC sinEXC = n·XC sinXCF
or, cancelling the common hypotenuse length XC and noting that

EXC = ECN = θi and XCF ≈ BCN ′ = θr (when X is near C),
we have

sin θi = n sin θr. (26.4)

So we see that to get from one point to another in the least time when the ratio
of speeds is n, the light should enter at such an angle that the ratio of the sines
of the angles θi and θr is the ratio of the speeds in the two media.

26-4 Applications of Fermat’s principle

Now let us consider some of the interesting consequences of the principle of
least time. First is the principle of reciprocity. If to go from A to B we have found
the path of the least time, then to go in the opposite direction (assuming that
light goes at the same speed in any direction), the shortest time will be the same
path, and therefore, if light can be sent one way, it can be sent the other way.

An example of interest is a glass block with plane parallel faces, set at an
angle to a light beam. Light, in going through the block from a point A to a
point B (Fig. 26-6) does not go through in a straight line, but instead it decreases
the time in the block by making the angle in the block less inclined, although it
loses a little bit in the air. The beam is simply displaced parallel to itself because
the angles in and out are the same.

A third interesting phenomenon is the fact that when we see the sun setting,
it is already below the horizon! It does not look as though it is below the horizon,
but it is (Fig. 26-7). The earth’s atmosphere is thin at the top and dense at the
bottom. Light travels more slowly in air than it does in a vacuum, and so the
light of the sun can get to point S beyond the horizon more quickly if, instead
of just going in a straight line, it avoids the dense regions where it goes slowly
by getting through them at a steeper tilt. When it appears to go below the
horizon, it is actually already well below the horizon. Another example of this
phenomenon is the mirage that one often sees while driving on hot roads. One
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Fig. 26-6. A beam of light is offset as it passes through a transparent
block.

TO APPARENT SUN

ATMOSPHERE

LIGHT PATH

TO TRUE
SUN

EARTH

Fig. 26-7. Near the horizon, the apparent sun is higher than the true
sun by about 1/2 degree.

HOT ROAD OR SAND

LIGHT FROM SKY

Fig. 26-8. A mirage.
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sees “water” on the road, but when he gets there, it is as dry as the desert! The
phenomenon is the following. What we are really seeing is the sky light “reflected”
on the road: light from the sky, heading for the road, can end up in the eye, as
shown in Fig. 26-8. Why? The air is very hot just above the road but it is cooler
up higher. Hotter air is more expanded than cooler air and is thinner, and this
decreases the speed of light less. That is to say, light goes faster in the hot region
than in the cool region. Therefore, instead of the light deciding to come in the
straightforward way, it also has a least-time path by which it goes into the region
where it goes faster for awhile, in order to save time. So, it can go in a curve.

OPTICAL SYSTEM

P P ′

Q
Q′

Fig. 26-9. An optical “black box.”

As another important example of the principle of least time, suppose that
we would like to arrange a situation where we have all the light that comes out
of one point, P , collected back together at another point, P ′ (Fig. 26-9). That
means, of course, that the light can go in a straight line from P to P ′. That is all
right. But how can we arrange that not only does it go straight, but also so that
the light starting out from P toward Q also ends up at P ′? We want to bring all
the light back to what we call a focus. How? If the light always takes the path of
least time, then certainly it should not want to go over all these other paths. The
only way that the light can be perfectly satisfied to take several adjacent paths
is to make those times exactly equal! Otherwise, it would select the one of least
time. Therefore the problem of making a focusing system is merely to arrange a
device so that it takes the same time for the light to go on all the different paths!

This is easy to do. Suppose that we had a piece of glass in which light goes
slower than it does in the air (Fig. 26-10). Now consider a ray which goes in air in
the path PQP ′. That is a longer path than from P directly to P ′ and no doubt
takes a longer time. But if we were to insert a piece of glass of just the right
thickness (we shall later figure out how thick) it might exactly compensate the
excess time that it would take the light to go at an angle! In those circumstances
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Fig. 26-10. A focusing optical system.

we can arrange that the time the light takes to go straight through is the same
as the time it takes to go in the path PQP ′. Likewise, if we take a ray PRR′P ′
which is partly inclined, it is not quite as long as PQP ′, and we do not have
to compensate as much as for the straight one, but we do have to compensate
somewhat. We end up with a piece of glass that looks like Fig. 26-10. With this
shape, all the light which comes from P will go to P ′. This, of course, is well
known to us, and we call such a device a converging lens. In the next chapter we
shall actually calculate what shape the lens has to have to make a perfect focus.

r1 r2

P P ′

Fig. 26-11. An ellipsoidal mirror.

Take another example: suppose we wish to arrange some mirrors so that the
light from P always goes to P ′ (Fig. 26-11). On any path, it goes to some mirror
and comes back, and all times must be equal. Here the light always travels in
air, so the time and the distance are proportional. Therefore the statement that
all the times are the same is the same as the statement that the total distance is
the same. Thus the sum of the two distances r1 and r2 must be a constant. An
ellipse is that curve which has the property that the sum of the distances from
two points is a constant for every point on the ellipse; thus we can be sure that
the light from one focus will come to the other.

The same principle works for gathering the light of a star. The great 200-inch
Palomar telescope is built on the following principle. Imagine a star billions of
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Fig. 26-12. A paraboloidal mirror.

miles away; we would like to cause all the light that comes in to come to a focus.
Of course we cannot draw the rays that go all the way up to the star, but we
still want to check whether the times are equal. Of course we know that when
the various rays have arrived at some plane KK ′, perpendicular to the rays, all
the times in this plane are equal (Fig. 26-12). The rays must then come down
to the mirror and proceed toward P ′ in equal times. That is, we must find a
curve which has the property that the sum of the distances XX ′ + X ′P ′ is a
constant, no matter where X is chosen. An easy way to find it is to extend the
length of the line XX ′ down to a plane LL′. Now if we arrange our curve so that
A′A′′ = A′P ′, B′B′′ = B′P ′, C ′C ′′ = C ′P ′, and so on, we will have our curve,
because then of course, AA′ + A′P ′ = AA′ + A′A′′ will be constant. Thus our
curve is the locus of all points equidistant from a line and a point. Such a curve
is called a parabola; the mirror is made in the shape of a parabola.

The above examples illustrate the principle upon which such optical devices
can be designed. The exact curves can be calculated using the principle that, to
focus perfectly, the travel times must be exactly equal for all light rays, as well
as being less than for any other nearby path.

We shall discuss these focusing optical devices further in the next chapter; let
us now discuss the further development of the theory. When a new theoretical
principle is developed, such as the principle of least time, our first inclination
might be to say, “Well, that is very pretty; it is delightful; but the question is,
does it help at all in understanding the physics?” Someone may say, “Yes, look
at how many things we can now understand!” Another says, “Very well, but I
can understand mirrors, too. I need a curve such that every tangent plane makes
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equal angles with the two rays. I can figure out a lens, too, because every ray
that comes to it is bent through an angle given by Snell’s law.” Evidently the
statement of least time and the statement that angles are equal on reflection,
and that the sines of the angles are proportional on refraction, are the same. So
is it merely a philosophical question, or one of beauty? There can be arguments
on both sides.

However, the importance of a powerful principle is that it predicts new things.
It is easy to show that there are a number of new things predicted by Fermat’s

principle. First, suppose that there are three media, glass, water, and air, and
we perform a refraction experiment and measure the index n for one medium
against another. Let us call n12 the index of air (1) against water (2); n13 the
index of air (1) against glass (3). If we measured water against glass, we should
find another index, which we shall call n23. But there is no a priori reason why
there should be any connection between n12, n13, and n23. On the other hand,
according to the idea of least time, there is a definite relationship. The index n12
is the ratio of two things, the speed in air to the speed in water; n13 is the ratio
of the speed in air to the speed in glass; n23 is the ratio of the speed in water to
the speed in glass. Therefore we cancel out the air, and get

n23 = v2

v3
= v1/v3

v1/v2
= n13

n12
. (26.5)

In other words, we predict that the index for a new pair of materials can be
obtained from the indexes of the individual materials, both against air or against
vacuum. So if we measure the speed of light in all materials, and from this get a
single number for each material, namely its index relative to vacuum, called ni
(n1 is the speed in air relative to the speed in vacuum, etc.), then our formula is
easy. The index for any two materials i and j is

nij = vi
vj

= nj
ni
. (26.6)

Using only Snell’s law, there is no basis for a prediction of this kind.* But of
course this prediction works. The relation (26.5) was known very early, and was
a very strong argument for the principle of least time.

* Although it can be deduced if the additional assumption is made that adding a layer of
one substance to the surface of another does not change the eventual angle of refraction in the
latter material.
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Another argument for the principle of least time, another prediction, is that
if we measure the speed of light in water, it will be lower than in air. This is a
prediction of a completely different type. It is a brilliant prediction, because all
we have so far measured are angles; here we have a theoretical prediction which
is quite different from the observations from which Fermat deduced the idea of
least time. It turns out, in fact, that the speed in water is slower than the speed
in air, by just the proportion that is needed to get the right index!

26-5 A more precise statement of Fermat’s principle

Actually, we must make the statement of the principle of least time a little
more accurately. It was not stated correctly above. It is incorrectly called the
principle of least time and we have gone along with the incorrect description for
convenience, but we must now see what the correct statement is. Suppose we had
a mirror as in Fig. 26-3. What makes the light think it has to go to the mirror?
The path of least time is clearly AB. So some people might say, “Sometimes it is
a maximum time.” It is not a maximum time, because certainly a curved path
would take a still longer time! The correct statement is the following: a ray going
in a certain particular path has the property that if we make a small change (say
a one percent shift) in the ray in any manner whatever, say in the location at
which it comes to the mirror, or the shape of the curve, or anything, there will
be no first-order change in the time; there will be only a second-order change in
the time. In other words, the principle is that light takes a path such that there
are many other paths nearby which take almost exactly the same time.

The following is another difficulty with the principle of least time, and one
which people who do not like this kind of a theory could never stomach. With
Snell’s theory we can “understand” light. Light goes along, it sees a surface, it
bends because it does something at the surface. The idea of causality, that it goes
from one point to another, and another, and so on, is easy to understand. But
the principle of least time is a completely different philosophical principle about
the way nature works. Instead of saying it is a causal thing, that when we do one
thing, something else happens, and so on, it says this: we set up the situation,
and light decides which is the shortest time, or the extreme one, and chooses
that path. But what does it do, how does it find out? Does it smell the nearby
paths, and check them against each other? The answer is, yes, it does, in a way.
That is the feature which is, of course, not known in geometrical optics, and
which is involved in the idea of wavelength; the wavelength tells us approximately
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Fig. 26-13. The passage of radiowaves through a narrow slit.

how far away the light must “smell” the path in order to check it. It is hard
to demonstrate this fact on a large scale with light, because the wavelengths
are so terribly short. But with radiowaves, say 3-cm waves, the distances over
which the radiowaves are checking are larger. If we have a source of radiowaves,
a detector, and a slit, as in Fig. 26-13, the rays of course go from S to D because
it is a straight line, and if we close down the slit it is all right—they still go. But
now if we move the detector aside to D′, the waves will not go through the wide
slit from S to D′, because they check several paths nearby, and say, “No, my
friend, those all correspond to different times.” On the other hand, if we prevent
the radiation from checking the paths by closing the slit down to a very narrow
crack, then there is but one path available, and the radiation takes it! With a
narrow slit, more radiation reaches D′ than reaches it with a wide slit!

One can do the same thing with light, but it is hard to demonstrate on a large
scale. The effect can be seen under the following simple conditions. Find a small,
bright light, say an unfrosted bulb in a street light far away or the reflection of
the sun in a curved automobile bumper. Then put two fingers in front of one eye,
so as to look through the crack, and squeeze the light to zero very gently. You
will see that the image of the light, which was a little dot before, becomes quite
elongated, and even stretches into a long line. The reason is that the fingers are
very close together, and the light which is supposed to come in a straight line
is spread out at an angle, so that when it comes into the eye it comes in from
several directions. Also you will notice, if you are very careful, side maxima, a lot
of fringes along the edges too. Furthermore, the whole thing is colored. All of this
will be explained in due time, but for the present it is a demonstration that light
does not always go in straight lines, and it is one that is very easily performed.
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26-6 How it works

Finally, we give a very crude view of what actually happens, how the whole
thing really works, from what we now believe is the correct, quantum-dynamically
accurate viewpoint, but of course only qualitatively described. In following the
light from A to B in Fig. 26-3, we find that the light does not seem to be in the
form of waves at all. Instead the rays seem to be made up of photons, and they
actually produce clicks in a photon counter, if we are using one. The brightness
of the light is proportional to the average number of photons that come in per
second, and what we calculate is the chance that a photon gets from A to B, say
by hitting the mirror. The law for that chance is the following very strange one.
Take any path and find the time for that path; then make a complex number,
or draw a little complex vector, ρeiθ, whose angle θ is proportional to the time.
The number of turns per second is the frequency of the light. Now take another
path; it has, for instance, a different time, so the vector for it is turned through
a different angle—the angle being always proportional to the time. Take all the
available paths and add on a little vector for each one; then the answer is that
the chance of arrival of the photon is proportional to the square of the length of
the final vector, from the beginning to the end!

C

D

E

Fig. 26-14. The summation of probability amplitudes for many neigh-
boring paths.

Now let us show how this implies the principle of least time for a mirror. We
consider all rays, all possible paths ADB, AEB, ACB, etc., in Fig. 26-3. The
path ADB makes a certain small contribution, but the next path, AEB, takes
a quite different time, so its angle θ is quite different. Let us say that point C
corresponds to minimum time, where if we change the paths the times do not
change. So for awhile the times do change, and then they begin to change less and
less as we get near point C (Fig. 26-14). So the arrows which we have to add are
coming almost exactly at the same angle for awhile near C, and then gradually
the time begins to increase again, and the phases go around the other way, and so
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on. Eventually, we have quite a tight knot. The total probability is the distance
from one end to the other, squared. Almost all of that accumulated probability
occurs in the region where all the arrows are in the same direction (or in the same
phase). All the contributions from the paths which have very different times as
we change the path, cancel themselves out by pointing in different directions.
That is why, if we hide the extreme parts of the mirror, it still reflects almost
exactly the same, because all we did was to take out a piece of the diagram inside
the spiral ends, and that makes only a very small change in the light. So this is
the relationship between the ultimate picture of photons with a probability of
arrival depending on an accumulation of arrows, and the principle of least time.
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27

Geometrical Optics

27-1 Introduction

In this chapter we shall discuss some elementary applications of the ideas of
the previous chapter to a number of practical devices, using the approximation
called geometrical optics. This is a most useful approximation in the practical
design of many optical systems and instruments. Geometrical optics is either
very simple or else it is very complicated. By that we mean that we can either
study it only superficially, so that we can design instruments roughly, using rules
that are so simple that we hardly need deal with them here at all, since they
are practically of high school level, or else, if we want to know about the small
errors in lenses and similar details, the subject gets so complicated that it is too
advanced to discuss here! If one has an actual, detailed problem in lens design,
including analysis of aberrations, then he is advised to read about the subject
or else simply to trace the rays through the various surfaces (which is what the
book tells how to do), using the law of refraction from one side to the other,
and to find out where they come out and see if they form a satisfactory image.
People have said that this is too tedious, but today, with computing machines, it
is the right way to do it. One can set up the problem and make the calculation
for one ray after another very easily. So the subject is really ultimately quite
simple, and involves no new principles. Furthermore, it turns out that the rules of
either elementary or advanced optics are seldom characteristic of other fields, so
that there is no special reason to follow the subject very far, with one important
exception.

The most advanced and abstract theory of geometrical optics was worked
out by Hamilton, and it turns out that this has very important applications in
mechanics. It is actually even more important in mechanics than it is in optics,
and so we leave Hamilton’s theory for the subject of advanced analytical mechanics,
which is studied in the senior year or in graduate school. So, appreciating that
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Figure 27-1

geometrical optics contributes very little, except for its own sake, we now go on
to discuss the elementary properties of simple optical systems on the basis of the
principles outlined in the last chapter.

In order to go on, we must have one geometrical formula, which is the following:
if we have a triangle with a small altitude h and a long base d, then the diagonal s
(we are going to need it to find the difference in time between two different routes)
is longer than the base (Fig. 27-1). How much longer? The difference ∆ = s− d
can be found in a number of ways. One way is this. We see that s2 − d2 = h2,
or (s− d)(s+ d) = h2. But s− d = ∆, and s+ d ≈ 2s. Thus

∆ ≈ h2/2s. (27.1)

This is all the geometry we need to discuss the formation of images by curved
surfaces!

27-2 The focal length of a spherical surface

The first and simplest situation to discuss is a single refracting surface,
separating two media with different indices of refraction (Fig. 27-2). We leave
the case of arbitrary indices of refraction to the student, because ideas are always

O V Q C O′

P

R
s s ′

AIR GLASS

Fig. 27-2. Focusing by a single refracting surface.
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the most important thing, not the specific situation, and the problem is easy
enough to do in any case. So we shall suppose that, on the left, the speed is 1
and on the right it is 1/n, where n is the index of refraction. The light travels
more slowly in the glass by a factor n.

Now suppose that we have a point at O, at a distance s from the front surface
of the glass, and another point O′ at a distance s′ inside the glass, and we desire
to arrange the curved surface in such a manner that every ray from O which hits
the surface, at any point P , will be bent so as to proceed toward the point O′.
For that to be true, we have to shape the surface in such a way that the time it
takes for the light to go from O to P , that is, the distance OP divided by the
speed of light (the speed here is unity), plus n ·O′P , which is the time it takes
to go from P to O′, is equal to a constant independent of the point P . This
condition supplies us with an equation for determining the surface. The answer
is that the surface is a very complicated fourth-degree curve, and the student
may entertain himself by trying to calculate it by analytic geometry. It is simpler
to try a special case that corresponds to s → ∞, because then the curve is a
second-degree curve and is more recognizable. It is interesting to compare this
curve with the parabolic curve we found for a focusing mirror when the light is
coming from infinity.

So the proper surface cannot easily be made—to focus the light from one
point to another requires a rather complicated surface. It turns out in practice
that we do not try to make such complicated surfaces ordinarily, but instead we
make a compromise. Instead of trying to get all the rays to come to a focus, we
arrange it so that only the rays fairly close to the axis OO′ come to a focus. The
farther ones may deviate if they want to, unfortunately, because the ideal surface
is complicated, and we use instead a spherical surface with the right curvature at
the axis. It is so much easier to fabricate a sphere than other surfaces that it is
profitable for us to find out what happens to rays striking a spherical surface,
supposing that only the rays near the axis are going to be focused perfectly.
Those rays which are near the axis are sometimes called paraxial rays, and what
we are analyzing are the conditions for the focusing of paraxial rays. We shall
discuss later the errors that are introduced by the fact that all rays are not always
close to the axis.

Thus, supposing P is close to the axis, we drop a perpendicular PQ such that
the height PQ is h. For a moment, we imagine that the surface is a plane passing
through P . In that case, the time needed to go from O to P would exceed the
time from O to Q, and also, the time from P to O′ would exceed the time from
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Q to O′. But that is why the glass must be curved, because the total excess
time must be compensated by the delay in passing from V to Q! Now the excess
time along route OP is h2/2s, and the excess time on the other route is nh2/2s′.
This excess time, which must be matched by the delay in going along V Q, differs
from what it would have been in a vacuum, because there is a medium present.
In other words, the time to go from V to Q is not as if it were straight in the
air, but it is slower by the factor n, so that the excess delay in this distance is
then (n− 1)V Q. And now, how large is V Q? If the point C is the center of the
sphere and if its radius is R, we see by the same formula that the distance V Q is
equal to h2/2R. Therefore we discover that the law that connects the distances s
and s′, and that gives us the radius of curvature R of the surface that we need, is

(h2/2s) + (nh2/2s′) = (n− 1)h2/2R (27.2)
or

(1/s) + (n/s′) = (n− 1)/R. (27.3)

If we have a position O and another position O′, and want to focus light from O
to O′, then we can calculate the required radius of curvature R of the surface by
this formula.

Now it turns out, interestingly, that the same lens, with the same curvature R,
will focus for other distances, namely, for any pair of distances such that the sum
of the two reciprocals, one multiplied by n, is a constant. Thus a given lens will
(so long as we limit ourselves to paraxial rays) focus not only from O to O′, but
between an infinite number of other pairs of points, so long as those pairs of
points bear the relationship that 1/s+ n/s′ is a constant, characteristic of the
lens.

In particular, an interesting case is that in which s→∞. We can see from the
formula that as one s increases, the other decreases. In other words, if point O
goes out, point O′ comes in, and vice versa. As point O goes toward infinity,
point O′ keeps moving in until it reaches a certain distance, called the focal
length f ′, inside the material. If parallel rays come in, they will meet the axis
at a distance f ′. Likewise, we could imagine it the other way. (Remember the
reciprocity rule: if light will go from O to O′, of course it will also go from O′

to O.) Therefore, if we had a light source inside the glass, we might want to know
where the focus is. In particular, if the light in the glass were at infinity (same
problem) where would it come to a focus outside? This distance is called f . Of
course, we can also put it the other way. If we had a light source at f and the
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light went through the surface, then it would go out as a parallel beam. We can
easily find out what f and f ′ are:

n/f ′ = (n− 1)/R or f ′ = Rn/(n− 1), (27.4)

1/f = (n− 1)/R or f = R/(n− 1). (27.5)

We see an interesting thing: if we divide each focal length by the corresponding
index of refraction we get the same result! This theorem, in fact, is general. It is
true of any system of lenses, no matter how complicated, so it is interesting to
remember. We did not prove here that it is general—we merely noted it for a
single surface, but it happens to be true in general that the two focal lengths of
a system are related in this way. Sometimes Eq. (27.3) is written in the form

1/s+ n/s′ = 1/f. (27.6)

This is more useful than (27.3) because we can measure f more easily than we
can measure the curvature and index of refraction of the lens: if we are not
interested in designing a lens or in knowing how it got that way, but simply lift
it off a shelf, the interesting quantity is f , not the n and the 1 and the R!

Now an interesting situation occurs if s becomes less than f . What happens
then? If s < f , then (1/s) > (1/f), and therefore s′ is negative; our equation says
that the light will focus only with a negative value of s′, whatever that means!
It does mean something very interesting and very definite. It is still a useful
formula, in other words, even when the numbers are negative. What it means is
shown in Fig. 27-3. If we draw the rays which are diverging from O, they will be
bent, it is true, at the surface, and they will not come to a focus, because O is so
close in that they are “beyond parallel.” However, they diverge as if they had
come from a point O′ outside the glass. This is an apparent image, sometimes

O′ O

Fig. 27-3. A virtual image.
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called a virtual image. The image O′ in Fig. 27-2 is called a real image. If the
light really comes to a point, it is a real image. But if the light appears to be
coming from a point, a fictitious point different from the original point, it is a
virtual image. So when s′ comes out negative, it means that O′ is on the other
side of the surface, and everything is all right.

O′

AIR GLASS

O

Fig. 27-4. A plane surface re-images the light from O′ to O.

Now consider the interesting case where R is equal to infinity; then we have
(1/s) + (n/s′) = 0. In other words, s′ = −ns, which means that if we look from a
dense medium into a rare medium and see a point in the rare medium, it appears
to be deeper by a factor n. Likewise, we can use the same equation backwards, so
that if we look into a plane surface at an object that is at a certain distance inside
the dense medium, it will appear as though the light is coming from not as far
back (Fig. 27-4). When we look at the bottom of a swimming pool from above,
it does not look as deep as it really is, by a factor 3/4, which is the reciprocal of
the index of refraction of water.

We could go on, of course, to discuss the spherical mirror. But if one appreci-
ates the ideas involved, he should be able to work it out for himself. Therefore
we leave it to the student to work out the formula for the spherical mirror, but
we mention that it is well to adopt certain conventions concerning the distances
involved:

(1) The object distance s is positive if the point O is to the left of the surface.
(2) The image distance s′ is positive if the point O′ is to the right of the surface.
(3) The radius of curvature of the surface is positive if the center is to the right

of the surface.

In Fig. 27-2, for example, s, s′, and R are all positive; in Fig. 27-3, s and R are
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positive, but s′ is negative. If we had used a concave surface, our formula (27.3)
would still give the correct result if we merely make R a negative quantity.

In working out the corresponding formula for a mirror, using the above
conventions, you will find that if you put n = −1 throughout the formula (27.3)
(as though the material behind the mirror had an index −1), the right formula
for a mirror results!

Although the derivation of formula (27.3) is simple and elegant, using least
time, one can of course work out the same formula using Snell’s law, remembering
that the angles are so small that the sines of angles can be replaced by the angles
themselves.

27-3 The focal length of a lens

Now we go on to consider another situation, a very practical one. Most of the
lenses that we use have two surfaces, not just one. How does this affect matters?
Suppose that we have two surfaces of different curvature, with glass filling the
space between them (Fig. 27-5). We want to study the problem of focusing from
a point O to an alternate point O′. How can we do that? The answer is this:
First, use formula (27.3) for the first surface, forgetting about the second surface.
This will tell us that the light which was diverging from O will appear to be
converging or diverging, depending on the sign, from some other point, say O′.
Now we consider a new problem. We have a different surface, between glass and
air, in which rays are converging toward a certain point O′. Where will they
actually converge? We use the same formula again! We find that they converge
at O′′. Thus, if necessary, we can go through 75 surfaces by just using the same
formula in succession, from one to the next!

1

2
n

R1

R2

O′O′′

Fig. 27-5. Image formation by a two-surface lens.
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There are some rather high-class formulas that would save us considerable
energy in the few times in our lives that we might have to chase the light through
five surfaces, but it is easier just to chase it through five surfaces when the
problem arises than it is to memorize a lot of formulas, because it may be we
will never have to chase it through any surfaces at all!

In any case, the principle is that when we go through one surface we find a
new position, a new focal point, and then take that point as the starting point
for the next surface, and so on. In order to actually do this, since on the second
surface we are going from n to 1 rather than from 1 to n, and since in many
systems there is more than one kind of glass, so that there are indices n1, n2,
. . . , we really need a generalization of formula (27.3) for a case where there are
two different indices, n1 and n2, rather than only n. Then it is not difficult to
prove that the general form of (27.3) is

(n1/s) + (n2/s
′) = (n2 − n1)/R. (27.7)

Particularly simple is the special case in which the two surfaces are very close
together—so close that we may ignore small errors due to the thickness. If we
draw the lens as shown in Fig. 27-6, we may ask this question: How must the
lens be built so as to focus light from O to O′? Suppose the light comes exactly
to the edge of the lens, at point P . Then the excess time in going from O to O′
is (n1h

2/2s) + (n1h
2/2s′), ignoring for a moment the presence of the thickness T

of glass of index n2. Now, to make the time for the direct path equal to that for
the path OPO′, we have to use a piece of glass whose thickness T at the center
is such that the delay introduced in going through this thickness is enough to
compensate for the excess time above. Therefore the thickness of the lens at the

O O′

P

Q
T

h

n1 n2 n1

Fig. 27-6. A thin lens with two positive radii.

27-8



center must be given by the relationship

(n1h
2/2s) + (n1h

2/2s′) = (n2 − n1)T. (27.8)

We can also express T in terms of the radii R1 and R2 of the two surfaces. Paying
attention to our convention (3), we thus find, for R1 < R2 (a convex lens),

T = (h2/2R1)− (h2/2R2). (27.9)

Therefore, we finally get

(n1/s) + (n1/s
′) = (n2 − n1)(1/R1 − 1/R2). (27.10)

Now we note again that if one of the points is at infinity, the other will be at a
point which we will call the focal length f . The focal length f is given by

1/f = (n− 1)(1/R1 − 1/R2). (27.11)

where n = n2/n1.
Now, if we take the opposite case, where s goes to infinity, we see that s′ is

at the focal length f ′. This time the focal lengths are equal. (This is another
special case of the general rule that the ratio of the two focal lengths is the ratio
of the indices of refraction in the two media in which the rays focus. In this
particular optical system, the initial and final indices are the same, so the two
focal lengths are equal.)

Forgetting for a moment about the actual formula for the focal length, if
we bought a lens that somebody designed with certain radii of curvature and a
certain index, we could measure the focal length, say, by seeing where a point at
infinity focuses. Once we had the focal length, it would be better to write our
equation in terms of the focal length directly, and the formula then is

(1/s) + (1/s′) = 1/f. (27.12)

Now let us see how the formula works and what it implies in different circum-
stances. First, it implies that if s or s′ is infinite the other one is f . That means
that parallel light focuses at a distance f , and this in effect defines f . Another
interesting thing it says is that both points move in the same direction. If one
moves to the right, the other does also. Another thing it says is that s and s′
are equal if they are both equal to 2f . In other words, if we want a symmetrical
situation, we find that they will both focus at a distance 2f .

27-9



27-4 Magnification

So far we have discussed the focusing action only for points on the axis. Now
let us discuss also the imaging of objects not exactly on the axis, but a little
bit off, so that we can understand the properties of magnification. When we set
up a lens so as to focus light from a small filament onto a “point” on a screen,
we notice that on the screen we get a “picture” of the same filament, except of
a larger or smaller size than the true filament. This must mean that the light
comes to a focus from each point of the filament. In order to understand this a
little better, let us analyze the thin lens system shown schematically in Fig. 27-7.
We know the following facts:

(1) Any ray that comes in parallel on one side proceeds toward a certain
particular point called the focus on the other side, at a distance f from the
lens.

(2) Any ray that arrives at the lens from the focus on one side comes out
parallel to the axis on the other side.

This is all we need to establish formula (27.12) by geometry, as follows: Suppose
we have an object at some distance x from the focus; let the height of the object
be y. Then we know that one of the rays, namely PQ, will be bent so as to pass
through the focus R on the other side. Now if the lens will focus point P at all,
we can find out where if we find out where just one other ray goes, because the
new focus will be where the two intersect again. We need only use our ingenuity
to find the exact direction of one other ray. But we remember that a parallel
ray goes through the focus and vice versa: a ray which goes through the focus
will come out parallel! So we draw ray PT through U . (It is true that the actual
rays which are doing the focusing may be much more limited than the two we
have drawn, but they are harder to figure, so we make believe that we can make

P Q

R

UV

T S

X

Wf
fx

y y
x ′

y ′ y ′

Fig. 27-7. The geometry of imaging by a thin lens.
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this ray.) Since it would come out parallel, we draw TS parallel to XW . The
intersection S is the point we need. This will determine the correct place and
the correct height. Let us call the height y′ and the distance from the focus, x′.
Now we may derive a lens formula. Using the similar triangles PV U and TXU ,
we find

y′

f
= y

x
. (27.13)

Similarly, from triangles SWR and QXR, we get

y′

x′
= y

f
. (27.14)

Solving each for y′/y, we find that

y′

y
= x′

f
= f

x
. (27.15)

Equation (27.15) is the famous lens formula; in it is everything we need to know
about lenses: It tells us the magnification, y′/y, in terms of the distances and
the focal lengths. It also connects the two distances x and x′ with f :

xx′ = f2, (27.16)

which is a much neater form to work with than Eq. (27.12). We leave it to the
student to demonstrate that if we call s = x+ f and s′ = x′ + f , Eq. (27.12) is
the same as Eq. (27.16).

27-5 Compound lenses

Without actually deriving it, we shall briefly describe the general result when
we have a number of lenses. If we have a system of several lenses, how can
we possibly analyze it? That is easy. We start with some object and calculate
where its image is for the first lens, using formula (27.16) or (27.12) or any other
equivalent formula, or by drawing diagrams. So we find an image. Then we treat
this image as the source for the next lens, and use the second lens with whatever
its focal length is to again find an image. We simply chase the thing through
the succession of lenses. That is all there is to it. It involves nothing new in
principle, so we shall not go into it. However, there is a very interesting net
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result of the effects of any sequence of lenses on light that starts and ends up in
the same medium, say air. Any optical instrument—a telescope or a microscope
with any number of lenses and mirrors—has the following property: There exist
two planes, called the principal planes of the system (these planes are often fairly
close to the first surface of the first lens and the last surface of the last lens),
which have the following properties: (1) If light comes into the system parallel
from the first side, it comes out at a certain focus, at a distance from the second
principal plane equal to the focal length, just as though the system were a thin
lens situated at this plane. (2) If parallel light comes in the other way, it comes
to a focus at the same distance f from the first principal plane, again as if a thin
lens where situated there. (See Fig. 27-8.)

x

y
x ′

y ′

f f

1 2

Fig. 27-8. Illustration of the principal planes of an optical system.

Of course, if we measure the distances x and x′, and y and y′ as before,
the formula (27.16) that we have written for the thin lens is absolutely general,
provided that we measure the focal length from the principal planes and not from
the center of the lens. It so happens that for a thin lens the principal planes are
coincident. It is just as though we could take a thin lens, slice it down the middle,
and separate it, and not notice that it was separated. Every ray that comes in
pops out immediately on the other side of the second plane from the same point
as it went into the first plane! The principal planes and the focal length may be
found either by experiment or by calculation, and then the whole set of properties
of the optical system are described. It is very interesting that the result is not
complicated when we are all finished with such a big, complicated optical system.

27-6 Aberrations

Before we get too excited about how marvelous lenses are, we must hasten
to add that there are also serious limitations, because of the fact that we have

27-12



limited ourselves, strictly speaking, to paraxial rays, the rays near the axis. A
real lens having a finite size will, in general, exhibit aberrations. For example,
a ray that is on the axis, of course, goes through the focus; a ray that is very
close to the axis will still come to the focus very well. But as we go farther out,
the ray begins to deviate from the focus, perhaps by falling short, and a ray
striking near the top edge comes down and misses the focus by quite a wide
margin. So, instead of getting a point image, we get a smear. This effect is called
spherical aberration, because it is a property of the spherical surfaces we use in
place of the right shape. This could be remedied, for any specific object distance,
by re-forming the shape of the lens surface, or perhaps by using several lenses
arranged so that the aberrations of the individual lenses tend to cancel each other.

Lenses have another fault: light of different colors has different speeds, or
different indices of refraction, in the glass, and therefore the focal length of a
given lens is different for different colors. So if we image a white spot, the image
will have colors, because when we focus for the red, the blue is out of focus, or
vice versa. This property is called chromatic aberration.

There are still other faults. If the object is off the axis, then the focus really
isn’t perfect any more, when it gets far enough off the axis. The easiest way to
verify this is to focus a lens and then tilt it so that the rays are coming in at a
large angle from the axis. Then the image that is formed will usually be quite
crude, and there may be no place where it focuses well. There are thus several
kinds of errors in lenses that the optical designer tries to remedy by using many
lenses to compensate each other’s errors.

How careful do we have to be to eliminate aberrations? Is it possible to make
an absolutely perfect optical system? Suppose we had built an optical system
that is supposed to bring light exactly to a point. Now, arguing from the point
of view of least time, can we find a condition on how perfect the system has to
be? The system will have some kind of an entrance opening for the light. If we
take the farthest ray from the axis that can come to the focus (if the system
is perfect, of course), the times for all rays are exactly equal. But nothing is
perfect, so the question is, how wrong can the time be for this ray and not be
worth correcting any further? That depends on how perfect we want to make
the image. But suppose we want to make the image as perfect as it possibly can
be made. Then, of course, our impression is that we have to arrange that every
ray takes as nearly the same time as possible. But it turns out that this is not
true, that beyond a certain point we are trying to do something that is too fine,
because the theory of geometrical optics does not work!
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Remember that the principle of least time is not an accurate formulation,
unlike the principle of conservation of energy or the principle of conservation
of momentum. The principle of least time is only an approximation, and it
is interesting to know how much error can be allowed and still not make any
apparent difference. The answer is that if we have arranged that between the
maximal ray—the worst ray, the ray that is farthest out—and the central ray, the
difference in time is less than about the period that corresponds to one oscillation
of the light, then there is no use improving it any further. Light is an oscillatory
thing with a definite frequency that is related to the wavelength, and if we have
arranged that the time difference for different rays is less than about a period,
there is no use going any further.

27-7 Resolving power

Another interesting question—a very important technical question with all
optical instruments—is how much resolving power they have. If we build a
microscope, we want to see the objects that we are looking at. That means, for
instance, that if we are looking at a bacterium with a spot on each end, we want
to see that there are two dots when we magnify them. One might think that all
we have to do is to get enough magnification—we can always add another lens,
and we can always magnify again and again, and with the cleverness of designers,
all the spherical aberrations and chromatic aberrations can be cancelled out,
and there is no reason why we cannot keep on magnifying the image. So the
limitations of a microscope are not that it is impossible to build a lens that
magnifies more than 2000 diameters. We can build a system of lenses that
magnifies 10,000 diameters, but we still could not see two points that are too
close together because of the limitations of geometrical optics, because of the
fact that least time is not precise.

To discover the rule that determines how far apart two points have to be
so that at the image they appear as separate points can be stated in a very
beautiful way associated with the time it takes for different rays. Suppose that
we disregard the aberrations now, and imagine that for a particular point P
(Fig. 27-9) all the rays from object to image T take exactly the same time. (It
is not true, because it is not a perfect system, but that is another problem.)
Now take another nearby point, P ′, and ask whether its image will be distinct
from T . In other words, whether we can make out the difference between them.
Of course, according to geometrical optics, there should be two point images,
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Fig. 27-9. The resolving power of an optical system.

but what we see may be rather smeared and we may not be able to make out
that there are two points. The condition that the second point is focused in a
distinctly different place from the first one is that the two times for the extreme
rays P ′ST and P ′RT on each side of the big opening of the lenses to go from
one end to the other, must not be equal from the two possible object points to
a given image point. Why? Because, if the times were equal, of course both
would focus at the same point. So the times are not going to be equal. But by
how much do they have to differ so that we can say that both do not come to a
common focus, so that we can distinguish the two image points? The general rule
for the resolution of any optical instrument is this: two different point sources
can be resolved only if one source is focused at such a point that the times for
the maximal rays from the other source to reach that point, as compared with
its own true image point, differ by more than one period. It is necessary that the
difference in time between the top ray and the bottom ray to the wrong focus
shall exceed a certain amount, namely, approximately the period of oscillation of
the light:

t2 − t1 > 1/ν, (27.17)

where ν is the frequency of the light (number of oscillations per second; also speed
divided by wavelength). If the distance of separation of the two points is called
D, and if the opening angle of the lens is called θ, then one can demonstrate
that (27.17) is exactly equivalent to the statement that D must exceed λ/n sin θ,
where n is the index of refraction at P and λ is the wavelength. The smallest
things that we can see are therefore approximately the wavelength of light. A
corresponding formula exists for telescopes, which tells us the smallest difference
in angle between two stars that can just be distinguished.*

* The angle is about λ/D, where D is the lens diameter. Can you see why?
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28

Electromagnetic Radiation

28-1 Electromagnetism

The most dramatic moments in the development of physics are those in which
great syntheses take place, where phenomena which previously had appeared
to be different are suddenly discovered to be but different aspects of the same
thing. The history of physics is the history of such syntheses, and the basis of
the success of physical science is mainly that we are able to synthesize.

Perhaps the most dramatic moment in the development of physics during the
19th century occurred to J. C. Maxwell one day in the 1860’s, when he combined
the laws of electricity and magnetism with the laws of the behavior of light. As
a result, the properties of light were partly unravelled—that old and subtle stuff
that is so important and mysterious that it was felt necessary to arrange a special
creation for it when writing Genesis. Maxwell could say, when he was finished
with his discovery, “Let there be electricity and magnetism, and there is light!”

For this culminating moment there was a long preparation in the gradual
discovery and unfolding of the laws of electricity and magnetism. This story we
shall reserve for detailed study next year. However, the story is, briefly, as follows.
The gradually discovered properties of electricity and magnetism, of electric forces
of attraction and repulsion, and of magnetic forces, showed that although these
forces were rather complex, they all fell off inversely as the square of the distance.
We know, for example, that the simple Coulomb law for stationary charges is
that the electric force field varies inversely as the square of the distance. As a
consequence, for sufficiently great distances there is very little influence of one
system of charges on another. Maxwell noted that the equations or the laws that
had been discovered up to this time were mutually inconsistent when he tried to
put them all together, and in order for the whole system to be consistent, he had
to add another term to his equations. With this new term there came an amazing
prediction, which was that a part of the electric and magnetic fields would fall off
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much more slowly with the distance than the inverse square, namely, inversely as
the first power of the distance! And so he realized that electric currents in one
place can affect other charges far away, and he predicted the basic effects with
which we are familiar today—radio transmission, radar, and so on.

It seems a miracle that someone talking in Europe can, with mere electrical
influences, be heard thousands of miles away in Los Angeles. How is it possible?
It is because the fields do not vary as the inverse square, but only inversely as
the first power of the distance. Finally, then, even light itself was recognized
to be electric and magnetic influences extending over vast distances, generated
by an almost incredibly rapid oscillation of the electrons in the atoms. All
these phenomena we summarize by the word radiation or, more specifically,
electromagnetic radiation, there being one or two other kinds of radiation also.
Almost always, radiation means electromagnetic radiation.

And thus is the universe knit together. The atomic motions of a distant star
still have sufficient influence at this great distance to set the electrons in our eye
in motion, and so we know about the stars. If this law did not exist, we would
all be literally in the dark about the exterior world! And the electric surgings in
a galaxy five billion light years away—which is the farthest object we have found
so far—can still influence in a significant and detectable way the currents in the
great “dish” in front of a radio telescope. And so it is that we see the stars and
the galaxies.

This remarkable phenomenon is what we shall discuss in the present chapter.
At the beginning of this course in physics we outlined a broad picture of the
world, but we are now better prepared to understand some aspects of it, and
so we shall now go over some parts of it again in greater detail. We begin by
describing the position of physics at the end of the 19th century. All that was
then known about the fundamental laws can be summarized as follows.

First, there were laws of forces: one force was the law of gravitation, which
we have written down several times; the force on an object of mass m, due to
another of mass M , is given by

F = GmMer/r
2, (28.1)

where er is a unit vector directed from m to M , and r is the distance between
them.

Next, the laws of electricity and magnetism, as known at the end of the
19th century, are these: the electrical forces acting on a charge q can be described
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by two fields, called E and B, and the velocity v of the charge q, by the equation

F = q(E + v ×B). (28.2)

To complete this law, we have to say what the formulas for E and B are in a
given circumstance: if a number of charges are present, E and the B are each
the sum of contributions, one from each individual charge. So if we can find the
E and B produced by a single charge, we need only to add all the effects from
all the charges in the universe to get the total E and B! This is the principle of
superposition.

What is the formula for the electric and magnetic field produced by one
individual charge? It turns out that this is very complicated, and it takes a
great deal of study and sophistication to appreciate it. But that is not the
point. We write down the law now only to impress the reader with the beauty
of nature, so to speak, i.e., that it is possible to summarize all the fundamental
knowledge on one page, with notations that he is now familiar with. This law for
the fields of an individual charge is complete and accurate, so far as we know
(except for quantum mechanics) but it looks rather complicated. We shall not
study all the pieces now; we only write it down to give an impression, to show
that it can be written, and so that we can see ahead of time roughly what it
looks like. As a matter of fact, the most useful way to write the correct laws of
electricity and magnetism is not the way we shall now write them, but involves
what are called field equations, which we shall learn about next year. But the
mathematical notations for these are different and new, and so we write the law
in an inconvenient form for calculation, but in notations that we now know.

The electric field, E, is given by

E = −q
4πε0

[
er′

r′2
+ r′

c

d

dt

(
er′

r′2

)
+ 1
c2

d2

dt2
er′

]
. (28.3)

What do the various terms tell us? Take the first term, E = −qer′/4πε0r′2.
That, of course, is Coulomb’s law, which we already know: q is the charge that is
producing the field; er′ is the unit vector in the direction from the point P where
E is measured, r is the distance from P to q. But, Coulomb’s law is wrong. The
discoveries of the 19th century showed that influences cannot travel faster than
a certain fundamental speed c, which we now call the speed of light. It is not
correct that the first term is Coulomb’s law, not only because it is not possible to
know where the charge is now and at what distance it is now, but also because
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the only thing that can affect the field at a given place and time is the behavior
of the charges in the past. How far in the past? The time delay, or retarded
time, so-called, is the time it takes, at speed c, to get from the charge to the field
point P . The delay is r′/c.

So to allow for this time delay, we put a little prime on r, meaning how far
away it was when the information now arriving at P left q. Just for a moment
suppose that the charge carried a light, and that the light could only come
to P at the speed c. Then when we look at q, we would not see where it is
now, of course, but where it was at some earlier time. What appears in our
formula is the apparent direction er′—the direction it used to be—the so-called
retarded direction—and at the retarded distance r′. That would be easy enough to
understand, too, but it is also wrong. The whole thing is much more complicated.

There are several more terms. The next term is as though nature were trying
to allow for the fact that the effect is retarded, if we might put it very crudely. It
suggests that we should calculate the delayed Coulomb field and add a correction
to it, which is its rate of change times the time delay that we use. Nature seems
to be attempting to guess what the field at the present time is going to be, by
taking the rate of change and multiplying by the time that is delayed. But we
are not yet through. There is a third term—the second derivative, with respect
to t, of the unit vector in the direction of the charge. Now the formula is finished,
and that is all there is to the electric field from an arbitrarily moving charge.

The magnetic field is given by

B = −er′ ×E/c. (28.4)

We have written these down only for the purpose of showing the beauty of nature
or, in a way, the power of mathematics. We do not pretend to understand why it
is possible to write so much in such a small space, but (28.3) and (28.4) contain
the machinery by which electric generators work, how light operates, all the
phenomena of electricity and magnetism. Of course, to complete the story we
also need to know something about the behavior of the materials involved—the
properties of matter—which are not described properly by (28.3).

To finish with our description of the world of the 19th century we must
mention one other great synthesis which occurred in that century, one with which
Maxwell had a great deal to do also, and that was the synthesis of the phenomena
of heat and mechanics. We shall study that subject soon.

What had to be added in the 20th century was that the dynamical laws of
Newton were found to be all wrong, and quantum mechanics had to be introduced
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to correct them. Newton’s laws are approximately valid when the scale of things
is sufficiently large. These quantum-mechanical laws, combined with the laws of
electricity, have only recently been combined to form a set of laws called quantum
electrodynamics. In addition, there were discovered a number of new phenomena,
of which the first was radioactivity, discovered by Becquerel in 1898—he just
sneaked it in under the 19th century. This phenomenon of radioactivity was
followed up to produce our knowledge of nuclei and new kinds of forces that are
not gravitational and not electrical, but new particles with different interactions,
a subject which has still not been unravelled.

For those purists who know more (the professors who happen to be reading
this), we should add that when we say that (28.3) is a complete expression of the
knowledge of electrodynamics, we are not being entirely accurate. There was a
problem that was not quite solved at the end of the 19th century. When we try
to calculate the field from all the charges including the charge itself that we want
the field to act on, we get into trouble trying to find the distance, for example, of
a charge from itself, and dividing something by that distance, which is zero. The
problem of how to handle the part of this field which is generated by the very
charge on which we want the field to act is not yet solved today. So we leave it
there; we do not have a complete solution to that puzzle yet, and so we shall
avoid the puzzle for as long as we can.

28-2 Radiation

That, then, is a summary of the world picture. Now let us use it to discuss
the phenomena called radiation. To discuss these phenomena, we must select
from Eq. (28.3) only that piece which varies inversely as the distance and not as
the square of the distance. It turns out that when we finally do find that piece, it
is so simple in its form that it is legitimate to study optics and electrodynamics
in an elementary way by taking it as “the law” of the electric field produced by a
moving charge far away. We shall take it temporarily as a given law which we
will learn about in detail next year.

Of the terms appearing in (28.3), the first one evidently goes inversely as
the square of the distance, and the second is only a correction for delay, so it
is easy to show that both of them vary inversely as the square of the distance.
All of the effects we are interested in come from the third term, which is not
very complicated, after all. What this term says is: look at the charge and note
the direction of the unit vector (we can project the end of it onto the surface of
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a unit sphere). As the charge moves around, the unit vector wiggles, and the
acceleration of that unit vector is what we are looking for. That is all. Thus

E = −q
4πε0c2

d2er′

dt2
(28.5)

is a statement of the laws of radiation, because that is the only important term
when we get far enough away that the fields are varying inversely as the distance.
(The parts that go as the square have fallen off so much that we are not interested
in them.)

Now we can go a little bit further in studying (28.5) to see what it means.
Suppose a charge is moving in any manner whatsoever, and we are observing it
from a distance. We imagine for a moment that in a sense it is “lit up” (although
it is light that we are trying to explain); we imagine it as a little white dot. Then
we would see this white dot running around. But we don’t see exactly how it is
running around right now, because of the delay that we have been talking about.
What counts is how it was moving earlier. The unit vector er′ is pointed toward
the apparent position of the charge. Of course, the end of er′ goes on a slight
curve, so that its acceleration has two components. One is the transverse piece,
because the end of it goes up and down, and the other is a radial piece because
it stays on a sphere. It is easy to demonstrate that the latter is much smaller
and varies as the inverse square of r when r is very great. This is easy to see, for
when we imagine that we move a given source farther and farther away, then the
wigglings of er′ look smaller and smaller, inversely as the distance, but the radial
component of acceleration is varying much more rapidly than inversely as the
distance. So for practical purposes all we have to do is project the motion on a
plane at unit distance. Therefore we find the following rule: Imagine that we look
at the moving charge and that everything we see is delayed—like a painter trying
to paint a scene on a screen at a unit distance. A real painter, of course, does
not take into account the fact that light is going at a certain speed, but paints
the world as he sees it. We want to see what his picture would look like. So we
see a dot, representing the charge, moving about in the picture. The acceleration
of that dot is proportional to the electric field. That is all—all we need.

Thus Eq. (28.5) is the complete and correct formula for radiation; even
relativity effects are all contained in it. However, we often want to apply it to a
still simpler circumstance in which the charges are moving only a small distance
at a relatively slow rate. Since they are moving slowly, they do not move an
appreciable distance from where they start, so that the delay time is practically
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constant. Then the law is still simpler, because the delay time is fixed. Thus we
imagine that the charge is executing a very tiny motion at an effectively constant
distance. The delay at the distance r is r/c. Then our rule becomes the following:
If the charged object is moving in a very small motion and it is laterally displaced
by the distance x(t), then the angle that the unit vector er′ is displaced is x/r,
and since r is practically constant, the x-component of d2er′/dt2 is simply the
acceleration of x itself at an earlier time divided by r, and so finally we get the
law we want, which is

Ex(t) = −q
4πε0c2r

ax

(
t− r

c

)
. (28.6)

Only the component of ax perpendicular to the line of sight is important. Let
us see why that is. Evidently, if the charge is moving in and out straight at us,
the unit vector in that direction does not wiggle at all, and it has no acceleration.
So it is only the sidewise motion which is important, only the acceleration that
we see projected on the screen.

28-3 The dipole radiator

As our fundamental “law” of electromagnetic radiation, we are going to assume
that (28.6) is true, i.e., that the electric field produced by an accelerating charge
which is moving nonrelativistically at a very large distance r approaches that
form. The electric field varies inversely as r and is proportional to the acceleration
of the charge, projected onto the “plane of sight,” and this acceleration is not
today’s acceleration, but the acceleration that it had at an earlier time, the
amount of delay being a time, r/c. In the remainder of this chapter we shall
discuss this law so that we can understand it better physically, because we are
going to use it to understand all of the phenomena of light and radio propagation,
such as reflection, refraction, interference, diffraction, and scattering. It is the
central law, and is all we need. All the rest of Eq. (28.3) was written down only
to set the stage, so that we could appreciate where (28.6) fits and how it comes
about.

We shall discuss (28.3) further next year. In the meantime, we shall accept
it as true, but not just on a theoretical basis. We may devise a number of
experiments which illustrate the character of the law. In order to do so, we need
an accelerating charge. It should be a single charge, but if we can make a great
many charges move together, all the same way, we know that the field will be the
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Fig. 28-1. A high-frequency signal generator drives charges up and
down on two wires.

sum of the effects of each of the individual charges; we just add them together.
As an example, consider two pieces of wire connected to a generator, as shown in
Fig. 28-1. The idea is that the generator makes a potential difference, or a field,
which pulls electrons away from piece A and pushes them into B at one moment,
and then, an infinitesimal time later, it reverses the effect and pulls the electrons
out of B and pumps them back into A! So in these two wires charges, let us say,
are accelerating upward in wire A and upward in wire B for one moment, and a
moment later they are accelerating downward in wire A and downward in wire B.
The fact that we need two wires and a generator is merely that this is a way of
doing it. The net result is that we merely have a charge accelerating up and down
as though A and B were one single wire. A wire that is very short compared
with the distance light travels in one oscillation period is called an electric dipole
oscillator. Thus we have the circumstance that we need to apply our law, which
tells us that this charge makes an electric field, and so we need an instrument to
detect an electric field, and the instrument we use is the same thing—a pair of
wires like A and B! If an electric field is applied to such a device, it will produce
a force which will pull the electrons up on both wires or down on both wires.
This signal is detected by means of a rectifier mounted between A and B, and
a tiny, fine wire carries the information into an amplifier, where it is amplified so
we can hear the audiofrequency tone with which the radiofrequency is modulated.
When this probe feels an electric field, there will be a loud noise coming out of the
loudspeaker, and when there is no electric field driving it, there will be no noise.

Because the room in which the waves we are measuring has other objects in
it, our electric field will shake electrons in these other objects; the electric field
makes these other charges go up and down, and in going up and down, these
also produce an effect on our probe. Thus for a successful experiment we must
hold things fairly close together, so that the influences from the walls and from
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ourselves—the reflected waves—are relatively small. So the phenomena will not
turn out to appear to be precisely and perfectly in accord with Eq. (28.6), but
will be close enough that we shall be able to appreciate the law.

1

3

G

2

D

θ
r

Fig. 28-2. The instantaneous electric field on a sphere centered at a
localized, linearly oscillating charge.

Now we turn the generator on and hear the audio signal. We find a strong
field when the detector D is parallel to the generator G at point 1 (Fig. 28-2).
We find the same amount of field also at any other azimuth angle about the axis
of G, because it has no directional effects. On the other hand, when the detector
is at 3 the field is zero. That is all right, because our formula said that the field
should be the acceleration of the charge projected perpendicular to the line of
sight. Therefore when we look down on G, the charge is moving toward and
away from D, and there is no effect. So that checks the first rule, that there is
no effect when the charge is moving directly toward us. Secondly, the formula
says that the electric field should be perpendicular to r and in the plane of G
and r; so if we put D at 1 but rotate it 90◦, we should get no signal. And this is
just what we find, the electric field is indeed vertical, and not horizontal. When
we move D to some intermediate angle, we see that the strongest signal occurs
when it is oriented as shown, because although G is vertical, it does not produce
a field that is simply parallel to itself—it is the projection of the acceleration
perpendicular to the line of sight that counts. The signal is weaker at 2 than it is
at 1, because of the projection effect.
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28-4 Interference

Next, we may test what happens when we have two sources side by side
several wavelengths apart (Fig. 28-3). The law is that the two sources should
add their effects at point 1 when both of the sources are connected to the same
generator and are both moving up and down the same way, so that the total
electric field is the sum of the two and is twice as strong as it was before.

D

D

D

S1

S2

∆

1

2

3
TOP
VIEW

Fig. 28-3. Illustration of interference of sources.

Now comes an interesting possibility. Suppose we make the charges in S1
and S2 both accelerate up and down, but delay the timing of S2 so that they are
180◦ out of phase. Then the field produced by S1 will be in one direction and
the field produced by S2 will be in the opposite direction at any instant, and
therefore we should get no effect at point 1. The phase of oscillation is neatly
adjustable by means of a pipe which is carrying the signal to S2. By changing
the length of this pipe we change the time it takes the signal to arrive at S2 and
thus we change the phase of that oscillation. By adjusting this length, we can
indeed find a place where there is no more signal left, in spite of the fact that
both S1 and S2 are moving! The fact that they are both moving can be checked,
because if we cut one out, we can see the motion of the other. So the two of
them together can produce zero if everything is adjusted correctly.

Now, it is very interesting to show that the addition of the two fields is in
fact a vector addition. We have just checked it for up and down motion, but
let us check two nonparallel directions. First, we restore S1 and S2 to the same
phase; that is, they are again moving together. But now we turn S1 through 90◦,
as shown in Fig. 28-4. Now we should have at point 1 the sum of two effects,
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Fig. 28-4. Illustration of the vector character of the combination of
sources.

one of which is vertical and the other horizontal. The electric field is the vector
sum of these two in-phase signals—they are both strong at the same time and go
through zero together; the total field should be a signal R at 45◦. If we turn D
to get the maximum noise, it should be at about 45◦, and not vertical. And if
we turn it at right angles to that direction, we should get zero, which is easy to
measure. Indeed, we observe just such behavior!

Now, how about the retardation? How can we demonstrate that the signal is
retarded? We could, with a great deal of equipment, measure the time at which
it arrives, but there is another, very simple way. Referring again to Fig. 28-3,
suppose that S1 and S2 are in phase. They are both shaking together, and
they produce equal electric fields at point 1. But suppose we go to a certain
place 2 which is closer to S2 and farther from S1. Then, in accordance with the
principle that the acceleration should be retarded by an amount equal to r/c,
if the retardations are not equal, the signals are no longer in phase. Thus it
should be possible to find a position at which the distances of D from S1 and S2
differ by some amount ∆, in such a manner that there is no net signal. That
is, the distance ∆ is to be the distance light goes in one-half an oscillation of
the generator. We may go still further, and find a point where the difference is
greater by a whole cycle; that is to say, the signal from the first antenna reaches
point 3 with a delay in time that is greater than that of the second antenna
by just the length of time it takes for the electric current to oscillate once, and
therefore the two electric fields produced at 3 are in phase again. At point 3 the
signal is strong again.

This completes our discussion of the experimental verification of some of
the important features of Eq. (28.6). Of course we have not really checked
the 1/r variation of the electric field strength, or the fact that there is also a
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magnetic field that goes along with the electric field. To do so would require
rather sophisticated techniques and would hardly add to our understanding at
this point. In any case, we have checked those features that are of the greatest
importance for our later applications, and we shall come back to study some of
the other properties of electromagnetic waves next year.
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29

Interference

29-1 Electromagnetic waves

In this chapter we shall discuss the subject of the preceding chapter more
mathematically. We have qualitatively demonstrated that there are maxima
and minima in the radiation field from two sources, and our problem now is to
describe the field in mathematical detail, not just qualitatively.

We have already physically analyzed the meaning of formula (28.6) quite
satisfactorily, but there are a few points to be made about it mathematically. In
the first place, if a charge is accelerating up and down along a line, in a motion
of very small amplitude, the field at some angle θ from the axis of the motion is
in a direction at right angles to the line of sight and in the plane containing both
the acceleration and the line of sight (Fig. 29-1). If the distance is called r, then
at time t the electric field has the magnitude

E(t) = −qa(t− r/c) sin θ
4πε0c2r

, (29.1)

a′

r
E

θ

Fig. 29-1. The electric field E due to a positive charge whose retarded
acceleration is a′.
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Fig. 29-2. The acceleration of a certain charge as a function of time.

E

r

Fig. 29-3. The electric field as a function of position at a later time.
(The 1/r variation is ignored.)

where a(t − r/c) is the acceleration at the time (t − r/c), called the retarded
acceleration.

Now it would be interesting to draw a picture of the field under different
conditions. The thing that is interesting, of course, is the factor a(t − r/c),
and to understand it we can take the simplest case, θ = 90◦, and plot the field
graphically. What we had been thinking of before is that we stand in one position
and ask how the field there changes with time. But instead of that, we are now
going to see what the field looks like at different positions in space at a given
instant. So what we want is a “snapshot” picture which tells us what the field
is in different places. Of course it depends upon the acceleration of the charge.
Suppose that the charge at first had some particular motion: it was initially
standing still, and it suddenly accelerated in some manner, as shown in Fig. 29-2,
and then stopped. Then, a little bit later, we measure the field at a different
place. Then we may assert that the field will appear as shown in Fig. 29-3. At
each point the field is determined by the acceleration of the charge at an earlier
time, the amount earlier being the delay r/c. The field at farther and farther
points is determined by the acceleration at earlier and earlier times. So the curve
in Fig. 29-3 is really, in a sense, a “reversed” plot of the acceleration as a function
of time; the distance is related to time by a constant scale factor c, which we
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often take as unity. This is easily seen by considering the mathematical behavior
of a(t − r/c). Evidently, if we add a little time ∆t, we get the same value for
a(t− r/c) as we would have if we had subtracted a little distance: ∆r = −c∆t.

Stated another way: if we add a little time ∆t, we can restore a(t− r/c) to
its former value by adding a little distance ∆r = c∆t. That is, as time goes on
the field moves as a wave outward from the source. That is the reason why we
sometimes say light is propagated as waves. It is equivalent to saying that the
field is delayed, or to saying that the electric field is moving outward as time
goes on.

An interesting special case is that where the charge q is moving up and down
in an oscillatory manner. The case which we studied experimentally in the last
chapter was one in which the displacement x at any time t was equal to a certain
constant x0, the magnitude of the oscillation, times cosωt. Then the acceleration
is

a = −ω2x0 cosωt = a0 cosωt, (29.2)
where a0 is the maximum acceleration, −ω2x0. Putting this formula into (29.1),
we find

E = −q sin θ a0 cosω(t− r/c)
4πε0rc2

. (29.3)

Now, ignoring the angle θ and the constant factors, let us see what that looks
like as a function of position or as a function of time.

29-2 Energy of radiation

First of all, at any particular moment or in any particular place, the strength
of the field varies inversely as the distance r, as we mentioned previously. Now
we must point out that the energy content of a wave, or the energy effects that
such an electric field can have, are proportional to the square of the field, because
if, for instance, we have some kind of a charge or an oscillator in the electric field,
then if we let the field act on the oscillator, it makes it move. If this is a linear
oscillator, the acceleration, velocity, and displacement produced by the electric
field acting on the charge are all proportional to the field. So the kinetic energy
which is developed in the charge is proportional to the square of the field. So we
shall take it that the energy that a field can deliver to a system is proportional
somehow to the square of the field.

This means that the energy that the source can deliver decreases as we get
farther away; in fact, it varies inversely as the square of the distance. But that
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Fig. 29-4. The energy flowing within the cone OABCD is independent
of the distance r at which it is measured.

has a very simple interpretation: if we wanted to pick up all the energy we could
from the wave in a certain cone at a distance r1 (Fig. 29-4), and we do the same
at another distance r2, we find that the amount of energy per unit area at any
one place goes inversely as the square of r, but the area of the surface intercepted
by the cone goes directly as the square of r. So the energy that we can take out
of the wave within a given conical angle is the same, no matter how far away
we are! In particular, the total energy that we could take out of the whole wave
by putting absorbing oscillators all around is a certain fixed amount. So the
fact that the amplitude of E varies as 1/r is the same as saying that there is an
energy flux which is never lost, an energy which goes on and on, spreading over a
greater and greater effective area. Thus we see that after a charge has oscillated,
it has lost some energy which it can never recover; the energy keeps going farther
and farther away without diminution. So if we are far enough away that our
basic approximation is good enough, the charge cannot recover the energy which
has been, as we say, radiated away. Of course the energy still exists somewhere,
and is available to be picked up by other systems. We shall study this energy
“loss” further in Chapter 32.

Let us now consider more carefully how the wave (29.3) varies as a function
of time at a given place, and as a function of position at a given time. Again we
ignore the 1/r variation and the constants.

29-3 Sinusoidal waves

First let us fix the position r, and watch the field as a function of time. It is
oscillatory at the angular frequency ω. The angular frequency ω can be defined
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as the rate of change of phase with time (radians per second). We have already
studied such a thing, so it should be quite familiar to us by now. The period is
the time needed for one oscillation, one complete cycle, and we have worked that
out too; it is 2π/ω, because ω times the period is one cycle of the cosine.

Now we introduce a new quantity which is used a great deal in physics. This
has to do with the opposite situation, in which we fix t and look at the wave
as a function of distance r. Of course we notice that, as a function of r, the
wave (29.3) is also oscillatory. That is, aside from 1/r, which we are ignoring, we
see that E oscillates as we change the position. So, in analogy with ω, we can
define a quantity called the wave number , symbolized as k. This is defined as the
rate of change of phase with distance (radians per meter). That is, as we move
in space at a fixed time, the phase changes.

There is another quantity that corresponds to the period, and we might call
it the period in space, but it is usually called the wavelength, symbolized λ. The
wavelength is the distance occupied by one complete cycle. It is easy to see,
then, that the wavelength is 2π/k, because k times the wavelength would be the
number of radians that the whole thing changes, being the product of the rate of
change of the radians per meter, times the number of meters, and we must make
a 2π change for one cycle. So kλ = 2π is exactly analogous to ωt0 = 2π.

Now in our particular wave there is a definite relationship between the fre-
quency and the wavelength, but the above definitions of k and ω are actually
quite general. That is, the wavelength and the frequency may not be related in
the same way in other physical circumstances. However, in our circumstance
the rate of change of phase with distance is easily determined, because if we call
φ = ω(t− r/c) the phase, and differentiate (partially) with respect to distance r,
the rate of change, ∂φ/∂r, is ∣∣∣∣∂φ∂r

∣∣∣∣ = k = ω

c
. (29.4)

There are many ways to represent the same thing, such as

λ = ct0 (29.5)

ω = ck (29.6)

λν = c (29.7)

ωλ = 2πc (29.8)
Why is the wavelength equal to c times the period? That’s very easy, of course,
because if we sit still and wait for one period to elapse, the waves, travelling at
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the speed c, will move a distance ct0, and will of course have moved over just
one wavelength.

In a physical situation other than that of light, k is not necessarily related
to ω in this simple way. If we call the distance along an axis x, then the formula
for a cosine wave moving in a direction x with a wave number k and an angular
frequency ω will be written in general as cos (ωt− kx).

Now that we have introduced the idea of wavelength, we may say something
more about the circumstances in which (29.1) is a legitimate formula. We recall
that the field is made up of several pieces, one of which varies inversely as r,
another part which varies inversely as r2, and others which vary even faster. It
would be worth while to know in what circumstances the 1/r part of the field is
the most important part, and the other parts are relatively small. Naturally, the
answer is “if we go ‘far enough’ away,” because terms which vary inversely as
the square ultimately become negligible compared with the 1/r term. How far is
“far enough”? The answer is, qualitatively, that the other terms are of order λ/r
smaller than the 1/r term. Thus, so long as we are beyond a few wavelengths,
(29.1) is an excellent approximation to the field. Sometimes the region beyond a
few wavelengths is called the “wave zone.”

29-4 Two dipole radiators

Next let us discuss the mathematics involved in combining the effects of two
oscillators to find the net field at a given point. This is very easy in the few cases
that we considered in the previous chapter. We shall first describe the effects
qualitatively, and then more quantitatively. Let us take the simple case, where
the oscillators are situated with their centers in the same horizontal plane as the
detector, and the line of vibration is vertical.

Figure 29-5(a) represents the top view of two such oscillators, and in this
particular example they are half a wavelength apart in a N–S direction, and are
oscillating together in the same phase, which we call zero phase. Now we would
like to know the intensity of the radiation in various directions. By the intensity
we mean the amount of energy that the field carries past us per second, which is
proportional to the square of the field, averaged in time. So the thing to look at,
when we want to know how bright the light is, is the square of the electric field,
not the electric field itself. (The electric field tells the strength of the force felt
by a stationary charge, but the amount of energy that is going past, in watts per
square meter, is proportional to the square of the electric field. We shall derive
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Fig. 29-5. The intensities in various directions from two dipole oscilla-
tors one-half wavelength apart. Left: in phase (α = 0). Right: one-half
period out of phase (α = π).

the constant of proportionality in Chapter 31.) If we look at the array from the W
side, both oscillators contribute equally and in phase, so the electric field is twice
as strong as it would be from a single oscillator. Therefore the intensity is four
times as strong as it would be if there were only one oscillator. (The numbers
in Fig. 29-5 represent how strong the intensity would be in this case, compared
with what it would be if there were only a single oscillator of unit strength.) Now,
in either the N or S direction along the line of the oscillators, since they are half
a wavelength apart, the effect of one oscillator turns out to be out of phase by
exactly half an oscillation from the other, and therefore the fields add to zero.
At a certain particular intermediate angle (in fact, at 30◦) the intensity is 2, and
it falls off, 4, 2, 0, and so forth. We have to learn how to find these numbers at
other angles. It is a question of adding two oscillations with different phases.

Let us quickly look at some other cases of interest. Suppose the oscillators
are again one-half a wavelength apart, but the phase α of one is set half a period
behind the other in its oscillation (Fig. 29-5b). In the W direction the intensity
is now zero, because one oscillator is “pushing” when the other one is “pulling.”
But in the N direction the signal from the near one comes at a certain time, and
that of the other comes half a period later. But the latter was originally half a
period behind in timing, and therefore it is now exactly in time with the first one,
and so the intensity in this direction is 4 units. The intensity in the direction
at 30◦ is still 2, as we can prove later.

Now we come to an interesting case which shows up a possibly useful feature.
Let us remark that one of the reasons that phase relations of oscillators are
interesting is for beaming radio transmitters. For instance, if we build an antenna
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system and want to send a radio signal, say, to Hawaii, we set the antennas up
as in Fig. 29-5(a) and we broadcast with our two antennas in phase, because
Hawaii is to the west of us. Then we decide that tomorrow we are going to
broadcast toward Alberta, Canada. Since that is north, not west, all we have
to do is to reverse the phase of one of our antennas, and we can broadcast to
the north. So we can build antenna systems with various arrangements. Ours is
one of the simplest possible ones; we can make them much more complicated,
and by changing the phases in the various antennas we can send the beams in
various directions and send most of the power in the direction in which we wish
to transmit, without ever moving the antenna! In both of the preceding cases,
however, while we are broadcasting toward Alberta we are wasting a lot of power
on Easter Island, and it would be interesting to ask whether it is possible to
send it in only one direction. At first sight we might think that with a pair of
antennas of this nature the result is always going to be symmetrical. So let us
consider a case that comes out unsymmetrical, to show the possible variety.

λ/4

4

0

2 2

α = π/2

Fig. 29-6. A pair of dipole antennas giving maximum power in one
direction.

If the antennas are separated by one-quarter wavelength, and if the N one
is one-fourth period behind the S one in time, then what happens (Fig. 29-6)?
In the W direction we get 2, as we will see later. In the S direction we get zero,
because the signal from S comes at a certain time; that from N comes 90◦ later
in time, but it is already 90◦ behind in its built-in phase, therefore it arrives,
altogether, 180◦ out of phase, and there is no effect. On the other hand, in the
N direction, the N signal arrives earlier than the S signal by 90◦ in time, because
it is a quarter wavelength closer. But its phase is set so, that it is oscillating 90◦
behind in time, which just compensates the delay difference, and therefore the
two signals appear together in phase, making the field strength twice as large,
and the energy four times as great.
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Thus, by using some cleverness in spacing and phasing our antennas, we
can send the power all in one direction. But still it is distributed over a great
range of angles. Can we arrange it so that it is focused still more sharply in
a particular direction? Let us consider the case of Hawaii again, where we are
sending the beam east and west but it is spread over quite an angle, because
even at 30◦ we are still getting half the intensity—we are wasting the power. Can
we do better than that? Let us take a situation in which the separation is ten
wavelengths (Fig. 29-7), which is more nearly comparable to the situation in which
we experimented in the previous chapter, with separations of several wavelengths
rather than a small fraction of a wavelength. Here the picture is quite different.

10λ

∆

φ

I
To distant point

Fig. 29-7. The intensity pattern for two dipoles separated by 10λ.

If the oscillators are ten wavelengths apart (we take the in-phase case to make
it easy), we see that in the E–W direction, they are in phase, and we get a strong
intensity, four times what we would get if one of them were there alone. On the
other hand, at a very small angle away, the arrival times differ by 180◦ and the
intensity is zero. To be precise, if we draw a line from each oscillator to a distant
point and the difference ∆ in the two distances is λ/2, half an oscillation, then
they will be out of phase. So this first null occurs when that happens. (The
figure is not drawn to scale; it is only a rough sketch.) This means that we do
indeed have a very sharp beam in the direction we want, because if we just move
over a little bit we lose all our intensity. Unfortunately for practical purposes,
if we were thinking of making a radio broadcasting array and we doubled the
distance ∆, then we would be a whole cycle out of phase, which is the same as
being exactly in phase again! Thus we get many successive maxima and minima,
just as we found with the 2 1

2λ spacing in Chapter 28.
Now how can we arrange to get rid of all these extra maxima, or “lobes,” as

they are called? We could get rid of the unwanted lobes in a rather interesting
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Fig. 29-8. A six-dipole antenna array and part of its intensity pattern.

way. Suppose that we were to place another set of antennas between the two
that we already have. That is, the outside ones are still 10λ apart, but between
them, say every 2λ, we have put another antenna, and we drive them all in
phase. There are now six antennas, and if we looked at the intensity in the
E–W direction, it would, of course, be much higher with six antennas than with
one. The field would be six times and the intensity thirty-six times as great (the
square of the field). We get 36 units of intensity in that direction. Now if we
look at neighboring points, we find a zero as before, roughly, but if we go farther,
to where we used to get a big “bump,” we get a much smaller “bump” now. Let
us try to see why.

The reason is that although we might expect to get a big bump when the
distance ∆ is exactly equal to the wavelength, it is true that dipoles 1 and 6 are
then in phase and are cooperating in trying to get some strength in that direction.
But numbers 3 and 4 are roughly 1

2 a wavelength out of phase with 1 and 6, and
although 1 and 6 push together, 3 and 4 push together too, but in opposite phase.
Therefore there is very little intensity in this direction—but there is something;
it does not balance exactly. This kind of thing keeps on happening; we get very
little bumps, and we have the strong beam in the direction where we want it.
But in this particular example, something else will happen: namely, since the
distance between successive dipoles is 2λ, it is possible to find an angle where
the distance δ between successive dipoles is exactly one wavelength, so that the
effects from all of them are in phase again. Each one is delayed relative to the
next one by 360◦, so they all come back in phase, and we have another strong
beam in that direction! It is easy to avoid this in practice because it is possible
to put the dipoles closer than one wavelength apart. If we put in more antennas,
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closer than one wavelength apart, then this cannot happen. But the fact that
this can happen at certain angles, if the spacing is bigger than one wavelength,
is a very interesting and useful phenomenon in other applications—not radio
broadcasting, but in diffraction gratings.

29-5 The mathematics of interference

Now we have finished our analysis of the phenomena of dipole radiators
qualitatively, and we must learn how to analyze them quantitatively. To find the
effect of two sources at some particular angle in the most general case, where
the two oscillators have some intrinsic relative phase α from one another and
the strengths A1 and A2 are not equal, we find that we have to add two cosines
having the same frequency, but with different phases. It is very easy to find this
phase difference; it is made up of a delay due to the difference in distance, and
the intrinsic, built-in phase of the oscillation. Mathematically, we have to find
the sum R of two waves: R = A1 cos (ωt+ φ1) +A2 cos (ωt+ φ2). How do we do
it?

It is really very easy, and we presume that we already know how to do it.
However, we shall outline the procedure in some detail. First, we can, if we are
clever with mathematics and know enough about cosines and sines, simply work
it out. The easiest such case is the one where A1 and A2 are equal, let us say
they are both equal to A. In those circumstances, for example (we could call this
the trigonometric method of solving the problem), we have

R = A[cos (ωt+ φ1) + cos (ωt+ φ2)]. (29.9)

Once, in our trigonometry class, we may have learned the rule that

cosA+ cosB = 2 cos 1
2 (A+B) cos 1

2 (A−B). (29.10)

If we know that, then we can immediately write R as

R = 2A cos 1
2 (φ1 − φ2) cos (ωt+ 1

2φ1 + 1
2φ2). (29.11)

So we find that we have an oscillatory wave with a new phase and a new amplitude.
In general, the result will be an oscillatory wave with a new amplitude AR, which
we may call the resultant amplitude, oscillating at the same frequency but with
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a phase difference φR, called the resultant phase. In view of this, our particular
case has the following result: that the resultant amplitude is

AR = 2A cos 1
2 (φ1 − φ2), (29.12)

and the resultant phase is the average of the two phases, and we have completely
solved our problem.

x

y

A1

A2
AR

φ1

φ2

φRω

Fig. 29-9. A geometrical method for combining two cosine waves.
The entire diagram is thought of as rotating counterclockwise with
angular frequency ω.

Now suppose that we cannot remember that the sum of two cosines is twice
the cosine of half the sum times the cosine of half the difference. Then we may
use another method of analysis which is more geometrical. Any cosine function
of ωt can be considered as the horizontal projection of a rotating vector. Suppose
there were a vector A1 of length A1 rotating with time, so that its angle with the
horizontal axis is ωt+ φ1. (We shall leave out the ωt in a minute, and see that it
makes no difference.) Suppose that we take a snapshot at the time t = 0, although,
in fact, the picture is rotating with angular velocity ω (Fig. 29-9). The projection
of A1 along the horizontal axis is precisely A1 cos (ωt+ φ1). Now at t = 0 the
second wave could be represented by another vector, A2, of length A2 and at
an angle φ2, and also rotating. They are both rotating with the same angular
velocity ω, and therefore the relative positions of the two are fixed. The system
goes around like a rigid body. The horizontal projection of A2 is A2 cos (ωt+φ2).
But we know from the theory of vectors that if we add the two vectors in the
ordinary way, by the parallelogram rule, and draw the resultant vector AR, the
x-component of the resultant is the sum of the x-components of the other two
vectors. That solves our problem. It is easy to check that this gives the correct
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result for the special case we treated above, where A1 = A2 = A. In this case,
we see from Fig. 29-9 that AR lies midway between A1 and A2 and makes an
angle 1

2 (φ2 − φ1) with each. Therefore we see that AR = 2A cos 1
2 (φ2 − φ1), as

before. Also, as we see from the triangle, the phase of AR, as it goes around, is
the average angle of A1 and A2 when the two amplitudes are equal. Clearly, we
can also solve for the case where the amplitudes are not equal, just as easily. We
can call that the geometrical way of solving the problem.

There is still another way of solving the problem, and that is the analytical
way. That is, instead of having actually to draw a picture like Fig. 29-9, we
can write something down which says the same thing as the picture: instead of
drawing the vectors, we write a complex number to represent each of the vectors.
The real parts of the complex numbers are the actual physical quantities. So in
our particular case the waves could be written in this way: A1e

i(ωt+φ1) [the real
part of this is A1 cos (ωt+ φ1)] and A2e

i(ωt+φ2). Now we can add the two:

R = A1e
i(ωt+φ1) +A2e

i(ωt+φ2) = (A1e
iφ1 +A2e

iφ2)eiωt (29.13)
or

R̂ = A1e
iφ1 +A2e

iφ2 = ARe
iφR . (29.14)

This solves the problem that we wanted to solve, because it represents the result
as a complex number of magnitude AR and phase φR.

To see how this method works, let us find the amplitude AR which is the
“length” of R̂. To get the “length” of a complex quantity, we always multiply the
quantity by its complex conjugate, which gives the length squared. The complex
conjugate is the same expression, but with the sign of the i’s reversed. Thus we
have

A2
R = (A1e

iφ1 +A2e
iφ2)(A1e

−iφ1 +A2e
−iφ2). (29.15)

In multiplying this out, we get A2
1 +A2

2 (here the e’s cancel), and for the cross
terms we have

A1A2(ei(φ1−φ2) + ei(φ2−φ1)).
Now

eiθ + e−iθ = cos θ + i sin θ + cos θ − i sin θ.

That is to say, eiθ + e−iθ = 2 cos θ. Our final result is therefore

A2
R = A2

1 +A2
2 + 2A1A2 cos (φ2 − φ1). (29.16)
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As we see, this agrees with the length of AR in Fig. 29-9, using the rules of
trigonometry.

Thus the sum of the two effects has the intensity A2
1 we would get with one

of them alone, plus the intensity A2
2 we would get with the other one alone,

plus a correction. This correction we call the interference effect. It is really
only the difference between what we get simply by adding the intensities, and
what actually happens. We call it interference whether it is positive or negative.
(Interference in ordinary language usually suggests opposition or hindrance, but
in physics we often do not use language the way it was originally designed!) If the
interference term is positive, we call that case constructive interference, horrible
though it may sound to anybody other than a physicist! The opposite case is
called destructive interference.

Now let us see how to apply our general formula (29.16) for the case of two
oscillators to the special situations which we have discussed qualitatively. To
apply this general formula, it is only necessary to find what phase difference,
φ1 − φ2, exists between the signals arriving at a given point. (It depends only on
the phase difference, of course, and not on the phase itself.) So let us consider
the case where the two oscillators, of equal amplitude, are separated by some
distance d and have an intrinsic relative phase α. (When one is at phase zero, the
phase of the other is α.) Then we ask what the intensity will be in some azimuth
direction θ from the E–W line. [Note that this is not the same θ as appears
in (29.1). We are torn between using an unconventional symbol like /U , or the
conventional symbol θ (Fig. 29-10).] The phase relationship is found by noting
that the difference in distance from P to the two oscillators is d sin θ, so that the
phase difference contribution from this is the number of wavelengths in d sin θ,
multiplied by 2π. (Those who are more sophisticated might want to multiply the
wave number k, which is the rate of change of phase with distance, by d sin θ;

d

Ae iωt

Ae i(ωt+α)

d sin θ

θ

To Point P

Fig. 29-10. Two oscillators of equal amplitude, with a phase differ-
ence α between them.
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it is exactly the same.) The phase difference due to the distance difference is
thus 2πd sin θ/λ, but, due to the timing of the oscillators, there is an additional
phase α. So the phase difference at arrival would be

φ2 − φ1 = α+ 2πd sin θ/λ. (29.17)

This takes care of all the cases. Thus all we have to do is substitute this expression
into (29.16) for the case A1 = A2, and we can calculate all the various results for
two antennas of equal intensity.

Now let us see what happens in our various cases. The reason we know, for
example, that the intensity is 2 at 30◦ in Fig. 29-5 is the following: the two
oscillators are 1

2λ apart, so at 30◦, d sin θ = λ/4. Thus φ2 − φ1 = 2πλ/4λ = π/2,
and so the interference term is zero. (We are adding two vectors at 90◦.) The
result is the hypotenuse of a 45◦ right-angle triangle, which is

√
2 times the unit

amplitude; squaring it, we get twice the intensity of one oscillator alone. All the
other cases can be worked out in this same way.
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30

Diffraction

30-1 The resultant amplitude due to n equal oscillators

This chapter is a direct continuation of the previous one, although the name
has been changed from Interference to Diffraction. No one has ever been able to
define the difference between interference and diffraction satisfactorily. It is just a
question of usage, and there is no specific, important physical difference between
them. The best we can do, roughly speaking, is to say that when there are only
a few sources, say two, interfering, then the result is usually called interference,
but if there is a large number of them, it seems that the word diffraction is more
often used. So, we shall not worry about whether it is interference or diffraction,
but continue directly from where we left off in the middle of the subject in the
last chapter.

Thus we shall now discuss the situation where there are n equally spaced
oscillators, all of equal amplitude but different from one another in phase, either
because they are driven differently in phase, or because we are looking at them at
an angle such that there is a difference in time delay. For one reason or another,
we have to add something like this:

R = A[cosωt+ cos (ωt+ φ) + cos (ωt+ 2φ) + · · ·+ cos (ωt+ (n− 1)φ)], (30.1)

where φ is the phase difference between one oscillator and the next one, as seen
in a particular direction. Specifically, φ = α+ 2πd sin θ/λ. Now we must add all
the terms together. We shall do this geometrically. The first one is of length A,
and it has zero phase. The next is also of length A and it has a phase equal to φ.
The next one is again of length A and it has a phase equal to 2φ, and so on. So
we are evidently going around an equiangular polygon with n sides (Fig. 30-1).

Now the vertices, of course, all lie on a circle, and we can find the net amplitude
most easily if we find the radius of that circle. Suppose that Q is the center of
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Fig. 30-1. The resultant amplitude of n = 6 equally spaced sources
with net successive phase differences φ.

the circle. Then we know that the angle OQS is just a phase angle φ. (This is
because the radius QS bears the same geometrical relation to A2 as QO bears
to A1, so they form an angle φ between them.) Therefore the radius r must
be such that A = 2r sinφ/2, which fixes r. But the large angle OQT is equal
to nφ, and we thus find that AR = 2r sinnφ/2. Combining these two results to
eliminate r, we get

AR = A
sinnφ/2
sinφ/2 . (30.2)

The resultant intensity is thus

I = I0
sin2 nφ/2
sin2 φ/2

. (30.3)

Now let us analyze this expression and study some of its consequences. In
the first place, we can check it for n = 1. It checks: I = I0. Next, we check it
for n = 2: writing sinφ = 2 sinφ/2 cosφ/2, we find that AR = 2A cosφ/2, which
agrees with (29.12).

Now the idea that led us to consider the addition of several sources was that
we might get a much stronger intensity in one direction than in another; that the
nearby maxima which would have been present if there were only two sources will
have gone down in strength. In order to see this effect, we plot the curve that
comes from (30.3), taking n to be enormously large and plotting the region near
φ = 0. In the first place, if φ is exactly 0, we have 0/0, but if φ is infinitesimal,
the ratio of the two sines squared is simply n2, since the sine and the angle are
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approximately equal. Thus the intensity of the maximum of the curve is equal
to n2 times the intensity of one oscillator. That is easy to see, because if they
are all in phase, then the little vectors have no relative angle and all n of them
add up so the amplitude is n times, and the intensity n2 times, stronger.

As the phase φ increases, the ratio of the two sines begins to fall off, and the
first time it reaches zero is when nφ/2 = π, because sin π = 0. In other words,
φ = 2π/n corresponds to the first minimum in the curve (Fig. 30-2). In terms
of what is happening with the arrows in Fig. 30-1, the first minimum occurs
when all the arrows come back to the starting point; that means that the total
accumulated angle in all the arrows, the total phase difference between the first
and last oscillator, must be 2π to complete the circle.

nφ/2π0 1 2 3 4 5

×10

I

n2I0
1.0

Fig. 30-2. The intensity as a function of phase angle for a large
number of oscillators of equal strength.

Now we go to the next maximum, and we want to see that it is really much
smaller than the first one, as we had hoped. We shall not go precisely to the
maximum position, because both the numerator and the denominator of (30.3)
are variant, but sinφ/2 varies quite slowly compared with sinnφ/2 when n is
large, so when sinnφ/2 = 1 we are very close to the maximum. The next
maximum of sin2 nφ/2 comes at nφ/2 = 3π/2, or φ = 3π/n. This corresponds
to the arrows having traversed the circle one and a half times. On putting
φ = 3π/n into the formula to find the size of the maximum, we find that
sin2 3π/2 = 1 in the numerator (because that is why we picked this angle), and
in the denominator we have sin2 3π/2n. Now if n is sufficiently large, then this
angle is very small and the sine is equal to the angle; so for all practical purposes,
we can put sin 3π/2n = 3π/2n. Thus we find that the intensity at this maximum
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is I = I0(4n2/9π2). But n2I0 was the maximum intensity, and so we have
4/9π2 times the maximum intensity, which is about 0.045, less than 5 percent, of
the maximum intensity! Of course there are decreasing intensities farther out.
So we have a very sharp central maximum with very weak subsidiary maxima on
the sides.

It is possible to prove that the area of the whole curve, including all the little
bumps, is equal to 2πnI0, or twice the area of the dotted rectangle in Fig. 30-2.

L

1 2 3 s n

d

δ = ∆/n = d sin θ

θ

∆

Fig. 30-3. A linear array of n equal oscillators, driven with phases αs =

sα.

Now let us consider further how we may apply Eq. (30.3) in different circum-
stances, and try to understand what is happening. Let us consider our sources
to be all on a line, as drawn in Fig. 30-3. There are n of them, all spaced by a
distance d, and we shall suppose that the intrinsic relative phase, one to the next,
is α. Then if we are observing in a given direction θ from the normal, there is an
additional phase 2πd sin θ/λ because of the time delay between each successive
two, which we talked about before. Thus

φ = α+ 2πd sin θ/λ
= α+ kd sin θ.

(30.4)

First, we shall take the case α = 0. That is, all oscillators are in phase, and we
want to know what the intensity is as a function of the angle θ. In order to find
out, we merely have to put φ = kd sin θ into formula (30.3) and see what happens.
In the first place, there is a maximum when φ = 0. That means that when all
the oscillators are in phase there is a strong intensity in the direction θ = 0. On
the other hand, an interesting question is, where is the first minimum? That
occurs when φ = 2π/n. In other words, when 2πd sin θ/λ = 2π/n, we get the
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first minimum of the curve. If we get rid of the 2π’s so we can look at it a little
better, it says that

nd sin θ = λ. (30.5)
Now let us understand physically why we get a minimum at that position. nd
is the total length L of the array. Referring to Fig. 30-3, we see that nd sin θ =
L sin θ = ∆. What (30.5) says is that when ∆ is equal to one wavelength, we
get a minimum. Now why do we get a minimum when ∆ = λ? Because the
contributions of the various oscillators are then uniformly distributed in phase
from 0◦ to 360◦. The arrows (Fig. 30-1) are going around a whole circle—we are
adding equal vectors in all directions, and such a sum is zero. So when we have
an angle such that ∆ = λ, we get a minimum. That is the first minimum.

There is another important feature about formula (30.3), which is that if
the angle φ is increased by any multiple of 2π, it makes no difference to the
formula. So we will get other strong maxima at φ = 2π, 4π, 6π, and so forth.
Near each of these great maxima the pattern of Fig. 30-2 is repeated. We may
ask ourselves, what is the geometrical circumstance that leads to these other
great maxima? The condition is that φ = 2πm, where m is any integer. That is,
2πd sin θ/λ = 2πm. Dividing by 2π, we see that

d sin θ = mλ. (30.6)

This looks like the other formula, (30.5). No, that formula was nd sin θ = λ. The
difference is that here we have to look at the individual sources, and when we say
d sin θ = mλ, that means that we have an angle θ such that δ = mλ. In other
words, each source is now contributing a certain amount, and successive ones
are out of phase by a whole multiple of 360◦, and therefore are contributing in
phase, because out of phase by 360◦ is the same as being in phase. So they all
contribute in phase and produce just as good a maximum as the one for m = 0
that we discussed before. The subsidiary bumps, the whole shape of the pattern,
is just like the one near φ = 0, with exactly the same minima on each side, etc.
Thus such an array will send beams in various directions—each beam having a
strong central maximum and a certain number of weak “side lobes.” The various
strong beams are referred to as the zero-order beam, the first-order beam, etc.,
according to the value of m. m is called the order of the beam.

We call attention to the fact that if d is less than λ, Eq. (30.6) can have
no solution except m = 0, so that if the spacing is too small there is only one
possible beam, the zero-order one centered at θ = 0. (Of course, there is also
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a beam in the opposite direction.) In order to get subsidiary great maxima, we
must have the spacing d of the array greater than one wavelength.

30-2 The diffraction grating

In technical work with antennas and wires it is possible to arrange that all the
phases of the little oscillators, or antennas, are equal. The question is whether
and how we can do a similar thing with light. We cannot at the present time
literally make little optical-frequency radio stations and hook them up with
infinitesimal wires and drive them all with a given phase. But there is a very
easy way to do what amounts to the same thing.

Suppose that we had a lot of parallel wires, equally spaced at a spacing d, and
a radiofrequency source very far away, practically at infinity, which is generating
an electric field which arrives at each one of the wires at the same phase (it is
so far away that the time delay is the same for all of the wires). (One can work
out cases with curved arrays, but let us take a plane one.) Then the external
electric field will drive the electrons up and down in each wire. That is, the
field which is coming from the original source will shake the electrons up and
down, and in moving, these represent new generators. This phenomenon is called
scattering: a light wave from some source can induce a motion of the electrons
in a piece of material, and these motions generate their own waves. Therefore all
that is necessary is to set up a lot of wires, equally spaced, drive them with a
radiofrequency source far away, and we have the situation that we want, without
a whole lot of special wiring. If the incidence is normal, the phases will be equal,
and we will get exactly the circumstance we have been discussing. Therefore, if
the wire spacing is greater than the wavelength, we will get a strong intensity of
scattering in the normal direction, and in certain other directions given by (30.6).

This can also be done with light! Instead of wires, we use a flat piece of glass
and make notches in it such that each of the notches scatters a little differently
than the rest of the glass. If we then shine light on the glass, each one of the
notches will represent a source, and if we space the lines very finely, but not
closer than a wavelength (which is technically almost impossible anyway), then
we would expect a miraculous phenomenon: the light not only will pass straight
through, but there will also be a strong beam at a finite angle, depending on
the spacing of the notches! Such objects have actually been made and are in
common use—they are called diffraction gratings.
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In one of its forms, a diffraction grating consists of nothing but a plane glass
sheet, transparent and colorless, with scratches on it. There are often several
hundred scratches to the millimeter, very carefully arranged so as to be equally
spaced. The effect of such a grating can be seen by arranging a projector so as
to throw a narrow, vertical line of light (the image of a slit) onto a screen. When
we put the grating into the beam, with its scratches vertical, we see that the
line is still there but, in addition, on each side we have another strong patch
of light which is colored. This, of course, is the slit image spread out over a
wide angular range, because the angle θ in (30.6) depends upon λ, and lights of
different colors, as we know, correspond to different frequencies, and therefore
different wavelengths. The longest visible wavelength is red, and since d sin θ = λ,
that requires a larger θ. And we do, in fact, find that red is at a greater angle
out from the central image! There should also be a beam on the other side, and
indeed we see one on the screen. Then, there might be another solution of (30.6)
when m = 2. We do see that there is something vaguely there—very weak—and
there are even other beams beyond.

We have just argued that all these beams ought to be of the same strength,
but we see that they actually are not and, in fact, not even the first ones on the
right and left are equal! The reason is that the grating has been carefully built to
do just this. How? If the grating consists of very fine notches, infinitesimally wide,
spaced evenly, then all the intensities would indeed be equal. But, as a matter
of fact, although we have taken the simplest case, we could also have considered
an array of pairs of antennas, in which each member of the pair has a certain
strength and some relative phase. In this case, it is possible to get intensities
which are different in the different orders. A grating is often made with little
“sawtooth” cuts instead of little symmetrical notches. By carefully arranging the,
“sawteeth,” more light may be sent into one particular order of spectrum than
into the others. In a practical grating, we would like to have as much light as
possible in one of the orders. This may seem a complicated point to bring in,
but it is a very clever thing to do, because it makes the grating more useful.

So far, we have taken the case where all the phases of the sources are equal.
But we also have a formula for φ when the phases differ from one to the next
by an angle α. That requires wiring up our antennas with a slight phase shift
between each one. Can we do that with light? Yes, we can do it very easily,
for suppose that there were a source of light at infinity, at an angle such that
the light is coming in at an angle θin, and let us say that we wish to discuss the
scattered beam, which is leaving at an angle θout (Fig. 30-4). The θout is the
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θin θout

d sin θout d sin θin

Fig. 30-4. The path difference for rays scattered from adjacent rulings
of a grating is d sin θout − d sin θin.

same θ as we have had before, but the θin is merely a means for arranging that
the phase of each source is different: the light coming from the distant driving
source first hits one scratch, then the next, then the next, and so on, with a phase
shift from one to the other, which, as we see, is α = −2πd sin θin/λ. Therefore
we have the formula for a grating in which light both comes in and goes out at
an angle:

φ = 2πd sin θout/λ− 2πd sin θin/λ. (30.7)

Let us try to find out where we get strong intensity in these circumstances. The
condition for strong intensities is, of course, that φ should be a multiple of 2π.
There are several interesting points to be noted.

One case of rather great interest is that which corresponds to m = 0, where
d is less than λ; in fact, this is the only solution. In this case we see that
sin θout = sin θin, which means that the light comes out in the same direction as
the light which was exciting the grating. We might think that the light “goes
right through.” No, it is different light that we are talking about. The light that
goes right through is from the original source; what we are talking about is the
new light which is generated by scattering. It turns out that the scattered light
is going in the same direction as the original light, in fact it can interfere with
it—a feature which we will study later.

There is another solution for this same case. For a given θin, θout may be
the supplement of θin. So not only do we get a beam in the same direction as
the incoming beam but also one in another direction, which, if we consider it
carefully, is such that the angle of incidence is equal to the angle of scattering.
This we call the reflected beam.
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So we begin to understand the basic machinery of reflection: the light that
comes in generates motions of the atoms in the reflector, and the reflector then
regenerates a new wave, and one of the solutions for the direction of scattering,
the only solution if the spacing of the scatterers is small compared with one
wavelength, is that the angle at which the light comes out is equal to the angle
at which it comes in!

Next, we discuss the special case when d→ 0. That is, we have just a solid
piece of material, so to speak, but of finite length. In addition, we want the phase
shift from one scatterer to the next to go to zero. In other words, we put more
and more antennas between the other ones, so that each of the phase differences
is getting smaller, but the number of antennas is increasing in such a way that
the total phase difference, between one end of the line and the other, is constant.
Let us see what happens to (30.3) if we keep the difference in phase nφ from one
end to the other constant (say nφ = Φ), letting the number go to infinity and
the phase shift φ of each one go to zero. But now φ is so small that sinφ = φ,
and if we also recognize n2I0 as Im, the maximum intensity at the center of the
beam, we find

I = 4Im sin2 1
2Φ/Φ2. (30.8)

This limiting case is what is shown in Fig. 30-2.
In such circumstances we find the same general kind of a picture as for finite

spacing with d > λ; all the side lobes are practically the same as before, but
there are no higher-order maxima. If the scatterers are all in phase, we get a
maximum in the direction θout = 0, and a minimum when the distance ∆ is equal
to λ, just as for finite d and n. So we can even analyze a continuous distribution
of scatterers or oscillators, by using integrals instead of summing.

L θ1

α = 0

λ

Fig. 30-5. The intensity pattern of a continuous line of oscillators has
a single strong maximum and many weak “side lobes.”
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As an example, suppose there were a long line of oscillators, with the charge
oscillating along the direction of the line (Fig. 30-5). From such an array the
greatest intensity is perpendicular to the line. There is a little bit of intensity up
and down from the equatorial plane, but it is very slight. With this result, we can
handle a more complicated situation. Suppose we have a set of such lines, each
producing a beam only in a plane perpendicular to the line. To find the intensity
in various directions from a series of long wires, instead of infinitesimal wires,
is the same problem as it was for infinitesimal wires, so long as we are in the
central plane perpendicular to the wires; we just add the contribution from each
of the long wires. That is why, although we actually analyzed only tiny antennas,
we might as well have used a grating with long, narrow slots. Each of the long
slots produces an effect only in its own direction, not up and down, but they are
all set next to each other horizontally, so they produce interference that way.

Thus we can build up more complicated situations by having various distri-
butions of scatterers in lines, planes, or in space. The first thing we did was to
consider scatterers in a line, and we have just extended the analysis to strips; we
can work it out by just doing the necessary summations, adding the contributions
from the individual scatterers. The principle is always the same.

30-3 Resolving power of a grating

We are now in a position to understand a number of interesting phenomena.
For example, consider the use of a grating for separating wavelengths. We noticed
that the whole spectrum was spread out on the screen, so a grating can be used
as an instrument for separating light into its different wavelengths. One of the
interesting questions is: supposing that there were two sources of slightly different
frequency, or slightly different wavelength, how close together in wavelength could
they be such that the grating would be unable to tell that there were really
two different wavelengths there? The red and the blue were clearly separated.
But when one wave is red and the other is slightly redder, very close, how close
can they be? This is called the resolving power of the grating, and one way of
analyzing the problem is as follows. Suppose that for light of a certain color
we happen to have the maximum of the diffracted beam occurring at a certain
angle. If we vary the wavelength the phase 2πd sin θ/λ is different, so of course
the maximum occurs at a different angle. That is why the red and blue are
spread out. How different in angle must it be in order for us to be able to see
it? If the two maxima are exactly on top of each other, of course we cannot see
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them. If the maximum of one is far enough away from the other, then we can see
that there is a double bump in the distribution of light. In order to be able to
just make out the double bump, the following simple criterion, called Rayleigh’s
criterion, is usually used (Fig. 30-6). It is that the first minimum from one bump
should sit at the maximum of the other. Now it is very easy to calculate, when
one minimum sits on the other maximum, how much the difference in wavelength
is. The best way to do it is geometrically.

Fig. 30-6. Illustration of the Rayleigh criterion. The maximum of one
pattern falls on the first minimum of the other.

In order to have a maximum for wavelength λ′, the distance ∆ (Fig. 30-3)
must be nλ′, and if we are looking at the mth-order beam, it is mnλ′. In other
words, 2πd sin θ/λ′ = 2πm, so nd sin θ, which is ∆, is mλ′ times n, or mnλ′. For
the other beam, of wavelength λ, we want to have a minimum at this angle.
That is, we want ∆ to be exactly one wavelength λ more than mnλ. That is,
∆ = mnλ+ λ = mnλ′. Thus if λ′ = λ+ ∆λ, we find

∆λ/λ = 1/mn. (30.9)

The ratio λ/∆λ is called the resolving power of a grating; we see that it is equal
to the total number of lines in the grating, times the order. It is not hard to
prove that this formula is equivalent to the formula that the error in frequency is
equal to the reciprocal time difference between extreme paths that are allowed
to interfere:*

∆ν = 1/T.
In fact, that is the best way to remember it, because the general formula works
not only for gratings, but for any other instrument whatsoever, while the special
formula (30.9) depends on the fact that we are using a grating.

* In our case T = ∆/c = mnλ/c, where c is the speed of light. The frequency ν = c/λ, so
∆ν = c∆λ/λ2.
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30-4 The parabolic antenna

Now let us consider another problem in resolving power. This has to do
with the antenna of a radio telescope, used for determining the position of radio
sources in the sky, i.e., how large they are in angle. Of course if we use any old
antenna and find signals, we would not know from what direction they came. We
are very interested to know whether the source is in one place or another. One
way we can find out is to lay out a whole series of equally spaced dipole wires on
the Australian landscape. Then we take all the wires from these antennas and
feed them into the same receiver, in such a way that all the delays in the feed
lines are equal. Thus the receiver receives signals from all of the dipoles in phase.
That is, it adds all the waves from every one of the dipoles in the same phase.
Now what happens? If the source is directly above the array, at infinity or nearly
so, then its radiowaves will excite all the antennas in the same phase, so they all
feed the receiver together.

Now suppose that the radio source is at a slight angle θ from the vertical.
Then the various antennas are receiving signals a little out of phase. The receiver
adds all these out-of-phase signals together, and so we get nothing, if the angle θ
is too big. How big may the angle be? Answer: we get zero if the angle ∆/L = θ
(Fig. 30-3) corresponds to a 360◦ phase shift, that is, if ∆ is the wavelength λ.
This is because the vector contributions form together a complete polygon with
zero resultant. The smallest angle that can be resolved by an antenna array of
length L is θ = λ/L. Notice that the receiving pattern of an antenna such as
this is exactly the same as the intensity distribution we would get if we turned
the receiver around and made it into a transmitter. This is an example of
what is called a reciprocity principle. It turns out, in fact, to be generally true
for any arrangement of antennas, angles, and so on, that if we first work out
what the relative intensities would be in various directions if the receiver were a
transmitter instead, then the relative directional sensitivity of a receiver with
the same external wiring, the same array of antennas, is the same as the relative
intensity of emission would be if it were a transmitter.

Some radio antennas are made in a different way. Instead of having a whole
lot of dipoles in a long line, with a lot of feed wires, we may arrange them not in
a line but in a curve, and put the receiver at a certain point where it can detect
the scattered waves. This curve is cleverly designed so that if the radiowaves
are coming down from above, and the wires scatter, making a new wave, the
wires are so arranged that the scattered waves reach the receiver all at the same
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time (Fig. 26-12). In other words, the curve is a parabola, and when the source
is exactly on its axis, we get a very strong intensity at the focus. In this case we
understand very clearly what the resolving power of such an instrument is. The
arranging of the antennas on a parabolic curve is not an essential point. It is only
a convenient way to get all the signals to the same point with no relative delay
and without feed wires. The angle such an instrument can resolve is still θ = λ/L,
where L is the separation of the first and last antennas. It does not depend on
the spacing of the antennas and they may be very close together or in fact be
all one piece of metal. Now we are describing a telescope mirror, of course. We
have found the resolving power of a telescope! (Sometimes the resolving power is
written θ = 1.22λ/L, where L is the diameter of the telescope. The reason that it
is not exactly λ/L is this: when we worked out that θ = λ/L, we assumed that all
the lines of dipoles were equal in strength, but when we have a circular telescope,
which is the way we usually arrange a telescope, not as much signal comes from the
outside edges, because it is not like a square, where we get the same intensity all
along a side. We get somewhat less because we are using only part of the telescope
there; thus we can appreciate that the effective diameter is a little shorter than
the true diameter, and that is what the 1.22 factor tells us. In any case, it seems
a little pedantic to put such precision into the resolving power formula.*)

30-5 Colored films; crystals

The above, then, are some of the effects of interference obtained by adding
the various waves. But there are a number of other examples, and even though
we do not understand the fundamental mechanism yet, we will some day, and
we can understand even now how the interference occurs. For example, when
a light wave hits a surface of a material with an index n, let us say at normal
incidence, some of the light is reflected. The reason for the reflection we are not
in a position to understand right now; we shall discuss it later. But suppose we
know that some of the light is reflected both on entering and leaving a refracting
medium. Then, if we look at the reflection of a light source in a thin film, we
see the sum of two waves; if the thicknesses are small enough, these two waves

* This is because Rayleigh’s criterion is a rough idea in the first place. It tells you where it
begins to get very hard to tell whether the image was made by one or by two stars. Actually, if
sufficiently careful measurements of the exact intensity distribution over the diffracted image
spot can be made, the fact that two sources make the spot can be proved even if θ is less
than λ/L.
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will produce an interference, either constructive or destructive, depending on
the signs of the phases. It might be, for instance, that for red light, we get an
enhanced reflection, but for blue light, which has a different wavelength, perhaps
we get a destructively interfering reflection, so that we see a bright red reflection.
If we change the thickness, i.e., if we look at another place where the film is
thicker, it may be reversed, the red interfering and the blue not, so it is bright
blue, or green, or yellow, or whatnot. So we see colors when we look at thin films
and the colors change if we look at different angles, because we can appreciate
that the timings are different at different angles. Thus we suddenly appreciate
another hundred thousand situations involving the colors that we see on oil films,
soap bubbles, etc. at different angles. But the principle is all the same: we are
only adding waves at different phases.

As another important application of diffraction, we may mention the following.
We used a grating and we saw the diffracted image on the screen. If we had used
monochromatic light, it would have been at a certain specific place. Then there
were various higher-order images also. From the positions of the images, we could
tell how far apart the lines on the grating were, if we knew the wavelength of
the light. From the difference in intensity of the various images, we could find
out the shape of the grating scratches, whether the grating was made of wires,
sawtooth notches, or whatever, without being able to see them. This principle is
used to discover the positions of the atoms in a crystal. The only complication
is that a crystal is three-dimensional; it is a repeating three-dimensional array
of atoms. We cannot use ordinary light, because we must use something whose
wavelength is less than the space between the atoms or we get no effect; so we
must use radiation of very short wavelength, i.e., x-rays. So, by shining x-rays
into a crystal and by noticing how intense is the reflection in the various orders,
we can determine the arrangement of the atoms inside without ever being able
to see them with the eye! It is in this way that we know the arrangement of the
atoms in various substances, which permitted us to draw those pictures in the
first chapter, showing the arrangement of atoms in salt, and so on. We shall later
come back to this subject and discuss it in more detail, and therefore we say no
more about this most remarkable idea at present.

30-6 Diffraction by opaque screens

Now we come to a very interesting situation. Suppose that we have an opaque
sheet with holes in it, and a light on one side of it. We want to know what the
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intensity is on the other side. What most people say is that the light shines
through the holes, and produces an effect on the other side. It will turn out that
one gets the right answer, to an excellent approximation, if he assumes that there
are sources distributed with uniform density across the open holes, and that
the phases of these sources are the same as they would have been if the opaque
material were absent. Of course, actually there are no sources at the holes, in
fact that is the only place that there are certainly no sources. Nevertheless, we
get the correct diffraction patterns by considering the holes to be the only places
that there are sources; that is a rather peculiar fact. We shall explain later why
this is true, but for now let us just suppose that it is.

In the theory of diffraction there is another kind of diffraction that we should
briefly discuss. It is usually not discussed in an elementary course as early as this,
only because the mathematical formulas involved in adding these little vectors
are a little elaborate. Otherwise it is exactly the same as we have been doing all
along. All the interference phenomena are the same; there is nothing very much
more advanced involved, only the circumstances are more complicated and it is
harder to add the vectors together, that is all.

Suppose that we have light coming in from infinity, casting a shadow of an
object. Figure 30-7 shows a screen on which the shadow of an object AB is made
by a light source very far away compared with one wavelength. Now we would
expect that outside the shadow, the intensity is all bright, and inside it, it is
all dark. As a matter of fact, if we plot the intensity as a function of position
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Fig. 30-7. A distant light source casts a shadow of an opaque object
on a screen.
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near the shadow edge, the intensity rises and then overshoots, and wobbles, and
oscillates about in a very peculiar manner near this edge (Fig. 30-9). We now
shall discuss the reason for this. If we use the theorem that we have not yet
proved, then we can replace the actual problem by a set of effective sources
uniformly distributed over the open space beyond the object.

We imagine a large number of very closely spaced antennas, and we want
the intensity at some point P . That looks just like what we have been doing.
Not quite; because our screen is not at infinity. We do not want the intensity
at infinity, but at a finite point. To calculate the intensity at some particular
place, we have to add the contributions from all the antennas. First there is an
antenna at D, exactly opposite P ; if we go up a little bit in angle, let us say a
height h, then there is an increase in delay (there is also a change in amplitude
because of the change in distance, but this is a very small effect if we are at all
far away, and is much less important than the difference in the phases). Now the
path difference EP −DP is approximately h2/2s, so that the phase difference is
proportional to the square of how far we go from D, while in our previous work
s was infinite, and the phase difference was linearly proportional to h. When
the phases are linearly proportional, each vector adds at a constant angle to the
next vector. What we now need is a curve which is made by adding a lot of
infinitesimal vectors with the requirement that the angle they make shall increase,
not linearly, but as the square of the length of the curve. To construct that
curve involves slightly advanced mathematics, but we can always construct it by
actually drawing the arrows and measuring the angles. In any case, we get the
marvelous curve (called Cornu’s spiral) shown in Fig. 30-8. Now how do we use
this curve?

If we want the intensity, let us say, at point P , we add a lot of contributions
of different phases from point D on up to infinity, and from D down only to
point BP . So we start at BP in Fig. 30-8, and draw a series of arrows of ever-
increasing angle. Therefore the total contribution above point BP all goes along
the spiraling curve. If we were to stop integrating at some place, then the total
amplitude would be a vector from B to that point; in this particular problem we
are going to infinity, so the total answer is the vector BP∞. Now the position
on the curve which corresponds to point BP on the object depends upon where
point P is located, since point D, the inflection point, always corresponds to
the position of point P . Thus, depending upon where P is located above B, the
beginning point will fall at various positions on the lower left part of the curve,
and the resultant vector BP∞, will have many maxima and minima (Fig. 30-9).
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Fig. 30-8. The addition of amplitudes for many in-phase oscillators
whose phase delays vary as the square of the distance from point D of
the previous figure.
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Fig. 30-9. The intensity near the edge of a shadow. The geometrical
shadow edge is at x0.
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On the other hand, if we are at Q, on the other side of P , then we are using
only one end of the spiral curve, and not the other end. In other words, we do not
even start at D, but at BQ, so on this side we get an intensity which continuously
falls off as Q goes farther into the shadow.

One point that we can immediately calculate with ease, to show that we really
understand it, is the intensity exactly opposite the edge. The intensity here is
1/4 that of the incident light. Reason: Exactly at the edge (so the endpoint B of
the arrow is at D in Fig. 30-8) we have half the curve that we would have had if
we were far into the bright region. If our point R is far into the light we go from
one end of the curve to the other, that is, one full unit vector; but if we are at
the edge of the shadow, we have only half the amplitude—1/4 the intensity.

In this chapter we have been finding the intensity produced in various direc-
tions from various distributions of sources. As a final example we shall derive
a formula which we shall need for the next chapter on the theory of the index
of refraction. Up to this point relative intensities have been sufficient for our
purpose, but this time we shall find the complete formula for the field in the
following situation.

30-7 The field of a plane of oscillating charges

Suppose that we have a plane full of sources, all oscillating together, with
their motion in the plane and all having the same amplitude and phase. What is
the field at a finite, but very large, distance away from the plane? (We cannot
get very close, of course, because we do not have the right formulas for the field
close to the sources.) If we let the plane of the charges be the xy-plane, then
we want to find the field at the point P far out on the z-axis (Fig. 30-10). We

Sheet of oscillating charges

Oscillating charge

P

Q

ρ

dρ

r

z

Fig. 30-10. Radiation field of a sheet of oscillating charges.
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suppose that there are η charges per unit area of the plane, and that each one of
them has a charge q. All of the charges move with simple harmonic motion, with
the same direction, amplitude, and phase. We let the motion of each charge, with
respect to its own average position, be x0 cosωt. Or, using the complex notation
and remembering that the real part represents the actual motion, the motion
can be described by x0e

iωt.
Now we find the field at the point P from all of the charges by finding the

field there from each charge q, and then adding the contributions from all the
charges. We know that the radiation field is proportional to the acceleration of
the charge, which is −ω2x0e

iωt (and is the same for every charge). The electric
field that we want at the point P due to a charge at the point Q is proportional
to the acceleration of the charge q, but we have to remember that the field at the
point P at the instant t is given by the acceleration of the charge at the earlier
time t′ = t− r/c, where r/c is the time it takes the waves to travel the distance r
from Q to P . Therefore the field at P is proportional to

− ω2x0e
iω(t−r/c). (30.10)

Using this value for the acceleration as seen from P in our formula for the electric
field at large distances from a radiating charge, we get(

Electric field at P
from charge at Q

)
= q

4πε0c2
ω2x0e

iω(t−r/c)

r
(approx.). (30.11)

Now this formula is not quite right, because we should have used not the
acceleration of the charge but its component perpendicular to the line QP . We
shall suppose, however, that the point P is so far away, compared with the
distance of the point Q from the axis (the distance ρ in Fig. 30-10), for those
changes that we need to take into account, that we can leave out the cosine factor
(which would be nearly equal to 1 anyway).

To get the total field at P , we now add the effects of all the charges in the
plane. We should, of course, make a vector sum. But since the direction of the
electric field is nearly the same for all the charges, we may, in keeping with the
approximation we have already made, just add the magnitudes of the fields. To
our approximation the field at P depends only on the distance r, so all charges
at the same r produce equal fields. So we add, first, the fields of those charges in
a ring of width dρ and radius ρ. Then, by taking the integral over all ρ, we will
obtain the total field.
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The number of charges in the ring is the product of the surface area of the
ring, 2πρ dρ, and η, the number of charges per unit area. We have, then,

Total field at P =
∫

q

4πε0c2
ω2x0e

iω(t−r/c)

r
· η · 2πρ dρ. (30.12)

We wish to evaluate this integral from ρ = 0 to ρ = ∞. The variable t, of
course, is to be held fixed while we do the integral, so the only varying quantities
are ρ and r. Leaving out all the constant factors, including the factor eiωt, for
the moment, the integral we wish is∫ ρ=∞

ρ=0

e−iωr/c

r
ρ dρ. (30.13)

To do this integral we need to use the relation between r and ρ:

r2 = ρ2 + z2. (30.14)

Since z is independent of ρ, when we take the differential of this equation, we get

2r dr = 2ρ dρ,

which is lucky, since in our integral we can replace ρ dρ by r dr and the r will
cancel the one in the denominator. The integral we want is then the simpler one∫ r=∞

r=z
e−iωr/c dr. (30.15)

To integrate an exponential is very easy. We divide by the coefficient of r in the
exponent and evaluate the exponential at the limits. But the limits of r are not
the same as the limits of ρ. When ρ = 0, we have r = z, so the limits of r are z
to infinity. We get for the integral

− c

iω
[e−i∞ − e−(iω/c)z], (30.16)

where we have written ∞ for (ω/c)∞, since they both just mean a very large
number!

Now e−i∞ is a mysterious quantity. Its real part, for example, is cos (−∞),
which, mathematically speaking, is completely indefinite (although we would
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expect it to be somewhere—or everywhere (?)—between +1 and −1!). But in a
physical situation, it can mean something quite reasonable, and usually can just
be taken to be zero. To see that this is so in our case, we go back to consider
again the original integral (30.15).

We can understand (30.15) as a sum of many small complex numbers, each
of magnitude ∆r, and with the angle θ = −ωr/c in the complex plane. We can
try to evaluate the sum by a graphical method. In Fig. 30-11 we have drawn the
first five pieces of the sum. Each segment of the curve has the length ∆r and is
placed at the angle ∆θ = −ω∆r/c with respect to the preceding piece. The sum
for these first five pieces is represented by the arrow from the starting point to
the end of the fifth segment. As we continue to add pieces we shall trace out a
polygon until we get back to the starting point (approximately) and then start
around once more. Adding more pieces, we just go round and round, staying
close to a circle whose radius is easily shown to be c/ω. We can see now why the
integral does not give a definite answer!

Real Axis

Imaginary Axis

C

θ

∆θ

∆θ
Sum

∆r
∆r

∆r

θ = − ωz
c

∆θ = − ω∆r
c

Fig. 30-11. Graphical solution of
∫∞
z
e−iωr/c dr .

But now we have to go back to the physics of the situation. In any real
situation the plane of charges cannot be infinite in extent, but must sometime
stop. If it stopped suddenly, and was exactly circular in shape, our integral would
have some value on the circle in Fig. 30-11. If, however, we let the number of
charges in the plane gradually taper off at some large distance from the center
(or else stop suddenly but in an irregular shape so for larger ρ the entire ring
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Imaginary Axis

Start; r = z

A
r →∞

Fig. 30-12. Graphical solution of
∫∞
z
ηe−iωr/c dr .

of width dρ no longer contributes), then the coefficient η in the exact integral
would decrease toward zero. Since we are adding smaller pieces but still turning
through the same angle, the graph of our integral would then become a curve
which is a spiral. The spiral would eventually end up at the center of our original
circle, as drawn in Fig. 30-12. The physically correct integral is the complex
number A in the figure represented by the interval from the starting point to the
center of the circle, which is just equal to

c

iω
e−iωz/c, (30.17)

as you can work out for yourself. This is the same result we would get from
Eq. (30.16) if we set e−i∞ = 0.

(There is also another reason why the contribution to the integral tapers off
for large values of r, and that is the factor we have omitted for the projection of
the acceleration on the plane perpendicular to the line PQ.)

We are, of course, interested only in physical situations, so we will take e−i∞
equal to zero. Returning to our original formula (30.12) for the field and putting
back all of the factors that go with the integral, we have the result

Total field at P = − ηq

2ε0c
iωx0e

iω(t−z/c) (30.18)

(remembering that 1/i = −i).
It is interesting to note that (iωx0e

iωt) is just equal to the velocity of the
charges, so that we can also write the equation for the field as

Total field at P = − ηq

2ε0c
[velocity of charges]at t− z/c, (30.19)
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which is a little strange, because the retardation is just by the distance z, which
is the shortest distance from P to the plane of charges. But that is the way
it comes out—fortunately a rather simple formula. (We may add, by the way,
that although our derivation is valid only for distances far from the plane of
oscillatory charges, it turns out that the formula (30.18) or (30.19) is correct at
any distance z, even for z < λ.)
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31

The Origin of the Refractive Index

31-1 The index of refraction

We have said before that light goes slower in water than in air, and slower,
slightly, in air than in vacuum. This effect is described by the index of refraction n.
Now we would like to understand how such a slower velocity could come about. In
particular, we should try to see what the relation is to some physical assumptions,
or statements, we made earlier, which were the following:

(a) That the total electric field in any physical circumstance can always be
represented by the sum of the fields from all the charges in the universe.

(b) That the field from a single charge is given by its acceleration evaluated
with a retardation at the speed c, always (for the radiation field).

But, for a piece of glass, you might think: “Oh, no, you should modify all
this. You should say it is retarded at the speed c/n.” That, however, is not right,
and we have to understand why it is not.

It is approximately true that light or any electrical wave does appear to travel
at the speed c/n through a material whose index of refraction is n, but the
fields are still produced by the motions of all the charges—including the charges
moving in the material—and with these basic contributions of the field travelling
at the ultimate velocity c. Our problem is to understand how the apparently
slower velocity comes about.

We shall try to understand the effect in a very simple case. A source which we
shall call “the external source” is placed a large distance away from a thin plate
of transparent material, say glass. We inquire about the field at a large distance
on the opposite side of the plate. The situation is illustrated by the diagram
of Fig. 31-1, where S and P are imagined to be very far away from the plate.
According to the principles we have stated earlier, an electric field anywhere
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P
S

Source of
electric wave

Glass plate

Arriving wave

“Reflected”
wave

“Transmitted” wave

What is the
electric field
here?

Es

Eb

Es + Ea
+

Fig. 31-1. Electric waves passing through a layer of transparent
material.

that is far from all moving charges is the (vector) sum of the fields produced by
the external source (at S) and the fields produced by each of the charges in the
plate of glass, every one with its proper retardation at the velocity c. Remember
that the contribution of each charge is not changed by the presence of the other
charges. These are our basic principles. The field at P can be written thus:

E =
∑

all charges
Eeach charge (31.1)

or
E = Es +

∑
all other charges

Eeach charge, (31.2)

where Es is the field due to the source alone and would be precisely the field
at P if there were no material present. We expect the field at P to be different
from Es if there are any other moving charges.

Why should there be charges moving in the glass? We know that all material
consists of atoms which contain electrons. When the electric field of the source
acts on these atoms it drives the electrons up and down, because it exerts a
force on the electrons. And moving electrons generate a field—they constitute
new radiators. These new radiators are related to the source S, because they
are driven by the field of the source. The total field is not just the field of the
source S, but it is modified by the additional contribution from the other moving
charges. This means that the field is not the same as the one which was there
before the glass was there, but is modified, and it turns out that it is modified
in such a way that the field inside the glass appears to be moving at a different
speed. That is the idea which we would like to work out quantitatively.
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Now this is, in the exact case, pretty complicated, because although we have
said that all the other moving charges are driven by the source field, that is not
quite true. If we think of a particular charge, it feels not only the source, but like
anything else in the world, it feels all of the charges that are moving. It feels,
in particular, the charges that are moving somewhere else in the glass. So the
total field which is acting on a particular charge is a combination of the fields
from the other charges, whose motions depend on what this particular charge is
doing! You can see that it would take a complicated set of equations to get the
complete and exact formula. It is so complicated that we postpone this problem
until next year.

Instead we shall work out a very simple case in order to understand all the
physical principles very clearly. We take a circumstance in which the effects from
the other atoms are very small relative to the effects from the source. In other
words, we take a material in which the total field is not modified very much
by the motion of the other charges. That corresponds to a material in which
the index of refraction is very close to 1, which will happen, for example, if the
density of the atoms is very low. Our calculation will be valid for any case in
which the index is for any reason very close to 1. In this way we shall avoid the
complications of the most general, complete solution.

Incidentally, you should notice that there is another effect caused by the
motion of the charges in the plate. These charges will also radiate waves back
toward the source S. This backward-going field is the light we see reflected from
the surfaces of transparent materials. It does not come from just the surface. The
backward radiation comes from everywhere in the interior, but it turns out that
the total effect is equivalent to a reflection from the surfaces. These reflection
effects are beyond our approximation at the moment because we shall be limited
to a calculation for a material with an index so close to 1 that very little light is
reflected.

Before we proceed with our study of how the index of refraction comes about,
we should understand that all that is required to understand refraction is to
understand why the apparent wave velocity is different in different materials. The
bending of light rays comes about just because the effective speed of the waves is
different in the materials. To remind you how that comes about we have drawn
in Fig. 31-2 several successive crests of an electric wave which arrives from a
vacuum onto the surface of a block of glass. The arrow perpendicular to the
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Fig. 31-2. Relation between refraction and velocity change.

wave crests indicates the direction of travel of the wave. Now all oscillations in
the wave must have the same frequency. (We have seen that driven oscillations
have the same frequency as the driving source.) This means, also, that the wave
crests for the waves on both sides of the surface must have the same spacing
along the surface because they must travel together, so that a charge sitting
at the boundary will feel only one frequency. The shortest distance between
crests of the wave, however, is the wavelength which is the velocity divided by
the frequency. On the vacuum side it is λ0 = 2πc/ω, and on the other side it is
λ = 2πv/ω or 2πc/ωn, if v = c/n is the velocity of the wave. From the figure we
can see that the only way for the waves to “fit” properly at the boundary is for
the waves in the material to be travelling at a different angle with respect to the
surface. From the geometry of the figure you can see that for a “fit” we must
have λ0/ sin θ0 = λ/ sin θ, or sin θ0/ sin θ = n, which is Snell’s law. We shall, for
the rest of our discussion, consider only why light has an effective speed of c/n
in material of index n, and no longer worry, in this chapter, about the bending
of the light direction.

We go back now to the situation shown in Fig. 31-1. We see that what we
have to do is to calculate the field produced at P by all the oscillating charges
in the glass plate. We shall call this part of the field Ea, and it is just the sum
written as the second term in Eq. (31.2). When we add it to the term Es, due to
the source, we will have the total field at P .
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This is probably the most complicated thing that we are going to do this
year, but it is complicated only in that there are many pieces that have to be put
together; each piece, however, is very simple. Unlike other derivations where we
say, “Forget the derivation, just look at the answer!,” in this case we do not need
the answer so much as the derivation. In other words, the thing to understand
now is the physical machinery for the production of the index.

To see where we are going, let us first find out what the “correction field” Ea
would have to be if the total field at P is going to look like radiation from the
source that is slowed down while passing through the thin plate. If the plate had
no effect on it, the field of a wave travelling to the right (along the z-axis) would
be

Es = E0 cosω(t− z/c) (31.3)
or, using the exponential notation,

Es = E0e
iω(t−z/c). (31.4)

Now what would happen if the wave travelled more slowly in going through
the plate? Let us call the thickness of the plate ∆z. If the plate were not there the
wave would travel the distance ∆z in the time ∆z/c. But if it appears to travel
at the speed c/n then it should take the longer time n∆z/c or the additional
time ∆t = (n− 1) ∆z/c. After that it would continue to travel at the speed c
again. We can take into account the extra delay in getting through the plate by
replacing t in Eq. (31.4) by (t−∆t) or by [t− (n− 1) ∆z/c]. So the wave after
insertion of the plate should be written

Eafter plate = E0e
iω[t−(n−1) ∆z/c−z/c]. (31.5)

We can also write this equation as

Eafter plate = e−iω(n−1) ∆z/cE0e
iω(t−z/c), (31.6)

which says that the wave after the plate is obtained from the wave which could
exist without the plate, i.e., from Es, by multiplying by the factor e−iω(n−1) ∆z/c.
Now we know that multiplying an oscillating function like eiωt by a factor eiθ
just says that we change the phase of the oscillation by the angle θ, which is, of
course, what the extra delay in passing through the thickness ∆z has done. It
has retarded the phase by the amount ω(n− 1) ∆z/c (retarded, because of the
minus sign in the exponent).
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We have said earlier that the plate should add a field Ea to the original
field Es = E0e

iω(t−z/c), but we have found instead that the effect of the plate is
to multiply the field by a factor which shifts its phase. However, that is really all
right because we can get the same result by adding a suitable complex number.
It is particularly easy to find the right number to add in the case that ∆z is
small, for you will remember that if x is a small number then ex is nearly equal
to (1 + x). We can write, therefore,

e−iω(n−1) ∆z/c = 1− iω(n− 1) ∆z/c. (31.7)

Using this equality in Eq. (31.6), we have

Eafter plate = E0e
iω(t−z/c)︸ ︷︷ ︸
Es

− iω(n− 1) ∆z
c

E0e
iω(t−z/c)︸ ︷︷ ︸

Ea

. (31.8)

The first term is just the field from the source, and the second term must just be
equal to Ea, the field produced to the right of the plate by the oscillating charges
of the plate—expressed here in terms of the index of refraction n, and depending,
of course, on the strength of the wave from the source.

What we have been doing is easily visualized if we look at the complex number
diagram in Fig. 31-3. We first draw the number Es (we chose some values for
z and t so that Es comes out horizontal, but this is not necessary). The delay
due to slowing down in the plate would delay the phase of this number, that is,
it would rotate Es through a negative angle. But this is equivalent to adding
the small vector Ea at roughly right angles to Es. But that is just what the
factor −i means in the second term of Eq. (31.8). It says that if Es is real, then
Ea is negative imaginary or that, in general, Es and Ea make a right angle.

Real Axis

Imaginary Axis

Angle = ω(n − 1)∆z/c

Es

Ea
E

after plate = Es + Ea

Fig. 31-3. Diagram for the transmitted wave at a particular t and z .
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31-2 The field due to the material

We now have to ask: Is the field Ea obtained in the second term of Eq. (31.8)
the kind we would expect from oscillating charges in the plate? If we can show
that it is, we will then have calculated what the index n should be! [Since n
is the only nonfundamental number in Eq. (31.8).] We turn now to calculating
what field Ea the charges in the material will produce. (To help you keep track
of the many symbols we have used up to now, and will be using in the rest of
our calculation, we have put them all together in Table 31-1.)

Table 31-1

Symbols used in the calculations

Es = field from the source
Ea = field produced by charges in the plate
∆z = thickness of the plate
z = perpendicular distance from the plate
n = index of refraction
ω = frequency (angular) of the radiation
N = number of charges per unit volume in the plate
η = number of charges per unit area of the plate
qe = charge on an electron
m = mass of an electron
ω0 = resonant frequency of an electron bound in an atom

If the source S (of Fig. 31-1) is far off to the left, then the field Es will have
the same phase everywhere on the plate, so we can write that in the neighborhood
of the plate

Es = E0e
iω(t−z/c). (31.9)

Right at the plate, where z = 0, we will have

Es = E0e
iωt (at the plate). (31.10)

Each of the electrons in the atoms of the plate will feel this electric field
and will be driven up and down (we assume the direction of E0 is vertical) by
the electric force qE. To find what motion we expect for the electrons, we will
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assume that the atoms are little oscillators, that is, that the electrons are fastened
elastically to the atoms, which means that if a force is applied to an electron its
displacement from its normal position will be proportional to the force.

You may think that this is a funny model of an atom if you have heard about
electrons whirling around in orbits. But that is just an oversimplified picture.
The correct picture of an atom, which is given by the theory of wave mechanics,
says that, so far as problems involving light are concerned, the electrons behave
as though they were held by springs. So we shall suppose that the electrons have
a linear restoring force which, together with their mass m, makes them behave
like little oscillators, with a resonant frequency ω0. We have already studied such
oscillators, and we know that the equation of their motion is written this way:

m

(
d2x

dt2
+ ω2

0x

)
= F, (31.11)

where F is the driving force.
For our problem, the driving force comes from the electric field of the wave

from the source, so we should use

F = qeEs = qeE0e
iωt, (31.12)

where qe is the electric charge on the electron and for Es we use the expres-
sion Es = E0e

iωt from (31.10). Our equation of motion for the electron is
then

m

(
d2x

dt2
+ ω2

0x

)
= qeE0e

iωt. (31.13)

We have solved this equation before, and we know that the solution is

x = x0e
iωt, (31.14)

where, by substituting in (31.13), we find that

x0 = qeE0

m(ω2
0 − ω2) , (31.15)

so that
x = qeE0

m(ω2
0 − ω2) e

iωt. (31.16)
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We have what we needed to know—the motion of the electrons in the plate. And
it is the same for every electron, except that the mean position (the “zero” of
the motion) is, of course, different for each electron.

Now we are ready to find the field Ea that these atoms produce at the
point P , because we have already worked out (at the end of Chapter 30) what
field is produced by a sheet of charges that all move together. Referring back to
Eq. (30.19), we see that the field Ea at P is just a negative constant times the
velocity of the charges retarded in time by the amount z/c. Differentiating x in
Eq. (31.16) to get the velocity, and sticking in the retardation [or just putting x0
from (31.15) into (30.18)] yields

Ea = − ηqe
2ε0c

[
iω

qeE0

m(ω2
0 − ω2) e

iω(t−z/c)
]
. (31.17)

Just as we expected, the driven motion of the electrons produced an extra wave
which travels to the right (that is what the factor eiω(t−z/c) says), and the
amplitude of this wave is proportional to the number of atoms per unit area
in the plate (the factor η) and also proportional to the strength of the source
field (the factor E0). Then there are some factors which depend on the atomic
properties (qe, m, and ω0), as we should expect.

The most important thing, however, is that this formula (31.17) for Ea looks
very much like the expression for Ea that we got in Eq. (31.8) by saying that
the original wave was delayed in passing through a material with an index of
refraction n. The two expressions will, in fact, be identical if

(n− 1) ∆z = ηq2
e

2ε0m(ω2
0 − ω2) . (31.18)

Notice that both sides are proportional to ∆z, since η, which is the number of
atoms per unit area, is equal to N ∆z, where N is the number of atoms per unit
volume of the plate. Substituting N ∆z for η and cancelling the ∆z, we get our
main result, a formula for the index of refraction in terms of the properties of
the atoms of the material—and of the frequency of the light:

n = 1 + Nq2
e

2ε0m(ω2
0 − ω2) . (31.19)

This equation gives the “explanation” of the index of refraction that we wished
to obtain.
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31-3 Dispersion

Notice that in the above process we have obtained something very interesting.
For we have not only a number for the index of refraction which can be computed
from the basic atomic quantities, but we have also learned how the index of
refraction should vary with the frequency ω of the light. This is something we
would never understand from the simple statement that “light travels slower in
a transparent material.” We still have the problem, of course, of knowing how
many atoms per unit volume there are, and what is their natural frequency ω0.
We do not know this just yet, because it is different for every different material,
and we cannot get a general theory of that now. Formulation of a general theory
of the properties of different substances—their natural frequencies, and so on—is
possible only with quantum atomic mechanics. Also, different materials have
different properties and different indexes, so we cannot expect, anyway, to get a
general formula for the index which will apply to all substances.

However, we shall discuss the formula we have obtained, in various possible
circumstances. First of all, for most ordinary gases (for instance, for air, most
colorless gases, hydrogen, helium, and so on) the natural frequencies of the
electron oscillators correspond to ultraviolet light. These frequencies are higher
than the frequencies of visible light, that is, ω0 is much larger than ω of visible
light, and to a first approximation, we can disregard ω2 in comparison with ω2

0 .
Then we find that the index is nearly constant. So for a gas, the index is nearly
constant. This is also true for most other transparent substances, like glass. If
we look at our expression a little more closely, however, we notice that as ω rises,
taking a little bit more away from the denominator, the index also rises. So n
rises slowly with frequency. The index is higher for blue light than for red light.
That is the reason why a prism bends the light more in the blue than in the red.

The phenomenon that the index depends upon the frequency is called the
phenomenon of dispersion, because it is the basis of the fact that light is “dispersed”
by a prism into a spectrum. The equation for the index of refraction as a function
of frequency is called a dispersion equation. So we have obtained a dispersion
equation. (In the past few years “dispersion equations” have been finding a new
use in the theory of elementary particles.)

Our dispersion equation suggests other interesting effects. If we have a
natural frequency ω0 which lies in the visible region, or if we measure the index
of refraction of a material like glass in the ultraviolet, where ω gets near ω0, we
see that at frequencies very close to the natural frequency the index can get
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enormously large, because the denominator can go to zero. Next, suppose that ω
is greater than ω0. This would occur, for example, if we take a material like glass,
say, and shine x-ray radiation on it. In fact, since many materials which are
opaque to visible light, like graphite for instance, are transparent to x-rays, we
can also talk about the index of refraction of carbon for x-rays. All the natural
frequencies of the carbon atoms would be much lower than the frequency we are
using in the x-rays, since x-ray radiation has a very high frequency. The index of
refraction is that given by our dispersion equation if we set ω0 equal to zero (we
neglect ω2

0 in comparison with ω2).
A similar situation would occur if we beam radiowaves (or light) on a gas

of free electrons. In the upper atmosphere electrons are liberated from their
atoms by ultraviolet light from the sun and they sit up there as free electrons.
For free electrons ω0 = 0 (there is no elastic restoring force). Setting ω0 = 0 in
our dispersion equation yields the correct formula for the index of refraction for
radiowaves in the stratosphere, where N is now to represent the density of free
electrons (number per unit volume) in the stratosphere. But let us look again at
the equation, if we beam x-rays on matter, or radiowaves (or any electric waves)
on free electrons the term (ω2

0 − ω2) becomes negative, and we obtain the result
that n is less than one. That means that the effective speed of the waves in the
substance is faster than c! Can that be correct?

It is correct. In spite of the fact that it is said that you cannot send signals any
faster than the speed of light, it is nevertheless true that the index of refraction of
materials at a particular frequency can be either greater or less than 1. This just
means that the phase shift which is produced by the scattered light can be either
positive or negative. It can be shown, however, that the speed at which you can
send a signal is not determined by the index at one frequency, but depends on
what the index is at many frequencies. What the index tells us is the speed at
which the nodes (or crests) of the wave travel. The node of a wave is not a signal
by itself. In a perfect wave, which has no modulations of any kind, i.e., which is
a steady oscillation, you cannot really say when it “starts,” so you cannot use
it for a timing signal. In order to send a signal you have to change the wave
somehow, make a notch in it, make it a little bit fatter or thinner. That means
that you have to have more than one frequency in the wave, and it can be shown
that the speed at which signals travel is not dependent upon the index alone,
but upon the way that the index changes with the frequency. This subject we
must also delay (until Chapter 48). Then we will calculate for you the actual
speed of signals through such a piece of glass, and you will see that it will not
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be faster than the speed of light, although the nodes, which are mathematical
points, do travel faster than the speed of light.

Just to give a slight hint as to how that happens, you will note that the real
difficulty has to do with the fact that the responses of the charges are opposite
to the field, i.e., the sign has gotten reversed. Thus in our expression for x
(Eq. 31.16) the displacement of the charge is in the direction opposite to the
driving field, because (ω2

0 − ω2) is negative for small ω0. The formula says that
when the electric field is pulling in one direction, the charge is moving in the
opposite direction.

How does the charge happen to be going in the opposite direction? It certainly
does not start off in the opposite direction when the field is first turned on. When
the motion first starts there is a transient, which settles down after awhile, and
only then is the phase of the oscillation of the charge opposite to the driving
field. And it is then that the phase of the transmitted field can appear to be
advanced with respect to the source wave. It is this advance in phase which is
meant when we say that the “phase velocity” or velocity of the nodes is greater
than c. In Fig. 31-4 we give a schematic idea of how the waves might look for
a case where the wave is suddenly turned on (to make a signal). You will see
from the diagram that the signal (i.e., the start of the wave) is not earlier for
the wave which ends up with an advance in phase.

Let us now look again at our dispersion equation. We should remark that
our analysis of the refractive index gives a result that is somewhat simpler than

(a)

(b)

(c)

Wave with no
material

Transmitted wave
with n > 1

Transmitted wave
with n < 1

E

E

E

t

t

t

delay of phase

advance of phase

Start

Fig. 31-4. Wave “signals.”
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you would actually find in nature. To be completely accurate we must add some
refinements. First, we should expect that our model of the atomic oscillator
should have some damping force (otherwise once started it would oscillate forever,
and we do not expect that to happen). We have worked out before (Eq. 23.8)
the motion of a damped oscillator and the result is that the denominator in
Eq. (31.16), and therefore in (31.19), is changed from (ω2

0−ω2) to (ω2
0−ω2 +iγω),

where γ is the damping coefficient.
We need a second modification to take into account the fact that there are

several resonant frequencies for a particular kind of atom. It is easy to fix up
our dispersion equation by imagining that there are several different kinds of
oscillators, but that each oscillator acts separately, and so we simply add the
contributions of all the oscillators. Let us say that there are Nk electrons per
unit of volume, whose natural frequency is ωk and whose damping factor is γk.
We would then have for our dispersion equation

n = 1 + q2
e

2ε0m
∑
k

Nk
ω2
k − ω2 + iγkω

. (31.20)

We have, finally, a complete expression which describes the index of refraction
that is observed for many substances.* The index described by this formula varies
with frequency roughly like the curve shown in Fig. 31-5.

You will note that so long as ω is not too close to one of the resonant
frequencies, the slope of the curve is positive. Such a positive slope is called

ωω1 ω2

n

1

0

etc.

etc.

Fig. 31-5. The index of refraction as a function of frequency.

* Actually, although in quantum mechanics Eq. (31.20) is still valid, its interpretation is
somewhat different. In quantum mechanics even an atom with one electron, like hydrogen, has
several resonant frequencies. Therefore Nk is not really the number of electrons having the
frequency ωk, but is replaced instead by Nfk, where N is the number of atoms per unit volume
and fk (called the oscillator strength) is a factor that tells how strongly the atom exhibits each
of its resonant frequencies ωk.
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“normal” dispersion (because it is clearly the most common occurrence). Very
near the resonant frequencies, however, there is a small range of ω’s for which
the slope is negative. Such a negative slope is often referred to as “anomalous”
(meaning abnormal) dispersion, because it seemed unusual when it was first
observed, long before anyone even knew there were such things as electrons.
From our point of view both slopes are quite “normal”!

31-4 Absorption

Perhaps you have noticed something a little strange about the last form
(Eq. 31.20) we obtained for our dispersion equation. Because of the term iγ
we put in to take account of damping, the index of refraction is now a complex
number! What does that mean? By working out what the real and imaginary
parts of n are we could write

n = n′ − in′′, (31.21)

where n′ and n′′ are real numbers. (We use the minus sign in front of the in′′
because then n′′ will turn out to be a positive number, as you can show for
yourself.)

We can see what such a complex index means by going back to Eq. (31.6),
which is the equation of the wave after it goes through a plate of material with
an index n. If we put our complex n into this equation, and do some rearranging,
we get

Eafter plate = e−ωn
′′ ∆z/c︸ ︷︷ ︸
A

e−iω(n′−1) ∆z/cE0e
iω(t−z/c)︸ ︷︷ ︸

B

. (31.22)

The last factors, marked B in Eq. (31.22), are just the form we had before, and
again describe a wave whose phase has been delayed by the angle ω(n′ − 1) ∆z/c
in traversing the material. The first term (A) is new and is an exponential
factor with a real exponent, because there were two i’s that cancelled. Also, the
exponent is negative, so the factor is a real number less than one. It describes a
decrease in the magnitude of the field and, as we should expect, by an amount
which is more the larger ∆z is. As the wave goes through the material, it is
weakened. The material is “absorbing” part of the wave. The wave comes out
the other side with less energy. We should not be surprised at this, because
the damping we put in for the oscillators is indeed a friction force and must
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be expected to cause a loss of energy. We see that the imaginary part n′′ of a
complex index of refraction represents an absorption (or “attenuation”) of the
wave. In fact, n′′ is sometimes referred to as the “absorption index.”

We may also point out that an imaginary part to the index n corresponds
to bending the arrow Ea in Fig. 31-3 toward the origin. It is clear why the
transmitted field is then decreased.

Normally, for instance as in glass, the absorption of light is very small.
This is to be expected from our Eq. (31.20), because the imaginary part of the
denominator, iγkω, is much smaller than the term (ω2

k − ω2). But if the light
frequency ω is very close to ωk then the resonance term (ω2

k − ω2) can become
small compared with iγkω and the index becomes almost completely imaginary.
The absorption of the light becomes the dominant effect. It is just this effect
that gives the dark lines in the spectrum of light which we receive from the sun.
The light from the solar surface has passed through the sun’s atmosphere (as
well as the earth’s), and the light has been strongly absorbed at the resonant
frequencies of the atoms in the solar atmosphere.

The observation of such spectral lines in the sunlight allows us to tell the
resonant frequencies of the atoms and hence the chemical composition of the
sun’s atmosphere. The same kind of observations tell us about the materials in
the stars. From such measurements we know that the chemical elements in the
sun and in the stars are the same as those we find on the earth.

31-5 The energy carried by an electric wave

We have seen that the imaginary part of the index means absorption. We
shall now use this knowledge to find out how much energy is carried by a light
wave. We have given earlier an argument that the energy carried by light is
proportional to E2, the time average of the square of the electric field in the
wave. The decrease in E due to absorption must mean a loss of energy, which
would go into some friction of the electrons and, we might guess, would end up
as heat in the material.

If we consider the light arriving on a unit area, say one square centimeter,
of our plate in Fig. 31-1, then we can write the following energy equation (if we
assume that energy is conserved, as we do!):

Energy in per sec = energy out per sec + work done per sec. (31.23)
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For the first term we can write αE2
s , where α is the as yet unknown constant

of proportionality which relates the average value of E2 to the energy being
carried. For the second term we must include the part from the radiating
atoms of the material, so we should use α(Es + Ea)2, or (evaluating the square)
α(E2

s + 2EsEa + E2
a).

All of our calculations have been made for a thin layer of material whose
index is not too far from 1, so that Ea would always be much less than Es (just
to make the calculations easier). In keeping with our approximations, we should,
therefore, leave out the term E2

a, because it is much smaller than EsEa. You
may say: “Then you should leave out EsEa also, because it is much smaller
than E2

s .” It is true that EsEa is much smaller than E2
s , but we must keep

EsEa or our approximation will be the one that would apply if we neglected the
presence of the material completely! One way of checking that our calculations
are consistent is to see that we always keep terms which are proportional to N ∆z,
the area density of atoms in the material, but we leave out terms which are
proportional to (N ∆z)2 or any higher power of N ∆z. Ours is what should be
called a “low-density approximation.”

In the same spirit, we might remark that our energy equation has neglected
the energy in the reflected wave. But that is OK because this term, too, is
proportional to (N ∆z)2, since the amplitude of the reflected wave is proportional
to N ∆z.

For the last term in Eq. (31.23) we wish to compute the rate at which the
incoming wave is doing work on the electrons. We know that work is force times
distance, so the rate of doing work (also called power) is the force times the
velocity. It is really F · v, but we do not need to worry about the dot product
when the velocity and force are along the same direction as they are here (except
for a possible minus sign). So for each atom we take qeEsv for the average rate
of doing work. Since there are N ∆z atoms in a unit area, the last term in
Eq. (31.23) should be N ∆z qeEsv. Our energy equation now looks like

αE2
s = αE2

s + 2αEsEa +N ∆z qeEsv. (31.24)
The E2

s terms cancel, and we have
2αEsEa = −N ∆z qeEsv. (31.25)

We now go back to Eq. (31.19), which tells us that for large z

Ea = −N ∆z qe
2ε0c

v(ret by z/c) (31.26)
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(recalling that η = N ∆z). Putting Eq. (31.26) into the left-hand side of (31.25),
we get

2α N ∆z qe
2ε0c

Es(at z) · v(ret by z/c).

However, Es(at z) is Es(at atoms) retarded by z/c. Since the average is inde-
pendent of time, it is the same now as retarded by z/c, or is Es(at atoms) · v,
the same average that appears on the right-hand side of (31.25). The two sides
are therefore equal if

α

ε0c
= 1, or α = ε0c. (31.27)

We have discovered that if energy is to be conserved, the energy carried in an
electric wave per unit area and per unit time (or what we have called the intensity)
must be given by ε0cE2. If we call the intensity S, we have

S =

 intensity
or

energy/area/time

 = ε0cE2, (31.28)

where the bar means the time average. We have a nice bonus result from our
theory of the refractive index!

31-6 Diffraction of light by a screen

It is now a good time to take up a somewhat different matter which we can
handle with the machinery of this chapter. In the last chapter we said that
when you have an opaque screen and the light can come through some holes, the
distribution of intensity—the diffraction pattern—could be obtained by imagining
instead that the holes are replaced by sources (oscillators) uniformly distributed
over the hole. In other words, the diffracted wave is the same as though the hole
were a new source. We have to explain the reason for that, because the hole is, of
course, just where there are no sources, where there are no accelerating charges.

Let us first ask: “What is an opaque screen?” Suppose we have a completely
opaque screen between a source S and an observer at P , as in Fig. 31-6(a). If the
screen is “opaque” there is no field at P . Why is there no field there? According
to the basic principles we should obtain the field at P as the field Es of the
source delayed, plus the field from all the other charges around. But, as we
have seen above, the charges in the screen will be set in motion by the field Es,
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E = Es + E′wall + E
′
plug = 0

Fig. 31-6. Diffraction by a screen.

and these motions generate a new field which, if the screen is opaque, must
exactly cancel the field Es on the back side of the screen. You say: “What a
miracle that it balances exactly! Suppose it was not exactly right!” If it were
not exactly right (remember that this opaque screen has some thickness), the
field toward the rear part of the screen would not be exactly zero. So, not
being zero, it would set into motion some other charges in the material of
the screen, and thus make a little more field, trying to get the total balanced
out. So if we make the screen thick enough, there is no residual field, because
there is enough opportunity to finally get the thing quieted down. In terms
of our formulas above we would say that the screen has a large and imaginary
index, so the wave is absorbed exponentially as it goes through. You know,
of course, that a thin enough sheet of the most opaque material, even gold, is
transparent.

Now let us see what happens with an opaque screen which has holes in it, as
in Fig. 31-6(b). What do we expect for the field at P? The field at P can be
represented as a sum of two parts—the field due to the source S plus the field
due to the wall, i.e., due to the motions of the charges in the walls. We might
expect the motions of the charges in the walls to be complicated, but we can find
out what fields they produce in a rather simple way.
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Suppose that we were to take the same screen, but plug up the holes, as
indicated in part (c) of the figure. We imagine that the plugs are of exactly
the same material as the wall. Mind you, the plugs go where the holes were in
case (b). Now let us calculate the field at P . The field at P is certainly zero in
case (c), but it is also equal to the field from the source plus the field due to
all the motions of the atoms in the walls and in the plugs. We can write the
following equations:

Case (b): Eat P = Es + Ewall,

Case (c): E′at P = 0 = Es + E′wall + E′plug,

where the primes refer to the case where the plugs are in place, but Es is, of
course, the same in both cases. Now if we subtract the two equations, we get

Eat P = (Ewall − E′wall)− E′plug.

Now if the holes are not too small (say many wavelengths across), we would not
expect the presence of the plugs to change the fields which arrive at the walls
except possibly for a little bit around the edges of the holes. Neglecting this
small effect, we can set Ewall = E′wall and obtain that

Eat P = −E′plug.

We have the result that the field at P when there are holes in a screen (case
b) is the same (except for sign) as the field that is produced by that part of a
complete opaque wall which is located where the holes are! (The sign is not too
interesting, since we are usually interested in intensity which is proportional to
the square of the field.) It seems like an amazing backwards-forwards argument.
It is, however, not only true (approximately for not too small holes), but useful,
and is the justification for the usual theory of diffraction.

The field E′plug is computed in any particular case by remembering that the
motion of the charges everywhere in the screen is just that which will cancel out
the field Es on the back of the screen. Once we know these motions, we add the
radiation fields at P due just to the charges in the plugs.

We remark again that this theory of diffraction is only approximate, and will
be good only if the holes are not too small. For holes which are too small the
E′plug term will be small and then the difference between E′wall and Ewall (which
difference we have taken to be zero) may be comparable to or larger than the
small E′plug term, and our approximation will no longer be valid.
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32

Radiation Damping. Light Scattering

32-1 Radiation resistance

In the last chapter we learned that when a system is oscillating, energy is
carried away, and we deduced a formula for the energy which is radiated by an
oscillating system. If we know the electric field, then the average of the square
of the field times ε0c is the amount of energy that passes per square meter per
second through a surface normal to the direction in which the radiation is going:

S = ε0c〈E2〉. (32.1)

Any oscillating charge radiates energy; for instance, a driven antenna radiates
energy. If the system radiates energy, then in order to account for the conservation
of energy we must find that power is being delivered along the wires which lead
into the antenna. That is, to the driving circuit the antenna acts like a resistance,
or a place where energy can be “lost” (the energy is not really lost, it is really
radiated out, but so far as the circuit is concerned, the energy is lost). In an
ordinary resistance, the energy which is “lost” passes into heat; in this case the
energy which is “lost” goes out into space. But from the standpoint of circuit
theory, without considering where the energy goes, the net effect on the circuit is
the same—energy is “lost” from that circuit. Therefore the antenna appears to
the generator as having a resistance, even though it may be made with perfectly
good copper. In fact, if it is well built it will appear as almost a pure resistance,
with very little inductance or capacitance, because we would like to radiate as
much energy as possible out of the antenna. This resistance that an antenna
shows is called the radiation resistance.

If a current I is going to the antenna, then the average rate at which power
is delivered to the antenna is the average of the square of the current times the
resistance. The rate at which power is radiated by the antenna is proportional
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to the square of the current in the antenna, of course, because all the fields are
proportional to the currents, and the energy liberated is proportional to the
square of the field. The coefficient of proportionality between radiated power
and 〈I2〉 is the radiation resistance.

An interesting question is, what is this radiation resistance due to? Let us
take a simple example: let us say that currents are driven up and down in an
antenna. We find that we have to put work in, if the antenna is to radiate energy.
If we take a charged body and accelerate it up and down it radiates energy; if
it were not charged it would not radiate energy. It is one thing to calculate
from the conservation of energy that energy is lost, but another thing to answer
the question, against what force are we doing the work? That is an interesting
and very difficult question which has never been completely and satisfactorily
answered for electrons, although it has been for antennas. What happens is this:
in an antenna, the fields produced by the moving charges in one part of the
antenna react on the moving charges in another part of the antenna. We can
calculate these forces and find out how much work they do, and so find the right
rule for the radiation resistance. When we say “We can calculate—” that is not
quite right—we cannot, because we have not yet studied the laws of electricity at
short distances; only at large distances do we know what the electric field is. We
saw the formula (28.3), but at present it is too complicated for us to calculate
the fields inside the wave zone. Of course, since conservation of energy is valid,
we can calculate the result all right without knowing the fields at short distances.
(As a matter of fact, by using this argument backwards it turns out that one can
find the formula for the forces at short distances only by knowing the field at
very large distances, by using the laws of conservation of energy, but we shall not
go into that here.)

The problem in the case of a single electron is this: if there is only one charge,
what can the force act on? It has been proposed, in the old classical theory, that
the charge was a little ball, and that one part of the charge acted on the other
part. Because of the delay in the action across the tiny electron, the force is not
exactly in phase with the motion. That is, if we have the electron standing still,
we know that “action equals reaction.” So the various internal forces are equal,
and there is no net force. But if the electron is accelerating, then because of the
time delay across it, the force which is acting on the front from the back is not
exactly the same as the force on the back from the front, because of the delay in
the effect. This delay in the timing makes for a lack of balance, so, as a net effect,
the thing holds itself back by its bootstraps! This model of the origin of the
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resistance to acceleration, the radiation resistance of a moving charge, has run
into many difficulties, because our present view of the electron is that it is not a
“little ball”; this problem has never been solved. Nevertheless we can calculate
exactly, of course, what the net radiation resistance force must be, i.e., how much
loss there must be when we accelerate a charge, in spite of not knowing directly
the mechanism of how that force works.

32-2 The rate of radiation of energy

Now we shall calculate the total energy radiated by an accelerating charge.
To keep the discussion general, we shall take the case of a charge accelerating any
which way, but nonrelativistically. At a moment when the acceleration is, say,
vertical, we know that the electric field that is generated is the charge multiplied
by the projection of the retarded acceleration, divided by the distance. So we
know the electric field at any point, and we therefore know the square of the
electric field and thus the energy ε0cE2 leaving through a unit area per second.

The quantity ε0c appears quite often in expressions involving radiowave
propagation. Its reciprocal is called the impedance of a vacuum, and it is an easy
number to remember: it has the value 1/ε0c = 377 ohms. So the power in watts
per square meter is equal to the average of the field squared, divided by 377.

Using our expression (29.1) for the electric field, we find that

S = q2a′2 sin2 θ

16π2ε0r2c3
(32.2)

is the power per square meter radiated in the direction θ. We notice that it goes
inversely as the square of the distance, as we said before. Now suppose we wanted
the total energy radiated in all directions: then we must integrate (32.2) over all
directions. First we multiply by the area, to find the amount that flows within a
little angle dθ (Fig. 32-1). We need the area of a spherical section. The way to
think of it is this: if r is the radius, then the width of the annular segment is r dθ,
and the circumference is 2πr sin θ, because r sin θ is the radius of the circle. So
the area of the little piece of the sphere is 2πr sin θ times r dθ:

dA = 2πr2 sin θ dθ. (32.3)

By multiplying the flux [(32.2), the power per square meter] by the area in square
meters included in the small angle dθ, we find the amount of energy that is
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r sin θ dθ
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Fig. 32-1. The area of a spherical segment is 2πr sin θ · r dθ.

liberated in this direction between θ and θ + dθ; then we integrate that over all
the angles θ from 0 to 180◦:

P =
∫
S dA = q2a′2

8πε0c3
∫ π

0
sin3 θ dθ. (32.4)

By writing sin3 θ = (1−cos2 θ) sin θ it is not hard to show that
∫ π

0 sin3 θ dθ = 4/3.
Using that fact, we finally get

P = q2a′2

6πε0c3
. (32.5)

This expression deserves some remarks. First of all, since the vector a′ had a
certain direction, the a′2 in (32.5) would be the square of the vector a′, that is,
a′ · a′, the length of the vector, squared. Secondly, the flux (32.2) was calculated
using the retarded acceleration; that is, the acceleration at the time at which the
energy now passing through the sphere was radiated. We might like to say that
this energy was in fact liberated at this earlier time. This is not exactly true; it
is only an approximate idea. The exact time when the energy is liberated cannot
be defined precisely. All we can really calculate precisely is what happens in a
complete motion, like an oscillation or something, where the acceleration finally
ceases. Then what we find is that the total energy flux per cycle is the average
of acceleration squared, for a complete cycle. This is what should really appear
in (32.5). Or, if it is a motion with an acceleration that is initially and finally
zero, then the total energy that has flown out is the time integral of (32.5).

To illustrate the consequences of formula (32.5) when we have an oscillating
system, let us see what happens if the displacement x of the charge is oscillating
so that the acceleration a is −ω2x0e

iωt. The average of the acceleration squared

32-4



over a cycle (remember that we have to be very careful when we square things
that are written in complex notation—it really is the cosine, and the average
of cos2 ωt is one-half) thus is

〈a′2〉 = 1
2ω

4x2
0.

Therefore

P = q2ω4x2
0

12πε0c3
. (32.6)

The formulas we are now discussing are relatively advanced and more or less
modern; they date from the beginning of the twentieth century, and they are very
famous. Because of their historical value, it is important for us to be able to read
about them in older books. In fact, the older books also used a system of units
different from our present mks system. However, all these complications can be
straightened out in the final formulas dealing with electrons by the following
rule: The quantity q2

e/4πε0, where qe is the electronic charge (in coulombs), has,
historically, been written as e2. It is very easy to calculate that e in the mks
system is numerically equal to 1.5188×10−14, because we know that, numerically,
qe = 1.60206× 10−19 and 1/4πε0 = 8.98748× 109. Therefore we shall often use
the convenient abbreviation

e2 = q2
e

4πε0
. (32.7)

If we use the above numerical value of e in the older formulas and treat them as
though they were written in mks units, we will get the right numerical results.
For example, the older form of (32.5) is P = 2

3e
2a′2/c3. Again, the potential

energy of a proton and an electron at distance r is q2
e/4πε0r or e2/r, with

e = 1.5188× 10−14 (mks).

32-3 Radiation damping

Now the fact that an oscillator loses a certain energy would mean that if we
had a charge on the end of a spring (or an electron in an atom) which has a
natural frequency ω0, and we start it oscillating and let it go, it will not oscillate
forever, even if it is in empty space millions of miles from anything. There is no
oil, no resistance, in an ordinary sense; no “viscosity.” But nevertheless it will
not oscillate, as we might once have said, “forever,” because if it is charged it is
radiating energy, and therefore the oscillation will slowly die out. How slowly?
What is the Q of such an oscillator, caused by the electromagnetic effects, the
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so-called radiation resistance or radiation damping of the oscillator? The Q of
any oscillating system is the total energy content of the oscillator at any time
divided by the energy loss per radian:

Q = W

dW/dφ
.

Or (another way to write it), since dW/dφ = (dW/dt)/(dφ/dt) = (dW/dt)/ω,

Q = ωW

dW/dt
. (32.8)

If for a given Q this tells us how the energy of the oscillation dies out, dW/dt =
−(ω/Q)W , which has the solution W = W0e

−ωt/Q if W0 is the initial energy
(at t = 0).

To find the Q for a radiator, we go back to (32.8) and use (32.6) for dW/dt.
Now what do we use for the energy W of the oscillator? The kinetic energy

of the oscillator is 1
2mv

2, and the mean kinetic energy is mω2x2
0/4. But we

remember that for the total energy of an oscillator, on the average half is kinetic
and half is potential energy, and so we double our result, and find for the total
energy of the oscillator

W = 1
2mω

2x2
0. (32.9)

What do we use for the frequency in our formulas? We use the natural frequency ω0
because, for all practical purposes, that is the frequency at which our atom is
radiating, and for m we use the electron mass me. Then, making the necessary
divisions and cancellations, the formula comes down to

1
Q

= 4πe2

3λmec2
. (32.10)

(In order to see it better and in a more historical form we write it using our
abbreviation q2

e/4πε0 = e2, and the factor ω0/c which was left over has been
written as 2π/λ.) Since Q is dimensionless, the combination e2/mec

2 must be
a property only of the electron charge and mass, an intrinsic property of the
electron, and it must be a length. It has been given a name, the classical electron
radius, because the early atomic models, which were invented to explain the
radiation resistance on the basis of the force of one part of the electron acting
on the other parts, all needed to have an electron whose dimensions were of this
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general order of magnitude. However, this quantity no longer has the significance
that we believe that the electron really has such a radius. Numerically, the
magnitude of the radius is

r0 = e2

mec2
= 2.82× 10−15 m. (32.11)

Now let us actually calculate the Q of an atom that is emitting light—let us
say a sodium atom. For a sodium atom, the wavelength is roughly 6000 angstroms,
in the yellow part of the visible spectrum, and this is a typical wavelength. Thus

Q = 3λ
4πr0

≈ 5× 107, (32.12)

so the Q of an atom is of the order 108. This means that an atomic oscillator
will oscillate for 108 radians or about 107 oscillations, before its energy falls by a
factor 1/e. The frequency of oscillation of light corresponding to 6000 angstroms,
ν = c/λ, is on the order of 1015 cycles/sec, and therefore the lifetime, the time
it takes for the energy of a radiating atom to die out by a factor 1/e, is on the
order of 10−8 sec. In ordinary circumstances, freely emitting atoms usually take
about this long to radiate. This is valid only for atoms which are in empty space,
not being disturbed in any way. If the electron is in a solid and it has to hit
other atoms or other electrons, then there are additional resistances and different
damping.

The effective resistance term γ in the resistance law for the oscillator can
be found from the relation 1/Q = γ/ω0, and we remember that the size of γ
determines how wide the resonance curve is (Fig. 23-2). Thus we have just
computed the widths of spectral lines for freely radiating atoms! Since λ = 2πc/ω,
we find that

∆λ = 2πc∆ω/ω2 = 2πcγ/ω2
0 = 2πc/Qω0

= λ/Q = 4πr0/3 = 1.18× 10−14 m. (32.13)

32-4 Independent sources

In preparation for our second topic, the scattering of light, we must now
discuss a certain feature of the phenomenon of interference that we neglected to
discuss previously. This is the question of when interference does not occur. If
we have two sources S1 and S2, with amplitudes A1 and A2, and we make an
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observation in a certain direction in which the phases of arrival of the two signals
are φ1 and φ2 (a combination of the actual time of oscillation and the delayed
time, depending on the position of observation), then the energy that we receive
can be found by compounding the two complex number vectors A1 and A2, one
at angle φ1 and the other at angle φ2 (as we did in Chapter 29) and we find that
the resultant energy is proportional to

A2
R = A2

1 +A2
2 + 2A1A2 cos (φ1 − φ2). (32.14)

Now if the cross term 2A1A2 cos (φ1 − φ2) were not there, then the total energy
that would be received in a given direction would simply be the sum of the
energies, A2

1 +A2
2, that would be liberated by each source separately, which is

what we usually expect. That is, the combined intensity of light shining on
something from two sources is the sum of the intensities of the two lights. On the
other hand, if we have things set just right and we have a cross term, it is not
such a sum, because there is also some interference. If there are circumstances
in which this term is of no importance, then we would say the interference is
apparently lost. Of course, in nature it is always there, but we may not be able
to detect it.

Let us consider some examples. Suppose, first, that the two sources are
7,000,000,000 wavelengths apart, not an impossible arrangement. Then in a given
direction it is true that there is a very definite value of these phase differences.
But, on the other hand, if we move just a hair in one direction, a few wavelengths,
which is no distance at all (our eye already has a hole in it that is so large that we
are averaging the effects over a range very wide compared with one wavelength)
then we change the relative phase, and the cosine changes very rapidly. If we
take the average of the intensity over a little region, then the cosine, which goes
plus, minus, plus, minus, as we move around, averages to zero.

So if we average over regions where the phase varies very rapidly with position,
we get no interference.

Another example. Suppose that the two sources are two independent radio
oscillators—not a single oscillator being fed by two wires, which guarantees that
the phases are kept together, but two independent sources—and that they are not
precisely tuned at the same frequency (it is very hard to make them at exactly
the same frequency without actually wiring them together). In this case we have
what we call two independent sources. Of course, since the frequencies are not
exactly equal, although they started in phase, one of them begins to get a little
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ahead of the other, and pretty soon they are out of phase, and then it gets still
further ahead, and pretty soon they are in phase again. So the phase difference
between the two is gradually drifting with time, but if our observation is so crude
that we cannot see that little time, if we average over a much longer time, then
although the intensity swells and falls like what we call “beats” in sound, if these
swellings and fallings are too rapid for our equipment to follow, then again this
term averages out.

In other words, in any circumstance in which the phase shift averages out, we
get no interference!

One finds many books which say that two distinct light sources never interfere.
This is not a statement of physics, but is merely a statement of the degree of
sensitivity of the technique of the experiments at the time the book was written.
What happens in a light source is that first one atom radiates, then another atom
radiates, and so forth, and we have just seen that atoms radiate a train of waves
only for about 10−8 sec; after 10−8 sec, some atom has probably taken over, then
another atom takes over, and so on. So the phases can really only stay the same
for about 10−8 sec. Therefore, if we average for very much more than 10−8 sec,
we do not see an interference from two different sources, because they cannot hold
their phases steady for longer than 10−8 sec. With photocells, very high-speed
detection is possible, and one can show that there is an interference which varies
with time, up and down, in about 10−8 sec. But most detection equipment, of
course, does not look at such fine time intervals, and thus sees no interference.
Certainly with the eye, which has a tenth-of-a-second averaging time, there is no
chance whatever of seeing an interference between two different ordinary sources.

Recently it has become possible to make light sources which get around this
effect by making all the atoms emit together in time. The device which does this
is a very complicated thing, and has to be understood in a quantum-mechanical
way. It is called a laser , and it is possible to produce from a laser a source in
which the time during which the phase is kept constant, is very much longer than
10−8 sec. It can be of the order of a hundredth, a tenth, or even one second, and
so, with ordinary photocells, one can pick up the frequency between two different
lasers. One can easily detect the pulsing of the beats between two laser sources.
Soon, no doubt, someone will be able to demonstrate two sources shining on a
wall, in which the beats are so slow that one can see the wall get bright and dark!

Another case in which the interference averages out is that in which, instead
of having only two sources, we have many. In this case, we would write the
expression for A2

R as the sum of a whole lot of amplitudes, complex numbers,
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squared, and we would get the square of each one, all added together, plus cross
terms between every pair, and if the circumstances are such that the latter average
out, then there will be no effects of interference. It may be that the various sources
are located in such random positions that, although the phase difference between
A2 and A3 is also definite, it is very different from that between A1 and A2, etc.
So we would get a whole lot of cosines, many plus, many minus, all averaging out.

So it is that in many circumstances we do not see the effects of interference,
but see only a collective, total intensity equal to the sum of all the intensities.

32-5 Scattering of light

The above leads us to an effect which occurs in air as a consequence of the
irregular positions of the atoms. When we were discussing the index of refraction,
we saw that an incoming beam of light will make the atoms radiate again. The
electric field of the incoming beam drives the electrons up and down, and they
radiate because of their acceleration. This scattered radiation combines to give
a beam in the same direction as the incoming beam, but of somewhat different
phase, and this is the origin of the index of refraction.

But what can we say about the amount of re-radiated light in some other
direction? Ordinarily, if the atoms are very beautifully located in a nice pattern,
it is easy to show that we get nothing in other directions, because we are adding
a lot of vectors with their phases always changing, and the result comes to zero.
But if the objects are randomly located, then the total intensity in any direction
is the sum of the intensities that are scattered by each atom, as we have just
discussed. Furthermore, the atoms in a gas are in actual motion, so that although
the relative phase of two atoms is a definite amount now, later the phase would be
quite different, and therefore each cosine term will average out. Therefore, to find
out how much light is scattered in a given direction by a gas, we merely study the
effects of one atom and multiply the intensity it radiates by the number of atoms.

Earlier, we remarked that the phenomenon of scattering of light of this nature
is the origin of the blue of the sky. The sunlight goes through the air, and when
we look to one side of the sun—say at 90◦ to the beam—we see blue light; what
we now have to calculate is how much light we see and why it is blue.

If the incident beam has the electric field* E = Ê0e
iωt at the point where

the atom is located, we know that an electron in the atom will vibrate up and
* When a caret appears on a vector it signifies that the components of the vector are complex:

Ê = (Êx, Êy , Êz).
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Fig. 32-2. A beam of radiation falls on an atom and causes the
charges (electrons) in the atom to move. The moving electrons in turn
radiate in various directions.

down in response to this E (Fig. 32-2). From Eq. (23.8), the response will be

x̂ = qeÊ0

m(ω2
0 − ω2 + iγω) . (32.15)

We could include the damping and the possibility that the atom acts like several
oscillators of different frequency and sum over the various frequencies, but for
simplicity let us just take one oscillator and neglect the damping. Then the
response to the external electric field, which we have already used in the calculation
of the index of refraction, is simply

x̂ = qeÊ0

m(ω2
0 − ω2) . (32.16)

We could now easily calculate the intensity of light that is emitted in various
directions, using formula (32.2) and the acceleration corresponding to the above x̂.

Rather than do this, however, we shall simply calculate the total amount of
light scattered in all directions, just to save time. The total amount of light
energy per second, scattered in all directions by the single atom, is of course
given by Eq. (32.6). So, putting together the various pieces and regrouping them,
we get

P = [(q2
eω

4/12πε0c3)q2
eE

2
0/m

2
e(ω2 − ω2

0)2]
= ( 1

2ε0cE
2
0)(8π/3)(q4

e/16π2ε20m
2
ec

4)[ω4/(ω2 − ω2
0)2]

= ( 1
2ε0cE

2
0)(8πr2

0/3)[ω4/(ω2 − ω2
0)2] (32.17)

for the total scattered power, radiated in all directions.
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We have written the result in the above form because it is then easy to
remember: First, the total energy that is scattered is proportional to the square
of the incident field. What does that mean? Obviously, the square of the incident
field is proportional to the energy which is coming in per second. In fact, the
energy incident per square meter per second is ε0c times the average 〈E2〉 of
the square of the electric field, and if E0 is the maximum value of E, then
〈E2〉 = 1

2E
2
0 . In other words, the total energy scattered is proportional to the

energy per square meter that comes in; the brighter the sunlight that is shining
in the sky, the brighter the sky is going to look.

Next, what fraction of the incoming light is scattered? Let us imagine a
“target” with a certain area, let us say σ, in the beam (not a real, material target,
because this would diffract light, and so on; we mean an imaginary area drawn
in space). The total amount of energy that would pass through this surface σ
in a given circumstance is proportional both to the incoming intensity and to σ,
and the total power would be

P = ( 1
2ε0cE

2
0)σ. (32.18)

Now we invent an idea: we say that the atom scatters a total amount of
intensity which is the amount which would fall on a certain geometrical area,
and we give the answer by giving that area. That answer, then, is independent
of the incident intensity; it gives the ratio of the energy scattered to the energy
incident per square meter. In other words, the ratio

total energy scattered per second
energy incident per square meter per second is an area.

The significance of this area is that, if all the energy that impinged on that area
were to be spewed in all directions, then that is the amount of energy that would
be scattered by the atom.

This area is called a cross section for scattering; the idea of cross section is
used constantly, whenever some phenomenon occurs in proportion to the intensity
of a beam. In such cases one always describes the amount of the phenomenon by
saying what the effective area would have to be to pick up that much of the beam.
It does not mean in any way that this oscillator actually has such an area. If
there were nothing present but a free electron shaking up and down there would
be no area directly associated with it, physically. It is merely a way of expressing
the answer to a certain kind of problem; it tells us what area the incident beam
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would have to hit in order to account for that much energy coming off. Thus, for
our case,

σs = 8πr2
0

3 · ω4

(ω2 − ω2
0)2 (32.19)

(the subscript s is for “scattering”).
Let us look at some examples. First, if we go to a very low natural frequency ω0,

or to completely unbound electrons, for which ω0 = 0, then the frequency ω
cancels out and the cross section is a constant. This low-frequency limit, or the
free electron cross section, is known as the Thomson scattering cross section. It
is an area whose dimensions are approximately 10−15 meter, more or less, on a
side, i.e., 10−30 square meter, which is rather small!

On the other hand, if we take the case of light in the air, we remember that for
air the natural frequencies of the oscillators are higher than the frequency of the
light that we use. This means that, to a first approximation, we can disregard ω2

in the denominator, and we find that the scattering is proportional to the fourth
power of the frequency. That is to say, light which is of higher frequency by, say,
a factor of two, is sixteen times more intensely scattered, which is a quite sizable
difference. This means that blue light, which has about twice the frequency of
the reddish end of the spectrum, is scattered to a far greater extent than red
light. Thus when we look at the sky it looks that glorious blue that we see all
the time!

There are several points to be made about the above results. One interesting
question is, why do we ever see the clouds? Where do the clouds come from?
Everybody knows it is the condensation of water vapor. But, of course, the
water vapor is already in the atmosphere before it condenses, so why don’t we
see it then? After it condenses it is perfectly obvious. It wasn’t there, now it is
there. So the mystery of where the clouds come from is not really such a childish
mystery as “Where does the water come from, Daddy?,” but has to be explained.

We have just explained that every atom scatters light, and of course the water
vapor will scatter light, too. The mystery is why, when the water is condensed
into clouds, does it scatter such a tremendously greater amount of light?

Consider what would happen if, instead of a single atom, we had an agglom-
erate of atoms, say two, very close together compared with the wavelength of the
light. Remember, atoms are only an angstrom or so across, while the wavelength
of light is some 5000 angstroms, so when they form a clump, a few atoms together,
they can be very close together compared with the wavelength of light. Then
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when the electric field acts, both of the atoms will move together. The electric
field that is scattered will then be the sum of the two electric fields in phase, i.e.,
double the amplitude that there was with a single atom, and the energy which
is scattered is therefore four times what it is with a single atom, not twice! So
lumps of atoms radiate or scatter more energy than they do as single atoms. Our
argument that the phases are independent is based on the assumption that there
is a real and large difference in phase between any two atoms, which is true only
if they are several wavelengths apart and randomly spaced, or moving. But if
they are right next to each other, they necessarily scatter in phase, and they have
a coherent interference which produces an increase in the scattering.

If we have N atoms in a lump, which is a tiny droplet of water, then each one
will be driven by the electric field in about the same way as before (the effect of
one atom on the other is not important; it is just to get the idea anyway) and
the amplitude of scattering from each one is the same, so the total field which is
scattered is N -fold increased. The intensity of the light which is scattered is then
the square, or N2-fold, increased. We would have expected, if the atoms were
spread out in space, only N times as much as 1, whereas we get N2 times as
much as 1! That is to say, the scattering of water in lumps of N molecules each
is N times more intense than the scattering of the single atoms. So as the water
agglomerates the scattering increases. Does it increase ad infinitum? No! When
does this analysis begin to fail? How many atoms can we put together before
we cannot drive this argument any further? Answer : If the water drop gets so
big that from one end to the other is a wavelength or so, then the atoms are
no longer all in phase because they are too far apart. So as we keep increasing
the size of the droplets we get more and more scattering, until such a time that
a drop gets about the size of a wavelength, and then the scattering does not
increase anywhere nearly as rapidly as the drop gets bigger. Furthermore, the
blue disappears, because for long wavelengths the drops can be bigger, before
this limit is reached, than they can be for short wavelengths. Although the short
waves scatter more per atom than the long waves, there is a bigger enhancement
for the red end of the spectrum than for the blue end when all the drops are
bigger than the wavelength, so the color is shifted from the blue toward the red.

Now we can make an experiment that demonstrates this. We can make
particles that are very small at first, and then gradually grow in size. We use a
solution of sodium thiosulfate (hypo) with sulfuric acid, which precipitates very
fine grains of sulfur. As the sulfur precipitates, the grains first start very small,
and the scattering is a little bluish. As it precipitates more it gets more intense,

32-14



and then it will get whitish as the particles get bigger. In addition, the light
which goes straight through will have the blue taken out. That is why the sunset
is red, of course, because the light that comes through a lot of air, to the eye has
had a lot of blue light scattered out, so it is yellow-red.

Finally, there is one other important feature which really belongs in the next
chapter, on polarization, but it is so interesting that we point it out now. This
is that the electric field of the scattered light tends to vibrate in a particular
direction. The electric field in the incoming light is oscillating in some way, and
the driven oscillator goes in this same direction, and if we are situated about at
right angles to the beam, we will see polarized light, that is to say, light in which
the electric field is going only one way. In general, the atoms can vibrate in any
direction at right angles to the beam, but if they are driven directly toward or
away from us, we do not see it. So if the incoming light has an electric field which
changes and oscillates in any direction, which we call unpolarized light, then the
light which is coming out at 90◦ to the beam vibrates in only one direction! (See
Fig. 32-3.)

k

Incident beam
(unpolarized)

Electron
moves in
plane ⊥ k

Radiation scattered
⊥ k is plane polarized

−

+
Atom

Fig. 32-3. Illustration of the origin of the polarization of radiation
scattered at right angles to the incident beam.

There is a substance called polaroid which has the property that when light
goes through it, only the piece of the electric field which is along one particular
axis can get through. We can use this to test for polarization, and indeed we find
the light scattered by the hypo solution to be strongly polarized.
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33

Polarization

33-1 The electric vector of light

In this chapter we shall consider those phenomena which depend on the fact
that the electric field that describes the light is a vector. In previous chapters
we have not been concerned with the direction of oscillation of the electric field,
except to note that the electric vector lies in a plane perpendicular to the direction
of propagation. The particular direction in this plane has not concerned us. We
now consider those phenomena whose central feature is the particular direction
of oscillation of the electric field.

In ideally monochromatic light, the electric field must oscillate at a definite
frequency, but since the x-component and the y-component can oscillate indepen-
dently at a definite frequency, we must first consider the resultant effect produced
by superposing two independent oscillations at right angles to each other. What
kind of electric field is made up of an x-component and a y-component which
oscillate at the same frequency? If one adds to an x-vibration a certain amount of
y-vibration at the same phase, the result is a vibration in a new direction in the
xy-plane. Figure 33-1 illustrates the superposition of different amplitudes for the
x-vibration and the y-vibration. But the resultants shown in Fig. 33-1 are not
the only possibilities; in all of these cases we have assumed that the x-vibration
and the y-vibration are in phase, but it does not have to be that way. It could
be that the x-vibration and the y-vibration are out of phase.

When the x-vibration and the y-vibration are not in phase, the electric field
vector moves around in an ellipse, and we can illustrate this in a familiar way. If
we hang a ball from a support by a long string, so that it can swing freely in a
horizontal plane, it will execute sinusoidal oscillations. If we imagine horizontal
x- and y-coordinates with their origin at the rest position of the ball, the ball
can swing in either the x- or y-direction with the same pendulum frequency.
By selecting the proper initial displacement and initial velocity, we can set the
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Fig. 33-1. Superposition of x-vibrations and y -vibrations in phase.

ball in oscillation along either the x-axis or the y-axis, or along any straight
line in the xy-plane. These motions of the ball are analogous to the oscillations
of the electric field vector illustrated in Fig. 33-1. In each instance, since the
x-vibrations and the y-vibrations reach their maxima and minima at the same
time, the x- and y-oscillations are in phase. But we know that the most general
motion of the ball is motion in an ellipse, which corresponds to oscillations in
which the x- and y-directions are not in the same phase. The superposition of x-
and y-vibrations which are not in phase is illustrated in Fig. 33-2 for a variety
of angles between the phase of the x-vibration and that of the y-vibration. The
general result is that the electric vector moves around an ellipse. The motion in
a straight line is a particular case corresponding to a phase difference of zero (or
an integral multiple of π); motion in a circle corresponds to equal amplitudes
with a phase difference of 90◦ (or any odd integral multiple of π/2).

In Fig. 33-2 we have labeled the electric field vectors in the x- and y-directions
with complex numbers, which are a convenient representation in which to express
the phase difference. Do not confuse the real and imaginary components of the
complex electric vector in this notation with the x- and y-coordinates of the field.
The x- and y-coordinates plotted in Fig. 33-1 and Fig. 33-2 are actual electric
fields that we can measure. The real and imaginary components of a complex

33-2



a

Ex = cosωt; 1

Ey = cosωt; 1

b

cosωt; 1

cos (ωt + π
4
); e iπ/4

c

cosωt; 1

− sinωt; i

LHC

d

Ex = cosωt; 1

Ey = cos (ωt +
3π
4
); e i3π/4

e

cosωt; 1

− cosωt; −1

f

cosωt; 1

− cos (ωt + π
4
); −e iπ/4

g

Ex = cosωt; 1

Ey = sinωt; −i

RHC

h

cosωt; 1

− cos (ωt + 3π
4
); −e i3π/4

i

cosωt; 1

cosωt; 1

Fig. 33-2. Superposition of x-vibrations and y -vibrations with equal
amplitudes but various relative phases. The components Ex and Ey are
expressed in both real and complex notations.

electric field vector are only a mathematical convenience and have no physical
significance.

Now for some terminology. Light is linearly polarized (sometimes called
plane polarized) when the electric field oscillates on a straight line; Fig. 33-1
illustrates linear polarization. When the end of the electric field vector travels in
an ellipse, the light is elliptically polarized. When the end of the electric field
vector travels around a circle, we have circular polarization. If the end of the
electric vector, when we look at it as the light comes straight toward us, goes
around in a counterclockwise direction, we call it right-hand circular polarization.
Figure 33-2(g) illustrates right-hand circular polarization, and Fig. 33-2(c) shows
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left-hand circular polarization. In both cases the light is coming out of the paper.
Our convention for labeling left-hand and right-hand circular polarization is
consistent with that which is used today for all the other particles in physics
which exhibit polarization (e.g., electrons). However, in some books on optics
the opposite conventions are used, so one must be careful.

We have considered linearly, circularly, and elliptically polarized light, which
covers everything except for the case of unpolarized light. Now how can the light
be unpolarized when we know that it must vibrate in one or another of these
ellipses? If the light is not absolutely monochromatic, or if the x- and y-phases
are not kept perfectly together, so that the electric vector first vibrates in one
direction, then in another, the polarization is constantly changing. Remember
that one atom emits during 10−8 sec, and if one atom emits a certain polarization,
and then another atom emits light with a different polarization, the polarizations
will change every 10−8 sec. If the polarization changes more rapidly than we
can detect it, then we call the light unpolarized, because all the effects of the
polarization average out. None of the interference effects of polarization would
show up with unpolarized light. But as we see from the definition, light is
unpolarized only if we are unable to find out whether the light is polarized or
not.

33-2 Polarization of scattered light

The first example of the polarization effect that we have already discussed
is the scattering of light. Consider a beam of light, for example from the sun,
shining on the air. The electric field will produce oscillations of charges in the
air, and motion of these charges will radiate light with its maximum intensity
in a plane normal to the direction of vibration of the charges. The beam from
the sun is unpolarized, so the direction of polarization changes constantly, and
the direction of vibration of the charges in the air changes constantly. If we
consider light scattered at 90◦, the vibration of the charged particles radiates
to the observer only when the vibration is perpendicular to the observer’s line
of sight, and then light will be polarized along the direction of vibration. So
scattering is an example of one means of producing polarization.

33-3 Birefringence

Another interesting effect of polarization is the fact that there are substances
for which the index of refraction is different for light linearly polarized in one
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direction and linearly polarized in another. Suppose that we had some material
which consisted of long, nonspherical molecules, longer than they are wide, and
suppose that these molecules were arranged in the substance with their long axes
parallel. Then what happens when the oscillating electric field passes through this
substance? Suppose that because of the structure of the molecule, the electrons
in the substance respond more easily to oscillations in the direction parallel to
the axes of the molecules than they would respond if the electric field tries to
push them at right angles to the molecular axis. In this way we expect a different
response for polarization in one direction than for polarization at right angles to
that direction. Let us call the direction of the axes of the molecules the optic axis.
When the polarization is in the direction of the optic axis the index of refraction
is different than it would be if the direction of polarization were at right angles
to it. Such a substance is called birefringent. It has two refrangibilities, i.e.,
two indexes of refraction, depending on the direction of the polarization inside
the substance. What kind of a substance can be birefringent? In a birefringent
substance there must be a certain amount of lining up, for one reason or another,
of unsymmetrical molecules. Certainly a cubic crystal, which has the symmetry of
a cube, cannot be birefringent. But long needlelike crystals undoubtedly contain
molecules that are asymmetric, and one observes this effect very easily.

Let us see what effects we would expect if we were to shine polarized light
through a plate of a birefringent substance. If the polarization is parallel to
the optic axis, the light will go through with one velocity; if the polarization is
perpendicular to the axis, the light is transmitted with a different velocity. An
interesting situation arises when, say, light is linearly polarized at 45◦ to the
optic axis. Now the 45◦ polarization, we have already noticed, can be represented
as a superposition of the x- and the y-polarizations of equal amplitude and in
phase, as shown in Fig. 33-2(a). Since the x- and y-polarizations travel with
different velocities, their phases change at a different rate as the light passes
through the substance. So, although at the start the x- and y-vibrations are in
phase, inside the material the phase difference between x- and y-vibrations is
proportional to the depth in the substance. As the light proceeds through the
material the polarization changes as shown in the series of diagrams in Fig. 33-2.
If the thickness of the plate is just right to introduce a 90◦ phase shift between
the x- and y-polarizations, as in Fig. 33-2(c), the light will come out circularly
polarized. Such a thickness is called a quarter-wave plate, because it introduces a
quarter-cycle phase difference between the x- and the y-polarizations. If linearly
polarized light is sent through two quarter-wave plates, it will come out plane-
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polarized again, but at right angles to the original direction, as we can see from
Fig. 33-2(e).

One can easily illustrate this phenomenon with a piece of cellophane. Cello-
phane is made of long, fibrous molecules, and is not isotropic, since the fibers
lie preferentially in a certain direction. To demonstrate birefringence we need a
beam of linearly polarized light, and we can obtain this conveniently by passing
unpolarized light through a sheet of polaroid. Polaroid, which we will discuss
later in more detail, has the useful property that it transmits light that is linearly
polarized parallel to the axis of the polaroid with very little absorption, but
light polarized in a direction perpendicular to the axis of the polaroid is strongly
absorbed. When we pass unpolarized light through a sheet of polaroid, only that
part of the unpolarized beam which is vibrating parallel to the axis of the polaroid
gets through, so that the transmitted beam is linearly polarized. This same
property of polaroid is also useful in detecting the direction of polarization of a
linearly polarized beam, or in determining whether a beam is linearly polarized or
not. One simply passes the beam of light through the polaroid sheet and rotates
the polaroid in the plane normal to the beam. If the beam is linearly polarized,
it will not be transmitted through the sheet when the axis of the polaroid is
normal to the direction of polarization. The transmitted beam is only slightly
attenuated when the axis of the polaroid sheet is rotated through 90◦. If the
transmitted intensity is independent of the orientation of the polaroid, the beam
is not linearly polarized.

To demonstrate the birefringence of cellophane, we use two sheets of polaroid,
as shown in Fig. 33-3. The first gives us a linearly polarized beam which we pass
through the cellophane and then through the second polaroid sheet, which serves
to detect any effect the cellophane may have had on the polarized light passing

POLAROID

CELLOPHANE

Fig. 33-3. An experimental demonstration of the birefringence of
cellophane. The electric vectors in the light are indicated by the dot-
ted lines. The pass axes of the polaroid sheets and optic axes of the
cellophane are indicated by arrows. The incident beam is unpolarized.
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through it. If we first set the axes of the two polaroid sheets perpendicular to each
other and remove the cellophane, no light will be transmitted through the second
polaroid. If we now introduce the cellophane between the two polaroid sheets, and
rotate the sheet about the beam axis, we observe that in general the cellophane
makes it possible for some light to pass through the second polaroid. However,
there are two orientations of the cellophane sheet, at right angles to each other,
which permit no light to pass through the second polaroid. These orientations in
which linearly polarized light is transmitted through the cellophane with no effect
on the direction of polarization must be the directions parallel and perpendicular
to the optic axis of the cellophane sheet.

We suppose that the light passes through the cellophane with two different
velocities in these two different orientations, but it is transmitted without changing
the direction of polarization. When the cellophane is turned halfway between
these two orientations, as shown in Fig. 33-3, we see that the light transmitted
through the second polaroid is bright.

It just happens that ordinary cellophane used in commercial packaging is
very close to a half-wave thickness for most of the colors in white light. Such
a sheet will turn the axis of linearly polarized light through 90◦ if the incident
linearly polarized beam makes an angle of 45◦ with the optic axis, so that the
beam emerging from the cellophane is then vibrating in the right direction to
pass through the second polaroid sheet.

If we use white light in our demonstration, the cellophane sheet will be of the
proper half-wave thickness only for a particular component of the white light,
and the transmitted beam will have the color of this component. The color
transmitted depends on the thickness of the cellophane sheet, and we can vary
the effective thickness of the cellophane by tilting it so that the light passes
through the cellophane at an angle, consequently through a longer path in the
cellophane. As the sheet is tilted the transmitted color changes. With cellophane
of different thicknesses one can construct filters that will transmit different colors.
These filters have the interesting property that they transmit one color when the
two polaroid sheets have their axes perpendicular, and the complementary color
when the axes of the two polaroid sheets are parallel.

Another interesting application of aligned molecules is quite practical. Certain
plastics are composed of very long and complicated molecules all twisted together.
When the plastic is solidified very carefully, the molecules are all twisted in a mass,
so that there are as many aligned in one direction as another, and so the plastic
is not particularly birefringent. Usually there are strains and stresses introduced
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when the material is solidified, so the material is not perfectly homogeneous.
However, if we apply tension to a piece of this plastic material, it is as if we were
pulling a whole tangle of strings, and there will be more strings preferentially
aligned parallel to the tension than in any other direction. So when a stress is
applied to certain plastics, they become birefringent, and one can see the effects
of the birefringence by passing polarized light through the plastic. If we examine
the transmitted light through a polaroid sheet, patterns of light and dark fringes
will be observed (in color, if white light is used). The patterns move as stress is
applied to the sample, and by counting the fringes and seeing where most of them
are, one can determine what the stress is. Engineers use this phenomenon as a
means of finding the stresses in odd-shaped pieces that are difficult to calculate.

Another interesting example of a way of obtaining birefringence is by means
of a liquid substance. Consider a liquid composed of long asymmetric molecules
which carry a plus or minus average charge near the ends of the molecule, so that
the molecule is an electric dipole. In the collisions in the liquid the molecules will
ordinarily be randomly oriented, with as many molecules pointed in one direction
as in another. If we apply an electric field the molecules will tend to line up,
and the moment they line up the liquid becomes birefringent. With two polaroid
sheets and a transparent cell containing such a polar liquid, we can devise an
arrangement with the property that light is transmitted only when the electric
field is applied. So we have an electrical switch for light, which is called a Kerr
cell. This effect, that an electric field can produce birefringence in certain liquids,
is called the Kerr effect.

33-4 Polarizers

So far we have considered substances in which the refractive index is different
for light polarized in different directions. Of very practical value are those crystals
and other substances in which not only the index, but also the coefficient of
absorption, is different for light polarized in different directions. By the same
arguments which supported the idea of birefringence, it is understandable that
absorption can vary with the direction in which the charges are forced to vibrate
in an anisotropic substance. Tourmaline is an old, famous example and polaroid
is another. Polaroid consists of a thin layer of small crystals of herapathite (a
salt of iodine and quinine), all aligned with their axes parallel. These crystals
absorb light when the oscillations are in one direction, and they do not absorb
appreciably when the oscillations are in the other direction.
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Suppose that we send light into a polaroid sheet polarized linearly at an
angle θ to the passing direction. What intensity will come through? This incident
light can be resolved into a component perpendicular to the pass direction which
is proportional to sin θ, and a component along the pass direction which is
proportional to cos θ. The amplitude which comes out of the polaroid is only
the cosine θ part; the sin θ component is absorbed. The amplitude which passes
through the polaroid is smaller than the amplitude which entered, by a factor cos θ.
The energy which passes through the polaroid, i.e., the intensity of the light, is
proportional to the square of cos θ. Cos2 θ, then, is the intensity transmitted
when the light enters polarized at an angle θ to the pass direction. The absorbed
intensity, of course, is sin2 θ.

An interesting paradox is presented by the following situation. We know that
it is not possible to send a beam of light through two polaroid sheets with their
axes crossed at right angles. But if we place a third polaroid sheet between the
first two, with its pass axis at 45◦ to the crossed axes, some light is transmitted.
We know that polaroid absorbs light, it does not create anything. Nevertheless,
the addition of a third polaroid at 45◦ allows more light to get through. The
analysis of this phenomenon is left as an exercise for the student.

One of the most interesting examples of polarization is not in complicated
crystals or difficult substances, but in one of the simplest and most familiar of
situations—the reflection of light from a surface. Believe it or not, when light is
reflected from a glass surface it may be polarized, and the physical explanation of
this is very simple. It was discovered empirically by Brewster that light reflected
from a surface is completely polarized if the reflected beam and the beam refracted
into the material form a right angle. The situation is illustrated in Fig. 33-4. If
the incident beam is polarized in the plane of incidence, there will be no reflection
at all. Only if the incident beam is polarized normal to the plane of incidence will
it be reflected. The reason is very easy to understand. In the reflecting material
the light is polarized transversely, and we know that it is the motion of the charges
in the material which generates the emergent beam, which we call the reflected
beam. The source of this so-called reflected light is not simply that the incident
beam is reflected; our deeper understanding of this phenomenon tells us that the
incident beam drives an oscillation of the charges in the material, which in turn
generates the reflected beam. From Fig. 33-4 it is clear that only oscillations
normal to the paper can radiate in the direction of reflection, and consequently the
reflected beam will be polarized normal to the plane of incidence. If the incident
beam is polarized in the plane of incidence, there will be no reflected light.
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Fig. 33-4. Reflection of linearly polarized light at Brewster’s angle.
The polarization direction is indicated by dashed arrows; round dots
indicate polarization normal to the paper.

This phenomenon is readily demonstrated by reflecting a linearly polarized
beam from a flat piece of glass. If the glass is turned to present different angles
of incidence to the polarized beam, sharp attenuation of the reflected intensity
is observed when the angle of incidence passes through Brewster’s angle. This
attenuation is observed only if the plane of polarization lies in the plane of
incidence. If the plane of polarization is normal to the plane of incidence, the
usual reflected intensity is observed at all angles.

33-5 Optical activity

Another most remarkable effect of polarization is observed in materials com-
posed of molecules which do not have reflection symmetry: molecules shaped
something like a corkscrew, or like a gloved hand, or any shape which, if viewed
through a mirror, would be reversed in the same way that a left-hand glove
reflects as a right-hand glove. Suppose all of the molecules in the substance are
the same, i.e., none is a mirror image of any other. Such a substance may show
an interesting effect called optical activity, whereby as linearly polarized light
passes through the substance, the direction of polarization rotates about the
beam axis.

To understand the phenomenon of optical activity requires some calculation,
but we can see qualitatively how the effect might come about, without actually
carrying out the calculations. Consider an asymmetric molecule in the shape
of a spiral, as shown in Fig. 33-5. Molecules need not actually be shaped like a
corkscrew in order to exhibit optical activity, but this is a simple shape which
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Fig. 33-5. A molecule with a shape that is not symmetric when
reflected in a mirror. A beam of light, linearly polarized in the y -direction,
falls on the molecule.

we shall take as a typical example of those that do not have reflection symmetry.
When a light beam linearly polarized along the y-direction falls on this molecule,
the electric field will drive charges up and down the helix, thereby generating
a current in the y-direction and radiating an electric field Ey polarized in the
y-direction. However, if the electrons are constrained to move along the spiral,
they must also move in the x-direction as they are driven up and down. When
a current is flowing up the spiral, it is also flowing into the paper at z = z1
and out of the paper at z = z1 +A, if A is the diameter of our molecular spiral.
One might suppose that the current in the x-direction would produce no net
radiation, since the currents are in opposite directions on opposite sides of the
spiral. However, if we consider the x-components of the electric field arriving
at z = z2, we see that the field radiated by the current at z = z1 + A and the
field radiated from z = z1 arrive at z2 separated in time by the amount A/c,
and thus separated in phase by π + ωA/c. Since the phase difference is not
exactly π, the two fields do not cancel exactly, and we are left with a small
x-component in the electric field generated by the motion of the electrons in the
molecule, whereas the driving electric field had only a y-component. This small
x-component, added to the large y-component, produces a resultant field that is
tilted slightly with respect to the y-axis, the original direction of polarization.
As the light moves through the material, the direction of polarization rotates
about the beam axis. By drawing a few examples and considering the currents
that will be set in motion by an incident electric field, one can convince himself
that the existence of optical activity and the sign of the rotation are independent
of the orientation of the molecules.

Corn syrup is a common substance which possesses optical activity. The
phenomenon is easily demonstrated with a polaroid sheet to produce a linearly
polarized beam, a transmission cell containing corn syrup, and a second polaroid
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sheet to detect the rotation of the direction of polarization as the light passes
through the corn syrup.

33-6 The intensity of reflected light

Let us now consider quantitatively the reflection coefficient as a function of
angle. Figure 33-6(a) shows a beam of light striking a glass surface, where it
is partly reflected and partly refracted into the glass. Let us suppose that the
incident beam, of unit amplitude, is linearly polarized normal to the plane of the
paper. We will call the amplitude of the reflected wave b, and the amplitude of
the refracted wave a. The refracted and reflected waves will, of course, be linearly
polarized, and the electric field vectors of the incident, reflected, and refracted
waves are all parallel to each other. Figure 33-6(b) shows the same situation, but
now we suppose that the incident wave, of unit amplitude, is polarized in the
plane of the paper. Now let us call the amplitude of the reflected and refracted
wave B and A, respectively.

We wish to calculate how strong the reflection is in the two situations illus-
trated in Fig. 33-6(a) and 33-6(b). We already know that when the angle between
the reflected beam and refracted beam is a right angle, there will be no reflected
wave in Fig. 33-6(b), but let us see if we cannot get a quantitative answer—an
exact formula for B and b as a function of the angle of incidence, i.

The principle that we must understand is as follows. The currents that are
generated in the glass produce two waves. First, they produce the reflected wave.

(a)

Glass1

−1
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b
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(b)
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Fig. 33-6. An incident wave of unit amplitude is reflected and refracted
at a glass surface. In (a) the incident wave is linearly polarized normal
to the plane of the paper. In (b) the incident wave is linearly polarized
in the direction shown by the dashed arrows.
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Moreover, we know that if there were no currents generated in the glass, the
incident wave would continue straight into the glass. Remember that all the
sources in the world make the net field. The source of the incident light beam
produces a field of unit amplitude, which would move into the glass along the
dotted line in the figure. This field is not observed, and therefore the currents
generated in the glass must produce a field of amplitude −1, which moves along
the dotted line. Using this fact, we will calculate the amplitude of the refracted
waves, a and A.

In Fig. 33-6(a) we see that the field of amplitude b is radiated by the motion
of charges inside the glass which are responding to a field a inside the glass, and
that therefore b is proportional to a. We might suppose that since our two figures
are exactly the same, except for the direction of polarization, the ratio B/A
would be the same as the ratio b/a. This is not quite true, however, because in
Fig. 33-6(b) the polarization directions are not all parallel to each other, as they
are in Fig. 33-6(a). It is only the component of A which is perpendicular to B,
A cos (i+ r), which is effective in producing B. The correct expression for the
proportionality is then

b

a
= B

A cos (i+ r) . (33.1)

Now we use a trick. We know that in both (a) and (b) of Fig. 33-6 the electric
field in the glass must produce oscillations of the charges, which generate a field
of amplitude −1, polarized parallel to the incident beam, and moving in the
direction of the dotted line. But we see from part (b) of the figure that only
the component of A that is normal to the dashed line has the right polarization
to produce this field, whereas in Fig. 33-6(a) the full amplitude a is effective,
since the polarization of wave a is parallel to the polarization of the wave of
amplitude −1. Therefore we can write

A cos (i− r)
a

= −1
−1 , (33.2)

since the two amplitudes on the left side of Eq. (33.2) each produce the wave of
amplitude −1.

Dividing Eq. (33.1) by Eq. (33.2), we obtain

B

b
= cos (i+ r)

cos (i− r) , (33.3)
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a result which we can check against what we already know. If we set (i+r) = 90◦,
Eq. (33.3) gives B = 0, as Brewster says it should be, so our results so far are at
least not obviously wrong.

We have assumed unit amplitudes for the incident waves, so that |B|2/12 is
the reflection coefficient for waves polarized in the plane of incidence, and |b|2/12

is the reflection coefficient for waves polarized normal to the plane of incidence.
The ratio of these two reflection coefficients is determined by Eq. (33.3).

Now we perform a miracle, and compute not just the ratio, but each coefficient
|B|2 and |b|2 individually! We know from the conservation of energy that the
energy in the refracted wave must be equal to the incident energy minus the energy
in the reflected wave, 1 − |B|2 in one case, 1 − |b|2 in the other. Furthermore,
the energy which passes into the glass in Fig. 33-6(b) is to the energy which
passes into the glass in Fig. 33-6(a) as the ratio of the squares of the refracted
amplitudes, |A|2/|a|2. One might ask whether we really know how to compute
the energy inside the glass, because, after all, there are energies of motion of the
atoms in addition to the energy in the electric field. But it is obvious that all of
the various contributions to the total energy will be proportional to the square
of the amplitude of the electric field. Therefore we can write

1− |B|2
1− |b|2 = |A|

2

|a|2
. (33.4)

We now substitute Eq. (33.2) to eliminate A/a from the expression above,
and express B in terms of b by means of Eq. (33.3):

1− |b|2 cos2 (i+ r)
cos2 (i− r)

1− |b|2 = 1
cos2 (i− r) . (33.5)

This equation contains only one unknown amplitude, b. Solving for |b|2, we
obtain

|b|2 = sin2 (i− r)
sin2 (i+ r)

(33.6)

and, with the aid of (33.3),

|B|2 = tan2 (i− r)
tan2 (i+ r)

. (33.7)
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So we have found the reflection coefficient |b|2 for an incident wave polarized
perpendicular to the plane of incidence, and also the reflection coefficient |B|2
for an incident wave polarized in the plane of incidence!

It is possible to go on with arguments of this nature and deduce that b is real.
To prove this, one must consider a case where light is coming from both sides of
the glass surface at the same time, a situation not easy to arrange experimentally,
but fun to analyze theoretically. If we analyze this general case, we can prove
that b must be real, and therefore, in fact, that b = ± sin (i− r)/ sin (i+ r). It
is even possible to determine the sign by considering the case of a very, very
thin layer in which there is reflection from the front and from the back surfaces,
and calculating how much light is reflected. We know how much light should be
reflected by a thin layer, because we know how much current is generated, and
we have even worked out the fields produced by such currents.

One can show by these arguments that

b = − sin (i− r)
sin (i+ r) , B = − tan (i− r)

tan (i+ r) . (33.8)

These expressions for the reflection coefficients as a function of the angles of
incidence and refraction are called Fresnel’s reflection formulas.

If we consider the limit as the angles i and r go to zero, we find, for the case
of normal incidence, that B2 ≈ b2 ≈ (i− r)2/(i+ r)2 for both polarizations, since
the sines are practically equal to the angles, as are also the tangents. But we
know that sin i/ sin r = n, and when the angles are small, i/r ≈ n. It is thus easy
to show that the coefficient of reflection for normal incidence is

B2 = b2 = (n− 1)2

(n+ 1)2 .

It is interesting to find out how much light is reflected at normal incidence
from the surface of water, for example. For water, n is 4/3, so that the reflection
coefficient is (1/7)2 ≈ 2%. At normal incidence, only two percent of the light is
reflected from the surface of water.

33-7 Anomalous refraction

The last polarization effect we shall consider was actually one of the first to be
discovered: anomalous refraction. Sailors visiting Iceland brought back to Europe
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crystals of Iceland spar (CaCO3) which had the amusing property of making
anything seen through the crystal appear doubled, i.e., as two images. This came
to the attention of Huygens, and played an important role in the discovery of
polarization. As is often the case, the phenomena which are discovered first are
the hardest, ultimately, to explain. It is only after we understand a physical
concept thoroughly that we can carefully select those phenomena which most
clearly and simply demonstrate the concept.

Ex

Ey

wave front

wave front

optic
axis

optic
axis

Fig. 33-7. The upper diagram shows the path of the ordinary ray
through a doubly refracting crystal. The extraordinary ray is shown in
the lower diagram. The optic axis lies in the plane of the paper.

Anomalous refraction is a particular case of the same birefringence that we
considered earlier. Anomalous refraction comes about when the optic axis, the
long axis of our asymmetric molecules, is not parallel to the surface of the crystal.
In Fig. 33-7 are drawn two pieces of birefringent material, with the optic axis as
shown. In the upper figure, the incident beam falling on the material is linearly
polarized in a direction perpendicular to the optic axis of the material. When
this beam strikes the surface of the material, each point on the surface acts as a
source of a wave which travels into the crystal with velocity v⊥, the velocity of
light in the crystal when the plane of polarization is normal to the optic axis.
The wavefront is just the envelope or locus of all these little spherical waves, and
this wavefront moves straight through the crystal and out the other side. This is
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just the ordinary behavior we would expect, and this ray is called the ordinary
ray.

In the lower figure the linearly polarized light falling on the crystal has its
direction of polarization turned through 90◦, so that the optic axis lies in the
plane of polarization. When we now consider the little waves originating at any
point on the surface of the crystal, we see that they do not spread out as spherical
waves. Light travelling along the optic axis travels with velocity v⊥ because
the polarization is perpendicular to the optic axis, whereas the light travelling
perpendicular to the optic axis travels with velocity v‖ because the polarization
is parallel to the optic axis. In a birefringent material v‖ 6= v⊥, and in the figure
v‖ < v⊥. A more complete analysis will show that the waves spread out on the
surface of an ellipsoid, with the optic axis as major axis of the ellipsoid. The
envelope of all these elliptical waves is the wavefront which proceeds through
the crystal in the direction shown. Again, at the back surface the beam will be
deflected just as it was at the front surface, so that the light emerges parallel
to the incident beam, but displaced from it. Clearly, this beam does not follow
Snell’s law, but goes in an extraordinary direction. It is therefore called the
extraordinary ray.

When an unpolarized beam strikes an anomalously refracting crystal, it is
separated into an ordinary ray, which travels straight through in the normal
manner, and an extraordinary ray which is displaced as it passes through the
crystal. These two emergent rays are linearly polarized at right angles to each
other. That this is true can be readily demonstrated with a sheet of polaroid
to analyze the polarization of the emergent rays. We can also demonstrate that
our interpretation of this phenomenon is correct by sending linearly polarized
light into the crystal. By properly orienting the direction of polarization of the
incident beam, we can make this light go straight through without splitting, or
we can make it go through without splitting but with a displacement.

We have represented all the various polarization cases in Figs. 33-1 and 33-2
as superpositions of two special polarization cases, namely x and y in various
amounts and phases. Other pairs could equally well have been used. Polarization
along any two perpendicular axes x′, y′ inclined to x and y would serve as well [for
example, any polarization can be made up of superpositions of cases (a) and (e)
of Fig. 33-2]. It is interesting, however, that this idea can be extended to other
cases also. For example, any linear polarization can be made up by superposing
suitable amounts at suitable phases of right and left circular polarizations [cases
(c) and (g) of Fig. 33-2], since two equal vectors rotating in opposite directions
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Fig. 33-8. Two oppositely rotating vectors of equal amplitude add to
produce a vector in a fixed direction, but with an oscillating amplitude.

add to give a single vector oscillating in a straight line (Fig. 33-8). If the phase
of one is shifted relative to the other, the line is inclined. Thus all the pictures
of Fig. 33-1 could be labeled “the superposition of equal amounts of right and
left circularly polarized light at various relative phases.” As the left slips behind
the right in phase, the direction of the linear polarization changes. Therefore
optically active materials are, in a sense, birefringent. Their properties can be
described by saying that they have different indexes for right- and left-hand
circularly polarized light. Superposition of right and left circularly polarized light
of different intensities produces elliptically polarized light.

Circularly polarized light has another interesting property—it carries angular
momentum (about the direction of propagation). To illustrate this, suppose that
such light falls on an atom represented by a harmonic oscillator that can be
displaced equally well in any direction in the plane xy. Then the x-displacement of
the electron will respond to the Ex component of the field, while the y-component
responds, equally, to the equal Ey component of the field but 90◦ behind in phase.
That is, the responding electron goes around in a circle, with angular velocity ω,
in response to the rotating electric field of the light (Fig. 33-9). Depending on
the damping characteristics of the response of the oscillator, the direction of the
displacement a of the electron, and the direction of the force qeE on it need not
be the same but they rotate around together. The E may have a component at
right angles to a, so work is done on the system and a torque τ is exerted. The
work done per second is τω. Over a period of time T the energy absorbed is τωT ,
while τT is the angular momentum delivered to the matter absorbing the energy.
We see therefore that a beam of right circularly polarized light containing a total

33-18



x

y

ω

E

a

Fig. 33-9. A charge moving in a circle in response to circularly polarized
light.

energy E carries an angular momentum (with vector directed along the direction
of propagation) E/ω. For when this beam is absorbed that angular momentum is
delivered to the absorber. Left-hand circular light carries angular momentum of
the opposite sign, −E/ω.
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34

Relativistic Effects in Radiation

34-1 Moving sources

In the present chapter we shall describe a number of miscellaneous effects
in connection with radiation, and then we shall be finished with the classical
theory of light propagation. In our analysis of light, we have gone rather far and
into considerable detail. The only phenomena of any consequence associated
with electromagnetic radiation that we have not discussed is what happens if
radiowaves are contained in a box with reflecting walls, the size of the box
being comparable to a wavelength, or are transmitted down a long tube. The
phenomena of so-called cavity resonators and waveguides we shall discuss later;
we shall first use another physical example—sound—and then we shall return to
this subject. Except for this, the present chapter is our last consideration of the
classical theory of light.

We can summarize all the effects that we shall now discuss by remarking that
they have to do with the effects of moving sources. We no longer assume that
the source is localized, with all its motion being at a relatively low speed near a
fixed point.

We recall that the fundamental laws of electrodynamics say that, at large
distances from a moving charge, the electric field is given by the formula

E = − q

4πε0c2
d2eR′

dt2
. (34.1)

The second derivative of the unit vector eR′ which points in the apparent direction
of the charge, is the determining feature of the electric field. This unit vector
does not point toward the present position of the charge, of course, but rather in
the direction that the charge would seem to be, if the information travels only at
the finite speed c from the charge to the observer.
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Associated with the electric field is a magnetic field, always at right angles
to the electric field and at right angles to the apparent direction of the source,
given by the formula

B = −eR′ ×E/c. (34.2)

Until now we have considered only the case in which motions are nonrelativistic
in speed, so that there is no appreciable motion in the direction of the source
to be considered. Now we shall be more general and study the case where the
motion is at an arbitrary velocity, and see what different effects may be expected
in those circumstances. We shall let the motion be at an arbitrary speed, but of
course we shall still assume that the detector is very far from the source.

x

y

z

R0

eR′

O

P A

T


x(τ)
y(τ)
z(τ)

Fig. 34-1. The path of a moving charge. The true position at the
time τ is at T , but the retarded position is at A.

We already know from our discussion in Chapter 28 that the only things that
count in d2eR′/dt2 are the changes in the direction of eR′ . Let the coordinates
of the charge be (x, y, z), with z measured along the direction of observation
(Fig. 34-1). At a given moment in time, say the moment τ , the three components
of the position are x(τ), y(τ), and z(τ). The distance R is very nearly equal
to R(τ) = R0 + z(τ). Now the direction of the vector eR′ depends mainly on x
and y, but hardly at all upon z: the transverse components of the unit vector are
x/R and y/R, and when we differentiate these components we get things like R2

in the denominator:

d(x/R)
dt

= dx/dt

R
− dz

dt

x

R2 .

So, when we are far enough away the only terms we have to worry about are the
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variations of x and y. Thus we take out the factor R0 and get

Ex = − q

4πε0c2R0

d2x′

dt2
,

Ey = − q

4πε0c2R0

d2y′

dt2
, (34.3)

where R0 is the distance, more or less, to q; let us take it as the distance OP to the
origin of the coordinates (x, y, z). Thus the electric field is a constant multiplied
by a very simple thing, the second derivatives of the x- and y-coordinates. (We
could put it more mathematically by calling x and y the transverse components
of the position vector r of the charge, but this would not add to the clarity.)

Of course, we realize that the coordinates must be measured at the retarded
time. Here we find that z(τ) does affect the retardation. What time is the
retarded time? If the time of observation is called t (the time at P ) then the
time τ to which this corresponds at A is not the time t, but is delayed by the
total distance that the light has to go, divided by the speed of light. In the
first approximation, this delay is R0/c, a constant (an uninteresting feature),
but in the next approximation we must include the effects of the position in the
z-direction at the time τ , because if q is a little farther back, there is a little
more retardation. This is an effect that we have neglected before, and it is the
only change needed in order to make our results valid for all speeds.

What we must now do is to choose a certain value of t and calculate the value
of τ from it, and thus find out where x and y are at that τ . These are then the
retarded x and y, which we call x′ and y′, whose second derivatives determine
the field. Thus τ is determined by

t = τ + R0

c
+ z(τ)

c
and

x′(t) = x(τ), y′(t) = y(τ). (34.4)

Now these are complicated equations, but it is easy enough to make a geometrical
picture to describe their solution. This picture will give us a good qualitative
feeling for how things work, but it still takes a lot of detailed mathematics to
deduce the precise results of a complicated problem.
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Fig. 34-2. A geometrical solution of Eq. (34.5) to find x ′(t).

34-2 Finding the “apparent” motion

The above equation has an interesting simplification. If we disregard the
uninteresting constant delay R0/c, which just means that we must change the
origin of t by a constant, then it says that

ct = cτ + z(τ), x′ = x(τ), y′ = y(τ). (34.5)

Now we need to find x′ and y′ as functions of t, not τ , and we can do this in
the following way: Eq. (34.5) says that we should take the actual motion and
add a constant (the speed of light) times τ . What that turns out to mean is
shown in Fig. 34-2. We take the actual motion of the charge (shown at left) and
imagine that as it is going around it is being swept away from the point P at
the speed c (there are no contractions from relativity or anything like that; this
is just a mathematical addition of the cτ). In this way we get a new motion,
in which the line-of-sight coordinate is ct, as shown at the right. (The figure
shows the result for a rather complicated motion in a plane, but of course the
motion may not be in one plane—it may be even more complicated than motion
in a plane.) The point is that the horizontal (i.e., line-of-sight) distance now is
no longer the old z, but is z + cτ , and therefore is ct. Thus we have found a
picture of the curve, x′ (and y′) against t! All we have to do to find the field
is to look at the acceleration of this curve, i.e., to differentiate it twice. So the
final answer is: in order to find the electric field for a moving charge, take the
motion of the charge and translate it back at the speed c to “open it out”; then
the curve, so drawn, is a curve of the x′ and y′ positions of the function of t. The
acceleration of this curve gives the electric field as a function of t. Or, if we wish,
we can now imagine that this whole “rigid” curve moves forward at the speed
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Fig. 34-3. The x ′(t) curve for a particle moving at constant speed v =

0.94c in a circle.

c through the plane of sight, so that the point of intersection with the plane of
sight has the coordinates x′ and y′. The acceleration of this point makes the
electric field. This solution is just as exact as the formula we started with—it is
simply a geometrical representation.

If the motion is relatively slow, for instance if we have an oscillator just going
up and down slowly, then when we shoot that motion away at the speed of light,
we would get, of course, a simple cosine curve, and that gives a formula we have
been looking at for a long time: it gives the field produced by an oscillating charge.
A more interesting example is an electron moving rapidly, very nearly at the
speed of light, in a circle. If we look in the plane of the circle, the retarded x′(t)
appears as shown in Fig. 34-3. What is this curve? If we imagine a radius vector
from the center of the circle to the charge, and if we extend this radial line a
little bit past the charge, just a shade if it is going fast, then we come to a point
on the line that goes at the speed of light. Therefore, when we translate the
motion back at the speed of light, that corresponds to having a wheel with a
charge on it rolling backward (without slipping) at the speed c; thus we find a
curve which is very close to a cycloid—it is called a curtate cycloid. If the charge
is going very nearly at the speed of light, the “cusps” are very sharp indeed; if it
went at exactly the speed of light, they would be actual cusps, infinitely sharp.
“Infinitely sharp” is interesting; it means that near a cusp the second derivative
is enormous. Once in each cycle we get a sharp pulse of electric field. This is
not at all what we would get from a nonrelativistic motion, where each time the
charge goes around there is an oscillation which is of about the same “strength”
all the time. Instead, there are very sharp pulses of electric field spaced at time
intervals T0 apart, where T0 is the period of revolution. These strong electric
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fields are emitted in a narrow cone in the direction of motion of the charge. When
the charge is moving away from P , there is very little curvature and there is very
little radiated field in the direction of P .

34-3 Synchrotron radiation

We have very fast electrons moving in circular paths in the synchrotron; they
are travelling at very nearly the speed c, and it is possible to see the above
radiation as actual light! Let us discuss this in more detail.

In the synchrotron we have electrons which go around in circles in a uniform
magnetic field. First, let us see why they go in circles. From Eq. (28.2), we know
that the force on a particle in a magnetic field is given by

F = qv ×B, (34.6)

and it is at right angles both to the field and to the velocity. As usual, the force is
equal to the rate of change of momentum with time. If the field is directed upward
out of the paper, the momentum of the particle and the force on it are as shown in
Fig. 34-4. Since the force is at right angles to the velocity, the kinetic energy, and
therefore the speed, remains constant. All the magnetic field does is to change
the direction of motion. In a short time ∆t, the momentum vector changes at
right angles to itself by an amount ∆p = F ∆t, and therefore p turns through
an angle ∆θ = ∆p/p = qvB∆t/p, since |F | = qvB. But in this same time the
particle has gone a distance ∆s = v∆t. Evidently, the two lines AB and CD will
intersect at a point O such that OA = OC = R, where ∆s = R∆θ. Combining

OA

C

B

D R

F

∆θ
p

∆p

p + ∆p

Fig. 34-4. A charged particle moves in a circular (or helical) path in a
uniform magnetic field.
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this with the previous expressions, we find R∆θ/∆t = Rω = v = qvBR/p, from
which we find

p = qBR (34.7)
and

ω = qvB/p. (34.8)

Since this same argument can be applied during the next instant, the next, and
so on, we conclude that the particle must be moving in a circle of radius R, with
angular velocity ω.

The result that the momentum of the particle is equal to a charge times the
radius times the magnetic field is a very important law that is used a great deal.
It is important for practical purposes because if we have elementary particles
which all have the same charge and we observe them in a magnetic field, we
can measure the radii of curvature of their orbits and, knowing the magnetic
field, thus determine the momenta of the particles. If we multiply both sides of
Eq. (34.7) by c, and express q in terms of the electronic charge, we can measure
the momentum in units of the electron volt. In those units our formula is

pc(eV) = 3× 108(q/qe)BR, (34.9)

where B, R, and the speed of light are all expressed in the mks system, the latter
being 3× 108, numerically.

The mks unit of magnetic field is called a weber per square meter. There is
an older unit which is still in common use, called a gauss. One weber/m2 is
equal to 104 gauss. To give an idea of how big magnetic fields are, the strongest
magnetic field that one can usually make in iron is about 1.5× 104 gauss; beyond
that, the advantage of using iron disappears. Today, electromagnets wound
with superconducting wire are able to produce steady fields of over 105 gauss
strength—that is, 10 mks units. The field of the earth is a few tenths of a gauss
at the equator.

Returning to Eq. (34.9), we could imagine the synchrotron running at a billion
electron volts, so pc would be 109 for a billion electron volts. (We shall come
back to the energy in just a moment.) Then, if we had a B corresponding to, say,
10,000 gauss, which is a good substantial field, one mks unit, then we see that R
would have to be 3.3 meters. The actual radius of the Caltech synchrotron is
3.7 meters, the field is a little bigger, and the energy is 1.5 billion, but it is the
same idea. So now we have a feeling for why the synchrotron has the size it has.
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We have calculated the momentum, but we know that the total energy,
including the rest energy, is given by W =

√
p2c2 +m2c4, and for an electron

the rest energy corresponding to mc2 is 0.511 × 106 eV, so when pc is 109 eV
we can neglect mc2, and so for all practical purposes W = pc when the speeds
are relativistic. It is practically the same to say the energy of an electron is a
billion electron volts as to say the momentum times c is a billion electron volts.
If W = 109 eV, it is easy to show that the speed differs from the speed of light
by but one part in eight million!

We turn now to the radiation emitted by such a particle. A particle moving
on a circle of radius 3.3 meters, or 20 meters circumference, goes around once
in roughly the time it takes light to go 20 meters. So the wavelength that
should be emitted by such a particle would be 20 meters—in the shortwave
radio region. But because of the piling up effect that we have been discussing
(Fig. 34-3), and because the distance by which we must extend the radius to
reach the speed c is only one part in eight million of the radius, the cusps of the
curtate cycloid are enormously sharp compared with the distance between them.
The acceleration, which involves a second derivative with respect to time, gets
twice the “compression factor” of 8× 106 because the time scale is reduced by
eight million twice in the neighborhood of the cusp. Thus we might expect the
effective wavelength to be much shorter, to the extent of 64 times 1012 smaller
than 20 meters, and that corresponds to the x-ray region. (Actually, the cusp
itself is not the entire determining factor; one must also include a certain region
about the cusp. This changes the factor to the 3/2 power instead of the square,
but still leaves us above the optical region.) Thus, even though a slowly moving
electron would have radiated 20-meter radiowaves, the relativistic effect cuts
down the wavelength so much that we can see it! Clearly, the light should be
polarized, with the electric field perpendicular to the uniform magnetic field.

To further appreciate what we would observe, suppose that we were to take
such light (to simplify things, because these pulses are so far apart in time, we
shall just take one pulse) and direct it onto a diffraction grating, which is a lot
of scattering wires. After this pulse comes away from the grating, what do we
see? (We should see red light, blue light, and so on, if we see any light at all.)
What do we see? The pulse strikes the grating head-on, and all the oscillators
in the grating, together, are violently moved up and then back down again, just
once. They then produce effects in various directions, as shown in Fig. 34-5. But
the point P is closer to one end of the grating than to the other, so at this point
the electric field arrives first from wire A, next from B, and so on; finally, the
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Fig. 34-5. The light which strikes a grating as a single, sharp pulse is
scattered in various directions as different colors.

pulse from the last wire arrives. In short, the sum of the reflections from all the
successive wires is as shown in Fig. 34-6(a); it is an electric field which is a series
of pulses, and it is very like a sine wave whose wavelength is the distance between
the pulses, just as it would be for monochromatic light striking the grating! So,
we get colored light all right. But, by the same argument, will we not get light
from any kind of a “pulse”? No. Suppose that the curve were much smoother;
then we would add all the scattered waves together, separated by a small time
between them (Fig. 34-6b). Then we see that the field would not shake at all,
it would be a very smooth curve, because each pulse does not vary much in the
time interval between pulses.

(a) (b)

Fig. 34-6. The total electric field due to a series of (a) sharp pulses
and (b) smooth pulses.

The electromagnetic radiation emitted by relativistic charged particles cir-
culating in a magnetic field is called synchrotron radiation. It is so named for
obvious reasons, but it is not limited specifically to synchrotrons, or even to
earthbound laboratories. It is exciting and interesting that it also occurs in
nature!
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Fig. 34-7. The crab nebula as seen in all colors (no filter).

34-4 Cosmic synchrotron radiation

In the year 1054 the Chinese and Japanese civilizations were among the most
advanced in the world; they were conscious of the external universe, and they
recorded, most remarkably, an explosive bright star in that year. (It is amazing
that none of the European monks, writing all the books of the middle ages, even
bothered to write that a star exploded in the sky, but they did not.) Today we
may take a picture of that star, and what we see is shown in Fig. 34-7. On the
outside is a big mass of red filaments, which is produced by the atoms of the thin
gas “ringing” at their natural frequencies; this makes a bright line spectrum with
different frequencies in it. The red happens in this case to be due to nitrogen.
On the other hand, in the central region is a mysterious, fuzzy patch of light
in a continuous distribution of frequency, i.e., there are no special frequencies
associated with particular atoms. Yet this is not dust “lit up” by nearby stars,
which is one way by which one can get a continuous spectrum. We can see stars
through it, so it is transparent, but it is emitting light.
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(a) (b)

Fig. 34-8. The crab nebula as seen through a blue filter and a polaroid.
(a) Electric vector vertical. (b) Electric vector horizontal.

In Fig. 34-8 we look at the same object, using light in a region of the spectrum
which has no bright spectral line, so that we see only the central region. But
in this case, also, polarizers have been put on the telescope, and the two views
correspond to two orientations 90◦ apart. We see that the pictures are different!
That is to say, the light is polarized. The reason, presumably, is that there is a
local magnetic field, and many very energetic electrons are going around in that
magnetic field.

We have just illustrated how the electrons could go around the field in a circle.
We can add to this, of course, any uniform motion in the direction of the field,
since the force, qv × B, has no component in this direction and, as we have
already remarked, the synchrotron radiation is evidently polarized in a direction
at right angles to the projection of the magnetic field onto the plane of sight.

Putting these two facts together, we see that in a region where one picture is
bright and the other one is black, the light must have its electric field completely
polarized in one direction. This means that there is a magnetic field at right
angles to this direction, while in other regions, where there is a strong emission in
the other picture, the magnetic field must be the other way. If we look carefully
at Fig. 34-8, we may notice that there is, roughly speaking, a general set of
“lines” that go one way in one picture and at right angles to this in the other.
The pictures show a kind of fibrous structure. Presumably, the magnetic field
lines will tend to extend relatively long distances in their own direction, and
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so, presumably, there are long regions of magnetic field with all the electrons
spiralling one way, while in another region the field is the other way and the
electrons are also spiralling that way.

What keeps the electron energy so high for so long a time? After all, it
is 900 years since the explosion—how can they keep going so fast? How they
maintain their energy and how this whole thing keeps going is still not thoroughly
understood.

34-5 Bremsstrahlung

We shall next remark briefly on one other interesting effect of a very fast-
moving particle that radiates energy. The idea is very similar to the one we have
just discussed. Suppose that there are charged particles in a piece of matter and
a very fast electron, say, comes by (Fig. 34-9). Then, because of the electric field
around the atomic nucleus the electron is pulled, accelerated, so that the curve
of its motion has a slight kink or bend in it. If the electron is travelling at very
nearly the speed of light, what is the electric field produced in the direction C?
Remember our rule: we take the actual motion, translate it backwards at speed c,
and that gives us a curve whose curvature measures the electric field. It was
coming toward us at the speed v, so we get a backward motion, with the whole
picture compressed into a smaller distance in proportion as c− v is smaller than
c. So, if 1− v/c� 1, there is a very sharp and rapid curvature at B′, and when
we take the second derivative of that we get a very high field in the direction
of the motion. So when very energetic electrons move through matter they spit
radiation in a forward direction. This is called bremsstrahlung. As a matter of
fact, the synchrotron is used, not so much to make high-energy electrons (actually
if we could get them out of the machine more conveniently we would not say
this) as to make very energetic photons—gamma rays—by passing the energetic
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Fig. 34-9. A fast electron passing near a nucleus radiates energy in
the direction of its motion.
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electrons through a solid tungsten “target,” and letting them radiate photons
from this bremsstrahlung effect.

34-6 The Doppler effect

Now we go on to consider some other examples of the effects of moving sources.
Let us suppose that the source is a stationary atom which is oscillating at one
of its natural frequencies, ω0. Then we know that the frequency of the light
we would observe is ω0. But now let us take another example, in which we
have a similar oscillator oscillating with a frequency ω1, and at the same time
the whole atom, the whole oscillator, is moving along in a direction toward the
observer at velocity v. Then the actual motion in space, of course, is as shown in
Fig. 34-10(a). Now we play our usual game, we add cτ ; that is to say, we translate
the whole curve backward and we find then that it oscillates as in Fig. 34-10(b).
In a given amount of time τ , when the oscillator would have gone a distance vτ ,
on the x′ vs. ct diagram it goes a distance (c − v)τ . So all the oscillations of
frequency ω1 in the time ∆τ are now found in the interval ∆t = (1− v/c) ∆τ ;
they are squashed together, and as this curve comes by us at speed c, we will see
light of a higher frequency, higher by just the compression factor (1− v/c). Thus
we observe

ω = ω1

1− v/c . (34.10)

We can, of course, analyze this situation in various other ways. Suppose that
the atom were emitting, instead of sine waves, a series of pulses, pip, pip, pip,
pip, at a certain frequency ω1. At what frequency would they be received by
us? The first one that arrives has a certain delay, but the next one is delayed
less because in the meantime the atom moves closer to the receiver. Therefore,
the time between the “pips” is decreased by the motion. If we analyze the
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Fig. 34-10. The x-z and x ′-t curves of a moving oscillator.
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geometry of the situation, we find that the frequency of the pips is increased by
the factor 1/(1− v/c).

Is ω = ω0/(1− v/c), then, the frequency that would be observed if we took
an ordinary atom, which had a natural frequency ω0, and moved it toward the
receiver at speed v? No; as we well know, the natural frequency ω1 of a moving
atom is not the same as that measured when it is standing still, because of the
relativistic dilation in the rate of passage of time. Thus if ω0 were the true
natural frequency, then the modified natural frequency ω1 would be

ω1 = ω0
√

1− v2/c2. (34.11)

Therefore the observed frequency ω is

ω = ω0
√

1− v2/c2

1− v/c . (34.12)

The shift in frequency observed in the above situation is called the Doppler
effect: if something moves toward us the light it emits appears more violet, and
if it moves away it appears more red.

We shall now give two more derivations of this same interesting and important
result. Suppose, now, that the source is standing still and is emitting waves
at frequency ω0, while the observer is moving with speed v toward the source.
After a certain period of time t the observer will have moved to a new position, a
distance vt from where he was at t = 0. How many radians of phase will he have
seen go by? A certain number, ω0t, went past any fixed point, and in addition
the observer has swept past some more by his own motion, namely a number vtk0
(the number of radians per meter times the distance). So the total number of
radians in the time t, or the observed frequency, would be ω1 = ω0 + k0v. We
have made this analysis from the point of view of a man at rest; we would like
to know how it would look to the man who is moving. Here we have to worry
again about the difference in clock rate for the two observers, and this time that
means that we have to divide by

√
1− v2/c2. So if k0 is the wave number, the

number of radians per meter in the direction of motion, and ω0 is the frequency,
then the observed frequency for a moving man is

ω = ω0 + k0v√
1− v2/c2

. (34.13)
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For the case of light, we know that k0 = ω0/c. So, in this particular problem,
the equation would read

ω = ω0(1 + v/c)√
1− v2/c2

, (34.14)

which looks completely unlike formula (34.12)! Is the frequency that we would
observe if we move toward a source different than the frequency that we would
see if the source moved toward us? Of course not! The theory of relativity says
that these two must be exactly equal. If we were expert enough mathematicians
we would probably recognize that these two mathematical expressions are exactly
equal! In fact, the necessary equality of the two expressions is one of the ways
by which some people like to demonstrate that relativity requires a time dilation,
because if we did not put those square-root factors in, they would no longer be
equal.

Since we know about relativity, let us analyze it in still a third way, which
may appear a little more general. (It is really the same thing, since it makes no
difference how we do it!) According to the relativity theory there is a relationship
between position and time as observed by one man and position and time as seen
by another who is moving relative to him. We wrote down those relationships
long ago (Chapter 16). This is the Lorentz transformation and its inverse:

x′ = x+ vt√
1− v2/c2

, x = x′ − vt′√
1− v2/c2

,

t′ = t+ vx/c2√
1− v2/c2

, t = t′ − vx′/c2√
1− v2/c2

.

(34.15)

If we were standing still on the ground, the form of a wave would be cos (ωt−kx);
all the nodes and maxima and minima would follow this form. But what would
a man in motion, observing the same physical wave, see? Where the field is
zero, the positions of all the nodes are the same (when the field is zero, everyone
measures the field as zero); that is a relativistic invariant. So the form is the
same for the other man too, except that we must transform it into his frame of
reference:

cos (ωt− kx) = cos
[
ω
t′ − vx′/c2√

1− v2/c2
− k x′ − vt′√

1− v2/c2

]
.
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If we regroup the terms inside the brackets, we get

cos (ωt− kx) = cos
[

ω + kv√
1− v2/c2︸ ︷︷ ︸ t

′ − k + vω/c2√
1− v2/c2︸ ︷︷ ︸x

′
]

= cos [ ω′ t′ − k′ x′ ] . (34.16)

This is again a wave, a cosine wave, in which there is a certain frequency ω′, a
constant multiplying t′, and some other constant, k′, multiplying x′. We call k′
the wave number, or the number of waves per meter, for the other man. Therefore
the other man will see a new frequency and a new wave number given by

ω′ = ω + kv√
1− v2/c2

, (34.17)

k′ = k + ωv/c2√
1− v2/c2

. (34.18)

If we look at (34.17), we see that it is the same formula (34.13), that we obtained
by a more physical argument.

34-7 The ω, k four-vector

The relationships indicated in Eqs. (34.17) and (34.18) are very interesting,
because these say that the new frequency ω′ is a combination of the old frequency ω
and the old wave number k, and that the new wave number is a combination
of the old wave number and frequency. Now the wave number is the rate of
change of phase with distance, and the frequency is the rate of change of phase
with time, and in these expressions we see a close analogy with the Lorentz
transformation of the position and time: if ω is thought of as being like t, and k
is thought of as being like x divided by c2, then the new ω′ will be like t′, and
the new k′ will be like x′/c2. That is to say, under the Lorentz transformation ω
and k transform the same way as do t and x. They constitute what we call a
four-vector ; when a quantity has four components transforming like time and
space, it is a four-vector. Everything seems all right, then, except for one little
thing: we said that a four-vector has to have four components; where are the
other two components? We have seen that ω and k are like time and space in one
space direction, but not in all directions, and so we must next study the problem
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Fig. 34-11. A plane wave travelling in an oblique direction.

of the propagation of light in three space dimensions, not just in one direction,
as we have been doing up until now.

Suppose that we have a coordinate system, x, y, z, and a wave which is
travelling along and whose wavefronts are as shown in Fig. 34-11. The wavelength
of the wave is λ, but the direction of motion of the wave does not happen to be
in the direction of one of the axes. What is the formula for such a wave? The
answer is clearly cos (ωt− ks), where k = 2π/λ and s is the distance along the
direction of motion of the wave—the component of the spatial position in the
direction of motion. Let us put it this way: if r is the vector position of a point in
space, then s is r · ek, where ek is a unit vector in the direction of motion. That
is, s is just r cos (r, ek), the component of distance in the direction of motion.
Therefore our wave is cos (ωt− kek · r).

Now it turns out to be very convenient to define a vector k, which is called
the wave vector, which has a magnitude equal to the wave number, 2π/λ, and is
pointed in the direction of propagation of the waves:

k = 2πek/λ = kek. (34.19)

Using this vector, our wave can be written as cos (ωt − k · r), or as cos (ωt −
kxx− kyy − kzz). What is the significance of a component of k, say kx? Clearly,
kx is the rate of change of phase with respect to x. Referring to Fig. 34-11, we
see that the phase changes as we change x, just as if there were a wave along
x, but of a longer wavelength. The “wavelength in the x-direction” is longer
than a natural, true wavelength by the secant of the angle α between the actual
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direction of propagation and the x-axis:

λx = λ/ cosα. (34.20)

Therefore the rate of change of phase, which is proportional to the reciprocal
of λx, is smaller by the factor cosα; that is just how kx would vary—it would
be the magnitude of k, times the cosine of the angle between k and the x-axis!

That, then, is the nature of the wave vector that we use to represent a wave
in three dimensions. The four quantities ω, kx, ky, kz transform in relativity as
a four-vector, where ω corresponds to the time, and kx, ky, kz correspond to the
x-, y-, and z-components of the four-vector.

In our previous discussion of special relativity (Chapter 17), we learned that
there are ways of making relativistic dot products with four-vectors. If we use
the position vector xµ, where µ stands for the four components (time and three
space ones), and if we call the wave vector kµ, where the index µ again has four
values, time and three space ones, then the dot product of xµ and kµ is written∑′

kµxµ (see Chapter 17). This dot product is an invariant, independent of the
coordinate system; what is it equal to? By the definition of this dot product in
four dimensions, it is ∑′

kµxµ = ωt− kxx− kyy − kzz. (34.21)

We know from our study of vectors that
∑′

kµxµ is invariant under the Lorentz
transformation, since kµ is a four-vector. But this quantity is precisely what
appears inside the cosine for a plane wave, and it ought to be invariant under a
Lorentz transformation. We cannot have a formula with something that changes
inside the cosine, since we know that the phase of the wave cannot change when
we change the coordinate system.

34-8 Aberration

In deriving Eqs. (34.17) and (34.18), we have taken a simple example where
k happened to be in a direction of motion, but of course we can generalize it
to other cases also. For example, suppose there is a source sending out light in
a certain direction from the point of view of a man at rest, but we are moving
along on the earth, say (Fig. 34-12). From which direction does the light appear
to come? To find out, we will have to write down the four components of kµ and
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Fig. 34-12. A distant source S is viewed by (a) a stationary telescope,
and (b) a laterally moving telescope.

apply the Lorentz transformation. The answer, however, can be found by the
following argument: we have to point our telescope at an angle to see the light.
Why? Because light is coming down at the speed c, and we are moving sidewise
at the speed v, so the telescope has to be tilted forward so that as the light comes
down it goes “straight” down the tube. It is very easy to see that the horizontal
distance is vt when the vertical distance is ct, and therefore, if θ′ is the angle
of tilt, tan θ′ = v/c. How nice! How nice, indeed—except for one little thing:
θ′ is not the angle at which we would have to set the telescope relative to the
earth, because we made our analysis from the point of view of a “fixed” observer.
When we said the horizontal distance is vt, the man on the earth would have
found a different distance, since he measured with a “squashed” ruler. It turns
out that, because of that contraction effect,

tan θ = v/c√
1− v2/c2

, (34.22)

which is equivalent to
sin θ = v/c. (34.23)

It will be instructive for the student to derive this result, using the Lorentz
transformation.

This effect, that a telescope has to be tilted, is called aberration, and it has
been observed. How can we observe it? Who can say where a given star should
be? Suppose we do have to look in the wrong direction to see a star; how do we
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know it is the wrong direction? Because the earth goes around the sun. Today
we have to point the telescope one way; six months later we have to tilt the
telescope the other way. That is how we can tell that there is such an effect.

34-9 The momentum of light

Now we turn to a different topic. We have never, in all our discussion of the
past few chapters, said anything about the effects of the magnetic field that is
associated with light. Ordinarily, the effects of the magnetic field are very small,
but there is one interesting and important effect which is a consequence of the
magnetic field. Suppose that light is coming from a source and is acting on a
charge and driving that charge up and down. We will suppose that the electric
field is in the x-direction, so the motion of the charge is also in the x-direction:
it has a position x and a velocity v, as shown in Fig. 34-13. The magnetic field
is at right angles to the electric field. Now as the electric field acts on the charge
and moves it up and down, what does the magnetic field do? The magnetic field
acts on the charge (say an electron) only when it is moving; but the electron
is moving, it is driven by the electric field, so the two of them work together:
While the thing is going up and down it has a velocity and there is a force on it,
B times v times q; but in which direction is this force? It is in the direction of
the propagation of light. Therefore, when light is shining on a charge and it is
oscillating in response to that light, there is a driving force in the direction of
the light beam. This is called radiation pressure or light pressure.

Let us determine how strong the radiation pressure is. Evidently it is F = qvB
or, since everything is oscillating, it is the time average of this, 〈F 〉. From (34.2)
the strength of the magnetic field is the same as the strength of the electric field
divided by c, so we need to find the average of the electric field, times the velocity,
times the charge, times 1/c: 〈F 〉 = q〈vE〉/c. But the charge q times the field E

x

y z

S

E

v

B F

Fig. 34-13. The magnetic force on a charge which is driven by the
electric field is in the direction of the light beam.
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is the electric force on a charge, and the force on the charge times the velocity
is the work dW/dt being done on the charge! Therefore the force, the “pushing
momentum,” that is delivered per second by the light, is equal to 1/c times the
energy absorbed from the light per second! That is a general rule, since we did
not say how strong the oscillator was, or whether some of the charges cancel
out. In any circumstance where light is being absorbed, there is a pressure. The
momentum that the light delivers is always equal to the energy that is absorbed,
divided by c:

〈F 〉 = dW/dt

c
. (34.24)

That light carries energy we already know. We now understand that it also
carries momentum, and further, that the momentum carried is always 1/c times
the energy.

When light is emitted from a source there is a recoil effect: the same thing in
reverse. If an atom is emitting an energy W in some direction, then there is a
recoil momentum p = W/c. If light is reflected normally from a mirror, we get
twice the force.

That is as far as we shall go using the classical theory of light. Of course we
know that there is a quantum theory, and that in many respects light acts like a
particle. The energy of a light-particle is a constant times the frequency:

W = hν = ~ω. (34.25)

We now appreciate that light also carries a momentum equal to the energy
divided by c, so it is also true that these effective particles, these photons, carry
a momentum

p = W/c = ~ω/c = ~k. (34.26)

The direction of the momentum is, of course, the direction of propagation of the
light. So, to put it in vector form,

W = ~ω, p = ~k. (34.27)

We also know, of course, that the energy and momentum of a particle should
form a four-vector. We have just discovered that ω and k form a four-vector.
Therefore it is a good thing that (34.27) has the same constant in both cases;
it means that the quantum theory and the theory of relativity are mutually
consistent.
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Equation (34.27) can be written more elegantly as pµ = ~kµ, a relativistic
equation, for a particle associated with a wave. Although we have discussed this
only for photons, for which k (the magnitude of k) equals ω/c and p = W/c,
the relation is much more general. In quantum mechanics all particles, not only
photons, exhibit wavelike properties, but the frequency and wave number of the
waves is related to the energy and momentum of particles by (34.27) (called the
de Broglie relations) even when p is not equal to W/c.

In the last chapter we saw that a beam of right or left circularly polarized light
also carries angular momentum in an amount proportional to the energy E of the
wave. In the quantum picture, a beam of circularly polarized light is regarded as
a stream of photons, each carrying an angular momentum ±~, along the direction
of propagation. That is what becomes of polarization in the corpuscular point of
view—the photons carry angular momentum like spinning rifle bullets. But this
“bullet” picture is really as incomplete as the “wave” picture, and we shall have
to discuss these ideas more fully in a later chapter on Quantum Behavior.
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35

Color Vision

35-1 The human eye

The phenomenon of colors depends partly on the physical world. We discuss
the colors of soap films and so on as being produced by interference. But also,
of course, it depends on the eye, or what happens behind the eye, in the brain.
Physics characterizes the light that enters the eye, but after that, our sensations
are the result of photochemical-neural processes and psychological responses.

There are many interesting phenomena associated with vision which involve
a mixture of physical phenomena and physiological processes, and the full ap-
preciation of natural phenomena, as we see them, must go beyond physics in
the usual sense. We make no apologies for making these excursions into other
fields, because the separation of fields, as we have emphasized, is merely a human
convenience, and an unnatural thing. Nature is not interested in our separations,
and many of the interesting phenomena bridge the gaps between fields.

In Chapter 3 we have already discussed the relation of physics to the other
sciences in general terms, but now we are going to look in some detail at a specific
field in which physics and other sciences are very, very closely interrelated. That
area is vision. In particular, we shall discuss color vision. In the present chapter
we shall discuss mainly the observable phenomena of human vision, and in the
next chapter we shall consider the physiological aspects of vision, both in man
and in other animals.

It all begins with the eye; so, in order to understand what phenomena we see,
some knowledge of the eye is required. In the next chapter we shall discuss in some
detail how the various parts of the eye work, and how they are interconnected
with the nervous system. For the present, we shall describe only briefly how the
eye functions (Fig. 35-1).

Light enters the eye through the cornea; we have already discussed how it is
bent and is imaged on a layer called the retina in the back of the eye, so that

35-1



Cornea

Aqueous
Iris

Lens

Suspensory

ligament

Ciliary

muscle

Vitreous humor

Choroid
Retina

Sclera

Macula lutea

Optic nerve

Fig. 35-1. The eye.

different parts of the retina receive light from different parts of the visual field
outside. The retina is not absolutely uniform: there is a place, a spot, in the
center of our field of view which we use when we are trying to see things very
carefully, and at which we have the greatest acuity of vision; it is called the fovea
or macula. The side parts of the eye, as we can immediately appreciate from
our experience in looking at things, are not as effective for seeing detail as is the
center of the eye. There is also a spot in the retina where the nerves carrying all
the information run out; that is a blind spot. There is no sensitive part of the
retina here, and it is possible to demonstrate that if we close, say, the left eye and
look straight at something, and then move a finger or another small object slowly
out of the field of view it suddenly disappears somewhere. The only practical use
of this fact that we know of is that some physiologist became quite a favorite in
the court of a king of France by pointing this out to him; in the boring sessions
that he had with his courtiers, the king could amuse himself by “cutting off their
heads” by looking at one and watching another’s head disappear.

Figure 35-2 shows a magnified view of the inside of the retina in somewhat
schematic form. In different parts of the retina there are different kinds of
structures. The objects that occur more densely near the periphery of the retina
are called rods. Closer to the fovea, we find, besides these rod cells, also cone
cells. We shall describe the structure of these cells later. As we get close to the
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Fig. 35-2. The structure of the retina. (Light enters from below.)

fovea, the number of cones increases, and in the fovea itself there are in fact
nothing but cone cells, packed very tightly, so tightly that the cone cells are
much finer, or narrower here than anywhere else. So we must appreciate that we
see with the cones right in the middle of the field of view, but as we go to the
periphery we have the other cells, the rods. Now the interesting thing is that
in the retina each of the cells which is sensitive to light is not connected by a
fiber directly to the optic nerve, but is connected to many other cells, which are
themselves connected to each other. There are several kinds of cells: there are
cells that carry the information toward the optic nerve, but there are others that
are mainly interconnected “horizontally.” There are essentially four kinds of cells,
but we shall not go into these details now. The main thing we emphasize is that
the light signal is already being “thought about.” That is to say, the information
from the various cells does not immediately go to the brain, spot for spot, but in
the retina a certain amount of the information has already been digested, by a
combining of the information from several visual receptors. It is important to
understand that some brain-function phenomena occur in the eye itself.

35-2 Color depends on intensity

One of the most striking phenomena of vision is the dark adaptation of the
eye. If we go into the dark from a brightly lighted room, we cannot see very well
for a while, but gradually things become more and more apparent, and eventually

35-3



we can see something where we could see nothing before. If the intensity of the
light is very low, the things that we see have no color. It is known that this
dark-adapted vision is almost entirely due to the rods, while the vision in bright
light is due to the cones. As a result, there are a number of phenomena that we
can easily appreciate because of this transfer of function from the cones and rods
together, to just the rods.

There are many situations in which, if the light intensity were stronger, we
could see color, and we would find these things quite beautiful. One example
is that through a telescope we nearly always see “black and white” images of
faint nebulae, but W. C. Miller of the Mt. Wilson and Palomar Observatories
had the patience to make color pictures of some of these objects. Nobody has
ever really seen these colors with the eye, but they are not artificial colors, it
is merely that the light intensity is not strong enough for the cones in our eye
to see them. Among the more spectacular such objects are the ring nebula and
the Crab nebula. The former shows a beautiful blue inner part, with a bright
red outer halo, and the latter shows a general bluish haze permeated by bright
red-orange filaments.

In the bright light, apparently, the rods are at very low sensitivity but, in the
dark, as time goes on they pick up their ability to see light. The variations in light
intensity for which one can adapt is over a million to one. Nature does not do
all this with just one kind of cell, but she passes her job from bright-light-seeing
cells, the color-seeing cells, the cones, to low-intensity, dark-adapted cells, the
rods. Among the interesting consequences of this shift is, first, that there is no
color, and second, that there is a difference in the relative brightness of differently
colored objects. It turns out that the rods see better toward the blue than the
cones do, and the cones can see, for example, deep red light, while the rods find
that absolutely impossible to see. So red light is black so far as the rods are
concerned. Thus two pieces of colored paper, say blue and red, in which the red
might be even brighter than the blue in good light, will, in the dark, appear
completely reversed. It is a very striking effect. If we are in the dark and can
find a magazine or something that has colors and, before we know for sure what
the colors are, we judge the lighter and darker areas, and if we then carry the
magazine into the light, we may see this very remarkable shift between which was
the brightest color and which was not. The phenomenon is called the Purkinje
effect.

In Fig. 35-3, the dashed curve represents the sensitivity of the eye in the dark,
i.e., using the rods, while the solid curve represents it in the light. We see that
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Fig. 35-3. The spectral sensitivity of the eye. Dashed curve, rods;
solid curve, cones.

the peak sensitivity of the rods is in the green region and that of the cones is
more in the yellow region. If there is a red-colored page (red is about 650 mµ)
we can see it if it is brightly lighted, but in the dark it is almost invisible.

Another effect of the fact that rods take over in the dark, and that there are
no rods in the fovea, is that when we look straight at something in the dark, our
vision is not quite as acute as when we look to one side. A faint star or nebula
can sometimes be seen better by looking a little to one side than directly at it,
because we do not have sensitive rods in the middle of the fovea.

Another interesting effect of the fact that the number of cones decreases as
we go farther to the side of the field of view is that even in a bright light color
disappears as the object goes far to one side. The way to test that is to look in
some particular fixed direction, let a friend walk in from one side with colored
cards, and try to decide what color they are before they are right in front of you.
One finds that he can see that the cards are there long before he can determine
the color. When doing this, it is advisable to come in from the side opposite the
blind spot, because it is otherwise rather confusing to almost see the color, then
not see anything, then to see the color again.

Another interesting phenomenon is that the periphery of the retina is very
sensitive to motion. Although we cannot see very well from the corner of our
eye, if a little bug moves and we do not expect anything to be moving over there,
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we are immediately sensitive to it. We are all “wired up” to look for something
jiggling to the side of the field.

35-3 Measuring the color sensation

Now we go to the cone vision, to the brighter vision, and we come to the
question which is most characteristic of cone vision, and that is color. As we
know, white light can be split by a prism into a whole spectrum of wavelengths
which appear to us to have different colors; that is what colors are, of course:
appearances. Any source of light can be analyzed by a grating or a prism, and one
can determine the spectral distribution, i.e., the “amount” of each wavelength. A
certain light may have a lot of blue, considerable red, very little yellow, and so on.
That is all very precise in the sense of physics, but the question is, what color will
it appear to be? It is evident that the different colors depend somehow upon the
spectral distribution of the light, but the problem is to find what characteristics
of the spectral distribution produce the various sensations. For example, what
do we have to do to get a green color? We all know that we can simply take a
piece of the spectrum which is green. But is that the only way to get green, or
orange, or any other color?

Is there more than one spectral distribution which produces the same apparent
visual effect? The answer is, definitely yes. There is a very limited number of
visual effects, in fact just a three-dimensional manifold of them, as we shall
shortly see, but there is an infinite number of different curves that we can draw
for the light that comes from different sources. Now the question we have to
discuss is, under what conditions do different distributions of light appear as
exactly the same color to the eye?

The most powerful psycho-physical technique in color judgment is to use the
eye as a null instrument. That is, we do not try to define what constitutes a
green sensation, or to measure in what circumstances we get a green sensation,
because it turns out that this is extremely complicated. Instead, we study the
conditions under which two stimuli are indistinguishable. Then we do not have
to decide whether two people see the same sensation in different circumstances,
but only whether, if for one person two sensations are the same, they are also the
same for another. We do not have to decide whether, when one sees something
green, what it feels like inside is the same as what it feels like inside someone
else when he sees something green; we do not know anything about that.
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To illustrate the possibilities, we may use a series of four projector lamps
which have filters on them, and whose brightnesses are continuously adjustable
over a wide range: one has a red filter and makes a spot of red light on the
screen, the next one has a green filter and makes a green spot, the third one
has a blue filter, and the fourth one is a white circle with a black spot in the
middle of it. Now if we turn on some red light, and next to it put some green,
we see that in the area of overlap it produces a sensation which is not what we
call reddish green, but a new color, yellow in this particular case. By changing
the proportions of the red and the green, we can go through various shades of
orange and so forth. If we have set it for a certain yellow, we can also obtain
that same yellow, not by mixing these two colors but by mixing some other ones,
perhaps a yellow filter with white light, or something like that, to get the same
sensation. In other words, it is possible to make various colors in more than one
way by mixing the lights from various filters.

What we have just discovered may be expressed analytically as follows. A
particular yellow, for example, can be represented by a certain symbol Y , which is
the “sum” of certain amounts of red-filtered light (R) and green-filtered light (G).
By using two numbers, say r and g, to describe how bright the R and G are, we
can write a formula for this yellow:

Y = rR+ gG. (35.1)

The question is, can we make all the different colors by adding together two
or three lights of different, fixed colors? Let us see what can be done in that
connection. We certainly cannot get all the different colors by mixing only red
and green, because, for instance, blue never appears in such a mixture. However,
by putting in some blue the central region, where all three spots overlap, may
be made to appear to be a fairly nice white. By mixing the various colors and
looking at this central region, we find that we can get a considerable range of
colors in that region by changing the proportions, and so it is not impossible
that all the colors can be made by mixing these three colored lights. We shall
discuss to what extent this is true; it is in fact essentially correct, and we shall
shortly see how to define the proposition better.

In order to illustrate our point, we move the spots on the screen so that they
all fall on top of each other, and then we try to match a particular color which
appears in the annular ring made by the fourth lamp. What we once thought
was “white” coming from the fourth lamp now appears yellowish. We may try to
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match that by adjusting the red and green and blue as best we can by a kind of
trial and error, and we find that we can approach rather closely this particular
shade of “cream” color. So it is not hard to believe that we can make all colors.
We shall try to make yellow in a moment, but before we do that, there is one
color that might be very hard to make. People who give lectures on color make
all the “bright” colors, but they never make brown, and it is hard to recall ever
having seen brown light. As a matter of fact, this color is never used for any
stage effect, one never sees a spotlight with brown light; so we think it might
be impossible to make brown. In order to find out whether it is possible to
make brown, we point out that brown light is merely something that we are not
used to seeing without its background. As a matter of fact, we can make it by
mixing some red and yellow. To prove that we are looking at brown light, we
merely increase the brightness of the annular background against which we see
the very same light, and we see that that is, in fact, what we call brown! Brown
is always a dark color next to a lighter background. We can easily change the
character of the brown. For example, if we take some green out we get a reddish
brown, apparently a chocolaty reddish brown, and if we put more green into it,
in proportion, we get that horrible color which all the uniforms of the Army are
made of, but the light from that color is not so horrible by itself; it is of yellowish
green, but seen against a light background.

Now we put a yellow filter in front of the fourth light and try to match that.
(The intensity must of course be within the range of the various lamps; we cannot
match something which is too bright, because we do not have enough power in
the lamp.) But we can match the yellow; we use a green and red mixture, and
put in a touch of blue to make it even more perfect. Perhaps we are ready to
believe that, under good conditions, we can make a perfect match of any given
color.

Now let us discuss the laws of color mixture. In the first place, we found that
different spectral distributions can produce the same color; next, we saw that
“any” color can be made by adding together three special colors, red, blue, and
green. The most interesting feature of color mixing is this: if we have a certain
light, which we may call X, and if it appears indistinguishable from Y , to the
eye (it may be a different spectral distribution, but it appears indistinguishable),
we call these colors “equal,” in the sense that the eye sees them as equal, and we
write

X = Y. (35.2)
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Here is one of the great laws of color: if two spectral distributions are indistin-
guishable, and we add to each one a certain light, say Z (if we write X + Z,
this means that we shine both lights on the same patch), and then we take Y
and add the same amount of the same other light, Z, the new mixtures are also
indistinguishable:

X + Z = Y + Z. (35.3)

We have just matched our yellow; if we now shine pink light on the whole thing,
it will still match. So adding any other light to the matched lights leaves a match.
In other words, we can summarize all these color phenomena by saying that once
we have a match between two colored lights, seen next to each other in the same
circumstances, then this match will remain, and one light can be substituted for
the other light in any other color mixing situation. In fact, it turns out, and
it is very important and interesting, that this matching of the color of lights is
not dependent upon the characteristics of the eye at the moment of observation:
we know that if we look for a long time at a bright red surface, or a bright red
light, and then look at a white paper, it looks greenish, and other colors are also
distorted by our having looked so long at the bright red. If we now have a match
between, say, two yellows, and we look at them and make them match, then we
look at a bright red surface for a long time, and then turn back to the yellow,
it may not look yellow any more; I do not know what color it will look, but it
will not look yellow. Nevertheless the yellows will still look matched, and so, as
the eye adapts to various levels of intensity, the color match still works, with the
obvious exception of when we go into the region where the intensity of the light
gets so low that we have shifted from cones to rods; then the color match is no
longer a color match, because we are using a different system.

The second principle of color mixing of lights is this: any color at all can
be made from three different colors, in our case, red, green, and blue lights.
By suitably mixing the three together we can make anything at all, as we
demonstrated with our two examples. Further, these laws are very interesting
mathematically. For those who are interested in the mathematics of the thing, it
turns out as follows. Suppose that we take our three colors, which were red, green,
and blue, but label them A, B, and C, and call them our primary colors. Then
any color could be made by certain amounts of these three: say an amount a of
color A, an amount b of color B, and an amount c of color C makes X:

X = aA+ bB + cC. (35.4)
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Now suppose another color Y is made from the same three colors:

Y = a′A+ b′B + c′C. (35.5)

Then it turns out that the mixture of the two lights (it is one of the consequences
of the laws that we have already mentioned) is obtained by taking the sum of
the components of X and Y :

Z = X + Y = (a+ a′)A+ (b+ b′)B + (c+ c′)C. (35.6)

It is just like the mathematics of the addition of vectors, where (a, b, c) are the
components of one vector, and (a′, b′, c′) are those of another vector, and the new
light Z is then the “sum” of the vectors. This subject has always appealed to
physicists and mathematicians. In fact, Schrödinger wrote a wonderful paper on
color vision in which he developed this theory of vector analysis as applied to
the mixing of colors.

Now a question is, what are the correct primary colors to use? There is no
such thing as “the” correct primary colors for the mixing of lights. There may be,
for practical purposes, three paints that are more useful than others for getting a
greater variety of mixed pigments, but we are not discussing that matter now.
Any three differently colored lights whatsoever* can always be mixed in the correct
proportion to produce any color whatsoever. Can we demonstrate this fantastic
fact? Instead of using red, green, and blue, let us use red, blue, and yellow in
our projector. Can we use red, blue, and yellow to make, say, green?

By mixing these three colors in various proportions, we get quite an array of
different colors, ranging over quite a spectrum. But as a matter of fact, after a
lot of trial and error, we find that nothing ever looks like green. The question
is, can we make green? The answer is yes. How? By projecting some red onto
the green, then we can make a match with a certain mixture of yellow and blue!
So we have matched them, except that we had to cheat by putting the red on
the other side. But since we have some mathematical sophistication, we can
appreciate that what we really showed was not that X could always be made, say,
of red, blue, and yellow, but by putting the red on the other side we found that
red plus X could be made out of blue and yellow. Putting it on the other side of
the equation, we can interpret that as a negative amount, so if we will allow that
the coefficients in equations like (35.4) can be both positive and negative, and if

* Except, of course, if one of the three can be matched by mixing the other two.
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we interpret negative amounts to mean that we have to add those to the other
side, then any color can be matched by any three, and there is no such thing as
“the” fundamental primaries.

We may ask whether there are three colors that come only with positive
amounts for all mixings. The answer is no. Every set of three primaries requires
negative amounts for some colors, and therefore there is no unique way to define
a primary. In elementary books they are said to be red, green, and blue, but that
is merely because with these a wider range of colors is available without minus
signs for some of the combinations.

35-4 The chromaticity diagram

Now let us discuss the combination of colors on a mathematical level as a
geometrical proposition. If any one color is represented by Eq. (35.4), we can
plot it as a vector in space by plotting along three axes the amounts a, b, and c,
and then a certain color is a point. If another color is a′, b′, c′, that color is
located somewhere else. The sum of the two, as we know, is the color which
comes from adding these as vectors. We can simplify this diagram and represent
everything on a plane by the following observation: if we had a certain color light,
and merely doubled a and b and c, that is, if we make them all stronger in the
same ratio, it is the same color, but brighter. So if we agree to reduce everything
to the same light intensity, then we can project everything onto a plane, and
this has been done in Fig. 35-4. It follows that any color obtained by mixing a
given two in some proportion will lie somewhere on a line drawn between the two
points. For instance, a fifty-fifty mixture would appear halfway between them,
and 1/4 of one and 3/4 of the other would appear 1/4 of the way from one point
to the other, and so on. If we use a blue and a green and a red, as primaries,
we see that all the colors that we can make with positive coefficients are inside
the dotted triangle, which contains almost all of the colors that we can ever see,
because all the colors that we can ever see are enclosed in the oddly shaped area
bounded by the curve. Where did this area come from? Once somebody made a
very careful match of all the colors that we can see against three special ones.
But we do not have to check all colors that we can see, we only have to check the
pure spectral colors, the lines of the spectrum. Any light can be considered as a
sum of various positive amounts of various pure spectral colors—pure from the
physical standpoint. A given light will have a certain amount of red, yellow, blue,
and so on—spectral colors. So if we know how much of each of our three chosen
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Fig. 35-4. The standard chromaticity diagram.

primaries is needed to make each of these pure components, we can calculate
how much of each is needed to make our given color. So, if we find out what the
color coefficients of all the spectral colors are for any given three primary colors,
then we can work out the whole color mixing table.

An example of such experimental results for mixing three lights together
is given in Fig. 35-5. This figure shows the amount of each of three different
particular primaries, red, green and blue, which is required to make each of the
spectral colors. Red is at the left end of the spectrum, yellow is next, and so on, all
the way to blue. Notice that at some points minus signs are necessary. It is from
such data that it is possible to locate the position of all of the colors on a chart,
where the x- and the y-coordinates are related to the amounts of the different
primaries that are used. That is the way that the curved boundary line has been
found. It is the locus of the pure spectral colors. Now any other color can be
made by adding spectral lines, of course, and so we find that anything that can be
produced by connecting one part of this curve to another is a color that is available
in nature. The straight line connects the extreme violet end of the spectrum with
the extreme red end. It is the locus of the purples. Inside the boundary are colors
that can be made with lights, and outside it are colors that cannot be made with
lights, and nobody has ever seen them (except, possibly, in after-images!).
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Fig. 35-5. The color coefficients of pure spectral colors in terms of a
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35-5 The mechanism of color vision

Now the next aspect of the matter is the question, why do colors behave in
this way? The simplest theory, proposed by Young and Helmholtz, supposes that
in the eye there are three different pigments which receive the light and that these
have different absorption spectra, so that one pigment absorbs strongly, say, in
the red, another absorbs strongly in the blue, another absorbs in the green. Then
when we shine a light on them we will get different amounts of absorptions in the
three regions, and these three pieces of information are somehow maneuvered in
the brain or in the eye, or somewhere, to decide what the color is. It is easy to
demonstrate that all of the rules of color mixing would be a consequence of this
proposition. There has been considerable debate about the thing because the
next problem, of course, is to find the absorption characteristics of each of the
three pigments. It turns out, unfortunately, that because we can transform the
color coordinates in any manner we want to, we can only find all kinds of linear
combinations of absorption curves by the color-mixing experiments, but not the
curves for the individual pigments. People have tried in various ways to obtain a
specific curve which does describe some particular physical property of the eye.
One such curve is called a brightness curve, demonstrated in Fig. 35-3. In this
figure are two curves, one for eyes in the dark, the other for eyes in the light;
the latter is the cone brightness curve. This is measured by finding what is the
smallest amount of colored light we need in order to be able to just see it. This
measures how sensitive the eye is in different spectral regions. There is another
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very interesting way to measure this. If we take two colors and make them appear
in an area, by flickering back and forth from one to the other, we see a flicker
if the frequency is too low. However, as the frequency increases, the flicker will
ultimately disappear at a certain frequency that depends on the brightness of
the light, let us say at 16 repetitions per second. Now if we adjust the brightness
or the intensity of one color against the other, there comes an intensity where
the flicker at 16 cycles disappears. To get flicker with the brightness so adjusted,
we have to go to a much lower frequency in order to see a flicker of the color.
So, we get what we call a flicker of the brightness at a higher frequency and,
at a lower frequency, a flicker of the color. It is possible to match two colors
for “equal brightness” by this flicker technique. The results are almost, but not
exactly, the same as those obtained by measuring the threshold sensitivity of the
eye for seeing weak light by the cones. Most workers use the flicker system as a
definition of the brightness curve.

Now, if there are three color-sensitive pigments in the eye, the problem is to
determine the shape of the absorption spectrum of each one. How? We know
there are people who are color blind—eight percent of the male population, and
one-half of one percent of the female population. Most of the people who are color
blind or abnormal in color vision have a different degree of sensitivity than others
to a variation of color, but they still need three colors to match. However, there
are some who are called dichromats, for whom any color can be matched using only
two primary colors. The obvious suggestion, then, is to say that they are missing
one of the three pigments. If we can find three kinds of color-blind dichromats who
have different color-mixing rules, one kind should be missing the red, another the
green, and another the blue pigmentation. By measuring all these types we can
determine the three curves! It turns out that there are three types of dichromatic
color blindness; there are two common types and a third very rare type, and
from these three it has been possible to deduce the pigment absorption spectra.

Figure 35-6 shows the color mixing of a particular type of color-blind person
called a deuteranope. For him, the loci of constant colors are not points, but
certain lines, along each of which the color appears to him to be the same. If the
theory that he is missing one of the three pieces of information is right, all these
lines should intersect at a point. If we carefully measure on this graph, they do
intersect perfectly. Obviously, therefore, this has been made by a mathematician
and does not represent real data! As a matter of fact, if we look at the latest
paper with real data, it turns out that in the graph of Fig. 35-6, the point of
focus of all the lines is not exactly at the right place. Using the lines in the
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Fig. 35-6. Loci of colors confused by deuteranopes.

above figure, we cannot find reasonable spectra; we need negative and positive
absorptions in different regions. But using the new data of Yustova, it turns out
that each of the absorption curves is everywhere positive.

Figure 35-7 shows a different kind of color blindness, that of the protanope,
which has a focus near the red end of the boundary curve. Yustova gets approxi-
mately the same position in this case. Using the three different kinds of color
blindness, the three pigment response curves have finally been determined, and
are shown in Fig. 35-8. Finally? Perhaps. There is a question as to whether the
three-pigment idea is right, whether color blindness results from lack of one pig-
ment, and even whether the color-mix data on color blindness are right. Different
workers get different results. This field is still very much under development.

35-6 Physiochemistry of color vision

Now, what about checking these curves against actual pigments in the eye?
The pigments that can be obtained from a retina consist mainly of a pigment
called visual purple. The most remarkable features of this are, first, that it is in
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with the absorption curve of visual purple.

the eye of almost every vertebrate animal, and second, that its response curve
fits beautifully with the sensitivity of the eye, as seen in Fig. 35-9, in which are
plotted on the same scale the absorption of visual purple and the sensitivity of
the dark-adapted eye. This pigment is evidently the pigment that we see with
in the dark: visual purple is the pigment for the rods, and it has nothing to do
with color vision. This fact was discovered in 1877. Even today it can be said
that the color pigments of the cones have never been obtained in a test tube. In
1958 it could be said that the color pigments had never been seen at all. But
since that time, two of them have been detected by Rushton by a very simple
and beautiful technique.

The trouble is, presumably, that since the eye is so weakly sensitive to bright
light compared with light of low intensity, it needs a lot of visual purple to see
with, but not much of the color pigments for seeing colors. Rushton’s idea is to
leave the pigment in the eye, and measure it anyway. What he does is this. There
is an instrument called an ophthalmoscope for sending light into the eye through
the lens and then focusing the light that comes back out. With it one can measure
how much is reflected. So one measures the reflection coefficient of light which
has gone twice through the pigment (reflected by a back layer in the eyeball,
and coming out through the pigment of the cone again). Nature is not always
so beautifully designed. The cones are interestingly designed so that the light
that comes into the cone bounces around and works its way down into the little
sensitive points at the apex. The light goes right down into the sensitive point,
bounces at the bottom and comes back out again, having traversed a considerable
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amount of the color-vision pigment; also, by looking at the fovea, where there
are no rods, one is not confused by visual purple. But the color of the retina
has been seen a long time ago: it is a sort of orangey pink; then there are all the
blood vessels, and the color of the material at the back, and so on. How do we
know when we are looking at the pigment? Answer: First we take a color-blind
person, who has fewer pigments and for whom it is therefore easier to make
the analysis. Second, the various pigments, like visual purple, have an intensity
change when they are bleached by light; when we shine light on them they change
their concentration. So, while looking at the absorption spectrum of the eye,
Rushton put another beam in the whole eye, which changes the concentration of
the pigment, and he measured the change in the spectrum, and the difference, of
course, has nothing to do with the amount of blood or the color of the reflecting
layers, and so on, but only the pigment, and in this manner Rushton obtained
a curve for the pigment of the protanope eye, which is given in Fig. 35-10.
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Fig. 35-10. Absorption spectrum of the color pigment of a protanope
colorblind eye (squares) and a normal eye (dots).

The second curve in Fig. 35-10 is a curve obtained with a normal eye. This
was obtained by taking a normal eye and, having already determined what one
pigment was, bleaching the other one in the red where the first one is insensitive.
Red light has no effect on the protanope eye, but does in the normal eye, and thus
one can obtain the curve for the missing pigment. The shape of one curve fits
beautifully with Yustova’s green curve, but the red curve is a little bit displaced.
So perhaps we are getting on the right track. Or perhaps not—the latest work
with deuteranopes does not show any definite pigment missing.
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Color is not a question of the physics of the light itself. Color is a sensation,
and the sensation for different colors is different in different circumstances. For
instance, if we have a pink light, made by superimposing crossing beams of white
light and red light (all we can make with white and red is pink, obviously), we
may show that white light may appear blue. If we place an object in the beams,
it casts two shadows—one illuminated by the white light alone and the other
by the red. For most people the “white” shadow of an object looks blue, but if
we keep expanding this shadow until it covers the entire screen, we see that it
suddenly appears white, not blue! We can get other effects of the same nature
by mixing red, yellow, and white light. Red, yellow, and white light can produce
only orangey yellows, and so on. So if we mix such lights roughly equally, we
get only orange light. Nevertheless, by casting different kinds of shadows in the
light, with various overlaps of colors, one gets quite a series of beautiful colors
which are not in the light themselves (that is only orange), but in our sensations.
We clearly see many different colors that are quite unlike the “physical” ones in
the beam. It is very important to appreciate that a retina is already “thinking”
about the light; it is comparing what it sees in one region with what it sees in
another, although not consciously. What we know of how it does that is the
subject of the next chapter.
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36

Mechanisms of Seeing

36-1 The sensation of color

In discussing the sense of sight, we have to realize that (outside of a gallery of
modern art!) one does not see random spots of color or spots of light. When we
look at an object we see a man or a thing; in other words, the brain interprets
what we see. How it does that, no one knows, and it does it, of course, at a very
high level. Although we evidently do learn to recognize what a man looks like
after much experience, there are a number of features of vision which are more
elementary but which also involve combining information from different parts
of what we see. To help us understand how we make an interpretation of an
entire image, it is worth while to study the earliest stages of the putting together
of information from the different retinal cells. In the present chapter we shall
concentrate mainly on that aspect of vision, although we shall also mention a
number of side issues as we go along.

An example of the fact that we have an accumulation, at a very elementary
level, of information from several parts of the eye at the same time, beyond our
voluntary control or ability to learn, was that blue shadow which was produced
by white light when both white and red were shining on the same screen. This
effect at least involves the knowledge that the background of the screen is pink,
even though, when we are looking at the blue shadow, it is only “white” light
coming into a particular spot in the eye; somewhere, pieces of information have
been put together. The more complete and familiar the context is, the more
the eye will make corrections for peculiarities. In fact, Land has shown that
if we mix that apparent blue and the red in various proportions, by using two
photographic transparencies with absorption in front of the red and the white in
different proportions, it can be made to represent a real scene, with real objects,
rather faithfully. In this case we get a lot of intermediate apparent colors too,
analogous to what we would get by mixing red and blue-green; it seems to be an
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Fig. 36-1. When a disc like the above is spun, colors appear in only
one of the two darker “rings.” If the spin direction is reversed, the colors
appear in the other ring.

almost complete set of colors, but if we look very hard at them, they are not so
very good. Even so, it is surprising how much can be obtained from just red and
white. The more the scene looks like a real situation, the more one is able to
compensate for the fact that all the light is actually nothing but pink!

Another example is the appearance of “colors” in a black-and-white rotating
disc, whose black and white areas are as shown in Fig. 36-1. When the disc is
rotated, the variations of light and dark at any one radius are exactly the same;
it is only the background that is different for the two kinds of “stripes.” Yet one
of the “rings” appears colored with one color and the other with another.* No
one yet understands the reason for those colors, but it is clear that information
is being put together at a very elementary level, in the eye itself, most likely.

Almost all present-day theories of color vision agree that the color-mixing
data indicate that there are only three pigments in the cones of the eye, and that
it is the spectral absorption in those three pigments that fundamentally produces
the color sense. But the total sensation that is associated with the absorption
characteristics of the three pigments acting together is not necessarily the sum
of the individual sensations. We all agree that yellow simply does not seem to be
reddish green; in fact it might be a tremendous surprise to most people to discover
that light is, in fact, a mixture of colors, because presumably the sensation of
light is due to some other process than a simple mixture like a chord in music,
where the three notes are there at the same time and if we listen hard we can
hear them individually. We cannot look hard and see the red and the green.

* The colors depend on speed of rotation, on the brightness of illumination, and to some
extent on who looks at them and how intently he stares at them.
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The earliest theories of vision said that there are three pigments and three
kinds of cones, each kind containing one pigment; that a nerve runs from each
cone to the brain, so that the three pieces of information are carried to the brain;
and then in the brain, anything can happen. This, of course, is an incomplete
idea: it does no good to discover that the information is carried along the optic
nerve to the brain, because we have not even started to solve the problem. We
must ask more basic questions: Does it make any difference where the information
is put together? Is it important that it be carried right up into the brain in the
optic nerve, or could the retina do some analysis first? We have seen a picture
of the retina as an extremely complicated thing with lots of interconnections
(Fig. 35-2) and it might make some analyses.

As a matter of fact, people who study anatomy and the development of the
eye have shown that the retina is, in fact, the brain: in the development of
the embryo, a piece of the brain comes out in front, and long fibers grow back,
connecting the eyes to the brain. The retina is organized in just the way the brain
is organized and, as someone has beautifully put it, “The brain has developed
a way to look out upon the world.” The eye is a piece of brain that is touching
light, so to speak, on the outside. So it is not at all unlikely that some analysis
of the color has already been made in the retina.

This gives us a very interesting opportunity. None of the other senses involves
such a large amount of calculation, so to speak, before the signal gets into a nerve
that one can make measurements on. The calculations for all the rest of the
senses usually happen in the brain itself, where it is very difficult to get at specific
places to make measurements, because there are so many interconnections. Here,
with the visual sense, we have the light, three layers of cells making calculations,
and the results of the calculations being transmitted through the optic nerve. So
we have the first chance to observe physiologically how, perhaps, the first layers
of the brain work in their first steps. It is thus of double interest, not simply
interesting for vision, but interesting to the whole problem of physiology.

The fact that there are three pigments does not mean that there must be
three kinds of sensations. One of the other theories of color vision has it that
there are really opposing color schemes (Fig. 36-2). That is, one of the nerve
fibers carries a lot of impulses if there is yellow being seen, and less than usual
for blue. Another nerve fiber carries green and red information in the same
way, and another, white and black. In other words, in this theory someone
has already started to make a guess as to the system of wiring, the method of
calculation.
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w−bk = k3(α+γ+β)−k4(α+β+γ)

Fig. 36-2. Neural connections according to an “opponent” theory of
color vision.

The problems we are trying to solve by guessing at these first calculations
are questions about the apparent colors that are seen on a pink background,
what happens when the eye is adapted to different colors, and also the so-called
psychological phenomena. The psychological phenomena are of the nature, for
instance, that white does not “feel” like red and yellow and blue, and this
theory was advanced because the psychologists say that there are four apparent
pure colors: “There are four stimuli which have a remarkable capacity to evoke
psychologically simple blue, yellow, green, and red hues respectively. Unlike
sienna, magenta, purple, or most of the discriminable colors, these simple hues
are unmixed in the sense that none partakes of the nature of the other; specifically,
blue is not yellowish, reddish, or greenish, and so on; these are psychologically
primary hues.” That is a psychological fact, so-called. To find out from what
evidence this psychological fact was deduced, we must search very hard indeed
through all the literature: In the modern literature all we find on the subject are
repeats of the same statement, or of one by a German psychologist, who uses
as one of his authorities Leonardo da Vinci, who, of course, we all know was a
great artist. He says, “Leonardo thought there were five colors.” Then, looking
still further, we find, in a still older book, the evidence for the subject. The book
says something like this: “Purple is reddish-blue, orange is reddish-yellow, but
can red be seen as purplish-orange? Are not red and yellow more unitary than
purple or orange? The average person, asked to state which colors are unitary,
names red, yellow, and blue, these three, and some observers add a fourth, green.
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Psychologists are accustomed to accept the four as salient hues.” So that is the
situation in the psychological analysis of this matter: if everybody says there are
three, and somebody says there are four, and they want it to be four, it will be
four. That shows the difficulty with psychological researches. It is clear that we
have such feelings, but it is very difficult to obtain much information about them.

So the other direction to go is the physiological direction, to find out experi-
mentally what actually happens in the brain, the eye, the retina, or wherever,
and perhaps to discover that some combinations of impulses from various cells
move along certain nerve fibers. Incidentally, primary pigments do not have to
be in separate cells; one could have cells in which are mixtures of the various
pigments, cells with the red and the green pigments, cells with all three (the
information of all three is then white information), and so on. There are many
ways of hooking the system up, and we have to find out which way nature has
used. It would be hoped, ultimately, that when we understand the physiological
connections we will have a little bit of understanding of some of those aspects of
the psychology, so we look in that direction.

36-2 The physiology of the eye

We begin by talking not only about color vision, but about vision in general,
just to remind ourselves about the interconnections in the retina, shown in
Fig. 35-2. The retina is really like the surface of the brain. Although the
actual picture through a microscope is a little more complicated looking than
this somewhat schematized drawing, by careful analysis one can see all these
interconnections. There is no question that one part of the surface of the retina
is connected to other parts, and that the information that comes out on the
long axons, which produce the optic nerve, are combinations of information from
many cells. There are three layers of cells in the succession of function: there
are retinal cells, which are the ones that the light affects, an intermediate cell
which takes information from a single or a few retinal cells and gives it out again
to several cells in a third layer of cells and carries it to the brain. There are all
kinds of cross connections between cells in the layers.

We now turn to some aspects of the structure and performance of the eye
(see Fig. 35-1). The focusing of the light is accomplished mainly by the cornea,
by the fact that it has a curved surface which “bends” the light. This is why we
cannot see clearly under water, because we then do not have enough difference
between the index of the cornea, which is 1.37, and that of the water, which
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is 1.33. Behind the cornea is water, practically, with an index of 1.33, and behind
that is a lens which has a very interesting structure: it is a series of layers, like an
onion, except that it is all transparent, and it has an index of 1.40 in the middle
and 1.38 at the outside. (It would be nice if we could make optical glass in which
we could adjust the index throughout, for then we would not have to curve it as
much as we do when we have a uniform index.) Furthermore, the shape of the
cornea is not that of a sphere. A spherical lens has a certain amount of spherical
aberration. The cornea is “flatter” at the outside than is a sphere, in just such a
manner that the spherical aberration is less for the cornea than it would be if
we put a spherical lens in there! The light is focused by the cornea-lens system
onto the retina. As we look at things that are closer and farther away, the lens
tightens and loosens and changes the focus to adjust for the different distances.
To adjust for the total amount of light there is the iris, which is what we call the
color of the eye, brown or blue, depending on who it is; as the amount of light
increases and decreases, the iris moves in and out.

Let us now look at the neural machinery for controlling the accommodation of
the lens, the motion of the eye, the muscles which turn the eye in the socket, and
the iris, shown schematically in Fig. 36-3. Of all the information that comes out of
the optic nerve A, the great majority is divided into one of two bundles (which we
will talk about later) and thence to the brain. But there are a few fibers, of interest
to us now, which do not run directly to the visual cortex of the brain where we “see”
the images, but instead go into the mid-brain H. These are the fibers which mea-
sure the average light and make adjustment for the iris; or, if the image looks foggy,
they try to correct the lens; or, if there is a double image, they try to adjust the
eye for binocular vision. At any rate, they go through the mid-brain and feed back
into the eye. At K are the muscles which run the accommodation of the lens, and
at L another one that runs into the iris. The iris has two muscle systems. One is a
circular muscle L which, when it is excited, pulls in and closes down the iris; it acts
very rapidly and the nerves are directly connected from the brain through short
axons into the iris. The opposite muscles are radial muscles, so that, when the
things get dark and the circular muscle relaxes, these radial muscles pull out. Here
we have, as in many places in the body, a pair of muscles which work in opposite
directions, and in almost every such case the nerve systems which control the two
are very delicately adjusted, so that when signals are sent in to tighten one, signals
are automatically sent in to loosen the other. The iris is a peculiar exception: the
nerves which make the iris contract are the ones we have already described, but
the nerves which make the iris expand come out from no one knows exactly where,
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go down into the spinal cord back of the chest, into the thoracic sections, out of the
spinal cord, up through the neck ganglia, and all the way around and back up into
the head in order to run the other end of the iris. In fact, the signal goes through
a completely different nervous system, not the central nervous system at all, but
the sympathetic nervous system, so it is a very strange way of making things go.

We have already emphasized another strange thing about the eye, that the
light-sensitive cells are on the wrong side, so that the light has to go through
several layers of other cells before it gets to the receptors—it is built inside out!
So some of the features are wonderful and some are apparently stupid.

Figure 36-4 shows the connections of the eye to the part of the brain which is
most directly concerned with the visual process. The optic nerve fibers run into a
certain area just beyond D, called the lateral geniculate, whereupon they run out
to a section of the brain called the visual cortex. Notice that some of the fibers
from each eye are sent over to the other side of the brain, so the picture formed is
incomplete. The optic nerves from the left side of the right eye run across the optic
chiasma B, while the ones on the left side of the left eye come around and go this
same way. So the left side of the brain receives all the information which comes
from the left side of the eyeball of each eye, i.e., on the right side of the visual
field, while the right side of the brain sees the left side of the visual field. This
is the manner in which the information from each of the two eyes is put together
in order to tell how far away things are. This is the system of binocular vision.

The connections between the retina and the visual cortex are interesting. If a
spot in the retina is excised or destroyed in any way, then the whole fiber will die,
and we can thereby find out where it is connected. It turns out that, essentially,
the connections are one to one—for each spot in the retina there is one spot in
the visual cortex—and spots that are very close together in the retina are very
close together in the visual cortex. So the visual cortex still represents the spatial
arrangement of the rods and cones, but of course much distorted. Things which
are in the center of the field, which occupy a very small part of the retina, are
expanded over many, many cells in the visual cortex. It is clear that it is useful
to have things which are originally close together, still close together. The most
remarkable aspect of the matter, however, is the following. The place where one
would think it would be most important to have things close together would be
right in the middle of the visual field. Believe it or not, the up-and-down line in
our visual field as we look at something is of such a nature that the information
from all the points on the right side of that line is going into the left side of the
brain, and information from the points on the left side is going into the right side
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of the brain, and the way this area is made, there is a cut right down through
the middle, so that the things that are very close together right in the middle are
very far apart in the brain! Somehow, the information has to go from one side of
the brain to the other through some other channels, which is quite surprising.

The question of how this network ever gets “wired” together is very interesting.
The problem of how much is already wired and how much is learned is an old one.
It used to be thought long ago that perhaps it does not have to be wired carefully
at all, it is only just roughly interconnected, and then, by experience, the young
child learns that when a thing is “up there” it produces some sensation in the
brain. (Doctors always tell us what the young child “feels,” but how do they know
what a child feels at the age of one?) The child, at the age of one, supposedly sees
that an object is “up there,” gets a certain sensation, and learns to reach “there,”
because when he reaches “here,” it does not work. That approach probably is not
correct, because we already see that in many cases there are these special detailed
interconnections. More illuminating are some most remarkable experiments done
with a salamander. (Incidentally, with the salamander there is a direct crossover
connection, without the optic chiasma, because the eyes are on each side of the
head and have no common area. Salamanders do not have binocular vision.)
The experiment is this. We can cut the optic nerve in a salamander and the
nerve will grow out from the eyes again. Thousands and thousands of cell fibers
will thus re-establish themselves. Now, in the optic nerve the fibers do not stay
adjacent to each other—it is like a great, sloppily made telephone cable, all the
fibers twisting and turning, but when it gets to the brain they are all sorted out
again. When we cut the optic nerve of the salamander, the interesting question
is, will it ever get straightened out? The answer is remarkable: yes. If we cut
the optic nerve of the salamander and it grows back, the salamander has good
visual acuity again. However, if we cut the optic nerve and turn the eye upside
down and let it grow back again, it has good visual acuity all right, but it has a
terrible error: when the salamander sees a fly “up here,” it jumps at it “down
there,” and it never learns. Therefore there is some mysterious way by which the
thousands and thousands of fibers find their right places in the brain.

This problem of how much is wired in, and how much is not, is an important
problem in the theory of the development of creatures. The answer is not known,
but is being studied intensively.

The same experiment in the case of a goldfish shows that there is a terrible
knot, like a great scar or complication, in the optic nerve where we cut it, but in
spite of all this the fibers grow back to their right places in the brain.
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In order to do this, as they grow into the old channels of the optic nerve they
must make several decisions about the direction in which they should grow. How
do they do this? There seem to be chemical clues that different fibers respond to
differently. Think of the enormous number of growing fibers, each of which is an
individual differing in some way from its neighbors; in responding to whatever
the chemical clues are, it responds in a unique enough way to find its proper
place for ultimate connection in the brain! This is an interesting—a fantastic—
thing. It is one of the great recently discovered phenomena of biology and is
undoubtedly connected to many older unsolved problems of growth, organization,
and development of organisms, and particularly of embryos.

One other interesting phenomenon has to do with the motion of the eye.
The eyes must be moved in order to make the two images coincide in different
circumstances. These motions are of different kinds: one is to follow something,
which requires that both eyes must go in the same direction, right or left, and the
other is to point them toward the same place at various distances away, which
requires that they must move oppositely. The nerves going into the muscles of
the eye are already wired up for just such purposes. There is one set of nerves
which will pull the muscles on the inside of one eye and the outside of the other,
and relax the opposite muscles, so that the two eyes move together. There is
another center where an excitation will cause the eyes to move in toward each
other from parallel. Either eye can be turned out to the corner if the other eye
moves toward the nose, but it is impossible consciously or unconsciously to turn
both eyes out at the same time, not because there are no muscles, but because
there is no way to send a signal to turn both eyes out, unless we have had an
accident or there is something the matter, for instance if a nerve has been cut.
Although the muscles of one eye can certainly steer that eye about, not even a
Yogi is able to move both eyes out freely under voluntary control, because there
does not seem to be any way to do it. We are already wired to a certain extent.
This is an important point, because most of the earlier books on anatomy and
psychology, and so on, do not appreciate or do not emphasize the fact that we
are so completely wired already—they say that everything is just learned.

36-3 The rod cells

Let us now examine in more detail what happens in the rod cells. Figure 36-5
shows an electron micrograph of the middle of a rod cell (the rod cell keeps
going up out of the field). There are layer after layer of plane structures, shown
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Fig. 36-5. Electron micrograph of a rod cell.

magnified at the right, which contain the substance rhodopsin (visual purple), the
dye, or pigment, which produces the effects of vision in the rods. The rhodopsin,
which is the pigment, is a big protein which contains a special group called
retinene, which can be taken off the protein, and which is, undoubtedly, the
main cause of the absorption of light. We do not understand the reason for the
planes, but it is very likely that there is some reason for holding all the rhodopsin
molecules parallel. The chemistry of the thing has been worked out to a large
extent, but there might be some physics to it. It may be that all of the molecules
are arranged in some kind of a row so that when one is excited an electron which
is generated, say, may run all the way down to some place at the end to get
the signal out, or something. This subject is very important, and has not been
worked out. It is a field in which both biochemistry and solid state physics, or
something like it, will ultimately be used.

This kind of a structure, with layers, appears in other circumstances where
light is important, for example in the chloroplast in plants, where the light causes
photosynthesis. If we magnify those, we find the same thing with almost the
same kind of layers, but there we have chlorophyll, of course, instead of retinene.
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The chemical form of retinene is shown in Fig. 36-6. It has a series of alternate
double bonds along the side chain, which is characteristic of nearly all strongly
absorbing organic substances, like chlorophyll, blood, and so on. This substance
is impossible for human beings to manufacture in their own cells—we have to
eat it. So we eat it in the form of a special substance, which is exactly the same
as retinene except that there is a hydrogen tied on the right end; it is called
vitamin A, and if we do not eat enough of it, we do not get a supply of retinene,
and the eye becomes what we call night blind, because there is then not enough
pigment in the rhodopsin to see with the rods at night.

The reason why such a series of double bonds absorbs light very strongly is
also known. We may just give a hint: The alternating series of double bonds
is called a conjugated double bond; a double bond means that there is an extra
electron there, and this extra electron is easily shifted to the right or left. When
light strikes this molecule, the electron of each double bond is shifted over by one
step. All the electrons in the whole chain shift, like a string of dominoes falling
over, and though each one moves only a little distance (we would expect that, in a
single atom, we could move the electron only a little distance), the net effect is the
same as though the one at the end was moved over to the other end! It is the same
as though one electron went the whole distance back and forth, and so, in this
manner, we get a much stronger absorption under the influence of the electric field,
than if we could only move the electron a distance which is associated with one
atom. So, since it is easy to move the electrons back and forth, retinene absorbs
light very strongly; that is the machinery of the physical-chemical end of it.

36-4 The compound (insect) eye

Let us now return to biology. The human eye is not the only kind of eye.
In the vertebrates, almost all eyes are essentially like the human eye. However,
in the lower animals there are many other kinds of eyes: eye spots, various eye
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cups, and other less sensitive things, which we have no time to discuss. But
there is one other highly developed eye among the invertebrates, the compound
eye of the insect. (Most insects having large compound eyes also have various
additional simpler eyes as well.) A bee is an insect whose vision has been studied
very carefully. It is easy to study the properties of the vision of bees because
they are attracted to honey, and we can make experiments in which we identify
the honey by putting it on blue paper or red paper, and see which one they come
to. By this method some very interesting things have been discovered about the
vision of the bee.

In the first place, in trying to measure how acutely bees could see the color
difference between two pieces of “white” paper, some researchers found they
were not very good, and others found they were fantastically good. Even if the
two pieces of white paper were almost exactly the same, the bees could still tell
the difference. The experimenters used zinc white for one piece of paper and
lead white for the other, and although these look exactly the same to us, the
bee could easily distinguish them, because they reflect a different amount in the
ultraviolet. In this way it was discovered that the bee’s eye is sensitive over a wider
range of the spectrum than is our own. Our eye works from 7000 angstroms to
4000 angstroms, from red to violet, but the bee’s can see down to 3000 angstroms
into the ultraviolet! This makes for a number of different interesting effects.
In the first place, bees can distinguish between many flowers which to us look
alike. Of course, we must realize that the colors of flowers are not designed
for our eyes, but for the bee; they are signals to attract the bees to a specific
flower. We all know that there are many “white” flowers. Apparently white is
not very interesting to the bees, because it turns out that all of the white flowers
have different proportions of reflection in the ultraviolet; they do not reflect one
hundred percent of the ultraviolet as would a true white. All the light is not
coming back, the ultraviolet is missing, and that is a color, just as, for us, if
the blue is missing, it comes out yellow. So, all the flowers are colored for the
bees. However, we also know that red cannot be seen by bees. Thus we might
expect that all red flowers should look black to the bee. Not so! A careful study
of red flowers shows, first, that even with our own eye we can see that a great
majority of red flowers have a bluish tinge because they are mainly reflecting an
additional amount in the blue, which is the part that the bee sees. Furthermore,
experiments also show that flowers vary in their reflection of the ultraviolet over
different parts of the petals, and so on. So if we could see the flowers as bees see
them they would be even more beautiful and varied!
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It has been shown, however, that there are a few red flowers which do not
reflect in the blue or in the ultraviolet, and would, therefore, appear black to the
bee! This was of quite some concern to the people who worry about this matter,
because black does not seem like an interesting color, since it is hard to tell from
a dirty old shadow. It actually turned out that these flowers were not visited by
bees, these are the flowers that are visited by hummingbirds, and hummingbirds
can see the red!

Another interesting aspect of the vision of the bee is that bees can apparently
tell the direction of the sun by looking at a patch of blue sky, without seeing
the sun itself. We cannot easily do this. If we look out the window at the sky
and see that it is blue, in which direction is the sun? The bee can tell, because
the bee is quite sensitive to the polarization of light, and the scattered light
of the sky is polarized.* There is still some debate about how this sensitivity
operates. Whether it is because the reflections of the light are different in different
circumstances, or the bee’s eye is directly sensitive, is not yet known.†

It is also said that the bee can notice flicker up to 200 oscillations per second,
while we see it only up to 20. The motions of bees in the hives are very quick; the
feet move and the wings vibrate, but it is very hard for us to see these motions
with our eye. However, if we could see more rapidly we would be able to see the
motion. It is probably very important to the bee that its eye has such a rapid
response.

Now let us discuss the visual acuity we could expect from the bee. The
eye of a bee is a compound eye, and it is made of a large number of special
cells called ommatidia, which are arranged conically on the surface of a sphere
(roughly) on the outside of the bee’s head. Figure 36-7 shows a picture of one
such ommatidium. At the top there is a transparent area, a kind of “lens,” but
actually it is more like a filter or light pipe to make the light come down along
the narrow fiber, which is where the absorption presumably occurs. Out of the
other end of it comes the nerve fiber. The central fiber is surrounded on its sides
by six cells which, in fact, have secreted the fiber. That is enough description

* The human eye also has a slight sensitivity to the polarization of light, and one can learn
to tell the direction of the sun! The phenomenon that is involved here is called Haidinger’s
brush; it is a faint, yellowish hourglass-like pattern seen at the center of the visual field when
one looks at a broad, featureless expanse using polarizing glasses. It can also be seen in the
blue sky without polarizing glasses if one rotates his head back and forth about the axis of
vision.

† Evidence obtained since this lecture was given indicates that the eye is directly sensitive.
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Fig. 36-7. The structure of an ommatidium (a single cell of a com-
pound eye).

for our purposes; the point is that it is a conical thing and many can fit next to
each other all over the surface of the eye of the bee.

Now let us discuss the resolution of the eye of the bee. If we draw lines
(Fig. 36-8) to represent the ommatidia on the surface, which we suppose is a
sphere of radius r, we may actually calculate how wide each ommatidium is
by using our brains, and assuming that evolution is as clever as we are! If we
have a very large ommatidium we do not have much resolution. That is, one
cell gets a piece of information from one direction, and the adjacent cell gets a
piece of information from another direction, and so on, and the bee cannot see
things in between very well. So the uncertainty of visual acuity in the eye will
surely correspond to an angle, the angle of the end of the ommatidium relative
to the center of curvature of the eye. (The eye cells, of course, exist only at the
surface of the sphere; inside that is the head of the bee.) This angle, from one
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ommatidium to the next, is, of course, the diameter of the ommatidia divided by
the radius of the eye surface:

∆θg = δ/r. (36.1)
So, we may say, “The finer we make the δ, the more the visual acuity. So why
doesn’t the bee just use very, very fine ommatidia?” Answer : We know enough
physics to realize that if we are trying to get light down into a narrow slot, we
cannot see accurately in a given direction because of the diffraction effect. The
light that comes from several directions can enter and, due to diffraction, we will
get light coming in at angle ∆θd such that

∆θd = λ/δ. (36.2)

Now we see that if we make the δ too small, then each ommatidium does not
look in only one direction, because of diffraction! If we make them too big, each
one sees in a definite direction, but there are not enough of them to get a good
view of the scene. So we adjust the distance δ in order to make minimal the total
effect of these two. If we add the two together, and find the place where the sum
has a minimum (Fig. 36-9), we find that

d(∆θg + ∆θd)
dδ

= 0 = 1
r
− λ

δ2 , (36.3)

which gives us a distance
δ =
√
λr. (36.4)

If we guess that r is about 3 millimeters, take the light that the bee sees as
4000 angstroms, and put the two together and take the square root, we find

δ = (3× 10−3 × 4× 10−7)1/2 m
= 3.5× 10−5 m = 35 µ. (36.5)

36-16



δ

∆θ

δm

∆θm

∆θd = λ/δ

∆θg = δ/r

∆θg
+ ∆θd

Fig. 36-9. The optimum size for an ommatidium is δm.

The book says the diameter is 30 µ, so that is rather good agreement! So,
apparently, it really works, and we can understand what determines the size of
the bee’s eye! It is also easy to put the above number back in and find out how
good the bee’s eye actually is in angular resolution; it is very poor relative to
our own. We can see things that are thirty times smaller in apparent size than
the bee; the bee has a rather fuzzy out-of-focus image relative to what we can
see. Nevertheless it is all right, and it is the best they can do. We might ask
why the bees do not develop a good eye like our own, with a lens and so on.
There are several interesting reasons. In the first place, the bee is too small; if it
had an eye like ours, but on his scale, the opening would be about 30 µ in size
and diffraction would be so important that it would not be able to see very well
anyway. The eye is not good if it is too small. Secondly, if it were as big as the
bee’s head, then the eye would occupy the whole head of the bee. The beauty of
the compound eye is that it takes up no space, it is just a very thin layer on the
surface of the bee. So when we argue that they should have done it our way, we
must remember that they had their own problems!

36-5 Other eyes

Besides the bees, many other animals can see color. Fish, butterflies, birds,
and reptiles can see color, but it is believed that most mammals cannot. The
primates can see color. The birds certainly see color, and that accounts for the
colors of birds. There would be no point in having such brilliantly colored males
if the females could not notice it! That is, the evolution of the sexual “whatever
it is” that the birds have is a result of the female being able to see color. So next
time we look at a peacock and think of what a brilliant display of gorgeous color
it is, and how delicate all the colors are, and what a wonderful aesthetic sense it
takes to appreciate all that, we should not compliment the peacock, but should
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compliment the visual acuity and aesthetic sense of the peahen, because that is
what has generated the beautiful scene!

All invertebrates have poorly developed eyes or compound eyes, but all the
vertebrates have eyes very similar to our own, with one exception. If we consider
the highest form of animal, we usually say, “Here we are!,” but if we take a less
prejudiced point of view and restrict ourselves to the invertebrates, so that we
cannot include ourselves, and ask what is the highest invertebrate animal, most
zoologists agree that the octopus is the highest animal! It is very interesting
that, besides the development of its brain and its reactions and so on, which are
rather good for an invertebrate, it has also developed, independently, a different
eye. It is not a compound eye or an eye spot—it has a cornea, it has lids, it has
an iris, it has a lens, it has two regions of water, it has a retina behind. It is
essentially the same as the eye of the vertebrates! It is a remarkable example of
a coincidence in evolution where nature has twice discovered the same solution
to a problem, with one slight improvement. In the octopus it also turns out,
amazingly, that the retina is a piece of the brain that has come out in the same
way in its embryonic development as is true for vertebrates, but the interesting
thing which is different is that the cells which are sensitive to light are on the
inside, and the cells which do the calculation are in back of them, rather than
“inside out,” as in our eye. So we see, at least, that there is no good reason for
its being inside out. The other time nature tried it, she got it straightened out!
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Fig. 36-10. The eye of an octopus.
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(See Fig. 36-10.) The biggest eyes in the world are those of the giant squid; they
have been found up to 15 inches in diameter!

36-6 Neurology of vision

One of the main points of our subject is the interconnection of information
from one part of the eye to the other. Let us consider the compound eye of the
horseshoe crab, on which considerable experimentation has been done. First
of all, we must appreciate what kind of information can come along nerves. A
nerve carries a kind of disturbance which has an electrical effect that is easy to
detect, a kind of wavelike disturbance which runs down the nerve and produces
an effect at the other end: a long piece of the nerve cell, called the axon, carries
the information along, and a certain kind of impulse, called a “spike,” goes along
if it is excited at one end. When one spike goes down the nerve, another cannot
immediately follow. All the spikes are of the same size, so it is not that we get
higher spikes when the thing is more strongly excited, but that we get more
spikes per second. The size of the spike is determined by the fiber. It is important
to appreciate this in order to see what happens next.

Figure 36-11(a) shows the compound eye of the horseshoe crab; it is not very
much of an eye, it has only about a thousand ommatidia. Figure 36-11(b) is a
cross section through the system; one can see the ommatidia, with the nerve
fibers that run out of them and go into the brain. But note that even in a
horseshoe crab there are little interconnections. They are much less elaborate
than in the human eye, and it gives us a chance to study a simpler example.

Let us now look at the experiments which have been done by putting fine
electrodes into the optic nerve of the horseshoe crab, and shining light on only
one of the ommatidia, which is easy to do with lenses. If we turn a light on at
some instant t0, and measure the electrical pulses that come out, we find that
there is a slight delay and then a rapid series of discharges which gradually slow
down to a uniform rate, as shown in Fig. 36-12(a). When the light goes out,
the discharge stops. Now it is very interesting that if, while our amplifier is
connected to this same nerve fiber, we shine light on a different ommatidium
nothing happens; no signal.

Now we do another experiment: we shine the light on the original ommatidium
and get the same response, but if we now turn light on another one nearby as well,
the pulses are interrupted briefly and then run at a much lower rate (Fig. 36-12b).
The rate of one is inhibited by the impulses which are coming out of the other!
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Fig. 36-11. The compound eye of the horseshoe crab. (a) Normal
view. (b) Cross section.

Figures 36-7, 11, 12, 13 reprinted with permission from Goldsmith, Sensory Communications, W. A. Rosenblith, ed.
Copyright 1961, Massachusetts Institute of Technology.

In other words, each nerve fiber carries the information from one ommatidium,
but the amount that it carries is inhibited by the signals from the others. So, for
example, if the whole eye is more or less uniformly illuminated, the information
coming from any one ommatidium will be relatively weak, because it is inhibited
by so many. In fact the inhibition is additive—if we shine light on several
nearby ommatidia the inhibition is very great. The inhibition is greater when the
ommatidia are closer, and if the ommatidia are far enough away from one another,
inhibition is practically zero. So it is additive and depends on the distance; here
is a first example of information from different parts of the eye being combined
in the eye itself. We can see, perhaps, if we think about it awhile, that this is a
device to enhance contrast at the edges of objects, because if a part of the scene
is light and a part is black, then the ommatidia in the lighted area give impulses
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Fig. 36-12. The response to light of the nerve fibers of the eye of the
horseshoe crab.

that are inhibited by all the other light in the neighborhood, so it is relatively
weak. On the other hand, an ommatidium at the boundary which is given a
“white” impulse is also inhibited by others in the neighborhood, but there are
not as many of them, since some are black; the net signal is therefore stronger.
The result would be a curve, something like that of Fig. 36-13. The crab will see
an enhancement of the contour.

The fact that there is an enhancement of contours has long been known; in
fact it is a remarkable thing that has been commented on by psychologists many
times. In order to draw an object, we have only to draw its outline. How used
we are to looking at pictures that have only the outline! What is the outline?

x

R

Illumination

Response of Ommatidium

Fig. 36-13. The net response of horseshoe crab ommatidia near a
sharp change in illumination.
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The outline is only the edge difference between light and dark or one color and
another. It is not something definite. It is not, believe it or not, that every object
has a line around it! There is no such line. It is only in our own psychological
makeup that there is a line; we are beginning to understand the reasons why the
“line” is enough of a clue to get the whole thing. Presumably our own eye works
in some similar manner—much more complicated, but similar.

Finally, we shall briefly describe the more elaborate work, the beautiful,
advanced work that has been done on the frog. Doing a corresponding experiment
on a frog, by putting very fine, beautifully built needlelike probes into the optic
nerve of a frog, one can obtain the signals that are going along one particular
axon and, just as in the case of the horseshoe crab, we find that the information
does not depend on just one spot in the eye, but is a sum of information over
several spots.

The most recent picture of the operation of the frog’s eye is the following.
One can find four different kinds of optic nerve fibers, in the sense that there are
four different kinds of responses. These experiments were not done by shining
on-and-off impulses of light, because that is not what a frog sees. A frog just sits
there and his eyes never move, unless the lily pad is flopping back and forth, and
in that case his eyes wobble just right so that the image stays put. He does not
turn his eyes. If anything moves in his field of vision, like a little bug (he has
to be able to see something small moving in the fixed background), it turns out
that there are four different kinds of fibers which discharge, whose properties are
summarized in Table 36-1. Sustained edge detection, nonerasable, means that if
we bring an object with an edge into the field of view of the frog, then there are

Table 36-1

Types of response in optic nerve fibers of a frog

Type Speed Angular
field

1. Sustained edge detection (nonerasable) 0.2–0.5 m/sec 1◦

2. Convex edge detection (erasable) 0.5 m/sec 2◦–3◦

3. Changing contrast detection 1–2 m/sec 7◦–10◦

4. Dimming detection Up to 1
2 m/sec Up to 15◦

5. Darkness detection ? Very large
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a lot of impulses in this particular fiber while the object is moving, but they die
down to a sustained impulse that continues as long as the edge is there, even if it
is standing still. If we turn out the light, the impulses stop. If we turn it on again
while the edge is still in view, they start again. They are not erasable. Another
kind of fiber is very similar, except that if the edge is straight it does not work. It
must be a convex edge with dark behind it! How complicated must be the system
of interconnections in the retina of the eye of the frog in order for it to understand
that a convex surface has moved in! Furthermore, although this fiber does sustain
somewhat, it does not sustain as long as the other, and if we turn out the light
and turn it on again it does not build up again. It depends on the moving in of the
convex surface. The eye sees it move in and remembers that it is there, but if we
merely turn out the light for a moment, it simply forgets it and no longer sees it.

Another example is change-in-contrast detection. If there is an edge moving
in or out there are pulses, but if the thing stands still there are no pulses at all.

Then there is a dimming detector. If the light intensity is going down it
creates pulses, but if it stays down or stays up, the impulse stops; it only works
while the light is dimming.

Then, finally, there are a few fibers which are dark detectors—a most amazing
thing—they fire all the time! If we increase the light, they fire less rapidly, but
all the time. If we decrease the light, they fire more rapidly, all the time. In the
dark they fire like mad, perpetually saying, “It is dark! It is dark! It is dark!”

Now these responses seem to be rather complicated to classify, and we might
wonder whether perhaps the experiments are being misinterpreted. But it is very
interesting that these same classes are very clearly separated in the anatomy
of the frog! By other measurements, after these responses had been classified
(afterwards, that is what is important about this), it was discovered that the
speed of the signals on the different fibers was not the same, so here was another,
independent way to check which kind of a fiber we have found!

Another interesting question is from how big an area is one particular fiber
making its calculations? The answer is different for the different classes.

Figure 36-14 shows the surface of the so-called tectum of a frog, where the
nerves come into the brain from the optic nerve. All the nerve fibers coming
in from the optic nerve make connections in various layers of the tectum. This
layered structure is analogous to the retina; that is partly why we know that
the brain and retina are very similar. Now, by taking an electrode and moving
it down in succession through the layers, we can find out which kinds of optic
nerves end where, and the beautiful and wonderful result is that the different
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Fig. 36-14. The tectum of a frog.

kinds of fibers end in different layers! The first ones end in number 1 type, the
second in number 2, the threes and fives end in the same place, and deepest of
all is number four. (What a coincidence, they got the numbers almost in the
right order! No, that is why they numbered them that way, the first paper had
the numbers in a different order!)

We may briefly summarize what we have just learned this way: There are
three pigments, presumably. There may be many different kinds of receptor cells
containing the three pigments in different proportions, but there are many cross
connections which may permit additions and subtractions through addition and
reinforcement in the nervous system. So before we really understand color vision,
we will have to understand the final sensation. This subject is still an open one,
but these researches with microelectrodes and so on will perhaps ultimately give
us more information on how we see color.
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37

Quantum Behavior

37-1 Atomic mechanics

In the last few chapters we have treated the essential ideas necessary for an
understanding of most of the important phenomena of light—or electromagnetic ra-
diation in general. (We have left a few special topics for next year. Specifically, the
theory of the index of dense materials and total internal reflection.) What we have
dealt with is called the “classical theory” of electric waves, which turns out to be a
completely adequate description of nature for a large number of effects. We have
not had to worry yet about the fact that light energy comes in lumps or “photons.”

We would like to take up as our next subject the problem of the behavior
of relatively large pieces of matter—their mechanical and thermal properties,
for instance. In discussing these, we will find that the “classical” (or older)
theory fails almost immediately, because matter is really made up of atomic-sized
particles. Still, we will deal only with the classical part, because that is the only
part that we can understand using the classical mechanics we have been learning.
But we shall not be very successful. We shall find that in the case of matter,
unlike the case of light, we shall be in difficulty relatively soon. We could, of
course, continuously skirt away from the atomic effects, but we shall instead
interpose here a short excursion in which we will describe the basic ideas of the
quantum properties of matter, i.e., the quantum ideas of atomic physics, so that
you will have some feeling for what it is we are leaving out. For we will have to
leave out some important subjects that we cannot avoid coming close to.

So we will give now the introduction to the subject of quantum mechanics,
but will not be able actually to get into the subject until much later.

“Quantum mechanics” is the description of the behavior of matter in all its
details and, in particular, of the happenings on an atomic scale. Things on a
very small scale behave like nothing that you have any direct experience about.
They do not behave like waves, they do not behave like particles, they do not
behave like clouds, or billiard balls, or weights on springs, or like anything that
you have ever seen.
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Newton thought that light was made up of particles, but then it was discovered,
as we have seen here, that it behaves like a wave. Later, however (in the beginning
of the twentieth century) it was found that light did indeed sometimes behave
like a particle. Historically, the electron, for example, was thought to behave like
a particle, and then it was found that in many respects it behaved like a wave. So
it really behaves like neither. Now we have given up. We say: “It is like neither.”

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of the 20th century, which gave some indications
about how small things do behave, produced an increasing confusion which was
finally resolved in 1926 and 1927 by Schrödinger, Heisenberg, and Born. They
finally obtained a consistent description of the behavior of matter on a small
scale. We take up the main features of that description in this chapter.

Because atomic behavior is so unlike ordinary experience, it is very difficult
to get used to and it appears peculiar and mysterious to everyone, both to the
novice and to the experienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable that they should not,
because all of direct, human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small scale just
do not act that way. So we have to learn about them in a sort of abstract or
imaginative fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot explain the mystery in the sense of “explaining” how it works. We
will tell you how it works. In telling you how it works we will have told you
about the basic peculiarities of all quantum mechanics.

37-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more
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Fig. 37-1. Interference experiment with bullets.

familiar behavior of particles like bullets, and with the behavior of waves like water
waves. We consider first the behavior of bullets in the experimental setup shown
diagrammatically in Fig. 37-1. We have a machine gun that shoots a stream of
bullets. It is not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the figure. In front of the gun we have
a wall (made of armor plate) that has in it two holes just about big enough to let
a bullet through. Beyond the wall is a backstop (say a thick wall of wood) which
will “absorb” the bullets when they hit it. In front of the wall we have an object
which we shall call a “detector” of bullets. It might be a box containing sand.
Any bullet that enters the detector will be stopped and accumulated. When we
wish, we can empty the box and count the number of bullets that have been
caught. The detector can be moved back and forth (in what we will call the
x-direction). With this apparatus, we can find out experimentally the answer to
the question: “What is the probability that a bullet which passes through the
holes in the wall will arrive at the backstop at the distance x from the center?”
First, you should realize that we should talk about probability, because we cannot
say definitely where any particular bullet will go. A bullet which happens to hit
one of the holes may bounce off the edges of the hole, and may end up anywhere
at all. By “probability” we mean the chance that the bullet will arrive at the
detector, which we can measure by counting the number which arrive at the
detector in a certain time and then taking the ratio of this number to the total
number that hit the backstop during that time. Or, if we assume that the gun
always shoots at the same rate during the measurements, the probability we want
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is just proportional to the number that reach the detector in some standard time
interval.

For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any
given moment either nothing arrives, or one and only one—exactly one—bullet
arrives at the backstop. Also, the size of the lump certainly does not depend on the
rate of firing of the gun. We shall say: “Bullets always arrive in identical lumps.”
What we measure with our detector is the probability of arrival of a lump. And we
measure the probability as a function of x. The result of such measurements with
this apparatus (we have not yet done the experiment, so we are really imagining
the result) are plotted in the graph drawn in part (c) of Fig. 37-1. In the graph
we plot the probability to the right and x vertically, so that the x-scale fits the
diagram of the apparatus. We call the probability P12 because the bullets may
have come either through hole 1 or through hole 2. You will not be surprised that
P12 is large near the middle of the graph but gets small if x is very large. You may
wonder, however, why P12 has its maximum value at x = 0. We can understand
this fact if we do our experiment again after covering up hole 2, and once more
while covering up hole 1. When hole 2 is covered, bullets can pass only through
hole 1, and we get the curve marked P1 in part (b) of the figure. As you would
expect, the maximum of P1 occurs at the value of x which is on a straight line with
the gun and hole 1. When hole 1 is closed, we get the symmetric curve P2 drawn
in the figure. P2 is the probability distribution for bullets that pass through hole 2.
Comparing parts (b) and (c) of Fig. 37-1, we find the important result that

P12 = P1 + P2. (37.1)

The probabilities just add together. The effect with both holes open is the sum
of the effects with each hole open alone. We shall call this result an observation
of “no interference,” for a reason that you will see later. So much for bullets.
They come in lumps, and their probability of arrival shows no interference.

37-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus
is shown diagrammatically in Fig. 37-2. We have a shallow trough of water. A
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Fig. 37-2. Interference experiment with water waves.

small object labeled the “wave source” is jiggled up and down by a motor and
makes circular waves. To the right of the source we have again a wall with two
holes, and beyond that is a second wall, which, to keep things simple, is an
“absorber,” so that there is no reflection of the waves that arrive there. This can
be done by building a gradual sand “beach.” In front of the beach we place a
detector which can be moved back and forth in the x-direction, as before. The
detector is now a device which measures the “intensity” of the wave motion. You
can imagine a gadget which measures the height of the wave motion, but whose
scale is calibrated in proportion to the square of the actual height, so that the
reading is proportional to the intensity of the wave. Our detector reads, then, in
proportion to the energy being carried by the wave—or rather, the rate at which
energy is carried to the detector.

With our wave apparatus, the first thing to notice is that the intensity can
have any size. If the source just moves a very small amount, then there is just
a little bit of wave motion at the detector. When there is more motion at the
source, there is more intensity at the detector. The intensity of the wave can
have any value at all. We would not say that there was any “lumpiness” in the
wave intensity.

Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked I12 in part (c) of the figure.
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We have already worked out how such patterns can come about when we
studied the interference of electric waves. In this case we would observe that the
original wave is diffracted at the holes, and new circular waves spread out from
each hole. If we cover one hole at a time and measure the intensity distribution at
the absorber we find the rather simple intensity curves shown in part (b) of the
figure. I1 is the intensity of the wave from hole 1 (which we find by measuring
when hole 2 is blocked off) and I2 is the intensity of the wave from hole 2 (seen
when hole 1 is blocked).

The intensity I12 observed when both holes are open is certainly not the sum
of I1 and I2. We say that there is “interference” of the two waves. At some places
(where the curve I12 has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity.
We say that the two waves are “interfering constructively” at such places. There
will be such constructive interference wherever the distance from the detector to
one hole is a whole number of wavelengths larger (or shorter) than the distance
from the detector to the other hole.

At those places where the two waves arrive at the detector with a phase
difference of π (where they are “out of phase”) the resulting wave motion at
the detector will be the difference of the two amplitudes. The waves “interfere
destructively,” and we get a low value for the wave intensity. We expect such low
values wherever the distance between hole 1 and the detector is different from the
distance between hole 2 and the detector by an odd number of half-wavelengths.
The low values of I12 in Fig. 37-2 correspond to the places where the two waves
interfere destructively.

You will remember that the quantitative relationship between I1, I2, and I12
can be expressed in the following way: The instantaneous height of the water
wave at the detector for the wave from hole 1 can be written as (the real part
of) ĥ1e

iωt, where the “amplitude” ĥ1 is, in general, a complex number. The
intensity is proportional to the mean squared height or, when we use the complex
numbers, to |ĥ1|2. Similarly, for hole 2 the height is ĥ2e

iωt and the intensity
is proportional to |ĥ2|2. When both holes are open, the wave heights add to
give the height (ĥ1 + ĥ2)eiωt and the intensity |ĥ1 + ĥ2|2. Omitting the constant
of proportionality for our present purposes, the proper relations for interfering
waves are

I1 = |ĥ1|2, I2 = |ĥ2|2, I12 = |ĥ1 + ĥ2|2. (37.2)
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You will notice that the result is quite different from that obtained with
bullets (Eq. 37.1). If we expand |ĥ1 + ĥ2|2 we see that

|ĥ1 + ĥ2|2 = |ĥ1|2 + |ĥ2|2 + 2|ĥ1||ĥ2| cos δ, (37.3)

where δ is the phase difference between ĥ1 and ĥ2. In terms of the intensities,
we could write

I12 = I1 + I2 + 2
√
I1I2 cos δ. (37.4)

The last term in (37.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

37-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 37-3. We make an electron gun which consists of a tungsten
wire heated by an electric current and surrounded by a metal box with a hole in
it. If the wire is at a negative voltage with respect to the box, electrons emitted
by the wire will be accelerated toward the walls and some will pass through the
hole. All the electrons which come out of the gun will have (nearly) the same
energy. In front of the gun is again a wall (just a thin metal plate) with two
holes in it. Beyond the wall is another plate which will serve as a “backstop.”
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x

P1
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P1 = |φ1|2
P2 = |φ2|2
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Fig. 37-3. Interference experiment with electrons.
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In front of the backstop we place a movable detector. The detector might be a
geiger counter or, perhaps better, an electron multiplier, which is connected to
a loudspeaker.

We should say right away that you should not try to set up this experiment (as
you could have done with the two we have already described). This experiment
has never been done in just this way. The trouble is that the apparatus would
have to be made on an impossibly small scale to show the effects we are interested
in. We are doing a “thought experiment,” which we have chosen because it is easy
to think about. We know the results that would be obtained because there are
many experiments that have been done, in which the scale and the proportions
have been chosen to show the effects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks” from the detector (that is, from the loudspeaker). And all “clicks” are
the same. There are no “half-clicks.”

We would also notice that the “clicks” come very erratically. Something like:
click . . . . . click-click . . . click . . . . . . . . click . . . . click-click . . . . . . click . . . , etc.,
just as you have, no doubt, heard a geiger counter operating. If we count the
clicks which arrive in a sufficiently long time—say for many minutes—and then
count again for another equal period, we find that the two numbers are very
nearly the same. So we can speak of the average rate at which the clicks are
heard (so-and-so-many clicks per minute on the average).

As we move the detector around, the rate at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower
the temperature of the wire in the gun the rate of clicking slows down, but still
each click sounds the same. We would notice also that if we put two separate
detectors at the backstop, one or the other would click, but never both at once.
(Except that once in a while, if there were two clicks very close together in time,
our ear might not sense the separation.) We conclude, therefore, that whatever
arrives at the backstop arrives in “lumps.” All the “lumps” are the same size:
only whole “lumps” arrive, and they arrive one at a time at the backstop. We
shall say: “Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find exper-
imentally the answer to the question: “What is the relative probability that
an electron ‘lump’ will arrive at the backstop at various distances x from the
center?” As before, we obtain the relative probability by observing the rate of
clicks, holding the operation of the gun constant. The probability that lumps
will arrive at a particular x is proportional to the average rate of clicks at that x.
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The result of our experiment is the interesting curve marked P12 in part (c)
of Fig. 37-3. Yes! That is the way electrons go.

37-5 The interference of electron waves

Now let us try to analyze the curve of Fig. 37-3 to see whether we can
understand the behavior of the electrons. The first thing we would say is that
since they come in lumps, each lump, which we may as well call an electron, has
come either through hole 1 or through hole 2. Let us write this in the form of a
“Proposition”:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Proposition A, all electrons that arrive at the backstop can be
divided into two classes: (1) those that come through hole 1, and (2) those that
come through hole 2. So our observed curve must be the sum of the effects of
the electrons which come through hole 1 and the electrons which come through
hole 2. Let us check this idea by experiment. First, we will make a measurement
for those electrons that come through hole 1. We block off hole 2 and make
our counts of the clicks from the detector. From the clicking rate, we get P1.
The result of the measurement is shown by the curve marked P1 in part (b) of
Fig. 37-3. The result seems quite reasonable. In a similar way, we measure P2,
the probability distribution for the electrons that come through hole 2. The
result of this measurement is also drawn in the figure.

The result P12 obtained with both holes open is clearly not the sum of P1
and P2, the probabilities for each hole alone. In analogy with our water-wave
experiment, we say: “There is interference.”

For electrons: P12 6= P1 + P2. (37.5)

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through
hole 1 or hole 2, because if they did, the probabilities should add. Perhaps they
go in a more complicated way. They split in half and . . . ” But no! They cannot,
they always arrive in lumps . . . “Well, perhaps some of them go through 1, and
then they go around through 2, and then around a few more times, or by some
other complicated path . . . then by closing hole 2, we changed the chance that
an electron that started out through hole 1 would finally get to the backstop . . . ”
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But notice! There are some points at which very few electrons arrive when both
holes are open, but which receive many electrons if we close one hole, so closing
one hole increased the number from the other. Notice, however, that at the
center of the pattern, P12 is more than twice as large as P1 + P2. It is as though
closing one hole decreased the number of electrons which come through the other
hole. It seems hard to explain both effects by proposing that the electrons travel
in complicated paths.

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for P12
in terms of individual electrons going around in complicated ways through the
holes. None of them has succeeded. None of them can get the right curve for P12
in terms of P1 and P2.

Yet, surprisingly enough, the mathematics for relating P1 and P2 to P12 is
extremely simple. For P12 is just like the curve I12 of Fig. 37-2, and that was
simple. What is going on at the backstop can be described by two complex
numbers that we can call φ̂1 and φ̂2 (they are functions of x, of course). The
absolute square of φ̂1 gives the effect with only hole 1 open. That is, P1 = |φ̂1|2.
The effect with only hole 2 open is given by φ̂2 in the same way. That is,
P2 = |φ̂2|2. And the combined effect of the two holes is just P12 = |φ̂1 + φ̂2|2.
The mathematics is the same as that we had for the water waves! (It is hard to
see how one could get such a simple result from a complicated game of electrons
going back and forth through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves “sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the intensity
as the mean over time of the square of the wave amplitude, and we used complex
numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex
numbers. The real parts alone will not do. That is a technical point, for the
moment, because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
it is not equal to (P1 + P2), that is really all there is to say. But there are a
large number of subtleties involved in the fact that nature does work this way.
We would like to illustrate some of these subtleties for you now. First, since the
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number that arrives at a particular point is not equal to the number that arrives
through 1 plus the number that arrives through 2, as we would have concluded
from Proposition A, undoubtedly we should conclude that Proposition A is false.
It is not true that the electrons go either through hole 1 or hole 2. But that
conclusion can be tested by another experiment.

37-6 Watching the electrons

We shall now try the following experiment. To our electron apparatus we add
a very strong light source, placed behind the wall and between the two holes,
as shown in Fig. 37-4. We know that electric charges scatter light. So when an
electron passes, however it does pass, on its way to the detector, it will scatter
some light to our eye, and we can see where the electron goes. If, for instance,
an electron were to take the path via hole 2 that is sketched in Fig. 37-4, we
should see a flash of light coming from the vicinity of the place marked A in the
figure. If an electron passes through hole 1 we would expect to see a flash from
the vicinity of the upper hole. If it should happen that we get light from both
places at the same time, because the electron divides in half . . . Let us just do
the experiment!

ELECTRON
GUN

(a)

1

2

LIGHT
SOURCE

A

(b)

x

P ′1

P ′2

(c)

x

P ′12

P ′12 = P
′
1 + P

′
2

Fig. 37-4. A different electron experiment.

Here is what we see: every time that we hear a “click” from our electron
detector (at the backstop), we also see a flash of light either near hole 1 or near
hole 2, but never both at once! And we observe the same result no matter where
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we put the detector. From this observation we conclude that when we look at
the electrons we find that the electrons go either through one hole or the other.
Experimentally, Proposition A is necessarily true.

What, then, is wrong with our argument against Proposition A? Why isn’t P12
just equal to P1 + P2? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they
went through, by watching for the flashes. We can keep track of things this
way: whenever we hear a “click” we will put a count in Column 1 if we see the
flash near hole 1, and if we see the flash near hole 2, we will record a count
in Column 2. Every electron which arrives is recorded in one of two classes:
those which come through 1 and those which come through 2. From the number
recorded in Column 1 we get the probability P ′1 that an electron will arrive at
the detector via hole 1; and from the number recorded in Column 2 we get P ′2,
the probability that an electron will arrive at the detector via hole 2. If we now
repeat such a measurement for many values of x, we get the curves for P ′1 and P ′2
shown in part (b) of Fig. 37-4.

Well, that is not too surprising! We get for P ′1 something quite similar to
what we got before for P1 by blocking off hole 2; and P ′2 is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is
open or closed.

But wait! What do we have now for the total probability, the probability
that an electron will arrive at the detector by any route? We already have that
information. We just pretend that we never looked at the light flashes, and we
lump together the detector clicks which we have separated into the two columns.
We must just add the numbers. For the probability that an electron will arrive
at the backstop by passing through either hole, we do find P ′12 = P ′1 + P ′2. That
is, although we succeeded in watching which hole our electrons come through,
we no longer get the old interference curve P12, but a new one, P ′12 showing no
interference! If we turn out the light P12 is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is different than when we do not look. Perhaps it is turning on
our light source that disturbs things? It must be that the electrons are very
delicate, and the light, when it scatters off the electrons, gives them a jolt that
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changes their motion. We know that the electric field of the light acting on a
charge will exert a force on it. So perhaps we should expect the motion to be
changed. Anyway, the light exerts a big influence on the electrons. By trying to
“watch” the electrons we have changed their motions. That is, the jolt given to
the electron when the photon is scattered by it is such as to change the electron’s
motion enough so that if it might have gone to where P12 was at a maximum it
will instead land where P12 was a minimum; that is why we no longer see the
wavy interference effects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave will
be weak enough that it will have a negligible effect.” O.K. Let’s try it. The first
thing we observe is that the flashes of light scattered from the electrons as they
pass by does not get weaker. It is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a “click”
from the detector but see no flash at all. The electron has gone by without being
“seen.” What we are observing is that light also acts like electrons, we knew that
it was “wavy,” but now we find that it is also “lumpy.” It always arrives—or is
scattered—in lumps that we call “photons.” As we turn down the intensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some electrons get
by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we “see” the electron
we see the same-sized flash, then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we
hear a click in the detector we will keep a count in three columns: in Column (1)
those electrons seen by hole 1, in Column (2) those electrons seen by hole 2,
and in Column (3) those electrons not seen at all. When we work up our data
(computing the probabilities) we find these results: Those “seen by hole 1” have
a distribution like P ′1; those “seen by hole 2” have a distribution like P ′2 (so that
those “seen by either hole 1 or 2” have a distribution like P ′12); and those “not
seen at all” have a “wavy” distribution just like P12 of Fig. 37-3! If the electrons
are not seen, we have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized
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effects and the effect of the photons being scattered is enough to smear out any
interference effect.

Is there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon” is
inversely proportional to its wavelength (p = h/λ). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! If we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
“see” where the electron went with the help of some equipment that can “see”
light of these longer wavelengths. If we use “gentler” light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with longer waves. We shall keep repeating our
experiment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave
nature of the light, there is a limitation on how close two spots can be and still
be seen as two separate spots. This distance is of the order of the wavelength of
light. So now, when we make the wavelength longer than the distance between
our holes, we see a big fuzzy flash when the light is scattered by the electrons.
We can no longer tell which hole the electron went through! We just know it went
somewhere! And it is just with light of this color that we find that the jolts given
to the electron are small enough so that P ′12 begins to look like P12—that we
begin to get some interference effect. And it is only for wavelengths much longer
than the separation of the two holes (when we have no chance at all of telling
where the electron went) that the disturbance due to the light gets sufficiently
small that we again get the curve P12 shown in Fig. 37-3.

In our experiment we find that it is impossible to arrange the light in such
a way that one can tell which hole the electron went through, and at the same
time not disturb the pattern. It was suggested by Heisenberg that the then
new laws of nature could only be consistent if there were some basic limitation
on our experimental capabilities not previously recognized. He proposed, as a
general principle, his uncertainty principle, which we can state in terms of our
experiment as follows: “It is impossible to design an apparatus to determine
which hole the electron passes through, that will not at the same time disturb the
electrons enough to destroy the interference pattern.” If an apparatus is capable
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of determining which hole the electron goes through, it cannot be so delicate
that it does not disturb the pattern in an essential way. No one has ever found
(or even thought of) a way around the uncertainty principle. So we must assume
that it describes a basic characteristic of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter depends on the correctness of the uncertainty
principle. Since quantum mechanics is such a successful theory, our belief in
the uncertainty principle is reinforced. But if a way to “beat” the uncertainty
principle were ever discovered, quantum mechanics would give inconsistent results
and would have to be discarded as a valid theory of nature.

“Well,” you say, “what about Proposition A? It is true, or is it not true, that
the electron either goes through hole 1 or it goes through hole 2?” The only
answer that can be given is that we have found from experiment that there is
a certain special way that we have to think in order that we do not get into
inconsistencies. What we must say (to avoid making wrong predictions) is the
following. If one looks at the holes or, more accurately, if one has a piece of
apparatus which is capable of determining whether the electrons go through
hole 1 or hole 2, then one can say that it goes either through hole 1 or hole 2.
But, when one does not try to tell which way the electron goes, when there is
nothing in the experiment to disturb the electrons, then one may not say that
an electron goes either through hole 1 or hole 2. If one does say that, and starts
to make any deductions from the statement, he will make errors in the analysis.
This is the logical tightrope on which we must walk if we wish to describe nature
successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see
an interference pattern there? It turns out that for the bullets the wavelengths
were so tiny that the interference patterns became very fine. So fine, in fact, that
with any detector of finite size one could not distinguish the separate maxima
and minima. What we saw was only a kind of average, which is the classical
curve. In Fig. 37-5 we have tried to indicate schematically what happens with
large-scale objects. Part (a) of the figure shows the probability distribution
one might predict for bullets, using quantum mechanics. The rapid wiggles are
supposed to represent the interference pattern one gets for waves of very short
wavelength. Any physical detector, however, straddles several wiggles of the
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Fig. 37-5. Interference pattern with bullets: (a) actual (schematic),
(b) observed.

probability curve, so that the measurements show the smooth curve drawn in
part (b) of the figure.

37-7 First principles of quantum mechanics

We will now write a summary of the main conclusions of our experiments. We
will, however, put the results in a form which makes them true for a general class
of such experiments. We can write our summary more simply if we first define
an “ideal experiment” as one in which there are no uncertain external influences,
i.e., no jiggling or other things going on that we cannot take into account. We
would be quite precise if we said: “An ideal experiment is one in which all of the
initial and final conditions of the experiment are completely specified.” What we
will call “an event” is, in general, just a specific set of initial and final conditions.
(For example: “an electron leaves the gun, arrives at the detector, and nothing
else happens.”) Now for our summary.

Summary

(1) The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number φ which is called the probability
amplitude:

P = probability,
φ = probability amplitude,
P = |φ|2.

(37.6)
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(2) When an event can occur in several alternative ways, the probability
amplitude for the event is the sum of the probability amplitudes for each
way considered separately. There is interference:

φ = φ1 + φ2,

P = |φ1 + φ2|2. (37.7)

(3) If an experiment is performed which is capable of determining whether one
or another alternative is actually taken, the probability of the event is the
sum of the probabilities for each alternative. The interference is lost:

P = P1 + P2. (37.8)

One might still like to ask: “How does it work? What is the machinery
behind the law?” No one has found any machinery behind the law. No one can
“explain” any more than we have just “explained.” No one will give you any deeper
representation of the situation. We have no ideas about a more basic mechanism
from which these results can be deduced.

We would like to emphasize a very important difference between classical and
quantum mechanics. We have been talking about the probability that an electron
will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics has given up. We do
not know how to predict what would happen in a given circumstance, and we
believe now that it is impossible, that the only thing that can be predicted is the
probability of different events. It must be recognized that this is a retrenchment
in our earlier ideal of understanding nature. It may be a backward step, but no
one has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron has some
kind of internal works—some inner variables—that we do not yet know about.
Perhaps that is why we cannot predict what will happen. If we could look more
closely at the electron we could be able to tell where it would end up.” So far as
we know, that is impossible. We would still be in difficulty. Suppose we were to
assume that inside the electron there is some kind of machinery that determines
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where it is going to end up. That machine must also determine which hole it is
going to go through on its way. But we must not forget that what is inside the
electron should not be dependent on what we do, and in particular upon whether
we open or close one of the holes. So if an electron, before it starts, has already
made up its mind (a) which hole it is going to use, and (b) where it is going to
land, we should find P1 for those electrons that have chosen hole 1, P2 for those
that have chosen hole 2, and necessarily the sum P1 + P2 for those that arrive
through the two holes. There seems to be no way around this. But we have
verified experimentally that that is not the case. And no one has figured a way
out of this puzzle. So at the present time we must limit ourselves to computing
probabilities. We say “at the present time,” but we suspect very strongly that
it is something that will be with us forever—that it is impossible to beat that
puzzle—that this is the way nature really is.

37-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component
of its momentum with an uncertainty ∆p, you cannot, at the same time, know its
x-position more accurately than ∆x ≥ ~/2∆p. The uncertainties in the position
and momentum at any instant must have their product greater than half the
reduced Planck constant. This is a special case of the uncertainty principle that
was stated above more generally. The more general statement was that one
cannot design equipment in any way to determine which of two alternatives is
taken, without, at the same time, destroying the pattern of interference.

Let us show for one particular case that the kind of relation given by Heisenberg
must be true in order to keep from getting into trouble. We imagine a modification
of the experiment of Fig. 37-3, in which the wall with the holes consists of a plate
mounted on rollers so that it can move freely up and down (in the x-direction),
as shown in Fig. 37-6. By watching the motion of the plate carefully we can
try to tell which hole an electron goes through. Imagine what happens when
the detector is placed at x = 0. We would expect that an electron which passes
through hole 1 must be deflected downward by the plate to reach the detector.
Since the vertical component of the electron momentum is changed, the plate
must recoil with an equal momentum in the opposite direction. The plate will
get an upward kick. If the electron goes through the lower hole, the plate should
feel a downward kick. It is clear that for every position of the detector, the
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Fig. 37-6. An experiment in which the recoil of the wall is measured.

momentum received by the plate will have a different value for a traversal via
hole 1 than for a traversal via hole 2. So! Without disturbing the electrons at
all, but just by watching the plate, we can tell which path the electron used.

Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is we cannot say precisely where the two holes
are. They will be in a different place for every electron that goes through. This
means that the center of our interference pattern will have a different location for
each electron. The wiggles of the interference pattern will be smeared out. We
shall show quantitatively in the next chapter that if we determine the momentum
of the plate sufficiently accurately to determine from the recoil measurement
which hole was used, then the uncertainty in the x-position of the plate will,
according to the uncertainty principle, be enough to shift the pattern observed at
the detector up and down in the x-direction about the distance from a maximum
to its nearest minimum. Such a random shift is just enough to smear out the
pattern so that no interference is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg rec-
ognized that if it were possible to measure the momentum and the position
simultaneously with a greater accuracy, the quantum mechanics would collapse.
So he proposed that it must be impossible. Then people sat down and tried to
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figure out ways of doing it, and nobody could figure out a way to measure the
position and the momentum of anything—a screen, an electron, a billiard ball,
anything—with any greater accuracy. Quantum mechanics maintains its perilous
but accurate existence.
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38

The Relation of Wave and
Particle Viewpoints

38-1 Probability wave amplitudes

In this chapter we shall discuss the relationship of the wave and particle
viewpoints. We already know, from the last chapter, that neither the wave
viewpoint nor the particle viewpoint is correct. Usually we have tried to present
things accurately, or at least precisely enough that they will not have to be
changed when we learn more—it may be extended, but it will not be changed!
But when we try to talk about the wave picture or the particle picture, both are
approximate, and both will change. Therefore what we learn in this chapter will
not be accurate in a certain sense; it is a kind of half-intuitive argument that will
be made more precise later, but certain things will be changed a little bit when
we interpret them correctly in quantum mechanics. The reason for doing such a
thing, of course, is that we are not going to go directly into quantum mechanics,
but we want to have at least some idea of the kinds of effects that we will find.
Furthermore, all our experiences are with waves and with particles, and so it is
rather handy to use the wave and particle ideas to get some understanding of
what happens in given circumstances before we know the complete mathematics
of the quantum-mechanical amplitudes. We shall try to illustrate the weakest
places as we go along, but most of it is very nearly correct—it is just a matter of
interpretation.

First of all, we know that the new way of representing the world in quantum
mechanics—the new framework—is to give an amplitude for every event that can
occur, and if the event involves the reception of one particle then we can give the
amplitude to find that one particle at different places and at different times. The
probability of finding the particle is then proportional to the absolute square of
the amplitude. In general, the amplitude to find a particle in different places at
different times varies with position and time.
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In a special case the amplitude varies sinusoidally in space and time like
ei(ωt−k·r) (do not forget that these amplitudes are complex numbers, not real
numbers) and involves a definite frequency ω and wave number k. Then it turns
out that this corresponds to a classical limiting situation where we would have
believed that we have a particle whose energy E was known and is related to the
frequency by

E = ~ω, (38.1)

and whose momentum p is also known and is related to the wave number by

p = ~k. (38.2)

This means that the idea of a particle is limited. The idea of a particle—
its location, its momentum, etc.—which we use so much, is in certain ways
unsatisfactory. For instance, if an amplitude to find a particle at different places
is given by ei(ωt−k·r), whose absolute square is a constant, that would mean that
the probability of finding a particle is the same at all points. That means we do
not know where it is—it can be anywhere—there is a great uncertainty in its
location.

On the other hand, if the position of a particle is more or less well known and
we can predict it fairly accurately, then the probability of finding it in different
places must be confined to a certain region, whose length we call ∆x. Outside
this region, the probability is zero. Now this probability is the absolute square of
an amplitude, and if the absolute square is zero, the amplitude is also zero, so
that we have a wave train whose length is ∆x (Fig. 38-1), and the wavelength
(the distance between nodes of the waves in the train) of that wave train is what
corresponds to the particle momentum.

Here we encounter a strange thing about waves; a very simple thing which
has nothing to do with quantum mechanics strictly. It is something that anybody
who works with waves, even if he knows no quantum mechanics, knows: namely,
we cannot define a unique wavelength for a short wave train. Such a wave train

∆x

Fig. 38-1. A wave packet of length ∆x .
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does not have a definite wavelength; there is an indefiniteness in the wave number
that is related to the finite length of the train, and thus there is an indefiniteness
in the momentum.

38-2 Measurement of position and momentum

Let us consider two examples of this idea—to see the reason why there is an
uncertainty in the position and/or the momentum, if quantum mechanics is right.
We have also seen before that if there were not such a thing—if it were possible
to measure the position and the momentum of anything simultaneously—we
would have a paradox; it is fortunate that we do not have such a paradox, and
the fact that such an uncertainty comes naturally from the wave picture shows
that everything is mutually consistent.

B

C

∆θ

Fig. 38-2. Diffraction of particles passing through a slit.

Here is one example which shows the relationship between the position and
the momentum in a circumstance that is easy to understand. Suppose we have a
single slit, and particles are coming from very far away with a certain energy—so
that they are all coming essentially horizontally (Fig. 38-2). We are going to
concentrate on the vertical components of momentum. All of these particles have
a certain horizontal momentum p0, say, in a classical sense. So, in the classical
sense, the vertical momentum py, before the particle goes through the hole, is
definitely known. The particle is moving neither up nor down, because it came
from a source that is far away—and so the vertical momentum is of course zero.
But now let us suppose that it goes through a hole whose width is B. Then
after it has come out through the hole, we know the position vertically—the
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y position—with considerable accuracy—namely ±B.* That is, the uncertainty
in position, ∆y, is of order B. Now we might also want to say, since we know the
momentum is absolutely horizontal, that ∆py is zero; but that is wrong. We once
knew the momentum was horizontal, but we do not know it any more. Before the
particles passed through the hole, we did not know their vertical positions. Now
that we have found the vertical position by having the particle come through the
hole, we have lost our information on the vertical momentum! Why? According
to the wave theory, there is a spreading out, or diffraction, of the waves after
they go through the slit, just as for light. Therefore there is a certain probability
that particles coming out of the slit are not coming exactly straight. The pattern
is spread out by the diffraction effect, and the angle of spread, which we can
define as the angle of the first minimum, is a measure of the uncertainty in the
final angle.

How does the pattern become spread? To say it is spread means that there
is some chance for the particle to be moving up or down, that is, to have a
component of momentum up or down. We say chance and particle because we
can detect this diffraction pattern with a particle counter, and when the counter
receives the particle, say at C in Fig. 38-2, it receives the entire particle, so that,
in a classical sense, the particle has a vertical momentum, in order to get from
the slit up to C.

To get a rough idea of the spread of the momentum, the vertical momentum py
has a spread which is equal to p0 ∆θ, where p0 is the horizontal momentum.
And how big is ∆θ in the spread-out pattern? We know that the first minimum
occurs at an angle ∆θ such that the waves from one edge of the slit have to travel
one wavelength farther than the waves from the other side—we worked that
out before (Chapter 30). Therefore ∆θ is λ/B, and so ∆py in this experiment
is p0λ/B. Note that if we make B smaller and make a more accurate measurement
of the position of the particle, the diffraction pattern gets wider. Remember,
when we closed the slits on the experiment with the microwaves, we had more
intensity farther out. So the narrower we make the slit, the wider the pattern
gets, and the more is the likelihood that we would find that the particle has
sidewise momentum. Thus the uncertainty in the vertical momentum is inversely
proportional to the uncertainty of y. In fact, we see that the product of the
two is equal to p0λ. But λ is the wavelength and p0 is the momentum, and in

* More precisely, the error in our knowledge of y is ±B/2. But we are now only interested
in the general idea, so we won’t worry about factors of 2.
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accordance with quantum mechanics, the wavelength times the momentum is
Planck’s constant h. So we obtain the rule that the uncertainties in the vertical
momentum and in the vertical position have a product of the order h:

∆y∆py ≥ ~/2. (38.3)

We cannot prepare a system in which we know the vertical position of a particle
and can predict how it will move vertically with greater certainty than given
by (38.3). That is, the uncertainty in the vertical momentum must exceed ~/2∆y,
where ∆y is the uncertainty in our knowledge of the position.

Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it has gone
through the slit, its position is known. Both position and momentum seem to be
known with arbitrary accuracy. It is quite true that we can receive a particle, and
on reception determine what its position is and what its momentum would have
had to have been to have gotten there. That is true, but that is not what the
uncertainty relation (38.3) refers to. Equation (38.3) refers to the predictability
of a situation, not remarks about the past. It does no good to say “I knew what
the momentum was before it went through the slit, and now I know the position,”
because now the momentum knowledge is lost. The fact that it went through
the slit no longer permits us to predict the vertical momentum. We are talking
about a predictive theory, not just measurements after the fact. So we must talk
about what we can predict.

Now let us take the thing the other way around. Let us take another example
of the same phenomenon, a little more quantitatively. In the previous example
we measured the momentum by a classical method. Namely, we considered the
direction and the velocity and the angles, etc., so we got the momentum by
classical analysis. But since momentum is related to wave number, there exists
in nature still another way to measure the momentum of a particle—photon or
otherwise—which has no classical analog, because it uses Eq. (38.2). We measure
the wavelengths of the waves. Let us try to measure momentum in this way.

Suppose we have a grating with a large number of lines (Fig. 38-3), and send
a beam of particles at the grating. We have often discussed this problem: if
the particles have a definite momentum, then we get a very sharp pattern in a
certain direction, because of the interference. And we have also talked about how
accurately we can determine that momentum, that is to say, what the resolving
power of such a grating is. Rather than derive it again, we refer to Chapter 30,
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Nmλ = L

Fig. 38-3. Determination of momentum by using a diffraction grating.

where we found that the relative uncertainty in the wavelength that can be
measured with a given grating is 1/Nm, where N is the number of lines on the
grating and m is the order of the diffraction pattern. That is,

∆λ/λ = 1/Nm. (38.4)

Now formula (38.4) can be rewritten as

∆λ/λ2 = 1/Nmλ = 1/L, (38.5)

where L is the distance shown in Fig. 38-3. This distance is the difference between
the total distance that the particle or wave or whatever it is has to travel if
it is reflected from the bottom of the grating, and the distance that it has to
travel if it is reflected from the top of the grating. That is, the waves which form
the diffraction pattern are waves which come from different parts of the grating.
The first ones that arrive come from the bottom end of the grating, from the
beginning of the wave train, and the rest of them come from later parts of the
wave train, coming from different parts of the grating, until the last one finally
arrives, and that involves a point in the wave train a distance L behind the first
point. So in order that we shall have a sharp line in our spectrum corresponding
to a definite momentum, with an uncertainty given by (38.4), we have to have a
wave train of at least length L. If the wave train is too short we are not using
the entire grating. The waves which form the spectrum are being reflected from
only a very short sector of the grating if the wave train is too short, and the
grating will not work right—we will find a big angular spread. In order to get a
narrower one, we need to use the whole grating, so that at least at some moment
the whole wave train is scattering simultaneously from all parts of the grating.
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Thus the wave train must be of length L in order to have an uncertainty in the
wavelength less than that given by (38.5). Incidentally,

∆λ/λ2 = ∆(1/λ) = ∆k/2π. (38.6)
Therefore

∆k = 2π/L. (38.7)

where L is the length of the wave train.
This means that if we have a wave train whose length is less than L, the

uncertainty in the wave number must exceed 2π/L. Or the uncertainty in a wave
number times the length of the wave train—we will call that for a moment ∆x—
exceeds 2π. We call it ∆x because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that is where we
could find the particle, within an uncertainty ∆x. Now this property of waves,
that the length of the wave train times the uncertainty of the wave number
associated with it is at least π, is a property that is known to everyone who
studies them. It has nothing to do with quantum mechanics. It is simply that if
we have a finite train, we cannot count the waves in it very precisely. Let us try
another way to see the reason for that.

Suppose that we have a finite train of length L; then because of the way it
has to decrease at the ends, as in Fig. 38-1, the number of waves in the length L
is uncertain by something like ±1. But the number of waves in L is kL/2π. Thus
k is uncertain, and we again get the result (38.7), a property merely of waves.
The same thing works whether the waves are in space and k is the number of
radians per centimeter and L is the length of the train, or the waves are in time
and ω is the number of oscillations per second and T is the “length” in time
that the wave train comes in. That is, if we have a wave train lasting only for a
certain finite time T , then the uncertainty in the frequency is given by

∆ω = 2π/T. (38.8)

We have tried to emphasize that these are properties of waves alone, and they
are well known, for example, in the theory of sound.

The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule that p = ~k, so
that relation (38.7) tells us that ∆p ≈ h/∆x. This, then, is a limitation of the
classical idea of momentum. (Naturally, it has to be limited in some ways if we
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are going to represent particles by waves!) It is nice that we have found a rule
that gives us some idea of when there is a failure of classical ideas.

38-3 Crystal diffraction

Next let us consider the reflection of particle waves from a crystal. A crystal
is a thick thing which has a whole lot of similar atoms—we will include some
complications later—in a nice array. The question is how to set the array so that
we get a strong reflected maximum in a given direction for a given beam of, say,
light (x-rays), electrons, neutrons, or anything else. In order to obtain a strong
reflection, the scattering from all of the atoms must be in phase. There cannot
be equal numbers in phase and out of phase, or the waves will cancel out. The
way to arrange things is to find the regions of constant phase, as we have already
explained; they are planes which make equal angles with the initial and final
directions (Fig. 38-4).

θ
θ θ
d

d sin θ

d sin θ

Fig. 38-4. Scattering of waves by crystal planes.

If we consider two parallel planes, as in Fig. 38-4, the waves scattered from
the two planes will be in phase provided the difference in distance travelled by a
wavefront is an integral number of wavelengths. This difference can be seen to
be 2d sin θ, where d is the perpendicular distance between the planes. Thus the
condition for coherent reflection is

2d sin θ = nλ (n = 1, 2, . . . ). (38.9)
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If, for example, the crystal is such that the atoms happen to lie on planes
obeying condition (38.9) with n = 1, then there will be a strong reflection. If,
on the other hand, there are other atoms of the same nature (equal in density)
halfway between, then the intermediate planes will also scatter equally strongly
and will interfere with the others and produce no effect. So d in (38.9) must refer
to adjacent planes; we cannot take a plane five layers farther back and use this
formula!

As a matter of interest, actual crystals are not usually as simple as a single
kind of atom repeated in a certain way. Instead; if we make a two-dimensional
analog, they are much like wallpaper, in which there is some kind of figure
which repeats all over the wallpaper. By “figure” we mean, in the case of atoms,
some arrangement—calcium and a carbon and three oxygens, etc., for calcium
carbonate, and so on—which may involve a relatively large number of atoms.
But whatever it is, the figure is repeated in a pattern. This basic figure is called
a unit cell.

The basic pattern of repetition defines what we call the lattice type; the lattice
type can be immediately determined by looking at the reflections and seeing
what their symmetry is. In other words, where we find any reflections at all
determines the lattice type, but in order to determine what is in each of the
elements of the lattice one must take into account the intensity of the scattering
at the various directions. Which directions scatter depends on the type of lattice,
but how strongly each scatters is determined by what is inside each unit cell, and
in that way the structure of crystals is worked out.

Two photographs of x-ray diffraction patterns are shown in Figs. 38-5 and 38-6;
they illustrate scattering from rock salt and myoglobin, respectively.

Figure 38-5 Figure 38-6
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Incidentally, an interesting thing happens if the spacings of the nearest planes
are less than λ/2. In this case (38.9) has no solution for n. Thus if λ is bigger
than twice the distance between adjacent planes then there is no side diffraction
pattern, and the light—or whatever it is—will go right through the material
without bouncing off or getting lost. So in the case of light, where λ is much
bigger than the spacing, of course it does go through and there is no pattern of
reflection from the planes of the crystal.

PILE

SHORT-λ NEUTRONS

GRAPHITE

SHORT-λ NEUTRONS

LONG-λ
NEUTRONS

Fig. 38-7. Diffusion of pile neutrons through graphite block.

This fact also has an interesting consequence in the case of piles which make
neutrons (these are obviously particles, for anybody’s money!). If we take these
neutrons and let them into a long block of graphite, the neutrons diffuse and
work their way along (Fig. 38-7). They diffuse because they are bounced by the
atoms, but strictly, in the wave theory, they are bounced by the atoms because of
diffraction from the crystal planes. It turns out that if we take a very long piece
of graphite, the neutrons that come out the far end are all of long wavelength! In
fact, if one plots the intensity as a function of wavelength, we get nothing except
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Fig. 38-8. Intensity of neutrons out of graphite rod as function of
wavelength.
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for wavelengths longer than a certain minimum (Fig. 38-8). In other words, we
can get very slow neutrons that way. Only the slowest neutrons come through;
they are not diffracted or scattered by the crystal planes of the graphite, but
keep going right through like light through glass, and are not scattered out the
sides. There are many other demonstrations of the reality of neutron waves and
waves of other particles.

38-4 The size of an atom

We now consider another application of the uncertainty relation, Eq. (38.3).
It must not be taken too seriously; the idea is right but the analysis is not very
accurate. The idea has to do with the determination of the size of atoms, and
the fact that, classically, the electrons would radiate light and spiral in until
they settle down right on top of the nucleus. But that cannot be right quantum-
mechanically because then we would know where each electron was and how fast
it was moving.

Suppose we have a hydrogen atom, and measure the position of the electron; we
must not be able to predict exactly where the electron will be, or the momentum
spread will then turn out to be infinite. Every time we look at the electron,
it is somewhere, but it has an amplitude to be in different places so there is a
probability of it being found in different places. These places cannot all be at the
nucleus; we shall suppose there is a spread in position of order a. That is, the
distance of the electron from the nucleus is usually about a. We shall determine
a by minimizing the total energy of the atom.

The spread in momentum is roughly ~/a because of the uncertainty relation,
so that if we try to measure the momentum of the electron in some manner,
such as by scattering x-rays off it and looking for the Doppler effect from a
moving scatterer, we would expect not to get zero every time—the electron is
not standing still—but the momenta must be of the order p ≈ ~/a. Then the
kinetic energy is roughly 1

2mv
2 = p2/2m = ~2/2ma2. (In a sense, this is a kind

of dimensional analysis to find out in what way the kinetic energy depends upon
the reduced Planck constant, upon m, and upon the size of the atom. We need
not trust our answer to within factors like 2, π, etc. We have not even defined a
very precisely.) Now the potential energy is minus e2 over the distance from the
center, say −e2/a, where, we remember, e2 is the charge of an electron squared,
divided by 4πε0. Now the point is that the potential energy is reduced if a gets
smaller, but the smaller a is, the higher the momentum required, because of
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the uncertainty principle, and therefore the higher the kinetic energy. The total
energy is

E = ~2/2ma2 − e2/a. (38.10)

We do not know what a is, but we know that the atom is going to arrange itself
to make some kind of compromise so that the energy is as little as possible. In
order to minimize E, we differentiate with respect to a, set the derivative equal
to zero, and solve for a. The derivative of E is

dE/da = −~2/ma3 + e2/a2, (38.11)

and setting dE/da = 0 gives for a the value

a0 = ~2/me2 = 0.528 angstrom,
= 0.528× 10−10 meter. (38.12)

This particular distance is called the Bohr radius, and we have thus learned
that atomic dimensions are of the order of angstroms, which is right: This is
pretty good—in fact, it is amazing, since until now we have had no basis for
understanding the size of atoms! Atoms are completely impossible from the
classical point of view, since the electrons would spiral into the nucleus.

Now if we put the value (38.12) for a0 into (38.10) to find the energy, it comes
out

E0 = −e2/2a0 = −me4/2~2 = −13.6 eV. (38.13)

What does a negative energy mean? It means that the electron has less energy
when it is in the atom than when it is free. It means it is bound. It means it takes
energy to kick the electron out; it takes energy of the order of 13.6 eV to ionize
a hydrogen atom. We have no reason to think that it is not two or three times
this—or half of this—or (1/π) times this, because we have used such a sloppy
argument. However, we have cheated, we have used all the constants in such a
way that it happens to come out the right number! This number, 13.6 electron
volts, is called a Rydberg of energy; it is the ionization energy of hydrogen.

So we now understand why we do not fall through the floor. As we walk, our
shoes with their masses of atoms push against the floor with its mass of atoms.
In order to squash the atoms closer together, the electrons would be confined to
a smaller space and, by the uncertainty principle, their momenta would have to
be higher on the average, and that means high energy; the resistance to atomic
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compression is a quantum-mechanical effect and not a classical effect. Classically,
we would expect that if we were to draw all the electrons and protons closer
together, the energy would be reduced still further, and the best arrangement of
positive and negative charges in classical physics is all on top of each other. This
was well known in classical physics and was a puzzle because of the existence of the
atom. Of course, the early scientists invented some ways out of the trouble—but
never mind, we have the right way out, now! (Maybe.)

Incidentally, although we have no reason to understand it at the moment, in
a situation where there are many electrons it turns out that they try to keep
away from each other. If one electron is occupying a certain space, then another
does not occupy the same space. More precisely, there are two spin cases, so that
two can sit on top of each other, one spinning one way and one the other way.
But after that we cannot put any more there. We have to put others in another
place, and that is the real reason that matter has strength. If we could put all
the electrons in the same place it would condense even more than it does. It is
the fact that the electrons cannot all get on top of each other that makes tables
and everything else solid.

Obviously, in order to understand the properties of matter, we will have to
use quantum mechanics and not be satisfied with classical mechanics.

38-5 Energy levels

We have talked about the atom in its lowest possible energy condition, but
it turns out that the electron can do other things. It can jiggle and wiggle in a
more energetic manner, and so there are many different possible motions for the
atom. According to quantum mechanics, in a stationary condition there can only
be definite energies for an atom. We make a diagram (Fig. 38-9) in which we
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Fig. 38-9. Energy diagram for an atom, showing several possible
transitions.
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plot the energy vertically, and we make a horizontal line for each allowed value of
the energy. When the electron is free, i.e., when its energy is positive, it can have
any energy; it can be moving at any speed. But bound energies are not arbitrary.
The atom must have one or another out of a set of allowed values, such as those
in Fig. 38-9.

Now let us call the allowed values of the energy E0, E1, E2, E3. If an atom
is initially in one of these “excited states,” E1, E2, etc., it does not remain in
that state forever. Sooner or later it drops to a lower state and radiates energy
in the form of light. The frequency of the light that is emitted is determined
by conservation of energy plus the quantum-mechanical understanding that the
frequency of the light is related to the energy of the light by (38.1). Therefore
the frequency of the light which is liberated in a transition from energy E3 to
energy E1 (for example) is

ω31 = (E3 − E1)/~. (38.14)

This, then, is a characteristic frequency of the atom and defines a spectral emission
line. Another possible transition would be from E3 to E0. That would have a
different frequency

ω30 = (E3 − E0)/~. (38.15)
Another possibility is that if the atom were excited to the state E1 it could drop
to the ground state E0, emitting a photon of frequency

ω10 = (E1 − E0)/~. (38.16)

The reason we bring up three transitions is to point out an interesting relationship.
It is easy to see from (38.14), (38.15), and (38.16) that

ω30 = ω31 + ω10. (38.17)

In general, if we find two spectral lines, we shall expect to find another line at the
sum of the frequencies (or the difference in the frequencies), and that all the lines
can be understood by finding a series of levels such that every line corresponds
to the difference in energy of some pair of levels. This remarkable coincidence in
spectral frequencies was noted before quantum mechanics was discovered, and it
is called the Ritz combination principle. This is again a mystery from the point of
view of classical mechanics. Let us not belabor the point that classical mechanics
is a failure in the atomic domain; we seem to have demonstrated that pretty well.
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We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave numbers.
Let us observe how it comes about from the point of view of amplitudes that the
atom has definite energy states. This is something we cannot understand from
what has been said so far, but we are all familiar with the fact that confined
waves have definite frequencies. For instance, if sound is confined to an organ
pipe, or anything like that, then there is more than one way that the sound can
vibrate, but for each such way there is a definite frequency. Thus an object in
which the waves are confined has certain resonance frequencies. It is therefore a
property of waves in a confined space—a subject which we will discuss in detail
with formulas later on—that they exist only at definite frequencies. And since the
general relation exists between frequencies of the amplitude and energy, we are
not surprised to find definite energies associated with electrons bound in atoms.

38-6 Philosophical implications

Let us consider briefly some philosophical implications of quantum mechanics.
As always, there are two aspects of the problem: one is the philosophical implica-
tion for physics, and the other is the extrapolation of philosophical matters to
other fields. When philosophical ideas associated with science are dragged into
another field, they are usually completely distorted. Therefore we shall confine
our remarks as much as possible to physics itself.

First of all, the most interesting aspect is the idea of the uncertainty principle;
making an observation affects the phenomenon. It has always been known
that making observations affects a phenomenon, but the point is that the effect
cannot be disregarded or minimized or decreased arbitrarily by rearranging the
apparatus. When we look for a certain phenomenon we cannot help but disturb
it in a certain minimum way, and the disturbance is necessary for the consistency
of the viewpoint. The observer was sometimes important in prequantum physics,
but only in a rather trivial sense. The problem has been raised: if a tree falls in
a forest and there is nobody there to hear it, does it make a noise? A real tree
falling in a real forest makes a sound, of course, even if nobody is there. Even if
no one is present to hear it, there are other traces left. The sound will shake some
leaves, and if we were careful enough we might find somewhere that some thorn
had rubbed against a leaf and made a tiny scratch that could not be explained
unless we assumed the leaf were vibrating. So in a certain sense we would have
to admit that there is a sound made. We might ask: was there a sensation of
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sound? No, sensations have to do, presumably, with consciousness. And whether
ants are conscious and whether there were ants in the forest, or whether the tree
was conscious, we do not know. Let us leave the problem in that form.

Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which we
cannot measure. (Actually relativity theory also said this.) Unless a thing can be
defined by measurement, it has no place in a theory. And since an accurate value
of the momentum of a localized particle cannot be defined by measurement it
therefore has no place in the theory. The idea that this is what was the matter
with classical theory is a false position. It is a careless analysis of the situation.
Just because we cannot measure position and momentum precisely does not a
priori mean that we cannot talk about them. It only means that we need not talk
about them. The situation in the sciences is this: A concept or an idea which
cannot be measured or cannot be referred directly to experiment may or may not
be useful. It need not exist in a theory. In other words, suppose we compare the
classical theory of the world with the quantum theory of the world, and suppose
that it is true experimentally that we can measure position and momentum only
imprecisely. The question is whether the ideas of the exact position of a particle
and the exact momentum of a particle are valid or not. The classical theory
admits the ideas; the quantum theory does not. This does not in itself mean that
classical physics is wrong. When the new quantum mechanics was discovered,
the classical people—which included everybody except Heisenberg, Schrödinger,
and Born—said: “Look, your theory is not any good because you cannot answer
certain questions like: what is the exact position of a particle?, which hole does
it go through?, and some others.” Heisenberg’s answer was: “I do not need to
answer such questions because you cannot ask such a question experimentally.” It
is that we do not have to. Consider two theories (a) and (b); (a) contains an idea
that cannot be checked directly but which is used in the analysis, and the other,
(b), does not contain the idea. If they disagree in their predictions, one could not
claim that (b) is false because it cannot explain this idea that is in (a), because
that idea is one of the things that cannot be checked directly. It is always good
to know which ideas cannot be checked directly, but it is not necessary to remove
them all. It is not true that we can pursue science completely by using only those
concepts which are directly subject to experiment.

In quantum mechanics itself there is a wave function amplitude, there is a
potential, and there are many constructs that we cannot measure directly. The
basis of a science is its ability to predict. To predict means to tell what will
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happen in an experiment that has never been done. How can we do that? By
assuming that we know what is there, independent of the experiment. We must
extrapolate the experiments to a region where they have not been done. We
must take our concepts and extend them to places where they have not yet
been checked. If we do not do that, we have no prediction. So it was perfectly
sensible for the classical physicists to go happily along and suppose that the
position—which obviously means something for a baseball—meant something
also for an electron. It was not stupidity. It was a sensible procedure. Today we
say that the law of relativity is supposed to be true at all energies, but someday
somebody may come along and say how stupid we were. We do not know where
we are “stupid” until we “stick our neck out,” and so the whole idea is to put our
neck out. And the only way to find out that we are wrong is to find out what
our predictions are. It is absolutely necessary to make constructs.

We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen in
physics in a given physical circumstance which is arranged as carefully as possible.
If we have an atom that is in an excited state and so is going to emit a photon,
we cannot say when it will emit the photon. It has a certain amplitude to emit
the photon at any time, and we can predict only a probability for emission; we
cannot predict the future exactly. This has given rise to all kinds of nonsense
and questions on the meaning of freedom of will, and of the idea that the world
is uncertain.

Of course we must emphasize that classical physics is also indeterminate, in a
sense. It is usually thought that this indeterminacy, that we cannot predict the
future, is an important quantum-mechanical thing, and this is said to explain the
behavior of the mind, feelings of free will, etc. But if the world were classical—if
the laws of mechanics were classical—it is not quite obvious that the mind would
not feel more or less the same. It is true classically that if we knew the position
and the velocity of every particle in the world, or in a box of gas, we could predict
exactly what would happen. And therefore the classical world is deterministic.
Suppose, however, that we have a finite accuracy and do not know exactly where
just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than to one part in a
billion, we find an even larger error in the position after the collision. And that
is amplified, of course, in the next collision, so that if we start with only a tiny
error it rapidly magnifies to a very great uncertainty. To give an example: if
water falls over a dam, it splashes. If we stand nearby, every now and then a
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drop will land on our nose. This appears to be completely random, yet such a
behavior would be predicted by purely classical laws. The exact position of all
the drops depends upon the precise wigglings of the water before it goes over
the dam. How? The tiniest irregularities are magnified in falling, so that we get
complete randomness. Obviously, we cannot really predict the position of the
drops unless we know the motion of the water absolutely exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise,
one can find a time long enough that we cannot make predictions valid for that
long a time. Now the point is that this length of time is not very large. It is not
that the time is millions of years if the accuracy is one part in a billion. The
time goes, in fact, only logarithmically with the error, and it turns out that in
only a very, very tiny time we lose all our information. If the accuracy is taken
to be one part in billions and billions and billions—no matter how many billions
we wish, provided we do stop somewhere—then we can find a time less than the
time it took to state the accuracy—after which we can no longer predict what is
going to happen! It is therefore not fair to say that from the apparent freedom
and indeterminacy of the human mind, we should have realized that classical
“deterministic” physics could not ever hope to understand it, and to welcome
quantum mechanics as a release from a “completely mechanistic” universe. For
already in classical mechanics there was indeterminability from a practical point
of view.
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39

The Kinetic Theory of Gases

39-1 Properties of matter

With this chapter we begin a new subject which will occupy us for some
time. It is the first part of the analysis of the properties of matter from the
physical point of view, in which, recognizing that matter is made out of a great
many atoms, or elementary parts, which interact electrically and obey the laws
of mechanics, we try to understand why various aggregates of atoms behave the
way they do.

It is obvious that this is a difficult subject, and we emphasize at the beginning
that it is in fact an extremely difficult subject, and that we have to deal with
it differently than we have dealt with the other subjects so far. In the case of
mechanics and in the case of light, we were able to begin with a precise statement
of some laws, like Newton’s laws, or the formula for the field produced by an
accelerating charge, from which a whole host of phenomena could be essentially
understood, and which would produce a basis for our understanding of mechanics
and of light from that time on. That is, we may learn more later, but we do not
learn different physics, we only learn better methods of mathematical analysis to
deal with the situation.

We cannot use this approach effectively in studying the properties of matter.
We can discuss matter only in a most elementary way; it is much too complicated
a subject to analyze directly from its specific basic laws, which are none other
than the laws of mechanics and electricity. But these are a bit too far away from
the properties we wish to study; it takes too many steps to get from Newton’s laws
to the properties of matter, and these steps are, in themselves, fairly complicated.
We will now start to take some of these steps, but while many of our analyses
will be quite accurate, they will eventually get less and less accurate. We will
have only a rough understanding of the properties of matter.

39-1



One of the reasons that we have to perform the analysis so imperfectly is that
the mathematics of it requires a deep understanding of the theory of probability;
we are not going to want to know where every atom is actually moving, but
rather, how many move here and there on the average, and what the odds are for
different effects. So this subject involves a knowledge of the theory of probability,
and our mathematics is not yet quite ready and we do not want to strain it too
hard.

Secondly, and more important from a physical standpoint, the actual behavior
of the atoms is not according to classical mechanics, but according to quantum
mechanics, and a correct understanding of the subject cannot be attained until
we understand quantum mechanics. Here, unlike the case of billiard balls and
automobiles, the difference between the classical mechanical laws and the quantum-
mechanical laws is very important and very significant, so that many things that
we will deduce by classical physics will be fundamentally incorrect. Therefore
there will be certain things to be partially unlearned; however, we shall indicate in
every case when a result is incorrect, so that we will know just where the “edges”
are. One of the reasons for discussing quantum mechanics in the preceding
chapters was to give an idea as to why, more or less, classical mechanics is
incorrect in the various directions.

Why do we deal with the subject now at all? Why not wait half a year, or a
year, until we know the mathematics of probability better, and we learn a little
quantum mechanics, and then we can do it in a more fundamental way? The
answer is that it is a difficult subject, and the best way to learn is to do it slowly!
The first thing to do is to get some idea, more or less, of what ought to happen
in different circumstances, and then, later, when we know the laws better, we
will formulate them better.

Anyone who wants to analyze the properties of matter in a real problem
might want to start by writing down the fundamental equations and then try
to solve them mathematically. Although there are people who try to use such
an approach, these people are the failures in this field; the real successes come
to those who start from a physical point of view, people who have a rough idea
where they are going and then begin by making the right kind of approximations,
knowing what is big and what is small in a given complicated situation. These
problems are so complicated that even an elementary understanding, although
inaccurate and incomplete, is worthwhile having, and so the subject will be one
that we shall go over again and again, each time with more and more accuracy,
as we go through our course in physics.
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Another reason for beginning the subject right now is that we have already
used many of these ideas in, for example, chemistry, and we have even heard of
some of them in high school. It is interesting to know the physical basis for these
things.

As an interesting example, we all know that equal volumes of gases, at the
same pressure and temperature, contain the same number of molecules. The
law of multiple proportions, that when two gases combine in a chemical reaction
the volumes needed always stand in simple integral proportions, was understood
ultimately by Avogadro to mean that equal volumes have equal numbers of atoms.
Now why do they have equal numbers of atoms? Can we deduce from Newton’s
laws that the number of atoms should be equal? We shall address ourselves to
that specific matter in this chapter. In succeeding chapters, we shall discuss
various other phenomena involving pressures, volumes, temperature, and heat.

We shall also find that the subject can be attacked from a nonatomic point of
view, and that there are many interrelationships of the properties of substances.
For instance, when we compress something, it heats; if we heat it, it expands.
There is a relationship between these two facts which can be deduced indepen-
dently of the machinery underneath. This subject is called thermodynamics. The
deepest understanding of thermodynamics comes, of course, from understanding
the actual machinery underneath, and that is what we shall do: we shall take
the atomic viewpoint from the beginning and use it to understand the various
properties of matter and the laws of thermodynamics.

Let us, then, discuss the properties of gases from the standpoint of Newton’s
laws of mechanics.

39-2 The pressure of a gas

First, we know that a gas exerts a pressure, and we must clearly understand
what this is due to. If our ears were a few times more sensitive, we would hear
a perpetual rushing noise. Evolution has not developed the ear to that point,
because it would be useless if it were so much more sensitive—we would hear
a perpetual racket. The reason is that the eardrum is in contact with the air,
and air is a lot of molecules in perpetual motion and these bang against the
eardrums. In banging against the eardrums they make an irregular tattoo—boom,
boom, boom—which we do not hear because the atoms are so small, and the
sensitivity of the ear is not quite enough to notice it. The result of this perpetual
bombardment is to push the drum away, but of course there is an equal perpetual
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bombardment of atoms on the other side of the eardrum, so the net force on it
is zero. If we were to take the air away from one side, or change the relative
amounts of air on the two sides, the eardrum would then be pushed one way or
the other, because the amount of bombardment on one side would be greater
than on the other. We sometimes feel this uncomfortable effect when we go up
too fast in an elevator or an airplane, especially if we also have a bad cold (when
we have a cold, inflammation closes the tube which connects the air on the inside
of the eardrum with the outside air through the throat, so that the two pressures
cannot readily equalize).

V

x dx

A
F

Fig. 39-1. Atoms of a gas in a box with a frictionless piston.

In considering how to analyze the situation quantitatively, we imagine that
we have a volume of gas in a box, at one end of which is a piston which can be
moved (Fig. 39-1). We would like to find out what force on the piston results
from the fact that there are atoms in this box. The volume of the box is V ,
and as the atoms move around inside the box with various velocities they bang
against the piston. Suppose there is nothing, a vacuum, on the outside of the
piston. What of it? If the piston were left alone, and nobody held onto it, each
time it got banged it would pick up a little momentum and it would gradually
get pushed out of the box. So in order to keep it from being pushed out of the
box, we have to hold it with a force F . The problem is, how much force? One
way of expressing the force is to talk about the force per unit area: if A is the
area of the piston, then the force on the piston will be written as a number times
the area. We define the pressure, then, as equal to the force that we have to
apply on a piston, divided by the area of the piston:

P = F/A. (39.1)

To make sure we understand the idea (we have to derive it for another purpose
anyway), the differential work dW done on the gas in compressing it by moving
the piston in a differential amount −dx would be the force times the distance
that we compress it, which, according to (39.1), would be the pressure times the
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area, times the distance, which is equal to minus the pressure times the change
in the volume:

dW = F (−dx) = −PAdx = −P dV. (39.2)

(The area A times the distance dx is the volume change.) The minus sign is there
because, as we compress it, we decrease the volume; if we think about it we can
see that if a gas is compressed, work is done on it.

How much force do we have to apply to balance the banging of the molecules?
The piston receives from each collision a certain amount of momentum. A certain
amount of momentum per second will pour into the piston, and it will start to move.
To keep it from moving, we must pour back into it the same amount of momentum
per second from our force. Of course, the force is the amount of momentum per
second that we must pour in. There is another way to put it: if we let go of the
piston it will pick up speed because of the bombardments; with each collision
we get a little more speed, and the speed thus accelerates. The rate at which the
piston picks up speed, or accelerates, is proportional to the force on it. So we see
that the force, which we already have said is the pressure times the area, is equal
to the momentum per second delivered to the piston by the colliding molecules.

To calculate the momentum per second is easy—we can do it in two parts:
first, we find the momentum delivered to the piston by one particular atom in a
collision with the piston, then we have to multiply by the number of collisions
per second that the atoms have with the wall. The force will be the product of
these two factors. Now let us see what the two factors are: In the first place,
we shall suppose that the piston is a perfect “reflector” for the atoms. If it is
not, the whole theory is wrong, and the piston will start to heat up and things
will change, but eventually, when equilibrium has set in, the net result is that
the collisions are effectively perfectly elastic. On the average, every particle that
comes in leaves with the same energy. So we shall imagine that the gas is in
a steady condition, and we lose no energy to the piston because the piston is
standing still. In those circumstances, if a particle comes in with a certain speed,
it comes out with the same speed and, we will say, with the same mass.

If v is the velocity of an atom, and vx is the x-component of v, then mvx is
the x-component of momentum “in”; but we also have an equal component of
momentum “out,” and so the total momentum delivered to the piston by the
particle, in one collision, is 2mvx, because it is “reflected.”

Now, we need the number of collisions made by the atoms in a second, or in
a certain amount of time dt; then we divide by dt. How many atoms are hitting?
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Let us suppose that there are N atoms in the volume V , or n = N/V in each unit
volume. To find how many atoms hit the piston, we note that, given a certain
amount of time t, if a particle has a certain velocity toward the piston it will
hit during the time t, provided it is close enough. If it is too far away, it goes
only part way toward the piston in the time t, but does not reach the piston.
Therefore it is clear that only those molecules which are within a distance vxt
from the piston are going to hit the piston in the time t. Thus the number of
collisions in a time t is equal to the number of atoms which are in the region
within a distance vxt, and since the area of the piston is A, the volume occupied
by the atoms which are going to hit the piston is vxtA. But the number of atoms
that are going to hit the piston is that volume times the number of atoms per
unit volume, nvxtA. Of course we do not want the number that hit in a time t,
we want the number that hit per second, so we divide by the time t, to get nvxA.
(This time t could be made very short; if we feel we want to be more elegant, we
call it dt, then differentiate, but it is the same thing.)

So we find that the force is

F = nvxA · 2mvx. (39.3)

See, the force is proportional to the area, if we keep the particle density fixed as
we change the area! The pressure is then

P = 2nmv2
x. (39.4)

Now we notice a little trouble with this analysis: First, all the molecules do
not have the same velocity, and they do not move in the same direction. So, all
the v2

x’s are different! So what we must do, of course, is to take an average of
the v2

x’s, since each one makes its own contribution. What we want is the square
of vx, averaged over all the molecules:

P = nm〈v2
x〉. (39.5)

Did we forget to include the factor 2? No; of all the atoms, only half are headed
toward the piston. The other half are headed the other way, so the number of
atoms per unit volume that are hitting the piston is only n/2.

Now as the atoms bounce around, it is clear that there is nothing special
about the “x-direction”; the atoms may also be moving up and down, back and
forth, in and out. Therefore it is going to be true that 〈v2

x〉, the average motion
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of the atoms in one direction, and the average in the other two directions, are all
going to be equal:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉. (39.6)

It is only a matter of rather tricky mathematics to notice, therefore, that they
are each equal to one-third of their sum, which is of course the square of the
magnitude of the velocity:

〈v2
x〉 = 1

3 〈v
2
x + v2

y + v2
z〉 = 〈v2〉/3. (39.7)

This has the advantage that we do not have to worry about any particular
direction, and so we write our pressure formula again in this form:

P = ( 2
3 )n〈mv2/2〉. (39.8)

The reason we wrote the last factor as 〈mv2/2〉 is that this is the kinetic energy
of the center-of-mass motion of the molecule. We find, therefore, that

PV = N( 2
3 )〈mv2/2〉. (39.9)

With this equation we can calculate how much the pressure is, if we know the
speeds.

As a very simple example let us take helium gas, or any other gas, like mercury
vapor, or potassium vapor of high enough temperature, or argon, in which all the
molecules are single atoms, for which we may suppose that there is no internal
motion in the atom. If we had a complex molecule, there might be some internal
motion, mutual vibrations, or something. We suppose that we may disregard
that; this is actually a serious matter that we will have to come back to, but it
turns out to be all right. We suppose that the internal motion of the atoms can
be disregarded, and therefore, for this purpose, that the kinetic energy of the
center-of-mass motion is all the energy there is. So for a monatomic gas, the
kinetic energy is the total energy. In general, we are going to call U the total
energy (it is sometimes called the total internal energy—we may wonder why,
since there is no external energy to a gas), i.e., all the energy of all the molecules
in the gas, or the object, whatever it is.

For a monatomic gas we will suppose that the total energy U is equal to
a number of atoms times the average kinetic energy of each, because we are
disregarding any possibility of excitation or motion inside the atoms themselves.
Then, in these circumstances, we would have

PV = 2
3U. (39.10)
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Incidentally, we can stop here and find the answer to the following question:
Suppose that we take a can of gas and compress the gas slowly, how much pressure
do we need to squeeze the volume down? It is easy to find out, since the pressure
is 2

3 the energy divided by V . As we squeeze it down, we do work on the gas
and we thereby increase the energy U . So we are going to have some kind of a
differential equation: If we start out in a given circumstance with a certain energy
and a certain volume, we then know the pressure. Now we start to squeeze, but
the moment we do, the energy U increases and the volume V decreases, so the
pressure goes up.

So, we have to solve a differential equation, and we will solve it in a moment.
We must first emphasize, however, that as we are compressing this gas, we are
supposing that all the work goes into increasing the energy of the atoms inside.
We may ask, “Isn’t that necessary? Where else could it go?” It turns out that it
can go another place. There are what we call “heat leaks” through the walls: the
hot (i.e., fast-moving) atoms that bombard the walls, heat the walls, and energy
goes away. We shall suppose for the present that this is not the case.

For somewhat wider generality, although we are still making some very special
assumptions about our gas, we shall write, not PV = 2

3U , but

PV = (γ − 1)U. (39.11)

It is written (γ − 1) times U for conventional reasons, because we will deal with
a few other cases later where the number in front of U will not be 2

3 , but will
be a different number. So, in order to do the thing in general, we call it γ − 1,
because people have been calling it that for almost one hundred years. This γ,
then, is 5

3 for a monatomic gas like helium, because 5
3 − 1 is 2

3 .
We have already noticed that when we compress a gas the work done is −P dV .

A compression in which there is no heat energy added or removed is called an
adiabatic compression, from the Greek a (not) + dia (through) + bainein (to
go). (The word adiabatic is used in physics in several ways, and it is sometimes
hard to see what is common about them.) That is, for an adiabatic compression
all the work done goes into changing the internal energy. That is the key—that
there are no other losses of energy—for then we have P dV = −dU . But since
U = PV/(γ − 1), we may write

dU = (P dV + V dP )/(γ − 1). (39.12)

So we have P dV = −(P dV +V dP )/(γ−1), or, rearranging the terms, γP dV =
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−V dP , or
(γ dV/V ) + (dP/P ) = 0. (39.13)

Fortunately, assuming that γ is constant, as it is for a monatomic gas, we
can integrate this: it gives γ lnV + lnP = lnC, where lnC is the constant of
integration. If we take the exponential of both sides, we get the law

PV γ = C (a constant). (39.14)

In other words, under adiabatic conditions, where the temperature rises as we
compress because no heat is being lost, the pressure times the volume to the
5
3 power is a constant for a monatomic gas! Although we derived it theoretically,
this is, in fact, the way monatomic gases behave experimentally.

39-3 Compressibility of radiation

We may give one other example of the kinetic theory of a gas, one which
is not used in chemistry so much, but is used in astronomy. We have a large
number of photons in a box in which the temperature is very high. (The box
is, of course, the gas in a very hot star. The sun is not hot enough; there are
still too many atoms, but at still higher temperatures in certain very hot stars,
we may neglect the atoms and suppose that the only objects that we have in
the box are photons.) Now then, a photon has a certain momentum p. (We
always find that we are in terrible trouble when we do kinetic theory: p is the
pressure, but p is the momentum; v is the volume, but v is the velocity; T is the
temperature, but T is the kinetic energy or the time or the torque; one must keep
one’s wits about one!) This p is momentum, it is a vector. Going through the
same analysis as before, it is the x-component of the vector p which generates
the “kick,” and twice the x-component of the vector p is the momentum which
is given in the kick. Thus 2px replaces 2mvx, and in evaluating the number of
collisions, vx is still vx, so when we get all the way through, we find that the
pressure in Eq. (39.4) is, instead,

P = 2npxvx. (39.15)

Then, in the averaging, it becomes n times the average of pxvx (the same factor
of 2) and, finally, putting in the other two directions, we find

PV = N〈p · v〉/3. (39.16)
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This checks with the formula (39.9), because the momentum is mv; it is a little
more general, that is all. The pressure times the volume is the total number of
atoms times 1

3 (p · v), averaged.
Now, for photons, what is p · v? The momentum and the velocity are in the

same direction, and the velocity is the speed of light, so this is the momentum of
each of the objects, times the speed of light. The momentum times the speed of
light of every photon is its energy: E = pc, so these terms are the energies of
each of the photons, and we should, of course, take an average energy, times the
number of photons. So we have 1

3 of the energy inside the gas:

PV = U/3 (photon gas). (39.17)

For photons, then, since we have 1
3 in front, (γ − 1) in (39.11) is 1

3 , or γ = 4
3 ,

and we have discovered that radiation in a box obeys the law

PV 4/3 = C. (39.18)

So we know the compressibility of radiation! That is what is used in an analysis
of the contribution of radiation pressure in a star, that is how we calculate it,
and how it changes when we compress it. What wonderful things are already
within our power!

39-4 Temperature and kinetic energy

So far we have not dealt with temperature; we have purposely been avoiding
the temperature. As we compress a gas, we know that the energy of the molecules
increases, and we are used to saying that the gas gets hotter; we would like
to understand what this has to do with the temperature. If we try to do the
experiment, not adiabatically but at what we call constant temperature, what are
we doing? We know that if we take two boxes of gas and let them sit next to
each other long enough, even if at the start they were at what we call different
temperatures, they will in the end come to the same temperature. Now what
does that mean? That means that they get to a condition that they would get
to if we left them alone long enough! What we mean by equal temperature is
just that—the final condition when things have been sitting around interacting
with each other long enough.

Let us consider, now, what happens if we have two gases in containers
separated by a movable piston as in Fig. 39-2 (just for simplicity we shall take
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(1) (2)

Fig. 39-2. Atoms of two different monatomic gases are separated by
a movable piston.

two monatomic gases, say helium and neon). In container (1) the atoms have
mass m1, velocity v1, and there are n1 per unit volume, and in the other container
the atoms have mass m2, velocity v2, there are n2 atoms per unit volume. What
are the conditions for equilibrium?

Obviously, the bombardment from the left side must be such that it moves
the piston to the right and compresses the other gas until its pressure builds up,
and the thing will thus slosh back and forth, and will gradually come to rest at a
place where the pressures are equal on both sides. So we can arrange that the
pressures are equal; that just means that the internal energies per unit volume are
equal, or that the numbers n times the average kinetic energies on each side are
equal. What we have to try to prove, eventually, is that the numbers themselves
are equal. So far, all we know is that the numbers times the kinetic energies are
equal,

n1〈m1v
2
1/2〉 = n2〈m2v

2
2/2〉,

from (39.8), because the pressures are equal. We must realize that this is not the
only condition over the long run, but something else must happen more slowly
as the true complete equilibrium corresponding to equal temperatures sets in.

To see the idea, suppose that the pressure on the left side were developed by
having a very high density but a low velocity. By having a large n and a small v,
we can get the same pressure as by having a small n and a large v. The atoms
may be moving slowly but be packed nearly solidly, or there may be fewer but
they are hitting harder. Will it stay like that forever? At first we might think so,
but then we think again and find we have forgotten one important point. That is,
that the intermediate piston does not receive a steady pressure; it wiggles, just
like the eardrum that we were first talking about, because the hangings are not
absolutely uniform. There is not a perpetual, steady pressure, but a tattoo—the
pressure varies, and so the thing jiggles. Suppose that the atoms on the right
side are not jiggling much, but those on the left are few and far between and very
energetic. The piston will, now and then, get a big impulse from the left, and will
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Fig. 39-3. A collision between unequal atoms, viewed in the CM
system. u1 = |v1 − vCM|, u2 = |v2 − vCM|.

be driven against the slow atoms on the right, giving them more speed. (As each
atom collides with the piston, it either gains or loses energy, depending upon
whether the piston is moving one way or the other when the atom strikes it.) So,
as a result of the collisions, the piston finds itself jiggling, jiggling, jiggling, and
this shakes the other gas—it gives energy to the other atoms, and they build up
faster motions, until they balance the jiggling that the piston is giving to them.
The system comes to some equilibrium where the piston is moving at such a
mean square speed that it picks up energy from the atoms at about the same
rate as it puts energy back into them. So the piston picks up a certain mean
irregularity in speed, and it is our problem to find it. When we do find it, we can
solve our problem better, because the gases will adjust their velocities until the
rate at which they are trying to pour energy into each other through the piston
will become equal.

It is quite difficult to figure out the details of the piston in this particular
circumstance; although it is ideally simple to understand, it turns out to be a
little harder to analyze. Before we analyze that, let us analyze another problem
in which we have a box of gas but now we have two different kinds of molecules
in it, having masses m1 and m2, velocities v1 and v2, and so forth; there is now
a much more intimate relationship. If all of the No. 2 molecules are standing
still, that condition is not going to last, because they get kicked by the No. 1
molecules and so pick up speed. If they are all going much faster than the No. 1
molecules, then maybe that will not last either—they will pass the energy back
to the No. 1 molecules. So when both gases are in the same box, the problem is
to find the rule that determines the relative speeds of the two.

This is still a very difficult problem, but we will solve it as follows. First we
consider the following sub-problem (again this is one of those cases where—never
mind the derivation—in the end the result is very simple to remember, but the
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derivation is just ingenious). Let us suppose that we have two molecules, of
different mass, colliding, and that the collision is viewed in the center-of-mass
(CM) system. In order to remove a complication, we look at the collision in the
CM. As we know from the laws of collision, by the conservation of momentum
and energy, after the molecules collide the only way they can move is such that
each maintains its own original speed—and they just change their direction. So
we have an average collision that looks like that in Fig. 39-3. Suppose, for a
moment, that we watch all the collisions with the CM at rest. Suppose we
imagine that they are all initially moving horizontally. Of course, after the first
collision some of them are moving at an angle. In other words, if they were all
going horizontally, then at least some would later be moving vertically. Now in
some other collision, they would be coming in from another direction, and then
they would be twisted at still another angle. So even if they were completely
organized in the beginning, they would get sprayed around at all angles, and
then the sprayed ones would get sprayed some more, and sprayed some more,
and sprayed some more. Ultimately, what will be the distribution? Answer: It
will be equally likely to find any pair moving in any direction in space. After that
further collisions could not change the distribution.

They are equally likely to go in all directions, but how do we say that? There
is of course no likelihood that they will go in any specific direction, because a
specific direction is too exact, so we have to talk about per unit “something.”
The idea is that any area on a sphere centered at a collision point will have just
as many molecules going through it as go through any other equal area on the
sphere. So the result of the collisions will be to distribute the directions so that
equal areas on a sphere will have equal probabilities.

Incidentally, if we just want to discuss the original direction and some other
direction an angle θ from it, it is an interesting property that the differential
area of a sphere of unit radius is sin θ dθ times 2π (see Fig. 32-1). And sin θ dθ
is the same as the differential of − cos θ. So what it means is that the cosine of
the angle θ between any two directions is equally likely to be anything from −1
to +1.

Next, we have to worry about the actual case, where we do not have the
collision in the CM system, but we have two atoms which are coming together
with vector velocities v1 and v2. What happens now? We can analyze this
collision with the vector velocities v1 and v2 in the following way: We first say
that there is a certain CM; the velocity of the CM is given by the “average”
velocity, with weights proportional to the masses, so the velocity of the CM
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is vCM = (m1v1 + m2v2)/(m1 + m2). If we watch this collision in the CM
system, then we see a collision just like that in Fig. 39-3, with a certain relative
velocity w coming in. The relative velocity is just v1 − v2. Now the idea is that,
first, the whole CM is moving, and in the CM there is a relative velocity w, and
the molecules collide and come off in some new direction. All this happens while
the CM keeps right on moving, without any change.

Now then, what is the distribution resulting from this? From our previous
argument we conclude this: that at equilibrium, all directions for w are equally
likely, relative to the direction of the motion of the CM.* There will be no
particular correlation, in the end, between the direction of the motion of the
relative velocity and that of the motion of the CM. Of course, if there were, the
collisions would spray it about, so it is all sprayed around. So the cosine of the
angle between w and vCM is zero on the average. That is,

〈w · vCM〉 = 0. (39.19)

But w · vCM can be expressed in terms of v1 and v2 as well:

w · vCM = (v1 − v2) · (m1v1 +m2v2)
m1 +m2

= (m1v
2
1 −m2v

2
2) + (m2 −m1)(v1 · v2)
m1 +m2

. (39.20)

First, let us look at the v1 · v2; what is the average of v1 · v2? That is, what
is the average of the component of velocity of one molecule in the direction of
another? Surely there is just as much likelihood of finding any given molecule
moving one way as another. The average of the velocity v2 in any direction is
zero. Certainly, then, in the direction of v1, v2 has zero average. So, the average
of v1 · v2 is zero! Therefore, we conclude that the average of m1v

2
1 must be equal

to the average of m2v
2
2 . That is, the average kinetic energy of the two must be

equal:
〈 12m1v

2
1〉 = 〈 12m2v

2
2〉. (39.21)

If we have two kinds of atoms in a gas, it can be shown, and we presume to have
shown it, that the average of the kinetic energy of one is the same as the average

* This argument, which was the one used by Maxwell, involves some subtleties. Although
the conclusion is correct, the result does not follow purely from the considerations of symmetry
that we used before, since, by going to a reference frame moving through the gas, we may find
a distorted velocity distribution. We have not found a simple proof of this result.
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of the kinetic energy of the other, when they are both in the same gas in the
same box in equilibrium. That means that the heavy ones will move slower than
the light ones; this is easily shown by experimentation with “atoms” of different
masses in an air trough.

Fig. 39-4. Two gases in a box with a semipermeable membrane.

Now we would like to go one step further, and say that if we have two different
gases separated in a box, they will also have equal average kinetic energy when
they have finally come to equilibrium, even though they are not in the same box.
We can make the argument in a number of ways. One way is to argue that if
we have a fixed partition with a tiny hole in it (Fig. 39-4) so that one gas could
leak out through the holes while the other could not, because the molecules are
too big, and these had attained equilibrium, then we know that in one part,
where they are mixed, they have the same average kinetic energy, but some come
through the hole without loss of kinetic energy, so the average kinetic energy in
the pure gas and in the mixture must be the same. That is not too satisfactory,
because maybe there are no holes, for this kind of molecule, that separate one
kind from the other.

Let us now go back to the piston problem. We can give an argument which
shows that the kinetic energy of this piston must also be 1

2m2v
2
2 . Actually, that

would be the kinetic energy due to the purely horizontal motion of the piston,
so, forgetting its up and down motion, it will have to be the same as 1

2m2v
2
2x .

Likewise, from the equilibrium on the other side, we can prove that the kinetic
energy of the piston is 1

2m1v
2
1x . Although this is not in the middle of the gas,

but is on one side of the gas, we can still make the argument, although it is a
little more difficult, that the average kinetic energy of the piston and of the gas
molecules are equal as a result of all the collisions.

If this still does not satisfy us, we may make an artificial example by which
the equilibrium is generated by an object which can be hit on all sides. Suppose
that we have a short rod with a ball on each end sticking through the piston, on
a frictionless sliding universal joint. Each ball is round, like one of the molecules,
and can be hit on all sides. This whole object has a certain total mass, m. Now,
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we have the gas molecules with mass m1 and mass m2 as before. The result of
the collisions, by the analysis that was made before, is that the kinetic energy
of m because of collisions with the molecules on one side must be 1

2m1v
2
1 , on

the average. Likewise, because of the collisions with molecules on the other side,
it has to be 1

2m2v
2
2 on the average. So, therefore, both sides have to have the

same kinetic energy when they are in thermal equilibrium. So, although we only
proved it for a mixture of gases, it is easily extended to the case where there are
two different, separate gases at the same temperature.

Thus when we have two gases at the same temperature, the mean kinetic
energy of the CM motions are equal.

The mean molecular kinetic energy is a property only of the “temperature.”
Being a property of the “temperature,” and not of the gas, we can use it as a
definition of the temperature. The mean kinetic energy of a molecule is thus
some function of the temperature. But who is to tell us what scale to use for
the temperature? We may arbitrarily define the scale of temperature so that
the mean energy is linearly proportional to the temperature. The best way to
do it would be to call the mean energy itself “the temperature.” That would
be the simplest possible function. Unfortunately, the scale of temperature has
been chosen differently, so instead of calling it temperature directly we use a
constant conversion factor between the energy of a molecule and a degree of
absolute temperature called a degree Kelvin. The constant of proportionality is
k = 1.38× 10−23 joule for every degree Kelvin.* So if T is absolute temperature,
our definition says that the mean molecular kinetic energy is 3

2kT . (The
3
2 is put

in as a matter of convenience, so as to get rid of it somewhere else.)
We point out that the kinetic energy associated with the component of motion

in any particular direction is only 1
2kT . The three independent directions that

are involved make it 3
2kT .

39-5 The ideal gas law

Now, of course, we can put our definition of temperature into Eq. (39.9) and
so find the law for the pressure of gases as a function of the temperature: it is
that the pressure times the volume is equal to the total number of atoms times
the universal constant k, times the temperature:

PV = NkT. (39.22)
* The centigrade scale is just this Kelvin scale with a zero chosen at 273.16 ◦K, so T =

273.16 + centigrade temperature.
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Furthermore, at the same temperature and pressure and volume, the number of
atoms is determined; it too is a universal constant! So equal volumes of different
gases, at the same pressure and temperature, have the same number of molecules,
because of Newton’s laws. That is an amazing conclusion!

In practice, when dealing with molecules, because the numbers are so large,
the chemists have artificially chosen a specific number, a very large number, and
called it something else. They have a number which they call a mole. A mole is
merely a handy number. Why they did not choose 1024 objects, so it would come
out even, is a historical question. They happened to choose, for the convenient
number of objects on which they standardize, N0 = 6.02× 1023 objects, and this
is called a mole of objects. So instead of measuring the number of molecules in
units, they measure in terms of numbers of moles.* In terms of N0 we can write
the number of moles, times the number of atoms in a mole, times kT , and if we
want to, we can take the number of atoms in a mole times k, which is a mole’s
worth of k, and call it something else, and we do—we call it R. A mole’s worth
of k is 8.317 joules: R = N0k = 8.317 J ·mole−1 · ◦K−1. Thus we also find the
gas law written as the number of moles (also called N) times RT , or the number
of atoms, times kT :

PV = NRT. (39.23)

It is the same thing, just a different scale for measuring numbers. We use 1 as a
unit, and chemists use 6× 1023 as a unit!

We now make one more remark about our gas law, and that has to do with
the law for objects other than monatomic molecules. We have dealt only with the
CM motion of the atoms of a monatomic gas. What happens if there are forces
present? First, consider the case that the piston is held by a horizontal spring,
and there are forces on it. The exchange of jiggling motion between atoms and
piston at any moment does not depend on where the piston is at that moment,
of course. The equilibrium conditions are the same. No matter where the piston
is, its speed of motion must be such that it passes energy to the molecules in just
the right way. So it makes no difference about the spring. The speed at which
the piston has to move, on the average, is the same. So our theorem, that the
mean value of the kinetic energy in one direction is 1

2kT , is true whether there
are forces present or not.

* What the chemists call molecular weights are the masses in grams of a mole of a molecule.
The mole is defined so that the mass of a mole of carbon atoms of isotope 12 (i.e., having
6 protons and 6 neutrons in the nucleus) is exactly 12 grams.
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Consider, for example, a diatomic molecule composed of atoms mA and mB .
What we have proved is that the motion of the CM of part A and that of part B
are such that 〈 12mAv

2
A〉 = 〈 12mBv

2
B〉 = 3

2kT . How can this be, if they are held
together? Although they are held together, when they are spinning and turning
in there, when something hits them, exchanging energy with them, the only
thing that counts is how fast they are moving. That alone determines how fast
they exchange energy in collisions. At the particular instant, the force is not an
essential point. Therefore the same principle is right, even when there are forces.

Let us prove, finally, that the gas law is consistent also with a disregard of
the internal motion. We did not really include the internal motions before; we
just treated a monatomic gas. But we shall now show that an entire object,
considered as a single body of total mass M , has a velocity of the CM such that〈 1

2Mv2
CM
〉

= 3
2kT. (39.24)

In other words, we can consider either the separate pieces or the whole thing! Let
us see the reason for that: The mass of the diatomic molecule is M = mA +mB ,
and the velocity of the center of mass is equal to vCM = (mAvA +mBvB)/M .
Now we need 〈v2

CM〉. If we square vCM, we get

v2
CM = m2

Av
2
A + 2mAmBvA · vB +m2

Bv
2
B

M2 .

Now we multiply 1
2M and take the average, and thus we get

〈 1
2Mv2

CM
〉

=
mA

3
2kT +mAmB〈vA · vB〉+mB

3
2kT

M

= 3
2kT + mAmB〈vA · vB〉

M
.

(We have used the fact that (mA + mB)/M = 1.) Now what is 〈vA · vB〉? (It
had better be zero!) To find out, let us use our assumption that the relative
velocity, w = vA − vB is not any more likely to point in one direction than in
another—that is, that its average component in any direction is zero. Thus we
assume that

〈w · vCM〉 = 0.
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But what is w · vCM? It is

w · vCM = (vA − vB) · (mAvA +mBvB)
M

= mAv
2
A + (mB −mA)(vA · vB)−mBv

2
B

M
.

Therefore, since 〈mAv
2
A〉 = 〈mBv

2
B〉, the first and last terms cancel out on the

average, and we are left with

(mB −mA)〈vA · vB〉 = 0.

Thus if mA 6= mB, we find that 〈vA · vB〉 = 0, and therefore that the bodily
motion of the entire molecule, regarded as a single particle of mass M , has a
kinetic energy, on the average, equal to 3

2kT .
Incidentally, we have also proved at the same time that the average kinetic

energy of the internal motions of the diatomic molecule, disregarding the bodily
motion of the CM, is 3

2kT ! For, the total kinetic energy of the parts of the
molecule is 1

2mAv
2
A + 1

2mBv
2
B , whose average is 3

2kT + 3
2kT , or 3kT . The kinetic

energy of the center-of-mass motion is 3
2kT , so the average kinetic energy of the

rotational and vibratory motions of the two atoms inside the molecule is the
difference, 3

2kT .
The theorem concerning the average energy of the CM motion is general: for

any object considered as a whole, with forces present or no, for every independent
direction of motion that there is, the average kinetic energy in that motion is 1

2kT .
These “independent directions of motion” are sometimes called the degrees of
freedom of the system. The number of degrees of freedom of a molecule composed
of r atoms is 3r, since each atom needs three coordinates to define its position.
The entire kinetic energy of the molecule can be expressed either as the sum of
the kinetic energies of the separate atoms, or as the sum of the kinetic energy of
the CM motion plus the kinetic energy of the internal motions. The latter can
sometimes be expressed as a sum of rotational kinetic energy of the molecule and
vibrational energy, but this is an approximation. Our theorem, applied to the
r-atom molecule, says that the molecule will have, on the average, 3rkT/2 joules
of kinetic energy, of which 3

2kT is kinetic energy of the center-of-mass motion of
the entire molecule, and the rest, 3

2 (r−1)kT , is internal vibrational and rotational
kinetic energy.
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40

The Principles of Statistical Mechanics

40-1 The exponential atmosphere

We have discussed some of the properties of large numbers of intercolliding
atoms. The subject is called kinetic theory, a description of matter from the point
of view of collisions between the atoms. Fundamentally, we assert that the gross
properties of matter should be explainable in terms of the motion of its parts.

We limit ourselves for the present to conditions of thermal equilibrium, that is,
to a subclass of all the phenomena of nature. The laws of mechanics which apply
just to thermal equilibrium are called statistical mechanics, and in this section
we want to become acquainted with some of the central theorems of this subject.

We already have one of the theorems of statistical mechanics, namely, the
mean value of the kinetic energy for any motion at the absolute temperature T
is 1

2kT for each independent motion, i.e., for each degree of freedom. That tells
us something about the mean square velocities of the atoms. Our objective now
is to learn more about the positions of the atoms, to discover how many of them
are going to be in different places at thermal equilibrium, and also to go into
a little more detail on the distribution of the velocities. Although we have the
mean square velocity, we do not know how to answer a question such as how
many of them are going three times faster than the root mean square, or how
many of them are going one-quarter of the root mean square speed. Or have they
all the same speed exactly?

So, these are the two questions that we shall try to answer: How are the
molecules distributed in space when there are forces acting on them, and how
are they distributed in velocity?

It turns out that the two questions are completely independent, and that
the distribution of velocities is always the same. We already received a hint
of the latter fact when we found that the average kinetic energy is the same,
1
2kT per degree of freedom, no matter what forces are acting on the molecules.
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The distribution of the velocities of the molecules is independent of the forces,
because the collision rates do not depend upon the forces.

Let us begin with an example: the distribution of the molecules in an at-
mosphere like our own, but without the winds and other kinds of disturbance.
Suppose that we have a column of gas extending to a great height, and at thermal
equilibrium—unlike our atmosphere, which as we know gets colder as we go up.
We could remark that if the temperature differed at different heights, we could
demonstrate lack of equilibrium by connecting a rod to some balls at the bottom
(Fig. 40-1), where they would pick up 1

2kT from the molecules there and would
shake, via the rod, the balls at the top and those would shake the molecules
at the top. So, ultimately, of course, the temperature becomes the same at all
heights in a gravitational field.

Mechanism
for equalizing
temperature

h + dh

h

g

Fig. 40-1. The pressure at height h must exceed that at h + dh by
the weight of the intervening gas.

If the temperature is the same at all heights, the problem is to discover by
what law the atmosphere becomes tenuous as we go up. If N is the total number
of molecules in a volume V of gas at pressure P , then we know PV = NkT ,
or P = nkT , where n = N/V is the number of molecules per unit volume. In
other words, if we know the number of molecules per unit volume, we know
the pressure, and vice versa: they are proportional to each other, since the
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temperature is constant in this problem. But the pressure is not constant, it
must increase as the altitude is reduced, because it has to hold, so to speak, the
weight of all the gas above it. That is the clue by which we may determine how
the pressure changes with height. If we take a unit area at height h, then the
vertical force from below, on this unit area, is the pressure P . The vertical force
per unit area pushing down at a height h+ dh would be the same, in the absence
of gravity, but here it is not, because the force from below must exceed the force
from above by the weight of gas in the section between h and h+ dh. Now mg is
the force of gravity on each molecule, where g is the acceleration due to gravity,
and ndh is the total number of molecules in the unit section. So this gives us
the differential equation Ph+dh − Ph = dP = −mgndh. Since P = nkT , and T
is constant, we can eliminate either P or n, say P , and get

dn

dh
= −mg

kT
n

for the differential equation, which tells us how the density goes down as we go
up in energy.

We thus have an equation for the particle density n, which varies with height,
but which has a derivative which is proportional to itself. Now a function which
has a derivative proportional to itself is an exponential, and the solution of this
differential equation is

n = n0e
−mgh/kT . (40.1)

Here the constant of integration, n0, is obviously the density at h = 0 (which
can be chosen anywhere), and the density goes down exponentially with height.

Note that if we have different kinds of molecules with different masses, they
go down with different exponentials. The ones which were heavier would decrease
with altitude faster than the light ones. Therefore we would expect that because
oxygen is heavier than nitrogen, as we go higher and higher in an atmosphere
with nitrogen and oxygen the proportion of nitrogen would increase. This does
not really happen in our own atmosphere, at least at reasonable heights, because
there is so much agitation which mixes the gases back together again. It is not
an isothermal atmosphere. Nevertheless, there is a tendency for lighter materials,
like hydrogen, to dominate at very great heights in the atmosphere, because the
lowest masses continue to exist, while the other exponentials have all died out
(Fig. 40-2).
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Fig. 40-2. The normalized density as a function of height in the earth’s
gravitational field for oxygen and for hydrogen, at constant temperature.

40-2 The Boltzmann law

Here we note the interesting fact that the numerator in the exponent of
Eq. (40.1) is the potential energy of an atom. Therefore we can also state this
particular law as: the density at any point is proportional to

e−the potential energy of each atom/kT .

That may be an accident, i.e., may be true only for this particular case of
a uniform gravitational field. However, we can show that it is a more general
proposition. Suppose that there were some kind of force other than gravity acting
on the molecules in a gas. For example, the molecules may be charged electrically,
and may be acted on by an electric field or another charge that attracts them.
Or, because of the mutual attractions of the atoms for each other, or for the wall,
or for a solid, or something, there is some force of attraction which varies with
position and which acts on all the molecules. Now suppose, for simplicity, that
the molecules are all the same, and that the force acts on each individual one, so
that the total force on a piece of gas would be simply the number of molecules
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times the force on each one. To avoid unnecessary complication, let us choose a
coordinate system with the x-axis in the direction of the force, F .

In the same manner as before, if we take two parallel planes in the gas,
separated by a distance dx, then the force on each atom, times the n atoms per
cm3 (the generalization of the previous nmg), times dx, must be balanced by the
pressure change: Fndx = dP = kT dn. Or, to put this law in a form which will
be useful to us later,

F = kT
d

dx
(lnn). (40.2)

For the present, observe that −F dx is the work we would do in taking a molecule
from x to x+ dx, and if F comes from a potential, i.e., if the work done can be
represented by a potential energy at all, then this would also be the difference in
the potential energy (P.E.). The negative differential of potential energy is the
work done, F dx, and we find that d(lnn) = −d(P.E.)/kT , or, after integrating,

n = (constant)e−P.E./kT . (40.3)

Therefore what we noticed in a special case turns out to be true in general.
(What if F does not come from a potential? Then (40.2) has no solution at all.
Energy can be generated, or lost by the atoms running around in cyclic paths
for which the work done is not zero, and no equilibrium can be maintained at
all. Thermal equilibrium cannot exist if the external forces on the atoms are
not conservative.) Equation (40.3), known as Boltzmann’s law, is another of the
principles of statistical mechanics: that the probability of finding molecules in a
given spatial arrangement varies exponentially with the negative of the potential
energy of that arrangement, divided by kT .

This, then, could tell us the distribution of molecules: Suppose that we had a
positive ion in a liquid, attracting negative ions around it, how many of them
would be at different distances? If the potential energy is known as a function of
distance, then the proportion of them at different distances is given by this law,
and so on, through many applications.

40-3 Evaporation of a liquid

In more advanced statistical mechanics one tries to solve the following impor-
tant problem. Consider an assembly of molecules which attract each other, and
suppose that the force between any two, say i and j, depends only on their sepa-
ration rij , and can be represented as the derivative of a potential function V (rij).
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r0

P.E.
V (r)

Fig. 40-3. A potential-energy function for two molecules, which
depends only on their separation.

Figure 40-3 shows a form such a function might have. For r > r0, the energy
decreases as the molecules come together, because they attract, and then the
energy increases very sharply as they come still closer together, because they repel
strongly, which is characteristic of the way molecules behave, roughly speaking.

Now suppose we have a whole box full of such molecules, and we would like
to know how they arrange themselves on the average. The answer is e−P.E./kT .
The total potential energy in this case would be the sum over all the pairs,
supposing that the forces are all in pairs (there may be three-body forces in more
complicated things, but in electricity, for example, the potential energy is all in
pairs). Then the probability for finding molecules in any particular combination
of rij ’s will be proportional to

exp
[
−
∑
i,j

V (rij)/kT
]
.

Now, if the temperature is very high, so that kT � |V (r0)|, the exponent is
relatively small almost everywhere, and the probability of finding a molecule is
almost independent of position. Let us take the case of just two molecules: the
e−P.E./kT would be the probability of finding them at various mutual distances r.
Clearly, where the potential goes most negative, the probability is largest, and
where the potential goes toward infinity, the probability is almost zero, which
occurs for very small distances. That means that for such atoms in a gas, there
is no chance that they are on top of each other, since they repel so strongly.
But there is a greater chance of finding them per unit volume at the point r0
than at any other point. How much greater, depends on the temperature. If
the temperature is very large compared with the difference in energy between
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r = r0 and r =∞, the exponential is always nearly unity. In this case, where the
mean kinetic energy (about kT ) greatly exceeds the potential energy, the forces
do not make much difference. But as the temperature falls, the probability of
finding the molecules at the preferred distance r0 gradually increases relative to
the probability of finding them elsewhere and, in fact, if kT is much less than
|V (r0)|, we have a relatively large positive exponent in that neighborhood. In
other words, in a given volume they are much more likely to be at the distance
of minimum energy than far apart. As the temperature falls, the atoms fall
together, clump in lumps, and reduce to liquids, and solids, and molecules, and
as you heat them up they evaporate.

The requirements for the determination of exactly how things evaporate,
exactly how things should happen in a given circumstance, involve the following.
First, to discover the correct molecular-force law V (r), which must come from
something else, quantum mechanics, say, or experiment. But, given the law of
force between the molecules, to discover what a billion molecules are going to do
merely consists of studying the function e−

∑
Vij/kT . Surprisingly enough, since

it is such a simple function and such an easy idea, given the potential, the labor
is enormously complicated; the difficulty is the tremendous number of variables.

In spite of such difficulties, the subject is quite exciting and interesting. It is
often called an example of a “many-body problem,” and it really has been a very
interesting thing. In that single formula must be contained all the details, for
example, about the solidification of gas, or the forms of the crystals that the solid
can take, and people have been trying to squeeze it out, but the mathematical
difficulties are very great, not in writing the law, but in dealing with so enormous
a number of variables.

That then, is the distribution of particles in space. That is the end of classical
statistical mechanics, practically speaking, because if we know the forces, we
can, in principle, find the distribution in space, and the distribution of velocities
is something that we can work out once and for all, and is not something that
is different for the different cases. The great problems are in getting particular
information out of our formal solution, and that is the main subject of classical
statistical mechanics.

40-4 The distribution of molecular speeds

Now we go on to discuss the distribution of velocities, because sometimes
it is interesting or useful to know how many of them are moving at different
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speeds. In order to do that, we may make use of the facts which we discovered
with regard to the gas in the atmosphere. We take it to be a perfect gas, as we
have already assumed in writing the potential energy, disregarding the energy of
mutual attraction of the atoms. The only potential energy that we included in our
first example was gravity. We would, of course, have something more complicated
if there were forces between the atoms. Thus we assume that there are no forces
between the atoms and, for a moment, disregard collisions also, returning later
to the justification of this. Now we saw that there are fewer molecules at the
height h than there are at the height 0; according to formula (40.1), they decrease
exponentially with height. How can there be fewer at greater heights? After
all, do not all the molecules which are moving up at height 0 arrive at h? No!,
because some of those which are moving up at 0 are going too slowly, and cannot
climb the potential hill to h. With that clue, we can calculate how many must
be moving at various speeds, because from (40.1) we know how many are moving
with less than enough speed to climb a given distance h. Those are just the ones
that account for the fact that the density at h is lower than at 0.

Now let us put that idea a little more precisely: let us count how many
molecules are passing from below to above the plane h = 0 (by calling it
height = 0, we do not mean that there is a floor there; it is just a convenient label,
and there is gas at negative h). These gas molecules are moving around in every
direction, but some of them are moving through the plane, and at any moment a
certain number per second of them are passing through the plane from below to

h = 0

h = h

Fig. 40-4. Only those molecules moving up at h = 0 with sufficient
velocity can arrive at height h.
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above with different velocities. Now we note the following: if we call u the velocity
which is just needed to get up to the height h (kinetic energy mu2/2 = mgh),
then the number of molecules per second which are passing upward through
the lower plane in a vertical direction with velocity component greater than u
is exactly the same as the number which pass through the upper plane with
any upward velocity. Those molecules whose vertical velocity does not exceed u
cannot get through the upper plane. So therefore we see that

Number passing h = 0 with vz > u = number passing h = h with vz > 0.

But the number which pass through h with any velocity greater than 0 is less than
the number which pass through the lower height with any velocity greater than 0,
because the number of atoms is greater; that is all we need. We know already
that the distribution of velocities is the same, after the argument we made earlier
about the temperature being constant all the way through the atmosphere. So,
since the velocity distributions are the same, and it is just that there are more
atoms lower down, clearly the number n>0(h), passing with positive velocity at
height h, and the number n>0(0), passing with positive velocity at height 0, are
in the same ratio as the densities at the two heights, which is e−mgh/kT . But
n>0(h) = n>u(0), and therefore we find that

n>u(0)
n>0(0) = e−mgh/kT = e−mu

2/2kT ,

since 1
2mu

2 = mgh. Thus, in words, the number of molecules per unit area
per second passing the height 0 with a z-component of velocity greater than u
is e−mu2/2kT times the total number that are passing through the plane with
velocity greater than zero.

Now this is not only true at the arbitrarily chosen height 0, but of course it
is true at any other height, and thus the distributions of velocities are all the
same! (The final statement does not involve the height h, which appeared only
in the intermediate argument.) The result is a general proposition that gives us
the distribution of velocities. It tells us that if we drill a little hole in the side
of a gas pipe, a very tiny hole, so that the collisions are few and far between,
i.e., are farther apart than the diameter of the hole, then the particles which are
coming out will have different velocities, but the fraction of particles which come
out at a velocity greater than u is e−mu2/2kT .
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Now we return to the question about the neglect of collisions: Why does it
not make any difference? We could have pursued the same argument, not with a
finite height h, but with an infinitesimal height h, which is so small that there
would be no room for collisions between 0 and h. But that was not necessary:
the argument is evidently based on an analysis of the energies involved, the
conservation of energy, and in the collisions that occur there is an exchange of
energies among the molecules. However, we do not really care whether we follow
the same molecule if energy is merely exchanged with another molecule. So it
turns out that even if the problem is analyzed more carefully (and it is more
difficult, naturally, to do a rigorous job), it still makes no difference in the result.

It is interesting that the velocity distribution we have found is just

n>u ∝ e−kinetic energy/kT . (40.4)

This way of describing the distribution of velocities, by giving the number
of molecules that pass a given area with a certain minimum z-component, is
not the most convenient way of giving the velocity distribution. For instance,
inside the gas, one more often wants to know how many molecules are moving
with a z-component of velocity between two given values, and that, of course, is
not directly given by Eq. (40.4). We would like to state our result in the more
conventional form, even though what we already have written is quite general.
Note that it is not possible to say that any molecule has exactly some stated
velocity; none of them has a velocity exactly equal to 1.7962899173 meters per
second. So in order to make a meaningful statement, we have to ask how many are
to be found in some range of velocities. We have to say how many have velocities
between 1.796 and 1.797, and so on. On mathematical terms, let f(u) du be
the fraction of all the molecules which have velocities between u and u+ du or,
what is the same thing (if du is infinitesimal), all that have a velocity u with
a range du. Figure 40-5 shows a possible form for the function f(u), and the
shaded part, of width du and mean height f(u), represents this fraction f(u) du.
That is, the ratio of the shaded area to the total area of the curve is the relative
proportion of molecules with velocity u within du. If we define f(u) so that the
fraction having a velocity in this range is given directly by the shaded area, then
the total area must be 100 percent of them, that is,∫ ∞

−∞
f(u) du = 1. (40.5)
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u
du

f (u)

Fig. 40-5. A velocity distribution function. The shaded area is f (u) du,
the fraction of particles having velocities within a range du about u.

Now we have only to get this distribution by comparing it with the theorem
we derived before. First we ask, what is the number of molecules passing through
an area per second with a velocity greater than u, expressed in terms of f(u)? At
first we might think it is merely the integral of

∫∞
u
f(u) du, but it is not, because

we want the number that are passing the area per second. The faster ones pass
more often, so to speak, than the slower ones, and in order to express how many
pass, you have to multiply by the velocity. (We discussed that in the previous
chapter when we talked about the number of collisions.) In a given time t the
total number which pass through the surface is all of those which have been able
to arrive at the surface, and the number which arrive come from a distance ut.
So the number of molecules which arrive is not simply the number which are
there, but the number that are there per unit volume, multiplied by the distance
that they sweep through in racing for the area through which they are supposed
to go, and that distance is proportional to u. Thus we need the integral of u
times f(u) du, an infinite integral with a lower limit u, and this must be the same
as we found before, namely e−mu2/2kT , with a proportionality constant which
we will get later: ∫ ∞

u

uf(u) du = const · e−mu
2/2kT . (40.6)

Now if we differentiate the integral with respect to u, we get the thing that
is inside the integral, i.e., the integrand (with a minus sign, since u is the lower
limit), and if we differentiate the other side, we get u times the same exponential
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(and some constants). The u’s cancel and we find

f(u) du = Ce−mu
2/2kT du. (40.7)

We retain the du on both sides as a reminder that it is a distribution, and it tells
what the proportion is for velocity between u and u+ du.

The constant C must be so determined that the integral is unity, according
to Eq. (40.5). Now we can prove* that∫ ∞

−∞
e−x

2
dx =

√
π.

Using this fact, it is easy to find that C =
√
m/2πkT .

Since velocity and momentum are proportional, we may say that the distribu-
tion of momenta is also proportional to e−K.E./kT per unit momentum range. It
turns out that this theorem is true in relativity too, if it is in terms of momentum,
while if it is in velocity it is not, so it is best to learn it in momentum instead of
in velocity:

f(p) dp = Ce−K.E./kT dp. (40.8)
So we find that the probabilities of different conditions of energy, kinetic and
potential, are both given by e−energy/kT , a very easy thing to remember and a
rather beautiful proposition.

So far we have, of course, only the distribution of the velocities “vertically.”
We might want to ask, what is the probability that a molecule is moving in
another direction? Of course these distributions are connected, and one can
obtain the complete distribution from the one we have, because the complete
distribution depends only on the square of the magnitude of the velocity, not
upon the z-component. It must be something that is independent of direction,

* To get the value of the integral, let

I =
∫∞
−∞ e−x

2
dx.

Then
I2 =

∫∞
−∞ e−x

2
dx ·
∫∞
−∞ e−y

2
dy =

∫∞
−∞

∫∞
−∞ e−(x2+y2) dy dx,

which is a double integral over the whole xy-plane. But this can also be written in polar
coordinates as

I2 =
∫∞

0 e−r
2 · 2πr dr = π

∫∞
0 e−t dt = π.
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and there is only one function involved, the probability of different magnitudes.
We have the distribution of the z-component, and therefore we can get the
distribution of the other components from it. The result is that the probability
is still proportional to e−K.E/kT , but now the kinetic energy involves three parts,
mv2

x/2, mv2
y/2, and mv2

z/2, summed in the exponent. Or we can write it as a
product:

f(vx, vy, vz) dvx dvy dvz
∝ e−mv

2
x/2kT · e−mv

2
y/2kT · e−mv

2
z/2kT dvx dvy dvz. (40.9)

You can see that this formula must be right because, first, it is a function only
of v2, as required, and second, the probabilities of various values of vz obtained
by integrating over all vx and vy is just (40.7). But this one function (40.9) can
do both those things!

40-5 The specific heats of gases

Now we shall look at some ways to test the theory, and to see how successful
is the classical theory of gases. We saw earlier that if U is the internal energy
of N molecules, then PV = NkT = (γ − 1)U holds, sometimes, for some gases,
maybe. If it is a monatomic gas, we know this is also equal to 2

3 of the kinetic
energy of the center-of-mass motion of the atoms. If it is a monatomic gas, then
the kinetic energy is equal to the internal energy, and therefore γ − 1 = 2

3 . But
suppose it is, say, a more complicated molecule, that can spin and vibrate, and
let us suppose (it turns out to be true according to classical mechanics) that
the energies of the internal motions are also proportional to kT . Then at a
given temperature, in addition to kinetic energy 3

2kT , it has internal vibrational
and rotational energies. So the total U includes not just the kinetic energy, but
also the rotational and vibrational energies, and we get a different value of γ.
Technically, the best way to measure γ is by measuring the specific heat, which
is the change in energy with temperature. We will return to that approach later.
For our present purposes, we may suppose γ is found experimentally from the
PV γ curve for adiabatic compression.

Let us make a calculation of γ for some cases. First, for a monatomic gas U
is the total energy, the same as the kinetic energy, and we know already that γ
should be 5

3 . For a diatomic gas, we may take, as an example, oxygen, hydrogen
iodide, hydrogen, etc., and suppose that the diatomic gas can be represented
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as two atoms held together by some kind of force like the one of Fig. 40-3. We
may also suppose, and it turns out to be quite true, that at the temperatures
that are of interest for the diatomic gas, the pairs of atoms tend strongly to be
separated by r0, the distance of potential minimum. If this were not true, if the
probability were not strongly varying enough to make the great majority sit near
the bottom, we would have to remember that oxygen gas is a mixture of O2 and
single oxygen atoms in a nontrivial ratio. We know that there are, in fact, very
few single oxygen atoms, which means that the potential energy minimum is very
much greater in magnitude than kT , as we have seen. Since they are clustered
strongly around r0, the only part of the curve that is needed is the part near
the minimum, which may be approximated by a parabola. A parabolic potential
implies a harmonic oscillator, and in fact, to an excellent approximation, the
oxygen molecule can be represented as two atoms connected by a spring.

Now what is the total energy of this molecule at temperature T? We know
that for each of the two atoms, each of the kinetic energies should be 3

2kT , so
the kinetic energy of both of them is 3

2kT + 3
2kT . We can also put this in a

different way: the same 3
2 plus 3

2 can also be looked at as kinetic energy of the
center of mass (3

2 ), kinetic energy of rotation ( 2
2 ), and kinetic energy of vibration

( 1
2 ). We know that the kinetic energy of vibration is 1

2 , since there is just one
dimension involved and each degree of freedom has 1

2kT . Regarding the rotation,
it can turn about either of two axes, so there are two independent motions. We
assume that the atoms are some kind of points, and cannot spin about the line
joining them; this is something to bear in mind, because if we get a disagreement,
maybe that is where the trouble is. But we have one more thing, which is the
potential energy of vibration; how much is that? In a harmonic oscillator the
average kinetic energy and average potential energy are equal, and therefore the
potential energy of vibration is 1

2kT , also. The grand total of energy is U = 7
2kT ,

or kT is 2
7U per atom. That means, then, that γ is 9

7 instead of 5
3 , i.e., γ = 1.286.

We may compare these numbers with the relevant measured values shown
in Table 40-1. Looking first at helium, which is a monatomic gas, we find
very nearly 5

3 , and the error is probably experimental, although at such a low
temperature there may be some forces between the atoms. Krypton and argon,
both monatomic, agree also within the accuracy of the experiment.

We turn to the diatomic gases and find hydrogen with 1.404, which does not
agree with the theory, 1.286. Oxygen, 1.399, is very similar, but again not in
agreement. Hydrogen iodide again is similar at 1.40. It begins to look as though
the right answer is 1.40, but it is not, because if we look further at bromine
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Table 40-1

Values of the specific heat ratio, γ, for various gases

Gas T (◦C) γ

He −180 1.660
Kr 19 1.68
Ar 15 1.668
H2 100 1.404
O2 100 1.399
HI 100 1.40
Br2 300 1.32
I2 185 1.30
NH3 15 1.310
C2H6 15 1.22

we see 1.32, and at iodine we see 1.30. Since 1.30 is reasonably close to 1.286,
iodine may be said to agree rather well, but oxygen is far off. So here we have a
dilemma. We have it right for one molecule, we do not have it right for another
molecule, and we may need to be pretty ingenious in order to explain both.

Let us look further at a still more complicated molecule with large numbers
of parts, for example, C2H6, which is ethane. It has eight different atoms, and
they are all vibrating and rotating in various combinations, so the total amount
of internal energy must be an enormous number of kT ’s, at least 12kT for kinetic
energy alone, and γ− 1 must be very close to zero, or γ almost exactly 1. In fact,
it is lower, but 1.22 is not so much lower, and is higher than the 1 1

12 calculated
from the kinetic energy alone, and it is just not understandable!

Furthermore, the whole mystery is deep, because the diatomic molecule
cannot be made rigid by a limit. Even if we made the couplings stiffer indefinitely,
although it might not vibrate much, it would nevertheless keep vibrating. The
vibrational energy inside is still kT , since it does not depend on the strength of
the coupling. But if we could imagine absolute rigidity, stopping all vibration to
eliminate a variable, then we would get U = 5

2kT and γ = 1.40 for the diatomic
case. This looks good for H2 or O2. On the other hand, we would still have
problems, because γ for either hydrogen or oxygen varies with temperature! From
the measured values shown in Fig. 40-6, we see that for H2, γ varies from about
1.6 at −185◦C to 1.3 at 2000◦C. The variation is more substantial in the case of
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Fig. 40-6. Experimental values of γ as a function of temperature for
hydrogen and oxygen. Classical theory predicts γ = 1.286, independent
of temperature.

hydrogen than for oxygen, but nevertheless, even in oxygen, γ tends definitely to
go up as we go down in temperature.

40-6 The failure of classical physics

So, all in all, we might say that we have some difficulty. We might try some
force law other than a spring, but it turns out that anything else will only make
γ higher. If we include more forms of energy, γ approaches unity more closely,
contradicting the facts. All the classical theoretical things that one can think of
will only make it worse. The fact is that there are electrons in each atom, and
we know from their spectra that there are internal motions; each of the electrons
should have at least 1

2kT of kinetic energy, and something for the potential energy,
so when these are added in, γ gets still smaller. It is ridiculous. It is wrong.

The first great paper on the dynamical theory of gases was by Maxwell in
1859. On the basis of ideas we have been discussing, he was able accurately to
explain a great many known relations, such as Boyle’s law, the diffusion theory,
the viscosity of gases, and things we shall talk about in the next chapter. He listed
all these great successes in a final summary, and at the end he said, “Finally, by
establishing a necessary relation between the motions of translation and rotation
(he is talking about the 1

2kT theorem) of all particles not spherical, we proved
that a system of such particles could not possibly satisfy the known relation
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between the two specific heats.” He is referring to γ (which we shall see later is
related to two ways of measuring specific heat), and he says we know we cannot
get the right answer.

Ten years later, in a lecture, he said, “I have now put before you what I
consider to be the greatest difficulty yet encountered by the molecular theory.”
These words represent the first discovery that the laws of classical physics were
wrong. This was the first indication that there was something fundamentally
impossible, because a rigorously proved theorem did not agree with experiment.
About 1890, Jeans was to talk about this puzzle again. One often hears it said
that physicists at the latter part of the nineteenth century thought they knew all
the significant physical laws and that all they had to do was to calculate more
decimal places. Someone may have said that once, and others copied it. But a
thorough reading of the literature of the time shows they were all worrying about
something. Jeans said about this puzzle that it is a very mysterious phenomenon,
and it seems as though as the temperature falls, certain kinds of motions “freeze
out.”

If we could assume that the vibrational motion, say, did not exist at low
temperature and did exist at high temperature, then we could imagine that a gas
might exist at a temperature sufficiently low that vibrational motion does not
occur, so γ = 1.40, or a higher temperature at which it begins to come in, so γ
falls. The same might be argued for the rotation. If we can eliminate the rotation,
say it “freezes out” at sufficiently low temperature, then we can understand the
fact that the γ of hydrogen approaches 1.66 as we go down in temperature. How
can we understand such a phenomenon? Of course that these motions “freeze
out” cannot be understood by classical mechanics. It was only understood when
quantum mechanics was discovered.

Without proof, we may state the results for statistical mechanics of the
quantum-mechanical theory. We recall that according to quantum mechanics, a
system which is bound by a potential, for the vibrations, for example, will have
a discrete set of energy levels, i.e., states of different energy. Now the question
is: how is statistical mechanics to be modified according to quantum-mechanical
theory? It turns out, interestingly enough, that although most problems are
more difficult in quantum mechanics than in classical mechanics, problems in
statistical mechanics are much easier in quantum theory! The simple result we
have in classical mechanics, that n = n0e

−energy/kT , becomes the following very
important theorem: If the energies of the set of molecular states are called, say,
E0, E1, E2, . . . , Ei, . . . , then in thermal equilibrium the probability of finding a
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molecule in the particular state of having energy Ei is proportional to e−Ei/kT .
That gives the probability of being in various states. In other words, the relative
chance, the probability, of being in state E1 relative to the chance of being in
state E0, is

P1

P0
= e−E1/kT

e−E0/kT
, (40.10)

which, of course, is the same as

n1 = n0e
−(E1−E0)/kT , (40.11)

since P1 = n1/N and P0 = n0/N . So it is less likely to be in a higher energy state
than in a lower one. The ratio of the number of atoms in the upper state to the
number in the lower state is e raised to the power (minus the energy difference,
over kT )—a very simple proposition.

Now it turns out that for a harmonic oscillator the energy levels are evenly
spaced. Calling the lowest energy E0 = 0 (it actually is not zero, it is a little
different, but it does not matter if we shift all energies by a constant), the first
one is then E1 = ~ω, and the second one is 2~ω, and the third one is 3~ω, and
so on.

Now let us see what happens. We suppose we are studying the vibrations
of a diatomic molecule, which we approximate as a harmonic oscillator. Let
us ask what is the relative chance of finding a molecule in state E1 instead of
in state E0. The answer is that the chance of finding it in state E1, relative
to that of finding it in state E0, goes down as e−~ω/kT . Now suppose that kT
is much less than ~ω, and we have a low-temperature circumstance. Then the
probability of its being in state E1 is extremely small. Practically all the atoms
are in state E0. If we change the temperature but still keep it very small, then
the chance of its being in state E1 = ~ω remains infinitesimal—the energy of the
oscillator remains nearly zero; it does not change with temperature so long as the
temperature is much less than ~ω. All oscillators are in the bottom state, and
their motion is effectively “frozen”; there is no contribution of it to the specific
heat. We can judge, then, from Table 40-1, that at 100◦C, which is 373 degrees
absolute, kT is much less than the vibrational energy in the oxygen or hydrogen
molecules, but not so in the iodine molecule. The reason for the difference is
that an iodine atom is very heavy, compared with hydrogen, and although the
forces may be comparable in iodine and hydrogen, the iodine molecule is so
heavy that the natural frequency of vibration is very low compared with the
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natural frequency of hydrogen. With ~ω higher than kT at room temperature
for hydrogen, but lower for iodine, only the latter, iodine, exhibits the classical
vibrational energy. As we increase the temperature of a gas, starting from a very
low value of T , with the molecules almost all in their lowest state, they gradually
begin to have an appreciable probability to be in the second state, and then in
the next state, and so on. When the probability is appreciable for many states,
the behavior of the gas approaches that given by classical physics, because the
quantized states become nearly indistinguishable from a continuum of energies,
and the system can have almost any energy. Thus, as the temperature rises,
we should again get the results of classical physics, as indeed seems to be the
case in Fig. 40-6. It is possible to show in the same way that the rotational
states of atoms are also quantized, but the states are so much closer together
that in ordinary circumstances kT is bigger than the spacing. Then many levels
are excited, and the rotational kinetic energy in the system participates in the
classical way. The one example where this is not quite true at room temperature
is for hydrogen.

This is the first time that we have really deduced, by comparison with
experiment, that there was something wrong with classical physics, and we have
looked for a resolution of the difficulty in quantum mechanics in much the same
way as it was done originally. It took 30 or 40 years before the next difficulty was
discovered, and that had to do again with statistical mechanics, but this time
the mechanics of a photon gas. That problem was solved by Planck, in the early
years of the 20th century.
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41

The Brownian Movement

41-1 Equipartition of energy

The Brownian movement was discovered in 1827 by Robert Brown, a botanist.
While he was studying microscopic life, he noticed little particles of plant pollens
jiggling around in the liquid he was looking at in the microscope, and he was
wise enough to realize that these were not living, but were just little pieces of
dirt moving around in the water. In fact he helped to demonstrate that this
had nothing to do with life by getting from the ground an old piece of quartz in
which there was some water trapped. It must have been trapped for millions and
millions of years, but inside he could see the same motion. What one sees is that
very tiny particles are jiggling all the time.

This was later proved to be one of the effects of molecular motion, and we
can understand it qualitatively by thinking of a great push ball on a playing field,
seen from a great distance, with a lot of people underneath, all pushing the ball
in various directions. We cannot see the people because we imagine that we are
too far away, but we can see the ball, and we notice that it moves around rather
irregularly. We also know, from the theorems that we have discussed in previous
chapters, that the mean kinetic energy of a small particle suspended in a liquid
or a gas will be 3

2kT even though it is very heavy compared with a molecule. If
it is very heavy, that means that the speeds are relatively slow, but it turns out,
actually, that the speed is not really so slow. In fact, we cannot see the speed
of such a particle very easily because although the mean kinetic energy is 3

2kT ,
which represents a speed of a millimeter or so per second for an object a micron
or two in diameter, this is very hard to see even in a microscope, because the
particle continuously reverses its direction and does not get anywhere. How far
it does get we will discuss at the end of the present chapter. This problem was
first solved by Einstein at the beginning of the 20th century.
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Incidentally, when we say that the mean kinetic energy of this particle is 3
2kT ,

we claim to have derived this result from the kinetic theory, that is, from Newton’s
laws. We shall find that we can derive all kinds of things—marvelous things—from
the kinetic theory, and it is most interesting that we can apparently get so much
from so little. Of course we do not mean that Newton’s laws are “little”—they
are enough to do it, really—what we mean is that we did not do very much. How
do we get so much out? The answer is that we have been perpetually making
a certain important assumption, which is that if a given system is in thermal
equilibrium at some temperature, it will also be in thermal equilibrium with
anything else at the same temperature. For instance, if we wanted to see how
a particle would move if it was really colliding with water, we could imagine
that there was a gas present, composed of another kind of particle, little fine
pellets that (we suppose) do not interact with water, but only hit the particle
with “hard” collisions. Suppose the particle has a prong sticking out of it; all
our pellets have to do is hit the prong. We know all about this imaginary gas of
pellets at temperature T—it is an ideal gas. Water is complicated, but an ideal
gas is simple. Now, our particle has to be in equilibrium with the gas of pellets.
Therefore, the mean motion of the particle must be what we get for gaseous
collisions, because if it were not moving at the right speed relative to the water
but, say, was moving faster, that would mean that the pellets would pick up
energy from it and get hotter than the water. But we had started them at the
same temperature, and we assume that if a thing is once in equilibrium, it stays in
equilibrium—parts of it do not get hotter and other parts colder, spontaneously.

This proposition is true and can be proved from the laws of mechanics, but
the proof is very complicated and can be established only by using advanced
mechanics. It is much easier to prove in quantum mechanics than it is in classical
mechanics. It was proved first by Boltzmann, but for now we simply take it to
be true, and then we can argue that our particle has to have 3

2kT of energy if it
is hit with artificial pellets, so it also must have 3

2kT when it is being hit with
water at the same temperature and we take away the pellets; so it is 3

2kT . It is a
strange line of argument, but perfectly valid.

In addition to the motion of colloidal particles for which the Brownian move-
ment was first discovered, there are a number of other phenomena, both in the
laboratory and in other situations, where one can see Brownian movement. If we
are trying to build the most delicate possible equipment, say a very small mirror
on a thin quartz fiber for a very sensitive ballistic galvanometer (Fig. 41-1), the
mirror does not stay put, but jiggles all the time—all the time—so that when we
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Fig. 41-1. (a) A sensitive light-beam galvanometer. Light from a
source L is reflected from a small mirror onto a scale. (b) A schematic
record of the reading of the scale as a function of the time.

shine a light on it and look at the position of the spot, we do not have a perfect
instrument because the mirror is always jiggling. Why? Because the average
kinetic energy of rotation of this mirror has to be, on the average, 1

2kT .
What is the mean-square angle over which the mirror will wobble? Suppose we

find the natural vibration period of the mirror by tapping on one side and seeing
how long it takes to oscillate back and forth, and we also know the moment of
inertia, I. We know the formula for the kinetic energy of rotation—it is given by
Eq. (19.8): T = 1

2Iω
2. That is the kinetic energy, and the potential energy that

goes with it will be proportional to the square of the angle—it is V = 1
2αθ

2. But,
if we know the period t0 and calculate from that the natural frequency ω0 = 2π/t0,
then the potential energy is V = 1

2Iω
2
0θ

2. Now we know that the average kinetic
energy is 1

2kT , but since it is a harmonic oscillator the average potential energy
is also 1

2kT . Thus
1
2Iω

2
0〈θ2〉 = 1

2kT,

or
〈θ2〉 = kT/Iω2

0 . (41.1)

In this way we can calculate the oscillations of a galvanometer mirror, and thereby
find what the limitations of our instrument will be. If we want to have smaller
oscillations, we have to cool the mirror. An interesting question is, where to cool
it. This depends upon where it is getting its “kicks” from. If it is through the
fiber, we cool it at the top—if the mirror is surrounded by a gas and is getting hit
mostly by collisions in the gas, it is better to cool the gas. As a matter of fact, if
we know where the damping of the oscillations comes from, it turns out that that
is always the source of the fluctuations also, a point which we will come back to.
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Fig. 41-2. A high-Q resonant circuit. (a) Actual circuit, at tempera-
ture T . (b) Artificial circuit, with an ideal (noiseless) resistance and a
“noise generator” G.

The same thing works, amazingly enough, in electrical circuits. Suppose that
we are building a very sensitive, accurate amplifier for a definite frequency and
have a resonant circuit (Fig. 41-2) in the input so as to make it very sensitive to
this certain frequency, like a radio receiver, but a really good one. Suppose we
wish to go down to the very lowest limit of things, so we take the voltage, say
off the inductance, and send it into the rest of the amplifier. Of course, in any
circuit like this, there is a certain amount of loss. It is not a perfect resonant
circuit, but it is a very good one and there is a little resistance, say (we put
the resistor in so we can see it, but it is supposed to be small). Now we would
like to find out: How much does the voltage across the inductance fluctuate?
Answer: We know that 1

2LI
2 is the “kinetic energy”—the energy associated with

a coil in a resonant circuit (Chapter 25). Therefore the mean value of 1
2LI

2 is
equal to 1

2kT—that tells us what the rms current is and we can find out what
the rms voltage is from the rms current. For if we want the voltage across the
inductance the formula is V̂L = iωLÎ, and the mean absolute square voltage on
the inductance is 〈V 2

L 〉 = L2ω2
0〈I2〉, and putting in 1

2L〈I
2〉 = 1

2kT , we obtain

〈V 2
L 〉 = Lω2

0kT. (41.2)

So now we can design circuits and tell when we are going to get what is called
Johnson noise, the noise associated with thermal fluctuations!

Where do the fluctuations come from this time? They come again from the
resistor—they come from the fact that the electrons in the resistor are jiggling
around because they are in thermal equilibrium with the matter in the resistor,
and they make fluctuations in the density of electrons. They thus make tiny
electric fields which drive the resonant circuit.

Electrical engineers represent the answer in another way. Physically, the
resistor is effectively the source of noise. However, we may replace the real circuit
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having an honest, true physical resistor which is making noise, by an artificial
circuit which contains a little generator that is going to represent the noise, and
now the resistor is otherwise ideal—no noise comes from it. All the noise is
in the artificial generator. And so if we knew the characteristics of the noise
generated by a resistor, if we had the formula for that, then we could calculate
what the circuit is going to do in response to that noise. So, we need a formula
for the noise fluctuations. Now the noise that is generated by the resistor is at
all frequencies, since the resistor by itself is not resonant. Of course the resonant
circuit only “listens” to the part that is near the right frequency, but the resistor
has many different frequencies in it. We may describe how strong the generator
is, as follows: The mean power that the resistor would absorb if it were connected
directly across the noise generator would be 〈E2〉/R, if E were the voltage from
the generator. But we would like to know in more detail how much power there
is at every frequency. There is very little power in any one frequency; it is a
distribution. Let P (ω) dω be the power that the generator would deliver in the
frequency range dω into the very same resistor. Then we can prove (we shall
prove it for another case, but the mathematics is exactly the same) that the
power comes out

P (ω) dω = (2/π)kT dω, (41.3)

and is independent of the resistance when put this way.

41-2 Thermal equilibrium of radiation

Now we go on to consider a still more advanced and interesting proposition
that is as follows. Suppose we have a charged oscillator like those we were talking
about when we were discussing light, let us say an electron oscillating up and
down in an atom. If it oscillates up and down, it radiates light. Now suppose that
this oscillator is in a very thin gas of other atoms, and that from time to time
the atoms collide with it. Then in equilibrium, after a long time, this oscillator
will pick up energy such that its kinetic energy of oscillation is 1

2kT , and since
it is a harmonic oscillator, its entire energy will become kT . That is, of course,
a wrong description so far, because the oscillator carries electric charge, and if
it has an energy kT it is shaking up and down and radiating light. Therefore
it is impossible to have equilibrium of real matter alone without the charges
in it emitting light, and as light is emitted, energy flows away, the oscillator
loses its kT as time goes on, and thus the whole gas which is colliding with the
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oscillator gradually cools off. And that is, of course, the way a warm stove cools,
by radiating the light into the sky, because the atoms are jiggling their charge
and they continually radiate, and slowly, because of this radiation, the jiggling
motion slows down.

On the other hand, if we enclose the whole thing in a box so that the light
does not go away to infinity, then we can eventually get thermal equilibrium. We
may either put the gas in a box where we can say that there are other radiators
in the box walls sending light back or, to take a nicer example, we may suppose
the box has mirror walls. It is easier to think about that case. Thus we assume
that all the radiation that goes out from the oscillator keeps running around in
the box. Then, of course, it is true that the oscillator starts to radiate, but pretty
soon it can maintain its kT of energy in spite of the fact that it is radiating,
because it is being illuminated, we may say, by its own light reflected from the
walls of the box. That is, after a while there is a great deal of light rushing
around in the box, and although the oscillator is radiating some, the light comes
back and returns some of the energy that was radiated.

We shall now determine how much light there must be in such a box at
temperature T in order that the shining of the light on this oscillator will
generate just enough energy to account for the light it radiated.

Let the gas atoms be very few and far between, so that we have an ideal
oscillator with no resistance except radiation resistance. Then we consider that
at thermal equilibrium the oscillator is doing two things at the same time. First,
it has a mean energy kT , and we calculate how much radiation it emits. Second,
this radiation should be exactly the amount that would result because of the fact
that the light shining on the oscillator is scattered. Since there is nowhere else
the energy can go, this effective radiation is really just scattered light from the
light that is in there.

Thus we first calculate the energy that is radiated by the oscillator per second,
if the oscillator has a certain energy. (We borrow from Chapter 32 on radiation
resistance a number of equations without going back over their derivation.) The
energy radiated per radian divided by the energy of the oscillator is called 1/Q
(Eq. 32.8): 1/Q = (dW/dt)/ω0W . Using the quantity γ, the damping constant,
this can also be written as 1/Q = γ/ω0, where ω0 is the natural frequency of
the oscillator—if gamma is very small, Q is very large. The energy radiated per
second is then

dW

dt
= ω0W

Q
= ω0Wγ

ω0
= γW. (41.4)
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The energy radiated per second is thus simply gamma times the energy of the
oscillator. Now the oscillator should have an average energy kT , so we see that
gamma kT is the average amount of energy radiated per second:

〈dW/dt〉 = γkT. (41.5)

Now we only have to know what gamma is. Gamma is easily found from
Eq. (32.12). It is

γ = ω0

Q
= 2

3
r0ω

2
0

c
, (41.6)

where r0 = e2/mc2 is the classical electron radius, and we have set λ = 2πc/ω0.
Our final result for the average rate of radiation of light near the frequency ω0

is therefore
dW

dt
= 2

3
r0ω

2
0kT

c
. (41.7)

Next we ask how much light must be shining on the oscillator. It must be
enough that the energy absorbed from the light (and thereupon scattered) is just
exactly this much. In other words, the emitted light is accounted for as scattered
light from the light that is shining on the oscillator in the cavity. So we must
now calculate how much light is scattered from the oscillator if there is a certain
amount—unknown—of radiation incident on it. Let I(ω) dω be the amount of
light energy there is at the frequency ω, within a certain range dω (because there
is no light at exactly a certain frequency; it is spread all over the spectrum). So
I(ω) is a certain spectral distribution which we are now going to find—it is the
color of a furnace at temperature T that we see when we open the door and
look in the hole. Now how much light is absorbed? We worked out the amount
of radiation absorbed from a given incident light beam, and we calculated it in
terms of a cross section. It is just as though we said that all of the light that falls
on a certain cross section is absorbed. So the total amount that is re-radiated
(scattered) is the incident intensity I(ω) dω multiplied by the cross section σ.

The formula for the cross section that we derived (Eq. 32.19) did not have
the damping included. It is not hard to go through the derivation again and put
in the resistance term, which we neglected. If we do that, and calculate the cross
section the same way, we get

σs = 8πr2
0

3

(
ω4

(ω2 − ω2
0)2 + γ2ω2

)
. (41.8)
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Now, as a function of frequency, σs is of significant size only for ω very near
to the natural frequency ω0. (Remember that the Q for a radiating oscillator
is about 108.) The oscillator scatters very strongly when ω is equal to ω0, and
very weakly for other values of ω. Therefore we can replace ω by ω0 and ω2 − ω2

0
by 2ω0(ω − ω0), and we get

σs = 2πr2
0ω

2
0

3[(ω − ω0)2 + γ2/4] . (41.9)

Now the whole curve is localized near ω = ω0. (We do not really have to make
any approximations, but it is much easier to do the integrals if we simplify the
equation a bit.) Now we multiply the intensity in a given frequency range by the
cross section of scattering, to get the amount of energy scattered in the range dω.
The total energy scattered is then the integral of this for all ω. Thus

dWs

dt
=
∫ ∞

0
I(ω)σs(ω) dω

=
∫ ∞

0

2πr2
0ω

2
0I(ω) dω

3[(ω − ω0)2 + γ2/4] .
(41.10)

Now we set dWs/dt = 3γkT . Why three? Because when we made our analysis
of the cross section in Chapter 32, we assumed that the polarization was such
that the light could drive the oscillator. If we had used an oscillator which could
move only in one direction, and the light, say, was polarized in the wrong way,
it would not give any scattering. So we must either average the cross section of
an oscillator which can go only in one direction, over all directions of incidence
and polarization of the light or, more easily, we can imagine an oscillator which
will follow the field no matter which way the field is pointing. Such an oscillator,
which can oscillate equally in three directions, would have 3kT average energy
because there are 3 degrees of freedom in that oscillator. So we should use 3γkT
because of the 3 degrees of freedom.

Now we have to do the integral. Let us suppose that the unknown spectral
distribution I(ω) of the light is a smooth curve and does not vary very much
across the very narrow frequency region where σs is peaked (Fig. 41-3). Then the
only significant contribution comes when ω is very close to ω0, within an amount
gamma, which is very small. So therefore, although I(ω) may be an unknown
and complicated function, the only place where it is important is near ω = ω0,
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ω

ω0
ω0 − γ

2
ω0 +

γ
2

I(ω0)

I(ω)

Fig. 41-3. The factors in the integrand (41.10). The peak is the
resonance curve 1/

[
(ω − ω0)2 + γ2/4

]
. To a good approximation the

factor I(ω) can be replaced by I(ω0).

and there we may replace the smooth curve by a flat one—a “constant”—at
the same height. In other words, we simply take I(ω) outside the integral sign
and call it I(ω0). We may also take the rest of the constants out in front of the
integral, and what we have left is

2
3πr

2
0ω

2
0I(ω0)

∫ ∞
0

dω

(ω − ω0)2 + γ2/4 = 3γkT. (41.11)

Now, the integral should go from 0 to ∞, but 0 is so far from ω0 that the curve is
all finished by that time, so we go instead to minus∞—it makes no difference and
it is much easier to do the integral. The integral is an inverse tangent function
of the form

∫
dx/(x2 + a2). If we look it up in a book we see that it is equal

to π/a. So what it comes to for our case is 2π/γ. Therefore we get, with some
rearranging,

I(ω0) = 9γ2kT

4π2r2
0ω

2
0
. (41.12)

Then we substitute the formula (41.6) for gamma (do not worry about writing
ω0; since it is true of any ω0, we may just call it ω) and the formula for I(ω)
then comes out

I(ω) = ω2kT

π2c2
. (41.13)

And that gives us the distribution of light in a hot furnace. It is called the
blackbody radiation. Black, because the hole in the furnace that we look at is
black when the temperature is zero.
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Inside a closed box at temperature T , (41.13) is the distribution of energy
of the radiation, according to classical theory. First, let us notice a remarkable
feature of that expression. The charge of the oscillator, the mass of the oscillator,
all properties specific to the oscillator, cancel out, because once we have reached
equilibrium with one oscillator, we must be at equilibrium with any other oscillator
of a different mass, or we will be in trouble. So this is an important kind of
check on the proposition that equilibrium does not depend on what we are in
equilibrium with, but only on the temperature. Now let us draw a picture of the
I(ω) curve (Fig. 41-4). It tells us how much light we have at different frequencies.

ω

I(ω)
2T0

T0

RADIO IR VISIBLE UV X-RAYS

Fig. 41-4. The blackbody intensity distribution at two temperatures,
according to classical physics (solid curves). The dashed curves show
the actual distribution.

The amount of intensity that there is in our box, per unit frequency range,
goes, as we see, as the square of the frequency, which means that if we have a
box at any temperature at all, and if we look at the x-rays that are coming out,
there will be a lot of them!

Of course we know this is false. When we open the furnace and take a look
at it, we do not burn our eyes out from x-rays at all. It is completely false.
Furthermore, the total energy in the box, the total of all this intensity summed
over all frequencies, would be the area under this infinite curve. Therefore,
something is fundamentally, powerfully, and absolutely wrong.

Thus was the classical theory absolutely incapable of correctly describing
the distribution of light from a blackbody, just as it was incapable of correctly
describing the specific heats of gases. Physicists went back and forth over this
derivation from many different points of view, and there is no escape. This is
the prediction of classical physics. Equation (41.13) is called Rayleigh’s law, and
it is the prediction of classical physics, and is obviously absurd.
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41-3 Equipartition and the quantum oscillator

The difficulty above was another part of the continual problem of classical
physics, which started with the difficulty of the specific heat of gases, and now has
been focused on the distribution of light in a blackbody. Now, of course, at the
time that theoreticians studied this thing, there were also many measurements
of the actual curve. And it turned out that the correct curve looked like the
dashed curves in Fig. 41-4. That is, the x-rays were not there. If we lower the
temperature, the whole curve goes down in proportion to T , according to the
classical theory, but the observed curve also cuts off sooner at a lower temperature.
Thus the low-frequency end of the curve is right, but the high-frequency end
is wrong. Why? When Sir James Jeans was worrying about the specific heats
of gases, he noted that motions which have high frequency are “frozen out” as
the temperature goes too low. That is, if the temperature is too low, if the
frequency is too high, the oscillators do not have kT of energy on the average.
Now recall how our derivation of (41.13) worked: It all depends on the energy of
an oscillator at thermal equilibrium. What the kT of (41.5) was, and what the
same kT in (41.13) is, is the mean energy of a harmonic oscillator of frequency ω
at temperature T . Classically, this is kT , but experimentally, no!—not when the
temperature is too low or the oscillator frequency is too high. And so the reason
that the curve falls off is the same reason that the specific heats of gases fail.
It is easier to study the blackbody curve than it is the specific heats of gases,
which are so complicated, therefore our attention is focused on determining the
true blackbody curve, because this curve is a curve which correctly tells us, at
every frequency, what the average energy of harmonic oscillators actually is as a
function of temperature.

Planck studied this curve. He first determined the answer empirically, by
fitting the observed curve with a nice function that fitted very well. Thus he
had an empirical formula for the average energy of a harmonic oscillator as a
function of frequency. In other words, he had the right formula instead of kT ,
and then by fiddling around he found a simple derivation for it which involved a
very peculiar assumption. That assumption was that the harmonic oscillator can
take up energies only ~ω at a time. The idea that they can have any energy at
all is false. Of course, that was the beginning of the end of classical mechanics.

The very first correctly determined quantum-mechanical formula will now be
derived. Suppose that the permitted energy levels of a harmonic oscillator were
equally spaced at ~ω0 apart, so that the oscillator could take on only these different
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N0

N1

N2

N3

N4

E0 = 0

E1 = h̄ω

E2 = 2h̄ω

E3 = 3h̄ω

E4 = 4h̄ω

P0 = A

P1 = A exp( −h̄ω/kt)

P2 = A exp(−2h̄ω/kt)

P3 = A exp(−3h̄ω/kt)

P4 = A exp(−4h̄ω/kt)

Fig. 41-5. The energy levels of a harmonic oscillator are equally
spaced: En = n~ω.

energies (Fig. 41-5). Planck made a somewhat more complicated argument than
the one that is being given here, because that was the very beginning of quantum
mechanics and he had to prove some things. But we are going to take it as a fact
(which he demonstrated in this case) that the probability of occupying a level of
energy E is P (E) = αe−E/kT . If we go along with that, we will obtain the right
result.

Suppose now that we have a lot of oscillators, and each is a vibrator of
frequency ω0. Some of these vibrators will be in the bottom quantum state,
some will be in the next one, and so forth. What we would like to know is the
average energy of all these oscillators. To find out, let us calculate the total
energy of all the oscillators and divide by the number of oscillators. That will
be the average energy per oscillator in thermal equilibrium, and will also be the
energy that is in equilibrium with the blackbody radiation and that should go
in Eq. (41.13) in place of kT . Thus we let N0 be the number of oscillators that
are in the ground state (the lowest energy state); N1 the number of oscillators
in the state E1; N2 the number that are in state E2; and so on. According to
the hypothesis (which we have not proved) that in quantum mechanics the law
that replaced the probability e−P.E./kT or e−K.E./kT in classical mechanics is that
the probability goes down as e−∆E/kT , where ∆E is the excess energy, we shall
assume that the number N1 that are in the first state will be the number N0 that
are in the ground state, times e−~ω/kT . Similarly, N2, the number of oscillators
in the second state, is N2 = N0e

−2~ω/kT . To simplify the algebra, let us call
e−~ω/kT = x. Then we simply have N1 = N0x, N2 = N0x

2, . . . , Nn = N0x
n.

The total energy of all the oscillators must first be worked out. If an oscillator
is in the ground state, there is no energy. If it is in the first state, the energy
is ~ω, and there are N1 of them. So N1~ω, or ~ωN0x is how much energy we get
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from those. Those that are in the second state have 2~ω, and there are N2 of
them, so N2 · 2~ω = 2~ωN0x

2 is how much energy we get, and so on. Then we
add it all together to get Etot = N0~ω(0 + x+ 2x2 + 3x3 + · · · ).

And now, how many oscillators are there? Of course, N0 is the number that
are in the ground state, N1 in the first state, and so on, and we add them together:
Ntot = N0(1 + x+ x2 + x3 + · · · ). Thus the average energy is

〈E〉 = Etot

Ntot
= N0~ω(0 + x+ 2x2 + 3x3 + · · · )

N0(1 + x+ x2 + x3 + · · · ) . (41.14)

Now the two sums which appear here we shall leave for the reader to play with
and have some fun with. When we are all finished summing and substituting
for x in the sum, we should get—if we make no mistakes in the sum—

〈E〉 = ~ω
e~ω/kT − 1 . (41.15)

This, then, was the first quantum-mechanical formula ever known, or ever dis-
cussed, and it was the beautiful culmination of decades of puzzlement. Maxwell
knew that there was something wrong, and the problem was, what was right?
Here is the quantitative answer of what is right instead of kT . This expression
should, of course, approach kT as ω → 0 or as T →∞. See if you can prove that
it does—learn how to do the mathematics.

This is the famous cutoff factor that Jeans was looking for, and if we use it
instead of kT in (41.13), we obtain for the distribution of light in a black box

I(ω) dω = ~ω3 dω

π2c2(e~ω/kT − 1) . (41.16)

We see that for a large ω, even though we have ω3 in the numerator, there is
an e raised to a tremendous power in the denominator, so the curve comes down
again and does not “blow up”—we do not get ultraviolet light and x-rays where
we do not expect them!

One might complain that in our derivation of (41.16) we used the quantum
theory for the energy levels of the harmonic oscillator, but the classical theory in
determining the cross section σs. But the quantum theory of light interacting
with a harmonic oscillator gives exactly the same result as that given by the
classical theory. That, in fact, is why we were justified in spending so much
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time on our analysis of the index of refraction and the scattering of light, using
a model of atoms like little oscillators—the quantum formulas are substantially
the same.

Now let us return to the Johnson noise in a resistor. We have already remarked
that the theory of this noise power is really the same theory as that of the classical
blackbody distribution. In fact, rather amusingly, we have already said that if the
resistance in a circuit were not a real resistance, but were an antenna (an antenna
acts like a resistance because it radiates energy), a radiation resistance, it would
be easy for us to calculate what the power would be. It would be just the power
that runs into the antenna from the light that is all around, and we would get the
same distribution, changed by only one or two factors. We can suppose that the
resistor is a generator with an unknown power spectrum P (ω). The spectrum is
determined by the fact that this same generator, connected to a resonant circuit
of any frequency, as in Fig. 41-2(b), generates in the inductance a voltage of the
magnitude given in Eq. (41.2). One is thus led to the same integral as in (41.10),
and the same method works to give Eq. (41.3). For low temperatures the kT
in (41.3) must of course be replaced by (41.15). The two theories (blackbody
radiation and Johnson noise) are also closely related physically, for we may of
course connect a resonant circuit to an antenna, so the resistance R is a pure
radiation resistance. Since (41.2) does not depend on the physical origin of
the resistance, we know the generator G for a real resistance and for radiation
resistance is the same. What is the origin of the generated power P (ω) if the
resistance R is only an ideal antenna in equilibrium with its environment at
temperature T? It is the radiation I(ω) in the space at temperature T which
impinges on the antenna and, as “received signals,” makes an effective generator.
Therefore one can deduce a direct relation of P (ω) and I(ω), leading then from
(41.13) to (41.3).

All the things we have been talking about—the so-called Johnson noise and
Planck’s distribution, and the correct theory of the Brownian movement which
we are about to describe—are developments of the first decade or so of the 20th
century. Now with those points and that history in mind, we return to the
Brownian movement.

41-4 The random walk

Let us consider how the position of a jiggling particle should change with time,
for very long times compared with the time between “kicks.” Consider a little
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B

S36

Fig. 41-6. A random walk of 36 steps of length l . How far is S36 from
B? Ans: about 6I on the average.

Brownian movement particle which is jiggling about because it is bombarded
on all sides by irregularly jiggling water molecules. Query: After a given length
of time, how far away is it likely to be from where it began? This problem was
solved by Einstein and Smoluchowski. If we imagine that we divide the time
into little intervals, let us say a hundredth of a second or so, then after the first
hundredth of a second it moves here, and in the next hundredth it moves some
more, in the next hundredth of a second it moves somewhere else, and so on. In
terms of the rate of bombardment, a hundredth of a second is a very long time.
The reader may easily verify that the number of collisions a single molecule of
water receives in a second is about 1014, so in a hundredth of a second it has
1012 collisions, which is a lot! Therefore, after a hundredth of a second it is not
going to remember what happened before. In other words, the collisions are
all random, so that one “step” is not related to the previous “step.” It is like
the famous drunken sailor problem: the sailor comes out of the bar and takes
a sequence of steps, but each step is chosen at an arbitrary angle, at random
(Fig. 41-6). The question is: After a long time, where is the sailor? Of course we
do not know! It is impossible to say. What do we mean—he is just somewhere
more or less random. Well then, on the average, where is he? On the average,
how far away from the bar has he gone? We have already answered this question,
because once we were discussing the superposition of light from a whole lot of
different sources at different phases, and that meant adding a lot of arrows at
different angles (Chapter 32). There we discovered that the mean square of the
distance from one end to the other of the chain of random steps, which was the
intensity of the light, is the sum of the intensities of the separate pieces. And so,
by the same kind of mathematics, we can prove immediately that if RN is the
vector distance from the origin after N steps, the mean square of the distance
from the origin is proportional to the number N of steps. That is, 〈R2

N 〉 = NL2,
where L is the length of each step. Since the number of steps is proportional to
the time in our present problem, the mean square distance is proportional to the
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time:
〈R2〉 = αt. (41.17)

This does not mean that the mean distance is proportional to the time. If the
mean distance were proportional to the time it would mean that the drifting is
at a nice uniform velocity. The sailor is making some relatively sensible headway,
but only such that his mean square distance is proportional to time. That is the
characteristic of a random walk.

We may show very easily that in each successive step the square of the distance
increases, on the average, by L2. For if we write RN = RN−1 +L, we find that
R2
N is

RN ·RN = R2
N = R2

N−1 + 2RN−1 ·L+ L2,

and averaging over many trials, we have 〈R2
N 〉 = 〈R2

N−1〉+L2, since 〈RN−1 ·L〉 =
0. Thus, by induction,

〈R2
N 〉 = NL2. (41.18)

Now we would like to calculate the coefficient α in Eq. (41.17), and to do so
we must add a feature. We are going to suppose that if we were to put a force on
this particle (having nothing to do with the Brownian movement—we are taking
a side issue for the moment), then it would react in the following way against
the force. First, there would be inertia. Let m be the coefficient of inertia, the
effective mass of the object (not necessarily the same as the real mass of the
real particle, because the water has to move around the particle if we pull on it).
Thus if we talk about motion in one direction, there is a term like m(d2x/dt2) on
one side. And next, we want also to assume that if we kept a steady pull on the
object, there would be a drag on it from the fluid, proportional to its velocity.
Besides the inertia of the fluid, there is a resistance to flow due to the viscosity
and the complexity of the fluid. It is absolutely essential that there be some
irreversible losses, something like resistance, in order that there be fluctuations.
There is no way to produce the kT unless there are also losses. The source of the
fluctuations is very closely related to these losses. What the mechanism of this
drag is, we will discuss soon—we shall talk about forces that are proportional to
the velocity and where they come from. But let us suppose for now that there
is such a resistance. Then the formula for the motion under an external force,
when we are pulling on it in a normal manner, is

m
d2x

dt2
+ µ

dx

dt
= Fext. (41.19)
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The quantity µ can be determined directly from experiment. For example, we
can watch the drop fall under gravity. Then we know that the force is mg, and µ
is mg divided by the speed of fall the drop ultimately acquires. Or we could put
the drop in a centrifuge and see how fast it sediments. Or if it is charged, we can
put an electric field on it. So µ is a measurable thing, not an artificial thing, and
it is known for many types of colloidal particles, etc.

Now let us use the same formula in the case where the force is not external,
but is equal to the irregular forces of the Brownian movement. We shall then
try to determine the mean square distance that the object goes. Instead of
taking the distances in three dimensions, let us take just one dimension, and
find the mean of x2, just to prepare ourselves. (Obviously the mean of x2 is
the same as the mean of y2 is the same as the mean of z2, and therefore the
mean square of the distance is just 3 times what we are going to calculate.)
The x-component of the irregular forces is, of course, just as irregular as any
other component. What is the rate of change of x2? It is d(x2)/dt = 2x(dx/dt),
so what we have to find is the average of the position times the velocity. We
shall show that this is a constant, and that therefore the mean square radius
will increase proportionally to the time, and at what rate. Now if we multiply
Eq. (41.19) by x, mx(d2x/dt2) + µx(dx/dt) = xFx. We want the time average
of x(dx/dt), so let us take the average of the whole equation, and study the three
terms. Now what about x times the force? If the particle happens to have gone
a certain distance x, then, since the irregular force is completely irregular and
does not know where the particle started from, the next impulse can be in any
direction relative to x. If x is positive, there is no reason why the average force
should also be in that direction. It is just as likely to be one way as the other.
The bombardment forces are not driving it in a definite direction. So the average
value of x times F is zero. On the other hand, for the term mx(d2x/dt2) we will
have to be a little fancy, and write this as

mx
d2x

dt2
= m

d[x(dx/dt)]
dt

−m
(
dx

dt

)2
.

Thus we put in these two terms and take the average of both. So let us see how
much the first term should be. Now x times the velocity has a mean that does not
change with time, because when it gets to some position it has no remembrance of
where it was before, so things are no longer changing with time. So this quantity,
on the average, is zero. We have left the quantity mv2, and that is the only thing
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we know: mv2/2 has a mean value 1
2kT . Therefore we find that〈

mx
d2x

dt2

〉
+ µ

〈
x
dx

dt

〉
= 〈xFx〉

implies

−〈mv2〉+ µ

2
d

dt
〈x2〉 = 0,

or
d〈x2〉
dt

= 2 kT
µ
. (41.20)

Therefore the object has a mean square distance 〈R2〉, at the end of a certain
amount of t, equal to

〈R2〉 = 6kT t

µ
. (41.21)

And so we can actually determine how far the particles go! We first must
determine how they react to a steady force, how fast they drift under a known
force (to find µ), and then we can determine how far they go in their random
motions. This equation was of considerable importance historically, because
it was one of the first ways by which the constant k was determined. After
all, we can measure µ, the time, how far the particles go, and we can take an
average. The reason that the determination of k was important is that in the
law PV = RT for a mole, we know that R, which can also be measured, is equal
to the number of atoms in a mole times k. A mole was originally defined as
so and so many grams of oxygen-16 (now carbon is used), so the number of
atoms in a mole was not known, originally. It is, of course, a very interesting
and important problem. How big are atoms? How many are there? So one of
the earliest determinations of the number of atoms was by the determination
of how far a dirty little particle would move if we watched it patiently under a
microscope for a certain length of time. And thus Boltzmann’s constant k and
the Avogadro number N0 were determined because R had already been measured.
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42

Applications of Kinetic Theory

42-1 Evaporation

In this chapter we shall discuss some further applications of kinetic theory.
In the previous chapter we emphasized one particular aspect of kinetic theory,
namely, that the average kinetic energy in any degree of freedom of a molecule
or other object is 1

2kT . The central feature of what we shall now discuss, on
the other hand, is the fact that the probability of finding a particle in different
places, per unit volume, varies as e−potential energy/kT ; we shall make a number of
applications of this.

The phenomena which we want to study are relatively complicated: a liquid
evaporating, or electrons in a metal coming out of the surface, or a chemical
reaction in which there are a large number of atoms involved. In such cases it is no
longer possible to make from the kinetic theory any simple and correct statements,
because the situation is too complicated. Therefore, this chapter, except where
otherwise emphasized, is quite inexact. The idea to be emphasized is only that
we can understand, from the kinetic theory, more or less how things ought to
behave. By using thermodynamic arguments, or some empirical measurements
of certain critical quantities, we can get a more accurate representation of the
phenomena.

However, it is very useful to know even only more or less why something
behaves as it does, so that when the situation is a new one, or one that we have
not yet started to analyze, we can say, more or less, what ought to happen. So
this discussion is highly inaccurate but essentially right—right in idea, but a
little bit simplified, let us say, in the specific details.

The first example that we shall consider is the evaporation of a liquid. Suppose
we have a box with a large volume, partially filled with liquid in equilibrium and
with the vapor at a certain temperature. We shall suppose that the molecules of
the vapor are relatively far apart, and that inside the liquid, the molecules are
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packed close together. The problem is to find out how many molecules there are
in the vapor phase, compared with the number there are in the liquid. How dense
is the vapor at a given temperature, and how does it depend on the temperature?

Let us say that n equals the number of molecules per unit volume in the
vapor. That number, of course, varies with the temperature. If we add heat,
we get more evaporation. Now let another quantity, 1/Va, equal the number of
atoms per unit volume in the liquid: We suppose that each molecule in the liquid
occupies a certain volume, so that if there are more molecules of liquid, then all
together they occupy a bigger volume. Thus if Va is the volume occupied by one
molecule, the number of molecules in a unit volume is a unit volume divided by
the volume of each molecule. Furthermore, we suppose that there is a force of
attraction between the molecules to hold them together in the liquid. Otherwise
we cannot understand why it condenses. Thus suppose that there is such a force
and that there is an energy of binding of the molecules in the liquid which is lost
when they go into the vapor. That is, we are going to suppose that, in order
to take a single molecule out of the liquid into the vapor, a certain amount of
work W has to be done. There is a certain difference, W , in the energy of a
molecule in the liquid from what it would have if it were in the vapor, because
we have to pull it away from the other molecules which attract it.

Now we use the general principle that the number of atoms per unit volume in
two different regions is n2/n1 = e−(E2−E1)/kT . So the number n per unit volume
in the vapor, divided by the number 1/Va per unit volume in the liquid, is equal
to

nVa = e−W/kT , (42.1)

because that is the general rule. It is like the atmosphere in equilibrium under
gravity, where the gas at the bottom is denser than that at the top because of
the work mgh needed to lift the gas molecules to the height h. In the liquid, the
molecules are denser than in the vapor because we have to pull them out through
the energy “hill” W , and the ratio of the densities is e−W/kT .

This is what we wanted to deduce—that the vapor density varies as e to the
minus some energy or other over kT . The factors in front are not really interesting
to us, because in most cases the vapor density is very much lower than the liquid
density. In those circumstances, where we are not near the critical point where
they are almost the same, but where the vapor density is much lower than the
liquid density, then the fact that n is very much less than 1/Va is occasioned
by the fact that W is very much greater than kT . So formulas such as (42.1)
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are interesting only when W is very much bigger than kT , because in those
circumstances, since we are raising e to minus a tremendous amount, if we change
T a little bit, that tremendous power changes a bit, and the change produced in
the exponential factor is very much more important than any change that might
occur in the factors out in front. Why should there be any changes in such factors
as Va? Because ours was an approximate analysis. After all, there is not really a
definite volume for each molecule; as we change the temperature, the volume Va
does not stay constant—the liquid expands. There are other little features like
that, and so the actual situation is more complicated. There are slowly varying
temperature-dependent factors all over the place. In fact, we might say that W
itself varies slightly with temperature, because at a higher temperature, at a
different molecular volume, there would be different average attractions, and so
on. So, while we might think that if we have a formula in which everything varies
in an unknown way with temperature then we have no formula at all, if we realize
that the exponent W/kT is, in general, very large, we see that in the curve of the
vapor density as a function of temperature most of the variation is occasioned by
the exponential factor, and if we take W as a constant and the coefficient 1/Va
as nearly constant, it is a good approximation for short intervals along the curve.
Most of the variation, in other words, is of the general nature e−W/kT .

It turns out that there are many, many phenomena in nature which are
characterized by having to borrow an energy from somewhere, and in which
the central feature of the temperature variation is e to the minus the energy
over kT . This is a useful fact only when the energy is large compared with kT ,
so that most of the variation is contained in the variation of the kT and not in
the constant and in other factors.

Now let us consider another way of obtaining a somewhat similar result for
the evaporation, but looking at it in more detail. To arrive at (42.1), we simply
applied a rule which is valid at equilibrium, but in order to understand things
better, there is no harm in trying to look at the details of what is going on. We
may also describe what is going on in the following way: the molecules that
are in the vapor continually bombard the surface of the liquid; when they hit
it, they may bounce off or they may get stuck. There is an unknown factor for
that—maybe 50–50, maybe 10 to 90—we do not know. Let us say they always
get stuck—we can analyze it over again later on the assumption that they do
not always get stuck. Then at a given moment there will be a certain number
of atoms which are condensing onto the surface of the liquid. The number of
condensing molecules, the number that arrive on a unit area per unit time, is the
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number n per unit volume times the velocity v. This velocity of the molecules
is related to the temperature, because we know that 1

2mv
2 is equal to 3

2kT on
the average. So v is some kind of a mean velocity. Of course we should integrate
over the angles and get some kind of an average, but it is roughly proportional
to the root-mean-square velocity, within some factor. Thus

Nc = nv (42.2)

is the rate at which the molecules arrive per unit area and are condensing.
At the same time, however, the atoms in the liquid are jiggling about, and

from time to time one of them gets kicked out. Now we have to estimate how
fast they get kicked out. The idea will be that at equilibrium the number that
are kicked out per second and the number that arrive per second are equal.

How many get kicked out? In order to get kicked out, a particular molecule has
to have acquired by accident an excess energy over its neighbors—a considerable
excess energy, because it is attracted very strongly by the other molecules in
the liquid. Ordinarily it does not leave because it is so strongly attracted, but
in the collisions sometimes one of them gets an extra energy by accident. And
the chance that it gets the extra energy W which it needs in our case is very
small if W � kT . In fact, e−W/kT is the chance that an atom has picked up
more than this much energy. That is the general principle in kinetic theory: in
order to borrow an excess energy W over the average, the odds are e to the
minus the energy that we have to borrow, over kT . Now suppose that some
molecules have borrowed this energy. We now have to estimate how many leave
the surface per second. Of course, just because a molecule has the necessary
energy does not mean that it will actually evaporate, since it may be buried too
deeply inside the liquid or, even if it is near the surface, it may be travelling
in the wrong direction. The number that are going to leave a unit area per
second is going to be something like this: the number of atoms there are near
the surface, per unit area, divided by the time it takes one to escape, multiplied
by the probability e−W/kT that they are ready to escape in the sense that they
have enough energy.

We shall suppose that each molecule at the surface of the liquid occupies
a certain cross-sectional area A. Then the number of molecules per unit area
of liquid surface will be 1/A. And now, how long does it take a molecule to
escape? If the molecules have a certain average speed v, and have to move, say,
one molecular diameter D, the thickness of the first layer, then the time it takes
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to get across that thickness is the time needed to escape, if the molecule has
enough energy. The time will be D/v. Thus the number evaporating should be
approximately

Ne = (1/A)(v/D)e−W/kT . (42.3)
Now the area of each atom times the thickness of the layer is approximately
the same as the volume Va occupied by a single atom. And so, in order to get
equilibrium, we must have Nc = Ne, or

nv = (v/Va)e−W/kT . (42.4)

We may cancel the v’s, since they are equal; even though one is the velocity of a
molecule in the vapor and the other is the velocity of an evaporating molecule,
these are the same, because we know their mean kinetic energy (in one direction)
is 1

2kT . But one may object, “No! No! These are the especially fast-moving ones;
these are the ones that have picked up excess energy.” Not really, because the
moment they start to pull away from the liquid, they have to lose that excess
energy against the potential energy. So, as they come to the surface they are
slowed down to the velocity v! It is the same as it was in our discussion of
the distribution of molecular velocities in the atmosphere—at the bottom, the
molecules had a certain distribution of energy. The ones that arrive at the top
have the same distribution of energy, because the slow ones did not arrive at
all, and the fast ones were slowed down. The molecules that are evaporating
have the same distribution of energy as the ones inside—a rather remarkable
fact. Anyway, it is useless to try to argue so closely about our formula because of
other inaccuracies, such as the probability of bouncing back rather than entering
the liquid, and so on. Thus we have a rough idea of the rate of evaporation and
condensation, and we see, of course, that the vapor density n varies in the same
way as before, but now we have understood it in some detail rather than just as
an arbitrary formula.

This deeper understanding permits us to analyze some things. For example,
suppose that we were to pump away the vapor at such a great rate that we
removed the vapor as fast as it formed (if we had very good pumps and the liquid
was evaporating very slowly), how fast would evaporation occur if we maintained
a liquid temperature T? Suppose that we have already experimentally measured
the equilibrium vapor density, so that we know, at the given temperature, how
many molecules per unit volume are in equilibrium with the liquid. Now we
would like to know how fast it will evaporate. Even though we have used only a
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rough analysis so far as the evaporation part of it is concerned, the number of
vapor molecules arriving was not done so badly, aside from the unknown factor of
reflection coefficient. So therefore we may use the fact that the number that are
leaving, at equilibrium, is the same as the number that arrive. True, the vapor
is being swept away and so the molecules are only coming out, but if the vapor
were left alone, it would attain the equilibrium density at which the number that
come back would equal the number that are evaporating. Therefore, we can
easily see that the number that are coming off the surface per second is equal to
the unknown reflection coefficient R times the number that would come down
to the surface per second were the vapor still there, because that is how many
would balance the evaporation at equilibrium:

Ne = nvR = (vR/Va)e−W/kT . (42.5)

Of course, the number of molecules that hit the liquid from the vapor is easy to
calculate, since we do not need to know as much about the forces as we do when
we are worrying about how they get to escape through the liquid surface; it is
much easier to make the argument the other way.

42-2 Thermionic emission

We may give another example of a very practical situation that is similar to
the evaporation of a liquid—so similar that it is not worth making a separate
analysis. It is essentially the same problem. In a radio tube there is a source of
electrons, namely a heated tungsten filament, and a positively charged plate to
attract the electrons. Any electron that escapes from the surface of the tungsten
is immediately swept away to the plate. That is our ideal “pump,” which is
“pumping” the electrons away all the time. Now the question is: How many
electrons per second can we get out of a piece of tungsten, and how does that
number vary with temperature? The answer to that problem is the same as (42.5),
because it turns out that in a piece of metal, electrons are attracted to the ions,
or to atoms, of the metal. They are attracted, if we may say it crudely, to the
metal. In order to get an electron out of a piece of metal, it takes a certain
amount of energy or work to pull it out. This work varies with the different kinds
of metal. In fact, it varies even with the character of the surface of a given kind
of metal, but the total work may be a few electron volts, which, incidentally, is
typical of the energy involved in chemical reactions. We can remember the latter
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fact by remembering that the voltage in a chemical cell like a flashlight battery,
which is produced by chemical reactions, is about one volt.

How can we find out how many electrons come out per second? It would be
quite difficult to analyze the effects on the electrons going out; it is easier to
analyze the situation the other way. So, we could start out by imagining that
we did not draw the electrons away, and that the electrons were like a gas, and
could come back to the metal. Then there would be a certain density of electrons
at equilibrium which would, of course, be given by exactly the same formula
as (42.1), where Va is the volume per electron in the metal, roughly, and W is
equal to qeφ, where φ is the so-called work function, or the voltage needed to pull
an electron off the surface. This would tell us how many electrons would have to
be in the surrounding space and striking the metal in order to balance the ones
that are coming out. And thus it is easy to calculate how many are coming out
if we sweep away all of them, because the number that are coming out is exactly
equal to the number that would be going in with the above density of electron
“vapor.” In other words, the answer is that the current of electricity that comes
in per unit area is equal to the charge on each times the number that arrive per
second per unit area, which is the number per unit volume times the velocity, as
we have seen many times:

I = qenv = (qev/Va)e−qeφ/kT . (42.6)

Now one electron volt corresponds to kT at a temperature of 11,600 degrees. The
filament of the tube may be operating at a temperature of, say, 1100 degrees, so
the exponential factor is something like e−10; when we change the temperature a
little bit, the exponential factor changes a lot. Thus, again, the central feature
of the formula is the e−qeφ/kT . As a matter of fact, the factor in front is quite
wrong—it turns out that the behavior of electrons in a metal is not correctly
described by the classical theory, but by quantum mechanics, but this only
changes the factor in front a little. Actually, no one has ever been able to get
the thing straightened out very well, even though many people have used the
high-class quantum-mechanical theory for their calculations. The big problem is,
does W change slightly with temperature? If it does, one cannot distinguish a
W changing slowly with temperature from a different coefficient in front. That
is, if W changed linearly, say, with temperature, so that W = W0 + αkT , then
we would have

e−W/kT = e−(W0+αkT )/kT = e−αe−W0/kT .
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Thus a linearly temperature-dependent W is equivalent to a shifted “constant.”
It is really quite difficult and usually fruitless to try to obtain the coefficient in
the front accurately.

42-3 Thermal ionization

Now we go on to another example of the same idea; always the same idea.
This has to do with ionization. Suppose that in a gas we have a whole lot of
atoms which are in the neutral state, say, but the gas is hot and the atoms can
become ionized. We would like to know how many ions there are in a given
circumstance if we have a certain density of atoms per unit volume at a certain
temperature. Again we consider a box in which there are N atoms which can
hold electrons. (If an electron has come off an atom, it is called an ion, and if
the atom is neutral, we simply call it an atom.) Then suppose that, at any given
moment, the number of neutral atoms is na, the number of ions is ni, and the
number of electrons is ne, all per unit volume. The problem is: What is the
relationship of these three numbers?

In the first place, we have two conditions or constraints on the numbers. For
instance, as we vary different conditions, like the temperature and so on, na + ni
would remain constant, because this would be simply the number N of atomic
nuclei that are in the box. If we keep the number of nuclei per unit volume
fixed, and change, say, the temperature, then as the ionization proceeded some
atoms would turn to ions, but the total number of atoms plus ions would be
unchanged. That is, na + ni = N . Another condition is that if the entire gas
is to be electrically neutral (and if we neglect double or triple ionization), that
means that the number of ions is equal to the number of electrons at all times,
or ni = ne. These are subsidiary equations that simply express the conservation
of charge and the conservation of atoms.

These equations are true, and we ultimately will use them when we consider a
real problem. But we want to obtain another relationship between the quantities.
We can do this as follows. We again use the idea that it takes a certain amount
of energy to lift the electron out of the atom, which we call the ionization energy,
and we would write it as W , in order to make all of the formulas look the same.
So we let W equal the energy needed to pull an electron out of an atom and
make an ion. Now we again say that the number of free electrons per unit volume
in the “vapor” is equal to the number of bound electrons per unit volume in
the atoms, times e to the minus the energy difference between being bound and
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being free, over kT . That is the basic equation again. How can we write it? The
number of free electrons per unit volume would, of course, be ne, because that is
the definition of ne. Now what about the number of electrons per unit volume
that are bound to atoms? The total number of places that we could put the
electrons is apparently na + ni, and we will suppose that when they are bound
each one is bound within a certain volume Va. So the total amount of volume
which is available to electrons which would be bound is (na + ni)Va, so we might
want to write our formula as

ne = na
(na + ni)Va

e−W/kT .

The formula is wrong, however, in one essential feature, which is the following:
when an electron is already on an atom, another electron cannot come to that
volume anymore! In other words, all the volumes of all the possible sites are not
really available for the one electron which is trying to make up its mind whether
or not to be in the vapor or in the condensed position, because in this problem
there is an extra feature that when one electron is where another electron is, it is
not allowed to go—it is repelled. For that reason, it comes out that we should
count only that part of the volume which is available for an electron to sit on or
not. That is, those which are already occupied do not count in the total available
volume, but the only volume which is allowed is that of the ions, where there are
vacant places for the electron to go. Then, in those circumstances, we find that a
nicer way to write our formula is

neni
na

= 1
Va

e−W/kT . (42.7)

This formula is called the Saha ionization equation. Now let us see if we can
understand qualitatively why a formula like this is right, by arguing about the
kinetic things that are happening.

First, every once in a while an electron comes to an ion and they combine
to make an atom. And also, every once in a while, an atom gets into a collision
and breaks up into an ion and an electron. Now those two rates must be equal.
How fast do electrons and ions find each other? The rate is certainly increased if
the number of electrons per unit volume is increased. It is also increased if the
number of ions per unit volume is increased. That is, the total rate at which
recombination is occurring is certainly proportional to the number of electrons
times the number of ions. Now the total rate at which ionization is occurring
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due to collisions must be dependent linearly on how many atoms there are to
ionize. And so the rates will balance when there is some relationship between
the product neni and the number of atoms, na. The fact that this relationship
happens to be given by this particular formula, where W is the ionization energy,
is of course a little bit more information, but we can easily understand that
the formula would necessarily involve the concentrations of the electrons, ions,
and atoms in the combination neni/na to produce a constant independent of
the n’s, and dependent only on temperature, the atomic cross sections, and other
constant factors.

We may also note that, since the equation involves the numbers per unit
volume, if we were to do two experiments with a given total number N of
atoms plus ions, that is, a certain fixed number of nuclei, but using boxes with
different volumes, the n’s would all be smaller in the larger box. But since the
ratio neni/na stays the same, the total number of electrons and ions must be
greater in the larger box. To see this, suppose that there are N nuclei inside a box
of volume V , and that a fraction f of them are ionized. Then ne = fN/V = ni,
and na = (1− f)N/V . Then our equation becomes

f2

1− f
N

V
= e−W/kT

Va
. (42.8)

In other words, if we take a smaller and smaller density of atoms, or make the
volume of the container bigger and bigger, the fraction f of electrons and ions
must increase. That ionization, just from “expansion” as the density goes down,
is the reason why we believe that at very low densities, such as in the cold
space between the stars, there may be ions present, even though we might not
understand it from the point of view of the available energy. Although it takes
many, many kT of energy to make them, there are ions present.

Why can there be ions present when there is so much space around, while if
we increase the density, the ions tend to disappear? Answer : Consider an atom.
Every once in a while, light, or another atom, or an ion, or whatever it is that
maintains thermal equilibrium, strikes it. Very rarely, because it takes such a
terrific amount of excess energy, an electron comes off and an ion is left. Now
that electron, if the space is enormous, wanders and wanders and does not come
near anything for years, perhaps. But once in a very great while, it does come
back to an ion and they combine to make an atom. So the rate at which electrons
are coming out from the atoms is very slow. But if the volume is enormous, an
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electron which has escaped takes so long to find another ion to recombine with
that its probability of recombination is very, very small; thus, in spite of the large
excess energy needed, there may be a reasonable number of electrons.

42-4 Chemical kinetics

The same situation that we have just called “ionization” is also found in
a chemical reaction. For instance, if two objects A and B combine into a
compound AB, then if we think about it for a while we see that AB is what we
have called an atom, B is what we call an electron, and A is what we call an ion.
With these substitutions the equations of equilibrium are exactly the same in
form:

nAnB
nAB

= ce−W/kT . (42.9)

This formula, of course, is not exact, since the “constant” c depends on how much
volume is allowed for the A and B to combine, and so on, but by thermodynamic
arguments one can identify what the meaning of the W in the exponential factor
is, and it turns out that it is very close to the energy needed in the reaction.

Suppose that we tried to understand this formula as a result of collisions,
much in the way that we understood the evaporation formula, by arguing about
how many electrons came off and how many of them came back per unit time.
Suppose that A and B combine in a collision every once in a while to form a
compound AB. And suppose that the compound AB is a complicated molecule
which jiggles around and is hit by other molecules, and from time to time it gets
enough energy to explode and break up again into A and B.

Now it actually turns out, in chemical reactions, that if the atoms come
together with too small an energy, even though energy may be released in the
reaction A + B → AB, the fact that A and B may touch each other does not
necessarily make the reaction start. It usually is required that the collision be
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Fig. 42-1. The energy relationship for the reaction A+ B → AB.
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rather hard, in fact, to get the reaction to go at all—a “soft” collision between A
and B may not do it, even though energy may be released in the process. So
let us suppose that it is very common in chemical reactions that, in order for A
and B to form AB, they cannot just hit each other, but they have to hit each
other with sufficient energy. This energy is called the activation energy—the
energy needed to “activate” the reaction. Call A∗ the activation energy, the
excess energy needed in a collision in order that the reaction may really occur.
Then the rate Rf at which A and B produce AB would involve the number of
atoms of A times the number of atoms of B, times the rate at which a single
atom would strike a certain cross section σAB , times a factor e−A∗/kT which is
the probability that they have enough energy:

Rf = nAnBvσABe
−A∗/kT . (42.10)

Now we have to find the opposite rate, Rr. There is a certain chance that AB
will fly apart. In order to fly apart, it not only must have the energy W which it
needs in order to get apart at all but, just as it was hard for A and B to come
together, so there is a kind of hill that A and B have to climb over to get apart
again; they must have not only enough energy just to get ready to pull apart,
but a certain excess. It is like climbing a hill to get into a deep valley; they have
to climb the hill coming in and they have to climb out of the valley and then over
the hill coming back (Fig. 42-1). Thus the rate at which AB goes to A and B
will be proportional to the number nAB that are present, times e−(W+A∗)/kT :

Rr = c′nABe
−(W+A∗)/kT . (42.11)

The c′ will involve the volume of atoms and the rate of collisions, which we
can work out, as we did the case of evaporation, with areas and times and
thicknesses; but we shall not do this. The main feature of interest to us is that
when these two rates are equal, the ratio of them is equal to unity. This tells
us that nAnB/nAB = ce−W/kT , as before, where c involves the cross sections,
velocities, and other factors independent of the n’s.

The interesting thing is that the rate of the reaction also varies as e−const/kT ,
although the constant is not the same as that which governs the concentrations;
the activation energy A∗ is quite different from the energy W . W governs the
proportions of A, B, and AB that we have in equilibrium, but if we want to know
how fast A + B goes to AB, that is not a question of equilibrium, and here a
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different energy, the activation energy, governs the rate of reaction through an
exponential factor.

Furthermore, A∗ is not a fundamental constant like W . Suppose that at the
surface of the wall—or at some other place—A and B could temporarily stick
there in such a way that they could combine more easily. In other words, we might
find a “tunnel” through the hill, or perhaps a lower hill. By the conservation
of energy, when we are all finished we have still made AB out of A and B,
so the energy difference W will be quite independent of the way the reaction
occurred, but the activation energy A∗ will depend very much on the way the
reaction occurs. This is why the rates of chemical reactions are very sensitive to
outside conditions. We can change the rate by putting in a surface of a different
kind, we can put it in a “different barrel” and it will go at a different rate, if
it depends on the nature of the surface. Or if we put in a third kind of object
it may change the rate very much; some things produce enormous changes in
rate simply by changing the A∗ a little bit—they are called catalysts. A reaction
might practically not occur at all because A∗ is too big at the given temperature,
but when we put in this special stuff, the catalyst, then the reaction goes very
fast indeed, because A∗ is reduced.

Incidentally, there is some trouble with such a reaction, A plus B, making
AB, because we cannot conserve both energy and momentum when we try to put
two objects together to make one that is more stable. Therefore, we need at least
a third object C, so the actual reaction is much more complicated. The forward
rate would involve the product nAnBnC , and it might seem that our formula is
going wrong, but no! When we look at the rate at which AB goes the other way,
we find that it also needs to collide with C, so there is an nABnC in the reverse
rate; the nC ’s cancel out in the formula for the equilibrium concentrations. The
law of equilibrium, (42.9), which we first wrote down is absolutely guaranteed to
be true, no matter what the mechanism of the reaction may be!

42-5 Einstein’s laws of radiation

We now turn to an interesting analogous situation having to do with the
blackbody radiation law. In the last chapter we worked out the distribution law
for the radiation in a cavity the way Planck did, considering the radiation from
an oscillator. The oscillator had to have a certain mean energy, and since it was
oscillating, it would radiate and would keep pumping radiation into the cavity
until it piled up enough radiation to balance the absorption and emission. In
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that way we found that the intensity of radiation at frequency ω was given by
the formula

I(ω) dω = ~ω3 dω

π2c2(e~ω/kT − 1) . (42.12)

This result involved the assumption that the oscillator which was generating
the radiation had definite, equally spaced energy levels. We did not say that
light had to be a photon or anything like that. There was no discussion about
how, when an atom goes from one level to another, the energy must come out
in one unit of energy, ~ω, in the form of light. Planck’s original idea was that
the matter was quantized but not the light: material oscillators cannot take up
just any energy, but have to take it in lumps. Furthermore, the trouble with the
derivation is that it was partially classical. We calculated the rate of radiation
from an oscillator according to classical physics; then we turned around and
said, “No, this oscillator has a lot of energy levels.” So gradually, in order to
find the right result, the completely quantum-mechanical result, there was a
slow development which culminated in the quantum mechanics of 1927. But in
the meantime, there was an attempt by Einstein to convert Planck’s viewpoint
that only oscillators of matter were quantized, to the idea that light was really
photons and could be considered in a certain way as particles with energy ~ω.
Furthermore, Bohr had pointed out that any system of atoms has energy levels,
but they are not necessarily equally spaced like Planck’s oscillator. And so it
became necessary to rederive or at least rediscuss the radiation law from a more
completely quantum-mechanical viewpoint.

Einstein assumed that Planck’s final formula was right, and he used that
formula to obtain some new information, previously unknown, about the inter-
action of radiation with matter. His discussion went as follows: Consider any
two of the many energy levels of an atom, say the mth level and the nth level
(Fig. 42-2). Now Einstein proposed that when such an atom has light of the right
frequency shining on it, it can absorb that photon of light and make a transition
from state n to state m, and that the probability that this occurs per second

n

m

Absorption Induced emission

Spontaneous emission

Fig. 42-2. Transitions between two energy levels of an atom.
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depends upon the two levels, of course, but is proportional to how intense the
light is that is shining on it. Let us call the proportionality constant Bnm, merely
to remind us that this is not a universal constant of nature, but depends on the
particular pair of levels: some levels are easy to excite; some levels are hard to
excite. Now what is the formula going to be for the rate of emission from m to n?
Einstein proposed that this must have two parts to it. First, even if there were
no light present, there would be some chance that an atom in an excited state
would fall to a lower state, emitting a photon; this we call spontaneous emission.
It is analogous to the idea that an oscillator with a certain amount of energy,
even in classical physics, does not keep that energy, but loses it by radiation.
Thus the analog of spontaneous radiation of a classical system is that if the atom
is in an excited state there is a certain probability Amn, which depends on the
levels again, for it to go down from m to n, and this probability is independent
of whether light is shining on the atom or not. But then Einstein went further,
and by comparison with the classical theory and by other arguments, concluded
that emission was also influenced by the presence of light—that when light of
the right frequency is shining on an atom, it has an increased rate of emitting a
photon that is proportional to the intensity of the light, with a proportionality
constant Bmn. Later, if we deduce that this coefficient is zero, then we will have
found that Einstein was wrong. Of course we will find he was right.

Thus Einstein assumed that there are three kinds of processes: an absorption
proportional to the intensity of light, an emission proportional to the inten-
sity of light, called induced emission or sometimes stimulated emission, and a
spontaneous emission independent of light.

Now suppose that we have, in equilibrium at temperature T , a certain number
of atoms Nn in the state n and another number Nm in the state m. Then the
total number of atoms that are going from n to m is the number that are in the
state n times the rate per second that, if one is in n, it goes up to m. So we have
a formula for the number that are going from n to m per second:

Rn→m = NnBnmI(ω). (42.13)

The number that will go from m to n is expressed in the same manner, as the
number Nm that are in m, times the chance per second that each one goes down
to n. This time our expression is

Rm→n = Nm[Amn +BmnI(ω)]. (42.14)
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Now we shall suppose that in thermal equilibrium the number of atoms going up
must equal the number coming down. That is one way, at least, in which the
number will be sure to stay constant in each level.* So we take these two rates to
be equal at equilibrium. But we have one other piece of information: we know how
large Nm is compared with Nn—the ratio of those two is e−(Em−En)/kT . Now
Einstein assumed that the only light which is effective in making the transition
from n to m is the light which has the frequency corresponding to the energy
difference, so Em − En = ~ω in all our formulas. Thus

Nm = Nne
−~ω/kT . (42.15)

Thus if we set the two rates equal: NnBnmI(ω) = Nm[Amn +BmnI(ω)], and
divide by Nm, we get

BnmI(ω)e~ω/kT = Amn +BmnI(ω). (42.16)

From this equation, we can calculate I(ω). It is simply

I(ω) = Amn
Bnme~ω/kT −Bmn

. (42.17)

But Planck has already told us that the formula must be (42.12). Therefore
we can deduce something: First, that Bnm must equal Bmn, since otherwise we
cannot get the (e~ω/kT − 1). So Einstein discovered some things that he did
not know how to calculate, namely that the induced emission probability and the
absorption probability must be equal. This is interesting. And furthermore, in
order for (42.17) and (42.12) to agree,

Amn/Bmn must be ~ω3/π2c2. (42.18)

So if we know, for instance, the absorption rate for a given level, we can deduce
the spontaneous emission rate and the induced emission rate, or any combination.

This is as far as Einstein or anyone else could go using such arguments. To
actually compute the absolute spontaneous emission rate or the other rates for
any specific atomic transition, of course, requires a knowledge of the machinery
of the atom, called quantum electrodynamics, which was not discovered until
eleven years later. This work of Einstein was done in 1916.

* This is not the only way one can arrange to keep the numbers of atoms in the various levels
constant, but it is the way it actually works. That every process must, in thermal equilibrium,
be balanced by its exact opposite is called the principle of detailed balancing.
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Fig. 42-3. By exciting, say by blue light, a higher state h, which may
emit a photon leaving atoms in state m, the number in this state m
becomes sufficiently large to start laser action.

The possibility of induced emission has, today, found interesting applications.
If there is light present, it will tend to induce the downward transition. The
transition then adds its ~ω to the available light energy, if there were some atoms
sitting in the upper state. Now we can arrange, by some nonthermal method, to
have a gas in which the number in the state m is very much greater than the
number in the state n. This is far out of equilibrium, and so is not given by the
formula e−~ω/kT , which is for equilibrium. We can even arrange it so that the
number in the upper state is very large, while the number in the lower state is
practically zero. Then light which has the frequency corresponding to the energy
difference Em − En will not be strongly absorbed, because there are not many
atoms in state n to absorb it. On the other hand, when that light is present, it
will induce the emission from this upper state! So, if we had a lot of atoms in
the upper state, there would be a sort of chain reaction, in which, the moment
the atoms began to emit, more would be caused to emit, and the whole lot of
them would dump down together. This is what is called a laser , or, in the case
of the far infrared, a maser .

Various tricks can be used to obtain the atoms in state m. There may be
higher levels to which the atoms can get if we shine in a strong beam of light of
high frequency. From these high levels, they may trickle down, emitting various
photons, until they all get stuck in the state m. If they tend to stay in the
state m without emitting, the state is called metastable. And then they are
all dumped down together by induced emissions. One more technical point—if
we put this system in an ordinary box, it would radiate in so many different
directions spontaneously, compared with the induced effect, that we would still
be in trouble. But we can enhance the induced effect, increase its efficiency, by
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putting nearly perfect mirrors on each side of the box, so that the light which is
emitted gets another chance, and another chance, and another chance, to induce
more emission. Although the mirrors are almost one hundred percent reflecting,
there is a slight amount of transmission of the mirror, and a little light gets out.
In the end, of course, from the conservation of energy, all the light goes out in
a nice uniform straight direction which makes the strong light beams that are
possible today with lasers.
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43

Diffusion

43-1 Collisions between molecules

We have considered so far only the molecular motions in a gas which is in
thermal equilibrium. We want now to discuss what happens when things are
near, but not exactly in, equilibrium. In a situation far from equilibrium, things
are extremely complicated, but in a situation very close to equilibrium we can
easily work out what happens. To see what happens, we must, however, return
to the kinetic theory. Statistical mechanics and thermodynamics deal with the
equilibrium situation, but away from equilibrium we can only analyze what occurs
atom by atom, so to speak.

As a simple example of a nonequilibrium circumstance, we shall consider
the diffusion of ions in a gas. Suppose that in a gas there is a relatively small
concentration of ions—electrically charged molecules. If we put an electric field
on the gas, then each ion will have a force on it which is different from the forces
on the neutral molecules of the gas. If there were no other molecules present, an
ion would have a constant acceleration until it reached the wall of the container.
But because of the presence of the other molecules, it cannot do that; its velocity
increases only until it collides with a molecule and loses its momentum. It starts
again to pick up more speed, but then it loses its momentum again. The net
effect is that an ion works its way along an erratic path, but with a net motion in
the direction of the electric force. We shall see that the ion has an average “drift”
with a mean speed which is proportional to the electric field—the stronger the
field, the faster it goes. While the field is on, and while the ion is moving along, it
is, of course, not in thermal equilibrium, it is trying to get to equilibrium, which
is to be sitting at the end of the container. By means of the kinetic theory we
can compute the drift velocity.

It turns out that with our present mathematical abilities we cannot really
compute precisely what will happen, but we can obtain approximate results
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which exhibit all the essential features. We can find out how things will vary with
pressure, with temperature, and so on, but it will not be possible to get precisely
the correct numerical factors in front of all the terms. We shall, therefore, in our
derivations, not worry about the precise value of numerical factors. They can be
obtained only by a very much more sophisticated mathematical treatment.

Before we consider what happens in nonequilibrium situations, we shall need
to look a little closer at what goes on in a gas in thermal equilibrium. We shall
need to know, for example, what the average time between successive collisions
of a molecule is.

Any molecule experiences a sequence of collisions with other molecules—in a
random way, of course. A particular molecule will, in a long period of time T ,
have a certain number, N , of hits. If we double the length of time, there will be
twice as many hits. So the number of collisions is proportional to the time T .
We would like to write it this way:

N = T/τ. (43.1)

We have written the constant of proportionality as 1/τ , where τ will have the
dimensions of a time. The constant τ is the average time between collisions.
Suppose, for example, that in an hour there are 60 collisions; then τ is one minute.
We would say that τ (one minute) is the average time between the collisions.

We may often wish to ask the following question: “What is the chance that a
molecule will experience a collision during the next small interval of time dt?”
The answer, we may intuitively understand, is dt/τ . But let us try to make a
more convincing argument. Suppose that there were a very large number N of
molecules. How many will have collisions in the next interval of time dt? If there
is equilibrium, nothing is changing on the average with time. So N molecules
waiting the time dt will have the same number of collisions as one molecule
waiting for the time N dt. That number we know is N dt/τ . So the number of
hits of N molecules is N dt/τ in a time dt, and the chance, or probability, of a
hit for any one molecule is just 1/N as large, or (1/N)(N dt/τ) = dt/τ , as we
guessed above. That is to say, the fraction of the molecules which will suffer a
collision in the time dt is dt/τ . To take an example, if τ is one minute, then in
one second the fraction of particles which will suffer collisions is 1/60. What this
means, of course, is that 1/60 of the molecules happen to be close enough to
what they are going to hit next that their collisions will occur in the next second.

When we say that τ , the mean time between collisions, is one minute, we
do not mean that all the collisions will occur at times separated by exactly one
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minute. A particular particle does not have a collision, wait one minute, and then
have another collision. The times between successive collisions are quite variable.
We will not need it for our later work here, but we may make a small diversion
to answer the question: “What are the times between collisions?” We know that
for the case above, the average time is one minute, but we might like to know,
for example, what is the chance that we get no collision for two minutes?

We shall find the answer to the general question: “What is the probability
that a molecule will go for a time t without having a collision?” At some arbitrary
instant—that we call t = 0—we begin to watch a particular molecule. What is
the chance that it gets by until t without colliding with another molecule? To
compute the probability, we observe what is happening to all N0 molecules in a
container. After we have waited a time t, some of them will have had collisions.
We let N(t) be the number that have not had collisions up to the time t. N(t)
is, of course, less than N0. We can find N(t) because we know how it changes
with time. If we know that N(t) molecules have got by until t, then N(t+ dt),
the number which get by until t+ dt, is less than N(t) by the number that have
collisions in dt. The number that collide in dt we have written above in terms of
the mean time τ as dN = N(t) dt/τ . We have the equation

N(t+ dt) = N(t)−N(t) dt
τ
. (43.2)

The quantity on the left-hand side, N(t+ dt), can be written, according to the
definitions of calculus, as N(t) + (dN/dt) dt. Making this substitution, Eq. (43.2)
yields

dN(t)
dt

= −N(t)
τ

. (43.3)

The number that are being lost in the interval dt is proportional to the number
that are present, and inversely proportional to the mean life τ . Equation (43.3)
is easily integrated if we rewrite it as

dN(t)
N(t) = −dt

τ
. (43.4)

Each side is a perfect differential, so the integral is

lnN(t) = −t/τ + (a constant), (43.5)
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which says the same thing as

N(t) = (constant)e−t/τ . (43.6)

We know that the constant must be just N0, the total number of molecules
present, since all of them start at t = 0 to wait for their “next” collision. We can
write our result as

N(t) = N0e
−t/τ . (43.7)

If we wish the probability of no collision, P (t), we can get it by dividing N(t)
by N0, so

P (t) = e−t/τ . (43.8)

Our result is: the probability that a particular molecule survives a time t without
a collision is e−t/τ , where τ is the mean time between collisions. The probability
starts out at 1 (or certainty) for t = 0, and gets less as t gets bigger and
bigger. The probability that the molecule avoids a collision for a time equal
to τ is e−1 ≈ 0.37. The chance is less than one-half that it will have a greater
than average time between collisions. That is all right, because there are enough
molecules which go collision-free for times much longer than the mean time before
colliding, so that the average time can still be τ .

We originally defined τ as the average time between collisions. The result
we have obtained in Eq. (43.7) also says that the mean time from an arbitrary
starting instant to the next collision is also τ . We can demonstrate this somewhat
surprising fact in the following way. The number of molecules which experience
their next collision in the interval dt at the time t after an arbitrarily chosen
starting time is N(t) dt/τ . Their “time until the next collision” is, of course,
just t. The “average time until the next collision” is obtained in the usual way:

Average time until the next collision = 1
N0

∫ ∞
0

t
N(t) dt
τ

.

Using N(t) obtained in (43.7) and evaluating the integral, we find indeed that τ
is the average time from any instant until the next collision.

43-2 The mean free path

Another way of describing the molecular collisions is to talk not about the time
between collisions, but about how far the particle moves between collisions. If
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we say that the average time between collisions is τ , and that the molecules have
a mean velocity v, we can expect that the average distance between collisions,
which we shall call l, is just the product of τ and v. This distance between
collisions is usually called the mean free path:

Mean free path l = τv. (43.9)

In this chapter we shall be a little careless about what kind of average we
mean in any particular case. The various possible averages—the mean, the root-
mean-square, etc.—are all nearly equal and differ by factors which are near to
one. Since a detailed analysis is required to obtain the correct numerical factors
anyway, we need not worry about which average is required at any particular
point. We may also warn the reader that the algebraic symbols we are using for
some of the physical quantities (e.g., l for the mean free path) do not follow a
generally accepted convention, mainly because there is no general agreement.

Just as the chance that a molecule will have a collision in a short time dt
is equal to dt/τ , the chance that it will have a collision in going a distance dx
is dx/l. Following the same line of argument used above, the reader can show
that the probability that a molecule will go at least the distance x before having
its next collision is e−x/l.

The average distance a molecule goes before colliding with another molecule—
the mean free path l—will depend on how many molecules there are around and
on the “size” of the molecules, i.e., how big a target they represent. The effective
“size” of a target in a collision we usually describe by a “collision cross section,”
the same idea that is used in nuclear physics, or in light-scattering problems.

Consider a moving particle which travels a distance dx through a gas which
has n0 scatterers (molecules) per unit volume (Fig. 43-1). If we look at each unit

dx

Total number of
molecules is n0 dx

Collision area is σc

unit area

Total area covered is σcn0 dx

Fig. 43-1. Collision cross section.
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of area perpendicular to the direction of motion of our selected particle, we will
find there n0 dx molecules. If each one presents an effective collision area or, as
it is usually called, “collision cross section,” σc, then the total area covered by
the scatterers is σcn0 dx.

By “collision cross section” we mean the area within which the center of our
particle must be located if it is to collide with a particular molecule. If molecules
were little spheres (a classical picture) we would expect that σc = π(r1 + r2)2,
where r1 and r2 are the radii of the two colliding objects. The chance that
our particle will have a collision is the ratio of the area covered by scattering
molecules to the total area, which we have taken to be one. So the probability of
a collision in going a distance dx is just σcn0 dx:

Chance of a collision in dx = σcn0 dx. (43.10)

We have seen above that the chance of a collision in dx can also be written
in terms of the mean free path l as dx/l. Comparing this with (43.10), we can
relate the mean free path to the collision cross section:

1
l

= σcn0, (43.11)

which is easier to remember if we write it as

σcn0l = 1. (43.12)

This formula can be thought of as saying that there should be one collision, on
the average, when the particle goes through a distance l in which the scattering
molecules could just cover the total area. In a cylindrical volume of length l
and a base of unit area, there are n0l scatterers; if each one has an area σc the
total area covered is n0lσc, which is just one unit of area. The whole area is
not covered, of course, because some molecules are partly hidden behind others.
That is why some molecules go farther than l before having a collision. It is
only on the average that the molecules have a collision by the time they go the
distance l. From measurements of the mean free path l we can determine the
scattering cross section σc, and compare the result with calculations based on a
detailed theory of atomic structure. But that is a different subject! So we return
to the problem of nonequilibrium states.
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43-3 The drift speed

We want to describe what happens to a molecule, or several molecules, which
are different in some way from the large majority of the molecules in a gas.
We shall refer to the “majority” molecules as the “background” molecules, and
we shall call the molecules which are different from the background molecules
“special” molecules or, for short, the S-molecules. A molecule could be special
for any number of reasons: It might be heavier than the background molecules.
It might be a different chemical. It might have an electric charge—i.e., be an
ion in a background of uncharged molecules. Because of their different masses
or charges the S-molecules may have forces on them which are different from
the forces on the background molecules. By considering what happens to these
S-molecules we can understand the basic effects which come into play in a similar
way in many different phenomena. To list a few: the diffusion of gases, electric
currents in batteries, sedimentation, centrifugal separation, etc.

We begin by concentrating on the basic process: an S-molecule in a back-
ground gas is acted on by some specific force F (which might be, e.g., gravitational
or electrical) and in addition by the not-so-specific forces due to collisions with
the background molecules. We would like to describe the general behavior of the
S-molecule. What happens to it, in detail, is that it darts around hither and yon
as it collides over and over again with other molecules. But if we watch it carefully
we see that it does make some net progress in the direction of the force F . We
say that there is a drift, superposed on its random motion. We would like to
know what the speed of its drift is—its drift velocity—due to the force F .

If we start to observe an S-molecule at some instant we may expect that it is
somewhere between two collisions. In addition to the velocity it was left with
after its last collision it is picking up some velocity component due to the force F .
In a short time (on the average, in a time τ) it will experience a collision and
start out on a new piece of its trajectory. It will have a new starting velocity,
but the same acceleration from F .

To keep things simple for the moment, we shall suppose that after each
collision our S-molecule gets a completely “fresh” start. That is, that it keeps no
remembrance of its past acceleration by F . This might be a reasonable assumption
if our S-molecule were much lighter than the background molecules, but it is
certainly not valid in general. We shall discuss later an improved assumption.

For the moment, then, our assumption is that the S-molecule leaves each
collision with a velocity which may be in any direction with equal likelihood. The
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starting velocity will take it equally in all directions and will not contribute to
any net motion, so we shall not worry further about its initial velocity after a
collision. In addition to its random motion, each S-molecule will have, at any
moment, an additional velocity in the direction of the force F , which it has picked
up since its last collision. What is the average value of this part of the velocity?
It is just the acceleration F /m (where m is the mass of the S-molecule) times
the average time since the last collision. Now the average time since the last
collision must be the same as the average time until the next collision, which
we have called τ , above. The average velocity from F , of course, is just what is
called the drift velocity, so we have the relation

vdrift = Fτ

m
. (43.13)

This basic relation is the heart of our subject. There may be some complication
in determining what τ is, but the basic process is defined by Eq. (43.13).

You will notice that the drift velocity is proportional to the force. There
is, unfortunately, no generally used name for the constant of proportionality.
Different names have been used for each different kind of force. If in an electrical
problem the force is written as the charge times the electric field, F = qE, then
the constant of proportionality between the velocity and the electric field E is
usually called the “mobility.” In spite of the possibility of some confusion, we
shall use the term mobility for the ratio of the drift velocity to the force for any
force. We write

vdrift = µF. (43.14)
in general, and we shall call µ the mobility. We have from Eq. (43.13) that

µ = τ/m. (43.15)

The mobility is proportional to the mean time between collisions (there are fewer
collisions to slow it down) and inversely proportional to the mass (more inertia
means less speed picked up between collisions).

To get the correct numerical coefficient in Eq. (43.13), which is correct as
given, takes some care. Without intending to confuse, we should still point out
that the arguments have a subtlety which can be appreciated only by a careful
and detailed study. To illustrate that there are difficulties, in spite of appearances,
we shall make over again the argument which led to Eq. (43.13) in a reasonable
but erroneous way (and the way one will find in many textbooks!).
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We might have said: The mean time between collisions is τ . After a collision
the particle starts out with a random velocity, but it picks up an additional
velocity between collisions, which is equal to the acceleration times the time.
Since it takes the time τ to arrive at the next collision it gets there with the
velocity (F/m)τ . At the beginning of the collision it had zero velocity. So between
the two collisions it has, on the average, a velocity one-half of the final velocity, so
the mean drift velocity is 1

2Fτ/m. (Wrong!) This result is wrong and the result
in Eq. (43.13) is right, although the arguments may sound equally satisfactory.
The reason the second result is wrong is somewhat subtle, and has to do with the
following: The argument is made as though all collisions were separated by the
mean time τ . The fact is that some times are shorter and others are longer than
the mean. Short times occur more often but make less contribution to the drift
velocity because they have less chance “to really get going.” If one takes proper
account of the distribution of free times between collisions, one can show that
there should not be the factor 1

2 that was obtained from the second argument.
The error was made in trying to relate by a simple argument the average final
velocity to the average velocity itself. This relationship is not simple, so it is best
to concentrate on what is wanted: the average velocity itself. The first argument
we gave determines the average velocity directly—and correctly! But we can
perhaps see now why we shall not in general try to get all of the correct numerical
coefficients in our elementary derivations!

We return now to our simplifying assumption that each collision knocks out
all memory of the past motion—that a fresh start is made after each collision.
Suppose our S-molecule is a heavy object in a background of lighter molecules.
Then our S-molecule will not lose its “forward” momentum in each collision.
It would take several collisions before its motion was “randomized” again. We
should assume, instead, that at each collision—in each time τ on the average—it
loses a certain fraction of its momentum. We shall not work out the details, but
just state that the result is equivalent to replacing τ , the average collision time,
by a new—and longer—τ which corresponds to the average “forgetting time,” i.e.,
the average time to forget its forward momentum. With such an interpretation
of τ we can use our formula (43.15) for situations which are not quite as simple
as we first assumed.

43-4 Ionic conductivity
We now apply our results to a special case. Suppose we have a gas in a vessel

in which there are also some ions—atoms or molecules with a net electric charge.
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We show the situation schematically in Fig. 43-2. If two opposite walls of the
container are metallic plates, we can connect them to the terminals of a battery
and thereby produce an electric field in the gas. The electric field will result in a
force on the ions, so they will begin to drift toward one or the other of the plates.
An electric current will be induced, and the gas with its ions will behave like a
resistor. By computing the ion flow from the drift velocity we can compute the
resistance. We ask, specifically: How does the flow of electric current depend on
the voltage difference V that we apply across the two plates?

b

metal

Area A

+ −

E

Gas with ni ions
per unit volume

Insulator

To battery with voltage V

Fig. 43-2. Electric current from an ionized gas.

We consider the case that our container is a rectangular box of length b and
cross-sectional area A (Fig. 43-2). If the potential difference, or voltage, from
one plate to the other is V , the electric field E between the plates is V/b. (The
electric potential is the work done in carrying a unit charge from one plate to
the other. The force on a unit charge is E. If E is the same everywhere between
the plates, which is a good enough approximation for now, the work done on a
unit charge is just Eb, so V = Eb.) The special force on an ion of the gas is qE,
where q is the charge on the ion. The drift velocity of the ion is then µ times
this force, or

vdrift = µF = µqE = µq
V

b
. (43.16)

An electric current I is the flow of charge in a unit time. The electric current
to one of the plates is given by the total charge of the ions which arrive at the
plate in a unit of time. If the ions drift toward the plate with the velocity vdrift,
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then those which are within a distance (vdrift · T ) will arrive at the plate in the
time T . If there are ni ions per unit volume, the number which reach the plate
in the time T is (ni ·A · vdrift · T ). Each ion carries the charge q, so we have that

Charge collected in T = qniAvdriftT. (43.17)

The current I is the charge collected in T divided by T , so

I = qniAvdrift. (43.18)

Substituting vdrift from (43.16), we have

I = µq2ni
A

b
V. (43.19)

We find that the current is proportional to the voltage, which is just the form of
Ohm’s law, and the resistance R is the inverse of the proportionality constant:

1
R

= µq2ni
A

b
. (43.20)

We have a relation between the resistance and the molecular properties ni, q,
and µ, which depends in turn on m and τ . If we know ni and q from atomic
measurements, a measurement of R could be used to determine µ, and from µ
also τ .

43-5 Molecular diffusion

We turn now to a different kind of problem, and a different kind of analysis:
the theory of diffusion. Suppose that we have a container of gas in thermal
equilibrium, and that we introduce a small amount of a different kind of gas
at some place in the container. We shall call the original gas the “background”
gas and the new one the “special” gas. The special gas will start to spread out
through the whole container, but it will spread slowly because of the presence
of the background gas. This slow spreading-out process is called diffusion. The
diffusion is controlled mainly by the molecules of the special gas getting knocked
about by the molecules of the background gas. After a large number of collisions,
the special molecules end up spread out more or less evenly throughout the
whole volume. We must be careful not to confuse diffusion of a gas with the
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gross transport that may occur due to convection currents. Most commonly, the
mixing of two gases occurs by a combination of convection and diffusion. We are
interested now only in the case that there are no “wind” currents. The gas is
spreading only by molecular motions, by diffusion. We wish to compute how fast
diffusion takes place.

We now compute the net flow of molecules of the “special” gas due to the
molecular motions. There will be a net flow only when there is some nonuniform
distribution of the molecules, otherwise all of the molecular motions would average
to give no net flow. Let us consider first the flow in the x-direction. To find the
flow, we consider an imaginary plane surface perpendicular to the x-axis and
count the number of special molecules that cross this plane. To obtain the net
flow, we must count as positive those molecules which cross in the direction of
positive x and subtract from this number the number which cross in the negative
x-direction. As we have seen many times, the number which cross a surface area
in a time ∆T is given by the number which start the interval ∆T in a volume
which extends the distance v∆T from the plane. (Note that v, here, is the actual
molecular velocity, not the drift velocity.)

We shall simplify our algebra by giving our surface one unit of area. Then the
number of special molecules which pass from left to right (taking the +x-direction
to the right) is n−v∆T , where n− is the number of special molecules per unit
volume to the left (within a factor of 2 or so, but we are ignoring such factors!).
The number which cross from right to left is, similarly, n+v∆T , where n+ is the
number density of special molecules on the right-hand side of the plane. If we
call the molecular current J , by which we mean the net flow of molecules per
unit area per unit time, we have

J = n−v∆T − n+v∆T
∆T , (43.21)

or
J = (n− − n+)v. (43.22)

What shall we use for n− and n+? When we say “the density on the left,”
how far to the left do we mean? We should choose the density at the place from
which the molecules started their “flight,” because the number which start such
trips is determined by the number present at that place. So by n− we should
mean the density a distance to the left equal to the mean free path l, and by n+,
the density at the distance l to the right of our imaginary surface.
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It is convenient to consider that the distribution of our special molecules
in space is described by a continuous function of x, y, and z which we shall
call na. By na(x, y, z) we mean the number density of special molecules in a
small volume element centered on (x, y, z). In terms of na we can express the
difference (n+ − n−) as

(n+ − n−) = dna
dx

∆x = dna
dx
· 2l. (43.23)

Substituting this result in Eq. (43.22) and neglecting the factor of 2, we get

Jx = −lv dna
dx

. (43.24)

We have found that the flow of special molecules is proportional to the derivative
of the density, or to what is sometimes called the “gradient” of the density.

It is clear that we have made several rough approximations. Besides various
factors of two we have left out, we have used v where we should have used vx, and
we have assumed that n+ and n− refer to places at the perpendicular distance l
from our surface, whereas for those molecules which do not travel perpendicular
to the surface element, l should correspond to the slant distance from the surface.
All of these refinements can be made; the result of a more careful analysis shows
that the right-hand side of Eq. (43.24) should be multiplied by 1/3. So a better
answer is

Jx = − lv3
dna
dx

. (43.25)

Similar equations can be written for the currents in the y- and z-directions.
The current Jx and the density gradient dna/dx can be measured by macro-

scopic observations. Their experimentally determined ratio is called the “diffusion
coefficient,” D. That is,

Jx = −D dna
dx

. (43.26)

We have been able to show that for a gas we expect

D = 1
3 lv. (43.27)

So far in this chapter we have considered two distinct processes: mobility, the
drift of molecules due to “outside” forces; and diffusion, the spreading determined
only by the internal forces, the random collisions. There is, however, a relation

43-13



between them, since they both depend basically on the thermal motions, and the
mean free path l appears in both calculations.

If, in Eq. (43.25), we substitute l = vτ and τ = µm, we have

Jx = − 1
3mv

2µ
dna
dx

. (43.28)

But mv2 depends only on the temperature. We recall that

1
2mv

2 = 3
2kT, (43.29)

so
Jx = −µkT dna

dx
. (43.30)

We find thatD, the diffusion coefficient, is just kT times µ, themobility coefficient:

D = µkT. (43.31)

And it turns out that the numerical coefficient in (43.31) is exactly right—no
extra factors have to be thrown in to adjust for our rough assumptions. We
can show, in fact, that (43.31) must always be correct—even in complicated
situations (for example, the case of a suspension in a liquid) where the details of
our simple calculations would not apply at all.

To show that (43.31) must be correct in general, we shall derive it in a different
way, using only our basic principles of statistical mechanics. Imagine a situation
in which there is a gradient of “special” molecules, and we have a diffusion current
proportional to the density gradient, according to Eq. (43.26). We now apply
a force field in the x-direction, so that each special molecule feels the force F .
According to the definition of the mobility µ there will be a drift velocity given
by

vdrift = µF. (43.32)

By our usual arguments, the drift current (the net number of molecules which
pass a unit of area in a unit of time) will be

Jdrift = navdrift, (43.33)
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or
Jdrift = naµF. (43.34)

We now adjust the force F so that the drift current due to F just balances
the diffusion, so that there is no net flow of our special molecules. We have
Jx + Jdrift = 0, or

D
dna
dx

= naµF. (43.35)

Under the “balance” conditions we find a steady (with time) gradient of
density given by

dna
dx

= naµF

D
. (43.36)

But notice! We are describing an equilibrium condition, so our equilibrium
laws of statistical mechanics apply. According to these laws the probability of
finding a molecule at the coordinate x is proportional to e−U/kT , where U is the
potential energy. In terms of the number density na, this means that

na = n0e
−U/kT . (43.37)

If we differentiate (43.37) with respect to x, we find

dna
dx

= −n0e
−U/kT · 1

kT

dU

dx
, (43.38)

or
dna
dx

= − na
kT

dU

dx
. (43.39)

In our situation, since the force F is in the x-direction, the potential energy U is
just −Fx, and −dU/dx = F . Equation (43.39) then gives

dna
dx

= naF

kT
. (43.40)

[This is just exactly Eq. (40.2), from which we deduced e−U/kT in the first place,
so we have come in a circle]. Comparing (43.40) with (43.36), we get exactly
Eq. (43.31). We have shown that Eq. (43.31), which gives the diffusion current
in terms of the mobility, has the correct coefficient and is very generally true.
Mobility and diffusion are intimately connected. This relation was first deduced
by Einstein.
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43-6 Thermal conductivity

The methods of the kinetic theory that we have been using above can be
used also to compute the thermal conductivity of a gas. If the gas at the top of a
container is hotter than the gas at the bottom, heat will flow from the top to the
bottom. (We think of the top being hotter because otherwise convection currents
would be set up and the problem would no longer be one of heat conduction.)
The transfer of heat from the hotter gas to the colder gas is by the diffusion
of the “hot” molecules—those with more energy—downward and the diffusion
of the “cold” molecules upward. To compute the flow of thermal energy we
can ask about the energy carried downward across an element of area by the
downward-moving molecules, and about the energy carried upward across the
surface by the upward-moving molecules. The difference will give us the net
downward flow of energy.

The thermal conductivity κ is defined as the ratio of the rate at which thermal
energy is carried across a unit surface area, to the temperature gradient:

1
A

dQ

dt
= −κ dT

dz
. (43.41)

Since the details of the calculations are quite similar to those we have done above
in considering molecular diffusion, we shall leave it as an exercise for the reader
to show that

κ = knlv

γ − 1 , (43.42)

where kT/(γ − 1) is the average energy of a molecule at the temperature T .
If we use our relation nlσc = 1, the heat conductivity can be written as

κ = 1
γ − 1

kv

σc
. (43.43)

We have a rather surprising result. We know that the average velocity of gas
molecules depends on the temperature but not on the density. We expect σc
to depend only on the size of the molecules. So our simple result says that the
thermal conductivity κ (and therefore the rate of flow of heat in any particular
circumstance) is independent of the density of the gas! The change in the number
of “carriers” of energy with a change in density is just compensated by the larger
distance the “carriers” can go between collisions.
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One may ask: “Is the heat flow independent of the gas density in the limit
as the density goes to zero? When there is no gas at all?” Certainly not! The
formula (43.43) was derived, as were all the others in this chapter, under the
assumption that the mean free path between collisions is much smaller than any
of the dimensions of the container. Whenever the gas density is so low that a
molecule has a fair chance of crossing from one wall of its container to the other
without having a collision, none of the calculations of this chapter apply. We
must in such cases go back to kinetic theory and calculate again the details of
what will occur.

43-17



44

The Laws of Thermodynamics

44-1 Heat engines; the first law

So far we have been discussing the properties of matter from the atomic
point of view, trying to understand roughly what will happen if we suppose that
things are made of atoms obeying certain laws. However, there are a number of
relationships among the properties of substances which can be worked out without
consideration of the detailed structure of the materials. The determination of the
relationships among the various properties of materials, without knowing their
internal structure, is the subject of thermodynamics. Historically, thermodynamics
was developed before an understanding of the internal structure of matter was
achieved.

To give an example: we know from the kinetic theory that the pressure of a gas
is caused by molecular bombardment, and we know that if we heat a gas, so that
the bombardment increases, the pressure must increase. Conversely, if the piston
in a container of the gas is moved inward against the force of bombardment, the
energy of the molecules bombarding the piston will increase, and consequently the
temperature will increase. So, on the one hand, if we increase the temperature at
a given volume, we increase the pressure. On the other hand, if we compress the
gas, we will find that the temperature will rise. From the kinetic theory, one can
derive a quantitative relationship between these two effects, but instinctively one
might guess that they are related in some necessary fashion which is independent
of the details of the collisions.

Let us consider another example. Many people are familiar with this interesting
property of rubber: If we take a rubber band and pull it, it gets warm. If one
puts it between his lips, for example, and pulls it out, he can feel a distinct
warming, and this warming is reversible in the sense that if he relaxes the rubber
band quickly while it is between his lips, it is distinctly cooled. That means that
when we stretch a rubber band it heats, and when we release the tension of the
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Fig. 44-1. The heated rubber band.

band it cools. Now our instincts might suggest that if we heated a band, it might
pull: that the fact that pulling a band heats it might imply that heating a band
should cause it to contract. And, in fact, if we apply a gas flame to a rubber
band holding a weight, we will see that the band contracts abruptly (Fig. 44-1).
So it is true that when we heat a rubber band it pulls, and this fact is definitely
related to the fact that when we release the tension of it, it cools.

The internal machinery of rubber that causes these effects is quite complicated.
We will describe it from a molecular point of view to some extent, although our
main purpose in this chapter is to understand the relationship of these effects
independently of the molecular model. Nevertheless, we can show from the
molecular model that the effects are closely related. One way to understand the
behavior of rubber is to recognize that this substance consists of an enormous
tangle of long chains of molecules, a kind of “molecular spaghetti,” with one extra
complication: between the chains there are cross-links—like spaghetti that is
sometimes welded together where it crosses another piece of spaghetti—a grand
tangle. When we pull out such a tangle, some of the chains tend to line up along
the direction of the pull. At the same time, the chains are in thermal motion, so
they hit each other continually. It follows that such a chain, if stretched, would
not by itself remain stretched, because it would be hit from the sides by the other
chains and other molecules, and would tend to kink up again. So the real reason
why a rubber band tends to contract is this: when one pulls it out, the chains are
lengthwise, and the thermal agitations of the molecules on the sides of the chains
tend to kink the chains up, and make them shorten. One can then appreciate
that if the chains are held stretched and the temperature is increased, so that
the vigor of the bombardment on the sides of the chains is also increased, the
chains tend to pull in, and they are able to pull a stronger weight when heated.
If, after being stretched for a time, a rubber band is allowed to relax, each chain
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becomes soft, and the molecules striking it lose energy as they pound into the
relaxing chain. So the temperature falls.

We have seen how these two processes, contraction when heated and cooling
during relaxation, can be related by the kinetic theory, but it would be a tremen-
dous challenge to determine from the theory the precise relationship between the
two. We would have to know how many collisions there were each second and
what the chains look like, and we would have to take account of all kinds of other
complications. The detailed mechanism is so complex that we cannot, by kinetic
theory, really determine exactly what happens; still, a definite relation between
the two effects we observe can be worked out without knowing anything about
the internal machinery!

The whole subject of thermodynamics depends essentially upon the following
kind of consideration: because a rubber band is “stronger” at higher temperatures
than it is at lower temperatures, it ought to be possible to lift weights, and to
move them around, and thus to do work with heat. In fact, we have already seen
experimentally that a heated rubber band can lift a weight. The study of the way
that one does work with heat is the beginning of the science of thermodynamics.
Can we make an engine which uses the heating effect on a rubber band to do work?
One can make a silly looking engine that does just this. It consists of a bicycle
wheel in which all the spokes are rubber bands (Fig. 44-2). If one heats the rubber
bands on one side of the wheel with a pair of heat lamps, they become “stronger”
than the rubber bands on the other side. The center of gravity of the wheel will

Fig. 44-2. The rubber band heat engine.
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be pulled to one side, away from the bearing, so that the wheel turns. As it turns,
cool rubber bands move toward the heat, and the heated bands move away from
the heat and cool, so that the wheel turns slowly so long as the heat is applied. The
efficiency of this engine is extremely low. Four hundred watts of power pour into
the two lamps, but it is just possible to lift a fly with such an engine! An interesting
question, however, is whether we can get heat to do the work in more efficient ways.

In fact, the science of thermodynamics began with an analysis, by the great
engineer Sadi Carnot, of the problem of how to build the best and most efficient
engine, and this constitutes one of the few famous cases in which engineering
has contributed fundamentally to physical theory. Another example that comes
to mind is the more recent analysis of information theory by Claude Shannon.
These two analyses, incidentally, turn out to be closely related.

Now the way a steam engine ordinarily operates is that heat from a fire
boils some water, and the steam so formed expands and pushes on a piston
which makes a wheel go around. So the steam pushes the piston—what then?
One has to finish the job: a stupid way to complete the cycle would be to let
the steam escape into the air, for then one has to keep supplying water. It
is cheaper—more efficient—to let the steam go into another box, where it is
condensed by cool water, and then pump the water back into the boiler, so that
it circulates continuously. Heat is thus supplied to the engine and converted into
work. Now would it be better to use alcohol? What property should a substance
have so that it makes the best possible engine? That was the question to which
Carnot addressed himself, and one of the by-products was the discovery of the
type of relationship that we have just explained above.

The results of thermodynamics are all contained implicitly in certain appar-
ently simple statements called the laws of thermodynamics. At the time when
Carnot lived, the first law of thermodynamics, the conservation of energy, was
not known. Carnot’s arguments were so carefully drawn, however, that they are
valid even though the first law was not known in his time! Some time afterwards,
Clapeyron made a simpler derivation that could be understood more easily than
Carnot’s very subtle reasoning. But it turned out that Clapeyron assumed, not
the conservation of energy in general, but that heat was conserved according to
the caloric theory, which was later shown to be false. So it has often been said
that Carnot’s logic was wrong. But his logic was quite correct. Only Clapeyron’s
simplified version, that everybody read, was incorrect.

The so-called second law of thermodynamics was thus discovered by Carnot
before the first law! It would be interesting to give Carnot’s argument that did
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not use the first law, but we shall not do so because we want to learn physics,
not history. We shall use the first law from the start, in spite of the fact that a
great deal can be done without it.

Let us begin by stating the first law, the conservation of energy: if one has a
system and puts heat into it, and does work on it, then its energy is increased by
the heat put in and the work done. We can write this as follows: The heat Q
put into the system, plus the work W done on the system, is the increase in the
energy U of the system; the latter energy is sometimes called the internal energy:

Change in U = Q+W. (44.1)

The change in U can be represented as adding a little heat ∆Q and adding a
little work ∆W :

∆U = ∆Q+ ∆W, (44.2)

which is a differential form of the same law. We know that very well, from an
earlier chapter.

44-2 The second law

Now, what about the second law of thermodynamics? We know that if we
do work against friction, say, the work lost to us is equal to the heat produced.
If we do work in a room at temperature T , and we do the work slowly enough,
the room temperature does not change much, and we have converted work into
heat at a given temperature. What about the reverse possibility? Is it possible
to convert the heat back into work at a given temperature? The second law of
thermodynamics asserts that it is not. It would be very convenient to be able to
convert heat into work merely by reversing a process like friction. If we consider
only the conservation of energy, we might think that heat energy, such as that in
the vibrational motions of molecules, might provide a goodly supply of useful
energy. But Carnot assumed that it is impossible to extract the energy of heat
at a single temperature. In other words, if the whole world were at the same
temperature, one could not convert any of its heat energy into work: while the
process of making work go into heat can take place at a given temperature, one
cannot reverse it to get the work back again. Specifically, Carnot assumed that
heat cannot be taken in at a certain temperature and converted into work with
no other change in the system or the surroundings.
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That last phrase is very important. Suppose we have a can of compressed
air at a certain temperature, and we let the air expand. It can do work; it can
make hammers go, for example. It cools off a little in the expansion, but if we
had a big sea, like the ocean, at a given temperature—a heat reservoir—we could
warm it up again. So we have taken the heat out of the sea, and we have done
work with the compressed air. But Carnot was not wrong, because we did not
leave everything as it was. If we recompress the air that we let expand, we will
find we are doing extra work, and when we are finished we will discover that we
not only got no work out of the system at temperature T , but we actually put
some in. We must talk only about situations in which the net result of the whole
process is to take heat away and convert it into work, just as the net result of the
process of doing work against friction is to take work and convert it into heat. If
we move in a circle, we can bring the system back precisely to its starting point,
with the net result that we did work against friction and produced heat. Can we
reverse the process? Turn a switch, so that everything goes backwards, so the
friction does work against us, and cools the sea? According to Carnot: no! So
let us suppose that this is impossible.

If it were possible it would mean, among other things, that we could take
heat out of a cold body and put it into a hot body at no cost, as it were. Now
we know it is natural that a hot thing can warm up a cool thing; if we simply
put a hot body and a cold one together, and change nothing else, our experience
assures us that it is not going to happen that the hot one gets hotter, and the
cold one gets colder! But if we could obtain work by extracting the heat out of
the ocean, say, or from anything else at a single temperature, then that work
could be converted back into heat by friction at some other temperature. For
instance, the other arm of a working machine could be rubbing something that is
already hot. The net result would be to take heat from a “cold” body, the ocean,
and to put it into a hot body. Now, the hypothesis of Carnot, the second law
of thermodynamics, is sometimes stated as follows: heat cannot, of itself, flow
from a cold to a hot object. But, as we have just seen, these two statements are
equivalent: first, that one cannot devise a process whose only result is to convert
heat to work at a single temperature, and second, that one cannot make heat
flow by itself from a cold to a hot place. We shall mostly use the first form.

Carnot’s analysis of heat engines is quite similar to the argument that we
gave about weight-lifting engines in our discussion of the conservation of energy
in Chapter 4. In fact, that argument was patterned after Carnot’s argument
about heat engines, and so the present treatment will sound very much the same.
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Fig. 44-3. Heat engine.

Suppose we build a heat engine that has a “boiler” somewhere at a temper-
ature T1. A certain heat Q1 is taken from the boiler, the steam engine does
some work W , and it then delivers some heat Q2 into a “condenser” at another
temperature T2 (Fig. 44-3). Carnot did not say how much heat, because he did
not know the first law, and he did not use the law that Q2 was equal to Q1
because he did not believe it. Although everybody thought that, according to
the caloric theory, the heats Q1 and Q2 would have to be the same, Carnot did
not say they were the same—that is part of the cleverness of his argument. If we
do use the first law, we find that the heat delivered, Q2, is the heat Q1 that was
put in minus the work W that was done:

Q2 = Q1 −W. (44.3)

(If we have some kind of cyclic process where water is pumped back into the boiler
after it is condensed, we will say that we have heat Q1 absorbed and work W
done, during each cycle, for a certain amount of water that goes around the
cycle.)

Now we shall build another engine, and see if we cannot get more work
from the same amount of heat being delivered at the temperature T1, with the
condenser still at the temperature T2. We shall use the same amount of heat Q1
from the boiler, and we shall try to get more work than we did out of the steam
engine, perhaps by using another fluid, such as alcohol.

44-3 Reversible engines

Now we must analyze our engines. One thing is clear: we will lose something
if the engines contain devices in which there is friction. The best engine will be
a frictionless engine. We assume, then, the same idealization that we did when
we studied the conservation of energy; that is, a perfectly frictionless engine.

We must also consider the analog of frictionless motion, “frictionless” heat
transfer. If we put a hot object at a high temperature against a cold object, so
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Fig. 44-4. Reversible heat transfer.

that the heat flows, then it is not possible to make that heat flow in a reverse
direction by a very small change in the temperature of either object. But when
we have a practically frictionless machine, if we push it with a little force one
way, it goes that way, and if we push it with a little force the other way, it goes
the other way. We need to find the analog of frictionless motion: heat transfer
whose direction we can reverse with only a tiny change. If the difference in
temperature is finite, that is impossible, but if one makes sure that heat flows
always between two things at essentially the same temperature, with just an
infinitesimal difference to make it flow in the desired direction, the flow is said to
be reversible (Fig. 44-4). If we heat the object on the left a little, heat will flow to
the right; if we cool it a little, heat will flow to the left. So we find that the ideal
engine is a so-called reversible engine, in which every process is reversible in the
sense that, by minor changes, infinitesimal changes, we can make the engine go
in the opposite direction. That means that nowhere in the machine must there
be any appreciable friction, and nowhere in the machine must there be any place
where the heat of the reservoirs, or the flame of the boiler, is in direct contact
with something definitely cooler or warmer.

Let us now consider an idealized engine in which all the processes are reversible.
To show that such a thing is possible in principle, we will give an example of an
engine cycle which may or may not be practical, but which is at least reversible,
in the sense of Carnot’s idea. Suppose that we have a gas in a cylinder equipped
with a frictionless piston. The gas is not necessarily a perfect gas. The fluid does
not even have to be a gas, but to be specific let us say we do have a perfect gas.
Also, suppose that we have two heat pads, T1 and T2—great big things that have
definite temperatures, T1 and T2. We will suppose in this case that T1 is higher
than T2. Let us first heat the gas and at the same time expand it, while it is
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Step (1) Isothermal expansion at T1, absorb heat Q1

Step (2) Adiabatic expansion, temperature falls from T1 to T2

Step (3) Isothermal compression at T2, deliver heat Q2

Step (4) Adiabatic compression, temperature rises from T2 to T1

Q1

T1

T1

T1

T1

T1→T2

T2→T1

Q2

T2

T2

T2

T2

Fig. 44-5. Steps in Carnot cycle.

in contact with the heat pad at T1. As we do this, pulling the piston out very
slowly as the heat flows into the gas, we will make sure that the temperature
of the gas never gets very far from T1. If we pull the piston out too fast, the
temperature of the gas will fall too much below T1 and then the process will not
be quite reversible, but if we pull it out slowly enough, the temperature of the gas
will never depart much from T1. On the other hand, if we push the piston back
slowly, the temperature would be only infinitesimally higher than T1, and the
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Fig. 44-6. The Carnot cycle.

heat would pour back. We see that such an isothermal (constant-temperature)
expansion, done slowly and gently enough, is a reversible process.

To understand what we are doing, we shall use a plot (Fig. 44-6) of the pressure
of the gas against its volume. As the gas expands, the pressure falls. The curve
marked (1) tells us how the pressure and volume change if the temperature is
kept fixed at the value T1. For an ideal gas this curve would be PV = NkT1.
During an isothermal expansion the pressure falls as the volume increases until
we stop at the point b. At the same time, a certain heat Q1 must flow into the gas
from the reservoir, for if the gas were expanded without being in contact with the
reservoir it would cool off, as we already know. Having completed the isothermal
expansion, stopping at the point b, let us take the cylinder away from the reservoir
and continue the expansion. This time we permit no heat to enter the cylinder.
Again we perform the expansion slowly, so there is no reason why we cannot
reverse it, and we again assume there is no friction. The gas continues to expand
and the temperature falls, since there is no longer any heat entering the cylinder.

We let the gas expand, following the curve marked (2), until the temperature
falls to T2, at the point marked c. This kind of expansion, made without adding
heat, is called an adiabatic expansion. For an ideal gas, we already know that
curve (2) has the form PV γ = constant, where γ is a constant greater than 1, so
that the adiabatic curve has a more negative slope than the isothermal curve.
The gas cylinder has now reached the temperature T2, so that if we put it on the
heat pad at temperature T2 there will be no irreversible changes. Now we slowly
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Fig. 44-7. Reversible engine A being driven backwards by engine B.

compress the gas while it is in contact with the reservoir at T2, following the
curve marked (3) (Fig. 44-5, Step 3). Because the cylinder is in contact with the
reservoir, the temperature does not rise, but heat Q2 flows from the cylinder into
the reservoir at the temperature T2. Having compressed the gas isothermally
along curve (3) to the point d, we remove the cylinder from the heat pad at
temperature T2 and compress it still further, without letting any heat flow out.
The temperature will rise, and the pressure will follow the curve marked (4). If
we carry out each step properly, we can return to the point a at temperature T1
where we started, and repeat the cycle.

We see that on this diagram we have carried the gas around a complete cycle,
and during one cycle we have put Q1 in at temperature T1, and have removed Q2
at temperature T2. Now the point is that this cycle is reversible, so that we could
represent all the steps the other way around. We could have gone backwards
instead of forwards: we could have started at point a, at temperature T1, expanded
along the curve (4), expanded further at the temperature T2, absorbing heat Q2,
and so on, going around the cycle backward. If we go around the cycle in one
direction, we must do work on the gas; if we go in the other direction, the gas
does work on us.

Incidentally, it is easy to find out what the total amount of work is, because
the work during any expansion is the pressure times the change in volume,

∫
P dV .

On this particular diagram, we have plotted P vertically and V horizontally. So
if we call the vertical distance y and the horizontal distance x, this is

∫
y dx—in

other words, the area under the curve. So the area under each of the numbered
curves is a measure of the work done by or on the gas in the corresponding step.
It is easy to see that the net work done is the shaded area of the picture.
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Now that we have given a single example of a reversible machine, we shall
suppose that other such engines are also possible. Let us assume that we have
a reversible engine A which takes Q1 at T1, does work W , and delivers some
heat at T2. Now let us assume we have any other engine B, made by man,
already designed or not yet invented, made of rubber bands, steam, or whatever,
reversible or not, which is designed so that it takes in the same amount of heat Q1
at T1, and rejects the heat at the lower temperature T2 (Fig. 44-7). Assume
that engine B does some work, W ′. Now we shall show that W ′ is not greater
than W—that no engine can do more work than a reversible one. Why? Suppose
that, indeed, W ′ were bigger than W . Then we could take the heat Q1 out of
the reservoir at T1, and with engine B we could do work W ′ and deliver some
heat to the reservoir at T2; we do not care how much. That done, we could save
some of the work W ′, which is supposed to be greater than W ; we could use
a part of it, W , and save the remainder, W ′ −W , for useful work. With the
work W we could run engine A backwards because it is a reversible engine. It will
absorb some heat from the reservoir at T2 and deliver Q1 back to the reservoir
at T1. After this double cycle, the net result would be that we would have put
everything back the way it was before, and we would have done some excess
work, namely W ′ −W , and all we would have done would be to extract energy
from the reservoir at T2! We were careful to restore the heat Q1 to the reservoir
at T1. So that reservoir can be small and “inside” our combined machine A+B,
whose net effect is therefore to extract a net heat W ′ −W from the reservoir
at T2 and convert it into work. But to obtain useful work from a reservoir at a
single temperature with no other changes is impossible according to Carnot’s
postulate; it cannot be done. Therefore no engine which absorbs a given amount
of heat from a higher temperature T1 and delivers it at the temperature T2 can
do more work than a reversible engine operating under the same temperature
conditions.

Now suppose that engine B is also reversible. Then, of course, not only must
W ′ be not greater than W , but now we can reverse the argument and show that
W cannot be greater than W ′. So, if both engines are reversible they must both
do the same amount of work, and we thus come to Carnot’s brilliant conclusion:
that if an engine is reversible, it makes no difference how it is designed, because
the amount of work one will obtain if the engine absorbs a given amount of
heat at temperature T1 and delivers heat at some other temperature T2 does not
depend on the design of the engine. It is a property of the world, not a property
of a particular engine.
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If we could find out what the law is that determines how much work we obtain
when we absorb the heat Q1 at T1 and deliver heat at T2, this quantity would
be a universal thing, independent of the substance. Of course if we knew the
properties of a particular substance, we could work it out and then say that all
other substances must give the same amount of work in a reversible engine. That
is the key idea, the clue by which we can find the relationship between how much,
for instance, a rubber band contracts when we heat it, and how much it cools
when we let it contract. Imagine that we put that rubber band in a reversible
machine, and that we make it go around a reversible cycle. The net result, the
total amount of work done, is that universal function, that great function which
is independent of substance. So we see that a substance’s properties must be
limited in a certain way; one cannot make up anything he wants, or he would be
able to invent a substance which he could use to produce more than the maximum
allowable work when he carried it around a reversible cycle. This principle, this
limitation, is the only real rule that comes out of the thermodynamics.

44-4 The efficiency of an ideal engine

Now we shall try to find the law which determines the work W as a function
of Q1, T1, and T2. It is clear that W is proportional to Q1, for if we consider two
reversible engines in parallel, both working together and both double engines,
the combination is also a reversible engine. If each one absorbed heat Q1, the
two together absorb 2Q1 and the work done is 2W , and so on. So it is not
unreasonable that W is proportional to Q1.

Now the next important step is to find this universal law. We can, and will,
do so by studying a reversible engine with the one particular substance whose
laws we know, a perfect gas. It is also possible to obtain the rule by a purely
logical argument, using no particular substance at all. This is one of the very
beautiful pieces of reasoning in physics and we are reluctant not to show it to you,
so for those who would like to see it we shall discuss it in just a moment. But
first we shall use the much less abstract and simpler method of direct calculation
for a perfect gas.

We need only obtain formulas for Q1 and Q2 (forW is just Q1−Q2), the heats
exchanged with the reservoirs during the isothermal expansion or contraction.
For example, how much heat Q1 is absorbed from the reservoir at temperature T1
during the isothermal expansion [marked (1) in Fig. 44-6] from point a, at
pressure pa, volume Va, temperature T1, to point b with pressure pb, volume Vb,
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and the same temperature T1? For a perfect gas each molecule has an energy that
depends only on the temperature, and since the temperature and the number of
molecules are the same at a and at b, the internal energy is the same. There is
no change in U ; all the work done by the gas,

W =
∫ b

a

p dV,

during the expansion is energy Q1 taken from the reservoir. During the expansion,
pV = NkT1, or

p = NkT1

V
or

Q1 =
∫ b

a

p dV =
∫ b

a

NkT1
dV

V
(44.4)

or
Q1 = NkT1 ln Vb

Va

is the heat taken from the reservoir at T1. In the same way, for the compression
at T2 [curve (3) of Fig. 44-6] the heat delivered to the reservoir at T2 is

Q2 = NkT2 ln Vc
Vd
. (44.5)

To finish our analysis we need only find a relation between Vc/Vd and Vb/Va.
This we do by noting that (2) is an adiabatic expansion from b to c, during which
pV γ is a constant. Since pV = NkT , we can write this as (pV )V γ−1 = const or,
in terms of T and V , as TV γ−1 = const, or

T1V
γ−1
b = T2V

γ−1
c . (44.6)

Likewise, since (4), the compression from d to a, is also adiabatic, we find

T1V
γ−1
a = T2V

γ−1
d . (44.6a)

If we divide this equation by the previous one, we find that Vb/Va must equal Vc/Vd,
so the ln’s in (44.4) and (44.5) are equal, and that

Q1

T1
= Q2

T2
. (44.7)
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Fig. 44-8. Engines 1 and 2 together are equivalent to engine 3.

This is the relation we were seeking. Although proved for a perfect gas engine,
we know it must be true for any reversible engine at all.

Now we shall see how this universal law could also be obtained by logical
argument, without knowing the properties of any specific substances, as follows.
Suppose that we have three engines and three temperatures, let us say T1, T2,
and T3. Let one engine absorb heat Q1 from the temperature T1 and do a certain
amount of work W13, and let it deliver heat Q3 to the temperature T3 (Fig. 44-8).
Let another engine run backwards between T2 and T3. Suppose that we let the
second engine be of such a size that it will absorb the same heat Q3, and deliver
the heat Q2. We will have to put a certain amount of work,W32, into it—negative
because the engine is running backwards. When the first machine goes through a
cycle, it absorbs heat Q1 and delivers Q3 at the temperature T3; then the second
machine takes the same heat Q3 out of the reservoir at the temperature T3 and
delivers it into the reservoir at temperature T2. Therefore the net result of the
two machines in tandem is to take the heat Q1 from T1, and deliver Q2 at T2.
The two machines are thus equivalent to a third one, which absorbs Q1 at T1,
does work W12, and delivers heat Q2 at T2, because W12 = W13 −W32, as one
can immediately show from the first law, as follows:

W13 −W32 = (Q1 −Q3)− (Q2 −Q3) = Q1 −Q2 = W12. (44.8)

We can now obtain the laws which relate the efficiencies of the engines, because
there clearly must be some kind of relationship between the efficiencies of engines
running between the temperatures T1 and T3, and between T2 and T3, and
between T1 and T2.
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We can make the argument very clear in the following way: We have just
seen that we can always relate the heat absorbed at T1 to the heat delivered
at T2 by finding the heat delivered at some other temperature T3. Therefore
we can get all the engines’ properties if we introduce a standard temperature,
analyzing everything with that standard temperature. In other words, if we
knew the efficiency of an engine running between a certain temperature T and a
certain arbitrary standard temperature, then we could work out the efficiency
for any other difference in temperature. Because we assume we are using only
reversible engines, we can work from the initial temperature down to the standard
temperature and back up to the final temperature again. We shall define the
standard temperature arbitrarily as one degree. We shall also adopt a special
symbol for the heat which is delivered at this standard temperature: we shall
call it QS . In other words, when a reversible engine absorbs the heat Q at
temperature T , it will deliver, at the unit temperature, a heat QS . If one engine,
absorbing heat Q1 at T1, delivers the heat QS at one degree, and if an engine
absorbing heat Q2 at temperature T2 will also deliver the same heat QS at one
degree, then it follows that an engine which absorbs heat Q1 at the temperature T1
will deliver heat Q2 if it runs between T1 and T2, as we have already proved by
considering engines running between three temperatures. So all we really have
to do is to find how much heat Q1 we need to put in at the temperature T1 in
order to deliver a certain amount of heat QS at the unit temperature. If we
discover that, we have everything. The heat Q, of course, is a function of the
temperature T . It is easy to see that the heat must increase as the temperature
increases, for we know that it takes work to run an engine backwards and deliver
heat at a higher temperature. It is also easy to see that the heat Q1 must be
proportional to QS . So the great law is something like this: for a given amount
of heat QS delivered at one degree from an engine running at temperature T
degrees, the heat Q absorbed must be that amount QS times some increasing
function of the temperature:

Q = QSf(T ). (44.9)

44-5 The thermodynamic temperature
At this stage we are not going to try to find the formula for the above increasing

function of the temperature in terms of our familiar mercury temperature scale,
but instead we shall define temperature by a new scale. At one time “the
temperature” was defined arbitrarily by dividing the expansion of water into
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even degrees of a certain size. But when one then measures temperature with a
mercury thermometer, one finds that the degrees are no longer even. But now
we can make a definition of temperature which is independent of any particular
substance. We can use that function f(T ), which does not depend on what device
we use, because the efficiency of these reversible engines is independent of their
working substances. Since the function we found is rising with temperature,
we will define the function itself as the temperature, measured in units of the
standard one-degree temperature, as follows:

Q = ST, (44.10)
where

QS = S · 1◦. (44.11)

This means that we can tell how hot an object is by finding out how much heat
is absorbed by a reversible engine working between the temperature of the object
and the unit temperature (Fig. 44-9). If seven times more heat is taken out
of a boiler than is delivered at a one-degree condenser, the temperature of the
boiler will be called seven degrees, and so forth. So, by measuring how much
heat is absorbed at different temperatures, we determine the temperature. The
temperature defined in this way is called the absolute thermodynamic temperature,
and it is independent of the substance. We shall use this definition exclusively
from now on.*

T

1◦K

Reversible
Engine

W = Q− S · 1◦

Q = ST

QS = S · 1◦

Fig. 44-9. Absolute thermodynamic temperature.

* We have previously defined our scale of temperature in a different way, namely by stating
that the mean kinetic energy of a molecule in a perfect gas is proportional to the temperature,
or that the perfect gas law says pV is proportional to T . Is this new definition equivalent? Yes,
since the final result (44.7) derived from the gas law is the same as that derived here. We shall
discuss this point again in the next chapter.
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Now we see that when we have two engines, one working between T1 and one
degree, the other working between T2 and one degree, delivering the same heat
at unit temperature, then the heats absorbed must be related by

Q1

T1
= S = Q2

T2
. (44.12)

But that means that if we have a single engine running between T1 and T2, then
the result of the whole analysis, the grand finale, is that Q1 is to T1 as Q2 is
to T2, if the engine absorbs energy Q1 at temperature T1 and delivers heat Q2 at
temperature T2. Whenever the engine is reversible, this relationship between the
heats must follow. That is all there is to it: that is the center of the universe of
thermodynamics.

If this is all there is to thermodynamics, why is it considered such a difficult
subject? In doing a problem involving a given mass of some substance, the
condition of the substance at any moment can be described by telling what its
temperature is and what its volume is. If we know the temperature and volume of
a substance, and that the pressure is some function of the temperature and volume,
then we know the internal energy. One could say, “I do not want to do it that way.
Tell me the temperature and the pressure, and I will tell you the volume. I can
think of the volume as a function of temperature and pressure, and the internal
energy as a function of temperature and pressure, and so on.” That is why thermo-
dynamics is hard, because everyone uses a different approach. If we could only sit
down once and decide on our variables, and stick to them, it would be fairly easy.

Now we start to make deductions. Just as F = ma is the center of the
universe in mechanics, and it goes on and on and on after that, in the same way
the principle just found is all there is to thermodynamics. But can one make
conclusions out of it?

We begin. To obtain our first conclusion, we shall combine both laws, the
law of conservation of energy and this law which relates the heats Q2 and Q1,
and we can easily obtain the efficiency of a reversible engine. From the first law,
we have W = Q1 −Q2. According to our new principle,

Q2 = T2

T1
Q1,

so the work becomes

W = Q1

(
1− T2

T1

)
= Q1

T1 − T2

T1
, (44.13)
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which tells us the efficiency of the engine—how much work we get out of so
much heat. The efficiency of an engine is proportional to the difference in the
temperatures between which the engine runs, divided by the higher temperature:

Efficiency = W

Q1
= T1 − T2

T1
. (44.14)

The efficiency cannot be greater than unity and the absolute temperature cannot
be less than zero, absolute zero. So, since T2 must be positive, the efficiency is
always less than unity. That is our first conclusion.

44-6 Entropy

Equation (44.7) or (44.12) can be interpreted in a special way. Working always
with reversible engines, a heat Q1 at temperature T1 is “equivalent” to Q2 at T2 if
Q1/T1 = Q2/T2, in the sense that as one is absorbed the other is delivered. This
suggests that if we call Q/T something, we can say: in a reversible process as
much Q/T is absorbed as is liberated; there is no gain or loss of Q/T . This Q/T
is called entropy, and we say “there is no net change in entropy in a reversible
cycle.” If T is 1◦, then the entropy is QS/1◦ or, as we symbolized it, QS/1◦ = S.
Actually, S is the letter usually used for entropy, and it is numerically equal to
the heat (which we have called QS) delivered to a 1◦-reservoir (entropy is not
itself a heat, it is heat divided by a temperature, hence it is measured in joules
per degree).

Now it is interesting that besides the pressure, which is a function of the
temperature and the volume, and the internal energy, which is a function of
temperature and volume, we have found another quantity which is a function
of the condition, i.e., the entropy of the substance. Let us try to explain how
we compute it, and what we mean when we call it a “function of the condition.”
Consider the system in two different conditions, much as we had in the experiment
where we did the adiabatic and isothermal expansions. (Incidentally, there is
no need that a heat engine have only two reservoirs, it could have three or four
different temperatures at which it takes in and delivers heats, and so on.) We
can move around on a pV diagram all over the place, and go from one condition
to another. In other words, we could say the gas is in a certain condition a,
and then it goes over to some other condition, b, and we will require that this
transition, made from a to b, be reversible. Now suppose that all along the path
from a to b we have little reservoirs at different temperatures, so that the heat dQ
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removed from the substance at each little step is delivered to each reservoir at
the temperature corresponding to that point on the path. Then let us connect
all these reservoirs, by reversible heat engines, to a single reservoir at the unit
temperature. When we are finished carrying the substance from a to b, we shall
bring all the reservoirs back to their original condition. Any heat dQ that has
been absorbed from the substance at temperature T has now been converted by
a reversible machine, and a certain amount of entropy dS has been delivered at
the unit temperature as follows:

dS = dQ/T. (44.15)

Let us compute the total amount of entropy which has been delivered. The
entropy difference, or the entropy needed to go from a to b by this particular
reversible transformation, is the total entropy, the total of the entropy taken out
of the little reservoirs, and delivered at the unit temperature:

Sb − Sa =
∫ b

a

dQ

T
. (44.16)

The question is, does the entropy difference depend upon the path taken? There
is more than one way to go from a to b. Remember that in the Carnot cycle
we could go from a to c in Fig. 44-6 by first expanding isothermally and then
adiabatically; or we could first expand adiabatically and then isothermally. So
the question is whether the entropy change which occurs when we go from a to b
in Fig. 44-10 is the same on one route as it is on another. It must be the same,

Volume

T
e
m
p
e
ra
tu
re

1◦

a

b

Reservoirs

Engines

T
dQ

dW

dS · 1◦

Fig. 44-10. Change in entropy during a reversible transformation.
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because if we went all the way around the cycle, going forward on one path and
backward on another, we would have a reversible engine, and there would be no
loss of heat to the reservoir at unit temperature. In a totally reversible cycle, no
heat must be taken from the reservoir at the unit temperature, so the entropy
needed to go from a to b is the same over one path as it is over another. It is
independent of path, and depends only on the endpoints. We can, therefore, say
that there is a certain function, which we call the entropy of the substance, that
depends only on the condition, i.e., only on the volume and temperature.

We can find a function S(V, T ) which has the property that if we compute
the change in entropy, as the substance is moved along any reversible path, in
terms of the heat rejected at unit temperature, then

∆S =
∫
dQ

T
, (44.17)

where dQ is the heat removed from the substance at temperature T . This total
entropy change is the difference between the entropy calculated at the initial and
final points:

∆S = S(Vb, Tb)− S(Va, Ta) =
∫ b

a

dQ

T
. (44.18)

This expression does not completely define the entropy, but rather only the
difference of entropy between two different conditions. Only if we can evaluate
the entropy for one special condition can we really define S absolutely.

For a long time it was believed that absolute entropy meant nothing—that
only differences could be defined—but finally Nernst proposed what he called the
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Total Entropy Change = 0

Fig. 44-11. Change in entropy in a completely reversible cycle.
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heat theorem, which is also called the third law of thermodynamics. It is very
simple. We will say what it is, but we will not explain why it is true. Nernst’s
postulate states simply that the entropy of any object at absolute zero is zero.
We know of one case of T and V , namely T = 0, where S is zero; and so we can
get the entropy at any other point.

To give an illustration of these ideas, let us calculate the entropy of a perfect
gas. In an isothermal (and therefore reversible) expansion,

∫
dQ/T is Q/T , since

T is constant. Therefore (from 44.4) the change in entropy is

S(Va, T )− S(Vb, T ) = Nk ln Va
Vb
,

so S(V, T ) = Nk lnV plus some function of T only. How does S depend on T?
We know that for a reversible adiabatic expansion, no heat is exchanged. Thus
the entropy does not change even though V changes, provided that T changes
also, such that TV γ−1 = constant. Can you see that this implies that

S(V, T ) = Nk

[
lnV + 1

γ − 1 lnT
]

+ a,

where a is some constant independent of both V and T ? [a is called the chemical
constant. It depends on the gas in question, and may be determined experimen-
tally from the Nernst theorem by measuring the heat liberated in cooling and
condensing the gas until it is brought to a solid (or for helium, a liquid) at 0◦, by
integrating

∫
dQ/T . It can also be determined theoretically by means of Planck’s

constant and quantum mechanics, but we shall not study it in this course.]
Now we shall remark on some of the properties of the entropy of things. We

first remember that if we go along a reversible cycle from a to b, then the entropy
of the substance will change by Sb−Sa. And we remember that as we go along the
path, the entropy—the heat delivered at unit temperature—increases according
to the rule dS = dQ/T , where dQ is the heat we remove from the substance
when its temperature is T .

We already know that if we have a reversible cycle, the total entropy of
everything is not changed, because the heat Q1 absorbed at T1 and the heat Q2
delivered at T2 correspond to equal and opposite changes in entropy, so that the
net change in the entropy is zero. So for a reversible cycle there is no change
in the entropy of anything, including the reservoirs. This rule may look like the
conservation of energy again, but it is not; it applies only to reversible cycles. If
we include irreversible cycles there is no law of conservation of entropy.
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We shall give two examples. First, suppose that we do irreversible work on
an object by friction, generating a heat Q on some object at temperature T . The
entropy is increased by Q/T . The heat Q is equal to the work, and thus when
we do a certain amount of work by friction against an object whose temperature
is T , the entropy of the whole world increases by W/T .

Another example of irreversibility is this: If we put together two objects that
are at different temperatures, say T1 and T2, a certain amount of heat will flow
from one to the other by itself. Suppose, for instance, we put a hot stone in cold
water. Then when a certain heat ∆Q is transferred from T1 to T2, how much
does the entropy of the hot stone change? It decreases by ∆Q/T1. How much
does the water entropy change? It increases by ∆Q/T2. The heat will, of course,
flow only from the higher temperature T1 to the lower temperature T2, so that
∆Q is positive if T1 is greater than T2. So the change in entropy of the whole
world is positive, and it is the difference of the two fractions:

∆S = ∆Q
T2
− ∆Q

T1
. (44.19)

So the following proposition is true: in any process that is irreversible, the
entropy of the whole world is increased. Only in reversible processes does the
entropy remain constant. Since no process is absolutely reversible, there is always
at least a small gain in the entropy; a reversible process is an idealization in
which we have made the gain of entropy minimal.

Unfortunately, we are not going to enter into the field of thermodynamics very
far. Our purpose is only to illustrate the principal ideas involved and the reasons
why it is possible to make such arguments, but we will not use thermodynamics
very much in this course. Thermodynamics is used very often by engineers and,
particularly, by chemists. So we must learn our thermodynamics in practice in
chemistry or engineering. Because it is not worthwhile duplicating everything,
we shall just give some discussion of the origin of the theory, rather than much
detail for special applications.

The two laws of thermodynamics are often stated this way:

First law: the energy of the universe is always constant.

Second law: the entropy of the universe is always increasing.

That is not a very good statement of the second law; it does not say, for example,
that in a reversible cycle the entropy stays the same, and it does not say exactly
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what the entropy is. It is just a clever way of remembering the two laws, but it
does not really tell us exactly where we stand. We have summarized the laws
discussed in this chapter in Table 44-1. In the next chapter we shall apply these
laws to discover the relationship between the heat generated in the expansion of
a rubber band, and the extra tension when it is heated.

Table 44-1

Summary of the laws of thermodynamics

First law:
Heat put into a system + Work done on a system = Increase in internal energy of the
system:

dQ+ dW = dU.

Second law:
A process whose only net result is to take heat from a reservoir and convert it to
work is impossible.
No heat engine taking heat Q1 from T1 and delivering heat Q2 at T2 can do more
work than a reversible engine, for which

W = Q1 −Q2 = Q1

(
T1 − T2

T1

)
.

The entropy of a system is defined this way:

(a) If heat ∆Q is added reversibly to a system at temperature T , the increase in
entropy of the system is ∆S = ∆Q/T .

(b) At T = 0, S = 0 (third law).

In a reversible change, the total entropy of all parts of the system (including reservoirs)
does not change.
In irreversible change, the total entropy of the system always increases.
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45

Illustrations of Thermodynamics

45-1 Internal energy

Thermodynamics is a rather difficult and complex subject when we come to
apply it, and it is not appropriate for us to go very far into the applications
in this course. The subject is of very great importance, of course, to engineers
and chemists, and those who are interested in the subject can learn about the
applications in physical chemistry or in engineering thermodynamics. There
are also good equation reference books, such as Zemansky’s Heat and Thermo-
dynamics, where one can learn more about the subject. In the Encyclopedia
Britannica, fourteenth edition, one can find excellent articles on thermodynamics
and thermochemistry, and in the article on chemistry, the sections on physical
chemistry, vaporization, liquefication of gases, and so on.

The subject of thermodynamics is complicated because there are so many
different ways of describing the same thing. If we wish to describe the behavior
of a gas, we can say that the pressure depends on the temperature and on the
volume, or we can say that the volume depends on the temperature and the
pressure. Or with respect to the internal energy U , we might say that it depends
on the temperature and volume, if those are the variables we have chosen—but
we might also say that it depends on the temperature and the pressure, or the
pressure and the volume, and so on. In the last chapter we discussed another
function of temperature and volume, called the entropy S, and we can of course
construct as many other functions of these variables as we like: U − TS is a
function of temperature and volume. So we have a large number of different
quantities which can be functions of many different combinations of variables.

To keep the subject simple in this chapter, we shall decide at the start
to use temperature and volume as the independent variables. Chemists use
temperature and pressure, because they are easier to measure and control in
chemical experiments, but we shall use temperature and volume throughout this
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chapter, except in one place where we shall see how to make the transformation
into the chemists’ system of variables.

We shall first, then, consider only one system of independent variables: tem-
perature and volume. Secondly, we shall discuss only two dependent functions:
the internal energy and the pressure. All the other functions can be derived
from these, so it is not necessary to discuss them. With these limitations,
thermodynamics is still a fairly difficult subject, but it is not quite so impossible!

First we shall review some mathematics. If a quantity is a function of two
variables, the idea of the derivative of the quantity requires a little more careful
thought than for the case where there is only one variable. What do we mean
by the derivative of the pressure with respect to the temperature? The pressure
change accompanying a change in the temperature depends partly, of course, on
what happens to the volume while T is changing. We must specify the change
in V before the concept of a derivative with respect to T has a precise meaning.
We might ask, for example, for the rate of change of P with respect to T if V is
held constant. This ratio is just the ordinary derivative that we usually write
as dP/dT . We customarily use a special symbol, ∂P/∂T , to remind us that P
depends on another variable V as well as on T , and that this other variable is
held constant. We shall not only use the symbol ∂ to call attention to the fact
that the other variable is held constant, but we shall also write the variable that
is held constant as a subscript, (∂P/∂T )V . Since we have only two independent
variables, this notation is redundant, but it will help us keep our wits about us
in the thermodynamic jungle of partial derivatives.

Let us suppose that the function f(x, y) depends on the two independent
variables x and y. By (∂f/∂x)y we mean simply the ordinary derivative, obtained
in the usual way, if we treat y as a constant:(

∂f

∂x

)
y

= limit
∆x→0

f(x+ ∆x, y)− f(x, y)
∆x .

Similarly, we define(
∂f

∂y

)
x

= limit
∆y→0

f(x, y + ∆y)− f(x, y)
∆y .

For example, if f(x, y) = x2 + yx, then (∂f/∂x)y = 2x+ y, and (∂f/∂y)x = x.
We can extend this idea to higher derivatives: ∂2f/∂y2 or ∂2f/∂y∂x. The latter
symbol indicates that we first differentiate f with respect to x, treating y as a
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constant, then differentiate the result with respect to y, treating x as a constant.
The actual order of differentiation is immaterial: ∂2f/∂x∂y = ∂2f/∂y∂x.

We will need to compute the change ∆f in f(x, y) when x changes to x+ ∆x
and y changes to y + ∆y. We assume throughout the following that ∆x and ∆y
are infinitesimally small:

∆f = f(x+ ∆x, y + ∆y)− f(x, y)
= f(x+ ∆x, y + ∆y)− f(x, y + ∆y)︸ ︷︷ ︸+ f(x, y + ∆y)− f(x, y)︸ ︷︷ ︸
= ∆x

(
∂f

∂x

)
y

+ ∆y
(
∂f

∂y

)
x

(45.1)

The last equation is the fundamental relation that expresses ∆f in terms of ∆x
and ∆y.

As an example of the use of this relation, let us calculate the change in the
internal energy U(T, V ) when the temperature changes from T to T + ∆T and
the volume changes from V to V + ∆V . Using Eq. (45.1), we write

∆U = ∆T
(
∂U

∂T

)
V

+ ∆V
(
∂U

∂V

)
T

. (45.2)

In our last chapter we found another expression for the change ∆U in the internal
energy when a quantity of heat ∆Q was added to the gas:

∆U = ∆Q− P ∆V. (45.3)

In comparing Eqs. (45.2) and (45.3) one might at first be inclined to think that
P = −(∂U/∂V )T , but this is not correct. To obtain the correct relation, let us first
suppose that we add a quantity of heat ∆Q to the gas while keeping the volume
constant, so that ∆V = 0. With ∆V = 0, Eq. (45.3) tells us that ∆U = ∆Q,
and Eq. (45.2) tells us that ∆U = (∂U/∂T )V ∆T , so that (∂U/∂T )V = ∆Q/∆T .
The ratio ∆Q/∆T , the amount of heat one must put into a substance in order
to change its temperature by one degree with the volume held constant, is called
the specific heat at constant volume and is designated by the symbol CV . By this
argument we have shown that (

∂U

∂T

)
V

= CV . (45.4)
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Fig. 45-1. Pressure-volume diagram for a Carnot cycle. The curves
marked T and T − ∆T are isothermal lines; the steeper curves are
adiabatic lines. ∆V is the volume change as heat ∆Q is added to the
gas at constant temperature T . ∆P is the pressure change at constant
volume as the gas temperature is changed from T to T − ∆T .

Now let us again add a quantity of heat ∆Q to the gas, but this time we
will hold T constant and allow the volume to change by ∆V . The analysis in
this case is more complex, but we can calculate ∆U by the argument of Carnot,
making use of the Carnot cycle we introduced in the last chapter.

The pressure-volume diagram for the Carnot cycle is shown in Fig. 45-1. As
we have already shown, the total amount of work done by the gas in a reversible
cycle is ∆Q(∆T/T ), where ∆Q is the amount of heat energy added to the gas
as it expands isothermally at temperature T from volume V to V + ∆V , and
T −∆T is the final temperature reached by the gas as it expands adiabatically
on the second leg of the cycle. Now we will show that this work done is also
given by the shaded area in Fig. 45-1. In any circumstances, the work done by
the gas is

∫
P dV , and is positive when the gas expands and negative when the

gas is compressed. If we plot P vs. V , the variation of P and V is represented
by a curve which gives the value of P corresponding to a particular value of V .
As the volume changes from one value to another, the work done by the gas,
the integral

∫
P dV , is the area under the curve connecting the initial and final

values of V . When we apply this idea to the Carnot cycle, we see that as we go
around the cycle, paying attention to the sign of the work done by the gas, the
net work done by the gas is just the shaded area in Fig. 45-1.

Now we want to evaluate the shaded area geometrically. The cycle we
have used in Fig. 45-1 differs from that used in the previous chapter in that
we now suppose that ∆T and ∆Q are infinitesimally small. We are working
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V

P

∆V

∆P

Fig. 45-2. Shaded area = area enclosed by dashed lines = area of
rectangle = ∆P ∆V .

between adiabatic lines and isothermal lines that are very close together, and
the figure described by the heavy lines in Fig. 45-1 will approach a parallelogram
as the increments ∆T and ∆Q approach zero. The area of this parallelogram is
just ∆V ∆P , where ∆V is the change in volume as energy ∆Q is added to the gas
at constant temperature, and ∆P is the change in pressure as the temperature
changes by ∆T at constant volume. One can easily show that the shaded area
in Fig. 45-1 is given by ∆V ∆P by recognizing that the shaded area is equal to
the area enclosed by the dotted lines in Fig. 45-2, which in turn differs from the
rectangle bounded by ∆P and ∆V only by the addition and subtraction of the
equal triangular areas in Fig. 45-2.

Now let us summarize the results of the arguments we have developed so far:

Work done by the gas = shaded area = ∆V ∆P = ∆Q
(

∆T
T

)
or

∆T
T
· (heat needed to change V by ∆V )constant T

= ∆V · (change in P when T changes by ∆T )constant V
or

1
∆V · (heat needed to change V by ∆V )T = T (∂P/∂T )V .



(45.5)

Equation (45.5) expresses the essential result of Carnot’s argument. The whole
of thermodynamics can be deduced from Eq. (45.5) and the First Law, which is
stated in Eq. (45.3). Equation (45.5) is essentially the Second Law, although it
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was originally deduced by Carnot in a slightly different form, since he did not
use our definition of temperature.

Now we can proceed to calculate (∂U/∂V )T . By how much would the internal
energy U change if we changed the volume by ∆V ? First, U changes because
heat is put in, and second, U changes because work is done. The heat put in is

∆Q = T

(
∂P

∂T

)
V

∆V,

according to Eq. (45.5), and the work done on the substance is −P ∆V . Therefore
the change ∆U in internal energy has two pieces:

∆U = T

(
∂P

∂T

)
V

∆V − P ∆V. (45.6)

Dividing both sides by ∆V , we find for the rate of change of U with V at
constant T (

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P. (45.7)

In our thermodynamics, in which T and V are the only variables and P and U
are the only functions, Eqs. (45.3) and (45.7) are the basic equations from which
all the results of the subject can be deduced.

45-2 Applications

Now let us discuss the meaning of Eq. (45.7) and see why it answers the
questions which we proposed in our last chapter. We considered the following
problem: in kinetic theory it is obvious that an increase in temperature leads
to an increase in pressure, because of the bombardments of the atoms on a
piston. For the same physical reason, when we let the piston move back, heat
is taken out of the gas and, in order to keep the temperature constant, heat
will have to be put back in. The gas cools when it expands, and the pressure
rises when it is heated. There must be some connection between these two
phenomena, and this connection is given explicitly in Eq. (45.7). If we hold the
volume fixed and increase the temperature, the pressure rises at a rate (∂P/∂T )V .
Related to that fact is this: if we increase the volume, the gas will cool unless we
pour some heat in to maintain the temperature constant, and (∂U/∂V )T tells
us the amount of heat needed to maintain the temperature. Equation (45.7)
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expresses the fundamental interrelationship between these two effects. That is
what we promised we would find when we came to the laws of thermodynamics.
Without knowing the internal mechanism of the gas, and knowing only that we
cannot make perpetual motion of the second type, we can deduce the relationship
between the amount of heat needed to maintain a constant temperature when
the gas expands, and the pressure change when the gas is heated at constant
volume!

Now that we have the result we wanted for a gas, let us consider the rubber
band. When we stretch a rubber band, we find that its temperature rises, and
when we heat a rubber band, we find that it pulls itself in. What is the equation
that gives the same relation for a rubber band as Eq. (45.3) gives for gas? For a
rubber band the situation will be something like this: when heat ∆Q is put in,
the internal energy is changed by ∆U and some work is done. The only difference
will be that the work done by the rubber band is −F ∆L instead of P ∆V , where
F is the force on the band, and L is the length of the band. The force F is a
function of temperature and of length of the band. Replacing P ∆V in Eq. (45.3)
by −F ∆L, we get

∆U = ∆Q+ F ∆L. (45.8)

Comparing Eqs. (45.3) and (45.8), we see that the rubber band equation is
obtained by a mere substitution of one letter for another. Furthermore, if we
substitute L for V , and −F for P , all of our discussion of the Carnot cycle
applies to the rubber band. We can immediately deduce, for instance, that the
heat ∆Q needed to change the length by ∆L is given by the analog to Eq. (45.5):
∆Q = −T (∂F/∂T )L ∆L. This equation tells us that if we keep the length of a
rubber band fixed and heat the band, we can calculate how much the force will
increase in terms of the heat needed to keep the temperature constant when the
band is relaxed a little bit. So we see that the same equation applies to both gas
and a rubber band. In fact, if one can write ∆U = ∆Q+A∆B, where A and B
represent different quantities, force and length, pressure and volume, etc., one can
apply the results obtained for a gas by substituting A and B for −P and V . For
example, consider the electric potential difference, or “voltage,” E in a battery
and the charge ∆Z that moves through the battery. We know that the work done
in a reversible electric cell, like a storage battery, is E∆Z. (Since we include
no P ∆V term in the work, we require that our battery maintain a constant
volume.) Let us see what thermodynamics can tell us about the performance of
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a battery. If we substitute E for P and Z for V in Eq. (45.6), we obtain

∆U
∆Z = T

(
∂E

∂T

)
Z

− E. (45.9)

Equation (45.9) says that the internal energy U is changed when a charge ∆Z
moves through the cell. Why is ∆U/∆Z not simply the voltage E of the battery?
(The answer is that a real battery gets warm when charge moves through the
cell. The internal energy of the battery is changed, first, because the battery did
some work on the outside circuit, and second, because the battery is heated.)
The remarkable thing is that the second part can again be expressed in terms
of the way in which the battery voltage changes with temperature. Incidentally,
when the charge moves through the cell, chemical reactions occur, and Eq. (45.9)
suggests a nifty way of measuring the amount of energy required to produce
a chemical reaction. All we need to do is construct a cell that works on the
reaction, measure the voltage, and measure how much the voltage changes with
temperature when we draw no charge from the battery!

Now we have assumed that the volume of the battery can be maintained
constant, since we have omitted the P ∆V term when we set the work done by the
battery equal to E∆Z. It turns out that it is technically quite difficult to keep
the volume constant. It is much easier to keep the cell at constant atmospheric
pressure. For that reason, the chemists do not like any of the equations we
have written above: they prefer equations which describe performance under
constant pressure. We chose at the beginning of this chapter to use V and T as
independent variables. The chemists prefer P and T , and we will now consider
how the results we have obtained so far can be transformed into the chemists’
system of variables. Remember that in the following treatment confusion can
easily set in because we are shifting gears from T and V to T and P .

We started in Eq. (45.3) with ∆U = ∆Q− P ∆V ; P ∆V may be replaced by
E∆Z or A∆B. If we could somehow replace the last term, P ∆V , by V ∆P ,
then we would have interchanged V and P , and the chemists would be happy.
Well, a clever man noticed that the differential of the product PV is d(PV ) =
P dV + V dP , and if he added this equality to Eq. (45.3), he obtained

∆(PV ) = P ∆V + V ∆P
∆U = ∆Q − P ∆V

∆(U + PV ) = ∆Q + V ∆P
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In order that the result look like Eq. (45.3), we define U + PV to be something
new, called the enthalpy, H, and we write ∆H = ∆Q+ V ∆P .

Now we are ready to transform our results into chemists’ language with the
following rules: U → H, P → −V , V → P . For example, the fundamental
relationship that chemists would use instead of Eq. (45.7) is(

∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V.

It should now be clear how one transforms to the chemists’ variables T and P .
We now go back to our original variables: for the remainder of this chapter, T
and V are the independent variables.

Now let us apply the results we have obtained to a number of physical
situations. Consider first the ideal gas. From kinetic theory we know that the
internal energy of a gas depends only on the motion of the molecules and the
number of molecules. The internal energy depends on T , but not on V . If we
change V , but keep T constant, U is not changed. Therefore (∂U/∂V )T = 0, and
Eq. (45.7) tells us that for an ideal gas

T

(
∂P

∂T

)
V

− P = 0. (45.10)

Equation (45.10) is a differential equation that can tell us something about P .
We take account of the partial derivatives in the following way: Since the partial
derivative is at constant V , we will replace the partial derivative by an ordinary
derivative and write explicitly, to remind us, “constant V .” Equation (45.10) then
becomes

T
∆P
∆T − P = 0; const V , (45.11)

which we can integrate to get

lnP = lnT + const; const V ,
P = const× T ; const V . (45.12)

We know that for an ideal gas the pressure per mole is equal to

P = RT

V
, (45.13)
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which is consistent with (45.12), since V and R are constants. Why did we
bother to go through this calculation if we already knew the results? Because
we have been using two independent definitions of temperature! At one stage
we assumed that the kinetic energy of the molecules was proportional to the
temperature, an assumption that defines one scale of temperature which we will
call the ideal gas scale. The T in Eq. (45.13) is based on the gas scale. We
also call temperatures measured on the gas scale kinetic temperatures. Later,
we defined the temperature in a second way which was completely independent
of any substance. From arguments based on the Second Law we defined what
we might call the “grand thermodynamic absolute temperature” T , the T that
appears in Eq. (45.12). What we proved here is that the pressure of an ideal gas
(defined as one for which the internal energy does not depend on the volume) is
proportional to the grand thermodynamic absolute temperature. We also know
that the pressure is proportional to the temperature measured on the gas scale.
Therefore we can deduce that the kinetic temperature is proportional to the
“grand thermodynamic absolute temperature.” That means, of course, that if we
were sensible we could make two scales agree. In this instance, at least, the two
scales have been chosen so that they coincide; the proportionality constant has
been chosen to be 1. Most of the time man chooses trouble for himself, but in
this case he made them equal!

45-3 The Clausius-Clapeyron equation

The vaporization of a liquid is another application of the results we have
derived. Suppose we have some liquid in a cylinder, such that we can compress
it by pushing on the piston, and we ask ourselves, “If we keep the temperature
constant, how does the pressure vary with volume?” In other words, we want
to draw an isothermal line on the P -V diagram. The substance in the cylinder
is not the ideal gas that we considered earlier; now it may be in the liquid or
the vapor phase, or both may be present. If we apply sufficient pressure, the
substance will condense to a liquid. Now if we squeeze still harder, the volume
changes very little, and our isothermal line rises rapidly with decreasing volume,
as shown at the left in Fig. 45-3.

If we increase the volume by pulling the piston out, the pressure drops until
we reach the point at which the liquid starts to boil, and then vapor starts to form.
If we pull the piston out farther, all that happens is that more liquid vaporizes.
When there is part liquid and part vapor in the cylinder, the two phases are in
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Fig. 45-3. Isothermal lines for a condensable vapor compressed in a
cylinder. At the left, the substance is in the liquid phase. At the right,
the substance is vaporized. In the center, both liquid, and vapor are
present in the cylinder.
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Fig. 45-4. Pressure-volume diagram for a Carnot cycle with a con-
densable vapor in the cylinder. At the left, the substance is in the liquid
state. A quantity of heat L is added at temperature T to vaporize the
liquid. The vapor expands adiabatically as T changes to T − ∆T .
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equilibrium—liquid is evaporating and vapor is condensing at the same rate. If
we make more room for the vapor, more vapor is needed to maintain the pressure,
so a little more liquid evaporates, but the pressure remains constant. On the flat
part of the curve in Fig. 45-3 the pressure does not change, and the value of the
pressure here is called the vapor pressure at temperature T . As we continue to
increase the volume, there comes a time when there is no more liquid to evaporate.
At this juncture, if we expand the volume further, the pressure will fall as for
an ordinary gas, as shown at the right of the P -V diagram. The lower curve in
Fig. 45-3 is the isothermal line at a slightly lower temperature T −∆T . The
pressure in the liquid phase is slightly reduced because liquid expands with an
increase in temperature (for most substances, but not for water near the freezing
point) and, of course, the vapor pressure is lower at the lower temperature.

We will now make a cycle out of the two isothermal lines by connecting
them (say by adiabatic lines) at both ends of the upper flat section, as shown in
Fig. 45-4. We are going to use the argument of Carnot, which tells us that the
heat added to the substance in changing it from a liquid to a vapor is related
to the work done by the substance as it goes around the cycle. Let us call L
the heat needed to vaporize the substance in the cylinder. As in the argument
immediately preceding Eq. (45.5), we know that L(∆T/T ) = work done by the
substance. As before, the work done by the substance is the shaded area, which is
approximately ∆P (VG−VL), where ∆P is the difference in vapor pressure at the
two temperatures T and T−∆T , VG is the volume of the gas, and VL is the volume
of the liquid, both volumes measured at the vapor pressure at temperature T .
Setting these two expressions for the area equal, we get L∆T/T = ∆P (VG−VL),
or

L

T (VG − VL) = (∂Pvap/∂T ). (45.14)

Equation (45.14) gives the relationship between the rate of change of vapor
pressure with temperature and the amount of heat required to evaporate the
liquid. This relationship was deduced by Carnot, but it is called the Clausius-
Clapeyron equation.

Now let us compare Eq. (45.14) with the results deduced from kinetic theory.
Usually VG is very much larger than VL. So VG − VL ≈ VG = RT/P per mole. If
we further assume that L is a constant, independent of temperature—not a very
good approximation—then we would have ∂P/∂T = L/(RT 2/P ). The solution
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of this differential equation is

P = const e−L/RT . (45.15)

Let us compare this with the pressure variation with temperature that we deduced
earlier from kinetic theory. Kinetic theory indicated the possibility, at least
roughly, that the number of molecules per unit volume of vapor above a liquid
would be

n =
(

1
Va

)
e−(UG−UL)/RT , (45.16)

where UG − UL is the internal energy per mole in the gas minus the internal
energy per mole in the liquid, i.e., the energy needed to vaporize a mole of
liquid. Equation (45.15) from thermodynamics and Eq. (45.16) from kinetic
theory are very closely related because the pressure is nkT , but they are not
exactly the same. However, they will turn out to be exactly the same if we
assume UG − UL = const, instead of L = const. If we assume UG − UL = const,
independent of temperature, then the argument leading to Eq. (45.15) will
produce Eq. (45.16). Since the pressure is constant while the volume is changing,
the change in internal energy UG − UL is equal to the heat L put in minus the
work done P (VG − VL), so L = (UG + PVG)− (UL + PVL).

This comparison shows the advantages and disadvantages of thermodynamics
over kinetic theory: First of all, Eq. (45.14) obtained by thermodynamics is
exact, while Eq. (45.16) can only be approximated, for instance, if U is nearly
constant, and if the model is right. Second, we may not understand correctly
how the gas goes into the liquid; nevertheless, Eq. (45.14) is right, while (45.16)
is only approximate. Third, although our treatment applies to a gas condensing
into a liquid, the argument is true for any other change of state. For instance,
the solid-to-liquid transition has the same kind of curve as that shown in Figs.
45-3 and 45-4. Introducing the latent heat for melting, M/mole, the formula
analogous to Eq. (45.14) then is (∂Pmelt/∂T )V = M/[T (Vliq − Vsolid)]. Although
we may not understand the kinetic theory of the melting process, we nevertheless
have a correct equation. However, when we can understand the kinetic theory,
we have another advantage. Equation (45.14) is only a differential relationship,
and we have no way of obtaining the constants of integration. In the kinetic
theory we can obtain the constants also if we have a good model that describes
the phenomenon completely. So there are advantages and disadvantages to
each. When knowledge is weak and the situation is complicated, thermodynamic
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relations are really the most powerful. When the situation is very simple and a
theoretical analysis can be made, then it is better to try to get more information
from theoretical analysis.

One more example: blackbody radiation. We have discussed a box containing
radiation and nothing else. We have talked about the equilibrium between the
oscillator and the radiation. We also found that the photons hitting the wall of
the box would exert the pressure P , and we found PV = U/3, where U is the
total energy of all the photons and V is the volume of the box. If we substitute
U = 3PV in the basic Eq. (45.7), we find*(

∂U

∂V

)
T

= 3P = T

(
∂P

∂T

)
V

− P. (45.17)

Since the volume of our box is constant, we can replace (∂P/∂T )V by dP/dT to
obtain an ordinary differential equation we can integrate: lnP = 4 lnT + const,
or P = const× T 4. The pressure of radiation varies as the fourth power of the
temperature, and the total energy density of the radiation, U/V = 3P , also
varies as T 4. It is usual to write U/V = (4σ/c)T 4, where c is the speed of light
and σ is called the Stefan-Boltzmann constant. It is not possible to get σ from
thermodynamics alone. Here is a good example of its power, and its limitations.
To know that U/V goes as T 4 is a great deal, but to know how big U/V actually
is at any temperature requires that we go into the kind of detail that only a
complete theory can supply. For blackbody radiation we have such a theory and
we can derive an expression for the constant σ in the following manner.

Let I(ω) dω be the intensity distribution, the energy flow through 1 m2

in one second with frequency between ω and ω + dω. The energy density
distribution = energy/volume = I(ω) dω/c is

U

V
= total energy density

=
∫ ∞
ω=0

energy density between ω and ω + dω

* In this case (∂P/∂V )T = 0, because in order to keep the oscillator in equilibrium at a
given temperature, the radiation in the neighborhood of the oscillator has to be the same,
regardless of the volume of the box. The total quantity of photons inside the box must therefore
be proportional to its volume, so the internal energy per unit volume, and thus the pressure,
depends only on the temperature.
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=
∫ ∞

0

I(ω) dω
c

.

From our earlier discussions, we know that

I(ω) = ~ω3

π2c2(e~ω/kT − 1) .

Substituting this expression for I(ω) in our equation for U/V , we get

U

V
= 1
π2c3

∫ ∞
0

~ω3 dω

e~ω/kT − 1 .

If we substitute x = ~ω/kT , the expression becomes

U

V
= (kT )4

~3π2c3

∫ ∞
0

x3 dx

ex − 1 .

This integral is just some number that we can get, approximately, by drawing
a curve and taking the area by counting squares. It is roughly 6.5. The math-
ematicians among us can show that the integral is exactly π4/15.* Comparing
this expression with U/V = (4σ/c)T 4, we find

σ = k4π2

60~3c3
= 5.67× 10−8 watts

(meter)2(degree)4 .

If we make a small hole in our box, how much energy will flow per second
through the hole of unit area? To go from energy density to energy flow, we
multiply the energy density U/V by c. We also multiply by 1

4 , which arises
as follows: first, a factor of 1

2 , because only the energy which is flowing out

* Since (ex − 1)−1 = e−x + e−2x + · · · , the integral is
∞∑
n=1

∫ ∞
0

e−nxx3 dx.

But
∫∞

0 e−nx dx = 1/n, and differentiating with respect to n three times gives
∫∞

0 x3e−nx dx =
6/n4, so the integral is 6(1 + 1

16 + 1
81 + · · · ) and a good estimate comes from adding the first

few terms. In Chapter 50 we will find a way to show that the sum of the reciprocal fourth
powers of the integers is, in fact, π4/90.
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escapes; and second, another factor 1
2 , because energy which approaches the

hole at an angle to the normal is less effective in getting through the hole by a
cosine factor. The average value of the cosine is 1

2 . It is clear now why we write
U/V = (4σ/c)T 4: so that we can ultimately say that the flux from a small hole
is σT 4 per unit area.
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46

Ratchet and pawl*

46-1 How a ratchet works

In this chapter we discuss the ratchet and pawl, a very simple device which
allows a shaft to turn only one way. The possibility of having something turn
only one way requires some detailed and careful analysis, and there are some
very interesting consequences.

The plan of the discussion came about in attempting to devise an elementary
explanation, from the molecular or kinetic point of view, for the fact that there
is a maximum amount of work which can be extracted from a heat engine. Of
course we have seen the essence of Carnot’s argument, but it would be nice to
find an explanation which is elementary in the sense that we can see what is
happening physically. Now, there are complicated mathematical demonstrations
which follow from Newton’s laws to demonstrate that we can get only a certain
amount of work out when heat flows from one place to another, but there is great
difficulty in converting this into an elementary demonstration. In short, we do
not understand it, although we can follow the mathematics.

In Carnot’s argument, the fact that more than a certain amount of work
cannot be extracted in going from one temperature to another is deduced from
another axiom, which is that if everything is at the same temperature, heat cannot
be converted to work by means of a cyclic process. First, let us back up and try
to see, in at least one elementary example, why this simpler statement is true.

Let us try to invent a device which will violate the Second Law of Thermo-
dynamics, that is, a gadget which will generate work from a heat reservoir with
everything at the same temperature. Let us say we have a box of gas at a certain
temperature, and inside there is an axle with vanes in it. (See Fig. 46-1 but take
T1 = T2 = T , say.) Because of the bombardments of gas molecules on the vane,

* See Parrando and Espanol, Am. J. Phys. 64, 1125 (1996) for a critical analysis of this
chapter.
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T2

T1

?

Fig. 46-1. The ratchet and pawl machine.

the vane oscillates and jiggles. All we have to do is to hook onto the other end
of the axle a wheel which can turn only one way—the ratchet and pawl. Then
when the shaft tries to jiggle one way, it will not turn, and when it jiggles the
other, it will turn. Then the wheel will slowly turn, and perhaps we might even
tie a flea onto a string hanging from a drum on the shaft, and lift the flea! Now
let us ask if this is possible. According to Carnot’s hypothesis, it is impossible.
But if we just look at it, we see, prima facie, that it seems quite possible. So
we must look more closely. Indeed, if we look at the ratchet and pawl, we see a
number of complications.

First, our idealized ratchet is as simple as possible, but even so, there is a
pawl, and there must be a spring in the pawl. The pawl must return after coming
off a tooth, so the spring is necessary.

Another feature of this ratchet and pawl, not shown in the figure, is quite
essential. Suppose the device were made of perfectly elastic parts. After the pawl
is lifted off the end of the tooth and is pushed back by the spring, it will bounce
against the wheel and continue to bounce. Then, when another fluctuation came,
the wheel could turn the other way, because the tooth could get underneath
during the moment when the pawl was up! Therefore an essential part of the
irreversibility of our wheel is a damping or deadening mechanism which stops
the bouncing. When the damping happens, of course, the energy that was in the
pawl goes into the wheel and shows up as heat. So, as it turns, the wheel will
get hotter and hotter. To make the thing simpler, we can put a gas around the
wheel to take up some of the heat. Anyway, let us say the gas keeps rising in
temperature, along with the wheel. Will it go on forever? No! The pawl and
wheel, both at some temperature T , also have Brownian motion. This motion is
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such that, every once in a while, by accident, the pawl lifts itself up and over a
tooth just at the moment when the Brownian motion on the vanes is trying to
turn the axle backwards. And as things get hotter, this happens more often.

So, this is the reason this device does not work in perpetual motion. When
the vanes get kicked, sometimes the pawl lifts up and goes over the end. But
sometimes, when it tries to turn the other way, the pawl has already lifted due
to the fluctuations of the motions on the wheel side, and the wheel goes back the
other way! The net result is nothing. It is not hard to demonstrate that when
the temperature on both sides is equal, there will be no net average motion of
the wheel. Of course the wheel will do a lot of jiggling this way and that way,
but it will not do what we would like, which is to turn just one way.

Let us look at the reason. It is necessary to do work against the spring in
order to lift the pawl to the top of a tooth. Let us call this energy ε, and let θ
be the angle between the teeth. The chance that the system can accumulate
enough energy, ε, to get the pawl over the top of the tooth, is e−ε/kT . But the
probability that the pawl will accidentally be up is also e−ε/kT . So the number
of times that the pawl is up and the wheel can turn backwards freely is equal to
the number of times that we have enough energy to turn it forward when the
pawl is down. We thus get a “balance,” and the wheel will not go around.

46-2 The ratchet as an engine

Let us now go further. Take the example where the temperature of the vanes
is T1 and the temperature of the wheel, or ratchet, is T2, and T2 is less than T1.
Because the wheel is cold and the fluctuations of the pawl are relatively infrequent,
it will be very hard for the pawl to attain an energy ε. Because of the high
temperature T1, the vanes will often attain the energy ε, so our gadget will go in
one direction, as designed.

We would now like to see if it can lift weights. Onto the drum in the middle
we tie a string, and put a weight, such as our flea, on the string. We let L be the
torque due to the weight. If L is not too great, our machine will lift the weight
because the Brownian fluctuations make it more likely to move in one direction
than the other. We want to find how much weight it can lift, how fast it goes
around, and so on.

First we consider a forward motion, the usual way one designs a ratchet to
run. In order to make one step forward, how much energy has to be borrowed
from the vane end? We must borrow an energy ε to lift the pawl. The wheel
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turns through an angle θ against a torque L, so we also need the energy Lθ. The
total amount of energy that we have to borrow is thus ε+ Lθ. The probability
that we get this energy is proportional to e−(ε+Lθ)/kT1 . Actually, it is not only
a question of getting the energy, but we also would like to know the number of
times per second it has this energy. The probability per second is proportional
to e−(ε+Lθ)/kT1 , and we shall call the proportionality constant 1/τ . It will cancel
out in the end anyway. When a forward step happens, the work done on the
weight is Lθ. The energy taken from the vane is ε+ Lθ. The spring gets wound
up with energy ε, then it goes clatter, clatter, bang, and this energy goes into
heat. All the energy taken out goes to lift the weight and to drive the pawl,
which then falls back and gives heat to the other side.

Now we look at the opposite case, which is backward motion. What happens
here? To get the wheel to go backwards all we have to do is supply the energy to
lift the pawl high enough so that the ratchet will slip. This is still energy ε. Our
probability per second for the pawl to lift this high is now (1/τ)e−ε/kT2 . Our
proportionality constant is the same, but this time kT2 shows up because of the
different temperature. When this happens, the work is released because the wheel
slips backward. It loses one notch, so it releases work Lθ. The energy taken from
the ratchet system is ε, and the energy given to the gas at T1 on the vane side
is Lθ + ε. It takes a little thinking to see the reason for that. Suppose the pawl
has lifted itself up accidentally by a fluctuation. Then when it falls back and the
spring pushes it down against the tooth, there is a force trying to turn the wheel,
because the tooth is pushing on an inclined plane. This force is doing work, and
so is the force due to the weights. So both together make up the total force, and
all the energy which is slowly released appears at the vane end as heat. (Of course
it must, by conservation of energy, but one must be careful to think the thing
through!) We notice that all these energies are exactly the same, but reversed.
So, depending upon which of these two rates is greater, the weight is either slowly
lifted or slowly released. Of course, it is constantly jiggling around, going up for
a while and down for a while, but we are talking about the average behavior.

Suppose that for a particular weight the rates happen to be equal. Then we
add an infinitesimal weight to the string. The weight will slowly go down, and
work will be done on the machine. Energy will be taken from the wheel and
given to the vanes. If instead we take off a little bit of weight, then the imbalance
is the other way. The weight is lifted, and heat is taken from the vane and put
into the wheel. So we have the conditions of Carnot’s reversible cycle, provided
that the weight is just such that these two are equal. This condition is evidently
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Table 46-1

Summary of operation of ratchet and pawl.

Forward: Needs energy ε+ Lθ from vane. ∴ Rate = 1
τ
e−(Lθ+ε)/kT1

Takes from vane Lθ + ε

Does work Lθ

Gives to ratchet ε

Backward: Needs energy ε for pawl. ∴ Rate = 1
τ
e−ε/kT2

Takes from ratchet ε
Releases work Lθ same as above with sign reversed.

Gives to vane Lθ + ε

If system is reversible, rates are equal, hence ε+ Lθ

T1
= ε

T2
.

Heat to ratchet
Heat from vane = ε

Lθ + ε
. Hence Q2

Q1
= T2

T1
.

that (ε+Lθ)/T1 = ε/T2. Let us say that the machine is slowly lifting the weight.
Energy Q1 is taken from the vanes and energy Q2 is delivered to the wheel, and
these energies are in the ratio (ε+ Lθ)/ε. If we are lowering the weight, we also
have Q1/Q2 = (ε+ Lθ)/ε. Thus (Table 46-1) we have

Q1/Q2 = T1/T2.

Furthermore, the work we get out is to the energy taken from the vane as Lθ is
to Lθ + ε, hence as (T1 − T2)/T1. We see that our device cannot extract more
work than this, operating reversibly. This is the result that we expected from
Carnot’s argument, and the main result of this lecture. However, we can use
our device to understand a few other phenomena, even out of equilibrium, and
therefore beyond the range of thermodynamics.

Let us now calculate how fast our one-way device would turn if everything
were at the same temperature and we hung a weight on the drum. If we pull very,
very hard, of course, there are all kinds of complications. The pawl slips over the
ratchet, or the spring breaks, or something. But suppose we pull gently enough
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that everything works nicely. In those circumstances, the above analysis is right
for the probability of the wheel going forward and backward, if we remember
that the two temperatures are equal. In each step an angle θ is obtained, so the
angular velocity is θ times the probability of one of these jumps per second. It
goes forward with probability (1/τ)e−(ε+Lθ)/kT and backward with probability
(1/τ)e−ε/kT , so that for the angular velocity we have

ω = (θ/τ)(e−(ε+Lθ)/kT − e−ε/kT )
= (θ/τ)e−ε/kT (e−Lθ/kT − 1). (46.1)

If we plot ω against L, we get the curve shown in Fig. 46-2. We see that it
makes a great difference whether L is positive or negative. If L increases in the
positive range, which happens when we try to drive the wheel backward, the
backward velocity approaches a constant. As L becomes negative, ω really “takes
off” forward, since e to a tremendous power is very great!

L

ω

Fig. 46-2. Angular velocity of the ratchet as a function of torque.

The angular velocity that was obtained from different forces is thus very
unsymmetrical. Going one way it is easy: we get a lot of angular velocity for a
little force. Going the other way, we can put on a lot of force, and yet the wheel
hardly goes around.

We find the same thing in an electrical rectifier. Instead of the force, we have
the electric field, and instead of the angular velocity, we have the electric current.
In the case of a rectifier, the voltage is not proportional to resistance, and the
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situation is unsymmetrical. The same analysis that we made for the mechanical
rectifier will also work for an electrical rectifier. In fact, the kind of formula
we obtained above is typical of the current-carrying capacities of rectifiers as a
function of their voltages.

Now let us take all the weights away, and look at the original machine. If
T2 were less than T1, the ratchet would go forward, as anybody would believe.
But what is hard to believe, at first sight, is the opposite. If T2 is greater than
T1, the ratchet goes around the opposite way! A dynamic ratchet with lots of
heat in it runs itself backwards, because the ratchet pawl is bouncing. If the
pawl, for a moment, is on the incline somewhere, it pushes the inclined plane
sideways. But it is always pushing on an inclined plane, because if it happens to
lift up high enough to get past the point of a tooth, then the inclined plane slides
by, and it comes down again on an inclined plane. So a hot ratchet and pawl is
ideally built to go around in a direction exactly opposite to that for which it was
originally designed!

In spite of all our cleverness of lopsided design, if the two temperatures are
exactly equal there is no more propensity to turn one way than the other. The
moment we look at it, it may be turning one way or the other, but in the long
run, it gets nowhere. The fact that it gets nowhere is really the fundamental
deep principle on which all of thermodynamics is based.

46-3 Reversibility in mechanics

What deeper mechanical principle tells us that, in the long run, if the tem-
perature is kept the same everywhere, our gadget will turn neither to the right
nor to the left? We evidently have a fundamental proposition that there is no
way to design a machine which, left to itself, will be more likely to be turning
one way than the other after a long enough time. We must try to see how this
follows from the laws of mechanics.

The laws of mechanics go something like this: the mass times the acceleration
is the force, and the force on each particle is some complicated function of the
positions of all the other particles. There are other situations in which forces
depend on velocity, such as in magnetism, but let us not consider that now.
We take a simpler case, such as gravity, where forces depend only on position.
Now suppose that we have solved our set of equations and we have a certain
motion x(t) for each particle. In a complicated enough system, the solutions are
very complicated, and what happens with time turns out to be very surprising.
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If we write down any arrangement we please for the particles, we will see this
arrangement actually occur if we wait long enough! If we follow our solution for
a long enough time, it tries everything that it can do, so to speak. This is not
absolutely necessary in the simplest devices, but when systems get complicated
enough, with enough atoms, it happens. Now there is something else the solution
can do. If we solve the equations of motion, we may get certain functions such
as t+ t2 + t3. We claim that another solution would be −t+ t2 − t3. In other
words, if we substitute −t everywhere for t throughout the entire solution, we
will once again get a solution of the same equation. This follows from the fact
that if we substitute −t for t in the original differential equation, nothing is
changed, since only second derivatives with respect to t appear. This means that
if we have a certain motion, then the exact opposite motion is also possible. In
the complete confusion which comes if we wait long enough, it finds itself going
one way sometimes, and it finds itself going the other way sometimes. There is
nothing more beautiful about one of the motions than about the other. So it is
impossible to design a machine which, in the long run, is more likely to be going
one way than the other, if the machine is sufficiently complicated.

One might think up an example for which this is obviously untrue. If we take
a wheel, for instance, and spin it in empty space, it will go the same way forever.
So there are some conditions, like the conservation of angular momentum, which
violate the above argument. This just requires that the argument be made with a
little more care. Perhaps the walls take up the angular momentum, or something
like that, so that we have no special conservation laws. Then, if the system is
complicated enough, the argument is true. It is based on the fact that the laws
of mechanics are reversible.

For historical interest, we would like to remark on a device invented by
Maxwell, who first worked out the dynamical theory of gases. He supposed the
following situation: We have two boxes of gas at the same temperature, with a
little hole between them. At the hole sits a little demon (who may be a machine
of course!). There is a door on the hole, which can be opened or closed by the
demon. He watches the molecules coming from the left. Whenever he sees a fast
molecule, he opens the door. When he sees a slow one, he leaves it closed. If
we want him to be an extra special demon, he can have eyes at the back of his
head, and do the opposite to the molecules from the other side. He lets the slow
ones through to the left, and the fast through to the right. Pretty soon the left
side will get cold and the right side hot. Then, are the ideas of thermodynamics
violated because we could have such a demon?
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It turns out, if we build a finite-sized demon, that the demon himself gets so
warm that he cannot see very well after a while. The simplest possible demon, as
an example, would be a trap door held over the hole by a spring. A fast molecule
comes through, because it is able to lift the trap door. The slow molecule cannot
get through, and bounces back. But this thing is nothing but our ratchet and
pawl in another form, and ultimately the mechanism will heat up. If we assume
that the specific heat of the demon is not infinite, it must heat up. It has but
a finite number of internal gears and wheels, so it cannot get rid of the extra
heat that it gets from observing the molecules. Soon it is shaking from Brownian
motion so much that it cannot tell whether it is coming or going, much less
whether the molecules are coming or going, so it does not work.

46-4 Irreversibility

Are all the laws of physics reversible? Evidently not! Just try to unscramble
an egg! Run a moving picture backwards, and it takes only a few minutes for
everybody to start laughing. The most natural characteristic of all phenomena is
their obvious irreversibility.

Where does irreversibility come from? It does not come from Newton’s laws.
If we claim that the behavior of everything is ultimately to be understood in
terms of the laws of physics, and if it also turns out that all the equations have
the fantastic property that if we put t = −t we have another solution, then every
phenomenon is reversible. How then does it come about in nature on a large scale
that things are not reversible? Obviously there must be some law, some obscure
but fundamental equation, perhaps in electricity, maybe in neutrino physics, in
which it does matter which way time goes.

Let us discuss that question now. We already know one of those laws, which
says that the entropy is always increasing. If we have a hot thing and a cold thing,
the heat goes from hot to cold. So the law of entropy is one such law. But we
expect to understand the law of entropy from the point of view of mechanics. In
fact, we have just been successful in obtaining all the consequences of the argument
that heat cannot flow backwards by itself from just mechanical arguments, and
we thereby obtained an understanding of the Second Law. Apparently we can get
irreversibility from reversible equations. But was it only a mechanical argument
that we used? Let us look into it more closely.

Since our question has to do with the entropy, our problem is to try to find a
microscopic description of entropy. If we say we have a certain amount of energy
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in something, like a gas, then we can get a microscopic picture of it, and say
that every atom has a certain energy. All these energies added together give us
the total energy. Similarly, maybe every atom has a certain entropy. If we add
everything up, we would have the total entropy. It does not work so well, but let
us see what happens.

As an example, we calculate the entropy difference between a gas at a certain
temperature at one volume, and a gas at the same temperature at another volume.
We remember, from Chapter 44, that we had, for the change in entropy,

∆S =
∫
dQ

T
.

In the present case, the energy of the gas is the same before and after expansion,
since the temperature does not change. So we have to add enough heat to equal
the work done by the gas or, for each little change in volume,

dQ = P dV.

Putting this in for dQ, we get

∆S =
∫ V2

V1

P
dV

T
=
∫ V2

V1

NkT

V

dV

T

= Nk ln V2

V1
,

as we obtained in Chapter 44. For instance, if we expand the volume by a factor
of 2, the entropy change is Nk ln 2.

Let us now consider another interesting example. Suppose we have a box
with a barrier in the middle. On one side is neon (“black” molecules), and on
the other, argon (“white” molecules). Now we take out the barrier, and let them
mix. How much has the entropy changed? It is possible to imagine that instead
of the barrier we have a piston, with holes in it that let the whites through but
not the blacks, and another kind of piston which is the other way around. If we
move one piston to each end, we see that, for each gas, the problem is like the
one we just solved. So we get an entropy change of Nk ln 2, which means that
the entropy has increased by k ln 2 per molecule. The 2 has to do with the extra
room that the molecule has, which is rather peculiar. It is not a property of the
molecule itself, but of how much room the molecule has to run around in. This is

46-10



a strange situation, where entropy increases but where everything has the same
temperature and the same energy! The only thing that is changed is that the
molecules are distributed differently.

We well know that if we just pull the barrier out, everything will get mixed
up after a long time, due to the collisions, the jiggling, the banging, and so on.
Every once in a while a white molecule goes toward a black, and a black one
goes toward a white, and maybe they pass. Gradually the whites worm their
way, by accident, across into the space of blacks, and the blacks worm their way,
by accident, into the space of whites. If we wait long enough we get a mixture.
Clearly, this is an irreversible process in the real world, and ought to involve an
increase in the entropy.

Here we have a simple example of an irreversible process which is completely
composed of reversible events. Every time there is a collision between any two
molecules, they go off in certain directions. If we took a moving picture of a
collision in reverse, there would be nothing wrong with the picture. In fact, one
kind of collision is just as likely as another. So the mixing is completely reversible,
and yet it is irreversible. Everyone knows that if we started with white and with
black, separated, we would get a mixture within a few minutes. If we sat and
looked at it for several more minutes, it would not separate again but would stay
mixed. So we have an irreversibility which is based on reversible situations. But
we also see the reason now. We started with an arrangement which is, in some
sense, ordered. Due to the chaos of the collisions, it becomes disordered. It is the
change from an ordered arrangement to a disordered arrangement which is the
source of the irreversibility.

It is true that if we took a motion picture of this, and showed it backwards,
we would see it gradually become ordered. Someone would say, “That is against
the laws of physics!” So we would run the film over again, and we would look
at every collision. Every one would be perfect, and every one would be obeying
the laws of physics. The reason, of course, is that every molecule’s velocities are
just right, so if the paths are all followed back, they get back to their original
condition. But that is a very unlikely circumstance to have. If we start with the
gas in no special arrangement, just whites and blacks, it will never get back.

46-5 Order and entropy

So we now have to talk about what we mean by disorder and what we mean
by order. It is not a question of pleasant order or unpleasant disorder. What is
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different in our mixed and unmixed cases is the following. Suppose we divide
the space into little volume elements. If we have white and black molecules, how
many ways could we distribute them among the volume elements so that white is
on one side, and black on the other? On the other hand, how many ways could
we distribute them with no restriction on which goes where? Clearly, there are
many more ways to arrange them in the latter case. We measure “disorder” by
the number of ways that the insides can be arranged, so that from the outside it
looks the same. The logarithm of that number of ways is the entropy. The number
of ways in the separated case is less, so the entropy is less, or the “disorder” is
less.

So with the above technical definition of disorder we can understand the
proposition. First, the entropy measures the disorder. Second, the universe
always goes from “order” to “disorder,” so entropy always increases. Order is
not order in the sense that we like the arrangement, but in the sense that the
number of different ways we can hook it up, and still have it look the same from
the outside, is relatively restricted. In the case where we reversed our motion
picture of the gas mixing, there was not as much disorder as we thought. Every
single atom had exactly the correct speed and direction to come out right! The
entropy was not high after all, even though it appeared so.

What about the reversibility of the other physical laws? When we talked
about the electric field which comes from an accelerating charge, it was said that
we must take the retarded field. At a time t and at a distance r from the charge,
we take the field due to the acceleration at a time t− r/c, not t+ r/c. So it looks,
at first, as if the law of electricity is not reversible. Very strangely, however, the
laws we used come from a set of equations called Maxwell’s equations, which
are, in fact, reversible. Furthermore, it is possible to argue that if we were to
use only the advanced field, the field due to the state of affairs at t+ r/c, and
do it absolutely consistently in a completely enclosed space, everything happens
exactly the same way as if we use retarded fields! This apparent irreversibility in
electricity, at least in an enclosure, is thus not an irreversibility at all. We have
some feeling for that already, because we know that when we have an oscillating
charge which generates fields which are bounced from the walls of an enclosure
we ultimately get to an equilibrium in which there is no one-sidedness. The
retarded field approach is only a convenience in the method of solution.

So far as we know, all the fundamental laws of physics, like Newton’s equations,
are reversible. Then where does irreversibility come from? It comes from order
going to disorder, but we do not understand this until we know the origin of the
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order. Why is it that the situations we find ourselves in every day are always
out of equilibrium? One possible explanation is the following. Look again at
our box of mixed white and black molecules. Now it is possible, if we wait long
enough, by sheer, grossly improbable, but possible, accident, that the distribution
of molecules gets to be mostly white on one side and mostly black on the other.
After that, as times goes on and accidents continue, they get more mixed up
again.

Thus one possible explanation of the high degree of order in the present-day
world is that it is just a question of luck. Perhaps our universe happened to
have had a fluctuation of some kind in the past, in which things got somewhat
separated, and now they are running back together again. This kind of theory is
not unsymmetrical, because we can ask what the separated gas looks like either
a little in the future or a little in the past. In either case, we see a grey smear at
the interface, because the molecules are mixing again. No matter which way we
run time, the gas mixes. So this theory would say the irreversibility is just one
of the accidents of life.

We would like to argue that this is not the case. Suppose we do not look at
the whole box at once, but only at a piece of the box. Then, at a certain moment,
suppose we discover a certain amount of order. In this little piece, white and
black are separate. What should we deduce about the condition in places where
we have not yet looked? If we really believe that the order arose from complete
disorder by a fluctuation, we must surely take the most likely fluctuation which
could produce it, and the most likely condition is not that the rest of it has
also become disentangled! Therefore, from the hypothesis that the world is a
fluctuation, all of the predictions are that if we look at a part of the world we
have never seen before, we will find it mixed up, and not like the piece we just
looked at. If our order were due to a fluctuation, we would not expect order
anywhere but where we have just noticed it.

Now we assume the separation is because the past of the universe was really
ordered. It is not due to a fluctuation, but the whole thing used to be white and
black. This theory now predicts that there will be order in other places—the order
is not due to a fluctuation, but due to a much higher ordering at the beginning
of time. Then we would expect to find order in places where we have not yet
looked.

The astronomers, for example, have only looked at some of the stars. Every
day they turn their telescopes to other stars, and the new stars are doing the
same thing as the other stars. We therefore conclude that the universe is not a
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fluctuation, and that the order is a memory of conditions when things started.
This is not to say that we understand the logic of it. For some reason, the universe
at one time had a very low entropy for its energy content, and since then the
entropy has increased. So that is the way toward the future. That is the origin
of all irreversibility, that is what makes the processes of growth and decay, that
makes us remember the past and not the future, remember the things which are
closer to that moment in the history of the universe when the order was higher
than now, and why we are not able to remember things where the disorder is
higher than now, which we call the future. So, as we commented in an earlier
chapter, the entire universe is in a glass of wine, if we look at it closely enough.
In this case the glass of wine is complex, because there is water and glass and
light and everything else.

Another delight of our subject of physics is that even simple and idealized
things, like the ratchet and pawl, work only because they are part of the universe.
The ratchet and pawl works in only one direction because it has some ultimate
contact with the rest of the universe. If the ratchet and pawl were in a box and
isolated for some sufficient time, the wheel would be no more likely to go one way
than the other. But because we pull up the shades and let the light out, because
we cool off on the earth and get heat from the sun, the ratchets and pawls that
we make can turn one way. This one-wayness is interrelated with the fact that
the ratchet is part of the universe. It is part of the universe not only in the sense
that it obeys the physical laws of the universe, but its one-way behavior is tied to
the one-way behavior of the entire universe. It cannot be completely understood
until the mystery of the beginnings of the history of the universe are reduced
still further from speculation to scientific understanding.
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47

Sound. The wave equation

47-1 Waves

In this chapter we shall discuss the phenomenon of waves. This is a phe-
nomenon which appears in many contexts throughout physics, and therefore our
attention should be concentrated on it not only because of the particular example
considered here, which is sound, but also because of the much wider application
of the ideas in all branches of physics.

It was pointed out when we studied the harmonic oscillator that there are
not only mechanical examples of oscillating systems but electrical ones as well.
Waves are related to oscillating systems, except that wave oscillations appear not
only as time-oscillations at one place, but propagate in space as well.

We have really already studied waves. When we studied light, in learning
about the properties of waves in that subject, we paid particular attention to the
interference in space of waves from several sources at different locations and all
at the same frequency. There are two important wave phenomena that we have
not yet discussed which occur in light, i.e., electromagnetic waves, as well as in
any other form of waves. The first of these is the phenomenon of interference
in time rather than interference in space. If we have two sources of sound which
have slightly different frequencies and if we listen to both at the same time,
then sometimes the waves come with the crests together and sometimes with
the crest and trough together (see Fig. 47-1). The rising and falling of the sound
that results is the phenomenon of beats or, in other words, of interference in
time. The second phenomenon involves the wave patterns which result when
the waves are confined within a given volume and reflect back and forth from
walls.

These effects could have been discussed, of course, for the case of electromag-
netic waves. The reason for not having done this is that by using one example we
would not generate the feeling that we are actually learning about many different
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Fig. 47-1. Interference in time of two sound sources with slightly
different frequencies, resulting in beats.

subjects at the same time. In order to emphasize the general applicability of
waves beyond electrodynamics, we consider here a different example, in particular
sound waves.

Other examples of waves are water waves consisting of long swells that we see
coming in to the shore, or the smaller water waves consisting of surface tension
ripples. As another example, there are two kinds of elastic waves in solids; a
compressional (or longitudinal) wave in which the particles of the solid oscillate
back and forth along the direction of propagation of the wave (sound waves in a
gas are of this kind), and a transverse wave in which the particles of the solid
oscillate in a direction perpendicular to the direction of propagation. Earthquake
waves contain elastic waves of both kinds, generated by a motion at some place
in the earth’s crust.

Still another example of waves is found in modern physics. These are waves
which give the probability amplitude of finding a particle at a given place—the
“matter waves” which we have already discussed. Their frequency is proportional
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to the energy and their wave number is proportional to the momentum. They
are the waves of quantum mechanics.

In this chapter we shall consider only waves for which the velocity is inde-
pendent of the wavelength. This is, for example, the case for light in a vacuum.
The speed of light is then the same for radiowaves, blue light, green light, or
for any other wavelength. Because of this behavior, when we began to describe
the wave phenomenon we did not notice at first that we had wave propagation.
Instead, we said that if a charge is moved at one place, the electric field at a
distance x was proportional to the acceleration, not at the time t, but at the
earlier time t − x/c. Therefore if we were to picture the electric field in space
at some instant of time, as in Fig. 47-2, the electric field at a time t later would
have moved the distance ct, as indicated in the figure. Mathematically, we can
say that in the one-dimensional example we are taking, the electric field is a
function of x− ct. We see that at t = 0, it is some function of x. If we consider
a later time, we need only to increase x somewhat to get the same value of the
electric field. For example, if the maximum field occurred at x = 3 at time zero,
then to find the new position of the maximum field at time t we need

x− ct = 3 or x = 3 + ct.

We see that this kind of function represents the propagation of a wave.
Such a function, f(x− ct), then represents a wave. We may summarize this

description of a wave by saying simply that

f(x− ct) = f(x+ ∆x− c(t+ ∆t)),

x

ct

Fig. 47-2. The solid curve shows what the electric field might be like
at some instant of time and the dashed curve shows what the electric
field is at a time t later.
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when ∆x = c∆t. There is, of course, another possibility, i.e., that instead of
a source to the left as indicated in Fig. 47-2, we have a source on the right, so
that the wave propagates toward negative x. Then the wave would be described
by g(x+ ct).

There is the additional possibility that more than one wave exists in space
at the same time, and so the electric field is the sum of the two fields, each one
propagating independently. This behavior of electric fields may be described
by saying that if f1(x − ct) is a wave, and if f2(x − ct) is another wave, then
their sum is also a wave. This is called the principle of superposition. The same
principle is valid in sound.

We are familiar with the fact that if a sound is produced, we hear with
complete fidelity the same sequence of sounds as was generated. If we had high
frequencies travelling faster than low frequencies, a short, sharp noise would be
heard as a succession of musical sounds. Similarly, if red light travelled faster
than blue light, a flash of white light would be seen first as red, then as white,
and finally as blue. We are familiar with the fact that this is not the case. Both
sound and light travel with a speed in air which is very nearly independent of
frequency. Examples of wave propagation-for which this independence is not true
will be considered in Chapter 48.

In the case of light (electromagnetic waves) we gave a rule which determined
the electric field at a point as a result of the acceleration of a charge. One might
expect now that what we should do is give a rule whereby some quality of the
air, say the pressure, is determined at a given distance from a source in terms
of the source motion, delayed by the travel time of the sound. In the case of
light this procedure was acceptable because all that we knew was that a charge
at one place exerts a force on another charge at another place. The details of
propagation from the one place to the other were not absolutely essential. In
the case of sound, however, we know that it propagates through the air between
the source and the hearer, and it is certainly a natural question to ask what,
at any given moment, the pressure of the air is. We would like, in addition, to
know exactly how the air moves. In the case of electricity we could accept a
rule, since we could say that we do not yet know the laws of electricity, but we
cannot make the same remark with regard to sound. We would not be satisfied
with a rule stating how the sound pressure moves through the air, because the
process ought to be understandable as a consequence of the laws of mechanics.
In short, sound is a branch of mechanics, and so it is to be understood in terms
of Newton’s laws. The propagation of sound from one place to another is merely
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a consequence of mechanics and the properties of gases, if it propagates in a gas,
or of the properties of liquids or solids, if it propagates through such mediums.
Later we shall derive the properties of light and its wave propagation in a similar
way from the laws of electrodynamics.

47-2 The propagation of sound

We shall give a derivation of the properties of the propagation of sound
between the source and the receiver as a consequence of Newton’s laws, and we
shall not consider the interaction with the source and the receiver. Ordinarily
we emphasize a result rather than a particular derivation of it. In this chapter
we take the opposite view. The point here, in a certain sense, is the derivation
itself. This problem of explaining new phenomena in terms of old ones, when
we know the laws of the old ones, is perhaps the greatest art of mathematical
physics. The mathematical physicist has two problems: one is to find solutions,
given the equations, and the other is to find the equations which describe a new
phenomenon. The derivation here is an example of the second kind of problem.

We shall take the simplest example here—the propagation of sound in one
dimension. To carry out such a derivation it is necessary first to have some
kind of understanding of what is going on. Fundamentally what is involved is
that if an object is moved at one place in the air, we observe that there is a
disturbance which travels through the air. If we ask what kind of disturbance,
we would say that we would expect that the motion of the object produces a
change of pressure. Of course, if the object is moved gently, the air merely flows
around it, but what we are concerned with is a rapid motion, so that there is not
sufficient time for such a flow. Then, with the motion, the air is compressed and a
change of pressure is produced which pushes on additional air. This air is in turn
compressed, which leads again to an extra pressure, and a wave is propagated.

We now want to formulate such a process. We have to decide what variables
we need. In our particular problem we would need to know how much the air has
moved, so that the air displacement in the sound wave is certainly one relevant
variable. In addition we would like to describe how the air density changes as it
is displaced. The air pressure also changes, so this is another variable of interest.
Then, of course, the air has a velocity, so that we shall have to describe the
velocity of the air particles. The air particles also have accelerations—but as we
list these many variables we soon realize that the velocity and acceleration would
be known if we knew how the air displacement varies with time.
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As we said, we shall consider the wave in one dimension. We can do this
if we are sufficiently far from the source that what we call the wavefronts are
very nearly planes. We thus make our argument simpler by taking the least
complicated example. We shall then be able to say that the displacement, χ,
depends only on x and t, and not on y and z. Therefore the description of the
air is given by χ(x, t).

Is this description complete? It would appear to be far from complete, for we
know none of the details of how the air molecules are moving. They are moving
in all directions, and this state of affairs is certainly not described by means of
this function χ(x, t). From the point of view of kinetic theory, if we have a higher
density of molecules at one place and a lower density adjacent to that place,
the molecules would move away from the region of higher density to the one of
lower density, so as to equalize this difference. Apparently we would not get an
oscillation and there would be no sound. What is necessary to get the sound
wave is this situation: as the molecules rush out of the region of higher density
and higher pressure, they give momentum to the molecules in the adjacent region
of lower density. For sound to be generated, the regions over which the density
and pressure change must be much larger than the distance the molecules travel
before colliding with other molecules. This distance is the mean free path and
the distance between pressure crests and troughs must be much larger than this.
Otherwise the molecules would move freely from the crest to the trough and
immediately smear out the wave.

It is clear that we are going to describe the gas behavior on a scale large
compared with the mean free path, and so the properties of the gas will not be
described in terms of the individual molecules. The displacement, for example,
will be the displacement of the center of mass of a small element of the gas, and
the pressure or density will be the pressure or density in this region. We shall
call the pressure P and the density ρ, and they will be functions of x and t. We
must keep in mind that this description is an approximation which is valid only
when these gas properties do not vary too rapidly with distance.

47-3 The wave equation

The physics of the phenomenon of sound waves thus involves three features:

I. The gas moves and changes the density.
II. The change in density corresponds to a change in pressure.
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III. Pressure inequalities generate gas motion.

Let us consider II first. For a gas, a liquid, or a solid, the pressure is some
function of the density. Before the sound wave arrives, we have equilibrium,
with a pressure P0 and a corresponding density ρ0. A pressure P in the medium
is connected to the density by some characteristic relation P = f(ρ) and, in
particular, the equilibrium pressure P0 is given by P0 = f(ρ0). The changes of
pressure in sound from the equilibrium value are extremely small. A convenient
unit for measuring pressure is the bar , where 1 bar = 105 N/m2. The pressure of
1 standard atmosphere is very nearly 1 bar: 1 atm = 1.0133 bars. In sound we
use a logarithmic scale of intensities since the sensitivity of the ear is roughly
logarithmic. This scale is the decibel scale, in which the acoustic pressure level
for the pressure amplitude P is defined as

I (acoustic pressure level) = 20 log10(P/Pref) in dB, (47.1)

where the reference pressure Pref = 2 × 10−10 bar. A pressure amplitude of
P = 103Pref = 2 × 10−7 bar* corresponds to a moderately intense sound of
60 decibels. We see that the pressure changes in sound are extremely small
compared with the equilibrium, or mean, pressure of 1 atm. The displacements
and the density changes are correspondingly extremely small. In explosions we
do not have such small changes; the excess pressures produced can be greater
than 1 atm. These large pressure changes lead to new effects which we shall
consider later. In sound we do not often consider acoustic intensity levels over
100 dB; 120 dB is a level which is painful to the ear. Therefore, for sound, if we
write

P = P0 + Pe, ρ = ρ0 + ρe, (47.2)

we shall always have the pressure change Pe very small compared with P0 and
the density change ρe very small compared with ρ0. Then

P0 + Pe = f(ρ0 + ρe) = f(ρ0) + ρef
′(ρ0), (47.3)

where P0 = f(ρ0) and f ′(ρ0) stands for the derivative of f(ρ) evaluated at ρ = ρ0.
We can take the second step in this equality only because ρe is very small. We find
in this way that the excess pressure Pe is proportional to the excess density ρe,

* With this choice of Pref, the P is not the peak pressure in the sound wave but the
“root-mean-square” pressure, which is 1/(2)1/2 times the peak pressure.
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and we may call the proportionality factor κ:

Pe = κρe, where κ = f ′(ρ0) = (dP/dρ)0. (47.4)

The relation we needed for II is this very simple one.

OLD VOLUME NEW VOLUME

x x+∆x x+χ(x, t) (x+∆x)+χ(x+∆x, t)

χ(x, t)

χ(x+∆x, t)

Fig. 47-3. The displacement of the air at x is χ(x, t), and at x + ∆x

it is χ(x + ∆x, t). The original volume of the air for a unit area of the
plane wave is ∆x ; the new volume is ∆x + χ(x + ∆x, t)− χ(x, t).

Let us now consider I. We shall suppose that the position of a portion of
air undisturbed by the sound wave is x and the displacement at the time t due
to the sound is χ(x, t), so that its new position is x + χ(x, t), as in Fig. 47-3.
Now the undisturbed position of a nearby portion of air is x+ ∆x, and its new
position is x+ ∆x+ χ(x+ ∆x, t). We can now find the density changes in the
following way. Since we are limiting ourselves to plane waves, we can take a unit
area perpendicular to the x-direction, which is the direction of propagation of
the sound wave. The amount of air, per unit area, in ∆x is then ρ0 ∆x, where ρ0
is the undisturbed, or equilibrium, air density. This air, when displaced by the
sound wave, now lies between x+ χ(x, t) and x+ ∆x+ χ(x+ ∆x, t), so that we
have the same matter in this interval that was in ∆x when undisturbed. If ρ is
the new density, then

ρ0 ∆x = ρ[x+ ∆x+ χ(x+ ∆x, t)− x− χ(x, t)]. (47.5)

Since ∆x is small, we can write χ(x + ∆x, t) − χ(x, t) = (∂χ/∂x) ∆x. This
derivative is a partial derivative, since χ depends on the time as well as on x.
Our equation then is

ρ0 ∆x = ρ

(
∂χ

∂x
∆x+ ∆x

)
(47.6)
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or
ρ0 = (ρ0 + ρe)

∂χ

∂x
+ ρ0 + ρe. (47.7)

Now in sound waves all changes are small so that ρe is small, χ is small, and
∂χ/∂x is also small. Therefore in the relation that we have just found,

ρe = −ρ0
∂χ

∂x
− ρe

∂χ

∂x
, (47.8)

we can neglect ρe ∂χ/∂x compared with ρ0 ∂χ/∂x. Thus we get the relation we
needed for I:

ρe = −ρ0
∂χ

∂x
. (I) (47.9)

This equation is what we would expect physically. If the displacements vary with
x, then there will be density changes. The sign is also right: if the displacement χ
increases with x, so that the air is stretched out, the density must go down.

We now need the third equation, which is the equation of the motion produced
by the pressure. If we know the relation between the force and the pressure, we
can then get the equation of motion. If we take a thin slab of air of length ∆x
and of unit area perpendicular to x, then the mass of air in this slab is ρ0 ∆x and
it has the acceleration ∂2χ/∂t2, so the mass times the acceleration for this slab
of matter is ρ0 ∆x(∂2χ/∂t2). (It makes no difference for small ∆x whether the
acceleration ∂2χ/∂t2 is evaluated at an edge of the slab or at some intermediate
position.) If now we find the force on this matter for a unit area perpendicular to x,
it will then be equal to ρ0 ∆x(∂2χ/∂t2). We have the force in the +x-direction,
at x, of amount P (x, t) per unit area, and we have the force in the opposite
direction, at x+ ∆x, of amount P (x+ ∆x, t) per unit area (Fig. 47-4):

P (x, t)− P (x+ ∆x, t) = −∂P
∂x

∆x = −∂Pe
∂x

∆x, (47.10)

x

P (x, t) P (x + ∆x, t)

∆x

Fig. 47-4. The net force in the positive x-direction produced by the
pressure acting on unit area perpendicular to x is −(∂P/∂x) ∆x .
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since ∆x is small and since the only part of P which changes is the excess
pressure Pe. We now have III:

ρ0
∂2χ

∂t2
= −∂Pe

∂x
, (III) (47.11)

and so we have enough equations to interconnect things and reduce down to one
variable, say to χ. We can eliminate Pe from III by using II, so that we get

ρ0
∂2χ

∂t2
= −κ ∂ρe

∂x
, (47.12)

and then we can use I to eliminate ρe. In this way we find that ρ0 cancels out
and that we are left with

∂2χ

∂t2
= κ

∂2χ

∂x2 . (47.13)

We shall call c2s = κ, so that we can write

∂2χ

∂x2 = 1
c2s

∂2χ

∂t2
. (47.14)

This is the wave equation which describes the behavior of sound in matter.

47-4 Solutions of the wave equation

We now can see whether this equation really does describe the essential
properties of sound waves in matter. We want to deduce that a sound pulse,
or disturbance, will move with a constant speed. We want to verify that two
different pulses can move through each other—the principle of superposition. We
also want to verify that sound can go either to the right or to the left. All these
properties should be contained in this one equation.

We have remarked that any plane-wave disturbance which moves with a
constant velocity v has the form f(x− vt). Now we have to see whether χ(x, t) =
f(x− vt) is a solution of the wave equation. When we calculate ∂χ/∂x, we get
the derivative of the function, ∂χ/∂x = f ′(x − vt). Differentiating once more,
we find

∂2χ

∂x2 = f ′′(x− vt). (47.15)
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The differentiation of this same function with respect to t gives −v times
the derivative of the function, or ∂χ/∂t = −vf ′(x − vt), and the second time
derivative is

∂2χ

∂t2
= v2f ′′(x− vt). (47.16)

It is evident that f(x − vt) will satisfy the wave equation provided the wave
velocity v is equal to cs.

We find, therefore, from the laws of mechanics that any sound disturbance
propagates with the velocity cs, and in addition we find that

cs = κ1/2 = (dP/dρ)1/2
0 ,

and so we have related the wave velocity to a property of the medium.
If we consider a wave travelling in the opposite direction, so that χ(x, t) =

g(x+ vt), it is easy to see that such a disturbance also satisfies the wave equation.
The only difference between such a wave and one travelling from left to right
is in the sign of v, but whether we have x+ vt or x− vt as the variable in the
function does not affect the sign of ∂2χ/∂t2, since it involves only v2. It follows
that we have a solution for waves propagating in either direction with speed cs.

An extremely interesting question is that of superposition. Suppose one
solution of the wave equation has been found, say χ1. This means that the second
derivative of χ1 with respect to x is equal to 1/c2s times the second derivative
of χ1 with respect to t. Now any other solution χ2 has this same property. If we
superpose these two solutions, we have

χ(x, t) = χ1(x, t) + χ2(x, t), (47.17)

and we wish to verify that χ(x, t) is also a wave, i.e., that χ satisfies the wave
equation. We can easily prove this result, since we have

∂2χ

∂x2 = ∂2χ1

∂x2 + ∂2χ2

∂x2 (47.18)

and, in addition,
∂2χ

∂t2
= ∂2χ1

∂t2
+ ∂2χ2

∂t2
. (47.19)

It follows that ∂2χ/∂x2 = (1/c2s) ∂2χ/∂t2, so we have verified the principle of
superposition. The proof of the principle of superposition follows from the fact
that the wave equation is linear in χ.
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We can now expect that a plane light wave propagating in the x-direction,
polarized so that the electric field is in the y-direction, will satisfy the wave
equation

∂2Ey
∂x2 = 1

c2
∂2Ey
∂t2

, (47.20)

where c is the speed of light. This wave equation is one of the consequences of
Maxwell’s equations. The equations of electrodynamics will lead to the wave
equation for light just as the equations of mechanics lead to the wave equation
for sound.

47-5 The speed of sound

Our deduction of the wave equation for sound has given us a formula which
connects the wave speed with the rate of change of pressure with the density at
the normal pressure:

c2s =
(
dP

dρ

)
0
. (47.21)

In evaluating this rate of change, it is essential to know how the temperature
varies. In a sound wave, we would expect that in the region of compression the
temperature would be raised, and that in the region of rarefaction the temperature
would be lowered. Newton was the first to calculate the rate of change of pressure
with density, and he supposed that the temperature remained unchanged. He
argued that the heat was conducted from one region to the other so rapidly that
the temperature could not rise or fall. This argument gives the isothermal speed
of sound, and it is wrong. The correct deduction was given later by Laplace,
who put forward the opposite idea—that the pressure and temperature change
adiabatically in a sound wave. The heat flow from the compressed region to the
rarefied region is negligible so long as the wavelength is long compared with the
mean free path. Under this condition the slight amount of heat flow in a sound
wave does not affect the speed, although it gives a small absorption of the sound
energy. We can expect correctly that this absorption increases as the wavelength
approaches the mean free path, but these wavelengths are smaller by factors of
about a million than the wavelengths of audible sound.

The actual variation of pressure with density in a sound wave is the one that
allows no heat flow. This corresponds to the adiabatic variation, which we found
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to be PV γ = const, where V was the volume. Since the density ρ varies inversely
with V , the adiabatic connection between P and ρ is

P = const ργ , (47.22)

from which we get dP/dρ = γP/ρ. We then have for the speed of sound the
relation

c2s = γP

ρ
. (47.23)

We can also write c2s = γPV/ρV and make use of the relation PV = NkT .
Further, we see that ρV is the mass of gas, which can also be expressed as Nm,
or as µ per mole, where m is the mass of a molecule and µ is the molecular
weight. In this way we find that

c2s = γkT

m
= γRT

µ
, (47.24)

from which it is evident that the speed of sound depends only on the gas temper-
ature and not on the pressure or the density. We also have observed that

kT = 1
3m〈v

2〉, (47.25)

where 〈v2〉 is the mean square of the speed of the molecules. It follows that
c2s = (γ/3)〈v2〉, or

cs =
(
γ

3

)1/2
vav. (47.26)

This equation states that the speed of sound is some number which is roughly
1/(3)1/2 times some average speed, vav, of the molecules (the square root of the
mean square velocity). In other words, the speed of sound is of the same order of
magnitude as the speed of the molecules, and is actually somewhat less than this
average speed.

Of course we could expect such a result, because a disturbance like a change
in pressure is, after all, propagated by the motion of the molecules. However,
such an argument does not tell us the precise propagation speed; it could have
turned out that sound was carried primarily by the fastest molecules, or by the
slowest molecules. It is reasonable and satisfying that the speed of sound is
roughly 1

2 of the average molecular speed vav.
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48

Beats

48-1 Adding two waves

Some time ago we discussed in considerable detail the properties of light
waves and their interference—that is, the effects of the superposition of two waves
from different sources. In all these analyses we assumed that the frequencies
of the sources were all the same. In this chapter we shall discuss some of the
phenomena which result from the interference of two sources which have different
frequencies.

It is easy to guess what is going to happen. Proceeding in the same way as we
have done previously, suppose we have two equal oscillating sources of the same
frequency whose phases are so adjusted, say, that the signals arrive in phase at
some point P . At that point, if it is light, the light is very strong; if it is sound,
it is very loud; or if it is electrons, many of them arrive. On the other hand, if
the arriving signals were 180◦ out of phase, we would get no signal at P , because
the net amplitude there is then a minimum. Now suppose that someone twists
the “phase knob” of one of the sources and changes the phase at P back and
forth, say, first making it 0◦ and then 180◦, and so on. Of course, we would then
find variations in the net signal strength. Now we also see that if the phase of
one source is slowly changing relative to that of the other in a gradual, uniform
manner, starting at zero, going up to ten, twenty, thirty, forty degrees, and so
on, then what we would measure at P would be a series of strong and weak
“pulsations,” because when the phase shifts through 360◦ the amplitude returns
to a maximum. Of course, to say that one source is shifting its phase relative to
another at a uniform rate is the same as saying that the number of oscillations
per second is slightly different for the two.

So we know the answer: if we have two sources at slightly different frequencies
we should find, as a net result, an oscillation with a slowly pulsating intensity.
That is all there really is to the subject!
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cos 10πt

cos 8πt

Fig. 48-1. The superposition of two cosine waves with frequencies in
the ratio 8 : 10. The precise repetition of the pattern within each “beat”
is not typical of the general case.

It is very easy to formulate this result mathematically also. Suppose, for
example, that we have two waves, and that we do not worry for the moment
about all the spatial relations, but simply analyze what arrives at P . From one
source, let us say, we would have cosω1t, and from the other source, cosω2t,
where the two ω’s are not exactly the same. Of course the amplitudes may not
be the same, either, but we can solve the general problem later; let us first take
the case where the amplitudes are equal. Then the total amplitude at P is the
sum of these two cosines. If we plot the amplitudes of the waves against the time,
as in Fig. 48-1, we see that where the crests coincide we get a strong wave, and
where a trough and crest coincide we get practically zero, and then when the
crests coincide again we get a strong wave again.

Mathematically, we need only to add two cosines and rearrange the result
somehow. There exist a number of useful relations among cosines which are not
difficult to derive. Of course we know that

ei(a+b) = eiaeib, (48.1)

and that eia has a real part, cos a, and an imaginary part, sin a. If we take the
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real part of ei(a+b), we get cos (a+ b). If we multiply out:

eiaeib = (cos a+ i sin a)(cos b+ i sin b),

we get cos a cos b− sin a sin b, plus some imaginary parts. But we now need only
the real part, so we have

cos (a+ b) = cos a cos b− sin a sin b. (48.2)

Now if we change the sign of b, since the cosine does not change sign while the
sine does, the same equation, for negative b, is

cos (a− b) = cos a cos b+ sin a sin b. (48.3)

If we add these two equations together, we lose the sines and we learn that the
product of two cosines is half the cosine of the sum, plus half the cosine of the
difference:

cos a cos b = 1
2 cos (a+ b) + 1

2 cos (a− b). (48.4)

Now we can also reverse the formula and find a formula for cosα+ cosβ if we
simply let α = a+ b and β = a− b. That is, a = 1

2 (α+ β) and b = 1
2 (α− β), so

that
cosα+ cosβ = 2 cos 1

2 (α+ β) cos 1
2 (α− β). (48.5)

Now we can analyze our problem. The sum of cosω1t and cosω2t is

cosω1t+ cosω2t = 2 cos 1
2 (ω1 + ω2)t cos 1

2 (ω1 − ω2)t. (48.6)

Now let us suppose that the two frequencies are nearly the same, so that 1
2 (ω1+ω2)

is the average frequency, and is more or less the same as either. But ω1 − ω2
is much smaller than ω1 or ω2 because, as we suppose, ω1 and ω2 are nearly
equal. That means that we can represent the solution by saying that there is
a high-frequency cosine wave more or less like the ones we started with, but
that its “size” is slowly changing—its “size” is pulsating with a frequency which
appears to be 1

2 (ω1 − ω2). But is this the frequency at which the beats are
heard? Although (48.6) says that the amplitude goes as cos 1

2 (ω1 − ω2)t, what it
is really telling us is that the high-frequency oscillations are contained between
two opposed cosine curves (shown dotted in Fig. 48-1). On this basis one could
say that the amplitude varies at the frequency 1

2 (ω1 − ω2), but if we are talking
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about the intensity of the wave we must think of it as having twice this frequency.
That is, the modulation of the amplitude, in the sense of the strength of its
intensity, is at frequency ω1 − ω2, although the formula tells us that we multiply
by a cosine wave at half that frequency. The technical basis for the difference
is that the high frequency-wave has a little different phase relationship in the
second half-cycle.

Ignoring this small complication, we may conclude that if we add two waves of
frequency ω1 and ω2, we will get a net resulting wave of average frequency 1

2 (ω1 +
ω2) which oscillates in strength with a frequency ω1 − ω2.

If the two amplitudes are different, we can do it all over again by multiplying
the cosines by different amplitudes A1 and A2, and do a lot of mathematics,
rearranging, and so on, using equations like (48.2)–(48.5). However, there are
other, easier ways of doing the same analysis. For example, we know that it
is much easier to work with exponentials than with sines and cosines and that
we can represent A1 cosω1t as the real part of A1e

iω1t. The other wave would
similarly be the real part of A2e

iω2t. If we add the two, we get A1e
iω1t +A2e

iω2t.
If we then factor out the average frequency, we have

A1e
iω1t +A2e

iω2t = ei(ω1+ω2)t/2[A1e
i(ω1−ω2)t/2 +A2e

−i(ω1−ω2)t/2]. (48.7)

Again we have the high-frequency wave with a modulation at the lower frequency.

48-2 Beat notes and modulation

If we are now asked for the intensity of the wave of Eq. (48.7), we can either
take the absolute square of the left side, or of the right side. Let us take the left
side. The intensity then is

I = A2
1 +A2

2 + 2A1A2 cos (ω1 − ω2)t. (48.8)

We see that the intensity swells and falls at a frequency ω1−ω2, varying between
the limits (A1 +A2)2 and (A1 −A2)2. If A1 6= A2, the minimum intensity is not
zero.

One more way to represent this idea is by means of a drawing, like Fig. 48-2.
We draw a vector of length A1, rotating at a frequency ω1, to represent one of
the waves in the complex plane. We draw another vector of length A2, going
around at a frequency ω2, to represent the second wave. If the two frequencies
are exactly equal, their resultant is of fixed length as it keeps revolving, and we
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Fig. 48-2. The resultant of two complex vectors of equal frequency.
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Fig. 48-3. The resultant of two complex vectors of unequal frequency,
as seen in the rotating frame of reference of one vector. Nine successive
positions of the slowly rotating vector are shown.

get a definite, fixed intensity from the two. But if the frequencies are slightly
different, the two complex vectors go around at different speeds. Figure 48-3
shows what the situation looks like relative to the vector A1e

iω1t. We see that
A2 is turning slowly away from A1, and so the amplitude that we get by adding
the two is first strong, and then, as it opens out, when it gets to the 180◦ relative
position the resultant gets particularly weak, and so on. As the vectors go around,
the amplitude of the sum vector gets bigger and smaller, and the intensity thus
pulsates. It is a relatively simple idea, and there are many different ways of
representing the same thing.

The effect is very easy to observe experimentally. In the case of acoustics, we
may arrange two loudspeakers driven by two separate oscillators, one for each
loudspeaker, so that they each make a tone. We thus receive one note from one
source and a different note from the other source. If we make the frequencies
exactly the same, the resulting effect will have a definite strength at a given space
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location. If we then de-tune them a little bit, we hear some variations in the
intensity. The farther they are de-tuned, the more rapid are the variations of sound.
The ear has some trouble following variations more rapid than ten or so per second.

We may also see the effect on an oscilloscope which simply displays the sum
of the currents to the two speakers. If the frequency of pulsing is relatively low,
we simply see a sinusoidal wave train whose amplitude pulsates, but as we make
the pulsations more rapid we see the kind of wave shown in Fig. 48-1. As we go
to greater frequency differences, the “bumps” move closer together. Also, if the
amplitudes are not equal and we make one signal stronger than the other, then
we get a wave whose amplitude does not ever become zero, just as we expect.
Everything works the way it should, both acoustically and electrically.

The opposite phenomenon occurs too! In radio transmission using so-called
amplitude modulation (am), the sound is broadcast by the radio station as
follows: the radio transmitter has an ac electric oscillation which is at a very
high frequency, for example 800 kilocycles per second, in the broadcast band.
If this carrier signal is turned on, the radio station emits a wave which is of
uniform amplitude at 800,000 oscillations a second. The way the “information”
is transmitted, the useless kind of information about what kind of car to buy, is
that when somebody talks into a microphone the amplitude of the carrier signal
is changed in step with the vibrations of sound entering the microphone.

If we take as the simplest mathematical case the situation where a soprano
is singing a perfect note, with perfect sinusoidal oscillations of her vocal cords,
then we get a signal whose strength is alternating as shown in Fig. 48-4. The
audiofrequency alternation is then recovered in the receiver; we get rid of the
carrier wave and just look at the envelope which represents the oscillations of the
vocal cords, or the sound of the singer. The loudspeaker then makes corresponding
vibrations at the same frequency in the air, and the listener is then essentially

Fig. 48-4. A modulated carrier wave. In this schematic sketch,
ωc/ωm = 5. In an actual radiowave, ωc/ωm ∼ 100.
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unable to tell the difference, so they say. Because of a number of distortions and
other subtle effects, it is, in fact, possible to tell whether we are listening to a
radio or to a real soprano; otherwise the idea is as indicated above.

48-3 Side bands

Mathematically, the modulated wave described above would be expressed as

S = (1 + b cosωmt) cosωct, (48.9)

where ωc represents the frequency of the carrier and ωm is the frequency of the
audio tone. Again we use all those theorems about the cosines, or we can use eiθ;
it makes no difference—it is easier with eiθ, but it is the same thing. We then get

S = cosωct+ 1
2b cos (ωc + ωm)t+ 1

2b cos (ωc − ωm)t. (48.10)

So, from another point of view, we can say that the output wave of the system
consists of three waves added in superposition: first, the regular wave at the
frequency ωc, that is, at the carrier frequency, and then two new waves at two
new frequencies. One is the carrier frequency plus the modulation frequency, and
the other is the carrier frequency minus the modulation frequency. If, therefore,
we make some kind of plot of the intensity being generated by the generator as
a function of frequency, we would find a lot of intensity at the frequency of the
carrier, naturally, but when a singer started to sing, we would suddenly also find
intensity proportional to the strength of the singer, b2, at frequency ωc + ωm
and ωc − ωm, as shown in Fig. 48-5. These are called side bands; when there is
a modulated signal from the transmitter, there are side bands. If there is more
than one note at the same time, say ωm and ωm′ , there are two instruments

ω

I

ωc − ωm ωc ωc + ωm

Fig. 48-5. The frequency spectrum of a carrier wave ωc modulated
by a single cosine wave ωm.
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playing; or if there is any other complicated cosine wave, then, of course, we can
see from the mathematics that we get some more waves that correspond to the
frequencies ωc ± ωm′ .

Therefore, when there is a complicated modulation that can be represented as
the sum of many cosines,* we find that the actual transmitter is transmitting over
a range of frequencies, namely the carrier frequency plus or minus the maximum
frequency that the modulation signal contains.

Although at first we might believe that a radio transmitter transmits only
at the nominal frequency of the carrier, since there are big, superstable crystal
oscillators in there, and everything is adjusted to be at precisely 800 kilocycles,
the moment someone announces that they are at 800 kilocycles, he modulates
the 800 kilocycles, and so they are no longer precisely at 800 kilocycles! Suppose
that the amplifiers are so built that they are able to transmit over a good range
of the ear’s sensitivity (the ear can hear up to 20,000 cycles per second, but
usually radio transmitters and receivers do not work beyond 10,000, so we do
not hear the highest parts), then, when the man speaks, his voice may contain
frequencies ranging up, say, to 10,000 cycles, so the transmitter is transmitting
frequencies which may range from 790 to 810 kilocycles per second. Now if there
were another station at 795 kc/sec, there would be a lot of confusion. Also, if we
made our receiver so sensitive that it picked up only 800, and did not pick up the
10 kilocycles on either side, we would not hear what the man was saying, because
the information would be on these other frequencies! Therefore it is absolutely
essential to keep the stations a certain distance apart, so that their side bands
do not overlap and, also, the receiver must not be so selective that it does not
permit reception of the side bands as well as of the main nominal frequency. In
the case of sound, this problem does not really cause much trouble. We can hear
over a ±20 kc/sec range, and we have usually from 500 to 1500 kc/sec in the
broadcast band, so there is plenty of room for lots of stations.

The television problem is more difficult. As the electron beam goes across
the face of the picture tube, there are various little spots of light and dark. That

* A slight side remark: In what circumstances can a curve be represented as a sum of a lot
of cosines? Answer: In all ordinary circumstances, except for certain cases the mathematicians
can dream up. Of course, the curve must have only one value at a given point, and it must
not be a crazy curve which jumps an infinite number of times in an infinitesimal distance, or
something like that. But aside from such restrictions any reasonable curve (one that a singer is
going to be able to make by shaking her vocal cords) can always be compounded by adding
cosine waves together.
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“light” and “dark” is the “signal.” Now ordinarily the beam scans over the whole
picture, 500 lines, approximately, in a thirtieth of a second. Let us consider
that the resolution of the picture vertically and horizontally is more or less the
same, so that there are the same number of spots per inch along a scan line.
We want to be able to distinguish dark from light, dark from light, dark from
light, over, say, 500 lines. In order to be able to do this with cosine waves, the
shortest wavelength needed thus corresponds to a wavelength, from maximum
to maximum, of one 250th of the screen size. So we have 250× 500× 30 pieces
of information per second. The highest frequency that we are going to carry,
therefore, is close to 4 megacycles per second. Actually, to keep the television
stations apart, we have to use a little bit more than this, about 6 mc/sec; part
of it is used to carry the sound signal, and other information. So, television
channels are 6 megacycles per second wide. It certainly would not be possible
to transmit tv on an 800 kc/sec carrier, since we cannot modulate at a higher
frequency than the carrier.

At any rate, the television band starts at 54 megacycles. The first transmission
channel, which is channel 2 (!), has a frequency range from 54 to 60 mc/sec,
which is 6 mc/sec wide. “But,” one might say, “we have just proved that there
were side bands on both sides, and therefore it should be twice that wide.” It
turns out that the radio engineers are rather clever. If we analyze the modulation
signal using not just cosine terms, but cosine and sine terms, to allow for phase
differences, we then see that there is a definite, invariant relationship between
the side band on the high-frequency side and the side band on the low-frequency
side. What we mean is that there is no new information on that other side band.
So what is done is to suppress one side band, and the receiver is wired inside
such that the information which is missing is reconstituted by looking at the
single side band and the carrier. Single side-band transmission is a clever scheme
for decreasing the band widths needed to transmit information.

48-4 Localized wave trains

The next subject we shall discuss is the interference of waves in both space
and time. Suppose that we have two waves travelling in space. We know, of
course, that we can represent a wave travelling in space by ei(ωt−kx). This might
be, for example, the displacement in a sound wave. This is a solution of the
wave equation provided that ω2 = k2c2, where c is the speed of propagation of
the wave. In this case we can write it as e−ik(x−ct), which is of the general form
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f(x− ct). Therefore this must be a wave which is travelling at this velocity, ω/k,
and that is c and everything is all right.

Now we want to add two such waves together. Suppose we have a wave that is
travelling with one frequency, and another wave travelling with another frequency.
We leave to the reader to consider the case where the amplitudes are different; it
makes no real difference. Thus we want to add ei(ω1t−k1x) + ei(ω2t−k2x). We can
add these by the same kind of mathematics we used when we added signal waves.
Of course, if c is the same for both, this is easy, since it is the same as what we
did before:

eiω1(t−x/c) + eiω2(t−x/c) = eiω1t
′
+ eiω2t

′
, (48.11)

except that t′ = t− x/c is the variable instead of t. So we get the same kind of
modulations, naturally, but we see, of course, that those modulations are moving
along with the wave. In other words, if we added two waves, but these waves
were not just oscillating, but also moving in space, then the resultant wave would
move along also, at the same speed.

Now we would like to generalize this to the case of waves in which the
relationship between the frequency and the wave number k is not so simple.
Example: material having an index of refraction. We have already studied the
theory of the index of refraction in Chapter 31, where we found that we could
write k = nω/c, where n is the index of refraction. As an interesting example,
for x-rays we found that the index n is

n = 1− Nq2
e

2ε0mω2 . (48.12)

We actually derived a more complicated formula in Chapter 31, but this one is
as good as any, as an example.

Incidentally, we know that even when ω and k are not linearly proportional,
the ratio ω/k is certainly the speed of propagation for the particular frequency
and wave number. We call this ratio the phase velocity; it is the speed at which
the phase, or the nodes of a single wave, would move along:

vp = ω

k
. (48.13)

This phase velocity, for the case of x-rays in glass, is greater than the speed of
light in vacuum (since n in 48.12 is less than 1), and that is a bit bothersome,
because we do not think we can send signals faster than the speed of light!
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What we are going to discuss now is the interference of two waves in which ω
and k have a definite formula relating them. The above formula for n says that
k is given as a definite function of ω. To be specific, in this particular problem,
the formula for k in terms of ω is

k = ω

c
− a

ωc
, (48.14)

where a = Nq2
e/2ε0m, a constant. At any rate, for each frequency there is a

definite wave number, and we want to add two such waves together.
Let us do it just as we did in Eq. (48.7):

ei(ω1t−k1x) + ei(ω2t−k2x) = ei[(ω1+ω2)t−(k1+k2)x]/2

× {ei[(ω1−ω2)t−(k1−k2)x]/2 + e−i[(ω1−ω2)t−(k1−k2)x]/2}. (48.15)

So we have a modulated wave again, a wave which travels with the mean frequency
and the mean wave number, but whose strength is varying with a form which
depends on the difference frequency and the difference wave number.

Now let us take the case that the difference between the two waves is relatively
small. Let us suppose that we are adding two waves whose frequencies are nearly
equal; then (ω1 + ω2)/2 is practically the same as either one of the ω’s, and
similarly for (k1 + k2)/2. Thus the speed of the wave, the fast oscillations,
the nodes, is still essentially ω/k. But look, the speed of propagation of the
modulation is not the same! How much do we have to change x to account for a
certain amount of t? The speed of this modulation wave is the ratio

vM = ω1 − ω2

k1 − k2
. (48.16)

The speed of modulation is sometimes called the group velocity. If we take the
case that the difference in frequency is relatively small, and the difference in
wave number is then also relatively small, then this expression approaches, in
the limit,

vg = dω

dk
. (48.17)

In other words, for the slowest modulation, the slowest beats, there is a definite
speed at which they travel which is not the same as the phase speed of the
waves—what a mysterious thing!
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The group velocity is the derivative of ω with respect to k, and the phase
velocity is ω/k.

Let us see if we can understand why. Consider two waves, again of slightly
different wavelength, as in Fig. 48-1. They are out of phase, in phase, out of
phase, and so on. Now these waves represent, really, the waves in space travelling
with slightly different frequencies also. Now because the phase velocity, the
velocity of the nodes of these two waves, is not precisely the same, something
new happens. Suppose we ride along with one of the waves and look at the other
one; if they both went at the same speed, then the other wave would stay right
where it was relative to us, as we ride along on this crest. We ride on that crest
and right opposite us we see a crest; if the two velocities are equal the crests stay
on top of each other. But it is not so that the two velocities are really equal.
There is only a small difference in frequency and therefore only a small difference
in velocity, but because of that difference in velocity, as we ride along the other
wave moves slowly forward, say, or behind, relative to our wave. So as time goes
on, what happens to the node? If we move one wave train just a shade forward,
the node moves forward (or backward) a considerable distance. That is, the sum
of these two waves has an envelope, and as the waves travel along, the envelope
rides on them at a different speed. The group velocity is the speed at which
modulated signals would be transmitted.

If we made a signal, i.e., some kind of change in the wave that one could
recognize when he listened to it, a kind of modulation, then that modulation
would travel at the group velocity, provided that the modulations were relatively
slow. (When they are fast, it is much more difficult to analyze.)

Now we may show (at long last), that the speed of propagation of x-rays in a
block of carbon is not greater than the speed of light, although the phase velocity
is greater than the speed of light. In order to do that, we must find dω/dk, which
we get by differentiating (48.14): dk/dω = 1/c + a/ω2c. The group velocity,
therefore, is the reciprocal of this, namely,

vg = c

1 + a/ω2 , (48.18)

which is smaller than c! So although the phases can travel faster than the speed
of light, the modulation signals travel slower, and that is the resolution of the
apparent paradox! Of course, if we have the simple case that ω = kc, then dω/dk
is also c. So when all the phases have the same velocity, naturally the group has
the same velocity.
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48-5 Probability amplitudes for particles

Let us now consider one more example of the phase velocity which is extremely
interesting. It has to do with quantum mechanics. We know that the amplitude
to find a particle at a place can, in some circumstances, vary in space and time,
let us say in one dimension, in this manner:

ψ = Aei(ωt−kx), (48.19)

where ω is the frequency, which is related to the classical idea of the energy
through E = ~ω, and k is the wave number, which is related to the momentum
through p = ~k. We would say the particle had a definite momentum p if the
wave number were exactly k, that is, a perfect wave which goes on with the
same amplitude everywhere. Equation (48.19) gives the amplitude, and if we
take the absolute square, we get the relative probability for finding the particle
as a function of position and time. This is a constant, which means that the
probability is the same to find a particle anywhere. Now suppose, instead, that
we have a situation where we know that the particle is more likely to be at one
place than at another. We would represent such a situation by a wave which has
a maximum and dies out on either side (Fig. 48-6). (It is not quite the same as a
wave like (48.1) which has a series of maxima, but it is possible, by adding several
waves of nearly the same ω and k together, to get rid of all but one maximum.)

x

ψ(x)

Fig. 48-6. A localized wave train.

Now in those circumstances, since the square of (48.19) represents the chance
of finding a particle somewhere, we know that at a given instant the particle
is most likely to be near the center of the “lump,” where the amplitude of the
wave is maximum. If now we wait a few moments, the waves will move, and
after some time the “lump” will be somewhere else. If we knew that the particle
originally was situated somewhere, classically, we would expect that it would
later be elsewhere as a matter of fact, because it has a speed, after all, and a
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momentum. The quantum theory, then, will go into the correct classical theory
for the relationship of momentum, energy, and velocity only if the group velocity,
the velocity of the modulation, is equal to the velocity that we would obtain
classically for a particle of the same momentum.

It is now necessary to demonstrate that this is, or is not, the case. According
to the classical theory, the energy is related to the velocity through an equation
like

E = mc2√
1− v2/c2

. (48.20)

Similarly, the momentum is
p = mv√

1− v2/c2
. (48.21)

That is the classical theory, and as a consequence of the classical theory, by
eliminating v, we can show that

E2 − p2c2 = m2c4.

That is the four-dimensional grand result that we have talked and talked about,
that pµpµ = m2; that is the relation between energy and momentum in the
classical theory. Now that means, since these E’s and p’s are going to become
ω’s and k’s, by substitution of E = ~ω and p = ~k, that for quantum mechanics
it is necessary that

~2ω2

c2
− ~2k2 = m2c2. (48.22)

This, then, is the relationship between the frequency and the wave number of a
quantum-mechanical amplitude wave representing a particle of mass m. From
this equation we can deduce that ω is

ω = c
√
k2 +m2c2/~2.

The phase velocity, ω/k, is here again faster than the speed of light!
Now let us look at the group velocity. The group velocity should be dω/dk,

the speed at which the modulations move. We have to differentiate a square root,
which is not very difficult. The derivative is

dω

dk
= kc√

k2 +m2c2/~2
.
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Now the square root is, after all, ω/c, so we could write this as dω/dk = c2k/ω.
Further, k/ω is p/E, so

vg = c2p

E
.

But from (48.20) and (48.21), c2p/E = v, the velocity of the particle, according to
classical mechanics. So we see that whereas the fundamental quantum-mechanical
relationship E = ~ω and p = ~k, for the identification of ω and k with the classical
E and p, only produces the equation ω2−k2c2 = m2c4/~2, now we also understand
the relationships (48.20) and (48.21) which connected E and p to the velocity. Of
course the group velocity must be the velocity of the particle if the interpretation
is going to make any sense. If we think the particle is over here at one time,
and then ten minutes later we think it is over there, as the quantum mechanics
said, the distance traversed by the “lump,” divided by the time interval, must
be, classically, the velocity of the particle.

48-6 Waves in three dimensions

We shall now bring our discussion of waves to a close with a few general
remarks about the wave equation. These remarks are intended to give some
view of the future—not that we can understand everything exactly just now, but
rather to see what things are going to look like when we study waves a little
more. First of all, the wave equation for sound in one dimension was

∂2χ

∂x2 = 1
c2
∂2χ

∂t2
,

where c is the speed of whatever the wave is—in the case of sound, it is the sound
speed; in the case of light, it is the speed of light. We showed that for a sound
wave the displacements would propagate themselves at a certain speed. But
the excess pressure also propagates at a certain speed, and so does the excess
density. So we should expect that the pressure would satisfy the same equation,
as indeed it does. We shall leave it to the reader to prove that it does. Hint:
ρe is proportional to the rate of change of χ with respect to x. Therefore if we
differentiate the wave equation with respect to x, we will immediately discover
that ∂χ/∂x satisfies the same equation. That is to say, ρe satisfies the same
equation. But Pe is proportional to ρe, and therefore Pe does too. So the pressure,
the displacements, everything, satisfy the same wave equation.
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Usually one sees the wave equation for sound written in terms of pressure
instead of in terms of displacement, because the pressure is a scalar and has no
direction. But the displacement is a vector and has direction, and it is thus easier
to analyze the pressure.

The next matter we discuss has to do with the wave equation in three
dimensions. We know that the sound wave solution in one dimension is ei(ωt−kx),
with ω = kcs, but we also know that in three dimensions a wave would be
represented by ei(ωt−kxx−kyy−kzz), where, in this case, ω2 = k2cs, which is, of
course, (k2

x + k2
y + k2

z)c2s. Now what we want to do is to guess what the correct
wave equation in three dimensions is. Naturally, for the case of sound this can be
deduced by going through the same dynamic argument in three dimensions that
we made in one dimension. But we shall not do that; instead we just write down
what comes out: the equation for the pressure (or displacement, or anything) is

∂2Pe
∂x2 + ∂2Pe

∂y2 + ∂2Pe
∂z2 = 1

c2s

∂2Pe
∂t2

. (48.23)

That this is true can be verified by substituting in ei(ωt−k·r). Clearly, every time
we differentiate with respect to x, we multiply by −ikx. If we differentiate twice,
it is equivalent to multiplying by −k2

x, so the first term would become −k2
xPe,

for that wave. Similarly, the second term becomes −k2
yPe, and the third term

becomes −k2
zPe. On the right, we get −(ω2/c2s)Pe. Then, if we take away the Pe’s

and change the sign, we see that the relationship between k and ω is the one
that we want.

Working backwards again, we cannot resist writing down the grand equation
which corresponds to the dispersion equation (48.22) for quantum-mechanical
waves. If φ represents the amplitude for finding a particle at position x, y, z, at
the time t, then the great equation of quantum mechanics for free particles is
this:

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 −
1
c2
∂2φ

∂t2
= m2c2

~2 φ. (48.24)

First of all, the relativity character of this expression is suggested by the ap-
pearance of x, y, z and t in the nice combination relativity usually involves.
Second, it is a wave equation which, if we try a plane wave, would produce as
a consequence that −k2 + ω2/c2 = m2c2/~2, which is the right relationship for
quantum mechanics. There is still another great thing contained in the wave
equation: the fact that any superposition of waves is also a solution. So this
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equation contains all of the quantum mechanics and the relativity that we have
been discussing so far, at least so long as it deals with a single particle in empty
space with no external potentials or forces on it!

48-7 Normal modes

Now we turn to another example of the phenomenon of beats which is rather
curious and a little different. Imagine two equal pendulums which have, between
them, a rather weak spring connection. They are made as nearly as possible the
same length. If we pull one aside and let go, it moves back and forth, and it pulls
on the connecting spring as it moves back and forth, and so it really is a machine
for generating a force which has the natural frequency of the other pendulum.
Therefore, as a consequence of the theory of resonance, which we studied before,
when we put a force on something at just the right frequency, it will drive it. So,
sure enough, one pendulum moving back and forth drives the other. However, in
this circumstance there is a new thing happening, because the total energy of the
system is finite, so when one pendulum pours its energy into the other to drive
it, it finds itself gradually losing energy, until, if the timing is just right along
with the speed, it loses all its energy and is reduced to a stationary condition!
Then, of course, it is the other pendulum ball that has all the energy and the
first one which has none, and as time goes on we see that it works also in the
opposite direction, and that the energy is passed back into the first ball; this is a
very interesting and amusing phenomenon. We said, however, that this is related
to the theory of beats, and we must now explain how we can analyze this motion
from the point of view of the theory of beats.

We note that the motion of either of the two balls is an oscillation which has
an amplitude which changes cyclically. Therefore the motion of one of the balls is
presumably analyzable in a different way, in that it is the sum of two oscillations,
present at the same time but having two slightly different frequencies. Therefore
it ought to be possible to find two other motions in this system, and to claim
that what we saw was a superposition of the two solutions, because this is of
course a linear system. Indeed, it is easy to find two ways that we could start
the motion, each one of which is a perfect, single-frequency motion—absolutely
periodic. The motion that we started with before was not strictly periodic, since
it did not last; soon one ball was passing energy to the other and so changing its
amplitude; but there are ways of starting the motion so that nothing changes and,
of course, as soon as we see it we understand why. For example, if we made both
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pendulums go together, then, since they are of the same length and the spring is
not then doing anything, they will of course continue to swing like that for all
time, assuming no friction and that everything is perfect. On the other hand,
there is another possible motion which also has a definite frequency: that is, if
we move the pendulums oppositely, pulling them aside exactly equal distances,
then again they would be in absolutely periodic motion. We can appreciate that
the spring just adds a little to the restoring force that the gravity supplies, that
is all, and the system just keeps oscillating at a slightly higher frequency than
in the first case. Why higher? Because the spring is pulling, in addition to the
gravitation, and it makes the system a little “stiffer,” so that the frequency of
this motion is just a shade higher than that of the other.

Thus this system has two ways in which it can oscillate with unchanging
amplitude: it can either oscillate in a manner in which both pendulums go the
same way and oscillate all the time at one frequency, or they could go in opposite
directions at a slightly higher frequency.

Now the actual motion of the thing, because the system is linear, can be
represented as a superposition of the two. (The subject of this chapter, remember,
is the effects of adding two motions with different frequencies.) So think what
would happen if we combined these two solutions. If at t = 0 the two motions
are started with equal amplitude and in the same phase, the sum of the two
motions means that one ball, having been impressed one way by the first motion
and the other way by the second motion, is at zero, while the other ball, having
been displaced the same way in both motions, has a large amplitude. As time
goes on, however, the two basic motions proceed independently, so the phase
of one relative to the other is slowly shifting. That means, then, that after a
sufficiently long time, when the time is enough that one motion could have gone
“900 1

2” oscillations, while the other went only “900,” the relative phase would be
just reversed with respect to what it was before. That is, the large-amplitude
motion will have fallen to zero, and in the meantime, of course, the initially
motionless ball will have attained full strength!

So we see that we could analyze this complicated motion either by the idea
that there is a resonance and that one passes energy to the other, or else by the
superposition of two constant-amplitude motions at two different frequencies.
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49

Modes

49-1 The reflection of waves

This chapter will consider some of the remarkable phenomena which are a
result of confining waves in some finite region. We will be led first to discover a few
particular facts about vibrating strings, for example, and then the generalization
of these facts will give us a principle which is probably the most far-reaching
principle of mathematical physics.

Our first example of confining waves will be to confine a wave at one boundary.
Let us take the simple example of a one-dimensional wave on a string. One could
equally well consider sound in one dimension against a wall, or other situations
of a similar nature, but the example of a string will be sufficient for our present
purposes. Suppose that the string is held at one end, for example by fastening
it to an “infinitely solid” wall. This can be expressed mathematically by saying
that the displacement y of the string at the position x = 0 must be zero, because
the end does not move. Now if it were not for the wall, we know that the general
solution for the motion is the sum of two functions, F (x− ct) and G(x+ ct), the
first representing a wave travelling one way in the string, and the second a wave
travelling the other way in the string:

y = F (x− ct) +G(x+ ct) (49.1)

is the general solution for any string. But we have next to satisfy the condition
that the string does not move at one end. If we put x = 0 in Eq. (49.1) and
examine y for any value of t, we get y = F (−ct) +G(+ct). Now if this is to be
zero for all times, it means that the function G(ct) must be −F (−ct). In other
words, G of anything must be −F of minus that same thing. If this result is put
back into Eq. (49.1), we find that the solution for the problem is

y = F (x− ct)− F (−x− ct). (49.2)

It is easy to check that we will get y = 0 if we set x = 0.
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x

Fixed End
F (x + ct)

−F (−x + ct)

Fig. 49-1. Reflection of a wave as a superposition of two travelling waves.

Figure 49-1 shows a wave travelling in the negative x-direction near x = 0,
and a hypothetical wave travelling in the other direction reversed in sign and on
the other side of the origin. We say hypothetical because, of course, there is no
string to vibrate on that side of the origin. The total motion of the string is to be
regarded as the sum of these two waves in the region of positive x. As they reach
the origin, they will always cancel at x = 0, and finally the second (reflected)
wave will be the only one to exist for positive x and it will, of course, be travelling
in the opposite direction. These results are equivalent to the following statement:
if a wave reaches the clamped end of a string, it will be reflected with a change
in sign. Such a reflection can always be understood by imagining that what is
coming to the end of the string comes out upside down from behind the wall.
In short, if we assume that the string is infinite and that whenever we have a
wave going one way we have another one going the other way with the stated
symmetry, the displacement at x = 0 will always be zero and it would make no
difference if we clamped the string there.

The next point to be discussed is the reflection of a periodic wave. Suppose that
the wave represented by F (x− ct) is a sine wave and has been reflected; then the
reflected wave −F (−x−ct) is also a sine wave of the same frequency, but travelling
in the opposite direction. This situation can be most simply described by using
the complex function notation: F (x−ct) = eiω(t−x/c) and F (−x−ct) = eiω(t+x/c).
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It can be seen that if these are substituted in (49.2) and if x is set equal to 0,
then y = 0 for all values of t, so it satisfies the necessary condition. Because of
the properties of exponentials, this can be written in a simpler form:

y = eiωt(e−iωx/c − eiωx/c) = −2ieiωt sin (ωx/c). (49.3)

There is something interesting and new here, in that this solution tells us that
if we look at any fixed x, the string oscillates at frequency ω. No matter where
this point is, the frequency is the same! But there are some places, in particular
wherever sin (ωx/c) = 0, where there is no displacement at all. Furthermore, if
at any time t we take a snapshot of the vibrating string, the picture will be a
sine wave. However, the displacement of this sine wave will depend upon the
time t. From inspection of Eq. (49.3) we can see that the length of one cycle of
the sine wave is equal to the wavelength of either of the superimposed waves:

λ = 2πc/ω. (49.4)

The points where there is no motion satisfy the condition sin (ωx/c) = 0, which
means that (ωx/c) = 0, π, 2π, . . . , nπ, . . . These points are called nodes. Between
any two successive nodes, every point moves up and down sinusoidally, but the
pattern of motion stays fixed in space. This is the fundamental characteristic of
what we call a mode. If one can find a pattern of motion which has the property
that at any point the object moves perfectly sinusoidally, and that all points
move at the same frequency (though some will move more than others), then we
have what is called a mode.

49-2 Confined waves, with natural frequencies

The next interesting problem is to consider what happens if the string is
held at both ends, say at x = 0 and x = L. We can begin with the idea of the
reflection of waves, starting with some kind of a bump moving in one direction.
As time goes on, we would expect the bump to get near one end, and as time
goes still further it will become a kind of little wobble, because it is combining
with the reversed-image bump which is coming from the other side. Finally the
original bump will disappear and the image bump will move in the other direction
to repeat the process at the other end. This problem has an easy solution, but
an interesting question is whether we can have a sinusoidal motion (the solution
just described is periodic, but of course it is not sinusoidally periodic). Let us try
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to put a sinusoidally periodic wave on a string. If the string is tied at one end,
we know it must look like our earlier solution (49.3). If it is tied at the other
end, it has to look the same at the other end. So the only possibility for periodic
sinusoidal motion is that the sine wave must neatly fit into the string length. If
it does not fit into the string length, then it is not a natural frequency at which
the string can continue to oscillate. In short, if the string is started with a sine
wave shape that just fits in, then it will continue to keep that perfect shape of a
sine wave and will oscillate harmonically at some frequency.

Mathematically, we can write sin kx for the shape, where k is equal to the
factor (ω/c) in Eqs. (49.3) and (49.4), and this function will be zero at x = 0.
However, it must also be zero at the other end. The significance of this is that k
is no longer arbitrary, as was the case for the half-open string. With the string
closed at both ends, the only possibility is that sin (kL) = 0, because this is the
only condition that will keep both ends fixed. Now in order for a sine to be zero,
the angle must be either 0, π, 2π, or some other integral multiple of π. The
equation

kL = nπ (49.5)

will, therefore, give any one of the possible k’s, depending on what integer is put
in. For each of the k’s there is a certain frequency ω, which, according to (49.3),
is simply

ω = kc = nπc/L. (49.6)

So we have found the following: that a string has a property that it can have
sinusoidal motions, but only at certain frequencies. This is the most important
characteristic of confined waves. No matter how complicated the system is, it
always turns out that there are some patterns of motion which have a perfect
sinusoidal time dependence, but with frequencies that are a property of the
particular system and the nature of its boundaries. In the case of the string we
have many different possible frequencies, each one, by definition, corresponding
to a mode, because a mode is a pattern of motion which repeats itself sinusoidally.
Figure 49-2 shows the first three modes for a string. For the first mode the
wavelength λ is 2L. This can be seen if one continues the wave out to x = 2L
to obtain one complete cycle of the sine wave. The angular frequency ω is 2πc
divided by the wavelength, in general, and in this case, since λ is 2L, the frequency
is πc/L, which is in agreement with (49.6) with n = 1. Let us call the first mode
frequency ω1. Now the next mode shows two loops with one node in the middle.
For this mode the wavelength, then, is simply L. The corresponding value of k is
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Fig. 49-2. The first three modes of a vibrating string.

twice as great and the frequency is twice as large; it is 2ω1. For the third mode
it is 3ω1, and so on. So all the different frequencies of the string are multiples,
1, 2, 3, 4, and so on, of the lowest frequency ω1.

Returning now to the general motion of the string, it turns out that any
possible motion can always be analyzed by asserting that more than one mode
is operating at the same time. In fact, for general motion an infinite number of
modes must be excited at the same time. To get some idea of this, let us illustrate
what happens when there are two modes oscillating at the same time: Suppose
that we have the first mode oscillating as shown by the sequence of pictures in
Fig. 49-3, which illustrates the deflection of the string for equally spaced time
intervals extending through half a cycle of the lowest frequency.

Now, at the same time, we suppose that there is an oscillation of the second
mode also. Figure 49-3 also shows a sequence of pictures of this mode, which
at the start is 90◦ out of phase with the first mode. This means that at the
start it has no displacement, but the two halves of the string have oppositely
directed velocities. Now we recall a general principle relating to linear systems:
if there are any two solutions, then their sum is also a solution. Therefore a third
possible motion of the string would be a displacement obtained by adding the
two solutions shown in Fig. 49-3. The result, also shown in the figure, begins
to suggest the idea of a bump running back and forth between the ends of the
string, although with only two modes we cannot make a very good picture of it;
more modes are needed. This result is, in fact, a special case of a great principle

49-5



FIRST MODE

SECOND MODE

COMPOSITE WAVE

ω1t=0

ω1t=
π
4

ω1t=
π
2

ω1t=
3π
4

ω1t=π

Fig. 49-3. Two modes combine to give a travelling wave.

for linear systems:

Any motion at all can be analyzed by assuming that it is the sum of the
motions of all the different modes, combined with appropriate amplitudes and
phases.

The importance of the principle derives from the fact that each mode is very
simple—it is nothing but a sinusoidal motion in time. It is true that even the
general motion of a string is not really very complicated, but there are other
systems, for example the whipping of an airplane wing, in which the motion
is much more complicated. Nevertheless, even with an airplane wing, we find
there is a certain particular way of twisting which has one frequency and other
ways of twisting that have other frequencies. If these modes can be found, then
the complete motion can always be analyzed as a superposition of harmonic
oscillations (except when the whipping is of such degree that the system can no
longer be considered as linear).

49-3 Modes in two dimensions

The next example to be considered is the interesting situation of modes in
two dimensions. Up to this point we have talked only about one-dimensional
situations—a stretched string or sound waves in a tube. Ultimately we should
consider three dimensions, but an easier step will be that to two dimensions.
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Fig. 49-4. Vibrating rectangular plate.

Consider for definiteness a rectangular rubber drumhead which is confined so as to
have no displacement anywhere on the rectangular edge, and let the dimensions of
the rectangle be a and b, as shown in Fig. 49-4. Now the question is, what are the
characteristics of the possible motion? We can start with the same procedure used
for the string. If we had no confinement at all, we would expect waves travelling
along with some kind of wave motion. For example, (eiωt)(e−ikxx+ikyy) would
represent a sine wave travelling in some direction which depends on the relative
values of kx and ky. Now how can we make the x-axis, that is, the line y = 0, a
node? Using the ideas developed for the one-dimensional string, we can imagine
another wave represented by the complex function (−eiωt)(e−ikxx−ikyy). The
superposition of these waves will give zero displacement at y = 0 regardless of
the values of x and t. (Although these functions are defined for negative y where
there is no drumhead to vibrate, this can be ignored, since the displacement is
truly zero at y = 0.) In this case we can look upon the second function as the
reflected wave.

However, we want a nodal line at y = b as well as at y = 0. How do we
do that? The solution is related to something we did when studying reflection
from crystals. These waves which cancel each other at y = 0 will do the same
at y = b only if 2b sin θ is an integral multiple of λ, where θ is the angle shown in
Fig. 49-4:

mλ = 2b sin θ, m = 0, 1, 2, . . . (49.7)
Now in the same way we can make the y-axis a nodal line by adding two

more functions −(eiωt)(e+ikxx+ikyy) and +(eiωt)(e+ikxx−ikyy), each representing
a reflection of one of the other two waves from the x = 0 line. The condition for
a nodal line at x = a is similar to the one for y = b. It is that 2a cos θ must also
be an integral multiple of λ:

nλ = 2a cos θ. (49.8)
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Then the final result is that the waves bouncing about in the box produce a
standing-wave pattern, that is, a definite mode.

So we must satisfy the above two conditions if we are to have a mode. Let
us first find the wavelength. This can be obtained by eliminating the angle θ
from (49.7) and (49.8) to obtain the wavelength in terms of a, b, n and m.
The easiest way to do that is to divide both sides of the respective equations
by 2b and 2a, square them, and add the two equations together. The result
is sin2 θ + cos2 θ = 1 = (nλ/2a)2 + (mλ/2b)2, which can be solved for λ:

1
λ2 = n2

4a2 + m2

4b2 . (49.9)

In this way we have determined the wavelength in terms of two integers, and
from the wavelength we immediately get the frequency ω, because, as we know,
the frequency is equal to 2πc divided by the wavelength.

This result is interesting and important enough that we should deduce it by
a purely mathematical analysis instead of by an argument about the reflections.
Let us represent the vibration by a superposition of four waves chosen so that
the four lines x = 0, x = a, y = 0, and y = b are all nodes. In addition we shall
require that all waves have the same frequency, so that the resulting motion
will represent a mode. From our earlier treatment of light reflection we know
that (eiωt)(e−ikxx+ikyy) represents a wave travelling in the direction indicated in
Fig. 49-4. Equation (49.6), that is, k = ω/c, still holds, provided

k2 = k2
x + k2

y. (49.10)

It is clear from the figure that kx = k cos θ and ky = k sin θ.
Now our equation for the displacement, say φ, of the rectangular drumhead

takes on the grand form

φ = [eiωt][e(−ikxx+ikyy)−e(+ikxx+ikyy)−e(−ikxx−ikyy) +e(+ikxx−ikyy)]. (49.11a)

Although this looks rather a mess, the sum of these things now is not very hard.
The exponentials can be combined to give sine functions, so that the displacement
turns out to be

φ = [4 sin kxx sin kyy][eiωt]. (49.11b)

In other words, it is a sinusoidal oscillation, all right, with a pattern that is also
sinusoidal in both the x- and the y-direction. Our boundary conditions are of
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course satisfied at x = 0 and y = 0. We also want φ to be zero when x = a and
when y = b. Therefore we have to put in two other conditions: kxa must be an
integral multiple of π, and kyb must be another integral multiple of π. Since we
have seen that kx = k cos θ and ky = k sin θ, we immediately get equations (49.7)
and (49.8) and from these the final result (49.9).

Now let us take as an example a rectangle whose width is twice the height. If
we take a = 2b and use Eqs. (49.4) and (49.9), we can calculate the frequencies
of all of the modes:

ω2 =
(
πc

b

)2 4m2 + n2

4 . (49.12)

Table 49-1 lists a few of the simple modes and also shows their shape in a
qualitative way.

The most important point to be emphasized about this particular case is that
the frequencies are not multiples of each other, nor are they multiples of any
number. The idea that the natural frequencies are harmonically related is not
generally true. It is not true for a system of more than one dimension, nor is
it true for one-dimensional systems which are more complicated than a string
with uniform density and tension. A simple example of the latter is a hanging
chain in which the tension is higher at the top than at the bottom. If such a
chain is set in harmonic oscillation, there are various modes and frequencies, but
the frequencies are not simple multiples of any number, nor are the mode shapes
sinusoidal.

The modes of more complicated systems are still more elaborate. For example,
inside the mouth we have a cavity above the vocal cords, and by moving the
tongue and the lips, and so forth, we make an open-ended pipe or a closed-ended
pipe of different diameters and shapes; it is a terribly complicated resonator, but
it is a resonator nevertheless. Now when one talks with the vocal cords, they are
made to produce some kind of tone. The tone is rather complicated and there
are many sounds coming out, but the cavity of the mouth further modifies that
tone because of the various resonant frequencies of the cavity. For instance, a
singer can sing various vowels, a, or o, or oo, and so forth, at the same pitch, but
they sound different because the various harmonics are in resonance in this cavity
to different degrees. The very great importance of the resonant frequencies of a
cavity in modifying the voice sounds can be demonstrated by a simple experiment.
Since the speed of sound goes as the reciprocal of the square root of the density,
the speed of sound may be varied by using different gases. If one uses helium
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Table 49-1

Mode shape m n (ω/ω0)2 ω/ω0

+ 1 1 1.25 1.12

+ − 1 2 2.00 1.41

+ − + 1 3 3.25 1.80

−
+

2 1 4.25 2.06

+ −
− +

2 2 5.00 2.24

instead of air, so that the density is lower, the speed of sound is much higher,
and all the frequencies of a cavity will be raised. Consequently if one fills one’s
lungs with helium before speaking, the character of his voice will be drastically
altered even though the vocal cords may still be vibrating at the same frequency.

49-4 Coupled pendulums

Finally we should emphasize that not only do modes exist for complicated
continuous systems, but also for very simple mechanical systems. A good example
is the system of two coupled pendulums discussed in the preceding chapter. In
that chapter it was shown that the motion could be analyzed as a superposition
of two harmonic motions with different frequencies. So even this system can
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be analyzed in terms of harmonic motions or modes. The string has an infinite
number of modes and the two-dimensional surface also has an infinite number of
modes. In a sense it is a double infinity, if we know how to count infinities. But
a simple mechanical thing which has only two degrees of freedom, and requires
only two variables to describe it, has only two modes.

y x

Fig. 49-5. Two coupled pendulums.

Let us make a mathematical analysis of these two modes for the case where
the pendulums are of equal length. Let the displacement of one be x, and the
displacement of the other be y, as shown in Fig. 49-5. Without a spring, the force
on the first mass is proportional to the displacement of that mass, because of
gravity. There would be, if there were no spring, a certain natural frequency ω0
for this one alone. The equation of motion without a spring would be

m
d2x

dt2
= −mω2

0x. (49.13)

The other pendulum would swing in the same way if there were no spring. In
addition to the force of restoration due to gravitation, there is an additional force
pulling the first mass. That force depends upon the excess distance of x over y
and is proportional to that difference, so it is some constant which depends on
the geometry, times (x− y). The same force in reverse sense acts on the second
mass. The equations of motion that have to be solved are therefore

m
d2x

dt2
= −mω2

0x− k(x− y), m
d2y

dt2
= −mω2

0y − k(y − x). (49.14)

In order to find a motion in which both of the masses move at the same
frequency, we must determine how much each mass moves. In other words,
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pendulum x and pendulum y will oscillate at the same frequency, but their
amplitudes must have certain values, A and B, whose relation is fixed. Let us
try this solution:

x = Aeiωt, y = Beiωt. (49.15)
If these are substituted in Eqs. (49.14) and similar terms are collected, the results
are (

ω2 − ω2
0 −

k

m

)
A = − k

m
B,(

ω2 − ω2
0 −

k

m

)
B = − k

m
A.

(49.16)

The equations as written have had the common factor eiωt removed and have
been divided by m.

Now we see that we have two equations for what looks like two unknowns.
But there really are not two unknowns, because the whole size of the motion is
something that we cannot determine from these equations. The above equations
can determine only the ratio of A to B, but they must both give the same ratio.
The necessity for both of these equations to be consistent is a requirement that
the frequency be something very special.

In this particular case this can be worked out rather easily. If the two equations
are multiplied together, the result is(

ω2 − ω2
0 −

k

m

)2
AB =

(
k

m

)2
AB. (49.17)

The term AB can be removed from both sides unless A and B are zero, which
means there is no motion at all. If there is motion, then the other terms must
be equal, giving a quadratic equation to solve. The result is that there are two
possible frequencies:

ω2
1 = ω2

0 , ω2
2 = ω2

0 + 2k
m
. (49.18)

Furthermore, if these values of frequency are substituted back into Eq. (49.16),
we find that for the first frequency A = B, and for the second frequency A = −B.
These are the “mode shapes,” as can be readily verified by experiment.

It is clear that in the first mode, where A = B, the spring is never stretched,
and both masses oscillate at the frequency ω0, as though the spring were absent.
In the other solution, where A = −B, the spring contributes a restoring force
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and raises the frequency. A more interesting case results if the pendulums have
different lengths. The analysis is very similar to that given above, and is left as
an exercise for the reader.

49-5 Linear systems

Now let us summarize the ideas discussed above, which are all aspects of what
is probably the most general and wonderful principle of mathematical physics.
If we have a linear system whose character is independent of the time, then
the motion does not have to have any particular simplicity, and in fact may
be exceedingly complex, but there are very special motions, usually a series
of special motions, in which the whole pattern of motion varies exponentially
with the time. For the vibrating systems that we are talking about now, the
exponential is imaginary, and instead of saying “exponentially” we might prefer
to say “sinusoidally” with time. However, one can be more general and say that
the motions will vary exponentially with the time in very special modes, with very
special shapes. The most general motion of the system can always be represented
as a superposition of motions involving each of the different exponentials.

This is worth stating again for the case of sinusoidal motion: a linear system
need not be moving in a purely sinusoidal motion, i.e., at a definite single
frequency, but no matter how it does move, this motion can be represented as a
superposition of pure sinusoidal motions. The frequency of each of these motions
is a characteristic of the system, and the pattern or waveform of each motion is
also a characteristic of the system. The general motion in any such system can
be characterized by giving the strength and the phase of each of these modes,
and adding them all together. Another way of saying this is that any linear
vibrating system is equivalent to a set of independent harmonic oscillators, with
the natural frequencies corresponding to the modes.

We conclude this chapter by remarking on the connection of modes with
quantum mechanics. In quantum mechanics the vibrating object, or the thing
that varies in space, is the amplitude of a probability function that gives the
probability of finding an electron, or system of electrons, in a given configuration.
This amplitude function can vary in space and time, and satisfies, in fact, a
linear equation. But in quantum mechanics there is a transformation, in that
what we call frequency of the probability amplitude is equal, in the classical
idea, to energy. Therefore we can translate the principle stated above to this
case by taking the word frequency and replacing it with energy. It becomes
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something like this: a quantum-mechanical system, for example an atom, need
not have a definite energy, just as a simple mechanical system does not have to
have a definite frequency; but no matter how the system behaves, its behavior
can always be represented as a superposition of states of definite energy. The
energy of each state is a characteristic of the atom, and so is the pattern of
amplitude which determines the probability of finding particles in different places.
The general motion can be described by giving the amplitude of each of these
different energy states. This is the origin of energy levels in quantum mechanics.
Since quantum mechanics is represented by waves, in the circumstance in which
the electron does not have enough energy to ultimately escape from the proton,
they are confined waves. Like the confined waves of a string, there are definite
frequencies for the solution of the wave equation for quantum mechanics. The
quantum-mechanical interpretation is that these are definite energies. Therefore
a quantum-mechanical system, because it is represented by waves, can have
definite states of fixed energy; examples are the energy levels of various atoms.
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50

Harmonics

50-1 Musical tones

Pythagoras is said to have discovered the fact that two similar strings under
the same tension and differing only in length, when sounded together give an
effect that is pleasant to the ear if the lengths of the strings are in the ratio of
two small integers. If the lengths are as one is to two, they then correspond to
the octave in music. If the lengths are as two is to three, they correspond to the
interval between C and G, which is called a fifth. These intervals are generally
accepted as “pleasant” sounding chords.

Pythagoras was so impressed by this discovery that he made it the basis of a
school—Pythagoreans they were called—which held mystic beliefs in the great
powers of numbers. It was believed that something similar would be found out
about the planets—or “spheres.” We sometimes hear the expression: “the music
of the spheres.” The idea was that there would be some numerical relationships
between the orbits of the planets or between other things in nature. People
usually think that this is just a kind of superstition held by the Greeks. But
is it so different from our own scientific interest in quantitative relationships?
Pythagoras’ discovery was the first example, outside geometry, of any numerical
relationship in nature. It must have been very surprising to suddenly discover
that there was a fact of nature that involved a simple numerical relationship.
Simple measurements of lengths gave a prediction about something which had
no apparent connection to geometry—the production of pleasant sounds. This
discovery led to the extension that perhaps a good tool for understanding nature
would be arithmetic and mathematical analysis. The results of modern science
justify that point of view.

Pythagoras could only have made his discovery by making an experimental
observation. Yet this important aspect does not seem to have impressed him. If
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it had, physics might have had a much earlier start. (It is always easy to look
back at what someone else has done and to decide what he should have done!)

We might remark on a third aspect of this very interesting discovery: that
the discovery had to do with two notes that sound pleasant to the ear. We may
question whether we are any better off than Pythagoras in understanding why
only certain sounds are pleasant to our ear. The general theory of aesthetics is
probably no further advanced now than in the time of Pythagoras. In this one
discovery of the Greeks, there are the three aspects: experiment, mathematical
relationships, and aesthetics. Physics has made great progress on only the first
two parts. This chapter will deal with our present-day understanding of the
discovery of Pythagoras.

Among the sounds that we hear, there is one kind that we call noise. Noise
corresponds to a sort of irregular vibration of the eardrum that is produced by the
irregular vibration of some object in the neighborhood. If we make a diagram to
indicate the pressure of the air on the eardrum (and, therefore, the displacement
of the drum) as a function of time, the graph which corresponds to a noise might
look like that shown in Fig. 50-1(a). (Such a noise might correspond roughly
to the sound of a stamped foot.) The sound of music has a different character.
Music is characterized by the presence of more-or-less sustained tones—or musical

(a) A NOISE

TIME

PRESSURE

(b) A MUSICAL TONE

TIME

PRESSURE

T

Fig. 50-1. Pressure as a function of time for (a) a noise, and (b) a
musical tone.
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“notes.” (Musical instruments may make noises as well!) The tone may last for a
relatively short time, as when a key is pressed on a piano, or it may be sustained
almost indefinitely, as when a flute player holds a long note.

What is the special character of a musical note from the point of view of the
pressure in the air? A musical note differs from a noise in that there is a periodicity
in its graph. There is some uneven shape to the variation of the air pressure with
time, and the shape repeats itself over and over again. An example of a pressure-
time function that would correspond to a musical note is shown in Fig. 50-1(b).

Musicians will usually speak of a musical tone in terms of three characteristics:
the loudness, the pitch, and the “quality.” The “loudness” is found to correspond
to the magnitude of the pressure changes. The “pitch” corresponds to the period
of time for one repetition of the basic pressure function. (“Low” notes have
longer periods than “high” notes.) The “quality” of a tone has to do with the
differences we may still be able to hear between two notes of the same loudness
and pitch. An oboe, a violin, or a soprano are still distinguishable even when
they sound notes of the same pitch. The quality has to do with the structure of
the repeating pattern.

Let us consider, for a moment, the sound produced by a vibrating string. If
we pluck the string, by pulling it to one side and releasing it, the subsequent
motion will be determined by the motions of the waves we have produced. We
know that these waves will travel in both directions, and will be reflected at the
ends. They will slosh back and forth for a long time. No matter how complicated
the wave is, however, it will repeat itself. The period of repetition is just the
time T required for the wave to travel two full lengths of the string. For that
is just the time required for any wave, once started, to reflect off each end and
return to its starting position, and be proceeding in the original direction. The
time is the same for waves which start out in either direction. Each point on the
string will, then, return to its starting position after one period, and again one
period later, etc. The sound wave produced must also have the same repetition.
We see why a plucked string produces a musical tone.

50-2 The Fourier series

We have discussed in the preceding chapter another way of looking at the
motion of a vibrating system. We have seen that a string has various natural
modes of oscillation, and that any particular kind of vibration that may be set
up by the starting conditions can be thought of as a combination—in suitable
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proportions—of several of the natural modes, oscillating together. For a string we
found that the normal modes of oscillation had the frequencies ω0, 2ω0, 3ω0, . . .
The most general motion of a plucked string, therefore, is composed of the
sum of a sinusoidal oscillation at the fundamental frequency ω0, another at the
second harmonic frequency 2ω0, another at the third harmonic 3ω0, etc. Now the
fundamental mode repeats itself every period T1 = 2π/ω0. The second harmonic
mode repeats itself every T2 = 2π/2ω0. It also repeats itself every T1 = 2T2,
after two of its periods. Similarly, the third harmonic mode repeats itself after a
time T1 which is 3 of its periods. We see again why a plucked string repeats its
whole pattern with a periodicity of T1. It produces a musical tone.

We have been talking about the motion of the string. But the sound, which
is the motion of the air, is produced by the motion of the string, so its vibrations
too must be composed of the same harmonics—though we are no longer thinking
about the normal modes of the air. Also, the relative strength of the harmonics
may be different in the air than in the string, particularly if the string is “coupled”
to the air via a sounding board. The efficiency of the coupling to the air is
different for different harmonics.

If we let f(t) represent the air pressure as a function of time for a musical tone
[such as that in Fig. 50-1(b)], then we expect that f(t) can be written as the sum
of a number of simple harmonic functions of time—like cosωt—for each of the
various harmonic frequencies. If the period of the vibration is T , the fundamental
angular frequency will be ω = 2π/T , and the harmonics will be 2ω, 3ω, etc.

There is one slight complication. For each frequency we may expect that the
starting phases will not necessarily be the same for all frequencies. We should,
therefore, use functions like cos (ωt+ φ). It is, however, simpler to use instead
both the sine and cosine functions for each frequency. We recall that

cos (ωt+ φ) = (cosφ cosωt− sinφ sinωt) (50.1)

and since φ is a constant, any sinusoidal oscillation at the frequency ω can be
written as the sum of a term with cosωt and another term with sinωt.

We conclude, then, that any function f(t) that is periodic with the period T
can be written mathematically as

f(t) = a0

+ a1 cos ωt+ b1 sin ωt

+ a2 cos 2ωt+ b2 sin 2ωt
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+ a3 cos 3ωt+ b3 sin 3ωt
+ · · · + · · · (50.2)

where ω = 2π/T and the a’s and b’s are numerical constants which tell us how
much of each component oscillation is present in the oscillation f(t). We have
added the “zero-frequency” term a0 so that our formula will be completely general,
although it is usually zero for a musical tone. It represents a shift of the average
value (that is, the “zero” level) of the sound pressure. With it our formula can
take care of any case. The equality of Eq. (50.2) is represented schematically
in Fig. 50-2. (The amplitudes, an and bn, of the harmonic functions must be
suitably chosen. They are shown schematically and without any particular scale
in the figure.) The series (50.2) is called the Fourier series for f(t).
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a0
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a2

etc.

b1

b2

etc.

Fig. 50-2. Any periodic function f (t) is equal to a sum of simple
harmonic functions.

We have said that any periodic function can be made up in this way. We
should correct that and say that any sound wave, or any function we ordinarily
encounter in physics, can be made up of such a sum. The mathematicians can
invent functions which cannot be made up of simple harmonic functions—for
instance, a function that has a “reverse twist” so that it has two values for some
values of t! We need not worry about such functions here.
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50-3 Quality and consonance

Now we are able to describe what it is that determines the “quality” of a
musical tone. It is the relative amounts of the various harmonics—the values of
the a’s and b’s. A tone with only the first harmonic is a “pure” tone. A tone with
many strong harmonics is a “rich” tone. A violin produces a different proportion
of harmonics than does an oboe.

We can “manufacture” various musical tones if we connect several “oscillators”
to a loudspeaker. (An oscillator usually produces a nearly pure simple harmonic
function.) We should choose the frequencies of the oscillators to be ω, 2ω, 3ω, etc.
Then by adjusting the volume control on each oscillator, we can add in any
amount we wish of each harmonic—thereby producing tones of different quality.
An electric organ works in much this way. The “keys” select the frequency of
the fundamental oscillator and the “stops” are switches that control the relative
proportions of the harmonics. By throwing these switches, the organ can be
made to sound like a flute, or an oboe, or a violin.

It is interesting that to produce such “artificial” tones we need only one
oscillator for each frequency—we do not need separate oscillators for the sine
and cosine components. The ear is not very sensitive to the relative phases of
the harmonics. It pays attention mainly to the total of the sine and cosine parts
of each frequency. Our analysis is more accurate than is necessary to explain
the subjective aspect of music. The response of a microphone or other physical
instrument does depend on the phases, however, and our complete analysis may
be needed to treat such cases.

The “quality” of a spoken sound also determines the vowel sounds that we
recognize in speech. The shape of the mouth determines the frequencies of the
natural modes of vibration of the air in the mouth. Some of these modes are
set into vibration by the sound waves from the vocal chords. In this way, the
amplitudes of some of the harmonics of the sound are increased with respect
to others. When we change the shape of our mouth, harmonics of different
frequencies are given preference. These effects account for the difference between
an “e–e–e” sound and an “a–a–a” sound.

We all know that a particular vowel sound—say “e–e–e”—still “sounds like”
the same vowel whether we say (or sing) it at a high or a low pitch. From
the mechanism we describe, we would expect that particular frequencies are
emphasized when we shape our mouth for an “e–e–e,” and that they do not
change as we change the pitch of our voice. So the relation of the important
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harmonics to the fundamental—that is, the “quality”—changes as we change
pitch. Apparently the mechanism by which we recognize speech is not based on
specific harmonic relationships.

What should we say now about Pythagoras’ discovery? We understand that
two similar strings with lengths in the ratio of 2 to 3 will have fundamental
frequencies in the ratio 3 to 2. But why should they “sound pleasant” together?
Perhaps we should take our clue from the frequencies of the harmonics. The
second harmonic of the lower shorter string will have the same frequency as the
third harmonic of the longer string. (It is easy to show—or to believe—that a
plucked string produces strongly the several lowest harmonics.)

Perhaps we should make the following rules. Notes sound consonant when
they have harmonics with the same frequency. Notes sound dissonant if their
upper harmonics have frequencies near to each other but far enough apart that
there are rapid beats between the two. Why beats do not sound pleasant, and
why unison of the upper harmonics does sound pleasant, is something that we
do not know how to define or describe. We cannot say from this knowledge of
what sounds good, what ought, for example, to smell good. In other words, our
understanding of it is not anything more general than the statement that when
they are in unison they sound good. It does not permit us to deduce anything
more than the properties of concordance in music.

It is easy to check on the harmonic relationships we have described by some
simple experiments with a piano. Let us label the 3 successive C’s near the middle
of the keyboard by C, C′, and C′′, and the G’s just above by G, G′, and G′′.
Then the fundamentals will have relative frequencies as follows:

C –2 G – 3
C′ –4 G′ – 6
C′′–8 G′′–12

These harmonic relationships can be demonstrated in the following way: Suppose
we press C′ slowly—so that it does not sound but we cause the damper to be
lifted. If we then sound C, it will produce its own fundamental and some second
harmonic. The second harmonic will set the strings of C′ into vibration. If we
now release C (keeping C′ pressed) the damper will stop the vibration of the C
strings, and we can hear (softly) the note C′ as it dies away. In a similar way, the
third harmonic of C can cause a vibration of G′. Or the sixth of C (now getting
much weaker) can set up a vibration in the fundamental of G′′.
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A somewhat different result is obtained if we press G quietly and then sound
C′. The third harmonic of C′ will correspond to the fourth harmonic of G, so
only the fourth harmonic of G will be excited. We can hear (if we listen closely)
the sound of G′′, which is two octaves above the G we have pressed! It is easy to
think up many more combinations for this game.

We may remark in passing that the major scale can be defined just by the
condition that the three major chords (F–A–C); (C–E–G); and (G–B–D) each
represent tone sequences with the frequency ratio (4 : 5 : 6). These ratios—plus
the fact that an octave (C–C′, B–B′, etc.) has the ratio 1 : 2—determine the
whole scale for the “ideal” case, or for what is called “just intonation.” Keyboard
instruments like the piano are not usually tuned in this manner, but a little
“fudging” is done so that the frequencies are approximately correct for all possible
starting tones. For this tuning, which is called “tempered,” the octave (still 1 : 2)
is divided into 12 equal intervals for which the frequency ratio is (2)1/12. A fifth
no longer has the frequency ratio 3/2, but 27/12 = 1.499, which is apparently
close enough for most ears.

We have stated a rule for consonance in terms of the coincidence of harmonics.
Is this coincidence perhaps the reason that two notes are consonant? One worker
has claimed that two pure tones—tones carefully manufactured to be free of
harmonics—do not give the sensations of consonance or dissonance as the relative
frequencies are placed at or near the expected ratios. (Such experiments are
difficult because it is difficult to manufacture pure tones, for reasons that we
shall see later.) We cannot still be certain whether the ear is matching harmonics
or doing arithmetic when we decide that we like a sound.

50-4 The Fourier coefficients

Let us return now to the idea that any note—that is, a periodic sound—can
be represented by a suitable combination of harmonics. We would like to show
how we can find out what amount of each harmonic is required. It is, of course,
easy to compute f(t), using Eq. (50.2), if we are given all the coefficients a and b.
The question now is, if we are given f(t) how can we know what the coefficients
of the various harmonic terms should be? (It is easy to make a cake from a recipe;
but can we write down the recipe if we are given a cake?)

Fourier discovered that it was not really very difficult. The term a0 is certainly
easy. We have already said that it is just the average value of f(t) over one period
(from t = 0 to t = T ). We can easily see that this is indeed so. The average value
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of a sine or cosine function over one period is zero. Over two, or three, or any
whole number of periods, it is also zero. So the average value of all of the terms
on the right-hand side of Eq. (50.2) is zero, except for a0. (Recall that we must
choose ω = 2π/T .)

Now the average of a sum is the sum of the averages. So the average of f(t)
is just the average of a0. But a0 is a constant, so its average is just the same as
its value. Recalling the definition of an average, we have

a0 = 1
T

∫ T

0
f(t) dt. (50.3)

The other coefficients are only a little more difficult. To find them we can
use a trick discovered by Fourier. Suppose we multiply both sides of Eq. (50.2)
by some harmonic function—say by cos 7ωt. We have then

f(t) · cos 7ωt = a0 · cos 7ωt
+ a1 cos ωt · cos 7ωt+ b1 sin ωt · cos 7ωt
+ a2 cos 2ωt · cos 7ωt+ b2 sin 2ωt · cos 7ωt
+ · · · + · · ·
+ a7 cos 7ωt · cos 7ωt+ b7 sin 7ωt · cos 7ωt
+ · · · + · · · (50.4)

Now let us average both sides. The average of a0 cos 7ωt over the time T is
proportional to the average of a cosine over 7 whole periods. But that is just
zero. The average of almost all of the rest of the terms is also zero. Let us look
at the a1 term. We know, in general, that

cosA cosB = 1
2 cos (A+B) + 1

2 cos (A−B). (50.5)

The a1 term becomes
1
2a1(cos 8ωt+ cos 6ωt). (50.6)

We thus have two cosine terms, one with 8 full periods in T and the other with 6.
They both average to zero. The average of the a1 term is therefore zero.

For the a2 term, we would find a2 cos 9ωt and a2 cos 5ωt, each of which also
averages to zero. For the a9 term, we would find cos 16ωt and cos (−2ωt). But
cos (−2ωt) is the same as cos 2ωt, so both of these have zero averages. It is clear
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that all of the a terms will have a zero average except one. And that one is the
a7 term. For this one we have

1
2a7(cos 14ωt+ cos 0). (50.7)

The cosine of zero is one, and its average, of course, is one. So we have the result
that the average of all of the a terms of Eq. (50.4) equals 1

2a7.
The b terms are even easier. When we multiply by any cosine term like cosnωt,

we can show by the same method that all of the b terms have the average value
zero.

We see that Fourier’s “trick” has acted like a sieve. When we multiply
by cos 7ωt and average, all terms drop out except a7, and we find that

Average [f(t) · cos 7ωt] = a7/2, (50.8)
or

a7 = 2
T

∫ T

0
f(t) · cos 7ωt dt. (50.9)

We shall leave it for the reader to show that the coefficient b7 can be obtained
by multiplying Eq. (50.2) by sin 7ωt and averaging both sides. The result is

b7 = 2
T

∫ T

0
f(t) · sin 7ωt dt. (50.10)

Now what is true for 7 we expect is true for any integer. So we can summarize
our proof and result in the following more elegant mathematical form. If m and n
are integers other than zero, and if ω = 2π/T , then

I.
∫ T

0
sinnωt cosmωt dt = 0. (50.11)

II.
∫ T

0
cosnωt cosmωt dt =

III.
∫ T

0
sinnωt sinmωt dt =


{

0 if n 6= m.

T/2 if n = m.
(50.12)

IV. f(t) = a0 +
∞∑
n=1

an cosnωt+
∞∑
n=1

bn sinnωt. (50.13)
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V. a0 = 1
T

∫ T

0
f(t) dt. (50.14)

an = 2
T

∫ T

0
f(t) · cosnωt dt. (50.15)

bn = 2
T

∫ T

0
f(t) · sinnωt dt. (50.16)

In earlier chapters it was convenient to use the exponential notation for
representing simple harmonic motion. Instead of cosωt we used Re eiωt, the real
part of the exponential function. We have used cosine and sine functions in this
chapter because it made the derivations perhaps a little clearer. Our final result
of Eq. (50.13) can, however, be written in the compact form

f(t) = Re
∞∑
n=0

âne
inωt, (50.17)

where ân is the complex number an − ibn (with b0 = 0). If we wish to use the
same notation throughout, we can write also

ân = 2
T

∫ T

0
f(t)e−inωt dt (n ≥ 1). (50.18)

We now know how to “analyze” a periodic wave into its harmonic components.
The procedure is called Fourier analysis, and the separate terms are called
Fourier components. We have not shown, however, that once we find all of the
Fourier components and add them together, we do indeed get back our f(t). The
mathematicians have shown, for a wide class of functions, in fact for all that are
of interest to physicists, that if we can do the integrals we will get back f(t).
There is one minor exception. If the function f(t) is discontinuous, i.e., if it jumps
suddenly from one value to another, the Fourier sum will give a value at the
breakpoint halfway between the upper and lower values at the discontinuity. So
if we have the strange function f(t) = 0, 0 ≤ t < t0, and f(t) = 1 for t0 ≤ t ≤ T ,
the Fourier sum will give the right value everywhere except at t0, where it will
have the value 1

2 instead of 1. It is rather unphysical anyway to insist that a
function should be zero up to t0, but 1 right at t0. So perhaps we should make
the “rule” for physicists that any discontinuous function (which can only be a
simplification of a real physical function) should be defined with halfway values
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Fig. 50-3. Square-wave function.

at the discontinuities. Then any such function—with any finite number of such
jumps—as well as all other physically interesting functions, are given correctly
by the Fourier sum.

As an exercise, we suggest that the reader determine the Fourier series for the
function shown in Fig. 50-3. Since the function cannot be written in an explicit
algebraic form, you will not be able to do the integrals from zero to T in the
usual way. The integrals are easy, however, if we separate them into two parts:
the integral from zero to T/2 (over which f(t) = 1) and the integral from T/2
to T (over which f(t) = −1). The result should be

f(t) = 4
π

(sinωt+ 1
3 sin 3ωt+ 1

5 sin 5ωt+ · · · ), (50.19)

where ω = 2π/T . We thus find that our square wave (with the particular phase
chosen) has only odd harmonics, and their amplitudes are in inverse proportion
to their frequencies.

Let us check that Eq. (50.19) does indeed give us back f(t) for some value
of t. Let us choose t = T/4, or ωt = π/2. We have

f(t) = 4
π

(
sin π2 + 1

3 sin 3π
2 + 1

5 sin 5π
2 + · · ·

)
(50.20)

= 4
π

(
1− 1

3 + 1
5 −

1
7 ± · · ·

)
. (50.21)

The series* has the value π/4, and we find that f(t) = 1.

* The series can be evaluated in the following way. First we remark that
∫ x

0 [dx/(1 + x2)] =
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50-5 The energy theorem

The energy in a wave is proportional to the square of its amplitude. For a wave
of complex shape, the energy in one period will be proportional to

∫ T
0 f2(t) dt.

We can also relate this energy to the Fourier coefficients. We write∫ T

0
f2(t) dt =

∫ T

0

[
a0 +

∞∑
n=1

an cosnωt+
∞∑
n=1

bn sinnωt
]2
dt. (50.22)

When we expand the square of the bracketed term we will get all possible cross
terms, such as a5 cos 5ωt ·b7 cos 7ωt. We have shown above, however, [Eqs. (50.11)
and (50.12)] that the integrals of all such terms over one period is zero. We have
left only the square terms like a2

5 cos2 5ωt. The integral of any cosine squared or
sine squared over one period is equal to T/2, so we get∫ T

0
f2(t) dt = Ta2

0 + T

2 (a2
1 + a2

2 + · · ·+ b21 + b22 + · · · )

= Ta2
0 + T

2

∞∑
n=1

(a2
n + b2n). (50.23)

This equation is called the “energy theorem,” and says that the total energy
in a wave is just the sum of the energies in all of the Fourier components. For
example, applying this theorem to the series (50.19), since [f(t)]2 = 1 we get

T = T

2 ·
(

4
π

)2(
1 + 1

32 + 1
52 + 1

72 + · · ·
)
,

so we learn that the sum of the squares of the reciprocals of the odd integers is π2/8.
In a similar way, by first obtaining the Fourier series for the function f(t) =
(t−T/2)2 and using the energy theorem, we can prove that 1 + 1/24 + 1/34 + · · ·
is π4/90, a result we needed in Chapter 45.

50-6 Nonlinear responses

Finally, in the theory of harmonics there is an important phenomenon which
should be remarked upon because of its practical importance—that of nonlinear
tan−1 x. Second, we expand the integrand in a series 1/(1 + x2) = 1 − x2 + x4 − x6 ± · · · We
integrate the series term by term (from zero to x) to obtain tan−1 x = x−x3/3+x5/5−x7/7±· · ·
Setting x = 1, we have the stated result, since tan−1 1 = π/4.
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effects. In all the systems that we have been considering so far, we have supposed
that everything was linear, that the responses to forces, say the displacements or
the accelerations, were always proportional to the forces. Or that the currents in
the circuits were proportional to the voltages, and so on. We now wish to consider
cases where there is not a strict proportionality. We think, at the moment, of
some device in which the response, which we will call xout at the time t, is
determined by the input xin at the time t. For example, xin might be the force
and xout might be the displacement. Or xin might be the current and xout the
voltage. If the device is linear, we would have

xout(t) = Kxin(t), (50.24)

where K is a constant independent of t and of xin. Suppose, however, that the
device is nearly, but not exactly, linear, so that we can write

xout(t) = K[xin(t) + εx2
in(t)], (50.25)

where ε is small in comparison with unity. Such linear and nonlinear responses
are shown in the graphs of Fig. 50-4.

(a) LINEAR

xin

xout

xout = Kxin

(b) NONLINEAR

xin

xout

xout = K(xin + εx
2
in)

Fig. 50-4. Linear and nonlinear responses.

Nonlinear responses have several important practical consequences. We shall
discuss some of them now. First we consider what happens if we apply a pure
tone at the input. We let xin = cosωt. If we plot xout as a function of time we get
the solid curve shown in Fig. 50-5. The dashed curve gives, for comparison, the
response of a linear system. We see that the output is no longer a cosine function.
It is more peaked at the top and flatter at the bottom. We say that the output
is distorted. We know, however, that such a wave is no longer a pure tone, that
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t

xout

NONLINEAR

LINEAR

Fig. 50-5. The response of a nonlinear device to the input cosωt. A
linear response is shown for comparison.

it will have harmonics. We can find what the harmonics are. Using xin = cosωt
with Eq. (50.25), we have

xout(t) = K(cosωt+ ε cos2 ωt). (50.26)

From the equality cos2 θ = 1
2 (1 + cos 2θ), we have

xout(t) = K
(

cosωt+ ε

2 + ε

2 cos 2ωt
)
. (50.27)

The output has not only a component at the fundamental frequency, that was
present at the input, but also has some of its second harmonic. There has also
appeared at the output a constant term K(ε/2), which corresponds to the shift
of the average value, shown in Fig. 50-5. The process of producing a shift of the
average value is called rectification.

A nonlinear response will rectify and will produce harmonics of the frequencies
at its input. Although the nonlinearity we assumed produced only second
harmonics, nonlinearities of higher order—those which have terms like x3

in and x4
in,

for example—will produce harmonics higher than the second.
Another effect which results from a nonlinear response is modulation. If

our input function contains two (or more) pure tones, the output will have
not only their harmonics, but still other frequency components. Let xin =
A cosω1t+B cosω2t, where now ω1 and ω2 are not intended to be in a harmonic
relation. In addition to the linear term (which is K times the input) we shall
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have a component in the output given by

xout = Kε(A cosω1t+B cosω2t)2 (50.28)
= Kε(A2 cos2 ω1t+B2 cos2 ω2t+ 2AB cosω1t cosω2t). (50.29)

The first two terms in the parentheses of Eq. (50.29) are just those which gave
the constant terms and second harmonic terms we found above. The last term is
new.

We can look at this new “cross term” AB cosω1t cosω2t in two ways. First,
if the two frequencies are widely different (for example, if ω1 is much greater
than ω2) we can consider that the cross term represents a cosine oscillation of
varying amplitude. That is, we can think of the factors in this way:

AB cosω1t cosω2t = C(t) cosω1t, (50.30)
with

C(t) = AB cosω2t. (50.31)

We say that the amplitude of cosω1t is modulated with the frequency ω2.
Alternatively, we can write the cross term in another way:

AB cosω1t cosω2t = AB

2 [cos (ω1 + ω2)t+ cos (ω1 − ω2)t]. (50.32)

We would now say that two new components have been produced, one at the
sum frequency (ω1 + ω2), another at the difference frequency (ω1 − ω2).

We have two different, but equivalent, ways of looking at the same result.
In the special case that ω1 � ω2, we can relate these two different views by
remarking that since (ω1 + ω2) and (ω1 − ω2) are near to each other we would
expect to observe beats between them. But these beats have just the effect of
modulating the amplitude of the average frequency ω1 by one-half the difference
frequency 2ω2. We see, then, why the two descriptions are equivalent.

In summary, we have found that a nonlinear response produces several effects:
rectification, generation of harmonics, and modulation, or the generation of
components with sum and difference frequencies.

We should notice that all these effects (Eq. 50.29) are proportional not only to
the nonlinearity coefficient ε, but also to the product of two amplitudes—either
A2, B2, or AB. We expect these effects to be much more important for strong
signals than for weak ones.
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The effects we have been describing have many practical applications. First,
with regard to sound, it is believed that the ear is nonlinear. This is believed
to account for the fact that with loud sounds we have the sensation that we
hear harmonics and also sum and difference frequencies even if the sound waves
contain only pure tones.

The components which are used in sound-reproducing equipment—amplifiers,
loudspeakers, etc.—always have some nonlinearity. They produce distortions
in the sound—they generate harmonics, etc.—which were not present in the
original sound. These new components are heard by the ear and are apparently
objectionable. It is for this reason that “Hi-Fi” equipment is designed to be as
linear as possible. (Why the nonlinearities of the ear are not “objectionable” in
the same way, or how we even know that the nonlinearity is in the loudspeaker
rather than in the ear is not clear!)

Nonlinearities are quite necessary, and are, in fact, intentionally made large in
certain parts of radio transmitting and receiving equipment. In an am transmitter
the “voice” signal (with frequencies of some kilocycles per second) is combined
with the “carrier” signal (with a frequency of some megacycles per second) in a
nonlinear circuit called a modulator, to produce the modulated oscillation that
is transmitted. In the receiver, the components of the received signal are fed
to a nonlinear circuit which combines the sum and difference frequencies of the
modulated carrier to generate again the voice signal.

When we discussed the transmission of light, we assumed that the induced
oscillations of charges were proportional to the electric field of the light—that the
response was linear. That is indeed a very good approximation. It is only within
the last few years that light sources have been devised (lasers) which produce an
intensity of light strong enough so that nonlinear effects can be observed. It is
now possible to generate harmonics of light frequencies. When a strong red light
passes through a piece of glass, a little bit of blue light—second harmonic—comes
out!

50-17



51

Waves

51-1 Bow waves

Although we have finished our quantitative analyses of waves, this added
chapter on the subject is intended to give some appreciation, qualitatively, for
various phenomena that are associated with waves, which are too complicated
to analyze in detail here. Since we have been dealing with waves for several
chapters, more properly the subject might be called “some of the more complex
phenomena associated with waves.”

The first topic to be discussed concerns the effects that are produced by
a source of waves which is moving faster than the wave velocity, or the phase
velocity. Let us first consider waves that have a definite velocity, like sound and
light. If we have a source of sound which is moving faster than the speed of
sound, then something like this happens: Suppose at a given moment a sound
wave is generated from the source at point x1 in Fig. 51-1; then, in the next

x1 x2 x3 v

θr1 r2r3

Fig. 51-1. The shock wave front lies on a cone with apex at the
source and half-angle θ = sin−1 cw/v .
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moment, as the source moves to x2, the wave from x1 expands by a radius r1
smaller than the distance that the source moves; and, of course, another wave
starts from x2. When the sound source has moved still farther, to x3, and a wave
is starting there, the wave from x2 has now expanded to r2, and the one from x1
has expanded to r3. Of course the thing is done continuously, not in steps, and
therefore, we have a series of wave circles with a common tangent line which
goes through the center of the source. We see that instead of a source generating
spherical waves, as it would if it were standing still, it generates a wavefront
which forms a cone in three dimensions, or a pair of lines in two dimensions. The
angle of the cone is very easy to figure out. In a given amount of time the source
moves a distance, say x3 − x1, proportional to v, the velocity of the source. In
the meantime the wavefront has moved out a distance r3, proportional to cw, the
speed of the wave. Therefore it is clear that the half-angle of opening has a sine
equal to the ratio of the speed of the waves, divided by the speed of the source,
and this sine has a solution only if cw is less than v, or the speed of the object is
faster than the speed of the wave:

sin θ = cw
v
. (51.1)

Incidentally, although we implied that it is necessary to have a source of
sound, it turns out, very interestingly, that once the object is moving faster than
the speed of sound, it will make sound. That is, it is not necessary that it have a
certain tone vibrational character. Any object moving through a medium faster
than the speed at which the medium carries waves will generate waves on each
side, automatically, just from the motion itself. This is simple in the case of
sound, but it also occurs in the case of light. At first one might think nothing can
move faster than the speed of light. However, light in glass has a phase velocity
less than the speed of light in a vacuum, and it is possible to shoot a charged
particle of very high energy through a block of glass such that the particle velocity
is close to the speed of light in a vacuum, while the speed of light in the glass may
be only 2

3 the speed of light in the vacuum. A particle moving faster than the
speed of light in the medium will produce a conical wave of light with its apex at
the source, like the wave wake from a boat (which is from the same effect, as a
matter of fact). By measuring the cone angle, we can determine the speed of the
particle. This is used technically to determine the speeds of particles as one of
the methods of determining their energy in high-energy research. The direction
of the light is all that needs to be measured.

51-2



Fig. 51-2. A shock wave induced in a gas by a projectile moving faster
than sound.

This light is sometimes called Cherenkov radiation, because it was first ob-
served by Cherenkov. How intense this light should be was analyzed theoretically
by Frank and Tamm. The 1958 Nobel Prize for physics was awarded jointly to
all three for this work.

The corresponding circumstances in the case of sound are illustrated in
Fig. 51-2, which is a photograph of an object moving through a gas at a speed
greater than the speed of sound. The changes in pressure produce a change in
refractive index, and with a suitable optical system the edges of the waves can be
made visible. We see that the object moving faster than the speed of sound does,
indeed, produce a conical wave. But closer inspection reveals that the surface is
actually curved. It is straight asymptotically, but it is curved near the apex, and
we have now to discuss how that can be, which brings us to the second topic of
this chapter.

51-2 Shock waves

Wave speed often depends on the amplitude, and in the case of sound the speed
depends upon the amplitude in the following way. An object moving through the
air has to move the air out of the way, so the disturbance produced in this case
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is some kind of a pressure step, with the pressure higher behind the wavefront
than in the undisturbed region not yet reached by the wave (running along at the
normal speed, say). But the air that is left behind, after the wavefront passes, has
been compressed adiabatically, and therefore the temperature is increased. Now
the speed of sound increases with the temperature, so the speed in the region
behind the jump is faster than in the air in front. That means that any other
disturbance that is made behind this step, say by a continuous pushing of the body,
or any other disturbance, will ride faster than the front, the speed increasing with
higher pressure. Figure 51-3 illustrates the situation, with some little bumps of
pressure added to the pressure contour to aid visualization. We see that the higher
pressure regions at the rear overtake the front as time goes on, until ultimately
the compressional wave develops a sharp front. If the strength is very high,
“ultimately” means right away; if it as rather weak, it takes a long time; it may be,
in fact, that the sound is spreading and dying out before it has time to do this.

Distance
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t1 t2 > t1 t3 > t2a

b
c

a

b
c

a
b
c

Fig. 51-3. Wavefront “snapshots” at successive instants in time.

The sounds we make in talking are extremely weak relative to the atmospheric
pressure—only 1 part in a million or so. But for pressure changes of the order
of 1 atmosphere, the wave velocity increases by about twenty percent, and the
wavefront sharpens up at a correspondingly high rate. In nature nothing happens
infinitely rapidly, presumably, and what we call a “sharp” front has, actually,
a very slight thickness; it is not infinitely steep. The distances over which it is
varying are of the order of one mean free path, in which the theory of the wave
equation begins to fail because we did not consider the structure of the gas.

Now, referring again to Fig. 51-2, we see that the curvature can be understood
if we appreciate that the pressures near the apex are higher than they are farther
back, and so the angle θ is greater. That is, the curve is the result of the fact that
the speed depends upon the strength of the wave. Therefore the wave from an
atomic bomb explosion travels much faster than the speed of sound for a while,
until it gets so far out that it is weakened to such an extent from spreading that
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the pressure bump is small compared with atmospheric pressure. The speed of
the bump then approaches the speed of sound in the gas into which it is going.
(Incidentally, it always turns out that the speed of the shock is higher than the
speed of sound in the gas ahead, but is lower than the speed of sound in the gas
behind. That is, impulses from the back will arrive at the front, but the front
rides into the medium in which it is going faster than the normal speed of signals.
So one cannot tell, acoustically, that the shock is coming until it is too late. The
light from the bomb arrives first, but one cannot tell that the shock is coming
until it arrives, because there is no sound signal coming ahead of it.)

This is a very interesting phenomenon, this piling up of waves, and the main
point on which it depends is that after a wave is present, the speed of the resulting
wave should be higher. Another example of the same phenomenon is the following.
Consider water flowing in a long channel with finite width and finite depth. If
a piston, or a wall across the channel, is moved along the channel fast enough,
water piles up, like snow before a snow plow. Now suppose the situation is as
shown in Fig. 51-4, with a sudden step in water height somewhere in the channel.
It can be demonstrated that long waves in a channel travel faster in deeper water
than they do in shallow water. Therefore any new bumps or irregularities in
energy supplied by the piston run off forward and pile up at the front. Again,
ultimately what we have is just water with a sharp front, theoretically. However,

Figure 51-4
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as Fig. 51-4 shows, there are complications. Pictured is a wave coming up a
channel; the piston is at the far right end of the channel. At first it might have
appeared like a well-behaved wave, as one might expect, but farther along the
channel, it has become sharper and sharper until the events pictured occurred.
There is a terrible churning at the surface, as the pieces of water fall down, but
it is essentially a very sharp rise with no disturbance of the water ahead.

Actually water is much more complicated than sound. However, just to
illustrate a point, we will try to analyze the speed of such a so-called bore, in
a channel. The point here is not that this is of any basic importance for our
purposes—it is not a great generalization—it is only to illustrate that the laws of
mechanics that we already know are capable of explaining the phenomenon.

(a)

v

u

(b)

x1 x2 x3 x4

h2

h1

v ∆t u ∆t

Fig. 51-5. Two cross sections of a bore in a channel, with (b) at an
interval ∆t later than (a).

Imagine, for a moment, that the water does look something like Fig. 51-5(a),
that water at the higher height h2 is moving with a velocity v, and that the front
is moving with velocity u into undisturbed water which is at height h1. We would
like to determine the speed at which the front moves. In a time ∆t a vertical
plane initially at x1 moves a distance v∆t to x2, while the front of the wave has
moved u∆t.

Now we apply the equations of conservation of matter and momentum. First,
the former: Per unit channel width, we see that the amount h2v∆t of matter
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that has moved past x1 (shown shaded) is compensated by the other shaded
region, which amounts to (h2 − h1)u∆t. So, dividing by ∆t, vh2 = u(h2 − h1).
That does not yet give us enough, because although we have h2 and h1, we do
not know either u or v; we are trying to get both of them.

Now the next step is to use conservation of momentum. We have not discussed
the problems of water pressure, or anything in hydrodynamics, but it is clear
anyway that the pressure of water at a given depth is just enough to hold up
the column of water above it. Therefore the pressure of water is equal to ρ, the
density of water, times g, times the depth below the surface. Since the pressure
increases linearly with depth, the average pressure over the plane at x1, say,
is 1

2ρgh2, which is also the average force per unit width and per unit height
pushing the plane toward x2. So we multiply by another h2 to get the total force
which is acting on the water pushing from the left. On the other hand, there is
pressure in the water on the right also, exerting an opposite force on the region
in question, which is, by the same kind of analysis, 1

2ρgh
2
1. Now we must balance

the forces against the rate of change of the momentum. Thus we have to figure
out how much more momentum there is in situation (b) in Fig. 51-5 than there
was in (a). We see that the additional mass that has acquired the speed v is
just ρh2u∆t − ρh2v∆t (per unit width), and multiplying this by v gives the
additional momentum to be equated to the impulse F ∆t:

(ρh2u∆t− ρh2v∆t)v = ( 1
2ρgh

2
2 − 1

2ρgh
2
1) ∆t.

If we eliminate v from this equation by substituting vh2 = u(h2 − h1), already
found, and simplify, we get finally that u2 = gh2(h1 + h2)/2h1.

If the height difference is very small, so that h1 and h2 are nearly equal, this
says that the velocity =

√
gh. As we will see later, that is only true provided the

wavelength of the wave is longer than the depth of the channel.
We could also do the analogous thing for sound waves—including the conser-

vation of internal energy, not the conservation of entropy, because the shock is
irreversible. In fact, if one checks the conservation of energy in the bore problem,
one finds that energy is not conserved. If the height difference is small, it is
almost perfectly conserved, but as soon as the height difference becomes very
appreciable, there is a net loss of energy. This is manifested as the falling water
and the churning shown in Fig. 51-4.

In shock waves there is a corresponding apparent loss of energy, from the
point of view of adiabatic reactions. The energy in the sound wave, behind the
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shock, goes into heating of the gas after shock passes, corresponding to churning
of the water in the bore. In working it out, three equations for the sound case
turn out to be necessary for solution, and the temperature behind the shock is
not the same as the temperature in front, as we have seen.

If we try to make a bore that is upside down (h2 < h1), then we find that the
energy loss per second is negative. Since energy is not available from anywhere,
that bore cannot then maintain itself; it is unstable. If we were to start a wave
of that sort, it would flatten out, because the speed dependence on height that
resulted in sharpening in the case we discussed would now have the opposite
effect.

51-3 Waves in solids

The next kind of waves to be discussed are the more complicated waves in
solids. We have already discussed sound waves in gas and in liquid, and there
is a direct analog to a sound wave in a solid. If a sudden push is applied to
a solid, it is compressed. It resists the compression, and a wave analogous to
sound is started. However there is another kind of wave that is possible in a
solid, and which is not possible in a fluid. If a solid is distorted by pushing it
sideways (called shearing), then it tries to pull itself back. That is by definition
what distinguishes a solid from a liquid: if we distort a liquid (internally), hold
it a minute so that it calms down, and then let go, it will stay that way, but if
we take a solid and push it, like shearing a piece of “Jello,” and let it go, it flies
back and starts a shear wave, travelling in the same way the compressions travel.
In all cases, the shear wave speed is less than the speed of longitudinal waves.
The shear waves are somewhat more analogous, so far as their polarizations are
concerned, to light waves. Sound has no polarization, it is just a pressure wave.
Light has a characteristic orientation perpendicular to its direction of travel.

In a solid, the waves are of both kinds. First, there is a compression wave,
analogous to sound, that runs at one speed. If the solid is not crystalline, then a
shear wave polarized in any direction will propagate at a characteristic speed.
(Of course all solids are crystalline, but if we use a block made up of microcrystals
of all orientations, the crystal anisotropies average out.)

Another interesting question concerning sound waves is the following: What
happens if the wavelength in a solid gets shorter, and shorter, and shorter? How
short can it get? It is interesting that it cannot get any shorter than the space
between the atoms, because if there is supposed to be a wave in which one
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point goes up and the next down, etc., the shortest possible wavelength is clearly
the atom spacing. In terms of the modes of oscillation, we say that there are
longitudinal modes, and transverse modes, long wave modes, short wave modes.
As we consider wavelengths comparable to the spacing between the atoms, then
the speeds are no longer constant; there is a dispersion effect where the velocity
is not independent of the wave number. But, ultimately, the highest mode of
transverse waves would be that in which every atom is doing the opposite of
neighboring atoms.

Now from the point of view of atoms, the situation is like the two pendulums
that we were talking about, for which there are two modes, one in which they
both go together, and the other in which they go apart. It is possible to analyze
the solid waves another way, in terms of a system of coupled harmonic oscillators,
like an enormous number of pendulums, with the highest mode such that they
oscillate oppositely, and lower modes with different relationships of the timing.

The shortest wavelengths are so short that they are not usually available
technically. However they are of great interest because, in the theory of thermo-
dynamics of a solid, the heat properties of a solid, for example specific heats, can
be analyzed in terms of the properties of the short sound waves. Going to the
extreme of sound waves of ever shorter wavelength, one necessarily comes to the
individual motions of the atoms; the two things are the same ultimately.

A very interesting example of sound waves in a solid, both longitudinal and
transverse, are the waves that are in the solid earth. Who makes the noises we do
not know, but inside the earth, from time to time, there are earthquakes—some
rock slides past some other rock. That is like a little noise. So waves like sound
waves start out from such a source very much longer in wavelength than one
usually considers in sound waves, but still they are sound waves, and they travel
around in the earth. The earth is not homogeneous, however, and the properties,
of pressure, density, compressibility, and so on, change with depth, and therefore
the speed varies with depth. Then the waves do not travel in straight lines—there
is a kind of index of refraction and they go in curves. The longitudinal waves
and the transverse waves have different speeds, so there are different solutions for
the different speeds. Therefore if we place a seismograph at some location and
watch the way the thing jiggles after there has been an earthquake somewhere
else, then we do not just get an irregular jiggling. We might get a jiggling, and
a quieting down, and then another jiggling—what happens depends upon the
location. If it were close enough, we would first receive longitudinal waves from
the disturbance, and then, a few moments later, transverse waves, because they
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Fig. 51-6. Schematic of the earth, showing paths of longitudinal and
transverse sound waves.

travel more slowly. By measuring the time difference between the two, we can
tell how far away the earthquake is, if we know enough about the speeds and
composition of the interior regions involved.

An example of the behavior pattern of waves in the earth is shown in Fig. 51-6.
The two kinds of waves are represented by different symbols. If there were an
earthquake at the place marked “source,” the transverse waves and longitudinal
waves would arrive at different times at the station by the most direct routes,
and there would also be reflections at discontinuities, resulting in other paths
and times. It turns out that there is a core in the earth which does not carry
transverse waves. If the station is opposite the source, transverse waves still
arrive, but the timing is not right. What happens is that the transverse wave
comes to the core, and whenever the transverse waves come to a surface which
is oblique, between two materials, two new waves are generated, one transverse
and one longitudinal. But inside the core of the earth, a transverse wave is not
propagated (or at least, there is no evidence for it, only for a longitudinal wave);
it comes out again in both forms and comes to the station.

It is from the behavior of these earthquake waves that it has been determined
that transverse waves cannot be propagated within the inner circle. This means
that the center of the earth is liquid in the sense that it cannot propagate
transverse waves. The only way we know what is inside the earth is by studying
earthquakes. So, by using a large number of observations of many earthquakes
at different stations, the details have been worked out—the speed, the curves,
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etc. are all known. We know what the speeds of various kinds of waves are
at every depth. Knowing that, therefore, it is possible to figure out what the
normal modes of the earth are, because we know the speed of propagation of
sound waves—in other words, the elastic properties of both kinds of waves at
every depth. Suppose the earth were distorted into an ellipsoid and let go. It is
just a matter of superposing waves travelling around in the ellipsoid to determine
the period and shapes in a free mode. We have figured out that if there is a
disturbance, there are a lot of modes, from the lowest, which is ellipsoidal, to
higher modes with more structure.

The Chilean earthquake of May 1960 made a loud enough “noise” that the
signals went around the earth many times, and new seismographs of great delicacy
were made just in time to determine the frequencies of the fundamental modes
of the earth and to compare them with the values that were calculated from the
theory of sound with the known velocities, as measured from the independent
earthquakes. The result of this experiment is illustrated in Fig. 51-7, which is a
plot of the strength of the signal versus the frequency of its oscillation (a Fourier
analysis). Note that at certain particular frequencies there is much more being
received than at other frequencies; there are very definite maxima. These are
the natural frequencies of the earth, because these are the main frequencies at
which the earth can oscillate. In other words, if the entire motion of the earth is
made up of many different modes, we would expect to obtain, for each station,
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irregular bumpings which indicate a superposition of many frequencies. If we
analyze this in terms of frequencies, we should be able to find the characteristic
frequencies of the earth. The vertical dark lines in the figure are the calculated
frequencies, and we find a remarkable agreement, an agreement due to the fact
that the theory of sound is right for the inside of the earth.

FREQUENCY IN CYCLES PER MINUTE
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Fig. 51-8. High-resolution analysis of one of the seismograph records,
showing spectral doublet.

A very curious point is revealed in Fig. 51-8, which shows a very careful
measurement, with better resolution of the lowest mode, the ellipsoidal mode of
the earth. Note that it is not a single maximum, but a double one, 54.7 minutes
and 53.1 minutes—slightly different. The reason for the two different frequencies
was not known at the time that it was measured, although it may have been
found in the meantime. There are at least two possible explanations: One would
be that there may be asymmetry in the earth’s distribution, which would result
in two similar modes. Another possibility, which is even more interesting, is this:
Imagine the waves going around the earth in two directions from the source.
The speeds will not be equal because of effects of the rotation of the earth in
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the equations of motion, which have not been taken into account in making the
analysis. Motion in a rotating system is modified by Coriolis forces, and these
may cause the observed splitting.

Regarding the method by which these quakes have been analyzed, what is
obtained on the seismograph is not a curve of amplitude as a function of frequency,
but displacement as a function of time, always a very irregular tracing. To find
the amount of all the different sine waves for all different frequencies, we know
that the trick is to multiply the data by a sine wave of a given frequency and
integrate, i.e., average it, and in the average all other frequencies disappear. The
figures were thus plots of the integrals found when the data were multiplied by
sine waves of different cycles per minute, and integrated.

51-4 Surface waves

Now, the next waves of interest, that are easily seen by everyone and which
are usually used as an example of waves in elementary courses, are water waves.
As we shall soon see, they are the worst possible example, because they are in
no respects like sound and light; they have all the complications that waves can
have. Let us start with long water waves in deep water. If the ocean is considered
infinitely deep and a disturbance is made on the surface, waves are generated. All
kinds of irregular motions occur, but the sinusoidal type motion, with a very small
disturbance, might look like the common smooth ocean waves coming in toward
the shore. Now with such a wave, the water, of course, on the average, is standing
still, but the wave moves. What is the motion, is it transverse or longitudinal? It
must be neither; it is not transverse, nor is it longitudinal. Although the water
at a given place is alternately trough or hill, it cannot simply be moving up and
down, by the conservation of water. That is, if it goes down, where is the water
going to go? The water is essentially incompressible. The speed of compression
of waves—that is, sound in the water—is much, much higher, and we are not
considering that now. Since water is incompressible on this scale, as a hill comes
down the water must move away from the region. What actually happens is that
particles of water near the surface move approximately in circles. When smooth
swells are coming, a person floating in a tire can look at a nearby object and
see it going in a circle. So it is a mixture of longitudinal and transverse, to add
to the confusion. At greater depths in the water the motions are smaller circles
until, reasonably far down, there is nothing left of the motion (Fig. 51-9).
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Wave direction
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Fig. 51-9. Deep-water waves are formed from particles moving in
circles. Note the systematic phase shifts from circle to circle. How
would a floating object move?

To find the velocity of such waves is an interesting problem: it must be some
combination of the density of the water, the acceleration of gravity, which is the
restoring force that makes the waves, and possibly of the wavelength and of the
depth. If we take the case where the depth goes to infinity, it will no longer
depend on the depth. Whatever formula we are going to get for the velocity of
the phases of the waves must combine the various factors to make the proper
dimensions, and if we try this in various ways, we find only one way to combine
the density, g, and λ in order to make a velocity, namely,

√
gλ, which does not

include the density at all. Actually, this formula for the phase velocity is not
exactly right, but a complete analysis of the dynamics, which we will not go into,
shows that the factors are as we have them, except for

√
2π:

vphase =
√
gλ/2π (for gravity waves).

It is interesting that the long waves go faster than the short waves. Thus if a
boat makes waves far out, because there is some sports-car driver in a motorboat
travelling by, then after a while the waves come to shore with slow sloshings at
first and then more and more rapid sloshings, because the first waves that come
are long. The waves get shorter and shorter as the time goes on, because the
velocities go as the square root of the wavelength.

One may object, “That is not right, we must look at the group velocity in
order to figure it out!” Of course that is true. The formula for the phase velocity
does not tell us what is going to arrive first; what tells us is the group velocity.
So we have to work out the group velocity, and it is left as a problem to show
it to be one-half of the phase velocity, assuming that the velocity goes as the
square root of the wavelength, which is all that is needed. The group velocity
also goes as the square root of the wavelength. How can the group velocity go
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half as fast as the phase? If one looks at the bunch of waves that are made by a
boat travelling along, following a particular crest, he finds that it moves forward
in the group and gradually gets weaker and dies out in the front, and mystically
and mysteriously a weak one in the back works its way forward and gets stronger.
In short, the waves are moving through the group while the group is only moving
at half the speed that the waves are moving.

Fig. 51-10. The wake of a boat.

Because the group velocities and phase velocities are not equal, then the
waves that are produced by an object moving through are no longer simply a
cone, but it is much more interesting. We can see that in Fig. 51-10, which
shows the waves produced by an object moving through the water. Note that it
is quite different than what we would have for sound, in which the velocity is
independent of wavelength, where we would have wavefronts only along the cone,
travelling outward. Instead of that, we have waves in the back with fronts moving
parallel to the motion of the boat, and then we have little waves on the sides at
other angles. This entire pattern of waves can, with ingenuity, be analyzed by
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knowing only this: that the phase velocity is proportional to the square root of
the wavelength. The trick is that the pattern of waves is stationary relative to
the (constant-velocity) boat; any other pattern would get lost from the boat.

The water waves that we have been considering so far were long waves in
which the force of restoration is due to gravitation. But when waves get very
short in the water, the main restoring force is capillary attraction, i.e., the energy
of the surface, the surface tension. For surface tension waves, it turns out that
the phase velocity is

vphase =
√

2πT/λρ (for ripples),

where T is the surface tension and ρ the density. It is the exact opposite: the
phase velocity is higher, the shorter the wavelength, when the wavelength gets
very small. When we have both gravity and capillary action, as we always do,
we get the combination of these two together:

vphase =
√
Tk/ρ+ g/k,

where k = 2π/λ is the wave number. So the velocity of the waves of water is really
quite complicated. The phase velocity as a function of the wavelength is shown
in Fig. 51-11; for very short waves it is fast, for very long waves it is fast, and
there is a minimum speed at which the waves can go. The group velocity can be
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Fig. 51-11. Phase velocity vs. wavelength for water.
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calculated from the formula: it goes to 3
2 the phase velocity for ripples and 1

2 the
phase velocity for gravity waves. To the left of the minimum the group velocity
is higher than the phase velocity; to the right, the group velocity is less than the
phase velocity. There are a number of interesting phenomena associated with
these facts. In the first place, since the group velocity is increasing so rapidly as
the wavelength goes down, if we make a disturbance there will be a slowest end of
the disturbance going at the minimum speed with the corresponding wavelength,
and then in front, going at higher speed, will be a short wave and a very long
wave. It is very hard to see the long ones, but it is easy to see the short ones in
a water tank.

So we see that the ripples often used to illustrate simple waves are quite
interesting and complicated; they do not have a sharp wavefront at all, as is the
case for simple waves like sound and light. The main wave has little ripples which
run out ahead. A sharp disturbance in the water does not produce a sharp wave
because of the dispersion. First come the very fine waves. Incidentally, if an
object moves through the water at a certain speed, a rather complicated pattern
results, because all the different waves are going at different speeds. One can
demonstrate this with a tray of water and see that the fastest ones are the fine
capillary waves. There are slowest waves, of a certain kind, which go behind. By
inclining the bottom, one sees that where the depth is lower, the speed is lower.
If a wave comes in at an angle to the line of maximum slope, it bends and tends
to follow that line. In this way one can show various things, and we conclude
that waves are more complicated in water than in air.

The speed of long waves in water with circulational motions is slower when
the depth is less, faster in deep water. Thus as water comes toward a beach
where the depth lessens, the waves go slower. But where the water is deeper, the
waves are faster, so we get the effects of shock waves. This time, since the wave
is not so simple, the shocks are much more contorted, and the wave over-curves
itself, in the familiar way shown in Fig. 51-12. This is what happens when waves
come into the shore, and the real complexities in nature are well revealed in such
a circumstance. No one has yet been able to figure out what shape the wave
should take as it breaks. It is easy enough when the waves are small, but when
one gets large and breaks, then it is much more complicated.

An interesting feature about capillary waves can be seen in the disturbances
made by an object moving through the water. From the point of view of the
object itself, the water is flowing past, and the waves which ultimately sit around
it are always the waves which have just the right speed to stay still with the
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Fig. 51-12. A water wave.

object in the water. Similarly, around an object in a stream, with the stream
flowing by, the pattern of waves is stationary, and at just the right wavelengths to
go at the same speed as the water going by. But if the group velocity is less than
the phase velocity, then the disturbances propagate out backwards in the stream,
because the group velocity is not quite enough to keep up with the stream. If
the group velocity is faster than the velocity of the phase, the pattern of waves
will appear in front of the object. If one looks closely at objects in a stream, one
can see that there are little ripples in front and long “slurps” in the back.

Another interesting feature of this sort can be observed in pouring liquids. If
milk is poured fast enough out of a bottle, for instance, a large number of lines
can be seen crossing both ways in the outgoing stream. They are waves starting
from the disturbance at the edges and running out, much like the waves about an
object in a stream. There are effects from both sides which produce the crossed
pattern.

We have investigated some of the interesting properties of waves and the
various complications of dependence of phase velocity on wavelength, the speed of
the waves on depth, and so forth, that produce the really complex, and therefore
interesting, phenomena of nature.
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52

Symmetry in Physical Laws

52-1 Symmetry operations

The subject of this chapter is what we may call symmetry in physical laws. We
have already discussed certain features of symmetry in physical laws in connection
with vector analysis (Chapter 11), the theory of relativity (Chapter 16), and
rotation (Chapter 20).

Why should we be concerned with symmetry? In the first place, symmetry is
fascinating to the human mind, and everyone likes objects or patterns that are in
some way symmetrical. It is an interesting fact that nature often exhibits certain
kinds of symmetry in the objects we find in the world around us. Perhaps the
most symmetrical object imaginable is a sphere, and nature is full of spheres—
stars, planets, water droplets in clouds. The crystals found in rocks exhibit many
different kinds of symmetry, the study of which tells us some important things
about the structure of solids. Even the animal and vegetable worlds show some
degree of symmetry, although the symmetry of a flower or of a bee is not as
perfect or as fundamental as is that of a crystal.

But our main concern here is not with the fact that the objects of nature
are often symmetrical. Rather, we wish to examine some of the even more
remarkable symmetries of the universe—the symmetries that exist in the basic
laws themselves which govern the operation of the physical world.

First, what is symmetry? How can a physical law be “symmetrical”? The
problem of defining symmetry is an interesting one and we have already noted
that Weyl gave a good definition, the substance of which is that a thing is
symmetrical if there is something we can do to it so that after we have done it,
it looks the same as it did before. For example, a symmetrical vase is of such
a kind that if we reflect or turn it, it will look the same as it did before. The
question we wish to consider here is what we can do to physical phenomena, or
to a physical situation in an experiment, and yet leave the result the same. A
list of the known operations under which various physical phenomena remain
invariant is shown in Table 52-1.
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Table 52-1

Symmetry Operations

Translation in space
Translation in time
Rotation through a fixed angle
Uniform velocity in a straight

line (Lorentz transformation)
Reversal of time
Reflection of space
Interchange of identical atoms

or identical particles
Quantum-mechanical phase
Matter-antimatter (charge conjugation)

52-2 Symmetry in space and time

The first thing we might try to do, for example, is to translate the phenomenon
in space. If we do an experiment in a certain region, and then build another
apparatus at another place in space (or move the original one over) then, whatever
went on in one apparatus, in a certain order in time, will occur in the same way
if we have arranged the same condition, with all due attention to the restrictions
that we mentioned before: that all of those features of the environment which
make it not behave the same way have also been moved over—we talked about
how to define how much we should include in those circumstances, and we shall
not go into those details again.

In the same way, we also believe today that displacement in time will have
no effect on physical laws. (That is, as far as we know today—all of these things
are as far as we know today!) That means that if we build a certain apparatus
and start it at a certain time, say on Thursday at 10:00 a.m., and then build
the same apparatus and start it, say, three days later in the same condition, the
two apparatuses will go through the same motions in exactly the same way as
a function of time no matter what the starting time, provided again, of course,
that the relevant features of the environment are also modified appropriately in
time. That symmetry means, of course, that if one bought General Motors stock
three months ago, the same thing would happen to it if he bought it now!
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We have to watch out for geographical differences too, for there are, of course,
variations in the characteristics of the earth’s surface. So, for example, if we
measure the magnetic field in a certain region and move the apparatus to some
other region, it may not work in precisely the same way because the magnetic
field is different, but we say that is because the magnetic field is associated with
the earth. We can imagine that if we move the whole earth and the equipment,
it would make no difference in the operation of the apparatus.

Another thing that we discussed in considerable detail was rotation in space:
if we turn an apparatus at an angle it works just as well, provided we turn
everything else that is relevant along with it. In fact, we discussed the problem of
symmetry under rotation in space in some detail in Chapter 11, and we invented
a mathematical system called vector analysis to handle it as neatly as possible.

On a more advanced level we had another symmetry—the symmetry under
uniform velocity in a straight line. That is to say—a rather remarkable effect—
that if we have a piece of apparatus working a certain way and then take the
same apparatus and put it in a car, and move the whole car, plus all the relevant
surroundings, at a uniform velocity in a straight line, then so far as the phenomena
inside the car are concerned there is no difference: all the laws of physics appear
the same. We even know how to express this more technically, and that is that the
mathematical equations of the physical laws must be unchanged under a Lorentz
transformation. As a matter of fact, it was a study of the relativity problem that
concentrated physicists’ attention most sharply on symmetry in physical laws.

Now the above-mentioned symmetries have all been of a geometrical nature,
time and space being more or less the same, but there are other symmetries of a
different kind. For example, there is a symmetry which describes the fact that
we can replace one atom by another of the same kind; to put it differently, there
are atoms of the same kind. It is possible to find groups of atoms such that if we
change a pair around, it makes no difference—the atoms are identical. Whatever
one atom of oxygen of a certain type will do, another atom of oxygen of that type
will do. One may say, “That is ridiculous, that is the definition of equal types!”
That may be merely the definition, but then we still do not know whether there
are any “atoms of the same type”; the fact is that there are many, many atoms of
the same type. Thus it does mean something to say that it makes no difference
if we replace one atom by another of the same type. The so-called elementary
particles of which the atoms are made are also identical particles in the above
sense—all electrons are the same; all protons are the same; all positive pions are
the same; and so on.
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After such a long list of things that can be done without changing the
phenomena, one might think we could do practically anything; so let us give
some examples to the contrary, just to see the difference. Suppose that we ask:
“Are the physical laws symmetrical under a change of scale?” Suppose we build a
certain piece of apparatus, and then build another apparatus five times bigger in
every part, will it work exactly the same way? The answer is, in this case, no!
The wavelength of light emitted, for example, by the atoms inside one box of
sodium atoms and the wavelength of light emitted by a gas of sodium atoms five
times in volume is not five times longer, but is in fact exactly the same as the
other. So the ratio of the wavelength to the size of the emitter will change.

Another example: we see in the newspaper, every once in a while pictures
of a great cathedral made with little matchsticks—a tremendous work of art
by some retired fellow who keeps gluing matchsticks together. It is much more
elaborate and wonderful than any real cathedral. If we imagine that this wooden
cathedral were actually built on the scale of a real cathedral, we see where the
trouble is; it would not last—the whole thing would collapse because of the fact
that scaled-up matchsticks are just not strong enough. “Yes,” one might say,
“but we also know that when there is an influence from the outside, it also must
be changed in proportion!” We are talking about the ability of the object to
withstand gravitation. So what we should do is first to take the model cathedral
of real matchsticks and the real earth, and then we know it is stable. Then we
should take the larger cathedral and take a bigger earth. But then it is even
worse, because the gravitation is increased still more!

Today, of course, we understand the fact that phenomena depend on the
scale on the grounds that matter is atomic in nature, and certainly if we built an
apparatus that was so small there were only five atoms in it, it would clearly be
something we could not scale up and down arbitrarily. The scale of an individual
atom is not at all arbitrary—it is quite definite.

The fact that the laws of physics are not unchanged under a change of scale
was discovered by Galileo. He realized that the strengths of materials were not
in exactly the right proportion to their sizes, and he illustrated this property
that we were just discussing, about the cathedral of matchsticks, by drawing two
bones, the bone of one dog, in the right proportion for holding up his weight,
and the imaginary bone of a “super dog” that would be, say, ten or a hundred
times bigger—that bone was a big, solid thing with quite different proportions.
We do not know whether he ever carried the argument quite to the conclusion
that the laws of nature must have a definite scale, but he was so impressed with
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this discovery that he considered it to be as important as the discovery of the
laws of motion, because he published them both in the same volume, called “On
Two New Sciences.”

Another example in which the laws are not symmetrical, that we know quite
well, is this: a system in rotation at a uniform angular velocity does not give the
same apparent laws as one that is not rotating. If we make an experiment and then
put everything in a space ship and have the space ship spinning in empty space,
all alone at a constant angular velocity, the apparatus will not work the same way
because, as we know, things inside the equipment will be thrown to the outside,
and so on, by the centrifugal or Coriolis forces, etc. In fact, we can tell that the
earth is rotating by using a so-called Foucault pendulum, without looking outside.

Next we mention a very interesting symmetry which is obviously false, i.e.,
reversibility in time. The physical laws apparently cannot be reversible in time,
because, as we know, all obvious phenomena are irreversible on a large scale:
“The moving finger writes, and having writ, moves on.” So far as we can tell, this
irreversibility is due to the very large number of particles involved, and if we
could see the individual molecules, we would not be able to discern whether the
machinery was working forward or backwards. To make it more precise: we build
a small apparatus in which we know what all the atoms are doing, in which we
can watch them jiggling. Now we build another apparatus like it, but which starts
its motion in the final condition of the other one, with all the velocities precisely
reversed. It will then go through the same motions, but exactly in reverse. Putting
it another way: if we take a motion picture, with sufficient detail, of all the inner
works of a piece of material and shine it on a screen and run it backwards, no
physicist will be able to say, “That is against the laws of physics, that is doing
something wrong!” If we do not see all the details, of course, the situation will be
perfectly clear. If we see the egg splattering on the sidewalk and the shell cracking
open, and so on, then we will surely say, “That is irreversible, because if we run the
moving picture backwards the egg will all collect together and the shell will go back
together, and that is obviously ridiculous!” But if we look at the individual atoms
themselves, the laws look completely reversible. This is, of course, a much harder
discovery to have made, but apparently it is true that the fundamental physical
laws, on a microscopic and fundamental level, are completely reversible in time!

52-3 Symmetry and conservation laws
The symmetries of the physical laws are very interesting at this level, but they

turn out, in the end, to be even more interesting and exciting when we come to
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quantum mechanics. For a reason which we cannot make clear at the level of the
present discussion—a fact that most physicists still find somewhat staggering, a
most profound and beautiful thing, is that, in quantum mechanics, for each of the
rules of symmetry there is a corresponding conservation law; there is a definite
connection between the laws of conservation and the symmetries of physical laws.
We can only state this at present, without any attempt at explanation.

The fact, for example, that the laws are symmetrical for translation in space
when we add the principles of quantum mechanics, turns out to mean that
momentum is conserved.

That the laws are symmetrical under translation in time means, in quantum
mechanics, that energy is conserved.

Invariance under rotation through a fixed angle in space corresponds to the
conservation of angular momentum. These connections are very interesting and
beautiful things, among the most beautiful and profound things in physics.

Incidentally, there are a number of symmetries which appear in quantum
mechanics which have no classical analog, which have no method of description
in classical physics. One of these is as follows: If ψ is the amplitude for some
process or other, we know that the absolute square of ψ is the probability that
the process will occur. Now if someone else were to make his calculations, not
with this ψ, but with a ψ′ which differs merely by a change in phase (let ∆ be
some constant, and multiply ei∆ times the old ψ), the absolute square of ψ′,
which is the probability of the event, is then equal to the absolute square of ψ:

ψ′ = ψei∆; |ψ′|2 = |ψ|2. (52.1)

Therefore the physical laws are unchanged if the phase of the wave function
is shifted by an arbitrary constant. That is another symmetry. Physical laws
must be of such a nature that a shift in the quantum-mechanical phase makes
no difference. As we have just mentioned, in quantum mechanics there is a
conservation law for every symmetry. The conservation law which is connected
with the quantum-mechanical phase seems to be the conservation of electrical
charge. This is altogether a very interesting business!

52-4 Mirror reflections

Now the next question, which is going to concern us for most of the rest of
this chapter, is the question of symmetry under reflection in space. The problem
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is this: Are the physical laws symmetrical under reflection? We may put it this
way: Suppose we build a piece of equipment, let us say a clock, with lots of
wheels and hands and numbers; it ticks, it works, and it has things wound up
inside. We look at the clock in the mirror. How it looks in the mirror is not the
question. But let us actually build another clock which is exactly the same as
the first clock looks in the mirror—every time there is a screw with a right-hand
thread in one, we use a screw with a left-hand thread in the corresponding
place of the other; where one is marked “2” on the face, we mark a “ 2” on
the face of the other; each coiled spring is twisted one way in one clock and
the other way in the mirror-image clock; when we are all finished, we have two
clocks, both physical, which bear to each other the relation of an object and its
mirror image, although they are both actual, material objects, we emphasize.
Now the question is: If the two clocks are started in the same condition, the
springs wound to corresponding tightnesses, will the two clocks tick and go
around, forever after, as exact mirror images? (This is a physical question, not
a philosophical question.) Our intuition about the laws of physics would suggest
that they would.

We would suspect that, at least in the case of these clocks, reflection in space
is one of the symmetries of physical laws, that if we change everything from
“right” to “left” and leave it otherwise the same, we cannot tell the difference. Let
us, then, suppose for a moment that this is true. If it is true, then it would be
impossible to distinguish “right” and “left” by any physical phenomenon, just as
it is, for example, impossible to define a particular absolute velocity by a physical
phenomenon. So it should be impossible, by any physical phenomenon, to define
absolutely what we mean by “right” as opposed to “left,” because the physical
laws should be symmetrical.

Of course, the world does not have to be symmetrical. For example, using
what we may call “geography,” surely “right” can be defined. For instance, we
stand in New Orleans and look at Chicago, and Florida is to our right (when our
feet are on the ground!). So we can define “right” and “left” by geography. Of
course, the actual situation in any system does not have to have the symmetry
that we are talking about; it is a question of whether the laws are symmetrical—in
other words, whether it is against the physical laws to have a sphere like the
earth with “left-handed dirt” on it and a person like ourselves standing looking
at a city like Chicago from a place like New Orleans, but with everything the
other way around, so Florida is on the other side. It clearly seems not impossible,
not against the physical laws, to have everything changed left for right.
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Another point is that our definition of “right” should not depend on history.
An easy way to distinguish right from left is to go to a machine shop and pick
up a screw at random. The odds are it has a right-hand thread—not necessarily,
but it is much more likely to have a right-hand thread than a left-hand one. This
is a question of history or convention, or the way things happen to be, and is
again not a question of fundamental laws. As we can well appreciate, everyone
could have started out making left-handed screws!

So we must try to find some phenomenon in which “right hand” is involved
fundamentally. The next possibility we discuss is the fact that polarized light
rotates its plane of polarization as it goes through, say, sugar water. As we saw
in Chapter 33, it rotates, let us say, to the right in a certain sugar solution. That
is a way of defining “right-hand,” because we may dissolve some sugar in the
water and then the polarization goes to the right. But sugar has come from living
things, and if we try to make the sugar artificially, then we discover that it does
not rotate the plane of polarization! But if we then take that same sugar which
is made artificially and which does not rotate the plane of polarization, and put
bacteria in it (they eat some of the sugar) and then filter out the bacteria, we
find that we still have sugar left (almost half as much as we had before), and this
time it does rotate the plane of polarization, but the other way! It seems very
confusing, but is easily explained.

Take another example: One of the substances which is common to all living
creatures and that is fundamental to life is protein. Proteins consist of chains of
amino acids. Figure 52-1 shows a model of an amino acid that comes out of a
protein. This amino acid is called alanine, and the molecular arrangement would
look like that in Fig. 52-1(a) if it came out of a protein of a real living thing.
On the other hand, if we try to make alanine from carbon dioxide, ethane, and
ammonia (and we can make it, it is not a complicated molecule), we discover that
we are making equal amounts of this molecule and the one shown in Fig. 52-1(b)!
The first molecule, the one that comes from the living thing, is called L-alanine.
The other one, which is the same chemically, in that it has the same kinds of atoms
and the same connections of the atoms, is a “right-hand” molecule, compared
with the “left-hand” L-alanine, and it is called D-alanine. The interesting thing is
that when we make alanine at home in a laboratory from simple gases, we get an
equal mixture of both kinds. However, the only thing that life uses is L-alanine.
(This is not exactly true. Here and there in living creatures there is a special use
for D-alanine, but it is very rare. All proteins use L-alanine exclusively.) Now
if we make both kinds, and we feed the mixture to some animal which likes to
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Fig. 52-1. (a) L-alanine (left), and (b) D-alanine (right).

“eat,” or use up, alanine, it cannot use D-alanine, so it only uses the L-alanine;
that is what happened to our sugar—after the bacteria eat the sugar that works
well for them, only the “wrong” kind is left! (Left-handed sugar tastes sweet, but
not the same as right-handed sugar.)

So it looks as though the phenomena of life permit a distinction between
“right” and “left,” or chemistry permits a distinction, because the two molecules
are chemically different. But no, it does not! So far as physical measurements can
be made, such as of energy, the rates of chemical reactions, and so on, the two
kinds work exactly the same way if we make everything else in a mirror image
too. One molecule will rotate light to the right, and the other will rotate it to
the left in precisely the same amount, through the same amount of fluid. Thus,
so far as physics is concerned, these two amino acids are equally satisfactory. So
far as we understand things today, the fundamentals of the Schrödinger equation
have it that the two molecules should behave in exactly corresponding ways, so
that one is to the right as the other is to the left. Nevertheless, in life it is all
one way!

It is presumed that the reason for this is the following. Let us suppose, for
example, that life is somehow at one moment in a certain condition in which
all the proteins in some creatures have left-handed amino acids, and all the
enzymes are lopsided—every substance in the living creature is lopsided—it is
not symmetrical. So when the digestive enzymes try to change the chemicals in
the food from one kind to another, one kind of chemical “fits” into the enzyme,
but the other kind does not (like Cinderella and the slipper, except that it is a
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“left foot” that we are testing). So far as we know, in principle, we could build
a frog, for example, in which every molecule is reversed, everything is like the
“left-hand” mirror image of a real frog; we have a left-hand frog. This left-hand
frog would go on all right for a while, but he would find nothing to eat, because
if he swallows a fly, his enzymes are not built to digest it. The fly has the wrong
“kind” of amino acids (unless we give him a left-hand fly). So as far as we know,
the chemical and life processes would continue in the same manner if everything
were reversed.

If life is entirely a physical and chemical phenomenon, then we can understand
that the proteins are all made in the same corkscrew only from the idea that
at the very beginning some living molecules, by accident, got started and a few
won. Somewhere, once, one organic molecule was lopsided in a certain way,
and from this particular thing the “right” happened to evolve in our particular
geography; a particular historical accident was one-sided, and ever since then the
lopsidedness has propagated itself. Once having arrived at the state that it is in
now, of course, it will always continue—all the enzymes digest the right things,
manufacture the right things: when the carbon dioxide and the water vapor,
and so on, go in the plant leaves, the enzymes that make the sugars make them
lopsided because the enzymes are lopsided. If any new kind of virus or living
thing were to originate at a later time, it would survive only if it could “eat” the
kind of living matter already present. Thus it, too, must be of the same kind.

There is no conservation of the number of right-handed molecules. Once
started, we could keep increasing the number of right-handed molecules. So the
presumption is, then, that the phenomena in the case of life do not show a lack
of symmetry in physical laws, but do show, on the contrary, the universal nature
and the commonness of ultimate origin of all creatures on earth, in the sense
described above.

52-5 Polar and axial vectors

Now we go further. We observe that in physics there are a lot of other places
where we have “right” and “left” hand rules. As a matter of fact, when we
learned about vector analysis we learned about the right-hand rules we have to
use in order to get the angular momentum, torque, magnetic field, and so on, to
come out right. The force on a charge moving in a magnetic field, for example,
is F = qv ×B. In a given situation, in which we know F , v, and B, isn’t that
equation enough to define right-handedness? As a matter of fact, if we go back
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and look at where the vectors came from, we know that the “right-hand rule”
was merely a convention; it was a trick. The original quantities, like the angular
momenta and the angular velocities, and things of this kind, were not really
vectors at all! They are all somehow associated with a certain plane, and it is just
because there are three dimensions in space that we can associate the quantity
with a direction perpendicular to that plane. Of the two possible directions, we
chose the “right-hand” direction.

So if the laws of physics are symmetrical, we should find that if some demon
were to sneak into all the physics laboratories and replace the word “right” for
“left” in every book in which “right-hand rules” are given, and instead we were to
use all “left-hand rules,” uniformly, then it should make no difference whatever
in the physical laws.

r r

Fig. 52-2. A step in space and its mirror image.

Let us give an illustration. There are two kinds of vectors. There are “honest”
vectors, for example a step r in space. If in our apparatus there is a piece here
and something else there, then in a mirror apparatus there will be the image
piece and the image something else, and if we draw a vector from the “piece”
to the “something else,” one vector is the mirror image of the other (Fig. 52-2).
The vector arrow changes its head, just as the whole space turns inside out; such
a vector we call a polar vector.

But the other kind of vector, which has to do with rotations, is of a different
nature. For example, suppose that in three dimensions something is rotating
as shown in Fig. 52-3. Then if we look at it in a mirror, it will be rotating as
indicated, namely, as the mirror image of the original rotation. Now we have
agreed to represent the mirror rotation by the same rule, it is a “vector” which,
on reflection, does not change about as the polar vector does, but is reversed
relative to the polar vectors and to the geometry of the space; such a vector is
called an axial vector .

Now if the law of reflection symmetry is right in physics, then it must be true
that the equations must be so designed that if we change the sign of each axial
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Fig. 52-3. A rotating wheel and its mirror image. Note that the
angular velocity “vector” is not reversed in direction.

vector and each cross-product of vectors, which would be what corresponds to
reflection, nothing will happen. For instance, when we write a formula which says
that the angular momentum is L = r×p, that equation is all right, because if we
change to a left-hand coordinate system, we change the sign of L, but p and r
do not change; the cross-product sign is changed, since we must change from a
right-hand rule to a left-hand rule. As another example, we know that the force
on a charge moving in a magnetic field is F = qv ×B, but if we change from a
right- to a left-handed system, since F and v are known to be polar vectors the
sign change required by the cross-product must be cancelled by a sign change
in B, which means that B must be an axial vector. In other words, if we make
such a reflection, B must go to −B. So if we change our coordinates from right
to left, we must also change the poles of magnets from north to south.

Let us see how that works in an example. Suppose that we have two magnets,
as in Fig. 52-4. One is a magnet with the coils going around a certain way, and
with current in a given direction. The other magnet looks like the reflection
of the first magnet in a mirror—the coil will wind the other way, everything
that happens inside the coil is exactly reversed, and the current goes as shown.
Now, from the laws for the production of magnetic fields, which we do not know
yet officially, but which we most likely learned in high school, it turns out that

S N

a

B

a′
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Fig. 52-4. A magnet and its mirror image.
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the magnetic field is as shown in the figure. In one case the pole is a south
magnetic pole, while in the other magnet the current is going the other way and
the magnetic field is reversed—it is a north magnetic pole. So we see that when
we go from right to left we must indeed change from north to south!

Never mind changing north to south; these too are mere conventions. Let us
talk about phenomena. Suppose, now, that we have an electron moving through
one field, going into the page. Then, if we use the formula for the force, v ×B
(remember the charge is minus), we find that the electron will deviate in the
indicated direction according to the physical law. So the phenomenon is that we
have a coil with a current going in a specified sense and an electron curves in a
certain way—that is the physics—never mind how we label everything.

Now let us do the same experiment with a mirror: we send an electron through
in a corresponding direction and now the force is reversed, if we calculate it from
the same rule, and that is very good because the corresponding motions are then
mirror images!

52-6 Which hand is right?

So the fact of the matter is that in studying any phenomenon there are always
two right-hand rules, or an even number of them, and the net result is that the
phenomena always look symmetrical. In short, therefore, we cannot tell right
from left if we also are not able to tell north from south. However, it may seem
that we can tell the north pole of a magnet. The north pole of a compass needle,
for example, is one that points to the north. But of course that is again a local
property that has to do with geography of the earth; that is just like talking
about in which direction is Chicago, so it does not count. If we have seen compass
needles, we may have noticed that the north-seeking pole is a sort of bluish color.
But that is just due to the man who painted the magnet. These are all local,
conventional criteria.

However, if a magnet were to have the property that if we looked at it closely
enough we would see small hairs growing on its north pole but not on its south
pole, if that were the general rule, or if there were any unique way to distinguish
the north from the south pole of a magnet, then we could tell which of the two
cases we actually had, and that would be the end of the law of reflection symmetry.

To illustrate the whole problem still more clearly, imagine that we were talking
to a Martian, or someone very far away, by telephone. We are not allowed to
send him any actual samples to inspect; for instance, if we could send light, we
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could send him right-hand circularly polarized light and say, “That is right-hand
light—just watch the way it is going.” But we cannot give him anything, we can
only talk to him. He is far away, or in some strange location, and he cannot see
anything we can see. For instance, we cannot say, “Look at Ursa major; now
see how those stars are arranged. What we mean by ‘right’ is . . . ” We are only
allowed to telephone him.

Now we want to tell him all about us. Of course, first we start defining
numbers, and say, “Tick, tick, two, tick, tick, tick, three, . . . ,” so that gradually
he can understand a couple of words, and so on. After a while we may become
very familiar with this fellow, and he says, “What do you guys look like?” We start
to describe ourselves, and say, “Well, we are six feet tall.” He says, “Wait a minute,
what is six feet?” Is it possible to tell him what six feet is? Certainly! We say, “You
know about the diameter of hydrogen atoms—we are 17,000,000,000 hydrogen
atoms high!” That is possible because physical laws are not invariant under
change of scale, and therefore we can define an absolute length. And so we define
the size of the body, and tell him what the general shape is—it has prongs with
five bumps sticking out on the ends, and so on, and he follows us along, and we
finish describing how we look on the outside, presumably without encountering
any particular difficulties. He is even making a model of us as we go along. He
says, “My, you are certainly very handsome fellows; now what is on the inside?”
So we start to describe the various organs on the inside, and we come to the
heart, and we carefully describe the shape of it, and say, “Now put the heart on
the left side.” He says, “Duhhh—the left side?” Now our problem is to describe
to him which side the heart goes on without his ever seeing anything that we see,
and without our ever sending any sample to him of what we mean by “right”—no
standard right-handed object. Can we do it?

52-7 Parity is not conserved!

It turns out that the laws of gravitation, the laws of electricity and magnetism,
nuclear forces, all satisfy the principle of reflection symmetry, so these laws, or
anything derived from them, cannot be used. But associated with the many
particles that are found in nature there is a phenomenon called beta decay, or weak
decay. One of the examples of weak decay, in connection with a particle discovered
in about 1954, posed a strange puzzle. There was a certain charged particle
which disintegrated into three π-mesons, as shown schematically in Fig. 52-5.
This particle was called, for a while, a τ -meson. Now in Fig. 52-5 we also see
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Fig. 52-5. A schematic diagram of the disintegration of a τ+ and
a θ+ particle.

another particle which disintegrates into two mesons; one must be neutral, from
the conservation of charge. This particle was called a θ-meson. So on the one
hand we have a particle called a τ , which disintegrates into three π-mesons, and
a θ, which disintegrates into two π-mesons. Now it was soon discovered that
the τ and the θ are almost equal in mass; in fact, within the experimental error,
they are equal. Next, the length of time it took for them to disintegrate into
three π’s and two π’s was found to be almost exactly the same; they live the
same length of time. Next, whenever they were made, they were made in the
same proportions, say, 14 percent τ ’s to 86 percent θ’s.

Anyone in his right mind realizes immediately that they must be the same
particle, that we merely produce an object which has two different ways of
disintegrating—not two different particles. This object that can disintegrate in
two different ways has, therefore, the same lifetime and the same production
ratio (because this is simply the ratio of the odds with which it disintegrates into
these two kinds).

However, it was possible to prove (and we cannot here explain at all how),
from the principle of reflection symmetry in quantum mechanics, that it was
impossible to have these both come from the same particle—the same particle
could not disintegrate in both of these ways. The conservation law corresponding
to the principle of reflection symmetry is something which has no classical analog,
and so this kind of quantum-mechanical conservation was called the conservation
of parity. So, it was a result of the conservation of parity or, more precisely, from
the symmetry of the quantum-mechanical equations of the weak decays under
reflection, that the same particle could not go into both, so it must be some kind
of coincidence of masses, lifetimes, and so on. But the more it was studied, the
more remarkable the coincidence, and the suspicion gradually grew that possibly
the deep law of the reflection symmetry of nature may be false.

As a result of this apparent failure, the physicists Lee and Yang suggested
that other experiments be done in related decays to try to test whether the law
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was correct in other cases. The first such experiment was carried out by Miss Wu
from Columbia, and was done as follows. Using a very strong magnet at a very
low temperature, it turns out that a certain isotope of cobalt, which disintegrates
by emitting an electron, is magnetic, and if the temperature is low enough that
the thermal oscillations do not jiggle the atomic magnets about too much, they
line up in the magnetic field. So the cobalt atoms will all line up in this strong
field. They then disintegrate, emitting an electron, and it was discovered that
when the atoms were lined up in a field whose B vector points upward, most of
the electrons were emitted in a downward direction.

If one is not really “hep” to the world, such a remark does not sound like
anything of significance, but if one appreciates the problems and interesting
things in the world, then he sees that it is a most dramatic discovery: When
we put cobalt atoms in an extremely strong magnetic field, more disintegration
electrons go down than up. Therefore if we were to put it in a corresponding
experiment in a “mirror,” in which the cobalt atoms would be lined up in the
opposite direction, they would spit their electrons up, not down; the action is
unsymmetrical. The magnet has grown hairs! The south pole of a magnet is of
such a kind that the electrons in a β-disintegration tend to go away from it; that
distinguishes, in a physical way, the north pole from the south pole.

After this, a lot of other experiments were done: the disintegration of the π
into µ and ν; µ into an electron and two neutrinos; nowadays, the Λ into proton
and π; disintegration of Σ’s; and many other disintegrations. In fact, in almost
all cases where it could be expected, all have been found not to obey reflection
symmetry! Fundamentally, the law of reflection symmetry, at this level in physics,
is incorrect.

In short, we can tell a Martian where to put the heart: we say, “Listen, build
yourself a magnet, and put the coils in, and put the current on, and then take
some cobalt and lower the temperature. Arrange the experiment so the electrons
go from the foot to the head, then the direction in which the current goes through
the coils is the direction that goes in on what we call the right and comes out on
the left.” So it is possible to define right and left, now, by doing an experiment of
this kind.

There are a lot of other features that were predicted. For example, it turns out
that the spin, the angular momentum, of the cobalt nucleus before disintegration
is 5 units of ~, and after disintegration it is 4 units. The electron carries spin
angular momentum, and there is also a neutrino involved. It is easy to see from
this that the electron must carry its spin angular momentum aligned along its
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direction of motion, the neutrino likewise. So it looks as though the electron is
spinning to the left, and that was also checked. In fact, it was checked right here
at Caltech by Boehm and Wapstra, that the electrons spin mostly to the left.
(There were some other experiments that gave the opposite answer, but they
were wrong!)

The next problem, of course, was to find the law of the failure of parity
conservation. What is the rule that tells us how strong the failure is going to
be? The rule is this: it occurs only in these very slow reactions, called weak
decays, and when it occurs, the rule is that the particles which carry spin, like
the electron, neutrino, and so on, come out with a spin tending to the left. That
is a lopsided rule; it connects a polar vector velocity and an axial vector angular
momentum, and says that the angular momentum is more likely to be opposite
to the velocity than along it.

Now that is the rule, but today we do not really understand the whys and
wherefores of it. Why is this the right rule, what is the fundamental reason
for it, and how is it connected to anything else? At the moment we have been
so shocked by the fact that this thing is unsymmetrical that we have not been
able to recover enough to understand what it means with regard to all the other
rules. However, the subject is interesting, modern, and still unsolved, so it seems
appropriate that we discuss some of the questions associated with it.

52-8 Antimatter

The first thing to do when one of the symmetries is lost is to immediately go
back over the list of known or assumed symmetries and ask whether any of the
others are lost. Now we did not mention one operation on our list, which must
necessarily be questioned, and that is the relation between matter and antimatter.
Dirac predicted that in addition to electrons there must be another particle, called
the positron (discovered at Caltech by Anderson), that is necessarily related
to the electron. All the properties of these two particles obey certain rules of
correspondence: the energies are equal; the masses are equal; the charges are
reversed; but, more important than anything, the two of them, when they come
together, can annihilate each other and liberate their entire mass in the form
of energy, say γ-rays. The positron is called an antiparticle to the electron,
and these are the characteristics of a particle and its antiparticle. It was clear
from Dirac’s argument that all the rest of the particles in the world should also
have corresponding antiparticles. For instance, for the proton there should be an
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antiproton, which is now symbolized by a p. The p would have a negative electrical
charge and the same mass as a proton, and so on. The most important feature,
however, is that a proton and an antiproton coming together can annihilate each
other. The reason we emphasize this is that people do not understand it when we
say there is a neutron and also an antineutron, because they say, “A neutron is
neutral, so how can it have the opposite charge?” The rule of the “anti” is not just
that it has the opposite charge, it has a certain set of properties, the whole lot of
which are opposite. The antineutron is distinguished from the neutron in this way:
if we bring two neutrons together, they just stay as two neutrons, but if we bring
a neutron and an antineutron together, they annihilate each other with a great
explosion of energy being liberated, with various π-mesons, γ-rays, and whatnot.

Now if we have antineutrons, antiprotons, and antielectrons, we can make
antiatoms, in principle. They have not been made yet, but it is possible in
principle. For instance, a hydrogen atom has a proton in the center with an
electron going around outside. Now imagine that somewhere we can make an
antiproton with a positron going around, would it go around? Well, first of all,
the antiproton is electrically negative and the antielectron is electrically positive,
so they attract each other in a corresponding manner—the masses are all the
same; everything is the same. It is one of the principles of the symmetry of
physics, the equations seem to show, that if a clock, say, were made of matter on
one hand, and then we made the same clock of antimatter, it would run in this
way. (Of course, if we put the clocks together, they would annihilate each other,
but that is different.)

An immediate question then arises. We can build, out of matter, two clocks,
one which is “left-hand” and one which is “right-hand.” For example, we could
build a clock which is not built in a simple way, but has cobalt and magnets and
electron detectors which detect the presence of β-decay electrons and count them.
Each time one is counted, the second hand moves over. Then the mirror clock,
receiving fewer electrons, will not run at the same rate. So evidently we can
make two clocks such that the left-hand clock does not agree with the right-hand
one. Let us make, out of matter, a clock which we call the standard or right-hand
clock. Now let us make, also out of matter, a clock which we call the left-hand
clock. We have just discovered that, in general, these two will not run the same
way; prior to that famous physical discovery, it was thought that they would.
Now it was also supposed that matter and antimatter were equivalent. That is, if
we made an antimatter clock, right-hand, the same shape, then it would run the
same as the right-hand matter clock, and if we made the same clock to the left it
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would run the same. In other words, in the beginning it was believed that all
four of these clocks were the same; now of course we know that the right-hand
and left-hand matter are not the same. Presumably, therefore, the right-handed
antimatter and the left-handed antimatter are not the same.

So the obvious question is, which goes with which, if either? In other words,
does the right-handed matter behave the same way as the right-handed antimatter?
Or does the right-handed matter behave the same as the left-handed antimatter?
β-decay experiments, using positron decay instead of electron decay, indicate
that this is the interconnection: matter to the “right” works the same way as
antimatter to the “left.”

Therefore, at long last, it is really true that right and left symmetry is still
maintained! If we made a left-hand clock, but made it out of the other kind of
matter, antimatter instead of matter, it would run in the same way. So what has
happened is that instead of having two independent rules in our list of symmetries,
two of these rules go together to make a new rule, which says that matter to the
right is symmetrical with antimatter to the left.

So if our Martian is made of antimatter and we give him instructions to make
this “right” handed model like us, it will, of course, come out the other way
around. What would happen when, after much conversation back and forth, we
each have taught the other to make space ships and we meet halfway in empty
space? We have instructed each other on our traditions, and so forth, and the
two of us come rushing out to shake hands. Well, if he puts out his left hand,
watch out!

52-9 Broken symmetries
The next question is, what can we make out of laws which are nearly symmet-

rical? The marvelous thing about it all is that for such a wide range of important,
strong phenomena—nuclear forces, electrical phenomena, and even weak ones
like gravitation—over a tremendous range of physics, all the laws for these seem
to be symmetrical. On the other hand, this little extra piece says, “No, the laws
are not symmetrical!” How is it that nature can be almost symmetrical, but not
perfectly symmetrical? What shall we make of this? First, do we have any other
examples? The answer is, we do, in fact, have a few other examples. For instance,
the nuclear part of the force between proton and proton, between neutron and
neutron, and between neutron and proton, is all exactly the same—there is a
symmetry for nuclear forces, a new one, that we can interchange neutron and
proton—but it evidently is not a general symmetry, for the electrical repulsion
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between two protons at a distance does not exist for neutrons. So it is not
generally true that we can always replace a proton with a neutron, but only to a
good approximation. Why good? Because the nuclear forces are much stronger
than the electrical forces. So this is an “almost” symmetry also. So we do have
examples in other things.

We have, in our minds, a tendency to accept symmetry as some kind of
perfection. In fact it is like the old idea of the Greeks that circles were perfect,
and it was rather horrible to believe that the planetary orbits were not circles,
but only nearly circles. The difference between being a circle and being nearly
a circle is not a small difference, it is a fundamental change so far as the mind
is concerned. There is a sign of perfection and symmetry in a circle that is not
there the moment the circle is slightly off—that is the end of it—it is no longer
symmetrical. Then the question is why it is only nearly a circle—that is a much
more difficult question. The actual motion of the planets, in general, should
be ellipses, but during the ages, because of tidal forces, and so on, they have
been made almost symmetrical. Now the question is whether we have a similar
problem here. The problem from the point of view of the circles is if they were
perfect circles there would be nothing to explain, that is clearly simple. But since
they are only nearly circles, there is a lot to explain, and the result turned out
to be a big dynamical problem, and now our problem is to explain why they are
nearly symmetrical by looking at tidal forces and so on.

So our problem is to explain where symmetry comes from. Why is nature
so nearly symmetrical? No one has any idea why. The only thing we might
suggest is something like this: There is a gate in Japan, a gate in Neiko, which is
sometimes called by the Japanese the most beautiful gate in all Japan; it was
built in a time when there was great influence from Chinese art. This gate is
very elaborate, with lots of gables and beautiful carving and lots of columns and
dragon heads and princes carved into the pillars, and so on. But when one looks
closely he sees that in the elaborate and complex design along one of the pillars,
one of the small design elements is carved upside down; otherwise the thing is
completely symmetrical. If one asks why this is, the story is that it was carved
upside down so that the gods will not be jealous of the perfection of man. So
they purposely put an error in there, so that the gods would not be jealous and
get angry with human beings.

We might like to turn the idea around and think that the true explanation
of the near symmetry of nature is this: that God made the laws only nearly
symmetrical so that we should not be jealous of His perfection!
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of a rigid body, 20-14
of circularly polarized light, 33-18
Orbital ∼, III-19-2

Angular velocity, 18-4 f
Anomalous dispersion, 31-14
Anomalous refraction, 33-15 ff
Antiferromagnetic material, II-37-23
Antimatter, 52-17 ff, III-11-27
Antiparticle, 2-12, III-11-23
Antiproton, III-11-23
Argon, III-19-30 f
Associated Legendre functions, III-19-16
Astronomy and physics, 3-10 ff
Atom, 1-3 ff

Metastable ∼, 42-17
Rutherford-Bohr model, II-5-4
Stability of ∼s, II-5-4 f
Thomson model, II-5-4

Atomic clock, 5-10, III-9-22
Atomic currents, II-13-9 ff, II-32-6 f,

II-36-4 ff
Atomic hypothesis, 1-3 ff
Atomic orbits, II-1-15
Atomic particles, 2-12 ff
Atomic polarizability, II-32-3
Atomic processes, 1-8 ff

and parity conservation, III-18-5
Attenuation, 31-15
Avogadro’s number, 41-18, II-8-9
Axial vector, 20-6, 52-10 ff, 52-17

B
Bar (unit), 47-7
Barkhausen effect, II-37-19
Baryons, III-11-23
Base states, III-5-13 ff, III-12-1 ff
of the world, III-8-8 ff

Battery, II-22-13
Benzene molecule, III-10-17 ff, III-15-11 ff
Bernoulli’s theorem, II-40-10 ff
Bessel function, II-23-11, II-23-14,

II-23-19, II-24-7
Betatron, II-17-8 f, II-29-15
Binocular vision, 36-6, 36-8 f
Biology and physics, 3-3 ff
Biot-Savart law, II-14-18 f, II-21-13
Birefringence, 33-4 ff, 33-16
Birefringent material, 33-16 ff, II-33-6,

II-39-14
Blackbody radiation, 41-5 ff
Blackbody spectrum, III-4-15 ff
Bohr magneton, II-34-19, II-35-18, II-37-2,

III-12-19, III-34-19, III-35-18
Bohr radius, 38-12, III-2-12, III-19-5,

III-19-9
Boltzmann energy, II-36-24
Boltzmann factor, III-14-8
Boltzmann’s constant, 41-18, II-7-14,

III-14-7
Boltzmann’s law, 40-4 f
Boltzmann theory, III-21-13
Boron, III-19-30
Bose particles, III-4-1 ff, III-15-10 f
Boundary layer, II-41-15
Boundary-value problems, II-7-2
Boyle’s law, 40-16
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“Boys” camera, II-9-21
Bragg-Nye crystal model, II-30-22 ff
Breaking-drop theory, II-9-18 f
Bremsstrahlung, 34-12 f
Brewster’s angle, 33-10
Brownian motion, 1-16, 6-8, 41-1 ff, 46-2 f,

46-9
Brush discharge, II-9-20
Bulk modulus, II-38-6

C
Calculus
Differential ∼, II-2-1 ff
Integral ∼, II-3-1 ff
of variations, II-19-6

Cantilever beam, II-38-19
Capacitance, 23-9
Mutual ∼, II-22-38

Capacitor, 23-8, II-22-5 ff
at high frequencies, II-23-4 ff
Parallel-plate ∼, 14-16 f, II-6-22 ff,

II-8-5
Capacity, II-6-23
of a condenser, II-8-4

Capillary action, 51-16
Carnot cycle, 44-8 ff, 45-4, 45-7
Carriers
Negative ∼, III-14-3
Positive ∼, III-14-3

Carrier signal, 48-6
Catalyst, 42-13
Cavendish’s experiment, 7-15 ff
Cavity resonators, II-23-1 ff
Cells
Cone ∼, 35-2 ff, 35-9, 35-14, 35-17 f,

36-2 f, 36-8
Rod ∼, 35-2 ff, 35-9, 35-17 f, 36-8,

36-10 ff, III-13-16
Center of mass, 18-1 ff, 19-1 ff

Centrifugal force, 7-9, 12-18, 16-3, 19-13 f,
20-14, 43-7, 52-5, II-34-12, II-41-18,
III-19-20, III-19-25, III-34-12

Centripetal force, 19-15 f
Charge
Conservation of ∼, 4-14, II-13-2 ff
Image ∼, II-6-17
Line of ∼, II-5-6 f
Motion of ∼, II-29-1 ff
on electron, 12-12
Point ∼, II-1-3
Polarization ∼s, II-10-6 ff
Sheet of ∼, II-5-7 ff
Sphere of ∼, II-5-10 f

Charged conductor, II-6-14 f, II-8-4 ff
Charge separation in a thunder cloud,

II-9-14 ff
Chemical bonds, II-30-5 f
Chemical energy, 4-3
Chemical kinetics, 42-11 ff
Chemical reaction, 1-12 ff
Chemistry and physics, 3-1 ff
Cherenkov radiation, 51-3
Chlorophyll molecule, III-15-20
Chromatic aberration, 27-13
Chromaticity, 35-11 f
Circuit elements, II-23-1 ff
Active ∼, II-22-9
Passive ∼, II-22-9

Circuits
Alternating-current ∼, II-22-1 ff
Equivalent ∼, II-22-22 ff

Circular motion, 21-6 ff
Circular polarization, 33-3
Circulation, II-1-8, II-3-14 ff
Classical electron radius, 32-6, II-28-5
Classical limit, III-7-16 ff
Clausius-Clapeyron equation, 45-10 ff
Clausius-Mossotti equation, II-11-13 ff,

II-32-11

Index-3



Cleavage plane, II-30-3
Clebsch-Gordan coefficients, III-18-29,

III-18-34
Coaxial line, II-24-2
Coefficient
Absorption ∼, II-32-13
Clebsch-Gordan ∼s, III-18-29, III-18-34
Drag ∼, II-41-11
Einstein ∼s, III-9-25
of coupling, II-17-25
of friction, 12-6
of viscosity, II-41-2

Collision, 16-10
Elastic ∼, 10-13 f

Collision cross section, 43-5 f
Colloidal particles, II-7-13 ff
Color vision, 35-1 ff, 36-1 ff
Physiochemistry of ∼, 35-15 ff

Commutation rule, III-20-24
Complex impedance, 23-12
Complex numbers, 22-11 ff
and harmonic motion, 23-1 ff

Complex variable, II-7-3 ff
Compound (insect) eye, 36-12 ff
Compression
Adiabatic ∼, 39-8
Isothermal ∼, 44-10

Condensor
Energy of a ∼, II-8-4 ff
Parallel-plate ∼, II-6-22 ff, II-8-5

Conduction band, III-14-2
Conductivity, II-32-16
Ionic ∼, 43-9 ff
Thermal ∼, II-2-16, II-12-3, II-12-6
of a gas, 43-16 f

Conductor, II-1-3
Cone cells, 35-2 ff, 35-9, 35-14, 35-17 f,

36-2 f, 36-8
Conservation

of angular momentum, 4-13, 18-11 ff,
20-8

of baryon number, III-11-23
of charge, 4-14, II-13-2 ff
of energy, 3-3, 4-1 ff, II-27-1 ff, II-42-24,

III-7-9 ff
of linear momentum, 4-13, 10-1 ff
of strangeness, III-11-21

Conservative force, 14-5 ff
Constant
Boltzmann’s ∼, 41-18, II-7-14, III-14-7
Dielectric ∼, II-10-1 ff
Gravitational ∼, 7-17
Planck’s ∼, 4-13, 5-19, 17-14, 37-18,

II-15-16, II-19-18 f, II-28-17,
III-1-18, III-20-24, III-21-2

Stefan-Boltzmann ∼, 45-14
Constrained motion, 14-4 f
Contraction hypothesis, 15-8 f
Coriolis force, 19-14 ff, 20-8, 51-13, 52-5,

II-34-12, III-34-12
Cornea, 35-1, 36-5 f, 36-18
Cornu’s spiral, 30-16
Cosmic rays, 2-9, II-9-4
Cosmic synchrotron radiation, 34-10 ff
Couette flow, II-41-17 ff
Coulomb’s law, 28-1, 28-3, II-1-4 f, II-1-11,

II-4-3 ff, II-4-8, II-4-12, II-4-19,
II-5-11 ff

Coupling, coefficient of, II-17-25
Covalent bonds, II-30-5
Cross product, II-2-14, II-31-14 f
Cross section, 5-15
Collision ∼, 43-5 f
Nuclear ∼, 5-15
Scattering ∼, 32-12
Thomson scattering ∼, 32-13

Crystal, II-30-1 ff
Geometry of ∼s, II-30-1 ff
Ionic ∼, II-8-8 ff
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Molecular ∼, II-30-5
Crystal diffraction, 38-8 ff, III-2-8 ff
Crystal lattice, II-30-7 ff
Cubic ∼, II-30-17
Hexagonal ∼, II-30-16
Imperfections in a ∼, III-13-16 ff
Monoclinic ∼, II-30-16
Orthorhombic ∼, II-30-17
Propagation in a ∼, III-13-1 ff
Tetragonal ∼, II-30-17
Triclinic ∼, II-30-15
Trigonal ∼, II-30-16

Cubic lattice, II-30-17
Curie point, II-37-7, II-37-20, II-37-26
Curie’s law, II-11-9
Curie temperature, II-36-29, II-36-31,

II-37-2, II-37-6, II-37-23
Curie-Weiss law, II-11-20
Curl operator, II-2-15, II-3-1
Current
Ampèrian ∼, II-36-4
Atomic ∼s, II-13-9 ff, II-32-6 f, II-36-4 ff
Eddy ∼, II-16-11
Electric ∼, II-13-2 ff

in the atmosphere, II-9-4 ff
Induced ∼s, II-16-10 ff

Current density, II-13-2
Curtate cycloid, 34-5, 34-8
Curvature
in three-dimensional space, II-42-11 ff
Intrinsic ∼, II-42-11
Mean ∼, II-42-14
Negative ∼, II-42-11
Positive ∼, II-42-11

Curved space, II-42-1 ff
Cutoff frequency, II-22-30
Cyclotron, II-29-10, II-29-15
Cytosine, 3-9

D
D’Alembertian operator, II-25-13
Damped oscillation, 24-4 ff
Debye length, II-7-15
Definite energy, states of, III-13-5 ff
Degrees of freedom, 25-3, 39-19, 40-1
Demagnetization, adiabatic, II-35-18 f,

III-35-18 f
Density, 1-6
Current ∼, II-13-2
Energy ∼, II-27-3
Probability ∼, 6-13, 6-15, III-16-9

Derivative, 8-9 f
Partial ∼, 14-15

Diamagnetism, II-34-1 ff, II-34-9 ff,
III-34-1 ff, III-34-9 ff

Diamond lattice, III-14-1
Dielectric, II-10-1 ff, II-11-1 ff
Dielectric constant, II-10-1 ff
Differential calculus, 8-7, II-2-1 ff
Diffraction, 30-1 ff
by a screen, 31-17 ff
X-ray ∼, 30-14, 38-9, II-8-9, II-30-3,

III-2-9
Diffraction grating, 30-6 ff
Resolving power of a ∼, 30-10 f

Diffusion, 43-1 ff
Molecular ∼, 43-11 ff
of neutrons, II-12-12 ff

Dipole
Electric ∼, II-6-2 ff
Magnetic ∼, II-14-13 ff
Molecular ∼, II-11-1
Oscillating ∼, II-21-8 ff

Dipole moment, 12-9, II-6-5
Magnetic ∼, II-14-15

Dipole potential, II-6-8 ff
Dipole radiator, 28-7 ff, 29-6 ff
Dirac equation, 20-11
Dislocations, II-30-19
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and crystal growth, II-30-20 f
Screw ∼, II-30-20 f
Slip ∼, II-30-20

Dispersion, 31-10 ff
Anomalous ∼, 31-14
Normal ∼, 31-14

Dispersion equation, 31-10
Distance, 5-1 ff
Distance measurement
by the color-brightness relationship of

stars, 5-12
by triangulation, 5-10 ff

Distribution
Normal (Gaussian) ∼, 6-15, III-16-12,

III-16-14
Probability ∼, 6-13 ff

Divergence
of four-vectors, II-25-11

Divergence operator, II-2-14, II-3-1
DNA, 3-8 ff
Domain, II-37-11
Donor site, III-14-9
Doppler effect, 17-14, 23-18, 34-13 ff,

38-11, II-42-21, III-2-11, III-12-15
Dot product, II-2-9
of four-vectors, II-25-6

Double stars, 7-10
Drag coefficient, II-41-11
“Dry” water, II-40-1 ff
Dyes, III-10-21 f
Dynamical (p-) momentum, III-21-8
Dynamics, 9-1 ff
Development of ∼, 7-4
of rotation, 18-5 f
Relativistic ∼, 15-15 ff

E
Eddy current, II-16-11
Effect
Barkhausen ∼, II-37-19

Doppler ∼, 17-14, 23-18, 34-13 ff, 38-11,
II-42-21, III-2-11, III-12-15

Hall ∼, III-14-12 ff
Kerr ∼, 33-8
Meissner ∼, III-21-14 ff, III-21-22
Mössbauer ∼, II-42-24
Purkinje ∼, 35-4

Effective mass, III-13-12
Efficiency of an ideal engine, 44-13 ff
Eigenstates, III-11-38
Eigenvalues, III-11-38
Einstein coefficients, III-4-15, III-9-25
Einstein-Podolsky-Rosen paradox,

III-18-16
Einstein’s equation of motion, II-42-30
Einstein’s field equation, II-42-29
Elastica, curves of the, II-38-25
Elastic collision, 10-13 f
Elastic constants, II-39-9, II-39-19 ff
Elastic energy, 4-3, 4-11 f
Elasticity, II-38-1 ff
Elasticity tensor, II-39-6 ff
Elastic materials, II-39-1 ff
Electret, II-11-16
Electrical energy, 4-3, 4-12, 10-15,

II-15-5 ff
Electrical forces, 2-5 ff, II-1-1 ff, II-13-1
in relativistic notation, II-25-1 ff

Electric charge density, II-2-15, III-21-10
Electric current, II-13-2 ff
in the atmosphere, II-9-4 ff

Electric current density, II-2-15
Electric dipole, II-6-2 ff
Electric dipole matrix element, III-9-25
Electric field, 2-6, 12-11 ff, II-1-4 ff,

II-6-1 ff, II-7-1 ff
Relativity of ∼, II-13-13 ff

Electric flux, II-1-8
Electric generator, II-16-1 ff, II-22-9 ff
Electric motor, II-16-1 ff
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Electric potential, II-4-6 ff
Electric susceptibility, II-10-7
Electrodynamics, II-1-5
Electromagnetic energy, 29-3 f
Electromagnetic field, 2-3, 2-7, 10-15 f
Electromagnetic mass, II-28-1 ff
Electromagnetic radiation, 26-1, 28-1 ff
Electromagnetic waves, 2-7, II-21-1 ff
Electromagnetism, II-1-1 ff
Laws of ∼, II-1-9 ff

Electromotive force (EMF), II-16-5
Electron, 2-6, 37-2, 37-7 ff, III-1-1,

III-1-6 ff
Charge on ∼, 12-12
Classical ∼ radius, 32-6, II-28-5

Electron cloud, 6-20
Electron configuration, III-19-29
Electronic polarization, II-11-2 ff
Electron microscope, II-29-9 f
Electron-ray tube, 12-15
Electron volt (unit), 34-7
Electrostatic energy, II-8-1 ff
in nuclei, II-8-12 ff
of a point charge, II-8-22 f
of charges, II-8-1 ff
of ionic crystals, II-8-8 ff

Electrostatic equations
with dielectrics, II-10-10 ff

Electrostatic field, II-5-1 ff, II-7-1 ff
Energy in the ∼, II-8-18 ff
of a grid, II-7-17 ff

Electrostatic lens, II-29-5 ff
Electrostatic potential, equations of the,

II-6-1 f
Electrostatics, II-4-1 ff, II-5-1 ff
Ellipse, 7-2
Emission of photons, III-4-13 ff
Emissivity, II-6-28
Energy, 4-1 ff, II-22-24 ff
Activation ∼, 3-6, 42-12 f

Boltzmann ∼, II-36-24
Chemical ∼, 4-3
Conservation of ∼, 3-3, 4-1 ff, II-27-1 ff,

II-42-24, III-7-9 ff
Elastic ∼, 4-3, 4-11 f
Electrical ∼, 4-3, 4-12, 10-15, II-15-5 ff
Electromagnetic ∼, 29-3 f
Electrostatic ∼, II-8-1 ff

in nuclei, II-8-12 ff
of a point charge, II-8-22 f
of charges, II-8-1 ff
of ionic crystals, II-8-8 ff

Field ∼, II-27-1 ff
Gravitational ∼, 4-3 ff
Heat ∼, 4-3, 4-11 f, 10-15
in the electrostatic field, II-8-18 ff
Kinetic ∼, 1-13, 2-10, 4-3, 4-10 f
and temperature, 39-10 ff

Magnetic ∼, II-17-22 ff
Mass ∼, 4-3, 4-12
Mechanical ∼, II-15-5 ff
Nuclear ∼, 4-3
of a condensor, II-8-4 ff
Potential ∼, 4-7, 13-1 ff, 14-1 ff,

III-7-9 ff
Radiant ∼, 4-3, 4-12, 7-20, 10-15
Relativistic ∼, 16-1 ff
Rotational kinetic ∼, 19-12 ff
Rydberg ∼, III-10-6, III-19-5
Wall ∼, II-37-11

Energy density, II-27-3
Energy diagram, III-14-2
Energy flux, II-27-3
Energy level diagram, III-14-6
Energy levels, 38-13 ff, III-2-13 ff,

III-12-12 ff
of a harmonic oscillator, 40-17 f

Energy theorem, 50-13
Enthalpy, 45-9
Entropy, 44-19 ff, 46-9 ff
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Equation
Clausius-Mossotti ∼, II-11-13 ff,

II-32-11
Diffusion ∼

Heat ∼,
Neutron ∼, II-12-13

Dirac ∼, 20-11
Dispersion ∼, 31-10
Einstein’s field ∼, II-42-29
Einstein’s ∼ of motion, II-42-30
Laplace ∼, II-7-2
Maxwell’s ∼s, 46-12, 47-12, II-2-1,

II-2-15, II-4-1 f, II-6-1, II-7-11,
II-8-20, II-10-11, II-13-7, II-13-13,
II-13-22, II-15-24 f, II-18-1 ff,
II-22-1 f, II-22-13 f, II-22-16,
II-22-23, II-23-6, II-23-13 f,
II-23-20 f, II-24-9, II-25-12,
II-25-15, II-25-19, II-26-3, II-26-20,
II-26-23, II-27-5, II-27-8, II-27-13,
II-27-17, II-28-1, II-32-7, II-33-2,
II-33-5 ff, II-33-12 f, II-33-16,
II-34-14, II-36-2, II-36-5, II-36-11,
II-36-26, II-38-4, II-39-14, II-42-29,
III-34-14

for four-vectors, II-25-17
General solution of ∼, II-21-6 ff
in a dielectric, II-32-4 ff
Modifications of ∼, II-28-10 ff
Solutions of ∼ in free space, II-20-1 ff
Solutions of ∼ with currents and
charges, II-21-1 ff

Solving ∼, II-18-17 ff
Poisson ∼, II-6-2
Saha ∼, 42-9
Schrödinger ∼, II-15-21, II-41-20,

III-16-6, III-16-18 ff
for the hydrogen atom, III-19-1 ff
in a classical context, III-21-1 ff

Wave ∼, 47-1 ff, II-18-17 ff

Equilibrium, 1-12
Equipotential surfaces, II-4-20 ff
Equivalent circuits, II-22-22 ff
Ethylene molecule, III-15-13
Euclidean geometry, 1-1, 12-4, 12-19, 17-4
Euler force, II-38-23
Evaporation, 1-10, 1-12
of a liquid, 40-5 ff, 42-1 ff

Excess radius, II-42-9 ff, II-42-13 ff,
II-42-29

Exchange force, II-37-3
Excited state, II-8-14, III-13-15
Exciton, III-13-16
Exclusion principle, III-4-23 ff
Expansion
Adiabatic ∼, 44-10
Isothermal ∼, 44-10

Exponential atmosphere, 40-1 ff
Eye
Compound (insect) ∼, 36-12 ff
Human ∼, 35-1 ff

F
Farad (unit), 25-14, II-6-24
Faraday’s law of induction, II-17-3,

II-17-6, II-18-1, II-18-15, II-18-18
Fermat’s principle, 26-5, 26-7, 26-9, 26-11,

26-13 ff, 26-17 f
Fermi (unit), 5-18
Fermi particles, III-4-1 ff, III-15-11
Ferrites, II-37-25 f
Ferroelectricity, II-11-17 ff
Ferromagnetic insulators, II-37-25
Ferromagnetic materials, II-37-19 ff
Ferromagnetism, II-36-1 ff, II-37-1 ff
Field, 14-12 ff
Electric ∼, 2-6, 12-11 ff, II-1-4 ff,

II-6-1 ff, II-7-1 ff
Electromagnetic ∼, 2-3, 2-7, 10-15 f
Electrostatic ∼, II-5-1 ff, II-7-1 ff
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of a grid, II-7-17 ff
Flux of a vector ∼, II-3-4 ff
Gravitational ∼, 12-13 ff, 13-13 ff
in a cavity, II-5-17 ff
Magnetic ∼, 12-15 ff, II-1-4 ff, II-13-1 f,

II-14-1 ff
of steady currents, II-13-6 ff

Magnetizing ∼, II-36-15
of a charged conductor, II-6-14 f
of a conductor, II-5-16 f
Relativity of electric ∼, II-13-13 ff
Relativity of magnetic ∼, II-13-13 ff
Scalar ∼, II-2-3 ff
Superposition of ∼s, 12-15
Two-dimensional ∼s, II-7-3 ff
Vector ∼, II-1-8 f, II-2-3 ff

Field-emission microscope, II-6-27 ff
Field energy, II-27-1 ff
of a point charge, II-28-1 f

Field index, II-29-13
Field-ion microscope, II-6-27 ff
Field lines, II-4-20 ff
Field momentum, II-27-1 ff
of a moving charge, II-28-3 f

Field strength, II-1-6
Filter, II-22-30 ff
Flow
Fluid ∼, II-12-16 ff
Heat ∼, II-2-16 ff, II-12-2 ff
Irrotational ∼, II-12-16 ff, II-40-9 ff
Steady ∼, II-40-10 ff
Viscous ∼, II-41-6 ff

Fluid flow, II-12-16 ff
Flux, II-4-12 ff
Electric ∼, II-1-8
Energy ∼, II-27-3
of a vector field, II-3-4 ff

Flux quantization, III-21-16 ff
Flux rule, II-17-1
Focal length

of a lens, 27-7 ff
of a spherical surface, 27-2 ff

Focus, 26-11, 27-4
Force
Centrifugal ∼, 7-9, 12-18, 16-3, 19-13 f,

20-14, 43-7, 52-5, II-34-12, II-41-18,
III-19-20, III-19-25, III-34-12

Centripetal ∼, 19-15 f
Components of ∼, 9-4 ff
Conservative ∼, 14-5 ff
Coriolis ∼, 19-14 ff, 20-8, 51-13, 52-5,

II-34-12, III-34-12
Electrical ∼s, 2-5 ff, II-1-1 ff, II-13-1
in relativistic notation, II-25-1 ff

Electromotive ∼ (EMF), II-16-5
Euler ∼, II-38-23
Exchange ∼, II-37-3
Gravitational ∼, 2-4
Lorentz ∼, II-13-1, II-15-25
Magnetic ∼, 12-15 ff, II-1-4, II-13-1
on a current, II-13-5 f

Molecular ∼s, 12-9 ff
Moment of ∼, 18-8
Nonconservative ∼, 14-10 ff
Nuclear ∼s, 12-20 f, II-1-2 f, II-8-12 f,

II-28-18, II-28-20 ff, III-10-10 ff
Pseudo ∼, 12-17 ff

Fortune teller, 17-8
Foucault pendulum, 16-3
Fourier analysis, 25-7, 50-3 ff, 50-8 ff
Fourier theorem, II-7-17
Fourier transforms, 25-7
Four-potential, II-25-15
Four-vector algebra, 17-12 ff
Four-vectors, 15-14 f, 17-8 ff, II-25-1 ff
Fovea, 35-2 f, 35-5, 35-18
Frequency
Angular ∼, 21-5, 29-4, 29-6, 49-4
Larmor ∼, II-34-12, III-34-12
of oscillation, 2-7
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Plasma ∼, II-7-12, II-32-18 ff
Fresnel’s reflection formulas, 33-15
Friction, 10-7, 12-4 ff
Coefficient of ∼, 12-6
Origin of ∼, 12-9

G
Galilean relativity, 10-5, 10-11
Galilean transformation, 12-18, 15-4
Gallium, III-19-32 f
Galvanometer, II-1-17, II-16-2
Gamma rays, 2-8
Garnets, II-37-25 f
Gauss (unit), 34-7, II-36-12
Gaussian distribution, 6-15, III-16-12,

III-16-14
Gauss’ law, II-4-18 f
Applications of ∼, II-5-1 ff
for field lines, II-4-21

Gauss’ theorem, II-3-8 ff, III-21-7
Generator
Alternating-current ∼, II-17-11 ff
Electric ∼, II-16-1 ff, II-22-9 ff
Van de Graaff ∼, II-5-19, II-8-14

Geology and physics, 3-12 f
Geometrical optics, 26-2, 27-1 ff
Gradient operator, II-2-8 ff, II-3-1
Gravitation, 2-4, 7-1 ff, 12-2, II-42-1
Theory of ∼, II-42-28 ff

Gravitational acceleration, 9-6
Gravitational constant, 7-17
Gravitational energy, 4-3 ff
Gravitational field, 12-13 ff, 13-13 ff
Gravitational force, 2-4
Gravity, 13-5 ff, II-42-17 ff
Acceleration of ∼, 9-6

Greeks’ difficulties with speed, 8-4 f
Green’s function, 25-8
Ground state, II-8-14, III-7-3
Group velocity, 48-11 f

Guanine, 3-9
Gyroscope, 20-9 ff

H
Haidinger’s brush, 36-14
Hall effect, III-14-12 ff
Hamiltonian, III-8-16
Hamiltonian matrix, III-8-1 ff
Hamilton’s first principal function,

II-19-16
Harmonic motion, 21-6 ff, 23-1 ff
Harmonic oscillator, 10-1, 21-1 ff
Energy levels of a ∼, 40-17 f
Forced ∼, 21-9 ff, 23-4 ff

Harmonics, 50-1 ff
Heat, 1-5, 13-5
Specific ∼, 40-13 ff, II-37-7
and the failure of classical physics,
40-16 ff

at constant volume, 45-3
Heat conduction, II-3-10 ff
Heat diffusion equation, II-3-10 ff
Heat energy, 4-3, 4-11 f, 10-15
Heat engines, 44-1 ff
Heat flow, II-2-16 ff, II-12-2 ff
Helium, 1-8, 3-11 f, 49-9 f, III-19-27
Liquid ∼, III-4-22 f

Helmholtz’s theorem, II-40-22 f
Henry (unit), 25-13
Hermitian adjoint, III-20-5
Hexagonal lattice, II-30-16
High-voltage breakdown, II-6-25 ff
Hooke’s law, 12-11, II-10-12, II-30-29,

II-31-22, II-38-1 ff, II-38-6, II-39-6,
II-39-18

Human eye, 35-1 ff
Hydrodynamics, II-40-5 ff
Hydrogen, III-19-26 f
Hyperfine splitting in ∼, III-12-1 ff

Hydrogen atom, III-19-1 ff
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Hydrogen molecular ion, III-10-1 ff
Hydrogen molecule, III-10-13 ff
Hydrogen wave functions, III-19-21 ff
Hydrostatic pressure, II-40-1
Hydrostatics, II-40-1 ff
Hyperfine splitting in hydrogen, III-12-1 ff
Hysteresis curve, II-37-10 ff
Hysteresis loop, II-36-16

I
Ideal gas law, 39-16 ff
Identical particles, III-3-16 ff, III-4-1 ff
Illumination, II-12-20 ff
Image charge, II-6-17
Impedance, 25-15 f, II-22-1 ff
Complex ∼, 23-12
of a vacuum, 32-3

Impure semiconductors, III-14-8 ff
Incidence, angle of, 26-6, II-33-1
Inclined plane, 4-7
Independent particle approximation,

III-15-1 ff
Index
Field ∼, II-29-13
of refraction, 31-1 ff, II-32-1 ff

Induced currents, II-16-10 ff
Inductance, 23-10, II-16-7 ff, II-17-16 ff,

II-22-3 f
Mutual ∼, II-17-16 ff, II-22-36 f
Self-∼, II-16-8, II-17-20 ff

Induction, laws of, II-17-1 ff
Inductor, 25-13
Inertia, 2-4, 7-20
Moment of ∼, 18-12 f, 19-1 ff
Principle of ∼, 9-1

Infrared radiation, 2-8, 23-14, 26-1
Insulator, II-1-3, II-10-1
Integral, 8-11 ff
Line ∼, II-3-1 ff

Integral calculus, II-3-1 ff

Interference, 28-10 ff, 29-1 ff
and diffraction, 30-1
Two-slit ∼, III-3-8 ff

Interfering amplitudes, III-5-16 ff
Interfering waves, 37-6, III-1-6
Interferometer, 15-8
Ion, 1-11
Ionic bonds, II-30-5
Ionic conductivity, 43-9 ff
Ionic crystal, II-8-8 ff
Ionic polarizability, II-11-17
Ionization energy, 42-8
of hydrogen, 38-12, III-2-12

Ionosphere, II-7-9, II-7-12, II-9-6, II-32-22
Irreversibility, 46-9 ff
Irrotational flow, II-12-16 ff, II-40-9 ff
Isotherm, II-2-5
Isothermal atmosphere, 40-3
Isothermal compression, 44-10
Isothermal expansion, 44-10
Isothermal surfaces, II-2-5
Isotopes, 3-7, 3-12, 39-17

J
Johnson noise, 41-4, 41-14
Josephson junction, III-21-25 ff
Joule (unit), 13-5
Joule heating, 24-3

K
Kármán vortex street, II-41-13
Kepler’s laws, 7-2 f, 7-5, 7-7, 9-1, 18-11
Kerr cell, 33-8
Kerr effect, 33-8
Kilocalorie (unit), II-8-9
Kinematic (mv-) momentum, III-21-8
Kinetic energy, 1-13, 2-10, 4-3, 4-10 f
and temperature, 39-10 ff
Rotational ∼, 19-12 ff

Kinetic theory
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Applications of ∼, 42-1 ff
of gases, 39-1 ff

Kirchhoff’s laws, 25-16, II-22-14 ff,
II-22-27

Kronecker delta, II-31-10
Krypton, III-19-32 f

L
Lagrangian, II-19-15
Lamé elastic constants, II-39-9
Lamb-Retherford measurement, II-5-14
Landé g-factor, II-34-6, III-34-6
Laplace equation, II-7-2
Laplacian operator, II-2-20
Larmor frequency, II-34-12, III-34-12
Larmor’s theorem, II-34-11 ff, III-34-11 ff
Laser, 5-4, 32-9, 42-17 f, 50-17, III-9-21
Law
Ampère’s ∼, II-13-6 ff
Applications of Gauss’ ∼, II-5-1 ff
Biot-Savart ∼, II-14-18 f, II-21-13
Boltzmann’s ∼, 40-4 f
Boyle’s ∼, 40-16
Coulomb’s ∼, 28-1, 28-3, II-1-4 f,

II-1-11, II-4-3 ff, II-4-8, II-4-12,
II-4-19, II-5-11 ff

Curie’s ∼, II-11-9
Curie-Weiss ∼, II-11-20
Faraday’s ∼ of induction, II-17-3,

II-17-6, II-18-1, II-18-15, II-18-18
Gauss’ ∼, II-4-18 f

for field lines, II-4-21
Hooke’s ∼, 12-11, II-10-12, II-30-29,

II-31-22, II-38-1 ff, II-38-6, II-39-6,
II-39-18

Ideal gas ∼, 39-16 ff
Kepler’s ∼s, 7-2 f, 7-5, 7-7, 9-1, 18-11
Kirchhoff’s ∼s, 25-16, II-22-14 ff,

II-22-27
Lenz’s ∼, II-16-9 f, II-34-2, III-34-2

Newton’s ∼s, 2-9, 7-10, 7-12, 9-1 ff,
10-1 f, 10-5, 11-3 f, 11-7 f, 12-1 f,
12-4, 12-18, 12-20, 13-1, 14-10,
15-1 ff, 15-5, 15-16, 16-4, 16-13 f,
18-1, 19-4, 20-1, 28-5, 39-1, 39-3,
39-17, 41-2, 46-1, 46-9, 47-4 f,
II-7-9, II-19-2, II-42-1, II-42-28

in vector notation, 11-13 ff
of reflection, 26-3
Ohm’s ∼, 23-9, 25-12, 43-11, II-19-26,

III-14-12
Rayleigh’s ∼, 41-10
Snell’s ∼, 26-5, 26-7, 26-14, 31-4, II-33-1

Laws
of electromagnetism, II-1-9 ff
of induction, II-17-1 ff

Least action, principle of, II-19-1 ff
Least time, principle of, 26-1 ff
Legendre functions, associated, III-19-16
Legendre polynomials, III-18-23, III-19-16
Lens
Electrostatic ∼, II-29-5 ff
Magnetic ∼, II-29-7 ff
Quadrupole ∼, II-7-6, II-29-15 f

Lens formula, 27-11
Lenz’s rule, II-16-9 f, II-34-2, III-34-2
Liénard-Wiechert potentials, II-21-16 ff
Light, 2-7, II-21-1 ff
Absorption of ∼, III-9-23 ff
Momentum of ∼, 34-20 ff
Polarized ∼, 32-15
Reflection of ∼, II-33-1 ff
Refraction of ∼, II-33-1 ff
Scattering of ∼, 32-1 ff
Speed of ∼, 15-1, II-18-16 f

Light cone, 17-6
Lightning, II-9-21 ff
Light pressure, 34-20
Light waves, 48-1
Linear momentum
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Conservation of ∼, 4-13, 10-1 ff
Linear systems, 25-1 ff
Linear transformation, 11-11
Line integral, II-3-1 ff
Line of charge, II-5-6 f
Liquid helium, III-4-22 f
Lithium, III-19-27 f
Lodestone, II-1-20, II-37-27
Logarithms, 22-3
Lorentz contraction, 15-13
Lorentz force, II-13-1, II-15-25
Lorentz formula, II-21-21 ff
Lorentz group, II-25-5
Lorentz transformation, 15-4 f, 17-1,

34-15, 52-3, II-25-1
of fields, II-26-1 ff

Lorenz condition, II-25-15
Lorenz gauge, II-18-20, II-25-15

M
Mach number, II-41-11
Magenta, III-10-21
Magnetic dipole, II-14-13 ff
Magnetic dipole moment, II-14-15
Magnetic energy, II-17-22 ff
Magnetic field, 12-15 ff, II-1-4 ff, II-13-1 f,

II-14-1 ff
of steady currents, II-13-6 ff
Relativity of ∼, II-13-13 ff

Magnetic force, 12-15 ff, II-1-4, II-13-1
on a current, II-13-5 f

Magnetic induction, 12-17
Magnetic lens, II-29-7 ff
Magnetic materials, II-37-1 ff
Magnetic moments, II-34-4 ff, III-11-8,

III-34-4 ff
Magnetic resonance, II-35-1 ff, III-35-1 ff
Nuclear ∼, II-35-19 ff, III-35-19 ff

Magnetic susceptibility, II-35-14, III-35-14
Magnetism, 2-7, II-34-1 ff, III-34-1 ff

Dia∼, II-34-1 ff, II-34-9 ff, III-34-1 ff,
III-34-9 ff

Ferro∼, II-36-1 ff, II-37-1 ff
Para∼, II-34-1 ff, II-35-1 ff, III-34-1 ff,

III-35-1 ff
Magnetization currents, II-36-1 ff
Magnetizing field, II-36-15
Magnetostatics, II-4-2, II-13-1 ff
Magnetostriction, II-37-12, II-37-21
Magnification, 27-10 f
Magnons, III-15-6
Maser, 42-17
Ammonia ∼, III-9-1 ff

Mass, 9-2, 15-1
Center of ∼, 18-1 ff, 19-1 ff
Effective ∼, III-13-12
Electromagnetic ∼, II-28-1 ff
Relativistic ∼, 16-9 ff

Mass energy, 4-3, 4-12
Mass-energy equivalence, 15-17 ff
Mathematics and physics, 3-1
Matrix, III-5-9
Matrix algebra, III-5-24, III-11-5,

III-20-28
Maxwell’s demon, 46-8 f
Maxwell’s equations, 15-3 ff, 25-5, 25-8,

46-12, 47-12, II-2-1, II-2-15,
II-4-1 f, II-6-1, II-7-11, II-8-20,
II-10-11, II-13-7, II-13-13, II-13-22,
II-15-24 f, II-18-1 ff, II-22-1 f,
II-22-13 f, II-22-16, II-22-23,
II-23-6, II-23-13 f, II-23-20 f,
II-24-9, II-25-12, II-25-15, II-25-19,
II-26-3, II-26-20, II-26-23, II-27-5,
II-27-8, II-27-13, II-27-17, II-28-1,
II-32-7, II-33-2, II-33-5, II-33-7 ff,
II-33-12 f, II-33-16, II-34-14,
II-36-2, II-36-5, II-36-11, II-36-26,
II-38-4, II-39-14, II-42-29, III-10-12,
III-21-11, III-21-24, III-34-14
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for four-vectors, II-25-17
General solution of ∼, II-21-6 ff
in a dielectric, II-32-4 ff
Modifications of ∼, II-28-10 ff
Solutions of ∼ in free space, II-20-1 ff
Solutions of ∼ with currents and

charges, II-21-1 ff
Solving ∼, II-18-17 ff

Mean free path, 43-4 ff
Mean square distance, 6-9, 41-15
Mechanical energy, II-15-5 ff
Meissner effect, III-21-14 ff, III-21-22
Metastable atom, 42-17
Meter (unit), 5-18
MeV (unit), 2-14
Michelson-Morley experiment, 15-5 ff,

15-13
Microscope
Electron ∼, II-29-9 f
Field-emission ∼, II-6-27 ff
Field-ion ∼, II-6-27 ff

Minkowski space, II-31-23
Modes, 49-1 ff
Normal ∼, 48-17 f

Mole (unit), 39-17
Molecular crystal, II-30-5
Molecular diffusion, 43-11 ff
Molecular dipole, II-11-1
Molecular forces, 12-9 ff
Molecular motion, 41-1
Molecule, 1-4
Nonpolar ∼, II-11-1
Polar ∼, II-11-1, II-11-5 ff

Mössbauer effect, II-42-24
Moment
Dipole ∼, 12-9, II-6-5
of force, 18-8
of inertia, 18-12 f, 19-1 ff

Momentum, 9-1 ff, 38-3 ff, III-2-3 ff

Angular ∼, 18-8 ff, 20-1, III-18-1 ff,
III-20-22 ff

Composition of ∼, III-18-25 ff
Conservation of ∼, 4-13, 18-11 ff, 20-8
of a rigid body, 20-14

Conservation of angular ∼,
Conservation of linear ∼, 4-13, 10-1 ff
Dynamical (p-) ∼, III-21-8
Field ∼, II-27-1 ff
in quantum mechanics, 10-16 f
Kinematic (mv-) ∼, III-21-8
of light, 34-20 ff
Relativistic ∼, 10-14 ff, 16-1 ff

Momentum operator, III-20-4, III-20-15 ff
Momentum spectrometer, II-29-2
Momentum spectrum, II-29-4
Monatomic gas, 39-7 ff, 39-11, 39-17 f,

40-13 f
Monoclinic lattice, II-30-16
Motion, 5-1 f, 8-1 ff
Brownian ∼, 1-16, 6-8, 41-1 ff, 46-2 f,

46-9
Circular ∼, 21-6 ff
Constrained ∼, 14-4 f
Harmonic ∼, 21-6 ff, 23-1 ff
of charge, II-29-1 ff
Orbital ∼, II-34-5, III-34-5
Parabolic ∼, 8-17
Perpetual ∼, 46-3
Planetary ∼, 7-1 ff, 9-11 ff, 13-9

Motor, electric, II-16-1 ff
Moving charge, field momentum of,

II-28-3 f
Muscle
Smooth ∼, 14-3
Striated (skeletal) ∼, 14-3

Music, 50-2
Mutual capacitance, II-22-38
Mutual inductance, II-17-16 ff, II-22-36 f
mv-momentum, III-21-8
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N
Nabla operator (∇), II-2-12 ff
Negative carriers, III-14-3
Neon, III-19-30
Nernst heat theorem, 44-22
Neutral K-meson, III-11-21 ff
Neutral pion, III-10-11
Neutron diffusion equation, II-12-13
Neutrons, 2-6
Diffusion of ∼, II-12-12 ff

Newton (unit), 11-10
Newton ·meter (unit), 13-5
Newton’s laws, 2-9, 7-10, 7-12, 9-1 ff,

10-1 f, 10-5, 11-3 f, 11-7 f, 12-1 f,
12-4, 12-18, 12-20, 13-1, 14-10,
15-1 ff, 15-5, 15-16, 16-4, 16-13 f,
18-1, 19-4, 20-1, 28-5, 39-1, 39-3,
39-17, 41-2, 46-1, 46-9, 47-4 f,
II-7-9, II-19-2, II-42-1, II-42-28

in vector notation, 11-13 ff
Nodes, 49-3
Noise, 50-2
Nonconservative force, 14-10 ff
Nonpolar molecule, II-11-1
Normal dispersion, 31-14
Normal distribution, 6-15, III-16-12,

III-16-14
Normal modes, 48-17 f
n-type semiconductor, III-14-10
Nuclear cross section, 5-15
Nuclear energy, 4-3
Nuclear forces, 12-20 f, II-1-2 f, II-8-12 f,

II-28-18, II-28-20 ff, III-10-10 ff
Nuclear g-factor, II-34-6, III-34-6
Nuclear interactions, II-8-14
Nuclear magnetic resonance, II-35-19 ff,

III-35-19 ff
Nucleon, III-11-5
Nucleus, 2-6, 2-9 f, 2-12 ff
Numerical analysis, 9-11

Nutation, 20-12 f

O
Oersted (unit), II-36-12
Ohm (unit), 25-12
Ohm’s law, 23-9, 25-12, 43-11, II-19-26,

III-14-12
One-dimensional lattice, III-13-1 ff
Operator, III-8-7, III-20-1 ff
Algebraic ∼, III-20-4
Curl ∼, II-2-15, II-3-1
D’Alembertian ∼, II-25-13
Divergence ∼, II-2-14, II-3-1
Gradient ∼, II-2-8 ff, II-3-1
Laplacian ∼, II-2-20
Momentum ∼, III-20-4, III-20-15 ff
Nabla ∼ (∇), II-2-12 ff
Vector ∼, II-2-12

Optic axis, 33-5
Optic nerve, 35-3
Optics, 26-1 ff
Geometrical ∼, 26-2, 27-1 ff

Orbital angular momentum, III-19-2
Orbital motion, II-34-5, III-34-5
Orientation polarization, II-11-5 ff
Oriented magnetic moment, II-35-7,

III-35-7
Orthorhombic lattice, II-30-17
Oscillating dipole, II-21-8 ff
Oscillation
Amplitude of ∼, 21-6
Damped ∼, 24-4 ff
Frequency of ∼, 2-7
Periodic ∼, 9-7
Period of ∼, 21-4
Phase of ∼, 21-6
Plasma ∼s, II-7-9 ff

Oscillator, 5-4
Forced harmonic ∼, 21-9 ff, 23-4 ff
Harmonic ∼, 10-1, 21-1 ff
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P
Pappus, theorem of, 19-6 f
Parabolic antenna, 30-12 f
Parabolic motion, 8-17
Parallel-axis theorem, 19-9
Parallel-plate capacitor, 14-16 f, II-6-22 ff,

II-8-5
Paramagnetism, II-34-1 ff, II-35-1 ff,

III-34-1 ff, III-35-1 ff
Paraxial rays, 27-3
Partial derivative, 14-15
Particles
Bose ∼, III-4-1 ff, III-15-10 f
Fermi ∼, III-4-1 ff, III-15-11
Identical ∼, III-3-16 ff, III-4-1 ff
Spin-one ∼, III-5-1 ff
Spin one-half ∼, III-6-1 ff, III-12-1 ff

Precession of ∼, III-7-18 ff
Pascal’s triangle, 6-7
Passive circuit element, II-22-9
Pauli exclusion principle, II-36-31
Pauli spin exchange operator, III-12-12,

III-15-3
Pauli spin matrices, III-11-1 ff
Pendulum, 5-3
Coupled ∼s, 49-10 ff

Pendulum clock, 5-3
Periodic table, 2-14, 3-2, III-19-25 ff
Period of oscillation, 21-4
Permalloy, II-37-22
Permeability, II-36-18
Relative ∼, II-36-18

Perpetual motion, 46-3
Phase of oscillation, 21-6
Phase shift, 21-6
Phase velocity, 48-10, 48-12
Photon, 2-11, 17-14, 26-2, 37-13, III-1-12
Absorption of ∼s, III-4-13 ff
Emission of ∼s, III-4-13 ff
Polarization states of the ∼, III-11-15 ff

Photosynthesis, 3-4
Physics
Astronomy and ∼, 3-10 ff
before 1920, 2-4 ff
Biology and ∼, 3-3 ff
Chemistry and ∼, 3-1 ff
Geology and ∼, 3-12 f
Mathematics and ∼, 3-1
Psychology and ∼, 3-13 f
Relationship to other sciences, 3-1 ff

Piezoelectricity, II-11-16, II-31-23
Planck’s constant, 4-13, 5-19, 17-14, 37-18,

II-15-16, II-19-18 f, II-28-17,
III-1-18, III-20-24, III-21-2

Plane lattice, II-30-12
Planetary motion, 7-1 ff, 9-11 ff, 13-9
Plane waves, II-20-1 ff
Plasma, II-7-9
Plasma frequency, II-7-12, II-32-18 ff
Plasma oscillations, II-7-9 ff
p-momentum, III-21-8
Poincaré stress, II-28-7 f
Point charge, II-1-3
Electrostatic energy of a ∼, II-8-22 f
Field energy of a ∼, II-28-1 f

Poisson equation, II-6-2
Poisson’s ratio, II-38-3, II-38-6, II-38-21
Polarization, 33-1 ff
Circular ∼, 33-3
Electronic ∼, II-11-2 ff
of matter, II-32-1 ff
of scattered light, 33-4
Orientation ∼, II-11-5 ff

Polarization charges, II-10-6 ff
Polarization vector, II-10-4 ff
Polarized light, 32-15
Polar molecule, II-11-1, II-11-5 ff
Polar vector, 20-6, 52-10 ff
Positive carriers, III-14-3
Potassium, III-19-31 f
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Potential
Four-∼, II-25-15
Quadrupole ∼, II-6-14
Vector ∼, II-14-1 ff, II-15-1 ff
of known currents, II-14-5 ff

Potential energy, 4-7, 13-1 ff, 14-1 ff,
III-7-9 ff

Potential gradient of the atmosphere,
II-9-1 ff

Power, 13-4
Poynting vector, II-27-9
Precession
Angle of ∼, II-34-7, III-34-7
of atomic magnets, II-34-7 ff, III-34-7 ff

Pressure, 1-6
Hydrostatic ∼, II-40-1
Light ∼, 34-20
of a gas, 39-3 ff
Radiation ∼, 34-20

Principal quantum number, III-19-22
Principle
Exclusion ∼, III-4-23 ff
of equivalence, II-42-17 ff
of inertia, 9-1
of least action, II-19-1 ff
of superposition, II-1-5, II-4-4
of virtual work, 4-10
Uncertainty ∼, 2-9 f, 6-17 ff, 7-21,

37-14 f, 37-18 ff, 38-5, 38-11 f,
38-15, III-1-14, III-1-17 ff, III-2-5,
III-2-10 ff, III-2-15

and stability of atoms, II-1-2, II-5-5
Probability, 6-1 ff
Probability amplitudes, 37-16, III-1-16,

III-3-1 ff, III-16-1 ff
Probability density, 6-13, 6-15, III-16-9
Probability distribution, 6-13 ff, III-16-9
Propagation, in a crystal lattice, III-13-1 ff
Propagation factor, II-22-31
Protons, 2-6

Proton spin, II-8-12
Pseudo force, 12-17 ff
Psychology and physics, 3-13 f
p-type semiconductor, III-14-10
Purkinje effect, 35-4
Pyroelectricity, II-11-16

Q
Quadrupole lens, II-7-6, II-29-15 f
Quadrupole potential, II-6-14
Quantized magnetic states, II-35-1 ff,

III-35-1 ff
Quantum electrodynamics, 2-12 f, 2-17,

28-5, 42-16
and point charges, II-28-16

Quantum mechanical resonance, III-10-6
Quantum mechanics, 2-3, 2-9 ff, 6-17 ff,

37-1 ff, 38-1 ff, III-1-1 ff, III-2-1 ff,
III-3-1 ff

and vector potential, II-15-14 ff,
III-21-2 f

Momentum in ∼, 10-16 f
Quantum numbers, III-12-25

R
Rabi molecular-beam method, II-35-7 ff,

III-35-7 ff
Radiant energy, 4-3, 4-12, 7-20, 10-15
Radiation
Blackbody ∼, 41-5 ff
Bremsstrahlung, 34-12 f
Cherenkov ∼, 51-3
Cosmic rays, 2-9, II-9-4
Cosmic synchrotron ∼, 34-10 ff
Electromagnetic ∼, 26-1, 28-1 ff
Gamma rays, 2-8
Infrared ∼, 2-8, 23-14, 26-1
Light, 2-7
Relativistic effects in ∼, 34-1 ff
Synchrotron ∼, 34-6 ff
Ultraviolet ∼, 2-8, 26-1
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X-rays, 2-8, 26-1, 31-11, 34-8, 48-10,
48-12

Radiation damping, 32-1 ff
Radiation pressure, 34-20
Radiation resistance, 32-1 ff
Radioactive clock, 5-6 ff
Radioactive isotopes, 3-7, 5-8, 52-16
Radius
Bohr ∼, 38-12, III-2-12, III-19-5,

III-19-9
Classical electron ∼, 32-6, II-28-5
Excess ∼, II-42-9 ff, II-42-13 ff, II-42-29

Random walk, 6-8 ff, 41-14 ff
Ratchet and pawl machine, 46-1 ff
Rayleigh’s criterion, 30-11
Rayleigh’s law, 41-10
Rayleigh waves, II-38-16
Reactance, II-22-25 f
Reciprocity principle, 26-9, 30-12
Rectification, 50-15
Rectifier, II-22-34
Reflected waves, II-33-14 ff
Reflection, 26-3 ff
Angle of ∼, 26-6, II-33-1
of light, II-33-1 ff
Total internal ∼, II-33-22 ff

Refraction, 26-3 ff
Anomalous ∼, 33-15 ff
Index of ∼, 31-1 ff, II-32-1 ff
of light, II-33-1 ff

Relative permeability, II-36-18
Relativistic dynamics, 15-15 ff
Relativistic energy, 16-1 ff
Relativistic mass, 16-9 ff
Relativistic momentum, 10-14 ff, 16-1 ff
Relativity
Galilean ∼, 10-5, 10-11
of electric field, II-13-13 ff
of magnetic field, II-13-13 ff
Special theory of ∼, 15-1 ff

Theory of ∼, 7-20 f, 17-1
Resistance, 23-9
Resistor, 23-9, 41-4 f, 41-14, II-22-7 f
Resolving power, 27-14 f
of a diffraction grating, 30-10 f

Resonance, 23-1 ff
Electrical ∼, 23-8 ff
in nature, 23-12 ff
Quantum mechanical ∼, III-10-6
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er unit vector in the direction r, 28-2
E electric field vector, 12-13
Ex, Ey, Ez cartesian components of the electric field vector, 12-17
E energy, 4-13
Egap energy gap, III-14-7
Etr transverse electric field vector, III-14-14
E electric field vector, III-9-8
E electromotive force, II-17-2
E energy, 33-19

f focal length, 27-4
Fµν electromagnetic tensor, II-26-12
F force vector, 11-9
Fx, Fy, Fz cartesian components of the force vector, 9-5
F magnitude or component of the force vector, 7-1

g acceleration of gravity, 9-6
G gravitational constant, 7-1

h heat flow vector, II-2-6
h Planck’s constant, h = 6.62606896× 10−34 Js, 17-14
~ reduced Planck constant, ~ = h/2π, 2-9
H magnetizing field vector, II-32-7

i imaginary unit, 22-11
i unit vector in the direction x, 11-18
I electric current, 23-9
I intensity, 30-2
I moment of inertia, 18-12
Iij tensor of inertia, II-31-13
I intensity, III-9-23

j electric current density vector, II-2-15
jx, jy, jz cartesian components of the electric current density vector, II-

13-22
j unit vector in the direction y, 11-18
J angular momentum vector of electron orbit, II-34-4
J0(x) Bessel function of the first kind, II-23-11

k Boltzmann’s constant, k = 1.3806504× 10−23 J/K, 39-16
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kµ = (ω,k) four-wave vector, 34-18
k unit vector in the direction z, 11-18
k wave vector, 34-17
kx, ky, kz cartesian components of the wave vector, 34-17
k magnitude or component of the wave vector, wave number, 29-6
K bulk modulus, II-38-6

L angular momentum vector, 20-7
L magnitude or component of the angular momentum vector, 18-8
L self-inductance, 23-10
L Lagrangian, II-19-15
L self-inductance, II-17-20
|L〉 left-hand circularly polarized photon state, III-11-19

m mass, 4-13
meff effective electron mass in a crystal lattice, III-13-12
m0 rest mass, 10-15
M magnetization vector, II-35-14
M mutual inductance, II-22-36
M mutual inductance, II-17-18
M bending moment, II-38-19

n index of refraction, 26-7
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. . . , N, III-11-37
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p dipole moment vector, II-6-5
p magnitude or component of the dipole moment vector, II-6-5
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p momentum vector, 15-16
px, py, pz cartesian components of the momentum vector, 10-15
p magnitude or component of momentum vector, 2-9
p pressure, II-40-3
Pspin exch Pauli spin exchange operator, III-12-12
P polarization vector, II-10-5
P magnitude or component of the polarization vector, II-10-7

List of Symbols-4



P power, 24-2
P pressure, 39-4
P (k, n) Bernoulli or binomial probability, 6-8
P (A) probability of observing event A, 6-2
q electric charge, 12-11
Q heat, 44-5
r radius (position) vector, 11-9
r radius or distance, 5-15
R resistance, 23-9
R Reynold’s number, II-41-10
|R〉 right-hand circularly polarized photon state, III-11-19
s distance, 8-2
S action, II-19-6
S entropy, 44-19
S Poynting vector, II-27-3
S “strangeness” number, 2-14
Sij stress tensor, II-31-17
t time, 5-2
T absolute temperature, 39-16
T half-life, 5-6
T kinetic energy, 13-1
u velocity, 15-2
U internal energy, 39-7
U(t2, t1) operator designating the operation waiting from time t1 until t2,

III-8-12
U potential energy, 13-1
U unworldliness, II-25-18
v velocity vector, 11-12
vx, vy, vz cartesian components of the velocity vector, 8-15
v magnitude or component of velocity vector, 8-7
V velocity, 4-11
V voltage, 23-9
V volume, 39-4
V voltage, II-17-21
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W weight, 4-7
W work, 14-2

x cartesian coordinate, 1-11
xµ = (t, r) four-position, 34-18

y cartesian coordinate, 1-11
Yl,m(θ, φ) spherical harmonics, III-19-13
Y Young’s modulus, II-38-3

z cartesian coordinate, 1-11
Z complex impedance, 23-12
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